Philip S. Yu - Jiawei Han |

Christos Faloutsos Editors L

Link Mining:
Models, Algorithms,
and Applications

2 Springer

Link Mining: Models, Algorithms,
and Applications

Philip S. Yu - Jiawei Han - Christos Faloutsos
Editors

Link Mining: Models,
Algorithms, and Applications

@ Springer

Editors

Philip S. Yu

Department of Computer Science
University of Illinois at Chicago
851 S. Morgan St.

Chicago, IL 60607-7053, USA
psyu@cs.uic.edu

Christos Faloutsos

School of Computer Science
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213, USA
christos @cs.cmu.edu

ISBN 978-1-4419-6514-1
DOI 10.1007/978-1-4419-6515-8

Jiawei Han

Department of Computer Science

University of Illinois at
Urbana-Champaign

201 N. Goodwin Ave.

Urbana, IL 61801, USA

hanj@cs.uiuc.edu

e-ISBN 978-1-4419-6515-8

Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010932880

© Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not

they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

With the recent flourishing research activities on Web search and mining, social
network analysis, information network analysis, information retrieval, link analy-
sis, and structural data mining, research on link mining has been rapidly growing,
forming a new field of data mining.

Traditional data mining focuses on “flat” or “isolated” data in which each data
object is represented as an independent attribute vector. However, many real-world
data sets are inter-connected, much richer in structure, involving objects of het-
erogeneous types and complex links. Hence, the study of link mining will have a
high impact on various important applications such as Web and text mining, social
network analysis, collaborative filtering, and bioinformatics.

As an emerging research field, there are currently no books focusing on the theory
and techniques as well as the related applications for link mining, especially from
an interdisciplinary point of view. On the other hand, due to the high popularity
of linkage data, extensive applications ranging from governmental organizations to
commercial businesses to people’s daily life call for exploring the techniques of
mining linkage data. Therefore, researchers and practitioners need a comprehensive
book to systematically study, further develop, and apply the link mining techniques
to these applications.

This book contains contributed chapters from a variety of prominent researchers
in the field. While the chapters are written by different researchers, the topics and
content are organized in such a way as to present the most important models, algo-
rithms, and applications on link mining in a structured and concise way. Given the
lack of structurally organized information on the topic of link mining, the book will
provide insights which are not easily accessible otherwise. We hope that the book
will provide a useful reference to not only researchers, professors, and advanced
level students in computer science but also practitioners in industry.

We would like to convey our appreciation to all authors for their valuable con-
tributions. We would also like to acknowledge that this work is supported by NSF
through grants I1S-0905215, 1IS-0914934, and DBI-0960443.

Chicago, Illinois Philip S. Yu
Urbana-Champaign, Illinois Jiawei Han
Pittsburgh, Pennsylvania Christos Faloutsos

Contents

PartI Link-Based Clustering

1 Machine Learning Approaches to Link-Based Clustering 3
Zhongfei (Mark) Zhang, Bo Long, Zhen Guo, Tianbing Xu,
and Philip S. Yu

2 Scalable Link-Based Similarity Computation and Clustering 45
Xiaoxin Yin, Jiawei Han, and Philip S. Yu

3 Community Evolution and Change Point Detection
in Time-Evolving Graphs 73
Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos

PartII Graph Mining and Community Analysis

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete
NetworKks 107
Galileo Mark Namata, Hossam Sharara, and Lise Getoor

5 Markov Logic: A Language and Algorithms for Link Mining 135
Pedro Domingos, Daniel Lowd, Stanley Kok, Aniruddh Nath, Hoifung
Poon, Matthew Richardson, and Parag Singla

6 Understanding Group Structures and Properties in Social Media 163
Lei Tang and Huan Liu
7 Time Sensitive Ranking with Application to Publication Search 187

Xin Li, Bing Liu, and Philip S. Yu

8 Proximity Tracking on Dynamic Bipartite Graphs: Problem
Definitions and Fast Solutions 211
Hanghang Tong, Spiros Papadimitriou, Philip S. Yu,
and Christos Faloutsos

vii

viii Contents

9 Discriminative Frequent Pattern-Based Graph Classification.
Hong Cheng, Xifeng Yan, and Jiawei Han

Part III Link Analysis for Data Cleaning and Information Integration

10 Information Integration for Graph Databases
Ee-Peng Lim, Aixin Sun, Anwitaman Datta, and Kuiyu Chang

11 Veracity Analysis and Object Distinction.
Xiaoxin Yin, Jiawei Han, and Philip S. Yu

Part IV Social Network Analysis

12 Dynamic Community Identification
Tanya Berger-Wolf, Chayant Tantipathananandh, and David Kempe

13 Structure and Evolution of Online Social Networks
Ravi Kumar, Jasmine Novak, and Andrew Tomkins

14 Toward Identity Anonymization in Social Networks
Kenneth L. Clarkson, Kun Liu, and Evimaria Terzi

Part V Summarization and OLAP of Information Networks

15 Interactive Graph Summarization
Yuanyuan Tian and Jignesh M. Patel

16 InfoNetOLAP: OLAP and Mining of Information Networks
Chen Chen, Feida Zhu, Xifeng Yan, Jiawei Han, Philip Yu,
and Raghu Ramakrishnan

17 Integrating Clustering with Ranking in Heterogeneous Information
Networks Analysis
Yizhou Sun and Jiawei Han

18 Mining Large Information Networks by Graph Summarization
Chen Chen, Cindy Xide Lin, Matt Fredrikson, Mihai Christodorescu,
Xifeng Yan, and Jiawei Han

Part VI Analysis of Biological Information Networks
19 Finding High-Order Correlations in High-Dimensional

Biological Data.
Xiang Zhang, Feng Pan, and Wei Wang

Contents ix

20 Functional Influence-Based Approach to Identify Overlapping
Modules in Biological Networks.................................. 535
Young-Rae Cho and Aidong Zhang

21 Gene Reachability Using Page Ranking on Gene Co-expression
Networks 557
Pinaki Sarder, Weixiong Zhang, J. Perren Cobb, and Arye Nehorai

Contributors

Tanya Berger-Wolf University of Illinois at Chicago, Chicago, IL 60607, USA

Kuiyu Chang School of Computer Engineering, Nanyang Technological
University, Nanyang Avenue, Singapore

Chen Chen University of Illinois at Urbana-Champaign, Urbana, IL, USA

Hong Cheng The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Young-Rae Cho Baylor University, Waco, TX 76798, USA

Mihai Christodorescu IBM T. J. Watson Research Center, Hawthorne, NY, USA
Kenneth L. Clarkson IBM Almaden Research Center, San Jose, CA, USA

J. Perren Cobb Department of Anesthesia, Critical Care, and Pain Medicine,
Massachusetts General Hospital, Boston, MA 02114, USA

Anwitaman Datta School of Computer Engineering, Nanyang Technological
University, Nanyang Avenue, Singapore

Pedro Domingos Department of Computer Science and Engineering, University
of Washington, Seattle, WA 98195-2350, USA

Christos Faloutsos Carnegie Mellon University, Pittsburgh, PA 15213, USA
Matt Fredrikson University of Wisconsin at Madison, Madison, WI, USA

Lise Getoor Department of Computer Science, University of Maryland, College
Park, MD, USA

Zhen Guo Computer Science Department, SUNY Binghamton, Binghamton, N,
USA

Jiawei Han UIUC, Urbana, IL, USA
David Kempe University of Southern California, Los Angeles, CA 90089, USA

Stanley Kok Department of Computer Science and Engineering, University of
Washington, Seattle, WA 98195-2350, USA

Ravi Kumar Yahoo! Research, 701 First Ave, Sunnyvale, CA 94089, USA

xi

xii Contributors

Xin Li Microsoft Corporation One Microsoft Way, Redmond, WA 98052, USA

Ee-Peng Lim School of Information Systems, Singapore Management University,
Singapore

Cindy Xide Lin University of Illinois at Urbana-Champaign, Urbana, IL, USA

Bing Liu Department of Computer Science, University of Illinois at Chicago,
851 S. Morgan (M/C 152), Chicago, IL 60607-7053, USA

Huan Liu Computer Science and Engineering, Arizona State University, Tempe,
AZ 85287-8809, USA

Kun Liu Yahoo! Labs, Santa Clara, CA 95054, USA
Bo Long Yahoo! Labs, Yahoo! Inc., Sunnyvale, CA, USA

Daniel Lowd Department of Computer and Information Science, University of
Oregon, Eugene, OR 97403-1202, USA

Galileo Mark Namata Department of Computer Science, University of Maryland,
College Park, MD, USA

Aniruddh Nath Department of Computer Science and Engineering, University of
Washington, Seattle, WA 98195-2350, USA

Arye Nehorai Department of Electrical and Systems Engineering, Washington
University in St. Louis, St. Louis, MO 63130, USA

Jasmine Novak Yahoo! Research, 701 First Ave, Sunnyvale, CA 94089, USA

Feng Pan Department of Computer Science, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA

Spiros Papadimitriou IBM TJ. Watson, Hawthorne, NY, USA
Jignesh M. Patel University of Wisconsin, Madison, WI 53706-1685, USA

Hoifung Poon Department of Computer Science and Engineering, University of
Washington, Seattle, WA 98195-2350, USA

Raghu Ramakrishnan Yahoo! Research, Santa Clara, CA, USA
Matthew Richardson Microsoft Research, Redmond, WA 98052, USA

Pinaki Sarder Department of Computer Science and Engineering, Washington
University in St.Louis, St. Louis, MO 63130, USA

Hossam Sharara Department of Computer Science, University of Maryland,
College Park, MD, USA

Parag Singla Department of Computer Science, The University of Texas at
Austin, 1616 Guadalupe, Suite 2408, Austin, TX 78701-0233, USA

Aixin Sun School of Computer Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore

Contributors xiil

Jimeng Sun IBM TJ Watson Research Center, Hawthorne, NY, USA
Yizhou Sun University of Illinois at Urbana-Champaign, Urbana, IL, USA

Lei Tang Computer Science and Engineering, Arizona State University, Tempe,
AZ 85287-8809, USA

Chayant Tantipathananandh University of Illinois at Chicago, Chicago,
IL 60607, USA

Evimaria Terzi Computer Science Department, Boston University, Boston, MA,
USA

Yuanyuan Tian IBM Almaden Research Center, San Jose, CA, USA

Andrew Tomkins Google, Inc., 1600 Amphitheater Parkway, Mountain View,
CA 94043, USA

Hanghang Tong Carnegie Mellon University, Pittsburgh, PA 15213, USA

Wei Wang Department of Computer Science, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA

Tianbing Xu Computer Science Department, SUNY Binghamton, Binghamton,
NY, USA

Xifeng Yan University of California at Santa Barbara, Santa Barbara, CA, USA
Xiaoxin Yin Microsoft Research, Redmond, WA 98052, USA

Philip S. Yu Department of Computer Science, University of Illinois at Chicago,
Chicago, IL, USA

Aidong Zhang State University of New York at Buffalo, Buffalo, NY 14260, USA

Weixiong Zhang Departments of Computer Science and Engineering and
Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA

Xiang Zhang Department of Computer Science, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA

Zhongfei (Mark) Zhang Computer Science Department, SUNY Binghamton,
Binghamton, NY, USA

Feida Zhu University of Illinois at Urbana-Champaign, Urbana, IL, USA

Part I
Link-Based Clustering

Chapter 1
Machine Learning Approaches to Link-Based
Clustering

Zhongfei (Mark) Zhang, Bo Long, Zhen Guo, Tianbing Xu, and Philip S. Yu

Abstract We have reviewed several state-of-the-art machine learning approaches
to different types of link-based clustering in this chapter. Specifically, we have
presented the spectral clustering for heterogeneous relational data, the symmetric
convex coding for homogeneous relational data, the citation model for clustering
the special but popular homogeneous relational data—the textual documents with
citations, the probabilistic clustering framework on mixed membership for general
relational data, and the statistical graphical model for dynamic relational cluster-
ing. We have demonstrated the effectiveness of these machine learning approaches
through empirical evaluations.

1.1 Introduction

Link information plays an important role in discovering knowledge from data.
For link-based clustering, machine learning approaches provide pivotal strengths
to develop effective solutions. In this chapter, we review several specific machine
learning techniques to link-based clustering in two specific paradigms—the deter-
ministic approaches and generative approaches. We by no means mean that these
techniques are exhaustive. Instead, our intention is to use these exemplar approaches
to showcase the power of machine learning techniques to solve different link-based
clustering problems.

When we say link-based clustering, we mean the clustering of relational data. In
other words, links are the relations among the data items or objects. Consequently,
in the rest of this chapter, we use the terminologies of link-based clustering and
relational clustering exchangeably. In general, relational data are those that have
link information among the data items in addition to the classic attribute information
for the data items. For relational data, we may categorize them in terms of the type
of their relations [37] into homogeneous relational data (relations exist among the
same type of objects for all the data), heterogeneous relational data (relations only

Z.Zhang (=)
Computer Science Department, SUNY, Binghamton, NY, USA
e-mail: zhongfei @cs.binghamton.edu

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications, 3
DOI 10.1007/978-1-4419-6515-8_1, © Springer Science+Business Media, LLC 2010

4 Z.Zhang et al.

exist between data items of different types), general relational data (relations exist
both among data items of the same type and between data items of different types),
and dynamic relational data (there are time stamps for all the data items with rela-
tions to differentiate from all the previous types of relational data which are static).
For all the specific machine learning approaches reviewed in this chapter, they are
based on the mathematical foundations of matrix decomposition, optimization, and
probability and statistics theory.

In this chapter, we review five specific different machine learning techniques
tailored for different types of link-based clustering. Consequently, this chapter is
organized as follows. In Section 1.2 we study the deterministic paradigm of machine
learning approaches to link-based clustering and specifically address solutions to
the heterogeneous data clustering problem and the homogeneous data clustering
problem. In Section 1.3, we study the generative paradigm of machine learning
approaches to link-based clustering and specifically address solutions to a special
but very popular problem of the homogeneous relational data clustering, i.e., the
data are the textual documents and the link information is the citation information,
the general relational data clustering problem, and the dynamic relational data clus-
tering problem. Finally, we conclude this chapter in Section 1.4.

1.2 Deterministic Approaches to Link-Based Clustering

In this section, we study deterministic approaches to link-based clustering. Specif-
ically, we present solutions to the clustering of the two special cases of the two
types of links, respectively, the heterogeneous relational clustering through spectral
analysis and homogeneous relational clustering through convex coding.

1.2.1 Heterogeneous Relational Clustering Through
Spectral Analysis

Many real-world clustering problems involve data objects of multiple types that
are related to each other, such as Web pages, search queries, and Web users in a
Web search system, and papers, key words, authors, and conferences in a scientific
publication domain. In such scenarios, using traditional methods to cluster each type
of objects independently may not work well due to the following reasons.

First, to make use of relation information under the traditional clustering frame-
work, the relation information needs to be transformed into features. In general,
this transformation causes information loss and/or very high dimensional and sparse
data. For example, if we represent the relations between Web pages and Web users as
well as search queries as the features for the Web pages, this leads to a huge number
of features with sparse values for each Web page. Second, traditional clustering
approaches are unable to tackle with the interactions among the hidden structures
of different types of objects, since they cluster data of single type based on static

1 Machine Learning Approaches 5

features. Note that the interactions could pass along the relations, i.e., there exists
influence propagation in multi-type relational data. Third, in some machine learning
applications, users are not only interested in the hidden structure for each type of
objects but also the global structure involving multi-types of objects. For example,
in document clustering, except for document clusters and word clusters, the rela-
tionship between document clusters and word clusters is also useful information.
It is difficult to discover such global structures by clustering each type of objects
individually.

Therefore, heterogeneous relational data have presented a great challenge for
traditional clustering approaches. In this study [36], we present a general model,
the collective factorization on related matrices, to discover the hidden structures of
objects of different types based on both feature information and relation informa-
tion. By clustering the objects of different types simultaneously, the model performs
adaptive dimensionality reduction for each type of data. Through the related factor-
izations which share factors, the hidden structures of objects of different types may
interact under the model. In addition to the cluster structures for each type of data,
the model also provides information about the relation between clusters of objects
of different types.

Under this model, we derive an iterative algorithm, the spectral relational clus-
tering, to cluster the interrelated data objects of different types simultaneously. By
iteratively embedding each type of data objects into low-dimensional spaces, the
algorithm benefits from the interactions among the hidden structures of data objects
of different types. The algorithm has the simplicity of spectral clustering approaches
but at the same time also is applicable to relational data with various structures. The-
oretic analysis and experimental results demonstrate the promise and effectiveness
of the algorithm. We also show that the existing spectral clustering algorithms can be
considered as the special cases of the proposed model and algorithm. This provides
a unified view to understanding the connections among these algorithms.

1.2.1.1 Model Formulation and Algorithm

In this section, we present a general model for clustering heterogeneous relational
data in the spectral domain based on factorizing multiple related matrices.

Given m sets of data objects, X1 = {x11, ..., X150, }, ..., X = X1y o5 Xy)
which refer to m different types of objects relating to each other, we are interested
in simultaneously clustering &’ into k; disjoint clusters, ..., and X}, into k,, dis-

joint clusters. We call this task as collective clustering on heterogeneous relational
data.

To derive a general model for collective clustering, we first formulate the Hetero-
geneous Relational Data (HRD) as a set of related matrices, in which two matrices
are related in the sense that their row indices or column indices refer to the same set
of objects. First, if there exist relations between A; and X; (denoted as &; ~ &),
we represent them as a relation matrix R/ € R™>"j, where an element RE,’Z,)
denotes the relation between x;, and x;,. Second, a set of objects X; may have its

6 Z.Zhang et al.

own features, which could be denoted by a feature matrix F () ¢ R*fi where an
element F) (l) denotes the gth feature values for the object x;, and f; is the number
of features for X;.

Figure 1.1 shows three examples of the structures of HRD. Example (a) refers
to a basic bi-type of relational data denoted by a relation matrix R'?, such as
word-document data. Example (b) represents a tri-type of star-structured data, such
as Web pages, Web users, and search queries in Web search systems, which are
denoted by two relation matrices R(!? and R®®. Example (c) represents the data
consisting of shops, customers, suppliers, shareholders, and advertisement media,
in which customers (type 5) have features. The data are denoted by four relation
matrices R12, RU3) RUY and RIS and one feature matrix F©.

(@) (b)

Fig. 1.1 Examples of the structures of the heterogeneous relational data

It has been shown that the hidden structure of a data matrix can be explored
by its factorization [13, 39]. Motivated by this observation, we propose a gen-
eral model for collective clustering, which is based on factorizing the multi-
ple related matrices. In HRD, the cluster structure for a type of objects A;
may be embedded in multiple related matrices; hence, it can be exploited
in multiple related factorizations. First, if &; ~ &, then the cluster struc-
tures of both X; and X; are reflected in the triple factorization of their rela-
tion matrix RU/) such that RV ~ COAWCU)T [39], where CD €
{0, 1Y%k is a cluster indicator matrix for X; such that Zki_ C;,lq) = 1

and C;,’; 1 denotes that the pth object in &; is associated with the gth cluster.
Similarly CO) e {0, 1y1xki. AW e Rki*Kj is the cluster association matrix such
that A l{q denotes the association between cluster p of A; and cluster g of X’;. Sec-
ond, if &; has a feature matrix F©) e R */i the cluster structure is reﬂected in the
factorization of F) such that F) ~ C (’)B(’) where CY) € {0, 1}" %k is a cluster
indicator matrix, and BY) e R¥*/i s the feature basis matrix which consists of k;
basis (cluster center) vectors in the feature space.

Based on the above discussions, formally we formulate the task of collective
clustering on HRD as the following optimization problem. Considering the most
general case, we assume that in HRD, every pair of &; and X is related to each
other and every X; has a feature matrix F@),

Definition 1 Given m positive numbers {k;}1<;<,» and HRD {X7, ..., A}, }, which

is described by a set of relation matrices {R“) € R"*"i};_; _ i<, a set of feature

matrices {F® e R"*fi};_;,, as well as a set of weights wlih w,()') e R, for

1 Machine Learning Approaches 7

different types of relations and features, the task of the collective clustering on the
HRD is to minimize

L= 3wl RO — c® At YT |2
I<i<j<m
+ 3w FO — cOpO)2, (1.1

1<i<m

w.rt. C@ e {0, 1Y%k AU ¢ RKi*kj and B® e Rk */i subject to the constraints:
Zgizl C;,’; =1,wherel < p <n;,1 <i < j <m,and||-|| denotes the Frobenius
norm for a matrix.

We call the model proposed in Definition 1 as the Collective Factorization on
Related Matrices (CFRM).

The CFRM model clusters heterogeneously interrelated data objects simultane-
ously based on both relation and feature information. The model exploits the interac-
tions between the hidden structures of different types of objects through the related
factorizations which share matrix factors, i.e., cluster indicator matrices. Hence, the
interactions between hidden structures work in two ways. First, if &; ~ X, the
interactions are reflected as the duality of row clustering and column clustering in
R Second, if two types of objects are indirectly related, the interactions pass
along the relation “chains” by a chain of related factorizations, i.e., the model is
capable of dealing with influence propagation. In addition to local cluster structure
for each type of objects, the model also provides the global structure information by
the cluster association matrices, which represent the relations among the clusters of
different types of objects.

Based on the CFRM model, we derive an iterative algorithm, called Spectral
Relational Clustering (SRC) algorithm [36]. The specific derivation of the algorithm
and the proof of the convergence of the algorithm refer to [36]. Further, in Long
et al. [36], it is shown that the CFRM model as well as the SRC algorithm is able to
handle the general case of heterogeneous relational data, and many existing methods
in the literature are either the special cases or variations of this model. Specifically,
it is shown that the classic k-means [51], the spectral clustering methods based on
graph partitioning [41, 42], and the Bipartite Spectral Graph Partitioning (BSGP)
[17, 50] are all the special cases of this general model.

1.2.1.2 Experiments

The SRC algorithm is evaluated on two types of HRD, bi-type relational data and
tri-type star-structured data as shown in Fig. 1.1a and b, which represent two basic
structures of HRD and arise frequently in real applications.

The data sets used in the experiments are mainly based on the 20 Newsgroups
data [33] which contain about 20,000 articles from 20 newsgroups. We pre-process
the data by removing stop words and file headers and selecting top 2000 words by
the mutual information. The word—document matrix R is based on #f.idf and each

8 Z.Zhang et al.

document vector is normalized to the unit norm vector. In the experiments the classic
k-means is used for initialization and the final performance score for each algorithm
is the average of the 20 test runs unless stated otherwise.

Clustering on Bi-type Relational Data

In this section we report experiments on bi-type relational data, word—document
data, to demonstrate the effectiveness of SRC as a novel co-clustering algorithm. A
representative spectral clustering algorithm, Normalized Cut (NC) spectral cluster-
ing [41, 42], and BSGP [17] are used for comparisons.

The graph affinity matrix for NC is R” R, i.e., the cosine similarity matrix. In NC
and SRC, the leading k eigenvectors are used to extract the cluster structure, where
k is the number of document clusters. For BSGP, the second to the ([log, k7 + 1)th
leading singular vectors are used [17]. k-means is adopted to postprocess the eigen-
vectors. Before post-processing, the eigenvectors from NC and SRC are normalized
to the unit norm vector and the eigenvectors from BSGP are normalized as described
by [17]. Since all the algorithms have random components resulting from k-means
or itself, at each test we conduct three trials with random initializations for each
algorithm and the optimal one provides the performance score for that test run. To
evaluate the quality of document clusters, we elect to use the Normalized Mutual
Information (NMI) [43], which is a standard measure for the clustering quality.

At each test run, five data sets, multi2 (NG 10, 11), multi3 (NG 1, 10, 20), multi5
(NG 3, 6,9, 12, 15), multi8 (NG 3, 6, 7, 9, 12, 15, 18, 20), and multil0 (NG 2, 4,
6, 8, 10, 12, 14, 16, 18, 20), are generated by randomly sampling 100 documents
from each newsgroup. Here NG i means the ith newsgroup in the original order.
For the numbers of document clusters, we use the numbers of the true document
classes. For the numbers of word clusters, there are no options for BSGP, since they
are restricted to equal to the numbers of document clusters. For SRC, it is flexible to
use any number of word clusters. Since how to choose the optimal number of word
clusters is beyond the scope of this study, we simply choose one more word cluster
than the corresponding document clusters, i.e., 3, 4, 6, 9, and 11. This may not be
the best choice but it is good enough to demonstrate the flexibility and effectiveness
of SRC.

Figure 1.2a,b, and ¢ show three document embeddings of a multi2 sample, which
is sampled from two close newsgroups, rec.sports.baseball and rec.sports.hockey.
In this example, when NC and BSGP fail to separate the document classes, SRC
still provides a satisfactory separation. The possible explanation is that the adaptive
interactions among the hidden structures of word clusters and document clusters
remove the noise to lead to better embeddings. (d) shows a typical run of the SRC
algorithm.

Table 1.1 shows NMI scores on all the data sets. We observe that SRC performs
better than NC and BSGP on all data sets. This verifies the hypothesis that benefiting
from the interactions of the hidden structures of objects with different types, the
SRC’s adaptive dimensionality reduction has advantages over the dimensionality
reduction of the existing spectral clustering algorithms.

1 Machine Learning Approaches 9

(a (b)
-0.2 1
NG10 NG10
041 ANGT1 A NG
0.5
XNA000X 0 L—aryvX £\
-1 -0.5 0 0.5 1 0 0.2 0.4
Uz Uz
() (d)
0 2
NG10 4 o
A NG 215 (
A >
5 -05 2
3]
2,
o)
o 05
-1 z 0
-1 -0.5 0 0.5 1 0 5 10
U, Number of iterations

Fig. 1.2 (a), (b), and (c¢) are document embeddings of multi2 data set produced by NC, BSGP, and
SRC, respectively (1] and u, denote first and second eigenvectors, respectively). (d) is an iteration
curve for SRC

Table 1.1 NMI comparisons of SRC, NC, and BSGP algorithms

Data set SRC NC BSGP
multi2 0.4979 0.1036 0.1500
multi3 0.5763 0.4314 0.4897
multi5 0.7242 0.6706 0.6118
multi8 0.6958 0.6192 0.5096
multil0 0.7158 0.6292 0.5071

Clustering on Tri-type Relational Data

In this section, we report the experiments on tri-type star-structured relational data to
evaluate the effectiveness of SRC in comparison with other two algorithms for HRD
clustering. One is based on the m-partite graph partitioning, Consistent Bipartite
Graph Co-partitioning (CBGC) [23] (we thank the authors for providing the exe-
cutable program of CBGC). The other is Mutual Reinforcement K-means (MRK),
which is implemented based on the idea of mutual reinforcement clustering.

The first data set is synthetic data, in which two relation matrices, RU2) with
80 x 100 dimension and R with 100 x 80 dimension, are binary matrices with
2 x 2 block structures. R1? is generated based on the block structure [8;3 8;] ie.,

10 Z.Zhang et al.

the objects in cluster 1 of X is related to the objects in cluster 1 of X® with
probability 0.9. R®® is generated based on the block structure [§¢]. Each type
of objects has two equal size clusters. It is not a trivial task to identify the cluster
structure of this data set, since the block structures are subtle. We denote this data
set as Binary Relation Matrices (TRM) data.

Other three data sets are built based on the 20 Newsgroups data for hierarchical
taxonomy mining and document clustering. In the field of text categorization, hier-
archical taxonomy classification is widely used to obtain a better trade-off between
effectiveness and efficiency than flat taxonomy classification. To take advantage of
hierarchical classification, one must mine a hierarchical taxonomy from the data
set. We can see that words, documents, and categories formulate tri-type relational
data, which consist of two relation matrices, a word—document matrix R1?, and a
document—category matrix R?3 [23].

The true taxonomy structures for the three data sets, TM1, TM2, and TM3, are
listed in Table 1.2. For example, TM1 data set is sampled from five categories,
in which NG10 and NGI11 belong to the same high-level category res.sports and
NG17,NGI18, and NG19 belong to the same high-level category talk.politics. There-
fore, for the TM1 data set, the expected clustering result on categories should be
{NG10, NG11} and {NG17, NG18, NG19} and the documents should be clustered
into two clusters according to their categories. The documents in each data set are
generated by sampling 100 documents from each category.

Table 1.2 Taxonomy structures for three datasets

Data set Taxonomy structure

T™M1 {NG10, NG11}, {NG17, NG18, NG19}
T™2 {NG2, NG3}, {NG8, NG9}, {NG12, NG13}
T™3 {NG4, NG5}, {NG8, NG9}, {NG14, NG15},

(NG17, NG18}

The number of the clusters used for documents and categories are 2, 3, and 4

for TM1, TM2, and TM3, respectively. For the number of word clusters, we adopt
the number of categories, i.e., 5, 6, and 8. For the weights wélz) and w§23),

simply use equal weight, i.e., wim = wém = 1. Figure 1.3 illustrates the effects
12 _

of different weights on embeddings of documents and categories. When w,
(23)
Wq

we

= 1, i.e., SRC makes use of both word—document relations and document—
category relations, both documents and categories are separated into two clusters
very well as in (a) and (b) of Fig. 1.3, respectively; when SRC makes use of only
the word—document relations, the documents are separated with partial overlapping
as in (c) and the categories are randomly mapped to a couple of points as in (d);
when SRC makes use of only the document—category relations, both documents
and categories are incorrectly overlapped as in (e) and (f), respectively, since the
document—category matrix itself does not provide any useful information for the
taxonomy structure.

The performance comparison is based on the cluster quality of documents,
since the better it is, the more accurate we can identify the taxonomy structures.
Table 1.3 shows NMI comparisons of the three algorithms on the four data sets. The

1 Machine Learning Approaches 11

(a) (b)
1 - -055
- | -~ © +
= O S
-1 -1 4+
-1 -0.8 -06 -04 -0.2 -1 -0.5 0 0.5 1
Uz Uz
(c) (d)
1 e 16
30 305
+
-1 oG
-1 -08 -06 -04 -02 0 0.5 1
Uz Uz
(e) (f)
1 1
S 09 s ot
-1 -1
-1 -0.5 0 0.5 -1 -0.5 0 0.5
U U

Fig. 1.3 Three pairs of embeddings of documents and categories for the TM1 data set pro-
duced by SRC with different weights: (a) and (b) with wi'> =1, w®> = 1; (¢) and (d) with

wi?® = 1, w$ = 0; (e) and (F) with wl'® = 0, w? =

Table 1.3 NMI comparisons of SRC, MRK, and CBGC algorithms

Data set SRC MRK CBGC
BRM 0.6718 0.6470 0.4694
™1 1 0.5243 -
™2 0.7179 0.6277 -
TM3 0.6505 0.5719 -

NMI score of CBGC is available only for BRM data set because the CBGC program
provided by the authors only works for the case of two clusters and small size matri-
ces. We observe that SRC performs better than MRK and CBGC on all data sets.
The comparison shows that among the limited efforts in the literature attempting
to cluster multi-type interrelated objects simultaneously, SRC is an effective one to
identify the cluster structures of HRD.

1.2.2 Homogeneous Relational Clustering Through
Convex Coding

The most popular way to solve the problem of clustering the homogeneous relational
data such as similarity-based relational data is to formulate it as a graph partitioning

12 Z.Zhang et al.

problem, which has been studied for decades. Graph partitioning seeks to cut a
given graph into disjoint subgraphs which correspond to disjoint clusters based on
a certain edge cut objective. Recently, graph partitioning with an edge cut objective
has been shown to be mathematically equivalent to an appropriate weighted kernel
k-means objective function [15, 16]. The assumption behind the graph partitioning
formulation is that since the nodes within a cluster are similar to each other, they
form a dense subgraph. However, in general, this is not true for relational data, i.e.,
the clusters in relational data are not necessarily dense clusters consisting of strongly
related objects.

Figure 1.4 shows the relational data of four clusters, which are of two different
types. In Fig. 1.4, C1 = {vy, v2, v3, v4} and Co = {vs, vg, v7, vg} are two traditional
dense clusters within which objects are strongly related to each other. However,
C3z = {vg, v10, v11, v12} and Cq4 = {v13, v14, V15, V16} also form two sparse clusters,
within which the objects are not related to each other, but they are still “similar” to
each other in the sense that they are related to the same set of other nodes. In Web
mining, this type of cluster could be a group of music “fans” Web pages which share
the same taste on the music and are linked to the same set of music Web pages but
are not linked to each other [32]. Due to the importance of identifying this type of
clusters (communities), it has been listed as one of the five algorithmic challenges
in Web search engines [27]. Note that the cluster structure of the relation data in
Fig. 1.4 cannot be correctly identified by graph partitioning approaches, since they
look for only dense clusters of strongly related objects by cutting the given graph
into subgraphs; similarly, the pure bipartite graph models cannot correctly identify
this type of cluster structures. Note that re-defining the relations between the objects
(e.g., re-defining 1-0 and 0-1) does not solve the problem in this situation, since
there exist both dense and sparse clusters.

R

XK 2
15
N Ny

(a) (b)

Fig. 1.4 The graph (a) and relation matrix (b) of the relational data with different types of clusters.
In (b), the dark color denotes 1 and the light color denotes 0

If the homogeneous relational data are dissimilarity-based, to apply graph par-
titioning approaches to them, we need extra efforts on appropriately transforming
them into similarity-based data and ensuring that the transformation does not change
the cluster structures in the data. Hence, it is desirable for an algorithm to be able to
identify the cluster structures no matter which type of relational data is given. This
is even more desirable in the situation where the background knowledge about the
meaning of the relations is not available, i.e., we are given only a relation matrix
and do not know if the relations are similarities or dissimilarities.

1 Machine Learning Approaches 13

In this section, we present a general model for relational clustering based on
symmetric convex coding of the relation matrix [35]. The model is applicable to the
general homogeneous relational data consisting of only pairwise relations typically
without other knowledge; it is capable of learning both dense and sparse clusters
at the same time; it unifies the existing graph partition models to provide a gener-
alized theoretical foundation for relational clustering. Under this model, we derive
iterative bound optimization algorithms to solve the symmetric convex coding for
two important distance functions, Euclidean distance and generalized I-divergence.
The algorithms are applicable to general relational data and at the same time they
can be easily adapted to learn a specific type of cluster structure. For example, when
applied to learning only dense clusters, they provide new efficient algorithms for
graph partitioning. The convergence of the algorithms is theoretically guaranteed.
Experimental evaluation and theoretical analysis show the effectiveness and great
potential of the proposed model and algorithms.

1.2.2.1 Model Formulation and Algorithms

In this section, we describe a general model for homogeneous relational clustering.
Let us first consider the relational data in Fig. 1.4. An interesting observation is that
although the different types of clusters look so different in the graph from Fig. 1.4a,
they all demonstrate block patterns in the relation matrix of Fig. 1.4b (without loss of
generality, we arrange the objects from the same cluster together to make the block
patterns explicit). Motivated by this observation, we propose the Symmetric Convex
Coding (SCC) model to cluster relational data by learning the block pattern of a
relation matrix. Since in most applications, the relations are of non-negative values
and undirected, homogeneous relational data can be represented as non-negative,
symmetric matrices. Therefore, the definition of SCC is given as follows.

Definition 2 Given a symmetric matrix A € R, a distance function ® and a posi-
tive number k, the symmetric convex coding is given by the minimization

min D(A, CBCT). (1.2)
CeR"**, BeRKXk
Cl=1

According to Definition 2, the elements of C are between 0 and 1 and the sum
of the elements in each row of C equals 1. Therefore, SCC seeks to use the con-
vex combination of the prototype matrix B to approximate the original relation
matrix. The factors from SCC have intuitive interpretations. The factor C is the soft
membership matrix such that C;; denotes the weight that the ith object associates
with the jth cluster. The factor B is the prototype matrix such that B;; denotes the
connectivity within the ith cluster and B;; denotes the connectivity between the ith
cluster and the jth cluster.

SCC provides a general model to learn various cluster structures from relational
data. Graph partitioning, which focuses on learning dense cluster structure, can be
formulated as a special case of the SCC model. We propose the following theorem

14 Z.Zhang et al.

to show that the various graph partitioning objective functions are mathematically
equivalent to a special case of the SCC model. Since most graph partitioning objec-
tive functions are based on the hard cluster membership, in the following theorem
we change the constraints on C as C € R, and CTC = I; to make C to be the
following cluster indicator matrix,

1 T if Vi €TT;
Cij = Inl? .
0 otherwise,

where |7 ;| denotes the number of nodes in the jth cluster.

Theorem 1 The hard version of SCC model under Euclidean distance function and
B =rl forr >0, i.e,

min |A — C(rI)CT|? (1.3)
CeR"**, BeRXk
cle=r,

is equivalent to the maximization

maxtr(CTAC), (L.4)

where tr denotes the trace of a matrix.

The proof of Theorem 1 may be found in [35].

Theorem 1 states that with the prototype matrix B restricted to be of the form
r I, SCC under Euclidean distance is reduced to the trace maximization in (1.4).
Since various graph partitioning objectives, such as ratio association [42], normal-
ized cut [42], ratio cut [8], and Kernighan—Lin objective [31], can be formulated as
the trace maximization [15, 16], Theorem 1 establishes the connection between the
SCC model and the existing graph partitioning objective functions. Based on this
connection, it is clear that the existing graph partitioning models make an implicit
assumption for the cluster structure of the relational data, i.e., the clusters are not
related to each other (the off-diagonal elements of B are zeroes) and the nodes
within clusters are related to each other in the same way (the diagonal elements of
B are r). This assumption is consistent with the intuition about the graph partition-
ing, which seeks to “cut” the graph into k separate subgraphs corresponding to the
strongly related clusters.

With Theorem 1 we may put other types of structural constraints on B to derive
new graph partitioning models. For example, we fix B as a general diagonal matrix
instead of r I, i.e., the model fixes the off-diagonal elements of B as zero and learns
the diagonal elements of B. This is a more flexible graph partitioning model, since
it allows the connectivity within different clusters to be different. More generally,
we can use B to restrict the model to learn other types of the cluster structures. For
example, by fixing diagonal elements of B as zeros, the model focuses on learning
only spare clusters (corresponding to bipartite or k-partite subgraphs), which are

1 Machine Learning Approaches 15

important for Web community learning [27, 32]. In summary, the prototype matrix
B not only provides the intuition for the cluster structure of the data but also provides
a simple way to adapt the model to learn specific types of cluster structures.

Now efficient algorithms for the SCC model may be derived under two popular
distance functions, Euclidean distance and generalized I-divergence. SCC under the
Euclidean distance, i.e., an algorithm alternatively updating B and C until conver-
gence, is derived and called SCC-ED [35].

If the task is to learn the dense clusters from similarity-based relational data as
the graph partitioning does, SCC-ED can achieve this task simply by fixing B as the
identity matrix and updating only C until convergence. In other words, these updat-
ing rules provide a new and efficient graph partitioning algorithm, which is com-
putationally more efficient than the popular spectral graph partitioning approaches
which involve expensive eigenvector computation (typically O (1)) and the extra
post-processing [49] on eigenvectors to obtain the clustering. Compared with the
multi-level approaches such as METIS [30], this new algorithm does not restrict
clusters to have an equal size.

Another advantage of the SCC-ED algorithm is that it is very easy for the algo-
rithm to incorporate constraints on B to learn a specific type of cluster structures.
For example, if the task is to learn the sparse clusters by constraining the diagonal
elements of B to be zero, we can enforce this constraint simply by initializing the
diagonal elements of B as zeros. Then, the algorithm automatically only updates the
off-diagonal elements of B and the diagonal elements of B are “locked” to zeros.

Yet another interesting observation about SCC-ED is that if we set « = 0 to
change the updating rule for C into the following:

1
- ACB *
C=Co|—r—) . (1.5)
CBCTCB

the algorithm actually provides the symmetric conic coding. This has been touched
in the literature as the symmetric case of non-negative factorization [7, 18, 39].
Therefore, SCC-ED under o = 0 also provides a theoretically sound solution to the
symmetric non-negative matrix factorization.

Under the generalized I-divergence, the SCC objective function is given as
follows:

A..
LKAHCBCJ)==§:<Aﬁkg[EEé%T——n%j+[CBC?b). (1.6)
ij ij

Similarly, an alternative bound optimization algorithm is derived for this objec-
tive function, called SCC-GI [35], which provides another new relational cluster-
ing algorithm. Again, when applied to the similarity-based relational data of dense
clusters, SCC-GI provides another new and efficient graph partitioning algorithm.

The specific derivation of the two algorithms refers to [35], where the complexity
and the convergence issues of the algorithms are discussed.

16 Z.Zhang et al.

1.2.2.2 Experiments

This section provides empirical evidence to show the effectiveness of the SCC
model and algorithms in comparison with two representative graph partitioning
algorithms, a spectral approach, Normalized Cut (NC) [42], and a multi-level algo-
rithm, METIS [30].

Data Sets and Parameter Setting

The data sets used in the experiments include synthetic data sets with various cluster
structures and real data sets based on various text data from the 20 Newsgroups [33],
WebACE, and TREC [29].

First, we use synthetic binary relational data to simulate homogeneous relational
data with different types of clusters such as dense clusters, sparse clusters, and
mixed clusters. All the synthetic relational data are generated based on Bernoulli
distribution. The distribution parameters to generate the graphs are listed in the
second column of Table 1.4 as matrices (true prototype matrices for the data). In
a parameter matrix P, P;; denotes the probability that the nodes in the ith cluster
are connected to the nodes in the jth cluster. For example, in data set syn3, the
nodes in cluster 2 are connected to the nodes in cluster 3 with probability 0.2 and
the nodes within a cluster are connected to each other with probability 0. Syn2 is
generated by using 1 minus synl. Hence, synl and syn2 can be viewed as a pair
of similarity/dissimilarity data. Data set syn4 has 10 clusters mixing with dense
clusters and sparse clusters. Due to the space limit, its distribution parameters are
omitted here. Totally syn4 has 5000 nodes and about 2.1 million edges.

Table 1.4 Summary of the synthetic relational data

Graph Parameter n k
05 0 0

synl 0050 900 3
0 0 05

syn2 1 —synl 900 3
0 0.10.1

syn3 0.1 0 02 900 3
0.102 0

synd [0, 171010 5000 10

The graphs based on the text data have been widely used to test graph partition-
ing algorithms [17, 19, 50]. Note that there also exist feature-based algorithms to
directly cluster documents based on word features. However, in this study our focus
is on the clustering based on relations instead of features. Hence graph clustering
algorithms are used in comparisons. We use various data sets from the 20 News-
groups [33], WebACE, and TREC [29], which cover data sets of different sizes,
different balances, and different levels of difficulties. We construct relational data
for each text data set such that objects (documents) are related to each other with
cosine similarities between the term-frequency vectors. A summary of all the data
sets to construct relational data used in this study is shown in Table 1.5, in which n

1 Machine Learning Approaches 17

Table 1.5 Summary of relational data based on text data sets

Name n k Balance Source

trll 414 9 0.046 TREC

tr23 204 6 0.066 TREC

NG17-19 1600 3 0.5 20 Newsgroups

NG1-20 14000 20 1.0 20 Newsgroups

klb 2340 6 0.043 WebACE

hitech 2301 6 0.192 TREC

classic3 3893 3 0.708 MEDLINE/
CISI/CRANFILD

denotes the number of objects in the relational data, k denotes the number of true
clusters, and balance denotes the size ratio of the smallest clusters to the largest
clusters.

For the number of clusters k, we simply use the number of the true clusters. Note
that how to choose the optimal number of clusters is a non-trivial model selection
problem and beyond the scope of this study. For performance measure, we elect to
use the Normalized Mutual Information (NMI) [43] between the resulting cluster
labels and the true cluster labels, which is a standard measure for the clustering
quality. The final performance score is the average of 10 runs.

Results and Discussion

Table 1.6 shows the NMI scores of the four algorithms on synthetic and real rela-
tional data. Each NMI score is the average of 10 test runs and the standard deviation
is also reported. We observe that although there is no single winner on all the data,
for most data SCC algorithms perform better than or close to NC and METIS. Espe-
cially, SCC-GI provides the best performance on 8§ of the 11 data sets.

For the synthetic data set synl, almost all the algorithms provide perfect NMI
score, since the data are generated with very clear dense cluster structures, which
can be seen from the parameter matrix in Table 1.4. For data set syn2, the

Table 1.6 NMI comparisons of NC, METIS, SCC-ED, and SCC-GI algorithms (the boldface value
indicates the best performance for a given data set)

Data NC METIS SCC-ED SCC-GI

synl 0.9652 + 0.031 1.000 £ 0.000 1.000 £ 0.000 1.000 £ 0.000
syn2 0.8062 £ 0.52 0.000 £ 0.00 0.9038 £ 0.045 0.9753 £0.011
syn3 0.636 £+ 0.152 0.115 £ 0.001 0.915+0.145 1.000 £ 0.000
syn4 0.611 £ 0.032 0.638 £ 0.001 0.711 £ 0.043 0.788 & 0.041
trll 0.629 £+ 0.039 0.557 +0.001 0.6391 +0.033 0.661 +0.019
23 0.276 £ 0.023 0.138 £ 0.004 0.335+0.043 0.312 +0.099
NG17-19 0.002 £ 0.002 0.091 £ 0.004 0.1752 £ 0.156 0.225 +0.045
NG1-20 0.510 £ 0.004 0.526 = 0.001 0.5041 £ 0.156 0.519 +£0.010
klb 0.546 £+ 0.021 0.243 £ 0.000 0.537 £ 0.023 0.591 £ 0.022
hitech 0.302 £ 0.005 0.322 £+ 0.001 0.319 £0.012 0.319+0.018
classic3 0.621 4+ 0.029 0.358 4 0.000 0.642 4 0.043 0.822 +0.059

18 Z.Zhang et al.

dissimilarity version of synl, we use exactly the same set of true cluster labels as
that of synl to measure the cluster quality; the SCC algorithms still provide almost
perfect NMI score; however, METIS totally fails on syn2, since in syn2 the clusters
have the form of sparse clusters; and based on the edge cut objective, METIS looks
for only dense clusters. An interesting observation is that the NC algorithm does not
totally fail on syn2 and in fact it provides a satisfactory NMI score. This is due to
that although the original objective of the NC algorithm focuses on dense clusters
(its objective function can be formulated as the trace maximization in (1.4)), after
relaxing C to an arbitrary orthonormal matrix, what NC actually does is to embed
cluster structures into the eigenspace and to discover them by post-processing the
eigenvectors. Besides the dense cluster structures, sparse cluster structures could
also have a good embedding in the eigenspace under a certain condition.

In data set syn3, the relations within clusters are sparser than the relations
between clusters, i.e., it also has sparse clusters, but the structure is more subtle
than syn2. We observe that NC does not provide a satisfactory performance and
METIS totally fails; in the mean time, SCC algorithms identify the cluster structure
in syn3 very well. Data set syn4 is a large relational data set of 10 clusters consisting
of four dense clusters and six sparse clusters; we observe that the SCC algorithms
perform significantly better than NC and METIS on it, since they can identify both
dense clusters and sparse clusters at the same time.

For the real data based on the text data sets, our task is to find dense clusters,
which is consistent with the objectives of graph partitioning approaches. Overall, the
SCC algorithms perform better than NC and METIS on the real data sets. Especially,
SCC-ED provides the best performance in most data sets. The possible reasons for
this are discussed as follows. First, the SCC model makes use of any possible block
pattern in the relation matrices; on the other hand, the edge-cut-based approaches
focus on diagonal block patterns. Hence, the SCC model is more robust to heavily
overlapping cluster structures. For example, for the difficult NG17-19 data set, SCC
algorithms do not totally fail as NC and METIS do. Second, since the edge weights
from different graphs may have very different probabilistic distributions, popular
Euclidean distance function, which corresponds to normal distribution assumption,
are not always appropriate. By Theorem 1, edge-cut-based algorithms are based on
Euclidean distance. On the other hand, SCC-GI is based on generalized I-divergence
corresponding to Poisson distribution assumption, which is more appropriate for
graphs based on text data. Note that how to choose distance functions for specific
graphs is non-trivial and beyond the scope of this study. Third, unlike METIS, the
SCC algorithms do not restrict clusters to have an equal size and hence they are
more robust to unbalanced clusters.

In the experiments, we observe that SCC algorithms perform stably and rarely
provide unreasonable solution, though like other algorithms SCC algorithms pro-
vide local optima to the NP-hard clustering problem. In the experiments, we also
observe that the order of the actual running time for the algorithms is consistent with
theoretical analysis, i.e., METIS<SCC<NC. For example, in a test run on NG1-20,
METIS, SCC-ED, SCC-GI, and NC take 8.96, 11.4, 12.1, and 35.8 s, respectively.
METIS is the best, since it is quasi-linear.

1 Machine Learning Approaches 19

We also run the SCC-ED algorithm on the actor/actress graph based on IMDB
movie data set for a case study of social network analysis. We formulate a graph
of 20,000 nodes, in which each node represents an actors/actresses and the edges
denote collaboration between them. The number of the cluster is set to be 200.
Although there is no ground truth for the clusters, we observe that the results consist
of a large number of interesting and meaningful clusters, such as clusters of actors
with a similar style and tight clusters of the actors from a movie or a movie serial.
For example, Table 1.7 shows Community 121 consisting of 21 actors/actresses,
which contains the actors/actresses in movie series “The Lord of Rings.”

Table 1.7 The members of cluster 121 in the actor graph
Cluster 121

Viggo Mortensen, Sean Bean, Miranda Otto,
Tan Holm, Brad Dourif, Cate Blanchett,
Ian McKellen, Liv Tyler, David Wenham,
Christopher Lee, John Rhys-Davies, Elijah Wood,
Bernard Hill, Sean Astin, Dominic Monaghan,
Andy Serkis, Karl Urban, Orlando Bloom,
Billy Boyd, John Noble, Sala Baker

1.3 Generative Approaches to Link-Based Clustering

In this section, we study generative approaches to link-based clustering. Specifically,
we present solutions to three different link-based clustering problems, the special
homogeneous relational data clustering for documents with citations, the general
relational data clustering, and the dynamic relational data clustering.

1.3.1 Special Homogeneous Relational Data—Documents
with Citations

One of the most popular scenarios for link-based clustering is document clustering.
Here textual documents form a special case of the general homogeneous relational
data scenario, in which a document links to another one through a citation. In this
section, we showcase how to use a generative model, a specific topic model, to solve
for the document clustering problem.

By capturing the essential characteristics in documents, one gives documents
a new representation, which is often more parsimonious and less noise-sensitive.
Among the existing methods that extract essential characteristics from documents,
topic model plays a central role. Topic models extract a set of latent topics from a
corpus and as a consequence represent documents in a new latent semantic space.
One of the well-known topic models is the Probabilistic Latent Semantic Index-
ing (PLSI) model proposed by Hofmann [28]. In PLSI each document is modeled

20 Z.Zhang et al.

as a probabilistic mixture of a set of topics. Going beyond PLSI, Blei et al. [5]
presented the Latent Dirichlet Allocation (LDA) model by incorporating a prior
for the topic distributions of the documents. In these probabilistic topic models,
one assumption underpinning the generative process is that the documents are inde-
pendent. However, this assumption does not always hold true in practice, because
documents in a corpus are usually related to each other in certain ways. Very often,
one can explicitly observe such relations in a corpus, e.g., through the citations and
co-authors of a paper. In such a case, these observations should be incorporated into
topic models in order to derive more accurate latent topics that better reflect the
relations among the documents.

In this section, we present a generative model [24] called the citation-topic (CT)
model for modeling linked documents that explicitly considers the relations among
documents. In this model, the content of each document is a mixture of two sources:
(1) the topics of the given document and (2) the topics of the documents that are
related to (e.g., cited by) the given document. This perspective actually reflects
the process of writing a scientific article: the authors probably first learn knowl-
edge from the literature and then combine their own creative ideas with the learned
knowledge to form the content of the paper. Furthermore, to capture the indirect
relations among documents, CT contains a generative process to select related doc-
uments where the related documents are not necessarily directly linked to the given
document. CT is applied to the document clustering task and the experimental com-
parisons against several state-of-the-art approaches that demonstrate very promising
performances.

1.3.1.1 Model Formulation and Algorithm

Suppose that the corpus consists of N documents {d }?’:1 in which M distinct words

{wi}iﬂi | occur. Each document d might have a set of citations Cy, and thus the
documents are linked together by these citations.

CT assumes the following generative process for each word w in the document
d in the corpus.

1. Choose a related document ¢ from p(c|d, E), a multinomial probability condi-
tioned on the document d.

2. Choose a topic z from the topic distribution of the document ¢, p(z|c, ®).

3. Choose a word w which follows the multinomial distribution p(w|z, ¥) condi-
tioned on the topic z.

As a result, one obtains the observed pair (d, w), while the latent random vari-
ables c, z are discarded. To obtain a document d, one repeats this process |d|
times, where |d| is the length of the document d. The corpus is obtained once
every document in the corpus is generated by this process, as shown in Fig. 1.5.
In this generative model, the dimensionality K of the topic variable z is assumed
known and the document relations are parameterized by an N x N matrix & where

1 Machine Learning Approaches 21
l SN2, %

Fig. 1.5 CT using the plate notation

|d|

Ejj = p(c = l|d = j), which is computed from the citation information of the
corpus.

Following the maximum likelihood principle, one estimates the parameters by
maximizing the log-likelihood function

L=y YN n(w;.d;)log p(wld)). (1.7)

where n(w;, d;j) denotes the number of the times w; occurs in d;. According to
the above generative process, the log-likelihood function can be rewritten as the
following equation

N M K N
L= Z Zn(wi, dj)log {ZZ p(wilzy) p(zildp) p(dpld;) | - (1.8)
I=1 h=1

j=l1i=l1

The expectation—maximization (EM) algorithm can be applied to estimate the
parameters.

The document relation matrix E is computed from the citation information of
the corpus. Suppose that the document d; has a set of citations Qg;. A matrix S
is constructed to denote the direct relationships among the documents as follows:
S = 1/|Qd | ford; € Qd and 0 otherwise, where |Qd | denotes the size of the
set Qg;. A s1rnple method to obtain Z isto set & = S. However this strategy only
captures direct relations among the documents and overlooks indirect relationships.
To better capture this transitive property, we choose a related document by a random
walk on the directed graph represented by S. The probability that the random walk
stops at the current node (and therefore chooses the current document as the related
document) is specified by a parameter . According to the properties of random
walk, E can be obtained by E = (1 —a)I — «S)~!. The specific algorithm refers
to [24].

1.3.1.2 Experiments

The experimental evaluations are reported on the document clustering task for a
standard data set Cora with the citation information available. Cora [40] contains

22 Z.Zhang et al.

the papers published in the conferences and journals of the different research areas
in computer science, such as artificial intelligence, information retrieval, and hard-
ware. A unique label has been assigned to each paper to indicate the research area it
belongs to. These labels serve as the ground truth in our performance studies. In the
Cora data set, there are 9998 documents where 3609 distinct words occur.

By representing documents in terms of latent topic space, topic models can assign
each document to the most probable latent topic according to the topic distributions
of the documents. For the evaluation purpose, CT is compared with the following
representative clustering methods.

Traditional K -means.

Spectral Clustering with Normalized Cuts (Ncut) [42].
Non-negative Matrix Factorization (NMF) [48].
Probabilistic Latent Semantic Indexing (PLSI) [28].
Latent Dirichlet Allocation (LDA) [5].

PHITS [11].

PLSI4-PHITS, which corresponds to o = 0.5 in [12].

AR e

The same evaluation strategy is used as in [48] for the clustering performance.
The test data used for evaluating the clustering methods are constructed by mixing
the documents from multiple clusters randomly selected from the corpus. The evalu-
ations are conducted for different numbers of clusters K. At each run of the test, the
documents from a selected number K of clusters are mixed, and the mixed document
set, along with the cluster number K, is provided to the clustering methods. For each
given cluster number K, 20 test runs are conducted on different randomly chosen
clusters, and the final performance scores are obtained by averaging the scores over
the 20 test runs.

The parameter « is simply fixed at 0.99 for the CT model. The accuracy com-
parisons with various numbers of clusters are reported in Fig. 1.6, which shows that
CT has the best performance in terms of the accuracy and the relationships among
the documents do offer help in the document clustering.

1.3.2 General Relational Clustering Through a Probabilistic
Generative Model

In this section, as another example of a generative model in machine learning,
we present a probabilistic generative framework to the general relational cluster-
ing. As mentioned before, in general, relational data contain three types of infor-
mation, attributes for individual objects, homogeneous relations between objects
of the same type, and heterogeneous relations between objects of different types.
For example, for a scientific publication relational data set of papers and authors,
the personal information such as affiliation for authors is the attributes; the cita-
tion relations among papers are homogeneous relations; the authorship relations
between papers and authors are heterogeneous relations. Such data violate the

1 Machine Learning Approaches 23

Cora

o
2}

Accuracy

—6— K-means
—3¥— Ncut

—o— NMF

—— PLSI
PHITS
—A— PLSI+PHITS
—#— LDA
3 4 5 6 7 8 9 10
Number of topics

I
»

e
w

o©
)

0.1
2

Fig. 1.6 Accuracy comparisons (the higher, the better)

classic IID assumption in machine learning and statistics and present huge chal-
lenges to traditional clustering approaches. In Section 1.2.1, we have also shown
that an intuitive solution to transform relational data into flat data and then to
cluster each type of objects independently may not work. Moreover, a number of
important clustering problems, which have been of intensive interest in the lit-
erature, can be viewed as special cases of the general relational clustering. For
example, graph clustering (partitioning) [6, 8, 19, 26, 30, 42] can be viewed as
clustering on single-type relational data consisting of only homogeneous relations
(represented as a graph affinity matrix); co-clustering [1, 14] which arises in impor-
tant applications such as document clustering and micro-array data clustering can
be formulated as clustering on bi-type relational data consisting of only heteroge-
neous relations. Recently, semi-supervised clustering [3, 45] has attracted signifi-
cant attention, which is a special type of clustering using both labeled and unla-
beled data. In [37], it is shown that semi-supervised clustering can be formulated as
clustering on single-type relational data consisting of attributes and homogeneous
relations.

Therefore, relational data present not only huge challenges to traditional unsuper-
vised clustering approaches but also great need for theoretical unification of various
clustering tasks. In this section, we present a probabilistic framework for general
relational clustering [37], which also provides a principal framework to unify vari-
ous important clustering tasks including traditional attribute-based clustering, semi-
supervised clustering, co-clustering, and graph clustering. The framework seeks
to identify cluster structures for each type of data objects and interaction patterns
between different types of objects. It is applicable to relational data of various struc-
tures. Under this framework, two parametric hard and soft relational clustering algo-
rithms are developed under a large number of exponential family distributions. The
algorithms are applicable to various relational data from various applications and at

24 Z.Zhang et al.

the same time unify a number of state-of-the-art clustering algorithms: co-clustering
algorithms, the k-partite graph clustering, Bregman k-means, and semi-supervised
clustering based on hidden Markov random fields.

1.3.2.1 Model Formulation and Algorithms

With different compositions of three types of information, attributes, homogeneous
relations, and heterogeneous relations, relational data could have very different
structures. Figure 1.7 shows three examples of the structures of relational data.
Figure 1.7a refers to a simple bi-type of relational data with only heterogeneous
relations such as word—document data. Figure 1.7b represents bi-type data with
all types of information, such as actor—movie data, in which actors (type 1) have
attributes such as gender; actors are related to each other by collaboration in movies
(homogeneous relations); and actors are related to movies (type 2) by taking roles
in movies (heterogeneous relations). Figure 1.7c represents the data consisting of
companies, customers, suppliers, shareholders, and advertisement media, in which
customers (type 5) have attributes.

E

(a) (b)

Fig. 1.7 Examples of the structures of relational data

In this study, a relational data set is represented as a set of matrices.
Assume that a relational data set has m different types of data objects, XV =

{xi(l)}l'.';l, XM = {xi(m)}:.zl, where 7 ; denotes the number of objects of the jth
type and xl(,/) denotes the name of the pth object of the jth type. The observations
of the relational data are represented as three sets of matrices, attribute matrices
(FU) e RYi*nj }_1» where d; denotes the dimension of attributes for the jth type
objects and F.(f;) denotes the attribute vector for object x;,j); homogeneous relation

matrices {SY) € R™*"i}"_, where SY) denotes the relation between x5 and

j."jzl , where R%) denotes the

relation between x,(,l) and x(y). The above representation is a general formulation. In
real applications, not every type of objects has attributes, homogeneous relations,
and heterogeneous relations all together. For example, the relational data set in
Fig. 1.7a is represented by only one heterogeneous matrix R!%, and the one in
Fig. 1.7b is represented by three matrices, F(V', S(V, and R!?. Moreover, for a

x((,j); heterogeneous relation matrices {R#) e R" *"j}

1 Machine Learning Approaches 25

specific clustering task, we may not use all available attributes and relations after
feature or relation selection pre-processing.

Mixed membership models, which assume that each object has mixed member-
ship denoting its association with classes, have been widely used in the applications
involving soft classification [20], such as matching words and pictures [5], race
genetic structures [5, 46], and classifying scientific publications [21]. Consequently,
a relational mixed membership model is developed to cluster relational data (which
is referred to mixed membership relational clustering or MMRC throughout the rest
of the section).

Assume that each type of objects X'/) has k ; latent classes. We represent the
membership vectors for all the objects in X'/) as a membership matrix AY) €
[0, 175> such that the sum of elements of each column A.(Ij;) is 1 and A.(,];) denotes
the membership vector for object xf,j), ie., Ag,jp) denotes the probability that object
x},j) associates with the gth latent class. We also write the parameters of distributions
to generate attributes, homogeneous relations, and heterogeneous relations in matrix
forms. Let ®) e R4 i denote the distribution parameter matrix for generating
attributes FU) such that ®'J denotes the parameter vector associated with the gth
latent class. Similarly,) e Rki*kj denotes the parameter matrix for generat-
ing homogeneous relations SU); Y@ e R *kj denotes the parameter matrix for
generating heterogeneous relations R/, In summary, the parameters of MMRC
model are

Q= {{A(j)};(l:h Wy royn, {T(i.i)}szl} _

In general, the meanings of the parameters, ®, A, and Y, depend on the specific
distribution assumptions. However, in [37], it is shown that for a large number of
exponential family distributions, these parameters can be formulated as expectations
with intuitive interpretations.

Next, we introduce the latent variables into the model. For each object x IJ; , alatent
cluster indicator vector is generated based on its membership parameter AF};), which
is denoted as C.({;), i.e., CY) € {0, 1}%*" is a latent indicator matrix for all the jth
type objects in X'/,

Finally, we present the generative process of observations, {F(j) };.”zl, {S(j) }’;‘zl,

and {R(ij)}lff’jzl as follows:

1. For each object xl(,j)
e Sample C.(;;) ~ Multinomial (AF{;), 1) .
2. For each object xl(,j)

e Sample FF{;) ~ Pr (FF};)I®(-/)C.(£)) .

26 Z.Zhang et al.

3. For each pair of objects x,(,j) and x;j)

. . \T . .
e Sample SY) ~ pr (sg;| (c9) r<f>cg;>) .

@

4. For each pair of objects x p) and xéj)

o Sample R ~ pr (Rﬁ,’éh(d})) TO/)cF;)).

In the above generative process, a latent indicator vector for each object is generated
based on multinomial distribution with the membership vector as parameters. Obser-
vations are generated independently conditioning on latent indicator variables. The
parameters of condition distributions are formulated as products of the parameter

matrices and latent indicators, i.e., Pr (F(IJ,) |C.(l];), ®(j)> =Pr (F.(pj) |®(j)C.(£)),
Pr (Sf)1CH. €. 1)) = Pr (s;fq>| () r</>c.(;>>, and

Pr(RYSCY. € @) = pr (R () ' TU-/)CS{)) Under this formula-
tion, an observation is sampled from the distributions of its associated latent classes.
For example, if CF;,) indicates that x;,i) is with the gth latent class and C.([{) indicates
that xéj) is with the hth latent class, then (C,(;,)>T T(i/)C.([{) = T;hj). Hence, we
have Pr (R%) |T;,ihj)> implying that the relation between xl(,i) and x;j) is sampled by

using the parameter Tgfhj).
With matrix representation, the joint probability distribution over the observa-
tions and the latent variables can be formulated as follows:

m m
Pr(w|e) = [] Pr (c<f>|A<f)) [1er (F<j>|®<j>c(j>)
j=1 j=1

ﬁ Pr <s<f'>| (Cm)T r(i)(:(j)) ﬁ ﬁ Pr (R(ij)| (Cm)T T(ij)C(j)) ’
i=1j=1

j=1

(1.9)

where W = {(COY (FOY_ (8O RO,

Pr(COIAY) = [T, Multinomial (A1),
Pr(FO 00 CY) = [T, Pr (FF |00C),
Pr(s9](c)" TOCD) =Ty, Pr (S;lq)| (c9) F<J>C§4>),

and similarly for R/,

1 Machine Learning Approaches 27

Based on the MMRC model, we are able to derive the soft version MMRC, the
hard version MMRC, as well as the mixed version MMRC (i.e., the combination
of the soft version and the hard version MMRC) algorithms under all the expo-
nential family functions [37]. In addition, we also show that many existing models
and algorithms in the literature are the variations or special cases of the MMRC
model. Specifically, we have demonstrated this unified view to the classic attribute-
based clustering (including the k-means), the mixture model EM clustering, semi-
supervised clustering, co-clustering, and graph clustering in the literature.

1.3.2.2 Experiments

This section provides empirical evidence to show the effectiveness of the MMRC
model and algorithms. Since a number of state-of-the-art clustering algorithms
[1-3, 10, 14, 34] can be viewed as special cases of the MMRC model and algo-
rithms, the experimental results in these efforts also illustrate the effectiveness of
the MMRC model and algorithms. Here we apply MMRC algorithms to the tasks of
graph clustering, bi-clustering, tri-clustering, and clustering on a general relational
data set of all three types of information. In the experiments, we use mixed version
MMRC, i.e., hard MMRC initialization followed by soft MMRC. Although MMRC
can adopt various distribution assumptions, due to space limit, we use MMRC under
normal or Poisson distribution assumption in the experiments. However, this does
not imply that they are optimal distribution assumptions for the data. How to decide
the optimal distribution assumption is beyond the scope of this study.

For performance measure, we elect to use the Normalized Mutual Information
(NMI) [43] between the resulting cluster labels and the true cluster labels, which
is a standard way to measure the cluster quality. The final performance score is the
average of 10 runs.

Graph Clustering

In this section, we present experiments on the MMRC algorithm under normal
distribution in comparison with two representative graph partitioning algorithms,
the spectral graph partitioning (SGP) from [41] that is generalized to work with
both normalized cut and ratio association, and the classic multi-level algorithm,
METIS [30].

The graphs based on the text data have been widely used to test graph partitioning
algorithms [17, 19, 50]. In this study, we use various data sets from the 20 News-
groups [33], WebACE, and TREC [29], which cover data sets of different sizes,
different balances, and different levels of difficulties. The data are pre-processed
by removing the stop words and each document is represented by a term-frequency
vector using TF-IDF weights. Then we construct relational data for each text data set
such that objects (documents) are related to each other with the cosine similarities
between the term-frequency vectors. A summary of all the data sets to construct
relational data used in this study is shown in Table 1.8, in which n denotes the

28 Z.Zhang et al.

Table 1.8 Summary of relational data for graph clustering

Name n k Balance Source

trll 414 9 0.046 TREC

tr23 204 6 0.066 TREC

NG1-20 14000 20 1.0 20 Newsgroups
klb 2340 6 0.043 WebACE

number of objects in the relational data, k denotes the number of true clusters, and
balance denotes the size ratio of the smallest clusters to the largest clusters.

For the number of clusters k, we simply use the number of the true clusters. Note
that how to choose the optimal number of clusters is a non-trivial model selection
problem and beyond the scope of this study.

Figure 1.8 shows the NMI comparison of the three algorithms. We observe that
although there is no single winner on all the graphs, overall the MMRC algorithm
performs better than SGP and METIS. Especially on the difficult data set tr23,
MMRC increases the performance about 30%. Hence, MMRC under normal distri-
bution provides a new graph partitioning algorithm which is viable and competitive
compared with the two existing state-of-the-art graph partitioning algorithms. Note
that although the normal distribution is most popular, MMRC under other distri-
bution assumptions may be more desirable in specific graph clustering applications
depending on the statistical properties of the graphs.

Bi-clustering and Tri-clustering

In this section, we apply the MMRC algorithm under Poisson distribution to clus-
tering bi-type relational data, word—document data, and tri-type relational data,

0.7 T T T

[sGp
I VETIS
1 MMRC

0.65

06
0.55
05

S 045
0.4
0.35
0.3

0.25

0.2
tri rr23 NG1-20 k1b

Fig. 1.8 NMI comparison of SGP, METIS, and MMRC algorithms

1 Machine Learning Approaches 29

word—document—category data. Two algorithms, Bipartite Spectral Graph partition-
ing (BSGP) [17] and Relation Summary Network under Generalized I-divergence
(RSN-GI) [38], are used as comparison in bi-clustering. For tri-clustering, Con-
sistent Bipartite Graph Co-partitioning (CBGC) [23] and RSN-GI are used as
comparison.

The bi-type relational data, word—document data, are constructed based on var-
ious subsets of the 20-Newsgroups data. We pre-process the data by selecting the
top 2000 words by the mutual information. The document—word matrix is based
on tf.idf weighting scheme and each document vector is normalized to a unit Lj
norm vector. Specific details of the data sets are listed in Table 1.9. For example,
for the data set BT-NG3 we randomly and evenly sample 200 documents from the
corresponding newsgroups; then we formulate a bi-type relational data set of 1600
documents and 2000 words.

Table 1.9 Subsets of the 20-Newsgroups data for the bi-type relational data

Number of
Dataset documents Total number
Name Newsgroups Included per group of documents
BT-NGI rec.sport.baseball, rec.sport.hockey 200 400
BT-NG2 comp.os.ms-windows.misc, comp.windows.x, 200 1000
rec.motorcycles, sci.crypt, sci.space
BT-NG3 comp.os.ms-windows.misc, 200 1600

comp.windows.x, misc.forsale,
rec.motorcycles,rec.motorcycles,sci.crypt,
sci.space, talk.politics.mideast, talk.religion.misc

The tri-type relational data are built based on the 20 Newsgroups data for hierar-
chical taxonomy mining. In the field of text categorization, hierarchical taxonomy
classification is widely used to obtain a better trade-off between effectiveness and
efficiency than flat taxonomy classification. To take advantage of hierarchical clas-
sification, one must mine a hierarchical taxonomy from the data set. We see that
words, documents, and categories formulate a sandwich structure tri-type relational
data set, in which documents are the central-type nodes. The links between docu-
ments and categories are constructed such that if a document belongs to k categories,
the weights of links between this document and these k category nodes are 1/ k (refer
to [23] for details). The true taxonomy structures for the two data sets, TP-TM1 and
TP-TM2, are documented in Table 1.10.

Table 1.10 Taxonomy structures of the two data sets for constructing tri-partite relational data

Dataset Taxonomy structure

TT-TM 1 {rec.sport.baseball, rec.sport.hockey},
{talk.politics.guns, talk.politics.mideast,
talk.politics.misc}

TT-TM2 {comp.graphics, comp.os.ms-windows.misc},
{rec.autos, rec.motorcycles},
{sci.crypt, sci.electronics }

30 Z.Zhang et al.

0.8 T T T

o7s| [EEm3Bsep
T | - s
o7} [C_ImmRe .

0.65f |
s L |
£ 055

0.5f 1

0.45 i

0.35 1

0.3

BT-NG1 BT-NG2 BT-NG3

Fig. 1.9 NMI comparison of BSGP, RSN, and MMRC algorithms for bi-type data

0.9 T T
[oBGC
osl I RSN]
' C_IMMRC
0.7 i
s L i
E 0.6
0.5 i
0.4} 1
0.3
TT-TM1 TT-TM2

Fig. 1.10 NMI comparison of CBGC, RSN, and MMRC algorithms for tri-type data

Figures 1.9 and 1.10 show the NMI comparison of the three algorithms on bi-type
and tri-type relational data, respectively. We observe that the MMRC algorithm per-
forms significantly better than BSGP and CBGC. MMRC performs slightly better
than RSN on some data sets. Since RSN is a special case of hard MMRC, this
shows that mixed MMRC improves hard MMRC'’s performance on the data sets.
Therefore, compared with the existing state-of-the-art algorithms, the MMRC algo-
rithm performs more effectively on these bi-clustering or tri-clustering tasks and on

1 Machine Learning Approaches 31

the other hand, it is flexible for different types of multi-clustering tasks which may
be more complicated than tri-type clustering.

A Case Study on Actor-movie Data

We also run the MMRC algorithm on the actor—movie relational data based on the
IMDB movie data set for a case study. In the data, actors are related to each other
by collaborations (homogeneous relations); actors are related to movies by taking
roles in the movies (heterogeneous relations); movies have attributes such as release
time and rating (note that there are no links between movies). Hence the data have
all the three types of information. We formulate a data set of 20,000 actors and
4000 movies. We run experiments with k = 200. Although there is no ground truth
for the data’s cluster structure, we observe that most resulting clusters are actors or
movies of a similar style such as actions or tight groups from specific movie serials.
For example, Table 1.11 shows cluster 23 of actors and cluster 118 of movies; the
parameter Y»3 118 shows that these two clusters are strongly related to each other.
In fact, the actor cluster contains the actors in the movie series “The Lord of the
Rings.” Note that if we only have one type of actor objects, we only get the actor
clusters, but with two types of nodes, although there is no link between the movies,
we also get the related movie clusters to explain how the actors are related.

Table 1.11 Two clusters from actor-movie data
Cluster 23 of actors

Viggo Mortensen, Sean Bean, Miranda Otto,
Ian Holm, Christopher Lee, Cate Blanchett,
Ian McKellen, Liv Tyler, David Wenham,
Brad Dourif, John Rhys-Davies, Elijah Wood,
Bernard Hill, Sean Astin, Andy Serkis,
Dominic Monaghan, Karl Urban, Orlando Bloom,
Billy Boyd, John Noble, Sala Baker

Cluster 118 of movies

The Lord of the Rings: The Fellowship of the Ring (2001)
The Lord of the Rings: The Two Towers (2002)
The Lord of the Rings: The Return of the King (2003)

1.3.3 Dynamic Relational Data Clustering Through
Graphical Models

We have studied extensively on static relational data clustering in the previous sec-
tions. In this section, we switch our focus to dynamic scenarios. One popular exam-
ple of the dynamic scenarios is the evolutionary clustering. Evolutionary clustering
is a recently identified new and hot research topic in data mining. Evolutionary
clustering addresses the evolutionary trend development regarding a collection of

32 Z.Zhang et al.

data items that evolves over the time. From time to time, with the evolution of
the data collection, new data items may join the collection and existing data items
may leave the collection; similarly, from time to time, cluster structure and cluster
number may change during the evolution. Due to the nature of the evolution, model
selection must be solved as part of a solution to the evolutionary clustering problem
at each time. Consequently, evolutionary clustering poses a greater challenge than
the classic, static clustering problem as many existing solutions to the latter problem
typically assume that the model selection is still an open problem in the clustering
literature.

In evolutionary clustering, one of the most difficult and challenging issues is
to solve the correspondence problem. The correspondence problem refers to the
correspondence between different local clusters across the times due to the evolution
of the distribution of the clusters, resulting in cluster—cluster correspondence and
cluster transition correspondence issues. All the existing methods in the literature
fail to address the correspondence problems explicitly.

On the other hand, solutions to the evolutionary clustering problem have found a
wide spectrum of applications for trend development analysis, social network evolu-
tion analysis, and dynamic community development analysis. Potential and existing
applications include daily news analysis to observe news focus change, blog analysis
to observe community development, and scientific publications analysis to identify
the new and hot research directions in a specific area. Consequently, evolutionary
clustering has recently become a very hot and focused research topic.

In this study [47], we show a new statistical graphical model HDP-HTM that
we have developed as an effective solution to the evolutionary clustering problem.
In this new model, we assume that the cluster structure at each time is a mixture
model of the clusters for the data collection at that time; in addition, clusters at
different times may share common clusters, resulting in explicitly addressing the
cluster—cluster correspondence issue. we adopt the Hierarchical Dirichlet Processes
(HDP) [44] with a set of common clusters at the top level of the hierarchy and
the local clusters at the lower level at different times sharing the top-level clusters.
Further, data and clusters evolve over the time with new clusters and new data items
possibly joining the collection and with existing clusters and data items possibly
leaving the collection at different times, leading to the cluster structure and the
number of clusters evolving over the time. Here, we use the state transition matrix to
explicitly reflect the cluster-to-cluster transitions between different times, resulting
an explicitly effective solution to the cluster transition correspondence issue. Conse-
quently, we propose the Infinite Hierarchical Hidden Markov State model (iH>MS)
to construct the Hierarchical Transition Matrix (HTM) at different times to capture
the cluster-to-cluster transition evolution.

1.3.3.1 Infinite Hierarchical Hidden Markov State Model (iH*MS)

Here, we present a new infinite hierarchical Hidden Markov State model (iH2MS)
for Hierarchical Transition Matrix (HTM) and provide an update construction
scheme based on this model. Figure 1.11 illustrates this model.

1 Machine Learning Approaches 33

Fig. 1.11 The iH>MS model

Traditionally, Hidden Markov model (HMM) has a finite state space with K hid-
den states, say {1, 2, ... K}. For the hidden state sequence {si, s2,...,sT} up to
time T, there is a K by K state transition probability matrix [T governed by Markov
dynamics with all the elements 7; ; of each row &; summed to 1:

T, j = plse = jlsi—1 = 0).

The initial state probability for state i is p(s; = i) with the summation of all
the initial probabilities equal to 1. For observation x; in the observation sequence
{x1,x2,...,x7}, given state s, € {1, 2, ..., K}, there is a parameter ¢, drawn from

the base measure H which parameterizes the observation likelihood probability:

Xt sy ~ F(¢S¢)~

However, when dealing with a countable infinite state space, {1,2,...K, ...},
we must adopt a new model similar to that in [4] for a state transition probability
matrix with an infinite matrix dimension. Thus, the dimension of the state transition
probability matrix now has become infinite. m;, the ith row of the transition proba-
bility matrix IT, may be represented as the mixing proportions for all the next infinite
states, given the current state. Thus, we model it as a Dirichlet process (DP) with
an infinite dimension with the summation of all the elements in a row normalized to
1, which leads to an infinite number of DPs’ construction for an infinite transition
probability matrix.

With no further prior knowledge on the state sequence, a typical prior for the
transition probability may be the symmetric Dirichlet distributions. Similar to [44],
we intend to construct a hierarchical Dirichlet model to keep different rows of the
transition probability matrix to share part of the prior mixing proportions of each

34 Z.Zhang et al.

state at the top level. Consequently, we adopt a new state model, Infinite Hierar-
chical Hidden Markov State model (iHMS), to construct the Infinite Transition
Probability Matrix which is called the Hierarchical Transition Matrix (HTM).

Similar to HDP [44], we draw a random probability measure on the infinite state
space B as the top level prior from stick(y) represented as the mixing proportions
of each state:

k—1

B=B02, =8 []0—-8") B~ Beta(ly). (1.10)

=1

Here, the mixing proportion of state k, x, may also be interpreted as the prior mean
of the transition probabilities leading to state k. Hence, 8 may be represented as the
prior random measure of a transition probability DP.

For the ith row of the transition matrix I, 77;, we sample it from D P (A, 8) with
a smaller concentration parameter A implying a larger variability around the mean
measure 8. The stick-breaking representation for r; is as follows:

k—1
7= (map, mik = [[=m)) mik’ ~ Beta(l,h). (L11)
=1

Specifically, 7; ;. is the state transition probability from the previous state i to the
current state k as p(s; = k|s;—1 =1).

Now, each row of the transition probability matrix is represented as a DP which
shares the same reasonable prior on the mixing proportions of the states. For a
new row corresponding to a new state k, we simply draw a transition probability
vector mr; from D P (X, B), resulting in constructing a countably infinite transition
probability matrix. The transition probability constructed by iH?MS may be further
extended to the scenario where there are more than one state at each time [47]. HTM
is estimated through the maximum likelihood principle [47].

1.3.3.2 Model Formulation and Algorithm

To capture the state (cluster) transition correspondence during the evolution at dif-
ferent times, we have proposed the HTM; at the same time, we must capture the
state—state (cluster—cluster) correspondence, which may be handled by a hierarchi-
cal model with the top level corresponding to the global states! and the lower level
corresponding to the local states, where it is natural to model the statistical pro-
cess as HDP [44]. Consequently, we intend to combine HDP with HTM as a new
HDP-HTM model, as illustrated in Fig. 1.12.

I Each state is represented as a distinct cluster.

1 Machine Learning Approaches 35

Fig. 1.12 The HDP-HTM model

Let the global state space S denote the global cluster set, which includes all
the states S; € S at all the times ¢. The global observation set X includes all the
observations X at each time ¢, of which each data item i is denoted as x; ;.

We draw the global mixing proportion from the global states 8 with the stick-
breaking representation using the concentration parameter y from (1.10). The global

measure G may be represented as

o
Go = Z BrSgy

k=1

where ¢ is drawn from the base probability measure H with pdf &, and 8y, is the
concentration measure on ¢y.

Different from HDP, here we must consider the evolution of the data and the
states (i.e., the clusters). The distribution of the clusters at time ¢ is not only governed
by the global measure G but also controlled by the data and cluster evolution in
the history. Consequently, we make an assumption that the data and the clusters at
time ¢ are generated from the previous data and clusters, according to the mixture
proportions of each cluster and the transition probability matrix. The global prior
mixture proportions for the clusters are 8, and the state transition matrix IT provides
the information of the previous state evolution in the history up to time ¢. Now,
the expected number of the data items generated by cluster k is proportional to
the number of data items in the clusters in the history multiplied by the transition
probabilities from these clusters to state k; specifically, the mean mixture proportion
for cluster k at time ¢, wy, is defined as follows:

36 Z.Zhang et al.
o
W | = Zﬁjﬂj,k-
—

More precisely, w; is further obtained by
w; = -1 (1.12)

Clearly, by the transition probability property, > o o x = 1, Y poy Wik = 1,
and the stick-breaking property > 72 B; = I:

o [o,0] oo o0 o0 o0
dook=) > Bimik =) i) mik=) Fi=1
k=1 j=1 k=1 j=1

k=1 j=1

Thus, the mean mixture proportion w; may be taken as the new probability mea-
sure at time ¢ on the global cluster set. With the concentration parameter o, we draw
the mixture proportion vector 6; from DP(«, w;)

0 |la, w; ~ DP(a, wy).

Now, at time 7, the local measure G; shares the global clusters parameterized by
¢ = (¢r);2, with the mixing proportion vector 6;.

o
G =) 01y,
k=1

At time ¢, given the mixture proportion of the clusters 6;, we draw a cluster indicator
z;,; for data item x; ; from a multinomial distribution:

24,i160; ~ Mult(6;)

Once we have the cluster indicator z; ;, data item x; ; may be drawn from distribution
F with pdf f, parameterized by ¢ from the base measure H.

Xtilzeir @ ~ f(x|¢z,,,-)

Finally, we summarize the data generation process for HDP-HTM as follows.

1. Sample the cluster parameter vector ¢ from the base measure H. The number of
the parameters is unknown a priori, but is determined by the data when a new
cluster is needed.

2. Sample the global cluster mixture vector from stick(y).

3. At time ¢, compute the mean measure w; for the global cluster set by g and IT
according to (1.12).

1 Machine Learning Approaches 37

4. Attime ¢, sample the local mixture proportion 6; by DP(«, wy).

. At time ¢, sample the cluster indicator z; ; from Mult(6;) for data item x; ;.

6. At time ¢, sample data item x; ; from f(x|¢,, ;) given cluster indicator z;; and
parameter vector ¢. '

|9,

1.3.3.3 Experiments

We have evaluated the HDP-HTM model in an extensive scale against the state-of-
the-art literature. We compare HDP-HTM in performance with evolutionary spectral
clustering PCM and PCQ algorithms [9] and HDP [44] for the synthetic data and
the real data in the application of document evolutionary clustering; for the exper-
iments in text data evolutionary clustering, we have also evaluated the HDP-HTM
model in comparison with LDA [5, 25] in addition. In particular, the evaluations are
performed in three data sets, a synthetic data set, the 20 Newsgroups data set, and a
Google daily news data set we have collected over a period of 5 continuous days.

Synthetic Data set

We have generated a synthetic data set in a scenario of evolutionary development.
The data are a collection of mixture models with the number of the clusters unknown
a priori with a smooth transition over the time during the evolution. Specifically,
we simulate the scenario of the evolution over 10 different times with each time’s
collection according to a DP mixture model with 200 two-dimensional Gaussian
distribution points. Ten Gaussian points in N(0, 2I) are set as the 10 global clusters’
mean parameters. Then 200 Gaussian points within a cluster are sampled with this
cluster’s mean parameter and deviation parameter sampling from N(0, 0.2I), where
Iis the identify matrix. After the generation of such a data set, we obtain the number
of the clusters and the cluster assignments as the ground truth. We intentionally
generate different numbers of the clusters at different times, as shown in Fig. 1.15.

In the inference process, we tune the hyperparameters as follows. In each iter-
ation, we use the vague Gamma priors [22] to update «, A, and y from I"(1, 1).
Figure 1.13 shows an example of the clustering results between HDP-HTM and
PCQ at time 8 for the synthetic data. Clearly, HDP-HTM has a much better perfor-
mance than PCQ in these synthetic data.

For a more systematic evaluation on this synthetic data set, we use NMI (Nor-
malized Mutual Information) [43] to quantitatively compare the clustering perfor-
mances among all the four algorithms (HDP-HTM, HDP, PCM, and PCQ). NMI
measures how much information two random distribution variables (computed clus-
tering assignment and ground truth clustering assignment) share, the larger the better
with 1 as normalized maximum value. Figure 1.14 documents the performance com-
parison. From this figure, the average NMI values across 10 times for HDP-HTM
and HDP are 0.86 and 0.78, respectively, while those for PCQ and PCM are 0.70
and 0.71, respectively. HDP works worse than HDP-HTM for the synthetic data. The
reason is that HDP model is unable to capture the cluster transition correspondence
during the evolution among the data collections across the time in this case while

38 Z.Zhang et al.

3 3
2t 2
1 . - 1 '
ot o of ..
R2ZH
4 ot »
-2 -2
-3 s . s
-4 -4
4 3 2 -1 0 1 2 3 4 4 3 2 -1 0 1 2 3 4
(a) (b)

Fig. 1.13 Illustrated clustering results of HDP-HTM (a) and PCQ (b) for the synthetic data

Comparison of 4 algorithm for Synthetic Data

0.95
0.9
0.85
0.8
0.75

NMI

—¥— HDP-HTM

0.65 -©- HDP 1
1 -B- PCQ
0.6 —— PCM 1

2 3 4 5 6 7 8 9 10

t(time stamp)

Fig. 1.14 The NMI performance comparison of the four algorithms on the synthetic data set

HDP-HTM is able to explicitly solve for this correspondence problem; on the other
hand, HDP still performs better than PCQ and PCM as HDP is able to learn the
cluster number automatically during the evolution.

Since one of the advantages of the HDP-HTM model is to be able to learn the
number of the clusters and the clustering structures during the evolution, we report
this performance for HDP-HTM compared with HDP on this synthetic data set in
Fig. 1.15. Here, we define the expected number of the clusters at each time as the
average number of the clusters in all the posterior sampling iterations after the burn-
in period. Thus, these numbers are not necessarily integers. Clearly, both models are
able to learn the cluster numbers, with HDP-HTM having a better performance than
HDP. Since both PCQ and PCM do not have this capability, they are not included in
this evaluation.

1 Machine Learning Approaches 39

Num of Clusters for Synthetic Data
10 r r r r - - -

9.5

—¥— HDP-HTM
—&— HDP
—— Ground Truth

Average Num of clusters

1 3 3 4 5 6 7 8 9 10

t(time stamp)

Fig. 1.15 The cluster number learning performance of the HDP-HTM in comparison with HDP
on the synthetic data set

Real Data Set

In order to showcase the performance of HDP-HTM model on real data applications,
we apply HDP-HTM to a subset of the 20 Newsgroups data’ We intentionally set the
number of the clusters at each time as the same number to accommodate the com-
paring algorithms PCQ and PCM which have this assumption of the same cluster
number over the evolution. Also we select 10 clusters (i.e., topics) from the data set
(alt.atheism, comp.graphics, rec.autos, rec.sport.baseball, sci.crypt, sci.electronics,
sci.med, sci.space, soc.religion.christian, talk.politics.mideast), with each having
100 documents. To “simulate” the corresponding 5 different times, we then split
the data set into 5 different collections, each of which has 20 documents randomly
selected from the clusters. Thus, each collection at a time has 10 topics to generate
words. We have pre-processed all the documents with the standard text processing
for removing the stop words and stemming the remaining words.

To apply the HDP-HTM and HDP models, a symmetric Dirichlet distribution is
used with the parameter 0.5 for the prior base distribution H. In each iteration, we
update «, y, and A in HDP-HTM, from the gamma priors I'(0.1, 0.1). For LDA,
« is set 0.1 and the prior distribution of the topics on the words is a symmetric
Dirichlet distribution with concentration parameter 1. Since LDA only works for
one data collection and requires a known cluster number in advance, we explicitly
apply LDA to the data collection with the ground truth cluster number as input at
each time.

Figure 1.16 reports the overall performance comparison among all the five meth-
ods using NMI metric again. Clearly HDP-HTM outperforms PCQ, PCM, HDP,

2 http:kdd.ics.uci.edu/databases/20newsgroups/

http:kdd.ics.uci.edu/databases/20newsgroups/

40

N

. Zhang et al.

NMI for News Group Data
0.82 T T T

% —%— HDP-HTM
0.721 —©- HDP
-6 1pA
0.7 B~ PCQ i
—— PCM
0.68 |
0.66 |
0.64 1 1 1
1 2 3 4 5

t(time stamp)

Fig. 1.16 The NMI performance comparison among the five algorithms on the 20 Newsgroups
data set

and LDA at all the times; in particular, the difference is substantial for PCQ and
PCM. Figure 1.17 further reports the performance on learning the cluster numbers at
different times for HDP-HTM compared with HDP. Both models have a reasonable
performance in automatically learning the cluster number at each time in compari-
son with the ground truth, with HDP-HTM having a clearly better performance than
HDP in average.

Num of Clusters for News Group Data
11 T T T

n
Y
9]
s
n
3
—
O
[T}
o
g
3
=
o
g
E} 9.8} —%— HDP-HTM 7
> —©- HDP
< 9.6 —9— Ground Truth i
9.4 L . .
1 2 3 4 5

t(time stamp)

Fig. 1.17 Cluster number learning performance of HDP-HTM in comparison with HDP on the 20
Newsgroups data set

1 Machine Learning Approaches 41

In order to truly demonstrate the performance of HDP-HTM in comparison with
the state-of-the-art literature on a real evolutionary clustering scenario, we have
manually collected Google News articles for a continuous period of 5 days with
both the data items (i.e., words in the articles) and the clusters (i.e., the news topics)
evolving over the time. The evolutionary ground truth for this data set is as follows.
For each of the continuous 5 days, we have the number of the words, the number
of the clusters, the number of the documents as (6113, 5, 50), (6356, 6, 60), (7063,
5, 50), (7762, 6, 60), and (8035, 6, 60), respectively. In order to accommodate the
assumption of PCM and PCQ that the cluster number stays the same during the
evolution, but at the same time in order to demonstrate the capability of HDP-HTM
to automatically learn the cluster number at each evolutionary time, we intentionally
set the news topic number (i.e., the cluster number) at each day’s collection to have
a small variation deviation during the evolution. Again, in order to compare the text
clustering capability of LDA [5, 25] with a known topic number in advance, we
use the ground truth cluster number at each time as the input to LDA. The param-
eter tuning process is similar to that in the experiment using the 20 Newsgroups
data set.

Figure 1.18 reports the NMI-based performance evaluations among the five algo-
rithms. Again, HDP-HTM outperforms PCQ, PCM, HDP, and LDA at all the times,
especially substantially better than PCQ, PCM, and LDA. PCQ and PCM fail com-
pletely in most of the cases as they assume that the number of the clusters remains
the same during the evolution, which is not true in this scenario.

Figure 1.19 further reports the performance on learning the cluster numbers for
different times for HDP-HTM compared with HDP. In this data set, HDP-HTM has
a much better performance than HDP to learn the cluster numbers automatically at
all the times.

NMI for Google News Data

0.8

0.75

0.7
= 1 —%— HDP-HTM
g i HDP
LDA
0.65 | -B- PCQ
—— PCM
0.6 i
0'55 1 1 1
1 2 3 4 5

t(time stamp)

Fig. 1.18 The NMI performance comparison for all the five algorithms on the Google News
data set

42 Z.Zhang et al.

Num of Clusters for Google News Data

6.5 : —-
()/Q)\,\

55%F —¥— HDP-HTM i
—©— HDP
—Q— Ground Truth

Average Num of Clusters

u

2 3 4 5

t(time stamp)

Fig. 1.19 The cluster number learning performance of HDP-HTM in comparison with HDP on the
Google News data set

1.4 Conclusions

In this chapter, we have reviewed several specific machine learning techniques
used for different categories of link-based or relational data clustering in two
paradigms — deterministic approaches and generative approaches. Specifically, we
have showcased a spectral clustering technique for heterogeneous relational cluster-
ing, a symmetric convex coding technique for homogeneous relational clustering, a
citation model for the special homogeneous relational clustering — clustering tex-
tual documents with citations, a probabilistic generative model for general relational
clustering, as well as a statistical graphical model for dynamic relational clustering.
All these machine learning approaches are based on the mathematical foundation of
matrix computation theory, probability, and statistics.

Acknowledgments This work is supported in part through NSF grants [IIS-0535162, IIS-
0812114, 1IS-0905215, and DBI-0960443], as well as graduate research internships at Google
Research Labs and NEC Laboratories America, Inc. Yun Chi, Yihong Gong, Xiaoyun Wu, and
Shenghuo Zhu have made contributions to part of this material.

References

1. A. Banerjee, I. S. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha. A generalized maxi-
mum entropy approach to bregman co-clustering and matrix approximation. In KDD, pages
509-514, 2004.

2. A. Banerjee, S. Merugu, 1. S. Dhillon, and J. Ghosh. Clustering with bregman divergences.
Journal of Machine Learning Research, 6:1705-1749, 2005.

3. S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clus-
tering. In Proceedings ACM KDDO04, pages 59-68, Seattle, WA, August 2004.

1 Machine Learning Approaches 43

4.

5.

6.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.
30.

M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. The infinite hidden markov model. In NIPS
14, 2002.

D. M. Blei, A. Y. Ng, and M. L. Jordan. Latent dirichlet allocation. Journal of Machine Learn-
ing Research, 993-1022, 2003.

T. N. Bui and C. Jones. A heuristic for reducing fill-in in sparse matrix factorization. In PPSC,
pages 445-452, 1993.

. M. Catral, L. Han, M. Neumann, and R. J. Plemmons. On reduced rank nonnegative matrix

factorization for symmetric nonnegative matrices. Linear Algebra and Its Application, 2004.

. P.K.Chan, M. D. F. Schlag, and J. Y. Zien. Spectral k-way ratio-cut partitioning and clustering.

In DAC’93, pages 749754, 1993.

. Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng. Evolutionary spectral clustering by

incorporating temporal smoothness. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 153-162, 2007.

. H. Cho, I. Dhillon, Y. Guan, and S. Sra. Minimum sum squared residue co-clustering of gene

expression data. In SDM, 2004.

. D. Cohn and H. Chang. Learning to probabilistically identify authoritative documents. In Pro-

ceeding of ICML, pages 167-174, 2000.

. D. A. Cohn and T. Hofmann. The missing link — a probabilistic model of document content

and hypertext connectivity. In Proceedings of NIPS, pages 430-436, 2000.

. D.D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.

Nature, 401:788-791, 1999.

I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In KDD’03,
pages 89-98, 2003.

I. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spectral clustering and
graph cuts. Technical Report TR-04-25, University of Texas at Austin, 2004.

I. Dhillon, Y. Guan, and B. Kulis. A fast kernel-based multilevel algorithm for graph cluster-
ing. In KDD’05, 2005.

I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning.
In KDD, pages 269-274, 2001.

C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization and
spectral clustering. In SDM’05, 2005.

C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph
partitioning and data clustering. In Proceedings of ICDM 2001, pages 107-114, 2001.

E. Erosheva and S. E. Fienberg. Bayesian mixed membership models for soft clustering and
classification. Classification-The Ubiquitous Challenge, pages 11-26, 2005.

E.A. Erosheva, S.E. Fienberg, and J. Lafferty. Mixed membership models of scientific publi-
cations. In NAS.

M. D. Escobar and M. West. Bayesian density estimation and inference using mixtures. The
Annals of Statistics, 90:577-588, 1995.

B. Gao, T. Y. Liu, X. Zheng, Q. S. Cheng, and W. Y. Ma. Consistent bipartite graph co-
partitioning for star-structured high-order heterogeneous data co-clustering. In KDD’05, pages
41-50, 2005.

Z. Guo, S. Zhu, Y. Chi, Z. Zhang, and Y. Gong. A latent topic model for linked documents. In
Proceedings of ACM SIGIR, 2009.

G. Heinrich. Parameter estimation for text analysis. Technical Report, 2004.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Supercom-
puting ’95, page 28, 1995.

M. Henzinger, R. Motwani, and C. Silverstein. Challenges in web search engines. In Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence, pages 1573-1579,
2003.

T. Hofmann. Probabilistic latent semantic indexing. In Proceedings SIGIR, pages 50-57, 1999.
G. Karypis. A clustering toolkit, 2002.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 20(1):359-392, 1998.

44

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

Z.Zhang et al.

. B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(2):291-307, 1970.

R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for emerging
cyber-communities. Computer Networks, 31(11-16), 1999.

K. Lang. News weeder: Learning to filter netnews. In /ICML, 1995.

T. Li. A general model for clustering binary data. In KDD’05, 2005.

B. Long, Z. Zhang, and P. S. Yu. Relational clustering by symmetric convex coding. In Pro-
ceedings of International Conference on Machine Learning, 2007.

B. Long, Z. Zhang, X. Wu, and P. S. Yu. Spectral clustering for multi-type relational data.
In Proceedings of ICML, 2006.

B. Long, Z. Zhang, and P. S. Yu. A probabilistic framework for relational clustering. In Pro-
ceedings of ACM KDD, 2007.

B. Long, X. Wu, Z. Zhang, and P. S. Yu. Unsupervised learning on k-partite graphs. In KDD-
2006, 2006.

B. Long, Z. M. Zhang, and P. S. Yu. Co-clustering by block value decomposition. In KDD’05,
2005.

A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the construction of internet
portals with machine learning. Information Retrieval, 3(2):127-163, 2000.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems 14, 2001.

J. Shi and J. Malik. Normalized cuts and image segmentation. /EEE Transactions on Pattern
Analysis Machine Intelligence, 22(8):888-905, 2000.

A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for combining
partitionings. In AAAI 2002, pages 93-98, 2002.

Y. Teh, M. Beal M. Jordan, and D. Blei. Hierarchical dirichlet processes. Journal of the Amer-
ican Statistical Association, 101(476):1566—-1581, 2007.

K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with back-
ground knowledge. In ICML-2001, pages 577-584, 2001.

E. P. Xing, A. Y. Ng, M. I. Jorda, and S. Russel. Distance metric learning with applications to
clustering with side information. In NIPS’03, volume 16, 2003.

T. Xu, Z. Zhang, P. S. Yu, and B. Long. Evolutionary clustering by hierarchical dirichlet pro-
cess with hidden markov state. In Proceedings of IEEE ICDM, 2008.

W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization.
In Proceedings of SIGIR, pages 267-273, 2003.

S. Yu and J. Shi. Multiclass spectral clustering. In /CCV’03, 2003.

H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Bi-partite graph partitioning and data clustering.
In ACM CIKM’01, 2001.

H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Spectral relaxation for k-means clustering.
Advances in Neural Information Processing Systems, 14, 2002.

Chapter 2
Scalable Link-Based Similarity Computation
and Clustering

Xiaoxin Yin, Jiawei Han, and Philip S. Yu

Abstract Data objects in a relational database are cross-linked with each other
via multi-typed links. Links contain rich semantic information that may indicate
important relationships among objects, such as the similarities between objects. In
this chapter we explore linkage-based clustering, in which the similarity between
two objects is measured based on the similarities between the objects linked with
them. We study a hierarchical structure called SimTree, which represents similar-
ities in multi-granularity manner. This method avoids the high cost of computing
and storing pairwise similarities but still thoroughly explore relationships among
objects. We introduce an efficient algorithm for computing similarities utilizing the
SimTree.

2.1 Introduction

As a process of partitioning data objects into groups according to their similarities
with each other, clustering has been extensively studied for decades in different
disciplines including statistics, pattern recognition, database, and data mining. There
have been many clustering methods [1, 11, 15-17, 22], but most of them aim at
grouping records in a single table into clusters using their own properties.

In many real applications, linkages among objects of different types can be the
most explicit information available for clustering. For example, in a publication
database (i.e., PubDB) in Fig. 2.1a, one may want to cluster each type of objects
(authors, institutions, publications, proceedings, and conferences/journals), in order
to find authors working on different topics, or groups of similar publications, etc.
It is not so useful to cluster single type of objects (e.g., authors) based only on the
properties of them, as those properties often provide little information relevant to the
clustering task. On the other hand, the linkages between different types of objects
(e.g., those between authors, papers, and conferences) indicate the relationships

X. Yin (=)
Microsoft Research, Redmond, WA 98052, USA
e-mail: Xyin@microsoft.com

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications, 45
DOI 10.1007/978-1-4419-6515-8_2, © Springer Science+Business Media, LLC 2010

46 X. Yin et al.

Publishes Publications Proceedings

author-id | paper-id proc-id
| paper-id },Ji title conference

sigmod |

Authors proc-id year

author-id location
name Conferences
email /Journals

Affiliations

author-id

institution Institutions

start-time T—ﬂ institution |

end-time | address |

(a) (b)
Fig. 2.1 A publication database (PubDB). (a) Database schema; (b) An example of linked objects

between objects and can help cluster them effectively. Such linkage-based clustering
is appealing in many applications. For example, an online movie store may want to
cluster movies, actors, directors, reviewers, and renters in order to improve its rec-
ommendation systems. In bioinformatics one may want to cluster genes, proteins,
and their behaviors in order to discover their functions.

Clustering based on multi-typed linked objects has been studied in multi-
relational clustering [14, 21], in which the objects of each type are clustered based
on the objects of other types linked with them. Consider the mini-example in
Fig. 2.1b. Authors can be clustered based on the conferences where they publish
papers. However, such analysis is confined to direct links. For example, Tom pub-
lishes only SIGMOD papers, and John publishes only VLDB papers. Tom and John
will have zero similarity based on direct links, although they may actually work
on the same topic. Similarly, customers who have bought “Matrix” and those who
have bought “Matrix I’ may be considered dissimilar although they have similar
interests.

The above example shows when clustering objects of one type, one needs to con-
sider the similarities between objects of other types linked with them. For example,
if it is known that SIGMOD and VLDB are similar, then SIGMOD authors and
VLDB authors should be similar. Unfortunately, similarities between conferences
may not be available, either. This problem can be solved by SimRank [13], in which
the similarity between two objects is recursively defined as the average similarity
between objects linked with them. For example, the similarity between two authors
is the average similarity between the conferences in which they publish papers. In
Fig. 2.1b “sigmod” and “vldb” have high similarity because they share many coau-
thors, and thus Tom and John become similar because they publish papers in similar
conferences. In contrast, John and Mary do not have high similarity even they are
both linked with “v1db05.”

Although SimRank provides a good definition for similarities based on linkages,
it is prohibitively expensive in computation. In [13] an iterative approach is pro-
posed to compute the similarity between every pair of objects, which has quadratic
complexity in both time and space, and is impractical for large databases.

2 Scalable Link-Based Similarity Computation and Clustering 47

Is it necessary to compute and maintain pairwise similarities between objects?
Our answer is no for the following two reasons. First, hierarchy structures naturally
exist among objects of many types, such as the taxonomy of animals and hierarchical
categories of merchandise. Consider the example of clustering authors according to
their research. There are groups of authors working on the same research topic (e.g.,
data integration or XML), who have high similarity with each other. Multiple such
groups may form a larger group, such as the authors working on the same research
area (e.g., database vs. Al), who may have weaker similarity than the former. As a
similar example, the density of linkages between clusters of articles and words is
shown in Fig. 2.2 (adapted from figure 5 (b) in [5]). We highlight four dense regions
with dashed boxes, and in each dense region there are multiple smaller and denser
regions. The large dense regions correspond to high-level clusters, and the smaller
denser regions correspond to low-level clusters within the high-level clusters.

Articles

MBI 1

Words

Fig. 2.2 Density of linkages between articles and words

Second, recent studies show that there exist power law distributions among the
linkages in many domains, such as Internet topology and social networks [9]. Inter-
estingly, based on our observation, such relationships also exist in the similarities
between objects in interlinked environments. For example, Fig. 2.3 shows the dis-
tribution of pairwise SimRank similarity values between 4170 authors in DBLP
database (the plot shows portion of values in each 0.005 range of similarity value).
It can be seen that majority of similarity entries have very small values which lie
within a small range (0.005 —0.015). While only a small portion of similarity entries
have significant values—1.4% of similarity entries (about 123 K of them) are greater
than 0.1, and these values will play the major role in clustering. Therefore, we want
to design a data structure that stores the significant similarity values and compresses
those insignificant ones.

Based on the above two observations, we introduce a new hierarchical strategy
to effectively prune the similarity space, which greatly speeds up the identification
of similar objects. Taking advantage of the power law distribution of linkages, this
strategy substantially reduces the number of pairwise similarities that need to be

48 X. Yin et al.

0.4

0.3

0.2

0.1

portion of entries

© — o <
I =T
[« [-

0.02
0.04
0.06
0.16
0.18

0.2
0.22
0.24

similarity value

Fig. 2.3 Portions of similarity values

tracked, and the similarity between less similar objects will be approximated using
aggregate measures.

We introduce a hierarchical data structure called SimTree as a compact repre-
sentation of similarities between objects. Each leaf node of a SimTree corresponds
to an object, and each non-leaf node contains a group of lower level nodes that are
closely related to each other. SimTree stores similarities in a multi-granularity way
by storing similarity between each two objects corresponding to sibling leaf nodes,
and storing the overall similarity between each two sibling non-leaf nodes. Pairwise
similarity is not pre-computed or maintained between objects that are not siblings.
Their similarity, if needed, is derived based on the similarity information stored in
the tree path. For example, consider the hierarchical categories of merchandise in
Walmart. It is meaningful to compute the similarity between every two cameras,
but not so meaningful to compute that for each camera and each TV, as an overall
similarity between cameras and TVs should be sufficient.

Based on SimTree, we introduce LinkClus, an efficient and accurate approach
for linkage-based clustering. At the beginning LinkClus builds a SimTree for each
type of objects in a bottom-up manner, by finding groups of objects (or groups of
lower level nodes) that are similar to each other. Because inter-object similarity
is not available yet, the similarity between two nodes are measured based on the
intersection size of their neighbor objects. Thus the initial SimTrees cannot fully
catch the relationships between objects (e.g., some SIGMOD authors and VLDB
authors have similarity 0).

LinkClus improves each SimTree with an iterative method, following the recur-
sive rule that two nodes are similar if they are linked with similar objects. In each
iteration it measures the similarity between two nodes in a SimTree by the average
similarity between objects linked with them. For example, after one iteration SIG-
MOD and VLDB will become similar because they share many authors, which will
then increase the similarities between SIGMOD authors and VLDB authors, and
further increase that between SIGMOD and VLDB. We design an efficient algorithm
for updating SimTrees, which merges the expensive similarity computations that go
through the same paths in the SimTree. For a problem involving N objects and M
linkages, LinkClus only takes O (M (log N)?) time and O (M + N) space (SimRank

2 Scalable Link-Based Similarity Computation and Clustering 49

takes O (M?) time and O(N?) space). Experiments on both real and synthetic data
sets show that LinkClus achieves high accuracy and efficiency.

The rest of the chapter is organized as follows. We discuss related work in Sec-
tion 2.2 and give an overview in Section 2.3. and 2.4 introduces SimTree, the hierar-
chical structure for representing similarities. The algorithms for building SimTrees
and computing similarities are described in Section 2.5. Our performance study is
reported in Section 2.6, and this study is concluded in Section 2.7.

2.2 Related Work

Clustering has been extensively studied for decades in different disciplines includ-
ing statistics, pattern recognition, database, and data mining, with many approaches
proposed [1, 11, 15-17, 22]. Most existing clustering approaches aim at grouping
objects in a single table into clusters, using properties of each object. Some recent
approaches [14, 21] extend previous clustering approaches to relational databases
and measures similarity between objects based on the objects joinable with them in
multiple relations.

In many real applications of clustering, objects of different types are given,
together with linkages among them. As the attributes of objects often provide very
limited information, traditional clustering approaches can hardly be applied, and
linkage-based clustering is needed, which is based on the principle that two objects
are similar if they are linked with similar objects.

This problem is related to bi-clustering [6] (or co-clustering [8], cross-association
[5]), which aims at finding dense submatrices in the relationship matrix of two types
of objects. A dense submatrix corresponds to two groups of objects of different
types that are highly related to each other, such as a cluster of genes and a cluster
of conditions that are highly related. Unlike bi-clustering that involves no similarity
computation, LinkClus computes similarities between objects based on their linked
objects. Moreover, LinkClus works on a more general problem as it can be applied
to a relational database with arbitrary schema, instead of two types of linked objects.
LinkClus also avoids the expensive matrix operations often used in bi-clustering
approaches.

A bi-clustering approach [8] is extended in [4], which performs agglomerative
and conglomerative clustering simultaneously on different types of objects. How-
ever, it is very expensive, —quadratic complexity for two types and cubic complex-
ity for more types.

Jeh and Widom propose SimRank [13], a linkage-based approach for comput-
ing the similarity between objects, which is able to find the underlying similari-
ties between objects through iterative computations. Unfortunately SimRank is very
expensive as it has quadratic complexity in both time and space. The authors also
discuss a pruning technique for approximating SimRank, which only computes the
similarity between a small number of preselected object pairs. In the extended
version of [13] the following heuristic is used: Only similarities between pairs

50 X. Yin et al.

of objects that are linked with same objects are computed. With this heuristic, in
Fig. 2.1b the similarity between SIGMOD and VLDB will never be computed. Nei-
ther will the similarity between Tom and John, Tom and Mike, etc. In general, it is
very challenging to identify the right pairs of objects at the beginning, because many
pairs of similar objects can only be identified after computing similarities between
other objects. In fact this is the major reason that we adopt the recursive definition
of similarity and use iterative methods.

A method is proposed in [10] to perform similarity searches by approximating
SimRank similarities. It creates a large sample of random walk paths from each
object and uses them to estimate the SimRank similarity between two objects when
needed. It is suitable for answering similarity queries. However, very large samples
of paths are needed for making accurate estimations for similarities. Thus it is very
expensive in both time and space to use this approach for clustering a large num-
ber of objects, which requires computing similarities between numerous pairs of
objects.

Wang et al. propose ReCom [20], an approach for clustering inter-linked objects
of different types. ReCom first generates clusters using attributes and linked objects
of each object, and then repeatedly refines the clusters using the clusters linked with
each object. Compared with SimRank that explores pairwise similarities between
objects, ReCom only explores the neighbor clusters and does not compute similar-
ities between objects. Thus it is much more efficient but much less accurate than
SimRank.

LinkClus is also related to hierarchical clustering [11, 17]. However, they are
fundamentally different. Hierarchical clustering approaches use some similarity
measures to put objects into hierarchies. While LinkClus uses hierarchical struc-
tures to represent similarities. This is related to the study in [3], which uses a tree
structure to approximate metric spaces, although we do not require the objects to be
in a metric space.

2.3 Overview

Linkage-based clustering is based on the principle that two objects are similar if they
are linked with similar objects. For example, in a publication database (Fig. 2.1b),
two authors are similar if they publish similar papers. The final goal of linkage-based
clustering is to divide objects into clusters using such similarities. Figure 2.4 shows
an example of three types of linked objects and clusters of similar objects which
are inferred from the linkages. It is important to note that objects 12 and 18 do not
share common neighbors, but they are linked to objects 22 and 24, which are similar
because of their common linkages to 35, 37, and 38.

In order to capture the inter-object relationships as in the above example, we
adopt the recursive definition of similarity in SimRank [13], in which the similarity
between two objects x and y is defined as the average similarity between the objects
linked with x and those linked with y.

2 Scalable Link-Based Similarity Computation and Clustering 51

Fig. 2.4 Finding groups of similar objects

As mentioned in the introduction, a hierarchical structure can capture the hier-
archical relationships among objects and can compress the majority of similarity
values which are insignificant. Thus we use SimTree, a hierarchical structure for
storing similarities in a multi-granularity way. It stores detailed similarities between
closely related objects and overall similarities between object groups. We generalize
the similarity measure in [13] to hierarchical environments and propose an efficient
and scalable algorithm for computing similarities based on the hierarchical struc-
ture. Each node in a SimTree has at most ¢ children, where ¢ is a constant and
is usually between 10 and 20. Given a database containing two types of objects, N
objects of each type and M linkages between them, our algorithm takes O (Nc+ M)
space and O (M (log, N)?¢?) time. This is affordable for very large databases.

2.4 SimTree: Hierarchical Representation of Similarities

In this section we describe SimTree, a new hierarchical structure for representing
similarities between objects. Each leaf node of a SimTree represents an object (by
storing its ID), and each non-leaf node has a set of child nodes, which are a group of
closely related nodes of one level lower. An example SimTree is shown in Fig. 2.5a.
The small gray circles represent leaf nodes, which must appear at the same level
(which is level 0, the bottom level). The dashed circles represent non-leaf nodes.
Each non-leaf node has at most ¢ child nodes, where c¢ is a small constant. Between
each pair of sibling nodes n; and n; there is an undirected edge (n;,n;). (n;,n;)
associated with a real value s(n;, n;), which is the average similarity between all
objects linked with n; (or with its descendant objects if n; is a non-leaf node) and
those with ;. s(n;, n ;) represents the overall similarity between the two groups of
objects contained in n; and n;.

Another view of the same SimTree is shown in Fig. 2.5b, which better visualizes
the hierarchical structure. The similarity between each pair of sibling leaf nodes is
stored in the SimTree, while the similarity between two non-sibling leaf nodes is
estimated using the similarity between their ancestor nodes. For example, suppose
the similarity between n7 and ng is needed, which is the average similarity between
objects linked with n7 and those with ng. One can see that n4 (or ns) contains a

52 X. Yin et al.

(b)

Fig. 2.5 An example SimTree. (a) Structure of a SimTree; (b) Another view of the SimTree

small group of leaf nodes including n7 (or ng), and we have computed s(n4, ns)
which is the average similarity between objects linked with these two groups of leaf
nodes. Thus LinkClus uses s(n4, ns) as the estimated similarity between ny and ng.
In a real application such as clustering products in Walmart, n7 may correspond to a
camera and ng to a TV. We can estimate their similarity using the overall similarity
between cameras and TVs, which may correspond to n4 and ns, respectively. Simi-
larly when the similarity between n7 and ng is needed, LinkClus uses s(ny, ny) as
an estimation.

Such estimation is not always accurate, because a node may have different simi-
larities to other nodes compared with its parent. LinkClus makes some adjustments
to compensate for such differences, by associating a value to the edge between
each node and its parent. For example, the edge (n7, n4) is associated with a real
value s(n7, n4), which is the ratio between (1) the average similarity between ny
and all leaf nodes except n4’s descendants and (2) the average similarity between
n4 and those nodes. Similarly we can define s(n4, n1), s(ng, n2), etc. When esti-
mating the similarity between n7 and ng, we use s(ny, n2) as a basic estimation,
use s(n4, n1) to compensate for the difference between similarities involving n4 and
those involving nj, and use s(n7, n4) to compensate for n7. The final estimation
is s(ny,ng) - s(ng,ny) - s(ny,n2) - s(ng,n2) - s(ng,ng) = 09-08-0.2-09-
1.0 = 0.1296.

In general, the similarity between two leaf nodes w.r.t. a SimTree is the prod-
uct of the values of all edges on the path between them. Because this similarity is
defined based on the path between two nodes, we call it path-based similarity.

Definition 1 (Path-based Node Similarity) Suppose two leaf nodes n| and ny in a
SimTree are connected by pathn; — -+ — n; — n;j31 — -+- — ng, in which n;
and n; 4 are siblings and all other edges are between nodes and their parents. The
path-based similarity between n1 and ny is

2 Scalable Link-Based Similarity Computation and Clustering 53

k—1
simp(ny, ng) = HS(nj,njH). (2.1
j=1

Each node has similarity 1 with itself (sim(n, n) = 1).

Please note that within a path in Definition 1, there is only one edge that is
between two sibling nodes, whose similarity is used as the basic estimation. The
other edges are between parent and child nodes whose similarities are used for
adjustments.

2.5 Building SimTrees

The inputs to LinkClus are objects of different types, with linkages between them.
LinkClus maintains a SimTree for each type of objects to represent similarities
between them. Each object is used as a leaf node in a SimTree. Figure 2.6 shows
the leaf nodes created from objects of two types and the linkages between them.

Q@@@Q@C@QQ‘@@@Q @) ST

@@@@@@@@@@@@@@sn

Fig. 2.6 Leaf nodes in two SimTrees

Initially each object has similarity 1 to itself and O to others. LinkClus first builds
SimTrees using the initial similarities. These SimTrees may not fully catch the real
similarities between objects, because inter-object similarities are not considered.
LinkClus uses an iterative method to improve the SimTrees, following the principle
that two objects are similar if and only if they are linked with similar objects. It
repeatedly updates each SimTree using the following rule: The similarity between
two nodes n; and n; is the average similarity between objects linked with n; and
those linked with n;. The structure of each SimTree is also adjusted during each
iteration by moving similar nodes together. In this way the similarities are refined in
each iteration, and the relationships between objects can be discovered gradually.

2.5.1 Initializing SimTrees Using Frequent Pattern Mining

The first step of LinkClus is to initialize SimTrees using the linkages as shown in
Fig. 2.6. Although no inter-object similarities are available at this time, the initial
SimTrees should still be able to group related objects or nodes together, in order to
provide a good base for further improvements.

Because only leaf nodes are available at the beginning, we initialize SimTrees
from bottom level to top level. At each level, we need to efficiently find groups of

54 X. Yin et al.

tightly related nodes and use each group as a node of the upper level. Consider a
group of nodes g = {ny, ..., ni}. Let neighbor(n;) denote the set of objects linked
with node n;. Initially there are no inter-object similarities, and whether two nodes
are similar depends on whether they are co-linked with many objects. Therefore,
we define the tightness of group g as the number of objects that are linked with all
group members, i.e., the size of intersection of neighbor(ny), ..., neighbor(ny).

The problem of finding groups of nodes with high tightness can be reduced to
the problem of finding frequent patterns [2]. A tight group is a set of nodes that
are co-linked with many objects of other types, just like a frequent pattern is a set
of items that co-appear in many transactions. Figure 2.7 shows an example which
contains four nodes ny, n», n3, n4 and objects linked with them. The nodes linked
with each object are converted into a transaction, which is shown on the right side. It
can be easily proved that the number of objects that are linked with all members of a
group g is equal to the support of the pattern corresponding to g in the transactions.
For example, nodes 1 and n; are co-linked with two objects (#2 and #4), and pattern
{n1, na} has support 2 (i.e., appear twice) in the transactions.

Nodes Transactions

{1] {nl}

g1 {nl,n2}
{n2}

,,, {nl, n2}
5 {n2}

6 1 ({n2,n3,n4}

)3 < {nd}

N I R RN

************ 9] ({n3,nd4}
Fig. 2.7 Groups of tightly related nodes

Let support(g) represent the number of objects linked with all nodes in g. When
building a SimTree, we want to find groups with high support and at least min_size
nodes. For two groups g and g’ such that g C g’ and support(g) = support(g’),
we prefer g’. Frequent pattern mining has been studied for a decade with many
efficient algorithms. We can either find groups of nodes with support greater than
a threshold using a frequent closed pattern mining approach [19], or find groups
with highest support using a top-k frequent closed pattern mining approach [12].
LinkClus uses the approach in [19] which is very efficient on large data sets.

Now we describe the procedure of initializing a SimTree. Suppose we have built
N; nodes at level-I of the SimTree and want to build the nodes of level-(I + 1).
Because each node can have at most ¢ child nodes, and because we want to leave
some space for further adjustment of the tree structure, we control the number of
level-(I 4+ 1) nodes to be between X and O‘Nl (1 < a < 2). We first find groups
of level-/ nodes with sufficiently hlgh support Since there are usually many such
groups, we select “TN’ non-overlapping groups with high support in a greedy way,
by repeatedly selecting the group with highest support that is not overlapped with
previously selected groups. After selecting % N groups, we create a level-(+ 1)

2 Scalable Link-Based Similarity Computation and Clustering 55

node based on each group. However, these groups usually cover only part of all
level-/ nodes. For each level-/ node n; that does not belong to any group, we want to
put n; into the group that is most connected with 7;. For each group g, we compute
the number of objects that are linked with both n; and some members of g, which
is used to measure the connection between n; and g. We assign n; to the group with
highest connection to n;.

Figure 2.8 shows the two SimTrees built upon the leaf nodes in Fig. 2.6. The
dashed lines indicate the leaf nodes in S7> that are linked with descendants of two
non-leaf nodes n, and n, in ST). After building the initial SimTrees, LinkClus
computes the similarity value associated with each edge in the SimTrees. As
defined in Section 2.4, the similarity value of edge (n,, np), s(n4, np), is the average
similarity between objects linked with descendants of n, and those of n,. Because
initially the similarity between any two different objects is 0, s(n,, np) can be easily
computed based on the number of objects that are linked with both the descendants
of n, and those of np,, without considering pairwise similarities. Similarly, the val-
ues associated with edges between child and parent nodes can also be computed
easily.

Level 3

Level 2

Level 1

Level 0

Level 3

Level 2

Level 1

Level 0

Fig. 2.8 Some linkages between two SimTrees

2.5.2 Refining Similarity Between Nodes

The initial SimTrees cannot fully catch the real similarities, because similari-
ties between objects are not considered when building them. Therefore, LinkClus
repeatedly updates the SimTrees, following the principle that the similarity between
two nodes in a SimTree is the average similarity between the objects linked with
them, which is indicated by other SimTrees. This is formally defined in this
section.

We use [n ~ n'] to denote the linkage between two nodes n and n’ in different
SimTrees. We say there is a linkage between a non-leaf node n in ST} and a node n’
in ST, if there are linkages between the descendant leaf nodes of 7 and the node n’.

56 X. Yin et al.

Figure 2.8 shows the linkages between n,, np, and leaf nodes in S75. In order to
track the number of original linkages involved in similarity computation, we assign
a weight to each linkage. By default the weight of each original linkage between
two leaf nodes is 1. The weight of linkage [n ~ n'] is the total number of linkages
between the descendant leaf nodes of n and n’.

In each iteration LinkClus updates the similarity between each pair of sibling
nodes (e.g., n, and np) in each SimTree, using the similarities between the objects
linked with them in other SimTrees. The similarity between n, and n,, is the aver-
age path-based similarity between the leaf nodes linked with n, ({ni9, n11, 112,
nie}) and those with n, ({n19, n13, n14, n17}). Because this similarity is based on
linked objects, we call it linkage-based similarity. n, (or np) may have multiple
linkages to a leaf node n; in ST», if more than one descendants of n, are linked
with n;. Thus the leaf nodes in ST, linked with n, are actually a multi-set, and
the frequency of each leaf node n; is weight([n, ~ n;]), which is the number of
original linkages between n, and n;. The linkage-based similarity between n, and
ny is defined as the average path-based similarity between these two multi-sets of
leaf nodes, and in this way each original linkage plays an equal role.

Definition 2 (Linkage-Based Node Similarity) Suppose a SimTree ST is linked
with SimTrees ST, ..., STk. For anode n in ST, let N Bs7, (n) denote the multi-
set of leaf nodes in STy linked with n. Let w,y,~ represent weight([n’ ~ n’]).
For two nodes n, and np, in ST, their linkage-based similarity sim;(n,, np) is the
average similarity between the multi-set of leaf nodes linked with n, and that of ny.
We decompose the definition into several parts for clarity:

(The total weights between N Bsr, (n,) and N By, (np))

weightst, (ng, np) = Z Z Wn,n * Whyn'

neNBSTk (ng) n'eN BSTk (np)

(The sum of weighted similarity between them)

sumgr, (ng, np) = Z Z Whgn * Wpyn' - Simp (1, n'),

neN Bsry (nq) n’€N Bgry (np)
(The linkage-based similarity between n, and nj w.r.t. STy)

sumgt, (g, np)
weightst, (ng, np)’

simgsy, (na, np) =

(The final definition of sim;(n,, np))

. I
simy(ng, np) = X ;szmm (ng,np). (2.2)

2 Scalable Link-Based Similarity Computation and Clustering 57

Equation (2.2) shows that if a SimTree ST is linked with multiple SimTrees,
each linked SimTree plays an equal role in determining the similarity between
nodes in ST. The user can also use different weights for different SimTrees
according to the semantics.

2.5.3 Aggregation-Based Similarity Computation

The core part of LinkClus is how to iteratively update each SimTree by com-
puting linkage-based similarities between different nodes. This is also the most
computation-intensive part in linkage-based clustering. Definition 2 provides a
brute-force method to compute linkage-based similarities. However, it is very
expensive. Suppose each of two nodes n, and nj is linked with m leaf nodes. It
takes O (m?> log, N) to compute sim;(ng, np) (log. N is the height of SimTree).
Because some high-level nodes are linked with ®(N) objects, this brute-force
method requires O (N? log,. N) time, which is unaffordable for large databases.

Fortunately, we find that the computation of different path-based similarities can
be merged if these paths are overlapped with each other.

Example 1 A simplified version of Fig. 2.8 is shown in Fig. 2.9, where sim;(n,, np)
is the average path-based similarity between each node in {rn19,n11,712} and each in
{n13,n14}. For each node ny € {n9,n11,n12} and n; € {n13,n14}, their path-based
similarity sim p(ng, n;) = s(ng, ng) - s(ng, ns) - s(ns, ny). All these six path-based
similarities involve s(n4, ns). Thus sim;(n,, np), which is the average of them, can
be written as

12 14
Zk:msmk,m) Zl=13 s(ng, ns)
= . s(n4,n5) - =————-.

simy(ng, np) = 3 5

(2.3)
Equation (2.3) contains three parts: the average similarity between n, and descen-
dants of n4, s(n4, ns), and the average similarity between n;, and descendants of 75.
Therefore, we pre-compute the average similarity and total weights between n,, np
and n4, ns, as shown in Fig. 2.9. (The original linkages between leaf nodes do not
affect similarities and thus have similarity 1.) We can compute sim;(n,, np) using
such aggregates, i.e., sim;(ng, np) = w x 0.2 x w =09 x 0.2 %
0.95 = 0.171, and this is the average similarity between 3 x 2 = 6 pairs of leaf

The two numbers in a a:(0.9,3) 0.2 b:(0.95.2)
bracket represent the B) ST,
average similarity and 0.9 1.0
total weight of a linkage
between two nodes . \

a:(Li)~_

Ea-'(?_,>{)/"a.'(1,1) b:(1,1)\ S b(L1)

@ ST,

Fig. 2.9 Computing similarity between nodes

58 X. Yin et al.

nodes. This is exactly the same as applying Definition 2 directly. But now we have
avoided the pairwise similarity computation, since only the edges between siblings
and parent—child are involved.

This mini-example shows the basic idea of computing linkage-based similarities.
In a real problem n, and n; are often linked with many leaf nodes lying in many
different branches of the SimTrees, which makes the computation much more com-
plicated. The basic idea is still to merge computations that share common paths in
SimTrees.

To facilitate our discussion, we introduce a simple data type called simweight,
which is used to represent the similarity and weight associated with a linkage. A
simweight is a pair of real numbers (s, w), in which s is the similarity of a linkage
and w is its weight. We define two operations of simweight that are very useful in
LinkClus.

Definition 3 (Operations of simweight) The operation of addition is used to com-
bine two simweights corresponding to two linkages. The new similarity is the
weighted average of their similarities, and the new weight is the sum of their
weights:

S1-wy + 52wy

, W) +wy). 24
——— 1 2> (2.4)

(51, wy) + (52, wo) = <

The operation of multiplication is used to compute the weighted average similar-
ity between two sets of leaf nodes. The new weight wy - w» represents the number
of pairs of leaf nodes between the two sets.

(51, w1) X {82, w2) = (81 - 52, W1 - W2). (2.5)

Lemma 1 The laws of commutation, association, and distribution hold for the oper-
ations of simweight.

LinkClus uses a simweight to represent the relationship between two nodes in
different SimTrees. We use N Bg7(n) to denote the multi-set of leaf nodes in ST
linked with node n. For example, in Fig. 2.8 N Bsr, (nq) ={ni0,n11,n12,n16} and
N Bsr, (np) ={ni0,n13,n14,n17}.

We first define the weight and similarity of a linkage between two non-leaf nodes
in two SimTrees. A non-leaf node represents the set of its child nodes. Therefore,
for a node n, in ST; and a non-leaf node n; in S7>, the weight and similarity of
linkage [n, ~ n;] is the sum of weights and weighted average similarity between
their child nodes. Furthermore, according to Definition 1, the similarity between two
non-sibling nodes n; and n; on the same level of ST can be calculated as

simp(ni,nj) =

s(n;, parent(n;)) - simp(parent(n;), parent(n;)) - s(n;, parent (n;)).

2 Scalable Link-Based Similarity Computation and Clustering 59

Thus we also incorporate s(n;, parent(n;)) (i.e., the ratio between average sim-
ilarity involving n; and that involving parent(n;)) into the definition of linkage
[ng ~ n;]. We use sw,,,,; to denote the simweight of [n, ~ n;].

Definition 4 Let n, be a node in SimTree ST} and n; be a non-leaf node in S7>.
Let children(n;) be all child nodes of n;. The simweight of linkage [n, ~ n;] is
defined as

SWagm; = Y (S ni), 1) X 5w, (2.6)

nechildren(n;)

(In (2.6) we use (x, 1) x (s, w) as a convenient notation for (x - s, w). Figures 2.9
and 2.10 shows swy,,,; and swy,,,; for each node n; in §7,.)

Using Definition 4, we formalize the idea in Example 1 as follows.

Lemma 2 For two nodes n, and n;, in SimTree STy, and two sibling non-leaf nodes
n; and nj in STy, the average similarity and total weight between the descendant
objects of n; linked with n, and those of n linked with ny, is

SWyyn; X (s(nj, nj), 1) x SWoyn; -

(This corresponds to (2.3) ifi =4 and j = 5.)

We outline the procedure for computing the linkage-based similarity between n,,
and ny, (see Fig. 2.10). sim;(n,, np) is the average similarity between N Bsr, (14)
and N Bgr, (np). We first compute the aggregated simweights sw,,,, and sw,,, for
each node n in T3, if n is an ancestor of any node in N Bsr,(n,) or N By, (ny),
as shown in Fig. 2.10. Consider each pair of sibling nodes n; and n; in ST; (e.g.,
n4 and ns), so that n; is linked with n, and n; with n,. According to Lemma 1,
the average similarity and total weight between the descendant objects of n; linked
with n, and those of n; linked with np is swy,,; X (s(n;,nj;), 1) x SWnyn - For
example, sw,,, = (0.9, 3) (where the weight is 3 as n, can reach n4 via nig, nyy,
or n12), sWyyns = (0.95, 2), and s(n4, ns) = 0.2. Thus swy,,, x (s(n4,ns), 1) x

simweights of linkage
[n,~n] and [n,~n;] [~ a:(0.81,3)
b:(0.903,3) : 2)b:(0.9.1)
0.9

a:(0.9,1)

. b:(1.0,1)
1.0

Fig. 2.10 Computing similarity between nodes

60 X. Yin et al.

SWy,ns = (0.171, 6) (as in Example 1), which represents the average similarity and
total weights between {n19, n11, n12} and {n13, n14}. We note that the weight is 6
as there are 6 paths between leaf nodes under n4 linked with n, and those under ns
linked with ny,.

From the above example it can be seen that the effect of similarity between every
pair leaf nodes in ST, will be captured when evaluating their ancestors that are
siblings. For any two leaf nodes 71; and 7 ; in ST, there is only one ancestor of #;
and one of 7; that are siblings. Thus every pair of 7;, i (7; € NBsr,(na), fij €
N Bgr, (np)) is counted exactly once, and no redundant computation is performed.
In general, sim;(n,, np) can be computed using Theorem 1.

Theorem 1 (Sibling-Pair Based Similarity Computation) Suppose n, and np, are
two nodes in SimTree STy. Let N Bsr,(n,) and N Bsr, (np) be the multi-sets of leaf
nodes in SimTree ST, linked with n, and ny, respectively.

(simj(ng, np), weight is ignored) =

> Do S X (s(ing) 1) X swa,

n€STy n;,njechildren(n),n;#n;

+ Z SWp,n; X SWayn; - (2.7)
ni €N Bst, (ng) (| N Bst, (np)

The first term of (2.7) corresponds to similarities between different leaf nodes.
For all leaf nodes under n; linked with n, and those under n; linked with n, the
effect of pairwise similarities between them is aggregated together as computed
in the first term. The second term of (2.7) corresponds to the leaf nodes linked
with both n, and n,. Only similarities between sibling nodes are used in (2.7), and
thus we avoid the tedious pairwise similarity computation in Definition 2. In order
to compute the linkage-based similarities between nodes in ST7, it is sufficient to
compute aggregated similarities and weights between nodes in S7} and nodes in
other SimTrees. This is highly efficient in time and space as shown in Section 2.5.5.

Now we describe the procedure of computing sim;(n,, np) based on Theorem 1.

Step 1: Attach the simweight of each original linkage involving descendants of
ng or nyp to the leaf nodes in S75.

Step 2: Visit all leaf nodes in S7 that are linked with both n, and nj, to compute
the second term in (2.7).

Step 3: Aggregate the simweights on the leaf nodes to those nodes on level-1.
Then further aggregate simweights to nodes on level-2 and so on.

Step 4: For each node n; in ST, linked with n, and each sibling of n; that is
linked with n;, (we callitn;), add swy,,; x (s(nj,n;), 1) x SWpyn; 1O the
first term of (2.7).

Suppose n, is linked with m leaf nodes in ST, and n, is linked with O (m - ¢)
ones. It is easy to verify that the above procedure takes O (mclog. N) time.

2 Scalable Link-Based Similarity Computation and Clustering 61
2.5.4 Iterative Adjustment of SimTrees

After building the initial SimTrees as described in Section 2.5.1, LinkClus needs
to iteratively adjust both the similarities and structure of each SimTree. In Sec-
tion 2.5.3 we have described how to compute the similarity between two nodes using
similarities between their neighbor leaf nodes in other SimTrees. In this section we
will introduce how to restructure a SimTree so that similar nodes are put together.

The structure of a SimTree is represented by the parent—child relationships, and
such relationships may need to be modified in each iteration because of the modified
similarities. In each iteration, for each node n, LinkClus computes n’s linkage-based
similarity with parent (n) and the siblings of parent (n). If n has higher similarity
with a sibling node 71 of parent (n), then n will become a child of 12, if 71 has less than
¢ children. The moves of low-level nodes can be considered as local adjustments
on the relationships between objects and the moves of high-level nodes as global
adjustments on the relationships between large groups of objects. Although each
node can only be moved within a small range (i.e., its parent’s siblings), with the
effect of both local and global adjustments, the tree restructure is often changed
significantly in an iteration.

The procedure for restructuring a SimTree is shown in Algorithm 1 (Fig. 2.11).
LinkClus tries to move each node n to be the child of a parent node that is most
similar to n. Because each non-leaf node 7 can have at most ¢ children, if there are
more than ¢ nodes that are most similar to 7z, only the top ¢ of them can become
children of 12, and the remaining ones are reassigned to be children of other nodes
similar to them.

After restructuring a SimTree ST, LinkClus needs to compute the value associ-
ated with every edge in ST . For each edge between two sibling nodes, their simi-
larity is directly computed as in Section 2.5.3. For each edge between a node n and
its parent, LinkClus needs to compute the average similarity between n and all leaf
nodes except descendants of parent(n) and that for parent(n). It can be proved
that the average linkage-based similarity between n and all leaf nodes in ST except
descendants of a non-leaf node n’ is

sumsrt, (n, root(ST)) — sumsy, (n, n')) 2.8)

weightsy, (n, root (ST)) — weights, (n, n))’

Please note that (2.8) uses notations in Definition 2. With (2.8) we can compute
the similarity ratio associated with each edge between a node and its parent. This
finishes the computation of the restructured SimTree.

2.5.5 Complexity Analysis

In this section we analyze the time and space complexity of LinkClus. For simplic-
ity, we assume there are two object types, each having N objects, and there are M
linkages between them. Two SimTrees ST and ST are built for them. If there are

62 X. Yin et al.

Algorithm 1 Restructure SimTree

Input: a SimTree ST to be restructured, which is linked with SimTrees ST1, ..., ST}.
Output: The restructured ST

S, < all nodes in ST except root //S.. contains all child nodes
Sp «— all non-leaf nodes in ST' /S, contains all parent nodes
for each node n in S. //find most similar parent node for n
for each sibling node n’ of parent(n) (including parent(n))
compute simy(n,n’) using ST, ..., STy
sort the set of sim;(n,n’) for n
p*(n) « n’ with maximum sim;(n,n’)
while(S. # 0)
for each node o € S, /assign children to 1
¢ (n) —{nlp*(n) = n}
if |¢*(n)| < ¢
then children(n) «— ¢*(n)

else
children(n) < cnodes in ¢*(72) most similar to 7
Sp — Sp — {n}

Se «— S — children(n)
for each node n € S,
p*(n) «— n/ with maximum sim;(n,n’) and n' € S,
return ST’

Fig. 2.11 Algorithm Restructure SimTree

more object types, the similarity computation between each pair of linked types can
be done separately.

When a SimTree is built, LinkClus limits the number of nodes at each level.
Suppose there are N; nodes on level-/. The number of nodes on level-(I 4+ 1) must
be between % and “Cﬂ (o € [1,2] and usually ¢ € [10, 20]). Thus the height of a
SimTree is O (log,. N).

In each iteration, LinkKClus restructures each SimTree using similarities between
nodes in the other SimTree and then updates the values associated with edges in
each SimTree. When restructuring ST}, for each node n in ST, LinkClus needs
to compute its similarity to its parent and parent’s siblings, which are at most ¢
nodes. Suppose 7 is linked with m leaf nodes in S7,. As shown in Section 2.5.3,
it takes O (mclog. N) time to compute the n’s similarity with its parent or each of
its parent’s siblings. Thus it takes O (mc? log,. N) time to compute the similarities
between n and these nodes.

There are N leaf nodes in S77, which have a total of M linkages to all leaf nodes
in ST5. In fact all nodes on each level in S7} have M linkages to all leaf nodes in
ST», and there are O (log, N) levels. Thus it takes O(Mcz(logc N)?) time in total
to compute the similarities between every node in S77 and its parent and parent’s
siblings.

2 Scalable Link-Based Similarity Computation and Clustering 63

In the above procedure, LinkClus processes nodes in ST; level by level. When
processing the leaf nodes, only the simweights of linkages involving leaf nodes and
nodes on level-1 of ST are attached to nodes in S75. There are O (M) such linkages,
and the simweights on the leaf nodes in ST require O (M) space. In ST» LinkClus
only compares the simweights of sibling nodes, thus it can also process the nodes
level by level. Therefore, the above procedure can be done in O (M) space. Each
SimTree has O(N) nodes, and it takes O(c) space to store the similarity between
each node and its siblings (and its parent’s siblings). Thus the space requirement is
O(M + Nc).

It can be easily shown that the procedure for restructuring a SimTree (Algo-
rithm 1) takes O (Nc) space and O (Nc logc) time, which is much faster than com-
puting similarities.

After restructuring SimTrees, LinkClus computes the similarities between each
node and its siblings. This can be done using the same procedure as computing
similarities between each node and its parent’s siblings. Therefore, each iteration of
LinkClus takes O(Mcz(logc N)?) time and O(M + Nc¢) space. This is affordable
for very large databases.

2.6 Empirical Study

In this section we report experiments to examine the efficiency and effectiveness
of LinkClus. LinkClus is compared with the following approaches: (1) SimRank
[13], an approach that iteratively computes pairwise similarities between objects;
(2) ReCom [20], an approach that iteratively clusters objects using the cluster labels
of linked objects; (3) SimRank with fingerprints [10] (we call it F-SimRank), an
approach that pre-computes a large sample of random paths from each object and
uses the samples of two objects to estimate their SimRank similarity; (4) SimRank
with pruning (we call it P-SimRank) [13], an approach that approximates SimRank
by only computing similarities between pairs of objects reachable within a few
links.

SimRank and F-SimRank are implemented strictly following their papers. (We
use decay factor 0.8 for F-SimRank, which leads to highest accuracy in DBLP
database.) ReCom is originally designed for handling web queries and con-
tains a reinforcement clustering approach and a method for determining author-
itativeness of objects. We only implement the reinforcement clustering method,
because it may not be appropriate to consider authoritativeness in clustering. Since
SimRank, F-SimRank, and P-SimRank only provide similarities between objects,
we use CLARANS [16], a k-medoids clustering approach, for clustering using such
similarities. CLARANS is also used in ReCom since no specific clustering method
is discussed in [20]. We compare LinkClus using both hierarchical clustering and
CLARANS.

All experiments are performed on an Intel PC with a 3.0 GHz P4 processor, 1GB
memory, running Windows XP Professional. All approaches are implemented using

64 X. Yin et al.

Visual Studio.Net (C#). In LinkClus, « is set to +/2. We will discuss the influences
of ¢ (maximum number of children of each node) on accuracy and efficiency in the
experiments.

2.6.1 Evaluation Measures

Validating clustering results is crucial for evaluating approaches. In our test
databases there are predefined class labels for certain types of objects, which are
consistent with our clustering goals. Jaccard coefficient [18] is a popular measure
for evaluating clustering results, which is the number of pairs of objects in same
cluster and with same class label, over that of pairs of objects either in same cluster
or with same class label. Because an object in our databases may have multiple
class labels but can only appear in one cluster, there may be many more pairs of
objects with same class label than those in same cluster. Therefore we use a variant
of Jaccard coefficient. We say two objects are correctly clustered if they share at
least one common class label. The accuracy of clustering is defined as the number
of object pairs that are correctly clustered over that of object pairs in same cluster.
Higher accuracy tends to be achieved when number of clusters is larger. Thus we let
each approach generate the same number of clusters.

2.6.2 DBLP Database

We first test on the DBLP database, which contains the following relations:
(1) Authors, (2) Publications, which contains the publication title and the pro-
ceeding it is in, (3) Publish, which records which author publishes which publica-
tion, (4) Proceedings, which contains the proceeding title and which conferences it
belongs to, and (5) Conferences. It is extracted from the XML data of DBLP [7]. We
want to focus our analysis on the productive authors and well-known conferences, !
and group them into clusters so that each cluster of authors (or conferences) are
in a certain research area. We first select conferences that have been held for at
least eight times. Then we remove conferences that are not about computer sci-
ence or are not well known, and there are 154 conferences left. We select 4170
most productive authors in those conferences, each having at least 12 publications.
The Publications relation contains all publications of the selected authors in the
selected conferences. There are three types of objects to be clustered: 4170 authors,
2517 proceedings, and 154 conferences. Publications are not clustered because too
limited information is known for them (about 65% of publications are associated
with only one selected author).

! Here conferences refer to conferences, journals, and workshops. We are only interested in pro-
ductive authors and well-known conferences because it is easier to determine the research fields
related to each of them, from which the accuracy of clustering will be judged.

2 Scalable Link-Based Similarity Computation and Clustering 65

We manually label the areas of the most productive authors and conferences to
measure clustering accuracy. The following 14 areas are considered: theory, Al,
operating system, database, architecture, programming languages, graphics, net-
working, security, HCI, software engineering, information retrieval, bioinformatics,
and CAD. For each conference, we study its historical call for papers to decide its
area. Ninety percent of conferences are associated with a single area. The other 10%
are associated with multiple areas, such as KDD (database and AI). We analyze
the research areas of 400 most productive authors. For each of them, we find her
home page and infer her research areas from her research interests. If no research
interests are specified, we infer her research areas from her publications. On average
each author is interested in 2.15 areas. In the experiments each type of objects are
grouped into 20 clusters, and the accuracy is tested based on the class labels.

We perform 20 iterations for SimRank, P-SimRank, ReCom, and LinkClus? (not
including the initialization process of each approach). In F-SimRank we draw a
sample of 100 paths (as in [10]) of length 20 for each object, so that F-SimRank
can use comparable information as SimRank with 20 iterations. The accuracies of
clustering authors and conferences of each approach are shown in Fig. 2.12 (a) and
(b), in which the x-axis is the index of iterations.

1 0.8 .
074
0‘95-’ 0.6 e K X X X X X X e e X
z Z 0.5
£ 0o . g g pAaa, Ao, .
= 91 » \ » YN e - Ay g R
§ ,/A }/rl - \}.L‘,_‘\. y § 0.4 /'f
/ —+— LinkClus o3l —— LinkClus
0.85 4 -.-m--- SimRank ---m--- SimRank
—-%-- ReCom 0.2 1 --«--ReCom
- -~ F-SimRank - - F-SimRank
0.8 +—+—T—T—"T"—TT T T T Ol+—T—TTTT T T T T T T T T T T T
D T - AN TN, N BN BN N™ A ISR S
#iteration #iteration
(@ (b)

Fig. 2.12 Accuracy on DBLP. (a) DBLP.Authors; (b) DBLP.Conferences

From Fig. 2.12 one can see that SimRank is most accurate, and LinkClus
achieves similar accuracy as SimRank. The accuracies of ReCom and F-SimRank
are significantly lower. The error rates (i.e., 1 — accuracy) of ReCom and
F-SimRank are about twice those of SimRank and LinkClus on authors, and 1.5
times those of them on conferences. One interesting observation is that more

2 Since no frequent patterns of conferences can be found using the proceedings linked to them,
LinkClus uses authors linked with conferences to find frequent patterns of conferences, in order to
build the initial SimTree for conferences.

66 X. Yin et al.

iterations do not necessarily lead to higher accuracy. This is probably because cluster
labels are not 100% coherent with data. In fact this is common for iterative clustering
algorithms.

In the above experiment, LinkClus generates 20 clusters directly from the
SimTrees: Given a SimTree, it first finds the level in which the number of nodes is
most close to 20. Then it either keeps merging the most similar nodes if the number
of nodes is more than 20, or keeps splitting the node with most descendant objects
if otherwise, until 20 nodes are created. We also test LinkClus using CLARANS
with the similarities indicated by SimTrees. The maximum accuracies and running
time of different approaches are shown in Table 2.1. (The running time per iteration
of F-SimRank is its total running time divided by 20.) One can see that the accu-
racy of LinkClus with CLARANS is slightly higher than that of LinkClusand is
close to that of SimRank. While SimRank is much more time consuming than other
approaches.

Table 2.1 Performances on DBLP without keywords

Maximum accuracy Time/iteration (s)
Authors Conferences
LinkClus 0.9574 0.7229 76.74
LinkClus-Clarans 0.9529 0.7523 107.7
SimRank 0.9583 0.7603 1020
ReCom 0.9073 0.4567 43.1
F-SimRank 0.9076 0.5829 83.6

In many methods of linkage-based clustering there is a trade-off between
accuracy and efficiency. This trade-off is shown in Fig. 2.13, which contains the
“accuracy vs. time” plots of SimRank, ReCom, LinkClus with different ¢’s (8-22,
including ¢ = 16 with CLARANS), and F-SimRank with sample size of 50, 100,

1 0.8

0.7 |
.a
. .o
> > =]
3 3 0.6
£ —e— LinkClus 2 —e— LinkClus
—m— SimRank —a— SimRank
—a— ReCom 0.5 —a4&— ReCom
—%— F-SimRank ; —>— F-SimRank
---g-- P-SimRank o 8- P-SimRank
0.8 1 0.4 1
500 1000 1500 0 500 1000 1500
Time (sec) Time (sec)
(a) (b)

Fig. 2.13 Accuracy vs. time on DBLP w/o keywords. (a) DBLP.Authors; (b) DBLP.Conferences

2 Scalable Link-Based Similarity Computation and Clustering 67

200, and 400. It also includes SimRank with pruning (P-SimRank), which uses the
following pruning method: For each object x, we only compute its similarity with
the top-k objects that share most common neighbors with x within two links (k
varies from 100 to 500). In these two plots, the approaches in the top-left region are
good ones as they have high accuracy and low running time. It can be clearly seen
that LinkClus greatly outperforms the other approaches, often in both accuracy and
efficiency. In comparison, pruning technique of SimRank does not improve much on
efficiency, because it requires using hashtables to store similarities, and an access to
a hashtable is 5-10 times slower than that to a simple array.

2.6.3 Synthetic Databases

In this section we test the scalability and accuracy of each approach on syn-
thetic databases. Figure 2.14 shows an example schema of a synthetic database,
in which Ry, Ry, R3, R4 contain objects, and Rs, Rg, R7, Rg contain linkages. We
use RxTyCzSw to represent a database with x relations of objects, each having y
objects which are divided into z clusters, and each object has w linkages to objects
of another type (i.e., selectivity is w). In each relation of objects R;, the x objects
are randomly divided into z clusters. Each cluster is associated with two clusters
in each relation of objects linked with R;. When generating linkages between two
linked relations R; and R;q4+1, we repeat the following procedure for x - w times:
Randomly select an object o0 in R; and find the two clusters in R;q441 associated
with the cluster of 0. Then generate a linkage between o and a randomly selected
object in these two clusters with probability (1 — noise_ratio) and generate a
linkage between o and a randomly selected object with probability noise_ratio.
The default value of noise_ratio is 20%. It is shown in previous experiments that
in most cases each approach can achieve almost the highest accuracy in 10 iterations,
we use 10 iterations in this section. We let each approach generate z clusters for a
database RxTyCzSw. For LinkClus we use ¢ = 16 and do not use CLARANS.

Fig. 2.14 The schema of a synthetic database

We first test scalability w.r.t. the number of objects. We generate databases with
5 relations of objects, 40 clusters in each of them, and selectivity 10. The number of
objects in each relation varies from 1000 to 5000. The running time and accuracy
of each approach are shown in Fig. 2.15. The time/iteration of F-SimRank is the
total time divided by 10. With other factors fixed, theoretically the running time of
LinkClus is O(N (log N)?), that of Sim Rank is O(N?), and those of ReCom and

68 X. Yin et al.

—— LinkClus 0.8

10000 . g... §jmRank — —— LinkClus
--x-- ReCom 07+ ---m--- SimRank
- - F-SimRank . --&-- ReCom
o O(N) 0.6 - - F-SimRank
o O(N*(logN)A2) .-~ ____, '\.\‘\‘\‘
1000 |- O(NA2) ,,.;;’/"»< > 05F.
~ I Z i T A
< PR OrE 5 T T
E 2 [
= < 03+
100 k- .- R
i 02F -
See
0.1F e
10 L L L 0 L L L
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Number of objects per relation Number of objects per relation
(a) (b)

Fig. 2.15 Performances on RST*C40S10. (a) Time/iteration; (b) Accuracy

F-SimRank are O(N). We also show the trends of these bounds and one can see
that the running time of the approaches are consistent with theoretical derivations.
LinkClus achieves highest accuracy, followed by ReCom and then SimRank, and
F-SimRank is least accurate. The possible reason for LinkClus and ReCom achiev-
ing high accuracy is that they group similar objects into clusters (or tree nodes) in
the clustering process. Because clusters are clearly generated in data, using object
groups in iterative clustering is likely to be beneficial.

In the last experiment the accuracy of each approach keeps decreasing as the
number of objects increases. This is because the density of linkages decreases as
cluster size increases. In RST1000C40S10, each cluster has only 25 objects, each
having 10 linkages to the two related clusters (50 objects) in other relations. In
R5T5000C40S10, each cluster has 125 objects and the two related clusters have
250 objects, which makes the linkages much sparser. In the second experiment we
increase the number of objects and clusters together to keep density of linkages
fixed. Each cluster has 100 objects, and the number of objects per relation varies
from 500 to 20000. In the largest database there are 100 K objects and 1 M link-
ages. The running time and accuracy of each approach are shown in Fig. 2.16.3
ReCom and F-SimRank are unscalable as their running time is proportional to the
number of objects times the number of clusters, because they compute similari-
ties between each object and each cluster medoid. The accuracies of LinkClus and
SimRank do not change significantly, even the numbers of objects and clusters grow
40 times.

Then we test each approach on databases with different selectivities, as shown
in Fig. 2.17. We generate databases with five relations of objects, each having 4000
objects and 40 clusters. The selectivity varies from 5 to 25. The running time of
LinkClus grows linearly and that of SimRank quadratically with the selectivity, and

3 We do not test SimRank and F-SimRank on large databases because they consume too much
memory.

2 Scalable Link-Based Similarity Computation and Clustering 69

10000 0.8 — L'inkClus
L ---m-- SimRank
07 --&-- ReCom
1000 - 0.6 - - - - F-SimRank
"’, 05 ._/.\‘\0—0\
@ .- o] o~ A
< - . = | T T~
E 100 - ' - ,'* ;,L‘mlétlus § 04 gL _,._”__”"\-\.\
k= : © g~ - SimRank < 03} - w
“a —-x--ReCom k_ -
- - F-SimRank 0.2 7>~
) .
- o O(N*(logN)A2) 01 R
. . L PO | 0 - - - -
500 1000 2000 5000 10000 20000 500 1000 2000 5000 10000 20000
Number of objects per relation Number of objects per relation
(a) (b)

Fig. 2.16 Performances on RST*C*S10. (a) Time/iteration; (b) Accuracy

10000 T
e 0.8
1000 4 - ===~
_ z 06
& =1 -
R e e 3
g —— L'inkClus 2 04 <" —e— LinkClus
---m--- SimRank ---m-- SimRank
—-&-- ReCom /
- - F-SimRank 02t 7 —-*-- ReCom
s O(S) 7 - - F-SimRank
e O(SM2) Ll X ——mm X ———— == H—————= -
10 1 1 1 0 1 1 1
5 10 15 20 25 5 10 15 20 25
selectivity selectivity
(a) (b)

Fig. 2.17 Performances on R5T4000C40S*. (a) Time/iteration; (b) Accuracy

those of ReCom and F-SimRank are only slightly affected. These are consistent with
theoretical derivations. The accuracies of LinkClus, SimRank, and ReCom increase
quickly when selectivity increases, showing that density of linkages is crucial for
accuracy. The accuracy of F-SimRank remains stable because it does not use more
information when there are more linkages.

Finally, we test the accuracy of each approach on databases with different noise
ratios, as shown in Fig. 2.18. We change noise ratio from O to 0.4. The accuracies
of LinkClus, SimRank, and F-SimRank decrease with a stable rate when noise ratio
increases. ReCom is most accurate when noise ratio is less than 0.2, but is least
accurate when noise ratio is greater than 0.2. It shows that LinkClus and SimRank
are more robust than ReCom in noisy environments.

70 X. Yin et al.

—— LinkClus

0.8k ---m-- SimRank
- i --x-- ReCom
AN - - F-SimRank
0.6 8

Accuracy

0.4
U
0 1
0 0.1

noise ratio

Fig. 2.18 Accuracy vs. noise ratio on R5T4000C40S10

2.7 Conclusions

In this chapter we propose a highly effective and efficient approach of linkage-based
clustering, LinkClus, which explores the similarities between objects based on the
similarities between objects linked with them. We propose similarity-based hierar-
chical structure called SimTree as a compact representation for similarities, and
propose an efficient algorithm for computing similarities, which avoiding pairwise
computations by merging similarity computations that go through common paths.
Experiments show LinkClus achieves high efficiency, scalability, and accuracy in
clustering multi-typed linked objects.

References

1. C.C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algorithms for projected
clustering. In SIGMOD, Philadelphia, PA, 1999.
2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in
large databases. In SIGMOD, Washington, DC, 1993.
3. Y. Bartal. On approximating arbitrary metrics by tree metrics. In STOC, Dallas, TX, 1998.
4. R. Bekkerman, R. El-Yaniv, and A. McCallum. Multi-way distributional clustering via pair-
wise interactions. In /CML, Bonn, Germany, 2005.
5. D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-
associations. In KDD, Seattle, WA, 2004.
6. Y. Cheng and G. M. Church. Biclustering of expression data. In ISMB, La Jolla, CA, 2000.
7. DBLP Bibliography. www.informatik.uni-trier.de/~ley/db/
8. 1. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In KDD,
Washington, DC, 2003.
9. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the Internet topol-
ogy. In SIGCOMM, Cambridge, MA, 1999.
10. D. Fogaras and B. Récz. Scaling link-base similarity search. In WWW, Chiba, Japan, 2005.
11. S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for large
databases. In SIGMOD, Seattle, WA, 1998.
12. J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without mini-
mum support. In /CDM, Maebashi City, Japan, 2002.

2 Scalable Link-Based Similarity Computation and Clustering 71

13.

14.
15.

16.

20.

21.

22.

G. Jeh and J. Widom. SimRank: A measure of structural-context similarity. In KDD, Edmon-
ton, Canada, 2002.

M. Kirsten and S. Wrobel. Relational distance-based clustering. In /LP, Madison, W1, 1998.
J. MacQueen. Some methods for classification and analysis of multivariate observations. In
Berkeley Symposium, Berkeley, CA, 1967.

R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In
VLDB, Santiago de Chile, Chile, 1994.

. R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster method. The

Computer Journal, 16(1):30-34, 1973.

. P-N. Tan, M. Steinbach, and W. Kumar. Introdution to data mining. Addison-Wesley,

New York, NY 2005.

. J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the best strategies for mining frequent

closed itemsets. In KDD, Washington, DC, 2003.

J. D. Wang, H. J. Zeng, Z. Chen, H. J. Lu, L. Tao, and W. Y. Ma. ReCoM: Reinforcement
clustering of multi-type interrelated data objects. In SIGIR, Toronto, Canada, 2003.

X. Yin, J. Han, and P. S. Yu. Cross-relational clustering with user’s guidance. In KDD,
Chicago, IL, 2005.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for
very large databases. In SIGMOD, Montreal, Canada, 1996.

Chapter 3
Community Evolution and Change Point
Detection in Time-Evolving Graphs

Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos

Abstract How can we find communities in dynamic networks of social interac-
tions, such as who calls whom, who emails whom, or who sells to whom? How
do we store a large volume of IP network source—destination connection graphs,
which grow over time? In this chapter, we study these two fundamental problems
on time-evolving graphs and exploit the subtle connection between pattern mining
and compression. We propose a pattern mining method, GraphScope, that automati-
cally reveals the underlying communities in the graphs, as well as the change points
in time. Our method needs no human intervention, and it is carefully designed to
operate in a streaming fashion. Moreover, it is based on lossless compression princi-
ples. Therefore, in addition to revealing the fundamental structure of the graphs, the
discovered patterns naturally lead to an excellent storage scheme for graph streams.
Thus, our proposed GraphScope method unifies and solves both the mining and the
compression problem (1) by producing meaningful time-evolving patterns agreeing
with human intuition and (2) by identifying key change points in several real large
time-evolving graphs. We demonstrate its efficiency and effectiveness on real data
sets from several domains.

3.1 Introduction

Graphs and networks arise naturally in a wide range of disciplines and applica-
tion domains, since they capture the general notion of an association between
two entities. However, the aspect of time has only recently begun to receive
some attention [19, 26]. Some examples of the time-evolving graphs include the
following: (a) Network packets indicate ongoing communication between source
and destination hosts like the NETWORK data set in our experiment; (b) Email

J. Sun (=)
IBM TJ Watson Research Center, Hawthorne, NY, USA
e-mail: jimengsun@gmail.com

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications, 73
DOI 10.1007/978-1-4419-6515-8_3, © Springer Science+Business Media, LLC 2010

74 J. Sun et al.

networks associate a sender and a recipient at a given date, like the ENRON data
set (http://www.cs.cmu.edu/enron/) that we use in the experiment; (c) Call detail
records in telecommunications networks associate a caller with a callee. The set
of all conversation pairs over each week forms a graph that evolves over time,
like the publicly available “CELLPHONE” data set of MIT users calling each other
(http://reality.media.mit.edu/download.php); (d) Transaction data: in a financial
institution, who accessed what account, and when; (e) In a database compliance
setting [2], again we need to record which user accessed what data item and when;
and (f) Market-basket transaction data, which associate customers with products
purchased at one visit to the store.

To complicate matters further, large amounts of data such as those in the above
examples are continuously collected. Therefore, batch methods for pattern discov-
ery are not sufficient. Additionally, the volume of the data poses significant chal-
lenges on storing such data. In summary, there are two key problems that need to be
addressed:

(P1) Mining: Which groups or communities of nodes are associated to each other
and how do these relationships evolve over time? Moreover, we want to
answer these questions (a) without requiring any user-defined parameters, and
(b) in a stream fashion.

(P2) Compression: How can such dynamically evolving streams of pairwise rela-
tionships be efficiently stored, without any loss of information?

For example, we want to answer questions such as: How do the network hosts inter-
act with each other? What kind of host groups are there, e.g., inactive/active hosts;
servers; scanners? Who emails whom? Do the email communities in a organization
such as ENRON remain stable, or do they change between workdays (e.g., business-
related) and weekends (e.g., friend and relatives), or during major events (e.g., the
FBI investigation and the CEO resignation)? Which types of customers buy which
kinds of products? Are there seasonal patterns in these relationships (e.g., winter
and summer, or Thanksgiving and Christmas)? Additionally, we want to efficiently
store data of such interactions, losslessly.

We propose GraphScope, which addresses both of the above problems simul-
taneously. More specifically, GraphScope is an efficient, adaptive compression
scheme on time-evolving graphs. Unlike many existing techniques, it requires
no user-defined parameters, and it operates completely automatically, based on
the Minimum Description Length (MDL) principle. Furthermore, it adapts to the
dynamic environment by automatically finding the communities and determining
good change-points in time.

In this chapter we consider bipartite graphs, which treat source and destination
nodes separately (see example in Fig. 3.2). As will become clear later, we discover
separate source and destination partitions, which are desirable in several application
domains. Nonetheless, our methods can be easily modified to deal with unipartite
graphs, by constraining the source partitions to be the same with the destination
partitions, as was done in [5].

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 75

The main insight of dealing with such graphs is to group “similar” sources
together into source groups (or row groups), and also “similar” destinations together,
into destination groups (or column groups). Figure 3.3 shows how much more
orderly (and easier to compress) the adjacency matrix of a graph is, after we strate-
gically re-order its rows and columns. The exact definition of “similar” is actually
simple, and rigorous: the most similar source partitions for a given source node is
the one that leads to best compression. See Section 3.4 for more details.

Furthermore, if these communities (source- and destination partitions) do not
change much over time, consecutive snapshots of the evolving graphs have similar
descriptions and can also be grouped together into a time segment, to achieve better
compression. Whenever a new graph snapshot cannot fit well into the old segment
(in terms of compression), GraphScope introduces a change point, and starts a new
segment at that timestamp. Those change points often detect drastic discontinuities
in time. For example on the ENRON data set, the change points all coincide with
important events related to the ENRON company, as shown in Fig. 3.1 (more details
in Section 3.6.2).

Enron timeline

20K | .

15K .

10K

Intensity

5K

Cost savings (split)

0 20 L 40 60 80 100 120 140 160
Nov 1999: Enron launched
Feb 2001: Jeffrey Skilling takes over as CEO

14 Aug 2001: Kenneth Lay takes over as CEO

19 Nov 2001: Enron restates 3rd quarter earnings
29 Nov 2001: Dynegy deal collapses

23 Jan 2002: Kenneth Lay resigns from CEO —
23 Jan 2002: FBI begins investigation of document shredding —

24 Apr 2002: House passes accounting reform package —

Fig. 3.1 ENRON data set (best viewed in color). Relative compression cost versus time. Large cost
indicates change points, which coincide with the key events; E.g., at time-tick 140 (Feb 2002),
CEO Ken Lay was implicated in fraud

76 J. Sun et al.

Contributions: Our proposed approach, GraphScope, provides a unified treatment
of the two fundamental problems of mining and compression of evolving graphs,
and it has the following key properties:

— Adaptivity: It can effectively track communities over time, discovering both com-
munities as well as change points in time, that agree with human intuition.

— Streaming ability: It is fast, incremental and scalable for the streaming environ-
ment.

— Space efficiency: It provides a lossless storage scheme which achieves very high
compression ratios (20:1), on all the real data sets in our experiments.

— Parameter-free: This is the major point of difference with all other community-
tracking methods: GraphScope is completely automatic, requiring no parame-
ters from the user (like number of communities, thresholds to assess community
drifts). Instead, it is based on sound information theory principles, specifically,
the MDL idea.

We demonstrate the efficiency and effectiveness of our approach in both compress-
ing evolving graphs as well as discovering and tracking the key patterns in the real
data from several domains.

The rest of the chapter is organized as follows: Section 3.2 reviews the related
work. Section 3.3 introduces some necessary definitions and formalizes the prob-
lem. Section 3.4 presents the compression objective function. Section 3.5 presents
our proposed method for finding optimal solution, Section 3.6 shows the experimen-
tal evaluation and Section 3.7 concludes.

3.2 Related Work

Here we discuss related work from three areas: mining static graphs, mining
dynamic graphs, and stream mining.

3.2.1 Mining Static Graphs

Graph mining has been a very active area in data mining community. From the
exploratory aspect, Faloutsos et al. [11] have shown the power law distribution
on the Internet graph. Kumar et al. [18] discovered the bow tie model for web
graphs.

From the algorithmic aspect, graph partitioning has attracted much interest, with
prevailing methods being METIS [16] and spectral partitioning [23]. Even in these
top-performing methods, users must specify the number of partitions k. Moreover,
they typically also require a measure of imbalance between the two pieces of
each cut.

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 77

Information-theoretic co-clustering (ITCC) [9] performs simultaneously clus-
tering rows and columns of a normalized contingency table or a two-dimensional
probability distribution, where the number of clusters have to be specified. The
cross-association method (CA) [6] formulates the co-clustering problem as a binary
matrix compression problem.

Since common representation of a graph is sparse matrix (adjacency list), the
sparse iterative methods such as Lanczos algorithm are especially relevant [14]. Col-
umn selection methods [10, 17] provide an alternative way of summarizing graphs.
Namely, they choose a subset of columns as bases and summarize the rest columns
as linear combinations of the selective columns.

All these methods deal with static matrices or graphs, while GraphScope is
designed to work with dynamic streams. Moreover, most of methods except for
cross-association require some user-defined parameters, which may be difficult to
set and which may dramatically affect the final result as observed in [17].

3.2.2 Mining Dynamic Graphs

From the exploratory viewpoint, Leskovec et al. [19] discover the shrinking diam-
eter phenomena on time-evolving graphs. Backstrom et al. [4] study community
evolution in social networks.

From the algorithmic aspect, Sun et al. [26] present dynamic tensor analy-
sis which incrementally summarizes tensor streams (high-order graph streams) as
smaller core tensor streams and projection matrices. This method still requires user-
defined parameters (like the size of the core tensor). Moreover, it gives lossy com-
pression. Aggarwal and Yu [1] propose a method (1) to selectively store a subset of
graphs to approximate the entire graph stream and (2) to find community changes
in time-evolving graphs based on the user specified time interval and the number
of communities. Lin et al. [20, 21] provide a series of dynamic soft clustering tech-
niques that allow nodes to belong to multiple clusters with different probability.

Again, our GraphScope avoids all these user-defined parameters.

3.2.3 Stream Mining

Data streams have been extensively studied in recent years. The goal is to process the
incoming data efficiently without recomputing from scratch and without buffering
much historical data. The two surveys [3, 22] discuss many data streams algorithms.
Among them, “Sketches” is a powerful technique that uses a compact structure to
estimate many important statistics, such as the Lp-norm [7, 15] of an unbounded
stream. Garofalakis and Gibbons [13] proposed single-pass algorithms for approxi-
mating the largest wavelet coefficients using “Sketches.”

78 J. Sun et al.

Ganti et al. [12] propose a generic framework for stream mining. For multi-
ple streams, statStream [28] uses the DFT to summarize streams within a finite
window and then compute the highest pairwise correlations among all pairs of
streams, at each timestamp. SPIRIT [24] applies incremental SVD to summarize
multiple streams into a small number of hidden variables.

All the stream mining works deal with time-series type of streams, while we
focus on graph streams.

3.3 Problem Definition

In this section, we formally introduce the notation and formulate the problems.

3.3.1 Notation and Definition

Let’s start with some definitions and naming conventions. Calligraphic letters
always denote graph streams or graph stream segments (consisting of one or
more graph snapshots), while individual graph snapshots are denoted by non-
calligraphic, upper case letters. Superscripts in parentheses denote either times-
tamps ¢ or graph segment indices s, accordingly. Similarly, subscripts denote either
individual nodes i, j or node partitions p, g. All notations are described in Table 3.1.

Table 3.1 Definitions of symbols

Sym. Definition

G,G¥ Graph stream, Graph segment

t Timestamp, t > 1

m,n Number of source (destination) nodes

G® Graph at time ¢ (m x n adjacency matrix)

i,J Node indices, 1 <i <m,1 <j <n

Gl(t; Indicator for edge (i, j) at time ¢

s Graph segment index, s > 1.

ts Starting time of sth segment

kgl Number of source (dest.) partitions for segment s

P, q Partition indices, | < p <k, 1 < g < ¥

1 I(,S) Set of sources belonging to the pth partition, during the sth segment
Jq(s) Similar to / ,(,s), but for destination nodes

mg) Source partition size, mfys) = |I;S)|, 1<p<ks

nﬁf) Dest. partition size, nﬁf) = |J,(,S)|, 1<p<t

g}jl, Subgraphs induced by pth and gth partitions of segment s, i.e., subgraph segment
|g,(f}]| Size of subgraphs segment, |Q;,S,)q| = mﬁf)n((f)(tsﬂ — 1)

|E\§i)q Number of edges in g;f)q

pz(:)q Density of G) ‘E‘;f)‘7

P ghyl
H(.) Shannon entropy function

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 79

Definition 1 (Graph stream) A graph stream G is a sequence of graphs G, i.e.,
G:={GV,G?,...,G", ..},

which grows indefinitely over time. Each of these graphs links m source nodes to n
destination nodes.

For example in Fig. 3.2, the first row plots first three graphs in a graph stream, where
m = 4 and n = 3. Furthermore, the graphs are represented in sparse matrices as
shown in the bottom of Fig. 3.2 (a black entry is 1 which indicates an edge between
the corresponding nodes; likewise, a white entry is 0).

In general, each graph may be viewed as an m x n binary adjacency matrix,
where rows 1 < i < m correspond to source nodes and columns 1 < j < n
correspond to destination nodes. We use sparse representation of the matrix (i.e.,
only non-zero entries are stored) whose space consumption is similar to adjacency
list representation. For the convenience of presentation, we assume the same m and
n for all graphs in the graph stream G. However, our algorithms also apply for the
graphs with different size by essentially setting some rows and columns to be all
zeros in the adjacency matrices.

One of our goals is to track how the structure of the graphs GO, t > 1, evolves
over time. To that end, we will group consecutive timestamps into segments.

G[IJ Glﬂ _ GG]
A D— ¢) -
il el =]
o @ 2
\s it R L= 2

2 42 A2
I/'\.h{/’ |‘/¥/u:::h¥‘ @ -
e —. e
A8 sl o 3]
@ @y
1 _Icill‘l
) sz
1
0 I
1
|[i‘i
i1
]2 ||;}
1 2
Q() g()

Fig. 3.2 Notation illustration: A graph stream with three graphs in two segments. First graph seg-
ment consisting of GD and G has two source partitions 11(1) = {1,2}, 12(1) = {3,4}; two
destination partitions Jl(l) = {1},]2(1) = {2, 3}. Second graph segment consisting of G has three
source partitions / 1(2) = {1}, 12(2) = {2, 3}, 13(2) = {4}; three destination partitions]1(2) = {1},
1P =02, 057 =3)

80 J. Sun et al.

Definition 2 (Graph stream segment) The set of graphs between timestamps f; and
ts+1 — 1 (inclusive) consist the sth segment G® s > 1, which has length #,11 — t5,

() — (ts) (ts+1) (ts+1—1)
gV ={G", G yeors G 1.

Intuitively, a “graph stream segment” (or just “graph segment”) is a set of con-
secutive graphs in a graph stream. For example in Fig. 3.2, G() is a graph segment
consisting of two graph GV and G®.

Next, within each segment, we will partition the source and destination nodes
into source partitions and destination partitions, respectively.

Definition 3 (Graph segment partitions) For each segment s > 1, we partition
source nodes into ks source partitions and destination nodes into £ destination
partitions. The set of source nodes that are assigned into the pth source partition

1 < p < kq is denoted by / ,S”. Similarly, the set of destination nodes assigned to
the gth destination partition is denoted by Jq(s), forl <gq < ¥;.

The sets 1](f) partition the source nodes, in the sense that / l(,s) N I;}f) = for p #
p’, while | o1 [(,S) = {1, ..., m}. Similarly, the sets Jq(s) partition the destination
nodes. For example in Fig. 3.2, the first graph segment GV has source partitions
1V = (1,2}, I{” = (3,4}, and destination partitions J\" = {1}, /\V = (2,3}
(k1 = 2,41 = 2). Similarly, we can define source and destination partition for the
second graph segment G (ky = 3., = 3).

3.3.2 Problem Formulation

In this chapter, the ultimate goals are to find communities on the time-evolving
graph (along with the change points, if any), as well as to compress them incremen-
tally. To achieve that, the following two problems need to be addressed.

Problem 1 (PartitionIdentification) Given a graph stream segment G*), how to find
the optimal partitions of source and destination nodes such that the encoding cost
for G is minimized.

To achieve this objective, two important sub-questions need to be answered (see
Section 3.5.1):

— How to assign the m source and n destination nodes into k; source and £, desti-
nation partitions?
— How to determine the k; and £5?

Problem 2 (TimeSegmentation) Given a graph stream G, how can we incrementally
construct graph segments such that the encoding cost for G is small?

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 81

Section 3.5.2 presents the algorithms, where for every new graph G it compares
the encoding cost of including G® into the current segment vs. that of starting a
new segment from timestamp . We name the whole analytic process, GraphScope.

Next, we will present how to solve both the mining and compression problems
on time-evolving graphs using the MDL principle. More specifically, Section 3.4
introduces the encoding objective function; then Section 3.5 presents the algorithm
to optimize the proposed objective.

3.4 GraphScope Compression Objective

In this section, we present the encoding scheme of the graph stream and the parti-
tions, which can give us an objective measure of how well a particular compression
scheme performs. That is, we assume that we are given some change-points, and
the source and destination partitions for each graph segment, and we show how to
estimate the compression cost.

3.4.1 Graph Encoding

In this chapter, we represent a graph as a m-by-n binary matrix, where every row or
column corresponds to a source or destination node. For example in Fig. 3.2, GV
is represented as

100
100
011
001

G — (3.1)

For a given binary matrix, we can store them as a binary string with the length
mn along with the two integers m and n. For example, (3.1) can be stored as
1100,0010,0011 (in the column major order) along with two integers 4 and 3.

To further save space, we can adopt some standard lossless compression scheme
(such as Huffman coding, arithmetic coding [8]) to encode the binary string, which
formally can be viewed as a sequence of realizations of a binomial random variable
X. The code length for that is estimated as mn H (X) where H(X) is the entropy
of variable X. For notational convenience, we also write that as mn H (G(’)y, Addi-
tionally, three integers need to be stored: the matrix sizes m and n, the number of
ones in matrix |E| (the number of edges in the graph). The cost for storing three
integers is log* | E| 4 log* m + log* n bits, where log* is the universal code length

82 J. Sun et al.

for an integer.! Notice that this scheme can be extended to multiple graphs with
minor modifications.

More generally, if the random variable X can take values from the set M, with
the size | M| (a multinomial distribution), the entropy of X is

H(X)=—)_ p(x)logpx),

xeM

where p(x) is the probability that X = x. Moreover, the maximum of H(X) is
log |M| when p(x) = ﬁ for all x € M (pure random, most difficult to compress);
the minimum is O when p(x) = 1 for a particular x € M (deterministic, easiest to
compress). For the binomial case, if all symbols are all O or all 1 in the string, we
do not have to store anything because by knowing the number of ones in the string
and the sizes of matrix, the receiver is already able to decode the data completely.

With this observation in mind, the goal is to organize the matrix (graph) into
some homogeneous sub-matrices with low entropy and compress them separately
as we will describe next.

3.4.2 Graph Segment Encoding

Given a graph stream segment G®) and its partition assignments, we can precisely
compute the cost for transmitting the segment as two parts: (1) Partition encoding
cost: the model complexity for partition assignments, (2) Graph encoding cost: the
actual code for the graph segment.

3.4.2.1 Partition Encoding Cost

The description complexity for transmitting the partition assignments for graph seg-
ment G consist of the following terms:

First, we need to send the number of source and destination nodes m and n using
log* m + log* n bits. Note that, this term is constant, which has no effect on the
choice of final partitions.

Second, we shall send the number of source and destination partitions which is
log* ks + log* €.

Third, we shall send the source and destination partition assignments. To exploit
the non-uniformity across partitions, the encoding cost is m H (P) + nH (Q) where

(s)
P is a multinomial random variable with the probability p; = % (mgs) is the size

of ith source partition, | <i < ks); Q is another multinomial random variable with

(s))
gi = "’T (nl@ is the size of ith destination partition, 1 <i < ¢;).

' To encode a positive integer x, we need log* x = log, x + log, log, x + - - -, where only the
positive terms are retained and this is the optimal length, if the range of x is unknown [25]

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 83

For example in Fig. 3.2, the partition sizes for first segment G(1) are m§l) =

mg) = 2, n(ll) = 1, and nél) = 2; the partition assignments for G costs

—4(310g (3) + g log (7)) — 3(3log (3) + S log (5))-

In summary, the partition encoding cost for graph segment G*) is

Cg) = log* m + log* n + log* kg + log™ £ (3.2)
+mH(P)+nH(Q),

where P and Q are multinomial random variables for source and destination parti-
tions, respectively.

3.4.2.2 Graph Encoding Cost

After transmitting the partition encoding, the actual graph segment G is transmit-
ted as kg€ subgraph segments. To facilitate the discussion, we define the entropy

term for a subgraph segment gf;)q as

H(Gpy) = —(opylog oy + (1 = ppy)log (1= o)), (33)

EIY,

g(S)
fies how difficult it is to compress the subgraph segment G p‘,q. In particular, if the
entire subgraph segment is all 0 or all 1 (the density is exactly O or 1), the entropy
term becomes 0.

With this, the graph encoding cost is

(S) —

where o), is the density of subgraph segment G, , (S) . Intuitively, it quanti-

Y

Cs
Y=Y (B, +195,1- H(G))). (3.4)

p=1g=1

where |E | b q is the number of edges in the (p, q) subgraphs of segment s; |g§,‘i21| is

the size of subgraph segment, i.e., m'y'n\ (t,11 — 1), and H(GS),) is the entropy
of the subgraph segment defined in (3. 3)

In the subgraph segment Q(l) of Fig. 3.2, the number of edges |E|§1% =344,
gélé has the size |g“) | =2 x 2x2, the density pélg = ¢, and the entropy H(g(l))
~(§log {4 log §).

Putting everything together, we obtain the segment encoding cost as the follow-
ing:

Definition 4 (Segment encoding cost)

CY :=log*(ty11 — 1) + CY + C, (3.5)

84 J. Sun et al.

where 41—, is the segment length, Cg) is the partition encoding cost, Cg) is the
graph encoding cost.

3.4.3 Graph Stream Encoding

Given a graph stream G, we partition it into a number of graph segments G®)(s > 1)
and compress each segment separately such that the total encoding cost is small.

Definition S (Total cost) The total encoding cost is

Cc:=) cY, (3.6)

N

where C® is the encoding cost for sth graph stream segment.

For example in Fig. 3.2, the encoding cost C up to timestamp 3 is the sum of the
costs of two graph stream segments G and G,

Having defined the objective precisely in (3.3) and (3.4), the next step is to search
for the optimal partitions and time segmentation. However, finding the optimal solu-
tion for this problem is simply NP-hard [9]. Next, we present a heuristic-based
search method, GraphScope in Section 3.5 which guarantees to lead to a local
optima. From our experiments it often lead to a global optimal solution.

3.5 GraphScope

In this section we describe our method, GraphScope by solving the two problems
proposed in Section 3.3.2.

The goal is to find the appropriate number and position of change points, and the
number and membership of source and destination partitions so that the cost of (3.6)
is minimized. Exhaustive enumeration is prohibitive, and thus we resort to heuristics
that we describe next. Note that we drop the subscript s on ks and £; whenever it is
clear in context.

Specifically, we have three steps: (a) how to find good communities (source and
destination partitions), for a given set of (similar) graph snapshots, when we have
decided the number of partitions k£ and /, (b) how to find good values for k and [,
and (c) when to declare a time-tick as a change point and start a new graph segment.
We describe each next.

3.5.1 Partition Identification

Here we explain how to find source and destination partitions for a given graph
segment G, In order to do that, we need to answer the following two questions:

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 85

— How to find the best partitions given the number of source and destination parti-
tions?
— How to search for the right number of source and destination partitions?

Next, we present the solution for each step.

3.5.1.1 Finding the Best Partitions

Given the number of the best source and destination partitions k and ¢, we want to
regroup sources and destinations into the better partitions. Typically this regrouping
procedure is alternating between source and destination nodes. Namely, we update
the source partitions with respect to the current destination partitions, and vice versa.
More specifically, we alternate the following two steps until it converges:

— Update source partitions: for each source (a row of the graph matrix), consider
assigning it to the source partition that incurs smallest encoding cost.

— Update destination partitions: Once done with a pass over each row, similarly,
for each destination (column), consider assigning it to the destination partition
that yields the best compression.

The cost of assigning a row to a row group is discussed later (see (3.8)). The
pseudocode is listed in Algorithm 1. The complexity of each iteration is either
O (kn) for column regrouping or O(Im) for row regrouping. Note that this com-
plexity is independent to the number of graphs in a graph segment. That means as
the graph segment grows in time, the computation cost for regrouping remains more
or less constant.

Algorithm 1 REGROUP (Graph Segment G OF partition size k,¢; initial
partitions 1) g6

1 Compute density p;f,z for all p, g based on I©), J©) repeat

2 forall source s in G do

// assign s to the most similar partition

¢ is split in ¢ parts

compute source density p; for each part

assign s to source partition with the minimal encoding cost (Equation 3.8).

Update destination partitions similarly
until no change ;

N & L7 I SN

Figure 3.3 illustrates the algorithm in action. The graph consists of two square
sub-matrices with the size 150 and 50 plus 1% noise. For k = ¢ = 2, the algorithm
identified the correct partitions in one pass. Notice that the algorithm progressively
finds better partitions. The initialization of Algorithm 1 is a crucial step which is
discussed separately in Section 3.5.3.

86 J. Sun et al.

200
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
original graph destination partition

20
40
60
80

100

120 f.°

140
160 §

180

20 40 60 80 100 120 140 160 180 200
source partition

Fig. 3.3 Alternating partition on source and destination nodes on a graph with two communities
with size 150 and 50 plus 1% noise. For k = £ = 2, the correct partitions are identified after one
pass

3.5.1.2 Determining the Number of Partitions

Given two different k and ¢, we can easily run Algorithm 1 and choose the ones
with a smaller encoding cost. However, the search space for the right k& and £ is still
too large to perform exhaustive tests. We experimented with a number of different
heuristics for quickly adjusting k and £ and obtained good results with Algorithm 2.
The central idea is to do local search around some a priori partition assignments and
adjust the number of partitions k and £ as well as partition assignments based on the
encoding cost. Figure 3.4 illustrates the search process in action. Starting the search
with k = € = 1, it successfully finds the correct number of partitions for this graph
with three sub-matrices with size 100, 80, and 20.

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 87

Algorithm 2 SEARCHKL (Graph Segment G (). initial partition size k,¢; initial
partitions / &g (S))

1 repeat
// try to merge source partitions
repeat
3 Find the source partition pair (x, y) s.t. merging x and y gives smallest encoding
cost for G,
4 if total encoding decrease then merge x,y
5 until no more merge ;

// try to split source partition

6 repeat
7 Find source partition x with largest average entropy per node.
8 foreach source s in x do
9 if average entropy reduces without s then
10 L L assign s to the new partition
11 ReGroup(G®, updated partitions)
12 until no decrease in encoding cost ;
13 Search destination partitions similarly

—

4 until no changes ;

3.5.1.3 Cost Computation for Partition Assignments

Here we present the details of how to compute the encoding cost of assigning a node
to a particular partition. Our discussion focuses on assigning of a source node to a
source partition, while the assignment for a destination node is simply symmetric.

Recall a graph segment G consists of (f,41 — f,) graphs, G®), ... GE+1~D,
For example in Fig. 3.2, G1 consists of two graphs, G(1) and G®. Likewise, every
source node in a graph segment G*) consists (f;11 — ;) sets of edges to these
(ts+1 — t5) graphs. Therefore, the total number of possible edges out of one source
node in G is (ty41 — t;)n.

Furthermore, the destination partitions Jl.(s) split the destination nodes into £ dis-
joint sets with size nl@ (l<i<e, Zi nl@ = n). For example, G of Fig. 3.2 has
two destination partitions (£ = 2), where the first destination partition]1(1) = {1}

and the second destination partition 12(D= {2, 3}.

Similarly, all the edges from a single source node in graph segment G*) are also
split into these ¢ sets. In GV of Fig. 3.2, the edges from the 4th source node are
split into two sets, where the first set J 1(1) consists of 0 edges and the second set Jz(l)
consists of 3 edges.”

More formally, the edge pattern out of a source node is generated from ¢ binomial
distributions p; (1 < i < £) with respect to £ destination partitions. Note that p; (1) is
just the density of the edges from that source node to the destination partition Jl.(s),

2 One edge from 4 to 3 in G, two edges from 4 to 2 and 3 in G® in Fig. 3.2.

88 J. Sun et al.

20
40 i

60

80 1 1 =1 'l il ¥

100

120

140

160

180 _—
OOH
20 40 60 80 100 120 140 160 180 200
k=20=2

20
40
60

8o

100

120

140

160 |

180

200 = .

200
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
k=20=3 k=30=3

Fig. 3.4 Search for best k£ and ¢ for a graph with three communities with size 100, 80, 20 plus 1%
noise. The algorithm progressively improves the partition quality (reduces the compression cost)
by changing the k and ¢

and p;(0) =1 —p;(1).In GW of Fig. 3.2, the 4th source node has p;(1) = 0 since
there are 0 edges from 4 to Jl(l) = {1}, and p1(1) = % since 3 out of 4 possible
edges from 4 to Jl(z) = {2, 3}.

Using this “true” distribution, the encoding cost of the source node in the graph
segment G) is

14
C(p) = (11— t)n Y _ H(pi), 3.7)

i=1

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 89

where (fy41 — f;) is the number of graphs in the graph segment, n is the
number of possible edges out of a source node for each graph,® H(p;,) =
sz{o,l} pi (x) log p; (x) is the entropy for the given source node.

In GV of Fig. 3.2, the number of graphs is ;4| —f; =3 — 1 = 2; the number of
possible edges out of the 4th source node n = 3; therefore, the 4th source node costs
2x3x (0 + % log %+ ?1L log }1) = 2.25. Unfortunately, this is not practical to do so
for every source node, because the model complexity is too high. More specifically,
we have to store additional m¥ integers in order to decode all source nodes.

The practical option is to group them into a handful number of source partitions
and to encode/decode one partition at a time instead of one node at a time. Similar
to a source node, the edge pattern out of a source partition is also generated from ¢
binomial distributions q; (1 < i < £). Now we encode the ith source node based on
the distribution q; for a partition instead of the “true” distribution p; for the node.
The encoding cost is

4
C(p. @) = (541 — t)m Yy _ H(pi, q0), (3.8)
i=1

where H(pi,q;) = Zx:{o,l 1 Pi (x)log q; (x) is the cross-entropy. Intuitively, the
cross-entropy is the average encoding cost when using the distribution q; instead of
the “true” distribution p;. In GV of Fig. 3.2, the cost of assigning the 4th node to
second source partition 13" is 2 x 3 x (0+3 log Z+1 log &) = 2.48 which is slightly
higher than using the true distribution that we just computed (2.25). However, the
model complexity is much lower, i.e., k¢ integers are needed instead of m¥{.

3.5.2 Time Segmentation

So far, we have discussed how to partition the source and destination nodes given a
graph segment G®). Now we present the algorithm how to construct the graph seg-
ments incrementally when new graph snapshots arrive every time-tick. Intuitively,
we want to group “similar” graphs from consecutive timestamps into one graph
segment and encode them altogether. For example, in Fig. 3.2, graphs GV, G?
are similar (only one edge difference), and therefore we group them into one graph
segment, G, On the other hand, G® is quite different from the previous graphs,
and hence we start a new segment G® whose first member is G,

The driving force here is still the compression cost. More specifically, the algo-
rithm will combine the incoming graph with the current graph segment if there is a
compression benefit, otherwise we start a new segment with that graph. The meta-
algorithm is listed in Algorithm 3. Figure 3.5 illustration the algorithm in action. A
graph stream consists of three graphs, where G and G® have two groups of size

3 (ty41 — ty)n is the total number of possible edges of a source node in the graph segment

90 J. Sun et al.

Algorithm 3 GRAPHSCOPE (Graph Segment G (). Encoding cost ¢,; New
Graph G

output: updated graph segment, new partition assignment /), J©)
1 Compute new encoding ¢, of G J{IG®}
2 Compute encoding cost ¢ for just G
// check if there is any compression benefit
3 ifc, —c, < c then
// add G® in G®
4 G <« GO GY)
5 searchKL for updated G*)

6 else

// start a new segment from G®»
Gu+h .= {G([)}

searchKL for new GG+

: o HE
20 40 60 80 100120140160 180200 20 40 60 80100120140160180200 20 40 60 80 100120140160180200
GW before G before G® before

-) 200 -
20 40 60 80 100120140160 180200 20 40 60 80 100120140160 180200 20 40 60 80 100120140160 180200
GO after G after G® after

Fig. 3.5 A graph stream with three graphs: The same communities appear in graph G and G@;
therefore, they are grouped into the same graph segment. However, G has different community
structure, therefore, a new segment starts from G®

150 and 50, G three groups of size 100, 80 and 20, and every graph contains 1%
noise. The algorithm decides to group G, G@ into the first graph segment, and
put G into another. During this process, the correct partitions are also identified
as show in the bottom of Fig. 3.5. Furthermore, within each segment, the correct
partition assignments are identified.

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 91
3.5.3 Initialization

Once we decide to start a new segment, how should we initialize the parame-
ters of our algorithms? There are several ways to do the initialization. Trading-
off convergence speed versus compression quality, we propose and study two such
heuristics:

Fresh-Start: One option is to start from a small k and ¢, typically, k = 1 and £ = 1,
and progressively increase them as well as regroup sources and destinations into
proper partitions. From our experiments, this scheme is very effective in leading to
a good result. In terms of computational cost, it is relatively fast since we start with
small k and .

Another option is to start with large k and ¢ and to try to merge them. However,
there are two big disadvantages for doing that: (1) computationally expensive since
the number of partitions are large to start with; (2) local minimum, starting with
large number of partitions often lead to complex search space and local minimum.
For these reasons, we recommend to search from small k£ and £.

Resume: For time-evolving graphs, consecutive graphs often have a strong simi-
larity. We can leverage this similarity into the search process by starting from old
partitions. More specifically, we initialize the k;41 and €, with the k; and ;.
Additionally, we assign 76+D and J6+D as 1) and J©). The Resume scheme
often lead to much faster convergence when the consecutive graphs are similar as
shown in Section 3.6.

3.6 Experiment Evaluation

In this section, we will evaluate both mining and compression aspects of Graph-
Scope using several real, large graph datasets. We first describe the data set speci-
fication in Section 3.6.1. Then we present our experiments, which are designed to
answer the following questions, for both our variations fresh-start and resume :

— Mining Quality: How good is our method in terms of finding meaningful change
points and communities (Section 3.6.2).

— Compression: What is the compression ratio it can achieve (Section 3.6.3).

— Speed: How fast is it, and how does it scaleup (Section 3.6.4).

Finally, we present some additional mining observations that our method leads
to. Notice that we do not compare with other methods for two reasons: First, to
the best of our knowledge, there are no clustering methods with the MDL princi-
ple for time-evolving graphs, which make it unfair to compare with other meth-
ods on compression cost. Second, most published methods are not parameter-free,
and it is unclear how we should choose their parameters (number of partitions,

92 J. Sun et al.
threshold for graph similarity and so on). This is actually one of the strong points of
GraphScope, because it is fully automatic, and, as we show, still able to find mean-
ingful communities and change points.

3.6.1 Data Sets

In this section, we describe all the data sets in our experiments (Table 3.2).

Table 3.2 Data set summary

name m-by-n avg.|E| time T
NETWORK 29K-by-29K 12K 1,222
ENRON 34k-by-34k 15K 165
CELLPHONE 97-by-3764 430 46
DEVICE 97-by-97 689 46
TRANSACTION 28-by-28 132 51

3.6.1.1 The NETWORK Flow Data Set

The traffic trace consists of TCP flow records collected at the backbone router of a
class-B university network. Each record in the trace corresponds to a directional
TCP flow between two hosts with timestamps indicating when the flow started
and finished. With this traffic trace, we use a window size of 1 h to construct the
source—destination graph stream. Each graph is represented by a sparse adjacency
matrix with the rows and the columns corresponding to source and destination IP
addresses, respectively. The edge in a graph G¥) means that there exists TCP flows
(packets) sent from the ith source to the jth destination during the ¢th hour. The
graphs involve m = n = 21,837 unique campus hosts (the number of source and
destination nodes) with an average over 12 K distinct connections (the number of
edges). The total number of timestamps 7 is 1,222. Figure 3.6a shows an exam-
ple of superimposing* all source—-destination graphs in one time segment of 18 h.
Every row/column corresponds to a source/destination; the dot there indicates there
is at least a packet from the source to the destination during that time segment. The
graphs are correlated, with most of the traffic to or from a small set of server-like
hosts.

GraphScope automatically exploits the sparsity and correlation by organizing the
sources and destinations into homogeneous groups as shown in Fig. 3.6b.

3.6.1.2 The ENRON Email Data Set

This consists of the email communications in Enron Inc. from January 1999 to July
2002 (http://www.cs.cmu.edu/enron/). We construct sender-to-recipient graphs on a

4 Two graphs are superimposed together by taking the union of their edges.

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 93

o
sl %10
b2 0.2
L] LETS
0E DE[
[F-] R}
1 1
12 120
14 14
1683 i] e
15[¥1 18
1] i
P x-S x L . Al
g #uiiﬂm.uuu--nm.'w PR O T
o 02 D4 DB 08 1 12 14 16 1& 2 o 02 D4 D6 D08 1 12 14 16 18 2
nz = 12183 i nz= 12183 c1d
(@) (b)

Fig. 3.6 NETWORK before and after GraphScope for the graph segment between January 7 1:00,
2005 and January 7 19:00, 2005. GraphScope successfully rearrange the sources and destinations
such that the sub-matrices are much more homogeneous. (a) before; (b) after

weekly basis. The graphs have m = n = 34,275 senders/recipients (the number of
nodes) with an average 1,479 distinct sender—receiver pairs (the number of edges)
every week.

Like the NETWORK data set, the graphs in ENRON are also correlated, where
GraphScope can significantly compress the data by reorganizing the graph into
homogeneous partitions (see the visual comparison in Fig. 3.7).

05 1 15 2 25 3

Fig. 3.7 ENRON before and after GraphScope for the graph segment of week 35, 2001, to week 38,
2001. GraphScope can achieve significant compression by partitioning senders and recipients into
homogeneous groups. (a) before; (b) after

94 J. Sun et al.

3.6.1.3 The Cellphone Communication Data Set

The CELLPHONE data set records the cellphone activity for m = n = 97 users from
two different labs in MIT (http://reality.media.mit.edu/download.php). Each graph
snapshot corresponds to a week, from January 2004 to May 2005. We thus have T
= 46 graphs, one for each week, excluding weeks with no activity.

We plot the superimposed graphs of 38—42 weeks in 2004 at Fig. 3.8a, which
looks much more random than NETWORK and ENRON. However, GraphScope is still
able to extract the hidden structure from the graph as shown in Fig. 3.8b, which
looks much more homogeneous (more details in Section 3.6.2).

0 = 0
10 . 10
20l 20
30 30
40 - .) - 40

50 -

707. . - o _.. -t
sof -

90|

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500
nz = 1582

(@

0

500 1000 1500 2000 2500 3000 3500
nz = 1582

(b)

Fig. 3.8 CELLPHONE before and after GraphScope, for the period of week 38—42 in 2004. (a) before;

(b) after

3.6.1.4 The Bluetooth Device Communication Data Set

DEVICE data set is constructed on the same 97 users whose cellphones perform
periodic Bluetooth scan for nearby phones and computers. The goal is to under-
stand people’s behavior from their proximity information to others. Figure 3.9a
plots the superimposed user-to-user graphs for one time segment where every dot
indicates that the two corresponding users are physically near to each other. Note
that first row represents all the other devices that do not belong to the 97 users
(mainly laptop computers, PDAs, and other people’s cellphone). Figure 3.9b shows
the resulting users clusters of that time segment, where cluster structure is revealed
(see Section 3.6.2 for details).

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 95

e® w0 o °F° M0 4, O e
tof _gi. iy oduy Fraid;gi oy odie
L I-f R G R -)
20 o gusinghl | son s s IR
0f L EAd ¢ oy et i
sol SmeflaBfs e ot iR baap oot
CELTIE O ey e,
SO oo Twpl o Fole L3, %08 0 BB
e el RO B A A sd)
& R Ity
[B H [b 0 H HY X]
TR . E AT Al

80 4l 3L

] H b

gty g

T

01, #i, w
o
0

nz=1766 nz=1766
(a) (b)

Fig. 3.9 DEVICE before and after GraphScope for the time segment between week 38, 2004 and
week 42, 2004. Interesting communities are identified. (a) before; (b) after

3.6.1.5 The Financial Transaction Data Set

The TRANSACTION data set has m = n = 28 accounts of a company, over 2,200 days.
An edge indicates that the source account had funds transferred to the destination
account. Each graph snapshot covers transaction activities over a window of 40 days,
resulting in 7 = 51 time-ticks for our data set.

Figure 3.10a shows the transaction graph for one timestamp. Every black square
at the (i, j) entry in Fig. 3.10a indicates there is at least one transaction debiting the
ith account and crediting the jth account. After applying GraphScope on that times-
tamp (see Fig. 3.10b), the accounts are organized into very homogeneous groups
with some exceptions (more details in Section 3.6.2).

3.6.2 Mining Case Studies

Now we qualitatively present the mining observation on all the data sets. More
specifically, we illustrate that (1) source and destination groups correspond to
semantically meaningful clusters; (2) the groups evolve over time; (3) time segments
indicate interesting change points

3.6.2.1 NETWORK: Interpretable Groups

Despite the bursty nature of network traffic, GraphScope can successfully cluster
the source and destination hosts into meaningful groups. Figure 3.11a,b show the
active source and destination nodes organized by groups for two different time

96 J. Sun et al.

5

10

15

20

25

u
5 15 20 5 10 15 20 25
(@) (b)

Fig. 3.10 TRANSACTION before and after GraphScope for a time segment of 5 months. GraphScope
is able to group accounts into partitions based on their types. (a) before; (b) after

Active ,o° W
Hosts Active
Hosts
ID' 1w
Unusual
P2P hosts Scanners
1w 10"
P2P hosts
Scanners : i = Scanners @ i PEERE
‘ouon 2 0’ 01 ‘obnc ' 0; 1
1 o 1! 1 1 il 1 10
Mail \Web Server Active Mail ijeb Server Active
Server Clusters Hosts Server Clusters Hosts
(a) (b)

Fig. 3.11 NETWORK zoom-in (log—log plot): (a) Source nodes are grouped into active hosts and
security scanning program; destination nodes are grouped into active hosts, clusters, web servers,
and mail servers. (b) On a different time segment, a group of unusual scanners appears, in addition
to the earlier groups

segments. Note that Fig. 3.11 is plotted in log—log scale in order to visualize those
small partitions. For example, source nodes are grouped into (1) active hosts which
talk to a small number of hosts, (2) P2P hosts that scan a number of hosts, and
(3) security scanning hosts® which scans many hosts. Similarly, destination hosts
are grouped into (1) active hosts, (2) cluster servers at which many students login

5 The campus network is constantly running some port-scanning program to identify potential
vulnerability of the in-network hosts.

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 97

remotely to work on different tasks, (3) Web servers which hosts the Web sites of
different schools, and (4) mail servers that have the most incoming connections. The
main difference between Fig. 3.11a and b is that a source group of unusual scanners
emerges in (b), where GraphScope can automatically identify the change and decide
to split into two time segments.

3.6.2.2 CELLPHONE: Evolving Groups

As in NETWORK, we also observe meaningful groups in CELLPHONE. Figure 3.12 a
illustrate the calling patterns in fall semester 2004, where two strong user parti-
tions (G1 and G2) exist, the dense small partition G3 is the service call in campus.
Figure 3.12b illustrate the calling patterns changed from fall semester to winter
break.

0 0
10 10
20 20
30 —
30
40
= — G| 40
S : 50
G1|%0 L
70 [0 e
0 = [70 NERRENES]
G290 21 GV e
0 500 1000 1500 2000 2500 3000 3500 L850 . -
nz=1582 G3 S
0 500 1000 1500 2000 2500 3000 3500
nz=1713
(a) fall semester (b) winter break

Fig. 3.12 CELLPHONE: (a) Two calling groups appear during the fall semester; (b) Call groups
changed in the winter break. The change point corresponds to the winter break

3.6.2.3 DEVICE: Evolving Groups

Similarly, the group evolving behavior is also observed in the DEVICE data set. In
particular, two dense partitions appear in Fig. 3.13a: after inspecting the user ids and
their attributes, we found that the users in group U1 are all from the same school
with similar schedule, probably taking the same class; the users in U2 all work in
the same lab. In a later time segment (see Fig. 3.13b), the partition U 1 disappeared,
while the partition U2 is unchanged.

3.6.2.4 TRANSACTION

As shown in Fig. 3.10b, GraphScope successfully organizes the 28 accounts
into 3 different partitions; after closer inspection, these groups correspond to the

98 J. Sun et al.

0 10 20 30 40 50 60 70 80 90 0O 10 20 30 40 50 60 70 80 90

nz=1766 nz=2109
(a) two groups (b) one group disappeared

Fig. 3.13 DEVICE: (a) Two groups are prominent. Users in U1 are all from the same school with
similar schedule possibly taking the same class; Users in U2 are all working in the same lab.
(b) U1 disappears in the next time segment, while U2 remains unchanged

different functional groups of the accounts (like “marketing”, “sales”).’ In
Fig. 3.10b, the interaction between first source partition (first row) and second
destination partition (second column) correspond to mainly the transactions from
assets accounts to liability and revenue accounts, which obeys the common business
practice.

3.6.2.5 ENRON: Change Point Detection

The source and destination partitions usually correspond to meaningful clusters for
the given time segment. Moreover, the time segments themselves usually encode
important information about changes. Figure 3.1 plots the encoding cost difference
between incorporating the new graph into the current time segment vs. starting
a new segment. The vertical lines on Fig. 3.1 are the top 10 splits with largest
cost savings when starting a new segment, which actually correspond to the key
events related to Enron Inc. Moreover, the intensity in terms of magnitude and
frequency dramatically increases around January 2002 which coincides with sev-
eral key incidents such as the investigation on document shredding and the CEO
resignation.

6 Due anonymity requirements, the account types are obfuscated.

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 99
3.6.3 Compression Evaluation

Methods for Comparison: For comparison of the space savings, we consider the
following methods:

— Original: the space for the original graphs, uncompressed graphs, stored as edges

— Compression: global compression estimate for the original graphs, i.e.,
mnH(G")

— Resume: the encoding cost using GraphScope with the resume heuristics

— Fresh-Start: the encoding cost using resume GraphScope with the fresh restart
heuristics

Performance Metrics: The performance metrics is Relative Encoding cost: the ratio
of the encoding cost of a graph vs. the space for storing that graph in sparse matrix.

Compression Benefit: We compare two versions of GraphScope, “fresh-start” and
“resume,” against the global compression estimate and the space requirement for the
original graphs stored as sparse matrices. Figure 3.14 shows that both fresh-start and
resume GraphScope achieve great compression gain (less than 4% of the original
space), which is even better than the global compression on the graphs (the 3rd bar
for each data set). Our two variations require about the same space.

0.14 T T T

B resume
[fresh-start
0.12 } Il Compression

01

0.08

0.06 |

ratio to original data

0.04

0.02

NETWORK ENRON CELLPHONE DEVICE TRANSACTION

Fig. 3.14 Relative encoding cost: Both resume and fresh-start methods give over an order of mag-
nitude space saving compared to the raw data and are much better than global compression on the
raw data

100 J. Sun et al.
3.6.4 Speed and Scalability

For the CPU time comparison, we include fresh-start and resume. The performance
metrics is relative CPU cost which is the ratio between CPU cost of the resume
method vs. that of the fresh-start method.

As shown in Fig. 3.15a for NETWORK (similar result are achieved for the other data
sets, hence omitted), the CPU cost per timestamp/graph is stable over time for both
fresh-start and resume GraphScope, which suggests that both proposed methods are
scalable for streaming environments.

18 f|=— resume [] Rato betweeln resume ;nd freshfsltan CPU c;)st
- - fresh—start 0.9
16
0.8
14 "
[o 07
g 12 g
s £ 06
g 10 k]
<] i
o < 05
[}
5 ° £ 04
6 E™
[}
2 0.3
4
0.2
2
0.1
0
0 200 400 600 800 1000
timestamp (hour) NETWORK ENRON CELLPHONE DEVICE TRANSACTION
(a) CPU cost (NETWORK) (b) relative CPU

Fig. 3.15 CPU cost: (a) The CPU costs for both resume and fresh start GraphScope are stable over
time; (b) resume GraphScope is much faster than fresh start GraphScope on the same data sets (the
error bars give 25 and 75% quantiles)

Furthermore, resume GraphScope is much faster than the fresh-start one as plot-
ted in Fig. 3.15b, especially for large graphs such as in NETWORK. There, resume
GraphScope only uses 10% of CPU time compared to fresh-start one.

3.6.5 Additional Observations

3.6.5.1 Partition Changing Rate

We define a pair of nodes (i, j) as inconsistent if i and j belong to the same par-
tition in G but not in G+, The changing rate between G and G/*V is the
percentage of inconsistent pairs between two graphs.

Figure 3.16 shows the average changing rate of source and destination partitions
for both fresh-start and resume GraphScope, respectively. Note that the average
changing rate is small between two consecutive timestamps, which confirms the
heuristics used for resume GraphScope, i.e., using the previous partition assignment
as initialization for the current graph.

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 101

Il fresh-start source group

0.9 |] resume source group 4
[fresh-start dest. group

0.8 |{ I resume dest. group 4

0.7 i

0.6 | 1

0.5+ 1

changing rate

0.2 1

0.1+ 1

0
NETWORK ENRON CELLPHONE DEVICE TRANSACTION

Fig. 3.16 Group changing rate: Overall, the partitions change relatively small for all 5 data sets
which explains the benefit for using resume GraphScope

3.6.5.2 Time Evolving Aspect

Encoding cost of time segments can illustrate different dynamics in the real graph
streams. For example, Fig. 3.17a,d and e show more or less constant trends with
stochastic variation, while Fig. 3.17b, and ¢ show higher intensity in the middle of
time intervals. In particular, The high intensity in Fig. 3.17b is due to the highly
volatile communication in ENRON during that period (the end of 2001 and early
2002).

3.7 Discussion and Conclusion

We propose GraphScope, a system to mine and compress streams of graphs. Our
method has all the desired properties:

— It is rigorous and automatic, with no need for user-defined parameters, like num-
bers of communities, thresholds of similarities. Instead, it uses lossless compres-
sion and the Minimum Description Language (MDL) principle to decide how to
form communities and when to modify them.

— It achieves excellent compression ratios.

— It is fast and scalable, carefully designed to work for a streaming setting.

102 J. Sun et al.

—resume 0.07 | [—resume 0.045 [[—resume
0.12f - -fresh-start h - -fresh—start - -fresh-start t
Compression) 0.06 Compression 0.04 Compression |
S 01 ; ‘ s £ 0.035 :
8 S 0.05 B '003
T 0.08} g -
5 1 S 0.025
S 0.06} S
; ; 0.02
2 0.04 | k) 0.015
3 i g 001
0.02 . 0.005
0 0 - 0
0 200 400 600 800 1000 0 50 100 150] 10 20 30 40
timestamp (hour) timestamp (week) timestamp (week)
(a) NETWORK (b) ENRON (c) CELLPHONE
0.045
0.08 || —resume —resume
0.07 - 'gesh—start_ 0.04 | - -fresh—start
. ompression i
% p % 0.035 Compression
% 0.06 % 0.03
0.05
£ £ oozs
5 0.04 S 0.02
2 2
o 003 > 0.015
@ 0.02}/. 2 0.01
0.01 0.005
0 0
0 10 20 30 40 0 10 20 30 40 50
timestamp (week) timestamp (day)
(d) PEOPLE (e) TRANSACTION

Fig. 3.17 Relative encoding cost over time. (a) NETWORK; (b) ENRON (¢) CELLPHONE
(d) PEOPLE (e) TRANSACTION

— It is effective, discovering meaningful communities and meaningful transition
points, as shown on our multiple, real data sets, like the major timestamps in the
ENRON data set.

The complexity of GraphScope is linear to the number of nodes in the graphs,
and independent to the number of timestamps in a graph segment, which means the
running will not increase as the graph segment grows. GraphScope treats source and
destination node independently in order to provide a framework to deal with more
general graphs. However, if the data have the same source and destination nodes, a
simple constraint can be enforced to put the corresponding source/destination node
to the same cluster.

We also present experiments on several real data sets, spanning 500 GB (200 MB
after processing). The data sets were from diverse applications (university network
traffic, email from the Enron company, Cellphone call logs, and Bluetooth connec-
tions from MIT). Because of its generality and its careful theoretical underpinnings,
GraphScope is able to find meaningful groups and patterns in all the above settings,
without any specific fine-tuning on our side.

Future research directions include extensions to create hierarchical groupings,
both of the communities and of the time segments. GraphScope currently does the
time segmentation in a simple online fashion, which does not guarantee the opti-
mality. However, if the streaming constraint is relaxed, a dynamic programming
algorithm can be developed to generate the optimal segmentation.

3 Community Evolution and Change Point Detection in Time-Evolving Graphs 103

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

C. C. Aggarwal and P. S. Yu. Online analysis of community evolution in data streams. In SDM,
2005.

R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, and R. Srikant. Auditing com-
pliance with a hippocratic database. In VLDB, Toronto, Ontario, Canada, 2004.

B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming
data. In SODA, 2002.

. L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and X. Lan. Group formation in large social

networks: Membership, growth, and evolution. In KDD, pages 44-54, 2006.

. D. Chakrabarti. Autopart: Parameter-free graph partitioning and outlier detection. In PKDD,

pages 112-124, 2004.

. D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-

associations. In KDD, pages 79-88. ACM Press, 2004.

. G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams using ham-

ming norms (how to zero in). In TKDE, 15(3), 2003.

. T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-Interscience,

New York, NY, 1991.

. 1. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In KDD, pages

89-98, 2003.

P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices iii:
Computing a compressed approximate matrix decomposition. In SIAM Journal on Computing,
36(1):184-206, 2006.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topol-
ogy. In SIGCOMM, 1999.

V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining data streams under block evolution.
SIGKDD Explorations Newsletter, 3(2), 2002.

M. Garofalakis and P. B. Gibbons. Probabilistic wavelet synopses. ACM Transactions on
Database System, 29(1), 2004.

G. H. Golub and C. F. V. Loan. Matrix Computation. Johns Hopkins University Press,
Baltimore, MD, 3rd edition, 1996.

P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream compu-
tation. In FOCS, 2000.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. Journal
of Parallel and Distributed Computing, 48(1):96—129, 1998.

E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data mining. In
KDD, pages 206-215, New York, NY ACM Press, 2004.

R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting large-scale knowledge
bases from the web. In VLDB, Edinburgh, Scotland, 1999.

J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: Densification laws, shrinking
diameters and possible explanations. In SIGKDD, 2005.

Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. Tseng. Analyzing communities and their evolu-
tions in dynamics networks. ACM Transactions on Knowledge Discovery from Data (TKDD),
special issue on Social Computing, Behavioral Modeling, 3, 2009.

Y.-R. Lin, J. Sun, P. Castro, R. Konuru, H. Sundaram, and A. Kelliher. Metafac: Community
discovery via relational hypergraph factorization. In KDD, 2009.

S. Muthukrishnan. Data streams: algorithms and applications, Foundations and Trends. in
Theoretical Computer Science, 1, 2005.

A. Y. Ng, M. L. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
NIPS, pages 849-856, 2001.

S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series.
In VLDB, pages 697-708, Trondheim, Norway, 2005.

J. Rissanen. A universal prior for integers and estimation by minimum description length.
Annals of Statistics, 11(2):416-431, 1983.

104 J. Sun et al.

26. J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: Dynamic tensor analysis. In
KDD, pages 374-383, 2006.

27. J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more: Compact matrix decomposition
for large sparse graphs. In Proceedings of the 2007 SIAM International Conference on Data
Mining (SDM), 2007.

28. Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of data streams in real
time. In VLDB, pages 358-369, Hong Kong, China, 2002.

Part I1
Graph Mining and Community Analysis

Chapter 4
A Survey of Link Mining Tasks for Analyzing
Noisy and Incomplete Networks

Galileo Mark Namata, Hossam Sharara, and Lise Getoor

Abstract Many data sets of interest today are best described as networks or graphs
of interlinked entities. Examples include Web and text collections, social networks
and social media sites, information, transaction and communication networks, and
all manner of scientific networks, including biological networks. Unfortunately,
often the data collection and extraction process for gathering these network data
sets is imprecise, noisy, and/or incomplete. In this chapter, we review a collection
of link mining algorithms that are well suited to analyzing and making inferences
about networks, especially in the case where the data is noisy or missing.

4.1 Introduction

A key emerging challenge for data mining is tackling the problem of mining richly
structured, heterogeneous data sets. These kinds of data sets are best described as
networks or graphs, where the nodes can be of different types, and the edges (or
hyperedges) can represent different kinds of links. As evidenced by this volume,
there has been a growing interest in methods which can mine and make inferences
about such data (see also an earlier survey article and special issue issue of KDD
Explorations [41]).

In the context of network data, statistical inference can be used in a variety of
ways. Two of the most common are for inferring missing information and identify-
ing (and correcting) incorrect network data. Furthermore, one way of understanding
the different inference tasks in network data is according to whether they predict (or
correct) information associated with nodes, edges, or larger subgraphs of the net-
work. The inference task may be about inferring missing values (such as the label or
attribute values for a node or edge), reasoning about the existence of nodes and edges
(such as predicting whether two nodes should be merged because they refer to the

L. Getoor (=)
Department of Computer Science, University of Maryland, College Park, MD, USA
e-mail: getoor@cs.umd.edu

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications, 107
DOI 10.1007/978-1-4419-6515-8_4, © Springer Science+Business Media, LLC 2010

108 G.M. Namata et al.

same underlying entity, predicting whether a relationship exists), or reasoning about
the existence of groupings of nodes and edges (group or community detection).

Examples of work applying statistical inference to infer missing or incorrect net-
work data can be found in various domains. For example, in the social sciences,
there is interest in studying human interaction from large online social networks
[69, 113]. In these large online networks, individuals may own multiple accounts
which need to be resolved to get an accurate count of the individuals in the network.
Furthermore, the relationships (e.g., unspecified friends), attributes (e.g., gender),
and membership in social groups (e.g., political affiliation) of the individuals of
interest may not be given and need to be inferred. Similarly, in biology, there is
interest in gaining new insight into biological processes by studying protein—protein
interaction (PPI) networks [50, 107, 118]. The high-throughput methods typically
used to create and annotate these networks are notoriously noisy and incomplete.
Even the proteins of the most studied organisms, yeast, are not completely anno-
tated with their functions and complex memberships and it is estimated that up to
52% the interactions for the current yeast PPI are spurious [50]. Analysis of these
PPI networks requires applying statistical inference to infer the missing and correct
function, interaction, and complex membership of proteins. As a final example, in
computer networks, there is work in creating a map of the Internet to understand
its vulnerabilities and limitations [105]. While some ISPs and research networks
publish high-level topologies, in general the information about the topology and
attributes of a large part of the Internet are privately owned and rarely published.
Consequently, research in mapping the Internet mainly relies on inexact techniques
which can only give a partial view of the global picture. Inference needs to be
applied to the noisy and incomplete map to resolve IP addresses to routers and
autonomous systems (AS), predict the existence and type of links between AS, and
discover well-connected (and poorly connected) parts of the Internet.

All of the above examples require data mining and machine learning algorithms
which can help to clean and improve the quality of the networks, before they are
analyzed. In this chapter, we survey a subset of the inference tasks that are par-
ticularly useful in dealing with noisy and incomplete network data. We begin with
some notation and then describe methods for collective classification (Section 4.3),
link prediction (Section 4.4), entity resolution (Section 4.5), and group detection
(Section 4.6).

John Philips

&

Harry
Francis

Harry

&
Classification

Mark Juan
Taylor Hemandez

Mark
Taylor Hemandez

Mark Jones Mike

Jane Phillips Black Jane Phillips
Fig. 4.1 Example of a collective classification problem. Nodes with a question mark are nodes
whose labels are unknown. Collective classification uses the attributes and labels of neighboring
nodes. Ann Smith, for example, is likely to have the same research area as her co-authors, Robert
Cole and Mark Taylor

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 109
4.2 Terminology and Notation

We begin by introducing some general notation and terminology used through this
chapter. First, let G(V, E) denote a graph G with nodes v € V and edges e¢ € E.
|V| and |E| are used to denote the size of the node and edge sets in the graph,
respectively. We describe an edge and the nodes on that edge as incident to each
other. Also, we refer to nodes which share an edge as adjacent to each other. For this
document, whenever we use the term graph, we normally refer to either a directed
graph (where each edge, e € E, consists of an ordered pair of vertices) or undirected
graph (where each edge, e € E, consists of an unordered pair of vertices); in both
cases, the edges are incident to exactly two nodes (i.e., e = (v;, v;)). In some cases,
we refer to a bipartite graph, where the nodes can be divided into two disjoint sets,
Vi, Vo C V, so that every edge has one node in each of the two sets (i.e., v; € V;,
v; € V;). Although we mainly use the terms graph, nodes, and edges in this chapter,
we note that graphs are often used to represent networks, and the terms edges, link,
and relationships are often used interchangeably.

Finally, throughout this chapter, we use a simple author collaboration network to
illustrate the different inference tasks (shown in Figs. 4.1, 4.2, 4.3, and 4.4). In the
collaboration network figures, the nodes represent authors and the edges between the
authors indicate that the authors have co-authored at least one paper together. The
shading of the nodes indicates the research area of the authors; to make it simple,
here we assume there are just two areas, shown either in white (i.e., theory) or gray
(i.e., systems), if observed, and as a “?” if it is unobserved. The bounded areas (as
shown in Fig. 4.4) indicate group structure.

4.3 Collective Classification

A traditional problem in machine learning is to classify objects: given a corpus of
documents classify each according to its topic label; given a collection of email
communications determine which are not spam; given individuals in a collaboration
network determine a characteristic of that individual; given a sentence, determine
the part of speech for each word, etc. In networks, the problem of inferring labels
has traditionally been applied to the nodes of the graph. Initial work in classification
makes an independent and identically distributed (IID) assumption where the class
label of each object is made in isolation. In graphs, however, studies have shown
that predicting the labels of nodes can benefit by using autocorrelations between
the node label and the attributes of related nodes. For example, in the collaboration
network in Fig. 4.1, nodes with a question mark represent authors whose research
areas are unknown. While we can use attributes of the author (e.g., titles of their
papers) to predict the label, we can also use the research areas of the other authors
they share a co-authorship edge with. The author, Ann Smith, for one is likely to
work in theory given she has only co-authored with individuals in the theory field.
In the past decade there have been a number of approaches proposed which
attempt to classify nodes in a joint or collective manner instead of treating each

110 G.M. Namata et al.

in isolation. In the following sections, we formally define the problem of collective
classification and introduce several types of approaches that have been proposed to
address it.

4.3.1 Definition

Collective classification is an optimization problem where we are given the set of
nodes, V = {vy, va, ..., vy}, over a graph G(V, E), with a set of pre-defined labels,
L = {l1,,....,14}. Each node v € V can take exactly one value from the set of
labels in L, denoted as v.L. Moreover, V is divided into two sets of nodes: Vi, the
nodes for which we know the correct labels and V,,, the nodes whose labels need to
be determined. We are also given a neighborhood function, N, over the nodes where
N; € V \ v;, which captures the relationships of a node, v;. The task of collective
classification is to infer the values of the labels v.L for the nodes v € V,,.

4.3.2 Approaches

In this section, we describe the three main categories of collective classification
algorithms which vary based on their mathematical underpinnings as well as how
they exploit the relationships between the nodes.

4.3.2.1 Relational Classifiers

Traditional classification concentrates on classifying a given node using only the
observed attributes of that node. Relational classifiers [104] go beyond that by also
considering the observed attributes of related nodes. For instance, when classify-
ing authors, not only would we use the words present in their papers, we would
also look at the authors who they have co-authored with and their word usage and
research area (if known) to arrive at the correct class label. One relational classifier,
popular due to its simplicity, is the relational classifier proposed by Macskassy and
Provost [73]. Their classifier makes two assumptions: some node labels are known
and related nodes are likely to have the same labels. The classifier assigns a label to
a node, v;, by looking at the labels of related nodes whose label values are known,
N;NV,, and taking the weighted proportion of neighbors for each possible label. The
label with largest weighted proportion among neighbors is the predicted label of v;.
Although relational classifiers have been shown to perform well in some domains,
overall the results have been mixed. For instance, although there have been reports
of classification accuracy gains using such techniques over traditional classification,
in certain cases, these techniques can harm classification accuracy [22].

4.3.2.2 Approaches Based on Local Conditional Classifiers

A source of information in collective classification is to use not only the attributes
and the known labels of related nodes, but also the predicted labels of other nodes

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 111

whose labels are unobserved. For instance, going back to the classification example
in Fig. 4.1, authors which share a co-authorship edge to other authors predicted to
have a certain research area, are likely to work in the same area. In this section, we
look at this source of information and exploit it using local conditional classifiers.
Chakrabarti et al. [22] illustrated the use of this approach and reported impressive
classification accuracy gains for labeling Web pages. Neville and Jensen [81] further
developed the approach as an iterative classification algorithm (ICA) and studied the
conditions under which it improved classification performance [57].

We provide pseudocode for a simple variant of ICA in Algorithm 1. The basic
premise behind ICA is simple. Consider a node v; € V whose label needs to be
determined. Suppose we know the attributes and labels of related nodes, N;, ICA
assumes that we are given a local classifier f that takes the attributes and labels
of the nodes in N; and returns the most likely value of v;.L. This makes the local
classifier f an extremely flexible function and we can use popular classifiers like
decision trees [95] and SVM [58] in its place. However, since N; may contain nodes
whose labels we also need to predict, we need to repeat the process iteratively where
in each iteration, we label each v;.L using the current best estimates of N; and
classifier f. We continue to do so until the assignments to the labels stabilize or
some stopping criterion is met.

Algorithm 1 Iterative Classification Algorithm
Iterative Classification Algorithm (ICA)

for each node v; € V do {bootstrapping}
{c}ompute label using only observed nodes in N;
compute a; using only Vi N N;
vi.L < f(a;)
end for
repeat {iterative classification}
generate ordering O over nodes in V,,
for each node v; € O do
{c}ompute new estimate of v;.L
compute a; using current assignments to N;
vi.L < f(a;)
end for
until all class labels have stabilized or a threshold number of iterations have elapsed

A number of aspects of the iterative approach have been studied. An important
aspect is how to use the values provided by Ny in f [70]. Most classifiers are defined
as functions with a fixed-length vector of attribute values as arguments while the
number of nodes in N; may vary for different v;. A common approach to address
this is to use an aggregation operator such as count, mode, or prop, which measures
the proportion of neighbors with a given label. In Algorithm 1, we use a; to denote
the vector encoding the values in N; obtained after aggregation. Another aspect
to consider is the choice of the local classifier f. Classifiers used include naive
Bayes [22, 81], logistic regression [70], decision trees [57], and weighted-vote [73].

112 G.M. Namata et al.

There is some evidence to indicate that discriminately trained local classifiers such
as logistic regression tend to produce higher accuracies than others [101].

Previous work has also looked at different ways of ordering and updating the
labels in ICA. While there is some evidence which shows ICA is fairly robust to
simple ordering strategies such as random ordering, visiting nodes in ascending
order of diversity of its neighborhood class labels or labeling nodes in descending
order of label confidence [40], strategies which vary what labels are updated at each
iteration have been shown to improve accuracies [76].

Extensions have also been proposed for the ICA algorithm. Researchers in col-
lective classification [73, 76, 82] have extended the simple algorithm described in
Algorithm 1 and developed a version of Gibbs sampling that is easy to implement
and faster than traditional Gibbs sampling approaches. The basic idea behind this
algorithm is to assume, just like in the case of ICA, that we have access to a local
classifier f that can sample for the best label estimate for v;.L given all the values
for the nodes in N;. We keep doing this repeatedly for a fixed number of iterations
(a period known as burn-in). After that, not only do we sample for labels for each
v; € V,, but we also maintain count statistics as to how many times we sampled
a give label for node v;. After collecting a predefined number of such samples, we
output the best label assignment for node v; by choosing the label that was assigned
the maximum number of times to v; during the sampling.

4.3.2.3 Approaches Based on Global Formulations

In addition to the Ilocal conditional -classifier approaches discussed in
Section 4.3.2.2, another approach to collective classification is to represent the
problem with a high-level global graphical model and then using the learning and
inference techniques for the graphical modeling approach to arrive at the correct
classification. Graphical models which have been used include both directed [43]
and undirected [62, 109] models. While these techniques can use both the labels
and attributes of related nodes, we note that these techniques tend to be less efficient
and scalable than the iterative collective classification techniques.

A common way of defining such a global model is by using a pairwise Markov
random field (pairwise MRF) [109]. Let G(V, £) denote a random variable graph
where V consists of the two types of random variables: the unobserved,), which
need to be assigned from a label set £, and observed variables, X', whose labels are
known. Let W denote a set of clique potentials which contain three distinct types of
functions. First, for each); € &, ¥; € ¥ is a mapping ¢; : L — R > 0, where
R > 0 is the set of non-negative real numbers. Next, for each (V;, X)) € £, ¥ € ¥
is a mapping ¥;; : L — R > 0. The last type of function is for each (V;, V;) € &,
Yij € Wisamapping ¥;j : L x L - R > 0.

Let x denote the values assigned to all the observed variables in G and let x;
denote the value assigned to ;. Similarly, let y denote any assignment to all the
unobserved variables in G and let y; denote a value assigned to);. For brevity of

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 113

notation we will denote by ¢; the clique potential obtained by computing ¢; (y;) =
v [y, x;)ee Vij (vi). A pairwise MRF can then be defined as follows:

Definition 1 A pairwise Markov random field (pairwise MRF) is given by a pair
(G, V) where G is a graph and W is a set of clique potentials with ¢; and v;; as
defined above. Given an assignment y to all the unobserved variables)} the pairwise
MREF is associated with the probability distribution:

1
PO = 7= T o @00 T 1y, 5 pep V0030
where x denotes the observed values of X and

Z(x) = Zl—[ney ¢i () H(Yi’yj)eE Vi), V).
v

Given a pairwise MREF, it is conceptually simple to extract the best assignments
to each unobserved variable in the network. For instance, we may adopt the crite-
rion that the best label value for); is simply the one corresponding to the highest
marginal probability obtained by summing over all other variables from the proba-
bility distribution associated with the pairwise MRF. Computationally, however, this
is difficult to achieve since computing one marginal probability requires summing
over an exponentially large number of terms. Hence, approximate inference algo-
rithms are typically employed, the two most common being loopy belief propagation
(LBP) and mean-field relaxation labeling. A comparison of these two approaches are
given in [90, 101].

John Phil
Robert Pe

John Phillips

Harry
Francis

Jerry Jerry
Mills Link Mills
Prediction
Taylor Hemandez Taylor Hemandez
Mark Jones Mike
Black Black
Jane Phillips Jane Phillips

Fig. 4.2 Example of a link prediction problem. The graph on the left represents a collaboration
network at time 7, and the graph on the right represents the predicted collaboration network at time
t + 1. Predicted collaboration edges are highlighted using a dashed line

4.4 Link Prediction

In this section, we change our focus from inferring information about the nodes of
a network to inferring information about the links or edges between them. Inferring
the existences of edges between nodes has traditionally been referred to as link

114 G.M. Namata et al.

prediction [69, 110]. We provide a formal definition of the problem of link predic-
tion, as well as discuss variants and closely related problems in Section 4.4.1.

Link prediction is a challenging problem that has been studied in various guises
in different domains. For example, in social network analysis, there is work on pre-
dicting friendship links [119], event participation links (i.e., co-authorship [89]),
communication links (i.e., email [89]), and links representing semantic relation-
ships (i.e., advisor of [110] and subordinate manager [30]). In bioinformatics,
there is interest in predicting the existence of edges representing physical protein—
protein interactions [50, 107, 118], domain—domain interactions [29], and reg-
ulatory interactions [4]. Similarly, in computer network systems there is work
in inferring unobserved connections between routers, and inferring relationships
between autonomous systems and service providers [105]. There is also work on
using link prediction to improve recommender systems [36, 51], Web site navigation
[120], surveillance [52], and automatic document cross-referencing [77].

4.4.1 Definition

We begin with some basic definitions and notation. We refer to the set of possible
edges in a graph as potential edges. The set of potential edges depends on the graph
type and how the edges for the graph are defined. For example, in a directed graph,
the set of potential edges consists of all edges e = (v, v2) where v; and v, are
any two nodes V in the graph (i.e., the number of potential edges is |V| x |V|).
In an undirected bipartite graph with two subsets of nodes (Vi, V2 € V), while the
edges still consist of a pair of nodes, e = (v, v2), there is an added condition such
that one node must be from V| and the other node must be from V5; this results in
| V1| x| V2| potential edges. Next, we refer to set of “true” edges in a graph as positive
edges, and we refer to the “true” non-edges in a graph (i.e., pairs of nodes without
edges between them) as negative edges. For a given graph, typically we only have
information about a subset of the edges; we refer to this set as the observed edges.
The observed edges can include both positive and negative edges, though in many
formulations there is an assumption of positive-only information. We can view link
prediction as a probabilistic inference problem, where the evidence includes the
observed edges, the attribute values of the nodes involved in the potential edge, and
possibly other information about the network, and for any unobserved, potential
edge, we want to compute the probability of it’s existing. This can be reframed as
a binary classification problem by choosing some probability threshold and con-
cluding that potential edges with existence probability above the threshold are true
edges, and those below the threshold are considered false edges (more complex
schemes are possible as well).

The earliest and most cited formulation of the link prediction problem was pro-
posed by Liben-Nowell and Kleinberg [69]. Liben-Nowell and Kleinberg [69] pro-
posed a temporal formulation defined over a dynamic network where given a graph
G:(Vy, E;) at time ¢, infer the set of edges at the next time step ¢ + 1. More formally,

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 115

the objective is to infer a set of edges Enew wWhere E;y1 = E; | Enew- In this chap-
ter, we use a more general definition of link prediction proposed by Taskar et al.
[110] where given a graph G and the set of potential edges in G, denoted P(G), the
problem of link prediction is to predict for all p € P(G) whether p exists or does
not exists, remaining agnostic on whether G is a noisy graph with missing edges or
a snapshot of a dynamic graph at a particular time point.

In addition to the definition of link prediction discussed above, it is also impor-
tant to mention four closely related problems: random graph models, link com-
pletion, leak detection, and anomalous link discovery, whose objectives are dif-
ferent but very similar to link prediction. The first related research area, random
graph models, is the problem of defining models for generating random graphs
which capture the properties of graphs found in real networks [11, 33, 65, 66, 86].
Properties include scale-free degree distributions [1, 11, 35], the small-world phe-
nomenon [11, 114], and densification and shrinking diameters of dynamic net-
works over time [66]. An important aspect of these models is modeling how to
randomly generate edges between the nodes of the graph to capture these prop-
erties. The preferential attachment model [11], for example, creates edges based
on the degree of nodes (i.e., higher degree nodes are more likely to be incident to
more edges). The Forest Fire model [66], on the other hand, generates edges for
nodes in an epidemic fashion, growing outward from some initial set of neighboring
nodes.

The next two related problems, link completion [10, 21, 45] and leak detection
[10, 20, 60], are a variation of link prediction over hypergraphs. A hypergraph is a
graph where the edges (known as hyperedges) can connect any number of nodes.
For example, in a hypergraph representing an email communication networks, a
hyperedge may connect nodes representing email addresses that are recipients of
a particular email communication. In link completion, given the set of nodes that
participate in a particular hyperedge, the objective is to infer nodes that are miss-
ing. For our email communication network example, link completion may involve
inferring which email address nodes need to be added to the hyperedge represent-
ing the recipients list of an email communication. Conversely, in leak detection,
given the set of nodes participating in a particular hyperedge, the objective is to
infer which nodes should not be part of that hyperedge. For example, in email
communications, leak detection will attempt to infer which email address nodes
are incorrectly part of the hyperedge representing the recipient list of the email
communication.

The last problem, anomalous link discovery [53, 96], has been proposed as
an alternate task to link prediction where the existence of the edges are assumed
to be observed, and the objective is to infer which of the observed links are
anomalous or unusual. Specifically, anomalous link discovery identifies which
links are statistically improbable with the idea that these may be of interest for
those analyzing the network. Rattigan and Jensen [96] show that some methods
which perform poorly for link prediction can still perform well for anomalous link
discovery.

116 G.M. Namata et al.
4.4.2 Approach

In this section, we discuss the two general categories of the current link pre-
diction models: topology-based approaches and node attribute-based approaches.
Topology-based approaches are methods which rely solely on the topology of the
network to infer edges. Node attribute-based approaches make predictions based on
the attribute values of the nodes incident to the edges. In addition, there are models
which make use of both structure and attribute values.

4.4.2.1 Topology-Based Approaches

A number of link prediction models have been proposed which rely solely on the
topology of the network. These models typically rely on some notion of structural
proximity, where nodes which are close are likely to share an edge (e.g., sharing
common neighbors, nodes with a small shortest path distance between). The ear-
liest topological approach for link prediction was proposed by [69]. In this work,
Liben-Nowell and Kleinberg proposed various structure-based similarity scores and
applied them over the unobserved edges of an undirected graph. They then use a
threshold k and only predict edges with the top k scores as existing. A variety of
similarity scores were proposed, given two nodes v; and v, including graph dis-
tance (the negated shortest path between v; and v;), common neighbors (the size
of the intersection of the sets of neighbors of v; and v;), and more complex mea-
sures such as the Katz measure (the sum of the lengths of the paths between v and
vy exponentially damped by length to count short paths more heavily). Evaluating
over a co-authorship network, the best performing proximity score measure was the
Katz measure; however, the simple measures, which rely only on the intersection
of the set of nodes adjacent to both nodes, performed surprisingly well. A related
approach was proposed by [118] which applies the link prediction problem to pre-
dicting missing protein—protein interactions (PPI) from PPI networks generated by
high-throughput methods. This work assumes that interacting proteins tend to form
a clique. Thus, missing edges can be predicted by predicting the existence of edges
which will create cliques in the network. More recent work by [24] has tried to go
beyond predicting edges between neighboring nodes. In their problem domain of
food webs, for example, pairs of predators often prey on a shared prey species but
rarely prey on each other. Thus, in these networks, predicting “predator—prey” edges
need to go beyond proximity. For this, they propose a “hierarchical random graph”
approach which fits a hierarchical model to all possible dendrograms of a given
network. The model is then used to calculate the likelihood of an edge existing in
the network.

4.4.2.2 Node Attribute-Based Approaches

Although topology has been shown useful in link prediction, topology-based
approaches ignore an important source of information in networks, the attributes
of nodes. Often there are correlations in the attributes of nodes which share an

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 117

edge with each other. One approach which exploits this correlation was proposed by
Taskar et al. [110]. In this approach, a relational Markov network (RMN) framework
was applied to predicting the existence and class of edges between Web sites. They
exploit the fact that certain links can only exist between nodes of the appropriate
type. For example, an “advisor” edge can only exist between a student and a faculty
nodes. Another approach which uses node attributes was proposed by [94]. In that
approach, they used a structured logistic regression model over learned relational
features to predict citation edges in a citation network. Their relational features
are built over attributes such as the words used in the paper nodes. O’Madadhain
et al. [89] also proposed an attribute based approach, constructing local conditional
probability models based on the attributes such as node attribute similarity, topic
distribution, and geographical location in predicting “co-participation” edges in an
email communication network. More recently, there is work on exploiting other
node attributes like the group membership of the nodes. Zheleva et al. [119] showed
that membership in family groups are very useful in predicting friendship links in
social networks. Similarly, [106] showed that using protein complex information
can be useful in predicting protein—protein interactions. Finally, we note that in link
prediction, as in classification, the quality of predictions can be improved by making
the predictions collectively. Aside from the relational Markov network approach by
[110] mentioned earlier, Markov Logic networks [98] and Probabilistic Relational
models [42] have also been proposed for link prediction and are capable of perform-
ing joint inference.

4.4.3 Issues

There are a number of challenges which make link prediction very difficult. The
most difficult challenge is the large class skew between the number of edges which
exist and the number of edges which do not. To illustrate, consider directed graph
denoted by G(V, E). While the number of edges |E]| is often O(]V|), the number
of edges which do not exist is often O(|V|?). Consequently, the prior probability
edge existence is very small. This causes many supervised models, which naively
optimize for accuracy, to learn a trivial model which always predicts that a link does
not exist. A related problem in link prediction is the large number of edges whose
existence must be considered. The number of potential edges is O(| V|?) and this
limits the size of the data sets which can be considered.

In practice, there are general approaches to addressing these issues either prior
to or during the link prediction. With both large class skew and number of edges to
contend with, the general approach is to make assumptions which reduce the number
of edges to consider. One common way to do this is to partition the set of nodes
where we only consider potential edges between nodes of the same partition; edges
between partitions are not explicitly modeled and are assumed not to exist [2, 118].
This is useful in many domains where there is some sort of natural partition among
the nodes available (e.g., geography in social networks, location of proteins in a

118 G.M. Namata et al.

cell) which make edges across partitions unlikely. Another way is to define some
simple, computationally inexpensive distance measure such that only edges whose
nodes are within some distance are considered [30, 69].

Another practical issue in link prediction is that while real-world data often indi-
cates which edges exist (positive examples), the edges which do not exist (negative
examples) are rarely annotated for use by link prediction models. In bioinformatics,
for example, the protein—protein interaction network of yeast, the most and anno-
tated studied organism, is annotated with thousands of observed edges (physical
interactions) between the nodes (proteins) gathered from numerous experiments
[13]. There are currently, however, no major data sets available which indicate which
proteins definitely do not physically interact. This is an issue not only in creating and
learning models for link prediction but also an issue with evaluating them. Often,
it is unclear whether a predicted edge which is not in our ground truth data is an
incorrectly predicted edge or an edge resulting from incomplete data.

Bob Cole

John Phillips

Lisa Jones

Mils Entity) Mills
Resolution

Taylor =\ Taylor

Hernandez

M. Black Mark
r Jones
J. Hemandez Jane Phillips). Phillips. Jane Phillips

Fig. 4.3 Example of a entity resolution problem. In this example, the nodes on the left are ambigu-
ous due to variations in the spelling of their names. While attributes may suffice to resolve the
entities in some cases (e.g., Juan Hernandez and J. Hernandez are likely the same person due to
the similarity in their names), some cases (e.g., J. Phillips can refer to either Jane or John Phillips)
it may not. However, if we use the edges (i.e., both Jane Phillips and J. Phillips have collaborated
with Larry Jones), we are able to improve our predictions

4.5 Entity Resolution

Many networks have uncertain and imprecise references to real-world entities. The
absence of identifiers for the underlying entities often results in noisy networks
which contain multiple references to the same underlying entity. In this section,
we look at the problem of resolving which references refer to the same entity, a
problem known as entity resolution.

Examples of entity resolution problems can be found in many domains, often
under different names. The earliest applications of entity resolution is on medical
data [37, 83, 84, 117]. In this work, in a problem they referred to as record linkage,
the goal was to identify which medical records refer to the same individual or family.
Later, in computer vision, entity resolution was applied in identifying which regions
in the same image are part of the same object (the correspondence problem). Also,

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 119

in natural language processing, there is interest in determining which noun phrases
refer to the same underlying entity (coreference resolution, object consolidation).
The problems of deduplication and data integration, determining when two tuples
in or across databases refer to the same entity, can also be seen as entity resolution.

4.5.1 Definition

We begin by introducing some additional notation. For a graph G(V, E) we are
given a set of reference nodes R € V where the reference nodes correspond to
some set of unknown entity nodes E. We introduce the notation r.E to refer to the
entity to which r corresponds. Formally, the general goal of entity resolution is to
recover the hidden set of entities E and the entity labels r.E for all the reference
nodes.

‘We note that there are two commonly used interpretations of entity resolution and
which is more natural depends on the algorithm chosen. First, entity resolution can
be viewed as a pairwise classification problem, where for each pair of references,
ri,rj € R, we are interested in determining whether r; and r; are co-referent (i.e.,
ri.E = r;.E). Note the similarity here with link prediction; in fact, many of the
challenges of link prediction (class skew and scaling) are issues in entity resolution
as well. The second view is as a clustering problem, where the goal is to assign the
reference nodes to clusters C € C. The subset of reference nodes in each cluster are
assumed to be co-referent to each other (i.e., Vr;,r; € C, r; .E =7r;.E).

4.5.2 Approach

In this section, we survey existing entity resolution approaches. We distinguish
between three categories of approaches: attribute-based, naive relational, and col-
lective relational. Attribute-based approaches are the traditional approaches to entity
resolution which rely solely on the attributes of the reference nodes. More recently,
naive and collective relational approaches have been proposed which take the
edges between these nodes into consideration. The naive relational approaches con-
sider the attribute similarity of related reference node. The collective relational
approaches, on the other hand, use the edges to make decisions jointly.

4.5.2.1 Attribute-Based Entity Resolution

The attribute-based approach to entity resolution typically uses the pairwise for-
mulation of the entity resolution problem [26, 37, 48]. Given two reference nodes,
ri,7j € R, the attribute-based approaches generally make use of a similarity mea-
sure, sim 4 (r;, 7j), or a weighted combination of multiple similarity measures, over
the attributes of the reference nodes. Several sophisticated similarity measures have
been proposed for use in entity resolution based on the types of features and domain

120 G.M. Namata et al.

knowledge. For example, there are string similarity measures used commonly over
the names of an entity such as

e Jaccard [54]: the size of the intersection among the characters divided by the size
of the union of the characters occurring.

e Jaro and Jaro-Winker [56, 117]: string similarity scores which attempt to take into
account typical spelling deviation by looking at the similarity within a certain
neighborhood of the string characters; the Jaro-Winkler score is based on Jaro
and weights matches at the beginning more highly.

e Levenshtein (edit distance) [67]: the minimum number of insertions, deletions,
and substitutions required to transform one string to the other.

e Monge-Elkan [78]: recursive subcomponent matching algorithm which looks at
matching subcomponents of the strings; it is good at finding swapped fields, such
as first and last names.

Approaches have also been proposed which learn a string similarity measure
from labeled data [18]. Pairs of nodes whose similarity is above a certain threshold
are predicted as co-referent. Transitivity may also be enforced such that if r; and
r; are predicted co-referent and r; and ry predicted co-referent, r; and ry are also
predicted co-referent.

4.5.2.2 Naive Relational Entity Resolution

While attribute-based approaches have been shown to do well in some domains,
work in relational data has focused on incorporating links, in particular, co-
occurrence information. The earliest work using links for entity resolution was
explored in the database community. Ananthakrishna et al. [6] introduce a method
for deduplication using edges in data warehouse applications where there is a
dimensional hierarchy over the link relations. Kalashnikov et al. [59] proposed
the Relationship-based Data Cleaning (RelDC) approach which uses graph theo-
retic techniques to discover and analyze relationships, such as affiliation and co-
authorship, that exist between reference nodes.

4.5.2.3 Collective Relational Entity Resolution

Although the approaches in Section 4.5.2.2 consider the edges for entity resolution,
only the attributes of linked references are considered and the different resolution
decisions are still taken independently. Work in collective relational entity reso-
lution addresses this by using the edges between nodes to establish dependencies
in the resolution decisions. In databases, for example, approaches have been pro-
posed [14, 32] where one resolution decision affects another if they are linked.
Bhattacharya and Getoor [14, 17] propose different measures for edge similarity
and show how those can be combined with attribute similarity iteratively to perform
entity resolution on collaboration networks. Dong et al. [32] collectively resolve

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 121

entities of multiple types by propagating evidence along the links in a dependency
graph. In machine learning, probabilistic models have also been proposed to con-
sider the interactions between the different entity resolution decisions. McCallum
and Wellner [75] use conditional random fields for noun coreference and use clique
templates with tied parameters to capture repeated relational structure. Singla and
Domingos [103] use the idea of merging evidence to allow the flow of reason-
ing between different pairwise decisions over multiple entity types. Markov logic
networks have also been applied for collective entity resolution [93, 103]. Pasula
et al. [92] propose a generic probabilistic relational model framework for perform-
ing entity resolution on citations. Li et al. [68] propose a probabilistic generative
model which captures a joint distribution over pairs of entities in terms of co-
mentions in documents. Similarly, Bhattacharya and Getoor [16] proposed a genera-
tive group model by extending the Latent Dirichlet Allocation model for documents
and topics.

4.5.3 Issues

A major issue in entity resolution is that it is a known hard problem computation-
ally; a naive algorithm is O (N?), which for very large data sets is not feasible. For
many networks, it is infeasible to compare all pairs of references for approaches
which use expensive similarity measures. Similarly, for many probabilistic models,
it is infeasible to explicitly represent all the variables required for the inference.
Thus, efficiencies have long been a focus for research in entity resolution. One
mechanism for doing this involves computing the matches efficiently and employing
techniques commonly called “blocking” to place nodes into disjoint “blocks” using
cheap and index-based similarity computations [49, 79]. The number of potential
pairs is greatly reduced by assuming that only pairs of nodes in the same block
can be co-referent pairs. Another mechanism, proposed by McCallum et al. [74],
relaxes the use of disjoint blocks and places nodes into possibly overlapping subsets
called “canopies”. Potential co-referent pairs are then restricted only to pairs of
nodes which share at least one common canopy.

John Phillips

John Phillips
= Hamy
\\\ Francis

Jerry
Mills Group
Detection
Taylor
Mark Jones
Black Jones Black
Jane Phillips Jane Phillips

Fig. 4.4 Example of a group detection problem. The goal of group detection is to predict the
underlying groups which the nodes, and/or edges, participate in. The three regions surrounded
with a rounded rectangle represent the affiliations of our authors

122 G.M. Namata et al.

Another issue in entity resolution is referred to a “canonicalization” [27, 116].
Once the reference nodes have been resolved to their corresponding entities, there
is the problem of constructing a standard representation of the entity from the
attributes of those references. In particular, canonicalization resolves the inconsis-
tencies in the attributes among the reference nodes. Simple heuristics for determin-
ing the appropriate values for the attributes and edges of an entity based on the
attributes of the references are possible; often these amount to choosing the longest
string, or the most recently updated value. Such approaches, however, are not robust
to noisy and incomplete attributes. Another approach is, instead of returning a single
value for an attribute, keeping all the values, returning a ranked list of the possible
values and edges [7, 111]. When there are a large number of references, however,
the ranked list may be too long. Culotta et al. [27] addresses this by using adaptive
similarity measures to select values in order to create a standard representation most
similar to each of the different records. A unified approach was also proposed by
Wick et al. [116] which performs entity resolution and canonicalization jointly using
discriminatively trained model.

4.6 Group Detection

Another common problem that often occurs in reasoning about network data is
inferring the underlying hidden groups or community structures of the nodes in the
network. This problem is strongly related to data clustering; a traditional unsuper-
vised learning problem in data mining. In cluster analysis, data points are organized
in different groups based on the similarity of their feature values [55], where points
in the same cluster are more similar to each other than points in different clusters
according to a specific similarity measure. Similarly, a community in a network can
be defined as a group of nodes that share dense connections among each other, while
being less tightly connected to nodes in different communities in the network.

The importance of identifying the communities in networks lies in the fact that
they can often be closely related to functional units of the system, e.g., groups of
individuals interacting with each other in a society [8, 44, 71], WWW pages related
to similar topics [38], compartments in food webs [61], or proteins responsible for
similar biological functions [23]. Furthermore, analyzing the community structure
itself provides insight into understanding the various roles of different nodes in their
corresponding groups. For instance, by studying the structural properties of commu-
nities, one can distinguish between the functions of the central nodes in the group
and the ones at the periphery.

In this section, we review some of basic methods for group detection and com-
munity discovery in network settings.

4.6.1 Definition

As before, we consider a graph G = (V, E); in the case of weighted networks,
w(v;, v;) denotes the weight of the edge connecting nodes v; and v;. A community

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 123

or a group C is a subgraph C(V’, E’) of the original graph G(V, E) whose nodes
and edges are subsets of the original graph’s nodes and edges, i.e., V/ C V and
E’ C E. For each node v’ in group C of G, we define an internal and an external
degree as diny(v') = |/ (v, vp)|; vy € V' and dex (V) = |/ (V/, vy)|; vr ¢ V', where
the internal degree of a node with respect to a certain group is the number of edges
connecting it to other nodes of the group, while its external degree is the number
of edges connecting it to nodes in the graph other than those in the corresponding
group. Intuitively, nodes with relatively high internal degree and low external degree
for a specific group are potentially good candidates to be included in that group. The
opposite is also true, where nodes with low internal degree and high external degree
for a specific group are candidates for removal. Throughout the discussion, the terms
group, community, and cluster are used exchangeably.

To identify communities in networks, a basic set of properties that is capable of
distinguishing a true community structure from a randomly selected set of nodes
and edges is needed. One of the important properties that can be utilized is the
graph density, which is the number of edges present in the network relative to the
total number possible. Similarly, the density of a group of nodes in the network
can be defined as the ratio between the number of edges connecting pairs of nodes
within that group and the maximum number of possible edges within the same

group:

|E'|
V> (V' =1)/2

8(C) = “.1)

A randomly selected set of nodes from a network is likely to have a density
similar to that of the global network structure. However, for community structures,
the density of a group is expected to be higher than that of the overall graph. For-
mally, for any community C in a graph G, it is expected that 6(C) > 6(G), where
8(G) is the overall graph density. Similarly, the average density of sets of nodes
belonging to different communities, calculated using the ratio between the number
of edges emanating from a group and terminating in another, and the maximum
number possible of such edges, should generally be low. This basic idea is exploited
in many of the group detection methods described next.

4.6.2 Approaches

Beyond the intuitive definition above, precisely defining what constitutes a com-
munity involves a number of aspects: whether the definition relies on global or
local network properties, whether nodes can simultaneously belong to several com-
munities, whether link weights are utilized, and whether the definition allows for
hierarchical community structure. Global methods utilize the whole network struc-
ture for defining the communities. This can be achieved in several ways, such as
global optimization methods [87, 97], algorithms based on different global central-
ity measures [39, 44], spectral methods [9, 31], or information-theoretic methods

124 G.M. Namata et al.

[99, 100]. Local methods, on the other hand, define communities based on purely
local network structure, such as detecting cliques of different sizes [34], clique per-
colation method [91], and subgraph fitness method [63].

As mentioned above, another important aspect is whether nodes are allowed to
belong simultaneously to several communities. In general, overlapping communities
do commonly occur in natural settings, especially in social networks. Currently, only
a few methods are able to handle overlapping communities [88, 91]. Another diffi-
culty in community detection is that networks may contain hierarchical structures,
which means that communities may be parts of even larger communities. This leads
to the problem of evaluating the best partitioning among different alternatives. One
solution for evaluating the quality of a given community structure was suggested by
Girvan and Newman [87], who introduced the concept of modularity as a measure
for the goodness of a partitioning.

The methods used for community detection with respect to different perspectives
are briefly reviewed in the following sections.

4.6.2.1 Clique-Finding Techniques

Cliques are graph structures that are frequently used in local techniques for commu-
nity detection. A clique is defined as a complete subgraph {C(V', E') : Vv, v; €
V', 3(vy, v2) € E’}, where there exists an edge between every pair of nodes belong-
ing to it. In this context, communities can be considered as maximal clique, which
cannot be extended with the addition of any new nodes or edges.

One of the problems of using this approach for group detection is the fact that
finding cliques in a graph is an NP-complete problem. Another problem arises from
the interpretation of communities, especially in social networks, where we expect
different individuals to have different centrality in their corresponding groups, con-
tradicting with the degree symmetry of nodes in cliques. To overcome these draw-
backs, the notion of cliques is often relaxed to k-clique, which is a maximal sub-
graph where the distance between each pair of its nodes is not larger than k [3].

Recently, Palla et al. [91] introduced a local method for community detection
called the clique percolation method. The method is based on the observation that,
due to the high density of community structures, it is more likely that nodes within
a given community form more small-sized cliques than nodes belonging to different
communities. The clique percolation algorithm defines communities by consider-
ing overlapping chains of small cliques, which are likely to explore a significant
fraction of each community, without crossing the boundary between different com-
munities. Specifically, a community of size k is obtained by “rolling” a clique of
size k over cliques of the same size that share at least k — 1 nodes with the current
clique.

4.6.2.2 Clustering Techniques

Data clustering is one of the earliest techniques for group detection, where data
points are grouped according to a specific similarity measure over their features.

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 125

The main objective of traditional clustering methods is to obtain clusters or
groups of data points possessing high intra-cluster similarity and low inter-cluster
similarity. Classical data clustering techniques can be divided into partition-
based methods such as k-means clustering [72], model-based methods such as
Expectation-Maximization algorithm [28], spectral clustering algorithms [5, 115]
and hierarchical clustering methods [47] which are very popular and commonly
used in many fields.

One advantage of the hierarchical clustering techniques is that they provide the
ability to look at the groups at multiple resolutions. Hierarchical techniques are
further divided into agglomerative and divisive algorithms. The agglomerative algo-
rithm is a greedy bottom-up algorithm which starts with individual data points,
then successively merge pairs with highest similarity. At each iteration, the simi-
larities between the new cluster and each of the old clusters are recomputed and
again the maximally similar pair of clusters merged. Divisive algorithms work
in a reverse manner, where initially the whole set of points is regarded as one
cluster which is successively divided into smaller ones by splitting nodes of low-
est similarity. In both algorithms, clusters are represented as a dendrogram (see
Fig. 4.5), whose depths indicate the steps at which two clusters are joined. This
representation provides insight into the formed groups, where it is clear which com-
munities are built up from smaller modules, and how these smaller communities are
organized.

Mike Black

Jane Phillips

Jerry Mills

i

Mark Jones

1

Larry Jones

T

Lisa Jores

T

Harry Francls

John Phillips

T

Robert Cole

i

Juan Hermandez

!

Ann Smith

T

Mark Taylor

Fig. 4.5 A dendrogram resulting from a hierarchical clustering technique. Different levels in the
tree correspond to partitions of the graph into clusters

126 G.M. Namata et al.

Hierarchical clustering techniques can easily be adapted to network domains,
where data points are replaced by individual nodes in the network, and the similarity
is based on edges between them. In addition, there are other divisive algorithms
based on spectral methods and other community detection techniques, which are
discussed in the following sections.

4.6.2.3 Centrality-Based Techniques

Girvan and Newman introduced several community detection algorithms that have
received much attention. The first method [44] uses a divisive algorithm based on
the betweenness centrality of edges to be able to recover the group structure within
the network. Betweenness centrality is a measure of centrality of nodes in networks,
defined for each node as the number of shortest paths between pairs of nodes in the
network that run through it. The Girvan—Newman algorithm extended this definition
for edges in the network as well, where the betweenness centrality of an edge is
defined as the number of shortest paths between pairs of nodes that include this
edge.

The algorithm is also based on the fact that there exists denser connections
between nodes belonging to the same group structure than those in different groups.
Thus, all shortest paths between nodes from different communities should pass
along one of these sparse set of edges, increasing their edge betweenness centrality
measure. By following a divisive approach and removing edges with highest
betweenness centrality from the network successively, the underlying community
structure is revealed.

One of the drawbacks of the algorithm is its time complexity which is
O(|E|?|V]) generally, and O(|V|?) for sparse networks. However, by limiting the
re-calculations of the edge betweenness for only those affected by the prior edge
removal can be factored in, making the algorithm efficient in sparse networks with
strong community structure, but still not very efficient on dense networks. Following
the same approach, other methods based on different notions of centrality have been
introduced [64, 112].

4.6.2.4 Modularity-Based Techniques

The concept of modularity was introduced by Newman and Girvan [87] as a mea-
sure to evaluate the quality of a set of extracted communities in a network and has
become one of the most popular quality functions used for community detection.
The basic idea is utilizing a null model; a randomly rewired version of the original
network preserving the node degrees, which is expected to contain no community
structure. Modularity is then calculated by comparing the number of edges within
the extracted communities against the expected number of edges in the same com-
munities from the random network. More specifically, the modularity Q is defined
as follows:

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 127

= 3[4y -2 s, 42)
21E| £ !

¢ Y2lE|

where A;; is the element of the adjacency matrix of the network denoting the num-
ber of edges between nodes i and j, k; and k; are the degrees of nodes i and j
respectively, ¢; and ¢; are the communities to which nodes i and j belong respec-
tively. The summation runs over all pairs of nodes within the same community.

Clearly, a higher modularity value indicates that the average density of the
extracted community is larger than that of the random network where no community
structure is present. Thus, modularity maximization can be used as the objective for
producing high-quality community structure. However, modularity maximization is
an NP-hard problem [19]. Nevertheless, there has been several heuristics for approx-
imate modularity maximization with reasonable time complexity.

An efficient greedy modularity maximization algorithm was introduced by New-
man [85]. The algorithm starts with individual nodes and merges them agglomera-
tively, by choosing the pair that gives the largest increase in modularity. The time
complexity of this greedy algorithm is O(|V|(|E| + |V])) or O(|V|?) for sparse
networks, which enables users to run community detection on large networks in a
reasonable amount of time. A further speedup was achieved by Clauset et al. [25]
by utilizing specialized data structures for sparse matrices.

4.6.3 Issues

Because the majority of work on group detection in relational setting has focused
on the structural properties of the nodes and the edges in the underlying network,
the resulting communities often lack a correspondence with the actual functional
communities in the network [102]. Recently, relational clustering methods have
been introduced for combining structural information with node characteristics to
obtain better communities that are more related to the functional units in the network
[15, 80]. However, more work is needed for tying the information about the target
function with the group detection process to obtain different community structures
from the network according to the specific function that needs to be highlighted.

One of the issues that has attracted more attention lately is the fact that most
group detection methods works on single-mode networks, with less work focused
on finding groups in more complex, multi-mode settings [12, 46]. Most algorithms
deal with these types of networks by projecting them onto a series of individual
graphs for each mode, thus losing some of the information that could have been
retained by operating collectively on the original multi-modal setting.

Another issue that is gaining more interest is developing new methods for group
detection in dynamic network settings [108], where the underlying network struc-
ture changes over time. Most of the previous work on group detection mainly
focused on static networks, and handles the dynamic case by either analyzing a
snapshot of the network at a single point in time, or aggregating all interactions over

128 G.M. Namata et al.

the whole time period. Both approaches do not capture the dynamics of change in
the network structure, which can be an important factor in revealing the underlying
communities.

4.7 Conclusion

In this chapter, we have surveyed some of the common inference tasks that can
be applied to graph data. The algorithms we have presented are especially well
suited to the situation where we have noisy and incomplete observations. Some
of the methods focus on predicting attribute values, some focus on inferring the
existence of edges, and some focus on grouping nodes, either for entity resolution
or for community detection. There are many other possibilities and combinations
still to be explored, and this research area is likely to expand as we gather more and
more graph and network data from a wider variety of sources.

Acknowledgments The work was supported by NSF Grant #0746930.

References

1. J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A functional approach to external graph
algorithms. In Proceedings of the 6th Annual European Symposium on Algorithms, Venice,
Italy, 1998.

2. S. F. Adafre and M. de Rijke. Discovering missing links in wikipedia. In Proceedings of the
3rd International Workshop on Link Discovery, Chicago, IL, 2005.

3. R. D. Alba. A graph-theoretic definition of a sociometric clique. Journal of Mathematical
Sociology, 3:113-126, 1973.

4. R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E. Sontag, A. Zelikovsky, and K. Westbrook.
A novel method for signal transduction network inference from indirect experimental evi-
dence. Journal of Computational Biology, 14:407-419, 2007.

5. C. Alpert, A. Kahng, and S. Yao. Spectral partitioning: The more eigenvectors, the better.
Discrete Applied Math, 90:3-26, 1999.

6. R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data ware-
houses. In Proceedings of the 28th International Conference on Very Large Databases, Hong
Kong, China, 2002.

7. P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases: A probabilistic
approach. In Proceedings of the 22nd International Conference on Data Engineering, Hong
Kong, China, 2006.

8. A. Arenas, L. Danon, A. Daz-Guilera, P. M. Gleiser, and R. Guimer. Community analysis in
social networks. The European Physical Journal B, 38(2):373-380, 2004.

9. A. Arenas, A. Daz-Guilera, and C. J. Prez-Vicente. Synchronization reveals topological
scales in complex networks. Physical Review Letters, 96(11):114102, 2006.

10. R. Balasubramanyan, V. R. Carvalho, and W. Cohen. Cutonce- recipient recommendation
and leak detection in action. In Workshop on Enhanced Messaging, Chicago, IL, 2009.

11. A.-L. Barabasi and R. Albert. Emergence of Scaling in Random Networks. Science,
286(5439):509-512, 1999.

12. J. Barber. Modularity and community detection in bipartite networks. Physical Review E,
76:066102, 2007.

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 129

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

36.

. A. Ben-Hur and W. Noble. Choosing negative examples for the prediction of protein-protein
interactions. BMC Bioinformatics, 7:S2, 2006.

1. Bhattacharya and L. Getoor. Iterative record linkage for cleaning and integration. In Data
Mining and Knowledge Discovery, Paris, France, 2004.

I. Bhattacharya and L. Getoor. Relational clustering for multi-type entity resolution. In ACM
SIGKDD Workshop on Multi Relational Data Mining, Chicago, Illinois, 2005.

I. Bhattacharya and L. Getoor. A latent dirichlet model for unsupervised entity resolution. In
SIAM Conference on Data Mining, Bethesda, MD 2006.

I. Bhattacharya and L. Getoor. Collective entity resolution in relational data. ACM Transac-
tions on Knowledge Discovery from Data, 1:1-36, 2007.

M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string similarity
measures. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, D.C., 2003.

U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. N. Z, and D. Wagner. On
finding graph clusterings with maximum modularity. In Proceedings of 33rd International
Workshop on Graph-Theoretical Concepts in Computer Science, Dornburg, Germany, 2007.
V.R. Carvalho and W. W. Cohen. Preventing information leaks in email. In SIAM Conference
on Data Mining, Minneapolis, MN, 2007.

P. Chaiwanarom and C. Lursinsap. Link completion using prediction by partial matching.
In International Symposium on Communications and Information Technologies, Vientiane,
Lao, 2008.

S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyperlinks.
In ACM SIGMOD International Conference on Management of Data, Seattle, WA, 1998.

J. Chen and B. Yuan. Detecting functional modules in the yeast protein-protein interaction
network. Bioinformatics, 22(18):2283-2290, 2006.

A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of
missing links in networks. Nature, 453:98, 2008.

A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large
networks. Physical Review, 70(6):066111, 2004.

W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics
for name-matching tasks. In Proceedings of the International Joint Conference on Artificial
Intelligence Workshop on Information Integration, Acapulco, Mexico, 2003.

A. Culotta, M. Wick, R. Hall, M. Marzilli, and A. McCallum. Canonicalization of database
records using adaptive similarity measures. In Proceedings of the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, San Jose, CA, 2007.

A. P. Dempster, N. M. Laird, and D. Rubin. Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society Series B, 39(1):1 — 38, 1977.

M. Deng, S. Mehta, F. Sun, and T. Chen. Inferring domain-domain interactions from protein-
protein interactions. Genome Research, 12(10):1540-1548, October 2002.

C. Diehl, G. M. Namata, and L. Getoor. Relationship identification for social network discov-
ery. In Proceedings of the 22nd National Conference on Artificial Intelligence, Vancouver,
Canada, 2007.

L. Donetti and M. A. Muoz. Detecting network communities: A new systematic and efficient
algorithm. Journal of Statistical Mechanics, 10:10012, 2004.

X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex information
spaces. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, Baltimore, MD, 2005.

P. Erdos and A. Renyi. On the evolution of random graphs. Mathematics Institute Hungarian
Academy of Science, 5:17-61, 1960.

M. G. Everett and S. P. Borgatti. Analyzing clique overlap. Connections, 21(1):49-61, 1998.
. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet
topology. In Proceedings of the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, Cambridge, MA, 1999.

S. Farrell, C. Campbell, and S. Myagmar. Relescope: an experiment in accelerating relation-
ships. In Extended Abstracts on Human Factors in Computing Systems, 2005.

130

37

38

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

G.M. Namata et al.

. L. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical
Association, 64(328):1183-1210, 1969.

. G. W. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-organization and identification

of web communities. [EEE Computer, 35:66-71, 2002.

S. Fortunato, V. Latora, and M. Marchiori. Method to find community structures based on

information centrality. Physical Review E, 70(5):056104, 2004.

L. Getoor. Advanced Methods for Knowledge Discovery from Complex Data, chapter Link-

based classification. Springer, London, 2005.

L. Getoor and C. P. Diehl. Link mining: a survey. SIGKDD Explorations Newsletter, 7:3—12,

2005.

L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of link

structure. Machine Learning, 3:679-707, 2003.

L. Getoor, E. Segal, B. Taskar, and D. Koller. Probabilistic models of text and link struc-

ture for hypertext classification. In International Joint Conferences on Artificial Intelligence

Workshop on Text Learning: Beyond Supervision, 2001.

M. Girvan and M. E. J. Newman. Community structure in social and biological networks. In

Proceedings of National Academy of Science, 2002.

A. Goldenberg, J. Kubica, P. Komarek, A. Moore, and J. Schneider. A comparison of sta-

tistical and machine learning algorithms on the task of link completion. In Conference on

Knowledge Discovery and Data Mining, Workshop on Link Analysis for Detecting Complex

Behavior, Washington, D.C., 2003.

R. Guimera, M. Sales-Pardo, and L. A. N. Amaral. Module identification in bipartite and

directed networks. Physical Review E, 76:036102, 2007.

J. A. Hartigan. Clustering Algorithms. Wiley, New York NY, 1975.

O. Hassanzadeh, M. Sadoghi, and R. J. Miller. Accuracy of approximate string joins using

grams. In 5th International Workshop on Quality in Databases at VLDB, Vienna, Austria,

2007.

M. A. Herndndez and S. J. Stolfo. The merge/purge problem for large databases. In Proc. of

the ACM Sigmod International Conference on Management of Data, San Jose, CA, 1995.

H. Huang and J. S. Bader. Precision and recall estimates for two-hybrid screens. Bioinfor-

matics, 25(3):372-378, 2009.

Z. Huang, X. Li, and H. Chen. Link prediction approach to collaborative filtering. In

ACM/IEEE-CS Joint Conference on Digital Libraries, 2005.

Z. Huang and D. K. J. Lin. The Time-Series Link Prediction Problem with Applications in

Communication Surveillance. Informs Journal On Computing, 21:286-303, 2008.

Z.Huang and D. D. Zeng. A link prediction approach to anomalous email detection. In /EEE

International Conference on Systems, Man, and Cybernetics, Taipei, Taiwan, 2006.

P. Jaccard. Etude comparative de la distribution florale dans une portion des alpes et des jura.

Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547-579, 1901.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys,

31(3):264-323, 1999.

M. A. Jaro. Probabilistic linkage of large public health data files. Statistics in Medicine,

14:491-498, 1995.

D. Jensen, J. Neville, and B. Gallagher. Why collective inference improves relational classi-

fication. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Seattle, WA, 2004.

T. Joachims. Learning to Classify Text Using Support Vector Machines. PhD thesis, Univer-

sity of Dortmund, 2002.

D. V. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting relationships for domain-

independent data cleaning. In SIAM International Conference on Data Mining, Newport

Beach, CA, 2005.

C. Kalyan and K. Chandrasekaran. Information leak detection in financial e-mails using mail

pattern analysis under partial information. In Proceedings of the 7th Conference on WSEAS

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 131

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

International Conference on Applied Informatics and Communications, Athens, Greece,
2007.

A. E. Krause, K. A. Frank, D. M. Mason, R. E. Ulanowicz, and W. W. Taylor. Compartments
revealed in food-web structure. Nature, 426(6964):282-285, 2003.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In International Conference on Machine Learning,
Williamstown, MA, 2001.

A. Lancichinetti, S. Fortunato, and J. Kertesz. Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11:033015, 2009.

V. Latora and M. Marchiori. Efficient behavior of small-world networks. Physical Review
Letters, 87(19):198701, 2001.

J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolution of social net-
works. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, Nevada, 2008.

J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery from Data, 1(1):2, 2007.

V. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10:707, 1966.

X. Li, P. Morie, and D. Roth. Semantic integration in text: From ambiguous names to identi-
fiable entities. Al Magazine Special Issue on Semantic Integration, 26(1):45-58, 2005.

D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In Inter-
national Conference on Information and Knowledge Management, New Orleans, LA, 2003.
Q. Lu and L. Getoor. Link-based classification. In Proceedings of the International Confer-
ence on Machine Learning, 2003.

D. Lusseau and M. E. J. Newman. Identifying the role that animals play in their social net-
works. In Proceedings of the Royal Society of London, 2004.

J. B. MacQueen. Some methods for classification and analysis of multivariate observations.
In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967.
S. A. Macskassy and F. Provost. Classification in networked data: A toolkit and a univariate
case study. Journal of Machine Learning Research, 8:935-983, 2007.

A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data sets
with application to reference matching. In Proceedings of the 6th International Conference
On Knowledge Discovery and Data Mining, Boston, MA, 2000.

A. McCallum and B. Wellner. Toward conditional models of identity uncertainty with appli-
cation to proper noun coreference. In International Workshop on Information Integration on
the Web, 2003.

L. McDowell, K. M. Gupta, and D. W. Aha. Cautious inference in collective classification.
In Association for the Advancement of Artificial Intelligence, 2007.

D. Milne and I. H. Witten. Learning to link with wikipedia. In Proceedings of the 17th ACM
conference on Information and Knowledge Management, Napa Valley, CA, 2008.

A. E. Monge and C. P. Elkan. The field matching problem: Algorithms and applications. In
Proceedings of the 2nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Portland, Oregon, 1996.

A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In Proceedings of the Special Interest Group on
Management of Data Workshop on Research Issues on Data Mining and Knowledge Discov-
ery, Tucson, AZ, 1997.

J. Neville, M. Adler, and D. Jensen. Clustering relational data using attribute and link infor-
mation. In Proceedings of the Text Mining and Link Analysis Workshop, 18th International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003.

J. Neville and D. Jensen. Iterative classification in relational data. In Association for the
Advancement of Artificial Intelligence Workshop on Learning Statistical Models from Rela-
tional Data, 2000.

132

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

G.M. Namata et al.

. J. Neville and D. Jensen. Relational dependency networks. Journal of Machine Learning
Research, 8:653-692, 2007.

H. B. Newcombe and J. M. Kennedy. Record linkage: making maximum use of the discrim-
inating power of identifying information. Communications ACM, 5(11):563-566, 1962.

H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic linkage of vital
records. Science, 130:954-959, October 1959.

M. E. J. Newman. Fast algorithm for detecting community structure in networks. Physical
Review E, 69(6):066133, 2004.

M. E. J. Newman, A. L. Barabasi, and D. J. Watts. The Structure and Dynamics of Networks.
Princeton University Press, Princeton, NJ, 2006.

M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69:026113, 2004.

M. E. J. Newman and E. A. Leicht. Mixture models and exploratory analysis in networks. In
Proceedings of National Academy of Science, 2007.

J. O’Madadhain, J. Hutchins, and P. Smyth. Prediction and ranking algorithms for event-
based network data. SIGKDD Explorations Newsletter, 7(2):23-30, 2005.

M. Opper and D. Saad, editors. Advanced Mean Field Methods. Neural Information Pro-
cessing Series. MIT Press, Cambridge, MA, 2001. Theory and practice, Papers from the
workshop held at Aston University, Birmingham, 1999, A Bradford Book.

G. Palla, I. Dernyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure
of complex networks in nature and society. Nature, 435(7043):814-818, 2005.

H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity uncertainty and citation
matching. In Neural Information Processing Systems, Vancouver, Canada, 2003.

H. Poon and P. Domingos. Joint unsupervised coreference resolution with markov logic.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
Honolulu, HI, 2008.

A. Popescul and L. H. Ungar. Statistical relational learning for link prediction. In Interna-
tional Joint Conferences on Artificial Intelligence Workshop on Learning Statistical Models
from Relational Data, Acapulco, Mexico, 2003.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco,
CA, USA, 1993.

M. J. Rattigan and D. Jensen. The case for anomalous link discovery. SIGKDD Explorations
Newsletter, 7:41-47, 2005.

J. Reichardt and S. Bornholdt. Statistical mechanics of community detection. Physical
Review E, 74(1):016110, 2006.

M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107-136,
2006.

M. Rosvall and C. T. Bergstrom. An information-theoretic framework for resolving commu-
nity structure in complex networks. In Proceedings of National Academy of Science, 2007.
M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal com-
munity structure. In Proceedings of National Academy of Science, 2008.

P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective
classification in network data. AI Magazine, 29(3):93—-106, 2008.

C. R. Shalizi, M. F. Camperi, and K. L. Klinkner. Discovering functional communities
in dynamical networks. Statistical Network Analysis: Models, Issues, and New Directions,
pages 140-157, 2007.

P. Singla and P. Domingos. Entity resolution with markov logic. I[EEE International Confer-
ence on Data Mining, 21:572-582, Hong Kong, China, 2006.

S. Slattery and M. Craven. Combining statistical and relational methods for learning in
hypertext domains. In Proceedings of the 8th international Conference on Inductive Logic
Programming, Madison, Wisconsin, 1998.

N. Spring, D. Wetherall, and T. Anderson. Reverse engineering the internet. SIGCOMM
Computer Communication Review, 34(1):3-8, 2004.

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 133

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

E. Sprinzak, Y. Altuvia, and H. Margalit. Characterization and prediction of protein-protein
interactions within and between complexes. Proceedings of the National Academy of Sci-
ences, 103(40):14718-14723, 2006.

A. Szilagyi, V. Grimm, A. K. Arakaki, and J. Skolnick. Prediction of physical protein-protein
interactions. Physical Biology, 2(2):S1-S16, 2005.

C. Tantipathananandh and T. Y. Berger-Wolf. Algorithms for identifying dynamic commu-
nities. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, 2009.

B. Taskar, A. Pieter, and D. Koller. Discriminative probabilistic models for relational data. In
Conference on Uncertainty in Artificial Intelligence, Alberta, Canada, 2002.

B. Taskar, M.-F. Wong, P. Abbeel, and D. Koller. Link prediction in relational data. In
Advances in Neural Information Processing Systems, Vancouver, Canada, 2003.

S. Tejada, C. A. Knoblock, and S. Minton. Learning object identification rules for informa-
tion integration. Information Systems, 26:2001, 2001.

I. Vragovic and E. Louis. Network community structure and loop coefficient method. Physi-
cal Review E, 74(1):016105, 2006.

S. Wasserman, K. Faust, and D. Iacobucci. Social Network Analysis: Methods and Applica-
tions (Structural Analysis in the Social Sciences). Cambridge University Press, Cambridge
November 1994.

D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440-442, June 1998.

Y. Weiss. Segmentation using eigenvectors: A unifying view. In Proceedings of International
Conference on Computer Vision, 1999.

M. L. Wick, K. Rohanimanesh, K. Schultz, and A. McCallum. A unified approach for schema
matching, coreference and canonicalization. In Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, 2008.
W. E. Winkler. The state of record linkage and current research problems. Technical report,
Statistical Research Division, U.S. Census Bureau, 1999.

H. Yu, A. Paccanaro, V. Trifonov, and M. Gerstein. Predicting interactions in protein net-
works by completing defective cliques. Bioinformatics, 22(7):823-829, 2006.

E. Zheleva, L. Getoor, J. Golbeck, and U. Kuter. Using friendship ties and family circles for
link prediction. In 2nd ACM SIGKDD Workshop on Social Network Mining and Analysis,
Las Vegas, Nevada, 2008.

J. Zhu. Mining Web Site Link Structure for Adaptive Web Site Navigation and Search. PhD
thesis, University of Ulster at Jordanstown, UK, 2003.

Chapter S
Markov Logic: A Language and Algorithms
for Link Mining

Pedro Domingos, Daniel Lowd, Stanley Kok, Aniruddh Nath, Hoifung Poon,
Matthew Richardson, and Parag Singla

Abstract Link mining problems are characterized by high complexity (since linked
objects are not statistically independent) and uncertainty (since data is noisy and
incomplete). Thus they necessitate a modeling language that is both probabilis-
tic and relational. Markov logic provides this by attaching weights to formulas in
first-order logic and viewing them as templates for features of Markov networks.
Many link mining problems can be elegantly formulated and efficiently solved
using Markov logic. Inference algorithms for Markov logic draw on ideas from
satisfiability testing, Markov chain Monte Carlo, belief propagation, and resolu-
tion. Learning algorithms are based on convex optimization, pseudo-likelihood, and
inductive logic programming. Markov logic has been used successfully in a wide
variety of link mining applications and is the basis of the open-source Alchemy
system.

5.1 Introduction

Most objects and entities in the world are not independent, but are instead linked to
many other objects through a diverse set of relationships: people have friends, fam-
ily, and coworkers; scientific papers have authors, venues, and references to other
papers; Web pages link to other Web pages and have hierarchical structure; proteins
have locations and functions, and interact with other proteins. In these examples, as
in many others, the context provided by these relationships is essential for under-
standing the entities themselves. Furthermore, the relationships are often worthy of
analysis in their own right. In link mining, the connections among objects are explic-
itly modeled to improve performance in tasks such as classification, clustering, and
ranking, as well as enabling new applications, such as link prediction.

P. Domingos (=)

Department of Computer Science and Engineering, University of Washington, Seattle,
WA 98195-2350, USA

e-mail: pedrod @cs.washington.edu

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications, 135
DOI 10.1007/978-1-4419-6515-8_5, © Springer Science+Business Media, LLC 2010

136 P. Domingos et al.

As link mining grows in popularity, the number of link mining problems and
approaches continues to multiply. Rather than solving each problem and developing
each technique in isolation, we need a common representation language for link
mining. Such a language would serve as an interface layer between link mining
applications and the algorithms used to solve them, much as the Internet serves as
an interface layer for networking, relational models serve as an interface layer for
databases, etc. This would both unify many approaches and lower the barrier of
entry to new researchers and practitioners.

At a minimum, a formal language for link mining must be (a) relational and (b)
probabilistic. Link mining problems are clearly relational, since each link among
objects can be viewed as a relation. First-order logic is a powerful and flexible way
to represent relational knowledge. Important concepts such as transitivity (e.g., “My
friend’s friend is also my friend”), homophily (e.g., “Friends have similar smoking
habits”), and symmetry (e.g., “Friendship is mutual”) can be expressed as short
formulas in first-order logic. It is also possible to represent much more complex,
domain-specific rules, such as “Each graduate student coauthors at least one publi-
cation with his or her advisor.”

Most link mining problems have a great deal of uncertainty as well. Link data
is typically very noisy and incomplete. Even with a perfect model, few questions
can be answered with certainty due to limited evidence and inherently stochastic
domains. The standard language for modeling uncertainty is probability. In partic-
ular, probabilistic graphical models have proven an effective tool in solving a wide
variety of problems in data mining and machine learning.

Since link mining problems are both relational and uncertain, they require meth-
ods that combine logic and probability. Neither one alone suffices: first-order logic
is too brittle and does not handle uncertainty; standard graphical models assume
that data points are i.i.d. (independent and identically distributed), and do not han-
dle the relational dependencies and variable-size networks present in link mining
problems.

Markov logic [7] is a simple yet powerful generalization of probabilistic graphi-
cal models and first-order logic, making it ideally suited for link mining. A Markov
logic network is a set of weighted first-order formulas, viewed as templates for con-
structing Markov networks. This yields a well-defined probability distribution in
which worlds are more likely when they satisfy a higher-weight set of ground for-
mulas. Intuitively, the magnitude of the weight corresponds to the relative strength
of its formula; in the infinite-weight limit, Markov logic reduces to first-order
logic. Weights can be set by hand or learned automatically from data. Algorithms
for learning or revising formulas from data have also been developed. Inference
algorithms for Markov logic combine ideas from probabilistic and logical infer-
ence, including Markov chain Monte Carlo, belief propagation, satisfiability, and
resolution.

Markov logic has already been used to efficiently develop state-of-the-art mod-
els for many link mining problems, including collective classification, link-based
clustering, record linkage, and link prediction, in application areas such as the Web,
social networks, molecular biology, and information extraction. Markov logic makes

5 Markov Logic: A Language and Algorithms for Link Mining 137

link mining easier by offering a simple framework for representing well-defined
probability distributions over uncertain, relational data. Many existing approaches
can be described by a few weighted formulas, and multiple approaches can be com-
bined by including all of the relevant formulas. Many algorithms, as well as sample
data sets and applications, are available in the open-source Alchemy system [17]
(alchemy.cs.washington.edu).

In this chapter, we describe Markov logic and its algorithms and show how they
can be used as a general framework for link mining. We begin with background on
first-order logic and Markov networks. We then define Markov logic and a few of its
basic extensions. Next, we discuss a number of inference and learning algorithms.
Finally, we show two link mining applications, each of which can be written in just
a few formulas and solved using the previous algorithms.

5.2 First-Order Logic

A first-order knowledge base (K B) is a set of sentences or formulas in first-order
logic [9]. Formulas are constructed using four types of symbols: constants, vari-
ables, functions, and predicates. Constant symbols represent objects in the domain
of interest (e.g., people: Anna, Bob, Chris). Variable symbols range over the objects
in the domain. Function symbols (e.g., Mother0f) represent mappings from tuples
of objects to objects. Predicate symbols represent relations among objects in the
domain (e.g., Friends) or attributes of objects (e.g., Smokes). An interpretation
specifies which objects, functions, and relations in the domain are represented by
which symbols. Variables and constants may be fyped, in which case variables range
only over objects of the corresponding type, and constants can only represent objects
of the corresponding type. For example, the variable x might range over people (e.g.,
Anna, Bob), and the constant C might represent a city (e.g, Seattle, Tokyo).

A term is any expression representing an object in the domain. It can be a con-
stant, a variable, or a function applied to a tuple of terms. For example, Anna, x,
and GreatestCommonDivisor(x,y) are terms. An atomic formula or atom is a
predicate symbol applied to a tuple of terms (e.g., Friends(x, MotherOf (Anna))).
Formulas are recursively constructed from atomic formulas using logical connec-
tives and quantifiers. If | and F, are formulas, the following are also formulas:
—F] (negation), which is true iff Fj is false; F; A F> (conjunction), which is true
iff both F; and F; are true; F Vv F> (disjunction), which is true iff F or F; is true;
F1 = F, (implication), which is true iff Fj is false or F; is true; F; < F> (equiv-
alence), which is true iff F; and F> have the same truth value; Vx F; (universal
quantification), which is true iff Fj is true for every object x in the domain; and
dx Fi (existential quantification), which is true iff Fj is true for at least one object
x in the domain. Parentheses may be used to enforce precedence. A positive literal
is an atomic formula; a negative literal is a negated atomic formula. The formulas
in a KB are implicitly conjoined, and thus a KB can be viewed as a single large
formula. A ground term is a term containing no variables. A ground atom or ground

138 P. Domingos et al.

predicate is an atomic formula all of whose arguments are ground terms. A possible
world (along with an interpretation) assigns a truth value to each possible ground
atom.

A formula is satisfiable iff there exists at least one world in which it is true. The
basic inference problem in first-order logic is to determine whether a knowledge
base KB entails a formula F, i.e., if F is true in all worlds where KB is true (denoted
by KB = F). This is often done by refutation: KB entails F iff KB U—F is unsatis-
fiable. (Thus, if a KB contains a contradiction, all formulas trivially follow from it,
which makes painstaking knowledge engineering a necessity.) For automated infer-
ence, it is often convenient to convert formulas to a more regular form, typically
clausal form (also known as conjunctive normal form (CNF)). A KB in clausal form
is a conjunction of clauses, a clause being a disjunction of literals. Every KB in
first-order logic can be converted to clausal form using a mechanical sequence of
stepsl . Clausal form is used in resolution, a sound and refutation-complete inference
procedure for first-order logic [34].

Inference in first-order logic is only semi-decidable. Because of this, knowledge
bases are often constructed using a restricted subset of first-order logic with more
desirable properties. The most widely used restriction is to Horn clauses, which are
clauses containing at most one positive literal. The Prolog programming language
is based on Horn clause logic [20]. Prolog programs can be learned from databases
by searching for Horn clauses that (approximately) hold in the data; this is studied
in the field of inductive logic programming (ILP) [18].

Table 5.1 shows a simple KB and its conversion to clausal form. Notice that,
while these formulas may be typically true in the real world, they are not always
true. In most domains it is very difficult to come up with non-trivial formulas that
are always true, and such formulas capture only a fraction of the relevant knowl-
edge. Thus, despite its expressiveness, pure first-order logic has limited applicability
to practical link mining problems. Many ad hoc extensions to address this have

Table 5.1 Example of a first-order knowledge base and MLN. Fr() is short for Friends(), Sm()
for Smokes(), and Ca() for Cancer()

First-order logic Clausal form Weight
“Friends of friends are friends.”

VxVyVz Fr(x,y) AFr(y, z) = Fr(x, z) —Fr(x,y) V —=Fr(y, z) V Fr(x, z) 0.7
“Friendless people smoke.”

Vx (—(3y Fr(x, y)) = Sm(x)) Fr(x, g(x)) V Sm(x) 2.3
“Smoking causes cancer.”

Vx Sm(x) = Ca(x) —=Sm(x) V Ca(x) 1.5
“If two people are friends, then either

both smoke or neither does.” —Fr(x,y) V Sm(x) V —=Sn(y), 1.1

VxVy Fr(x, y) = (Sm(x) < Sm(y)) —Fr(x,y) V —Sm(x) V Sm(y) 1.1

! This conversion includes the removal of existential quantifiers by Skolemization, which is not
sound in general. However, in finite domains an existentially quantified formula can simply be
replaced by a disjunction of its groundings.

5 Markov Logic: A Language and Algorithms for Link Mining 139

been proposed. In the more limited case of propositional logic, the problem is well
solved by probabilistic graphical models such as Markov networks, described in the
next section. We will later show how to generalize these models to the first-order
case.

5.3 Markov Networks

A Markov network (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1, Xa, ..., X;) € X [27]. It is composed of
an undirected graph G and a set of potential functions ¢i. The graph has a node
for each variable, and the model has a potential function for each clique in the
graph. A potential function is a non-negative real-valued function of the state of the
corresponding clique. The joint distribution represented by a Markov network is
given by

1
PX=x) = — [[oeCxwp, (5.1)
k

where x{y is the state of the kth clique (i.e., the state of the variables that appear in
that clique). Z, known as the partition function, is givenby Z = 3" v [[; ox(xx))-
Markov networks are often conveniently represented as log-linear models, with each
clique potential replaced by an exponentiated weighted sum of features of the state,
leading to

1
P(X=x) = —exp > wifi) |- (5.2)
j

A feature may be any real-valued function of the state. This chapter will focus on
binary features, f;(x) € {0, 1}. In the most direct translation from the potential
function form (5.1), there is one feature corresponding to each possible state xi)
of each clique, with its weight being log ¢ (x(x}). This representation is exponential
in the size of the cliques. However, we are free to specify a much smaller number
of features (e.g., logical functions of the state of the clique), allowing for a more
compact representation than the potential function form, particularly when large
cliques are present. Markov logic will take advantage of this.

5.4 Markov Logic

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The basic idea in
Markov logic is to soften these constraints: when a world violates one formula in the

140 P. Domingos et al.

KB it is less probable, but not impossible. The fewer formulas a world violates, the
more probable it is. Each formula has an associated weight (e.g., see Table 5.1) that
reflects how strong a constraint it is: the higher the weight, the greater the difference
in log probability between a world that satisfies the formula and one that does not,
other things being equal.

Definition 1 [32] A Markov logic network (MLN) L is a set of pairs (F;, w;), where
F; is a formula in first-order logic and w; is a real number. Together with a finite set
of constants C = {cy, 2, ..., ¢|c|}, it defines a Markov network My ¢ ((5.1) and
(5.2)) as follows:

1. My c contains one binary node for each possible grounding of each atom appear-
ing in L. The value of the node is 1 if the ground atom is true, and O otherwise.

2. My, c contains one feature for each possible grounding of each formula F; in L.
The value of this feature is 1 if the ground formula is true, and 0 otherwise. The
weight of the feature is the w; associated with F; in L.

Thus there is an edge between two nodes of M, ¢ iff the corresponding ground
atoms appear together in at least one grounding of one formula in L. For exam-
ple, an MLN containing the formulas Vx Smokes(x) = Cancer(x) (smoking
causes cancer) and VxVy Friends(x,y) = (Smokes(x) < Smokes(y)) (friends
have similar smoking habits) applied to the constants Anna and Bob (or A and
B for short) yields the ground Markov network in Fig. 5.1. Its features include
Smokes(Anna) = Cancer(Anna), etc. Notice that, although the two formulas
above are false as universally quantified logical statements, as weighted features
of an MLN they capture valid statistical regularities and in fact represent a standard
social network model [43]. Notice also that nodes and links in the social networks
are both represented as nodes in the Markov network; arcs in the Markov network
represent probabilistic dependencies between nodes and links in the social network
(e.g., Anna’s smoking habits depend on her friends’ smoking habits).

An MLN can be viewed as a template for constructing Markov networks. From
Definition 1 and (5.1) and (5.2), the probability distribution over possible worlds x
specified by the ground Markov network My ¢ is given by

Friends(A,B)

.' Smokes(B)

Friends(B,A)

Fig. 5.1 Ground Markov network obtained by applying an MLN containing the formulas
Vx Smokes(x) = Cancer(x) and VxVy Friends(x,y) = (Smokes(x) < Smokes(y)) to the
constants Anna(A) and Bob(B).

Friends(A,A)

Friends(B,B)

5 Markov Logic: A Language and Algorithms for Link Mining 141

F
P(X=x) = % exp (Z w,-n,-(x)) , (5.3)

i=1

where F is the number of formulas in the MLN and 7;(x) is the number of true
groundings of F; in x. As formula weights increase, an MLN increasingly resembles
a purely logical KB, becoming equivalent to one in the limit of all infinite weights.
When the weights are positive and finite and all formulas are simultaneously sat-
isfiable, the satisfying solutions are the modes of the distribution represented by
the ground Markov network. Most importantly, Markov logic allows contradictions
between formulas, which it resolves simply by weighing the evidence on both sides.

It is interesting to see a simple example of how Markov logic generalizes
first-order logic. Consider an MLN containing the single formula Vx R(x) =
S(x) with weight w and C = {A}. This leads to four possible worlds:
{—R(A), =S(A)}, {—R(A),S(A)}, {R(A), ~S(A)}, and {R(A), S(A)}. From (5.3) we
obtain that P({R(A), =S(4)}) = 1/(Be" + 1) and the probability of each of the
other three worlds is e*/(3e” + 1). (The denominator is the partition function
Z; see Section 5.3.) Thus, if w > 0, the effect of the MLN is to make the world
that is inconsistent with Vx R(x) = S(x) less likely than the other three. From the
probabilities above we obtain that P(S(A)|R(A)) = 1/(1 + e~ "*). When w — o0,
P(S(A)|R(A)) — 1, recovering the logical entailment.

It is easily seen that all discrete probabilistic models expressible as products
of potentials, including Markov networks and Bayesian networks, are expressible
in Markov logic. In particular, many of the models frequently used in machine
learning and data mining can be stated quite concisely as MLNs and combined and
extended simply by adding the corresponding formulas. Most significantly, Markov
logic facilitates the construction of non-i.i.d. models (i.e., models where objects are
not independent and identically distributed). The application section shows how to
describe logistic regression in Markov logic and easily extend it to perform collec-
tive classification over a set of linked objects.

When working with Markov logic, we typically make three assumptions about
the logical representation: different constants refer to different objects (unique
names), the only objects in the domain are those representable using the constant
and function symbols (domain closure), and the value of each function for each tuple
of arguments is always a known constant (known functions). These assumptions
ensure that the number of possible worlds is finite and that the Markov logic net-
work will give a well-defined probability distribution. These assumptions are quite
reasonable in most practical applications and greatly simplify the use of MLNs. We
will make these assumptions for the remainder of the chapter. See Richardson and
Domingos [32] for further details on the Markov logic representation.

Markov logic can also be applied to a number of interesting infinite domains
where some of these assumptions do not hold. See Singla and Domingos [39] for
details on Markov logic in infinite domains.

For decision theoretic problems, such as the viral marketing application we
will discuss later, we can easily extend MLNs to Markov logic decision networks

142 P. Domingos et al.

(MLDN:Ss) by attaching a utility to each formula as well as a weight [25]. The utility
of a world is the sum of the utilities of its satisfied formulas. Just as an MLN plus
a set of constants defines a Markov network, an MLDN plus a set of constants
defines a Markov decision network. The optimal decision is the setting of the action
predicates that jointly maximizes expected utility.

5.5 Inference

Given an MLN model of a link mining problem, the questions of interest are
answered by performing inference on it. (For example, “What are the topics of these
Web pages, given the words on them and the links between them?”) Recall that an
MLN acts as a template for a Markov network. Therefore, we can always answer
queries using standard Markov network inference methods on the instantiated net-
work. Several of these methods have been extended to take particular advantage of
the logical structure in an MLN, yielding tremendous savings in memory and time.
We first provide an overview of inference in Markov networks and then describe
how these methods can be adapted to take advantage of MLN structure.

5.5.1 Markov Network Inference

The main inference problem in Markov networks is computing the probabilities
of query variables given some evidence and is #P-complete [35]. The most widely
used method for approximate inference in Markov networks is Markov chain Monte
Carlo (MCMC) [10], and in particular Gibbs sampling, which proceeds by sampling
each variable in turn given its Markov blanket. (The Markov blanket of a node is
the minimal set of nodes that render it independent of the remaining network; in a
Markov network, this is simply the node’s neighbors in the graph.) Marginal prob-
abilities are computed by counting over these samples; conditional probabilities are
computed by running the Gibbs sampler with the conditioning variables clamped to
their given values.

Another popular method for inference in Markov networks is belief propaga-
tion [46]. Belief propagation is an algorithm for computing the exact marginal
probability of each query variable in a tree-structured graphical model. The method
consists of passing messages between variables and the potential functions they par-
ticipate in. The message from a variable x to a potential function f is

ey = [maea). (5.4)
henb()\{f}

where nb(x) is the set of potentials x appears in. The message from a potential
function to a variable is

5 Markov Logic: A Language and Algorithms for Link Mining 143

piox@ =Y 0 J] m-rm], (5.5)
~{x} yenb(f)\{x}

where nb(f) are the variables in f, and the sum is over all of these except x. In
a tree, the messages from leaf variables are initialized to 1, and a pass from the
leaves to the root and back to the leaves suffices. The (unnormalized) marginal of
each variable x is then given by [], enb(x) Wh—x(x). Evidence is incorporated by
setting f(x) = O for states x that are incompatible with it. This algorithm can still
be applied when the graph has loops, repeating the message- passing until conver-
gence. Although this loopy belief propagation has no guarantees of convergence or
of giving accurate results, in practice it often does, and can be much more efficient
than other methods.

Another basic inference task is finding the most probable state of the world given
some evidence. This is known as MAP inference in the Markov network literature
and MPE inference in the Bayesian network literature. (MAP means “maximum a
posteriori,” and MPE means “most probable explanation.”) It is NP-hard. Notice
that MAP inference cannot be solved simply by computing the probability of each
random variable and then assigning the most probable value, because the combina-
tion of two assignments that are individually probable may itself be improbable or
even impossible. Belief propagation can also be used to solve the MAP problem,
by replacing summation with maximization in (5.5). Other popular methods include
greedy search, simulated annealing, and graph cuts.

We first look at how to perform MAP inference and then at computing probabil-
ities. In the remainder of this chapter, we assume that the MLN is in function-free
clausal form for convenience, but these methods can be applied to other MLNs as
well.

5.5.2 MAP/MPE Inference

Because of the form of (5.3) in Markov logic, the MAP inference problem reduces to
finding the truth assignment that maximizes the sum of weights of satisfied clauses.
This can be done using any weighted satisfiability solver and (remarkably) need
not be more expensive than standard logical inference by model checking. (In fact,
it can be faster, if some hard constraints are softened.) The Alchemy system uses
MaxWalkSAT, a weighted variant of the WalkSAT local-search satisfiability solver,
which can solve hard problems with hundreds of thousands of variables in min-
utes [12]. MaxWalkSAT performs this stochastic search by picking an unsatisfied
clause at random and flipping the truth value of one of the atoms in it. With a
certain probability, the atom is chosen randomly; otherwise, the atom is chosen to
maximize the sum of satisfied clause weights when flipped. This combination of
random and greedy steps allows MaxWalkSAT to avoid getting stuck in local optima
while searching. Pseudocode for MaxWalkSAT is shown in Table 5.2. DeltaCost(v)
computes the change in the sum of weights of unsatisfied clauses that results from

144 P. Domingos et al.

Table 5.2 MaxWalkSAT algorithm for MPE inference

function MaxWalkSAT(L, tmax, fmax, farget, p)
inputs: L, a set of weighted clauses
tmax, the maximum number of tries
fmax, the maximum number of flips
target, target solution cost
P, probability of taking a random step
output: soln, best variable assignment found
vars <— variables in L
for i < 1 to fiyax
soln < a random truth assignment to vars
cost <— sum of weights of unsatisfied clauses in soln
for i < 1to fiax
if cost < target
return “Success, solution is,” soln
¢ < arandomly chosen unsatisfied clause
if Uniform(0,1) < p
vy < arandomly chosen variable from ¢
else
for each variable v in ¢
compute DeltaCost(v)
vy < v with lowest DeltaCost(v)
soln < soln with v ¢ flipped
cost < cost + DeltaCost(v 1)
return “Failure, best assignment is,” best soln found

flipping variable v in the current solution. Uniform(0,1) returns a uniform deviate
from the interval [0, 1].

MAP inference in Markov logic can also be performed using cutting plane meth-
ods [33] and others.

5.5.3 Marginal and Conditional Probabilities

We now consider the task of computing the probability that a formula holds, given
an MLN and set of constants, and possibly other formulas as evidence. For the
remainder of the chapter, we focus on the typical case where the evidence is a
conjunction of ground atoms. In this scenario, further efficiency can be gained by
applying a generalization of knowledge-based model construction [45]. This con-
structs only the minimal subset of the ground network required to answer the query
and runs MCMC (or any other probabilistic inference method) on it. The network
is constructed by checking if the atoms that appear in the query formula are in the
evidence. If they are, the construction is complete. Those that are not are added to
the network, and we in turn check the atoms they directly depend on (i.e., the atoms
that appear in some formula with them). This process is repeated until all relevant
atoms have been retrieved. While in the worst case it yields no savings, in practice it

5 Markov Logic: A Language and Algorithms for Link Mining 145

can vastly reduce the time and memory required for inference. See Richardson and
Domingos [32] for details.

Given the relevant ground network, inference can be performed using standard
methods like MCMC and belief propagation. One problem with this is that these
methods break down in the presence of deterministic or near-deterministic depen-
dencies. Deterministic dependencies break up the space of possible worlds into
regions that are not reachable from each other, violating a basic requirement of
MCMC. Near-deterministic dependencies greatly slow down inference, by creat-
ing regions of low probability that are very difficult to traverse. Running multiple
chains with random starting points does not solve this problem, because it does not
guarantee that different regions will be sampled with frequency proportional to their
probability, and there may be a very large number of regions.

We have successfully addressed this problem by combining MCMC with satisfi-
ability testing in the MC-SAT algorithm [28]. MC-SAT is a slice sampling MCMC
algorithm. It uses a combination of satisfiability testing and simulated annealing to
sample from the slice. The advantage of using a satisfiability solver (WalkSAT) is
that it efficiently finds isolated modes in the distribution, and as a result the Markov
chain mixes very rapidly. The slice sampling scheme ensures that detailed balance
is (approximately) preserved. MC-SAT is orders of magnitude faster than standard
MCMC methods, such as Gibbs sampling and simulated tempering, and is applica-
ble to any model that can be expressed in Markov logic.

Slice sampling [4] is an instance of a widely used approach in MCMC inference
that introduces auxiliary variables to capture the dependencies between observed
variables. For example, to sample from P(X = x) = (1/2Z) [[; ¢x(xx}), we can
define P(X =x,U =u) = (1/Z) [z 10.¢ (xep)1 k), Where ¢y is the kth poten-
tial function, uy is the kth auxiliary variable, Ij, pj(ux) = 1 if a < ux < b,
and Ij4,p)(ux) = O otherwise. The marginal distribution of X under this joint is
P(X = x), so to sample from the original distribution it suffices to sample from
P(x,u) and ignore the u values. P (ui|x) is uniform in [0, ¢ (x))] and thus easy
to sample from. The main challenge is to sample x given u, which is uniform among
all X that satisfies ¢y (x(x)) > uy for all k. MC-SAT uses SampleSAT [44] to do this.
In each sampling step, MC-SAT takes the set of all ground clauses satisfied by the
current state of the world and constructs a subset, M, that must be satisfied by the
next sampled state of the world. (For the moment we will assume that all clauses
have positive weight.) Specifically, a satisfied ground clause is included in M with
probability 1 —e™", where w is the clause’s weight. We then take as the next state a
uniform sample from the set of states SAT (M) that satisfy M. (Notice that SAT (M)
is never empty, because it always contains at least the current state.) Table 5.3 gives
pseudocode for MC-SAT. Us is the uniform distribution over set S. At each step,
all hard clauses are selected with probability 1, and thus all sampled states satisfy
them. Negative weights are handled by noting that a clause with weight w < 0 is
equivalent to its negation with weight —w), and a clause’s negation is the conjunction
of the negations of all of its literals. Thus, instead of checking whether the clause is
satisfied, we check whether its negation is satisfied; if it is, with probability 1 — e%
we select all of its negated literals, and with probability e we select none.

146 P. Domingos et al.

Table 5.3 Efficient MCMC inference algorithm for MLNs

function MC-SAT(L, n)
inputs: L, a set of weighted clauses {(w;, c;)}
n, number of samples
output: {x(l), o x(”)}, set of n samples
x©@ « Satisfy(hard clauses in L)
fori < lton
M <0
for all (wy, cx) € L satisfied by x@=D
With probability 1 — e™"* add ¢, to M
Sample x(i) ~ USAT(M)

It can be shown that MC-SAT satisfies the MCMC criteria of detailed balance
and ergodicity [28], assuming a perfect uniform sampler. In general, uniform sam-
pling is #P-hard and SampleSAT [44] only yields approximately uniform samples.
However, experiments show that MC-SAT is still able to produce very accurate
probability estimates, and its performance is not very sensitive to the parameter
setting of SampleSAT.

5.5.4 Scaling Up Inference

5.5.4.1 Lazy Inference

One problem with the aforementioned approaches is that they require propositional-
izing the domain (i.e., grounding all atoms and clauses in all possible ways), which
consumes memory exponential in the arity of the clauses. Lazy inference meth-
ods [29, 38] overcome this by only grounding atoms and clauses as needed. This
takes advantage of the sparseness of relational domains, where most atoms are false
and most clauses are trivially satisfied. For example, in the domain of scientific
research papers, most groundings of the atom Author(person, paper) are false
and most groundings of the clause Author(pl, paper) A Author(p2, paper) =
Coauthor(p1, p2) are trivially satisfied. With lazy inference, the memory cost does
not scale with the number of possible clause groundings, but only with the number
of groundings that have non-default values at some point in the inference.

We first describe a general approach for making inference algorithms lazy and
then show how it can be applied to create a lazy version of MaxWalkSAT. We
have also developed a lazy version of MC-SAT. Working implementations of both
algorithms are available in the Alchemy system. See Poon et al. [29] for more
details.

Our approach depends on the concept of “default” values that occur much more
frequently than others. In relational domains, the default is false for atoms and true
for clauses. In a domain where most variables assume the default value, it is wasteful
to allocate memory for all variables and functions in advance. The basic idea is to
allocate memory only for a small subset of “active” variables and functions and

5 Markov Logic: A Language and Algorithms for Link Mining 147

activate more if necessary as inference proceeds. In addition to saving memory, this
can reduce inference time as well, since we do not allocate memory or compute
values for functions that are never used.

Definition 2 Let X be the set of variables and D be their domain®. The default
value d* € D is the most frequent value of the variables. An evidence variable is a
variable whose value is given and fixed. A function f = f(z1,z2, -, zx) inputs
z;’s, which are either variables or functions, and outputs some value in the range

of f.

Although these methods can be applied to other inference algorithms, we focus
on relational domains. Variables are ground atoms, which take binary values (i.e.,
D = {true, false}). The default value for variables is false (i.e., d* = false).
Examples of functions are clauses and DeltaCost in MaxWalkSAT (Table 5.2). Like
variables, functions may also have default values (e.g., true for clauses). The inputs
to a relational inference algorithm are a weighted KB and a set of evidence atoms
(DB). Eager algorithms work by first carrying out propositionalization and then
calling a propositional algorithm. In lazy inference, we directly work on the KB and
DB. The following concepts are crucial to lazy inference.

Definition 3 A variable v is active iff v is set to a non-default value at some point,
and x is inactive if the value of x has always been d*. A function f is activated by
a variable v if either v is an input of f or v activates a function g that is an input

of f.

Let A be the eager algorithm that we want to make lazy. We make three assump-
tions about A:

1. A updates one variable at a time. (If not, the extension is straightforward.)

2. The values of variables in A are properly encapsulated so that they can be
accessed by the rest of the algorithm only via two methods: ReadVar(x) (which
returns the value of x) and WriteVar(x, v) (which sets the value of x to v). This is
reasonable given the conventions in software development, and if not, it is easy
to implement.

3. A always sets values of variables before calling a function that depends on those
variables, as it should.

To develop the lazy version of A, we first identify the variables (usually all) and
functions to make lazy. We then modify the value-accessing methods and replace the
propositionalization step with lazy initialization as follows. The rest of the algorithm
remains the same.

ReadVar(x): If x is in memory, Lazy-.A returns its value as A; otherwise, it returns
d*.

2 For simplicity we assume that all variables have the same domain. The extension to different
domains is straightforward.

148 P. Domingos et al.

WriteVar(x, v): If x is in memory, Lazy-A updates its value as A. If not, and if
v = d*, no action is taken; otherwise, Lazy-A activates (allocates memory
for) x and the functions activated by x, and then sets the value.

Initialization: Lazy-A starts by allocating memory for the lazy functions that out-
put non-default values when all variables assume the default values. It then
calls WriteVar to set values for evidence variables, which activates those
evidence variables with non-default values and the functions they activate.
Such variables become the initial active variables and their values are fixed
throughout the inference.

Lazy-.A carries out the same inference steps as .4 and produces the same result. It
never allocates memory for more variables/functions than .4, but each access incurs
slightly more overhead (in checking whether a variable or function is in memory).
In the worst case, most variables are updated, and Lazy-.A produces little savings.
However, if the updates are sparse, as is the case for most algorithms in relational
domains, Lazy-.A can greatly reduce memory and time because it activates and com-
putes the values for many fewer variables and functions.

Applying this method to MaxWalkSAT is fairly straightforward: each ground
atom is a variable and each ground clause is a function to be made lazy. Follow-
ing Singla and Domingos [38], we refer to the resulting algorithm as LazySAT.
LazySAT initializes by activating true evidence atoms and initial unsatisfied clauses
(i.e., clauses which are unsatisfied when the true evidence atoms are set to true and
all other atoms are set to false)>. At each step in the search, the atom that is flipped
is activated, as are any clauses that by definition should become active as a result.
While computing DeltaCost(v), if v is active, the relevant clauses are already in
memory; otherwise, they will be activated when v is set to true (a necessary step
before computing the cost change when v is set to true). Table 5.4 gives pseudocode
for LazySAT.

Experiments in a number of domains show that LazySAT can yield very large
memory reductions, and these reductions increase with domain size [38]. For
domains whose full instantiations fit in memory, running time is comparable; as
problems become larger, full instantiation for MaxWalkSAT becomes impossible.

We have also used this method to implement a lazy version of MC-SAT that
avoids grounding unnecessary atoms and clauses [29].

5.5.4.2 Lifted Inference

The inference methods discussed so far are purely probabilistic in the sense that
they propositionalize all atoms and clauses and apply standard probabilistic infer-
ence algorithms. A key property of first-order logic is that it allows lifted inference,
where queries are answered without materializing all the objects in the domain (e.g.,

3 This differs from MaxWalkSAT, which assigns random values to all atoms. However, the
LazySAT initialization is a valid MaxWalkSAT initialization, and the two give very similar results
empirically. Given the same initialization, the two algorithms will produce exactly the same results.

5 Markov Logic: A Language and Algorithms for Link Mining 149

Table 5.4 Lazy variant of the MaxWalkSAT algorithm

function LazySAT(KB, DB, tmax, fmax, target, p)
inputs: KB, a weighted knoweldge base
DB, database containing evidence
tmax, the maximum number of tries
fmax, the maximum number of flips
target, target solution cost
p, probability of taking a random step
output: soln, best variable assignment found

for i < 1 t0 tmax
active_atoms <— atoms in clauses not satisfied by DB

active_clauses <— clauses activated by active_atoms

soln < arandom truth assignment to active_atoms
cost < sum of weights of unsatisfied clauses in soln
for i < 1to fiax
if cost < target
return “Success, solution is”, soln
¢ < arandomly chosen unsatisfied clause
if Uniform(0,1) < p
vy < arandomly chosen variable from ¢
else
for each variable v in ¢
compute DeltaCost(v), using KB if v & active_atoms
vy < v with lowest DeltaCost(v)
if vy & active_atoms

add v to active_atoms

add clauses activated by v to active_clauses

soln < soln with vy flipped
cost < cost + DeltaCost(v r)
return “Failure, best assignment is”, best soln found

resolution [34]). Lifted inference is potentially much more efficient than proposi-
tionalized inference, and extending it to probabilistic logical languages is a desirable
goal. We have developed a lifted version of loopy belief propagation (BP), building
on the work of Jaimovich et al. [11]. Jaimovich et al. pointed out that, if there is
no evidence, BP in probabilistic logical models can be trivially lifted, because all
groundings of the same atoms and clauses become indistinguishable. Our approach
proceeds by identifying the subsets of atoms and clauses that remain indistinguish-
able even after evidence is taken into account. We then form a network with supern-
odes and superfeatures corresponding to these sets and apply BP to it. This network
can be vastly smaller than the full ground network, with the corresponding efficiency
gains. Our algorithm produces the unique minimal lifted network for every inference
problem.

We begin with some necessary definitions. These assume the existence of an
MLN L, set of constants C, and evidence database E (set of ground literals). For

150 P. Domingos et al.

simplicity, our definitions and explanation of the algorithm will assume that each
predicate appears at most once in any given MLN clause. We will then describe
how to handle multiple occurrences of a predicate in a clause.

Definition 4 A supernode is a set of groundings of a predicate that all send and
receive the same messages at each step of belief propagation, given L, C, and E.
The supernodes of a predicate form a partition of its groundings.

A superfeature is a set of groundings of a clause that all send and receive the same
messages at each step of belief propagation, given L, C, and E. The superfeatures
of a clause form a partition of its groundings.

Definition S A lifted network is a factor graph composed of supernodes and super-
features. The factor corresponding to a superfeature g(x) is exp(wg(x)), where w
is the weight of the corresponding first-order clause. A supernode and a superfea-
ture have an edge between them iff some ground atom in the supernode appears in
some ground clause in the superfeature. Each edge has a positive integer weight.
A minimal lifted network is a lifted network with the smallest possible number of
supernodes and superfeatures.

The first step of lifted BP is to construct the minimal lifted network. The size of
this network is O (nm), where n is the number of supernodes and m the number of
superfeatures. In the best case, the lifted network has the same size as the MLN L
and in the worst case, as the ground Markov network My, c.

The second and final step in lifted BP is to apply standard BP to the lifted net-
work, with two changes:

1. The message from supernode x to superfeature f becomes

x)—1
T) I TSRCO L
henb(x)\{f}

where n(h, x) is the weight of the edge between % and x.
2. The (unnormalized) marginal of each supernode (and, therefore, of each ground

atom in it) is given by [T, c,p() 0 (),
The weight of an edge is the number of identical messages that would be sent from
the ground clauses in the superfeature to each ground atom in the supernode if BP
was carried out on the ground network. The n(f, x) — 1 exponent reflects the fact
that a variable’s message to a factor excludes the factor’s message to the variable.

The lifted network is constructed by (essentially) simulating BP and keeping
track of which ground atoms and clauses send the same messages. Initially, the
groundings of each predicate fall into three groups: known true, known false, and
unknown. (One or two of these may be empty.) Each such group constitutes an initial
supernode. All groundings of a clause whose atoms have the same combination of
truth values (true, false, or unknown) now send the same messages to the ground
atoms in them. In turn, all ground atoms that receive the same number of messages
from the superfeatures they appear in send the same messages and constitute a new

5 Markov Logic: A Language and Algorithms for Link Mining 151

supernode. As the effect of the evidence propagates through the network, finer and
finer supernodes and superfeatures are created.

If a clause involves predicates Rj,..., Ry, and N = (Ny,..., Ni) is a cor-
responding tuple of supernodes, the groundings of the clause generated by N are
found by joining Ny, ..., Ni (i.e., by forming the Cartesian product of the relations
Ny, ..., Ng, and selecting the tuples in which the corresponding arguments agree
with each other, and with any corresponding constants in the first-order clause).
Conversely, the groundings of predicate R; connected to elements of a superfeature
F are obtained by projecting F onto the arguments it shares with R;. Lifted network
construction thus proceeds by alternating between two steps:

1. Form superfeatures by doing joins of their supernodes.
2. Form supernodes by projecting superfeatures down to their predicates, and merg-
ing atoms with the same projection counts.

Pseudocode for the algorithm is shown in Table 5.5. The projection counts at con-
vergence are the weights associated with the corresponding edges.

To handle clauses with multiple occurrences of a predicate, we keep a tuple
of edge weights, one for each occurrence of the predicate in the clause. A mes-
sage is passed for each occurrence of the predicate, with the corresponding edge
weight. Similarly, when projecting superfeatures into supernodes, a separate count is

Table 5.5 Lifted network construction algorithm

function LNC(L, C, E)
inputs: L, a Markov logic network
C, a set of constants
E, a set of ground literals
output: M, a lifted network
for each predicate P
for each truth value 7 in {true, false, unknown}
form a supernode containing all groundings of P with truth value ¢

repeat
for each clause involving predicates Py, ..., Pk
for each tuple of supernodes (Ny, ..., Ng),
where N; is a P; supernode
form a superfeature F by joining Ny, ..., Ni

for each predicate P
for each superfeature F it appears in
S(P, F) < projection of the tuples in F' down to the variables in P
for each tuple s in S(P, F)
T (s, F') < number of F’s tuples that were projected into s
S(P) <~ UpS(P, F)
form a new supernode from each set of tuples in S(P) with the
same T (s, F) counts for all F
until convergence
add all current supernodes and superfeatures to M
for each supernode N and superfeature F in M
add to M an edge between N and F with weight 7'(s, F)
return M

152 P. Domingos et al.

maintained for each occurrence, and only tuples with the same counts for all occur-
rences are merged.

See Singla and Domingos [40] for additional details, including the proof that this
algorithm always creates the minimal lifted network.

5.6 Learning

In this section, we discuss methods for automatically learning weights, refining for-
mulas, and constructing new formulas from data.

5.6.1 Markov Network Learning

Maximum-likelihood or MAP estimates of Markov network weights cannot be com-
puted in closed form but, because the log-likelihood is a concave function of the
weights, they can be found efficiently (modulo inference) using standard gradient-
based or quasi-Newton optimization methods [26]. Another alternative is iterative
scaling [6]. Features can also be learned from data, for example, by greedily con-
structing conjunctions of atomic features [6].

5.6.2 Generative Weight Learning

MLN weights can be learned generatively by maximizing the likelihood of a rela-
tional database (5.3). This relational database consists of one or more “possible
worlds” that form our training examples. Note that we can learn to generalize from
even a single example because the clause weights are shared across their many
respective groundings. This is essential when the training data is a single network,
such as the Web. The gradient of the log-likelihood with respect to the weights is

aiw,- log Py, (X =x) = n;(x) — Z Po(X =x") n; (x)), (5.6)

X

where the sum is over all possible databases x’, and P, (X = x') is P(X = x/)
computed using the current weight vector w = (wy, ..., w;,...). In other words,
the ith component of the gradient is simply the difference between the number of
true groundings of the ith formula in the data and its expectation according to the
current model. In the generative case, even approximating these expectations tends
to be prohibitively expensive or inaccurate due to the large state space. Instead, we
can maximize the pseudo-likelihood of the data, a widely used alternative [1]. If x
is a possible world (relational database) and x; is the /th ground atom’s truth value,
the pseudo-log-likelihood of x given weights w is

5 Markov Logic: A Language and Algorithms for Link Mining 153

n
log Pjy(X =x) = »_log Pyy(X;=x/|M B, (X)), (5.7)
=1

where M B, (X)) is the state of X;’s Markov blanket in the data (i.e., the truth val-
ues of the ground atoms it appears in some ground formula with). Computing the
pseudo-likelihood and its gradient does not require inference and is therefore much
faster. Combined with the L-BFGS optimizer [19], pseudo-likelihood yields effi-
cient learning of MLN weights even in domains with millions of ground atoms [32].
However, the pseudo-likelihood parameters may lead to poor results when long
chains of inference are required.

In order to reduce overfitting, we penalize each weight with a Gaussian prior. We
apply this strategy not only to generative learning but to all of our weight learning
methods, even those embedded within structure learning.

5.6.3 Discriminative Weight Learning

Discriminative learning is an attractive alternative to pseudo-likelihood. In many
applications, we know a priori which atoms will be evidence and which ones will be
queried, and the goal is to correctly predict the latter given the former. If we partition
the ground atoms in the domain into a set of evidence atoms X and a set of query
atoms Y, the conditional likelihood of Y given X is

1 1
P(ylx) = —exp | D wini(x,y) | = —exp| > wjg;x. 0], (58)
Zx icFy Zx jeGy

where Fy is the set of all MLN clauses with at least one grounding involving a
query atom, n; (x, y) is the number of true groundings of the ith clause involving
query atoms, Gy is the set of ground clauses in My, ¢ involving query atoms, and
gj(x,y) = 1if the jth ground clause is true in the data and O otherwise. The
gradient of the conditional log-likelihood is

a
Gy 108 Pu(ylx) = ni(x.5) = > PO Imitx,)
S

=ni(x,y) = Ey[ni(x, y)]. (5.9)

/

In the conditional case, we can approximate the expected counts Ey,[n; (x, y)] using
either the MAP state (i.e., the most probable state of y given x) or by averaging over
several MC-SAT samples. The MAP approximation is inspired by the voted percep-
tron algorithm proposed by Collins [2] for discriminatively learning hidden Markov
models. We can apply a similar algorithm to MLNs using MaxWalkSAT to find the
approximate MAP state, following the approximate gradient for a fixed number of
iterations, and averaging the weights across all iterations to combat overfitting [36].

154 P. Domingos et al.

We get the best results, however, by applying a version of the scaled conjugate
gradient algorithm [24]. We use a small number of MC-SAT samples to approx-
imate the gradient and Hessian matrix and use the inverse diagonal Hessian as a
preconditioner. See Lowd and Domingos [21] for more details and results.

5.6.4 Structure Learning and Clustering

The structure of a Markov logic network is the set of formulas or clauses to which
we attach weights. While these formulas are often specified by one or more experts,
such knowledge is not always accurate or complete. In addition to learning weights
for the provided clauses, we can revise or extend the MLN structure with new
clauses learned from data. We can also learn the entire structure from scratch. The
problem of discovering MLN structure is closely related to the problem of finding
frequent subgraphs in graphs. Intuitively, frequent subgraphs correspond to high-
probability patterns in the graph, and an MLN modeling the domain should con-
tain formulas describing them, with the corresponding weights (unless a subgraph’s
probability is already well predicted by the probabilities of its subcomponents, in
which case the latter suffice). More generally, MLN structure learning involves dis-
covering patterns in hypergraphs, in the form of logical rules. The inductive logic
programming (ILP) community has developed many methods for this purpose. ILP
algorithms typically search for rules that have high accuracy, high coverage, etc.
However, since an MLN represents a probability distribution, much better results
are obtained by using an evaluation function based on pseudo-likelihood [13]. Log-
likelihood or conditional log-likelihood are potentially better evaluation functions,
but are much more expensive to compute. In experiments on two real-world data
sets, our MLN structure learning algorithm found better MLN rules than the stan-
dard ILP algorithms CLAUDIEN [5], FOIL [30], and Aleph [41], and than a hand-
written knowledge base.

MLN structure learning can start from an empty network or from an existing
KB. Either way, we have found it useful to start by adding all unit clauses (single
atoms) to the MLN. The weights of these capture (roughly speaking) the marginal
distributions of the atoms, allowing the longer clauses to focus on modeling atom
dependencies. To extend this initial model, we either repeatedly find the best clause
using beam search and add it to the MLN, or add all “good” clauses of length /
before trying clauses of length [4 1. Candidate clauses are formed by adding each
predicate (negated or otherwise) to each current clause, with all possible combi-
nations of variables, subject to the constraint that at least one variable in the new
predicate must appear in the current clause. Hand-coded clauses are also modified
by removing predicates.

Recently, Mihalkova and Mooney [23] introduced BUSL, an alternative, bot-
tom-up structure learning algorithm for Markov logic. Instead of blindly construct-
ing candidate clauses one literal at a time, they let the training data guide and con-
strain clause construction. First, they use a propositional Markov network structure

5 Markov Logic: A Language and Algorithms for Link Mining 155

learner to generate a graph of relationships among atoms. Then they generate clauses
from paths in this graph. In this way, BUSL focuses on clauses that have support in
the training data. In experiments on three data sets, BUSL evaluated many fewer
candidate clauses than our top-down algorithm, ran more quickly, and learned more
accurate models.

Another key problem in MLN learning is discovering hidden variables (or invent-
ing predicates, in the language of ILP). Link-based clustering is a special case of
this, where the hidden variables are the clusters. We have developed a number of
approaches for this problem and for discovering structure over the hidden vari-
ables [14-16]. The key idea is to cluster together objects that have similar relations
to similar objects, cluster relations that relate similar objects, and recursively repeat
this until convergence. This can be a remarkably effective approach for cleaning
up and structuring a large collection of noisy linked data. For example, the SNE
algorithm is able to discover thousands of clusters over millions of tuples extracted
from the Web and form a semantic network from them in a few hours.

5.7 Applications

Markov logic has been applied to a wide variety of link mining problems, includ-
ing link prediction (predicting academic advisors of graduate students [32]), record
linkage (matching bibliographic citations [37]), link-based clustering (extracting
semantic networks from the Web [15]), and many others. (See the repository of
publications on the Alchemy Web site (alchemy.cs.washington.edu) for a partial
list.) In this section we will discuss two illustrative examples: collective classifica-
tion of Web pages and optimizing word of mouth in social networks (a.k.a. viral
marketing).

5.7.1 Collective Classification

Collective classification is the task of inferring labels for a set of objects using their
links as well as their attributes. For example, Web pages that link to each other tend
to have similar topics. Since the labels now depend on each other, they must be
inferred jointly rather than independently. In Markov logic, collective classification
models can be specified with just a few formulas and applied using standard Markov
logic algorithms. We demonstrate this on WebKB, one of the classic collective clas-
sification data sets [3].

WebKB consists of labeled Web pages from the computer science departments
of four universities. We used the relational version of the data set from Craven and
Slattery [3], which features 4165 Web pages and 10,935 Web links. Each Web page
is marked with one of the following categories: student, faculty, professor, depart-
ment, research project, course, or other. The goal is to predict these categories from
the Web pages’ words and links.

156 P. Domingos et al.

We can start with a simple logistic regression model, using only the words on the
Web pages:

PageClass(p, +c¢)
Has(p, +w) = PageClass(p, +c¢)

The “+” notation is a shorthand for a set of rules with the same structure but different
weights: the MLN contains a rule and the corresponding weight for each possible
instantiation of the variables with a “+” sign. The first line, therefore, generates a
unit clause for each class, capturing the prior distribution over page classes. The
second line generates thousands of rules representing the relationship between each
word and each class. We can encode the fact that classes are mutually exclusive and
exhaustive with a set of hard (infinite-weight) constraints:

PageClass(p, +c1) A (+cl # +c2) = —PageClass(p, +c2)
Jdc PageClass(p, ¢)

In Alchemy, we can instead state this property of the PageClass predicate in its
definition using the “!” operator: PageClass(page, class!), where page and class
are type names. (In general, the “!”” notation signifies that, for each possible combi-
nation of values of the arguments without “!”, there is exactly one combination of
the arguments with “!” for which the predicate is true.)

To turn this multi-class logistic regression into a collective classification model
with joint inference, we only need one more formula:

Linked(ul, u2) A PageClass(+4cl,ul) A PageClass(4c2, u2)

This says that linked Web pages have related classes.

We performed leave-one-out cross-validation, training these models for 500 iter-
ations of scaled conjugate gradient with a preconditioner. The logistic regression
baseline had an accuracy of 70.9%, while the model with joint inference had an
accuracy of 76.4%. Markov logic makes it easy to construct additional features as
well, such as words on linked pages and anchor text. (See Taskar et al. [42] for a
similar approach using relational Markov networks.)

5.7.2 Viral Marketing

Viral marketing is based on the premise that members of a social network influence
each other’s purchasing decisions. The goal is then to select the best set of people
to market to, such that the overall profit is maximized by propagation of influence
through the network. Originally formalized by Domingos and Richardson [8], this
problem has since received much attention, including both empirical and theoretical
results.

5 Markov Logic: A Language and Algorithms for Link Mining 157

A standard data set in this area is the Epinions web of trust [31]. Epinions.com
is a knowledge-sharing Web site that allows users to post and read reviews of prod-
ucts. The “web of trust” is formed by allowing users to maintain a list of peers
whose opinions they trust. We used this network, containing 75,888 users and over
500,000 directed edges, in our experiments. With over 75,000 action nodes, this is
a very large decision problem, and no general-purpose utility maximization algo-
rithms have previously been applied to it (only domain-specific implementations).

We modeled this problem as an MLDN (Markov logic decision network) using
the predicates Buys(x) (person x purchases the item), Trusts(xy, x2) (person xi
trusts person x3), and MarketTo(x) (x is targeted for marketing). MarketTo(x)
is an action predicate, since it can be manipulated directly, whereas Buys(x) and
Trusts(x1, xg) are state predicates, since they cannot. The utility function is rep-
resented by the unit clauses Buys(x) (with positive utility, representing profits from
sales) and MarketTo(x) (with negative utility, representing the cost of market-
ing). The topology of the social network is specified by an evidence database of
Trusts(xy, Xp) atoms.

The core of the model consists of two formulas:

Buys(x1) A Trusts(xa, x1) = Buys(x2)
MarketTo(4x) = Buys(x)

The weight of the first formula represents how strongly x4 influences xo, and the
weight of the second formula represents how strongly users are influenced by mar-
keting. In addition, the model includes the unit clause Buys(x) with a negative
weight, representing the fact that most users do not buy most products. The final
model is very similar to that of Domingos and Richardson [8] and yields compa-
rable results, but Markov logic makes it much easier to specify. Unlike previous
hand-coded models, our MLDN can be easily extended to incorporate customer
and product attributes, purchase history information, multiple types of relationships,
products, actors in the network, marketing actions, etc. Doing so is a direction for
future work. See Nath and Domingos [25] for additional details.

5.8 The Alchemy System

The inference and learning algorithms described in the previous sections are pub-
licly available in the open-source Alchemy system [17]. Alchemy makes it possi-
ble to define sophisticated probabilistic models over relational domains with a few
formulas, learn them from data, and use them for prediction, understanding, etc.
From the user’s point of view, Alchemy makes it easier and quicker to develop
link-mining applications by taking advantage of the Markov logic language and the
existing library of algorithms for it. From the researcher’s point of view, Alchemy
makes it possible to easily integrate new algorithms with a full complement of other
algorithms that support them or make use of them, and to make the new algorithms

158 P. Domingos et al.

available for a wide variety of applications without having to target each one
individually.

Alchemy can be viewed as a declarative programming language akin to Prolog,
but with a number of key differences: the underlying inference mechanism is model
checking instead of theorem proving; the full syntax of first-order logic is allowed,
rather than just Horn clauses; and, most importantly, the ability to handle uncertainty
and learn from data is already built in. Table 5.6 compares Alchemy with Prolog and
BUGS [22], one of the most popular toolkits for Bayesian modeling and inference.

Table 5.6 A comparison of Alchemy, Prolog, and BUGS

Aspect Alchemy Prolog BUGS
Representation First-order logic + Markov nets Horn clauses Bayes nets
Inference SAT, MCMC, lifted BP Theorem proving MCMC
Learning Parameters and structure No Parameters
Uncertainty Yes No Yes
Relational Yes Yes No

5.9 Conclusion and Directions for Future Research

Markov logic offers a simple yet powerful representation for link mining problems.
Since it generalizes first-order logic, Markov logic can easily model the full rela-
tional structure of link mining problems, including multiple relations and attributes
of different types and arities, relational concepts such as transitivity, and background
knowledge in first-order logic. And since it generalizes probabilistic graphical mod-
els, Markov logic can efficiently represent uncertainty in the attributes, links, cluster
memberships, etc., required by most link mining applications.

The specification of standard link mining problems in Markov logic is remark-
ably compact, and the open-source Alchemy system (available at alchemy.cs.wash-
ington.edu) provides a powerful set of algorithms for solving them. We hope that
Markov logic and Alchemy will be of use to link mining researchers and practi-
tioners who wish to have the full spectrum of logical and statistical inference and
learning techniques at their disposal, without having to develop every piece them-
selves. More details on Markov logic and its applications can be found in Domingos
and Lowd [7].

Directions for future research in Markov logic include further increasing the scal-
ability, robustness and ease of use of the algorithms, applying it to new link mining
problems, developing new capabilities, etc.

Acknowledgments This research was partly supported by ARO grant W911NF-08-1-0242,
DARPA contracts FA8750-05-2-0283, FA8750-07-D-0185, HR0011-06-C-0025, HR0011-07-C-
0060 and NBCH-D030010, NSF grants IIS-0534881 and I1S-0803481, ONR grants N-00014-05-1-
0313 and N00014-08-1-0670, an NSF CAREER Award (first author), a Sloan Research Fellowship
(first author), an NSF Graduate Fellowship (second author), and a Microsoft Research Graduate
Fellowship (second author). The views and conclusions contained in this document are those of

5 Markov Logic: A Language and Algorithms for Link Mining 159

the authors and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of ARO, DARPA, NSF, ONR, or the US Government.

References

1.
2.

10.

11.

12.

13.

16.

J. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179-195, 1975.

M. Collins. Discriminative training methods for hidden Markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, pages 1-8, ACL Philadelphia, PA, 2002.

. M. Craven and S. Slattery. Relational learning with statistical predicate invention: Better

models for hypertext. Machine Learning, 43(1/2):97-119, 2001.

. P. Damien, J. Wakefield, and S. Walker. Gibbs sampling for Bayesian non-conjugate and

hierarchical models by auxiliary variables. Journal of the Royal Statistical Society, Series B,
61:331-344, 1999.

. L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99-146, 1997.
. S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. [EEE

Transactions on Pattern Analysis and Machine Intelligence, 19:380-392, 1997.

. P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Al. Morgan & Claypool,

San Rafael, CA, 2009.

. P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of

the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 57-66, ACM Press, San Francisco, CA, 2001.

. M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial Intelligence. Morgan

Kaufmann, San Mateo, CA, 1987.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo in
Practice. Chapman and Hall, London, 1996.

A. Jaimovich, O. Meshi, and N. Friedman. Template based inference in symmetric relational
Markov random fields. In Proceedings of the 23rd Conference on Uncertainty in Artificial
Intelligence, pages 191-199, AUAI Press, Vancouver, BC, 2007.

H. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to solving problems with
hard and soft constraints. In D. Gu, J. Du, and P. Pardalos, editors, The Satisfiability Problem:
Theory and Applications, pages 573-586. American Mathematical Society, New York, NY,
1997.

S. Kok and P. Domingos. Learning the structure of Markov logic networks. In Proceedings of
the 22nd International Conference on Machine Learning, pages 441-448, ACM Press, Bonn,
2005.

. S. Kok and P. Domingos. Statistical predicate invention. In Proceedings of the 24th Interna-

tional Conference on Machine Learning, pages 433—440, ACM Press, Corvallis, OR, 2007.

. S. Kok and P. Domingos. Extracting semantic networks from text via relational clustering.

In Proceedings of the 19th European Conference on Machine Learning, pages 624—639,
Springer, Antwerp, 2008.

S. Kok and P. Domingos. Hypergraph lifting for structure learning in Markov logic networks.
In Proceedings of the 26th International Conference on Machine Learning, ACM Press, Mon-
treal, QC, 2009.

. S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and P. Domin-

gos. The Alchemy system for statistical relational Al. Technical report, Department
of Computer Science and Engineering, University of Washington, Seattle, WA, 2007.
http://alchemy.cs.washington.edu.

. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applications. Ellis

Horwood, Chichester, 1994.

160 P. Domingos et al.

19. D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(3):503-528, 1989.

20. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1987.

21. D. Lowd and P. Domingos. Efficient weight learning for Markov logic networks. In Proceed-
ings of the 11th European Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 200-211, Springer, Warsaw, 2007.

22. D.J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. WinBUGS — a Bayesian model-
ing framework: concepts, structure, and extensibility. Statistics and Computing, 10:325-337,
2000.

23. L. Mihalkova and R. Mooney. Bottom-up learning of Markov logic network structure. In
Proceedings of the 24th International Conference on Machine Learning, pages 625-632, ACM
Press, Corvallis, OR, 2007.

24. M. Mgller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Net-
works, 6:525-533, 1993.

25. A. Nath and P. Domingos. A language for relational decision theory. In Proceedings of the
International Workshop on Statistical Relational Learning, Leuven, 2009.

26. J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, NY, 2006.

27. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Francisco, CA, 1988.

28. H. Poon and P. Domingos. Sound and efficient inference with probabilistic and deterministic
dependencies. In Proceedings of the 21st National Conference on Artificial Intelligence, pages
458-463, AAAI Press, Boston, MA, 2006.

29. H. Poon, P. Domingos, and M. Sumner. A general method for reducing the complexity of rela-
tional inference and its application to MCMC. In Proceedings of the 23rd National Conference
on Artificial Intelligence, pages 1075-1080, AAAI Press, Chicago, IL, 2008.

30. J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239-266,
1990.

31. M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing. In
Proceedings of the Sth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 61-70, ACM Press, Edmonton, AB, 2002.

32. M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107-136,
2006.

33. S. Riedel. Improving the accuracy and efficiency of MAP inference for Markov logic. In
Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, pages 468-475,
AUAI Press, Helsinki, 2008.

34. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12:23-41, 1965.

35. D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82:273-302,
1996.

36. P. Singla and P. Domingos. Discriminative training of Markov logic networks. In Proceed-
ings of the 20th National Conference on Artificial Intelligence, pages 868-873, AAAI Press,
Pittsburgh, PA, 2005.

37. P. Singla and P. Domingos. Entity resolution with Markov logic. In Proceedings of the 6th
IEEE International Conference on Data Mining, pages 572-582, IEEE Computer Society
Press, Hong Kong, 2006.

38. P. Singla and P. Domingos. Memory-efficient inference in relational domains. In Proceed-
ings of the 21st National Conference on Artificial Intelligence, pages 488—493, AAAI Press,
Boston, MA, 2006.

39. P. Singla and P. Domingos. Markov logic in infinite domains. In Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence, pages 368-375, AUAI Press, Vancouver,
BC, 2007.

40. P. Singla and P. Domingos. Lifted first-order belief propagation. In Proceedings of the 23rd
National Conference on Artificial Intelligence, pages 1094—1099, AAAI Press, Chicago, IL,
2008.

5 Markov Logic: A Language and Algorithms for Link Mining 161

41.

42.

43.

44.

45.

46.

A. Srinivasan. The Aleph manual. Technical report, Computing Laboratory, Oxford Univer-
sity, 2000.

B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational data. In
Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pages 485-492,
Morgan Kaufmann, Edmonton, AB, 2002.

S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge
University Press, Cambridge, 1994.

W. Wei, J. Erenrich, and B. Selman. Towards efficient sampling: Exploiting random walk
strategies. In Proceedings of the 19th National Conference on Artificial Intelligence, pages
670-676, AAAI Press, San Jose, CA, 2004.

M. Wellman, J. S. Breese, and R. P. Goldman. From knowledge bases to decision models.
Knowledge Engineering Review, 7:35-53, 1992.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In T. Leen,
T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13,
pages 689—-695. MIT Press, Cambridge, MA, 2001.

Chapter 6
Understanding Group Structures and Properties
in Social Media

Lei Tang and Huan Liu

Abstract The rapid growth of social networking sites enables people to connect to
each other more conveniently than ever. With easy-to-use social media, people con-
tribute and consume contents, leading to a new form of human interaction and the
emergence of online collective behavior. In this chapter, we aim to understand group
structures and properties by extracting and profiling communities in social media.
We present some challenges of community detection in social media. A prominent
one is that networks in social media are often heterogeneous. We introduce two types
of heterogeneity presented in online social networks and elaborate corresponding
community detection approaches for each type, respectively. Social media provides
not only interaction information but also textual and tag data. This variety of data
can be exploited to profile individual groups in understanding group formation and
relationships. We also suggest some future work in understanding group structures
and properties.

6.1 Introduction

Social media such as Facebook, MySpace, Twitter, and BlogSpot facilitates people
of all walks of life to express their thoughts, voice their opinions, and connect to
each other anytime and anywhere. For instance, popular content-sharing sites like
Del.icio.us, Flickr, and YouTube allow users to upload, tag, and comment different
types of contents (bookmarks, photos, videos). Users registered at these sites can
also become friends, a fan, or a follower of others. Social media offers rich informa-
tion of human interaction and collective behavior in a much larger scale (hundreds
of thousands or millions of actors). It is gaining increasing attention across various
disciplines including sociology, behavior science, anthropology, computer science,
epidemics, economics, marketing business, to name a few.

H. Liu (=)
Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-8809, USA
e-mail: huanliu@asu.edu

L. Tang
Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-8809, USA
e-mail: l.tang@asu.edu

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications, 163
DOI 10.1007/978-1-4419-6515-8_6, © Springer Science+Business Media, LLC 2010

164 L. Tang and H. Liu

With the expanded use of Web and social media, virtual communities and online
interactions have become a vital part of human experience. Members of virtual
communities tend to share similar interests or topics and connect to each other in
a community more frequently than with those outside the community. For exam-
ple, there can be two groups browsing news at a Web site, say digg.com: one is
interested in topics related to Meteorology, while the other in Politics; A blogger
(say the owner of http://hunch.net/) who publishes blog posts actively on “machine
learning” often has links on his/her blog site to other bloggers who concentrate
on “machine learning” as well. It would be interesting to find these like-minded
individuals for developing many other applications to enhance personal experi-
ence or to improve business intelligence. In this work, we focus on communities
(or equivalently groups) in social media. There is a wide range of applications of
discovering groups (a.k.a. community detection) based on the interactions among
actors and capturing group properties via shared topics, including visualization [8],
recommendation and classification [18, 19], influence study [1], direct marketing,
group tracking, and recommendation.

Community detection is a classical task in social network analysis. However,
some new features presented in networks of social media entail novel solutions to
handle online communities.

— Heterogeneity. Networks in social media tend to involve multiple types of entities
or interactions. For instance, in content-sharing sites like Flickr and YouTube,
multiple types of entities: users, tags, comments, and contents are intertwined
with each other. Sometimes, users at the same social network site can interact
with each other in various forms, leading to heterogeneous types of interactions
between them. It is intriguing to explore whether or not heterogeneous informa-
tion can help identify communities. It is also challenging to effectively fuse these
heterogeneous types of information.

— Large-Scale Networks. Networks in social media are typically in a much larger
scale than those in traditional social network analysis. Traditional social network
analysis relies on circulation of questionnaires or surveys to collect interaction
information of human subjects, limiting the scale of analysis to hundreds of
actors mostly. Hence, scalability is seldom a focus there. Networks in social
media, on the contrary, involve a much larger number of actors, which presents a
challenge of scalability. In addition, large-scale networks yield similar patterns,
such as power-law distribution for node degrees and small-world effect [3]. It is
yet unclear how these patterns can help or guide data mining tasks.

— Collective Intelligence. In social media, crowd wisdom, in forms of tags and
comments, is often available. Is it possible to employ collective intelligence to
help understand group structures and properties? For instance, how to charac-
terize a group? How to differentiate a group from others in social media? What
are potential causes that lead some users to form a community? With abounding
groups in social media, how can we understand the relationship among them?

— Evolution. Each day in social media, new users join the network and new connec-
tions occur between existing members, while some existing ones leave or become

6 Understanding Group Structures and Properties in Social Media 165

dormant. How can we capture the dynamics of individuals in networks? Can we
find the members that act like the backbone of communities? The group inter-
ests might change as well. How can we update the group interests and relations
accordingly as information evolves?

Given the features above, we will mainly discuss two research issues concern-
ing communities in social media: (1) identifying communities in social media via
the readily- available interaction information; and (2) profiling groups dynamically
using descriptive tags and taxonomy adaptation. The two research tasks are highly
related to each other. The first task identifies groups, serving as the basis for the
second one; and the second task helps understand the formation of identified groups
and unravel properties why users join together to form a group. In the following
section, we first introduce heterogeneous networks in social media and define the
problems of interest and motivations. We will then elucidate the technical details
with challenges and solutions for both tasks in the subsequent sections.

6.2 Heterogeneous Networks in Social Media

There are two types of heterogeneous networks that demand special attention. We
first illustrate the two types and then expound the necessity for considering hetero-
geneity in community detection.

6.2.1 Heterogeneous Networks

With social media, people can connect to each other more conveniently than ever. In
some social networking sites, entities other than human beings can also be involved.
For instance, in YouTube, a user can upload a video and another user can tag it.
In other words, the users, videos, and tags are weaved into the same network. The
“actors” in the network are not at all homogeneous. Furthermore, examining activi-
ties of users, we can observe different interaction networks between the same set of
actors. Take YouTube again as an example. A user can become a friend of another
user’s; he can also subscribe to another user. The existence of different relations
suggests that the interactions between actors are heterogeneous. Networks involv-
ing heterogeneous actors or interactions are referred as heterogeneous networks.
Accordingly, heterogeneous networks can be categorized in two different types:

— Multi-mode Networks [22]. A multi-mode network involves heterogeneous
actors. Each mode represents one type of entity. For instance, in the YouTube
example above, a three-mode network can be constructed, with videos, tags, and
users each representing a mode, as seen in Fig. 6.1. There are disparate interac-
tions among the three types of entities: users can upload videos. They can also
provide tags for some videos. Intuitively, two users contributing similar videos

166 L. Tang and H. Liu

(Users
(Videos —— Tags >

Fig. 6.1 A multi-mode network in YouTube

or tags are likely to share interests. Videos sharing similar tags or users are more
likely to be related. Note that in the network, both tags and videos are also consid-
ered as “actors,” though users are probably the major mode under consideration.

Other domains involving networks or interactions also encounter multi-mode
networks. An example of multi-mode network is academic publications as shown
in Fig. 6.2. Various kinds of entities (researchers, conferences/journals, papers,
words) are considered. Scientific literature connects papers by citations; papers
are published at different places (conferences, journals, workshops, thesis, etc.);
and researchers are connected to papers through authorship. Some might relate
to each other by serving simultaneously as journal editors or on conference pro-
gram committees. Moreover, each paper can focus on different topics, which
are represented by words. Words are associated to each other based on seman-
tics. At the same time, papers connect to different conferences, journals (venues
for publication). In the network, there are multiple types of entities. And enti-
ties relate to others (either the same type or different types) through different
links.

Citations

Papers

sBuipaasoid

/Journals

Fig. 6.2 A multi-mode network in academia

— Multi-dimensional Networks [20, 23]. A multi-dimensional network has multi-
ple types of interactions between the same set of users. Each dimension of the
network represents one type of activity between users. For instance, in Fig. 6.3,
at popular photo and video sharing sites (e.g., Flickr and YouTube), a user can
connect to his friends through email invitation or the provided “add as contacts”
function; users can also tag/comment on the social contents like photos and

6 Understanding Group Structures and Properties in Social Media 167

~ Contacts/friends N

@ Tagging on Social Content m ”

o~ ’7
\(/ < Fans/Subscriptions > ==

=0

((@’4\ Response to Social Content

_ EEEEEEEEEEEEEEEEES® _J

Fig. 6.3 An example of multi-dimensional network

videos; a user at YouTube can respond to another user by uploading a video;
and a user can also become a fan of another user by subscription to the user’s
contributions of social contents. A network among these users can be constructed
based on each form of activity, in which each dimension represents one facet of
diverse interaction.

Actually, directed networks can be considered as a special case of multi-
dimensional network. Take email communications as an example. People can
play two different roles in email communications: senders and receivers. These
two roles are not interchangeable. Spammers send an overwhelming number of
emails to normal users but seldom receive responses from them. The sender
and receiver roles essentially represent two different interaction patterns. A
two-dimensional network can be constructed to capture the roles of senders and
receivers. In the first dimension, two actors are deemed related if they both send
emails to the same person; in the other dimension, two actors interact if they both
receive emails from another actor. A similar idea is also adopted as “hubs” and
“authorities” on Web pages [10].

In this chapter, we do not use the notion of multi-relational network, as “multi-
relational” has been used with different connotations depending on the domains.
For example, multi-relational data mining [4], originating from the database field,
focuses on data mining tasks with multiple relational tables. This concept can be
extended to networks as well. One special case is that, each table is considered as
interactions of two types of entities, leading to a multi-mode network. Meanwhile,
social scientists [27] use multi-relational network for a different meaning. A multi-
relational network is a network in which the connections (edges) between actors
represent different type of relations, e.g., father-of, wife-of. If each type of interac-
tion in a multi-dimensional network represents one relation, the multi-dimensional
network is equivalent to a multi-relational network.

Note that the two types of heterogeneous networks (multi-mode and multi-
dimensional) mentioned above are not exclusive. A complicated network can be
both multi-mode and multi-dimensional at the same time. As presented later, tech-
niques to address these two types of networks can be fused together for community
discovery.

168 L. Tang and H. Liu
6.2.2 Motivations to Study Network Heterogeneity

Social media offers an easily accessible platform for diverse online social activities
and also introduces heterogeneity in networks. Thus, it calls for solutions to extract
communities in heterogeneous networks, which will be covered in the next section.
However, it remains unanswered why one cannot reduce a heterogeneous network
to several homogeneous ones (i.e., one mode or one dimension) for investigation.

The reason is that the interaction information in one mode or one dimension
might be too noisy to detect meaningful communities. For instance, in the YouTube
example in Fig. 6.1, it seems acceptable if we only consider the user mode. In other
words, just study the friendship network. On the one hand, some users might not
have any online friends either because they are too introvert to talk to other online
users, or because they just join the network and are not ready for or not interested
in connections. On the other hand, some users might abuse connections, since it
is relatively easy to make connections in social media compared with the physical
world. As mentioned in [18], a user in Flickr can have thousands of friends. This
can hardly be true in the real world. It might be the case that two online users get
connected but they never talk to each other. Thus, these online connections of one
mode or one dimension can hardly paint a true picture of what is happening.

A single type of interaction provides limited (often sparse) information about the
community membership of online users. Fortunately, social media provides more
than just a single friendship network. A user might engage in other forms of activ-
ities besides connecting to friends. It is helpful to utilize information from other
modes or dimensions for more effective community detection. It is empirically veri-
fied that communities extracted using multi-mode or multi-dimensional information
are more accurate and robust [23].

6.3 Community Extraction in Heterogeneous Networks
We first formulate the community detection problems for multi-mode networks and

multi-dimensional networks, respectively; and then present viable solutions and
their connections.

6.3.1 Multi-mode Networks

Given an m-mode network with m types of actors

X; = {xi,xé,-n ,xfli} i=1,---,m
where n; is the number of actors for X, we aim to find community structures in each
mode. Let R; ; € R"*"/ denote the interaction between two modes of actors X; and
X, k; and k; denote the number of latent communities for X; and X, respectively

6 Understanding Group Structures and Properties in Social Media 169

Table 6.1 Notations

Symbol Representation

m number of modes in a multi-mode network

n; number of actors in mode i

ki number of communities at mode i

R; j interaction matrix between modes i and j

Ci community indicator matrix of mode i

A j group interaction density between modes i and j
cl, the (s, #)th entry of C;

R a multi-dimensional network

Ry the dth dimension of multi-dimensional network

n number of actors within a multi-dimensional network
d the dimensionality of a multi-dimensional network

k number of communities within a network

C the community indicator matrix

(Table 6.1). The interactions between actors can be approximated by the interactions
between groups in the following form [12]:

where C; € {0, 1} *ki denotes some latent cluster membership for X;, A; ; the
group interaction, and 7' the transpose of a matrix. In other words, the group iden-
tity determines how two actors interact, essentially making a similar assumption
as that of block models [17]. The difference is that block models deal with the
problem from a probabilistic aspect and concentrate on one-mode or two-mode
networks. Here we try to identify the block structure of multi-mode networks via
matrix approximation:

min Z w,‘j||Ri,j—CiAi,jCjT||%:, (6.1)
I<i<j<m

sit. Cpelo, 1)k i =1,2,... m, (6.2)
ki
dodi=1 s=12....n, i=12_....m, (6.3)
t=1

where w;; are the weights associated with different interactions and ¢!, the (s, t)th
entry of C;.

The constraints in (6.3) force each row of the indicator matrix to have only one
entry being 1. That is, each actor belongs to only one community. Unfortunately, the
discreteness of the constraints in (6.2) makes the problem NP-hard. A strategy that
has been well studied in spectral clustering is to allow the cluster indicator matrix
to be continuous and relax the hard clustering constraint as follows:

clci=1n,, i=12,....,m. (6.4)

170 L. Tang and H. Liu

This continuous approximation of C; can be considered as a low-dimensional
embedding such that the community structure is more prominent in these dimen-
sions. Consequently, the problem can be reformulated as

minc 4 Y wijllRi; —Ci Aij CT 7 (6.5)
1<i<j<m
st. Crci=1n,, i=1,2,...,m. (6.6)

Since the solution of C; of the above formulation is continuous, a post-processing
step is required to obtain the disjoint partition of actors. A commonly used technique
is to treat each column of C; as features and then conduct k-means clustering to
obtain discrete assignment of clusters [13]. Below, we briefly describe the compu-
tation of A; ; and C; in (6.5).

Note that the problem in (6.5) is too complicated to derive a closed-form solution.
However, it can be solved iteratively. First, we show that A; ; has a closed-form
solution when C; is fixed. Then, we plug in the optimal A; ; and compute C; via
alternating optimization. Basically, fix the community indicator at all other modes
while computing the community indicator C; at mode i. We only include the key
proof here due to the space limit. Please refer to [12, 22] for details.

Theorem 1 Given C; and Cj, the optimal group interaction matrix A; ; can be
calculated as

Aij=CIR;;C;. (6.7)

Proof Since A; ; appears only in a single term, we can focus on the term to optimize
Aj ;.
o

IRij — CiAijCT 7

T T T
=1r (Ri’j — CiAi,jCj) (R,',j — C,-A,-,jCj)

. [Ri’jRZj —2Ci A ;CTR + A,-,,-A,Q]

The second equation is obtained based on the property that tr(AB) = tr(BA) and
column orthogonality of C; and C;. Setting the derivative with respect to A; ; to
zero, we have A; j = CI'R; ;C;. The proof is completed. O

Given the optimal A; ; as in (6.7), it can be verified that
IR j — CiAi jCT Iz = I Ri jllF — IC] Ri ; Cjll%. (6.8)

Since || R;,; II% in (6.8) are constants, we can transform the formulation in Eq. (6.5)
into the following objective:

6 Understanding Group Structures and Properties in Social Media 171

m

max > wi ;| Ri;jCill% (6.9)
1<i<j<m
st. ClCi=1y, i=1,2,....m (6.10)

Note that C; is interrelated with C; (j # i). There is no closed-form solution in
general. However, given C; (j # 1), the optimal C; can be computed as follows:

Theorem 2 Given C; (j # i), C; can be computed as the top left singular vectors
of the matrix P; concatenated by the following matrices in column-wise:

P, = [{ /Wi j R,‘,jC‘,‘}kj , {q/wki RIZjiCk}k<‘:| . (6.11)
1
Proof We only focus on those terms in the objective involving C;.

L= wijlClRi;jCilF+ Y wil] ReiCill3

i<j k<i
=Y wij tr (€T Ry CCTRI,C) + 3 i 1 (CT RE ChCl R)
i<j k<i

=tr | CT [D wijRijC;CTR] + Y wiiRL ;ChCl R | Ci

i<j k<i

= (C,.T M; C,-) ,
where M; is defined as

M; =Y wijRijC;CTRI; + wii R, CkCl Ry (6.12)

i<j k<i

So the problem boils down to a well-defined max-trace problem with orthogonality
constraints. The community indicator matrix C; has a closed-form solution, which
corresponds to the subspace spanned by the top k; eigenvectors of M;. Note that M;
is normally a dense n; x n; matrix. Direct calculation of M; and its eigenvectors is
expensive if n; is huge (which is typically true in social media). However, M; can
be written as

M; = P, PT, (6.13)

where P; is defined as in (6.11). Thus the optimal C;, which corresponds to the top
eigenvectors of M; can be computed as the top left singular vectors of P;. Note that
the ordering of columns in P; does not affect the final solution. (]

As can be seen in (6.11), the clustering results of interacted entities essentially
form weighted features for clustering of the ith mode. The matrix M;, being the

172 L. Tang and H. Liu

outer product of P;, acts like a similarity matrix for clustering. Based on Theo-
rem 2, we can update the cluster indicator matrix iteratively based on the “attributes”
obtained from the clustering results of related entities.

Once the approximate cluster indicator matrix C; is computed, k-means can be
applied to obtain the discrete assignment of communities for actors at each mode.
The overall description of the algorithm is presented in Fig. 6.4. In the algorithm,
we specify the objective to be calculated via (6.9), as the direct calculation of the
original formation in (6.5) usually requires computation of dense matrices, which is
not applicable for large-scale multi-mode networks.

Input: {R:;}, {ki}, {wi;}

Output: {Zd:{}l}, {Cz}, {Aiﬂj}

1. Generate initial cluster indicator matrix {C}}.

2. Repeat

3 Fori=1,2,...,m

4 construct P; as in Eq. (11);

5. update C; as top k; left singular vectors of P;;

6. Until the relative change of the objective in Eq. (9) < e.
7. calculate A; ; as in Eq. (7)

8. calculate the cluster idz; with k-means on C}

Fig. 6.4 Algorithm for community extraction in multi-mode networks

6.3.2 Multi-dimensional Networks

In a multi-dimensional network, there are multiple dimensions of interactions
between the same set of users. A latent community structure in social media exists
among these actors, indicating various interactions along different dimensions. The
goal of community extraction in a multi-dimensional network is to infer the shared
community structure. A d-dimensional network is represented as

R ={Ry,Ra, ..., Rg}.

R; represents the interactions among actors in the ith dimension. For simplicity, we
assume the interaction matrix R; is symmetric. We use C € {0, 1" to denote the
community membership of each actor.

Since the goal of community extraction in multi-dimensional networks is to iden-
tify a shared community structure that explains the interaction in each dimension,
one straightforward approach is to average the interaction in each dimension, and
treat it as a normal single-dimensional network. Then, any community extraction
methods proposed for networks or graphs can be applied. This simple averaging
approach becomes problematic if the interaction in each dimension is not directly
comparable. For example, it can be the case that users interact with each other fre-
quently in one dimension (say, leave some comments on friend’s photos), whereas

6 Understanding Group Structures and Properties in Social Media 173

talk to each other less frequently in another dimension (say, sending emails in
Facebook). Averaging the two types of interaction might misrepresent the hidden
community information beneath the latter dimension with less frequent interactions.
One way to alleviate this problem is to assign different weights for each dimension.
Unfortunately, it is not an easy task to assign appropriate weights for effective com-
munity extraction.

Another variant is to optimize certain averaged clustering criteria. Let Q;(C)
denote the cost of community structure C on the ith dimension of interaction R;.
We list some representative criteria in existing body of literature as follows:

— Block model approximation [28] minimizes the divergence of the interaction
matrix and block model approximation:

min Q = ¢ <R; CTAC) (6.14)

where £ is a loss function to measure the difference of two matrices, and A a
diagonal matrix roughly representing the within-group interaction density.
— Spectral clustering [13] minimizes the following cost function

min Q = tr (CTLC) , (6.15)

where L is the graph Laplacian.
— Modularity maximization [15] maximizes the modularity of a community assign-
ment:

max Q = 7 (CTBC> , (6.16)
where B is a modularity matrix.

Given a multi-dimensional network, we can optimize the following cost function,

d
min > wi0i(0). (6.17)

i=1

The weighted optimization criterion with graph Laplacian and random walk inter-
pretation are presented in [29]. Weighted modularity maximization is explored
in [23] as a baseline approach.

The drawback of the aforementioned two approaches (averaging network inter-
actions or minimize average cost) is that they can be sensitive to noisy interactions.
Assigning proper weights can help alleviate the problem, but it is equally, if not
more, difficult to choose a good heuristic of weighting scheme. Instead, an alter-
native paradigm based on structural features is proposed in [23] to overcome these
disadvantages. The basic idea is that the community structure extracted from each
dimension of the network should be similar. Hence, we can extract the “rough”

174 L. Tang and H. Liu

community structure at each dimension, and then integrate them all to find out the
shared community structure. Thus, the paradigm consists of two phases: (i) struc-
tural feature extraction from each dimension and (ii) cross-dimension integration.

— Phase I: Structural Feature Extraction Structural features, which are indicative
of some community structure, are extracted based on network connectivity. Any
methods finding out a community assignment can be used to extract structural
features. Note that finding out a discrete assignment of clusters with respect to the
criteria in (6.14), (6.15), and (6.16) is NP-complete. Commonly used algorithms
are very sensitive to network topology [7] and suffer from local optima. In prac-
tice, some approximation scheme of the discrete assignment is often exploited.

One widely used relaxation, as we have done in the previous section, is to
allow C to be continuous while satisfying certain orthogonal constraints (i.e.,
CTC = Iy). This relaxation results in an approximation of C which can be con-
sidered as a lower dimensional embedding that captures the community structure.
The optimal C typically corresponds to the top eigenvectors of a certain matrix.
This relaxation is adopted in [15] for modularity maximization and many spectral
clustering approaches [13]. Note that after relaxation, the obtained community
indicator matrix C is typically globally optimal with respect to certain criteria.
This avoids the randomness of a discrete assignment due to the noise in network
connections or algorithm initialization. Hence, structural feature extraction based
on relaxed community indicator is a more favorable solution. Networks in social
media are very noisy. Extracting some prominent structural features indeed helps
remove the noise, enabling more accurate community identification in the second
stage.

— Phase II: Cross-Dimension Integration Assuming a latent community structure
is shared across dimensions in a multi-dimensional network, we expect that the
extracted structural features to be “similar.”” However, dissimilar structural fea-
ture values do not necessarily indicate that the corresponding community struc-
tures are different as an orthogonal transformation or reordering of columns in C
can be “equivalent” solutions [23]. Instead, we expect the structural features of
different dimensions to be highly correlated after certain transformation. Thus,
the integration boils down to finding transformations that can be applied to the
extracted structural features to maximize the correlation.

To capture the correlations between multiple sets of variables (generalized),
canonical correlation analysis (CCA) [9] is a standard statistical technique. CCA
attempts to find a linear transformation for each set of variables such that the
pairwise correlations are maximized. It has been widely used to integrate infor-
mation from multiple different sources or views [6, 16]. Here we briefly illustrate
one scheme of generalized CCA that turns out to equal to principal component
analysis (PCA) under certain constraints.

Let C; € R"*% denote the ¢; structural features extracted from the ith dimen-
sion of the network, and w; € R% be the linear transformation applied to the
structural features of network dimension i. The correlation between two dimen-
sions after transformation is

6 Understanding Group Structures and Properties in Social Media 175
T T T T
(Ciwy)" (Cjw;) = w; (Ci Cj)U)j:wl- Ojjwj,

with O;; = CiT C; representing the covariance between the structural features
of the ith and the jth dimensions. One scheme of generalized CCA attempts to
maximize the summation of pairwise correlations in the following form:

d d
max » > " w] 0w, (6.18)

i=1 j=1

d
sty wl Ojw; = 1. (6.19)
i=1

Here, the objective in (6.18) is to maximize the pairwise correlations; and the
constraints in (6.19) confine the scale of transformation. Using standard Lagrange
multiplier and setting the derivatives respect to w; to zero, we obtain the follow-
ing (where X is a Lagrange multiplier):

011 O12 -+ O4 w1 Opn1 0 --- 0 w1
021 O -+ Oy wy 0 Op--- 0 wy

o) Cl=Ao0) (6.20)
Od1 Oq2 -+ - Ogq Wy 0 0 - Ou wy

Recall that our structural features extracted from each dimension satisfy Cl.T Ci =
I. Thus, the matrix diag(O11, O2, ..., Og4q) in (6.20) becomes an identity
matrix. Hence w = [wy, wo, -+ -, wg]’ corresponds the top eigenvector of the
full covariance matrix on the left-hand side in (6.20). This essentially equals to
PCA applied to data of the following form:

X =[Cy,Ca, ..., Cql. 6.21)

After the transformation w to the structural feature sets, the corresponding com-
munity at each dimension get aligned with each other. In order to partition the
actors into k disjoint communities, we can extract the top k — 1 dimensions such
that the community structure is most prominent. Let X = UDV7' be the SVD
of X. It follows that the top (k — 1) vectors of U are the lower dimensional
embedding.

In summary, to handle multiple dimensions of network interaction, we can first
extract structural features from each dimension. Then, we concatenate all the struc-
tural features and perform PCA to find out the low-dimensional embedding. Based
on the embedding, k-means can be applied to find out the discrete community
assignment. The detailed algorithm is summarized in Fig. 6.5.

176 L. Tang and H. Liu

Input: R = {Rl,RQ, e ,Rd}, k 5 ¢
Output: idz,C; (1 =1,2,...,d)
1. Compute top ¢ structural features C; based certain criteria
as in Eq. (14)-(16);
2. Construct X = [C1,Cq,...,Cql;
3. Compute slim SVD of X = UDVT;
4. Obtain lower-dimensional embedding U = U(:,1 : k — 1);
5. Calculate the cluster idz with k-means on U.

Fig. 6.5 Algorithm for community extraction in multi-dimensional networks

Different from the two alternatives (average interaction or average criteria to
optimize), the proposed approach is more robust to noisy interactions in multi-
dimensional networks [23]. Moreover, this scheme does not require any weighting
scheme for real-world deployment.

6.3.3 Connections Between Multi-mode and Multi-dimensional
Networks

Comparing the algorithms for multi-mode networks and multi-dimensional net-
works, we can find a common component: extract structural features and con-
catenate them to form a feature-based data set of actors, and then apply SVD to
obtain the lower dimensional embedding (Steps 4 and 5 in Fig. 6.4 and Steps 2—4
in Fig. 6.5). The basic scheme is to convert the network interactions into features.
This scheme can work not only for community identification but also for relational
learning and behavior prediction [18].

A social media network can be both multi-mode and multi-dimensional. One
can combine the two algorithms to handle multi-mode and multi-dimensional chal-
lenges. The combination is straightforward: if there are within-mode interactions
that are multi-dimensional, we can simply append to P; in (6.11) with some struc-
tural features that are indicative of the community structure. That is,

p= [l ReCily [vem RLG), L iet]. e22)

where lei denotes the structural features extracted from dth dimension of interac-
tion in the ith mode. In this way the presented algorithm is able to handle diverse
heterogeneous networks.

6.4 Understanding Groups

In earlier sections, we concentrate on group structures. That is, how to extract groups
from network topology. Extracting groups is the first step for further analysis to
answer questions such as why are these people connected to each other? and what

6 Understanding Group Structures and Properties in Social Media 177

is the relationship between different groups? In this section, we seek to capture
group profiles in terms of topics or interests they share [24]. This helps understand
group formation as well as other group related task analysis. As the total number
of groups’ interests can be huge and might change over time, a static group profile
cannot keep pace with an evolving environment. Therefore, online group profiling
based on topic taxonomy [21] is proposed to serve the need.

6.4.1 Group Profiling

While a large body of work has been devoted to discover groups based on network
topology, few systematically delve into the extracted groups to understand the for-
mation of a group. Some fundamental questions remain unaddressed:

What is the particular reason that binds the group members together?
How to interpret and understand a social structure emanated from a network?

Some work attempts to understand the group formation based on statistical struc-
tural analysis. Backstrom et al. [2] studied prominent online groups in the digital
domain, aiming at answering some basic questions about the evolution of groups,
like what are the structural features that influence whether individuals will join
communities. They found that the number of friends in a group is the most impor-
tant factor to determine whether a new user would join the group. This result is
interesting, though not surprising. It provides a global level of structural analysis to
help understand how communities attract new members. However, more efforts are
required to understand the formation of a particular group.

According to the concept of Homophily [14], a connection occurs at a higher rate
between similar people than dissimilar people. Homophily is one of the first char-
acteristics studied by early social science researchers and holds for a wide variety
of relationships [14]. Homophily is also observed in social media [5, 26]. In order
to understand the formation of a group, the inverse problem can be investigated:
Given a group of users, can we figure out why they are connected? What are their
shared similarities? Group Profiling [24], by extracting shared attributes of group
members, is one approach proposed to address the problem.

Besides understanding social structures, group profiling also helps for network
visualization and navigation. It has potential applications for event alarming, direct
marketing, or group tracking. As for direct marketing, it is possible that the online
consumers of products naturally form several groups, and each group posts different
comments and opinions on the product. If a profile can be constructed for each
group, the company can design new products accordingly based on the feedback of
various groups. Group profiles can be also used to connect dots on the Web. It is
noticed that an online network (e.g., blogosphere) can be divided into three regions:
singletons who do not interact with others, isolated communities, and a giant con-
nected component [11]. Isolated communities actually occupy a very stable portion
of the entire network, and the likelihood for two isolated communities to merge is

178 L. Tang and H. Liu

very low as the network evolves. If group profiles are available, it is possible for one
group or a singleton to find other similar groups and make connections of segregated
groups of similar interests.

A set of topics can be used to describe a group. Since a group consists of people
with shared interests, one intuitive way of group profiling is to clip a group with
some topics shared by most members in the group. Luckily, social media provides
not only network connectivity but also textual information. For instance, in blo-
gosphere, bloggers upload blog posts; in content-sharing sites like Digg.com and
Del.icio.us, users post news or bookmarks. These content information essentially
represents the latent interests of individuals. Moreover, users also provide tags on
the shared content. These tags can serve as topics.

In order to achieve effective group profiling, one straightforward approach is
aggregation. For instance, if a tag is commonly used by the majority of group mem-
bers, then the tags with highest frequency can be used to describe the group. This
technique is widely used to construct tag clouds to capture the topic trend of a social
media site. However, as pointed out in [24], aggregation can lead to selection of
irrelevant tags for a group, especially those popular tags. This is even worse if the
topics are extracted from raw text such as blog posts, comments, and status updates.
Instead, to find out the description of a group, differentiation-based method can be
exploited. That is, we can treat the group as a positive class, and the remaining actors
in the network as a negative class. Then, only those features that occur frequently
in the group while rarely outside the group are selected. More interestingly, it is
empirically shown that by comparing the group with its neighboring actors (those
actors outside the group but connecting to at least one member in the group), the
extracted features are equivalently informative. Essentially, we can consider the
group as a unit and take an egocentric view. The group profiles can be extracted
by differentiate the group from their friends (denoted as ego-differentiation).

Table 6.2 shows one example of profiles extracted based on different strategies
on Blythedoll group' of over 2000 members in a popular blog site LiveJournal.”
Blythedoll was first created in 1972 by US toy company Kenner, later it spread
out to the world. Takara, a Japanese company, is one of the most famous pro-
ducers. As seen in the table, the aggregation-based method tends to select some
popular interests such as music, photography, reading, and cats. On the contrary,
differentiation-based methods select interests that are more descriptive. This pattern
is more observable when the profiles are constructed from individual blog posts.
Aggregation reports a profile that is hardly meaningful, while differentiation still
works reasonably well. Even if we take an egocentric view for the differentiation-
based method, a similar result is observed.

! http://community.livejournal.com/blythedoll/profile
2 http://www.livejournal.com/

http://community.livejournal.com/blythedoll/profile
http://www.livejournal.com/

6 Understanding Group Structures and Properties in Social Media 179

Table 6.2 Profiles constructed by various strategies for Blythedoll group in LiveJournal

Profiles based on individual interests

Aggregation Differentiation Ego-differentiation
blythe blythe blythe
photography dolls dolls
sewing sewing sewing
japan japan blythe dolls
dolls blythe dolls super dollfie
cats super dollfie japan

art hello kitty hello kitty
music knitting toys

reading toys knitting
fashion junko mizuno re-ment

Profiles based on blog posts

Aggregation Differentiation Ego-differentiation
love blythe blythe
back doll doll

1 flickr dolly
people ebay dolls
work dolls ebay
things photos sewing
thing dolly flickr
feel outfit blythes
life sell outfit
pretty vintage dollies

Each profile consists of the top 10 selected features. The
first block shows the profiles constructed based on individual
interests on user profiles and the second block based on group

members’ blog posts

6.4.2 Topic Taxonomy Adaptation

In social media, there are hundreds of thousands of online groups with diverse inter-
ests. The topics associated with different groups can be inordinate, and the total
number of topics can be huge. Moreover, the selected topics in group profiles can
be highly correlated as different users use tags or words at different granularity.
Facing a large number of topics, we need to find a more suitable representation to
understand the relationship between different groups.

Organizing the topics into a tree-structured taxonomy or hierarchy is a natural
solution, as it provides more contextual information with refined granularity com-
pared with a flat list. The left tree in Fig. 6.6 shows one simple example of a topic
taxonomy. Basically, each group is associated with a list of topics. Each topic can
be either a non-leaf (internal) node like Meteorology or Politics, or a leaf node like
Hurricane. Different groups can have shared topics. Given a topic taxonomy, it is
easy to find related or similar topics via parent, sibling, or child nodes. Taxonomies
also facilitate the visualization of relationships between different groups and the
detection of related or similar groups.

180 L. Tang and H. Liu

Fig. 6.6 “Hurricane” example

A topic taxonomy can be provided by human beings based on topic semantics or
abridged from a very large taxonomy like Yahoo! or Google directory. It is a rela-
tively stable description. However, group interests develop and change. Let us look
at an example about “Hurricane” [25]. As shown in Fig. 6.6, in a conventional topic
taxonomy, the topic Hurricane is likely to locate under Meteorology and not related
to Politics. Suppose we have two groups: one is interested in Meteorology and the
other in Politics. The two groups have their own interests. One would not expect that
“Hurricane” is one of the key topics under Politics. However, in a period of time in
2005, there was a surge of documents/discussions on “Hurricane” under Politics.
Before we delve into why this happened, this example suggests the change of group
interests and the need for corresponding change of the taxonomy. This reason for
this shift is that, a good number of online documents in topic Hurricane are more
about Politics because Hurricanes “Katrina” and “Rita” in the United States in 2005
caused unprecedented damages to life and properties; and some of the damages
might be due to the faults of federal emergency management agency in preparation
for and responding to the disasters.

This example above demonstrates some inconsistency between a stagnant taxon-
omy and changing interests of an online group. Group interests might shift and the
semantics of a topic could be changed due to a recent event. To enable a topic tax-
onomy to profile the changing group interest, we need to allow the topic taxonomy
to adapt accordingly and reflect the change. The dynamic changes of semantics are
reflected in documents under each topic, just like in the hurricane example. This
observation motivates us to adjust a given topic taxonomy in a data-driven fashion.

Figure 6.7 illustrates a typical process of topic taxonomy adaption. By observ-
ing the difference between the original taxonomy and the newly generated taxon-
omy, we notice that topics can emerge and disappear for various groups. Given
recent text data (e.g., tags, blog posts, visited web pages, submitted search queries)
extracted from social media and a given topic taxonomy, we aim to automatically
find a revised taxonomy of topics (tags) that is consistent with the data and captures
dynamic group interests.

One fundamental question is how to measure the discrepancy between the seman-
tics reflected in textual contents and a topic taxonomy. While it is a thorny challenge
to quantify the discrepancy, a surrogate measure, the classification performance
based on the topic taxonomy can be calibrated. In order to obtain the classification
performance, we can exploit the content and tag information from social media. The

6 Understanding Group Structures and Properties in Social Media 181

Tags, Blog Posts,
Status Updates,
Visited Web Pages

Refined New Taxonomy

Old Topic Taxonomy

Fig. 6.7 Topic taxonomy adaptation

tags provide topic information while the shared contents act like data. With a robust
hierarchical classifier built from some collected data and an existent taxonomy, new
documents can be labeled automatically by the classifier. If the label are consis-
tent with the associated tags, the taxonomy, in a sense, captures the relationship of
tags. So the corresponding classification performance based on a taxonomy is one
effective way of indirectly measuring how good a topic taxonomy is to represent
relationships of different topics. In other words, the quality of a topic taxonomy
reduces to the classification performance (e.g. recall, precision, ROC) based on the
taxonomy.

We can change the topic taxonomy via classification learning as shown in
Fig. 6.8. Suppose a topic taxonomy is constructed based on text information from
before. The taxonomy is then adapted to maximize the classification performance
on the newly arrived texts. The basic idea is, given a predefined taxonomy, a dif-
ferent hierarchy can be obtained by performing certain operations. Then, the newly
generated hierarchy is evaluated on collected shared contents with tag information.
If the taxonomy change results in a performance improvement, it is kept; otherwise,
alternative change to the original taxonomy is explored. This process is repeated
until no more change can lead to performance improvement, ending up with a new
taxonomy which acclimatizes the taxonomic semantics according to the contents.

Old
Taxonomy

New
Taxonomy

Evaluate taxonomy
on new text info

Adjust
Taxonomy

Fig. 6.8 Taxonomy adaptation via classification learning

182 L. Tang and H. Liu

Since a topic taxonomy does not change considerably in a short time period,
we expect only a small portion of tags change their positions in the taxonomy.
Tang et al. [21, 25] propose to adapt a provided taxonomy locally according the
classification performance on novel data. Three elementary operations are defined
to change a taxonomy locally as shown in Fig. 6.9:

— Promote: roll up one node to upper level;
— Demote: push down one node to its sibling;
— Merge: merge two sibling nodes to form a super node;

(Hy) (Hy)
(1) O
2 @ of O
91016, G) 0@ @
(Hy) (H,)

Fig. 6.9 Elementary operations. H; is the original hierarchy. H>, H3, and H4 are obtained by
performing different elementary operations. H,: promote node 6; H3: demote node 3 under node
2; and Hs: merge node 3 and node 4

Since the defined local changes can be applied to any node in a taxonomy, the
total number of operations can be abundant. Generally, the nodes at higher level play
a more important role for classification. Hence, it is proposed to follow a top-down
traversal of a hierarchy to search for applicable operations [25]. It is empirically
shown that two iterations of the traversal are often sufficient to achieve a robust
taxonomy that captures the dynamic relationship between different groups.

6.5 Summary and Future Work

Social media is replete with diverse and unique information. It provides heteroge-
neous network data as well as collective wisdom in forms of user-generated contents
and tags. In this chapter, we present important research tasks and intriguing chal-
lenges with social media and elaborate issues related to the understanding of online
group structures and properties. In particular, we discuss two aspects of the problem:
(1) how to extract communities given multi-mode and multi-dimensional data and
(2) how to dynamically capture group profiles and relationships.

6 Understanding Group Structures and Properties in Social Media 183

The social media networks are heterogeneous: their idiosyncratic entities and
various interactions within the same network result in multi-mode and multi-
dimensional networks, respectively. Although abundant, the information can be
sparse, noisy, and partial. Therefore, special care is required to understand group
structures and properties. We present some feasible solutions to extract reliable
community structures in both types of networks. We also show that the two algo-
rithms share a common component to extract “structural features” from each mode
or dimension and then concatenate them to find some lower dimensional embed-
ding which is indicative of some community structure. This simple scheme has
been shown effective in community extraction in social media. Another task equally
important to community extraction is to capture group interests based on textual and
tag information. We describe strategies to perform effective group profiling, as well
as topic taxonomy adaptation to capture dynamic group relationship using noisy and
time-sensitive tag and content information.

This chapter has only addressed a couple of essential issues. Many research
directions are worthy pursuing in our endeavor to understand group structures and
properties in social media. We propose the following for further research:

— How can one determine the number of communities in heterogeneous networks?
In the current models, we assume the number of communities at each mode or
dimension is fixed. Some parameter-free process will be very useful to automat-
ically determine the number of communities.

— Itis interesting to study communities at different degrees of granularity in hetero-
geneous networks. One possibility is to handle heterogeneity with hierarchical
clustering.

— To deal with multi-dimensional networks, our current solution is to integrate
different dimensions of interactions globally. Since it is more likely that some
groups are more involved in one dimension than in other dimensions, can we
integrate the interactions in different dimensions differently depending on dimen-
sional intensities? It is a challenge to simultaneously discover a common com-
munity structure as well as the integration scheme for each group.

— Extracting communities in dynamic heterogeneous networks demands for effec-
tive solutions. Social media is evolving continuously, newcomers joining the net-
work, extant members generating new connections or becoming dormant. It is
imperative to efficiently update the acquired community structure. It is also inter-
esting to consider the temporal change of individuals for community detection.

— The work of group profiling only employs descriptive tags and contents to profile
groups. More can be attempted for group profiling. For example, How to integrate
the differentiation-based profiling into a taxonomy? Though the current taxon-
omy representation of topics does not allow one topic to have multiple parent
nodes (topics), tags (especially those words with multiple meanings) can relate
to different parent nodes depending on the context.

— The current scheme of group profiling is separated from group detection. If the
associated tags and contents could be considered as one mode, it may be possible
to exploit the methods developed for multi-mode networks to handle joint group
detection and profiling.

184 L. Tang and H. Liu

In a nutshell, social media is a rich data source of large quantity and high vari-
ety. It is a fruitful field with many great challenges for data mining. In achieving
the understanding of group structures and properties in social media, we genuinely
expect that this line of research will help identify many novel problems as well as
new solutions in understanding social media.

Acknowledgments This work is, in part, supported by ONR and AFOSR.

References

1. N. Agarwal, H. Liu, L. Tang, and P.S. Yu. Identifying the influential bloggers in a commu-
nity. In WSDM ’08: Proceedings of the international conference on Web search and web data
mining. Pages 207-218. ACM, New York, NY, 2008.

2. L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social
networks: membership, growth, and evolution. In KDD '06: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining. Pages 44-54.
ACM, New York, NY, 2006.

3. D. Chakrabarti, and C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM
Computer Survey, 38(1): 2, 2006.

4. S. DZeroski. Multi-relational data mining: an introduction. SIGKDD Explorations Newsletter,
5(1): 1-16, 2003.

5. A.T. Fiore, and J.S. Donath. Homophily in online dating: When do you like someone like
yourself? In CHI ’05: CHI ’05 extended abstracts on Human factors in computing systems.
Pages 1371-1374. ACM, New York, NY, 2005.

6. D.R. Hardoon, S.R. Szedmak, and J.R. Shawe-taylor. Canonical correlation analysis: An
overview with application to learning methods. Neural Computer, 16(12): 2639-2664, 2004.

7. J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Natural communities in large linked networks.
In KDD ’03: Proceedings of the 9th ACM SIGKDD international conference on Knowledge
discovery and data mining. Pages 541-546. ACM, New York, NY, 2003.

8. H. Kang, L. Getoor, and L. Singh. Visual analysis of dynamic group membership in tempo-
ral social networks. SIGKDD Explorations, Special Issue on Visual Analytics, 9(2): 13-21,
dec 2007.

9. J. Kettenring. Canonical analysis of several sets of variables. Biometrika, 58: 433-451, 1971.

10. J.M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,
46(5): 604-632, 1999.

11. R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social networks. In
KDD °06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. Pages 611-617. ACM, New York, NY, 2006.

12. B. Long, Z.M. Zhang, X. W4, and P.S. Yu. Spectral clustering for multi-type relational data.
In ICML °06: Proceedings of the 23rd international conference on Machine learning. Pages
585-592. ACM, New York, NY, 2006.

13. U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4): 395-416,
2007.

14. M. McPherson, L. Smith-Lovin, and J.M. Cook. Birds of a feather: Homophily in social net-
works. Annual Review of Sociology, 27: 415-444, 2001.

15. M. Newman. Finding community structure in networks using the eigenvectors of matrices.
Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 74(3), 2006, http://dx.doi.
org/10.1103/PhysRevE.74.036104

16. A. Nielsen. Multiset canonical correlations analysis and multispectral, truly multitemporal
remote sensing data. Image Processing, IEEE Transactions on, 11(3): 293-305, Mar 2002.

http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104

6 Understanding Group Structures and Properties in Social Media 185

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

K. Nowicki, and T.A.B. Snijders. Estimation and prediction for stochastic blockstructures.
Journal of the American Statistical Association, 96(455): 1077-1087, 2001.

L. Tang, and H. Liu. Relational learning via latent social dimensions. In KDD ’09: Proceedings
of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining.
Pages 817-826. ACM, New York, NY, 2009.

L. Tang, and H. Liu. Scalable learning of collective behavior based on sparse social dimen-
sions. In CIKM ’09: Proceeding of the 18th ACM conference on Information and knowledge
management. Pages 1107-1116. ACM, New York, NY, 2009.

L. Tang, and H. Liu. Uncovering cross-dimension group structures in multi-dimensional net-
works. In SDM workshop on Analysis of Dynamic Networks, Sparks, NV, 2009.

L. Tang, H. Liu, J. Zhang, N. Agarwal, and J.J. Salerno. Topic taxonomy adaptation for group
profiling. ACM Transactions on Knowledge Discovery from Data, 1(4): 1-28, 2008.

L. Tang, H. Liu, J. Zhang, and Z. Nazeri. Community evolution in dynamic multi-mode
networks. In KDD ’08: Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. Pages 677-685. ACM, New York, NY, 2008.

L. Tang, X. Wang, and H. Liu. Uncovering groups via heterogeneous interaction analysis. In
Proceeding of IEEE International Conference on Data Mining. Pages 503-512, Miami, FL,
2009.

L. Tang, X. Wang, and H. Liu. Understanding emerging social strucutres: A group-profiling
approach. Technical report, Arizona State University, 2010.

L. Tang, J. Zhang, and H. Liu. Acclimatizing taxonomic semantics for hierarchical content
classification. In KDD ’06: Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining. Pages 384-393. ACM, New York, NY, 2006.

M. Thelwall. Homophily in myspace. Journal of the American Society for Information Science
and Technology, 60(2): 219-231, 2009.

S. Wasserman, and K. Faust. Social Network Analysis: Methods and Applications. Cambridge
University Press Cambridge, 1994.

K. Yu, S. Yu, and V. Tresp. Soft clsutering on graphs. In NIPS, Vancouver, Canada, 2005.

D. Zhou, and C.J.C. Burges. Spectral clustering and transductive learning with multiple views.
In ICML ’07: Proceedings of the 24th international conference on Machine learning. Pages
1159-1166. ACM, New York, NY, 2007.

Chapter 7
Time Sensitive Ranking with Application
to Publication Search

Xin Li, Bing Liu, and Philip S. Yu

Abstract Link-based ranking has contributed significantly to the success of Web
search. PageRank and HITS are the most well-known link-based ranking algo-
rithms. These algorithms are motivated by the observation that a hyperlink from
a page to another is an implicit conveyance of authority to the target page. However,
these algorithms do not consider an important dimension of search, the temporal
dimension. These techniques favor older pages because these pages have many
in-links accumulated over time. New pages, which may be of high quality, have
few or no in-links and are left behind. Research publication search has the same
problem. This project investigates the temporal aspect of search in the framework
of PageRank with application to publication search. Existing remedies to PageRank
are mostly heuristic approaches. This project proposes a principled method based
on the stationary probability distribution of the Markov chain. The new algorithm,
TS-Rank (for Time Sensitive Rank), generalizes PageRank. Methods are also pre-
sented to rank new papers that have few or no citations. The proposed methods are
evaluated empirically; the results show the proposed methods are highly effective.

7.1 Introduction

The main task of search engines is to find the most relevant and quality pages given a
user query that reflects the user’s information needs. The most successful techniques
are those that exploit the social forces of people who present information on the
Web [22]. Two most well-known techniques are PageRank [11] and HITS [28].
These techniques are motivated by the observation that a hyperlink (or simply link
for short) from a Web page to another is an implicit conveyance of authority to the
target page. Thus, a page with more in-links (links pointing to the page) is in general
of higher quality than a page with fewer in-links. These algorithms are used to find
quality pages and to rank the pages according to their quality scores.

B. Liu (=)

Department of Computer Science, University of Illinois at Chicago, 851 S. Morgan (M/C 152),
Chicago, IL 60607-7053, USA

e-mail: liub@cs.uic.edu

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications, 187
DOI 10.1007/978-1-4419-6515-8_7, © Springer Science+Business Media, LLC 2010

188 X.Lietal.

However, an important aspect that is not considered by these classic techniques
is the timeliness of search results. The Web is a dynamic environment. It changes
constantly. Quality pages in the past may not be quality pages now or in the future.
In this project, we study the temporal aspect of search, which is important because
users are often interested in the latest information. Apart from well-established facts
and classics, which do not change much over time, most contents on the Web change
constantly. New pages or contents are added. (Ideally) Outdated contents and pages
are deleted. However, in practice many outdated pages and links are not deleted.
This causes problems for search engines because such outdated pages can still be
ranked high due to the fact that they have existed on the Web for a long time and
have accumulated many in-links. Those high-quality new pages with the most up-
to-date information will be ranked low because they have few or no in-links. It is
thus difficult for users to find the latest information on the Web based on the current
search technology. The problem is almost the same for publication search except that
research publications and their reference lists cannot be deleted after publication.

We believe that dealing with the temporal dimension of search is of great impor-
tance to the development of future search technologies. Although it is possible that
current search engines have already considered the time in their ranking algorithms
(but kept secret), it is still important to thoroughly investigate the issue openly. Such
studies will enable both the research and industrial communities to have a better
understanding of the problems and to produce effective and principled solutions.
The resulting algorithms will help both future and current search engines. Recently,
several researchers have started to address this problem [4, 17, 36, 39]. We will
discuss them in the next section.

To understand the temporal issues better, let us analyze different kinds of Web
pages. We can coarsely classify Web pages into two types, old pages and new pages
for simplicity of explanation. Similarly, from the dimension of reputation/quality,
we coarsely divide the pages into quality pages and common pages. Roughly speak-
ing, quality pages are those pages that have a large number of in-links, i.e., perceived
by users to have authoritative contents. Common pages are those that do not have
many in-links.

Old pages: These are the pages that have appeared on the Web for a long time.
Let us first discuss those old quality pages, which can be further classified based on
the temporal dimension:

1. Old quality pages that are up to date: As the time goes by the authors of these
pages update their contents to reflect the latest developments. Such pages often
stay as quality pages, which are indicated by the fact that they keep receiving new
in-links over time (as more users and new generations of users are interested in
the topics). These pages are still valuable. PageRank is able to give them high
rank scores.

2. Old quality pages that are not up to date: These pages become outdated and
no longer represent the state of the art. They become common pages, which are
reflected by the fact that they receive fewer and fewer new in-links over time, and
some old links may also be deleted. However, if many Web users do not clean

Time Sensitive Ranking with Application to Publication Search 189

up their pages to delete outdated links, which are often the case, such pages can
still maintain sizeable sets of in-links. Then, they will still be ranked high by
PageRank although they may have little value at the present time.

Regarding old common pages, we can analyze them similarly:

. Old common pages that remain common: Most pages on the Web are such pages.

Over time, they do not receive many in-links. They do not cause problem for
PageRank.

. Old common pages that have become important: These pages were not important

in the past but as time goes by they become valuable pages. This transition can
be due to a number of reasons, such as fashion change, or quality contents being
added by the authors. Over time such pages receive more and more in-links.
PageRank is able to rank them high.

New pages: These are pages that appear on the Web recently. In general, they are

ranked low by PageRank because they have fewer or no in-links. However, some of
these pages may be of high quality, but PageRank is unable to rank them high.

In summary, for a ranking algorithm to consider the temporal dimension of

search, two problems need to be dealt with in page evaluation:

1.

2.

How to assign a lower importance score to an old quality page that is not up to
date or out of favor, but still has a sizeable set of old in-links.

How to assign a higher importance value to a new quality page that has few or
no in-links.

Both these cases present difficulties to the PageRank algorithm. In this project,

we attempt to deal with these problems. The key is to take time into consideration
in evaluating the quality of a page.

We investigate these problems in the context of research publication search due

to several reasons:

1.

Results in the research publication domain can be objectively evaluated as we can
count the number of citations received by a paper in the “future” (represented by
test data) to see whether our evaluation is appropriate at the present time. Future
citation count of a paper is a commonly used indicator of quality and impact of
a research paper. Given a collection of papers and journals, all the information
required in evaluation is readily available. In contrast, on the Web, without a
search engine to constantly crawl the Web it is hard to know when a particular
hyperlink was installed, and when a page is created and published on the Web.
Unfortunately we do not have facilities for such crawling.

Concepts and entities in both domains are quite similar. Their effects and func-
tions in the two domains are also comparable. For example, a research paper
corresponds to a Web page, and a citation to a research paper corresponds to
a hyperlink to a Web page. We will discuss more similarities and also some
differences later in Section 7.6.

190 X.Lietal.

3. Publication search is important and useful in its own right. With the popular-
ity of digital libraries on the Web, the ability to search for relevant and quality
publications is valuable for both research and education.

In this project, we perform a focused study of the citation-based evaluation of
research papers, which corresponds to the hyperlink-based evaluation of Web pages.
The publication time of each paper is explicitly integrated into the ranking model.
Although the time factor has been studied by several researchers, existing formula-
tions are mostly heuristic modifications of PageRank. This project proposes a prin-
cipled algorithm based on stationary probability distributions of Markov chains. The
new algorithm, called TS-Rank (for Time Sensitive Rank), generalizes PageRank. If
time is not considered in the algorithm, it reduces to PageRank. Source evaluations
are also studied to rank papers that have few or no in-links. The proposed technique
is evaluated empirically using a large publication collection of high-energy particle
physics of 9 years. The results show that the proposed method is highly effective
and outperforms the recently proposed method.

7.2 Related Work

Since PageRank [11] and HITS [28] were published, a large number of papers on
improvements, variations, and speed-up of the algorithms have appeared in the lit-
erature [1, 2, 6, 7, 10, 12, 15, 20-22, 27, 30, 32, 33, 35, 38]. Many applications of
the algorithms have also been reported, in both Web search and research publication
search, e.g., search engines, Web resource discovery [7, 13, 14], Web community
mining [23, 29], adaptive search [1], search considering both hyperlinks and page
contents [14, 26], and research paper search [24, 31, 34] and social network analy-
sis [30]. These works are still within the framework of the original formulation of
the algorithms and do not consider the temporal aspect. References [16, 35] study
the evolution of the Web and identify the same problem as we discussed above. A
number of interesting phenomena about the Web evolution are reported. However,
no technique was proposed to deal with the problem.

In recent years, several researchers have tried to deal with the temporal dimen-
sion of search and to study ways to promote new pages [4, 17, 36, 39]. Reference
[36] proposes a randomized ranking method to randomly promote some new pages
so that they can accumulate links quickly. Reference [17] uses the derivatives of
PageRank to forecast future PageRank values for new pages. These approaches are
quite different from ours, as we deal with both new and old pages and propose a
principled method that integrates time naturally within the ranking algorithm.

The most closely related works to ours are those in [4] and [39]. They both con-
sider time in the ranking algorithm directly. They make some heuristic modifications
to PageRank. For example, the recent method (called TPR) given in [39], which is
evaluated using research publications, attaches a weight to each PageRank score to
reduce the effect of old papers. The algorithm is

7 Time Sensitive Ranking with Application to Publication Search 191

w; x P(x;)
Pa)=(0—-d)+dx Y. fo—if, (7.1)
x_,'EIN(X,') h

where

P (x;) is the rank score of paper x;.

O; is the number of out-links or references of the paper x;, i.e., the number of
references in the reference list.

IN(x;) is the set of papers that cites x;, i.e., the in-links of x;.

d is a damping factor, ranging between 0 and 1, which is used in the original
PageRank equation.

w; is the weight to reduce the effect of old links (or citations). It is a function
of the time when the paper x; is published. The intuition is that a citation
occurred recently is more important than a citation occurred a longtime ago.

Equation (7.1) is the same as the PageRank equation in [11] except that w; are
added. The original PageRank algorithm was derived based on the Markov chain
and a random surfer. The PageRank value of each page is the stationary probability
that the random surfer will arrive at the page. A Markov chain is represented with
a stochastic transition matrix, which, in the context of the Web search, means that
at a particular page x; (or a state in the Markov chain), if the page x; has O; out-
links, the sum of probabilities of following each link to go to another page (or state)
must be 1. This is true because PageRank gives each link a probability of 1/0;
(i.e., (7.1) without w;). Equation (7.1) does not meet this requirement because due
to the weight factor w;, the probabilities of going from one page to other pages
no longer sum up to 1. The sum is in fact w;, which is between 0 and 1. In [4],
three other modifications to PageRank were also suggested, but not fully evaluated.
Again, the modifications were ad hoc with little theoretical foundation. This project
corrects this situation and proposes a more principled approach to consider time in
the ranking algorithm naturally.

On publication search, [31] describes the CiteSeer system. CiteSeer is a popular
digital library on the Web for research publication search and citation analysis.
CiteSeer also uses PageRank and HITS algorithm in the system. It is thus able
to rank papers by either “hub” or “authority” score. Reference [31] mentions that
the temporal aspect should be considered in publication search. However, the topic
was not further investigated. A more recent report on CiteSeer is in [24]. In [34], a
ranking method called PopRank was proposed to rank objects on the Web and was
applied to publication search. However, the method does not consider time. Google
scholar! is another publication search system, but we could not find any published
work on the ranking method used in it. There are also many other publication search

! http://scholar.google.com

http://scholar.google.com

192 X.Lietal.

(digital library) systems such as DBLP,2 NDLTD,? NCSTRL,* Cora,® and CoRR.°
However, these systems only allow simple keyword search based on information
retrieval methods and/or the PageRank and HITS algorithms.

7.3 The Proposed TS-Rank

There are many factors that contribute to the ranking of research papers or
Web pages. Broadly speaking, we can group them into content-based factors and
reputation-based factors.

Content-based factors: These factors are related to the contents of research publi-
cations or Web pages that the user is seeking. In the context of research publications,
such factors may include how many user query words are contained in the paper and
how far these words are from each other. In this research, we do not focus on these
factors.

Reputation-based factors: Typically there are many relevant Web pages or
research publications based on contents. Reputations of papers help to determine
the ranking of the papers to be presented to the user. In the context of publication
search, reputation factors include the citation count of the paper, the reputation of its
authors, and the reputation of the journal or conference where the paper is published.

This work focuses on reputation-based factors and studies how the temporal
dimension may be integrated into the evaluation of the reputation of a research
paper.

We now switch to the domain of research publications (or papers) and use it as a
case study to show how the temporal dimension can help to improve search ranking.
However, most discussions below are also applicable to Web pages.

As indicated earlier, there are two main factors contributing to the reputation of
a paper:

1. The number of in-links of the paper, i.e., the number of citations that the paper
receives.
2. Source of the paper. There are two sources for each paper:

o the authors of the paper and
e the journal or the conference where the paper is published.

The reputations of these sources affect the reputation of the paper, especially
when the paper is new and has few or no citations.
There are two main timing factors related to a research paper.

2 http://www.informatik.uni-trier.de/~ley/db/
3 http://www.ndltd.org/

4 http://www.ncstrl.org/

5 http://cora.whizbang.com/

6 http://xxx.lanl.gov/archive/cs/intro.html

http://www.informatik.uni-trier.de/$sim $ley/db/
http://www.ndltd.org/
http://www.ncstrl.org/
http://cora.whizbang.com/
http://xxx.lanl.gov/archive/cs/intro.html

7 Time Sensitive Ranking with Application to Publication Search 193

1. The publication date of the paper
2. The dates that the paper is cited by other papers, which are the publication dates
of these other papers

These timing factors are important because the user is usually interested in the
most recent research results. A paper published a longtime ago and has many cita-
tions accumulated a longtime ago may be less important than a quality paper that is
published recently with fewer citations.

Among the two factors above, the second factor is of primary importance because
it reflects the relevancy, importance, and timeliness of the paper as perceived by
other researchers. Although a paper may be published a longtime ago, if it still
receives a large number of recent citations, it is still relevant and important. How-
ever, if an old paper receives few recent citations, it is an indication that the paper
has become less important now.

Below, we derive the TS-Rank algorithm to consider the time explicitly in the
evaluation of the reputation of a paper.

7.3.1 The TS-Rank Algorithm

A simple way to consider time in ranking is to simply use only those in-links (cita-
tions) that are received by each paper recently (e.g., in a specific time window)
in the PageRank computation. All earlier citations received by each paper are dis-
carded. However, this approach is too crude as it may remove many older papers
from consideration completely because they may receive few or even no citations in
the recent time window. Although the topics of these papers may be out of fashion
or few researchers are still working them, they may still be interesting to some
users. When the user searches for such a topic, we still want those old important
papers ranked higher than those old common papers. It is thus desirable to use a
time decay function to weigh old citations less than new citations and to have this
done in a principled manner. Discarding old citations completely is not appropriate.
Furthermore, this simple method does not handle new papers that have few or no
citations. They will still be ranked low by PageRank.

We now derive the TS-Rank method. We use the Markov chain model and a
random reader to formulate the problem. The collection of all papers {x{, x2, ...,
Xxp} is converted to a graph G = (V, E), where V is the set of papers and E is
the set of all directed links or edges (which are citations). In the Markov model, we
treat G as the Markov chain, each paper as a state, and each edge as a transition
from one state to another. The random reader browses and reads papers following
the references in the reference list of each paper. In the Markov model, we say that
the reader performs state transition. If we assume that the reader will follow each
reference uniformly at random, the probability of following each reference is 1/0;,
where O; is the number of out-links or references of the paper. In the Markov chain,
1/0; is the transition probability of moving from state to another state. Considering
all the states (papers) in the Markov chain, we have a transition probability matrix
of the chain, denoted by A. Each cell of the matrix A is defined as the following.

194 X.Lietal.

I
— if(i, j) € E,
Ay =1 0 TG (7.2)

0 otherwise.

Since every paper has a reference list, the sum of all transition probabilities of
each state is 1, which means that A is the stochastic transition matrix of a Markov
chain, i.e.,

n
Z Aij =1, (7.3)
j=1

where 7 is total number of states (papers) in the chain. Even if a paper x; does not
have a reference list, we can easily make A a stochastic matrix by assuming that
X; cites every paper in the collection. As a notational convention, we use bold and
italic letters to represent matrices.

By the Ergodic theorem of Markov chains [37], a finite Markov chain defined by
the stochastic transition matrix A has a unique stationary probability distribution
if A is irreducible and aperiodic. The stationary probability distribution means that
after a series of transitions the probability of the random reader arriving at each
state will converge to a steady-state probability regardless of the choice of the initial
probability at each state. With all the steady-state probabilities of the states, we
have a steady-state probability distribution vector P (expressed as a column vector).
According to the Markov chain model, the following equation holds at the steady
state:

P=A"P. (7.4)

P is in fact the PageRank (column) vector containing all the PageRank values
of all the papers (states). The superscript T means the matrix transpose. P is the
principal eigenvector of AT with eigenvalue of 1. If we do not use matrix notation,
(7.4)is

P(x)) =) AjiP(x)). (7.5)

j=1

‘We now consider the other two conditions, irreducible and aperiodic. Irreducibil-
ity of A means that the citation graph G is strongly connected, i.e., for any pair of
vertices, u and v, there is a directed path from u to v. However, this does not hold
for our citation graph because older papers will not cite new papers. Thus there is
no way to transit from an older paper to a new paper.

To make A is irreducible, we can use a similar trick as in PageRank. We add
an artificial link (citation) from each state to every state and give each link a small
transition probability controlled by a time function f(#)(0 < f(¢t) < 1), where
t is the time difference between the current time and the time when the paper is
published. f(¢) returns a probability that the reader will follow an actual link or

7 Time Sensitive Ranking with Application to Publication Search 195

citation in the paper. 1 — f(¢) returns the probability that the reader will jump to a
random paper. Thus, at a particular paper x;, the random reader has two options:

1. With probability f(#;), he randomly chooses a reference to follow
2. With probability 1 — £ (#;), he jumps to a random page without a citation

The intuition here is that if the paper is published a longtime ago, the papers that
it cites are even older and are probably out of date. Then the 1 — f (¢) value for such
a paper should be large, which means that the reader will have a high probability
of jumping to a random paper. If a paper is new, then its 1 — f(¢) value should be
small, which means that the reader will have a high probability to follow a reference
(citation) of the paper and a small probability of jumping to a random paper.

With the above augmentation, (7.5) becomes

n 1 _ .
Pr(x) =) (# + fa)A ji) Pr(x;), (7.6)
j=1

which is the TS-Rank of page x; denoted by Pr. 1/n is the probability of going to a
random paper x;. Recall # is the total number of papers. In the matrix notation, we
have

Pr=F+H)TPr, (7.7)

where F and H are both n x n square matrices defined by

AU
Fij = —rf(t), (7.8)
f@
Hyj = 0; if(i, j) € E (7.9)

0 otherwise

It is easy to show that (F 4+ H) is a stochastic transition matrix of our augmented
citation Markov chain. Clearly, the matrix (F + H) is also irreducible because due
to the random jump links, the reader can go from any state to any state, i.e., the
graph is strongly connected. It is also aperiodic. A state in a Markov chain being
periodic essentially means that there exists a directed cycle that the chain has to
traverse. If none of the states in a Markov chain is periodic, then the chain is said
to be aperiodic. Again, due to the random jump links, the chain becomes aperiodic
because there is a direct link from any state to any state and does not have to follow
any fixed cycle. For formal definitions of both irreducible and aperiodic, please refer
to [37].

These conditions ensure that the Markov chain (defined by (F + H) has a unique
stationary probability distribution regardless of the choice of the initial probability
of the random reader being at each state. The stationary probability distribution is
the final TS-Rank (column) vector Pr. Pr is computed as the principal eigenvector

196 X.Lietal.

of (F + H)T with eigenvalue of 1. To solve (7.7), the standard power iteration
method can be used [37].

The final issue is how to define f(¢), which is application dependent. For differ-
ent applications, different functions are needed depending on how the time affects
the domains. For instance, in the collection of research papers of high-energy par-
ticle physics that we use for evaluation of this work, a new paper can receive many
citations within 3—4 months and the number of citations per month can stabilize in
less than 6 months because many journals in the field are published twice a month
or even more frequently, and the time period from peer review to publication is very
short (in terms of a few months). However, for computer science, the situation is
very different. Almost all conferences are held only once a year. The publication
cycle of journals from the beginning of peer review to the actual publication can
take a few years. Thus, it takes at least a year (usually longer) for papers to receive
sizable citations. Note that it is easy to see that if f(¢) is a constant between 0 and
1 for every paper, TS-Rank becomes the original PageRank [11].

For our application, we use an exponential function for f(¢) as exponential decay
is commonly used in time series analysis. The function performs quite well in our
experiments:

() =057, (7.10)

where the decay parameter x is selected empirically. ¢ is the difference in month
between the current time and the time when the paper is published. While the effect
of decay parameter x on the prediction results is further studied in Section 7.5.5,
we use decay parameter x = 3 in the following example to illustrate the concept.
For instance, in our training data (which is used to select the decay), the newest
papers are published in December 1999. Given x = 3, the citations occurred in
December 1999, September 1999, and June 1999 have the weights of 1, 0.5, and
0.25, respectively. The decay parameter can be tuned according to the nature of the
data set. When its value moves toward infinitely large, the weight decreases slowly
with time. It is more suitable for static domains. Similarly, if its value is close to 0,
it is more suitable for highly dynamic domains.

7.3.2 Source Evaluation

Although TS-Rank considers time, it is still insufficient as it is not applicable to new
papers (published recently) since they have few or no citations from other papers.
To assess the potential importance of such a new paper, two pieces of source infor-
mation are useful, the reputation of its authors and the reputation of the journal (or
conference) where the paper is published. We make use of TS-Rank to define these
two reputations.

Author evaluation: The reputation of an author is based on the research papers
that he/she published in the past. We compute author evaluation by averaging the

7 Time Sensitive Ranking with Application to Publication Search 197

TS-Rank values of his/her past papers. Let the papers that the author a; has pub-

lished be x1, x2, . .., x;;. The author score (Author) is computed with
m
P (x
Author(a;) = Lizi Prox). (7.11)
m

where Pr(x;) is the TS-Rank score of paper x; at the present time. Due to the use of
TS-Rank, this measure weighs recent citations of his/her papers more than old cita-
tions, which is reasonable as recent citations are more representative of the author’s
current reputation. Note that for an author who has never published a paper before,
we are unable to evaluate his/her reputation.

Journal evaluation: The evaluation of each journal b;, JournalEval (b;), is done in
the same way as that of each author by considering papers published in the journal
in the past. A new journal is not evaluated.

Using the author and journal evaluations, we can estimate the importance of each
new paper. However, since a paper may be co-authored by a number of people, we
combine their author scores. Let the authors of the paper x; be ay, as, ..., ar. The
score of the paper based on author evaluation is given by

Y%, (Author(a;))>

AuthorEval(x;) = Z
> =1 Author(a;)

(7.12)

Clearly, there are other ways for these computations, e.g., maximum or mini-
mum. We found that this method performs quite well compared to other alternatives.

We can also combine author evaluation and journal evaluation to score each
paper. Assume that paper x; is published in journal b;. We can combine them by
using weighted average of JournalEval (b;) and AuthorEval(x;):

(JournalEval(b;))? + (AuthorEval(x;))?
JournalEval(b;) + AuthorEval(x;)

AJEval(x;) = (7.13)

Note that after a paper has been published for a while, it is more effective to use
TS-Rank to score the paper. Author and journal evaluations are less effective. This
makes sense because after a paper has been published for some time, its citation
counts reflect the impact or importance of the paper better than its authors and
journal since author evaluation (or journal evaluation) is only an averaged result
of all the papers of the authors (or the journal).

7.3.3 The Trend Factor

TS-Rank only assesses the value of a paper at a particular time instance based on
past citations. In the time series domain, another important issue is the trend. If
we are interested in the potential value or importance of a paper in the future, e.g.,

198 X.Lietal.

what is the likely importance or impact of the paper in the next year, we need to
consider trend, which is not directly measured by TS-Rank. We now introduce the
trend factor.

Continuing our previous example at the end of Section 7.3.1, for a paper x;,
Pr(x;) already captures the importance at the end of 1999. How does the importance
change through the future year? We assume that this is reflected by the citation
change at the end of 1999. Therefore, we can find the past behavior of each paper
x; to compute the trend factor of x;, denoted by Trend(x;). We define two time
periods, p1 and p;. p; is the current time period (in our experiments, we use the
past 3 months) and p» is the previous time period (i.e., the 4th, 5th, and 6th most
recent months). If the papers are too young, only 2 months of data are used. Let the
citation count in p; for paper x; be n; and the citation count in p, for paper x; be
ny. The trend factor of x; is defined as

Trend(x;) = ny/n;. (7.14)
Considering the trend factor, paper x;’s final rank score is computed with
Trend(x;) x Pr(x;), (7.15)

where Pr(x;) is the TS-Rank value of paper x;. If a paper’s age is too young (e.g.,
less than 3 months), there is no sufficient data available to compute its trend ratio.
We only use source evaluation results to evaluate the paper.

7.4 Linear Regression

For comparison purposes, we also implemented a linear regression method. The
citation counts of each paper received in the latest time periods are used to perform
a linear regression to predict its citation count in the next time period. This predicted
citation count is used as the score of the paper. This is a reasonable method because
the predicted citation count reflects the predicted impact of the paper in the next
time period. The method is fairly straightforward and will not be discussed further.

As in TS-Rank, for new papers with few or no citations, we use author and journal
evaluations, which can be done by using actual citation counts of all papers of the
author or the journal in this case. Let the papers published by an author (a;) be
X1, X2, - . ., Xm. Author score is computed with

Yo count(x;)

Author(aj) = (7.16)

where count(x;) is the citation count of paper x;. The score of a paper based on
author evaluation is again given by (7.12). Journal evaluation can be done in the
same way. After they are computed, (7.13) is applied to combine their scores.

7 Time Sensitive Ranking with Application to Publication Search 199

It is important to note that the linear regression method based on raw citation
counts is not suitable for Web search due to link spamming, which is not a major
problem for research papers.

7.5 Empirical Evaluation

In this section, we evaluate the proposed techniques and compare them with
PageRank and the existing method TPR in [39]. We use the KDD CUP 2003
research publication data, which are also used in [39]. This data set is from an
archive of High Energy Particle Physics publications catalogued by Stanford Linear
Accelerator Center.

7.5.1 Experimental Settings

Our experiments use the standard search paradigm. That is, given a collection of
research papers and a user query, the system ranks the papers that are relevant to
the query in the collection and presents to the user. For the purpose of this research,
we assume that there is an abstract procedure that is able to determine whether a
paper is relevant to a query (which is expressed as a set of keywords). In other
words, our research focuses on citations and investigates the effect of time on the
citation-based ranking, which is the key component of Web search (recall citations
in the Web context are hyperlinks). This work does not study content-based factors
such as keyword locations, their distances in the paper. We simply assume that a
paper is relevant to a query if it contains all the query words.

Evaluation method: To evaluate the proposed techniques, we do not compare
their rankings directly, which is harder to quantify. Instead, we compare the number
of citations that the top ranking papers receive in the following year, namely, 1 year
after the user performs the search. This is an objective measure. It is also reasonable
because to a large extent the citation count of a paper reflects the importance of the
paper. If those highly cited papers in the future are ranked high by an algorithm, it
indicates that the algorithm is effective in giving users high-quality papers.

7.5.2 Experimental Results with All Papers

In this set of experiments, we use all the papers in the first 8 years (1992-1999)
to perform various evaluations for the proposed methods. Following the setting
in [39], we used the same 25 randomly selected queries as in [39] and rank the
relevant papers of each query using the evaluation results. All query keywords were
randomly selected from the set of frequent words found in the abstracts of the papers
(after stopwords have been removed). The data of year 2000 are used to test various
ranking methods.

200 X.Lietal.

Table 7.1 presents the experiment results. Only the results for the top 30 papers
are given. The reason for using only top 30 ranked papers is that users seldom have
the patience to look at more than even 20 papers. This is especially true for Web
search.

The experimental results are presented in three rows. Each row gives the total
citation counts of different methods for a group of papers. The first row is for the
top 10 papers (we also call it a group of papers), where the citation count is the
sum of the citation counts of all the top ten papers over the 25 queries. Similarly, the
second row is for the top 20 papers, and so on. Below, we explain the results column
by column.

Column 1: It lists each group of top-ranked papers.

Columns 2 and 3: Column 2 gives the result for each group of top papers based
on rankings using the original PageRank algorithm, i.e., time is not consid-
ered but trend factor is used (without the trend factor, the results are much
worse). Each result here is the total number of citations of each group of
top-ranked papers for the 25 queries. Each count is obtained from citations
that the paper receives in year 2000.

Column 3 gives the ratio of the total citation count for this method and the
total citation count of the ideal ranking (called best citation count given in
Column 14), expressed as a percentage. The ideal ranking is that one that
ranks relevant papers (to a query) based on the actual number of citations
received by each paper in the following year.

Columns 4 and 5: Column 4 gives the total citation count results of TPR (the
method in [39] with the combined author and journal evaluations, and trend
factor). Column 5 gives the same ratio as in Column 3.

Columns 6 and 7: Column 6 gives the results (total citation counts) of the
TS-Rank method (with trend factor considered). Column 7 gives the same
ratio as in Column 3 (the ratio of the total citation count for TS-Rank and the
total citation count of the ideal ranking in Column 14). From Columns 6 and
7, we observe that TS-Rank’s results are significantly better than those of the
original PageRank algorithm.

Columns 8 and 9: Column 8 gives the results of TS-Rank combined with both
author and journal evaluations (AJEval). Column 9 gives the same ratio as in
column 7. The AJEval is only used when a paper is very new, i.e., with few
or no citations. In this case, we cannot use TS-Rank. Papers are regarded as
new (or very recent) if they were published less than 3 months ago. Three
months are chosen because there is no sufficient data available to compute
the trend factor for a paper younger than 3 months.

We did not list the results of author evaluation and journal evaluation indi-
vidually due to space limitations in the table. They perform slightly worse
than the combined method (see also Table 7.3).

From Columns 8 and 9, we can see that TS-Rank (AJEval) performs clearly
better than TS-Rank alone. This is because TS-Rank could not handle new
papers well.

201

7 Time Sensitive Ranking with Application to Publication Search

90%8 %8L 61S9 %YL S8E9 %S8 PSIL %T8 1069 BI8 88L9 %SS ¥I9F 0€¢

SHeEL WYL LYPS BEL TLES %I8 9v6S B8L 6ILS %8L 9SLS BIS OTLE 0T

1996 BEL 9EIY BSL 61T %T8 6I9v %YL vLIY BLL T8EY %6Y 9LLT 01

$junoD (reAd V)1 A1 (eAdlv) dMuey-SL, yuey-SL ([BAA[Y) YdL jueyeSed sieded doy jo “oN
uoneir) 1sog

4! €l I I 01 6 8 L 9 S 14 € (4 !

s1oded [1e Sursn spoyiow JuaIIp Jo synsal uostedwo) L Qe

202

X. Lietal.

From Columns 4 and 5, we observe that TS-Rank outperforms the heuristic
method TPR for every group of papers.

Columns 10-13 give the corresponding results of linear regression (denoted
as LR in the table). After trying various possibilities, we found that using
2 years of data to build LR models gives the best results. When a paper is
younger than 2 years, those old months will be treated as having O citation.
We can see that linear regression performs reasonably well too, but worse
than TS-Rank-based methods.

Column 14: It gives the best citation count for each group of paper based on
the ideal ranking, i.e., ranking relevant papers based on the actual number of
citations received by each paper in year 2000.

To summarize, both TS-Rank and linear regression perform significantly bet-
ter than the original PageRank algorithm. The author and journal evaluations help
improve the prediction results further. TS-Rank not only is a more principled method
but also outperforms the heuristic method TPR (including author and journal evalu-
ations and the trend factor). Among all the four methods, TS-Rank with author and
journal evaluations gives the best result for every group of papers.

7.5.3 Results of Top 10 Papers

To give some indication of the effectiveness of ranking of the proposed methods, we
find the top 10 most cited papers in 2000. We then use the proposed methods to rank
all the papers that appeared from 1992 to 1999. Table 7.2 shows the ranking results.

Column 1: It shows the ranks of the top 10 papers in 2000.

Column 2: It gives the paper ID of each paper.

Column 3: It gives the rank of each paper using the original PageRank algo-
rithm. Clearly, the results are very poor.

Column 4: It gives the rank of each paper based on the existing TPR method.

Table 7.2 Ranks of the top 10 papers

Rank Paper ID PageRank TPR (AJEval) TS-Rank (AJEval) LR (AJEval)
1 9711200 19 1 1 1
2 9908142 742 8 2 5
3 9906064 613 6 6 10
4 9802150 39 2 3 2
5 9802109 46 4 4 3
6 9711162 323 11 5 7
7 9905111 576 9 8 4
8 9711165 620 20 7 14
9 9610043 17 12 14 19
10 9510017 7 13 9 8

7 Time Sensitive Ranking with Application to Publication Search 203

Column 5: It gives the rank of each paper based on TS-Rank. The new papers
are ranked using the combined author and journal evaluations. We see that
TS-Rank again clearly outperforms the TPR method.

Column 6: It gives the rank of each paper based on linear regression. The
new papers are ranked using the combined author and journal evaluations
(Section 7.4).

Table 7.2 clearly demonstrates that the ranking results of the PageRank algorithm
are very poor. In contrast, our proposed methods perform remarkably well. The set
of predicted top eight papers are the same as those in the actual rank, and all the top
10 papers are ranked very high (within top 14). Our method also performs better
than the TPR method.

7.5.4 Results on New Papers Only

In this set of experiments, we use only the new papers. That is, we only use those
papers that are published less than 3 months ago from the query time. The purpose
here is to assess the effectiveness of author and journal evaluations. Their results
cannot be seen clearly in Table 7.1 because it includes both old and new papers, and
older papers dominate in number.

This set of experiments does not directly use TS-Rank and linear regression
because these papers have few or no citations. Note also that we do not use queries
here because each query returns only a few results (papers) as the number of new
papers is small. We use the proposed methods to rank all the new papers (i.e., all
papers are considered relevant) and compare the predicted rank with the actual rank
position in 2000 of the new papers.

To measure the distance between ranks, we use the Spearman footrule distance
[19]. The Spearman footrule distance is the sum of the absolute difference between
a paper’s positions in two ranks. In our experiment, we examine the Spearman
footrule distance for the top 30 papers, as users only pay attention to the top-ranked
papers. Given two ranks R; and R; of size m, n papers are of our interest and
n << m, the equation of normalized Spearman footrule distance is

Yzt [R1G) — R ()]

m Xn

F(Ry, Ry) =

(7.17)

where R (i) and R (i) are the rank positions of paper i in rank R and R,

Column 1: It shows that we use Spearman footrule (SF) distance to evaluate the
source evaluation.

Column 2: It shows the SF distance for the top 30 new papers between the
actual rank and the rank predicted by the original PageRank.

Columns 3 and 4: Column 3 gives the SF distance of the TPR method without
source evaluation. Column 4 gives the SF Equations distance of the TPR
method with the combined author and journal evaluation.

204 X.Lietal.

Column 5: It lists the SF distance for the top 30 new papers between the
actual rank and the rank predicted by TS-Rank with no source evaluation.
While TS-Rank tends to underestimate the new papers, the distance value of
0.0934 indicates that new papers already collected some citations. Our decay
function also helps these papers climb on the rank quickly. Therefore, using
TS-Rank alone, the ranks of top new papers are already quite close to their
actual ranks. We also see that TS-Rank outperforms PageRank dramatically
and is also better than TPR with no source evaluation.

Columns 6 and 7: They list the SF distances of TS-Rank with author and jour-
nal evaluations, respectively. The journal distance is smaller than the author
distance, which suggests that journal is a better indicator of a paper’s quality,
which is quite intuitive.

Column 8: It lists the SF distance results of TS-Rank with the combined author
and journal evaluations. We can see that this method gives the best results
on new papers. It clearly outperforms TPR when the source evaluation is
applied.

Columns 9 and 10: They list the SF distances of linear regression without and
with source evaluation, respectively. The results are much worse than those
of TS-Rank and TPR.

The source evaluation does not help improve the ranking. An explanation is that
the source evaluation over-boosted some new papers, which lowers the quality of
overall ranking. A similar ranking deterioration was also observed from the top 10
group in columns 10-13 in Table 7.1. However, as we consider more papers, it shows
that the source evaluation in linear regression does improve the overall ranking.

In summary, we can see from Table 7.3 that our new method in column 8 outper-
forms all other methods significantly.

Execution time: The time complexity of TS-Rank is the same as PageRank. How-
ever, TS-Rank takes fewer iterations to converge because the timed weight f(¢) on
the citation links drops rapidly with the citation age. The smaller the timed weight,
the less the authority can be transmitted through the citation links. Thus, timed
weights restrain the accumulation of TS-Rank values. Consequently, fewer itera-
tions are needed to converge. For our problem, PageRank converges in 36 iterations,
while TS-Rank converges in 23 iterations. In each iteration, TS-Rank takes more
time due to the first matrix F (the second matrix H is similar to that in PageRank).
Since the time is discretized into months (papers appeared in the same month have
the same f(¢) value), the effect of F' on the computation is not large. The overall
execution times of PageRank and TS-Rank are similar.

7.5.5 Sensitivity Analysis

In the introduction of the TS-Rank concept, we pointed out that decay parameter is
tunable for a given data set to reach an optimal result. Our experiments show that

205

7 Time Sensitive Ranking with Application to Publication Search

s1oded moau (¢
doy 103 QouR)SIp

GLT'O 9210 95€0°0 L8€0°0 8000 $€60°0 $960°0 6110 0809°0 s[nnooy ueuweadg
(leAd[V) eaq (TeAdrvy) (reaq (reaq [eaq (read[v) [eAd YueyoSed Uonen[eAd
A1 90INn0S Nuey-S.L [eurnof) Ioyny) 90INn0S ou AddL 0INn0S 92IN0S

ou Y1 Jyuey-S.L Juey-S.L yuey-S.L ouJydL

s1oded mou AJuo 3uisn spoyjawW UONBN[BAD 9OINOS JUAIAYIP JO s)[nsar uostredwo) ¢/ Aqe],

206 X.Lietal.

TS-Rank(AJEval) is an effective scoring technique. Therefore, we apply a range of
decay parameter values in TS-Rank(AJEval) and study the relationship between the
scoring effectiveness and decay parameter. A set of values {1, 2, 3, 6, 12} for the
decay parameter xis experimented. A larger decay parameter corresponds to a slow
decay function. The experiment results are listed in Table 7.4.

Column 1: It lists each group of top-ranked papers.

Columns 2 and 3: Column 2 gives the results (citation counts) of the TS-
Rank(AJEval) method with the decay parameter x = 1.

Column 3 gives the ratio of the total citation count for the TS-Rank(AJEval)
method (with x = 1) and the total citation count of the ideal ranking (column
12), expressed as a percentage.

Columns 4-5, 67, 8-9, 10—11 have the similar meanings as columns 2—3. The
only difference is that decay parameter varies from 2 to 12 in these experi-
ments.

Columns 12 lists the same data showed in Column 14 of Table 7.1. It gives the
best citation count for each group of papers based on the ideal ranking, i.e.,
ranking relevant papers based on the actual number of citations received by
each paper in year 2000.

The results indicate that x = 3 is the optimal value for decay parameter in this
project collection. When decay parameter is smaller than 3, the system heavily
focuses on very recent citations. The consequence is that papers with less recent
citations are absent from the predicted top papers even if they might be important.
Failing to include these papers in the results lowers the overall ranking quality. On
the contrary, when decay parameter is larger than 3, the decay function became less
aggressive. Older quality papers that are not up to date will be favored because of
their longer history. As a result, some new quality papers will be excluded from the
top rank.

7.6 Discussions and Conclusions

This project studies the temporal dimension of search. It proposed a new algorithm
in the context of publication search. Empirical evaluation verified its superior per-
formance to existing methods. To conclude, we also discuss how TS-Rank may be
applied to the general Web search.

From publication search to Web search: As indicated earlier, most concepts in
research publications are parallel to the concepts in Web pages. Research papers
correspond to Web pages, and journals correspond to Web sites. The date when a
paper is published is the same as the date when a Web page is created or updated
(most recently). The references of a paper are the same as out-links of a page on the
Web. There are of course also some differences between Web pages and research
papers. For example, a Web page may be deleted, but a published paper cannot be

207

7 Time Sensitive Ranking with Application to Publication Search

9018 %C8 0989 BY8 TCOL PS8 VSIL %Y8 180L %e8 8I0L 0¢

SyeL %8L SILS %18 ¥T6S %18 9¥6S %18 8¥6S %08 9L8S 0C

199¢ %3L 9tV %6L ESYY %T8 609 %8L 0tvy BLL 6YEY 01

SIUNOJ UONES 159g @1 =%)¢1,80 (9=2)g,50 (€=9¢/S0 (T=9¢,50 (1=x,0 stoded doj jo -oN
= 9e1 Aedo(q = 9e1Aedo(q = QeI ABdoq = 9Je1Aedoq = 91e1 ABO9(g

cl Il 0l 6 8 L 9 S 4 € 4 I

x s10)owrered {poap JuaroyyIp Jursn anbruyo9) (AT [V)NUBY-S.L oy} Jo synsa1 uostredwo)) 7 dqe],

208 X.Lietal.

deleted. Hyperlinks can also be added to and deleted from a Web page any time,
while for a research paper once published no reference or citation can be deleted or
added. To consider addition and deletion in Web pages in TS-Rank, we can take one
of the following two strategies:

Use the date of the most recent update to the page x; as the creation date of
the page (i.e., t; in (7.6)), although the page may be created much earlier. This is
reasonable as we can assume that the page owner updates all the links on the page.
We can then directly apply (7.6).

Give links appearing in the same page different transition probabilities accord-
ing to the times when they were added to the page, rather than assigning them the
uniform probability of 1/0;. t; is still the date when the page x; is most recently
updated. Those deleted links will not be considered any more.

All the information required for TS-Rank computation can be easily collected
during Web crawling. Thus adapting TS-Rank to the Web search is fairly straightfor-
ward. In our future work, we plan to investigate and experiment with this adaptation.

Acknowledgments We thank KDD Cup 2003 organizers for making the publications and citation
data available on the Web.

References

1. S. Abiteboul, M. Preda, and G. Cobena. Adaptive on-Line page importance computation. In
WWW-2003.
2. D. Achlioptas, A. Fiat, A. Karlin, and F. McSherry. Web search via hub synthesis. In FOCS-
2001.
3. A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan. Searching the Web. ACM
Transactions on Internet Technology, 1(1): 2-43, 2001.
4. R.Baeza-Yates, F. Saint-Jean, and C. Castillo. Web dynamics, age and page quality. In SPIRE-
2002.
5. Z. Bar-Yossef, A. Z. Broder, R. Kumar, and A. Tomkins. Sic transit gloria telae: Towards an
understanding of the Web’s decay, Pages 328-337, WWW-2004.
6. K. Bharat and A. Broder. A technique for measuring the relative size and overlap of public
Web search engines. Computer Networks and ISDN Systems, 30: 379-388, 1998.
7. K. Bharat and M. Henzinger. Improved algorithms for topic distillation in a hyperlinked envi-
ronment. SIGIR-1998.
8. P. Boldi, M. Santini, and S. Vigna. PageRank as a function of the damping factor. Pages
557-566, WWW-2005.
9. A.Borodin, J. S. Rosenthal, G. O. Roberts, and P. Tsaparas, Finding authorities and hubs from
link structures on the World Wide Web. WWW-2001.
10. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and
J. Wiener. Graph structure in the Web. WWW-2000.
11. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. Computer
Networks and ISDN Systems, 30: 107-117, 1998.
12. D. Cai, X. He, J-R. Wen, and W-Y. Ma: Block-level link analysis. SIGIR-2004.
13. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan. Automatic
resource compilation by analyzing hyperlink structure and associated text. WWW-1998.
14. S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to topic-
specific Web resource discovery. WWW-1999.

7 Time Sensitive Ranking with Application to Publication Search 209

15.
16.
17.

18.
19.

20.
21.
22.
23.
24.
25.
26.
217.
28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.
39.

Y.-Y. Chen, Q. Gan, and T. Suel. Local methods for estimating PageRank values. CIKM-2004.
J. Cho and S. Roy. Impact of web search engines on page popularity. WWW-2004.

J. Cho, S. Roy, and R. Adams. Page quality: In search of an unbiased Web ranking. SIGMOD-
2005.

B. D. Davison. Toward a unification of text and link analysis. Poster abstract of SIGIR-2003.

P. Diaconis. Group Representation in Probability and Statistics. IMS Lecture Series 11, IMS,
Hayward, CA, 1988.

M. Diligenti, M. Gori, and M. Maggini, Web page scoring systems for horizontal and vertical
search. WWW-2002.

S. Dill, R. Kumar, K. S. McCurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins. Self-
similarity in the Web. VLDB-2001.

R. Fagin, R. Kumar, K. S. McCurley, J. Novak, D. Sivakumar, J. Tomlin, and D. Williamson.
Searching the workplace Web. WWW-2003.

G. Flake, S. Lawrence, and C. L. Giles. Efficient identification of Web communities, Pages
150-160, KDD-2000.

C. L. Giles. CiteSeer: past, present, and future. AWIC-2004.

T. Haveliwala. Extrapolation methods for accelerating PageRank computations, WWW-2003.

R. Jin and S. T. Dumais. Probabilistic combination of content and links. SIGIR-2001.

S. D. Kamar, T. Haveliwala, C. D. Manning, and G. H. Golub, Extrapolation methods for
accelerating PageRank computations. WWW-2003.

J. Kleinberg. Authoritative sources in a hyperlinked environment. ACM-SIAM Symposium on
Discrete Algorithms, 1998.

J. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The Web as a graph:
Measurements, models, and methods. International Conference on Combinatorics and Com-
puting, 1999.

R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Social networks: From the Web to
knowledge management. Web Intelligence, Pages 367-379, January 2003.

S. Lawrence, K. Bollacker, and C. L. Giles. Indexing and retrieval of scientific literature.
CIKM-1999.

R. Lempel and S. Moran, The stochastic approach for link-structure analysis (SALSA) and
the TKC effect, WWW-2000.

F. McSherry. A uniform approach to accelerated PageRank computation. WWW-2005.

Z.Nie Y. Zhang, J-R. Wen, and W-Y Ma. Object level ranking: Bringing order to Web objects.
WWW-2005.

A. Ntoulas, J. Cho, and C. Olston. What’s new on the Web? the evolution of the Web from a
search engine perspective. WWW-2004.

S. Pandey, S. Roy, C. Olston, J. Cho, and S. Chakrabarti. Shuffling a stacked deck: The case
for partially randomized ranking of search engine results. VLDB-2005.

W. Steward. Introduction to the Numerical Solution of Markov Chains. Princeton University
Press, Princeton, NJ, 1994.

J. Tomlin. A new paradigm for ranking pages on the World Wide Web. WWW-2003.

P. S. Yu, X. Li, and B. Liu. Adding the temporal dimension to search—a case study in publi-
cation search, WI-2005.

Chapter 8
Proximity Tracking on Dynamic Bipartite
Graphs: Problem Definitions and Fast Solutions

Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos

Abstract Large bipartite graphs which evolve and grow over time (e.g., new links
arrive, old links die out, or link weights change) arise in many settings, such as
social networks, co-citations, market-basket analysis, and collaborative filtering.

Our goal is to monitor (i) the centrality of an individual node (e.g., who are
the most important authors?) and (ii) the proximity of two nodes or sets of nodes
(e.g., who are the most important authors with respect to a particular conference?).
Moreover, we want to do this efficiently and incrementally and to provide “any-
time” answers. In this chapter we propose pTrack, which is based on random walks
with restart, together with some important modifications to adapt these measures to a
dynamic, evolving setting. Additionally, we develop techniques for fast, incremental
updates of these measures that allow us to track them continuously, as link updates
arrive. In addition, we discuss variants of our method that can handle batch updates,
as well as place more emphasis on recent links. Based on proximity tracking, we
further proposed c¢Track, which enables us to track the centrality of the nodes over
time. We demonstrate the effectiveness and efficiency of our methods on several real
data sets.

8.1 Introduction

Measuring proximity (a.k.a relevance) between nodes on bipartite graphs (see [18]
for the formal definition of bipartite graph) is a very important aspect in graph
mining and has many real applications, such as ranking, spotting anomaly nodes,
connection subgraphs, pattern matching (see Section 8.2 for a detailed review).
Despite their success, most existing methods are designed for static graphs. In
many real settings, the graphs are evolving and growing over time, e.g., new links
arrive or link weights change. For example, in a user—-movie bipartite graph, where
the links represent movie ratings given by users, the ratings are usually associated
with time information, i.e., the date a user rated the corresponding movie. Similarly,

H. Tong (=)
Carnegie Mellon University, Pittsburgh PA, 15213, USA
e-mail: htong@cs.cmu.edu

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications, 211
DOI 10.1007/978-1-4419-6515-8_8, © Springer Science+Business Media, LLC 2010

212 H. Tong et al.

in an author—conference bipartite graph, where the links are the number of papers
published by the corresponding author in the conference, the papers also have time
information, i.e., the year when the paper was published. How should we measure
the proximity in such a dynamic setting? What additional benefits can we gain by
incorporating time information in proximity measurements?

Here, we address such challenges in multiple dimensions, by focusing on the
following questions:

Q1: How to define a good proximity score in a dynamic setting?

Q2: How to incrementally track the proximity scores between nodes of interest
as edges are updated?

Q3: What data mining observations do our methods enable?

The answers to these questions are our main contributions:

—_

: Definitions of proximity and centrality for time-evolving graphs.

2: Two fast update algorithms (Fast-Single-Update and Fast-Batch-Update), with-
out any quality loss.

3: Two algorithms to incrementally track centrality (Track-Centrality) and proxim-
ity (Track-Proximity) in anytime fashion.

4: Extensive experimental case studies on several real data sets, showing how dif-

ferent queries can be answered, achieving up to 15~176x speedup.

The rest of this chapter is organized as follows: we review the related work
in Section 8.2. We begin in Section 8.3 with the problem definition and in Sec-
tion 8.4, we propose our proximity definition for dynamic bipartite graphs. Then,
in Section 8.5, we study computational issues thoroughly and propose two fast
algorithms, which are the core of computing our dynamic proximity and centrality
measurements. The complete algorithms to track proximity (7rack-Proximity) and
centrality (Track-Centrality) are presented in Section 8.6. In Section 8.7, we present
the experimental valuations on real data sets. Finally, we conclude this chapter in
Section 8.8.

8.2 Related Work

In this section, we review the related work, which can be categorized into two parts:
static graph mining and dynamic graph mining.

8.2.1 Static Graph Mining

There is a lot of research work on static graph mining, including pattern and law

mining [2, 5, 7, 9, 22], frequent substructure discovery [33], influence propaga-
tion [16], and community mining [10, 12, 13].

8 Proximity Tracking on Dynamic Bipartite Graphs 213

In terms of centrality, Google’s PageRank algorithm [23] is the most related.
The proposed Track-Centrality can actually be viewed as its generalization for
dynamic bipartite graphs. As for proximity, the closest work is random walk with
restart [15, 24, 32]. The proposed Track-Proximity is its generalization for dynamic
bipartite graphs. Other representative proximity measurements on static graphs
include the sink-augmented delivered current [8], cycle-free effective conduc-
tance [17], survivable network [14], and direction-aware proximity [31]. Although
we focus on random walk with restart in this chapter, our fast algorithms can be
easily adapted to other random walk based measurements, such as [8, 31]. Also,
there are a lot of applications of proximity measurements. Representative work
includes connection subgraphs [8, 17, 29], neighborhood formation in bipartite
graphs [27], content-based image retrieval [15], cross-modal correlation discov-
ery [24], the BANKS system [1], link prediction [20], pattern matching [30], detect-
ing anomalous nodes and links in a graph [27], ObjectRank [4], and Relational-
Rank [11].

8.2.2 Dynamic Graph Mining

More recently, there is an increasing interest in mining time-evolving graphs, such as
densification laws and shrinking diameters [19], community evolution [3], dynamic
tensor analysis [28], and dynamic communities [6, 26]. To the best of our knowl-
edge, there is no previous work on proximity for time-evolving graphs. Remotely
related work in the sparse literature on the topic is [21]. However, we have a different
setting and focus compared with [21]: we aim to incrementally track the proximity
and centrality for nodes of interest by quickly updating the core matrix (as well as
the adjacency matrices), while in [21] the authors focus on efficiently using time
information by adding time as explicit nodes in the graph.

8.3 Problem Definitions

Table 8.1 lists the main symbols we use throughout the chapter. Following standard
notation, we use capital letters for matrices M and arrows for vectors. We denote the
transpose with a prime (i.e., M’ is the transpose of M), and we use parenthesized
superscripts to denote time (e.g., M® is the time-aggregate adjacency matrix at
time 7). When we refer to a static graph or, when time is clear from the context, we
omit the superscript (). We use subscripts to denote the size of matrices/vectors (e.g.
0,,x; means a matrix of size n x [, whose elements are all zero). Also, we represent
the elements in a matrix using a convention similar to Matlab, e.g., M(i, j) is the
element at the ith row and jth column of the matrix M, and M(i, :) is the ith row
of M (i.e., M(i, :) contains all the edges from the ith type 1 object to all the type 2
objects.) Without loss of generality, we assume that the numbers of type 1 and type

214 H. Tong et al.

Table 8.1 Symbols

Symbol Definition and description

M® n x [time-aggregate adjacency matrix at time ¢

S® n x [slice matrix at time ¢

AM® pn x [difference matrix at time t

Dgt) n x n out-degree matrix for type 1 object, i.e. D(lt)(i, i)= 27:1 MO, j), and
D, j) =0 #)

Dg) [x [out-degree matrix for type 2 object, i.e.Dg)(i, i) = Z?:l M®(j, i), and

DY G, j) =03 # j)

I identity matrix

0 a matrix with all elements equal to 0

1 a matrix with all elements equal to 1

n,l number of nodes for type 1 and type 2 objects, respectively (n > [)

m number of edges in the bipartite graph

c (1 — ¢) is fly-out probability for random walk with restart (set to be 0.95 in the

paper)
® proximity from node i to node j at time ¢

ij

I

2 objects are fixed (i.e., n and [are constant for all time steps); if not, we can reserve
rows/columns with zero elements as necessary.

At each time step, we observe a set of new edges or edge weight updates. These
represent the link information that is available at the finest time granularity. We use
the time-slice matrix, or slice matrix for brevity, S”) to denote the new edges and
additional weights that appear at time step ¢. For example, given a set of authors
and annual conferences, the number of papers that author i publishes in conference
j during year 7 is the entry S®) (i, j). In this chapter, we focus only on the case
of edge additions and weight increases (e.g., authors always publish new papers,
and users always rate more movies). However, the ideas we develop can be easily
generalized to handle other types of link updates, such as links deletions or edge
weights decreases.

Given the above notion, a dynamic, evolving graph can be naturally defined as
a sequence of observed new edges and weights, SO §@ SO However,
the information for a single time slice may be too sparse for meaningful analysis,
and/or users typically want to analyze larger portions of the data to observe inter-
esting patterns and trends. Thus, from a sequence of slice matrices observed so far,
SU) for 1 < j < t, we construct a bipartite graph by aggregating time slices. We
propose three different aggregation strategies, which place different emphasis on
edges based on their age. In all cases, we use the term time-aggregate adjacency
matrix (or adjacency matrix for short), denoted by M), for the adjacency matrix of
the bipartite graph at time step . We will introduce the aggregation strategies in the
next section).

Finally, to simplify the description of our algorithms, we introduce the difference
matrix AM® | which is the difference between two consecutive adjacency matrices,
ie, AM® £ M® — MU“~D_ Note that, depending on the aggregation strategy,
difference matrix AM®) may or may not be equal to the slice matrix S©.

8 Proximity Tracking on Dynamic Bipartite Graphs 215

An important observation from many real applications is that despite the large
size of the graphs involved (with hundreds of thousands or millions of nodes and
edges), the intrinsic dimension (or, effective rank) of their corresponding adjacency
matrices is usually relatively small, primarily because there are relatively fewer
objects of one type. For example, on the author—conference graph from the AC data
set, although we have more than 400,000 authors and about 2 million edges, there
are only ~ 3500 conferences. In the user—movie graph from the NetFlix data set,
although we have about 2.7 million users with more than 100 million edges, there
are only 17,700 movies. We use the term skewed to refer to such bipartite graphs,
ie.,n,m> .

With the above notation, our problems (pTrack and c¢Track) can be formally
defined as follows:

Problem 1 pTrack

Given: (i) a large, skewed time-evolving bipartite graph {S(t),t =1,2,...}, and
(i1) the query nodes of interest (i, j, ...)

Track: (i) the top-k most related objects for each query node at each time step and
(i) the proximity score (or the proximity rank) for any two query nodes at
each time step.

There are two different kinds of tracking tasks in pTrack, both of which are
related to proximity. For example, in a time-evolving author—conference graph we
can track “What are the major conferences for John Smith in the past 5 years?”
which is an example of task (i); or “How much credit (importance) has John Smith
accumulated in the KDD Conference so far?” which is an example of task (ii). We
will propose an algorithm (Track-Proximity) in Section 8.6 to deal with pTrack.

Problem 2 cTrack

Given: (i) a large, skewed time-evolving bipartite graph {S®),z = 1,2,...} and
(i) the query nodes of interest (i, j, ...)

Track: (i) the top-k most central objects in the graph, for each query node and at
each time step and (ii) the centrality (or the rank of centrality), for each
query node at each time step.

In cTrack, there are also two different kinds of tracking tasks, both of which are
related to centrality. For example, in the same time-evolving author—conference
graph, we can track “How influential is author-A over the years?” which corre-
sponds to task (i) or “Who are the top-10 influential authors over the years?”
which corresponds to task (ii). Note that in task (ii) of cTrack, we do not need
the query nodes as inputs. We will propose another algorithm (7rack-Centrality) in
Section 8.1.6 to deal with cTrack.

For all these tasks (pTrack and cTrack), we want to provide anytime answers.
That is, we want to quickly maintain up-to-date answers as soon as we observe a
new slice matrix S,

216 H. Tong et al.
8.4 Dynamic Proximity and Centrality: Definitions

In this section, we introduce our proximity and centrality definitions for dynamic
bipartite graphs. We begin by reviewing random walk with restart, which is a good
proximity measurement for static graphs. We then extend it to the dynamic setting
by (1) using different ways to aggregate edges from different time steps, that is to
place different emphasis on more recent links and (2) using degree-preservation to
achieve monotonicity for dynamic proximity.

8.4.1 Background: Static Setting

Among many others, one very successful method to measure proximity is random
walk with restart (RWR), which has been receiving increasing interest in recent
years—see Section 8.2 for a detailed review.

For a static bipartite graph, random walk with restart is defined as follows: Con-
sider a random particle that starts from node i. The particle iteratively transits to its
neighbors with probability proportional to the corresponding edge weights. Also at
each step, the particle returns to node i with some restart probability (1 — c). The
proximity score from node i to node j is defined as the steady-state probability r; ;
that the particle will be on node j [24]. Intuitively, 7; ; is the fraction of time that
the particle starting from node i will spend on each node j of the graph, after an
infinite number of steps.

If we represent the bipartite graph as a unipartite graph with the following square
adjacency matrix W and degree matrix D:

_(Osn M
W= < M’ 01><l>
Dy 0,y
D= , 8.1
<0[><n D2> @1

then, all the proximity scores r; ; between all possible node pairs i, j are determined
by the matrix Q:

ri,j = Q, j).

_ —1
Q=0-0¢)- (I(n+l)><(n+l) —cD]W)

(8.2)

Based on the dynamic proximity as in (8.2), we define the centrality for a given
source node s as the average proximity score from all nodes in the graph (including
s itself) to s. For simplicity, we ignore the time step superscript. That is,

n+l

centrality(s) = %’;H (8.3)

8 Proximity Tracking on Dynamic Bipartite Graphs 217
8.4.2 Dynamic Proximity

Since centrality is defined in terms of proximity, we will henceforth focus only on
the latter. In order to apply the random walk with restart (see (8.2)) to the dynamic
setting, we need to address two subtle but important points.

The first is how to update the adjacency matrix M) based on the observed
slice matrix S®). As mentioned before, usually it is not enough to consider only
the current slice matrix S®). For example, examining publications from conferences
in a single year may lead to proximity scores that vary widely and reflect more
“transient” effects (such as a bad year for an author), rather than “true” shifts in
his affinity to research areas (for example, a shift of interest from databases to data
mining or a change of institutions and collaborators). Similarly, examining movie
ratings from a single day may not be sufficient to accurately capture the proximity
of, say, two users in terms of their tastes. Thus, in Section 8.3.2.1, we propose three
different strategies to aggregate slices into an adjacency matrix M) or, equivalently,
to update M), Note, however, that single-slice analysis can be viewed as a special
case of the “sliding window” aggregation strategy.

The second point is related to the “monotonicity” of proximity versus time. In a
dynamic setting with only link additions and weight increases (i.e., S©)(i, j) > 0,
for all time steps ¢ and nodes i, j), in many applications it is desirable that the
proximity between any two nodes does not drop. For example, consider an author—
conference bipartite graph, where edge weights represent the number of papers
that an author has published in the corresponding conference. We would like a
proximity measure that represents the total contribution/credit that an author has
accumulated in each conference. Intuitively, this score should not decrease over
time.

8.4.2.1 Updating the Adjacency Matrix

As explained above, it is usually desirable to analyze multiple slices together, plac-
ing different emphasis on links based on their age. For completeness, we describe
three possible aggregation schemes.

Global Aggregation. The first way to obtain the adjacency matrix M is to sim-
ply add the new edges or edge weights in S®) to the previous adjacency matrix
M= as follows:

t
M® — Z 28
j=1

We call this scheme global aggregation. It places equal emphasis on all edges from
the beginning of time and, only in this case, AM®) = S, Next, we define schemes
that place more emphasis on recent links. For both of these schemes, AM() £ S,

218 H. Tong et al.

Sliding Window. In this case, we only consider the edges and weights that arrive
in the past len time steps, where the parameter len is the length of the sliding win-
dow:

t

M® — 3)

j=max{l, t—len+1}

Exponential Weighting. In this case, we “amplify” the new edges and weights at
time ¢ by an exponential factor /(8 > 1): M) = Z;:l BISY.

8.4.2.2 Fixed Degree Matrix

In a dynamic setting, if we apply the actual degree matrix D to (8.2) at time ¢,
the monotonicity property will not hold. To address this issue, we propose to use
degree-preservation [17, 31]. That is, we use the same degree matrix D at all time
steps.

Thus, our proximity ri{'; from node i to node j at time step ¢ is formally
defined as in (8.4). The adjacency matrix M") is computed by any update method
in the above section and the fixed degree matrix D is set to be a constant (a)
times the degree matrix at the first time step—we always set a = 1000 in this
chapter.

r =Q"a.)
s —1
QY = (1= o) (Intiyxnny —cDT'WO) ™

(1)
(1) _ 0,5 M
wWo= (M/(” 0l><l>

D=qa. DD (8.4)

We have the following lemma for our dynamic proximity (8.4). By the lemma 1,
if the actual degree D@ (i, i) does not exceed the fixed degree ﬁ(i, i) (condition
2), then the proximity between any two nodes will never drop as long as the edge
weights in adjacency matrix M) do not drop (condition 1).

Lemma 1 Monotonicity Property of Dynamic Proximity If (1) all elements in
the difference matrix AMY are non-negative and (2) DD, i) < D(,i)

(i=1,2,..,n+1), then we have r® > rD for any two nodes (i,).
l’] l’.]

Proof First of all, since D@ (i, i) < D(i, i), we have [|[cD™'W® |k — 0ask — oo.
Therefore, we have Q) = (1 —¢) 322, (cﬁ_IW(’))k. On the other hand, since all
elements in the difference matrix AM® are non-negative, we have W® (i, j) >
W=D, j) for any two nodes (i, j). Therefore, we have Q) (i, j) = QU= j)
for any two nodes (i, j), which completes the proof. O

8 Proximity Tracking on Dynamic Bipartite Graphs 219

Finally, we should point out that a, D and the non-negativity of M are relevant
only if a monotonic score is desired. Even without these assumptions, the correct-
ness or efficiency of our proposed algorithms is not affected. If non-monotonic
scores are permissible, none of these assumptions are necessary. And also, the
lemma only applies when there is no edge deletion (since we require that the differ-
ence matrix AM®) are non-negative).

8.5 Dynamic Proximity: Computations

8.5.1 Preliminaries: BB_LIN on Static Graphs

In this section, we introduce our fast solutions to efficiently track dynamic prox-
imity. We will start with BB_LIN [32], a fast algorithm for static, skewed bipartite
graphs. We then extend it to the dynamic setting.

One problem with random walk with restart is computational efficiency, espe-
cially for large graphs. According to the definition (8.4), we need to invert an
(n + 1) x (n + [) matrix. This operation is prohibitively slow for large graphs.
In [32], the authors show that for skewed, static bipartite graphs, we only need to
pre-compute and store a matrix inversion of size / x [to get all possible proximity
scores (see [32] for the proof). BB_LIN, which is the starting point for our fast
algorithms, is summarized in Algorithm 1.

Algorithm 1 BB_LIN

Input: The adjacency matrix at time ¢, as in equation (8.1); and the query nodes i and .
Output: The proximity r; ; from node i to node j.

: Pre-Computation Stage(Off-Line):

: normalize for type 1 objects: Mr = Dfl -M

: normalize for type 2 objects: Me = D Y

: compute the core matrix: C = (I — ¢*Mc - Mr)~!
. store the matrices: Mr, Me, and C.

: Query Stage (On-Line):

: Return: r; ; = GetQij(C, Mr, Mc, i, j, ¢)

NN R W N =

Based on Algorithm 1, we only need to pre-compute and store a matrix inversion
C of size [x [. For skewed bipartite graphs (! < m, n), C is much cheaper to
pre-compute and store. For example, on the entire NetFlix user—movie bipartite
graph, which contains about 2.7 M users, about 18 K movies and more than 100 M
edges (see Section 8.6 for the detailed description of the data set), it takes 1.5h to
pre-compute the 18 K x 18 K matrix inversion C. For pre-computation stage, this is
quite acceptable.

220 H. Tong et al.

Algorithm 2 GetQij

Input: The core matrix C, the normalized adjacency matrices Mr (for type 1 objects), and Me (for
type 2), and the query nodes i and j (1 <1i, j < (n+1)).
Output: The proximity r; ; from node i to node j
1: ifi <nand j < n then

2 g, j) =10 = j)+*Mr(,) - C - Mc(, j)
3: elseif i <nand j > n then

4 q(,j)=cMr(,)-CC, j—n)

5: elseifi > nand j < n then

6: q(,j)=cC@i —n,:) Mc(, j)

7: else

8 qG, j)=C@i—n,j—n)

9: end if

0

—

: Return: r; j = (1 — 0)q(i, j)

On the other hand, in the online query stage, we can get any proximity scores
using the function GetQij.! This stage is also cheap in terms of computation. For
example, to output a proximity score between two type 1 objects (step 2 in GetQij) ,
only one sparse vector—matrix multiplication and one vector—vector multiplication
are needed. For a proximity score between one type 1 object and one type 2 object,
only one sparse vector—vector multiplication (steps 4 and 6) is necessary. Finally, for
a proximity score between two type 2 objects (step 8), only retrieving one element in
the matrix C is needed. As an example, on the NetFlix data set, it takes less than 1's
to get one proximity score. Note that all possible proximity scores are determined
by the matrix C (together with the normalized adjacency matrices Mr and Mc). We
thus refer to the matrix C as the the core matrix.

8.5.2 Challenges for Dynamic Setting

In a dynamic setting, since the adjacency matrix changes over time, the core matrix
C" is no longer constant. In other words, the steps 1—4 in Algorithm 1 themselves
become a part of the online stage since we need to update the core matrix C*) at
each time step. If we still rely on the straightforward strategy (i.e., the steps 1-4 in
Algorithm 1) to update the core matrix (referred to as “Straight-Update”), the total
computational complexity for each time step is O (I3 + m - [). Such complexity is
undesirable for the online stage. For example, 1.5 h to recompute the core matrix for
the NetFlix data set is unacceptably long.

Thus, our goal is to efficiently update the core matrix C*) at time step 7, based
on the previous core matrix C~1 and the difference matrix AM®. For simplicity,
we shall henceforth assume the use of the global aggregation scheme to update the

! Note that in step 2 of GetQij, 1(.) is the indicator function, i.e. it is 1 if the condition in (.) is
true and O otherwise.

8 Proximity Tracking on Dynamic Bipartite Graphs 221

adjacency matrix. However, the ideas can be easily applied to the other schemes,
sliding window and exponential weighting.

8.5.3 Our Solution 1: Single Update

Next, we describe a fast algorithm (Fast-Single-Update) to update the core matrix
C® at time step #, if only one edge (io, jo) changes at time 7. In other words, there is
only one non-zero element in AM®: AM® (ig, jo) = wo. To simplify the descrip-
tion of our algorithm, we present the difference matrix AM® as a from-to list:

[i0, jo, wol-
The correctness of Fast-Single-Update is guaranteed by the following theorem:

Theorem 1 Correctness of Fast-Single-Update The matrix C maintained by
Fast-Single-Update is exactly the core matrix at time step t, ie, C? =

(1 — 2Mc“Mr®) ™",
Proof First of all, since only one edge (ig, jo) is updated at time #, only the igth row
of the matrix Mr(and the ioth column of the matrix Mc® change at time 1.

Let VO = ¢2Mc® - Mr® and VO—D = ¢2Mc~D . Mr—D. By the spectral
representation of V) and V?—1, we have the following equation:

n
V=Y MG k) - Mk,),
k=1
=Vil4s (8.5)
where § indicates the difference between V) and VU~ This gives us
1
5= (=1 - M (:.ig) - Mr'"V(ig,) =X - Y,

s=0

where the matrices X and Y are defined in steps 4—6 of Algorithm 3. Putting all the
above together, we have

C=1-V)y'l=a-v'-X.v)"L. (8.6)
Applying the Sherman—Morrison lemma [25] to (8.6), we have
CO =4 cl=V.X. L.y . Ccl,

where the 2 x 2 matrix L is defined in step 7 of Algorithm 3. This completes the
proof. O

222 H. Tong et al.

Algorithm 3 Fast-Single-Update

Input: The core matrix C?~1 the normalized adjacency matrices Mr(~" (for type 1 objects)
and Mc(—D (for type 2 objects) at time step r — 1, and the difference list [i¢, jo, wo] at the
time step 7.

Output: The core matrix C), the normalized adjacency matrices Mr”) and Mc(® at time step 7.

- Mr® = MrD and Me® = Mc D,

s Mr® o, jo) = Mr“ (o, jo) + 5

® ® e
: Mc' (o, ig) = Mc® (o, i o
Go. fo) (0:10) + Ftmjorm
X =0/x2,and Y = 02,

D XG, 1) = MeP(, o), and X(jo, 2) = m

L Y(Ljo) = S0 and Y(2,0) = ¢ - Mr¢D(ig, 2)
D(ip,io)

: L= -Y -Cl7D.x)"!
cCO ==Y ct-b.X.L.Y.Cl-D

Fast-Single-Update is significantly more computationally efficient, as shown by
the next lemma. In particular, the complexity of Fast-Single-Update is only O (I?),
as opposed to O (I3 + ml) for the straightforward method.

Lemma 2 Efficiency of Fast-Single-Update The computational complexity of Fast-
Single-Update is O (I%).

Proof The computational cost for step 1 is 0(?).1tis O(1) for steps 2 and 3, O(])
for steps 46 and O (I%) for steps 7 and 8. Putting it together, we have that the total
cost for Fast-Single-Update is O (I%), which completes the proof. (]

8.5.4 Our Solutions 2: Batch Update

In many real applications, more than one edges typically change at each time step.
In other words, there are multiple non-zero elements in the difference matrix AMD,
Suppose we have a total of /i edge changes at time step ¢. An obvious choice is to
repeatedly call Fast-Single-Update m times.

An important observation from many real applications is that it is unlikely these
m edges are randomly distributed. Instead, they typically form a low-rank structure.
That is, if these m edges involve n type 1 objects and I type 2 objects, we have
A < i or [< . For example, in an author—conference bipartite graph, we will
often add a group of /1 new records into the database at one time step. In most cases,
these new records only involve a small number of authors and/or conferences—
see Section 8.6 for the details. In this section, we show that we can do a single
batch update (Fast-Batch-Update) on the core matrix. This is much more efficient
than either doing /m single updates repeatedly or recomputing the core matrix from
scratch. The main advantage of our approach lies on the observation that the differ-
ence matrix has low rank, and our upcoming algorithm needs time proportional to
the rank, as opposed to the number of changed edges . This holds in real settings,

8 Proximity Tracking on Dynamic Bipartite Graphs 223

because when a node is modified, several of its edges are changed (e.g., an author
publishes several papers in a given conference each year).

Let Z = {iy, ..., i;} be the indices of the involved type 1 objects. Similarly, let
J = {Jji, ---, jj} be the indices of the involved type 2 objects. We can represent the

difference matrix AM® as an A x [matrix. In order to simplify the description of
the algorithm, we define two matrices AMr and AMc as follows:

AMO (ig, jo)

AMr(k,s) = ————
DG, ix)
AMD (g, i
AMe(s, k) = MU)
D(]Y + nv JS +n)
k=1, n,s=1,..,10. (8.7)

The correctness of Fast-Batch-Update is guaranteed by the following theorem:

Theorem 2 Delta Matrix Inversion Theorem The matrix C* maintained by
Fast-Batch-Update is exactly the core matrix at time step t, ie, C¥ =

(1— AMcOMr®) ™",

Proof Let V) = ¢2Mc” - Mr® and VU= = ¢2Mc~D . Mr—1 . Similar as the
proof for Theorem 1, we have

VO —ye-D _x.y, (8.8)

where the matrices X and Y are defined in steps 6-21 of Algorithm 4.
Applying the Sherman—Morrison lemma [25] to (8.8), we have

CO =D pct-b.x.L.Yy.cl D,

where the 2k x 2k matrix L is defined in step 22 of Algorithm 4. This completes the
proof. (]

The efficiency of Fast-Single-Update is given by the following lemma. Compared
to the straightforward recomputation which is O (I3 + ml), Fast-Batch-Update is
O (min(l,) - 12 4). Since min(l, f) < 1 always holds, as long as we have m < m,
Fast-Single-Update is always more efficient. On the other hand, if we do 7 repeated
single updates using Fast-Single-Update, the computational complexity is O (il?).
Thus, since typically min(i, n) < m, Fast-Batch-Update is much more efficient in
this case.

Lemma 3 Efficiency of Fast-Batch-Update The computational complexity of Fast-
Batch-Update is O (min(l, f) - 17 4+).

Proof Similar as the proof for lemma 2. Note that the linear term O (711) comes from
(8.7), since we need to scan the non-zero elements of the difference matrix AM®.

224 H. Tong et al.

Algorithm 4 Fast-Batch-Update

Input: The core matrix C?~ 1, the normalized adjacency matrices Mr(~" (for type 1 objects)
and Mc(1 (for type 2 objects) at time step 7 — 1, and the difference matrix AM at the time
step ¢

Output: The core matrix C), the normalized adjacency matrices Mr”) and Mc(® at time step 7.

1: Mr® = Mr*=D and Me® = Mc— .

2: define AMr and AMc as in equation (8.7)
3: Mr(Z, 7) = Mr(Z, 7) + AMr

4: Mc"(7.7) = M (7, T) + AMc

5: letk = mm(l n). letX = 0, ,p-andY =0,
6: if I < 7 then

7. X, 1:D) =MV,) AMr

8 Y(+1:20,))=AMc-Mr'~(Z,)

9 X(7.1:)=X(7.1:])+ AMc - AMr
10: X7, 1:D)=X(T. 1:H)+Y(+1:20,.7)
11: Y({+1:2,7)=0

12: fork = 1:kdo

13: set Y(k, ji) = 1, and X(ji, k + k) = 1
14: end for

15: setX=c2- X, andY=¢%-Y

16: else

17: X(,1:h) =McV¢, 1)

18: X(J,A+1:24) = AMc

190 Y(1:4,7) =c?- AMr
20 Y(41:2h,)=c Mr Dz,
21: end if
22: L= (L ,; —Y-Ct7D.x)7!
23: CO =D 4 ct-D.X.L.Y.CtD

And the term of O(min(i, fi) - 1%) comes from the steps 22 and 23 of Fast-Batch-
Update. [

8.6 Dynamic Proximity: Applications

In this section, we give the complete algorithms for the two applications we posed
in Section 8.2, that is, Track-Centrality and Track-Proximity. For each case, we can
track top-k queries over time. For Track-Centrality, we can also track the centrality
(or the centrality rank) for an individual node. For Track-Proximity, we can also
track the proximity (or the proximity rank) for a given pair of nodes.

In all the cases, we first need the following function (i.e., Algorithm 5) to do
initialization. Then, at each time step, we update (i) the normalized adjacency matri-
ces, Mc® and Mr(t), as well as the core matrix, C®; and we perform (ii) one or
two sparse matrix—vector multiplications to get the proper answers. Compared to
the update time (part (i)), the running time for part (ii) is always much less. So our
algorithms can quickly give the proper answers at each time step. On the other hand,

8 Proximity Tracking on Dynamic Bipartite Graphs 225

Algorithm 5 Initialization

Input: The adjacency matrix at time step 1 M), and the parameter c.
Output: The fixed degree matrix D, the normalized matrices at time step 1 Mr®" and McV, and
the initial core matrix CV,
: get the fixed degree matrix D as equation (8.4)
: normalize for type 1 objects: Mr) = D! . M®

: get the core matrix: CO = 1 - 2McD . MrD)-1

1
2
3: normalize for type 2 objects: Mc(" = D;' M
4
5: store the matrices: Mr“), Mc('>, and COD,

we can easily verify that our algorithms give the exact answers, without any quality
loss or approximation.

8.6.1 Track-Centrality

Here, we want to track the top-k most important type 1 (and/or type 2) nodes over
time. For example, on an author—conference bipartite graph, we want to track the
top-10 most influential authors (and/or conferences) over time. For a given query
node, we also want to track its centrality (or the rank of centrality) over time. For
example, on an author—conference bipartite graph, we can track the relative impor-
tance of an author in the entire community.

Based on the definition of centrality (8.3) and the fast update algorithms we
developed in Section 8.4, we can get the following algorithm (Algorithm 6) to track
the top-k queries over time. The algorithm for tracking centrality for a single query
node is quite similar to Algorithm 6. We omit the details for space.

Algorithm 6 Track-Centrality (Top-k Queries)

Input: The time-evolving bipartite graphs (M), AM® (r > 2)}, the parameters ¢ and k
Output: The top-k most central type 1 (and type 2) objects at each time step ¢.
1: Initialization
2: for each time step (# > 1) do
30 x=11, -Mr.C®;and y =1y, - C®
: o =c-x+y

4
5: rl’:c-r’2~Mc(’)

6: output the top k type 1 objects according to ry’ (larger value means more central)
7 output the top k type 2 objects according to rp’ (larger value means more central)
8: Update Mr®, Mc®, and C® for ¢ > 2.

9: end for

In step 8 of Algorithm 6, we can either use Fast-Single-Update or Fast-Batch-
Update to update the normalized matrices Mr) and Mc® and the core matrix
C®. The running time for steps 3-8 is much less than the update time (step 8).
Thus, Track-Centrality can give the ranking results quickly at each time step. On
the other hand, using elementary linear algebra, we can easily prove the correctness
of Track-Centrality:

226 H. Tong et al.

Lemma 4 Correctness of Track-Centrality The vectors r1’ and r3' in Algorithm 6
provide a correct ranking of type 1 and type 2 objects at each time step t. That is,
the ranking is exactly according to the centrality defined in (8.3).

Proof Based on Delta Matrix Inversion Theorems (theorem 4.2), we have that step
8 of Track-Proximity maintains the correct core matrix at each time step.
Apply the Sherman—Morrison lemma [25] to (8.2), we have

Q¥ o (1T AMrOCcOMe? eMrC®
cCOMeD c®

(8.9)
By (8.3), we have

n+l n+l
centrality(j) o Zri(f; = Z Q, j).

i=1 i=1

Letr = [centrality(j)]=1...., (n+1), We have

' o [11xp, 1551 QW

o (E1aMEOCOME® 4 11,3 COMe
1y, MrC® 4 1,,,€® ’

. c2xMe® + cyMc(l) '
a cx +y

= [er2’Mc”, 1y/]

=[r1, /]

where x and y are two vectors as defined in step 3 of Track-Centrality and rq,
and ry are two column vectors as defined in steps 4 and 5 of Track-Centrality. This
completes the proof. (]

8.6.2 Track-Proximity

Here, we want to track the top-k most related/relevant type 1 (and/or type 2) objects
for object A at each time step. For example, on an author—conference bipartite graph
evolving over time, we want track “Which are the major conferences for John Smith
in the past 5 year?” or “Who are most the related authors for John Smith so far?” For
a given pair of nodes, we also want to track their pairwise relationship over time.
For example, in an author—conference bipartite graph evolving over time, we can
track “How much credit (a.k.a proximity) John Smith has accumulated in KDD?”

8 Proximity Tracking on Dynamic Bipartite Graphs 227

Algorithm 7 Track-Proximity (Top-k Queries)

Input: The time-evolving bipartite graphs {M1, AM® (+ > 2)}, the parameters ¢ and k, and the
source node s.
Output: The top-k most related type 1 (and type 2) objects for s at each time step .
1: Initialization
2: for each time step (¢t > 1) do

3: fori=1:ndo

4: rs.i = GetQij(C”, Mr™", Mc?, 5,1, ¢))

5: end for

6: letr; = [ry;1G =1, ...n)

7. for j=1:1do

8: 7y j = GetQij(CO, Mr"), Mc", s, j +n, ¢))

9: end for

10: letry =[rs;](j =1,..)

11: output the top k type 1 objects according to ry’ (larger value means more relevant)
12: output the top k type 2 objects according to rp’ (larger value means more relevant)
13: update Mr?, Mc”), and C® for s > 2.

14: end for

The algorithm for top-k queries is summarized in Algorithm 7. The algorithm for
tracking the proximity for a given pair of nodes is quite similar to Algorithm 7. We
omit its details for space.

In Algorithm 7, again, at each time step, the update time will dominate the total
computational time. Thus by using either Fast-Single-Update or Fast-Batch-Update,
we can quickly give the ranking results at each time step. Similar to Track-Proximity,
we have the following lemma for the correctness of Track-Proximity:

Lemma 5 Correctness of Track-Proximity The vectors ry’ and r3' in Algorithm 7
provide a correct ranking of type 1 and type 2 objects at each time step t. That is,
the ranking is exactly according to the proximity defined in (8.4).

Proof Based on Delta Matrix Inversion Theorems (Theorem 4.2), we have that step
13 of Track-Proximity maintains the correct core matrix at each time step. Therefore,
Algorithm 2 in step 8 always gives the correct proximity score, which completes the
proof. (|

8.7 Experimental Results

In this section we present experimental results, after we introduce the data sets in
Section 8.6.1. All the experiments are designed to answer the following questions:

e Effectiveness: What is the quality of the applications (Track-Centrality and Track-
Proximity) we proposed in this chapter?

e FEfficiency: How fast are the proposed algorithms (Fast-Single-Update and Fast-
Batch-Update for the update time, Track-Centrality and Track-Proximity for the
overall running time)?

228 H. Tong et al.

8.7.1 Data Sets

We use five different data sets in our experiments, summarized in Table 8.2. We
verify the effectiveness of our proposed dynamic centrality measures on NIPS, DM,
and AC, and measure the efficiency of our algorithms using the larger ACPost and
NetFlix data sets.

Table 8.2 Data sets used in evaluations

Name nxl Ave.mn Time steps
NIPS 2,037x 1,740 308 13

DM 5,095x% 3,548 765 13

AC 418,236x3,571 26,508 49
ACPost 418,236x3,571 1,007 1258
NetFlix 2,649,429 17,770 100,480,507 NA

The first data set (NIPS) is from the NIPS proceedings.” The timestamps are
publication years, so each graph slice M corresponds to 1 year, from 1987 to 1999.
For each year, we have an author—paper bipartite graph. Rows represent authors and
columns represent papers. Unweighted edges between authors and papers represent
authorship. There are 2,037 authors, 1,740 papers, and 13 time steps (years) in total
with an average of 308 new edges per year.

The DM, AC, and ACPost data sets are from DBLP.? For the first two, we use
paper publication years as timestamps, similar to NIPS. Thus each graph slice S
corresponds to 1 year.

DM uses author—paper information for each year between 1995 and 2007, from
a restricted set of conferences, namely the five major data mining conferences
(‘KDD’, ‘ICDM’, ‘SDM’, ‘PKDD’, and ‘PAKDD’). Similar to NIPS, rows rep-
resent authors, columns represent papers, and unweighted edges between them rep-
resent authorship. There are 5,095 authors, 3,548 papers, and 13 time steps (years)
in total, with an average of 765 new edges per time step.

AC uses author—conference information from the entire DBLP collection,
between years 1959 and 2007. In contrast to DM, columns represent conferences
and edges connect authors to conferences they have published in. Each edge in S
is weighted by the number of papers published by the author in the corresponding
conference for that year. There are 418,236 authors, 3,571 conferences, and 49 time
steps (years) with an average of 26,508 new edges at each time step.

ACPost is primarily used to evaluate the scalability of our algorithms. In order
to obtain a larger number of timestamps at a finer granularity, we use posting date
on DBLP (the ‘mdate’ field in the XML archive of DBLP, which represents when
the paper was entered into the database), rather than publication year. Thus, each
graph slice S corresponds to 1 day, between January 3, 2002, and August 24, 2007.
ACPost is otherwise similar to AC, with number of papers as edge weights. There

2 http://www.cs.toronto.edu/~roweis/data.html
3 http://www.informatik.uni-trier.de/~ley/db/

8 Proximity Tracking on Dynamic Bipartite Graphs 229

are 418,236 authors, 3,571 conferences, and 1,258 time steps (days with at least one
addition into DBLP), with an average of 1,007 new edges per day.

The final data set, NetFlix, is from the Netflix prize.* Rows represent users and
columns represent movies. If a user has rated a particular movie, we connect them
with an unweighted edge. This data set consists of one slice and we use it in Sec-
tion 8.6.2 to evaluate the efficiency Fast-Single-Update. In total, we have 2,649,429
users, 17,770 movies, and 100,480,507 edges.

8.7.2 Effectiveness: Case Studies

Here, we show the experimental results for the three applications on real data sets,
all of which are consistent with our intuition.

8.7.2.1 Results on Track-Centrality

We apply Algorithm 6 to the NIPS data set. We use “Global Aggregation” to update
the adjacency matrix M®). We track the top-k (k = 10) most central (i.e.influential)
authors in the whole community. Table 8.3 lists the results for every 2 years. The
results make sense: famous authors in the NIPS community show up in the top-10
list and their relative rankings change over time, reflecting their activity/influence
in the whole NIPS community up to that year. For example, Prof. Terrence J.
Sejnowski (‘Sejnowski_T’) shows in the top-10 list from 1989 on and his ranking
keeps going up in the following years (1991, 1993). He remains number 1 from 1993
on. Sejnowski is one of the founders of NIPS, an IEEE Fellow, and the head of the
Computational Neurobiology Lab at the Salk institute. The rest of the top-placed
researchers include Prof. Michael I. Jordan (‘Jordan_M’) from UC Berkeley and
Prof. Geoffrey E. Hinton (‘Hinton_G’) from University of Toronto, well known for
their work in graphical models and neural networks, respectively. We can also track
the centrality values as well as their rank for an individual author over the years.
Figure 8.1 plots the centrality ranking for some authors over the years. Again, the

Table 8.3 Top-10 most influential (central) authors up to each year

1987 1989 1991 1993 1995 1997 1999
"Abbott_L' | 'Bower_J°7 "Hinton_G' 'Sejnowski_T'|'Sejnowski_T'["Sejnowski_T'['Sejnowski_T7
"Burr_D' 'Hinton_G' "Koch_C* 'Koch_C* 'Jordan_M" "Jordan_M' 'Koch_c'
"Denker_J' | 'Tesaurc_G' "Bower_J"' 'Hinton_G* 'Hinton_G' "Koch_C7 'Jordan_M"
"scofield C| 'Denker_J°' *Sejnowski_T"('Mozer M’ 'Koch_c" "Hinton_G' "Hinton_G"
"Bower_J°7 "Mead_C' "LeCun_Y"' 'LeCun_Y"' 'Mozer_M' "Mozer M’ 'Mozer M'
'Brown_N"* 'Tenorio M' "Mozer M' 'Denker_J°" 'Bengio_¥' "Dayan_P°*

'Carley L' |'Sejnowski_T'| 'Denker_J' 'Bower_J" ‘Lippmann_R' |"Bengio_¥*

"Chou_P* 'Lippmann_R' | 'Waibel A" "Kawato M’ 'LeCun_¥" 'Barto A’

'Chover_J*' | 'Touretzky D' | 'Moody J' 'Waibel A’ 'Waibel AT "Tresp V' -
'Beckman_F' | "Koch_C" "Lippmann_R' ['Simard P" 'Simard P’ "Moody_J" "Moody_J"

4 http://www.netflixprize.com/

230 H. Tong et al.

2
g
c
o)
(]
;qu / —— 'Sejnowski_T’
S 15} ‘,l * - ’Koch_C’ 4
g’ ” —=— "Hinton_G’
X
c , = »-’Jordan_M’
< 20 — .
o ’
(0] ’
£ ,
25 o .
2

30+ = i i i i i i i i
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Year

Fig. 8.1 The rank of centrality for some given authors in the whole NIPS data set up to each year

results are consistent with intuition. For example, Michael I. Jordon starts to have
significant influence (within top-30) in the NIPS community from 1991 on; his influ-
ence rapidly increases in the following up years (1992—-1995); and stays within the
top-3 from 1996 on. Prof. Christof Koch (‘Koch_C’) from Caltech remains one of
the most influential (within top-3) authors in the whole NIPS community over the
years (1990-1999).

8.7.2.2 Results on Track-Proximity

We first report the results on the DM data set. We use “Global Aggregation” to
update the adjacency matrix at each time step. In this setting, we can track the top-k
most related papers/authors in the data mining community for a given query author
up to each year. Table 8.4 lists the top-5 most related authors for ‘Jian Pei’ over
the years (2001-2007). The results make perfect sense: (1) the top co-author (Prof.
‘Jiawei Han’) is Prof. Jian Pei’s advisor; (2) the other top collaborators are either
from SUNY-Buffalo (Prof. Aidong Zhang) or from IBM-Watson (Drs. Philip S. Yu,
Haixun Wang, Wei Wang), which is also reasonable, since Prof. Pei held a faculty
position at SUNY-Buffalo; (3) the IBM-Watson collaboration (‘Philip S. Yu’ and
‘Haixun Wang’) got stronger over time.

Table 8.4 Top-5 most related authors for ‘Jian Pei’ up to each year

2001

2003

2005

2007

'Jiawei Han'

'Behzad Mortazavi-Asl’
'Hongjun_Lu"'
"Meichun_Hsu'

'shiwei Tang'

'Jiawei Han'

'Behzad Mortazavi-Asl’
'Aidong_Zhang’
'Philip S. Yu'
"Hongjun_Lu"

"Jiawei Han"
"Haixun_Wang'
'ARidong_Zhang'
"Philip §. Yu'
"Wel Wang'

"Jiawei Han'
"Haixun_Wang'
'Philip_S5._yu'
"Wel Wang'
"Aidong_Zhang’

8 Proximity Tracking on Dynamic Bipartite Graphs 231

Rank of Proximity from VLDB to KDD

10|
15
20
25
30 |

Rank

35}
a0}
45|

50

1995 1997 1999 2001 2003 2005 2007
Year

Fig. 8.2 The rank of the proximity from ‘VLDB’ to ‘KDD’ up to each year

Then, we apply Track-Proximity on the data set AC. Here, we want to track the
proximity ranking for a given pair of nodes over time. Figure 8.2 plots the rank of
proximity from the “VLDB” conference to the “KDD” conference. We use “Global
Aggregation” to update the adjacency matrix. In this way, proximity between the
“VLDB” and “KDD” conferences measures the importance/relevance of “KDD”
wrt “VLDB” up to each year. From the figure, we can see that the rank of “KDD”
keeps going up, reaching the fifth position by 2007. The other top-4 conferences for
“VLDB” by 2007 are “SIGMOD,” “ICDE,” “PODS,” and “EDBT”, in this order.
The result makes sense: with more and more multi-disciplinary authors publishing
in both communities (databases and data mining), “KDD” becomes more and more
closely related to “VLDB.”

We also test the top-k queries on AC. Here, we use “Sliding Window” (with
window length len = 5) to update the adjacency matrix. In this setting, we want to
track the top-k most related conferences/authors for a given query node in the past
5 years at each time step ¢. Figure 8.3 lists the top-5 conferences for Dr. “Philip S.
Yu.” The major research interest (top-5 conferences) for “Philip S. Yu” is changing
over time. For example, in the years 1988-1992, his major interest is in databases
(“ICDE” and “VLDB”), performance (“SIGMETRICS”), and distributed systems
(“ICDCS” and “PDIS”). However, during 2003-2007, while databases (“ICDE” and

ICDE CIKM KDD ICDM
ICDCS ICDCS SIGMOD KDD
SIGMETRICS ICDE ICDM ICDE
PDIS SIGMETRICS CIKM SDM
VLDB ICMCS ICDCS VLDB
1992 1997 2002 2007

Fig. 8.3 Philip S. Yu’s top five conferences at four time steps, using a window of 5 years

232 H. Tong et al.

“VLDB”) are still one of his major research interests, data mining became a strong
research focus (“KDD,” “SDM,” and “ICDM”).

8.7.3 Efficiency

After initialization, at each time step, most time is spent on updating the core matrix
C", as well as the normalized adjacency matrices. In this section, we first report
the running time for update and then give the total running time for each time step.
We use the two largest data sets (ACPost and NetFlix) to measure performance.

8.7.3.1 Update Time

We first evaluate Fast-Single-Update. Both ACPost and NetFlix are used. For each
data set, we randomly add one new edge into the graph and compute the update
time. The experiments are run multiple times. We compare Fast-Single-Update with
Straight-Update (which does / x [matrix inversion at each time step) and the result
is summarized in Fig. 8.4—Note that the y-axis is in log-scale). On both data sets,
Fast-Single-Update requires significantly less computation: on ACPost, it is 64x
faster (0.5 s vs. 32 s), while on NetFlix, it is 176x faster (22.5 s vs. 4, 313 s).

Compare with Update Time

10,000
- (]
—1 Fast-Single-Update :
— 1000} L= @ Straight-Update :
(o]
o)
L
g 1o0f
£
L []
=
o 10 :
-}
C
I
o
= 1 *
0.1 + +
DBLP_AC_Poster NetFlix

Datasets

Fig. 8.4 Evaluation of Fast-Single-Update. For both data sets, one edge changes at each time step.
The running time is averaged over multiple runs of experiments and shown in logarithmic scale

To evaluate Fast-Batch-Update, we use ACPost. From r = 2 and on, at each
time step, we have between /1 = 1 and m = 18,121 edges updated. On average,
there are 913 edges updated at each time step ¢ (+ > 2). Note that despite the large
number of updated edges for some time steps, the rank of the difference matrix
(i.e., min(#, [)) at each time step is relatively small, ranging from 1 to 132 with an

8 Proximity Tracking on Dynamic Bipartite Graphs 233
40 40
—~ 35 . 35
(5] . LI (<]
2 e @
£ 30 @ 30
(o] (9]
£ 25 E 25
'; 20 —— Fast-Batch-Update o 5 —— Fast-Batch-Update
£ + - Straight-Update £ Straight-Update
ERE ERE
c c
g 10 é 10
= 5 N\/\ 5 //
0 0
0 5000 10,000 15,000 20,000 0 20 40 60 80 100 120 140
of edges changed at time t minimum of (involved confernces,
involved authors) at time t
(a) Running Time vs. iit (b) Running Time vs. min(z, })

Fig. 8.5 Evaluation on Fast-Batch-Update

average of 33. The results are summarized in Fig 8.5. We plot the mean update time
vs. the number (/1) of changed edges in Fig 8.5a and the mean update time vs. the
rank (min(A, [)) of the update matrix in Fig 8.5b. Compared to the Straight-Update,
Fast-Batch-Update is again much faster, achieving 5-32x speedup. On average, it
is 15x faster than Straight-Update.

8.7.3.2 Total Running Time

Here, we study the total running time at each time step for Track-Centrality.
The results for Track-Proximity are similar and omitted for space. For Track-
Centrality, we let the algorithm return both the top-10 type 1 objects and the top-10
type 2 objects. We use the NetFlix data set with one edge changed at each time step
and ACPost data set with multiple edges changed at each time step.

We compare our algorithms (“Track-Centrality”) with (i) the one that uses
Straight-Update in our algorithms (still referred as “Straight-Update”) and (ii) that
uses iterative procedure [27] to compute proximity and centrality at each time step
(referred as “Ite-Alg”). The results are summarized in Fig. 8.6. We can see that in
either case, our algorithm (Track-Centrality) is much faster. For example, it takes
27.8 s on average on the NetFlix data set, which is 155x faster over “Straight-
Update” (4,315 s) and is 93x faster over “Ite-Alg” (2,582 s). In either case, the
update time for Track-Centrality dominates the overall running time. For example,
on the ACPost data set, update time accounts for more than 90% of the overall
running time (2.4 s vs. 2.6 s). Thus, when we have to track queries for many nodes
of interest, the advantage of Track-Centrality over “Ite-Alg” will be even more sig-
nificant, since at each time step we only need to do update once for all queries, while
the running time of “Ite-Alg” will increase linearly with respect to the number of
queries.

234 H. Tong et al.

10,000
——M Track-Centrality L4
- - ¢ lte-Alg ¢
—_ @ Straight-Update 1
g 1,000 !
e |
Q 1
£ !
[1
2 100} l
c |
S I
o [] !
< ¢ |
§ wof | |
I I
I I
L X ‘
T |
1 L .
DBLP_AC_Poster NetFlix

Dataset

Fig. 8.6 Overall running time at each time step for Track-Centrality. For ACPost, there are multi-
ple edges changed at each time step; and for NetFlix, there is only one edge changed at each time
step. The running time is averaged in multiple runs of experiments and it is in the logarithm scale

8.8 Conclusion

In this chapter, we study how to incrementally track the node proximity as well as
the centrality for time-evolving bipartite graphs. To the best of our knowledge, we
are the first to study the node proximity and centrality in this setting. We first extend
the proximity and centrality definitions to the setting of time-evolving graphs by
degree-preserving operations. We then propose two fast update algorithms (Fast-
Single-Update and Fast-Batch-Update) that do not resort to approximation and
hence guarantee no quality loss (see Theorem 2), which are followed by two algo-
rithms to incrementally track centrality (Track-Centrality) and proximity (Track-
Proximity), in anytime fashion. We conduct extensive experimental case studies on
several real data sets, showing how different queries can be answered, achieving up
to 15~176x speedup. We can achieve such speedups while providing exact answers
because we carefully leverage the fact that the rank of graph updates is small, com-
pared to the size of the original matrix. Our experiments on real data show that this
typically translates to at least an order of magnitude speedup.

Acknowledgments This material is based on the work supported by the National Science Foun-
dation under Grants No. IIS-07