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Preface

After ten years since PAKDD 2005 in Ha Noi, PAKDD was held again in Vietnam,
during May 19–22, 2015, in Ho Chi Minh City. PAKDD 2015 is the 19th edition of the
Pacific-Asia Conference series on Knowledge Discovery and Data Mining, a leading
international conference in the field. The conference provides a forum for researchers
and practitioners to present and discuss new research results and practical applications.

There were 405 papers submitted to PAKDD 2015 and they underwent a rigorous
double-blind review process. Each paper was reviewed by three Program Committee
(PC) members in the first round and meta-reviewed by one Senior Program Committee
(SPC) member who also conducted discussions with the reviewers. The Program Chairs
then considered the recommendations from SPC members, looked into each paper and
its reviews, to make final paper selections. At the end, 117 papers were selected for the
conference program and proceedings, resulting in the acceptance rate of 28.9%, among
which 26 papers were given long presentation and 91 papers given regular presentation.

The conference started with a day of six high-quality workshops. During the next
three days, the Technical Program included 20 paper presentation sessions covering
various subjects of knowledge discovery and data mining, three tutorials, a data min-
ing contest, a panel discussion, and especially three keynote talks by world-renowned
experts.

PAKDD 2015 would not have been so successful without the efforts, contributions,
and supports by many individuals and organizations. We sincerely thank the Honorary
Chairs, Phan Thanh Binh and Masaru Kitsuregawa, for their kind advice and support
during preparation of the conference. We would also like to thank Masashi Sugiyama,
Xuan-Long Nguyen, and Thorsten Joachims for giving interesting and inspiring keynote
talks.

We would like to thank all the Program Committee members and external reviewers
for their hard work to provide timely and comprehensive reviews and recommenda-
tions, which were crucial to the final paper selection and production of the high-quality
Technical Program. We would also like to express our sincere thanks to the following
Organizing Committee members: Xiaoli Li and Myra Spiliopoulou together with the in-
dividual Workshop Chairs for organizing the workshops; Dinh Phung and U Kang with
the tutorial speakers for arranging the tutorials; Hung Son Nguyen, Nitesh Chawla, and
Nguyen Duc Dung for running the contest; Takashi Washio and Jaideep Srivastava for
publicizing to attract submissions and participants to the conference; Tran Minh-Triet
and Vo Thi Ngoc Chau for handling the whole registration process; Tuyen N. Huynh for
compiling all the accepted papers and for working with the Springer team to produce
these proceedings; and Bich-Thuy T. Dong, Bac Le, Thanh-Tho Quan, and Do Phuc for
the local arrangements to make the conference go smoothly.

We are grateful to all the sponsors of the conference, in particular AFOSR/AOARD
(Air Force Office of Scientific Research/Asian Office of Aerospace Research and Devel-
opment), for their generous sponsorship and support, and the PAKDD Steering
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Committee for its guidance and Student Travel Award and Early Career Research Award
sponsorship. We would also like to express our gratitude to John von Neumann Insti-
tute, University of Technology, University of Science, and University of Information
Technology of Vietnam National University at Ho Chi Minh City and Japan Advanced
Institute of Science and Technology for jointly hosting and organizing this conference.
Last but not least, our sincere thanks go to all the local team members and volunteering
helpers for their hard work to make the event possible.

We hope you have enjoyed PAKDD 2015 and your time in Ho Chi Minh City,
Vietnam.

May 2015 Tru Cao
Ee-Peng Lim

Zhi-Hua Zhou
Tu-Bao Ho

David Cheung
Hiroshi Motoda
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Abstract. The social presence theory in social psychology suggests that
computer-mediated online interactions are inferior to face-to-face, in-
person interactions. In this paper, we consider the scenarios of organiz-
ing in person friend-making social activities via online social networks
(OSNs) and formulate a new research problem, namely, Hop-bounded
Maximum Group Friending (HMGF), by modeling both existing friend-
ships and the likelihood of new friend making. To find a set of atten-
dees for socialization activities, HMGF is unique and challenging due
to the interplay of the group size, the constraint on existing friendships
and the objective function on the likelihood of friend making. We prove
that HMGF is NP-Hard, and no approximation algorithm exists unless
P = NP . We then propose an error-bounded approximation algorithm
to efficiently obtain the solutions very close to the optimal solutions. We
conduct a user study to validate our problem formulation and perform
extensive experiments on real datasets to demonstrate the efficiency and
effectiveness of our proposed algorithm.

1 Introduction

With the popularity and accessibility of online social networks (OSNs), e.g.,
Facebook, Meetup, and Skout1, more and more people initiate friend gatherings
or group activities via these OSNs. For example, more than 16 millions of events
are created on Facebook each month to organize various kinds of activities2,
and more than 500 thousands of face-to-face activities are initiated in Meetup3.
The activities organized via OSNs cover a wide variety of purposes, e.g., friend
gatherings, cocktail parties, concerts, and marathon events. The wide spectrum
of these activities shows that OSNs have been widely used as a convenient means
for initiating real-life activities among friends.
1 http://www.skout.com/
2 http://newsroom.fb.com/products/
3 http://www.meetup.com/about/
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T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 3–15, 2015.
DOI: 10.1007/978-3-319-18038-0 1

http://www.skout.com/
http://newsroom.fb.com/products/
http://www.meetup.com/about/


4 C.-Y. Shen et al.

On the other hand, to help users expand their circles of friends in the
cyberspace, friend recommendation services have been provided in OSNs to sug-
gest candidates to users who may likely become mutual friends in the future.
Many friend recommendation services employ link prediction algorithms, e.g.,
[10,11], to analyze the features, similarity or interaction patterns of users in
order to derive potential future friendship between some users. By leveraging
the abundant information in OSNs, link prediction algorithms show high accu-
racy for recommending online friends in OSNs.

As social presence theory [16] in social psychology suggests, computer-mediated
online interactionsare inferior to face-to-face, in-person interactions, off-line friend-
making activities may be favorable to their on-line counterparts in cyberspace.
Therefore, in this paper, we consider the scenarios of organizing face-to-face friend-
making activities via OSN services. Notice that finding socially cohesive groups of
participants is essential for maintaining good atmosphere for the activity. More-
over, the functionofmakingnew friends is also an important factor for the success of
social activities, e.g., assigning excursion groups in conferences, inviting attendees
to housewarming parties, etc. Thus, for organizing friend-making social activities,
both activity organization and friend recommendation services are fundamental.
However, there is a gap between existing activity organization and friend recom-
mendation services inOSNs for the scenarios under consideration.Existing activity
organization approaches focus on extracting socially cohesive groups from OSNs
based on certain cohesive measures, density, diameter, of social networks or other
constraints, e.g., time, spatial distance, and interests, of participants [5–8]. On the
other hand, friend recommendation services consider only the existing friendships
to recommend potential new friends for an individual (rather than finding a group
of people for engaging friend-making). We argue that in addition to themes of com-
mon interests, it is desirable to organize friend-making activities by mixing the
”potential friends”, who may be interested in knowing each other (as indicated by a
linkprediction algorithm),with existing friends (as lubricators).To thebest knowl-
edge of the authors, the following two important factors, 1) the existing friendship
among attendees, and 2) the potential friendship among attendees, have not been
considered simultaneously in existing activity organization services. To bridge the
gap, it is desirable to propose a new activity organization service that carefully
addresses these two factors at the same time.

In this paper, we aim to investigate the problem of selecting a set of can-
didate attendees from the OSN by considering both the existing and potential
friendships among the attendees. To capture the two factors for activity organi-
zation, we propose to include the likelihood of making new friends in the social
network. As such, we formulate a new research problem to find groups with
tight social relationships among existing friends and potential friends (i.e., who
are not friends yet). Specifically, we model the social network in the OSN as
a heterogeneous social graph G = (V,E,R) with edge weight w : R → (0, 1],
where V is the set of individuals, E is the set of friend edges, and R is the set
of potential friend edges (or potential edges for short). Here a friend edge (u, v)
denotes that individuals u and v are mutual friends, while a potential edge [u′, v′]
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Fig. 1. Illustrative Example

indicates that individuals u′ and v′ are likely to become friends (the edge weight
w[u′, v′] quantifies the likelihood). The potential edges and the corresponding
edge weights can be obtained by employing a link prediction algorithm in friend
recommendation.

Given a heterogeneous social graph G = (V,E,R) as described above, we
formulate a new problem, namely, Hop-bounded Maximum Group Friending
(HMGF), to find a group that 1) maximizes the likelihood of making new friends
among the group, i.e., the group has the highest ratio of total potential edge
weight to group size, 2) ensures that the social tightness, i.e., hop count on
friend edges in G between each pair of individuals is small, and 3) is a suffi-
ciently large group, i.e., too small a group may not work well for socialization
activities.

Figure 1 illustrates the social graph and the interplay of the above factors.
Figure 1(a) shows a social graph, where a dash line, e.g., [a, b] with weight 0.6, is
a potential edge and a solid line, e.g., (c, d), is a friend edge. Figure 1(b) shows
a group H1:{a, e, f, g} which has many potential edges and thus a high total
weight. However, not all the members of this group have common friends as
social lubricators. Figure 1(c) shows a group H2:{c, d, f, g} tightly connected by
friend edges. While H2 may be a good choice for gathering of close friends, the
goal of friend-making in socialization activities is missed. Finally, Figure 1(d)
shows H3:{d, e, f, g} which is a better choice than H1 and H2 for socialization
activities because each member of H3 is within 2 hops of another member via
friend edges in G. Moreover, the average potential edge weight among them is
high, indicating members are likely to make some new friends.

Processing HMGF to find the best solution is very challenging because there
are many important factors to consider, including hop constraint, group size and
the total weight of potential edges in a group. Indeed, we prove that HMGF is an
NP-Hard problem with no approximation algorithm. Nevertheless, we prove that
if the hop constraint can be slightly relaxed to allow a small error, there exists a
3-approximation algorithm for HMGF. Theoretical analysis and empirical results
show that our algorithm can obtain good solutions efficiently.

The contributions made in this study are summarized as follows.

– For socialization activity organization, we propose to model the existing
friendship and the potential friendship in a heterogeneous social graph and
formulate a new problem, namely, Hop-bounded Maximum Group Friending
(HMGF), for finding suitable attendees. To our best knowledge, HMGF is
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the first problem that considers these two important relationships between
attendees for activity organization.

– We prove that HMGF is NP-Hard and there exists no approximation algo-
rithm for HMGF unless P = NP . We then propose an approximation algo-
rithm, called MaxGF, with a guaranteed error bound for solving HMGF
efficiently.

– We conduct a user study on 50 users to validate our argument for consider-
ing both existing and potential friendships in activity organization. We also
perform extensive experiments on real datasets to evaluate the proposed
algorithm. Experimental results manifest that HMGF can obtain solutions
very close to the optimal ones, very efficiently.

The rest of this paper is organized as follows. Section 2 formulates HMGF
and proves it NP-Hard with no approximation algorithm. Section 3 reviews the
related works, and Section 4 details the algorithm design. Section 5 reports a
user study and experimental results. Section 6 concludes this paper.

2 Problem Formulation

Based on the description of heterogeneous social graph described earlier, here we
formulate the Hop-bounded Maximum Group Friending (HMGF) tackled in this
paper. Given two individuals u and v, let dE

G(u, v) be the shortest path between
u and v via friend edges in G. Moreover, given H ⊆ G, let w(H) denote the total
weight of potential edges in H and let average weight, σ(H) = w(H)

|H| denote the
average weight of potential edges connected to each individual in H4. HMGF is
formulated as follows.
Problem: Hop-bounded Maximum Group Friending (HMGF).
Given: Social network G = (V,E,R), hop constraint h, and size constraint p.
Objective: Find an induced subgraph H ⊆ G with the maximum σ(H), where
|H| ≥ p and dE

G(u, v) ≤ h,∀u, v ∈ H.
Efficient processing of HMGF is very challenging due to the following reasons:

1) The interplay of the total weight w(H) and the size of H. To maximize σ(H),
finding a small H may not be a good choice because the number of edges in
a small graph tends to be small as well. On the other hand, finding a large H
(which usually has a high w(H)) may not lead to an acceptable σ(H), either.
Therefore, the key is to strike a good balance between the graph size |H| and the
total weight w(H). 2) HMGF includes a hop constraint (say h = 2) on friend
edges to ensure that every pair of individuals is not too distant socially from
each other. However, selecting a potential edge [u, v] with a large weight w[u, v]
may not necessarily satisfy the hop constraint, i.e., dE

G(u, v) > h which is defined
based on existing friend edges. In this case, it may not always be a good strategy
to prioritize on large-weight edges in order to maximize σ(H), especially when
u and v do not share a common friend nearby via the friend edges.
4 Note that σ(H) = 0 if H = ∅.
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In the following, we prove that HMGF is NP-Hard and not approximable
within any factor. In other words, there exists no approximation algorithm for
HMGF.

Theorem 1. HMGF is NP-Hard and there is no approximation algorithm for
HMGF unless P = NP .

Proof. Due to the space constraints, we prove this theorem in the full version of
this paper (available online [1]).

The above theorem manifests that HMGF has no approximation algorithm.
Nevertheless, we show that HMGF becomes approximable if a small error h is
allowed in the hop constraint. More specifically, in Section 4, we first propose
an error-bounded approximation algorithm for HMGF, which returns a solution
with guaranteed σ(H), while dE

G(u, v) for any two vertices u and v in H may
exceed h but is always bounded by 2h. Afterward, we present a post-processing
procedure to tailor the solution for satisfying the hop constraint.

3 Related Work

Extracting dense subgraphs or social cohesive groups among social networks is
a natural way for selecting a set of close friends for a gathering. Various social
cohesive measures have been proposed for finding dense social subgraphs, e.g.,
diameter [2], density [3], clique and its variations [4]. Although these social cohe-
sive measures cover a wide range of application scenarios, they focus on deriv-
ing groups based only on existing friendship in the social network. In contrast,
the HMGF studied in this paper aims to extract groups by considering both
the existing and potential friendships for socialization activities. Therefore, the
existing works mentioned above cannot be directly applied to HMGF tackled in
this paper.

Research on finding a set of attendees for activities based on the social tight-
ness among existing friends [5–9] have been reported in the literature. Social-
Temporal Group Query [5] checks the available times of attendees to find the
social cohesive group with the most suitable activity time. Geo-Social Group
Query [6,7] extracts socially tight groups while considering certain spatial prop-
erties. The willingness optimization for social group problem in [8] selects a set
of attendees for an activity while maximizing their willingness to participate.
Finally, [9] finds a set of compatible members with tight social relationships
in the collaboration network. Although these works find suitable attendees for
activities based on existing friendship among the attendees, they ignore the like-
lihood of making new friends among the attendees. Therefore, these works may
not be suitable for socialization activities discussed in this paper.

Link prediction analyzes the features, similarity or interaction patterns among
individuals in order to recommend possible friends to the users [10–14]. Link pre-
diction algorithms employ different approaches including graph-topological fea-
tures, classification models, hierarchical probabilistic model, and linear algebraic
methods. These works show good prediction accuracy for friend recommendation
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in social networks. In this paper, to estimate the likelihood of how individuals may
potentially become friends in the future, we employ link prediction algorithms for
deriving the potential edges among the individuals.

To the best knowledge of the authors, there exists no algorithm for activity
organization that considers both the existing friendship and the likelihood of
making new friends when selecting activity attendees. The HMGF studied in this
paper examines the social tightness among existing friends and the likelihood of
becoming friends for non-friend attendees. We envisage that our research result
can be employed in various social network applications for activity organization.

4 Error-Bounded Approximation Algorithm for HMGF

4.1 Algorithm Description

To tackle HMGF, a naive approach is to enumerate all possible combinations of
vertices, and extracts the subgraph H with the maximum σ(H) following the hop
and group size constraints. However, this approach is computationally expensive
and thus not applicable for a large-scale social network. To efficiently answer
HMGF, we propose an algorithm, called MaxGF, which is a 3-approximation
algorithm with a guaranteed error bound h. MaxGF limits the search space of
candidate solutions by dividing the graph into different hop-bounded subgraphs
such that their sizes are much smaller than |V |. Then, it employs a greedy app-
roach on the hop-bounded subgraphs to iteratively remove the vertices that are
inclined to generate a small σ(H). Specifically, we define the incident weight of a
vertex v in an induced subgraph H ⊆ G as τH(v), where τH(v) =

∑
u∈H w[v, u],

i.e., the incident weight of v is the total weight of the potential edges incident
to v in H. By carefully examining the incident weights of the vertices, we can
remove from the hop-bounded subgraph those vertices that contribute no gain
in the objective function. Moreover, we propose an effective pruning strategy for
trimming redundant search. Finally, a post-processing procedure is proposed to
ensure that the returned solution follows the hop constraint.

The pseudo code of MaxGF is presented in Algorithm 1. Basically, to obtain
the hop-bounded subgraphs, MaxGF sorts the vertices in terms of their incident
weights and iteratively selects a vertex v with the maximum incident weight
from G as a reference vertex. A hop-bounded subgraph Hv is constructed from
v by including every vertex u with at most h hops from v on the friend edges,
i.e., Hv = {u|dE

G(u, v) ≤ h}. Moreover, if |Hv| < p, it is no longer necessary to
examine Hv because any subgraph in Hv will never be a feasible solution due to
the size constraint. Therefore, redundant search space is effectively pruned.

In addition, another pruning condition is also proposed to further prune the
resulted subgraph Hv. Let SAPX denote the best solution obtained so far. If
half of the maximum incident weight among the vertices u in Hv, i.e., (1/2) ·
maxu∈Hv

τHv
(u), does not exceed σ(SAPX), there will never be any solution
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Algorithm 1. MaxGF
Input: Social graph G = (V, E, R), hop constraint h, and size constraint p
1: U ← G, SAPX ← ∅

2: while U �= ∅ do
3: v ← arg maxu∈U τG(u), U ← U − {v}
4: let Hv be the induced subgraph of G with vertices as {u|dE

G(u, v) ≤ h}
5: if |Hv| < p or 1

2
· maxu∈Hv τHv (u) ≤ σ(SAPX) then

6: continue;
7: let S1 ← Hv

8: for i ← 1 to |Hv| do
9: v̂i ← arg minu∈Si τSi(u)

10: Si+1 ← Si − {v̂i}
11: let S∗

v be the Si with the maximum σ(Si) where |Si| ≥ p
12: if σ(S∗

v ) > σ(SAPX) then
13: SAPX ← S∗

v

14: PostProcessing(SAPX)
15: output SAPX

better than σ(SAPX) in Hv. The reason is that the average weight σ(H) of any
subgraph H ⊆ Hv must satisfy the following inequality,

σ(H) =
∑

t∈H τH(t)
2|H| ≤ maxu∈Hv

τHv
(u) · |H|

2|H| =
1
2

· max
u∈Hv

τHv
(u).

Therefore, if 1
2 · maxu∈Hv

τHv
(u) ≤ σ(SAPX) holds, there exists no subgraph in

Hv with the average weight larger than σ(SAPX), and Hv can be pruned.
Next, MaxGF starts to find the solution in Hv with the maximized average

weight, which includes |Hv| steps. Let Si+1 denote the subgraph after removing
a vertex v̂i from Si in step i. That is, we set S1 = Hv initially, and at each step i
afterwards, Si+1 is the subgraph Si−{v̂i}. During each step i, v̂i is selected as the
vertex which has the lowest incident weight in Si, i.e., v̂i = arg minu∈Si

τSi
(u).

This is based on the intuition that excluding vertices with low incident weights
is more inclined to increase the average weight of the the remaining subgraph.
Then, v̂i and its incident potential edges are removed from Si and the remaining
graph is Si+1. Then, Si+1 is processed in the next step i+1. The above procedure
ends until Si is empty.

To maximize the objective function σ(H) = w(H)
|H| , after a hop-bounded sub-

graph Hv is processed, S∗
v is extracted as the subgraph Si with the maximum

σ(Si) in Hv where |Si| ≥ p. If σ(S∗
v ) > σ(SAPX), we replace SAPX with S∗

v .
Then, we continue to extract the next vertex v′ for examining the corresponding
hop-bounded subgraph Hv′ until all vertices have been examined. Afterward,
a post-processing procedure (detailed in Section 4.3) is employed on the best
solution obtained in the algorithm, i.e., SAPX , to ensure that the hop constraint
is satisfied and to further maximize σ(SAPX). Finally, SAPX is output as the
solution.
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4.2 Theoretical Bound

In the following, given the hop-bounded subgraph Hv, we first prove that there
exists a subgraph F ⊆ Hv such that 3 · w(F ) is an upper bound of the total
potential edge weight of the optimal solution to the HMGF instance on Hv.
Then, we prove that for each Hv, the average weight of S∗

v obtained in the
algorithm, i.e., σ(S∗

v ), is at least 1
3 the average weight of the optimal solution

of HMGF on Hv. Finally, based on the properties of the hop-bounded subgraph
and SAPX , we prove that the proposed algorithm is a 3-approximation algorithm
with guaranteed error bound to HMGF.

Let SOPT
v denote the optimal solution of the HMGF instance on Hv with

σ(SOPT
v ) > 0, we first prove that the largest subgraph F in Hv, where τF (u) ≥

2
3σ(SOPT

v ), ∀u ∈ F , is not an empty graph.

Lemma 1. The largest subgraph F ⊆ Hv, where τF (u) ≥ 2
3σ(SOPT

v ), ∀u ∈ F ,
is not an empty graph.

Proof. The proof is presented in the online version [1].

With the existence of F proven above, we now derive an upper bound of the
total potential edge weight of SOPT

v , i.e., w(SOPT
v ), according to w(F ).

Lemma 2. w(SOPT
v ) is upper bounded by 3 · w(F ), i.e., 3 · w(F ) > w(SOPT

v ).

Proof. The proof is presented in the online version [1].

Then, with the properties derived above, we turn our attention to analyzing
MaxGF proposed in this section. In MaxGF, given Hv and when we are itera-
tively extracting v̂i which has the minimum incident weight in Si, if v̂i is the
first extracted vertex such that v̂i ∈ F (i.e., step i is the earliest step such that
v̂i ∈ F ), then we have the following lemma.

Lemma 3. Given Hv in MaxGF, if step i is the earliest step where the extracted
v̂i from Si is in F , then τSi

(u) ≥ 2
3σ(SOPT

v ), ∀u ∈ Si. Moreover, F = Si.

Proof. The proof is presented in the online version [1].

We combine the results obtained above, and derive the bound on σ(S∗
v ), where

S∗
v is the group Si which has the maximum σ(Si) among all Si with |Si| ≥ p

obtained by MaxGF in Hv. Please note that Lemma 3 proves that during the
steps of extracting v̂i from Si, there exists v̂i with τSi

(v̂i) ≥ 2
3σ(SOPT

v ).

Theorem 2. Given Hv in MaxGF, let i be the earliest step such that v̂i satisfies
τSi

(v̂i) ≥ 2
3σ(SOPT

v ), then σ(S∗
v ) ≥ 1

3σ(SOPT
v ).

Proof. The proof is presented in the online version [1].

Finally, let SOPT denote the optimal solution of HMGF on G, the following
theorem proves that the solution obtained by MaxGF, i.e., SAPX , has σ(SAPX)
at least 1

3 · σ(SOPT ), and the error is bounded by h.
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Theorem 3. MaxGF returns the solution SAPX with σ(SAPX) ≥ σ(SOPT )
3 and

dE
G(u, v) ≤ 2 · h, ∀u, v ∈ SAPX .

Proof. The proof is presented in the online version [1].

4.3 Post Processing and Time Complexity

A post-processing procedure is designed to tailor SAPX for meeting the hop
constraint and further maximizing the average weight. More specifically, given
SAPX obtained in the algorithm, we first define the notion of boundary vertices.
A vertex u in SAPX is a boundary vertex if there exists at least one other vertex
v in SAPX such that the shortest path from u to v via friend edges contains more
than h edges. Let B denote the set of boundary vertices. MaxGF includes the
following adjustment steps in the post-processing procedure. 1) Expand: a vertex
v ∈ (V \SAPX) can be added into SAPX if adding v does not increase |B| and
increases σ(SAPX). We give priority to the v which maximizes σ(SAPX ∪{v}). 2)
Shrink: given a boundary vertex u ∈ B, u can be safely removed if after removing
u from SAPX , |B| decreases but σ(SAPX) does not. We give priority to the u that
maximizes σ(SAPX −{u}). Please note that the above post-processing procedure
minimizes maxu,v∈SAPX dE

G(u, v) while increasing σ(SAPX). Therefore, after post
processing, the performance and error bounds in Theorem 3 still hold.

Time Complexity. The time complexity of MaxGF is O(|V | log |V |·(|E|+|R|)).
The detailed analysis is presented in the online version of this paper [1].

5 Experimental Results

We implement HMGF in Facebook and invite 50 users to participate in our user
study. Each user, given 12 test cases of HMGF using her friends in Facebook as
the input graph, is asked to solve the HMGF cases, and compare her results with
the solutions obtained by MaxGF. In addition to the user study, we evaluate the
performance of MaxGF on two real social network datasets, i.e., FB [15] and
the MS dataset from KDD Cup 20135. The FB dataset is extracted from Face-
book with 90K vertices, and MS is a co-author network with 1.7M vertices. We
extract the friend edges from these datasets and identify the potential edges with
a link prediction algorithm [11]. The weight of a potential edge is ranged within
(0,1]. Moreover, we compare MaxGF with two algorithms, namely, Baseline and
DkS [3]. Baseline finds the optimal solution of HMGF by enumerating all the
subgraphs satisfying the constraints, while DkS is an O(|V |1/3)-approximation
algorithm for finding a p-vertex subgraph H ⊆ G with the maximum density
on E ∪ R without considering the potential edges and the hop constraint. The
algorithms are implemented in an IBM 3650 server with Quadcore Intel X5450
3.0 GHz CPUs. We measure 30 samples in each scenario. In the following, Fea-
Ratio and ObjRatio respectively denote the ratio of feasibility (i.e., the portion
5 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge/

data

https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge/data
https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge/data
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Fig. 2. User Study Results

of solutions satisfying the hop constraint) and the ratio of σ(H) in the solutions
obtained by MaxGF or DkS to that of the optimal solution.

5.1 User Study

Figure 2 presents the results of the user study. Figure 2(a) compares the required
time for users and MaxGF to solve the HMGF instances. Users need much more
time than MaxGF due to challenges brought by the hop constraint and tradeoffs
in potential edge weights and the group size, as explained in Section 2. As |V |
or h grows, users need more time because the HMGF cases become more com-
plicated. Figure 2(b) compares the solution feasibility and quality among users
and MaxGF. We employ Baseline to obtain the optimal solutions and derive
FeaRatio and ObjRatio accordingly. The FeaRatio and ObjRatio of users are
low because simultaneously considering both the hop constraint on friend edges
and total weights on potential edges is difficult for users. As shown, users’ Fea-
Ratio and ObjRatio drop when |V | increases. By contrast, MaxGF obtains the
solutions with high FeaRatio and ObjRatio. In Figure 2(c), we ask each user
to compare her solutions with the solutions obtained by MaxGF and DkS, to
validate the effectiveness of HMGF. 74% of the users agree that the solution of
MaxGF is the best because HMGF maximizes the likelihood of friend-making
while considering the hop constraint on friend edges at the same time. By con-
trast, DkS finds the solutions with a large number of edges, but it does not
differentiate the friend edges and potential edges. Therefore, users believe that
the selected individuals may not be able to socialize with each other effectively.

5.2 Performance Evaluation

Baseline can only find the optimal solutions of small HMGF cases since it enumer-
ates all possible solutions. Therefore, we first compare MaxGF against Baseline
and DkS on small graphs randomly extracted from FB. Figure 3(a) compares the
execution time of the algorithms by varying the size of input graph. Since Baseline
enumerates all the subgraphs H with |H| ≥ p, the execution time grows exponen-
tially. The execution time of MaxGF is very small because the hop-bounded sub-
graphs and the pruning strategy effectively trim the search space. Figures 3(b) and
3(c) present the FeaRatio and ObjRatio of the algorithms, respectively. MaxGF
has high ObjRatio because MaxGF iteratively removes vertices with low incident
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Fig. 4. Experimental Results on Different Datasets

weights fromeachhop-bounded subgraphHv, and extracts the solutionSAPX with
maximized σ(SAPX) among different subgraphs in different Hv to strike a good
balance on total edge weights and group sizes as describe in Section 2. Moreover,
the high FeaRatio and ObjRatio also indicate that the post-processing procedure
effectively restores the hop constraint and maximizes the average weight accord-
ingly. By contrast, DkS does not consider the hop constraint and different edge
types in finding solutions and thus generates the solutions with smaller FeaRatio
and ObjRatio.

Figures 3(d)-(f) compare execution time, FeaRatio and ObjRatio again but
by varying h. When h increases, the execution time of MaxGF grows slowly
because the pruning strategy avoids examining the hop-bounded subgraphs that
do not lead to a better solution. The FeaRatio and ObjRatio of MaxGF with
different h are high because MaxGF employs hop-bounded subgraphs to avoid
generating solutions with large hop distances on friend edges, and the post-
processing procedure effectively restores the hop constraint and maximizes the
objective function.

Figure 4 compares MaxGF in different datasets, i.e., FB and MS. Figures
4(a) and 4(b) present the FeaRatio and the solution group sizes with different h.
As h increases, MaxGF on both datasets achieves a higher FeaRatio due to the
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post-processing procedure adjusts SAPX and further minimizes dE
G(u, v),∀u, v ∈

SAPX . Moreover, it is worth noting that the returned group sizes grow when h
increases in MS. This is because MS contains large densely connected compo-
nents with large edge weights. When h is larger, MaxGF is inclined to extract
larger groups from these components to maximize the objective function. By
contrast, FB does not have large components and MaxGF thereby tends to
find small groups to reduce the group size for maximizing the objective func-
tion. In fact, the solutions in FB are almost the same with different h. Finally,
MaxGF needs to carefully examine possible solutions with the sizes at least p,
and thus Figure 4(c) shows that when p increases, the execution time drops
because MaxGF effectively avoids examining the candidate solutions with small
group sizes.

6 Conclusion

To bridge the gap between the state-of-the-art activity organization and friend
recommendation in OSNs, in this paper, we propose to model the individu-
als with existing and potential friendships in OSNs for friend-making activ-
ity organization. We formulate a new research problem, namely, Hop-bonded
Maximum Group Friending (HMGF), to find suitable activity attendees. We
prove that HMGF is NP-Hard and there exists no approximation algorithms
unless P = NP . We then propose an approximation algorithm with guaran-
teed error bound, i.e., MaxGF, to find good solutions efficiently. We conduct a
user study and extensive experiments to evaluate the performance of MaxGF,
where MaxGF outperforms other relevant approaches in both solution quality
and efficiency.
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Abstract. Post streams from public social media platforms such as
Instagram and Twitter have become precious but noisy data sources
to discover what is happening around us. In this paper, we focus on the
problem of detecting and presenting local events in real time using social
media content. We propose a novel framework for real-time city event
detection and extraction. The proposed framework first applies bursty
detection to discover candidate event signals from Instagram and Twitter
post streams. Then it integrates the two posts streams to extract features
for candidate event signals and classifies them into true events or noise.
For the true events, the framework extracts various information to sum-
marize and present them. We also propose a novel method that combines
text, image and geolocation information to retrieve relevant photos for
detected events. Through the experiments on a large dataset, we show
that integrating Instagram and Twitter post streams can improve event
detection accuracy, and properly combining text, image and geolocation
information is able to retrieve more relevant photos for events. Through
case studies, we also show that the framework is able to report detected
events with low spatial and temporal deviation.

Keywords: Data mining · Social media · Event extraction

1 Introduction

With the growing popularity of mobile devices and applications, more and more
people are sharing their moments with their friends and the public through
mainstream social media platforms such as Facebook (Instagram) and Twitter.
A recent report1 shows that Instagram now has more than 200 Million monthly-
active-users (MAU) and these users upload more than 1.5 billion photos and
videos per month. Twitter has even larger traffic and popularity, 255 Million
MAUs and 15 billion tweets per month.

Although a dominating proportion of posts from such social media platforms
are about users’ personal life [19], such as emotional feeling, opinions, food, travel
and even self-portraits, there are still considerable amount of posts recording
1 http://jennstrends.com/instagram-statistics-for-2014/
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what are happening in our city. A user may upload photos of a fashion show
to her Instagram account, or talk about emergency or crime on Twitter. These
valuable social media posts have made it possible for researchers and developers
to accurately detect and present local events in real time. Such techniques will
benefit various users, ranging from government officers, journalists, to tourists
and residents, etc. For example, a system quickly reporting fire or car accidents
can help the local police to make a timely response to the emergency; detecting
entertaining events in real time and representing them to nearby tourists or
residents can provide opportunities in social engagement.

However, the problem of detecting and representing local events in real time
from social media data streams remains challenging. First, event-related social
media data are sparse, although the volume of posts from any popular social
media platform is large. Second, most current research focuses on Twitter [2],
while there are various types of social media platforms which can potentially
contribute to the detection problem. However, the problem to choose or combine
multiple data sources to detect events is challenging due to the heterogeneity of
posts from different data sources. Third, after detecting events, to represent
events with the most relevant posts is still challenging due to the noisy posts
stream with heterogeneous content including image, text and geolocation.

To address these challenges, we propose a novel framework in this paper. This
framework first detects candidate event signals from Instagram and Twitter post
streams, and then extract features to classify whether an event signal is a true
event or noise. Finally, it summarizes the detected event by retrieving relevant
photos and topics and then estimating the occurrence time and location. Besides
the proposed framework, our contributions also include that we analyze different
methods to integrate Instagram and Twitter post streams, and experimentally
show that they improve the detection accuracy. To our best knowledge, we are
the first to integrate Instagram and Twitter posts to detect events in real time.
For event summarization, we propose a method to retrieve relevant photos, which
utilizes image content, text and geolocation information. Finally, we conduct case
studies to show that our framework has low spatial and temporal deviation for
detected events.

The rest of this paper is constructed as follows. Section 2 reviews the previous
works. In Section 3, we formally define the local event detection problem. We
introduce the detailed methodology and our system framework in Section 4. We
analyze and discuss our experiment results in Section 5, and conclude our work
in Section 6.

2 Related Work

There have been plenty of research regarding detecting events or news. They
can be categorized according to several aspects, including types of events, data
sources and methods [2].

Prior to detecting events from social media streams, [12][13][14][16] detect
events from traditional media data. As a seminar work to this problem, [16]
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uses an infinite-state automaton to model the term frequency in documents, and
considers the burst, for example, the significant change in term frequency, as
potential events. [13][14] detect events by modeling feature burst with spectral
analysis and Gaussian mixture respectively. [12] heuristically identifies bursty
terms and then groups these terms to discover potential events. Since all of
them use information which has been existing for long time as data sources,
their systems can hardly produce events in real time.

The introduction of social media platform brings new opportunities and chal-
lenges to the problem of event detection, and plenty of methods have been pro-
posed. Inspired by the idea of detecting bursty feature, EDCoW [33] uses wavelet
theory to model the signal of words and capture their bursts to detect events.
[28] monitors bursty topics instead of unigram or tweet-segments [21]. Simi-
larly, [7] detects events by discovering trending topics. Modeling trending topics
can produce real-time detection, however, it is not applicable to our scenario
of detecting and locating events since trending topics are usually weak signals
for small scale event, and it has large error to estimate the location of trending
topics [1][15][17]. Other than detecting the trending topics, based on influential
theories of emotions, [32] automatically assigns a single tweet with an emotional
label which is neutral or comes from one of the 6 Ekman’s emotions. Then they
monitor the sudden change of tweets’ emotions in countries as the signals to
detect events. All of the above works consider burst of certain features as sig-
nals of potential events. They model different bursty features including n-gram,
terms, topics and emotions, and the common idea behind is absorbed into our
framework.

Some detection frameworks are specific-event driven, that is, assigning a spe-
cific event type to each detection task. TEDAS [22] was proposed to detect crime
and disaster related events from twitter stream. Earthquake center and typhoon
trajectory have been successfully estimated in [30]. Besides disasters, [11][20] use
twitter posts to detect local festivals by monitoring the movements of crowds.
Twitterstand [31] classifies tweets as news and non-news to detect news events.
Different from these methods, our proposed framework is not restricted to any
event type.

Considering the data source, most of the previous works collect data from
Twitter posts [11][20][22]. We put two data collectors in Instagram and Twitter
monitoring and collecting useful information from the live post streams from
these two social media platforms. Our previous work [35] uses Instagram posts
to detect events with high accuracy. Unlike them, in this paper we use the posts
from both of the two popular OSNs together to detect events.

After detecting events, retrieving relevant content to represent existing events
is a challenging problem. Focusing on Twitter content, [3][5] extracts tweets and
topics for known events. [25] generates a journalistic summary of a sport event
using status updates from Twitter. Including Twitter, [4] retrieves social media
content across YouTube and Flickr for existing events. In [9], photo tags are used
to detect events and then retrieve photos based on tags to represent an event. It
does not use the rich image content but heavily rely on user generated tags that
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are not always reliable [27]. Although the work in [27] combines photo content
and tags to detect events, it needs to discover landmarks first and then detect
events around the landmarks. To be different, our work does not rely on land-
mark discovery, thus we can detect more general events. As to retrieving images,
most existing methods rank images based on certain similarity measurements to
a specific query, a keyword or image. In large scale applications, approximate
nearest neighbor algorithms and hashing method [18][24] are widely explored.
However, these methods are not directly applicable to our problem since we do
not have a specific query. Instead, our query is an entire event that consists of
noisy photos, text and geolocations. In our system, we observe that for a true
event, the images that are relevant to it usually share common patterns. While
other irrelevant images are considered as noise, which are usually independent
and randomly distributed.

3 Problem Definition

Following [32][35], we define an event as a real world activity that occurs during
time period T within a geographical area L. To detect such events in real time,
we define a framework as follows. The framework takes the real-time streams of
posts from Instagram and Twitter as the input. The system is expected to output
detected events in sequence. For each detected event, we extract its related con-
tent namely the set of related images, topics (a set of keywords), the estimated
occurrence location, and the estimated occurrence time.

4 System Framework and Methodology

In this section we introduce our architecture, each component and methods. The
system framework is shown in Figure 1. Given a fixed geographical region L from
which we want to detect events in real time, first we distribute event sensors over
the entire region. Each event sensor is designed to be independently responsible
for discovering events in a single sub-region l. In other words, we divide the entire
region, i.e. New York City in this paper, into k sub-regions, L = {l1, ..., lk}. For
each sub-region l, we allocate an event sensor, which has three components,
Event Signal Discovery, Event Signal Classification and Event Summarization.
Although more advanced methods that divide an entire region to sub-regions
according to topic distribution [1][17] or population density [20] might improve
the overall performance, in this paper we do not focus on this problem, and we
divide the entire New York City into N × M grids of equal size.

The architecture of our system is shown in figure 1. The Event Signal Dis-
covery component takes the input of Instagram and Twitter data streams in real
time and outputs candidate event signals. The Event Signal Classification com-
ponent takes candidate event signals as input, extracts various features for them,
and finally outputs event signals which are classified as true events. The Event
Summarization component selects the most relevant content, including photos
and text to represent the event. Besides, it produces the estimated occurrence
location and time of the event.
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Fig. 1. Architecture of our system framework

4.1 Event Signal Discovery

The Event Signal Discovery component contains 3 sub-components, data stream
collector, time series estimator and bursty detector. The motivation behind fol-
lows the general idea of modeling bursts [16] of certain features as potential
events. Unlike other papers which model the sudden change of emotions [32],
the movements of crowds [20] or the trending topics/terms/n-grams [21][33][7],
we adopt the method in [34][35] which considers the abnormal increase of social
media posts as the potential signal of events. This is because we observe that
the change in the number of posts is sensitive to event occurrence, especially to
the occurrence of small-scale local events.

The data stream collectors keep collecting posts from Twitter and Instagram
in real time. We only collect posts containing geo-location information. In order
to find bursty signals, an event sensor monitors the change in the number of
posts in a sub-region l. A time series of the post number is constructed for l. We
use t to denote the time, and vl(t) denotes the post number at l and within t.
In practice, t stands for a time period and its window length in our experiments
is 15 minutes.

The time series estimator is implemented by Gaussian Process Regressor
(GPR) [29]. We use GPR due to its great performance in modeling various time
series data such as stock prices [29]. Due to limited space, the detail of GPR is
available in our previous work [35].

Once the GPR model is built on the historical data, it is able to predict the
number of posts at l during t, as v̂l(t) for any given t. When the data stream
collector gathers the true number of posts in a sub-region l at t, we compare the
actual number of posts, i.e. vl(t), with the predicted number of posts, i.e. v̂l(t).
If there is a large deviation between these two numbers, this signal is marked
as a potential event signal. Following bursty detection, we are only interested
in when the predicted number of posts is larger than the actual number of
posts. Typically, we define an abnormality score as [v̂l(t)−vl(t)]/σ̂(t). σ̂(t) is the
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predictive standard deviation given by GPR. It indicates the confidence of the
prediction and a smaller ˆσ(t) indicates stronger confidence. If the abnormality
score in sub-region l during time t exceeds a given threshold, the Event Signal
Discovery component outputs a candidate event e(l, t) that stands for the set of
all the Instagram and Twitter posts that are posted during time t and within
location l.

4.2 Event Signal Classification

Once Event Signal Discovery component produces a candidate event signal e(l, t),
the Event Signal Classification component first extracts features from e(l, t) and
classifies it as true or false by a supervised learning model. Since a candidate
event signal (shortened as candidate event) e(l, t) is a set of Instagram and
Twitter posts bounded by location l and time t, we can extract various types of
features from them. Based on these features, the classifier determines whether
e(l, t) represents a true event or not. Note that, even if there is an event at
location l and time t, not all the posts in e(l, t) is related to that event. Thus we
will choose relevant posts to represent the event which is discussed in Section
4.3. At this step, we focus on extracting robust features from the Instagram and
Twitter post streams.

Feature Fusion. Before design specific features for candidate events, we first
model the fusion of Instagram and Twitter posts. We previously assume when the
number of total posts (including Instagram and Twitter) bounded by location l
and time t suddenly increases, some event e(l, t) may happen. However, we do
not know which data source, Instagram or Twitter, records this event, or both.
This is caused by the heterogeneity of Instagram and Twitter posts and users.
Although they are both popular social media, their users have different habits
and interests. Instagram is more about recording personal life and daily activity
while Twitter is considered as an influential news media [19]. Thus, it is expected
that some events are recorded by only one data source while some are recorded
by both. We can either extract features from Instagram posts or Twitter posts
only, or from both of them. In this paper, we consider two methods to fuse two
data sources for feature extraction and classification.

The first fusion method is to integrate Instagram and Twitter posts at data
level, i.e. before feature extraction. In this way, we need to consider a Twitter
post and a Instagram post as homogeneous. For each event signal e(l, t), we
extract its features vector xe from all the posts during time period t within
location l. This method mitigates the sparsity problem of geo-tagged posts, and
it is expected to benefit the classification of small-scale events with a few of posts
in total.

The second method is to integrate Instagram and Twitter posts at feature
level, i.e. after separate feature extraction. We extract feature vector xI

e from
Instagram posts and extract feature vector xT

e from Twitter posts respectively,
and then concatenate them to form the final feature vector xe. Note that by
this method, the size of feature vector xe is nearly doubled compared to the first
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method. The benefit of this method is that, we can extract different features
from Twitter and Instagram, and further incorporate other inhomogeneous data
sources.

Feature Extraction. To represent an event signal e(l, t), we extract four types
of features from all the posts bounded by l and t, namely topic features, emo-
tional features, spatial features and social features. Formally, we use Pe =
{p1, ..., pn} to denote the set of posts associated with the event e(l, t) and
n = |Pe|. Note that, here we do not extract feature from a single post, instead,
we extract features from the set of posts Pe associated to event signal e(l, t).

First we extract five topic features from posts’ text, i.e. photo captions and/or
tweets. We first build a background topic distribution θB for location l. We use
word unigram language model to represent the topic distribution of the back-
ground posts, i.e. all the posts during last 24 hours within l. We also build the
event topic distribution θE for all the posts in Pe in the same way. We calculate
(1) the total number of words that are in θE but missing in θB . A novel word,
which has never appeared before, may indicate something new. We calculate
(2) the average KL-divergence [KL(θB ||θE) + KL(θE ||θB)]/2. We expect that
the topic distribution changes when there are true events. We also compute (3)
average number of hashtags in pi, (4) the average text length of pi and (5) the
average frequency of the 3 most frequent words in Pe.

The second type is emotional features. Inspired by [32] in which the authors
experimentally prove when there are large event occurring, user emotions on
Twitter change. In order to capture emotional changes, we compute the num-
ber of emotion-related punctuations and words from Pe: (1-2) the number of
exclamations and question marks respectively and (3-8) the total number of
words from Pe categorized to each of the six Ekman’s emotions [32] respectively.
Similar to topic features, we construct a background emotion-related word and
punctuation count vector EB , and take the deviation between EB and the (1-8)
features as the (9-16) features, indicating the change of emotion with location l
and time t.

The third type is geolocation features. They are (1) mean and (2) standard
deviation of pairwise post geo-distance, i.e. dist(pi, pj)∀pi, pj ∈ Pe; and (3) the
entropy [35] of the spatial distribution of all posts in Pe. The intuition behind
these features is that we observe that when there is an event, the event-related
posts tend to form a cluster. Similarly, we also compute these features from the
background posts, and take the corresponding difference from (1-3) features as
(4-6) features.

The fourth class includes a social feature. We compute the average number
of mentioned users, i.e. @Alex of all posts in Pe. We finally extract 28 features
of four categories in total. We also normalize the topic and emotional features
by text length.
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Fig. 2. Five sampled Instagram photos from a detected Knicks NBA game event in
NYC. From journalists’ perspective, the first three images are considered representative
to summarize the event. Although the last two images were uploaded at the stadium
and their captions are also about game, they are not informative for describing this
event. Typically, the forth photo has a user privacy issue.

4.3 Event Summarization

In this section, we introduce our methods to summarize a detected event. A
candidate event signal that consists of a number of Instagram and Twitter posts
bounded by time period t and location l is classified as a true event or not.
Provided that the classifier in Section 4.2 judges an event signal is a true event,
we still do not know what the event is, a concert or a car crash, because the
event classifier in this framework is designed to be general, i.e. independent of
event type or scale.

Therefore we summarize an event from 4 aspects: topics, photos, occurrence
location and occurrence time. Extracting topics from user generated posts is well
studied [3][4][5][8]. Thus it is not our focus in this paper, and we use existing
methods to select keywords from tweets and photo captions as the topics of
an event. Besides, it is straightforward to estimate the occurrence location and
time of an event in our framework. Due to their simplicity, the methods are
discussed together with performance in the experiments, Section 5.4. Here we
only cover the method we proposed to retrieve relevant photos for a detected
event. Since tweets are seldom associated with photos, we only retrieve photos
from Instagram posts to represent an event.

We need to retrieve photos because not all the Instagram post bounded by
time period t and Location l are related to that event. For example, an Instagram
photo was uploaded near a fire accident event, but the image content is about
beers. Besides, we observe that users frequently upload self-portraits or food in
events, which are not helpful for other users to understand the event. Moreover,
some photos involve user privacy issue as shown in Figure 2. Therefore, we need
to select relevant and representative photos to visually summarize an event. For
simplicity, we name them event-related photos.

Our proposed method is based on the following observations. We observe that
event-related photos usually share similar image content. For example, photos
related to a fire accident usually record smoke, fire or the police. We also observe
similarity of text associated to event-related photos. For example, users are likely
to use “fire” or “smoke” to describe the photo related to a fire. Besides image
content and text, most events occur in a fixed place, such as NBA matches, thus
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event-related photos tend to geographically form a cluster in the event center.
Different from event-related photos, we observe that, for most noisy photos,
their image content and text share very limited similarity to each other, and
they are not necessarily close to the geographic center. However, we also observe
outliers. For example, a user uploads a photo of her food during a NBA game
and write a caption “A wonderful NBA game! # Knicks!” to the photo. In this
example, when we compute the relevance score of the photo by only considering
its geolocation and/or text, we find many popular text algorithms consider this
photo highly relevant to the event. But when we compute its relevance score
based on image content, the relevance diminishes.

Inspired by the above observations, for each photo x in an event e, we indi-
vidually compute the image content relevance score (to the event e) given the
image content of x only, as sc(x, e), the text relevance score given the text of
x only, as st(x, e), and the geolocation relevance score given the geolocation of
x only, as sl(x, e). Note that, here Pe denotes the set of photos associated to
event e, and thus x ∈ Pe. After that, we linearly combine the three individual
relevance scores into the finalized relevance score s(x, e) in Eq (1) that denotes
how the photo x is overall relevant to the event e.

s(x, e) = acsc(x, e) + atst(x, e) + alsl(x, e) (1)

ac, at and al are the weights for the three independent relevance scores.
Conventionally, we specify ac +at +al = 1 and at, ac, al ≥ 0. The weights are the
marginal effects of individual relevance score contributed to the overall relevance
score. Intuitively, the larger a weight is, the larger positive impact that the
corresponding single relevance score has on selecting event-related photos. Since
we model retrieving event-related photos as an unsupervised ranking problem,
the choices of ac, at and al are discussed through experiments. We introduce the
models to compute the three individual relevance scores as follows.

Image Content Relevance Model. To compute the image relevance score
function sc(x, e), we use color histogram and GIST features [26] as image descrip-
tor. These two image features are known for effectively describing discriminative
scene characteristics. Our image relevance ranking method is adapted from an
unsupervised image outlier removal method [23].

For a detected event e, its corresponding posts set is denoted as Pe =
{xi‖xi ∈ R

d, i = 1, 2, ..., n}. Since each post is always associated with an image,
here we use the same notation for a post (x) and its image (x in vector space).
For each image xi, we learn a scoring function s(xi) to manifest its relevance to
the event:

min
s∈H,yi∈{t+,t−}

n∑

i=1

(s(xi) − yi)2 + αsT Ls − 2β

n − n−
∑

yi>0

s(xi) (2)

Note that, the value of s(xi) is exactly the image relevance score sc(x, e) in
Eq (1). n− is the number of posts which is considered as irrelevant to the events,
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L is the graph Laplacian matrix, computed from the k nearest neighbor graph.
We construct the neighborhood graph G by defining the affinity matrix W as:

Wij =
{

exp(−dist(xi,xj)
σ2 ), if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0 , otherwise
(3)

dist(, ) is the Euclidean distance, Nk(xi) is the set of k-nearest neighbors
of xi, and σ is the bandwidth parameter. L in Eq (2) is the graph Laplacian
matrix of G, computed as L = D − W , where D is a diagonal matrix with
diagonal elements defined as Dii =

∑n
j=1 Wij . α and β are two model parameters

balancing the regularization of graph Laplacian term and the effect of pushing
the average positive example away from the margin.

During optimization, we do not have any label supervision on whether an
image is event-related or not, therefore we are essentially solving an unsuper-
vised learning problem: yi is unknown in our optimization problem. As suggested
by Eq (2), we treat yi as a variable which is softly labeled as t+ or t− during opti-
mization. Following the experiment results in [23], we dynamically set (t+, t−) as

(
√

n−
n−n− ,

√
n−n−

n− ), where n− is updated in each iteration. Eq (2) is minimized
by alternating optimization: iterating between fixing y to minimize s and fixing
s to minimize y, until convergence. The first subproblem, fixing y to minimize
s is achieved by solving a constrained eigenvalue problem with a closed form
solution. The other subproblem, fixing s to minimize y, is achieved via sorting
and sweeping cut to find an optimal threshold. Throughout our experiment, the
similarity between any two posts is measured in Gaussian kernel space. Finally,
we use the score s(xi) as the image content relevance score for images xi, i.e.
sc(x, e).

Text and Relevance Model. We directly use the method in [3][5] to compute
the relevance score of a photo’s text to the event. For each photo’s text, we
represent it by a character n-gram language model where each photo’s text is
converted to a large and sparse vector. Then we compute the textual centroid
ct of these photos as ct = 1

n

∑n
i=1 xi where xi denotes the i-th photo’s text (in

vector space) of the event. According to [3][5], the text relevance of a photo x
to the event e could be computed by the closeness of x to the centroid ct. Thus,
we compute st(x, e) as the cosine similarity between x and ct.

Geolocation Relevance Model. Each photo is associated with a coordinate
(u, v) which denotes its latitude and longitude respectively. Similarly, we com-
pute the geographical centroid cl of the event as ( 1

n

∑n
i=1 ui,

1
n

∑n
i=1 vi) where

ui and vi respectively denote the latitude and longitude of the i-th photo of the
event. Thus, the geolocation relevance score sl(x, e) can be computed by the
earth surface distance between x and cl.

Interpretations and Advantages. In the above method, we extract image,
text and geolocation features from a photo and the event to compute the three
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relevance scores separately, and finally linearly combine them into the overall rel-
evance score. An alternative method is not to compute the individual relevance
scores separately. Instead, it extracts the same image, text and geolocation fea-
tures but concatenates all the three feature vectors into a longer feature vector,
and then apply a unified model to assign relevance score to the photo given its
event. However, such a unified model has problems caused by the heterogeneous
characteristics of image, text and geolocation information. First, the dimensions
of the three feature vectors are largely different. An efficient text representation
is n-gram model which transfers a piece of text to a large and sparse feature vec-
tor. However, the geolocation information is efficiently represented as a feature
vector in two dimensions only. Thus, if we just simply concatenate them with-
out robust feature selection, the geolocation information is easily overwhelmed
in such feature space. Second, the hypotheses of relevance (or similarity or close-
ness) are semantically different in the three aspects. In modeling the relevance
of image content, many previous researches find the similarity between photos
defined in Gaussian kernel space is proper. While in modeling geolocation close-
ness, the earth surface distance is naturally the best. Thus, it is not ideal to
model all the three types of information in a unified distance space.

5 Experiments

In this section, we first introduce the dataset and parameter setting. Then we
evaluate event detection accuracy by Instagram and Twitter post streams. We
also evaluate the event-related photo retrieval. Finally, we sample detected true
events to evaluate the temporal latency and spatial accuracy by case studies.

5.1 Dataset and Setting

We use Twitter APIs and Instagram APIs to crawl geo-tagged posts in New
York City. Each crawled Instagram post (shortened as photo) is associated with
an image, a text, a pair of coordinates, created time and other information. Each
crawled tweet is associated with a non-empty text, a pair of coordinates, created
time and other information. From 2012-12 to 2014-06, we collected 12, 453, 448
geo-tagged tweets and 31, 188, 195 geo-tagged photos.

Event Classification Annotation. We use crowdsourcing to accomplish this
labeling task: given an event signal e = (le, te) and its associated posts, it is
labeled based on whether there is a true event during time period te within
location le. We first used Amazon Mechanical Turk to label the discovered event
signals and then invited three journalists from a local newsroom in New York
city to calibrate the labeling to guarantee our dataset is as correct as possible.
We sampled 1945 events signals with associated posts to label. As a result, we get
1084 events signals with valid and confident labeling. Among them, 477 events
signals are labeled as true events while the other 607 are labeled as false events
(noise).
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ImageRelevanceAnnotation.Toevaluate our proposed relevant photo retriev-
ing method, we randomly select 153 true events which contain at least 8 photos2.
For each event,we label all its photos (if thenumberof photos inanevent exceeds 35,
we sample 35 photos).We tried to use a third-party crowdsourcing to label, but find
out their correctness is largely belowour expectation.Thereforewe trained an inde-
pendent user, and ask the user to label whether a photo is relevant to a given event
based on these criteria, 1 for relevant, 0.5 for partially relevant and 0 for irrelevant.
For example, we consider self-portraits and food as irrelevant. We also give the user
the location and time information and topics of the event to facilitate labeling. On
average, an event has 24.7 photos, and 39.4% of its photos are labeled as relevant,
5.8% are partially relevant and the rest, i.e. 54.8% are irrelevant.

Parameter Setting. To monitor the entire New York City, we divide NYC into
25 ∗ 25 sub-regions (0.45 square kilometers for each geo-region). We also turned
the window size t in Gaussian Process Regressor to be 15 minutes. A reasonably
long time interval will lead to large detecting latency while a tiny interval will
cause the decrease of the detection accuracy since there may be very few posts
during a tiny time interval. The experiments on the choice of these parameters
are in our previous work [35].

5.2 Detection Accuracy

In this section, we evaluate the performance of Event Signal Classification. Before
extract text-related features, we preprocess posts’ text by NLTK [6]. We remove
stopwords, non-English characters and urls. We also separate capitalized and
concatenated words, such as from “ILoveThisGame” to “I”, “love”, “this” and
“game”. Then we use 10-fold cross-validation to evaluate the effectiveness of
feature extraction and fusion with standard classifiers. To avoid the variance
caused by different classifiers, we run all the experiments with three popular and
representative supervised classifiers, Support Vector Machine (SVM), Logistic
Regression (LR) and Random Forest (RF).

We show the evaluation (on test data) to the event signal classifiers with
different settings in Table 1. In the setting of the Instagram-only method, we
discard all Twitter posts. We only extract features from Instagram posts and
train all the three classifiers with Instagram data. Then we discard all Instagram
posts but extract features and train the classifiers from Twitter data only, as the
Twitter-only method. From Table 1, we can find that if we just use a single data
source to classify the candidate events, Instagram data outperforms Twitter
data. Furthermore, we evaluate the event classifiers on integrated data with
two fusion methods. We find that the classifiers trained with the two fusion
methods, no matter in data-level or feature-level, both outperform the classifiers
trained on a single data source. We investigate results in detail and conclude this
2 In some special cases, we find there is more than one true event simultaneously recorded

inacandidate event signal.Weconsider themas true eventsbutdonot label theirphotos
to avoid ambiguity.
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Table 1. Event Signal Classification Results

Features Classifier Precision Recall F score Overall Accuracy

Instagram-only
SVM 0.833 0.740 0.784 82.01%
LR 0.855 0.719 0.781 82.28%
RF 0.793 0.780 0.786 81.36%

Twitter-only
SVM 0.845 0.675 0.751 80.25%
LR 0.815 0.681 0.742 79.15%
RF 0.761 0.719 0.739 77.67%

Data-level Fusion
SVM 0.876 0.755 0.811 84.50%
LR 0.866 0.759 0.809 84.22%
RF 0.830 0.849 0.839 85.70%

Feature-level Fusion
SVM 0.883 0.746 0.809 84.50%
LR 0.856 0.774 0.813 84.31%
RF 0.835 0.836 0.836 85.51%

improvement is caused by the following reasons. First, although we have plenty of
geo-tagged posts, in certain sub-regions, we still encounter severe data sparsity
problem. Either fusion method brings us more valuable data to mitigate this
problem. Second, small-scale events whose weak signals are easily overwhelmed in
noisy content. But when we find the weak signals in both data sources, our system
are more confident to detect them. Due to the limited length, the evaluation of
feature importance is not included. In short, by investigating the weights in
Logistic Regression, topic and spatial features are far more discriminative than
the emotional and social features.

5.3 Relevant Photo Retrieval

To evaluate the efficiency of the relevant photo retreiving method in Eq (1), we
use Normalized Discounted Cumulative Gain (NDCG@k) in Eq (4) as the metric.
For each event, we rank its photos decreasingly by overall relevance scores in Eq
(1), and then compute NDCG@k for the ranking.

NDCGk =
1
zn

k∑

i=1

2ri − 1
log2(i + 1)

(4)

zn is a normalization factor. ri is the actual relevance score of the ranked
i-th photo, and it is given by our labeler, 1, 0.5 or 0. k is a free parameter to
control the number of ranked photos to compute NDCG@k. To reduce the vari-
ance caused by k, we compute the NDCG@k for k from 1 to 10. We compare
the combined relevance model in Eq (1) with three baselines, image content rel-
evance model, text relevance model and geolocation relevance model introduced
in Section 4.3. As shown in Table 2, we have the following observations. First,
among all the three baselines, the relevance model based on text information
works the best. Second, the combination of all the three single relevance models
constantly performance better than any of the three single relevance models.
Third, by grid search, we empirically find that around (ac, at, al) = (14 , 1

2 , 1
4 ),
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Table 2. NDCG@k of Relevance Models over k

Relevance Model
NDCG@k

k=1 2 3 4 5 6 7 8 9 10

Image Content 0.517 0.505 0.495 0.486 0.476 0.465 0.459 0.451 0.445 0.439

Text 0.516 0.547 0.558 0.563 0.572 0.568 0.565 0.562 0.556 0.548

Geolocation 0.334 0.342 0.355 0.366 0.383 0.393 0.402 0.404 0.406 0.405

Combined 0.652 0.656 0.642 0.639 0.629 0.622 0.612 0.598 0.593 0.582

the combined relevance score reaches the maximal on our labeled dataset. This
implies the importance of each factor’s contribution to the overall relevance.

5.4 Spatial and Temporal Deviation

In this paper we focus on local event detection in real time, thus we also evaluate
the detecting deviation of spatial and temporal factors of events. The detecting
deviation of the spatial factor of an event is the geographical distance between the
coordinates where the event actually occurred and the coordinates our framework
estimated for the event. Similarly, the detecting deviation of the temporal factor
of an event is the time period between when the event actually occurred and
the time our framework estimated for the event. However, since it is expensive
to manually collect accurate spatial and temporal information of an event, we
choose 20 events to evaluate their spatial deviation, and 5 events to evaluate
their temporal deviation as case study.

We first evaluate spatial deviation of detected events. Many events are held
dynamically in a wide region, e.g. New Year parade in China town and marathon,
thus we are unable to track all the areas associated with that event. Therefore
we only consider events that take place in a fixed area, such as fire accident
and basketball games. For each event, we find the name of the associated place,
and then take the coordinates of the associated place from Google Maps as the
actual event coordinates, in a pair of longitude and latitude. On the other hand,
our system calculates the geographic center of of all Instagram and Twitter
posts related to that event, as the estimated coordinates of the event. More
specifically, the estimated longitude is the arithmetic mean of the longitudes
of all related posts, the same for estimated latitude. Then a spatial deviation,
i.e. spherical distance, is calculated between the estimated coordinates and the
actual coordinates of an event. On average the estimated coordinates of these
20 events are 104.46 meters far from their actual coordinates with a standard
deviation of 37.75. Table 3 shows the results for 5 example events.

Similarly, here we evaluate the temporal deviation of detected events. To
acquire the exact knowledge of when events occurred, we manually check with
websites, the police or news reports for their actual occurrence time. Meanwhile,
we take the time of the earliest post among all posts related to that event as the
estimated time. We report the time interval between actual time and estimated
time of an event as its temporal deviation. Table 4 shows the results of 5 detected
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Table 3. Spatial Deviation of Detected Events

Event Name Actual Location (lat, lon) Deviation(m)

NBA Knicks Game 40.750733, -73.992743 63.1

Trey Songz Concert 40.751222, -73.994749 109.7

Christmas Eve 40.758250, 73.981217 173.1

Fire Accident 40.750369, 73.992726 106.2

Car Crash 40.739061, -74.001488 78.1

Table 4. Temporal Deviation of Detected Events
Event Name Date Estimated Time Actual Time Time Interval

NBA Knicks game Nov 30 2012 19:11pm 19:30pm 19 mins in advance

Boxing Cotto vs Trout Dec 01 2012 20:07pm 21:00pm 53 mins in advance

Fire in West Village Nov 17, 2013 10:40am 10:26am 14 mins later

Fire in 34st Mar 27, 2014 08:44am 08:35am 9 mins later

Car Crash Feb 12 2014 08:26am 05:45am 3 hours later

events as examples. We can find that “NBA Knick Game” and “Boxing: Cotto
vs Trout”, which are two planned events, are detected prior to the actual event
time. This is because as more people arrived to the stadium in advance and
started to post about the coming events, our system detected the local unusual
increasing trends before the game actually started. For “Fire in West Village”,
“Fire in 34 St”, which are two emergencies, our event responded 14 minutes and 9
minutes after the events happened respectively. Notice that for the “Car Crash”
event, our system responded 3 hours later. This failure is probably because it
happened at 5:45AM, when most of local residents were still sleeping. In this
case, few related posts can be detected at the early stage of this event.

6 Conclusion and Future Work

In this paper, we proposed a general framework for real-time event detection from
Instagram and Twitter post streams. Our proposed system uses three compo-
nents to discover and classify the events. Then we can extract high-level knowl-
edge from detected events. Extensive experiments on NYC social media data
show the promising results. Based on our general framework, a lot of future
work can be investigated to potentially boost the performance. For example, we
plan to further study how to adaptivity divide sub-regions in the city based on
their topic distributions [10]. Also, more sophisticated feature fusion approaches
for event knowledge extraction can be investigated.
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Abstract. Social networks develop rapidly and often contain heteroge-
neous information. When users join a new social network, recommenda-
tion affects their first impressions on this social network. Therefore link
prediction for new users is significant. However, due to the lack of suffi-
cient active data of new users in the new social network (target network),
link prediction often encounters the cold start problem. In this paper,
we attempt to solve the user-user link prediction problem for new users
by utilizing data in a similar social network (source network). In order
to bridge the two networks, three categories of local features related to
single edge and one category of global features associated with multiple
edges are selected. The Aligned Factor Graph (AFG) model is proposed
for prediction, and Aligned Structure Algorithm is used to reduce the fac-
tor graph scale and keep the prediction performance at the same time.
Experiments on two real social networks, i.e., Twitter and Foursquare
show that AFG model works well when users leave little data in target
network.

Keywords: Link prediction · Heterogeneous network · Aligned factor
graph model

1 Introduction

In recent years, Social networks have become part of our life. When users join
a new social network, their first impressions are very important to keep them
active in this network. Thus how to predict future links for new users according
to the current snapshot of the network is significant.

Link prediction can be seen as a classification problem. A classifier trained with
simple topology features such as the number of common neighbors and the
Adamic/Adarmeasure can successfully identifymissing links in social networks [1].
Weak ties and interaction activities can also be useful for inference [2,3].
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Actually, nodes in a social network often have abundant attributes such as
time and location [4]. In addition, geographic distance has been shown to play an
important role in creating new social connections [5]. In [6,7], network structure
and node attributes are used simultaneously to improve prediction performance.

Many of the current studies mainly focus on a single social network. However,
sometimes data in one network is not sufficient to train a good classifier. In
particular, when users join a new network (target network), link prediction will
encounter the cold start problem [8]. But if we can use data from another network
(source network), the prediction performance should be better intuitively. In
general, there are two ways to utilize the source network to help prediction,
one is based on transfer learning through different feature spaces and the other
is based on the factor graph. In the transfer learning method, items having
both features in source space and target space are utilized [9]. The factor graph
method uses the phenomenon that different social networks obey common rules
such as triad social balance and triad status balance [10,11].

The works [9–11] focus on information transfer between two different types of
networks. A widespread phenomenon is that some social networks are similar to
each other except for some specific services. Users often have accounts in multiple
social networks to enjoy distinctive services. Networks connected by accounts
of same users are aligned networks. Link prediction for new users in aligned
networks is first discussed in [12]. Though rich features are used for training, the
important fact that user-user relationships affect each other is ignored.

In this paper, we study the link prediction problem for new users in target
network from a new perspective. And the aligned source network is utilized to
solve the cold start problem. Our method can get good prediction performance
estimated by Area Under Curve (Auc) and Accuracy (Acc). The contributions
can be summarized as follows:

- Three categories of local features and one category of global features are
selected, which describe the social networks accurately and reflect the edges
interaction. These features play an important role in improving prediction
performance.

- An Aligned Factor Graph (AFG) model is proposed to solve the link pre-
diction problem for new users in target network, making full use of a similar
source network. It performs well when we encounter the cold start situation.
In addition, in order to control the scale of the factor graph and guarantee
an efficient inference, Aligned Sturcture Algorithm is used in building model.

- Experiments on two real social networks - Twitter and Foursquare are carried
out and results show that AFG model improves prediction performance by
utilizing source network data when compared with the Basic Factor Graph
(BFG) model. And AFG model performs better than SCAN-PS model [12].

This paper is organized as follows: Section 2 gives basic definitions and related
works in link prediction.Meanwhile,BFG model is introduced. Section 3 is our pre-
diction method. Aligned Factor Graph (AFG) model is proposed and the Aligned
Structure Algorithm is demonstrated. Besides, the parameter learning algorithm
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and feature selection are discussed. Section 4 includes some experimental results
and analysis. Section 5 is the conclusion.

2 Preliminaries and Related Works

Definition 1. (Aligned Heterogeneous Networks [12]): Let V k
i be the set of the

same kind of nodes in network Gk, Vk = ∪iV
k
i is the set of different kinds of

nodes. Ek = ∪iE
k
i is the set of different kinds of edges. Let f be a one-to-one

mapping between user us
i ∈ Us ⊆ Vs in the source network and user ut

j ∈ Ut ⊆ Vt

in the target network, if ∃(F = ∪i,jf(us
i , u

t
j)) �= ∅, then network Gs = (Vs, Es),

Gt = (Vt, Et) are called aligned heterogeneous networks. The link (us
i , u

t
j) is

called an anchor link and all these links form the set of anchor links EA.

Definition 2. (Edge Descriptor): An edge eij can be described as dij = (lij , pij),
where lij is the edge label belonging to {0, 1}, pij is the probability that eij having
this label. lij = 0 means the edge does not exist.

Definition 3. (Triad Social Balance [14]): Undirected edges between three users
form a triad. It is social balanced if three or one edge exists.

Definition 4. (Triad Status Balance [15]): Directed edges between three users
form a triad. It is status balanced if three edges are not in a directed cycle.

There are many works which use source network to help prediction in the
target network. In [16], relationship prediction is studied under space feature
transfer learning framework and inter-domain edges are enhanced by discover-
ing new edges and strengthening existing ones. In [17,18], domain connection
sparsity and data non-consistent problem are studied .

The prediction method based on factor graph concern triad features transfer
between two different networks [10] and the BFG model [11] is used. Friend
recommendation problem is solved by limiting friend candidates in two hops to
keep factor graph in bearable scale [11]. And parameters of triad features are
the same in source and target networks during training.

A factor graph [19] is defined as a bipartite graph containing variable nodes
and factor nodes. In the BFG model, the user-user relationship eij between user
ui and uj is mapped to a variable node vij in the factor graph, while variable
nodes connecting to the same factor node reflect the interactive influence between
relationships’ formation. A simple explanation for BFG model is shown in Fig. 1.

3 Social Network Prediction

We try to solve the link prediction problem for new users in target network by
utilizing data of aligned heterogeneous source network. Firstly, we extend the
BFG model to the Aligned Factor Graph (AFG) model. Besides, the Aligned
Structure Algorithm is used for controlling factor graph scale when building
the model. Secondly, the parameter inference framework is proposed. Thirdly,
a detailed parameter learning algorithm is studied. Fourthly, new user links are
inferred by maximizing an objective function. At last, both local and global
features used in prediction are given.
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Fig. 1. BFG model. The first layer is observations, and the second layer is a factor
graph. Each observation corresponds to a variable node. Black edge in the first layer
means friend relationship exists between two users and the corresponding variable
nodes’s state is 1. Yellow edge indicates no friendship and variable node state is 0. Red
edge represents unobserved relationship and variable node’s state is ?, i.e., unknown.

3.1 The Aligned Factor Graph Model

The AFG model is also a two layer model. The first layer is composed of two
observations deriving from source network Gs and target network Gt. The second
layer is a factor graph containing two aligned parts FG = {FGs ∪FGt}. A more
intuitive description of AFG model is shown in Fig. 2. The two networks in
the first layer are fully aligned networks. Relationships between each pair of
users are taken into consideration. Thus we can also find one-to-one mappings
between variable nodes in FGs and FGt. Moreover, if variable node vt

j ’s state
is unknown in FGt, the structure of vt

j must be the same with the structure of
the corresponding variable node vs

i in FGs. Local features belonging to variable
nodes in the second layer can be got according to the corresponding edges’
attributes in the first layer. Global features belonging to factor nodes are drawn
from the edge cycles in the first layer, determining the factor graph structure.

Building AFG model efficiently is important for prediction. Firstly, the first
layer observations can be got easily given Gs and Gt. Secondly, states of all
variable nodes in the second layer are determined according to the observa-
tions. state = 1 and state = 0 variable nodes are state-known variable nodes
while state =? variable nodes belong to the state-unknown set. Thirdly, for
combinations of state-known variable nodes satisfying global features defined in
section 3.5, we build a factor node and connect it with the variable nodes in this
combination. Fourthly, take the state-unknown variable nodes into considera-
tion. If we build a factor node for each combination of variable nodes, the factor
graph scale will be too large and the complexity will be too high. However, if we
build a factor node and connect it with variable nodes randomly, the prediction
performance will decrease. In this paper, Algorithm 1 is used to determine the
accurate structures of state-unknown variable nodes.

3.2 Parameters Inference Framework

The first layer can be built given source network Gs = (Us, Es, As) and target
network Gt = (Ut, Et, At), where Us, Ut are the sets of users, Es, Et are the sets
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Fig. 2. AFG model. The second layer has an aligned structure. Edge color meanings
are the same as Fig. 1. Red variable node vt

45 is connected to the factor node ft2 to
keep aligned structure with FGs as purple lines show. However, vt

23,v
t
34,v

t
24 can have

different structures from FGs, shown in green lines, because their states are known.
vs
23,v

s
34,v

s
24 are not connected with a factor node in FGs.

of user-user relationships, As, At are the sets of local attribute vectors belonging
to edges. According to the observations in the first layer, a factor graph FG =
{FGs, FGt} = {Vs, Fs, EFs, Vt, Ft, EFt} in the second layer can be established,
where Vs, Vt are the sets of variable nodes, Fs, Ft are the sets of factor nodes
and EFs, EFt are the edge sets. In network Gt (so does Gs), each et

ij ∈ Et is
associated with an attribute vector at

ij ∈ At and is mapped to a variable node
vt

ij ∈ FGt. et
ij has an edge descriptor dt

ij = (ltij , p
t
ij) related to vij ’s state and

marginal probability. As all edge descriptors in Gs are known while only part of
edge descriptors in Gt are known, the link prediction problem can be described
as maximizing the following probability

P (Dt, Ds|Gs, Gt) =
∏

ij

fl(v
s
ij , a

s
ij)gc(v

s
ij , G(vs

ij))
∏

pq

fl(v
t
pq, a

t
pq)gc(v

t
pq, G(vt

pq)) (1)

where Gt is the target network, Gs is the source network. Dt and Ds are the
sets of edge descriptors in Gt, Gs.

The state of a variable node is affected by two features

- fl(vij , aij): local feature, it describes how local attributes influence the friend
relationship formation between user ui and uj .

- gc(vij , G(vij)): global feature, it describes how two or three edges interact
in forming the relationship. G(vij) is the set of variable nodes connecting to
the same factor node with vij .
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Algorithm 1. Aligned Structure Algorithm

Input: Source network Gs, Target network Gt

Output: FG = {FGs ∪ FGt}
1: for all Combinations of state-unknown variable nodes (vt

p, v
t
q) do

2: Find vt
p, v

t
q’s one-to-one mapping variable nodes vs

i , v
s
j in FGs;

3: if Combination (vs
i , v

s
j ) satisfies global features defined for two nodes then

4: Build a factor node f t
n and connect it with vt

p, v
t
q;

5: end if
6: end for
7: for all Combinations of state-unknown variable nodes (vt

p, v
t
q, v

t
r) do

8: Find vt
p, v

t
q, v

t
r’s one-to-one mapping variable nodes vs

i , v
s
j , v

s
k in FGs;

9: if Combination (vs
i , v

s
j , v

s
k) satisfies global features defined for three nodes

then
10: Build a factor node f t

n and connect it with vt
p, v

t
q, v

t
r;

11: end if
12: end for

The two kinds of features can be instantiated using the Markov Field or the
Bayesian Theory. In this paper, the Hammersley-Clifford Theorem [20] is used
and the two probabilities are defined as

fl(vij , aij) = 1
Z1

× exp{∑k αkrk(ak
ij)} (2)

gc(vij , G(vij)) = 1
Z2

× exp{∑c

∑
d βdhd(G(vij))} (3)

where Z1, Z2 are the normalization factors, k is the local attribute index, ak
ij

represents the kth attribute in attribute vector aij . G(vij) is the set of variable
nodes concerning vij and |G(vij)| = c. If three edges affect each other, then
c = 3. rk is the kth local feature function. For example, it can be a function
calculating common neighbor number. hd is the dth global feature function. For
instance, if a triad is social balanced, hd = 1. αk, βd are the weights of features.

Then the joint probability defined by Eq. (1) can be written as

P (Dt, Ds|Gs, Gt) =
1

Z
×
∏

ij

∏

pq

exp{
∑

k

αk(rk(akt
pq)+

rk(aks
ij )) +

∑

c

∑

d

βd{hd(G(vt
pq)) + hd(G(vs

ij))}}
(4)

where Z is normalization factor. Thus, the source and target networks union
objective function is

O(θ) = log P (Dt, Ds|Gs, Gt)

=
∑

k

αk{
|Ut

new|∑

p=1

|Ut
all|∑

q=1

(rk(akt
pq)) +

|Us
new|∑

m=1

|Us
all|∑

n=1

(rk(aks
mn))}

+
∑

c

∑

d

βd{
|Ut

new|∑

p=1

|Ut
all|∑

q=1

hd(G(vt
pq)) +

|Us
new|∑

m=1

|Us
all|∑

n=1

hd(G(vs
mn))} − log Z

(5)
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Algorithm 2. Learning Algorithm
Input: Learning Rate η
Output: Model Parameters θ
1: repeat
2: Calculate Ep(Dtu|Ds,Dtl,Gs,Gt)(rk(ast

n )), Ep(Dtu|Dtl,Ds,Gs,Gt)(hd(G(vst
m)))

using the LBP algorithm;
3: Calculate Ep(Ds,Dt|Gs,Gt)(rk(ast

n )), Ep(Dt,Ds|Gs,Gt)(hd(G(vst
m))) using the

LBP algorithm;
4: Calculate gradient according to Eqs. (6) and (7);
5: Update parameter set θ with learning rate
6: θnew = θold − η × ∂O(θ)

∂θ
7: until Converage
8: Output θ

where U t
new is the set of new users, U t

all is the set of all users in Gt (so does Gs).
We try to find parameter set θ = (α, β) that maximizing the objective function.

3.3 Learning Algorithm

In order to solve the objective function, the gradient decent algorithm is used.
As Z is the normalization factor, all variable nodes’ likelihoods in the factor
graph need to be calculated including the state-unknown variable nodes. The
gradients of parameters are calculated as follows

∂O(θ)

∂αk
= Ep(Dtu|Dtl,Ds,Gs,Gt)(rk(ast

n )) − Ep(Ds,Dt|Gs,Gt)(rk(ast
n )) (6)

∂O(θ)

∂βd
= Ep(Dtu|Dtl,Ds,Gs,Gt){hd(G(vst

m))} − Ep(Dt,Ds|Gs,Gt){hd(G(vst
m))} (7)

where ast
n is local attribute vector associating with variable node vst

n in AFG
model’s second layer and vst

m is the mth variable node. Dtu is the set of unknown
descriptors and Dtl is the set of known descriptors. Ep(Dtu|Dtl,Ds,Gs,Gt)(rk(ast

n ))
is the expectation of the local function given all known descriptors of edges,
while Ep(Ds,Dt|Gs,Gt)(rk(ast

n )) is the expectation given the estimated model. As
the factor graph has different topology, it is hard to directly calculate the second
part. In this paper, we use Loopy Belief Propagation (LBP ) [21] to approximate
the gradients. With LBP , the marginal probilities of different states of variable
nodes can be calculated. After this, we sum over all nodes to obtain the gradient.
The detailed algorithm is shown in Algorithm 2.

3.4 New User Link Inference

Model parameters θ can be got through learning. Then new user link inference
problem is defined as finding the descriptors that maximizing the probability

O(Dtu) = P (Dtu|Dtl, Ds, Gs, Gt, θ) (8)
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where Dtu is the set of unknown edge descriptors, Dtl is the set of known edge
descriptors. The LBP algorithm is used to compute the marginal probability of
each variable node vst

i in factor graph. And we choose the state lst
i ∈ {0, 1} with

larger marginal probability pst
i = max {p(0|θ), p(1|θ)} as vst

i ’s state. The edge
descriptor correspinding to variable node vst

i is dst
i = (lst

i , pst
i ).

Time cost is also very important when applying the prediction framework.
If n users exist in social network, building AFG costs O(n3) time. Parameter
learning complexity is O(cnt), t is the number of iterations, c is a constant. Thus,
the whole prediction algorithm can be finished in polynomial time.

3.5 Feature Selection

Table 1 is a list of all local features. As the networks we study are heterogenous
and contain different types of data, three categories of local features can be
selected, namely topology feature, location feature and time feature. s stands
for source user and t stands for target user of an edge. FIt is the set of users
who follow user t and Ft is the set of users whom user t follows. Loct is location
vector of user t, each element is the user’s visited number of this location. Timt

is time vector of user t with length 24, corresponding to the 24 hours of a day.
Taking the interactive effects of edges into consideration, one category of

global features is drawn. We find that more than 90% triads in our data set are
triad social balanced and triad status balanced. According to this observation,
we choose the global features in Table 2.

Table 1. Local features

Category Feature Name Definition

Topology BoolOpinionLeader 0 or 1
InDegree |FIs|, |FIt|
OutDegree |Fs|, |Ft|
TotalDegree |FIs ∪ Fs|, |FIt ∪ Ft|
NumCommonNeighbor |(FIs ∪ Fs) ∩ (FIt ∪ Ft)|
NumTotalNeighbor |(FIs ∪ Fs) ∪ (FIt ∪ Ft)|
SimAdamic

∑
i∈(FIs∪Fs)∩(FIt∪Ft)

{1/log |FIi ∪ Fi|}
SimJaccard |(FIs ∪ Fs) ∩ (FIt ∪ Ft)|/|(FIs ∪ Fs) ∪ (FIt ∪ Ft)|

Location LocationDis (
∑

i(Locs,i − Loct,i)
2)1/2

LocationCosine (Locs · Loct)/(‖ Locs ‖ ·‖ Loct ‖)
LocationJaccard |Locs ∩ Loct|/|Locs ∪ Loct|

Time TimeDis (
∑

i(Tims,i − Timt,i)
2)1/2

TimeCosine (Tims · Timt)/(‖ Tims ‖ ·‖ Timt ‖)
TimeExtendJaccard (Tims · Timt)/(|Tims|2 + |Timt|2 − Tims · Timt)
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Table 2. Global features

Feature Name Definition

CommonSourceUser 0 or 1
CommonTargetUser 0 or 1
SocialBalance 0 or 1
SocialStatus 0 or 1

4 Experiment

4.1 Experiment Settings and Results

We use Twitter and Foursquare data sets and the same method as [12] to divide
data for 5-cross-validation. Firstly, we randomly choose 1000 users to form two
fully aligned networks. Secondly, 20% of users are chosen as new users. Thirdly,
all existing friend relationship edges related to new users are put into an existing
link set, equivalent number of non-existing friend relationship edges are put into
non-existing link set. Fourthly, both the existing link set and the non-existing
link set are divided into five parts. Fifthly, if the old users’ information is used,
just keep balance when expanding the two link sets. The ratio of new users’ data
used for training is defined as user novelty. Ratio 0.0 means brand-new users. All
relationships related to new users are sampled according to the setting novelty.

Table 3. Experiment settings and results

Target Source Model Baseline Auc ↑ Acc ↑
Group1 Twitter None BFG TRAD −3% 2%

Twitter Foursquare AFG SCAN-PS 10% 11%
Twitter Foursquare AFG BFG 36% 31%

Group2 Foursquare None BFG TRAD −15% −9%
Foursquare Twitter AFG SCAN-PS 7% 3%
Foursquare Twitter AFG BFG 32% 25%

Two groups of experiments are carried out in this paper. Traditional Link
Prediction (TRAD) and Supervised Cross Aligned Networks Link Prediction
with Personalized Sampling (SCAN-PS) proposed in [12] are used as baseline
methods. SCAN-PS merges features extracted from the anchor link in source
network to expand the feature vector of corresponding link in target network to
train a classifier. Auc and Acc are the performance evaluation criteria. Detailed
comparative models and main results are shown in Table 3.

4.2 Performance Analysis

Fig. 3 is the results of first group experiments. Twitter is the target network,
Foursquare is the source network in this group experiments.
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Fig. 3. Source network: Foursquare, target network: Twitter. It shows how Auc and
Acc change with the user novelty. 1) In (a), BFG model has a higher Acc in average
while TRAD model performs well under Auc. 2) In (b), AFG model improves Auc
by about 10% and Acc by about 11% than SCAN-PS model. 3) AFG model in (b)
improves Auc by 36% and Acc by 31% in average compared with BFG model in (a).

- In Fig. 3(a), BFG model performs worse than TRAD model in Auc because
there are many state-unknown variable nodes in target network, the fac-
tor graph structure can not be decided accurately. Inaccurate factor graph
structure decreases BFG model performance, but it has no effect on TRAD
model, which only makes use of the local features. As Twitter is follow-follow
network, users having most fans play important role in network formation.
That is the reason why we get high Auc and Acc when user novelty is 0.0.

- In Fig. 3(b), AFG model performs better than SCAN-PS model both in Auc
and Acc. That is because source network information expands the train-
ing set and Aligned Sturcture Algorithm determines accurate factor graph
structure.

- AFG model uses Foursquare to help new user link prediction in Twitter
while BFG model only use Twitter data. Comparing AFG ’ performance in
Fig. 3(b) and BFG ’s performance in Fig. 3(a), we find that AFG model can
make full use of source network to improve the prediction performance.

Though target network and source network are similar, they also have own
characteristics. Foursquare provides location based service while Twitter pro-
vides Tweet service. In order to prove that AFG model is suitable to solve
new user link prediction problem in similar aligned networks regardless of their
positions, we use Foursquare as target network and Twitter as source network
in second group experiments. And the results of second group experiments are
shown in Fig. 4.

- In Fig. 4(a), BFG model performs worse than TRAD model, keeping the
same trend with Fig. 3(a) for the same reason.
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Fig. 4. Source network: Twitter, target network: Foursquare. It shows how Auc and
Acc change with the user novelty. 1) In (a), BFG model performs worse than TRAD
model. 2) In (b), AFG model performs better than SCAN-PS model when user novelty
is less than 0.5. 3) In (c), AFG model improves the Auc by 7% and Acc by 3% in
average than SCAN-PS model. 4) AFG model in (c) improves Auc by 32% and Acc
by 25% in average compared with BFG model in (a).

- In Fig. 4(b), the AFG model performance increases gradually before user
novelty reaches 0.5, then its performance decreases. That is because the
Twitter part in union training set contains noise. Only 6.5% users in Twitter
have location data [12]. We use the corresponding users’ location data in
Foursquare on condition that the user-location links are in the training set
of Foursquare part. The location data replacement causes noise, though the
training set is expanded.

- In Fig. 4(c), AFG model performs better than SCAN-PS model both in
Auc and Acc. Balance between training data amount and low data noise is
achieved by using different ratio of the source network data as user novelty
changes. This method improves the performance compared with curves in
Fig. 4(b) when user novelty exceeds 0.5.

5 Conclusion

The link prediction problem for new users is studied in this paper. Recommenda-
tions for new users have significant influence on their keeping active in this social
network. However, the cold start problem is often encountered. The AFG model
is proposed to utilize data from a similar source network to help prediction in
target network. Three categories of local features and one category of global fea-
tures are put forward for training. The Aligned Structure Algorithm is brought
up to reduce the scale of the factor graph and keep high prediction accuracy
when building the model. Experiments on Twitter and Foursquare show that
AFG model can make full use of source network data to improve prediction
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performance compared with BFG model, which can only use the target network
data. And AFG model performs better than SCAN-PS model. Auc is increased
by 10% and Acc is increased by 11% in average when Foursquare is source net-
work and Twitter is target network. On the other hand, 7% Auc and 3% Acc
improvements are achieved when swapping positions of the two networks.
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Abstract. Studies have shown that each person is more inclined to
enjoy a group activity when 1) she is interested in the activity, and
2) many friends with the same interest join it as well. Nevertheless,
even with the interest and social tightness information available in online
social networks, nowadays many social group activities still need to be
coordinated manually. In this paper, therefore, we first formulate a new
problem, named Participant Selection for Group Activity (PSGA), to
decide the group size and select proper participants so that the sum of
personal interests and social tightness of the participants in the group is
maximized, while the activity cost is also carefully examined. To solve
the problem, we design a new randomized algorithm, named Budget-
Aware Randomized Group Selection (BARGS), to optimally allocate
the computation budgets for effective selection of the group size and
participants, and we prove that BARGS can acquire the solution with
a guaranteed performance bound. The proposed algorithm was imple-
mented in Facebook, and experimental results demonstrate that social
groups generated by the proposed algorithm significantly outperform the
baseline solutions.

1 Introduction

Studies have shown that two important factors are usually involved in a per-
son’s decision to join a social group activity: (1) interest in the activity topic
or content, and (2) social tightness with other attendees [5,8]. For example, if a
person who appreciates jazz music has complimentary tickets for a jazz concert
in Rose Theatre, she is inclined to invite her friends or friends of friends who are
also jazzists. However, even the information on the two factors is now available
online, the attendees of most group activities still need to be selected manually,
and the process will be tedious and time-consuming, especially for a large social
activity, given the complicated social link structure and the diverse interests of
potential attendees.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-18038-0 4
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Recent studies have explored community detection, graph clustering and
graph partitioning to identify groups of nodes mostly based on the graph struc-
ture [1]. The quality of an obtained community is usually measured according
to its internal structure, together with its external connectivity to the rest of
the nodes in the graph [7] . Those approaches are not designed for activity plan-
ning because it does not consider the interests of individual users along with
the cost of holding an activity with different numbers of participants. An event
which attracts too few or too many attendees will result in unacceptable loss
for the planner. Therefore, it is important to incorporate the preference of each
potential participant, their social connectivity, and the activity cost during the
planning of an activity.

With this objective in mind, a new optimization problem is formulated,
named Participant Selection for Group Activity (PSGA). The problem is given
a cost function related to the group size and a social graph G, where each node
represents a potential attendee and is associated with an interest score that
describes the individual level of interest. Each edge has a social tightness score
corresponding to the mutual familiarity between the two persons. Since each
participant is more inclined to enjoy the activity when 1) she is interested in the
activity, and 2) many friends with the same interest join as well, the preference
of a node vi for the activity can be represented by the sum of its interest score
and social tightness scores of the edges connecting to other participants, while
the group preference is sum of the total interest scores of all participants and the
social tightness scores of the edges connecting to any two participants. More-
over, the group utility here is represented by the group preference subtracted
by the activity cost (ex. the expense in food and siting), which is usually cor-
related to the number of participants.1 The objective of PSGA is to determine
the best group size and select proper participants, so that the group utility is
maximized. In addition, the induced graph of the set F of selected participants
is desired to be a connected component, so that each attendee is possible to
become acquainted with another attendee according to a social path2.

One possible approach to solving PSGA is to examine every possible combi-
nation on every group size. However, this enumeration approach of group size k
requires the evaluation of Cn

k candidate groups, where n is the number of nodes
in G. Therefore, the number of group size and attendee combinations is O(2n),
and it thereby is not feasible in practical cases. Another approach is to incre-
mentally construct the group using a greedy algorithm that iteratively tries each
group size and sequentially chooses an attendee that leads to the largest incre-
ment in group utility at each iteration. However, greedy algorithms are inclined
to be trapped in local optimal solutions. To avoid being trapped in local optimal
1 Different weighted coefficients can be assigned to the group utility and activity cost

according to the corresponding scenario.
2 For some group activities, it is not necessary to ensure that F leads to a connected

subgraph, and those scenarios can be handled by adding a virtual node v connecting
to every other node in G, and choosing v in F for PSGA always creates a connected
subgraph in G ∪ {v}, but F may not be a connected subgraph in G.
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solutions, randomized algorithms have been proposed as a simple but effective
strategy to solve problems with large instances [12].

A simple randomized algorithm is to randomly choose multiple start nodes
initially. Each start node is considered as a partial solution, and a node neigh-
boring the partial solution is randomly chosen and added to the partial solution
at each iteration later. Nevertheless, this simple strategy has three disadvan-
tages. Firstly, a start node that has the potential to generate final solutions with
high group utility does not receive sufficient computational resources for ran-
domization in the following iterations. More specifically, each start node in the
randomized algorithm is expanded to only one final solution. Thus, a good start
node will usually fail to generate a solution with high group utility since it only
has one chance to randomly generate a final solution. The second disadvantage
is that the expansion of the partial solution does not differentiate the selection
of the neighboring nodes. Each neighboring node is treated equally and chosen
uniformly at random for each iteration. Even this issue can be partially resolved
by assigning the selection probability to each neighboring node according to its
interest score and the social tightness of incident edges, this assignment will lead
to the greedy selection of neighbors and thus tends to be trapped in local optimal
solutions as well. The third disadvantage is that the linear scanning of different
group sizes is not computationally tractable for real scenarios as an online social
network contains an enormous number of nodes.

Keeping the above observations in mind, we propose a randomized algorithm,
called Budget-Aware Randomized Group Selection (BARGS), to effectively select
the start nodes, expand the partial solutions, and estimate the suitable group
size. The computational budget represents the target number of random solu-
tions. Specifically, BARGS first selects a group size limit kmax in accordance
with the cost function3. Afterward, m start nodes are selected, and neighboring
nodes are properly added to expand the partial solution iteratively, until kmax

nodes are included, while the group size corresponding to the largest group util-
ity is acquired finally. Each start node in BARGS is expanded to multiple final
solutions according to the assigned budget. To properly invest the computa-
tional budgets, each stage of BARGS invests more budgets on the start nodes
and group sizes that are more inclined to generate good final solutions, according
to the sampled results from the previous stages. Moreover, the node selection
probability is adaptively assigned in each stage by exploiting the cross entropy
method. In this paper, we show that our allocation of computation budgets is
the optimal strategy, and prove that the solution acquired by BARGS has a
guaranteed performance bound.

The rest of this paper is organized as follows. Section 2 formulates PSGA and
surveys related works. Sections 3 explains BARGS and derives the performance
bound. User study and experimental results are presented in Section 4, and we
conclude this paper in Section 5.
3 For instance, if the largest capacity of available stadiums for a football game is

20, 000, kmax is set as 20, 000.
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2 Preliminary

2.1 Problem Definition

Given a social network G = (V,E), where each vertex vi ∈ V and each edge
ei,j ∈ E are associated with an interest score ηi and a social tightness score τi,j

respectively, we study a new optimization problem for finding a set F of vertices
which maximizes the group utility U(F ), i.e.,

U(F ) =
∑

vi∈F

(ηi +
∑

vj∈F :ei,j∈E

πi,j) − βC(|F |), (1)

where F with |F | ≤ kmax is a connected subgraph in G to encourage each
attendee to be acquainted with another attendee with at least one social path in
F , C is a non-negative activity cost function based on the number of attendees,
and β is a weighted coefficient between the preference and cost. For each node
vi, let ηi +

∑
vj∈F :ei,j∈E πi,j denote the preference of node vi on the social

group activity4. PSGA is very challenging due to the tradeoff between interest,
social tightness, and the cost function, while the constraint assuring that F is
connected also complicates this problem because it is no longer able to arbitrarily
choose any nodes from G. Indeed, we show that PSGA is NP-hard in [15].

2.2 Related Works

A recent line of study has been proposed to find cohesive subgroups in social
networks with different criteria, such as cliques, n-clubs, k-core, and k-plex.
Saŕıyüce et al. [14] proposed an efficient parallel algorithm to find a k-core sub-
graph, where every vertex is connected to at least k vertices in the subgraph.
Xiang et al. [16] proposed a branch-and-bound algorithm to acquire all maximal
cliques that cannot be pruned during the search tree optimization. Moreover,
finding the maximum k-plexes was comprehensively discussed in [11]. On the
other hand, community detection and graph clustering have been exploited to
identify the subgraphs with the desired structures [1]. The quality of a com-
munity is measured according to the structure inside the community and the
structure between the community and the rest of the nodes in the graph, such
as the density of local edges, deviance from a random null model, and conduc-
tance [7]. Nevertheless, the above models did not examine the interest score of
each user and the social tightness scores between users, which have been regarded
as crucial factors for social group activities. Moreover, the activity cost for the
group is not incorporated during the evaluation.

In addition to dense subgraphs, social groups with different characteristics have
been explored for varied practical applications. Expert team formation in social
4 Different weights λ and (1-λ) can be assigned to the interest scores and social tight-

ness such that U(F ) =
∑

vi∈F (λiηi+(1 − λi)
∑

vj∈F :ei,j∈E τi,j) − βC(|F |). λi can

be set directly by a user or according to the existing model [18]. The impacts of
different λ will be studied later in Section 4.
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networks has attracted extensive research interest. The problem of constructing
an expert team is to find a set of people possessing the required skills, while the
communication cost among the chosen friends is minimized to optimize the rap-
port among the team members to ensure efficient operation. Communication costs
can be represented by the graph diameter, the size of the minimum spanning tree,
and the total length of the shortest paths [9]. Finding influential event organizers
who can influence largest number of attendees to join the event is studied [6]. By
contrast, minimizing the total spatial distance with R-Tree from the group with
a given number of nodes to the rally point is also studied [17]. Nevertheless, this
paper focuses on a different scenario that aims at identifying a group with the most
suitable size according to the activity cost, while those selected participants also
share the common interest and high social tightness.

3 Algorithm Design for PSGA

To solve PSGA, a baseline approach is to incrementally constructing the solution
by sequentially choosing and adding a neighbor node that leads to the largest
increment in the group preference until kmax people are selected. Afterward,
we derive the group utility for each k by incorporating the activity cost, 1 ≤
k ≤ kmax, and extract the group size k∗ with the maximum group utility. The
theoretical analysis of greedy algorithm is presented in [15] due to the space
constraint.

The greedy algorithm, despite the simplicity, the search space of the greedy
algorithm is limited and thus tends to be trapped in a local optimal solution,
because only a single sequence of solutions is explored. To address the above
issues, this paper proposes a randomized algorithm BARGS to randomly choose
m start nodes5. BARGS leverages the notion of Optimal Computing Budget
Allocation (OCBA) [3] to systematically generate the solutions from each start
node, where the start nodes with more potential to generate the final solutions
with large group utility will be allocated with more budgets (i.e., expanded to
more final solutions). In addition, since each start nodes can generate the final
solutions with different group sizes, the size with larger group utility will be
associated with more budgets as well (i.e., generated more times). Specifically,
BARGS includes the following two phases.

1) Selection and Evaluation of Start Nodes and Group Sizes: This phase
first selects m start nodes according to the summation of the interest scores
and social tightness scores of incident edges. Each start node acts as a seed
to be expanded to a few final solutions. At each iteration, a partial solution,
which consists of only a start node at the first iteration or a connected set of
nodes at each iteration afterward, is expanded by randomly selecting a node
neighboring to the partial solution, until kmax nodes are included. The group
utility of each intermediate and final solution is evaluated to optimally allocate
different computational budgets to different start nodes and different group sizes
in the next phase.
5 The impact of m will be studied in Section 4.
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2) Allocation of Computational Budgets: This phase is divided into r stages6,
while each stage shares the same total computational budget. In the first stage,
the computational budget allocated to each start node is determined by the
sampled group utility in the first phase. In each stage afterward, the computa-
tional budget allocated to each start node is adjusted by the sampled results in
the previous stages. Note that each node can generate different numbers of final
solutions with different group sizes. The sizes with small group utility sampled
in the previous stages will be associated with smaller computational budgets in
the current stage. Therefore, if the activity cost is a convex cost function, the
cost increases more significantly as the group size grows, and BARGS tends to
allocate smaller computational budgets and thus generates fewer final solutions
with large group sizes.

During the expansion of the partial solutions, we differentiate the probability
to select each node neighboring to a partial solution. One intuitive way is to
associate each neighboring node with a different probability according to the
sum of the interest scores and social tightness scores on the incident edges.
Nevertheless, this assignment is similar to the greedy algorithm as it limits the
scope to only the local information, making it difficult to generate a final solution
with large group utility. By contrast, BARGS exploits the cross entropy method
[13] according to sampled results in the previous stages in order to optimally
assign a probability to the edge incident to a neighboring node.

Due to the space constraint, the detailed pseudocode is presented in [15]. In
the following, we first present how to optimally allocate the computational bud-
gets to different start nodes and different group sizes. Afterward, we exploit the
cross entropy method to differentiate the neighbor selection during the expan-
sion of the partial solutions. The performance bound and illustrative example of
the proposed algorithm are provided in the full version [15].

Allocation of Computational Budgets. Similar to the baseline greedy algo-
rithm, allocating more computational budgets to a start node vi with larger
group preference (i.e.,

∑
vi∈F (ηi +

∑
vj∈F :ei,j∈E πi,j)) examines only the local

information and thus is difficult to generate the solution with large group util-
ity. Therefore, to optimally allocate the computational budgets for each start
node and each group size, we first define the solution quality as follows.

Definition 1. The solution quality, denoted by Q, is defined as the maximum
group utility of the solution generated from the m start nodes among all sizes.

For each stage t of phase 2 in BARGS, let Ni,k,t denote the computational
budgets allocated to the start node vi with size k in the t-th stage. In the
following, we first derive the optimal ratio of the computational budgets allocated
to any two start nodes vi and vj with group size k and l, respectively. Let two
random variables Qi,k and Q∗

i,k denote the sampled group utility of any solution

6 The detailed settings of the parameters of the algorithm, such as m, r, α, and β are
presented in [15].



Scale-Adaptive Group Optimization for Social Activity Planning 51

and the maximal sampled group utility of a solution for start node vi with size k,
respectively. If the activity cost is not considered, according to the central limit
theorem, Qi,k follows the normal distribution when Ni.k is large, and it can be
approximated by the uniform distribution in [ci,k, di,k] as analyzed in OCBA [3],
where ci,k and di,k denote the minimum and maximum sampled group utility in
the previous stages, respectively. On the other hand, when the activity cost is
considered, the cumulative distribution function is shifted by C(k), and it still
follows the same distribution. Therefore, we have the following lemma.

Lemma 1. Assume that dj,l ≥ ci,k, the probability that the solution generated
from the start node vi with size k is better than the solution generated from the
start node vj with size l, i.e., P (Q∗

i,k ≤ Q∗
j,l), is at least 1

2 ( dj,l−ci,k
di,k−ci,k

)Ni,k .

Proof. Due to the space constraint, the detailed proof is presented in [15].

Let vb and k∗
b denote the best start node and best activity size for vb, respec-

tively. The ratio between Ni,k,t and Nj,l,t equals P (Q∗
i,k ≥ Q∗

b,k∗
b
) : P (Q∗

j,l ≥
Q∗

b,k∗
b
), which is optimal as shown in OCBA [3]. However, the computational

costs for different group sizes are not the same, e.g., the computational cost of
the total group utility for size 1 is much smaller than the computational cost
for size 100. Since the computational complexity of adding a node to a partial
solution of size k − 1 is O(k), we derive the ratio of the computational budgets
between Ni,k,t and Nj,l,t as follows.

Ni,k,t

Nj,l,t
=

1
k · P (Q∗

i,k ≥ Q∗
b,k∗

b
)

1
l · P (Q∗

j,l ≥ Q∗
b,k∗

b
)
. (2)

Note that if the allocated computational budgets for a start node is 0 in the
t-th stage, we prune off the start node in the any stage afterward. Moreover,
when we generate a solution with group size k, the solutions from size 1 to size
k−1 are also generated as well. Therefore, to avoid generating an excess number
the solutions with small group sizes, it is necessary to relocate the computation
budgets. Let N̂i,k,t denote the reallocated budget of start node vi with size k in
the t-th stage. BARGS derives Ni,k,t as follows.

N̂i,k,t = max(0, Ni,k,t −
∑

l>k

N̂i,l,t). (3)

Specifically, after deriving Ni,k,t with Eq. 2, BARGS derives N̂i,k,t from k = kmax

to 1. Initially, N̂i,kmax,t = Ni,kmax,t. Afterward, for k = kmax −1, if Ni,kmax−1,t is
equal to Ni,kmax,t, it is not necessary to generate additional solutions with size
kmax−1 since they have been created during the generation of the solutions with
size kmax. In this case, N̂i,kmax−1,t is 0. Otherwise, BARGS sets N̂i,kmax−1,t =
Ni,kmax−1,t −N̂i,,kmax,t. The above process repeats until k = 1. Since the number
of solutions with size k is still Ni,k,t, the computational budget allocation is still
optimal as shown in Eq. 2.
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NeighboringNodeDifferentiation. To effectively differentiate neighbor selec-
tion, BARGS exploits the cross entropy method [13] to achieve importance sam-
pling by adaptively assigning a different probability to each neighboring node from
the sampled results in previous stages.

Definition 2. ABernoulli sample vector, denoted asXi,k,q = 〈xi,k,q,1, ..., xi,k,q,j ,
..., xi,k,q,n〉, is defined to be the q-th sample vector from start node vi, where xi,k,q,j

is 1 if node vj is selected in the q-th sample and 0 otherwise.

Take start node vi with size k as an example, after collecting Ni,k,1 samples
Xi,k,1,Xi,k,2, ..., Xi,k,q, ..., Xi,k,Ni,k,1 generated from start node vi, BARGS cal-
culates the total group utility U(Xi,k,q) for each sample and sorts them in the
descending order, U(1) ≥ ... ≥ U(Ni,k,1). Let γi,k,1 denotes the group utility of the
top-ρ performance sample, i.e. γi,k,1 = U(�ρNi,k,1�) . With those sampled results,
we set the selection probability pi,k,t+1,j of every node vj in iteration t + 1 for
the partial solution expanded from node vi by fitting the distribution of top-ρ
performance samples as follows.

pi,k,t+1,j =

∑Ni,k,t

q=1 I{U(Xi,k,q)≥γi,k,t}xi,k,q,j
∑Ni,k,t

q=1 I{U(Xi,k,q)≥γi,k,t}
, (4)

where I{U(Xi,k,q)≥γi,k,t} is 1 if the group utility of sample Xi,k,q is no smaller
than a threshold γi,k,t ∈ R, and 0 otherwise. Intuitively, the neighbor that tends
to generate a better solution will be assigned a higher selection probability. As
shown in [13], the above probability assignment scheme has been proved to be
optimal from the perspective of cross entropy. Eq. 4 minimizes the Kullback-
Leibler cross entropy (KL) distance between node selection probability and the
distribution of top-ρ performance samples, such that the performance of random
samples in the (t + 1)-th stage is guaranteed to be closest to the top- ρ perfor-
mance samples in the t-th stage. Due to the space constraint, the illustrative
example and theoretical results are provided in the full version [15].

Time Complexity of BARGS. The time complexity of BARGS contains two
parts. The first phase selects m start nodes with O(E +n+ m log n) time, where
O(E) is to sum up the interest and social tightness scores, O(n + m log n) is to
build a heap and extract m nodes with the largest sum. Afterward, the second
phase of BARGS includes r stages, and each stage allocates the computational
resources with O(m) time and generates O(T

r ) new partial solutions with at most
kmax nodes for all start nodes. Therefore, the time complexity of the second
phase is O

(
r(m + T

r kmax)
)

= O(kmaxT ), and BARGS therefore needs O(E +
m log n + kmaxT ).

4 Experimental Results

We implement BARGS in Facebook and invite 50 people from various commu-
nities, e.g., schools, government, technology companies, and businesses to join
our user study. We compare the solution quality and running time of manual
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coordination and BARGS for answering PSGA problems, to evaluate the need of
an automatic group recommendation service. Each user is asked to plan 5 social
activities with the social graphs extracted from their social networks in Face-
book. The interest scores follow the power-law distribution with the exponent
as 2.5 according to the recent analysis [4] on real datasets. The social tightness
score between two friends is derived according to the number of common friends,
which represents the proximity interaction [2], and the probability of negative
weights [10]. Then, the weighted coefficient λ on social tightness scores and inter-
est scores and the weighted coefficient β on group preference and activity cost in
Footnote 4 are set as the average value specified by the 50 people, i.e., λ = 0.527
and β = 0.514. Most importantly, after the scores are returned by the above
renowned models, each user is allowed to fine-tune the two scores by themselves.
In addition to the user study, two real datasets are evaluated in the experiment.
The first dataset is crawled from Facebook with 90, 269 users in the New Orleans
network7. The second dataset is crawled from DBLP dataset with 511, 163 nodes
and 1, 871, 070 edges.

In this paper, the activity cost is modelled by a piecewise linear function,
which can approximate any non-decreasing functions. We set the activity cost
according to the auditorium cost and other related cost in Duke Energy Center8.

C(k) =

⎧
⎪⎨

⎪⎩

400 − k if 0 ≤ k ≤ 100.

850 − k if 100 < k ≤ 600.

2200 − k if 600 < k ≤ 1750.

We compare deterministic greedy (DGreedy), randomized greedy (RGreedy),
and BARGS in an HP DL580 server with four Intel E7-4870 2.4 GHz CPUs and
128 GB RAM. RGreedy first chooses the same m start nodes as BARGS. At each
iteration, RGreedy calculates the preference increment of adding a neighboring
node vj to the intermediate solution VS obtained so far for each neighboring
node, and sums them up as the total preference increment. Afterward, RGreedy
sets the node selection probability of each neighbor as the ratio of the corre-
sponding preference increment to the total preference increment, similar to the
concept in the greedy algorithm. Notice that the computation budgets represent
the number of generated solutions. With more computation budgets, RGreedy
generates more solutions of group size kmax, examines the group utility by sub-
tracting the activity cost from group size 1 to kmax, and selects the group with
maximum group utility. It is worth noting that RGreedy is computationally
intensive and not scalable to support a large group size because it is necessary
to sum up the interest scores and social tightness scores during the selection of
a node neighboring to each partial solution. Therefore, we can only present the
results of RGreedy with small group sizes. Due to the space constraint, detailed
experimental results of the DBLP dataset are presented in [15].

7 http://socialnetworks.mpi-sws.org/data-wosn2009.html
8 http://www.dukeenergycenterraleigh.com/uploads/venues/rental/5-rateschedule.

pdf

http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://www.dukeenergycenterraleigh.com/uploads/venues/rental/5-rateschedule.pdf
http://www.dukeenergycenterraleigh.com/uploads/venues/rental/5-rateschedule.pdf
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(a) (b) (c)

Fig. 1. Results of user study

The default m in the experiment is set as n/kmax since n/kmax groups can
be acquired from a network with n nodes if each group has kmax participants.
The default cross-entropy parameters ρ and α are set as 0.3 and 0.99 as rec-
ommended by the cross-entropy method [13]. Since BARGS natively supports
parallelization, we also implemented them with OpenMP for parallelization, to
demonstrate the gain in parallelization with more CPU cores.

4.1 User Study

Figures 1(a)-(c) compare manual coordination and BARGS in the user study. In
addition, the optimal solution is also derived with the enumeration method since
the network size is very small. Figures 1(a) and (b) present the solution quality
and execution time with different network sizes. The result indicates that the
solutions obtained by BARGS are identical to the optimal solutions, but users
are not able to acquire the optimal solutions even when n = 5. As n increases,
the solution quality of manual coordination degrades rapidly. We also compare
the accuracy of selecting the optimal group size in Figure 1(c). As n increases,
it becomes more difficult for a user to correctly identify the optimal size, while
BARGS can always select the optimal one. Therefore, it is desirable to deploy
BARGS as an automatic group recommendation service, especially to address
the need of a large group in a massive social network nowadays.

4.2 Performance Comparison and Sensitivity Analysis

Figure 2(a) compares the execution time of DGreedy, RGreedy, and BARGS by
sampling different numbers of nodes from Facebook data. DGreedy is always the
fastest one since it is a deterministic algorithm and generates only one final solu-
tion, whereas RGreedy requires more than 105 seconds. The results of RGreedy
do not return in 2 days as n increases to 10000. To evaluate the performance of
BARGS with multi-threaded processing, Figure 2(b) shows that we can accel-
erate the processing speed to 7.2 times with 8 threads. The acceleration ratio is
slightly lower than 8 because OpenMP forbids different threads to write at the
same memory position at the same time. Therefore, it is expected that BARGS
with parallelization is promising to be deployed as a value-added cloud service.

In addition to the running time, Figure 2(c) compares the solution quality
of different approaches. The results indicate that BARGS outperforms DGreedy
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Fig. 2. Experimental results on Facebook and DBLP datasets

and RGreedy, especially under a large n. The group utility of BARGS is 45%
better than the one from DGreedy when n = 50000. On the other hand, RGreedy
outperforms DGreedy since it has a chance to jump out of the local optimal
solution.

Figures 2(d) and (e) compare the execution time and solution quality of two
randomized approaches under different total computational budgets, i.e., T . As
T increases, the solution quality of BARGS increases faster than that of RGreedy
because it can optimally allocate the computation resources. Even though the
solution quality of RGreedy is closer to BARGS in some cases, BARGS is much
faster than RGreedy by an order of 10−2.

Figures 2(f) and (g) present the execution time and solution quality of
RGreedy and BARGS with different numbers of start nodes, i.e., m. The results
show that the solution quality in Figure 2(g) is almost the same as m increases,
demonstrating that it is sufficient for m to be set as a value smaller than n

kmax

as recommended by OCBA [3]. The running time of BARGS for m = 2 is only
60% of the running time for m = 4 as shown in Figure 2(f), while the solution
quality remains almost the same.

BARGS is also evaluated on the DBLP dataset. Figures 2(h) and (i) show
that BARGS outperforms DGreedy by 50% and RGreedy by 26% in solution qual-
ity when n = 500000. BARGS is still faster than RGreedy by an order of 10−2.
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However,RGreedy runs faster on the DBLP dataset than on the Facebook dataset,
because the DBLP dataset is a sparser graph with an average node degree of 3.66.
Therefore, the number of candidate nodes to be chosen during the expansion of the
partial solution in the DBLP dataset increases much more slowly than in the Face-
book dataset with an average node degree of 26.1. Nevertheless, RGreedy is still
not able to generate a solution for a large network size n due to its unacceptable
efficiency.

5 Conclusion

To the best of our knowledge, there is no real system or existing work in the lit-
erature that addresses the issues of scale-adaptive group optimization for social
activity planning based on topic interest, social tightness, and activity cost. To
fill this research gap and satisfy an important practical need, this paper for-
mulated a new optimization problem called PSGA to derive a set of attendees
and maximize the group utility. We proved that PSGA is NP-hard and devised
a simple but effective randomized algorithms, namely BARGS, with a guaran-
teed performance bound. The user study demonstrated that the social groups
obtained through the proposed algorithm implemented in Facebook significantly
outperforms the manually configured solutions by users. This research result thus
holds much promise to be profitably adopted in social networking websites as a
value-added service.

Acknowledgments. This work is supported in part by NSF through grants CNS-
1115234, and OISE-1129076.
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Abstract. The influence maximization problem aims at finding a subset
of seed users who can maximize the spread of influence in online social
networks (OSNs). Existing works mostly focus on one single homogenous
network. However, in the real world, OSNs (1) are usually heterogeneous,
via which users can influence each others in multiple channels; and (2)
share common users, via whom information could propagate across net-
works.

In this paper, for the first time we study the influence maximization
problem in multiple partially aligned heterogenous OSNs. A new model,
multi-aligned multi-relational network influence maximizer (M&M), is
proposed to address this problem. M&M extracts multi-aligned multi-
relational networks (MMNs) from aligned heterogeneous OSNs based
on a set of inter and intra network social meta paths. Besides, M&M
extends traditional linear threshold (LT) model to depict the informa-
tion diffusion across MMNs. In addition, M&M, which selects seed users
greedily, is proved to achieve a (1 − 1

e
)-approximation of the optimal

solution. Extensive experiments conducted on two real-world partially
aligned heterogeneous OSNs demonstrate its effectiveness.

1 Introduction

Witnessing the rapid growth of online social networks, viral marketing (i.e.,
influence maximization) in social networks has attracted much attention of data
mining community in the last decade [5,7,10]. Traditional viral marketing prob-
lem aims at selecting the set of seed users to maximize the awareness of ideas
or products merely based on the social connections among users in one single
social network [3,8,11]. However, in the real world, social networks usually con-
tain heterogeneous information [18–20], e.g., various types of nodes and complex
links, via which users are extensively connected and have multiple channels to
influence each other [9].
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 58–69, 2015.
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(a) anchor users’ reposting (b) cross-network reposted activities

Fig. 1. Cross-network information propagation analysis

Meanwhile, as studied in [13,20], users nowadays are usually involved in
multiple social networks simultaneously to enjoy more social network services.
The shared users across multiple social networks are named as anchor users [13].
Anchor users exist widely in the real world. Via these anchor users, influence can
propagate not only within but also across social networks [16]. To support such a
claim, we investigate the partially aligned network dataset studied in this paper
(i.e., Twitter and Foursquare) and the results are given in Fig. 1. In Fig. 1(a), we
randomly sample a subset of anchor users from Foursquare and observe that 409
out of 500 (i.e., 81.8%) sampled users have reposted their activities (e.g., tips,
location checkins, etc.) to Twitter. Meanwhile, the activities reposted by these
409 anchor users only account for a small proportion of their total activities in
Foursquare, as shown in Fig. 1(b).

In this paper, we study the influence maximization problem across multi-
ple partially aligned heterogenous social networks simultaneously. This is for-
mally defined as the Aligned Heterogeneous network Influence maximization
(AHI) problem. The AHI problem studied in this paper is very important and
has extensive concrete applications in real-world social networks, e.g., cross-
community [1] even cross-platform [16] product promotion [17] and opinion dif-
fusion [2].

To help illustrate the AHI problem, we give an example in Fig. 2, where
Fig. 2-A shows the two partially aligned heterogeneous input networks. To con-
duct viral marketing in the input networks and solve the AHI problem, we first
extract multiple influence channels (i.e., multi-relations) among users with the
heterogeneous information (e.g., traditional follow links, retweet, location check-
ins, as well as anchor links, etc.) and then select the optimal seed user set based
on the constructed multi-relational network, as shown in Fig. 2-B.

The AHI problem is a novel problem and totally different from conventional
works on information diffusion and influence maximization, including:(1) tra-
ditional viral marketing problems in one single homogeneous social network
[6,12,17], like the Twitter network shown in Fig. 2-C; (2) topic diffusion in
heterogeneous information networks [9], which explores information diffusion in
one single multi-relational network (e.g., the Twitter network in Fig. 2-D); and
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(3) influence maximization in multiplex social networks [16], which studies infor-
mation maximization problem across multiple homogeneous social networks by
simply combining multiple networks into one single homogeneous network (e.g.,
the network shown in Fig. 2-E). In paticular, [16] assumes that the shared users
will propagate all the information reaching them to the other network, which is
unrealistic and severely violates our observation in Fig. 1(b). Different from all
these related works, in the AHI problem: (1) the social networks are heteroge-
neous [18]; (2) multiple social networks [20] are studied simultaneously, where
the different heterogeneous networks may have different structures or network
schema as shown in Fig. 3; and (3) social networks studied in this paper are
partially aligned by anchor links [20] instead of being simply merged together.

Addressing the AHI problem is very difficult due to the following challenges:

– Information Diffusion in Heterogeneous Networks: Users in heterogeneous
networks are extensively connected with each other by different types of links
and information can diffuse among users via different channels. Modeling
information diffusion in heterogeneous social networks is very challenging.

– Cross-Network Information Propagation: Via the anchor links, information
can propagate across networks. Modeling inter-network information diffusion
remains an open problem.

– NP-hard : The AHI problem is proved to be NP-hard, which cannot be solved
in polynomial time.

To address the above challenges, a new model Multi-aligned Multi-relational
network influence maximizer (M&M) is proposed in this paper. M&M first
extracts multi-aligned multi-relational networks with the heterogeneous infor-
mation across the input OSN based on a set of inter and intra network social
meta paths [18,20]. M&M extends the traditional Linear Threshold (LT) model
to depict the information propagation within and across these multi-aligned
multi-relational networks. Based on the extended diffusion model, the influence
function which maps seed user set to the number of activated users is proved to



Partially Aligned Heterogenous Social Networks 61

be both monotone and submodular. Thus the greedy algorithm used in M&M,
which selects seed users greedily at each step, is proved to achieve a (1 − 1

e )-
approximation of the optimal result.

The remaining parts of this paper are organized as follows. We formulate the
studied problem in Section 2. In Sections 3-4, we introduce the proposed M&M
method. Experiments are given in Section 5. Finally, we introduce the related
works in Section 6 and conclude the paper in Section 7.

2 Problem Formulation

In this paper, we will follow the definitions of concepts “anchor user”, “het-
erogeneous networks”, “aligned networks”, ect., proposed in [20]. Based on the
definitions of these terminologies, the AHI problem can be formulated as follows:

AHI: Given two partially aligned networks [20] G(1) and G(2) together with the
undirected anchor link set A [13] between G(1) and G(2), the user sets of G(1)

and G(2) can be represented as U (1) and U (2) respectively. Let σ(·) : Z → R,Z ⊂
U (1) ∪ U (2) be the influence function [12] which maps the seed user set Z to the
number of users influenced by users in Z. The AHI problem aims at selecting
the optimal set Z∗ which contains d seed users to maximize the propagation of
information across the networks, i.e., Z∗ = arg maxZ⊆U(1)∪U(2) σ(Z).

3 Proposed Model

In this section, we will introduce the method M&M in details. M&M can extract
multi-aligned multi-relation networks (MMNs) based on a set of inter and intra
network social meta paths. The traditional LT model is extended in M&M to
depict the information propagation across MMNs.

3.1 Multi-aligned Multi-relational Networks Extraction

We utilize the meta paths [18,20] defined based on the network schema to extract
multi-aligned multi-relational networks with the heterogeneous information in
aligned networks.

Definition 1. Network Schema: For the given network G, its network schema
can be defined as SG = (O,R) with O and R denoting the set of node types and
link types in G.

For the partially aligned input networks shown in Fig. 2-A. We note that
the network schemas of the two networks are different, so the heterogeneous
networks cannot be simply merged together as in the homogeneous case [16].
Based on the network schema, we can represent the diffusion channels as a set
of intra and inter network social meta paths that are defined as follows.
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Definition 2. Intra-network SocialMeta Path: An intra-network social meta
path P, based on the given network schema SG = (O,R), is denoted as P = O1

R1−−→
O2

R2−−→ · · · Rk−1−−−→ Ok(k > 1) where Oi ∈ O, i ∈ {1, 2, · · · , k} and Ri ∈ R, i ∈
{1, 2, · · · , k − 1}. In addition, O1 · · · Ok = User ∈ O as we are mainly concerned
about meta paths connecting users, i.e., social meta paths [20].

Definition 3. Inter-network Social Meta Path: Given two partially aligned
heterogenous networks G(1) and G(2) with network schemas SG(1) = (O(1), R(1))

and SG(2) = (O(2), R(2)), Q = O1
R1−−→ O2

R2−−→ · · · Rk−1−−−→ Ok(k > 1) can be defined
to be an inter-network social meta path between G(1) and G(2), where Oi ∈
O(1) ∪ O(2), i ∈ {1, 2, · · · , k}, Ri ∈ R(1) ∪ R(2) ∪ {Anchor}, i ∈ {1, 2, · · · , k − 1}
and Anchor is the anchor link type. Furthermore, O1 = User ∈ O(1), Ok =
User ∈ O(2), and ∃m ∈ {1, 2, · · · , k − 1} such that Rm = {Anchor}.

In both Foursquare and Twitter, users can follow other users and check-in
at locations, forming two intra-network influence channels among users. Mean-
while, (1) in Foursquare, users can create/like lists containing a set of locations;
(2) while in Twitter, users can retweet other users’ tweets, both of which will
form an intra-network influence channel among users in Foursquare and Twitter
respectively. The set of intra network social meta paths considered in this paper
as well as their physical meanings are listed as follows:

intra-network social meta paths in Foursquare

(1) follow : User
follow−1

−−−−−−→ User

(2) co-location checkins: User checkin−−−−−→ Location checkin−1

−−−−−−−→ User

(3) co-location via shared lists: User
create/like−−−−−−−→ List contain−−−−−→ Location contain−1

−−−−−−→
List

create/like−1

−−−−−−−−−→ User

intra-network social meta paths in Twitter

(1) follow : User
follow−1

−−−−−−→ User

(2) co-location checkins: User checkin−−−−−→ Location checkin−1

−−−−−−−→ User

(3) contact via tweet : User write−−−→ Tweet retweet−−−−−→ Tweet write−1

−−−−−→ User
Users can diffuse information across networks via the anchor links formed

by anchor users. This can be abstracted as inter-network social meta path: User
Anchor−−−−−→ User. By taking the inter-network meta paths into account, the studied
problem becomes even more complex due to the fact that non-anchor users in
both networks can also be connected via intra- and inter-network meta paths.
As a result, the number of social meta path instances grows mightily.

Each meta path defines an influence propagation channel among linked users.
If linked users u, v are connected by only intra-network meta path, we say u has
intra-network relation to v, otherwise there is inter-network relation between
them. Based on these relations, we can construct multi-aligned multi-relational
networks (e.g., the network shown in Fig. 2-B) for the aligned heterogeneous
networks (e.g., the networks shown in Fig. 2-A). The formal definition of multi-
aligned multi-relational networks is given as follows:
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Definition 4. Multi-Aligned Multi-Relational Networks: For two given
heterogenous networks G(1) and G(2), we can define the multi-aligned multi-
relational network constructed based on the above intra and inter network social
meta paths as M = (U,E,R), where U = U (1) ∪ U (2) denote the user nodes in
the MMNs M . Set E is the set of links among nodes in U and element e ∈ E
can be represented as e = (u, v, r) denoting that there exists at least one link
(u, v) of link type r ∈ R = R(1) ∪ R(2) ∪ {Anchor}, where R(1), R(2) are the
intra-network link types of networks G(1), G(2) and the inter-network Anchor
link between G(1) and G(2) respectively.

3.2 Influence Propagation in Multi-aligned Multi-relational
Networks

In this subsection, we will extend the traditional linear threshold (LT) model to
handle the information diffusion across the multi-aligned multi-relational net-
works (MMNs).

In traditional linear threshold (LT) model for single homogeneous network
G = (V,E), user ui ∈ V can influence his neighbor uk ∈ Γin(ui) ⊆ V according
to weight wi,k ≥ 0 (wi,k = 0 if ui is inactive), where Γin(ui) represents the users
following ui (i.e., set of users that ui can influence) and

∑
uk∈Γin(ui)

wi,k ≤ 1.
Each user, e.g., ui, is associated with a static threshold θi, which represents the
minimal required influence for ui to become active.

Meanwhile, based on the MMNs M = (U,E,R), the weight of each pair of
users with different diffusion relations is estimated by pathsim [18]. Formally,
the intra-network (inter-network) diffusion weight between user u and v with
relation i(j) is defined as:

φi
(u,v) =

2|P i
(u,v)|

|P i
(u,)| + |P i

(,v)|
, ψj

(u,v) =
2|Qj

(u,v)|
|Qj

(u,)| + |Qj
(,v)|

,

where P i
(u,v)(Q

j
(u,v)) is the set of intra-network (inter-network) diffusion meta

paths instances, starting from u and ending at v with relation i(j). | · | denotes
the size of the set. Thus, P i

(u,)(Q
j
(u,)) and P i

(,v)(Q
j
(,v)) means the number of meta

path instances with users u, v as the starting and ending users, respectively.
Based on the traditional LT model, influence propagates in discrete steps in

the network. In step t, all active users remain active and inactive user can be
activated if the received influence exceeds his threshold. Only activated users at
step t can influence their neighbors at step t+1 and the activation probability for
user v in one network (e.g., G(1)) with intra-network relation i and inter-network
relation j can be represented as g

(1)
v,i (t + 1) and h

(1)
v,j(t + 1) respectively:

g
(1)
v,i (t + 1) =

∑
u∈Γin(v,i) φi

(u,v)ϕ(u, t)
∑

u∈Γin(v,i) φi
(u,v)

, h
(1)
v,j(t + 1) =

∑
u∈Γin(v,j) φj

(u,v)ϕ(u, t)
∑

u∈Γin(v,j) φj
(u,v)

where Γin(v, i), Γin(v, j) are the neighbor sets of user v in relations i and j
respectively and ϕ(u, t) denotes if user u is activated at timestamp t. Note that
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anchor user v(1) is activated does not mean that v(2) is activated at the same
time, but v(2) will get influence from v(1) via anchor link.

By aggregating all kinds of intra-network and inter-network relations, we can
obtain the integrated activation probability of v(1) [9]. Here logistic function is
used as the aggregation function.

p(1)
v (t + 1) =

e
∑

(i) ρ
(1)
i g

(1)
v,i(t+1)+

∑
(j) ω

(1)
j h

(1)
v,j(t+1)

1 + e
∑

(i) ρ
(1)
i g

(1)
v,i(t+1)+

∑
(j) ω

(1)
j h

(1)
v,j(t+1)

,

where ρ
(1)
i and ω

(1)
j denote the weights of each relation in diffusion process,

whose value satisfy
∑

(i) ρ
(1)
i +

∑
(j) ω

(1)
j = 1, ρ

(1)
i ≥ 0, ω

(1)
j ≥ 0. Similarly, we

can get activation probability of a user v(2) in G(2).

4 Influence Maximization Problem in M&M model

In this section, we will first analyze the influence maximization problem based on
M&M model, and then provide M&M Greedy algorithm for seed users selection.

4.1 Analysis of Influence Maximization Problem

Kempe et al. [12] proved traditional influence maximization problem is a NP-
hard for LT model, but the objective function of influence σ(Z) is monotone and
submodular. Based on these properties, the greedy approximation algorithms can
achieve an approximation ratio of 1 − 1/e.

With the above background knowledge, we will show that the influence maxi-
mization problem under the M&M model is also NP-hard and prove the influence
spread function σ(Z) is monotone and submodular.

Theorem 1. Influence Maximization Problem across Partially Aligned Heteroge-
nous Social Networks(AHI) is NP-hard.

Proof: The AHI problem can be easily mapped to ”Vertex Cover” problem which
is NP-complete. Thus AHI problem is NP-hard.

Theorem 2. For the M&M model, the influence function σ(Z) is monotone.
Proof: Given the existing seed user sets Z, let z be a seed user selected in this
round. Since the weights of multi-relation are nonnegative, adding a new seed
user z will not decrease the number of influenced users, i.e.,σ(Z + z) ≥ σ(Z).
Therefore the influence spread function is monotone for the given M&M model.

Theorem 3. For the M&M model, the influence function σ(Z) is submodular.
Proof: It can be proved with the live-edge path method proposed in [12] very
easily. The detail is omitted due to space limitation.



Partially Aligned Heterogenous Social Networks 65

Algorithm 1. M&M Greedy Algorithm for AHI problem
Input: G(1), G(2), anchor user matrix An(1)×n(2) , d

Output: seed set Z
1: initialize Z =, seed index i = 0;

2: get network schema S
(1)
G and S

(2)
G , get user set U = U(1) ∪ U(2);

3: for v = 0 to |U | do
4: extract intra and inter network diffusion meta paths of v;
5: end for
6: calculate relations’ diffusion strength φ(u,v) and ψ(u,v);

7: define activation probability vector P (1), P (2) and calculate their initial value;
8: while i < d do
9: for u ∈ U \ Z do
10: using Monte Carlo method to estimate u’s marginal gain Mu = σ(Z ∪ {u}) − σ(Z) based

on users’ activation probability;
11: end for
12: select z = arg max

u∈U\Z

Mu

13: Z = Z ∪ {z}
14: update users’ activation probability in P (1), P (2) and i = i + 1.
15: end while

4.2 Greedy Algorithm for AHI problem

Since the influence function is monotone and submodular based on the M&M
model, step-wise greedy algorithms which select the users who can lead to the
maximum increase of influence can achieve a (1− 1

e )-approximation of the optimal
result. Algorithm 1 is a greedy algorithm to solve the AHI problem based on
M&M model.

5 Experiment

5.1 Experiment Preparation

In this part, we will introduce the dataset and baselines used in the experiments.

Dataset Description: The partially aligned heterogeneous network dataset
used in the experiment are Foursquare and Twitter, The statistics of the two
datasets are given in Table 1. For more detailed information about the dataset
as well as its crawling methods, please refer to [13].

Baselines: We use following methods as baselines:

Table 1. Properties of the Heterogeneous Social Networks

network

property Twitter Foursquare

# node
user 500 500
post 741,529 7,504
location 34,413 6,300

# link
friend/follow 5,341 2,934
write 741,529 7,504
locate 40,203 7,504
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– The M&M method (M&M): M&M is the method proposed in this paper,
which can select seed users greedily from the extracted MMNs. Depending
on from which network to select the seed users, different variants of M&M
are compared: (1) M&M (which selects seed users from both Foursquare and
Twitter), (2) M&M-Foursquare (selecting only from Foursquare), and (3)
M&M-Twitter (selecting only from Twitter).

– Lossless method for multiplex networks (LCI): Method LCI is the influence
maximization method proposed for multiplex networks in [16], which selects
seed users from the merged network as shown in Fig. 2-E.

– Greedy method for single heterogenous network (Greedy): Based on a multi-
relational network (as shown in Fig. 2-D), method Greedy selects seed users
who can lead to the maximum influence gain within one single network. Sim-
ilar to M&M, Greedy also has two variants: Greedy-Foursquare and Greedy-
Twitter.

– Seed Selection method based on traditional LT model(LT): Based on one sin-
gle homogeneous network (e.g., Fig. 2-C), LT selects seed users who can lead
to the maximum influence gain. Two variants of method LT, LT-Foursquare
and LT-Twitter, are compared in the experiments.

5.2 Experiment Setup

Based on the input aligned heterogeneous networks, the MMNs are extracted
based on a set of intra and inter network social meta paths. The influence score
among users in each relation is used to calculate the aggregated activation prob-
ability with the logistic function. For simplicity, the weights of all relations (both
intra and inter network) are set to be equal (i.e., 0.25 in this paper). The thresh-
olds of users are randomly select from the uniform distribution within range [0,1].
The number of selected seed users is selected from {5, 10, · · · , 50}. To simulate
different partially aligned networks, we randomly sample the anchor links from
the networks with different anchor ratios: {0.3, 0.6}, where 0.3 denotes that 30%
anchor links are preserved while the remaining 70% are removed.

To evaluate the performance of all comparison methods, the number of finally
activated users by the seed users is counted as the evaluation metric in the
experiments, where anchor users are counted at most once. For example, for
an anchor user u (whose accounts in Foursquare and Twitter are u(1) and u(2)

respectively), if neither u(1) nor u(2) is activated, then u will not be counted as
the activated user (i.e., 0); otherwise u will be counted as one activated user
finally (i.e., 1).

5.3 Experiment Results

The experiment results are given in Fig.4, where the anchor ratios of (a) and (b)
are 30% and 60% respectively.

As shown in both figures, the number of influenced users will increase as more
users are added as the seed users. M&M outperforms all the baselines consistently.
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(a) 30% anchor user (b) 60% anchor user

Fig. 4. Performance of different comparison methods

By comparing M&M with M&M-Foursquare and M&M-Twitter, we observe
that M&M can perform better than both M&M-Foursquare and M&M-Twitter
in both Fig. 4(a)- 4(b). It demonstrates that selecting seed users globally (i.e.,
both of the networks) can achieve better results than the method selecting seed
users locally (i.e., either Foursquare or Twitter).

Compared with LCI, M&M can outperform LCI with significant advantages.
For example, in Fig. 4(a) with seed user set size 20, seed users selected by M&M
can activate 246 users, which is 117% larger than the 113 users activated by the
seed users selected by LCI. Similar results can be observed for other seed user
set sizes in both Fig. 4(a) and Fig. 4(b). As a result, M&M which selects seed
users from MMNs can perform better than LCI which selects seed users from
combined multiplex networks.

Furthermore, by comparing M&M with Greedy methods (both Greedy-
Foursquare and Greedy-Twitter) and LT methods (both LT-Foursquare and LT-
Twitter), M&M can always achieve better performance for different seed user set
sizes and anchor ratios in Fig. 4(a)-4(b). In summary, selecting seed users based
on cross-network information propagation model can select better seed user sets
than those merely based on intra-network information propagation models.

5.4 Parameter Analysis

To study the effects of anchor ratio parameter, we compare the performance of
all these comparison methods achieved at anchor ratio 0.3 and 0.6, whose results
are shown in Fig. 5, where Fig. 5(a)-5(b) correspond to the seed user set sizes
5 and 50 respectively. We abbreviate M&M-Twitter and M&M-Foursquare as
M&M-T and M&M-F, while Greedy is abbreviated as G.

By comparing the performance of all the comparison methods achieved with
different anchor ratios in Fig. 5(a)-5(b), we observe that Greedy-Foursquare,
Greedy-Twitter, LT-Foursquare and LT-Twitter can perform exactly the same
with different ratios, as these comparison methods are all based on intra-network
information propagation models.

However, the M&M methods can influence more users in aligned networks
with lower anchor ratio, e.g., 0.3. With lower anchor ratio, less information can
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(a) 5 seed users (b) 50 seed users

Fig. 5. Influence diffusion range with different anchor user ratio

propagate across networks. However, with lower anchor ratio, more users will
be non-anchor users. According to the evaluation metric introduced in Subsec-
tion 5.2, anchor users’ accounts in multiple aligned networks will be counted at
most once in the results, which is the reason why M&M can perform a little
better for networks with anchor ratio 0.3 than those with anchor ratio 0.6.

6 Related Work

Influence maximization problem as a popular research topic recent years was
first proposed by Domingos et al. [6]. It was first formulated as an optimization
problem in [12]. Since then a considerable number of work focused on speeding
up the seed selection algorithms. CELF in [14] is faster 700 times than original
Greedy method, and Chen designed heuristic algorithms for both IC model [4]
and LT model [5]. Some other papers extended information diffusion models
and provided efficient algorithms [3]. However almost all existing work studied
influence maximization problem only for one single network. Nguyen et al. [16]
studied the least cost influence problem across multiplex networks.

As to another related topic, information diffusion study, heterogenous and
multi-relational networks became an increasingly hot topic [18,19]. Tang et al.
[15] proposed a generative graphical model to mine topic-level influence strength
with both link and textual information. Gui et al. [9] proposed models by consid-
ering weighted combination of different types of relations. While all these work
focused on one network.

7 Conclusion

In this paper, we study the novel problem of influence maximization across par-
tially aligned heterogeneous social networks. To solve this problem, we propose
multi-aligned multi-relation network based on intra and inter network meta paths
to model information diffusion process. Greedy algorithm is proposed to select
seed users in multiple heterogenous networks. Extensive experiments conducted
on two real OSNs verify the effectiveness of the proposed algorithm. We believe
that our work will not only advance the research on influence maximization
problem, but also benefit many real-world applications.
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Abstract. Information diffusion is a natural phenomenon that informa-
tion propagates from nodes to nodes over a social network. The behavior
that a node adopts an information piece in a social network can be
affected by different factors. Previously, many diffusion models are pro-
posed to consider one or several fixed factors. The factors affecting the
adoption decision of a node are different from one to another and may
not be seen before. For a different scenario of diffusion with new factors,
previous diffusion models may not model the diffusion well, or are not
applicable at all. In this work, our aim is to design a diffusion model
in which factors considered are flexible to extend and change. We fur-
ther propose a framework of learning parameters of the model, which
is independent of factors considered. Therefore, with different factors,
our diffusion model can be adapted to more scenarios of diffusion with-
out requiring the modification of the diffusion model and the learning
framework. In the experiment, we show that our diffusion model is very
effective on the task of activation prediction on a Twitter dataset.

Keywords: Social networks · Diffusion models

1 Introduction

Information diffusion in social networks has been an active research field in about
a decade. It is a natural phenomenon that information propagates from nodes
to nodes over a social network, which acts like an epidemic. There are many
applications on information diffusion, such as promoting an idea more effectively
[5,10] , blocking adverse opinions [3,11], or identifying information flows [13]
in a network. A well-known problem therein is called influence maximization,
formulated by Kempe et al. [10]. The problem of influence maximization is to
find a group of target nodes to be convinced of an idea initially to maximize
the spread size, i.e. the number of nodes adopting the idea, on a given diffusion
model.

To model how information diffuses in a network, researchers have proposed
various diffusion models from different aspects. In these diffusion models, the
Independent Cascading (IC) model and the Linear Threshold (LT) Model [10]
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 70–81, 2015.
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have been widely employed in many applications and have several variants [1].
Both models consider the influence strength of a neighbor. The key difference
is that, for a node turning to adopt an idea, IC considers only the influence
from exactly one activated neighbor with uncertainty, while LT considers the
collaborative influence contribution from all activated neighbors. In other words,
IC places importance on which neighbor tries to affect the node to adopt the idea
whereas LT thinks highly on the overall influence contribution from neighbors.
Nevertheless, the real world is so complicated that a simple concern is hard to
capture such complexity. Many factors probably affect the decision of adoption.
For example, an idea that has been adopted by most people will have more
chance to influence somebody [9] and an idea is harder to be adopted by someone
as time passes. Moreover, a person may have different strength of interests in
different topics [1]. However, the factors considered by previous diffusion models
in social networks are all fixed. For a different scenario of diffusion with new
factors, previous diffusion models may not model the diffusion well, or are not
applicable at all. Therefore, one usually has to propose a new diffusion model
for modeling diffusion of a specific scenario better by considering new factors.

To design a diffusion model for different factors one by one and to propose the
corresponding algorithms, e.g. parameters learning and influence maximization,
both become tedious. In this work, we aim to design a diffusion model which can
consider multiple factors flexibly and further propose a framework of learning
parameters of the model, related to information transmission likelihood between
nodes and adoption prediction of a node. To the best of our knowledge, no exist-
ing work has the same sight. Specifically, we propose a Multiple-Factors Aware
Diffusion (MFAD) model which is able to consider multiple factors flexibly that
may affect adoption behaviors. MFAD is a two-stage propagation model. In the
first stage, called influence transmission, an activated node u tries to influence
its inactivated neighbor v with a probability. If the influence of u is successfully
transmitted to v, in the second stage, called adoption decision, v decides whether
it becomes activated based on its considerations, predicted via its related classi-
fication model trained on historical adoption information. Unfortunately, due to
the limitation of observation in the real world, only positive instances are avail-
able to train classifiers , which is hard to achieve good performance. We further
design a mechanism to get unlabeled instances to help train nodes’ classifiers
and propose the learning framework to learn the classifiers and transmission
probabilities between nodes. Our contributions are summarized as follows.
1. Our proposed MFAD model is flexible to extend and change factors since

we employ a classification approach to predicting the adoption behavior of
a node.

2. Our proposed learning framework is independent of factors considered and
we show the learning framework is effective in the experiment.

3. Due to the limitation of observation on diffusion in the real world, to predict
adoption behaviors is hard to reach good results. We explicitly tackle this
issue by learning nodes’ classifiers for adoption decision with only positive
and unlabeled instances.
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The remaining of the paper is organized as follows. We next review the related
work in Section 2. We introduce our diffusion model in Section 3 and how to
learn the model in Section 4. In Section 5, we conduct experiments on a Twitter
dataset. Finally, we conclude in Section 6.

2 Related Work

In this section, we briefly review the related works on diffusion models in social
networks and learning parameters of diffusion models.

Diffusion models interpret how information spreads within a network. As
mentioned above, IC and LT are two classical models and have been widely
employed since they were connected to the influence maximization problem [10].
Recently, more factors of diffusion are explored in the literature like [1], [9] and
[14], to name a few. N. Barbieri et al. [1] extend the IC model to consider topic
distribution of items. T.-A. Hoang and E.-P. Lim [9] propose a model considering
three factors, user virality, user susceptibility and item virality. Moreover, S.A.
Myers et al. [14] explore not only internal influence from activated nodes in a
network, but also external influence outside the network. However, as discussed
above, the factors considered by these diffusion models are all fixed. For a dif-
ferent scenario of diffusion with new factors, these models may not model the
diffusion well, or are not applicable at all.

Although diffusion models in social networks have been proposed for a long
time, algorithms to learn parameters of a diffusion model are proposed recently.
For example, K. Saito et al. [16] first propose a learning method for the IC model.
The following up works mainly propose learning methods for their own diffusion
models [1]. Moreover, A. Goyal et al. [7] propose the Credit Distribution model
that directly estimates spread size from diffusion data without learning influence
probabilities between nodes. Since we aim to design a learning framework that
is independent of the diffusion factors considered, the above results do not apply
to our scenario.

3 Proposed Model

In the work, our aim is to design a diffusion model which considers multiple
factors flexibly for information propagation. We propose the Multiple Factors-
Aware Diffusion (MFAD) model in the section.

Given a social graph G = (V,E), where V is the node set and E is the
edge set composed of directed edges without multiple edges and self-loops, let
pu,v denote the probability of node u to successfully transmit influence to node
v ∈ u’s out-neighbors Nout(u) after u is activated by an item i and let fv(x)
denote a probabilistic classifier for node v where fv(x) considers multiple prede-
fined features, i.e. factors, that affect the tendency of u to adopt item i after v
is exposed to i and x is the feature vector of the exposure. Note that a nonprob-
abilistic classification model, the outputs of which can be transformed to the
probabilistic outputs [15], is applicable to fv(x), e.g. SVM with Platt scaling.
The Multiple Factors-Aware Diffusion (MFAD) model is defined as follows.
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Fig. 1. The successful activation process of MFAD

Definition 1. Multiple Factors-Aware Diffusion (MFAD) model. The propaga-
tion of diffusion starts with initial seed nodes S0 ⊆ V which have adopted item i.
In the first timestamp t1, each u ∈ S0 tries to influence u’s out-neighbors which
are not activated by item i. The successful activation probability for v ∈ Nout(u)
is calculated as pu,vfv(x). The activated nodes in t1 are denoted as S1. In times-
tamp t2, new activated nodes in S1 try to activate their inactivated out-neighbors
in the same process as the above. The process runs iteratively. If Sj is empty in
timestamp tj, the diffusion terminates. Note that the spread size can be expressed
as | ∪0≤i≤j−1 Si| and when a node becomes activated, it never turns to be inac-
tivated.

MFAD is a two-stage propagation model. An illustration of the successful
activation process in MFAD is shown as Figure 1. In the first stage, called influ-
ence transmission, a node u tries to influence each v ∈ Nout(u) which is not
activated with probability pu,v in timestamp ti−1, where u is activated in times-
tamp ti−2. However, the influence successfully transmitted over the edge does
not directly activate a node. Our model has the following stage, called adoption
decision. In the second stage, if the influence of u is successfully transmitted with
probability pu,v to v previously, v receives this influence and decides whether it
becomes activated based on its considerations, predicted via its classification
model fv(x). If v is activated, v will try to influence its neighbors in the next
timestamp ti. Consider a news diffusing in an online social network, e.g. Face-
book and Twitter. A user u posted a message about the news recently. Due to the
ranking mechanism designed by Facebook or since there are too many messages,
a friend v of u may not see the message, which is modeled by influence transmis-
sion. Moreover, even if the friend v reads the message, v may consider whether
to share or reply to the message based on several concerns, e.g. v’s interests, the
importance of the news, which is modeled by adoption decision. In contrast to
the traditional diffusion models, MFAD is flexible to consider multiple factors
and considers more in a microscopic view for information propagation.

4 Two-Stage Learning

In this section, we propose a two-stage learning framework for MFAD since
MFAD is a two-stage propagation model. In the first stage, the classifier of each
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node is trained, which corresponds to adoption decision, while the transmission
probability between two connected nodes is estimated in the second stage, which
corresponds to influence transmission. We first introduce the observed data.

Observed Data. A propagation trace consists of activation records. Each record
{u, v, i, t} represents that node u adopts an item i at timestamp t and the adop-
tion is caused by u’s in-neighbor v. If u is actually a seed of the item in the
observed data, v does not exist and is set to be NIL. In reality, we usually
do not observe that a node fails to influence others. In other words, we would
only have positive instances for training classifiers directly from the propagation
trace. We next discuss how to learn classifiers of nodes in such a situation.

4.1 Learning Classifiers of Nodes

Due to the limitation of observation in the real world, only positive instances are
available to train binary classifiers of each nodes. However, a classifier trained
on only positive instances is hard to achieve good performance. In fact, unlabeled
instances can provide more information for learning, e.g. feature distribution, and
can be generated via observing that an inactivated out-neighbor of an activated
node does not turn activated in the next timestamp. We use the term unlabeled
instead of negative since an unlabeled instance may be positive or negative due to
the limitation of observation. Thus, the task of the first-stage learning becomes
training classifiers by using positive and unlabeled instances. In the literature
[6,12], the problem is called positive and unlabeled learning. Among previous
work on positive and unlabeled learning, C. Elkan and K. Noto [6] provide a
principled way to assigning weights to unlabeled instances. Based on their work
[6], we construct a framework to learn nodes’ classifiers for MFAD. In the follow-
ing, we first describe how to obtain unlabeled instances from observed positive
records and then describe how to train a node’s classifier based on positive and
unlabeled instances.

Obtaining Unlabeled Instances. With observed positive records, we can
analyze the whole propagation trace to get positive instances for training nodes’
classifiers with ease. However, negative instances are hard to obtain due to two
main reasons: (1) an item does not successfully be exposed to a node from its in-
neighbor; (2) the observation window for a node is not long enough. Fortunately,
we can generate unlabeled instances to help train a node’s classifier.

Assume that we have the complete propagation trace which consists of posi-
tive records in the format of (u, s, i, t, o = 1) where the binary variable o indicates
whether a record is an observed positive record in the trace or not. If a node
u adopts an item i from s at timestamp t, we can observe u’s out-neighbors
who haven’t adopted i from timestamp t. For an out-neighbor v of u, if v does
not adopt i in the complete propagation trace, we generate an unlabeled record
(v, u, i, t′, o = 0), where t′ is the end observation time of propagation trace. How-
ever, the approach is with high cost and does not work if the size of the trace
is extremely large. For a program to sequentially trace the positive records in
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Algorithm 1. Unlabeled Record Generation

chronological order, it has to memorize all items that a node has not adopted
in order to generate unlabeled records at the end of tracing, which is impossi-
ble for a single machine with limited memory size. Otherwise, multiple scans are
needed, which incurs many disk I/O operations and therefore is time-consuming.

In a more general way, we propose Algorithm 1 to trace positive records to
generate unlabeled records. Let T be the time window to observe whether an
out-neighbor v of u, for a positive record (u, s, i, t, 1), adopts i before t + T .
The main idea of the algorithm is that if v does not adopt i before t + T , the
algorithm generates an unlabeled record (v, u, i, t, 0). Although the pseudo code
of Algorithm 1 is written in a batch way, it is easy to adapt it to process positive
records coming in a streaming way. Note that a feature vector x, i.e. an instance,
is generated at the same time when a positive record is traced or an unlabeled
record is generated in order to capture the state of an exposure.

Training a Node’s Classifier. With the above approach, for a node u, we
can obtain positive instances P(u) and unlabeled instances U(u) for training
u’s classifier in order to predict the adoption tendency of an instance. Given
an instance x, the goal is to predict p(a = 1|x), where a is a binary random
variable to indicate whether the instance is positive (a = 1) or negative (a = 0).
Recall that o is a binary variable to indicate an instance is observed (o = 1) or
unlabeled (o = 0). In the lemma derived in [6], p(a = 1|x) = p(o = 1|x)/c, where
c = p(o = 1|a = 1) is a constant value1. Based on the lemma, they [6] further
reach the result on how to give weights to instances rigorously as the following.
The weight of a positive instance is still unit, while an unlabeled instance have
two copies, where one copy is a positive instance with weight p(a = 1|x, o = 0)
and the other copy is a negative instance with weight 1 − p(a = 1|x, o = 0).

1 Due to the space limit, we omit the details of the lemma. If readers are interested
in the lemma and the corresponding results, please refer to [6].
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Note that p(a = 1|x, o = 0) = 1−c
c

p(o=1|x)
1−p(o=1|x) . Thus, our task here becomes three

subtasks: (1) to learn p(o = 1|x), (2) estimate c and (3) learn p(a = 1|x).
Specifically, for a node u, (1) we first train a nontraditional classifier gu(x) =

pu(o = 1|x) on P(u)−V(u) and U(u), where the instances in V(u) are randomly
selected from P(u), which is reserved as a validation set to estimate c. (2) Next,
c is estimated as 1

|V(u)|
∑

x∈V(u) gu(x) according to [6]. (3) Finally, we construct
positive instances P′(u) and negative instances N(u) to train a traditional classi-
fier fu(x) = pu(a = 1|x) for the node u. P′(u) contains the instances in P(u) and
copies from the instances in U(u) with each weight pu(a = 1|x, o = 0). N(u) con-
sists of copies from the instances in U(u) with each weight 1−pu(a = 1|x, o = 0).
In the experiments, we use the logistic regression to train both gu(x) and fu(x)
since its output probability is well-calibrated [6] by applying the above way.

4.2 Learning the Transmission Probability

With the above P(v), U(v) and the trained classifier fv(x) for each node v ∈ V ,
we now describe how to learn transmission probability between two connected
nodes. Let D =

⋃
v∈V (P(v) ∪U(v)) denote the dataset for learning transmission

probabilities. An instance x ∈ D is in the format of (f1, f2, ..., fm)[u,v,o,t,i] where
u is the node that tries to activate v by item i before time t (xo = 1) or at time
t (xo = 0), o is a binary variable to indicate whether v is activated during the
observation in Algorithm 1 and f1, f2, ..., fm are factors of adoption, calculated
in the same time of running Algorithm 1 for the exposure. An instance x ∈ D is
unlabeled if xo = 0; otherwise, x is positive.

We train the MFAD model via maximizing the likelihood of D in the MFAD
model. Let Ds denote the data of node s in D, i.e. Ds = {x ∈ D|xv = s},
and let Θ denote all parameters of the MFAD model to learn, i.e. all transmis-
sion probabilities, and Θs = {pq,s|q ∈ N in(s)} denote transmission probabilities
between node s and its in-neighbors N in(s). Assuming adoptions between nodes
are independent, the complete data log-likelihood can be expressed as follows.

L(Θ;D) = log
∏

s∈V

L(Θs;Ds) (1)

Note that since we want to learn transmission probability between two connected
nodes, we exclude an instance x, xu of which is NIL, from D. Moreover, since
fs(x) for each node s has trained in the above, the data likelihood of each Ds is
only related to Θs. To maximize Eq.(1) is equal to maximizing each L(Θs;Ds),i.e.

∀s ∈ V,max
Θs

log L(Θs;Ds). (2)

In reality, the diffusion happens in a continuous time space, while MFAD is
a discrete time-based diffusion model. We include time constraints Δ+ and Δ−

to decide the validity of an instance. Let D+ = {x ∈ D|xo = 1} and D− = {x ∈
D|xo = 0}. We define D+

s and D−
s as follows.

D+
s ={x ∈ Ds|xo = 1 ∧ ∃y ∈ D+(yv = xu ∧ yi = xi ∧ 0 ≤ xt − yt ≤ Δ+)} (3)
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D−
s ={x ∈ Ds|xo = 0 ∧ ∃y ∈ D+(yv = xu ∧ yi = xi ∧ 0 ≤ xt − yt ≤ Δ−)} (4)

Note that for an instance x ∈ D+, xu ∈ N in(xv) should hold, where N in(v)
is v’s in-neighbor set. The data likelihood of node s is then defined as

L(Θs;Ds) =
∏

q∈Nin(s)

∏

x∈D+
q,s

(pq,sfs(x))
∏

q∈Nin(s)

∏

x∈D−
q,s

(1 − pq,sfs(x)), (5)

where

fs(x) = ps(a = 1|x),D+
q,s = {x ∈ D+

s |xu = q}
and D−

q,s = {x ∈ D−
s |xu = q}.

(6)

The data log-likelihood of node s is:

log L(Θs;Ds) =
∑

q∈Nin(s)

[
∑

x∈D+
q,s

log(pq,sfs(x)) +
∑

x∈D−
q,s

log(1 − pq,sfs(x))] (7)

To find pq,s by maximizing the above log likelihood, let ∂ log L(Θs;Ds)
∂pq,s

= 0:

∑

x∈D+
q,s

1
pq,s

+
∑

x∈D−
q,s

−fs(x)
1 − pq,sfs(x)

= 0 (8)

Since no closed form solution for Eq.(8) exists, we employ the Brent’s algo-
rithm [2]. The Brent’s algorithm uses a combination of golden section search
and successive parabolic interpolation. For an initial good guess p0q,s in order to
converge fast, we apply the first order Taylor series to approximate −fs(x)

1−pq,sfs(x)

at pq,s = 0 as −fs(x) − fs(x)2pq,s. Thus, the Eq. (8) becomes

∑

x∈D+
q,s

1
pq,s

+
∑

x∈D−
q,s

[−fs(x) − fs(x)2pq,s] = 0 (9)

and by some mathematical manipulation we get p̂q,s = −C+
√

C2+4BD
2D , where

B = |D+
q,s|, C =

∑
x∈D−

q,s
fs(x) and D =

∑
x∈D−

q,s
fs(x)2. Note that D should

be a real number greater than 0 and obviously, B and C are non-negative real
numbers. In some situation, p̂q,s will not be a valid probability value, the value
(3−√

5)
2 suggested in the Brent’s algorithm [2] is used instead.

5 Experiments

In the section, we conduct experiments on a Twitter dataset to evaluate the
effectiveness on activation prediction. We first describe the setup.
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Table 1. Data Statistics

T training instances testing instances
positive unlabeled all positive unlabeled all

positive negative positive negative

3 17,197 274,575 236,807 528,579 115,955 80,243 15,288 211,486
6 17,197 270,467 236,807 524,471 114,463 78,788 15,940 209,191

12 17,197 263,750 236,807 517,754 112,063 76,496 17,001 205,560
24 17,197 252,274 236,807 506,278 108,180 72,864 18,893 199,937
48 17,197 233,820 236,807 487,824 101,010 66,049 20,705 187,764
96 17,197 204,919 236,807 458,923 88,807 54,793 24,520 168,120

5.1 Setup

Dataset. We use the real dataset collected from Twitter by L. Weng et al.
[17]. We use standard preprocessing steps, similar to the steps used in [1] to
clean diffusion data. However, in order to obtain enough size of training data
for training nodes’ classifiers, we allow multiple activation records of the same
item for a node. After the preprocessing, each node has at least 20 activation
records, i.e. retweets and tweets with hashtags in Twitter, and each item, i.e.
hashtags, are adopted by at least 20 nodes. Moreover, there is no isolated node
left. The remaining social graph consists of 24, 045 nodes and 871, 745 directed
edges. The remaining activation records contain 8, 427 different items and the
number of all activation records is 1, 105, 316. The dataset spans from March 23
to April 25 in 2012, approximately one month long.

Factors. We first define some notations. Let degin(v) and degout(v) denote v’s
in-degree and out-degree in the graph. For an item i, we use tglo(i) to denote
the earliest time in which i is adopted by some node in the data and tloc(i, v, t)
to denote the earliest time in which i is exposed to v by an in-neighbor of v that
adopts i before time t. Let nodeglo(i, t) denote all nodes activated by item i before
time t and nodeloc(i, t, v) to represent in-neighbors of v which are activated by
item i before time t. For a directed edge from u to v, we use ratiofrom(v, u, t)
to denote the ratio that v’s adoptions are caused by u and ratiosame(v, u, t) to
denote the ratio that v’s adopted items are the same as u’s adopted items before
time t.

For an instance x = (f1, f2, ..., fm)[u,v,o,t,i], where node u tries to activate v by
item i before time t (xo = 1) or at time t (xo = 0), the features f1, f2, ..., fm are
composed of three types, structure-based, time-based and history-based features.
Structure-based features include degin(u), degout(u), degin(v), degout(v) and the
number of common neighbors between u and v. Time-based features are t −
tglo(i), t − tloc(i, v, t) and t(i, u) − t, where t(i, u) is the time that node u adopts
the item and if it is unavailable in the dataset, we assume t(i, u) − t = 0. The
first two are able to reflect global and local freshness. The last one is to measure
the adoption latency. History-based features are |nodeglo(i, t)|, |nodeloc(i, t, v)|,
ratiofrom(v, u, t) and ratiosame(v, u, t). Thus, there are m = 12 features in total
for training a node’s classifier in the experiment.
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Instances. We use the approach introduced in Section 4.1 to generate positive
and unlabeled instances from the dataset with different T for the most active
100 nodes, measured by the number of positive records in the whole dataset. The
statistics of training and testing instances are summarized as Table 1. In both
training and testing sets, we exclude instance x, xu of which is NIL, since we
want to learn transmission probability between two connected nodes for diffusion
models. Note that the positive instances for testing consist of positive instances
and unlabeled positive instances, while the negative instances for testing consist
of unlabeled negative instances. For each T , we use the earliest 20% instances
as the training set. From the latest 80% instances, the testing set only contains
instances related to pu,v that is trained in the training data for MFAD. Thus, the
satisfied testing instances are not too many. Moreover, the number of unlabeled
instances for training is much more than the labeled positive instances since the
earliest 20% time (∼ 6.6 days) is relative short and when a node u adopts an
item i at time t(i, u) but u’s in-neighbors all adopt i before t(i, u) − T , |N in(u)|
unlabeled positive instances will be generated.

Methods. We include the following three methods to predict activations of
nodes: (1) the logistic regression directly trained on positive and unlabeled
instances (LOGIST), which is the classical approach, (2) our proposed learn-
ing framework for the MFAD model (MFAD) and (3) the independent cascading
model (IC). Note that only MFAD and IC are diffusion models, while LOGIST
is a classification algorithm only and cannot be applied to other applications on
diffusion, e.g. influence maximization [10]. We select the IC model instead of the
LT model since IC is also a probabilistic diffusion model. The parameters of IC
are inferred by the maximum-likelihood estimation conducted in the same app-
roach of Section 4.2. For two connected nodes u and v, the influence probability

pu,v is |D+
u,v|

|D+
u,v|+|D−

u,v| for IC. While training the nodes’ classifiers for both LOGIST
and MFAD, the class imbalance problem is encountered, i.e. skewed class dis-
tribution. We use SMOTE[4], which doubles the size of the minority class, and
then apply SpreadSubsample [8] to undersample instances of the majority class
to balance the class distribution. Moreover, we set time constraints Δ+ and Δ−

in Eq. (3) and (4) as the same value of T . All methods are implemented in Java
with Weka [8] and executed in a PC with an Intel i7 3.4GHz CPU. The running
time of a run of MFAD for the same T does not exceed 2 hours, including time
for sampling, training 100 nodes’ classifiers and learning related transmission
probabilities.

Metrics. We use four metrics, precision, recall, F-Measure and accuracy, to
measure the results of activation prediction, based on true positive (TP ), false
positive (FP ), true negative (TN) and false negative (FN) instances. Precision
is TP

TP+FP . Recall is TP
TP+FN . F-Measure is 2×precision×recall

precision+recall and accuracy is
defined as TP+TN

TP+FP+TN+FN .
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(a) F-Measure (b) Accuracy

Fig. 2. Overall Results

(a) Precision (b) Recall

Fig. 3. Results of Components of F-Measure

5.2 Results

The overall results of activation prediction are shown in Figure 2. Our MFAD
outperforms the other two methods significantly in the overall metrics, F-Measure
and accuracy. F-Measure in Fig. 2(a) concerns mainly on true positive, false pos-
itive and false negative instances, while accuracy in Fig. 2(b) takes true negative
instances into consideration. F-Measure is suitable for the scenario of retrieval
of activated nodes whereas accuracy is more suitable for the scenario of spread
estimation. MFAD works great for both scenarios. For the components of F-
Measure, MFAD is very effective in precision as shown in Fig. 3(a), which means
the size of false positive instances is much smaller than those of LOGIST and
IC. The recalls of MFAD and LOGIST are close to each other but much better
than that of IC as shown in Fig. 3(b). Moreover, as T increases, F-Measure and
accuracy become better for all methods since the positive unlabeled instances
are fewer and thus more positive instances are available for training classifiers.

In summary, MFAD is the best method to predict activation of nodes among
three methods. Most importantly, MFAD is a diffusion model and therefore
can simulate how information diffuses whereas LOGIST cannot. IC is also a
diffusion model, but it cannot reflect the state of an exposure precisely and thus
do not model the diffusion well. Although there is an extension of IC in [1],
called TIC, to consider the topic factor, the dataset does not have the detailed
textual information of tweets and hence we do not include TIC in the experiment.
Nevertheless, our MFAD model can consider the topic factor by defining new
features for nodes’ classifiers with ease, which does not require the modifications
of the learning framework.
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6 Conclusions

In this work, we propose the model of Multiple-Factors Aware Diffusion Model
(MFAD) which explicitly models influence transmission and adoption decision
and considers multiple factors flexibly that may affect adoption behaviors. The
learning framework of MFAD is independent of factors considered and is effective
as shown in the experiment. Therefore, MFAD has more flexibility and can be
applied to different scenarios for different purposes with ease. In the future, we
will design influence maximization algorithms for MFAD.

Acknowledgments. This work is in part supported by MOST of Taiwan (103-2221-
E-001-038-MY2).
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Abstract. In social network research, community study is one
flourishing aspect which leads to insightful solutions to many practi-
cal challenges. Despite the ubiquitous existence of communities in social
networks and their properties of depicting users and links, they have
not been explicitly considered in information diffusion models. Previous
studies on social networks discovered that links between communities
function differently from those within communities. However, no infor-
mation diffusion model has yet considered how the community structure
affects the diffusion process.

Motivated by this important absence, we conduct exploratory stud-
ies on the effects of communities in information diffusion processes. Our
observations on community effects can help to solve many tasks in the
studies of information diffusion. As an example, we show its applica-
tion in solving one of the most important problems about information
diffusion: the influence maximization problem. We propose a community-
based fast influence (CFI) model which leverages the community effects
on the diffusion of information and provides an effective approximate
algorithm for the influence maximization problem.

1 Introduction

For many years, community study is one of the hot topics in social network
research. Studies in this area offer insightful solutions to many classic problems of
social network research, such as network evolution [14], recommendation system
[19], and expert finding [2]. Communities can be potentially helpful for studies
on diffusion of information in social networks. Previous studies found that links
between communities function differently from those within communities: friends
in the same communities have stronger links, but weaker links between friends in
different communities are crucial in the diffusion of novel information, because
these links provide more useful information to people [1,7,12].

Some key problems in the studies of information diffusion have been found
difficult to solve by traditional information diffusion methods. Studies on the
community structure of social networks may bring new ideas for solving these

c© Springer International Publishing Switzerland 2015
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problems. For example, one of the key problems, the influence maximization
problem for the independent cascade model has been proved to be NP-hard [15].
By considering the effects of community studies on the diffusion of information,
we can easily come up with some intuitive heuristics to solve that problem more
efficiently. For example, we may utilize the community homophily to quickly
estimate the influence of users. We may also select seed nodes from different
communities to minimize the overlap and maximize the influence.

However, few existing work explicitly studied the effects of communities on
the diffusion of information, or use these effects to solve diffusion-related prob-
lems. Motivated by this important absence, we introduce the first exploratory
study on the effects of communities on information diffusion processes. By ana-
lyzing real-world datasets, we study the diffusion of information with communi-
ties. We first observe the action homophily of communities, and then introduce
the concept of role-based homophily of communities, which consists of influencee
role homophily and influencer role homophily. We discover that the role-based
homophily is significantly stronger than the action homophily.

Our findings on community effects can lead to insightful solutions to many
problems in information diffusion studies. As an example application of these
findings, we propose an approximate solution for the influence maximization
problem. We design a community-based fast influence (CFI) model based on the
influencee role homophily of communities. The CFI model applies a community
clustering method to social networks, and makes aggregations on users’ roles
as influencees. Influence maximization algorithm based on the CFI model can
efficiently select seed nodes to maximize the influence. The main contributions
are summarized in the following:
1. We conduct quantitative analyses on real-world datasets to explore the effects
of community on the diffusion of information.
2. We get valuable findings about the community effects from quantitative anal-
yses. We introduce the concept of role-based homophily of communities. These
understandings can bring new insights to the studies of information diffusion.
3. We show an example application of our findings on the influence maximiza-
tion problem. We propose a community-based fast influence (CFI) model, and
an efficient approximate influence maximization algorithm based on that model.

2 Related work

Information Diffusion Problem. Several models have been proposed for the
information diffusion processes. The independent cascade (IC) model and its
variants are most widely used information diffusion models [10,15,16,21]. The
basic idea of the IC model is: if a node in a social network becomes active, it can
make its neighbors active with a probability, and for each node the attempts of
its neighbors to activate it are independent. The influence maximization problem
has been defined for the IC model and a few other information diffusion models
[15]. Given an IC model, the problem is to select a seed set with k nodes so
that the expected number of active nodes are maximized. This problem has
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been proved to be NP-hard. The first solution to it is a greedy algorithm that
repeatedly invokes a computational expensive sampling method [15]. Heuristic
algorithms and optimized versions of the greedy algorithm have been proposed in
previous works [3,4,17]. Work in [22] proposed an heuristic algorithm which finds
influencers from communities. Different from that work, our proposed model is
built on observations on real data and baed on a substantially different idea. A
recent work in [8] defined a group-based version of the influence maximization
problem. The predefined groups studied in that work were not conceptually
equivalent to the communities studied in this paper.

Community Detection. Community detection in social networks has been
studied for years. Varieties of algorithms have been proposed. A good survey is
available in [18]. We are not going to discuss the varieties of existing community
detection methods, except for those that are related to our work in this paper.
Modularity-based methods are a major class of community detection methods.
Among these methods, the fast greedy method [5] is frequently used for com-
munity detection on large-scale networks. In [20], Rosvall et al. proposed the
infomap method. Substantially different from modularity-based methods, the
infomap method is based on flows carried by networks [20]. The SHRINK algo-
rithm in [13] is another algorithm that is related to our work. It is a parameter-
free hierarchical network clustering algorithm that combines the advantages of
density-based clustering and modularity optimization methods. Work in [23] uti-
lized social influence modeling methods in the detection of communities.

3 Preliminary

3.1 Notations

A social network G = {V,E} is a directed graph with a node set V and
an edge set E. A node vi ∈ V represents a user in the social network, while a
directed edge eij ∈ E represents a link from vi to vj .

A community C in the social network G is a subset of the node set V .
We consider non-overlapping communities in this paper. In other words, we
consider the partition of V into a set of communities C = {Ci}m

i=1. Each user
in the network should belong to exactly one of the communities in C. Given a
graph G, a community detection algorithm divides the graph G into a set
of communities C. There are a lot of different community detection algorithms.
Generally, a good community detection algorithm finds a partition, so that (1)
each community is a relatively independent compartment of the graph, and (2)
nodes in the same community tend to have dense links between each other.

We follow the definition of information diffusion process in the IC model
[15]. An information diffusion process starts with a set of seed nodes that are
active at the first place. Active nodes can activate their out-neighbors in the
social network. Once a node is activated, it becomes active and can never become
inactive again. It is quite often for real applications that the information diffu-
sion processes cannot be directly observed. For example, we may observe that a
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person got infected by influenza, but we do not know from whom he got infected.
We define a cascade O = {(v1, t1), . . . , (vm, tm)} as the set of user actions dur-
ing an information diffusion process. An action (vi, ti) in O represents that the
user vi becomes active at time ti. In this paper, we focus on the scenario that the
information diffusion processes are not directly observed, but a set of cascades
is observed.

3.2 Datasets

Foursquare[9]. In this dataset, nodes represent users of the Foursquare website,
while edges represent friendship relations. Actions are defined by check-ins of
users. Each cascade corresponds to a location. When a user checks in at a location
for the first time, she becomes active for the corresponding cascade. This dataset
contains 18,107 users, 245,034 friendship relations, and 476,482 actions of 43,063
cascades.

DBLP. In this dataset, nodes represent authors, while edges represent co-author
relations. We extract a subgraph of the DBLP network with authors and papers
in the areas of data mining and machine learning. We define cascades by terms
(defined by bi-grams) in the titles of papers. When an author has a paper with a
certain term in the title for the first time, he becomes active for the corresponding
cascade. This dataset contains 6,896 users, 111,044 friendship relations, and
1,655,778 actions of 162,904 cascades.

4 Observations

In this section, we explore the community effects on information diffusion pro-
cesses via analyses on real-world datasets. We first identify communities in social
networks, and then study cascades with respect to these communities.

4.1 Identifying Communities for Information Diffusion

Communities in social networks can be defined in many different ways. To under-
stand the effects of communities on the information diffusion in general, we apply
two different community detection algorithms to the two networks, and conduct
community effect analyses for both algorithms.

The two community detection methods that we use to identify communities
are the fast greedy (FG) method [5], and the infomap (IM) method [20]. The FG
method is based on the well-adopted idea of modularity maximization, while the
IM method is a flow-based method, which is essentially different from the mod-
ularity maximization methods. We choose these two methods because (1) they
are all widely-used community detection methods that prove to be efficient and
accurate, and (2) they are based on substantially different ideas. Both methods
are implemented in the igraph network analysis package [6].
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Fig. 1. Distribution of similarity between actions of user pairs

4.2 Action Homophily of Communities

We first look into the effects that communities have on the actions of users. We
construct a vector for each user to keep the action information of that user, and
then compare the vectors between pairs of users. We check whether the users
who belong to the same community are more likely to have similar actions.

Given a set of cascades O = {O1, . . . , Om}, we define an action vector ai

for each user vi, where ai = (ai0, . . . , aim). If the user vi has an action in the
cascade Oj , we set aij to 1. Otherwise, we set aij to 0. For each pair of users vi

and vj , we calculate the cosine similarity between the action vectors ai and aj,
and then study the distribution of similarity. We consider three different cases
here: (1) There is an edge eij between vi and vj , and vi and vj belong to the same
community; (2) There is an edge eij between vi and vj , but vi and vj belong to
different communities; (3) vi and vj is an arbitrary pair of nodes, may or may
not having an edge between them. For each case, we plot the distributions of
similarity, and check whether there is any difference between the distributions.

Figure 1 shows the distributions of similarity in two datasets, with two sets
of communities in each dataset. In each setting, we observe a similar discrepancy
among the three distributions: comparing with linked pairs in different commu-
nities, linked pairs in the same communities have larger similarity; comparing
with arbitrary pairs, linked pairs have much larger similarity. Intuitively, friends
in the same communities tend to have stronger link between each other, and
they have more chances to influence each other indirectly via common friends.
The results are quite consistent for different community detection methods.

4.3 Role-Based Homophily of Communities

We have observed the action homophily of communities. However, although the
similarity between linked pairs in the same communities is relative larger than
the similarity in the other two cases, it is still quite small (typically, less than 0.3).
In this section, we introduce the role-based homophily of communities, and show
that the role-based homophily is more significant than the action homophily.

With a set of cascades O, we build a support matrix S for the influence
between users in the social networks. The element at the i-th row and the j-th
column of the matrix S is the number of potential influences from the user vi

to the user vj . We say there is a potential influence from vi to vj , if both of
them have actions in the same cascade, and the time of vi’s action is earlier
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Fig. 2. Distribution of similarity between influencer feature vectors of user pairs

than the time of vj ’s action. Formally, it is defined as: sij =| {Ok ∈ O | vi, vj ∈
V (Ok) ∧ tOk

i < tOk
j } |, where V (Ok) is the set of users that has an action in the

cascade Ok, and tOk
i is the time of vi’s action in the cascade Ok.

We define si∗, the i-th row of S, as the influencer feature vector of vi,
and s∗i, the i-th column of S, as the influencee feature vector of vi. The
influencer feature vector si∗ captures the influence that vi has on other users in
the social networks, while the influencee feature vector s∗i captures the influence
from other users to the user vi.

Similar to what we did in Section 4.2, we calculate the cosine similarity
between the influencer/influencee feature vectors, and compare the distributions.
Figures 2 and 3 show the comparison of distributions of influencer feature vector
and influencee feature vector, respectively. Similar to Figure 1, comparing with
the other two cases, the similarity is larger for the case that users are linked
and are in the same communities. There are a few new observations that are
interesting:

First, distributions of similarity between influencer/influencee feature vector
(Figures 2 and 3) show significantly larger discrepancy than the distributions of
similarity of action vector (Figure 1). This observation suggests that for users
in the same communities the role-based homophily is much stronger than the
action homophily. The effect of community in the information diffusion process is
better reflected by the roles that users play in the information diffusion process,
rather than the results of information diffusion process (whether being active or
inactive for a cascade).

Second, for friends in the same community, the similarity value of influencer
and influencee feature vectors (typically larger than 0.5) is larger than the sim-
ilarity of action vectors (typically less than 0.3). It suggests that aggregation
on the influencer/influencee feature vectors of users without significant loss of
accuracy is more feasible.

Third, the influencee-based homophily is more significant than the influencer-
based homophily, especially for the FG algorithm. This is easy to understand by
the following example: professors and students in the same research lab have sim-
ilar behaviors as influencees, because when a cascade reaches anyone in the lab,
it is very likely that cascade will reach everyone in the lab quickly, but professors
are probably much stronger influencers than students.
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Fig. 3. Distribution of similarity between influencee feature vectors of user pairs

5 Community-Based Fast Influence Model

Based on the observations in Section 4, we are able to design an efficient influence
model which makes use of the community effects. The community-based fast
influence (CFI) model we propose in this section is an approximate model for
the IC model. The whole framework has three components, namely influence
decoupling, community detection, and influence maximization.

5.1 Influence Decoupling

An intuitive way to construct an approximate information diffusion model based
on community effects is to consider each community as a “super-node” and
make information propagates through “super-edges” between “super-nodes”.
The coarse-grained information diffusion model in [8] is based on a similar idea.

Although this intuitive model is simple and seems reasonable, it may not
work for our task here. When we consider a community as a “super-node”, we
have to aggregate users’ roles as influencers as well as users’ roles as influencees.
This may cause a problem: the influence maximization problem requires us to
determine how influential each user is and find the set of seed nodes that maxi-
mizes the influence. When we aggregate the roles of users as influencers, we lose
the necessary information for solving the influence maximization problem.

To avoid this problem, the CFI model considers the roles of users as influ-
encers and influencees separately. To be specific, we split each node vi in the
network G into an influencer node vout

i and influencee node vin
i , and transform

the network into a bipartite graph Gb. In the graph Gb, there is an edge from
vout

i to vin
j if and only if the edge eij exists in the original graph G. We call this

transformation from the original network G to the bipartite graph Gb influence
decoupling. The left part of Figure 4(a) shows an example of influence decou-
pling. In the original graph G, there is an edge from v4 to v1. Correspondingly,
there is an edge from vout

4 to vin
1 in Gb. The result of influence decoupling is that

we can apply the community-based aggregation to the influencee nodes only.
If we apply the original IC model directly to the decoupled graph Gb, we

will end up with cascades with only two levels, i.e. only the nodes that are
direct out-neighbors of the seed nodes can become active. This problem can
be approximately solved by the community detection and the aggregation of
influencee nodes. Instead of limiting influence to direct out-neighbors, the CFI
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Fig. 4. (a) Inference of the CFI model. (b)-(c) Influence of different sizes of seed set

model allows users to have influence on the communities that their direct out-
neighbors belong to. Notice that we do omit the indirect influence from a user to
the nodes that are neither his out-neighbor nor in the same communities as his
out-neighbor. This is indeed a trade-off between the accuracy and efficiency, but
the loss of accuracy is actually negligible. This is because the influence between
nodes in different communities are smaller than the influence between nodes in
the same communities, and indirect influence are generally very small. We will
also show by experiment that the CFI model is a good enough approximation
to the original IC model.

5.2 Identifying Communities

We now discuss the community detection algorithm. As we have discussed in the
last section, users in the same community should be similar influencees. To iden-
tify communities so that users in the same communities are similar as influencees,
we design an agglomerative clustering algorithm. It starts with clusters with sin-
gle users, and iteratively merges clusters together based on similarity between
clusters. As shown in Figure 4(a), the clustering procedure is conducted on the
original graph G, but the similarity is defined by users’ roles as influencees,
and the communities detected by the algorithm will finally be applied to the
influencee nodes in the decoupled graph Gb.

Similarity. The similarity between two clusters is defined as the cosine similarity
between their incident influence probability vectors. Let pi→j be the probability
that vi influences vj directly or indirectly (i.e. the probability that vj becomes
active if vi is the single seed node). For a cluster C = {vi1 , . . . vinC

}, we define
the influence that user vj on C as:

qj→C =
{

1
nc

∑nC

k=1 pj→ik if ej,ik ∈ E for some ik ∈ C

0 otherwise.
(1)

where nC is the number of nodes in the cluster C.
We define incident influence probability vectors of community C as qC =

(q1→C , . . . qn→C), and the similarity between two clusters C1 and C2 as sim(C1,
C2) = qC1 · qC2/(‖qC1‖‖qC2‖).



90 S. Lin et al.

Influence Probability Estimation. Similar to the learning algorithm for the
IC model in [10], given a set of cascades O, we estimate the influence probability
pi→j from cascades by the equation as follows:

p̂i→j =
sij

si
=

| {Ok ∈ O | vi, vj ∈ V (Ok) ∧ tOk
i < tOk

j } |
| {Ok ∈ O | vi ∈ V (Ok)} | (2)

Since that vi becomes active earlier than vj does not necessarily imply that vi

directly or indirectly influences vj , p̂i→j is not an unbiased estimator of pi→j .
However, it is still a good enough estimator for the CFI model.

Community Detection and Influence Aggregation. The purpose of com-
munity detection in the CFI model learning is to aggregate users who play sim-
ilar roles as influencees, while keep the accuracy of the original IC model. To
serve this purpose, we adopt a community detection strategy that is similar to
the algorithm in [13]. By iteratively merging clusters into larger one, we get a
sequence of super-graph G0, G1, G2, . . .. Each node in these super-graphs corre-
sponds to a cluster. The algorithm starts with graph G0, in which each cluster
contains a single user. In each step t, we find from Gt connected subgraphs that
contain similar nodes, and merge these subgraphs to generate a new super-graph
Gt+1. We repeat these steps, until the similarity between any two neighbors in
Gt are below a threshold θ.

Let C(t) = {C1, . . . Cm(t)} be the set of clusters at the t-th iteration. We say
two clusters C1 and C2 are neighbors, if there exist vi ∈ C1 and vj ∈ C2, s.t. edge
eij or eji exists. For a pair of connected clusters, we say they are a mutually
most similar pair (ms-pair) with similarity ε (denoted by C1 ↔ε C2), if
ε = sim(C1, C2) = maxCi∈N(C1) sim(C1, Ci) = maxCi∈N(C2) sim(C2, Ci), where
N(Ci) is the set of neighbors of Ci.

We define a ms-subgraph as a maximal connected subgraph of Gt that
are connected by ms-pairs. Formally, a graph D is a ms-subgraph of Gt with
similarity ε if and only if (1) for any two nodes Ci, Cj ∈ D, there exist a path
< Ci, C1 . . . Ck, Cj > in D, s.t. Ci ↔ε C1, C1 ↔ε C2,. . . ,Ck−1 ↔ε Ck, Ck ↔ε Cj ;
(2) for any nodes Ci �∈ D and Cj ∈ D, Ci and Cj are not a ms-pair. By this
definition, the graph can be partitioned into ms-subgraphs (some ms-subgraphs
may contain only one single node). By merging ms-subgraphs into new nodes,
the original super-graph can be reduced into a smaller super-graph.

At the iteration t, we first find out all the ms-subgraphs of Gt, and then merge
each ms-subgraph D that contains more than one nodes and has similarity ε ≥ θ
into a new node. The new node is a neighbor to any node that was a neighbor
of any node in D, and the similarity between the new nodes and its neighbors
need to be recalculated. The algorithm stops when the similarity between each
linked nodes are less than the threshold θ, and the clusters at that point of time
are taken as communities.

5.3 CFI-Based Influence Maximization Algorithm

In this subsection, we show how we can design a CFI-based algorithm for the
influence maximization of the IC model. The influence maximization problem
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is defined as follows: Given an IC model and an integer k > 0, find a set of k
seed nodes, so that the influence of the seed nodes is maximized. The standard
method to solve this problem is a greedy algorithm [15]. It starts with finding
one seed node that maximizes the influence, and then adds a second node to
the seed node set so that the increase of influence is maximized. In this way,
it repeatedly adds nodes to the seed node set, until it gets k seed nodes. This
greedy algorithm is very time-consuming, because in each step it uses the Monte
Carlo method to evaluate all the remaining nodes. Optimized versions of the
greedy algorithm have been proposed in [17] and [11], and heuristic algorithms
have been proposed in [3]. These algorithms also use sampling for the evaluation
of nodes. We can get a new heuristic algorithm based on the CFI model. This
new heuristic algorithm does not involve random sampling, so it is faster than
the existing algorithms, especially when the number of seed nodes k is large.

The CFI-based influence maximization algorithm also adopts a greedy frame-
work. In each step t, the node that can maximize the influence increase is
selected. The problem is how we can estimate the influence increase using the
CFI model. When t = 1, the problem is reduced to estimating the influence of
each single node. Let C = {C1, . . . Cm} be the set of communities in the CFI
model. We estimate the influence of a user vi as Inf({vi}) =

∑
C∈C ncqi→C ,

where nc is the number of users in the community C.
Once we select the node with the greatest influence to be the first seed

node, we cannot simply select the second most influential node to be the second
seed node, because the nodes activated by the first node and the second node
may overlap. We need to deduct the number of nodes that has already been
activated by the first node. To do that, we decrease the number of nodes from
each community by the estimated influence of the first node vi1 . Formally, we
let n1

c = nc −ncqi1→C , which is the expected number of nodes in the community
C that are not activated by the influence of vi1 , and then we select the second
node vi2 by maximizing the increase of influence: ΔInf(v) = Inf({vi1 , v}) −
Inf({vi1}) =

∑
C∈C n1

cqi2→C . For t = 3, . . . , k, we can repeat the above step
to select vi3 , . . . , vik . Generally, we select vit by maximizing

∑
C∈C nt−1

c qit→C ,
where nt−1

c = nt−2
c − nt−2

c qit−1→C .

6 Experiment

6.1 Experiment Setup

We use the DBLP and Foursquare networks described in Section 3 for the exper-
iment. For each network, we construct an IC model by assigning diffusion prob-
ability 1 − e−0.01c to each edge. A similar method for model construction has
been used in [4]. For the DBLP network, c is the number of papers coauthored by
the two authors. For the Foursquare network, c is the number of locations that
both users visited. We do not construct the ground-truth models by learning the
diffusion probabilities directly from the actions in the datasets because we want
to avoid the inaccuracy caused by model learning algorithm.
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We then sample each ground truth IC model to get 5,000 cascades, each
with 10 seed nodes and use the sampled cascades to learn the CFI model. For
the baselines, since they are all based on the IC model, we directly apply the
influence maximization algorithms on the ground truth model. We evaluate the
influence of seed nodes by sampling the ground truth model 10,000 times to get
the average number of active nodes. We compare the following algorithms:

– CFIGreedy The CFI-based influence maximization algorithm with θ = 0.4.
– ICGreedy The greedy influence maximization of IC model with the CELF++

optimization [11]. We take a sample size of 10, 000 to estimate the influence.
– Degree The heuristic algorithm that selects the nodes with the largest

weighted degree. The weighted degree of a node is the sum of the diffusion
probabilities over the out-going edges.
– DegreeDiscount The degree discount heuristics based on the degree heuris-

tics [4]. The basic idea is to discount the degree for users whose friends have been
selected as seed nodes.
– Random Randomly selecting seed nodes.

6.2 Results

Effectiveness Results for Influence Maximization. First, we present the
effectiveness results of the influence maximization algorithms in terms of the
number of seed nodes. We test the effectiveness of each algorithm with increas-
ing number of seed nodes. The results of the DBLP and Foursquare datasets are
illustrated in Figures 4(b) and 4(c), respectively. In each case, we illustrate the
number of seed nodes on the X-axis, and the influence of seed nodes on the Y-
axis. For the Foursquare data, CFIGreedy performs worse than ICGreedy when
the size of the seed set is small, but does better than ICGreedy when the size is
greater than 25. This is a very interesting observation. Although the CFI model
is designed to be an approximate model for the IC model, the greedy algorithm
of the CFI model does not necessarily performs worse than the greedy algorithm
of the IC model. This is because the CFI model considers the community struc-
ture of social networks, and the consideration of community structure may favor
combinations of seed nodes that cover more communities. For the DBLP dataset,
CFIGreedy is less effective than ICGreedy. However, the difference is not very
significant, especially when we consider the fact that CFIGreedy is signifi-
cantly faster. Besides, CFIGreedy consistently outperforms DegreeDiscount,
Degree and Random. Notice that although DegreeDiscount is a simple heuris-
tic method, previous work showed that it is a very effective method that nearly
matches the performance of ICGreedy [4].

Efficiency Results for Influence Maximization. We also tested the effi-
ciency of influence maximization methods with varying number of seed nodes.
The efficiency results for the DBLP and Foursquare datasets are illustrated
in Figures 5(a) and 5(b), respectively. The X-axis denotes the number of seed
nodes, whereas the Y-axis denotes the running time. Since heuristics as Random,
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Fig. 5. (a)-(b) Running time with different sizes of seed set; (c)-(d) Effects of θ

Degree, and DegreeDiscount are obviously very fast, we only show the run-
ning time of CFIGreedy and ICGreedy. As illustrated in the figures, influence
maximization based on CFIGreedy is several orders of magnitudes faster than
ICGreedy with CELF++ optimization. We also add together the time spent
on the learning of the CFI model and the running time of CFIGreedy to get a
total time for the influence maximization on the CFI model, and illustrate the
total time as “CFI(+learning time)” in the figures. Even when the learning time
is added, the total running time for the CFI model is still significantly smaller
the running time of ICGreedy. For example, for the DBLP dataset, it takes
ICGreedy 9,079 seconds to find 60 seed nodes, while the total running time of
the CFI model is 34 seconds. Notice that, in real applications, the IC models
also need to be learned from user actions, and the running time of ICGreedy
should also be added with the learning time of the IC model.

Parameter Sensitivity. Finally, we tested the sensitivity of the CFI-based
influence maximization with the clustering threshold θ. Figure 5(c) shows the
influence of seed nodes selected by the CFI model with varying θ. We illustrate
the value of θ on the X-axis, and the influence of seed nodes on the Y-axis.
Figure 5(d) shows the total running time of influence maximization with varying
θ. We illustrate the value of θ on the X-axis, and the total running time of the
influence maximization (the running time of model learning plus the running
time of CFIGreedy) on the Y-axis. In each case, the number of seed nodes is
set to 50. We show the results on the Foursquare dataset, while similar trends
are observed on the DBLP dataset. When the threshold θ decreases, the running
time increases, because the agglomerative clustering takes more steps when θ is
smaller. It is an interesting observation that the influence does not monotonically
increases when θ decreases. When θ is too large, the size of communities are
very small, so the CFI model omits too much indirect influence. When θ is too
small, the users in the same community do not have enough similarity between
each other. Both cases cause loss of accuracy. Nevertheless, we notice that the
variation of influence is not significant. The Y-axis of Figure 5(c) does not start
at 0. When θ varies from 0.3 to 1.0, the variation of influence is within ±1.5%.

7 Conclusion

In this paper, we explore the effects of communities on the information diffu-
sion processes. We quantitatively analyze the real-world information diffusion
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datasets to get insightful findings on the community effects. As an application
of these findings, we propose the CFI model, which is substantially different
from existing approximate algorithms. Experiment shows that the CFI-based
influence maximization algorithm can get comparable effectiveness as influence
maximization algorithms based on the IC model, but is significantly faster. Our
work sheds light on the effects of communities in the diffusion of information,
and brings a new idea to the approximation of information diffusion processes.

Acknowledgments. This work is supported in part by NSF through grants CNS-
1115234, and OISE-1129076, Google Research Award, and the Pinnacle Lab at Singa-
pore Management University.

References

1. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in
information diffusion. In: WWW (2012)

2. Balog, K., Azzopardi, L., de Rijke, M: Formal models for expert finding in enter-
prise corpora. In: SIGIR (2006)

3. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: KDD (2010)

4. Chen, W., Wang, Y.: Efficient influence maximization in social networks. In: KDD
(2009)

5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6 Pt 2), 066111 (2004)

6. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
Inter. Journal, Complex Systems, 1695 (2006)

7. Eagle, N., Macy, M., Claxton, R.: Network diversity and economic development.
Science 328(5981), 1029–1031 (2010)

8. Eftekhar, M., Ganjali, Y., Koudas, N.: Information cascade at group scale. In:
KDD (2013)

9. Gao, H., Tang, J., Liu, H.: Exploring social-historical ties on location-based social
networks. In: ICWSM (2012)

10. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: WSDM (2010)

11. Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: optimizing the greedy algorithm
for influence maximization in social networks. In: WWW (2011)

12. Granovetter, M.S.: The Strength of Weak Ties. The American Journal of Sociology
78(6), 1360–1380 (1973)

13. Huang, J., et al.: Shrink: a structural clustering algorithm for detecting hierarchical
communities in networks. In: CIKM (2010)

14. Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks.
Phys. Rev. E 64, 046132 (2001)

15. Kempe, D., Kleinberg, J.: Maximizing the spread of influence through a social
network. In: KDD (2003)

16. Lappas, T., Terzi, E., Gunopulos, D., Mannila, H.: Finding effectors in social net-
works. In: KDD (2010)

17. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Vanbriesen, J., Glance, N.:
Cost-effective outbreak detection in Networks. In: KDD (2007)



Understanding Community Effects on Information Diffusion 95

18. Newman, M.E.J.: Modularity and community structure in networks. PNAS
103(23), 8577–8582 (2006)

19. Reddy, P.K., Kitsuregawa, M., Sreekanth, P., Rao, S.S.: A graph based approach to
extract a neighborhood customer community for collaborative filtering. In: Bhalla,
S. (ed.) DNIS 2002. LNCS, vol. 2544, pp. 188–200. Springer, Heidelberg (2002)

20. Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. The European
Physical Journal Special Topics 178(1), 13–23 (2009)

21. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time informa-
tion diffusion model for social behavioral data analysis. In: Zhou, Z.-H., Washio,
T. (eds.) ACML 2009. LNCS, vol. 5828, pp. 322–337. Springer, Heidelberg (2009)

22. Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for
mining top-K influential nodes in mobile social networks. In: KDD (2010)

23. Zhou, Y., Liu, L.: Social influence based clustering of heterogeneous information
networks. In: KDD (2013)



On Burst Detection and Prediction
in Retweeting Sequence

Zhilin Luo1, Yue Wang2, Xintao Wu3(B), Wandong Cai4, and Ting Chen5

1 Shanghai Future Exchange, Shanghai, China
luo.zhilin@shfe.com.cn

2 University of North Carolina at Charlotte, Charlotte, USA
ywang91@uncc.edu

3 University of Arkansas, Fayetteville, USA
xintaowu@uark.edu

4 Northwestern Polytechnical University, Xi’an, China
caiwd@nwp.edu.cn

5 Northeastern University, Boston, USA
tingchen@ccs.neu.edu

Abstract. Message propagation via retweet chain can be regarded as
a social contagion process. In this paper, we examine burst patterns in
retweet activities. A burst is a large number of retweets of a partic-
ular tweet occurring within a certain short time window. The occur-
ring of a burst indicates the original tweet receives abnormally high
attentions during the burst period. It will be imperative to character-
ize burst patterns and develop algorithms to detect and predict bursts.
We propose the use of the Cantelli’s inequality to identify bursts from
retweet sequence data. We conduct a comprehensive empirical analysis of
a large microblogging dataset collected from the Sina Weibo and report
our observations of burst patterns. Based on our empirical findings, we
extract various features from users’ profiles, followship topology, and
message topics and investigate whether and how accurate we can predict
bursts using classifiers based on the extracted features. Our empirical
study of the Sina Weibo data shows the feasibility of burst prediction
using appropriately extracted features and classic classifiers.

1 Introduction

Microblogging, such as Twitter and Sina Weibo, has attracted a huge number of
users and becomes increasingly popular. In Twitter, a user can tweet any message
within 140-character limit or share pictures, follow any interesting users, and
comment or retweet messages that she received from her followees. A tweet can
reach the immediate followers of the owner user and can further reach other users
when retweeted by some followers. Hence the retweeting mechanism empowers
users to spread their ideas beyond the research of the original tweet’s followers.
Message propagation via retweet chain can be regarded as a social contagion
process.

c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 96–107, 2015.
DOI: 10.1007/978-3-319-18038-0 8
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In this paper, we examine burst patterns in retweet activities. A burst is a
large number of retweets of a particular tweet occurring within a certain short
time window. We can consider a burst as a spike and its duration is often short
as compared to the surrounding non-burst durations. The occurring of a burst
indicates the original tweet receives abnormally high attentions during the burst
period. As a result, it will be imperative to characterize burst patterns and
develop algorithms to detect and predict bursts.

Many tweets receive little interests in their life cycle and have no burst at all.
The propagation of those no-burst tweets often experiences only two stages: low
growth and long extinction. However, for tweets that receive significant atten-
tion and spread widely in microblogging sites, their propagation often expe-
rience eruption, continuance and extinction. Some tweets have a distribution
with single-burst whereas other tweets have a distribution with multi-burst. The
single-burst indicates that the original tweet receives wide intensive attention in
its short period of eruption and then fades away gradually without raising any
further significant attention. On the contrary, some tweets may receive intensive
attention in several different periods of times during their life cycle due to some
triggering event. As a result, they have a distribution with multi-burst. The
multi-burst is often characterized by slowly alternating phases of near steady
state behavior and rapid spikes. The propagation of multi-burst tweets has five
cyclic stages: eruption, continuance, decay, dormant and reflourish, within their
(often long) life durations.

In this paper, we propose the use of the Cantelli’s inequality to identify
bursts from retweet sequence data. We treat bursts as outliers (i.e., significantly
different from the average) in retweet sequence data. We then conduct a compre-
hensive empirical study of burst pattern using the Sina Weibo data and examine
various factors, including tweet users and topics, that may have effects on burst.
We extract various features from users’ profiles, followship topology, and mes-
sage topics and investigate whether and how accurate we can predict bursts
using classifiers based on the extracted features.

2 Burst Characterization

We define the life duration of a particular tweet as the time period from when
it was originally posted to when it was lastly retweeted. We convert the retweet
frequency information of a given tweet into a time series where each value indi-
cates the number of occurrence of retweets during the time window. The size
of the time window could be minutes, hours, or even days dependent on the
application. Formally, denote ti the ith time window after the original tweet is
posted, and xti the number of retweets in the ith time window. The retweet time
series is defined by X = xt1 , xt2 , . . . , xtn . A burst is a large number of retweets
occurring within certain time windows of the tweet’s life duration. We define the
burst duration of the tweet as the total number of time windows for which all
bursts last.
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Fig. 1. The retweeting time series of a tweet

Figure 1 shows an example of a retweet series with three bursts: t1 to t2 for the
first burst, t3 to t4 for the second burst, and t5 to t6 for the third burst. The retweet-
ing sequence often has a much longer non-burst duration which includes the period
before the the first burst, the periodbetween two consecutive bursts, and the period
after the last burst. We propose the use of the Cantelli’s inequality to identify those
bursts.

Theorem 1. (Cantelli’s inequality) Let X be a random variable with finite
expected value μ and finite non-zero variance σ2. Then for any real number λ

Pr(X − μ ≥ λ)

{
≤ σ2

σ2+λ2 if λ > 0,

≥ 1 − σ2

σ2+λ2 if λ < 0.
(1)

The Cantelli’s inequality is a generalization of Chebyshev’s inequality in the
case of a single tail. When λ > 0, we have Pr(X − μ ≥ λσ) ≤ 1

1+λ2 . We treat as
outliers those values that are more than λ standard deviations σ away from the
mean μ. The number of outliers are no more than 1/(1 + λ2) of the distribution
values. Those outliers form the bursts in the retweeting sequence. In our paper,
we set the λ value as 2.

3 Empirical Evaluation of Burst Patterns

We conduct an empirical study using the WISE 2012 Challenge Data 1. The
WISE 2012 Challenge is based on a dataset collected from the Sina Weibo, one of
the most popular Microblogging service in China. In the data, content of tweets
are removed and some tweets are annotated with events. For each event, the
terms that are used to identify the event are given. Each tweet includes the basic
information such as time, user ID, message ID, mentions (user IDs appearing
in tweets), retweet paths, and whether containing links. The followship network
is also provided. The data set contains 5,636,858 users with 46,584,914 original
tweets being retweeted by 190,920,026 times.
1 http://www.wise2012.cs.ucy.ac.cy/challenge.html

http://www.wise2012.cs.ucy.ac.cy/challenge.html
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Fig. 2. Retweet distribution from WISE 12 Challenge data (200M tweets)

3.1 An Overview of Retweet Patterns

Our preliminary findings are summarized below.

– Figure 2(a) shows the distribution of the number of retweets that each tweet
receives. We observe from the figure that most of the original tweets receive
less than 10 retweets in their lifetime, while a small number of tweets receive
hundreds or even thousands retweets, e.g., the largest number of retweets
from a single tweet reaches 34,096 in the data set.

– Figure 2(b) shows the distribution of the number of retweets that each user
receives. Tweets authored by a small number of influential users (e.g., celebri-
ties, actors, stars) are very popular and receive most retweets. For exam-
ple, the top 100 most influential users receive 46,094,478 retweets in total,
about 24.2% of all retweets; while the top 1000 most influential users receive
86,501,021 retweets, about 45.3% of all retweets.

– Figure 2(c) shows the distribution of retweeting time of each retweet. We
can observe that most retweets occur in a very short period of time after the
tweet’s posting. For example, 81.8% of the tweets would not be retweeted
any more after the first day and only 6.28% of the tweets would last for more
than two days. However, a small number of tweets would still be retweeted
even after 100 days.
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– Figure 2(d) shows the path length distribution of each retweet. The path
length of a retweet is defined as the number of hops of the retweeting user
away from the original user who posts the tweet. For example, given a
retweeting sequence of A → B → C → D, user A’s tweet is retweeted
by user B, then retweeted by user C through user B, and finally retweeted
by user D through user C. The path length of the retweet by user C is 2
while the path length of the last retweet by user D is 3. We can observe
from the figure that 57.9% of the retweets have one single hop and 98.6%
of the retweets are within five hops, matching the concept of six degrees of
separation in social networks.

3.2 Burst Pattern

In the previous section, we found that some popular tweets are widely retweeted
and their retweets last a long time after their posting. On the contrary, a majority
of tweets would not be retweeted any more shortly after their posting. In this
section, we focus on those tweets that have been retweeted more than 100 times
in the data set. We extract 207,259 such tweets.

For those 207,259 popular tweets (each receiving more than 100 retweets), the
majority (68.71%) include only one single burst, which often occurs in the first
day when the original tweet is posted. 12.84% tweets have no burst and 18.45% of
tweets have multi-burst. Tweets with multi-burst often have longer path lengths
and longer active duration time than tweets with single or no burst, as shown
in Table 1. Among the tweets with multi-burst, there are 31,300 tweets with
two bursts and 2,782 tweets with more than 4 bursts. The maximum number of
bursts is 17 in the data set.

Table 1. The burst distribution and the average path length of 207,259 original tweets
(each receiving more than 100 retweets)

Burst Number of tweets Ratio(%) Avg. of path length Avg. of life duration (days)

No 26620 12.84 2.03 4.78

Single 142406 68.71 2.09 10.27

Multi 38233 18.45 2.32 18.87

Different Bursts. We examine whether the average path length of retweets
occurred in each burst period is different. Our conjecture is that for a tweet
authored by user A, its retweets occurred in the first burst are more from user
A’s immediate followers and retweets occurred in later bursts are more from A’s
indirect followers. Our findings show that the average path length of retweets in
the first burst is shorter than that in following bursts. Specifically, the average
path lengths for the first four bursts in our data set are 2.08, 2.29, 2.92, and 2.99
respectively, which validates our conjecture.

We further examine the path length distribution of retweets occurred in each
burst. Each curve in Figure 3 shows the fraction of retweets for each path length
value from 1 to 10. For retweets occurred in the first burst, 45.6% of retweets
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Fig. 3. Path length distribution of retweets occurred in each peak

have the path length of 1 and 30.6% of retweets have the path length of 2.
However, for retweets occurred in the second burst, 39.3% of retweets have the
path length of 2, which are more than the number of retweets (35.1%) with the
path length of 1. This shows that the second burst is mainly caused by non-
immediate followers of original users who post the tweets. We have the similar
phenomenon for the third burst and the fourth burst.

Burst Pattern vs. Topics. We examine whether topics of original tweets
have effects on burst patterns. We extract four hot topics, i.e., house price, xiao
mi release, family violence of Li Yang, and case of running fast car in Hei Bei
university. We denote them as House, Xiaomi, Li Yang, and He Bei, respectively.
For those tweets with no assigned topic, we group them in the Unknown category.

Table 2. The comparison of different topics

Topic Avg. of path length. Avg. burst duration(days) Avg. life duration(days)

Unknown 1.90 2.95 15.85

House 2.66 3.05 22.75

Xiao Mi 2.62 3.39 16.32

Li Yang 2.89 3.71 21.20

He Bei 2.97 3.64 28.15

Table 2 shows the general comparison of different categories in terms of path
length, burst duration, and life duration. We can see that the tweets from the
Unknown category have shorter path length, shorter burst duration, and shorter
life duration time than the tweets with known topics. This indicates tweets with
some particular hot topics are often widely propagated in the microblogging site.

Figure 4 shows the path length distribution for each topic category under
study. The curve of No Topic (aka, Unknown) is significantly different from
other curves corresponding to known topic categories. We can observe that the
proportions of retweets from Unknown category with path length 1 and 2 are 45%
and 38% respectively, which are much higher than the corresponding proportions
for retweets with known topics.
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Table 3. The information of different types of users

Users Avg. of path length. Avg. burst duration(days) Avg. life duration(days)

Top 100 1.86 2.73 10.63

Top 100-1000 2.17 3.05 18.34

Normal 3.04 3.77 28.46

Burst Pattern vs. Users. We examine whether different types of users who
post tweets have effects on burst pattern. Table 3 shows the general comparison
of three types of users: top 100, top 100-1000, and normal users. We define the
top 100 users as those who rank among the top 100 in terms of the total number
of retweets each user receives. We can see there are significant differences in
terms of path length, peak time, and duration time among three types of users.
Tweets from the top 100 most influential users have much shorter path lengths,
burst duration, and tweet life duration than the top 100-1000 and normal users.

Figure 5 shows the path length distribution for each type of user under study.
We can observe that the proportions of retweets of those tweets authored by the
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top 100 users with path length 1 and 2 are 46% and 39%, respectively, which are
much higher than the corresponding proportions for tweets from the top 100-
1000 and normal users. This phenomena shows that the top 100 most influential
users can propagate their messages more quickly in the microblogging site than
other users.

4 Burst Prediction

We are interested in the following prediction problem: given a tweet with known
information about its content, its user profile, the followship topology, and the
observed retweet sequence in the first 12 hours, can we predict whether the tweet
will have multi-burst in the future of its life cycle.

One challenge here is what kind of features we can extract from the known
information and how useful they are for burst prediction. In our study, we extract
178 features from the a-priori known information of a tweet (i.e., its topics, user
profile, followship topology, and its observed retweet sequence in the first 12
hours). The extracted features can be roughly grouped into two main classes:
user-related and tweet-related.

In the user-related class, we extract features from the profile of the user who
posts the original tweet. For example, we extract the number of his immediate
followees, the number of his two-hop followees, the number of tweets the user
has authored, the average number of retweets received in the first 12 hours for
all his tweets, and the numbers of tweets with no, single, and multiple bursts.

In the tweet-related class, we extract the features such as the tweet’s post
time, first retweeting time, the presence/absence of hot topics in the tweet, the
presence/absence of hot topics in its retweets, the presence/absence of @users in
the tweet, the presence/absence of @users in its retweets, the number of retweets
containing @users and the number of @users in its retweets, etc. For each tweet,
we also build a retweet tree from its observed retweet sequence in the first 12
hours and extract features such as the maximum width, the maximum height,
the number of retweet users, and the average path length.

In our experiment, we exclude from the Sina Weibo dataset those records in
which the original tweets’ user ID could not be found in the followship network.
Finally, we build a training data set with 30,084 tweets with no multi-burst and
30,030 tweets with multi-burst.

We run a suite of 7 classifiers: Logistic Regression (LR), Random Forest(RF),
Decision Tree (DT), Naive Bayes (NB), Support Vector Machine (SVM), Stochas-
tic Gradient Descent (SGD), and k-Nearest Neighbor (kNN). We take the 10 fold
cross-validation for each classifier. The accuracy result is shown in Figure 6. We
can observe that Random Forest, Decision Tree, k-Nearest Neighbor, and Logistic
Regression achieve good prediction results in terms of accuracy (higher than 72%).

We then analyze the effect of each feature on prediction. We take the logis-
tic regression coefficient as the effect. The regression coefficients represent the
change in the logit for each unit change in the feature. The larger the absolute
value of the coefficient is, the more effect the feature takes. Formally, we can
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use the likelihood ratio test or the Wald statistic to assess the significance of an
individual feature. Our results show that there are only 20 features with rela-
tively large coefficient values. Figure 7 plots the logistic regression coefficient for
each feature where X-axis represents different features and Y-axis shows each
feature’s coefficient value. We list top 5 most significant features in Table 4. We
can see that the average number of retweets with path length 1 of the user’s all

Table 4. Top 5 most significant features (PL1 denotes path length 1)

Index Meaning Coefficient

121 Avg no of PL1 retweets of user’s all tweets 3.95E-05

87 Avg no of PL1 retweets (first 12h) of user’s no-burst tweets 3.51E-05

50 Avg no of retweets (first 12h) of user’s multi-burst tweets -3.37E-05

84 Avg no of retweets (first 12h) of user’s no-burst tweets 3.14E-05

82 Avg no of retweets of user’s no-burst retweets -2.86E-05
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tweets is the most significant feature with the coefficient value 3.95E-05. In our
future work, we will conduct detailed correlation analysis and examine prediction
performance after removing those redundant features.

5 Related Work

Examining retweet behavior has been an active research area recently [7–9,12,
13]. For example, the authors in [7] studies the coverage prediction of retweets,
i.e., what is the number of times that a particular message posted by a user will
be retweeted. In [13], the authors examine various factors such as user, message,
and time and propose a factor graph model to predict whether a user will retweet
a message. The authors in [9] study why people retweet and examine the anti-
homophily phenomena. In [8], the authors examine the use of log-linear modeling
to identify multi-way interactions between retweet and various features such as
power ratio, link structure and users’ profile information. In [12], the authors
analyze the ways in which hashtags spread on twitter and show widely-used
hashtags on different topics spread significantly different.

Change detection models [1,4] provide a standard approach to detecting devi-
ations from baseline. Usually we assume the mean and variance of a distribution
representing normal behavior and the mean and variance of another distribu-
tion representing behavior that is abnormal. We can measure deviations from
normal using the generalized likelihood ratio. For example, in [4], the authors
assume both distributions are Gaussian with the same variance and the change
is reflected in the mean of the observations. In this context, they apply the
generalized likelihood ratio to score changes from baseline.

Techniques for finding burst patterns in data streams have also been pre-
sented in [6,11,15,16]. In [6], the authors examine bursty structure in tempo-
ral text streams (e.g., emails or blogs). They examine how frequency words
change over time. The burstiness of words is defined as those words with signifi-
cantly higher frequency than others. They propose to model the stream using an
infinite-state automaton, in which bursts appear naturally as state transitions.
In [16], the authors examine point monitoring and aggregate monitoring in time
series data streams and design a new structure, called the Shifted Wavelet Tree,
for elastic burst monitoring. In [15], the authors propose a family of data struc-
tures based on the Shifted Binary Tree for elastic burst detection and develop a
heuristic search algorithm to find an efficient structure given the input. In [11],
the authors study how to detect, characterize and classify bursts in user query
logs of large scale e-commerce systems. The authors build several models that
continually detect newer bursts with minimal computation and provide a mech-
anism to rank the identified bursts based on a number of factors such as burst
concentration, burst intensity and burst interestingness. They also propose sev-
eral quantities to rank bursts including duration of burst, mass of burst, arrival
rate for burst, span ratio, momentum of burst, and concentration of burst, and
apply unsupervise learning techniques to classify the bursts based on their pat-
terns. Although extensive work has been done in related fields for mining various
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temporal patterns, we notice that very little work has been done to detect and
predict interesting burst patterns from large-scale retweet sequence data.

Message propagation can be regarded as a social contagion process. There
has been research on rumor propagation [5,10,14]. In [14], the authors study the
dynamics of an epidemic-like model for the spread of a rumor on a small-world
network. In [10], the authors study the dynamics of a generic rumor model on
complex scale-free topologies and investigate the impact of the interaction rules
on the efficiency and reliability of the rumor process. In [5], the authors apply the
susceptible-infectious-recovered and susceptible-infectious-susceptible models to
study the spreading process in complex networks. However, we notice that very
little work has been done to detect and predict burst patterns.

6 Conclusion

In this paper, we have proposed the use of the Cantelli’s inequality to identify
bursts from retweet sequence data. With the use of the Cantelli’s inequality,
we do not need to assume the distribution of the retweet sequence data and
can still identify bursts efficiently. We conducted a complete empirical study of
burst pattern using Sina Weibo data and examined what factors would affect
burst. We extracted various features from users’ profiles, followship topology, and
message topics and investigated whether and how accurate we can predict bursts
using various classifiers based on the extracted features. Our empirical evaluation
results show the burst prediction is feasible with appropriately extracted features
and classifiers.

In our future work, we will investigate various regression analysis methods
[3] on extracted features to predict when a tweet produces its first burst as well
as following bursts. We will analyze the bursts to see what their causality was by
matching external events that might have caused the bursts. In our future work,
we will also study how to classify bursts based upon their shapes, durations, and
derived burst characteristics. We will examine various burst characteristics such
as burst concentration, burst intensity and burst interestingness. We will study
how the window size affects burst detection and categorization. Finally, we will
study the use of topic modeling [2] to analyze tweet content and automatically
identify the topics of every tweet.
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Abstract. To help users find popular topics of discussion, Twitter peri-
odically publishes ‘trending topics’ (trends) which are the most discussed
keywords (e.g., hashtags) at a certain point of time. Inspection of the
trends over several months reveals that while most of the trends are
related to events in the off-line world, such as popular television shows,
sports events, or emerging technologies, a significant fraction are not
related to any topic / event in the off-line world. Such trends are usually
known as idioms, examples being #4WordsBeforeBreakup, #10thingsI-
HateAboutYou etc. We perform the first systematic measurement study
on Twitter idioms. We find that tweets related to a particular idiom
normally do not cluster around any particular topic or event. There are
a set of users in Twitter who predominantly discuss idioms – common,
not-so-popular, but active users who mostly use Twitter as a conversa-
tional platform – as opposed to other users who primarily discuss topical
contents. The implication of these findings is that within a single online
social network, activities of users may have very different semantics; thus,
tasks like community detection and recommendation may not be accom-
plished perfectly using a single universal algorithm. Specifically, we run
two (link-based and content-based) algorithms for community detection
on the Twitter social network, and show that idiom oriented users get
clustered better in one while topical users in the other. Finally, we build
a novel service which shows trending idioms and recommends idiom users
to follow.

1 Introduction

Twitter is now considered more of an ‘information network’ than a social net-
work [6] and almost the entire focus of the research community has been on ‘top-
ical’ content in Twitter, such as tweets / hashtags related to sports or technology
or emergency situations in the off-line world [2]. However, a closer inspection of
the Twitter trending topics (‘trends’ in short) – keywords periodically declared
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 108–121, 2015.
DOI: 10.1007/978-3-319-18038-0 9
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Table 1. Percentage of Twitter trends collected over ten months, and classified into
nine different categories that were identified by human volunteers (details in Section 2).
Also given are few examples of trends.

Category % Example trends

Entertainment 33% #5sosonKiis, #IWishICould, #Austinonidol

Sports 30% #argentinavsholanda, #lakers, #bravsger

Idioms 9% #WhenIWasATeenager, #FactsaboutMe, I get
angry when

Technology 8% #iphone6, #galaxy4, AppleWatch, ios8

Politics 5% #tcot, #pjnet, #obama, #gaza

Business 5% #amazon, #AlibabaIPO, #FedReserve

Religion 3% #EidMubarak, #jesus, #citrt

Health 2% #Ebola, #Who, #breastcancer

Others 5% #garlicparmpizza, #filipino, cheesecake, pizza is healthy

by Twitter as being the most discussed at that point in time – indicates some
exceptions to this view, and provides the motivation for the present study.

We collected US trends over a duration of 10 months (January – October,
2014) using the Twitter API at 15-minute intervals. This gave about 18,500 dis-
tinct trending topics during this period. We then developed a classifier Odin1

and classified the trends into multiple categories such as sports, entertainment,
technology etc. – these broad categories were identified by human volunteers
(details in Section 2). Table 1 shows the distribution of the trends in the dif-
ferent broad categories. While most of the categories are topical and related to
events in the off-line world, it can be observed that a special category, known as
idioms2, regularly becomes trending. Examples of idioms include #4WordsBe-
foreBreakup, #11ThingsAboutYou, and apparently these are not related to any
topic or event in the off-line world.

The frequent presence of such trends is intriguing – it raises the question
whether their dynamics as well as the users discussing such trends are similar
to those of the topical counterparts. To understand the dynamics, we collected
tweets related to hundreds of idioms and the users who discuss them, and con-
ducted a detailed measurement study. We find that the tweets containing idioms
are mainly conversational in nature; for instance, they hardly contain URLs.
On investigating the users who post the tweets (the idiom-users), we find that
they are mostly general and active Twitter users, as opposed to being popular
experts / celebrities who usually drive topics such as politics and entertainment.
The idiom-users maintain close friendships among themselves and interact on
diverse issues with their friends. Thus, the study unfurls that hidden within the
1 Named after the God of Wisdom according to Norse mythology; details in Section 2.
2 In this study, we follow the definition of idioms given by [13] – an idiom is a keyword

representing a conversational theme on Twitter, consisting of a concatenation of at
least two common words which does not include names of people, places or music
albums etc.
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information network of Twitter, there is a social network of users who regularly
have “non-topical” conversations among themselves.

Such an inference has far-reaching implications. It essentially means that
multiple dominant dynamics are present in the same social network – so the
standard tasks like community detection, recommendation, and so on, cannot
be done using a one-parameter-fits-all approach. An algorithm to identify (rec-
ommend) topical groups might fail to identify (recommend) idiom-users. To test
this proposition, we run two community detection algorithms – one identifying
topical groups [2] and the other, Infomap [14] which detects communities using
link structure. We find that the idiom-users are well identified by Infomap while
the topical groups are better identified by [2]. This establishes that different
approaches for tasks such as clustering may have different utilities in a heteroge-
neous online social network. Further, considering that all existing recommender
services are specifically meant to recommend topical experts, we develop a ser-
vice Idiomatic where one can easily follow popular idiom-users, see the recent
and past trending idioms and post tweets using them.

2 Classification of Trends

In order to perform a large scale study on idioms and the trends related to
topics / events in the off-line world, we built an automatic classifier Odin, to
distinguish particular trends based on whether they are idioms or related to some
topic. Note that some prior studies [7,21] have also attempted to classify trends
(not necessarily into the same categories found by Odin), utilizing the textual
contents of the tweets containing the trends. However, tweets (restricted to 140
characters) often contain informal language and abbreviations which potentially
results in lower classification accuracy [21]. Hence, we adopt a different approach
that combines both tweets and related web documents and uses several web-
based knowledge engines to perform the classification. Odin classifies a given
trend following the steps presented below.

2.1 Preprocessing

Segmentation: Trends often consist of multiple words [13] recognizing which is
easy formulti-wordphrasesandhashtagswritten inCamelCase style (e.g.,#World-
CupSoccer), but is very difficult for trends which simply have the words juxtaposed
without any separation (e.g., #everythingididntsay). Since it is important to iden-
tify the individual words which make up a trend in order to understand its topic,
trends need to be segmented into the component words. Odin follows a modified
version of the Viterbi Algorithm [1], which uses a model of word distribution to cal-
culate the most probable character sequence forming a word. Odin computes the
word distribution from Google n-gram corpus (https://books.google.com/ngrams).
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Given a trend, Odin segments the trend into its constituent words based on this
calculated probability estimates (details omitted for brevity).

Categorization of Related Web Documents: Odin searches different Web
search engines (e.g., Google, Bing) with the segmented trend, to get a large set of
web-pages relevant to the given trend. Often the tweets containing the trend have
URLs, which become another source for getting related web-pages.3 For a given
trend, Odin collects all the web-pages pointed from the tweets and returned
by the search engines; and then a set of category keywords are extracted for
these collected web-pages using the NLP-based AlchemyAPI web service (www.
alchemyapi.com).

Entity Extraction and Categorization: Sometimes the trend contains names
ofpeople,organisationsor locations(e.g.,#EMABiggestFansJustinBieber)detect-
ingwhichmightgivea clear ideaon the categoryof the trend.Similarly, thewebdoc-
uments and the tweets associated with a particular trend have many such named
entities present in them. Odin extracts such entities using AlchemyAPI and then
queries Freebase (www.freebase.com) to know the ‘notable type’ of such named enti-
ties (e.g., according toFreebase, notable type for ‘JustinBieber’ is ‘/music/artist’).

2.2 Classification

At the end of preprocessing steps, for a given trend, Odin collects the categories
of the related web documents and the notable types of the related named enti-
ties. Treating the number of web documents and named entities in the various
categories as features, Odin uses a Support Vector Machine (SVM) classifier
with Radial Basis Function kernel to classify a particular trend into one of the
9 categories shown in Table 1.

Training Data Preparation: For creation of training data, three human vol-
unteers (regular users of Twitter, who are not authors of this paper) were asked
to manually inspect 700 distinct trends collected during the first two weeks
of January 2014 (along with tweets containing these trends), and classify the
trends into different categories. The volunteers identified the nine broad cat-
egories shown in Table 1, such as Entertainment, Sports, Technology, Idioms
(following the definition of idioms in [13]). Out of the 700 trends, all three vol-
unteers agreed upon a particular category for 575 trends. We created the training
data considering this unanimous categorization as the ground truth.

Classification Performance: Standard 10-fold cross validation on the data of
the 575 trends showed that Odin attains 77.15% accuracy in predicting trend
categories, which is good considering that it is a complex nine-class classification
task.
3 URLs leading to social media sites like Facebook, Twitter, Instagram, are ignored,

since these pages usually do not have much content to help the topic categorization
process.

www.alchemyapi.com
www.alchemyapi.com
www.freebase.com
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Table 2. Statistics of data collected

Property Idiom Sports Entertainment Technology

Number of trends 150 150 150 150

Total #tweets containing the trends (mil-
lions)

6.205 6.787 6.967 6.105

Mean #tweets per trend 41,369 45,257 46,455 40,721

Total #distinct users posting the trend
(millions)

2.74 2.71 1.90 1.75

Mean #distinct users per trend 18,315 18,098 12,725 11,705

3 Dataset

Since most of the Twitter trends were related to the three topics entertainment,
sports, and technology (see Table 1), we decided to focus on idioms and trends
related to these three topics; the trends related to any of these three topics are
collectively referred to as ‘topical trends’. For each of the trends belonging to
the four selected categories, we collected as many tweets containing the trend
as possible using the Twitter search API. To get a better understanding about
the trends, in our analysis as presented in later sections, we used only those
trends for which we were able to collect more than 30,000 tweets. To maintain
uniformity across categories, we finally selected a set of 150 trends related to
each of the categories (the actual distribution is stated in Table 1).

For each of the 600 selected trends, we further collected detailed statistics
about all the users (including their profile details, social links and recently posted
tweets) who posted a tweet containing any of the selected trends. Table 2 sum-
marizes the statistics of the data collected for the trends of the four categories.

4 Comparing Idioms and Topical Trends

In this section, we compare how idioms and topical trends are discussed in the
Twitter social network, and the users who discuss them frequently.

4.1 How Trends Are Discussed in Twitter

We first analyze how the trends of different categories are, in general, discussed in
Twitter. For a given trend t, we consider all tweets containing t, and measure what
percentage of these tweets contain other hashtags (apart from t itself), and URLs.

Figure 1 shows mean values of the percentage of tweets containing other hash-
tags and URLs, where the mean values are computed over all trends of a particular
category. Statistical measures like two sample KS-test and Mann-Whitney U test
with significance level 0.05 show that there is a significant difference in the distri-
bution of the mean values among the four categories. Expectedly, we find that the
topical trends aremuchmore likely to be accompanied by other hashtags andURLs
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Fig. 1. Comparing topical trends and idioms: Percentage of tweets which contain
(i) other hashtags (apart from the trend under consideration), and (ii) URLs. All
values averaged over all trends of a particular category.

related to the corresponding event in the off-line world. For instance, the sports-
related trend #LIVvCHE (referring a match between the two English soccer clubs
Liverpool and Chelsea) is accompanied by the hashtag #Torres which indicates a
player who is a part of the match. On the other hand, Twitter-specific idioms are
very seldom accompanied by other hashtags since they are not related to external
websites or news-stories in the off-line world.

We also observed the timeline evolution of trends, i.e., how they start get-
ting tweeted and become popular in Twitter. Expectedly, most topical trends
emerge as a result of some related event in the off-line world, such as a sports or
musical event, or a socio-political incident / issue. In case of idioms, an interest-
ing pattern observed is that many idioms initially propagate along with hash-
tags related to some specific event in the off-line world. For example, the idiom
‘#MyFavouriteActor’ first appeared with the hashtag ‘#PeoplesChoice’ (related
to the People’s Choice awards), while the idiom ‘#SexRequirements’ initially
appeared with the health-related hashtag ‘#FitnessPromo’. These idioms, how-
ever, follow their independent path with users innovating interesting comments
and thus making them popular.

4.2 Characterising Users Interested in Various Categories

In order to understand the nature of the users who are interested in promoting
particular types of trends, we identify sets of users who are interested in the
different categories (sports / technology / entertainment / idioms), and compare
various characteristics of these users.

Identifying Users Interested in a Certain Category: To identify users
who are interested in a certain category, we identify those users who frequently
discuss trends of that category. For a particular category, we initially consider all
the users who have posted at least one tweet on a trend in that category. We rank
the users based on the number of different trends in that category on which they
have posted at least one tweet. Subsequently, for each category, the 10,000 users
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(b) CDF follower count

Fig. 2. Distribution of Listed & Follower count of four categories (idiom, sports, enter-
tainment, technology) of users

who have posted most number of distinct trends in that category (according
to our dataset) are considered. Since our objective is to identify users who are
genuinely interested in trends of a certain category, we next attempt to verify
whether the users selected above frequently discuss trends on that category. For
this, we collected the 3,200 most recent tweets for each of the selected users, by
crawling their time-line through the Twitter API, and used our classifier Odin to
classify the hashtags contained in these tweets, to check what fraction of these
hashtags were related to that category. For instance, for a certain user u included
among the top 10,000 users who posted on most sports-related trends in our
dataset, we checked whether a significant fraction of all hashtags included in u’s
recent tweets were related to sports. Additionally, Opencalais (www.opencalais.
com) tool is used to identify the topic of each tweet present in the timeline of a
user. We included a user in the final selected set for a category, if at least 30%
of the hashtags and 70% of the tweets posted by her (among her recent tweets)
were judged to be related to that category.

In this way, we finally identified a set of 5,000 users who are genuinely inter-
ested in each of the four categories. We refer to these sets of users as idiom-users,
sports-users, entertainment-users, and technology-users. The rest of this section
studies the characteristics of these sets of users.

Popularity of the Users: We start by checking the popularity of the users
interested in the various categories. We use two standard metrics of popularity
of users in the Twitter social network [3,4] – (i) follower-count, i.e., the number
of followers of a given user, and (ii) listed-count, i.e, the number of Twitter Lists
a given user is included in.4 Both metrics resulted in very similar observations.
Figure 2 shows the distribution of the listed-count and follower-count values of
users who predominantly discussed the trends in the four categories.

We observe an interesting trend. Almost all idiom-users are relatively less
popular – 65% of the idiom-users have listed-count values in the range 0–40. In
contrast, a significant fraction of the users who predominantly discuss the topical
4 Lists are a feature by which a user can group together accounts on a common

theme [4,16].

www.opencalais.com
www.opencalais.com
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Table 3. Characterizing the users who frequently discuss trends in each category –
top 5 words appearing in (i) the user-bio in the profile, (ii) Lists in which the users are
members, and (iii) tweets posted by the users.

Idiom-users Sports-users Entertainment-users Technology-users

Bio Lists Tweets Bio Lists Tweets Bio Lists Tweets Bio Lists Tweets

life faves friend sports wwe game 5sos band show news social iphone

love ily people football wrestling season justin album music tech media ios

fun luke hobby wrestling sports team bands music video tech tech android

cool nigg niall wwe chelsea nfl ariana youtubers photo oracle tweet google

harry styles school soccer cricket football luke idols album software business apple

trends(sports, entertainment, technology) are very popular users, which includes
experts from their respective fields. The above statistics lead to some interesting
insights. There seems to be two very distinct types of users who dominantly
participate in discussions on topics related to the off-line world (e.g., sports,
entertainment, technology) – (i) popular users who are experts on these topics
(e.g., researchers, sports-persons, journalists, musicians), and (ii) the common
masses who are interested in these topics. This agrees with findings in recent
research studies [2,20]. In sharp contrast, users who dominantly participates in
idioms are mostly common masses.

How the Users are Described: We next focus on how the users who are
interested in various categories describe themselves, and how they are described
by others. To infer the characteristics of a given user u, we refer to two sources
– (i) the bio of u, which is a short description written by the user to describe
herself, and (ii) the name and description of Twitter Lists in which u is included
as a member – this indicates how other users (those who created the Lists and
added u as a member) describe u [16,18]. For a given category, we consider the
bio (or List names and descriptions) of all the 5000 users chosen for this category
(as described above), and find the words which occur in the bio (or Lists) of most
number of these users.5

Table 3 shows the top 5 words which appear in the bio and Lists of the
users for each category. As expected, the users for the topical categories (sports,
entertainment, technology) are characterized by words related to the topics. For
instance, sports-users are described by ‘wrestling’, ‘wwe’, entertainment-users
are identified by ‘5sos’, ‘justin’, and technology-users by ‘social’, ‘tech’. On the
other hand, the idiom-users are mostly described by words related to day-to-
day conversation and positive sentimental words such as ‘love’, ‘life’, ‘faves’, ‘ily
(i love you)’ and so on.

Content Posted by the Users: We next focus on the content (tweets) posted
by the users. Similar to the previous analysis, we consider the set of tweets
posted by the users interested in a certain category, and find out the most
frequent words in the tweets. Table 3 shows the top 5 words posted by users
in each category – we again find that while the sports-users, technology-users
5 The bio and List-names are pre-processed using standard techniques such as case-

folding, removal of a common set of stopwords, and so on.
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and entertainment-users mostly post words related to the corresponding topics,
the idiom-users mostly use conversational words and phrases related to musical
events, celebrities etc.

4.3 Studying the Interactions Among the Users

We now investigate how the users in the four groups interact among themselves.
In Twitter, the primary ways by which a user u can interact with another user v
are (i) u can subscribe to the content posted by v by following v, or by following
a List which has v as its member, and (ii) u can @mention v in her tweet.

Analysing Interaction Networks: We construct two types of interaction
networks among the users. The first is a subscription network where a directed
link u → v indicates that user (node) u subscribes to the content posted by user
v. The second is a mention network where the link u → v indicates that user u
has @mentioned v.

To quantify the level of interaction among the users, we measure two struc-
tural properties of the subscription and mention network – (i) density, which
measures what fraction of all links which can be present in a network, are actu-
ally present, and (ii) reciprocity, which indicates what fraction of the directed
links are reciprocated, i.e., both the links u → v and v → u exist in the network.
The importance of reciprocity is that if two users share a reciprocal link, then
the two users are mutual friends with a higher probability (as compared to the
chance of a fan subscribing to a celebrity, but the celebrity not reciprocating).

Table 4 shows the reciprocity and density of the mention and subscription
networks among different groups of users. We find that the density of the sub-
scription network among the idiom-users is significantly higher compared to that
for the sports-users, entertainment-users, and technology-users. Also, the reci-
procity is significantly higher for both the subscription network and the mention
network for idiom-users, indicating that a large fraction of the interactions are
between mutual friends. These observations indicate that, just like users inter-
ested in a common topic (sports, entertainment or technology), the idiom-users
form their own group; in fact, they subscribe to / mention one another much
more frequently than the topical groups of users.

Note that the density of the mention networks are comparable for all the
user-groups. This is because, as observed earlier, the sports-users, technology-
users, and entertainment-users contain a large number of common (less popular)

Table 4. Reciprocity and density of the mention and subscription networks among
different groups of users

User-group Mention Network Subscription Network
Reciprocity Density Reciprocity Density

Idiom 21.88% 0.0012 49.57% 0.0221

Sports 14.67% 0.0017 10.19% 0.0030

Entertainment 13.40% 0.0010 13.76% 0.0058

Technology 13.91% 0.0011 4.87% 0.0025
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users and a few popular celebrities, and most of the @mentions result from the
common users mentioning the celebrities. For instance, a significant fraction of
the @mentions among technology-users are directed towards @twitter and a few
software companies. However, the reciprocities are lower for the topical groups,
since the celebrities do not mention the common users. On the other hand, most
of the mentions among the idiom-users (who have similar popularity) come from
conversations among mutual friends, leading to high reciprocity. In fact, as much
as 62.5% of the mentions among the idiom-users are between two users who share
a reciprocal link in the corresponding subscription network (i.e., are likely to be
mutual friends), where as this percentage is less than 35% for the topical user-
groups.

Nature of Conversations Among the Users: Finally, we analyze the nature
of the conversations among the users of the same group. Specifically, when a
user retweets or mentions another user in the same group, we check whether
the hashtags used in the tweets are related to the common topic of interest
of the users. For instance, among the hashtags which a sports-user retweets or
mentions to another sports-user along with the tweets, we check what fraction of
such hashtags are related to sports. For this, we use our classifier Odin to classify
hashtags present in the tweets where a user mentions or retweets another user
from the same-group. The results are shown in Table 5. More than 74% of the
hashtags that are mentioned / retweeted among the sports-users, entertainment-
users, and technology-users are related to the corresponding common topic of
interest of that user-group. In sharp contrast, only about 25% of the hashtags
that are exchanged among idiom-users are idioms. This again shows that idiom-
users are not a focused topical group rather they engage themselves in diverse
issues.

4.4 Type of User-Groups and Their Identifiability

Our analyses reveal that the group of users interested in Twitter-specific idioms
has very different characteristics compared to the groups of users interested in
topics such as technology, sports and entertainment. In this section, we attempt
to explain the differences and their implications on identifiability of the groups.

Explaining Group Formation: Formation of user-groups in a social network
has been a long-standing topic of research in sociology, and several theories
have been proposed to explain their formation [8,11,19]. According to the well-
accepted common identity and common bond theory [5,10,12], there are two

Table 5. Percentage of hashtags (present in tweets) where a user of a certain group
mentions or retweets another user of the same group, which are related to the topic of
interest of that user-group

User-group Idioms Sports Entertainment Technology

% of topical hashtags in retweeted tweets 22.83% 78.47% 81.63% 79.57%

% of topical hashtags in mentioned tweets 25.74% 74.58% 77.12% 78.54%
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primary types of groups. In identity-based groups, people join the group due
to their interest in a well-defined common theme (topic), whereas bond-based
groups are driven by personal social relations (bonds) among the members, and
may be characterized by the absence of any common topic of discussion. As
a result, bond-based groups have higher reciprocity among the members than
identity-based groups. Also, the discussions in bond-based groups tend to vary
widely and cover multiple subjects, while in identity-based groups, they tend to
be related to the common topic of interest of the group.

The above analyses on the four user-groups show that, as expected, the
users interested in a common topic like sports, entertainment or technology form
identity-based groups, with fewer interactions (@mentions) among friends, and
most of the discussions among the members being related to the topic of common
interest (Table 5). On the other hand, the idiom-users group is characterised by
relatively higher levels of personal interactions with mutual friends, and a rel-
atively small fraction of the conversation among the friends is related to their
common topic i.e. idioms. Hence, the idiom-users form a bond-based social com-
munity within Twitter, in which they discuss their personal topics of interest as
well as conversational matters.

Identifiability of the Groups: The differences in the nature of various user-
groups can have significant impact on the identifiability of the groups. To demon-
strate this, we used two algorithms for detecting groups in the Twitter social
network, and checked how well they could identify the idiom-users group and
the topical groups.
(i) We used the well-known Infomap community detection algorithm [14] on the
Twitter subscription network among all the users spanning the four user-groups.
Then we enumerated the number of different communities identified by Infomap,
where the members in any of the four user-groups are distributed. Table 6 (sec-
ond row) shows that the topical groups were scattered into significantly higher
number of Infomap communities, as compared to the idiom-users group.
(ii) Bhattacharya et al. [2] proposed a methodology to identify topical commu-
nities in Twitter (comprising of users who are experts on a topic or interested in
the topic). We used this method to check the number of distinct topical commu-
nities a member in our dataset is placed. We found that, on average, a user in
the idiom-users group is placed in many more topical communities, than a user
in the sports-users / entertainment-users and technology-users groups (Table 6,
last row).

Table 6. (i) Number of communities identified by Infomap, into which a user-group is
scattered, (ii) average number of topical groups assigned per user by the topical group
identification approach developed in [2]

User-group Idioms Sports Entertainment Technology

Nos. communities 107 284 272 281

Nos. groups assigned per user 9 2 2 3
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These observations reveal that within Twitter, there exist two different kinds of
network structure – one is an information network, and other one is social com-
munication network. Any community detection method which considers only one
facet of the network might not be able to identify all the communities accurately.

5 Idiomatic: Service for Idiom Lovers

As stated earlier, the focus of the research community has been entirely on
the topical content discussed in Twitter, such as identifying experts on various
topics [4,17]. However, for a user who is interested in idioms (idiom lover), there
is no existing service to recommend whom she could follow to know interesting
idioms being discussed in Twitter. Hence, we have developed Idiomatic (http://
cse.iitkgp.ac.in/resgrp/cnerg/idiomatic), a service where one can easily follow
popular idiom-users (ranked according to the number of idioms they post), have
a quick look at recent and past trending idioms (classified by an enhanced version
of the Odin classifier presented in Section 2 from continuous stream of trending
topics collected at 15 minute intervals), and post tweets using idioms.

To evaluate the quality of the recommended idiom-users, we used human
feedback since relevance of user-profiles to a certain topic / theme is subjective in
nature. The evaluators were shown the most recent 100 tweets of the idiom-users,
and were asked to judge whether the user appears to be an active idiom-user
or not. 15 human volunteers individually judged the top 20 idiom-users shown
by the service. Out of the top 20 users, 18 were judged as active idiom-user
by all the evaluators, and even the remaining two users were judged as active
idiom-users by majority of the evaluators.

6 Related Work

The present study focuses on the characteristics of Twitter idioms, identifying
users who actively participate in idioms, and understanding the social behaviour
of the groups of these users. Some prior studies on trending topics in Twitter have
focused on classification of the trends [9,21], whereby the presence of idioms [21]
is identified. However, there has been little effort in analyzing the characteristics
of idioms, and of the users who post the idioms. To our knowledge, the only
prior study which attempted to compare idioms with trends related to events in
the off-line world is by Naaman et al. [9], where they used different features like
content, interaction etc. to classify the trends. However, they did not attempt
to analyze the users who discuss such idioms.

Also note that there have been prior attempts to distinguish between bond-
based and identity-based groups in online social networks (see Section 4.4).
For instance, [15] classified chats among users on a text-based communication
platform into two categories – on-topic chats which are on a common topic
(identity-based) and off-topic chats where people chatted on a variety of topics
(bond-based). More recently, [2] identified a large number of topical groups in

http://cse.iitkgp.ac.in/resgrp/cnerg/idiomatic
http://cse.iitkgp.ac.in/resgrp/cnerg/idiomatic
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Twitter, comprising of users who are experts or seekers of information on vari-
ous topics, and showed that these groups are essentially identity-based. In this
work, we explored the nature of the groups among the idiom-users, and found
that they reveal bond-based characteristics.

7 Conclusion

The popular perception of the research community is that, there are two parts of
Twitter – one interesting part where participants read and post a wide variety of
topical tweets, and another part which comprises of pointless babble and is hence
unimportant and uninteresting. However, in our study, we find that these point-
less babbles, even though not related to any off-line event, frequently become
trending in Twitter due to participation of large number of common masses.
These users form bond-based groups among themselves to discuss their personal
interests – idioms and some other forms of fun and gossip. This study has sev-
eral implications, e.g., for community detection in social networks. Keeping in
mind the popularity of idioms, we developed a whom-to-follow recommendation
service where idiom lovers can easily find trending idioms and users who post
idioms actively and frequently.
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Abstract. Given the re-broadcasts (i.e. retweets) of posts in Twitter,
how can we spot fake from genuine user reactions? What will be the
tell-tale sign — the connectivity of retweeters, their relative timing, or
something else? High retweet activity indicates influential users, and can
be monetized. Hence, there are strong incentives for fraudulent users to
artificially boost their retweets’ volume. Here, we explore the identifi-
cation of fraudulent and genuine retweet threads. Our main contribu-
tions are: (a) the discovery of patterns that fraudulent activity seems to
follow (the “triangles” and “homogeneity” patterns, the formation
of micro-clusters in appropriate feature spaces); and (b) “RTGen”, a
realistic generator that mimics the behaviors of both honest and fraud-
ulent users. We present experiments on a dataset of more than 6 million
retweets crawled from Twitter.

1 Introduction

Can we spot patterns in fake retweeting behavior? When a large number of
Twitter users re-broadcast a given post, should we attribute this burst of activ-
ity to organic, genuine expression of interest or rather to a fraudulent, paid
contract? Twitter is arguably the most popular micro-blogging site and one
of the first sites forbidden by authoritarian regimes. High-quality tweets are re-
broadcasted (retweeted) by many users, indicating that their authors are influen-
tial. Since such influence can be monetized via per-click advertisements, Twitter
hosts many fraudsters trying to falsely create the impression of popularity by
artificially generating a high volume of retweets for their posts. In our work,
we observe a thriving ecosystem of spammers, content advertisers, users paying
for content promotion, bots disguised as regular users promoting content and
humans retweeting for various incentives. Such content is at best vacuous, but
often spammy or malicious and detracts from Twitter content’s credibility and
honest users’ experiences.

Despite previous efforts on Twitter fraudsters’ activity [8,17,18], the differ-
ent manifestations of fake retweets have not been adequately studied. Previ-
ous approaches focus mainly on specific URL broadcasting, instead of retweet
threads, and rely on temporal and textual features to identify bots [5,11]. Fraud-
sters on Twitter, though, constantly evolve and adopt advanced techniques to
obscure their activities. The identification of patterns associated with “fake”

c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 122–134, 2015.
DOI: 10.1007/978-3-319-18038-0 10
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retweet activity is, thus, crucial for spotting retweet threads and their authors as
fraudulent. This work’s primary goal is to distinguish organic from fake retweet
activity and the informal problem definition we address is

Informal Problem 1 (Retweet-thread level).
Given: the connectivity network (who-follows-whom); the i-th tweet of user;

and the retweet activity (IDs and timestamps of the users that retweeted it)
Find: features of the retweet activity
To determine whether the activity is organic or not.

Here, we focus on identifying features and patterns in relation to the con-
nectivity and temporal behavior of retweeters that will allow the classification
of the motive behind retweet threads as driven by users’ genuine reactions to
tweeted content, or resulting from a paid contract. We also aim at spotting users
who are suspicious of long-term spam activity, but manage to evade suspension
from Twitter by using camouflage.

(a) honest user MP 1 (b) honest user HP 1 (c) fraudulent user FD 1

Fig. 1. connectivity: Retweeter networks for retweet threads of size (a) 117, (b)
1132, (c) 336. Dense connections in (c) indicate the triangles pattern. Retweeter
networks of honest and fake activities can be distinguished by several other patterns
(e.g. degrees, homogeneity). In the depicted networks, a double edge indicates a
reciprocal relationship and a node’s size is relative to its degree.

The contributions of this work are the following:
– Patterns: Our proposed approach, RTScope, identifies multiple patterns

that we found indicative of fraudulent behavior by analyzing the retweeter
networks of Twitter accounts. For example, in one class of fraudulent accounts,
all accounts follow each other and thus have an excessive number of triangles
(“triangles” pattern) — see Figure 1. It is important that these patterns can
be detected based on partial snapshots of the fraudsters’ relationship network.
Moreover, other fraudsters retweet concurrently within a fixed time from each-
other in lockstep fashion, with little variation (“homogeneity” pattern).

– Generator: Based on our analysis, we provide RTGen, a data generator
which produces (ID, timestamp) pairs mimicking traces of fraudulent as well
as organic retweet activity. The significance of RTGEN is highlighted by the
difficulty of obtaining real world organic and fraudulent retweeting data for
experimentation, due to the lack of a standard dataset and the strict policies
of social network APIs.

– Reproducibility:We share an (anonymized) version of our dataset and
RTGen’s code at: http://oswinds.csd.auth.gr/project/RTSCOPE.

http://oswinds.csd.auth.gr/project/RTSCOPE
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2 Related Work

Related work mainly spans: anomaly detection in social networks and fraud on
Twitter.

Anomaly detection and fraud detection in social networks has led to several
methods: NetProbe [13] identifies fraud on eBay using belief propagation. MalSpot
[12] uses tensor decomposition for computer network intrusion detection. Copy-
Catch [1] spots lockstep behavior in Facebook Page Like patterns. [6] leverages
spectral analysis to reveal various types of lockstep behavior in social networks.

Fraud on Twitter: [18] analyzes the relationships of criminal accounts inside
and outside of the criminal account community to infer types of accounts which
serve as criminal supporters. [2] proposes a classification method relying on
tweeting behavior, tweet content and account properties for computing the like-
lihood of an unknown user being a human, bot or cyborg. [16] shows the strong
classification and prediction performance of temporal features for distinguishing
between account types. However, all these works address the detection of spam-
mers based on their tweeting and/or networking activity, instead of the fake
retweeting problem. In addition, most existing methods (e.g. [17]) consider the
typical and out-dated model of a fraudster who has uniform posting frequency
and a followers-to-followees ratio close to 1 — nowadays, many fraudsters are
more sophisticated. [5] addresses a problem similar to ours, but uses the URLs
found in tweets instead of retweet threads in conjunction with a time and user-
based entropy to classify posting activity and content. [9] applies disparity, also
known as inverse participation ratio [3], on Twitter data to reveal favoritism in
retweets. Table 1 outlines the characteristics of existing methods compared to
RTScope.

Table 1. RTScope comparison against alternatives

[5] [18] [2] [16] RTScope

Can be applied for individual retweet
chains

� �
Can operate without timestamps � �
Independent of tweet content � � �
Exploits network topology � �
Detects bot activity � � � �

3 Background on Fake Retweet Thread Detection

Our intitial intuition is that a large proportion of “fake” retweets originate from
bot accounts or human accounts which employ the use of automated software.
This implies the existence of similarity in the temporal behavior of the indi-
vidual retweeters, due to the posting (and retweeting) scheduling capabilities
of automation tools. We also expect that it is highly probable that fraudulent
retweeters of a given user will operate concurrently in lockstep fashion. This is
indicative of collaboration between spammers or a contract between the author
and a third party for a purchase of retweets. To study the retweeting activity in
terms of time and retweeting users, given a user um (author) we represent the
ith tweet posted by um with twm,i as a tuple (um, tm,i), where tm,i is the tweet’s
creation time. Then, a retweet thread is defined as follows:
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Definition 1 (Retweet thread). Given an author um and a tweet twm,i, a
retweet thread Rm,i is defined as the set of all tweets that retweeted twm,i .

We hypothesize that certain types of fraudulent retweet threads are gener-
ated by users with abnormal connectivity in terms of their follow relationships
in Twitter. An example of such abnormal connectivity would be a much denser
network of fraudulent (compared to honest) retweeters, corresponding to a group
of fraudsters following each other in an attempt to maintain reputability. To val-
idate our hypothesis on the importance of connectivity as a feature, we consider
the following two types of relationship networks:

Definition 2 (Relationship networks). Given a retweet threadRm,i we define
the “R-A” and “R” networks as the induced networks of:
“R-A” network author um and all retweeters of twm,i;
“R” network all retweeters of twm,i minus zero-degree nodes, i.e. retweeters

who are disconnected from the rest.

We highlight the fact that the considered network types are partial snapshots
of the complete Twitter followers network, since we operate under the constraint
of limited visibility. Constraining the followers network to specific subgraphs is
important given that the massive size of the Twitter network poses computa-
tional burdens to the application of graph algorithms for pattern detection.

We then formulate two versions of the fake retweet detection problem.

Problem 1 (Retweet-thread level).

Given: a tweet twm,i and a retweet thread Rm,i,
Identify: whether Rm,i is organic.

Problem 2 (User level).

Given: a user um, a set of tweets twm,i and their induced retweet threads,
Identify: whether um is a spammer.

The Retweet-thread level problem addresses the detection of single
instances of fraud, thus is suitable for “occasional” fraudsters (who occasionally
purchase retweets or are paid to participate in promotions, but otherwise exhibit
normal activity) and promiscuous professional spammers (their fake retweet
threads can be spotted without additional data on their past activities). The
User level problem addresses also the detection of more cautious spammers,
whose retweet threads are not suspicious on their own, but they reveal suspicious
recurring patterns when they are jointly analyzed.

4 Dataset and Preliminary Observations

We examine our hypotheses on a dataset comprising several retweet threads
of honest and fraudulent Twitter users. RTScope requires complete retweet
threads, i.e. with no gaps in the tuples representing a tweet’s retweets. Due to
Twitter Streaming API’s constraint of allowing access to only a sample of the
published posts, our need for complete retweet threads and the lack of a relevant
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(labeled) dataset, we manually selected a set of target users and tracked all their
posts and retweets for a given time period.

We selected target user accounts based on two approaches. The first involved
the examination of a 2-day sample of the Twitter timeline, followed by the
identification of the users who had posted the most retweeted tweets, and those
who posted tweets containing keywords heavily used in spam campaigns (e.g.
casino, followback). The second approach was based on “Twitter Counter”1, a
web application publishing lists that rank Twitter users based on criteria such as
their number of followers and tweets, and involved the selection of users based on
their posting frequency and influence (i.e. we kept only users who posted several
posts per week and had received more than 100 retweets on some of their recent
posts). We manually labeled target users as “fraudulent” (FD) if (a) inspection
of their tweets’ content led to the discovery of spammy links to external web
pages, spam-related terms, and repetitive posts with the same promotions, or
(b) their profile information was clearly fabricated. We labeled the rest of target
users (of different popularity scales for the sake of diversity) as “honest” and
further divided them into high-, medium- and low-popularity (HP, MP, LP,
respectively), using the cut-offs of >100K followers for HP and < 10K followers
for LP. We monitored the initial set of target users for 30 days and eliminated
those who had all their posts retweeted less than 50 times. Then, we reinforced
the remaining dataset with an extra number of similarly selected users, and
collected data for an additional 60-days period. At the end of this period, we
again pruned users using the same filtering criterion. Overall, this process left a
total number of 24 users in the dataset, of which 11 honest (5 HP, 4 MP, and 2
LP) and 13 fraudulent, while after the end of the monitoring period we identified
that 4 of our fraudulent users had been suspended by Twitter. Table 2 shows
the activity characteristics for the dataset’s honest and fraudulent users. For the
reproducibility of our results, we make available an anonymized version of our
dataset at http://oswinds.csd.auth.gr/project/RTSCOPE.

Table 2. Activity statistics per user class

Type # Tweets # Original tweets # Retweeted tweets # Retweets

honest 35,179 18,706 13,261 708,814

fraudulent 92,520 50,536 27,809 5,330,407

BOTH 127,699 69,242 41,070 6,039,221

From our data collection and preliminary analysis, we make two main obser-
vations:

Observation 1 (Variety). Fraudsters have various behaviors in terms of their
posting frequency and timing.

Specifically, some fraudsters are hyperactive, posting many tweets (> 100
per day); others are more subtle, posting few tweets per day, while sometimes
mixing original posts with retweets to other users’ posts, implying some type of
cooperation (half of our dataset’s FD users are hyperactive). We also noticed that
some FD users often produced (resembling) honest posts along with fraudulent
ones. This may indicate the existence of “occasional” fraudsters, or intended
camouflage practiced by “professional” fraudsters.
1 http://twittercounter.com/

http://oswinds.csd.auth.gr/project/RTSCOPE
http://twittercounter.com/
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Observation 2 (FF imbalance). Despite earlier reports of success, the followers-
to-followees ratio (FF) is uninformative for several fraudsters.

The reasoning behind this observation is that although previous works con-
sidered fraudsters with a similar number of followers and followees, we found
that some fraudsters maintain a high FF ratio (in our dataset, only two FD
users have a ratio close to 1, while for the rest it ranges in 1.3 - 2061). Further
complicating the problem, hijacked accounts have honest followers and followees
with “normal” FF ratio (significantly different from 1).

Given the various types of fraudulent behavior types and inefficacy of the
commonly used FF ratio, what additional features can we use to spot fake
retweets? This is exactly the focus of RTScope, which is described next.

5 RTScope: Discovery of Retweeting Activity Patterns

In this section we propose RTScope and present the results of its application
on our dataset. RTScope includes a series of tests that address:

– the Retweet-thread level problem (1), namely: ConR, connectivity
analysis of “R” and “R-A” relationship networks (Sect. 5.1);

– the User level problem (2), namely: RAct, detection of retweeters’ activa-
tion patterns across a given user’s posts (Sect. 5.2), and ASum, inspection
of the activity summarization features per retweet thread (Sect. 5.3).
The most significant features involved in each test are summarized in Table 3.

We note here that in this approach only the ASum features require the retweets’
timestamps, which, in some cases, may be hard to obtain, or easy for the fraud-
sters to manipulate.

Table 3. Signs and explanations of suspicious retweeting activity

Feature Category Alias Description Fraud Sign

Retweet-thread level

Retweeters’ connectivity
ConR1 Number of triangles (triangles) Excessive
ConR2 Distribution of degrees (degrees) Non power-law

Activity summarization
features

ASum1Activated followers ratio (enthusiasm) High

ASum2
IQR (=spread) of interarrival times
(machine-gun)

Low

User level

Retweeters’ activation
pattern

RAct Distr. of # retweets (homogeneity) Homogeneous

Activity summarization
features

ASum3Formation of microclusters (repetition) Yes

5.1 Retweeter Networks Connectivity: TRIANGLES
and DEGREES Patterns

To study the connectivity between the retweeters of a given tweet, we selected a
sample of the largest retweet threads for each user in the dataset, identified their
follower relations via the Twitter API and generated the “R” and “R-A” graphs2.
2 Due to the hard limits of Twitter API in terms of requesting information on users’

relations, it was impossible to generate the “R” networks for all retweet threads of
the dataset.
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Interestingly, we observed that for some retweet threads of fraudulent users there
were no connections between the retweeters, whereas for others, none of the
retweeters was connected to the author. These phenomena were mostly observed
in the context of occasional fraudsters. However, we noticed that in these cases, a
significant (more than 20%) percentage of the original retweeters were suspended
some time afterwards, thus affecting the remaining users’ connectivity. For the
rest of the retweet threads (of fraudulent and honest users) the percentage of
suspended retweeters was less than 10%.

The connectivity analysis of the “R” and “R-A” networks led to Observa-
tion 3. Next, we discuss the details of our analysis approach and findings.
Observation 3 (connectivity). “R” and “R-A” networks of honest and
fraudulent users differ substantially and exhibit the triangles, degrees and
satellite patterns, on which we elaborate below:
TRIANGLES: Some fraudulent users have a very well connected network of

retweeters, resulting in many triangles in their “R” network. The triangles
vs. degree plots of fraudsters often exhibit power-law behavior with high
(1.1-2.5) slope. Figure 2 shows that honest users (top row, (a)-(c)) have “R”
networks with <100 and often 0 triangles. Conversely, the “R” networks
of fraudulent users (bottom row, (d)-(f)) are near-cliques with almost the
maximum count of triangles for each node ((d − 1)(d − 2)/2 for a node of
degree d).
Such networks are probably due to several bot accounts created by a script
and made to follow each other in botnet fashion.

DEGREES: Honest users have “R-A” and “R” networks with power-law degree
distribution (Figure 3(a)) while fraudulent ones deviate (Figure 3(b)). The
spike at degree ≈ 30 for the latter, agrees with the botnet hypothesis.
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(a) honest user HP 1
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(b) honest user HP 2
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(c) honest user MP 1
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(d) fraudulent user FD 1
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(e) fraudulent user FD 2
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(f) fraudulent user FD 3

Fig. 2. Dense “R” networks for fraudsters (triangles pattern): log-log scatter
plots of the number of triangles vs. degree, for each node of selected users’ “R” networks.
Red line indicates maximum number of triangles (≈ degree2 for a clique). Dashed green
line denotes the least squares fit. Honest users (top) have fewer triangles and smaller
slope than fraudsters (bottom).
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(b) fraudulent user FD 4

Fig. 3. Fraudsters disobey the degree power-law (degrees pattern): log-log
scatter plots of count of nodes with degree degi vs. degree degi for “R” networks
of selected users. Honest users, depicted in (a), tend to follow power-law behavior;
fraudsters, depicted in (b), do not.

SATELLITE: In honest “R-A” networks, the author has many “satellites”, i.e.
retweeters that follow him, and no other retweeters. The fraction s of such
satellite nodes is 0.1 < s < 0.9 for honest users, but s < 0.001 for many
fraudulent users.

5.2 Retweet Activity Frequency: FAVORITISM
and HOMOGENEITY Patterns

Given a target user’s posts, what is the distribution of retweets across the
retweeters? Do most retweets originate from a specific set of dedicated users,
or are they distributed uniformely across all the user’s connections?

To investigate this distibution, we use the disparity measure which quantifies,
given a finite number of instances (in our case, retweets), the number of different
states or subsets these instances can be distributed into. With respect to a given
target user, the number of instances corresponds to the total number of retweets,
while a given state is the number of retweets made by a single user. Disparity
reveals whether the retweeting activity spreads homogeneously over a set of users,
or if it is strongly heterogeneous, in the sense that it is skewed towards a small
set of very active dedicated retweeters.

Given target user ui and a retweet thread size of k, generated by uj for
j = 1 . . . k retweeters, we examine disparity with respect to the total retweeting
activity of these k users. We define the number of retweets made from user j to
user i as rij , and the total number of retweets from uj users as SR =

∑k
j=1 rij .

Then, we consider that the number of retweets rij defines the state of user uj ,
ranging from rij = 1 to rij = SR.

Definition 3 (Disparity). The disparity of retweeting activity with respect to
author ui and a retweet thread size k is defined as:

Y (k, i) =
k∑

j=1

(
rij
SR

)2 (1)

In the case that there exists more than one retweet thread of size k, we simply
take the average of the Y (k, i) values over retweet threads.

To give an intuition of disparity, we provide two extreme examples of activity
distribution: (a) the homogeneous, where all users are in the same state (i.e. they
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have the same rij value), and (b) the super-skewed, where there exists some user
ul who is at a state of much larger value compared to the rest — that is, ril � SR,
whereas for j �= l, rij = q << SR. The disparities for these situations are derived
as follows:

Lemma 1. The disparity Yh(k, i) for the homogeneous activity distribution obeys

Yh(k, i) =
k∑

j=1

(
rij
SR

)2 =
k∑

j=1

(
1
k

)2 =
1
k

(2)

Lemma 2. The disparity for the super-skewed activity distribution is given by:

Yss(k, i) =
k∑

j=1

(
rij
SR

)2 = (
ril
SR

)2 +
∑

j,j �=l

(
b

SR
)2 � 1, (3)

thus it is independent of the retweet thread’s size k.
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Fig. 4. Fraudsters exhibit uniform retweet disparity. (favoritism and homo-

geneity patterns): log-log scatter plots of kY (k, i) vs. k for real and simulated retweets
of (a) honest users and (b) fraudulent users. Magenta (green) line corresponds to the
super-skewed case of eq. 3 (the realistic Zipf distribution of Lemma 3). Black triangles
correspond to RTGen retweet threads for: honest-like, in (a) and fraudulent-like, in (b).

Figure 4 exhibits the relation between Y (k, i) and k averaged over all hon-
est (Figure 4a) and fraudulent users (Figure 4b). We observe that kY (k, i) for
honest users appears to have exponential relationship to k, with an exponent
of less than 1 (from equation 3). Fraudulent users’ activity is fundamentally
different and is close to the homogeneous case, where kY (k, i) = 1. The most
homogeneous behavior is encountered at large values of k which correspond
to heavily promoted tweets, whereas less homogeneity is encountered for small
retweet threads, likely for camouflage-related reasons.

We try to approximate the relationship between disparity and k under the
hypothesis that the different states rij of users uj for j = 1 . . . k follow a Zipf
distribution. If we sort the different rij states by decreasing order of magnitude,
we can express the jth frequency pj = rij

SR as pj = 1
j×ln (1.78∗k) [15]. Then, we

derive the following lemma:
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Lemma 3. The disparity of a Zipf distribution is given by: YZipf (k, i) �
k−1

k×ln2 (1.78∗k)

Proof. As per equation 1, the disparity of the Zipf distribution can be approx-
imated by:

YZipf (k, i) �
∫ k

j=1

(
1

j × ln (1.78 ∗ k)
)2

=
1

ln2 (1.78 ∗ k)

∫ k

j=1

1
j2

=
k − 1

k × ln2 (1.78 ∗ k)

Figure 4a depicts the k-kYZipf (k, i) relation with a green line, which is a good
fit for honest users’ behavior (favoritism pattern). Conversely, fraudulent users’
disparity is characteristic of a zero slope (homogeneity pattern), as indicated
by Figure 4b.
Observation 4 (favoritism). The disparity of retweeting activity to honest
users’ posts can be modeled under the hypothesis that the participation of users
to retweets follows a Zipf law.
Observation 5 (homogeneity). The disparity of retweeting activity to fraud-
ulent users’ posts can be modeled under the hypothesis that the participation of
users to retweets is homogeneous.

5.3 Activity Summarization Features: MACHINE-GUN,
ENTHUSIASM and REPETITION Patterns

We further extracted the following temporal and popularity (ASum) features
with respect to the retweet threads included in the datasets:

– ratio of activated followers, i.e. author’s followers who retweeted;
– response time, i.e. time elapsed between the tweet’s posting and its first

retweet;
– lifespan, i.e. time elapsed between the first and the last (observed) retweet,

constrained to 1 month to remove bias with respect to later tweets;
– Arr-IQR, i.e inter-quartile range of interarrival times for retweets.

Figure 5a depicts the scatterplot of activated followers ratio vs. response time
for retweet threads of all target users. Interestingly, several red points of users
suspected of fraud are clearly separated from honest users’ retweet threads due
to their high or low response time and high activated followers ratio. In addition,
the consideration of various feature combinations can be useful for identifying
fake retweet threads. Figure 5b, which depicts the scatter plot of the Arr-IQR
vs. lifespan for retweets of all target users’ retweet threads, indicates that several
retweet threads of the same fraudulent users tend to exhibit similar values for
these features, resulting in the formation of dense microclusters of points. For
example, the cluster appearing at the figure’s bottom-left side is created from
retweet threads whose author is fraudulent user FD 5.

From this analysis, we draw several additional observations.
Observation 6 (enthusiasm). Followers of fraudulent retweeters have a high
infection probability.
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Fig. 5. Dense microclusters formed by fraudsters. (enthusiasm, machine-gun
and repetition patterns): log-log scatter plots of ASum features for all target users
- each point is a retweet thread, each author has a different glyph. HP, MP, LP users
are in blue, green, cyan, and fraudsters are in red.

Observation 7 (machine-gun). Fraudsters retweet all at once, or with similar
time-delay.

Observation 8 (repetition). Groups of fake retweet threads exhibit the same
values in terms of response time, Arr-IQR and activated followers ratio, forming
microclusters.

6 RTGen Generator

We propose RTGen, a generator that simulates the retweeting activity of honest
and fraudulent users, highlight its properties, and present its results with respect
to disparity.

Algorithm 1 outlines the process for the simulation of the retweeting behav-
ior over a network G(V,E), where Vi is the set of users and Ei,j is the set of
directed who-follows-whom relationships between them. In our model, a given
user ui from the set Vi is considered a candidate for retweeting if ui follows either
the author or another user who has already retweeted (an activated user). Each
run of the generator involves the selection of a random user and the simulation
of the tweet forwarding process for N tweet events. More specifically, in the first
simulation, the author of a tweet is randomly selected, and the author’s followers
become candidate retweeters. Each candidate is then added to a list of activated
users with a given retweeting probability. This process is executed recursively
until all activated users’ followers have been examined and there are no more
candidate users. Then, RTGen continues with the next simulation. Each sim-
ulation (tweet) is characterized by a varying interestingness value representing
the infection probability given the significance of the tweet’s content.

RTGen simulates the scenarios of honest and fraudulent retweeting behav-
ior by forming hypotheses on the underlying graph and the users’ inclination to
retweet. In specific, based on the discovered triangles and degrees patterns,
RTGen uses a Kronecker graph [10] to simulate honest users’ networks and a
dense Erdös-Rényi graph [4] for fraudsters’ networks. Moreover, RTGen assumes
the same infection probability for all fraudulent users, based on the enthusiasm
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Data: G(V,E) = Examined network, N = number of simulations, b =
interestingness in [B1,..., Bn]

Result: activatedUsers : activated nodes ∈ V per simulation
author ← user randomly selected from V ;
sim ← 1 ;
while sim ≤ N do

initialInterestingness ← pick an interestingness b from Bi ;
candidateUsers ← authors’ followers ;
for each user in candidateUsers do

followers ← take followers of candidateUsers ;
for each follower f in followers do

if f not in activated users then
calculate retweet probability bUserf ;
add f to activatedUsers with probability bUserf ;

sim ← sim + 1 ;

Algorithm 1. Pseudocode for RTGen

and repetition patterns. Conversely, honest users have different activation rates
depending on the tweet’s interestingness, topics of interest and limited attention.
For generality, we follow the weighted cascade model [7] and assume that user ui’s
infection probability is inversely proportional to the number of followers. This low-
ers the retweeting probability for users with a large number of followers, simulating
limited attention and content competition. For organic retweet thread simulation,
the probability bUserv of user v is thus taken as:

Phonest(v, i) = bi ∗ (1/|fv|) (4)

where bi ∈ [B1, ..., Bn] is the tweet’s interestigness in the ith simulation simi

and |fv| is the number of followers for user v. Respectively, for the fake retweet
thread case:

Pfraudulent(v, i) = bi (5)

where, here, bi is randomly selected between two probability values [B1, B2].
B1 represents camouflage retweeting activity, and B2 represents fake retweeting
activity, with B2 being much higher than B2 (in our experiments by an order of
magnitude).

RTGen was applied on: (a) a Kronecker graph of 500k nodes, 14M edges
(generated with a parameter matrix

(
0.9999 0.5542
0.5785 0.2534

)
[14]), and (b) an Erdös-Rényi

graph of 10k nodes, 1M edges, for 10 users and 100 simulations. Based on the
simulation results, we calculated the disparity for each author and k-sized retweet
thread and averaged the disparity values separately for honest and fraudulent
authors. Figure 4 depicts the relation between disparity and k for each class of
users, which emulate those derived from real Twitter data.

7 Conclusions

Fake retweet behavior incentivized by monetary and social benefits negatively
impacts the credibility of content and the perception of honest users on Twitter.
In this work, we focus on spotting fake from organic retweet behavior, as well
as identifying the fraudsters to blame by carefully extracting features from the
activity of their retweeters. Specifically, our main contributions are:
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– Patterns: We discovered several patterns (RTScope) for characterizing
various types of fraud: e.g. the “triangles” pattern reveals strong connec-
tivity in retweeter networks, the “homogeneity” pattern indicates uniform
retweet disparity.

– Generator: We propose RTGen, a scalable, realistic generator which pro-
duces both organic and fraudulent retweet activity using the weighted cascade
model. RTGen can be useful for experimentation and evaluation scenarios
where actual, labeled retweet data are missing.
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Abstract. We address a problem of identifying nodes having a high
centrality value in a large social network based on its approximation
derived only from nodes sampled from the network. More specifically,
we detect gaps between nodes with a given confidence level, assuming
that we can say a gap exists between two adjacent nodes ordered in
descending order of approximations of true centrality values if it can
divide the ordered list of nodes into two groups so that any node in one
group has a higher centrality value than any one in another group with
a given confidence level. To this end, we incorporate confidence intervals
of true centrality values, and apply the resampling-based framework to
estimate the intervals as accurately as possible. Furthermore, we devise
an algorithm that can efficiently detect gaps by making only two passes
through the nodes, and empirically show, using three real world social
networks, that the proposed method can successfully detect more gaps,
compared to the one adopting a standard error estimation framework,
using the same node coverage ratio, and that the resulting gaps enable
us to correctly identify a set of nodes having a high centrality value.

Keywords: Gap analysis · Error estimation · Resampling ·
Node centrality

1 Introduction

Recently, social media such as Facebook, Digg, Twitter, etc. becomes an extremely
popular communication tool on a global scale, and generates large-scale social
networks on the web. Such networks allow us to share a wide variety of topics
c© Springer International Publishing Switzerland 2015
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that have been posted on social media because those topics can rapidly and
widely spread through the networks. Thus, in recent years, social media plays
an important role as information infrastructure, and social networks constructed
on it have been extensively investigated from various angles [4,8].

In such social network analysis, we can get an insight into some features of
a given network by using the node centrality [1,3,5,7,14], which characterizes
nodes in the network based on its topology. Typical ones include the degree,
closeness, and betweenness centralities. Some of them such as the degree cen-
trality are based only on the information of neighboring nodes of a target node,
but some others are also on global structure of a network. For example, to com-
pute the betweenness centrality, we have to enumerate paths between arbitrary
node pairs, which is computationally very expensive. Since a social network on
the web can easily grow in size, it is crucial to efficiently compute values of such
a centrality to analyze a large network.

To this kind of problem on scalability, sampling-based approaches have been
proposed so far [6,10,11], which investigate sampling methods that can obtain
better approximations of true centrality values. Those methods are roughly cate-
gorized into uniform sampling, non-uniform sampling, and traversal/walk-based
sampling. In contrast to them, we proposed a framework that ensures the accu-
racy of the approximations under uniform sampling [13], in which we estimated
the approximation error referred to as resampling error by considering all pos-
sible partial networks of a fixed size that are generated by resampling nodes
according to a given coverage ratio and approximated centrality values derived
from them. It is empirically shown that the resampling-based framework provides
a tighter approximation error with a higher confidence level than the traditional
standard error in statistics under a given sampling ratio.

Unlike these existing approaches, in this paper, we consider detecting a set
of nodes having a high centrality value only from approximations derived from
sampled nodes with an adequate confidence level, instead of trying to accurately
estimate the centrality value itself. We are interested in such nodes because
they tend to play an important role for information diffusion on the network.
To this end, we consider a list of nodes in descending order of the approximate
centrality value, and devise an algorithm to efficiently detect gaps that exist
between two adjacent nodes in the list. Here, we say a gap, or a boundary
exists between two adjacent nodes in the list if it can divide the ordered list of
nodes into two groups so that any node belonging to one group has a higher
centrality value than any node in another group with a given confidence level.
We incorporate confidence intervals of true centrality values for each node to
detect such gaps, and adopt the above resampling-based estimation framework
to estimate the confidence intervals as accurately as possible. The results of
extensive experiments on three real world social networks demonstrate that using
the resampling error for detecting gaps outperforms using the standard error in
terms of the number of gaps detected, and that the resulting gaps allow us to
correctly identify nodes having a high centrality value.



Resampling-Based Gap Analysis for Detecting Nodes with High Centrality 137

2 Resampling-Based Estimation Framework

In this section, according to the work [13], we revisit the resampling-based frame-
work for estimating an approximation error with a given confidence level and its
application to computing the node centrality.

2.1 General Framework

Let S be a set of objects such that |S| = L, and f a function that assigns a value
to each object s ∈ S. Then, the problem we address is estimating the average μ
over the set of entire values {f(s) | s ∈ S} only from its arbitrary subset of partial
values {f(t) | t ∈ T ⊂ S}. Let μ(T ) be the partial average over a subset T whose
number of elements is N , i.e., μ(T ) = (1/N)

∑
t∈T f(t). Then, we consider using

this partial average μ(T ) as an approximate solution of the true average μ and
estimating an expected approximation error RE(N), referred to as resampling
error, which is the difference between μ and μ(T ), with respect to the number
of elements N , if L is too large to compute μ. Given T ⊂ 2S that is a family
of subsets of S such that |T | = N for T ∈ T , the resampling error RE(N) is
defined as follows:

RE(N) =
√

〈(μ − μ(T ))2〉T∈T =

√
√
√
√

(
L
N

)−1 ∑

T∈T

(

μ − 1
N

∑

t∈T

f(t)

)2

= C(N)σ,

(1)
where the factor C(N) =

√
(L − N)/((L − 1)N) and σ =√

L−1
∑

s∈S(f(s) − μ)2 is the standard deviation. Note that since the
estimation error of Equation (1) is regarded as the standard deviation with
respect to the number of elements N , we can claim from a statistical viewpoint
that for a given subset T such that |T | = N , and its partial average value
μ(T ), the probability that |μ(T ) − μ| is larger than 1.96 × RE(N), is less than
5%. In other words, the range of μ(T ) ± 1.96 × RE(N) is regarded as the 95%
confidence interval of μ.

On the other hand, we can consider a standard approach to this problem that
is based on the i.i.d. (independently identical distribution) assumption. More
specifically, for a given subset T that has N elements, that is, T = {t1, · · · , tN},
it is assumed that each element t ∈ T is independently selected according to
some distribution p(t) such as an empirical distribution p(t) = 1/L. Then, the
standard error SE(N) based on this assumption is defined as follows:

SE(N) =
√

〈(μ − μ(T ))2〉 =

√√√√∑

t1∈S

· · ·
∑

tN∈S

(
μ − 1

N

N∑

n=1

f(tn)

)2 N∏

n=1

p(tn) = D(N)σ,

(2)
where D(N) = 1/

√
N and σ is the standard deviation.

It is noted that the difference between Equations (1) and (2) is only their
coefficient terms, C(N) and D(N), and that C(N) ≤ D(N), C(L) = 0 and
D(L) �= 0. Namely, RE(N) ≤ SE(N) for any N , and RE(N) becomes 0 when
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N = L, but not SE(N). Note that the true standard deviation σ is needed
in both Equations (1) and (2), but in practice, we can use, instead of σ, the
standard deviation σ′ that is derived from a subset S′ (⊂ S) such that |S′| = L′

is small enough to compute σ′ within a reasonable time if |S| is too large to
compute σ, which is just the case where sampling is needed.

2.2 Application to Node Centrality Estimation

Next, we present the way to apply the above estimation framework to node
centrality estimation of a social network that is represented as a directed graph
G = (V,E), where V and E (⊂ V × V ) are the sets of all the nodes and the links
in the network, respectively. Here, we consider two node centrality measures, the
closeness centrality and the betweenness centrality as in [13].

The closeness clsG(u) of a node u on a graph G is defined as

clsG(u) =
1

(|V | − 1)

∑

v∈V,v �=u

1
splG(u, v)

, (3)

where splG(u, v) stands for the shortest path length from u to v in G, and we
set splG(u, v) = ∞ when node v is unreachable from node u on G. Intuitively,
a node u has a high value for this closeness centrality if a large number of
nodes are reachable from u within relatively short path lengths. A standard
technique for computing clsG(u) of each node u ∈ V is the burning algorithm
[12] whose computational complexity is O(|E|). Thus, it takes a large amount of
computation time for a huge social network consisting of millions of nodes. To
apply the above estimation framework to the computation of an approximation
of the closeness centrality clsG(u) of each node u ∈ V , we instantiate the set
of objects S and the function f to this problem. In fact, we consider Su =
V \{u} as the set S and fu(v) = 1/splG(u, v) as the function f , and thereby can
calculate a partial average value clsG(u;T ) from an arbitrary subset T ⊂ Su∪{u}
and its approximation error, RE(u; |T |) and SE(u; |T |), according to the above
framework.

Next, the betweenness btwG(u) of a node u on a graph G is defined as

btwG(u) =
1

(|V | − 1)(|V | − 2)

∑

v∈V,v �=u

⎛

⎝
∑

w∈V,w �=u,w �=v

nspG(v, w;u)
nspG(v, w)

⎞

⎠ , (4)

where nspG(v, w) is the number of the shortest paths from v to w in G, and
nspG(v, w;u) is the number of the shortest paths from v to w that pass through
node u. Thus, the betweenness of a node u becomes high if a large number of
shortest paths between two nodes pass through node u. The Brandes algorithm
[2] is a standard technique for computing btwG(u) of each node u ∈ V and its
computational complexity is O(|E|). Thus, it requires a large amount of com-
putation time for a large social network, too. Again, we consider instantiating
S and f of the above estimation framework for computing an approximation
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of the betweenness centrality btwG(u). More specifically, we regard the expres-
sion inside the large parentheses in Equation (4) as a function btwG(u; v), the
betweenness of node u that restricts its starting node to v. Then, by considering
Su = V \{u} and fu(v) = btwG(u; v)/(|V |−2), we can calculate a partial average
value btwG(u;T ) from an arbitrary subset T ⊂ Su∪{u} and its estimation error,
RE(u; |T |) and SE(u; |T |), based on the above estimation framework.

3 Gap Detection Method

In this section, we consider the way to detect a set of nodes having a high
centrality value with a given confidence level based only on centrality values
estimated from a subset of nodes in a network. First of all, we formally define the
problem we address here. For a network G(V,E), let μG(v) be the true value of
a certain centrality measure for node v ∈ V , μG(v;T ) be its estimation derived
only from a subset of nodes T ⊆ V , and σ(v; |T |) be its approximation error
such as RE(v; |T |) and SE(v; |T |). In addition, given a node v, let VH(v;T ) =
{u ∈ V ;μG(u;T ) ≥ μG(v;T )} and VL(v;T ) = {w ∈ V ;μG(w;T ) < μG(v;T )}
be disjoint partitions of V with respect to μG(v;T ). Then, incorporating the
confidence interval estimation in statistics, the problem can be defined as finding
out all nodes v ∈ V that satisfy the following inequality for ∀u ∈ VH(v;T ) and
∀w ∈ VL(v;T ):

μG(u;T ) − z(α) · σ(u; |T |) > μG(w;T ) + z(α) · σ(w; |T |) (5)

where 0 < α < 1 and z(α) is the upper α/2 critical value of the standard nor-
mal distribution. In other words, μG(u) > μG(w) holds for ∀u ∈ VH(v;T ) and
∀w ∈ VL(v;T ) with the confidence level C = 100(1 − α)%. Here, the upper
half set VH(v;T ) is a set that we want to identify, and we say that a gap exists
between v and v′ ∈ arg maxw∈VL(v;T ) μG(w;T ). It is obvious that a straightfor-
ward approach to this problem requires the computational complexity of O(|V |3)
because it has to check |VH(v;T )||VL(v;T )| pairs of nodes for each v, which is
not acceptable when a given social network is very large.

To cope with this, we first consider a lower error bound of
VH(v;T ) and an upper error bound of VL(v;T ), respectively defined as
LB(VH(v;T );α) = minu∈VH(v)(μG(u;T )−z(α)σ(u; |T |)) and UB(VL(v;T );α) =
maxw∈VL(v)(μG(w;T )+z(α)σ(w; |T |)). Hereafter, for simplicity, LB(VH(v;T );α)
and UB(VL(v;T );α) are denoted by LB(VH(v);T, α) and UB(VL(v);T, α),
respectively. Then, we focus on the fact that the above problem is reduced to find-
ing all nodes v ∈ V that satisfy the relation LB(VH(v);T, α) > UB(VL(v);T, α)
for given α. Since both LB(VH(v);T, α) and UB(VL(v);T, α) can be simultane-
ously computed for arbitrary v ∈ V by making only one pass through V , the
total computational complexity becomes O(|V |2), which is smaller than O(|V |3),
but it is still hard to find all of such nodes when the size of a network gets larger.

Thus, we further consider an ordered list (v1, v2, · · · , v|V |) of nodes in V
resulted from sorting them in descending order of the value of μG(v;T ), i.e.,
μG(vi;T ) ≥ μG(vi+1;T ) for i ∈ {1, · · · , |V | − 1}. Then, LB(VH(vk);T, α) is
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recursively defined as LB(VH(vk);T, α) = min(LB(VH(vk−1);T, α), μG(vk;T )−
z(α)σ(vk; |T |)). As well, UB(VL(vk);T, α) is defined as UB(VL(vk);T, α) =
max(UB(VL(vk+1);T, α), μG(vk+1;T ) + z(α)σ(vk+1; |T |)). Considering these
definitions, we can compute LB(VH(v);T, α) and UB(VL(v);T, α) for every node
v ∈ V by making only one pass, each, through the list (v1, v2, · · · , v|V |), respec-
tively, which implies that we can detect all gaps by making two passes through
the ordered list. More specifically, in the first pass, referred to as the forward
step, we compute LB(VH(vk);T, α) varying k from 1 to |V |−1, and then, in the
second pass called the backward step, we compute UB(VL(vk);T, α) and detect
a gap if LB(VH(vk);T, α) > UB(VL(vk);T, α) holds varying k from |V | to 2. The
computational complexity of this method is governed by that of its sorting pro-
cess, and thus becomes O(|V | log |V |), which enables the practical gap analysis
even for a large social network. The procedure is summarized as follows:

1. A ← ∅, LB(VH(v1);T, α) = μG(v1;T ) − z(α)σ(v1; |T |)), and
UB(VL(v|V |);T, α) = 0;

2. (Forward step) For k = 2 to |V | − 1,
LB(VH(vk);T, α) = min(LB(VH(vk−1);T, α), μG(vk;T ) − z(α)σ(vk; |T |));

3. (Backward step) For k = |V | − 1 to 2,
(a) UB(VL(vk);T, α) = max(UB(VL(vk+1);T, α), μG(vk+1;T ) +

z(α)σ(vk+1; |T |));
(b) A ← A ∪ {vk} if LB(VH(vk);T, α) > UB(VL(vk);T, α);

4. Output A, and terminate.

We consider three kinds of methods by adopting different definitions of the
estimated error σ(v; |T |), which are σ(v; |T |) = 0, σ(v; |T |) = SE(v; |T |), and
σ(v; |T |) = RE(v; |T |). We refer to these methods as the naive, SE, and RE
method, respectively. Note that the naive method assumes μG(v;T ) = μG(v).
Thus, it determines that there exists a gap between nodes vk and vk+1 for every k
such that μG(vk;T ) �= μG(vk+1;T ). On the other hand, since SE(v; |T |) overesti-
mates the approximation error of μG(v;T ) compared to RE(v; |T |), the number
of gaps detected by the SE method becomes less than that by the RE method.
For more details, we empirically compare these methods through experiments
on real world social networks as described below.

4 Experiments

4.1 Datasets

We empirically evaluated the three gap detection methods described in the pre-
vious section on three datasets of real world networks that are represented as
directed graphs. The first dataset is a network extracted from a Japanese blog
service site “Ameba”1, which has 56, 604 nodes representing blogs in “Ameba”
and 734, 737 directed links among them. Each directed link is constructed from
1 http://www.ameba.jp/
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Fig. 1. Centrality values and their standard deviations of the top 1, 000 nodes in
descending order of the true value of each centrality in the Ameblo, Cosme, and Enron
networks

blog u to blog v if blog u is registered as a favorite one in blog v. We refer to this
network as the Ameblo network. The second one is a network extracted from a
Japanese word-of-mouth communication site for cosmetics, “@cosme”2, consist-
ing of 45, 024 nodes representing its users and 351, 299 directed links, in which
a link (u, v) means that user v registers user u as her favorite one. We refer to
this directed network as the Cosme network. The last one is a network derived
from the Enron Email Dataset [9], which has 19, 603 nodes and 210, 950 links. In
this network, a node is an email address that appears in the dataset as either a
sender or a recipient, while a directional link (u, v) between two email addresses
u and v means that u sent an email to v. We refer to this directed network as
the Enron network. These three networks are not very huge, but large enough
to investigate the basic performance of the three methods from various angles.
We thus simply use the standard deviation σ derived from S to compute the
resampling and standard errors.

Figures 1(a) to 1(c) show the top 1,000 nodes in descending order of true
value of the closeness centrality in the Ameblo, Cosme, and Enron networks,
respectively, while Figures 1(d) to 1(f) show the top 1,000 nodes in descend-
ing order of true value of the betweenness centrality for the same three net-
works. We only plotted the top 1,000 nodes because we are interested in nodes
having high centrality values. In each figure, the horizontal axis indicates the val-
ues of corresponding centrality, and the vertical axis shows its standard
2 http://www.cosme.net/
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deviation defined as σµG
(u) =

√
(|V | − 1)−1

∑
v∈V,v �=u (fu(v) − μG(u))2, where

μG(u) sands for either clsG(u) or btwG(u), and fu(v) is 1/splG(u, v) for clsG(u)
and btwG(u; v)/(|V | − 2) for btwG(u). From these figures, we can observe that
higher-ranked nodes in each centrality measure are distinguishable from each
other in every network because of their distinctive values of the centrality, while
it looks hard to do the same for lower-ranked nodes. This tendency can be
found more clearly in the plots for the betweenness centrality in which nodes
are scattered over a larger area. From these observations, we can expect that it
is harder to detect gaps that exist between lower-ranked nodes compared to the
ones between higher-ranked nodes and that more gaps can be detected for the
betweenness centrality than for the closeness centrality.

4.2 Results

We applied the naive, SE, and RE methods to the three networks mentioned
above for the closeness and betweenness centralities, and examined the number
of gaps they detected and how many gaps among them were correct. A correct
gap is the one that the resulting upper half set VH(vk;T ) corresponds exactly to
the true upper half set that is a set of the top k nodes in the descending order
of the true centrality value. In this experiment, we adopted the confidence level
of 95% (α = 0.05) as a typical one and fixed it, while we varied the coverage
|T |/|V | from 0.01 to 1.00 by 0.01 points to see how the number of gaps detected
changes according to the coverage. More precisely, we randomly sampled nodes
from V without replacement, added it to the subset T one by one, and counted
the number of gaps detected and the number of gaps correctly detected each time
the coverage increases by 0.01. Since we are interested in nodes having a high
centrality value, we considered only the top K nodes in descending order of the
estimated value of the corresponding centrality at each coverage. We repeated
this process R = 1, 000 times and computed the average over them.

Figure 2 shows the results for the closeness centrality in the case of K = 100.
The horizontal axis means the coverage, and the vertical axis means the number
of gaps. The blue solid line and the red broken line represent the number of
gaps detected and the number of gaps incorrectly detected by the corresponding
method, respectively, which are defined as follows:

(# of gaps detected)
1
R

R∑

r=1

|A(c, r)|
|Anv(c, r)| × K (6)

(# of gaps incorrectly detected)
1
R

R∑

r=1

|A(c, r) \ A∗(c, r)|
|Anv(c, r)| × K, (7)

where A(c, r) is the set of nodes corresponding to gaps, i.e., A in the algorithm in
Section 3 detected by the respective method at coverage c in the r-th iteration,
while A∗(c, r) is the set of nodes correctly detected among them. It is noted that
since some of the top K nodes may have the same estimation, these numbers
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Fig. 2. Fluctuation of the number of gaps detected by the naive, SE, and RE methods
as a function of the coverage for the top K = 100 nodes in descending order of the
estimated value of the closeness centrality in the Ameblo, Cosme, and Enron networks

are normalized by the number of gaps detected by the naive method |Anv(c, r)|
that corresponds to the number of node pairs vi and vi+1 having different esti-
mations. Thus, the blue solid line for the naive method always exhibits the best
performance (=K).

From these results, it is found that although the number of gaps incorrectly
detected by the naive method decreases as the coverage becomes larger, it is
much larger than the ones by the other two methods that are almost exactly
0. Whereas, the number of gaps detected either by the SE or RE method is
very small compared to the one by the naive method. Especially, the number of
gaps detected by the SE method increases only a very little even if the coverage
becomes closer to 1.0. On the other hand, the number of gaps detected by th
RE method is slightly larger than the one by the SE method while the coverage
is small, but it rapidly increases at around c = 0.9 and finally becomes 100
while the number of gaps incorrectly detected remains almost 0. This difference
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Fig. 3. Fluctuation of the number of gaps detected by the naive, SE, and RE meth-
ods as a function of the coverage for the top K = 100 nodes in descending order of
the estimated value of the betweenness centrality in the Ameblo, Cosme, and Enron
networks

comes from their nature that the resampling error RE(v; |T |) converges to 0
as |T | approaches to |V |, while the standard error SE(v; |T |) does not. These
tendencies are also observed in the results for the betweenness centrality shown
in Fig. 3.

Next, we examined in the cases of K = 10 and 1, 000. Due to the page
limitation, we will show only the results for the Ameblo network here, but we
observed the same tendencies for the others. Figures 4 and 5 show the results
for the closeness centrality and for the betweenness centrality, respectively. From
Figs. 4(a) and 5(a), the number of gaps incorrectly detected by the naive method
is relatively small compared to the results for K = 100 although it is still larger
than the ones by the other methods that are almost 0 in this case, too. This is
because the higher-ranked nodes in the true centrality value are distinguishable
as shown in Fig. 1. Due to the same reason, the number of gaps detected either
by the SE or RE method is relatively large compared to the case of K = 100.
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Fig. 4. Fluctuation of the number of gaps detected by the naive, SE, and RE methods
as a function of the coverage for the top K = 10 and K = 1, 000 nodes in descending
order of the estimated value of the closeness centrality in the Ameblo network
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Fig. 5. Fluctuation of the number of gaps detected by the naive, SE, and RE methods
as a function of the coverage for the top K = 10 and K = 1, 000 nodes in descending
order of the estimated value of the betweenness centrality in the Ameblo network



146 K. Ohara et al.

It is more clearly found that the RE method can correctly detect more gaps
than the SE method does at the same coverage by comparing Figs. 4(b) and
4(c) for the closeness centrality, and by comparing Figs. 5(b) and 5(c) for the
betweenness centrality. Furthermore, as expected above, by comparing Figs. 4(b)
and 5(b), we can observe that the number of gaps detected by the SE method
for the betweenness centrality is larger than that for the closeness centrality.
The similar tendency can be observed for the RE method from Figs. 4(c) and
5(c). On the other hand, we can observe from the results for K = 1, 000 that the
number of gaps incorrectly detected by the naive method is relatively large, and
the number of gaps detected by the other methods is relatively small, compared
to the other results. This result demonstrates our expectation that it is harder
to correctly detect gaps that exist between lower-ranked nodes.

To summarize the above results, the naive method is not reliable for a large
K. It can detect many gaps correctly for a small K, say 10, but it detects
incorrect gaps if the coverage is low. This is not desirable as a means to reduce
the computational cost for detecting nodes having a high centrality value. On
the other hand, the SE and RE methods satisfactorily detect gaps correctly
regardless of the value of coverage. The SE method is more conservative by
overestimating the error margin and less useful than the RE method in terms
of the number of gaps detected at the same coverage. Note that although the
number of gaps detected by the RE method is limited for a low coverage, the
resulting gaps are more likely to appear between nodes having a high centrality
value, which is desirable for us to detect important nodes in a network.

5 Conclusion

In this paper, we addressed a problem of identifying nodes having a high cen-
trality value in a social network based only on its approximation derived from a
limited number of sampled nodes. To this end, we focused on confidence intervals
of true centrality value for each node, and considered detecting gaps that divide
a set of nodes into two groups so that any node in one group has a higher central-
ity value than any one in another does with a given confidence level. To estimate
confidence intervals as accurately as possible, we employed the resampling-based
framework for estimation of the approximation error, and devised an algorithm
that can efficiently detect gaps whose computational complexity is O(|V |log|V |)
for the number of nodes in a network, |V |, which is much less than O(|V |3)
of the straightforward approach. Through extensive experiments on three real
world social networks for the closeness and betweenness centralities, we empir-
ically confirmed that the proposed method can correctly detect gaps that exist
between high-ranked nodes with the confidence level of 95% even for a partial
network whose coverage is small, say 0.2, and can detect more gaps compared
to the one that uses the standard error to estimate confidence intervals at the
same coverage ratio. Especially, the ratio of gaps incorrectly detected to the total
number of detected gaps is almost 0 for both the methods. It is noted that the
method we proposed is not only specific to identification of nodes having a high
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centrality value, but also applicable to any other estimation problems to which
the resampling-based estimation framework is applicable. We believe that the
conclusions obtained in this paper can generalize but we have yet to test out the
proposed method in a broader setting and in different domains, too.
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Abstract. The performance of a reject option classifiers is quantified
using 0 − d − 1 loss where d ∈ (0, .5) is the loss for rejection. In this
paper, we propose double ramp loss function which gives a continuous
upper bound for (0 − d − 1) loss. Our approach is based on minimizing
regularized risk under the double ramp loss using difference of convex
programming. We show the effectiveness of our approach through exper-
iments on synthetic and benchmark datasets. Our approach performs
better than the state of the art reject option classification approaches.

1 Introduction

The primary focus of classification problems has been on algorithms that return
a prediction on every example. However, in many real life situations, it may be
prudent to reject an example rather than run the risk of a costly potential mis-
classification. Consider, for instance, a physician who has to return a diagnosis
for a patient based on the observed symptoms and a preliminary examination. If
the symptoms are either ambiguous, or rare enough to be unexplainable without
further investigation, then the physician might choose not to risk misdiagnosing
the patient. He might instead ask for further medical tests to be performed, or
refer the case to an appropriate specialist. The principal response in these cases
is to “reject” the example. This paper focuses on learning a classifier with a
reject option. From a geometric standpoint, we can view the classifier as being
possessed of a decision surface as well as a rejection surface. The rejection region
impacts the proportion of examples that are likely to be rejected, as well as
the proportion of predicted examples that are likely to be correctly classified.
A well-optimized classifier with a reject option is the one which minimizes the
rejection rate as well as the mis-classification rate on the predicted examples.

Let x ∈ R
p is the feature vector and y ∈ {−1,+1} is the class label. Let

D(x, y) be the joint distribution of x and y. A typical reject option classifier is
defined using a bandwidth parameter (ρ) and a separating surface (f(x) = 0).
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 151–163, 2015.
DOI: 10.1007/978-3-319-18038-0 12
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ρ is the parameter which determines the rejection region. Then a reject option
classifier h(f(x), ρ) is formed as:

h(f(x), ρ) = 1.I{f(x)>ρ} + 0.I{|f(x)|≤ρ} − 1.I{f(x)<−ρ} (1)

where I{A} is an indicator function which takes value 1 if predicate ’A’ is true,
else 0. The reject option classifier can be viewed as two parallel surfaces with the
rejection area in between. The goal is to determine f(x) as well as ρ simultane-
ously. The performance of this classifier is evaluated using L0−d−1 [8,12] which
is

L0−d−1(f(x), y, ρ) = 1.I{yf(x)<−ρ} + d.I{|f(x)|≤ρ} + 0.I{yf(x)≥−ρ} (2)

In the above loss, d is the cost of rejection. If d = 0, then we will always reject.
When d > .5, then we will never reject (because expected loss of random labeling
is 0.5). Thus, we always take d ∈ (0, .5).

To learn a reject option classifier, the expectation of L0−d−1(., ., .) with
respect to D(x, y) (risk) is minimized. Since D(x, y) is fixed but unknown, the
empirical risk minimization principle is used. The risk under L0−d−1 is mini-
mized by generalized Bayes discriminant [4,8]. h(f(x), ρ) (Eq. (1)) is shown to
be infinite sample consistent with respect to the generalized Bayes classifier [13].

Table 1. Convex surrogates for L0−d−1

Loss Function Definition

Generalized Hinge LGH(f(x), y) =

⎧
⎪⎨

⎪⎩

1 − 1−d
d

yf(x), if yf(x) < 0

1 − yf(x), if 0 ≤ yf(x) < 1

0, otherwise

Double Hinge LDH(f(x), y) = max[−y(1 − d)f(x) + H(d), −ydf(x) + H(d), 0]
where H(d) = −d log(d) − (1 − d) log(1 − d)

Since minimizing the risk under L0−d−1 is computationally cumbersome,
convex surrogates for L0−d−1 have been proposed. Generalized hinge loss LGH

(see Table 1) is a convex surrogate for L0−d−1 [3,12]. It is shown that a min-
imizer of risk under LGH is consistent to the generalized Bayes classifier [3].
Double hinge loss LDH (see Table 1) is another convex surrogate for L0−d−1

[7]. Minimizer of the risk under LDH is shown to be strongly universally con-
sistent to the generalized Bayes classifier [7]. We observe that these convex loss
functions have some limitations. For example, LGH is a convex upper bound to
L0−d−1 provided ρ < 1 − d and LDH forms an upper bound to L0−d−1 provided
ρ ∈ ( 1−H(d)

1−d , H(d)−d
d ) (see Fig. 1). Also, both LGH and LDH increase linearly

in the rejection region instead of remaining constant. These convex losses can
become unbounded for misclassified examples with the scaling of parameters of
f . Moreover, limited experimental results are shown to validate the practical
significance of these losses [3,7,12]. A non-convex formulation for learning reject
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Fig. 1. LGH and LDH for d = 0.2. (a) For ρ = 0.7, both the losses upper bound the
L0−d−1. For ρ = 2, both the losses fail to upper bound L0−d−1. LGH and LDH both
increase linearly even in the rejection region than being flat.

option classifier is proposed in [5]. However, theoretical guarantees for the app-
roach proposed in [5] are not known. While learning a reject option classifier,
one has to deal with the overlapping class regions and outliers. SVM and other
convex loss based approaches are less robust to label noise and outliers in the
data [10]. It is shown that ramp loss based approach is more robust to noise [6].

Motivated by this, we propose double ramp loss (LDR) which incorporates a
different loss value for rejection. LDR forms a continuous nonconvex upper bound
for L0−d−1 and overcomes many of the issues of convex surrogates of L0−d−1.
To learn a reject option classifier, we minimize the regularized risk under LDR

which becomes an instance of difference of convex (DC) functions. To minimize
it, we use DC programming approach [1]. The proposed method has following
advantages: (1) the proposed loss LDR gives a tighter upper bound to the L0−d−1,
(2) LDR requires no constraint on ρ unlike LGH and LDH, (3) our approach can
be easily kernelized for dealing with nonlinear problems.

The rest of the paper is organized as follows. In Section 2 we define the double
ramp loss (LDR). Then we discuss its properties and the proposed formulation
based on LDR. In Section 3 we derive the (LDR) based reject option classifier
learning algorithm. We present experimental results in Section 4. We conclude
the paper with the discussion in Section 5.

2 Proposed Approach

Our approach for learning classifier with reject option is based on minimizing
regularized risk under LDR (double ramp loss).
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2.1 Double Ramp Loss

Double ramp loss is defined as a sum of two ramp loss functions as follows:

LDR(f(x), y, ρ) =
d

μ

[[
μ − yf(x) + ρ

]
+

− [ − μ2 − yf(x) + ρ
]
+

]

+
(1 − d)

μ

[[
μ − yf(x) − ρ

]
+

− [ − μ2 − yf(x) − ρ
]
+

]
(3)
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Fig. 2. LDR and L0−d−1 : ∀μ ≥ 0, ρ ≥ 0, LDR is an upper bound for L0−d−1

where [a]+ = max(0, a). μ ∈ (0, 1] defines the slope of ramps in the loss1.
Parameter ρ defines the width of the rejection region. Fig. 2 shows LDR for
d = 0.2, ρ = 2 for different μ.

Theorem 1. (i) LDR ≥ L0−d−1,∀μ > 0, ρ ≥ 0. (ii) limμ→0 LDR(f(x), ρ, y) =
L0−d−1(f(x), ρ, y). (iii) In the rejection region, yf(x) ∈ (ρ − μ2,−ρ + μ),
LDR(f(x), y, ρ) = d(1 + μ), a const. (iv) LDR ≤ (1 + μ),∀ρ ≥ 0, d ≥ 0. (v)
When ρ = 0, LDR is same as μ-ramp loss ([11]). (vi) LDR is a non-convex
function of (yf(x), ρ).

The proof of Theorem 1 is omitted due to the space constraints. We see that
LDR does not put any restriction on ρ for it to be an upper bound of L0−d−1.

2.2 Risk Formulation Using LDR

Let S = {(xn, yn), n = 1 . . . N} be the training dataset, where xn ∈ R
p, yn ∈

{−1,+1}, ∀n. As discussed, we minimize regularized risk under LDR to find
1 While LDR is parametrized by μ and d as well, we omit them for the sake of notational

consistency.
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a reject option classifier. In this paper, we use l2 regularization. Let Θ =
[wT b ρ]T . Thus, for f(x) = (wT φ(x) + b), regularized risk under double
ramp loss is

R(Θ) =
1
2
||w||2 +

C

μ

N∑

n=1

{
d
[
μ − ynf(xn) + ρ

]
+

− d
[ − μ2 − ynf(xn) + ρ

]
+

+(1 − d)
[
μ − ynf(xn) − ρ

]
+

− (1 − d)
[ − μ2 − ynf(xn) − ρ

]
+

}

=
1
2
||w||2 +

C

μ

N∑

n=1

{
d
[
μ − ynf(xn) + ρ

]
+

+ (1 − d)
[
μ − ynf(xn) − ρ

]
+

−d
[ − μ2 − ynf(xn) + ρ

]
+

− (1 − d)
[ − μ2 − ynf(xn) − ρ

]
+

}

where C is regularization parameter. While minimizing R(Θ), no non-negativity
condition on ρ is required due to the following lemma.

Lemma 1. At the minimum of R(Θ), ρ must be non-negative.

Proof. Let Θ′ = (w′, b′, ρ′) minimizes R(Θ), where ρ′ < 0. Thus −ρ′ > 0.
Consider Θ′′ = (w′, b′,−ρ′) as another point.

R(Θ′) − R(Θ′′) =
C(1 − 2d)

μ

N∑

n=1

{
− [

μ − ynf(xn) + ρ′]
+

+
[ − μ2 − ynf(xn) + ρ′]

+

+
[
μ − ynf(xn) − ρ′]

+
− [ − μ2 − ynf(xn) − ρ′]

+

}

= C(1 − 2d)
N∑

n=1

{
Lramp(ynf(xn) + ρ′) − Lramp(ynf(xn) − ρ′)

}

where Lramp(t) = 1
μ ([μ − t]+ − [−μ2 − t]+) is a monotonically non-increasing

function of t [11]. Since ρ′ < 0, thus, ynf(xn) + ρ′ < ynf(xn) − ρ′, ∀n. This
implies Lramp(ynf(xn)+ρ′) ≥ Lramp(ynf(xn)−ρ′), ∀n. Also (1−2d) ≥ 0, since
0 ≤ d ≤ 0.5. Thus R(Θ′) − R(Θ′′) ≥ 0, which contradicts that Θ′ minimizes
R(Θ). Thus, at the minimum of R(Θ), ρ must be non-negative.

3 Solution Methodology

R(Θ) (Eq. (4)) is a nonconvex function of Θ. However, R(Θ) can be written as
R(Θ) = R1(Θ) − R2(Θ), where R1(Θ) and R2(Θ) are convex functions of Θ.

R1(Θ) =
1
2
||w||2 +

C

μ

N∑

n=1

[
d
[
μ − ynf(xn) + ρ

]
+

+ (1 − d)
[
μ − ynf(xn) − ρ

]
+

]

R2(Θ) =
C

μ

N∑

n=1

[
d
[ − μ2 − ynf(xn) + ρ

]
+

+ (1 − d)
[ − μ2 − ynf(xn) − ρ

]
+

]
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In this case, DC programming guarantees to find a local optima of R(Θ) [1].
In the simplified DC algorithm [1], an upper bound of R(Θ) is found using the
convexity property of R2(Θ) as follows.

R(Θ) ≤ R1(Θ) − R2(Θ(l)) − (Θ − Θ(l))T ∇R2(Θ(l)) =: ub(Θ,Θ(l)) (4)

where Θ(l) is the parameter vector after (l)th iteration, ∇R2(Θ(l)) is a sub-
gradient of R2 at Θ(l). Θ(l+1) is found by minimizing ub(Θ,Θ(l)). Thus,
R(Θ(l+1)) ≤ ub(Θ(l+1), Θ(l)) ≤ ub(Θ(l), Θ(l)) = R(Θ(l)). Which means, in every
iteration, the DC program reduces the value of R(Θ).

3.1 Learning Reject Option Classifier Using DC Programming

In this section, we will derive a DC algorithm for minimizing R(Θ). We initialize
with Θ = Θ(0). Given Θ(l), we find Θ(l+1) as

Θ(l+1) ∈ arg min
Θ

ub(Θ,Θ(l)) = arg min
Θ

R1(Θ) − ΘT ∇R2(Θ(l)) (5)

where ∇R2(Θ(l)) is the subgradient of R2(Θ) at Θ(l). We choose ∇R2(Θ(l)) as:

∇R2(Θ
(l)) =

N∑

n=1

β′(l)
n [−ynφ(xn)T − yn 1]T +

N∑

n=1

β′′(l)
n [−ynφ(xn)T − yn − 1]T

where
{

β
′(l)
n = Cd

μ I{yn(φ(xn)Tw(l)+b(l))−ρ(l)<−μ2}
β

′′(l)
n = C(1−d)

μ I{yn(φ(xn)Tw(l)+b(l))+ρ(l)<−μ2}
(6)

For f(x) = (wT φ(x) + b), we rewrite the upper bound minimization problem
described in Eq. (5) as follows,

P (l+1) = minΘ R1(Θ) − ΘT ∇R2(Θ
(l))

= min
w,b,ρ

1

2
||w||2 +

C

μ

N∑

n=1

[
d
[
μ − ynf(xn) + ρ

]
+

+ (1 − d)
[
μ − ynf(xn) − ρ

]
+

]

+
N∑

n=1

β′(l)
n [ynf(xn) − ρ] +

N∑

n=1

β′′(l)
n [ynf(xn) + ρ]

We rewrite P (l+1) as

P (l+1) = min
w,b,ξ′

,ξ′′
,ρ

1

2
||w||2 +

C

μ

N∑

n=1

[
dξ′

n + (1 − d)ξ′′
n

]
+

N∑

n=1

β′(l)
n [yn(wT φ(xn) + b) − ρ]

+

N∑

n=1

β′′(l)
n [yn(wT φ(xn) + b) + ρ]

s.t. yn(wT φ(xn) + b) ≥ ρ + μ − ξ′
n, ξ′

n ≥ 0, n = 1 . . . N

yn(wT φ(xn) + b) ≥ −ρ + μ − ξ′′
n, ξ′′

n ≥ 0 n = 1 . . . N
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where ξ′ = [ξ′
1 ξ′

2 . . . ξ′
N ]T and ξ′′ = [ξ′′

1 ξ′′
2 . . . ξ′′

N ]T . The dual optimization
problem D(l+1) of P (l+1) is as follows.

D(l+1) = min
γ′,γ′′

1
2

N∑

n=1

N∑

m=1

ynym(γ′
n + γ′′

n)(γ′
m + γ′′

m)k(xn,xm) − μ

N∑

n=1

(γ′
n + γ′′

n)

s.t.

⎧
⎪⎨

⎪⎩

−β
′(l)
n ≤ γ′

n ≤ Cd
μ − β

′(l)
n n = 1 . . . N

−β
′′(l)
n ≤ γ′′

n ≤ C(1−d)
μ − β

′′(l)
n n = 1 . . . N

∑N
n=1 yn(γ′

n + γ′′
n) = 0

∑N
n=1(γ

′
n − γ′′

n) = 0

where γ′ = [γ′
1 γ′

2 . . . . . . γ′
n]T and γ′′ = [γ′′

1 γ′′
2 . . . . . . γ′′

n]T are dual variables.
At the optimality of P (l+1), w can be found as w =

∑N
n=1 yn(γ′

n + γ′′
n)φ(xn).

Since P (l+1) has quadratic objective and linear constraints, it holds strong
duality with D(l+1). Solving D(l+1) is more useful as it can be easily kernelized
for non-linear problems. Behavior of γ′

n and γ′′
n under different cases is as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn(wT φ(xn) + b) − μ > ρ ⇒ γ′
n = −β

′(l)
n ; γ′′

n = −β
′′(l)
n

yn(wT φ(xn) + b) − μ = ρ ⇒ γ′
n ∈ ( − β

′(l)
n , Cd

μ
− β

′(l)
n

)
; γ′′

n = −β
′′(l)
n

yn(wT φ(xn) + b) − μ ∈ (−ρ, ρ) ⇒ γ′
n = Cd

μ
− β

′(l)
n ; γ′′

n = −β
′′(l)
n

yn(wT φ(xn) + b) − μ = −ρ ⇒ γ′
n = Cd

μ
− β

′(l)
n ; γ′′

n ∈ ( − β
′′(l)
n , C(1−d)

μ
− β

′′(l)
n

)

yn(wT φ(xn) + b) − μ < −ρ ⇒ γ′
n = Cd

μ
− β

′(l)
n ; γ′′

n = C(1−d)
μ

− β
′′(l)
n

3.2 Finding b(l+1) and ρ(l+1)

To find b(l+1) and ρ(l+1), we consider xn ∈ SV′(l+1) ∪ SV′′(l+1), where

SV′(l+1) = {xn | yn(φ(xn)Tw(l+1) + b(l+1)) = ρ(l+1) + μ}
SV′′(l+1) = {xn | yn(φ(xn)Tw(l+1) + b(l+1)) = −ρ(l+1) + μ}

We already saw that

1. If xn ∈ SV′(l+1), then γ
′(l+1)
n ∈ ( − β

′(l)
n , Cd

μ − β′
n(l)

)
and γ

′′(l+1)
n = −β

′′(l)
n

2. If xn ∈ SV′′(l+1), then γ
′(l+1)
n = Cd

μ − β
′(l)
n and γ

′′(l+1)
n ∈ ( − β

′′(l)
n , C(1−d)

μ −
β

′′(l)
n

)

We solve the system of linear equations corresponding to sets SV′(l+1) and
SV′′(l+1) for identifying b(l+1) and ρ(l+1).

3.3 Summary of the Algorithm

We fix d ∈ [0, .5], μ ∈ (0, 1] and C and initialize the parameter vector Θ as
Θ(0). In any iteration (l), we find β

′(l)
n , β

′′(l)
n , n = 1 . . . N (see Eq. (6)). We solve
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D(l+1) to find γ′(l+1),γ′′(l+1). w(l+1) is found as w(l+1) =
∑N

n=1 yn(γ′(l+1)
n +

γ
′′(l+1)
n )φ(xn). We find b(l+1) and ρ(l+1) as described in Section 3.2. Thus, we

have found Θ(l+1). Using Θ(l+1), we now find β
′(l+1)
n , β

′′(l+1)
n , n = 1 . . . N . We

repeat the above two steps until the parameter vector Θ changes significantly.
More formal description of our algorithm is provided in Algorithm 1.

Algorithm 1. Learning Reject Option Classifier by Minimizing R(Θ)
Input : d ∈ [0, .5], μ ∈ (0, 1], C > 0, S
Output : w∗, b∗, ρ∗

Initialize w(0), b(0), ρ(0), l = 0
repeat

Compute β
′(l)
n = Cd

μ
I{yn(φ(xn)Tw(l)+b(l))−ρ(l)<−μ2}

β
′′(l)
n = C(1−d)

μ
I{yn(φ(xn)Tw(l)+b(l))+ρ(l)<−μ2}

Find γ′(l+1), γ′′(l+1) by solving D(l+1) described in Eq. (7)

Find w(l+1) =
∑N

n=1 yn(γ
′(l+1)
n + γ

′′(l+1)
n )φ(xn)

Find b(l+1) and ρ(l+1) by solving the system of linear equations corresponding to
sets SV

(l+1)
1 and SV

(l+1)
2 , where

SV′(l+1) = {xn | yn(φ(xn)Tw(l+1) + b(l+1)) = ρ(l+1) + μ}
SV′′(l+1) = {xn | yn(φ(xn)Tw(l+1) + b(l+1)) = −ρ(l+1) + μ}

until convergence of Θ(l)

3.4 γ′ and γ′′ at the Convergence of Algorithm 1

At the convergence of Algorithm 1, let γ′∗
n , γ′′∗

n , n = 1 . . . N become the values
of the dual variables. The behavior of γ′∗

n and γ′′∗
n is described in Table 2. For

any xn, only one of γ′∗
n and γ′′∗

n can be nonzero. We observe that parameters
w, b and ρ are determined by the points whose margin (yf(x)) is in the range
[ρ−μ2, ρ+μ]∪ [−ρ−μ2,−ρ+μ]. We call these points as support vectors. We also
see that xn for which ynf(xn) ∈ (ρ + μ,∞) ∪ (−ρ + μ, ρ − μ2) ∪ (−∞,−ρ − μ2),
both γ′∗

n , γ′′∗
n = 0. Thus, points which are correctly classified with margin at least

(ρ+μ), points falling close to the decision boundary with margin in the interval
(−ρ + μ, ρ − μ2) and points misclassified with a high negative margin (less than
−ρ − μ2), are ignored in the final classifier. Thus, our approach not only rejects
points falling in the overlapping region of classes, it also ignores potential outliers.
We illustrate these insights through experiments on a synthetic dataset as shown
in Fig. 3. 400 points are uniformly sampled from the square region [0 1]× [0 1].
We consider the diagonal passing through the origin as the separating surface
and assign labels {−1,+1} to all the points using it. We changed the labels of
80 points inside the band (width=0.225) around the separating surface.

Fig. 3 shows the reject option classifier learnt using the proposed method. We
see that the proposed approach learns the rejection region accurately. We also
observe that all of the support vectors are near the two parallel hyperplanes.
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Table 2. Behavior of γ′∗ and γ′′∗

Condition γ′∗
n ∈ γ′′∗

n ∈
yn(wT φ(xn) + b) ∈ (ρ + μ, ∞) 0 0

yn(wT φ(xn) + b) = ρ + μ (0, Cd
μ

) 0

yn(wT φ(xn) + b) ∈ [ρ − μ2, ρ + μ) Cd
μ

0

yn(wT φ(xn) + b) ∈ (−ρ + μ, ρ − μ2) 0 0

yn(wT φ(xn) + b) = −ρ + μ 0 (0, C(1−d)
μ

)

yn(wT φ(xn) + b) ∈ [−ρ − μ2, −ρ + μ) 0 C(1−d)
μ

yn(wT φ(xn) + b) ∈ (−∞, −ρ − μ2) 0 0
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Fig. 3. Left figure shows that label noise affects points near the true classification
boundary. Right figure shows reject option classifier learnt using LDR based approach
(C = 100, μ = 1, d = .2). Filled circles and triangles represent the support vectors.

4 Experimental Results

We show the effectiveness of our approach by showing its performance on several
datasets. We also compare our approach with the approach proposed in [7].

4.1 Dataset Description

We report experimental results on 1 synthetic datasets and 2 datasets taken
from UCI ML repository [2].

1. Synthetic Dataset : Let f1 and f2 be two mixture density functions in R
2

defined as follows:

f1(x) = 0.45U([1, 0] × [1, 1]) + 0.5U([4, 3] × [0, 1]) + 0.05U([10, 0] × [5, 5])
f2(x) = 0.45U([0, 1] × [1, 1]) + 0.5U([9, 10] × [1, 0]) + 0.05U([0, 10] × [5, 5])
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where U(A) denotes the uniform density function with support set A. We
sample 150 points independently each from f1 and f2. We label these points
using the hyperplane with w = [1 0]T and b = 0. We choose 10% of these
points uniformly at random and flip their labels.

2. Ionosphere Dataset [2] : This dataset describes the problem of discrimi-
nating good versus bad radars based on whether they send some useful infor-
mation about the Ionosphere. There are 34 variables and 351 observations.

3. Parkinsons Disease Dataset [2] : This dataset is used to discriminate
people with Parkinsons disease from the healthy people. There are 195 fea-
ture vectors with each vector having 22 features.

4.2 Experimental Setup

In the proposed LDR based approach, for solving the dual D(l) at every iteration,
we have used the kernlab package [9] in R. We thank the authors of LDH based
method [7] for providing the codes for their approach. For nonlinear problems,
we use RBF kernel. In our approach, we set μ = 1. C and σ (width parameter
for RBF kernel) are chosen using 10-fold cross validation.

4.3 Simulation Results

We report results for values of d in the interval [0.05 .5] with the step size of 0.05.
For every value of d, we find the cross validation risk (under L0−d−1), % accuracy
on the non-rejected examples (Acc) and % rejection rate (RR). The results
provided are based on 10 repetitions of 10-fold cross validation (CV). We show
the average values and standard deviation (computed over the 10 repetitions).

We now discuss the experimental results. Fig. 4(a) shows the Synthetic
dataset and the true classification boundary. Fig. 4(b) and (c) show the clas-
sifiers learnt using LDR and LDH based approaches respectively for d = 0.2. LDR

based approach accurately finds the true classification boundary as oppose to
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Fig. 4. (a) Synthetic Dataset and the true classification boundary. Reject option clas-
sifiers learnt using (b) proposed LDR based approach for d = 0.2, (c) LDH based
approach for d = 0.2.
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Table 3. Comparison results on Synthetic dataset (linear classifiers for both the
approaches)

d LDR (C = 2) LDH (C = 32)

Risk RR Acc(unrej) Risk RR Acc(unrej)

0.05 0.068±0.015 90.87±5.79 75.87±7.95 0.05 100 NA
0.1 0.138±0.023 70.35±12.18 79.05±6.87 0.105±0.002 95.53±1.69 77.20±6.06
0.15 0.135±0.003 65.41±5.06 89.66±0.90 0.136 72.77±0.23 90.56±0.66
0.2 0.155±0.006 43.18±4.31 88.56±0.75 0.17 72.67 90.36±1.44
0.25 0.164±0.014 32.13±8.43 87.97±1.42 0.204±0.003 66.5±1.7 91±0.74
0.3 0.148±0.012 13.23±7.52 87.67±0.69 0.197 46.73±0.14 89.37±0.32
0.35 0.134±0.005 4.57±1.80 87.68±0.23 0.21±0.002 43.33±0.65 90.02±0.38
0.4 0.131±0.003 1.51±0.56 87.29±0.30 0.21±0.006 31.17±1.26 87.41±0.55
0.45 0.128±0.002 0.86±0.45 87.45±0.25 0.265±0.008 9.13±1.1 75.58±0.98
0.5 0.136±0.01 0 86.41±0.99 0.297±0.004 0 70.27±0.44

Table 4. Comparison results on Ionosphere dataset (nonlinear classifiers using RBF
kernel for both the approaches)

d LDR (C = 2, γ = 0.125) LDH (C = 16, γ = 0.125)

Risk RR Acc(unrej) Risk RR Acc(unrej)

0.05 0.025±0.002 34.84±0.92 98.94±0.31 0.029 52.61±0.73 99.47±0.06
0.1 0.027±0.003 8.81±0.32 97.99±0.33 0.047±0.002 43.44±0.85 99.46±0.17
0.15 0.039±0.003 5.78±0.57 96.81±0.29 0.042±0.003 24.02±1.62 99.3±0.37
0.2 0.044±0.001 3.46±0.51 96.18±0.15 0.04±0.002 17.43±0.59 99.42±0.25
0.25 0.047±0.002 1.76±0.41 95.68±0.23 0.046±0.001 14.47±0.79 98.9±0.16
0.3 0.052±0.003 0.92±0.46 95.08±0.35 0.051±0.003 12.57±0.75 98.56±0.31
0.35 0.051±0.003 0.03±0.09 94.88±0.29 0.054±0.002 9.33±0.59 97.72±0.21
0.4 0.051±0.002 0 94.95±0.24 0.054±0.003 6.72±0.86 97.09±0.35
0.45 0.054±0.002 0 94.64±0.21 0.055±0.003 3.53±0.41 95.97±0.36
0.5 0.054±0.001 0 94.62±0.13 0.055±0.005 0 94.55±0.47

LDH based approach. Also, the reject region found by LDR based approach is
the most ambiguous region unlike LDH based approach which rejects almost all
the points.

Table 3-5 show the experimental results on all the datasets. We observe the
following:

1. We see that the proposed LDR based method outperforms LDH based app-
roach in terms of the risk (expectation of L0−d−1). For Synthetic dataset,
except for d = 0.05 and 0.1, LDR based method has lower CV risk. Similarly,
for Ionosphere dataset, except for d = 0.2, 0.25 and 0.3, LDR based method
has lower CV risk. For Parkinsons dataset, LDR based method has lower CV
risk except for d = 0.35.

2. We also observe that LDR based method outputs classifiers with significantly
lesser rejection rate for all the datasets and for all values of d.

Thus, the proposed LDR based approach outputs classifiers with lesser risk and
lesser rejection rate compared to the LDH based approach.
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Table 5. Comparison results on Parkinsons Disease dataset (linear classifiers for both
the approaches)

d LDR (C = 32) LDH (C = 32)

Risk RR Acc(unrej) Risk RR Acc(unrej)

0.05 0.031±0.002 43.88±0.80 98.33±0.49 0.043±0.001 86.38±0.92 100
0.1 0.051±0.004 41.79±0.77 98.07±1.03 0.061±0.002 53.76±1.64 98.61±0.62
0.15 0.071±0.002 40.08±1.21 98.14±0.48 0.086±0.004 39.56±1.13 95.8±0.72
0.2 0.095±0.004 37.67±1.04 96.99±0.55 0.125±0.008 29.78±2.06 90.86±1.5
0.25 0.133±0.009 20.46±2.79 90.26±1.30 0.142±0.004 22.3±1.95 89.02±0.73
0.3 0.129±0.01 4.06±2.06 87.83±1.15 0.131±0.009 14.19±1.05 89.76±1.01
0.35 0.134±0.007 2.49±1.04 87.19±0.76 0.133±0.004 9.97±1.18 89.10±0.57
0.4 0.131±0.008 0.56±0.44 87.06±0.75 0.133±0.006 6.10±1.62 88.53±0.92
0.45 0.133±0.013 0.05±0.17 86.72±1.28 0.14±0.009 2.92±1.09 86.96±1.05
0.5 0.133±0.009 0 86.65±0.94 0.139±0.008 0 86.06±0.76

5 Conclusion and Future Work

In this paper, we have proposed a new loss LDR (double ramp) for learning the
reject option classifier. LDR gives tighter upper bound for L0−d−1 compared to
convex losses LDH and LGH. Our approach learns the classifier by minimizing the
regularized risk under the double ramp loss which becomes an instance of DC
optimization problem. Our approach can also learn nonlinear classifiers by using
appropriate kernel function. Experimentally, we have shown that our approach
works superior to LDH based approach for learning reject option classifiers.
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Abstract. As a generalized form of multi-class classification, multi-
label classification allows each sample to be associated with multiple
labels. This task becomes challenging when the number of labels bulks
up, which demands a high efficiency. Many approaches have been pro-
posed to address this problem, among which one of the main ideas is to
select a subset of labels which can approximately span the original label
space, and training is performed only on the selected set of labels. How-
ever, these proposed sampling algorithms either require nondeterministic
number of sampling trials or are time consuming. In this paper, we pro-
pose two label selection methods for multi-label classification (i) cluster-
ing based sampling (CBS) that uses deterministic number of sampling
trials; and (ii) frequency based sampling (FBS) utilizing only label fre-
quency statistics which makes it more efficient. Moreover, neither of these
two algorithms needs to perform singular value decomposition (SVD) on
label matrix which is used in previously mentioned approaches. Experi-
ments are performed on several real world multi-label data sets with the
number of labels ranging from hundreds to thousands, and it is shown
that the proposed approaches achieve the state-of-the-art performance
among label space reduction based multi-label classification algorithms.

Keywords: Classification · Clustering · Dimension reduction

1 Introduction

Multi-label classification [22] has been widely used in real world applications
such as text categorization [11], image annotation [12,21], web advertising [2]
and music categorization [18]. In these applications there are usually tens or
hundreds of thousands of labels, while the number is still increasing. It is of
great significance to perform such tasks with high efficiency. In multi-label clas-
sification, each sample can be assigned with a set of labels, which makes it a
more challenging task. Many approaches have been proposed to improve its per-
formance.

The traditional approach called binary relevance (BR) [1,16] is to train one
classifier for each label being predicted independently. Despite its low training
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and testing efficiency, memory usage is also a bottleneck as the number of labels
becoming larger. Recently, many approaches have been proposed either to exploit
hierarchical label structures or conduct dimension reduction using label corre-
lations. Proposed approaches for constructing hierarchical label structures [4,6]
are usually converted to a very complex optimization problem mainly aiming at
improving testing efficiency, but the training procedure is still very slow. In this
paper, we focus on conducting label space dimension reduction by incorporating
label correlations.

Label transformation and label selection are two main strategies used for
label space dimension reduction. The main idea of label transformation is to
transform the original label set into another small set of labels that is man-
ageable for learning [8,13,17,20], i.e., project the original d-dimensional label
vector into a k-dimensional vector (k � d) and then training is performed on
the projected vectors. However, these transformed labels are usually difficult to
learn. Label selection can overcome the limitation of label transformation, which
just selects a small subset of labels from the original set and uses this selected
set of labels for training [5,7]. These approaches are based on the assumption
that non-selected labels could be correctly reconstructed from the selected ones.
However, previously proposed approaches on label selection are either simple
random sampling which requires nondeterministic number of sampling trials or
computationally expensive. And singular value decomposition (SVD) is needed
to be performed in almost all of these methods.

In this paper, two new label selection based methods for multi-label classifi-
cation are proposed to alleviate these problems, clustering based sampling (CBS)
and frequency based sampling (FBS). For CBS, labels are clustered before being
selected. With the assumption that a label can faithfully construct other labels in
the same cluster, we use K-means to group labels into k clusters (if k labels are to
be selected), then sample one label from each cluster. This approach requires only
k sampling trials if k labels are to be selected. FBS is an efficient method with high
performance where only label frequency statistics is considered for label selection.
Contrary to other label selection based multi-label classification approaches, FBS
does not formulate label selection as a general column subset selection problem
(CSSP). It is able to make better use of the property of label matrix: (1) sparse
with each row containing only a few non-zero items; (2) containing values of only 0
or 1. Neither of the proposed two approaches needs to perform SVD or solve com-
plex optimization problems. Experimental results on several real world multi-label
datasets show that the proposed algorithms achieve state-of-the-art performance
among label space dimension reduction based methods.

The rest of this paper is organized as follows. We first give a brief introduc-
tion to label selection and its related problems, and then two proposed label
selection methods for multi-label classification are presented. Followed are the
experimental results and analysis. Finally we conclude this paper.

Notations: The following notations will be used in this section and the rest of
this paper. n, m, d are used to denote the number of samples, the dimension of
features and the number of labels respectively. X ∈ IRn×m denotes the training
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data, Y ∈ {0, 1}n×d is the corresponding label matrix. For a vector v, its transpose
is denoted by vT . For a matrix A, its transpose is denoted by AT , A† denotes the
Moore-Penrose pseudo-inverse, ‖A‖F , ‖A‖2 denote the Frobenius norm and spec-
tral norm respectively.Besides,weuseA(i) to denote the ith rowofA,A(j) to denote
the jth column of A, and Ai,j to denote the jth column of ith row of matrix A.

2 Label Selection

Label selection is a very efficient class of label space dimension reduction oriented
approaches for multi-label classification. By selecting a small subset of labels and
performing training on these selected labels, non-selected labels can be predicted
using the selected ones. Obviously, this method is based on the assumption
that non-selected labels can be faithfully constructed from the selected ones.
Therefore, the label selection method is the key to classification performance. In
this section, we will first give a brief introduction to label selection problem.

One method for label selection is to formulate it as a regularized least squares
regression model [5]

min
W

‖Y − Y W‖2F + λ1 ‖W‖1,2 + λ2 ‖W‖1 , (1)

where ‖W‖1,2 =
∑d

i=1

√∑d
j=1 W 2

i,j , ‖W‖1 =
∑d

i=1

∑d
j=1 |Wij |. W ∈ IRd×d

is the coefficient matrix with only a few non-zero rows, and λ1, λ2 are the
regularization parameters. The second term in (1) enforces joint group sparsity
across the rows of W , and the third term is the traditional l1-regularizer over
the whole W . However, when the number of labels becomes large, problem (1)
becomes computationally expensive.

An alternative is to treat label selection as one column subset selection prob-
lem (CSSP) [3,10]. For a matrix A ∈ IRn×d, CSSP aims at finding exactly k
columns so that these selected columns can approximately span A. Concretely,
we expect to find a column set C with size k such that

∥
∥
∥A − ACA†

CA
∥
∥
∥
F

is
minimized. AC denotes the sub-matrix of the columns in set C of matrix A.
Exact solution is impossible for its high computational complexity O(dk). Some
approximate solution such as randomized sampling [3,7,10] has been proposed
to alleviate this problem. In Bi & Kowk’s [7] work, they proposed to select k
columns from A with the probability for selecting the ith column being

pi =
1
k

∥
∥(V T

k )(i)
∥
∥2

2
, (2)

where Vk ∈ IRn×k, is the top k right singular vectors of partial SVD performed
on A. pi corresponds to the leverage score of A(i) on the best subspace of A. Our
proposed algorithm is based on CSSP but with different calculation of pi and
different sampling procedures.
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3 Algorithms

Similar to CSSP, the aim of the proposed algorithms is to select k columns from
a given label matrix Y such that the reconstruction error is minimized. That is

min
C

∥
∥
∥Y − YCY †

CY
∥
∥
∥
F

, (3)

where C is the selected set of k columns, and YC is the sub-matrix that contains
k columns of Y . We will elaborate the proposed two column selection algorithms
for multi-label classification, clustering based sampling (CBS) and frequency
based sampling (FBS) in the following sections. Unlike previous proposed label
selection algorithms, SVD is not needed in our proposed algorithms.

3.1 Clustering Based Sampling (CBS)

The main idea of CBS is to group labels (columns of label matrix) into k clusters,
and then sample one label from each cluster. In order to cluster labels, we need
first to generate embeddings for each label. In this work, we represent a label
vector as

L(t) =
∑n

i=1 X(i)Yi,t∑n
i=1 Yi,t

, (4)

where L ∈ IRd×m denotes the embedding matrix with each row denoting the
vector of one label, and L(t) is an m-dimensional row vector which denotes
the embedding of the tth label. Although this label embedding looks quite sim-
ple, experiments in Sect. 4 show that CBS performs well on several real world
datasets. The full procedure is described in Algorithm 1.

Algorithm 1. Clustering Based Sampling for Multi-label Classification
1: Input: X, Y , k.
2: Compute the label embedding matrix L according to formula (4).
3: Cluster label embedding L using K-means to generate k clusters, clu1, clu2, ...,

cluk.
4: C ← ∅
5: for i ← 1 to k do
6: Sample one label l from clui (For sampling algorithm, we use the method

described in Algorithm 2, line 2-9)
7: C ← C ∪ {l}
8: end for
9: train a classifier f(x) from {X(n), Y

(n)
C }N

n=1

10: For a new test sample x, obtain its prediction h = f(x), return ŷ by rounding
hTY †

CY .

In Algorithm 1, we first obtain the label (column of label matrix) embeddings
with a combination of sample features. Then K-means algorithm is used to group
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labels into k clusters. For labels with few occurrences, it is hard to obtain a good
embedding for clustering. In our implementation, we just put these labels into
the same cluster. Since we only sample one label from each cluster, exact k
sampling trials are needed.

3.2 Frequency Based Sampling (FBS)

Most of the previously proposed column selection based algorithms for multi-
label classification are formulated as a general CSSP problem, they did not utilize
the unique property of label matrix Y : (1) they are usually sparse with each row
containing only a few non-zero items and (2) the matrix contains values of only 0
or 1. And there are usually a lot of redundant labels in multi-label classification
tasks with many labels. For example, in text categorization, one text can be
categorized as machine learning, it also belongs to the category of ML which
is short for machine learning. And samples with label ML is often a subset of
samples with label machine learning. We want labels like machine learning to be
selected. Based on this fact, we propose a frequency based sampling algorithm
in which each label(column) is selected with a probability

pj =
∑n

i=1 Yi,j

Z
, Z =

n∑

i=1

d∑

j=1

Yi,j , (5)

where pj is the probability of the jth column being selected. Intuitively, labels
with higher frequency is assigned with higher sampling probability, and is more
likely to be selected. The sampling procedure is described in Algorithm 2. From
Algorithm 2, it is easy to see that the probability of selecting a label is propor-
tional to its occurrence frequency.

Proposition 1. The probability of the jth column being selected pj ≥ 1
cn , for

all 1 ≤ j ≤ d, where c is a constant (c � d).

Proof. As the property of label matrix, each row has only a few non-zero
terms, let c be the average number of non-zero terms in each row. The sum of all
label occurrences is cn and each label (column) will occur at least once. Thus,
pj ≥ 1

cn .

Proposition 2. The average sampling trials of selecting k different columns is
Ω(n log d

d−k ).

Proof. Let pj be the probability of the jth column being selected, and Ti be
the expected number of sampling trials for sampling exactly i different columns,
and Ci the set of selected columns with size i. Then we have the following formula

Ti = Ti−1 +
1

∑
j /∈Ci−1

pj
,

T0 = 0 , C0 = ∅,

d∑

j=1

pj = 1 , pj > 0(1 ≤ j ≤ d) ,

(6)
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Algorithm 2. Frequency Based Sampling for Multi-label Classification
1: Input: X, Y , k.
2: Compute the sampling probability pj for each column according to formula (5).
3: C ← ∅
4: while |C| < k do
5: select a column from {1, 2, ..., d} where the probability of selecting jth column is

pj .
6: if j /∈ C then
7: C ← C ∪ {j}
8: end if
9: end while

10: train a classifier f(x) from {X(n), Y
(n)
C }N

n=1

11: For a new test sample x, obtain its prediction h = f(x), return ŷ by rounding
hTY †

CY .

Together with Proposition 1, we can obtain the lower bound of the second term
of (6),

∑
j /∈Ci−1

pj ≥ d−i+1
nc , the expected number of sampling trials

Ti ≤ Ti−1 +
cn

d − i + 1
, (7)

From (7), we my obtain

Tk ≤ cn log
d

d − k
(8)

where c is a constant as described in Proposition 1. Because k � d, log d
d−k � 1.

Typically when k = 0.1d, log d
d−k = 0.152, thus cn log d

d−k � cn.

3.3 Prediction

The proposed two algorithms have two different column selection procedures,
but they share the same prediction procedure as [7]. On prediction, a new test
sample is first applied to the k learned classifiers to obtain a k-dimensional
prediction vector h. And the d-dimensional prediction vector can be constructed
as ŷ = hTY †

CY .

3.4 Comparison with Other Methods

The proposed approaches are mainly compared with label selection based method:
ML-CSSP [7] and label space transformation based methods: PLST [17], CPLST
[8] for the reported high performance. The comparison are shown in Table 1. For
our CBS method, it takes O(nmd) in general to obtain label embeddings, however,
because the label matrix Y is extremely sparse with only a few non-zero terms in
each row, this complexity can be reduced to O(nm). And the time complexity of
K-means is O(kdm). For our proposed FBS algorithm, only the frequency of each
label is required which takes O(nd). In order to sample k different columns, ML-
CSSP requires O(klogk) sampling trials, our proposed CBS only uses k trials, and
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FBSneedsnlog d
d−k trials. Besides, PLSTandCPLSTdonot need to sample labels.

Among these fivemethods, our proposedFBS is themost computationally efficient,
andourCBSuses theminimumnumber of sampling trials.For easy comparison, the
complexity of PLST and CPLST are also provided.

Table 1. Comparison of various algorithms

time complexity sampling trials

CBS (ours) O(nm) + O(kdm) + O(k) O(k)
FBS (ours) O(nd) + Ω(n log d

d−k
) Ω(n log d

d−k
)

ML-CSSP O(ndk) + O(k log k) O(k log k)
PLST O(ndk) -
CPLST O(min{nm2, n2m}) + O(d3) -

4 Experiments

In this section, experiments are conducted on a number of benchmark datasets1

shown in Table 2. cal500 is a dataset of human-generated musical annotations
that describe 500 popular western musical tracks. Each song is annotated by a
vocabulary of 174 tags [18]. corel5k is a set of PCD images. There are 371 words
in total in the vocabulary and each image has 4-5 keywords [9]. delicious contains
textual data of web pages along with their tags extracted from del.icio.us social
bookmarking site [15]. ESPGame is a list of 100,000 images with English labels
from the ESP Game. To make the training process efficient, a subset of the image
dataset ESPGame is randomly selected and we pick up tags that occur at least
twice within the subset. Each instance in ESPGame is represented with a 905-D
feature vector 2 extracted with LIRe [14].

Table 2. Data sets used in the experiment

data sets #samples #features #labels

cal500 502 68 174
corel5k 5000 499 374
delicious 16150 500 983
ESPGame 5000 905 1943

The proposed two methods FBS, CBS are compared with ML-CSSP [7],
PLST [17] and CPLST [8]. All the compared methods are implemented in python

1 These datasets are available athttp://mulan.sourceforge.net and http://www.cs.
utexas.edu/∼grauman/courses/spring2008/datasets.htm

2 33-D Color Layout, 480-D Gabor, 40-D Edge Histogram, 256-D Color Histogram and
96-D FCTH.

http://mulan.sourceforge.net 
http://www.cs.utexas.edu/~grauman/courses/spring2008/datasets.htm 
http://www.cs.utexas.edu/~grauman/courses/spring2008/datasets.htm 
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with linear regression as the classifier. The number of selected labels k varies from
0.05d to 0.4d. We just give the results of k = 0.1d since there is no significant
difference in relative performance as the value of k varies (But we provide the
results with the variation of k on cal500).

For performance evaluation, we use two measures: RMSE defined in (10) as in
[7], and micro-averaged area under precision-recall curve (AUPRC) [19]. Squared

RMSE is proportional to the commonly used Hamming loss 1
nd

∥
∥
∥Y − Ŷ

∥
∥
∥
2

.
10-fold cross-validation is performed.

RMSE =
1√
n

∥
∥
∥Ŷ − Y

∥
∥
∥
F

. (9)

Table 3. Testing RMSE obtained on several datasets (According to pairwise t-test
with 95% confidence, number in square brackets indicates the rank)

data sets cal500 corel5k delicious ESPGame

CBS 4.94 ± 0.09[1] 1.89 ± 0.02[1] 4.35 ± 0.02[2] 2.38 ± 0.10[1]
FBS 4.94 ± 0.09[1] 1.90 ± 0.02[1] 4.34 ± 0.02[2] 2.49 ± 0.12[2]
ML-CSSP 4.95 ± 0.10[2] 1.92 ± 0.03[2] 4.38 ± 0.03[3] 2.50 ± 0.13[2]
PLST 4.97 ± 0.10[3] 1.91 ± 0.02[2] 4.26 ± 0.03[1] 2.52 ± 0.12[3]
CPLST 5.01 ± 0.12[4] 1.92 ± 0.02[2] 4.25 ± 0.03[1] 2.57 ± 0.15[4]

4.1 Accuracy

We compare testing accuracy of our proposed two methods with ML-CSSP [7],
PLST [17] , CPLST [8]. The RMSE results of the five methods on several datasets
are presented in Table 3. These results are obtained using pairwise t-test with
95% confidence. Our CBS achieves the best performance on 3 of the 4 datasets,
which is best among the three approaches. Our FBS also obtains the best per-
formance on 2 out of the 4 datasets, and its overall performance is competitive
compared to ML-CSSP, PLST and CPLST. Both FBS and CBS achieve the
state-of-the-art performance. We also calculate AUPRC, and results are shown
in Table 4. And the variation of RMSE with the number of selected labels k on
cal500 are shown in Fig. 1.

Table 4. Testing AUPRC obtained on several datasets (According to pairwise t-test
with 95% confidence, number in square brackets indicates the rank)

data sets cal500 corel5k delicious ESPGame

CBS 0.441 ± 0.03[1] 0.075 ± 0.01[5] 0.285 ± 0.02[3] 0.033 ± 0.003[4]
FBS 0.438 ± 0.03[2] 0.091 ± 0.01[3] 0.282 ± 0.03[5] 0.067 ± 0.005[1]
ML-CSSP 0.437 ± 0.02[2] 0.088 ± 0.005[4] 0.283 ± 0.01[4] 0.061 ± 0.003[3]
PLST 0.439 ± 0.03[2] 0.098 ± 0.005[2] 0.301 ± 0.02[2] 0.066 ± 0.005[1]
CPLST 0.426 ± 0.04[3] 0.101 ± 0.01[1] 0.310 ± 0.02[1] 0.063 ± 0.003[2]
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Fig. 1. Variation of Testing RMSE on cal500 by selecting different number of labels

Table 5. Sampling trials obtained on several datasets

data sets cal500 corel5k delicious ESPGame

CBS 17 ± 0[1] 37 ± 0[1] 98 ± 0[1] 194 ± 0[1]
FBS 19 ± 3[2] 51 ± 10[2] 129 ± 7[2] 307 ± 20[2]
ML-CSSP 19 ± 2[2] 57 ± 7[3] 138 ± 7[3] 310 ± 19[2]

4.2 Sampling Trials and Encoding Time

In this section, we compare sampling trials and encoding time of our CBS, FBS
with ML-CSSP, PLST and CPLST.

The sampling trials of the 5 approaches on several datasets are shown in
Table 5. As the theoretical analysis shown in Sect. 3.4, CBS uses the fewest
number of trials on all datasets which is equal to the number of labels being
selected (k). Although FBS and ML-CSSP uses a bit more trials, it is still far
from their bound Ω(n log d

d−k ) and O(k log k) respectively. And on average, FBS
uses fewer sampling trials than ML-CSSP. Besides, PLST, CPLST do not have
the process of sampling.

Table 6 shows the encoding time on several data sets. Our FBS achieves
the best encoding efficiency, significantly faster than the other ones. From the
result, we can see that CBS is less efficient than ML-CSSP, which is because our
embedding approach leads to high dimensional embedding vectors which makes
it slow for K-means, as is the case especially in the largest dataset. However, this
is not a serious problem since we can embed labels into low dimensional vectors
using other techniques to help accelerate the clustering. The efficiency of PLST
is similar to ML-CSSP since they both need to perform SVD on label matrix.
CPLST is the least efficient among the five methods because it has to perform
SVD on a much larger matrix.
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Table 6. Encoding time (in seconds) on several datasets (Number in square brackets
indicates the rank)

data sets cal500 corel5k delicious ESPGame

CBS 0.08[3] 0.31[2] 7.32[2] 54.74[5]
FBS 0.01[1] 0.01[1] 0.07[1] 0.17[1]
ML-CSSP 0.04[2] 0.56[3] 9.65[3] 17.68[3]
PLST 0.03[2] 0.58[3] 9.62[3] 15.62[2]
CPLST 0.03[2] 3.52[4] 46.78[4] 23.92[4]

Fig. 2. KL divergence of distributions defined by FBS and ML-CSSP

4.3 Comparison of FBS and ML-CSSP

Although FBS uses a strategy to calculate the probability of sampling a label
which is different from ML-CSSP as defined in (5), (2) respectively, FBS achieves
comparative RMSE and AUPRC as ML-CSSP. In this section, we analyze a bit
about the statistical property of the distribution of label selection given by FBS
and ML-CSSP. For ML-CSSP, the probability of selecting a label varies with the
number of labels to be selected, whereas it remains constant for FBS. We use
KL divergence to measure the similarity between them

DKL(p‖q) =
∑

i

p(i) log
p(i)
q(i)

, (10)

where p denotes the distribution defined in (5), and q denotes the distribution
in (2). The KL divergence on several data sets are shown in Fig. 2, it is small on
all four data sets. Thus, the selection procedures in these two algorithms behave
alike and obtain similar accuracies. However, FBS outperforms ML-CSSP in
efficiency.

5 Conclusion

In this paper, we propose two efficient approaches for multi-label classification.
Unlike previous proposed label selection methods, although we also formulate
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label selection as a column subset selection problem (CSSP), SVD is not needed
in our methods. For our proposed clustering based sampling (CBS) method,
only k sampling trials are needed for selecting k labels. And theoretical analysis
and experimental results have demonstrated that our proposed frequency based
sampling (FBS) method has the highest efficiency, and FBS is believed to make
better use of the property of label matrix. Experiments on a number of real
world datasets with many labels demonstrate that our proposed two algorithms
achieve the state-of-the-art performance among recently proposed label space
dimension reduction based multi-label classification algorithms.

Acknowledgments. The work is supported by the Natural Science Foundation of
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Abstract. ML-kNN is a well-known algorithm for multi-label classifica-
tion. Although effective in some cases, ML-kNN has some defect due to
the fact that it is a binary relevance classifier which only considers one
label every time. In this paper, we present a new method for multi-label
classification, which is based on lazy learning approaches to classify an
unseen instance on the basis of its k nearest neighbors. By introducing
the coupled similarity between class labels, the proposed method exploits
the correlations between class labels, which overcomes the shortcoming
of ML-kNN. Experiments on benchmark data sets show that our pro-
posed Coupled Multi-Label k Nearest Neighbor algorithm (CML-kNN)
achieves superior performance than some existing multi-label classifica-
tion algorithms.

Keywords: Multi-label · Coupled · Classification · Nearest neighbor

1 Introduction

Although traditional single-label classification approaches have been proved to
be successful in handling some real world problems, for the problems which
the objects not fit the single-label rule, they may not work well, for example,
in image classification, an image may contain several concepts simultaneously,
such as beach, sunset and kangaroo. Such tasks are usually denoted as multi-label
classification problems. In fact, a conventional single-label classification problem
can simply be taken as a special case of the multi-label classification problem
where there has only one label in the class label space. Multi-label classification
problems exist in many domains, for example, in automatic text categorization, a
document can associate with several topics, such as arts, history and Archeology;
and in gene functional analysis of bio-informatics, a gene can belong to both
metabolism and transcription classes; and in music categorization, a song may
labeled as Mozart and sad.

In the last decades, there have been a variety of methods developed for multi-
label classifications. These methods are generally grouped into two categories:
One is the problem transformation methods and another is the algorithm adap-
tation methods. Problem transformation methods first transform the multi-label
learning tasks into multiple single-label learning tasks, which are then handled
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 176–187, 2015.
DOI: 10.1007/978-3-319-18038-0 14
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by the standard single-label learning algorithms. Another approach is called
algorithm adaptation method, which modifies existing single-label learning algo-
rithms in order to extend its ability to handle multi-label data, such as ML-kNN
[17], IBLR [7], BSVM [2], and BP-MLL [16].

Researchers have tried to extend the kNN concept to handle the multi-label
classification problem, such as ML-kNN. ML-kNN applies maximum a posteriori
principle for classification and ranking, and the likelihood is estimated by using
the k nearest neighbors of an instance. Although simple and powerful, there are
some shortcomings in its processing strategy. ML-kNN uses the popular binary
relevance (BR) strategy [13], which may transfer the problem into many class-
imbalance tasks, and then tend to degrade the performance of the classifiers.
Another problem of it is the estimation of the posteriori may be affected by
the facts that the instances with and without a particular label are typically
highly imbalanced. Furthermore, its ignorance of the inter relationship between
labels is another issue which limits its usage. Such relationship is described as
a Coupled behavior in some previous research [4,6]. In [8,14], Can and Liu etc.
analysis the coupling relationship on categorical data. These works all proved
the effectiveness of considering the dependency between different attributes.

In this paper, we propose a novel kNN-based multi-label learning approach
(CML-kNN for short) based on non-iidness [5]. The major contribution of this
paper is summarized as follows:

- We propose a novel multi-label learning algorithm that based on lazy learning
and the inner relationship between labels.

- We introduce a new coupled label similarity for multi-label kNN algorithm.
Rather than only select the neighbors with a specific label, the coupled label
similarity will include more similar neighbors in the process to overcome the
problem of lacking neighbors with certain label.

- We extended the concept of the nearest neighbor in multi-label classification
with coupled label similarity. Based on this extended nearest neighbors, we
introduce a new frequency array strategy.

The structure of this paper is organized as follows. Section 2 briefly reviews
the ML-kNN algorithm. Preliminary definitions are specified in Section 3.1. And
section 3 gives a detailed description of the new algorithm we proposed. The
experimental results are discussed in Section 4. Finally, the conclusion is dis-
cussed in Section 5.

2 ML-kNN

A number of multi-label learning methods are adapted from kNN [3,11,15,17].
ML-kNN, the first multi-label lazy learning approach, is based on the traditional
kNN algorithm and the maximum a posteriori (MAP) principle [17].

The main idea of the ML-kNN approach is that an instance’s labels depend
on the number of neighbors that possess identical labels. Given an instance x
with an unknown label set L(x) ⊆ L, ML-kNN first identifies the k nearest
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neighbors in the training data and counts the number of neighbors belonging
to each class (i.e. a variable z from 0 to k). Then the maximum a posteriori
principle is used to determine the label set for the test instance. The posterior
probability of li ∈ L is given by

P (li ∈ L(x)|z) =
P (z|li ∈ L(x)) · P (li ∈ L(x))

P (z)
(1)

where z is the number of neighbors belonging to each class (0 ≤ z ≤ k). Then,
for each label li ∈ L, the algorithm builds a classifier hi using the rule

hi(x) =

⎧
⎨

⎩

1 P (li ∈ L(x)|z) > P (li /∈ L(x)|z)

0 otherwise
(2)

where 0 ≤ z ≤ k. If hi(x) = 1, it means label li is in x’s real label set, while 0
means it does not. The prior and likelihood probabilities in Eq. 1 are estimated
from the training data set in advance.

ML-kNN has two inheriting merits from both lazy learning and MAP princi-
ple: One is the decision boundary can be adaptively adjusted due to the varying
neighbors identified for each new instance, and another one is the class-imbalance
issue can be largely mitigated due to the prior probabilities estimated for each
class label. However, ML-kNN is actually a binary relevance classifier, because it
learns a single classifier hi for each label independently. In other words, it does
not consider the correlations between different labels. The algorithm is often
criticized because of this drawback.

3 Methodology

3.1 Problem Statement

We formally define the multi-label classification problem as this: Let X denotes
the space of instances and Y = {l1, . . . , ln} denotes the whole label set where
|Y | = n. T = {(x1, L(x1)), . . . , (xm, L(xm))} (|T | = m) is the multi-label train-
ing data set, whose instances are drawn identically and independently from
an unknown distribution D. Each instance x ∈ X is associated with a label
set L(x) ∈ Y . The goal of our multi-label classification is to get a classifier
h : X → Y that maps a feature vector to a set of labels, while optimizing some
specific evaluation metrics.

3.2 Coupled Label Similarity

It is much easier for numerical data to calculate the distance or similarity, since
the existing metrics such as Manhattan distance and Euclidean distance are
mainly built for numeric variables, but the labels are categorical data. How to
denote the similarity between them is a big issue. As we all know, matching
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and frequency [1] are the most common ways to measure the similarity of cate-
gorical data. Accordingly, two popular similarity measures are defined: For two
categorical value vi and vj , the Overlap Similarity is defined as

Sim Overlap(vi, vj) =

{
1, if vi = vj

0, if vi �= vj ,
, (3)

and the Frequency Based Cosine Similarity between two vectors Vi and Vj is
defined as

Sim Cosine(Vi, Vj) =
Vi · Vj

||Vi|| ||Vj || . (4)

The overlap similarity between two categorical values is to assign 1 if they are
identical otherwise 0 if different. Further, for two multivariate categorical data
points, the similarity between them will be proportional to the number of features
in which they match. While for frequency based measures, they assume the
different categorical values but with the same occurrence times as the same.

Hence, the Overlap measure and Frequency Based measure are too simplistic
by just giving the equal importance tomatches andmismatches.The co-occurrence
information in categorical data reflects the interaction between features and can
be used to define what makes two categorical values more or less similar. However,
such co-occurrence information hasn’t been incorporated into the existing similar-
ity metrics.

To capture the inner relationship between categorical labels, we introduce an
Intra-Coupling Label Similarity (IaCLS) and an Inter-Coupling Label Similarity
(IeCLS) below to capture the interaction of two label values from two different
labels.

Definition 1. Given a training multi-label data set D and two different labels
li and lj (i �= j), the label value is vx

i , vy
j respectively. The Intra-Coupling

Label Similarity (IaCLS) between label values vx
i and vy

j of label li and lj is
formalized as:

δIntra(vx
i , vy

j ) =
RF (vx

i ) · RF (vy
j )

RF (vx
i ) + RF (vy

j ) + RF (vx
i ) · RF (vy

j )
, (5)

where RF (vx
i ) and RF (vy

j ) are the occurrence frequency of label value vx
i and vy

j

in label li and lj, respectively.

The Intra-coupling Label Similarity reflects the interaction of two different
label values in the label space. The higher these similarities are, the closer such
two values are. Thus, Equation (5) is designed to capture the label value similar-
ity in terms of occurrence times by taking into account the frequencies of cate-
gories. Besides, since 1 ≤ RF (vx

i ), RF (vy
j ) ≤ m, then δIntra ∈ [1/3,m/(m + 2)].

In contrast to the Intra-Coupling, we also define an Inter-Coupling Label
Similarity below to capture the interaction of two different label values according
to the co-occurrence of some value (or discretized value group) from feature
spaces.
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Definition 2. Given a training multi-label data set D and two different labels
li and lj (i �= j), the label value is vx

i , vy
j respectively. vx

i and vy
j are defined

to be Inter-Coupling related if there exists at least one pair value (vzx
p ) or (vzy

p )
that occurs in feature az and labels of instance Up. The Inter-Coupling Label
Similarity (IeCLS) between label values vx

i and vy
i according to feature value

vz
p of feature az is formalized as:

δInter(vx
i , vy

j |vz
p) =

min (F (vzx
p ), F (vzy

p ))
max(RF (vx

i ), RF (vy
j ))

, (6)

where F (vzx
p ) and F (vzy

p ) are the co-occurrence frequency count function for
value pair vzx

p or vzy
p , and RF (vx

i ) and RF (vy
j ) is the occurrence frequency of

related class label. vz
p is the value in categorical feature az or the discretized value

group in numerical feature az.

Accordingly, we have δIe ∈ [0, 1]. The Inter-Coupling Label Similarity reflects
the interaction or relationship of two label values from label space but based on
the connection to some other features.

Definition 3. By taking into account both the Intra-Coupling and the Inter-
Coupling, the Coupled Label Similarity (CLS) between two label values vx

i

and vy
j is formalized as:

CLS(vx
i , vy

j ) = δIntra(vx
i , vy

j ) ·
n∑

k=1

δInter(vx
i , vy

j |vk), (7)

where vx
i and vy

j are the label values of label li and lj, respectively. δIntra and
δInter are the intra-coupling label similarity (Eq. 5) and inter-coupling label sim-
ilarity (Eq. 6), respectively. The n is the number of attributes and vk denotes
the values in the kth feature ak.

Table 1. An Example of Multi-label Data

Instances Label1 Label2 Label3 Label4

u1 l1 l4
u2 l3 l4
u3 l1 l3
u4 l2 l3
u5 l2 l3 l4

The Coupled Label Similarity defined in Eq. 7 reflects the interaction or
similarity of two different labels. The higher the CLS, the more similar two
labels be. In Table 1, for example, CLS(l1, l4) = 0.33, CLS(l1, l3) = 0.25, so in
the data set, an instance with label l4 is more similar or close to instances with
label l1 than those instances with label l3 do. That is to say, label pair (l1,l4) is
closer to each other than the label pair (l1, l3). For Table 1, we got the coupled
label similarity array which showed in Table 2.
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Table 2. CLS Array

Label1 Label2 Label3 Label4

Label1 1.0 0 0.25 0.33

Label2 0 1.0 0.50 0.33

Label3 0.25 0.50 1.0 0.50

Label4 0.33 0.33 0.50 1.0

3.3 Extended Nearest Neighbors

Based on the Coupled Label Similarity, we introduce our extended nearest neigh-
bors. Based on the similarity between labels, we can transfer a label set into a set
with only a certain label, it also means a multi-label instance can be extended to
a set of single-label. If we specify a basic label lb, then any instance can be trans-
formed into a set with only one label lb. For example, in Table 1, instance u5 has a
label set of {l2, l3, l4}, then according to the label similarity array Table 2, it can
be transformed into {1 · l2, 0.5 · l2, 0.33 · l2} if we choose label l2 as the basic label.
We can then call the original multi-label instance u5 equals a single-label instance
with a label of {1.83 · l2|l2}.

Table 3. Extended Nearest Neighbors

instance Extended Neighbors To Label

u5 0 · l1 + 0.25 · l1 + 0.33 · l1 l1
u5 1 · l2 + 0.5 · l2 + 0.33 · l2 l2
u5 0.5 · l3 + 1 · l3 + 0.5 · l3 l3
u5 0.33 · l4 + 0.5 · l4 + 1 · l4 l4

If u5 is the neighbor of some instance, when we consider the label l2, the
instance u5 can be presented as an instance which contains 1+0.5+0.33 = 1.83
label l2, and vice versa, instance u5 also presents there are (1 − 1) + (1 − 0.5) +
(1 − 0.33) = 1.17 instances which not contain the label l2, and there will have
(1.83+1.17 = 3 = |L(u5)|). This is the basic idea when we finding our extended
nearest neighbors.

3.4 Coupled ML-kNN

For the unseen instance x, lets N(x) represents the set of its k nearest neighbors
identified in data set D. For the j-th class label, CML-kNN chooses to calculate
the following statistics:

Cj = Round(
k∑

i=1

δL∗
i |j) (8)

Where Li is the label set of the i-th neighbor and Li ∈ N(x), and δL∗
i |j denotes

the sum of the CLS values of the i-th neighbor’s label set to the j-th label lj ,
and Round() is the rounding function.
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Namely, Cj is a rounding number which records all the CLS value of all x’s
neighbors to label lj .

Let Hj be the event that x has label lj , and P (Hj |Cj) represents the posterior
probability that Hj holds under the condition that x has exactly Cj neighbors
with label lj . Correspondingly, P (¬Hj |Cj) represents the posterior probability
that Hj doesn’t hold under the same condition. According to the MAP rule, the
predicted label set is determined by deciding whether P (Hj |Cj) is greater than
P (¬Hj |Cj) or not:

Y = {lj | P (Hj |Cj)
P (¬Hj |Cj)

> 1, 1 ≤ j ≤ q} (9)

According to the Bayes Theory, we have:

P (Hj |Cj)
P (¬Hj |Cj)

=
P (Hj) · P (Cj |Hj)

P (¬Hj) · P (Cj |¬Hj)
(10)

Here, P (Hj) and P (¬Hj) represents the prior probability that Hj holds
and doesn’t hold. Furthermore, P (Cj |Hj) represents the likelihood that x has
exactly Cj neighbors with label lj when Hj holds, and (P (Cj|¬Hj)) represents
the likelihood that x has exactly Cj neighbors with label lj when Hj doesn’t
hold.

When we count the prior probabilities, we integrated our coupled label sim-
ilarity into the process:

P (Hj) =
s +

∑m
i=1 δL∗

i |j
s × 2 + m × n

;

P (¬Hj) = 1 − P (Hj);
(11)

where (1 ≤ j ≤ n) and m is the records number in training set, and s is a
smoothing parameter controlling the effect of uniform prior on the estimation
which generally takes the value of 1 (resulting in Laplace smoothing).

Same as ML-kNN, for the j-th class label lj , our CML-kNN maintains two
frequency arrays αj and βj . As our method considers the other labels which
have a similarity to a specific label, the frequency arrays will contain k × n + 1
elements:

αj [r] =
m∑

i=1

δL∗
i |j |Cj(xi) = r (δL∗

i |j ≥ 0.5)

βj [r] =
m∑

i=1

(n − δL∗
i |j)|Cj(xi) = r (δL∗

i |j < 0.5)

(12)

Where (0 ≤ r ≤ k × n). We take an instance with δL∗
i |j ≥ 0.5 as an instance

which does have label j and we take an instance with δL∗
i |j < 0.5 as an instance

which doesn’t have label j. Therefore, αj [r] counts the sum of CLS values to
label j of training examples which have label lj and have exactly r neighbors
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with label lj , while βj [r] counts the CLS to label j of training examples which
don’t have label lj and have exactly r neighbors with label lj . Afterwards, the
likelihood can be estimated based on elements in αj and βj :

P (Cj |Hj) =
s + αj [Cj ]

s × (k × n + 1) +
∑k×n

r=0 αj [r]

P (Cj |¬Hj) =
s + βj [Cj ]

s × (k × n + 1) +
∑k×n

r=0 βj [r]

(1 ≤ j ≤ n, 0 ≤ Cj ≤ k × n)

(13)

Thereafter, by combing the prior probabilities (Eq.11) and the likelihoods (Eq.13)
into Eq.(10), we will get the predicted label set in Eq.(9).

Algorithm 1. Coupled ML-kNN Algorithm
Input: An unlabeled instance xt and a labeled dataset

T{(x1, L(x1)), . . . , (xm, L(xm))}, where |T | = m and |L| = n
Output: The label set L(xt) of instance xt

1: Calculate the CLS array A(L) according to Eq.(7);
2: for i = 1 to m do;
3: Identify the k nearest neighbors N(xi) for xi

4: end for
5: for j = 1 to n do
6: Calculate P (Hj) and P (¬Hj) according to Eq.(11)
7: Maintain the label-coupled frequency arrays αj , βj using Eq.(12)
8: end for
9: Identify the k nearest neighbors N(xt) for xt

10: for j = 1 to n do
11: Calculate the statistic Cj according to Eq.(8)
12: end for
13: Return the label set L(xt) of instance xt according to Eq.(9)

3.5 Algorithm

Given an unknown test instance xt, the algorithm determines the final label set of
the instance. Algorithm 1 illustrates the main idea of our process. Our proposed
CML-kNN contains of six main parts. a)Maintain the label similarity array;
b)Finding the nearest neighbors for every instance in training set; c)Getting the
prior probabilities and frequency arrays; d)Finding the nearest neighbors for the
target instance; e)Calculate the statistics value; f)Calculate the result.

Firstly, we calculate the label similarity according to their inter-relationships
and maintain the Coupled Label Similarity Array A(L) from the training data
set. Secondly, for every training instance, we identify its traditional k nearest
neighbors. After that, for every different label, we calculate its prior probability
which combined with CLS. Simultaneously, we expand the neighbors set for
every instance to a new label-coupled neighbors set using the CLS, and calculate
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the frequency array for every label. After these works done, we identify the k
neighbors of the test instance xt. After applying CLS on this neighbor set and
calculate the label statistics, we can finally get the predicted label set.

It is worth noting that our key idea is the label similarity, which tries to learn
the label distance and then transfer any label into a specific label.

4 Experiments and Evaluation

4.1 Experiment Data

A total of eight commonly used multi-label data sets are tested for experiments
in this study, and the statistics of the data sets are shown in Table 4. Given a
multi-label data set M = {(xi, Li)|1 ≤ i ≤ q}, we use |M |, f(M), La(M), F (M)
to represent the number of instances, number of features, number of total labels,
and feature type respectively. In addition, several multi-label statistics [9] are
also shown in the Table. The Label cardinality (LC(M)) measures the average
number of labels per example; the Label density (LD(M)) normalizes LC(M)
by the number of possible labels; the Distinct label sets (DL(M)) counts the
number of distinct label combinations appeared in the data set; the Proportion
of distinct label sets (PDL(M)) which normalizes DL(M) by the number of
instances. As shown in Table 4, eight data sets are included and are ordered by
Label density LD(M).

4.2 Experiment Setup

In our experiments, we compare the performance of our proposed CML-kNN with
that some state-of-the-art multi-label classification algorithms: ML-kNN, IBLR
and BSVM. All nearest neighbor based algorithms are parameterized by the size
of the neighborhood k. We repeat the experiments with k = 5, 7, 9 respectively
(odd number for voting), and use the Euclidean metric as the distance function
when computing the nearest neighbors. For BSVM, models are learned via the
cross-training strategy[2]. We also choose the BR-kNN as the basic algorithm to
compare with. We perform 10-fold cross-validation three times on all the above
data sets.

Table 4. Experiment Data Sets

Data Set |M| f(M) La(M) LC(M) LD(M) DL(M) PDL(M) F(M)

emotions 593 72 6 1.869 0.311 27 0.046 n
yeast 2417 103 14 4.237 0.303 198 0.082 n
image 2000 294 5 1.236 0.247 20 0.010 n
scene 2407 294 6 1.074 0.179 15 0.006 n
enron 1702 1001 53 3.378 0.064 753 0.442 c

genbase 662 1185 27 1.252 0.046 32 0.048 c
medical 978 1449 45 1.245 0.028 94 0.096 c
bibtex 7395 1836 159 2.402 0.015 2856 0.386 c
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4.3 Evaluation Criteria

Multi-label classification requires different metrics than those used in traditional
single-label classification. A lot of criteria have been proposed for evaluating the
performance of multi-label classification algorithms [12]. In this paper, we use
three popular evaluation criteria for multi-label classification: the Hamming
Loss, the One Error and the Average Precision. The definitions of them
can be found in [10].

4.4 Experiment Results

The experiment results are shown in Table 5 - Table 7. For each evaluation
criterion, “↓” indicates “the smaller the better”, while “↑” indicates “the bigger
the better”. And the numbers in parentheses denote the rank of the algorithms
among the five compared algorithms.

The result tables indicate that CML-kNN and BSVM outperforms other
algorithms significantly, which implies that exploiting the frequency of neigh-
bors’ label is effective, and especially for our CML-kNN, the improvement is sig-
nificant compared to BR-kNN, that means incorporating the label relationship
will greatly improve the BR strategy. Meanwhile, ML-kNN, IBLR and BR-kNN
do not perform as well compared to the other algorithms. This implies that
only exploiting the exact neighbor information is not sufficient, and the similar
neighbor (correlations between labels) should also be considered.

Table 5. Experiment Result1 - Hamming Loss↓
CML-kNN BR-kNN ML-kNN IBLR BSVM

emotions 0.189(1) 0.219(5) 0.194(2) 0.201(4) 0.199(3)

yeast 0.194(1) 0.205(5) 0.195(2) 0.198(3) 0.199(4)

image 0.157(1) 0.189(5) 0.172(2) 0.182(4) 0.176(3)

scene 0.078(1) 0.152(5) 0.084(2) 0.089(3) 0.104(4)

enron 0.061(4) 0.052(2) 0.052(2) 0.064(5) 0.047(1)

genbase 0.003(2) 0.004(3) 0.005(4) 0.005(4) 0.001(1)

medical 0.013(1) 0.019(4) 0.016(3) 0.026(5) 0.013(1)

bibtex 0.013(1) 0.016(4) 0.014(2) 0.016(4) 0.015(3)

AvgRank (1.50) 4.13 2.38 4.00 2.50

Table 6. Experiment Result2 - One Error↓
CML-kNN BR-kNN ML-kNN IBLR BSVM

emotions 0.244(1) 0.318(5) 0.263(3) 0.279(4) 0.253(2)

yeast 0.222(1) 0.235(4) 0.228(2) 0.237(5) 0.232(3)

image 0.267(1) 0.601(5) 0.319(3) 0.432(4) 0.314(2)

scene 0.197(1) 0.821(5) 0.219(2) 0.235(3) 0.251(4)

enron 0.308(3) 0.237(1) 0.313(4) 0.469(5) 0.245(2)

genbase 0.008(2) 0.012(5) 0.009(3) 0.011(4) 0.002(1)

medical 0.158(2) 0.327(4) 0.252(3) 0.414(5) 0.151(1)

bibtex 0.376(1) 0.631(5) 0.589(3) 0.576(2) 0.599(4)

AvgRank (1.50) 4.25 2.88 4.00 2.38
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Table 7. Experiment Result3 - Average Precision↑
CML-kNN BR-kNN ML-kNN IBLR BSVM

emotions 0.819(1) 0.595(5) 0.799(3) 0.798(4) 0.807(2)

yeast 0.769(1) 0.596(5) 0.765(2) 0.759(3) 0.749(4)

image 0.824(1) 0.601(5) 0.792(3) 0.761(4) 0.796(2)

scene 0.885(1) 0.651(5) 0.869(2) 0.862(3) 0.849(4)

enron 0.591(3) 0.435(5) 0.626(2) 0.564(4) 0.702(1)

genbase 0.994(3) 0.992(4) 0.989(5) 0.994(2) 0.998(1)

medical 0.876(1) 0.782(4) 0.806(3) 0.686(5) 0.871(2)

bibtex 0.567(1) 0.329(5) 0.351(4) 0.476(3) 0.531(2)

AvgRank (1.50) 4.75 3.00 3.50 2.25

Overall, our proposed CML-kNN outperforms all the compared methods on
all three measures. The average ranking of our method on these data sets using
three different metrics is the first one, with (1.50, 1.50, 1.50) respectively, while
the second best algorithm, BSVM, only achieves (2.50, 2.38, 2.25). The BR-kNN
performs the worst, which only achieves (4.13,4.25,4.75).

It is worth noting that although our proposed method runs the best on aver-
age, it does not mean that it is suitable for all kinds of data. For example,
when used on data set “enron” and “genbase”, the result is not as good as on
other data sets. Sometimes it even got a worse result than BR-kNN. For exam-
ple, when used on “enron” and evaluated by the Hamming Loss, our supposed
CML-kNN only achieved a 4th rank(0.061), while BR-kNN can get a second well
result(0.052). The reason is because of the weak or loose connection between dif-
ferent labels in those data sets, and our extended neighbors may introduce more
noisy information than useful information. But in terms of average performance,
our method performs the best (the first rank).

5 Conclusions and Future Work

ML-kNN learns a single classifier hi for each label li independently, so it is actu-
ally a binary relevance classifier. In other words, it does not consider the correla-
tions between different labels. The algorithm is often criticized for this drawback.
In this paper, we introduced a coupled label similarity, which explores the inner-
relationship between different labels in multi-label classification according to
their natural co-occupance. This similarity reflects the distance of the different
labels. Furthermore, by integrating this similarity into the multi-label kNN algo-
rithm, we overcome the ML-kNN’s shortcoming and improved the performance.
Evaluated over three commonly-used multi-label data sets and in terms of Ham-
ming Loss, One Error and Average Precision, the proposed method outperforms
ML-KNN, BR-kNN, IBLR and even BSVM. This result shows that our sup-
posed coupled label similarity is appropriate for multi-label learning problems
and can work more effectively than other methods.
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Our future work will focus on expanding our coupled similarity to categor-
ical multi-label data, and even mixed type multi-label data for which current
numerical distance metrics is not suitable.
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Abstract. In this paper, we propose a topic-oriented word embedding
approach to address the query classification problem. First, the topic
information is encoded to generate query categories. Then, the user click-
through information is also incorporated in the modified word embedding
algorithms. After that, the short and ambiguous queries are enriched to
be classified in a supervised learning way. The unique contributions are
that we present four neural network strategies based on the proposed
model. The experiments are designed on two open data sets, namely
Baidu and Sogou, which are two famous commercial search companies.
Our evaluation results show that the proposed approach is promising on
both large data sets. Under the four proposed strategies, we achieve the
high performance as 95.73% in terms of Precision, 97.79% in terms of
the F1 measure.

Keywords: Query classification · Word embedding · Word2vec · Super-
vised learning

1 Introduction

How people who seek information interact with the search engine is an important
research problem. What is the user intent? How to understand their information
needs? A good way of starting to pick apart the puzzle is to classify the query
types.

In order to understand what a user truly desires when searching for informa-
tion, the intuitive idea is to ask each user what it is they are after. While this
scenario may work for the offline mom and pop store, it definitely is not feasible
for a search engine. Therefore, an automated approach, instead of the manual
interaction, is necessary to be proposed.

Query classification is to map the queries to a list of predefined topic cate-
gories. However, most queries are short and ambiguous [14]. For example, accord-
ing to our statistics in the experiments, we have: (1) around 20% queries contain
three words; (2) queries having no more than four keywords are as frequent as
almost 80%; (3) many keywords such as “java” have multiple aspects.
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 188–198, 2015.
DOI: 10.1007/978-3-319-18038-0 15
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Motivated by the work of Le [8], Socher [15] and Tang et. al. [17], we consider
to represent the queries through the word embedding method. Then, the query
embedding can be treated as the features to classify the queries.

The goal of learning word embedding is to associate each term in the vocabu-
lary with a low-dimensional real-value vector [13]. Then, words with similar con-
texts are mapped to close vector space. Although existing word embedding, such
as Word2Vec[10] and C&W[5] models, has yielded the state-of-the-art results in
many natural language processing (NLP) tasks, current research does not show
their effectiveness on query classification. Another problem for word embedding
is that it models the syntactic contexts of words [17], but ignores the topic cate-
gory information of queries. This results in misclassifying the queries into topic
categories such that the categories lose their discriminative ability.

In this paper, we propose a topic-oriented word embedding (TOWE) app-
roach to address the following problems as: (1) mapping short and ambiguous
queries into right categories; (2) adopting explicit/implicit category information,
especially the topic information of categories. The main contribution is that
four neural network language models, namely as TOWEe, TOWEeu, TOWEi

and TOWEiu, are presented based on the Word2Vec model. Here TOWEe and
TOWEeu encode explicit category information of categorised queries into word
embedding as a supervised learning. TOWEi and TOWEiu incorporate user
click-through information. Finally, we evaluate the proposed approach on two
datasets which are widely published by two famous commercial search engine
companies. The experimental results show that our approach is promising and
outperforms Word2Vec[10].

The rest of the paper is organised as follows. In Section 2, we briefly review
the related work on query classification , word embeddings and its applications.
Then, we present our methodologies in Section 3, followed by the experimental
design in Section 4. After that, we show our experimental results in Section 5
and discuss them in Section 6. Finally, we draw the conclusions and future work
in Section 7.

2 Related Work

Here we mainly review the related studies on query classification, word embed-
dings and its applications.

2.1 Query Classification

Mapping web-user posted queries to a predefined taxonomy with a reasonable
degree of accuracy is the heart of search engine and also particularly challenging.
Since web-user queries are typically short, they yield few keywords features per
query based on traditional bag-of-words representations.

In recent years, to overcome the problem of feature sparsity, many research
efforts are devoted to enrich query features. The wining solution[14] of the 2005
KDD Cup associates a set of web pages by sending queries to search engines.
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Then, the titles of Web pages, snippets and their contents are used as features
to build classifiers based on document taxonomy.

However,with thecomingofbigdataera, especially in the searchenginedomain,
building a query classification system using queries expansion approaches are com-
putationally infeasible, since fetching external text from large quantities of data is
expected to be very time consuming and heavily depends on the quality of search
engines.

To address the above problem, Broder et al.[4] propose to classify all of
the web pages and then group the queries by voting methods using those pre-
classified web pages. There is still a big problem which is to classify all of web
pages in the search engine, since the huge number of web pages. If the predefined
taxonomy has been changed, re-classify all of the web pages is required.

There are situations that queries are typically short, but terms in the vocab-
ulary are extremely large. Therefore, large corpus of labeled training data is
required for a query classification system[6]. But categorized queries are limited.
Many studies focus on leveraging unlabeled queries to improve query classifica-
tion performance using semi-supervised learning algorithm.

Beitzel et al.[1] exploit both labeled and unlabeled queries using several
classification approaches. They emphasize on an application of computational
linguistics, named selectional preference, to automatically generate some associ-
ation rules. Then using those generated rules to label large numbers of training
data from the vast amount of unlabeled web query logs. Li et al.[9] propose two
semisupervised learning methods to infer the class memberships of unlabeled
queries using click-through data.

2.2 Word Embeddings

How to represent text is central to many text classification tasks and determines
the performance of tasks.

Bag-of-words representation is the most common and popular fixed-length
vector representation for texts owing to its simplicity and efficiency. However,
bag-of-words representation treats each term in vocabulary as an atomic unit.
Such representation suffers from the problem of high dimensionality and sparsity.
It considers very little in the semantic connection between words.

The problem is more acute in the query classification task. To overcome
this shortcoming, numerous studies have been done to learn other word rep-
resentations, such as Latent Semantic Analysis (LSA)[18] and Latent Dirichlet
Allocation (LDA)[3].

With the revival of deep learning, word embedding, also referred as continu-
ous distributed word representations, has been proved to be invaluable resource
for many NLP tasks.

Word embedding is introduced by Hinton[7] to solve the problems of high
dimensionality and sparsity in their work. Bengio et al.[2] propose a feed-forward
neural network language model to predict the next word based on its previous
contextual words. But the time complexity is very high.
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Many works have been done to reduce the training time of the neural network
language mode. Collobert and Weston[5] propose a ranking-type word embed-
ding learning algorithm (C&W). Mikolov et al.[11] introduce the Recurrent neu-
ral network language models (RNNLMs). In 2013, Mikolov[10] et al. propose
Word2Vec to learn word embedding.

Word embedding has achieved great success in many NLP tasks[19], such as
Chinese word segmentation[16,19], POS tagging[5], sentiment analysis[15], name
entity recognition[5] etc.

Zhang et al.[19] propose a feature-based neural network language for learning
feature embedding instead of human crafted feature and achieved the state-of-
the-art result. Sun et al.[16] propose Radical-enhaced model based on C&W
model to learn enhanced word embedding by exploiting Chinese word radical
information and utilize neural-CRF to the Chinese word segmentation task.

In this paper, we focus on learning topic-oriented word embedding by exploit-
ing the explicit topic information of categorized queries and implicit topic infor-
mation of the very large click-through data. We represent queries through
topic-oriented word embedding. Then, the query embedding is treated as features
for the query classification task.

3 TOWE for Query Classification

In this section, the details of learning topic-oriented word embedding (TOWE)
is proposed for web user query classification. Four neural networks based on
Word2vec1 are proposed to learn TOWE. In the following sections, we describe
the Word2Vec model firstly and then present the details of the four proposed
methods.

3.1 Word2Vec Model

The goal of Word2Vec is to associate each term in the vocabulary w ∈ W
with a unique d dimensional real value vector vw ∈ Rd. Words with similar
syntactic context are assigned to close vector space. We use the query “apple
retina macbook air 13” as the demonstration.

Word2Vec predicts each term w in the vocabulary W based on its syntac-
tic context cw – the set of words in the window of size ws centered at w (w
excluded). For ws = 2 , the syntactic context of w is cw = {w−2, w−1, w1, w2}.
In our example the context of macbook are apple, retina, air, 13. And the detail
architecture of Word2Vec is shown in Figure 1(a). In this framework, every word
in the syntactic context wi ∈ cw is mapped to a unique vector. And the sum of
the vectors is used as features for prediction Huffman code Hw of target word
w. The negative maximum log likelihood loss function of softmax layer is

Lossw2v(w, cw) = −
|Hw|∑

j=1

log
(
fw2v
dj

(cw)
(1−dj) ∗ (1 − fw2v

dj
(cw))dj

)
(1)

1 In this paper, we utilize CBOW model because it performance better than the Skip-
Gram model in our experiment.
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Fig. 1. The traditional Word2Vec CBOW model and our proposed neural network
(TOWEe,TOWEeu,TOWEi andTOWEiu) for learningtopic-orientedwordembedding

Where dj is the jth Huffman code Hw value. And fw2v
dj

(cw) is the predict prob-
ability of dj = 0, which is calculated as given Equation (2). Where vcw is sum
of vectors in context cw which is calculated as vcw =

∑
w∈cw

vw, and vdj
is the

parameter of huffman tree node. g(x) = 1
1+e−x is the sigmoid function.

fw2v
dj

(cw) = g(vdj
· vcw) (2)

3.2 Topic-Oriented Word Embedding

In this section, we incorporate the explicit or implicit topic information into
the Word2Vec model to learn topic-oriented word embedding. We develop four
neural networks with different strategies to integrate the topic information of
queries.

Model 1 (TOWEe). The Word2Vec model does not capture the explicit
topic category information of categorized queries. For this reason, explicit topic-
oriented word embedding (TOWEe) is proposed to integrate topic category
information by predicting the topic category distribution of text based on input
ngram. We assume that if the query q belongs to topic category k, the syntactic
context cw in the query q also belongs to topic category k. Therefore, we predict
the topic category based on each categorized syntactic context.

Assuming there are K topic categories. We modify the top softmax layer by
predicting its topic distribution instead of the target word. The detail neural
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network framework (TOWEe) is shown in Figure 1(b). Let tdcw be the topic
distribution of cw. If cw ∈ q and the category of q is k then tdcwk = 1, otherwise
tdcwk = 0. Therefore the negative maximum log likelihood error of softmax layer
is computed as:

LossTOWEt
(k, cw) = −

K∑

k=1

log
(
f t
k(cw)td

cw
k ∗ (1 − f t

k(cw))(1−tdcw
k )

)
(3)

Where f t(cw) is the predicted topic distribution, and tdcw is the standard topic
distribution mentioned above.

Model 2 (TOWEeu). The Word2Vec model learns word embedding by mod-
eling syntactic contexts but disregard the topic category information of text.
And TOWEe learn topic-oriented word embedding by exploiting explicit topic
distribution of text but ignore the syntactic contexts of words. In this part, we
develop a unified model (TOWEeu). The details neural network framework is
shown in Figure 1(c). And the loss function is computed as:

LossTOWEeu
(w, k, cw) = α ·Lossw2v(w, cw)+γ · (1−α) ·LossTOWEe

(k, cw) (4)

Where Lossw2v(w, cw) is the loss of the context part, LossTOWEe
(k, cw) is the

loss of topic category part, and α is the linearly weights of the two parts. If
context cw is labeled as k then γ = 1, otherwise γ = 0.

Model 3 (TOWEi). Large corpus of categorized queries are not available for
trainingTOWEe andTOWEeu in somecase. In this section, implicit topic-oriented
word embedding (TOWEi) is proposed to conquer this problem. TOWEi learns
topic information from large corpus of click-through data instead of categorized
queries. Click-through data can be extracted easily form search log. Because the
length of queries are variant, sowedonotuse entire queries as input.Anassumption
is made that if a user submit query q and click web page u in the corresponding
search results, the syntactic context cw in query q is likely to click url u. In TOWEi

framework, thevector of syntactic context isusedas features topredict theHuffman
code of clicked URL. The detail of neural network framework architecture is shown
in Figure 1(d). And the loss function is similar to Word2Vec, and is calculated as:

LossTOWEi
(url, cw) = −

|Hurl|∑

j=1

log
(
f i
dj

(cw)
(1−dj) ∗ (1 − f i

dj
(cw))dj

)
(5)

Where Hurl is the Huffman code of clicked URL, dj is the jth value of Hurl.
f i
dj

(cw) is the predict value of dj which is calculated same as Equation (2).

Model 4 (TOWEiu). Model 3 TOWEi learns word embedding by modeling
implicit topic relevance of click-through data but ignore the syntactic context
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of queries. So unified implicit topic-oriented word embedding (TOWEiu) is pro-
posed by linear combination. The detail of neural network architecture is shown
in Figure 1(e). The loss function is:

LossTOWEiu
(w, url, cw) = β · Lossw2v(w, cw) + ξ · (1 − β) · LossTOWEi

(url, cw)
(6)

Where β is the linear weight of two loss parts. And ξ = 1 if cw click url, otherwise
ξ = 0.

3.3 Query Embedding

We apply TOWE for query classification under a supervised learning framework.
Instead of hand-crafting feature and feature enrichment, we represent queries
based on word embedding. Owing to the short length and simple structure of
queries, we represent a query by considering it as the sum of all words with
ignoring word orders. This can be expressed by the following equation:

vq =
∑

w∈q

vw (7)

Where vq is a the embedding of query q, and vw is the embeddings of word in
query q. We use this d dimension vector as features of query to predict its topic
category. And linear SVM in Scikit-learn[12] is employed to build classifier.

4 Experimental Setup

To make a comprehensive comparison between our proposed TOWE models
and the Word2Vec model, we utilize two real-word query datasets to evaluate
the effectiveness of TOWE provided by Baidu2 and Sogou3, which are the most
popular Chinese search engines. Same statistical information of Baidu and Sogou
datasets is given in Table 1.

In Baidu dataset, we randomly sample 80% of categorized queries as training
data and the remained 20% as test data. And exact category names are not pro-
vided in Baidu dataset. In Sogou dataset, predefined taxonomy and categorized
queries are not available. So we manually label some queries which randomly
select from query log for training and testing. At the same time, we also cre-
ate a large corpus of categorized queries using rule based classifier for training
TOWEe and TOWEeu. Taxonomy and statistical information of Sogou dataset
is shown in Table 2.

In this paper, we apply the standard precision, recall and F1 measure as eval-
uation metrics. And the open source toolkit Word2Vec4 and four our proposed
neural networks is used to train word embeddings. The same parameter settings
are used for Word2Vec and TOWE models. The context window size is 5; the
learning rate is set as 0.05.
2 http://openresearch.baidu.com/
3 http://www.sogou.com/labs/dl/q.html
4 https://code.google.com/p/word2vec/

http://openresearch.baidu.com/
http://www.sogou.com/labs/dl/q.html
https://code.google.com/p/word2vec/
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Table 1. Statistic of Baidu and Sogou datasets

Baidu Sogou

Total Query Number 10,787,584 4,240,938

Labeled Query Number 1,143,928 0

Topic Category Number 32 9

Train Number 915,388 6,846

Test Number 228,540 3,796

Click-Through Log Number 0 43,545,444

Average Word Length 3.3 2.7

Table 2. Taxonomy and statistics of Sogou dataset

Category IT Health Sports Military Job Education Travel Car Finance

Train 908 500 877 120 982 977 510 982 989

Test 419 299 447 357 444 460 449 462 459

Rule Labeled 464,798 92,613 18,897 321,958 49823 223,917 9,310 80,676 57,784

5 Experimental Results

We present the experimental results in Table 3: (1) Bag-of-Word is the Tradi-
tional text representation; (2) Word2Vec, as a stat-of-the-art word embedding
learning algorithm, is the baseline; (3) TOWEe is one of our proposed algorithms
for learning word embedding by modeling explicit topic of labeled queries; (4)
TOWEeu is another proposed word embedding learning algorithm, which learns

Table 3. Results of our four TOWE model, Word2Vec model and TF-IDF based Bag-
of-Word query representation. “+label” means only categorized queries are used for
training word embedding model.

Dataset Model Precision Recall F1

Baidu

Bag-of-Word 87.00% 100.0% 93.05%

Word2Vec 82.03% 99.94% 90.10%

Word2Vec + label 79.06% 99.90% 88.27%

TOWEe + label 95.17% 99.90% 97.47%

TOWEeu 95.73% 99.94% 97.79%

Sogou

Bag-of-Word 71.80% 100.0% 83.58%

Word2Vec 83.23% 99.30% 90.55%

Word2Vec + label 77.63% 98.28% 86.74%

TOWEe + label 82.66% 98.28% 89.80%

TOWEeu 87.58% 99.29% 93.07%

TOWEi 86.76% 99.29% 92.60%

TOWEiu 88.17% 99.30% 93.40%
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both syntactic context information and explicit topic; (5) TOWEi learns word
embedding by mimic user search behavior using large corpus of click-through
data; (6) TOWEiu learns word embedding by modeling user search behavior
and syntactic contexts of user submitted queries. (7) “+label” means that only
categorized queries are used to train word embedding.

6 Analysis and Disscussion

6.1 TOWE VS Word2Vec
We compare topic-oriented word embedding (TOWEe, TOWEeu, TOWEi and
TOWEiu) with the baseline of Word2Vec by only using query embedding as
features for query classification. We are comparable to Word2Vec model as it has
achieved great success in many NLP tasks. And the embeddings of Word2Vec
and TOWE are trained with same datasets and same parameters.

Table 3 shows the performance of query classification on the Baidu and Sogou
datasets. From Table 3, we can see that the performance of TOWE is obviously
better than Word2Vec as feature for query classification. The reason is that
Word2Vec do not capture the topic information, resulting in that the words
with different topics are mapped to neighboring word vectors space. The classifi-
cation performance is affected since the discriminative ability of topic words are
weakened when such word embeddings are fed as features. TOWEe, TOWEeu

effectively separate words with different topic category to different ends of the
spectrum and perform better compare with Word2Vec model in both datasets.
TOWEi and TOWEiu outperform Word2Vec model by exploiting more user
click information from large corpus of click-through data.

6.2 Word Embedding VS Bag-of-Word

We compare word embedding with the traditional bag-of-word query represen-
tation for query classification. Classification performance is showed in Table 3.
We can see that the performance of TOWE is obviously outperform bag-of-word
and Word2Vec representation using same svm classifier with same parameters.
Word2Vec model perform slightly worse than bag-of-word in Baidu dataset and
better in Sogou dataset. TOWE capture the syntactic information of text but
also the explicit topic and implicit topic information from categorized queries or
large number of user-click-through data.

6.3 Effect of α in TOWEeu

We tune the hyper-parameter α of TOWEeu model. As given in Equation (4), α
is the weighing score of syntactic context loss part and explicit topic category loss
part.

Figure 2(a) shows the precision of TOWEeu on query topic category classi-
fication on Baidu and Sogou datasets. The performance of TOWEeu is better
when α in the range of [0.3, 0.8]. The TOWEue model with α = 1 stands for the
Word2Vec model, which learns word embedding by modeling syntactic context
of queries. The importance of topic information in learning word embedding for
query classification can be verified by the sharp decline at α = 1.
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(a) Precision of TOWEeu with different
hyper-parameter α

(b) Precision of TOWEiu with different
hyper-parameter β

Fig. 2. Hyper-parameter tuning results

6.4 Effect of β in TOWEiu

We also tune the hyper-parameter β of TOWEiu to learn TOWE for query
classification. As gave in Equation (6), β is the weighing score of syntactic loss
implicit topic loss.

Figure 2(b) shows the precision of TOWEiu on query classification with
different β on Sogou test sets. We can see that TOWEiu performs better when
β is in the range of [0.3, 0.5]. The model with β = 1 stands for the standard
Word2Vec model. The sharp decline at β = 1 reflects the importance of implicit
topic relevant information in learning word embeddings for query classification.

7 Conclusions and Future Work

We draw our conclusions as follows. First of all, we propose a topic oriented
word embedding approach, configuring with four neural network strategies. Sec-
ond, the features we learn for query classification is under a supervised learning
framework, which makes the proposed model duplicable in other data sets. Third,
compared to the traditional word embedding, we fully adopt the implicit and
explicit topic information. Fourth, we suggest the parameters for the proposed
TOWE model. Finally, our experiments confirm that TOWE with four strategies
is successful on both data sets. Furthermore, we achieve the high performance
as 95.73% in terms of Precision, 97.79% in terms of F1.

In the future, we will continue on learning word embedding with more infor-
mation such advertiser information, URL category. And study how to composi-
tion more effective query embedding.
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Abstract. Early classification on multivariate time series has recently emerged 
as a novel and important topic in data mining fields with wide applications such 
as early detection of diseases in healthcare domains. Most of the existing stu-
dies on this topic focused only on univariate time series, while some very recent 
works exploring multivariate time series considered only numerical attributes 
and are not applicable to multivariate time series containing both of numerical 
and categorical attributes. In this paper, we present a novel methodology named 
REACT (Reliable EArly ClassificaTion), which is the first work addressing the 
issue of constructing an effective classifier on multivariate time series with nu-
merical and categorical attributes in serial manner so as to guarantee stability of 
accuracy compared to the classifiers using full-length time series. Furthermore, 
we also employ the GPU parallel computing technique to develop an extended 
mechanism for building the early classifier efficiently. Experimental results on 
real datasets show that REACT significantly outperforms the state-of-the-art 
method in terms of accuracy and earliness, and the GPU implementation is ve-
rified to substantially enhance the efficiency by several orders of magnitudes. 

Keywords: Early classification · Multivariate time series · Serial classifier · 
Numerical and categorical attributes · Shapelets · GPU 

1 Introduction 

Early classification, which refers to predict occurrences as early as possible, is an 
emerging subject in data mining with various time-sensitive applications such as 
health-informatics. For example, a retrospective study of clinical data from neonatal 
intensive unit found that abnormal heartbeat rate was significantly associated with 
sepsis in infants [9]. Monitoring the heartbeat time series and classifying them as 
early as possible may lead to earlier diagnosis and effective treatment. 

The aim of early classification is naturally different than that of classic classifica-
tion, which focuses only on accuracy without taking earliness into account. That is, 
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early classifiers can keep similar accuracy which is comparable to classic classifiers, 
while they should also be able to predict the results at an earlier time. Several effec-
tive early classifiers have been proposed to make early prediction on univariate time 
series [18, 19], and these classifiers retained accuracy which was comparable to tradi-
tional classifiers [2, 4, 14]. However, to gain insights into the classification results in 
many applications, not only univariate time series but also multivariate time series 
need to be considered further. 

To overcome the deficiency of the previous early classification methods that consider 
only univariate time series, early classification on multivariate time series has recently 
emerged as a novel and important topic of research [7, 8, 10]. The common idea of the 
existing methods is to extract multivariate shapelets as main features from all dimensions 
of time series with numerical attributes (or called numerical time series) that can manifest 
the target classes, where shapelet indicates a segment of numerical time series [8, 14, 20]. 
However, multivariate time series is usually composed of both numerical and categorical 
attributes in lots of real world data sets. For example, chronic asthmatic sufferers have to 
constantly observe not only vital signs and diagnostic records, but also environmental 
factors such as suspended particulates or humidity level. If the interactions between di-
agnostic records and environmental factors can be found, it is possible to predict the 
probability of asthmatic attack in advance using different variants of multivariate time 
series with numerical and categorical attributes. Moreover, Xing et al. [18, 19] argued that 
an early classifier should guarantee the stability of accuracy which was comparable to the 
classifier using full-length time series (defined as serial [18]), which can ensure an early 
classifier to be reliable and consistent. 

In this paper, we propose a novel method for reliable early classification on Multi-
variate Time Series with Numerical and Categorical attributes (abbreviated as 
MTS-NC). However, achieving such an aim is not an easy task with the following 
challenges: (I) Multivariate time series is heterogeneous and each variable has differ-
ent characteristics with either numerical or categorical type. Hence, it is not easy to 
find the potential interactions/relations between different variables in MTS-NC. (II) It 
is not an easy task to build an early classifier being serial on MTS-NC. To the best of 
our knowledge, the serial property is designed for shapelets extracted from multiva-
riate time series with numerical attribute [18], and it cannot be applied directly to 
categorical attributes. (III) Studying the tradeoff between earliness and accuracy of 
REACT on MTS-NC is not an easy task. In literatures [8, 18, 19], various measure-
ments such as discrimination, frequency, earliness are employed to estimate the quali-
ties of features for studying the tradeoff between earliness and accuracy. However, 
these criteria cannot be directly applied to MTS-NC, and they may be ineffective in 
obtaining the features satisfying these conditions. (IV) The proposed classifier has to 
efficiently extract features on MTS-NC. In the feature extraction of univariate time 
series with categorical attribute, the existing method [2] uses a two-phase approach  
by generating all frequent patterns and then selecting the discriminative patterns in 
different phases. However, the two-phase approach cannot be directly employed to 
generate patterns from MTS-NC, which might lead to a huge number of redundant 
patterns. In addition, in the feature extraction of univariate/multivariate time series 
with numerical attribute, discovering shapelets still has a higher computation overhead 
on existing methods [7, 8, 10]. 
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To address all of the above challenges, this paper proposes a novel framework 
named REACT on MTS-NC. The major contributions of this work are shown below: 

1. REACT incorporates the concept of heterogeneous multivariate time series with 
both numerical and categorical attributes into early classification to simultaneously 
consider numerical and categorical time series on construction of early classifier. 

2. REACT constructs a reliable early classifier which is serial and guarantees the sta-
bility of accuracy compared to the classifier using full-length time series. 

3. To avoid generating a huge number of features which may be redundant, we design 
a procedure of feature extraction in REACT named MEG (Mining Equivalence 
classes with shapelet Generators) based on the concept of Equivalence Classes 
Mining [12, 15]. MEG can efficiently and effectively generate the discriminative 
features. In addition, several strategies are proposed to prune the search space and 
reduce the number of redundant features in the processes of feature extraction. 

4. Since discovering shapelet generators takes huge calculation operations, REACT 
incurs still high computation overhead. In view of this, we employ and integrate 
concepts of GPU technique of parallel computing [4] to propose a process of pa-
rallel MEG for substantially reducing the computational overhead of discovering 
shapelet generators. 

5. We conduct an extensive empirical evaluation on several real datasets. The results 
show that REACT outperforms the state-of-the-art method in terms of f-score and 
earliness. In addition, the GPU implementation significantly runs faster than the 
baseline approach of building REACT by several orders of magnitudes. 

The remainder of this paper is organized as follows. Section 2 introduces the back-
ground of early classification on multivariate time series. We then describe REACT in 
section 3. Experiments are reported in Section 4. Finally, we conclude our work and 
give prospective future work in Section 5. 

2 Preliminaries and Related Work 

2.1 Preliminaries 

We introduce definitions and properties related to early classification on multivariate 
time series. For more details, readers can refer to [8, 14, 18, 19, 20]. 

Definition 1 (MTS-NC). A time series t is a set of readings of the form < r1, r2, …, 
rlen(t)>, where len(t) is the length of t and rk is the k-th reading of t for all 1 ≤ k ≤ len(t). 
Given a time series t = < r1, r2, …, rlen(t)>, t is called categorical time series if rj is 
category for 1 ≤ j ≤ len(t). On the other hand, t is called numerical time series if ri is 
number for 1 ≤ i ≤ len(t). A MTS-NC mt = {t1, t2, …, tn} is composed of n time series, 
where tx is a categorical/numerical time series, where 1 ≤ x ≤ n. Let C(mt) be a cor-
responding class label of MTS-NC mt. Dataset of MTS-NC D is a collection of mt and 
C(mt), where C(mt) ∈ class label set C. In addition, Dc is defined the subset of D car-
rying class label c, that is, Dc = {mt | mt ∈ D and C(mt) = c}. Figure 1(a) shows an 
example of MTS-NC. 
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Definition 2 (Subsequence and super-sequence of time series). Given two time 
series t = < r1, r2, …, rlen(t)> and t’ = < r1’, r2’, …, rlen(t’)’>, where len(t’) ≤ len(t). We 
say that t’ is a subsequence of time series t if there exists a sequence of integers 1 ≤ z1 
< z2 < …zlen(t’) ≤ len(t) such that ri’ =

 rzi for all i, where 1 ≤ i ≤ len(t’), denoted by t’ ⊑ 
t. On the other hand, t is a super-sequence of time series t’. 

Definition 3 (Shapelet/Numerical feature). Given two numerical time series nt1 and 
nt2=< r1, r2, …, rlen(t)>, where len(nt1) = len(nt2), we denote the set of all distinct 
subsequences of time series as ST(t)l = { ST(t)1,l, ST(t)2,l , …, ST(t)n,l }, and normalized 

Euclidean distance is defined by dist(nt1, nt2) = ටଵ ∑ ሺ݊1ݐ  െ 2ሻଶሺ௧ଵሻୀଵݐ݊ , where n = 

len(t) – l + 1 and 1 ≤ l < len(t). The best matching distance is denoted by BMD(nt1, 
nt2) = minimum{dist(nt1, ST(nt2)j,len(nt1))| 1≤ j ≤ len(nt2)–l+1}, where len(nt1) = 
len(nt2). A shapelet/numerical feature is a pair (s, δ), where δ is a distance threshold, 
s=< r1, r2, …, rlen(s)>, and ri∈ℕ for all i (1 ≤ i ≤ len(s)). A shapelet f is said to appear in 
a time series t, denoted by f ⊑ t, if BMD(s, t) ≤ δ. 

Definition 4 (Categorical feature). Let ct be a categorical time series, a categorical 
feature is a subsequence of length l extracted from ct and denotes by f = <r1, r2,… , rl>, 
where l ≤ len(ct). 

Definition 5 (Utility of a feature). Given a feature f and a dataset of MTS-NC D con-
taining N instances and C different class labels, and assume that each class label ci has 
ni instances in D, where 1 ≤ i ≤ C and N=∑ niୀଵ . The entropy of D is defined as E(D) 
= –∑ niே ሺniேሻୀଵ ݈݃ . In addition, the minimum prefix of t is defined as the readings from 

the first reading to the ith reading, where f firstly appears in t for 1 ≤ i ≤ len(t), which 
is denoted as minprefix(t, f). Its Earliest Matching Time is the time point of minimum 
prefix and denoted by EMT(t, f). The utility of feature is defined as U(f) = 
(E(D)–E(Df))

ω 
× wsup(f), where Df = {mt | mt∈D, f ⊑mt} is the sub-dataset of mt 

where f appears in, and ݑݏݓሺ݂ሻ ൌ  ∑ భಶಾሺ,ሻ⊑,∈D||  is the weighted support to 

measure frequency and earliness of features, in which |D| is the number of instances in 

D. The parameter ⍵ ≥ 1 determines the relative importance of information versus 

earliness and popularity. 

 

 

Fig. 1. Examples of MTS-NC, extracted feature, and encoding sequence 

SID MiNCA Class

1
<b, c, a, b, a>

low
<10, 20, 30, 15, 25>

2
<a, b, c, c, b>

high
<30, 10, 50, 25, 5>

3
<b, c, a, b, a>

low
<15, 15, 30, 10, 20>

4
<b, c, b, b, c>

high
<30, 5, 45, 25, 10>

5
<c, b, b, a, c>

low
<10, 10, 40, 25, 5>

SID Encoded Sequence Class
1 <(#3, #5)2, (#1, #3)5> low

2 <(#5)3, (#4)4, (#2)5> high

3 <(#3, #5)2, (#1, #3)5> low

4 <(#5)2, (#2)3, (#4)4, (#5)5> high

5 <(#2)2, (#1, #4)4> low

ID Extracted Feature
#1 <b, a>

#2 <c, b>

#3 (<10, 20>, 5)

#4 (<10, 50, 25>, 5)

#5 <b, c>
Earliest matching time

Numerical Generator

Categorical Generator

(a) MTS-NC (c) Encoding Sequence (b) Extracted Features



 Reliable Early Classification on Multivariate Time Series with Numerical 203 

Definition 6 (Information gain and separation gap w.r.t. a shapelet). Given a da-
taset D and a shapelet f = (s, δ), the information gain of the split point δ is defined as 
I(s,δ) = E(D)－หห|| E(Df)－

|||| E(Dn), where Df is the sub-dataset of D in which all in-

stances match f, and Dn is the remained time series removing Df. The separation gap 
of the split point δ is computed as ܩሺݏ, ሻߜ ൌ  ଵ|| ∑ ,ݐሺ݉ݐݏ݅݀ ሻݏ െ ଵหห ∑ ,ݐሺ݉ݐݏ݅݀ ሻ௧∈௧∈ݏ . 

2.2 Related Works 

Early classification on numerical time series aimed to classify a partial case only using 
the prefix of complete time series, which was first introduced by Diez et al. [4]. They 
simply used linear combination of available predicates of prefixes for classification. 
Xing et al. [18] then explored a feature based method for early classification on cate-
gorical time series. However, it had to discretize the time series when this method was 
applied to real-valued time series. In 2009, Xing et al. [19] proposed a novel nearest 
neighbor approach to tackle the problem of early classification on numeric time series. 
However, to gain insights into the classification results does not only be caused from 
univariate time series, but also multivariate time series. To overcome the deficiency, 
early classification on multivariate time series with numerical attribute has recently 
emerged as a novel and important topic of research [7, 8, 10]. In the existing frame-
works, multivariate shapelets are extracted as candidates to build the early classifier, 
where shapelet is a segment of numerical time series [8, 14, 20]. However, multivariate 
time series is usually composed of numerical and categorical attributes in lots of real 
world data sets. Therefore, this paper simultaneously considers MTS-NC on construc-
tion of early classifier. 

3 Methodology 

In this section, we shall describe the proposed methodology named REACT (Reliable 
EArly ClassificaTion) on Multivariate Time Series with Numerical and Categorical 
attributes (abbreviated as MTS-NC). The framework of REACT is shown in Figure 2. 
We will introduce each process in the following subsections, and we discuss imbalance 
problem and implementation on GPUs in the last two subsections, respectively. 

3.1 Feature Extraction 

An equivalence class (abbreviated as EqC) was firstly introduced by Pasquier  
et al.[17], the maximal frequent itemsets in EqC are called closed, and the minimal 
frequent itemsets in EqC are called generators. Frequent closed patterns can form a 
concise and lossless representation of frequent itemsets, and they have been extensively 
studied [6, 13]. In addition, by Minimum Description Length principle, generators are 
preferable to closed patterns for model selection and classification [6, 13]. In [3, 12], 
authors gave discussions for the benefit of generators over closed patterns. 

In the following paragraphs, we introduce how to extract categorical generators 
and shapelet generators from categorical and numerical time series, respectively. 
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Fig. 2. The framework of REACT 

 Categorical Generators Extraction 

According to Definition 5, the attractive property of upper bound can be defined as 
below. Given a MTS-NC dataset D and a categorical feature f, the sequential upper 

bound of utility is computed as SeqUB(f) = 
ாሺሻഘ|| ∑ ଵாெ்ሺ௧,ሻାଵ௧ఢ,⊑௧ . If the se-

quential upper bound of a categorical feature f is less than min_utility, the utility of 
super-sequence of f’ must be less than min_utility [17]. 

Definition 7 (Extension timestamp of a categorical feature w.r.t a categorical time 
series). The extension timestamp of a categorical feature f w.r.t a categorical time se-
ries S is defined as ET(f) = {t | t = matching time + 1, t ≤ len(S)}.  

The essence of feature extraction of categorical generators is to check whether the 
patterns satisfy the stop conditions of extension or not. We first scan the projected 
database of prefix s once, and compute the exact utility for each item ⍺ that the ex-
tended pattern (s++⍺) appears, where (s++⍺) defines the concatenation of s and ⍺. 
Initially the prefix is empty, and the projected database of empty is the original dataset. 
If there are some valid items in the projected database, we then identify the equiva-
lence class for each valid item ⍺ and examine whether the categorical feature (s++⍺) 
should be continued or not by Downward Closure Property of Non-Generator [17]. 

 Shapelet Generators Extraction 

We adopt best matching distance as the similarity between shapelet f and time series t 
[8, 14, 20], i.e. BMD(f, t). A time series t can be classified based on a shapelet f = (s, 
δ), once we find that the distance between t and f is no greater than the distance thre-
shold δ. In addition, if several shapelets in the different classes satisfy the assumption, 
we select the first shapelet. Furthermore, to avoid existence of redundant patterns in the 
set of shapelets, generator mining is applied to shapelet extraction. 

Definition 8 (Shapelet generator). A shapelet f = (s, δ) is called shapelet generator if 
(I) there is no shapelet f’ = (s’, δ’) satisfying U(f’) ≥ U(f), (II) the covered instances of s 
are no less than that of s’, and (III) the distance between s and s’ is no larger than δ’ in 
the same equivalence class.  

Example 1. Given two shapelets f1 = (<10, 20>, 10) and f2 = (<15, 15, 30>, 10), which 
belong to the same equivalence class, and f1 and f2 have the same covered instances. In 
addition, f1 has higher utility value because f1 precedes f2, and the distance between <10, 
20> and <15, 15, 30> is 5 less than 10. Therefore, we refer to <10, 20> as a subsequence 
of <15, 15, 30>, and f1 is a generator in the equivalence class. 
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Fig. 3. Pseudo code of procedure MEG 

We show the procedure of Mining Equivalence classes with shapelet Generators 
(abbreviated as MEG) in Figure 3. The procedure scans dataset D once and gets dis-
tances from candidates to all time series (line 1-5). For the length of shapelet between 
minLen and maxLen, the best matching distance (which refers to Definition 3) are 
computed (line 6-8). After the distance thresholds are calculated, the information gain 
and separation gap are computed for each candidate (line 9), and the procedure then 
obtains the set of the supporting instances of shapelets to determine equivalence 
classes (line 10-12). If the utility of shapelet is no less than user-specified threshold, it 
is collected into the set SGs (line 13). 

3.2 Feature Selection 

As indicated by many existing associative classification [2, 4, 14], learning an optimal 
set of features for classification is very expensive and non-scalable. In this work, a 
greedy algorithm of feature selection works as below. The procedure first ranks the 
equivalence classes in descending order using their utility score, and then iterates over 
the features starting from the highest ranked one. 

Step 1. We select the feature and remove all covered instances. Here, a feature f 
is said to cover an instance mt if mt matches f and their classes are the same. 

Step 2. We then use the next highest ranked feature to see whether it covers any 
of the remained instances or not. 

Step 3. If it covers some of them, then we select the feature and remove all in-
stances that are covered. Otherwise, we discard it and proceed to next one. 

Step 4. This process continues step 2 to step 4 until the set of extracted features or 
the remaining dataset is empty. 

Procedure: MEG
Input : (1) D : MTS-NC; (2) minLen and maxLen : the minimal and maximal length of shapelet;

(3) min_util and min_sup : minimum utility and minimum support;
Output: The set of shapelet generators SGs; 
01. for i := 1 to |D| do
02.   S := ith time series of D;
03. for j := 1 to |D| do
04.      Stemp := jth time series of D;
05. Mj := statement between S and Stemp;
06.      for l := minLen to maxLen do
07.      for s := 1 to |S|-l+1 do
08.         for k := 1 to |D| do d[k] :=BMD(Ss,l, Mk);
09.            (δ, gain, gap, upper) := best of I(d) and G(d);
10.            if sup(Ss,l) ≥ min_sup then
11.           Identify equivalence class;
12.               Calculate exact utility Utility(Ss,l);
13.               if Utility(Ss,l) ≥ min_util then SGs := SGs ∪ equivalence class of s;
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3.3 Feature-Based Sequential Pattern Discovery 

In discovery of feature-based sequential patterns, we consider two kinds of combina-
tions of features, sequential combination and simultaneous combination, to improve 
further the effectiveness of the classification model. Therefore, to discovery the rela-
tionship of the features mined from feature extraction, we associate each feature with a 
unique identifier, and then construct encoded sequence database composed of these 
identifiers. Figure 1(c) shows an example of encoded sequence database. 

However, the encoded sequence dataset contains simultaneous event type, and there 
is more than one item at the same timestamp. It may increase the complexity of patter 
mining procedure. The downward closure Property of Feature-based Generator is thus 
proposed to modify for reducing the computational overhead. 

Definition 9 (Simultaneous extension timestamp). The simultaneous extension time-
stamp of a feature-based sequential pattern P for an encoded sequence S is defined as ܵܶܧሺܲ, ܵሻ ൌ ሼݐ | ݐ ൌ   .ሽܵ ݊݅ ݁݉݅ݐ ݄݃݊݅ܿݐܽ݉ ݐݏ݈݁݅ݎܽ݁

Property 1 (Downward closure property of feature-based generator). Given a 
feature-based sequential pattern P1, if ∃ a pattern P2 such that the elements of 
{P1}-projected database and {P1}-projected database are the same, and P2 is a 
sub-pattern of P1, and then, any serial extension of P1 are not generators. On the other 
hand, if SET(P1) = SET(P2) for each instance and P2 is a sub-pattern of P1, then P1 and all 
simultaneous extensions are not generators. 

3.4 Serial Decision Tree 

A tree-based classifier named SDT (Serial Decision Tree) is built with all extracted 
information from Feature-based Sequential Pattern Discovery, as shown in Figure 4. 
Similar to classical decision tree algorithm [2, 6, 17, 19], we select the attribute of the 
highest information gain as root of the tree, and determine the dominant class by 
maximizing confidence. The dataset is then divided into two sub-datasets, the first 
consist of the instances matching this feature and the other comprise of all remained 
instances. Once the root is constructed, the sub-trees of branches of the root can be 
constructed recursively. In addition, for each leaf node in SDT, we consider the stabili-
ty of error rate between subspace and full-space. If the error rate of a node at time 
point i passes the user-specified threshold σ, then the MPL of the node is set to i+1. We 
make sure that all error rates at timestamp MPL+k for k ≥ 0 are smaller than σ. 
 

  

Fig. 4. Examples of encoding sequence and serial decision tree 

SID Encoding sequence SDT(mt)full

1 <(#3)1, (#8)2> low

2 <(#1, #2, #4, #7)1, (#3)2, (#6)3> high

3 <(#3, #5)1, (#8)2, (#4, #7)3> low

4 <(#4, #7)1, (#6)2> high

5 <(#3)1, (#6)2, (#8)3, (#7)4> low

(a) Encoding sequence 

<(#8), (#7)>

low

Y

<(#4, 7)>

N

high

Y

low

N

DN= {S3, S5} & error rate = 0/2 at timestamp 4
DN = {S3} & error rate = 0/1 at timestamp 3
DN = ∅ at timestamp 2

(b) Serial Decision Tree
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Definition 10 (Error Rate of a leaf node). The error rate of a leaf node N in SDT is a 
ratio of difference of classification results between subspace formed by the prefix of 
length l and full-space, and is computed as ܴܧሺܰሻ ൌ  |ሼ௧|௧∈ಿ,ሺ௧ሻஷሺ௧ሻೠሽ||ಿ| , where DN is 

the sub-dataset which N represents and SDT(mt) is the class label of multivariate time 
series mt classified by SDT at time point l. 

3.5 Imbalance Issue 

To tackle the imbalance problem, we utilize the ratio of sub-dataset to instead of using 
the standard information gain and determine the discriminations of features, as shown in 
Definition 11. 
 
Definition 11 (Ratio confidence and ratio entropy). Given a dataset D from C dif-
ferent classes and a sub-dataset Df from D, the ratio of Df for class c is defined as ݅ݐܽݎ൫ܦ ՜ ܿ൯ ൌ |൛௧∈หሺ௧ሻୀൟ||ሼ௧∈|ሺ௧ሻୀሽ| , where c ∈ C. The ratio confidence of class c is the ability 

to manifest c, and defined as ሺ݂ ՜ ܿሻ ൌ ௧ሺ՜ሻ∑ ௧ሺ՜ᇱሻ. In addition, the ratio entropy of Df is 

computed as ܧݎ൫ܦ൯  ൌ  െ ∑ ௧ሺ՜ሻ∑ ௧ሺ՜ᇱሻ ൈ log ሺ ௧ሺ՜ሻ∑ ௧ሺ՜ᇱሻሻ∈ . 

Example 2. Given a pattern P and a dataset of 2-classes, in which the number of in-
stances of majority class and minority class are 1733 and 72 respectively, and suppose 
all instances in this dataset match P. The confidence and entropy of P are 96% and 0.24 
respectively. It is a highly discriminative pattern at first sight. As a matter of fact, this 
pattern always appears in this dataset. In this work, the discrimination is estimated by the 
modified formula such that rconf(P→c) = 50% and rE(DP) = 1. 

3.6 Implementation on GPUs 

The GPU implementation [4] employed in our study for parallel Mining Equivalence 
classes with shapelet Generators (abbreviated as parallel MEG) is shown in Figure 5. 
For each thread, parallel MEG loads all subsequences of time series in dataset to shared 
memory Ti and synchronizes all the threads (line 1-2). Then again, parallel MEG loads 
all subsequences to shared memory Tj and performs calculation of line 06-13 of algo-
rithm MEG for each thread (line 3-6). Finally, parallel MEG returns the set of shapelet 
generators (line 7). 
 

 
Fig. 5. Pseudo code of Algorithm Parallel MEG 

Procedure: Parallel MEG
Input : (1) MTS-NC; (2) The minimal and maximal length of shapelet;

(3) Minimum utility and minimum support;
Output: The set of shapelet generators SGs; 
01.   Thread s loads subsequence of time series Ti to shared memory Ti[s];
02.   syncthreads();
03.      Thread s loads subsequence of time series Tj to shared memory Tj[s];
04.      syncthreads();
05. Get Mj := statement between Ti[s] and Tj[s];
06.      Perform calculation of line 06 to 13 of procedure MEG
07.    Return SGs;
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4 Experimental Evaluation 

We use several real-world datasets to evaluate the performance of the proposed clas-
sifier. All experiments were performed on a computer with a four-core Intel Xeon host 
CPU at 2.40GHz with 96GB of memory, and this computer combined an NVIDIA 
Fermi C2075 GPU with 448 cores at 1.15GHz, 64KB shared memory per GPU multi-
processor, 64KB constant memory, and 6GB global memory. All algorithms are im-
plemented in Java language and the GPU code is implemented in CUDA C++.  

The experiments were performed on several real-world datasets: drug response [3], 
robot execution failures [1], ECG [16], wafer [16] and asthma [11]. Table 1 shows the 
characteristics of the datasets in the experiments. For evaluating the performance of the 
proposed model, we first employ 5-fold cross validation (CV) to divide into training 
and testing dataset, and then generate 20 runs of 5-fold CVs to calculate the average 
results. We compare five versions of the algorithm named as follows: REACT, 
REACT-Full (REACT with full-length time series), MSD ([8], the only study addressed 
to early classification with interpretability on multivariate time series), MSD-Full 
(MSD with full-length time series), and 1NN-Full (full-length 1NN which is strongly 
suggested by a comparison of dozens of time series classification algorithm on various 
datasets [5]). The similarity measures of numerical time series for MSD and 1NN-Full 
are Euclidean distance. 

For shapelet extraction, we set minLen = 1 and maxLen to be 50% of the maximum 
length if length > 30. Otherwise, maxLen is set to equal to the maximum length. The 
results are under the best parameter setting for each dataset. In the results, we report 
the average of f-score, applicability and earliness. The average f-score is computed as 
Avg. f-scoreൌ  ଵ|| ∑ ଶൈ௦൫ᇲ൯ൈ൫ᇲ൯௦ሺᇲሻାሺᇲሻᇲ∈ , where Precision(ܿᇱ) = ்்ାி and Recall(ܿᇱ) = ்்ାிே. In this study, a true positive (TP) occurs when the class of time series is predicted 
positive; otherwise, the model generates a false positive (FP). Furthermore, a false 
negative (FN) occurs when the model miss that the class of time series is positive. 

In applicability evaluation, we regard the percentage of testing dataset which can be 
classified by REACT as ݕݐ݈ܾ݈݅݅ܽܿ݅ܣሺ%ሻ ൌ  |൛௧ห௧∈ೞ,ௌ்ሺ௧ሻஷ∅ൟ||ೞ| . On the other hand, we 

regard the average percentage of time points used for classification as the earliness 
evaluation ݏݏ݈݁݊݅ݎܽܧሺ%ሻ ൌ ଵ|ೞ| ∑ ாெ்ሺ௧ሻሺ௧ሻ௧∈ೞ . 

 

Table 1. Characteristic on different datasets 

Dataset High Dimension Missing Value Imbalance Multiple Classes Large size Long time series 

MS70 O O     

Robot    O   

ECG     O O 

Wafer   O  O O 

Asthma O O O  O  
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Table 2. Performances on different datasets (%) 

 MS70 Robot (Avg.) ECG Wafer Asthma 

Avg. f-score 

REACT 72.9 72.7 76.7 91.9 74.9 
REACT -Full 68.5 70.4 76 92.1 69.3 
MSD 60.6 39.6 58.8 --- --- 
MSD-Full 60.2 41.1 47.5 --- --- 
1NN-Full 44.6 71.9 78.7 87.2 --- 

Applicability 

REACT 93.8 94.7 100 100 99.4 
REACT -Full 93.8 94.7 100 100 99.4 
MSD 97.8 96.3 100 --- --- 
MSD-Full 97.8 96.3 100 --- --- 
1NN-Full 100 100 100 100 --- 

Earliness 

REACT 22.9 40.7 10.5 32.8 73.7 
REACT -Full 100 100 100 100 100 
MSD 27.4 27.4 12.8 --- --- 
MSD-Full 100 100 100 --- --- 
1NN-Full 100 100 100 100 --- 

Table 3. Ccomparison of computation overhead  

Dataset Max. Length #Instances MSD (sec) REACT (sec) REACT-GPU(sec) 
MS70 5 53 62.8 sec 335.2 7.8 

Robot(Avg.) 15 92.6 173.94 255.16 5.64 
ECG 152 200 13168.4 15335.8 104.6 

Wafer 198 1194 >2 weeks 150834.1 68228.2 
Asthma 5 1805 NA 1488.1 370.7 

 
Table 2 lists the results on all datasets where the similarity measurement of numer-

ic time series is Euclidean distance. The wafer dataset cannot be handled by MSD as a 
result of enormous computation cost. In general, REACT outperforms MSD and 
achieves comparable accuracy to that of 1NN-Full because our algorithm can discover 
more potential information of multivariate time series. Although MSD makes the 
earliest classification since the criteria, namely weighted information gain, used in 
MSD prefers earliness and frequency rather than discrimination, the result demon-
strates that it is too early to be accurate. Due to characteristic of being serial, the dif-
ference of Avg. f-score between REACT and REACT-Full is small, which shows that 
REACT can capture the key features with suitable lengths of prefixes and make con-
fident classification at appropriate timestamp. 

Table 3 compares the training time of REACT, REACT on GPUs and MSD using 
the caching technique described in section 3. The result shows that REACT is slower 
than MSD on small datasets since our approach requires feature extraction and fea-
ture-based sequential pattern discovery for each variable and class. However, on the 
datasets of long time series or large amount of instances, REACT is faster than MSD 
in execution time. The reason is that MSD have to generate a huge number of shapelet 
candidates and pick out a small rule set from them. In addition, REACT on GPUs runs 
faster than REACT over 40 to 150 orders of magnitude on MS70, Robot and ECG 
Datasets, and over 2 to 4 orders of magnitude on Wafer and Asthma Datasets. We 
observed that Wafer and Asthma Datasets are large size and Wafer is also a long time 
series, and they needed lots of distance calculations on subsequences of time series. 
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5 Conclusion and Future Work 

In this paper, we have proposed a novel methodology named REACT (Reliable EArly 
ClassificaTion) for constructing a reliable (i.e., serial) early classifier on MTS-NC. In 
addition, we adopt equivalence classes with generators mining to efficiently extract 
numerical and categorical features. Our experimental results clearly show that REACT 
outperforms the state-of-the-art methods in terms of accuracy and earliness. In addi-
tion, the GPU implementation significantly runs faster than the baseline approach of 
REACT model by several orders of magnitudes. 

Although this is the first work that addresses this issue, it still leaves ample room 
for exploration in the future work. For example, we aim to find the significant features 
in different time series and use these features to build the classifier. However, the 
combination of non-significant features in different time series may be identifiability 
for early classification. In addition, the signal transform analysis techniques, e.g. 
wavelet or Fourier transform, may be employed to transform MTS-NC to find the 
significant combination features. 
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Abstract. The distributed vector representations learned from the
deep learning framework have shown its great power in capturing
the semantic meaning of words, phrases and sentences, from which
multiple NLP applications have benefited. As words combine to
form the meaning of sentences, so do sentences combine to form the
meaning of documents, the idea of representing each document with
a dense distributed representation holds promise. In this paper, we
propose a supervised framework (Compound RNN) for document
classification based on document-level distributed representations
learned from deep learning architecture. Our framework first obtains
the distributed representation at sentence-level by operating on the
parse tree structure from recursive neural network, and then obtains
the document presentation-level by convoluting the sentence vectors
from a recurrent neural network. Our framework (Compound RNN)
outperforms existing document representations such as bag-of-words,
LDA in multiple text classification/regression tasks.

1 Introduction

For text classification or regression task, documents need to be represented by
a fix-length feature vector, on which machine learning algorithms can operate.
The most naive but commonly used approach is bag-of-words representations,
which represent each document with a feature vector by counting its containing
unigrams, bigrams or trigrams and then leveraging the vectors based on Tf-idf
scheme [34]. Tf-idf presentations have some appealing features notably its basic
identification of sets of words that are discriminative for documents, but also
come with severe shortcomings: the simple word-counting statistics are incapable
of grasping in-depth information such as word semantics, and usually end up with
extremely high dimensional vector representations.

Distributional semantic models(DSM) [44] offer a way of document represen-
tation by approximating the meaning of words with vectors that keep track of
the patterns of co-occurrence of the words in a corpus. It assumes that semanti-
cally related words should occur in similar contexts [10]. Hybrid DSM methods
based on traditional topic models are also developed for various tasks [14,45].
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 212–225, 2015.
DOI: 10.1007/978-3-319-18038-0 17
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However, DSM are psychological models of how we humans acquire and use
semantic knowledge. However we can rely not only on linguistic context, but
also on our rich perceptual experience [21].

Another prevailed alternative representation is obtained from Latent Dirich-
let Allocation (LDA) [3], which represents each document as a probability over a
set of components characterized as different distributions over vocabularies. LDA
serves as a dimensionality reduction technique. As it first does the word-clustering
based on document-level word co-occurrence, it can represent each document with
a vector based on more condensed but more meaningful components, called “top-
ics”. LDA suffers from the shortcomings like ignorance of word orders, features,
and word-similarity. While a bunch of approaches (e.g., [31,50]) have been pro-
posed to address the aforementioned shortcomings, the improvements are limited
and these approaches often end up with very complicated learning procedure.

Recently, deep architectures, such as recurrent and recursive neural networks,
have been successfully applied to various natural language processing tasks. Such
deep architectures learn a dense, low-dimensional representation of their problem
in a hierarchical way that is capable of capturing both semantic and syntactic
aspects of tokens (e.g., [1]), entities, N-grams [47], or phrases [42]. A significant
advantage of the deep learning framework is that it frees researchers from feature
engineering, since its representations are emergent. Furthermore, recent research
has begun looking at higher level distributed representations that transcend the
token level such as discourse-level [12].

Inspired by the idea that words combine to form the meaning of sentences,
so do sentences combine to form the meaning of paragraphs and then docu-
ments, in this paper, we propose a supervised framework that learns continuous
distributed condensed vector representations at document level for text classifi-
cation and regression task. Our approach is hierarchical and is founded on two
basic learning structures in deep learning: recursive neural network and recurrent
neural network.

We first obtain the distributed representations at sentence level. The sen-
tential compositionality operation is performed relying on sentence parse trees
from recursive neural network. The distributed representation for each node in
the sentence parse tree is computed in a bottom-up fashion as in [42] until the
root is reached.

Next, we introduce the compositionality strategy for paragraph and docu-
ment which is based on a recurrent neural network architecture that is useful for
sequences [25,43]. The distributed vectors for paragraphs are obtained by sub-
sequently convoluting its containing sentences with the input from the previous
step. Document-level representations are obtained by adding up the vectors of
its containing paragraphs in the similar way based on recurrent neural network.

Given the satisfying results obtained from distributed word and sentence rep-
resentation in previous work, it is natural to extend it to distributed paragraph
and document representation to represent the meaning of texts and benefit other
NLP tasks dealing with documents. Recursive neural network requires structured
inputs and for text processing, it relies heavily on the parsing results. Document
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parsing is uncompetitive compared with sentence parsing. So we employ the
recursive neural network for sentence level representation but recurrent neural
network for paragraph and document level.

Our approach is a task-specific framework where parameters involved in intra-
and inter- sentence compositionality are optimized through the task-specific tun-
ing procedure, which can also be treated as a feature selection procedure. We
experiment our approach (Compound RNN) on different document-classification
tasks, i.e., binary classification, multi-class classification and regression. Exper-
imental results illustrate the effectiveness of our model over existing baselines.

2 Related Work

2.1 Recursive Neural Networks

Recursive neural networks (RNN), as one kind of deep learning frameworks,
was first proposed in [9]. Recursive framework relies and operates on struc-
tured inputs (e.g., parse tree) and computes the representation of each par-
ent based on its children iteratively in a bottom-up fashion. To tailor different
task-specific requirements, some variations of RNN have been proposed such as
Recursive Neural Tensor Network [42] that allows the model to have greater
interactions between the input vectors and Matrix-Vector RNN [39] which rep-
resents every word as both a vector and a matrix. There are also some work
addressing the feature weight tuning for recursive neural networks [17] to make
the model emphasize more on important information. Tasks have benefited from
recursive framework including parsing [19,40], sentiment analysis [42], machine
translation [20], textual entailment [4] and paraphrase detection [38].

2.2 Recurrent Neural Networks

Recurrent neural networks, as another learning structure of deep learning [35,43],
takes a collection of tokens, phrases or sentences as a sequence and incorporates
information from the past (i.e. preceding tokens) to get the current output.
Specifically, at each step, recurrent network takes both the output of previous
step and the current token as input, convolutes the inputs, and forwards it
to the next step. It has been successfully applied to tasks such as language
modeling [25] or spoken language understanding [22]. Recurrent network does
not need external deeper structure (e.g., parse tree) and is able to preserve
the embedding dimension when convoluting different number of components.
However, in recurrent framework, long unit dependencies might be difficult to
capture and the framework suffers from the vanishing gradient problem.

2.3 Distributed Representations

Both recurrent and recursive neural networks require vector representations for
input tokens. Distributed representations for words were first proposed in [33]
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and have been used for statistical language modeling [8]. Various deep learning
architectures have been explored to learn these embeddings in an unsupervised
manner from a large corpus [1,6,23,27]. They might have different generalization
capabilities and able to capture the semantic meanings for specific tasks. These
vector representations capture interesting semantic relationships (or to some
extent) such as King−man ≈ Queue−woman and have benefited multiple NLP
applications such as name entity recognition, tagging or machine translation
(e.g., [6,51]).

Recent researchers have also begun looking at distributed representations
of phrases and sentences [12,18,38,39,42]. But their methods are not extended
beyond sentences. [39] applied the matrix-vector RNN model to learn composi-
tional vector representations for phrases and sentences. But their experiments
mainly focused on phrase and sentence level classification like predicting senti-
ment distributions of adverb-adjective pairs etc. [12] extends the representation
to sentence-level and discourse level by convoluting representations in a recurrent
neural network. But their improvements are trivial.

[15] proposed a straightforward method to calculate the distributed repre-
sentations for paragraphs. The basic idea is that the distributed representation
of a piece of text should be able to predict the following word. Experiments
on various tasks verify the effectiveness of such methods. But they concatenate
sentence vectors, even paragraph vectors with word vectors. In this paper, we
regard word vectors, sentence vectors and paragraph vectors as different layers
in the model.

2.4 Approaches to Classification and Regression

As this paper mainly focuses on applying deep architectures to document clas-
sification tasks, we just give a brief review of other approaches to classification
and regression. Many models can be used for the classification and regression
task [36], such as k-NN, SVM, Naive Bayes, Neural Networks, ect., as long as
documents can be represented in appropriate forms. To present documents, pop-
ular methods use topic models. Notable ones are pLSI [11], LDA [3] and some
variations of LDA, such as sLDA [2], L-LDA [32] etc.

3 Sentence Model

In this section, we describe how we compute the distributed representation for
a given sentence based on its parse tree structure and containing words. As the
details can be found in a bunch of early work (e.g., [42]), we try to make this
section brief and skip the details for brevity.

Let s denotes any given sentence, which is comprised of a sequence of tokens
s = {w1, w2, ..., wns

}, where ns denotes the number of tokens within sentence s.
Each token w within the sentence is associated with a specific vector embedding
ew = {e1

w, e2
w, ..., eK

w }, where K denotes the dimension of the word embedding.
Here the word embeddings are initialized by using word representations taken
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from RNNLM [24,26]. The dimension of embeddings is 80. We wish to compute
the vector representation hs for current sentence, where hs = {h1

s, h
2
s, ..., h

K
s }.

Parse trees are obtained from Stanford Parser1. For a given parent p in the
tree and its two children c1 (associated with vector representation hc1) and c2

(associated with vector representation hc2), standard recursive network calcu-
lates the distributed vector for parent p as follows:

hp = f(W · [hc1 , hc2 ] + b) (1)

where [hc1 , hc2 ] denotes the concatenating vector for children representations
hc1 and hc2 . W is a K × 2K matrix and b is the 1 × K bias vector. f(·) is tanh
function.

Standard recurrent framework uses the same (tied) weights W at all nodes to
compute the vector. This requires the compositionality function to be extremely
powerful as it has to combine phrases with different syntactic roles, which is usu-
ally unrealistic. Several approaches have been proposed to address such weakness
including Matrix-Vector RNN [39] or Recursive Neural Tensor Network [42]. In
this work, we adopt a simple alternative where instead of using a single com-
positionality matrix W , we associate each of the sentence roles (i.e., VP, NP or
NN) with a specific compositionality matrix (i.e, WV P , WNP or WNN ). Let Wc1

and Wc2 denote the matrices associated with children c1 and c2 based on their
roles. Then the convolution is given by:

hp = f([Wc1 ,Wc2 ] · [hc1 , hc2 ] + b) (2)

where [Wc1 ,Wc2 ] denotes the K*2K dimensional concatenating matrix for
Wtag(c1) and Wtag(c2).

4 Document Model

In this section, we illustrate how we get the distributed vector representation
for a given document based on its contained sentences, of which the distributed
representations have already been obtained in the Sentence Model Section. Doc-
ument d is comprised of a sequence of paragraphs D = {L1, L2, ..., LNd

} where
Nd denotes the number of paragraphs within the document. Each paragraph is
comprised of a sequence of sentences L = {s1, s2, .., sNL

}, where NL denotes the
number of sentences within the paragraph. To obtain the vector representation
hL for paragraph L, we turn to recurrent neural network, which successively
takes in sentence st at step i, combines its vector representation hst

with former
input ht−1

L from step i − 1, calculates the resulting current embedding ht
L, and

passes it to the next step. The convolution can be summarized as follows:

ht
L = f(VL · ht−1

L + WL · hst
+ bL) (3)

1 http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml
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where WL and VL are K × K matrixes. bL denotes K × 1 bias vector and
f = tanh is a standard element-wise nonlinearity. To note, the calculation for
representation at time t = 1 is given by:

h1
L = f(VL · h0 + WL · hst

+ bL) (4)

where h0 denotes the global sentence starting vector for paragraphs. To note,
for documents with only one paragraph, their corresponding distributed vectors
are obtained by using the strategy just described and no convolution between
paragraphs is needed.

Similar as the paragraph-level compositionality, we compute document-level
distributed representations as follows: given the vector presentation for its con-
taining paragraphs {hL1 , hL2 , ..., hLNd

}, at each step i, the recurrent framework
takes as input the vector representation hLt

for current paragraph Lt, combines
it with former input ht−1

d from step i− 1, calculates ht
d and passes it to the next

step.
ht

d = f(Vd · ht−1
d + Wd · hLt

+ bd) (5)

where Wd and Vd are K × K matrixes. bd denotes K × 1 bias vector.

5 Document Classification

We train our classifier regarding three types of document classification tasks:
binary classification, multi-class classification and regression.

5.1 Binary Classification

For binary classification, each document d is associated with a 0/1 binary valued
variable td. For classification purpose, given the document distributed vector hd,
we first generate a scalar using linear function UT

binary · hd + b and then projects
it into [0,1] possibility space using a sigmoid function, as given by:

P (td = 1) = g(Ubinary · hd + bbinary) (6)

where Ubinary is a K × 1 dimensional vector and bbinary denotes the bias vector.
g(·) denotes the sigmoid function.

For a given set of training data D, the cost function with regularization on
the training set is given by:

J =
1

|D|
∑

d∈D

Jbinary(d) +
Q

|D|
∑

θ∈Θ

θ2 (7)

Jbinary(d) = −td log p(td = 1) − (1 − td) log[1 − p(td = 1)] (8)

The regularization part is parameterized by Q that pushes the weights from
Θ=[{Wtag}, WL, Wd, Ubinary] to zero. For any parameter θ to optimize, the
derivative of Jbinary(d) with respect to θ is given by:

∂Jbinary(d)
∂θ

= [p(td = 1) − td]
∂p(td = 1)

∂θ
(9)

where ∂p(td=1)
∂θ can be further obtained from the standard back-propagation.
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5.2 Multi-Class Classification

For multi-class classification task, each document d is associated with a class tag
td, which takes value from [1,2,3,...T], where T denotes the number of potential
classes. We associate each document d with a T dimensional binary vector Rd,
which is the ground truth vector with a 1 at the correct label td and all other
entries 0. The prediction task is done through a softmax classifier.

Sd = Umulti · hd (10)

Pd(i) =
exp(Sd(i))∑
j exp(Sd(j))

(11)

Umulti is a T × K matrix. Sd is the intermediate result and Pi is the probability
of assigning class ith to the current document.

For a given set of training document D, the cost function for multi-class
classification is given by:

J =
1

|D|
∑

d∈D

Jmulti(d) +
Q

|D|
∑

θ∈Θ

θ2 Jmulti(d) = − log p(td) (12)

Similar to binary classification, Q is the regularization parameter that pushes
elements in Θ=[{Wtag}, WL, Wd, Umulti] to zero. For any parameter θ we wish
to optimize, the derivative of Jmulti(d) with respect to θ is given by:

∂Jmulti(d)
∂θ

= [Pd − Rd] ⊗ ∂S(d)

∂θ
(13)

where ⊗ denotes the Hadamard product between the two vectors.

5.3 Regression

For a given document d ∈ D associated with regression tag td (e.g, review
rating, website popularity), the deep learning framework makes prediction t̂d for
document d as follows:

t̂d = Uregression · hd (14)

where Uregression denotes the K dimensional vector. Parameters are estimated
through minimizing the following cost function:

J =
1

|D|
∑

d∈D

||t̂d − td||2 +
Q

|D|
∑

θ∈Θ

θ2 (15)

5.4 Optimization

The derivative for each parameter can be obtained from standard backpropaga-
tion [9,41]. For optimization, we turn to the diagonal variant of AdaGrad [7] with
minibatches, which is widely applied in deep learning literature (e.g.,[30,38]).
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The learning rate in AdaGrad is adapting differently for different parameters
at different steps. Concretely, let gi

τ denote the subgradient at time step t for
parameter θi obtained from backpropagation, the parameter update at time step
t is given by:

θτ = θτ−1 − α
∑τ

t=0

√
gi2

τ

gi
τ (16)

where α denotes the learning rate.

5.5 Initialization

Many tricks have been reported regarding the initialization of neural networks
[16]. We employed only two of them. The initialization of W were done according
to the fan-in of the layer by randomly drawing from uniform distribution [−ε, ε],

where ε =
√

6
K+2∗K . For elements involved in recurrent network in paragraph

and document compositionality, i.e., WL,Wd, we initialize them by randomly
drawing from uniform distribution [−0.2, 0.2], preserving the same scale as W .
All bias vectors are initialized as 0.

Previous work also discovered a huge performance boost by initializing word
embeddings using vectors pre-trained from a large unlabeled data corpus instead
of random initialization (e.g.,[48]). We therefore initialize word embeddings {e}
using word representations taken from RNNLM [24,26]. The dimension of embed-
dings is 80.

6 Experiments

In this section, we show the experimental results regarding the three aforemen-
tioned document classification problems: multi-class classification, binary classi-
fication and regression.

6.1 Multi-class Classification

We perform multi-class classification task on the 20 Newsgroup dataset2. The
data set has a balanced distribution over the 20 categories. The test set is com-
prised of 7,505 documents in total, with the smallest category containing 251
documents and the largest category containing 399 documents. The training set
has a total number of 11,269 documents, the smallest and the largest categories
of which contain 376 and 599 documents respectively. The naive baseline that
predicts the most frequent category for all the test documents has the classi-
fication accuracy 0.0532. For comparison, we employ the following models as
baselines:

– tf-idf+SVM: Each document is represented as vector of unigram based
on tf-idf. A multi-class linear SVM classifier is trained using SVMmulti-class

package3.
2 http://qwone.com/∼jason/20Newsgroups/
3 www.cs.cornell.edu/people/tj/svm light/svm multiclass.html

http://qwone.com/~jason/20Newsgroups/
www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html
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– LDA+SVM: We run variational EM algorithm for LDA using package4 on
the 18,828 documents with topic number being set to 110, as suggested in
[13,50]. Each document is therefore represented by a 110 dimensional vector.
SVMmulti-class takes as input these vectors as training data.

– sLDA: A supervised version of LDA for multi-class classification [46].

In addition to the aforementioned baselines, we also implement a simplified ver-
sion of our proposed model Simplified which uses a unified convolution matrix
when operating on parse tree structure. The prediction accuracy regarding dif-
ferent approaches is reported in Table 1. As bag-of-words models consider nei-
ther how each sentence is composed (e.g., word ordering) nor word semantics, it
obtained the worst performance. LDA based models can, to some extent, take
into consideration the latter (word semantics) by the word pre-clustering but fail
to consider the former. The deep learning approaches (Compound RNN and
Simplified) significantly outperform the other baselines. The original version
takes into account different types of compositionality, performing better than
the Simplified version, which uses one unified compositionality matrix when
operating on sentence parse trees. As Compound RNN consistently outper-
forms Simplified version, the results for Simplified version are excluded in the
later parts for brevity.

Table 1. Multi-class Classification Performance (Accuracy) for different approaches
on 20 Newsgroup dataset

tf-idf+SVM LDA+SVM sLDA Simplified Compound RNN

Acc 0.568 0.607 0.694 0.758 0.782

6.2 Binary Classification

News Group Classification: We first perform binary classification evaluation on
distinguishing postings of newsgroup alt.atheism and talk.religion.misc from
the 20 news groups, as Lacoste-Julien et [13] did. The training set contains 856
documents with a split of 480/376 over the two categories, and the test set
contains 569 documents with a split of 318/251 regarding the two categories.

Table 2. Binary Classification Performance (Accuracy) for different approaches on
alt.atheism and talk.religion.misc news group

tf-idf+SVM LDA+SVM sLDA(regression) sLDA(multi-class) Compound RNN

Acc 0.628 0.668 0.724 0.758 0.812

The baselines we explore include tf-idf+SVM, LDA+SVM, and two versions
of supervised LDA: the regression version of s-LDA [2] which uses the binary

4 http://www.cs.princeton.edu/∼blei/lda-c/

http://www.cs.princeton.edu/~blei/lda-c/
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representation (0/1) of the classes, and uses a threshold 0.5 to make predic-
tion, and multi-class sLDA as described in the previous section. For LDA based
approaches, topic numbers are set to 30 and 35 as suggested in [13,50] and we
report the better performance.

As we can see from Table 2, the deep learning approach outperforms all LDA
based approaches and the native tf-idf approach. To note here, our deep learn-
ing approach does not yield significant performance boosting when compared
with other sophisticatedly developed LDA-based baselines, such as MedLDA [49]
(reported accuracy around 0.81) and DiscLDA [13] (reported accuracy around
0.80).

Truthful vs Deceptive Review Classification: We perform binary classification
task on the hotel reviews for 20 Chicago hotels described in [28]. The dataset
contains 400 deceptive fake reviews (positive) solicited from Amazon Mechani-
cal Turk and 400 truthful reviews (negative). The algorithm makes prediction
regarding whether a given review is deceptive or truthful. We perform 5-fold
cross-validation experiments.

The baselines we implemented include SVM frameworks based on
features suggested in [28]: LIWC+SVM, Unigram+SVM, Bigram+SVM,
LIWC+Bigram+SVM and LDA+SVM. LIWC, short for the Linguistic Inquiry
and Word, is an automatic analysis tool which counts and groups the number
of instances of nearly 4,500 keywords into 80 psychologically meaningful dimen-
sions. For LDA+SVM, we run gibbs sampling of LDA on the 800 documents
with topic number ranging from 2 to 20 at interval of 2 and report the best
performance. We report performance regarding each models in Table 3. Among

Table 3. Binary Classification Performance for different approaches on Myle et al [28]’s
fake review dataset

Approach Accuracy Precision Recall

LIWC+SVM 0.768 0.764 0.775
LDA+SVM 0.812 0.804 0.834

unigram+SVM 0.884 0.899 0.865
bigram+SVM 0.896 0.901 0.890
LIWC+Bigram 0.898 0.898 0.898

Compound RNN 0.924 0.937 0.915

the baselines, LIWC+Bigram setting achieve the best performance. The deep
learning approach has an absolute improvement of 2.6% in terms of accuracy
over the LIWC+Bigram setting.

6.3 Regression

Review Rating Prediction: For regression evaluation, we first evaluate Compound
RNN on the movie review data set introduced in [29], which contains movie
reviews paired with the number of stars given. We treat the rating prediction task
as a regression problem and use the same settings as in [2,49]. The evaluation
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criterion is predictive R2, which is defined as one minus the mean squared error
divided by the data variance as defined in [2].

pR2 = 1 −
∑

d(td − t̂d)2∑
d(td − t̄)2

where td and t̂d are the true and estimated ratings of document d. t̄ denotes
mean of review ratings on the whole data set.

We run experiment with default settings as described in [2]. We employ the
following approaches as baselines:

– sLDA: the supervised version of LDA introduced in [2].
– LDA+SVR: we train the Support Vector Regression (SVR) [37] on LDA

topic representations using the LIBSVM toolkit [5].
– L1 regularized least-squares regression (Lasso) as suggested in [2],

which uses each document’s empirical distribution over words as its lasso
covariates.

Topic number is set to 30 for LDA-based approaches. And The pR2 scores for
LDA+SVR, sLDA, Lasso, and Compound RNN are 0.348, 0.502, 0.457 and
0.552 separately. As we can see, the Compound RNN again outperforms the
standard baselines. To note, the performance of the Compound RNN is compa-
rable to other derivations of LDA such as MedLDA [49] (reported pR2 around
0.55).

7 Conclusion

In this paper, we propose a deep learning based framework for supervised doc-
ument classification and regression. The classification task relies on document
distributed representation obtained on the basis of recursive and recurrent neu-
ral networks. Our framework is task-specific as it does not aim to learn the
general representations for sentences, paragraphs or documents but are based
on the task-specific parameters in intra- and inter- sentence convolution which
are optimized and guided by the optimization function, which can be viewed as a
feature selection process specific for different tasks. Experiments on several text
classification tasks such as binary classification, multi-class classification and
regression demonstrate that the proposed algorithm is competitive and signifi-
cantly outperforms prevailed existing baselines such as LDA and bag-of-words.
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rent neural network based language model. In: Proceedings of Interspeech,
pp. 1045–1048 (2010)

26. Mikolov, T., Yih, W.T., Zweig, G.: Linguistic regularities in continuous space word
representations. In: Proceedings of NAACL-HLT, pp. 746–751 (2013)

27. Mnih, A., Hinton, G.: Three new graphical models for statistical language mod-
elling. In: Proceedings of the 24th International Conference on Machine Learning,
pp. 641–648. ACM (2007)

28. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by
any stretch of the imagination. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, vol. 1,
pp. 309–319. Association for Computational Linguistics (2011)

29. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment catego-
rization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pp. 115–124. Association for Com-
putational Linguistics (2005)

30. Pei, W., Ge, T., Baobao, C.: Max-margin tensor neural network for chinese word
segmentation. In: Proceedings of the 52nd Annual Meeting on Association for
Computational Linguistics (2014)

31. Petterson, J., Buntine, W., Narayanamurthy, S.M., Caetano, T.S., Smola, A.J.:
Word features for latent dirichlet allocation. In: Advances in Neural Information
Processing Systems, pp. 1921–1929 (2010)

32. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled lda: a supervised topic
model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009
EMNLP, vol. 1, pp. 248–256. Association for Computational Linguistics (2009)

33. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cognitive Modeling 5 (1988)

34. Salton, G., McGill, M.J.: Introduction to modern information retrieval (1983)
35. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans-

actions on Signal Processing 45(11), 2673–2681 (1997)
36. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-

ing Surveys (CSUR) 34(1), 1–47 (2002)
37. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and

Computing 14(3), 199–222 (2004)
38. Socher, R., Huang, E.H., Pennin, J., Manning, C.D., Ng, A.Y.: Dynamic pooling

and unfolding recursive autoencoders for paraphrase detection. In: Advances in
Neural Information Processing Systems, pp. 801–809 (2011)

39. Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality
through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 1201–1211. Association for Computational Lin-
guistics (2012)

40. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural
language with recursive neural networks. In: Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, pp. 129–136 (2011)

41. Socher, R., Manning, C.D., Ng, A.Y.: Learning continuous phrase representations
and syntactic parsing with recursive neural networks. In: Proceedings of the NIPS-
2010 Deep Learning and Unsupervised Feature Learning Workshop, pp. 1–9 (2010)



Distributed Document Representation for Document Classification 225

42. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts,
C.: Recursive deep models for semantic compositionality over a sentiment treebank.
In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing, EMNLP, vol. 1631, p. 1642. Citeseer (2013)

43. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural net-
works. In: Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, pp. 1017–1024 (2011)

44. Turney, P.D., Pantel, P., et al.: From frequency to meaning: Vector space models
of semantics. Journal of Artificial Intelligence Research 37(1), 141–188 (2010)

45. Wan, L., Zhu, L., Fergus, R.: A hybrid neural network-latent topic model. In:
Proceedings of International Conference on Artificial Intelligence and Statistics,
pp. 1287–1294 (2012)

46. Wang, C., Blei, D., Li, F.F.: Simultaneous image classification and annotation. In:
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp.
1903–1910. IEEE (2009)

47. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic
classification. In: Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers, vol. 2, pp. 90–94. Association for Com-
putational Linguistics (2012)

48. Zheng, X., Chen, H., Xu, T.: Deep learning for chinese word segmentation and pos
tagging. In: Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 647–657 (2013)

49. Zhu, J., Ahmed, A., Xing, E.P.: Medlda: maximum margin supervised topic models
for regression and classification. In: Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 1257–1264. ACM (2009)

50. Zhu, J., Xing, E.P.: Conditional topic random fields. In: Proceedings of the 27th
International Conference on Machine Learning, ICML 2010, pp. 1239–1246 (2010)

51. Zou, W.Y., Socher, R., Cer, D.M., Manning, C.D.: Bilingual word embeddings
for phrase-based machine translation. In: Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pp. 1393–1398 (2013)



Prediciton of Emergency Events: A Multi-Task
Multi-Label Learning Approach

Budhaditya Saha(B), Sunil K. Gupta, and Svetha Venkatesh

Centre for Pattern Recognition and Data Analytics School of Information
Technology, Deakin University, Geelong, Australia

budhaditya.saha@deakin.edu.au

Abstract. Prediction of patient outcomes is critical to plan resources in
an hospital emergency department. We present a method to exploit lon-
gitudinal data from Electronic Medical Records (EMR), whilst exploiting
multiple patient outcomes. We divide the EMR data into segments where
each segment is a task, and all tasks are associated with multiple patient
outcomes over a 3, 6 and 12 month period. We propose a model that
learns a prediction function for each task-label pair, interacting through
two subspaces: the first subspace is used to impose sharing across all
tasks for a given label. The second subspace captures the task-specific
variations and is shared across all the labels for a given task. The pro-
posed model is formulated as an iterative optimization problems and
solved using a scalable and efficient Block co-ordinate descent (BCD)
method. We apply the proposed model on two hospital cohorts - Cancer
and Acute Myocardial Infarction (AMI) patients collected over a two
year period from a large hospital emergency department. We show that
the predictive performance of our proposed models is significantly better
than those of several state-of-the-art multi-task and multi-label learning
methods.

1 Introduction

Resource allocation at hospital emergency departments is critical. To facilitate
such allocation, accurate prediction of several patient outcomes is crucial - emer-
gency presentation, readmission or length of stay are some examples. Routinely
collected Electronic Medical Data (EMR) offers opportunity to make such prog-
nosis. This data is longitudinal, containing information about evolving risk, cap-
turing disease progression and health conditions amongst other factors. Multiple
patient outcomes are related to underlying patient health and, therefore, their
joint modeling can potentially help in building better prediction models.

Previous research efforts to build prediction models for longitudinal data have
attempted to model the data as a time series [1] and use mixture distributions
as data generative models. A set of latent states are learnt using mixture com-
ponents and the change is modeled using the transitions over these states. Other
works use random effect models for longitudinal measurements assuming that
the risk over time remains nearly constant [2]. These approaches are insufficient
to handle evolving risk.
c© Springer International Publishing Switzerland 2015
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One way to tackle this problem is to divide the longitudinal data into seg-
ments, each of which can be considered as a task. We build one prediction model
for each task in a joint framework of multi-task learning (MTL) [3,4]. The use of
MTL ensures that the data from different tasks are appropriately combined to
exploit their common relatedness whilst the distribution of risk for each segment
can still differ. To assist joint modeling, MTL techniques employ various con-
straints on the task parameters e.g. sampling the task-parameters from a shared
prior [5,6], modeling the task-parameters through a common low-dimensional
subspace [4,7], or combining the tasks in proportion to their relatedness learnt
using a task-to-task covariance matrix [8]. Focusing on our problem, we employ
a MTL framework to jointly model different segments of the longitudinal data,
and additionally exploit the relationship amongst multiple outcomes. Existing
MTL models focus on multiple outcomes of a single task. Therefore, the problem
of developing a multi-task, multi-label prediction model remains open.

Addressing this problem, we propose a framework for multiple outcomes
or labels prediction in a MTL paradigm. For each task-label pair, we learn a
prediction function. The prediction functions of the task-label pairs interact
through two subspaces. The first subspace is used to impose sharing across all
tasks for a given label. The second subspace, specific to a task, is used to allow
task-specific variations and is shared across all the labels for the task. We term
this model multi-task multi-label (MTML) learning. The proposed MTML is
formulated as an iterative optimization problem and solved using a scalable and
efficient block co-ordinate descent method. We empirically demonstrate both
the scalability and convergence. We apply the proposed MTML models on two
real-world cohorts - a Cancer Electronic Medical Records (EMR) with 3000
patients collected over two years involving 11 different cancer types, and an
Acute Myocardial Infarction (AMI) cohort with 2652 patients collected over the
same two year period. We predict multiple emergency related outcomes - future
emergency attendances, admissions and length-of-stay- over a 3 month, 6 month
and twelve month period. We show that the predictive performance of MTML
models is better than those of several state-of-the-art baselines [9,4,10,11]. Our
main contributions are:

– A novel multi-task-multi-label learning (MTML) model that extends the
traditional MTL/MLL framework by jointly modeling multiple tasks with
multiple labels simultaneously. The MTML model has two components (1) a
subspace that spans across all the tasks for a given label and (2) a subspace
that is “task-specific” spanning across all the labels of a task (section 3.1).

– Solution of the optimization problem using a scalable and efficient Block
coordinate descent (BCD) method (section 3.2).

– Empirical validation of the model through experiments using two real world
hospital datasets, Cancer and AMI cohorts containing 3000 and 2652 patients
respectively. We show better performance of our proposed model in compar-
ison with recent state-of-the-art MTL and MLL methods (section 4).

The significance of our approach is in providing solutions to classification prob-
lems in data that contain multiple tasks wherein examples of each task have
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multiple labels. Our solution helps in building accurate prediction system for
better upfront planning of resources at hospital emergency departments.

2 Related Methods

We briefly review prediction models for longitudinal data analysis, multi-task
and multi-label learning methods as following:

Prediction Models for Longitudinal Data: Longitudinal data has two cru-
cial challenges: (1) uneven distributions of data points in temporal intervals and
(2) evolving risk factors. Instead of modeling the temporal data using a time
series method, MTL methods are used at multiple time-points of the data. For
example, Zhang et.al. [12] proposed a MTL model to capture the disease pro-
gression pattern at multiple time points for Alzheimer’s patients. Wang et.al.[13]
used longitudinal phenotype markers for Alzheimer’s disease (AD) progression
prediction. A similar type of multi-task modeling of longitudinal data can be
found at [1]. These models are not sutiable for evolving risk factors and multiple
outcomes.

Multi-task Learning (MTL) Methods: Assume we have T supervised learn-
ing tasks and each task is associated with a predictive model ft, where ft is
usually expressed as ft(x) = uT

t x. Here, ut is a task-parameter. The MTL
framework aims to improve predictive performance of a task by learning mul-
tiple related tasks simultaneously. The predictive functions {ft}t=T

t=1 are learned
jointly by minimizing the following regularized empirical risk

{u�
t }T

t=1 = min
ut

T∑

t=1

1
Nt

Nt∑

i=1

[

Li(ut,xi
t, y

i
t) + λR(ut)

]

(1)

where Li is a loss function and R is a regularization function on ut with a regular-
ization parameter λ. Given the tasks are related, MTL techniques employ various
constraints on the task parameters {ut}t=T

t=1 , e.g. sampling the task-parameters
from a shared prior [6], modeling the task-parameters through a common low-
dimensional subspace [4,6,7,14], or combining the tasks in proportion to their
relatedness learnt using task-to-task covariance matrix [8].

Multi-label Learning (MLL) Methods: MLL models deal with examples
with multiple labels. They express a task with multiple labels into multiple
independent binary classification problem. Representative methods are as fol-
lows: Schapire et.al. [15] proposed a boosting technique for MLL problem, Chen
et.al. [16] presented a semi-supervised MLL model, Zhang et.al. [17] extended
k-nearest neighborhood method (kNN) to solve MLL problems. The major draw-
back of these methods is that they do not exploit the correlations amongst the
labels. Representative methods which consider correlations amongst labels are as
follows: Ghmrawi et.al. [18] exploits feature specific pairwise label correlations,
Sun et.al. [19] presented a hypergraph spectral learning model and Hariharan
et.al. [20] used a user specified prior matrix that encodes the correlation among
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the labels. A similar formulation as mentioned in equation (1) can be used for
MLL problems. The parameter vector of label �, i.e. u� can be expressed as
u� = w� + θT p, where w� encodes the information of the feature space and θ is
a low-diemensional subspace capturing the correlations amongst the labels. This
model originally proposed by Ando et.al. with an iterative solution [10] was later
extended by Ji et.al. [11] with a least-square loss function that admitted a closed
form solution.

3 Proposed Framework

Assume we are given T supervised learning tasks wherein each task has Nt

examples with M labels. Training data of the task t is expressed as (Xt,Yt) =[
(x1

t ,y
1
t ) . . . (xNt

t ,yNt
t )

]
, where the ith training example is denoted by xi

t ∈ RD

with labels yi
t ∈ {1,−1}M

. The �th element of label vector yi
t i.e. yi

t,� is 1
if the �th label has been assigned to the example i and -1 otherwise. Overall,
Yt ∈ RM×Nt has labels of task t. Our focus is on a learning linear predictor
ft,�(x) = uT

t,�x where ut,� is a prediction function of task t with label �. We learn
the prediction function ut,� by minimizing following regularized empirical risk
function

min
ut,l

T∑

t=1

M∑

�=1

1
Nt

Nt∑

i=1

[

Li(ut,�,xi
t, y

i
t,�) + λR(ut,�)

]

(2)

where Li(ut,l,xt,�, y
i
t,�) is a loss function and R(ut,�) is a regularization function

of ut,� with a penalizing parameter λ.

3.1 Multi-Task Multi-Label (MTML) Formulation

We propose a formulation for the multi-task multi-label problem inspired by
the multi-label framework in [11]. We decompose the prediction function ut,�

in equation (2) into three components: The first component is derived from the
original feature space, the second component learns a subspace shared across
tasks and the third component is a shared subspace spanning across labels. We
express the prediction function ut,� as

ut,� = wt,� + αT
� pt,� + θT

t vt,� (3)

where wt,l ∈ RD encodes the information of the original feature space, α� ∈
RDL×D with weight vector pt,� ∈ RDL parametrizes the subspace across all
tasks of a given label �. θt ∈ RDT ×D with weight vector vt,� ∈ RDT parametrizes
the subspace across all labels of a given task t. The dimension of the shared sub-
spaces i.e DL and DT are estimated by solving a generalized eigenvalue problem
(detailed in Appendix 5). The prediction function ut,� and other task and label
related parameters can be obtained from following formulation:
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min

T∑

t=1

M∑

�=1

[ 1

Nt

Nt∑

i=1

Li(ut,�,x
i
t, y

i
t,�) +λ1‖wt,�‖2

+λ2‖wt,� + α
T
� pt,�‖2

+λ3‖wt,� + θ
T
t vt,�‖2

]

s.t.α�α
T
� = I, θtθ

T
t = I, t, � = 1, . . . , T, M (4)

where the first regularization component on wt,� with regularization coefficient
λ1 controls the amount of information of task-label pairs (t,�), the second reg-
ularization component

∑M
�=1

∑T
t=1 ‖wt,� + αT

� pt,�‖2 =
∑M

�=1 ||W� − αT
� P�||2,

where W� =
[
w1,�, . . . ,wT,�

]
and P� =

[
p1,�, . . . ,pT,�

]
controls the amount

of information in the shared subspace of tasks of a given label �. Similarly, the
third regularization component controls the amount of information in the shared
subspace of labels of a given task t. The α� and θt are assumed to be orthogonal
to reduce label and task specific redundant information.

3.2 BCD Solution of MTML Formulation

By combining equations (3) and (4), we have

min
ut,�,α,pt,�,θt,vt,�

T∑

t=1

M∑

�=1

1
Nt

Nt∑

i=1

[

Li(ut,�,xi
t, y

i
t,�, ct,�) + R(ut,�,α�,pt,�,θt,vt,�)

]

(5)

where the regularization function R is defined as R(ut,�,α�,pt,�,θt,vt,�) =
λ1‖ut,� − αT

� pt,� − θtvt,�‖2 + λ2‖ut,� − αT
� pt,�‖2 + λ3‖ut,� − θT

t vt,�‖2. Con-
sidering Li to be a hinge loss function, by change of variables, equation (5) can
be decomposed into two separate equations as follows

min
at,�,vt,�,θt

T∑

t=1

[
M∑

�=1

1
Nt

Nt∑

i=1

ε̃t,i + λ1‖at,� − θT
t vt,�‖2 + λ2‖at,l‖2

]

s. t. ε̃t,i ≥ 0, ε̃t,i ≥ r̃i − yi
t,�(a

T
t,�x

i
t + ct,�), θtθ

T
t = I,∀t (6)

where at,� = ut,� − αT
� pt,�, r̃i = 1 − yi

t,�p
T
t,�α�xi

t. The other equation is

min
b,p,α

M∑

�=1

[ T∑

t=1

1
Nt

Nt∑

i=1

ε̄t,i + λ1‖bt,� − αT
� pt,�‖2 + λ2‖bt,�‖2

]

subject to ε̄t,i ≥ 0, ε̄t,i ≥ r̄i − yi
t,�(b

T
t,�x

i
t + ct,�),α�α

T
� = I. (7)

where, bt,� = ut,� − θT
t vt,�, and r̄i = 1 − yi

t,�v
T
t,�θtxi

t. As seen from equation (6),
the formulation is decoupled over T tasks. where we can run T sub-problems in
parallel. Each sub-problem is convex with respect to parameters (at,�,θt,vt,�)
respectively. We consider an iterative Block coordinate descent method (BCD)
[21] to find an optimal solution for each sub-problem. A concise summary of
MTML framework is provided in Algorithm 1 with an analysis of the optimiza-
tion steps is in Appendix 5.
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Algorithm 1. Multi-Task Multi-Label Method
Input:Xt, Yt, λ1, λ2 and λ3.
Output: ut,�, ∀t, �
do

– Compute (θt,vt,�, and at,�) for fixed (α�, pt,�) from equation (6) ∀t ∈ {1 . . . T}.
– Compute α� and pt,�, for fixed (θt, vt,�) from equation (7) ∀� ∈ {1, . . . , M}.

untill convergence

– Compute ut,� = at,� + α�pt,�, ∀t, �.

4 Experiments

We perform several experiments to evaluate the predictive performance of the
proposed MTML models and compare them with state-of-the-art baseline meth-
ods. For evaluation, we use two real-world hospital cohorts: Cancer and AMI
patients, and predict events at hospital emergency.

4.1 Healthcare Datasets

Cancer Electronic Medical Records: This dataset consists of electronic med-
ical records (EMR) of the patients visiting the hospital from 2010-2012 1. There
are 11 different types of cancers in the dataset, for example, Breast, Skin, Central
Nervous System (CNS), Colorectal, Lung etc. The feature set has information
about medical conditions relating to the previous visits of each patient including
past diagnosis and procedure codes (ICD-10) 2, diagnosis related group codes
(DRG), conditions relating to emergency admissions and cancer specific details.
3000 patients are reported in the dataset and the feature length is 531. The
whole dataset is divided into non-overlapping segments where each segment is
considered a task. It contains patient records from the past 3 months, past 3-6
months, past 6-12 months and past 12-24 months respectively. Our focus is on
prediction of emergency events for patient where each patient is associated with 6
emergency labels: emergency attendances (E-ATND) and emergency admissions
(E-ADM) in the future 3, 6, and 12 months. The dataset is detailed in [22].

Acute Myocardial Infarction (AMI) EMR: AMI is the medical term for
heart attack. The AMI electronic medical records (EMR) is recorded over a
period of two years. The data contains diverse information such as patient demo-
graphics, state of the emergency admissions, personal history of other diseases
(e.g. nervous and musculoskeletal systems). 2652 patients are reported in the
dataset and the feature length is 431. The pre-processing of the dataset and the
outcome variables are similar to the Cancer EMR.
1 Ethics approval obtained through University and the Hospital - 12/83.
2 http://apps.who.int/classifications/icd10/browse/2010/en

http://apps.who.int/classifications/icd10/browse/2010/en
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4.2 Baselines

We compare the proposed MTML models against following baseline multi-task
learning and multi-label learning methods:

Multi-Task Learning (MTL) baselines:

RMFL [9]: Robust multi-task feature learning method learns a task-parameter
that has two components. The first component has the common feature set
across related tasks, whereas the other component detects outlier tasks. The
convex formulation is optimized by the accelerated gradient optimization method
(AGM) [23].

MTFL [4]: MTFL model learns a common set of features across tasks by
constraining the task-parameters with a mixed �2/�1norm. The formulation is
non-convex and translated to a convex optimization problem with an iterative
solution.

DM [24]: The formulation of the Dirty model (DM) and RMFL is similar,
however DM used a group-sparse �1/�∞ norm to learn the common features and
a �1 norm for detecting outlier tasks. The proposed formulation is convex and is
solved using AGM [23] method.

Multi-Label Learning (MLL) baselines:

ASOM [10]: The proposed multi-label learning (MLL) framework computes a
common subspace that captures the correlations amongst labels. The formulation
is non-convex and the optimization technique is iterative.

ML-LS [11]: The proposed framework is similar to the ASO method. How-
ever the formulation has a least-square loss function and provides a closed form
solution.

M3L [20]: The proposed framework has a max-margin formulation for multi-
label classification problem where the formulation has a user specified prior
matrix that represents the correlation amongst the labels.

4.3 Experimental Analysis

Performance Evaluation Measures. For multi-task learning (MTL) meth-
ods, the performance of the learning system is evaluated by a measure that com-
puted on each test example separately and computes the average value across
the test dataset. Examples are accuracy (AC) [7] and area under ROC curve
(AUC). The evaluation measures specific to multi-label learning (MLL) models
are micro-F1 and macro-F1[25], the metrics are defined as

micro − F1 =
2 × Microprecision × Microrecall

Microprecision + Microrecall

macro − F1 =
2 × Macroprecision × Macrorecall

M
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Table 1

(a) Comparison of MTML methods with baselines for Cancer EMR data. Baseline
methods: DM[24], RMTL[9], MTFL [4], ML-LS[11], ASOM [10], M3L [20]. Numbers
in parentheses are standard deviation. The best performances are highlighted.

Evaluation
Metric

MTL Baselines MLL Baselines Proposed

DM RMFL MTFL ML-
LS

ASOM M3L MTML

Accuracy 0.522
(0.021)

0.556
(0.028)

0.512
(0.022)

0.679
(0.023)

0.654
(0.023)

0.623
(0.025)

0.742
(0.023)

AUC 0.609
(0.025)

0.690
(0.015)

0.629
(0.011)

0.766
(0.017)

0.740
(0.018)

0.700
(0.025)

0.808
(0.015)

micro-F1 0.659
(0.020)

0.695
(0.019)

0.656
(0.020)

0.781
(0.009)

0.762
(0.012)

0.712
(0.026)

0.815
(0.012)

macro-F1 0.643
(0.013)

0.685
(0.012)

0.607
(0.012)

0.691
(0.011)

0.664
(0.010)

0.612
(0.008)

0.756
(0.009)

(b) Comparison of MTML methods with baselines for AMI EMR data. Baseline
methods: DM[24], RMTL[9], MTFL [4], ML-LS[11], ASOM [10], M3L [20]. Numbers
in parentheses are standard deviation. The best performances are highlighted.

Evaluation Metric
MTL Baselines MLL Baselines Proposed

DM RMFL MTFL ML-
LS

ASOM M3L MTML

Accuracy 0.605
(0.010)

0.600
(0.010)

0.650
(0.014)

0.788
(0.012)

0.724
(0.018)

0.712
(0.012)

0.837
(0.012)

AUC 0.713
(0.020)

0.732
(0.016)

0.712
(0.017)

0.864
(0.018)

0.766
(0.011)

0.788
(0.011)

0.908
(0.011)

micro-F1 0.710
(0.015)

0.732
(0.014)

0.714
(0.007)

0.856
(0.010)

0.759
(0.017)

0.786
(0.012)

0.914
(0.017)

macro-F1 0.654
(0.023)

0.665
(0.010)

0.650
(0.020)

0.815
(0.017)

0.734
(0.020)

0.776
(0.011)

0.869
(0.020)

where Microprecision and Microrecall denotes the precision and recall aver-
aged over all example/label pair. Macroprecison and Macrorecall are defined
as Macroprecision = 1

M

∑M
�=1

Tp�

Tp�+Fp�
and Macrorecall = 1

M

∑M
�=1

Tp�

Tp�+Fn�
,

where Tp�, Fp� and Fn� are numbre of true positives, false positives and false
negatives for label the �.

We use these four measures to evaluate the predictive performance of the
proposed MTML models and the baselines. Higher the value of AC, AUC, micro-
F1 and macro-F1, the better is the classifier. As our dataset has T tasks and each
task has M labels, we apply the MTL baseline models for each label separately
and then average the performance across labels. Similarly, we use MLL baseline
models for each task and compute the average performance over all tasks.
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Fig. 1. Effects of the regularization parameters on the MTML model in terms of AUC
and micro-F1. To show the variation w.r.t. λ1, we set λ2, λ3 to 0.0001 and vary λ1 from
10−7 to 1. The resulting graphs for AUC and micro-F1 are shown in the first column.
We show similar graphs for λ2 and λ3 in the second and third columns respectively.

Experimental Setting and Results. We randomly select 500 examples from
the cancer EMR dataset for training and use the rest of the examples for testing.
We repeat this experiment over 10 randomly chosen training/test sets and the
mean of the performances are reported in Table 1. The parameters of the MTML
models are chosen by 5-fold cross-validation.The proposed MTML framework
outperform all the baselines. Specifically, for the cancer EMR, the difference
in performances of MTML and the closest contending MTL baseline model is
19% on accuracy, 10% on AUC, 10% on micro-F1 and 7% on macro-F1 respec-
tively. Similarly, the difference in performance with the closest contending MLL
model is 6% on accuracy, 4.2% on AUC, 2.4% on micro-F1 and 6% on macro-F1

respectively. Similar improvements exist for the AMI cohort.

4.4 Sensitivity Analysis

Effect of the Regularization Parameters: We randomly sample 20% exam-
ples from the Cancer EMR and the rest of the data is used as the test data. Fixing
λ2, λ3 = 10−4 and varying λ1 from as small as 10−7 to 1 in steps 10−1, we mon-
itor the effect of λ1 on the classification performance of the MTML model. We
adopt a similar strategy to study λ2 and λ3. In Figure 1, we present classification
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Fig. 2. (a) The effect of training set size: AUC vs length of the training set (b) Com-
putational cost: Time (in second) vs. length of the training set (c) Convergence plot:
objective function value in equation (4) vs. number of iterations.

performance of the MTML model with respect to the parameters λ1, λ2 and λ3.
The best AUC is obtained for λ1 = 10−4, λ2 = 10−2 and λ3 = 10−4and the best
micro-F1 is obtained for λ1 = 10−4 , λ2 = 10−2 and λ3 = 10−3 respectively.
Similar plots are also provided for the AMI data.

Effect of Training Set Size: We vary the length of the training set by randomly
sampling 500, 1000, 1500, 2000 and 2500 examples from the Cancer cohort,
whereas the rest of the data is used for testing only. Figure 2a presents the
classification performance of each training sets. The plot shows the length of the
training sets vs. AUC. The performance of MTML improves with increasing size
of the training set. This observation is according to our expectation that more
training data leads to improved performance.

4.5 Computational and Convergence Analysis

We randomly select training sets with 500, 1000, 1500, 2000 and 2500 exam-
ples respectively and the rest of the data is used for testing. From each training
dataset, we compute the mean computational time and the number of iterations
for convergence required by the MTML model. Figure 2b presents the compu-
tational time taken by each training set averged over 10 repreated trials.We
notice that the computation time is nearly linear in proportion to the length of
the training set. Figure 2c present the convergence plot of the proposed MTML
framework. The plot is between the cost value of equation (4) and number of
iterations taken by the MTML model when length of the training set is fixed to
1000. The MTML framework (Algorithm 1) is considered to converge when the
change in cost function (equation (4)) between two consecutive iterations is less
than 10−4. As we see, BCD method for MTML requires only 10 iterations for
converging to an optimal point.



236 B. Saha et al.

5 Conclusion

We have presented a framework to predict the events at a hospital emergency
using electronic medical records (EMR) data. As the data is longitudinal and the
risk of attending emergency varies over time, the whole data is partitioned into
segments where each segment is considered as a task. As hospital emergency pre-
diction involves predicting multiple outcomes, the problem is posed as learning
from multiple tasks where each example (patient) in a task is having multiple
labels. We propose a novel multi-task-multi-label learning (MTML) model jointly
modeling multiple tasks with multiple labels simultaneously. MTML model has
two components (1) a subspace that spans across all the tasks (2) another sub-
space that spans across all the labels of a specific task. The objective function
of the proposed model is convex and guarantees an optimal solution. The opti-
mal point is computed using an efficient and scalable Block Coordinate Descent
method. The proposed formulation has been applied on two hospital emergency
cohorts and performs better than many existing baselines. Although we apply
our framework for classification tasks, it can easily be adapted for regression.

Appendix: BCD for optimizing equation (6): We can write equation (6)
as

min
a�,v�,θ

1
N

M∑

�=1

[
Nt∑

i=1

εi + λ1‖a� − θT v�‖2 + λ2‖a�‖2
]

,

s.t. εi ≥ 0, εi ≥ ri − yi
�(a

T
� xi + c�),θθT = I (8)

where we dropped subscript t for notational brevity. The three optimization
steps are as following: (1) Minimization of v�: fixing a� and θ, v� is obtained
by minimizing the formulation as min{v�}

∑M
�=1 ‖a� − θT v�‖2, for which, the

optimal solution is given by v�
� = θa�, ∀� = [1, . . . , M ]. (2) Minimization of

a�: By fixing (θ,v�) and the problem in equation (8) becomes

min
a�

Nt∑

i=1

εi + λ1‖a� − θT v�‖2 + λ2‖a�‖2, s.t. εi ≥ 0, εi ≥ ri − yi
�(a

T
� xi + c�),∀i

(9)

We solve the dual formulation of equation (9) by scalable SVM solving package
LIBSVM [26]. As we can write, λ1‖a� − θT v�‖2 + λ2‖a�‖2 = aT

� [(λ1 + λ2)I −
λ1θ

T θ]a�, the dual problem of this formulation becomes

min
μ

μT e − 1
2
μT Diag(y�)ZDiag(y�)μ, s.t. 0 ≤ μ ≤ ri, μT y� = 0 (10)

where μ ∈RN is a dual variable and Z =
[
(λ1 + λ2)I − λ1θ

T θ
]
. From the dual

variable μ, we can compute the primal variable a�. For ri = 1, the dual formu-
lation converges to a similar formulation of multi-task learning (MTL) method
as mentioned in [27]. (3) Minimization of θ: Fixing A = [a1, . . . ,aM ] and v�,
the optimization formulation for θ is as follows:
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θ = min
θ

M∑

�=1

λ1‖a� − θT θa�‖22 = max
θ

tr
(
θ

[
AAT

]
θT

)
s.t. θθT = I (11)

where the solution of this problem is given by the eigenvalue decomposition of
matrix C1 where C1 = AAT and the largest eigenvectors corresponding to the
largest DT nonzero eigenvalues are optimal solution for θ.

BCD for optimizing equation (7): We follow a similar procedure in steps
(1) and (2) to compute pt,� and bt,� respectively. The transformation matrix α�

is computed from the eigenvalue decomposition of matrix C2 = B�BT
� where

B� =
[
b1,�, . . . ,bT,�

]
. The optimal solution α�

� is given by the largest eigenvectors
of C2 corresponding to the largest DC nonzero eigenvalues.
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Abstract. The k -nearest-neighbor (kNN) algorithm is a simple but
effective classification method which predicts the class label of a query
sample based on information contained in its neighborhood. Previous
versions of kNN usually consider the k nearest neighbors separately by
the quantity or distance information. However, the quantity and the iso-
lated distance information may be insufficient for effective classification
decision. This paper investigates the kNN method from a perspective
of local distribution based on which we propose an improved implemen-
tation of kNN. The proposed method performs the classification task
by assigning the query sample to the class with the maximum posterior
probability which is estimated from the local distribution based on the
Bayesian rule. Experiments have been conducted using 15 benchmark
datasets and the reported experimental results demonstrate excellent
performance and robustness for the proposed method when compared to
other state-of-the-art classifiers.

Keywords: Classification · Nearest neighbors · Local distribution · Pos-
terior probability

1 Introduction

In classification problems, to classify an unknown sample, the k -nearest-neighbor
(kNN) method searches the training set for the k closest samples, known as its
k nearest neighbors, and then classifies the unknown sample based on its k
nearest neighbors. One popular kNN method is the well known voting kNN (V-
kNN) rule proposed by Cover & Hart [3]; in this method the unknown sample
is assigned to the class represented by the majority of its k nearest neighbors in
the training set.

Though the traditional V-kNN rule is popular and useful, a refinement to the
kNN algorithm is to employ a weighted algorithm in which a weight is applied
to each of the k neighbors based on their distance to the query point; a greater
weight is given to a closer neighbor; the query sample x is assigned to the class
in which the weights of the representatives of the k nearest neighbors sum to
the greatest value. Dudani [5] has proposed a distance weighted kNN (DW-
kNN) rule by assigning the ith nearest neighbor xi a distanced-based weight
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 239–250, 2015.
DOI: 10.1007/978-3-319-18038-0 19
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wi as Equation (1), where dk and d1 respectively represent the maximum and
minimum distances of the k nearest neighbors to the test sample x.

wi =

{
dk−di

dk−d1
, dk �= d1

1, dk = d1

(1)

Research has identified a number of advantages for kNN algorithm. (1) It is a
non-parametric method and does not require a priori knowledge relating to prob-
ability distributions for the classification problem; (2) it has been demonstrated
that the error rate for kNN approaches is the Bayes error (i.e., theoretically
minimum error) when both the number of training samples and the value of k
approximate to infinity [4]; (3) it can be implemented conveniently due to its
simple algorithm.

Due to these advantages, the kNN method has been successfully applied to
real-world applications and becomes one of the most popular algorithms for clas-
sification over several decades. It has been the subject of extensive development
for use in Machine Learning (ML) and Data Mining (DM) [11,14]. Notwith-
standing the inherent simplicity of the kNN rule, it has been shown to be one
of the most useful and effective algorithms in DM where it has been considered
to be one of the top 10 algorithms [20]. Moreover, the kNN algorithm provides
support for classification problems and usually achieves very good performances
in various research areas [9,17].

Notwithstanding the positive benefits discussed, the traditional V-kNN and
DW-kNN rule is not guaranteed to be the optimal method for implementation
using only quantity and distance information contained in the neighborhood;
Organizing the information contained in the neighborhood to generate effective
and efficient decision rules to improve the classification performance of the kNN
method has remained an active research topic for several decades.

Research has investigated the decision rules generated from the k nearest
neighbors resulting in a number of improvements to the kNN method. The Cat-
egorical Average Pattern (CAP) method proposed by Hotta and Kiyasu [13]
uses the categorical k nearest neighbors of query sample to compute the local
centers termed the categorical average pattern (CAP) for each class; the unseen
query sample is classified to the class with the nearest CAP. The local mean-
based nonparametric classifier proposed by Mitani and Hamamoto [18] shares
the same idea with CAP, and it has excellent classification performance as com-
pared to other state-of-the-art classifiers. Li [16] demonstrated improvements
in the CAP classification method by introducing a notion of local probabilistic
centers (LPC) to reduce the number of negative contributing samples. In LPC
method, and the query sample is assigned to the class with the nearest LPC.

These methods control an equal neighborhood size for each class, and only
take the distances to neighborhood into account. Though the distance to the
neighborhood center can partly reflect the distribution of the corresponding class
around the query sample, it would be arguably better if the distribution of the
neighborhood were taken into account. Moreover, it would reduce the negative
influences of noisy samples if the k nearest neighbors were considered integrally
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instead of individually as is the case for the voting kNN or the weighted kNN. In
this paper we consider a query sample to be closely related to the distribution of
its nearest neighbors and therefore analyze classification problems from the per-
spective of local distribution. Based on this approach, we propose a comprehen-
sive kNN method based on the local distribution termed the Local Distribution
based kNN (LD-kNN). The LD-kNN method estimates the local distribution
of each class around the query sample to achieve the probability of the query
sample belonging to each class and the query sample is assigned to the class with
the greatest posterior probability.

2 LD-kNN Classification

As a kNN-type method, LD-kNN also performs the classification based on the
neighborhood of the query sample. In LD-kNN, the local distribution is esti-
mated from the neighborhood for each class and the classification tasks are
performed by maximizing the posterior probability of each class based on the
local distribution.

2.1 LD-kNN Formulation

Let X be the event that a data sample x is equal to the specified sample X
described by measurements made on a set of attributes, i.e. X : x = X. Let C
be the hypothesis that a data sample x belongs to the specified class C, i.e. C :
x ∈ C. For classification problems, the purpose is to determine P (x ∈ C|x = X)
(abbreviated as P (C|X)), the probability that C holds given the event X. In
other words, we are looking for the probability that sample X belongs to class
C, given that we know the attribute description of X. P (C|X) is the posterior
probability of C conditioned on X, it should be maximized with respect to the
class for the class label of the sample X (denoted by ω ) as Equation (2).

ω = arg max
C

P (C|X) (2)

LD-kNN method has been conceived to maximize the posterior probability
of each class conditioned a query sample in local area. Let δ(X) denote the
neighborhood of sample X and let δ(X) be the event that a sample x is in the
neighborhood of X, i.e. δ(X) : x ∈ δ(X). Since δ(X) is the neighborhood of
sample X, we derive X ∈ δ(X), then P (X, δ(X)) = P (X). Through the theory
of conditional probability, we can get

P (C|(X, δ(X))) = P (C|X), (3)

where we call P (C|(X, δ(X))) local posterior probability (LPP) of class C con-
ditioned on X. That is to say, the probability of sample X belonging to class C
is equal to the LPP of class C conditioned on X.
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On the other hand, By Bayes’ theorem [8], P (C|X) can be computed as
Equation (4), where P (C) and P (X) are the respective prior probabilities of C
and X, and P (X|C) is the posterior probability of X conditioned on C.

P (C|X) =
P (X|C)P (C)

P (X)
(4)

Equation (4) can be extended to local conditions, where each item should
be estimated under the local condition δ(X). Then we get the Bayesian formula
under local condition as Equation (5).

P (C|(X, δ(X))) =
P (X|(C, δ(X)))P (C|δ(X))

P (X|δ(X))
(5)

The Bayesian classifier [10] maximizes P (C|X) according to formula (4) and
estimates it in the whole dataset. While our method maximizes P (C|X) accord-
ing to formula (3) and (5), we estimate it in a local area around the query
sample. Under the assumption that the near neighbors can represent the prop-
erty of a query sample better than the more distant samples, estimating the LPP
by formula (5) represents more reasonable than by formula (4).

To maximize P (C|(X, δ(X))) according to formula (5): as P (X|δ(X)) is con-
stant for all classes, only P (X|(C, δ(X)))P (C|δ(X)) needs to be maximized.
Then, the optimization problem can be transformed to

ω = arg max
C

P (X|(C, δ(X)))P (C|δ(X)). (6)

2.2 Local Distribution Estimation

Given an arbitrary query sample X and a distance metric, its k nearest neighbors
can be obtained from the training set. In this paper, we call the set of the k
nearest neighbors k -neighborhood of sample X and denote it by δk(X). To solve
the optimization problem (6), the two items P (X|(C, δ(X))) and P (C|δ(X))
which are relevant to the local distribution of class C should be estimated based
on δk(X) for each class.

P (C|δ(X)) derives the probability of a sample belonging to class C given
that the sample is in the neighborhood of X. If there are Nj samples from class
Cj in the k -neighborhood of X, then P (C|δ(X)) can be estimated by

P (Cj |δk(X)) = Nj/k. (7)

P (X|(C, δ(X))) derives the probability of a sample being equal to X given
that the sample is from class C and is in the neighborhood of X; this can be
regarded as the local probability distribution density of class C at point X for
continuous attributes.

To estimate P (X|(C, δ(X))) accurately we just consider the continuous
attributes in our method; the estimation of P (X|(C, δ(X))) becomes a prob-
lem of probability density estimation in local area. In our method, we assume
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that the samples in the neighborhood follow a Gaussian distribution with a mean
μ and covariance matrix Σ defined by Equation (8).

f(X;μ,Σ) =
1

√
(2π)d|Σ|e

−0.5(X−μ)T Σ−1(X−μ) (8)

where d is the dimension of the data. So that, for δk(X) and a specified class
Cj , we have

P (X|(Cj , δk(X))) ∝ f(X;μCj
,ΣCj

) (9)

where μCj
and ΣCj

respectively represent the mean and the covariance matrix
of class Cj in δk(X).

Then we need to estimate the mean μ and the covariance matrix Σ from
δk(X) for each class. In our approach, to ensure the covariance matrix is positive
definite, we take the naive assumption of local class conditional independence
that an attribute on each class does not correlate with the other attributes in
local area; that is, the covariance matrix (Σ) would be a diagonal matrix. If there
are Nj samples from class Cj in δk(X), denoted by X

Cj

i (i = 1, · · · , Nj), the two
parameters the mean (μCj

) and the covariance matrix (ΣCj
) can be estimated

through maximum likelihood estimation by the following Formulae (10) and (11)
[15].

ˆμCj
=

1
Nj

Nj∑

i=1

X
Cj

i (10)

Σ̂Cj
= diag(

1
Nj

Nj∑

i=1

(XCj

i − ˆμCj
)(XCj

i − ˆμCj
)T ) (11)

where diag(·) converts a square matrix to a diagonal matrix with the same
diagonal elements.

Then, we plug the mean (μ) and covariance matrix (Σ) respectively estimated
from Formulae (10) and (11) into Equation (8) to estimate f(X;μCj

,ΣCj
) and

then estimate P (X|(Cj , δk(X))) from Formula (9).

2.3 Classification Rules

As k is constant for all classes, according to Formulae (7) and (9), the classifica-
tion problem as defined in (6) can be transformed into an optimization problem
finally formulated as shown in Formula (12).

ω = arg max
j=1,··· ,NC

{Nj · f(X;μCj
,ΣCj

)} (12)

where NC is the total number of classes, f(·), μCj
and ΣCj

is denoted by For-
mulae (8), (10) and (11) respectively.

According to the aforementioned process, the LD-kNN approach classifies a
query sample by the LPP estimated from local distribution. This is calculated
according to the Bayesian Theorem in the local area. The query sample is then
labeled with the class having a maximum LPP.
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2.4 Related Methods

The traditional V-kNN classified the query sample only by the number of near-
est neighbors for each class in the k -neighborhood (i.e. Nj for the j th class).
Compared with the V-kNN rule, LD-kNN takes into account the local probabil-
ity density around the query sample (f(X;μCj

,ΣCj
)) besides the number (Nj).

For different classes, the local probability densities are not always the same and
may play a significant role for classification.

Another classification method related with LD-kNN is the Bayesian classifi-
cation method. Bayesian classifier assigns the query sample to the class with the
highest posterior probability, which is estimated through the global distribution.
While LD-kNN estimates the posterior probability through the local distribu-
tion around the query sample. Naive Bayesian Classification (NBC) method can
be considered as a special case of LD-kNN with k approaching the size of the
dataset. Thus, LD-kNN would be more effective and comprehensive for a special
query sample.

In actuality, the LD-kNN method may be viewed as a compromise between
the nearest neighbor rule and the Bayesian method. The parameter k denotes
the locality in LD-kNN; when parameter k is close to 1, LD-kNN approaches the
nearest neighbor rule. And when k is large and equal to the size of the dataset,
the local area is extended to the whole dataset; in this case LD-kNN becomes
a Bayesian classifier. Thus, LD-kNN may combine the advantages of the two
classifiers and become a more effective and comprehensive classification method.

As for CAP and LPC, they consider an equal number of nearest neighbors
for each class and the classification is based on the nearest center. As presented
in Equation (12), CAP and LPC use a constant Nj for all classes and the other
item (f(X;μCj

,ΣCj
)) is estimated only from the center of the Nj samples in

each class. Thus, CAP and LPC can be viewed as special cases of LD-kNN.

3 Experiments

3.1 The Datasets

In our experimentation we have selected 15 real datasets from the well-known UCI-
Irvine repository of machine learning datasets [1]. The selected datasets include
six two-class problems and nine multi-class problems, and vary in terms of their
domain, size, and complexity. The estimation of probability density is only for
continuous attributes and we only take into account continuous attributes in our
experiments. Table 1 summarizes the relevant information for these datasets; for
more information, please turn to http://archive.ics.uci.edu/ml.

3.2 Experimental Settings

Before classification, to prevent attributes with an initially large range from
inducing bias by out-weighing attributes with initially smaller ranges, we use
z -score normalization to linearly transform each of the numeric attributes of a

http://archive.ics.uci.edu/ml
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Table 1. Some Information about the datasets

datasets #Instances #Attributes #Classes

Abalone 4177 7 3
Australian 690 6 2
Breast 106 9 6
Bupa Liver 345 6 2
Dermatology 366 33 6
Glass 214 9 6
ILPD 583 9 2
Iris 150 4 3
Letters 20000 16 26
Pageblock 5473 10 5
Sonar 208 60 2
Spambase 4601 57 2
spectf 267 44 2
Vehicle 846 18 4
Wine 178 13 3

dataset with mean value 0 and standard deviation 1 by v′ = v−μA

σA
, where μA

and σA are the mean and standard deviation, respectively, of attribute A.
In order to achieve an impartial evaluation, we have employed six competing

classifiers to test the performance of alternative approaches and to provide a
comparative analysis to evaluate the effectiveness of our LD-kNN algorithm.
These competing classifiers include base classifiers (e.g. V-kNN, DW-kNN [5]
and NBC), and the state-of-the-art classifiers (e.g. CAP [13], LPC [16] and SVM
[2]).

For kNN-type classifiers, we use Euclidean distance to measure the distance
between two samples in search of the nearest neighbors. In addition, the param-
eter k in kNN-type classifiers indicates the number of nearest neighbors, we use
the average number of nearest neighbors per class (denoted by kpc) to indicate
the neighborhood size, i.e. kpc ∗ NC nearest neighbors are searched, where NC

is the number of classes.
To express the generalization capacity, i.e. the classification ability of a clas-

sifier classifying previously unseen samples, the training samples and the test
samples should be independent. In our research we use stratified 5-fold cross
validation to estimate the misclassification rate of a classifier on each dataset.
The data are stratified into 5 folds. For the 5 folds, 4 folds constitute the train-
ing set with the remaining fold being used as the test set. The training and test
sessions are performed 5 times with each session using a different test set and
the corresponding training set. To avoid bias, the 5-fold cross validation process
is applied to each dataset 10 times and the average misclassification rate (AMR)
is calculated to evaluate the performance of the classifier.



246 C. Mao et al.

Table 2. The AMR (%) of the seven methods with corresponding stds on the 15 UCI
datasets (the best recognition performance is described in bold-face on each data set)

datasets LD-kNN V-kNN DW-kNN CAP LPC SVM NBC

Abalone 35.26±0.23 34.92±0.20 34.95±0.28 35.52±0.26 35.54±0.43 34.52±0.08 41.55±0.09

Australian 24.49±0.83 24.57±0.47 24.55±0.59 25.00±0.80 25.12±0.65 24.22±0.34 27.87±0.46

Breast 30.19±2.63 33.77±1.45 31.89±1.62 30.38±0.57 30.00±1.18 41.13±2.00 35.38±1.21

Bupaliver 31.86±1.36 34.43±1.28 34.00±1.37 32.09±1.74 32.93±1.22 29.83±1.02 48.06±0.71

Dermatology 1.75±0.44 3.93±0.28 3.83±0.24 2.81±0.41 2.84±0.22 2.70±0.35 7.46±0.59

Glass 26.73±1.47 31.26±1.50 28.83±1.82 28.27±1.75 29.72±1.11 30.61±1.06 59.67±2.73

ILPD 29.97±1.34 28.54±0.61 28.99±0.83 30.67±1.36 30.81±1.25 29.11±0.54 44.80±0.49

Iris 3.67±0.33 3.87±0.65 3.80±0.60 3.73±0.68 3.73±0.68 4.07±0.31 4.33±0.58

Letter 5.08±0.09 8.02±0.08 5.29±0.07 3.93±0.05 4.14±0.10 5.54±0.08 35.75±0.07

Pageblock 3.27±0.10 3.30±0.06 3.19±0.06 3.16±0.13 3.17±0.11 3.99±0.09 13.12±1.39

Sonar 11.30±1.40 14.47±1.42 14.33±1.23 11.68±1.96 14.47±1.42 17.45±1.81 31.11±1.01

Spambase 7.77±0.17 8.60±0.10 7.85±0.20 7.97±0.21 8.13±0.23 6.80± 0.12 18.24±0.16

spectf 20.00±1.56 19.40±0.71 20.60±0.92 20.22±0.75 20.45±1.24 21.09±0.71 32.62±1.15

Vehicle 24.04±1.05 28.53±0.86 27.86±0.83 23.96±1.20 24.36±0.73 24.20±0.82 53.95±0.74

Wine 0.84±0.38 2.30±0.69 2.13±0.42 1.85±0.67 1.46±0.45 1.97±0.55 2.58±0.45

Average AMR 17.08 18.66 18.14 17.42 17.79 18.48 30.43

Average Rank 2.13 4.63 3.80 2.90 3.80 3.80 6.93

4 Results and Discussion

The parameter kpc is an important factor that can affect the performance of LD-
kNN. If kpc is too small, the estimation of the local distribution may be unstable;
however, if it is too large, there will be many distant neighbors that may have an
adverse effect on the local distribution estimation. To investigate the influence
of the parameter kpc on classification results for kNN-type classifiers, we tune
the parameter kpc as an integer in the range 1 to 30 for each dataset, perform
the classification tasks and achieve the corresponding AMR for each kpc value.
This procedure will guide us in the selection of parameter kpc for classification.
Fig. 1 shows the performance curves with respect to kpc of the five kNN-type
methods on several real datasets. Because different real datasets usually have
different distributions, the curves of AMR with respect to the kpc for LD-kNN
are usually different. These performance curves show that, on average the LD-
kNN method can be quite effective for these real problems, and validate that a
modest kpc for LD-kNN can usually achieve a more effective performance.

We use the lowest AMR with the corresponding kpc ranging from 1 to 30 to
evaluate the performance of a kNN-type classifier. Then, following experimental
testing we obtained a comparative performance for our posited approach when
compared with the alternative approaches. The classification results on each
dataset for all the classifiers are shown in Table 2 in terms of AMR with the
corresponding standard deviations (stds).

From the results in Table 2 we can see that LD-kNN offers the best per-
formance on 5 datasets, more than all other classifiers; this is an improvement
over the alternative classifiers. The overall average AMR and rank of LD-kNN
on these datasets are 17.08% and 2.13 respectively, lower than all other classi-
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Fig. 1. The performance curves with respect to kpc on different real datasets

fiers, which means that the proposed LD-kNN may be more effective than other
classifiers for these datasets.

To evaluate the statistical significance of the difference between LD-kNN
and each other classifiers, we have performed a Wilcoxon signed rank test [12]
between LD-kNN and each other classifiers. The p-values of the tests between
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Fig. 2. The rm distributions of different methods

LD-kNN and V-kNN, DW-kNN, CAP, LPC, SVM and NBC are 0.0103, 0.0125,
0.0181, 0.0103, 0.1876 and 0.0001 respectively, all less than 0.05 except that of
SVM. Combined with the result that the average AMR for the LD-kNN method
is the lowest among these classifiers, it can be seen that the LD-kNN method
can outperform other classifiers and be comparable with SVM in terms of AMR
at the 5% significance level.

To evaluate how well a particular method performs on average among all the
problems taken into consideration we have addressed the issue of robustness. Fol-
lowing the method designed by Friedman [7], we quantify the robustness of a clas-
sifier m by the ratio rm of its error rate em to the smallest error rate over all the
methods being compared in a particular application (i.e. rm = em/min1≤k≤7 ek).
The optimal method m* for that application will have the ratio with rm∗ = 1,
and all other methods will have a greater ratio. The greater the value for this
ratio, the worse the performance of the corresponding method is for that appli-
cation among the comparative methods. Thus, the distribution of rm for each
method, over all the datasets, provides information concerning its robustness.
We illustrate the distribution of rm for each method over the 15 datasets by box
plots in Fig. 2 where it is clear that the spread of rm for LD-kNN is narrow
and close to point 1.0, which demonstrates that the LD-kNN method performs
extremely robustly over these datasets.

From the above analysis, it can be seen that LD-kNN performs better than
other classifiers in respect of the overall AMR. In considering the kNN-type clas-
sifiers, the DW-kNN improves the performance over the traditional V-kNN by
weighting; the CAP and the LPC has improved the kNN method by local cen-
tering. The LD-kNN is a more comprehensive method and considers the nearest
neighbor set integrally by local distribution; thus it is reasonable to conclude
that among the kNN-type classifiers the LD-kNN performs best followed by
CAP, LPC, DW-kNN and V-kNN.
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The SVM, as an advanced and highly respected algorithm, can also achieve a
comparable performance with LD-kNN for certain classification problems; how-
ever the performance of the LD-kNN is more robust to application than SVM;
that is, SVM may perform effectively on certain datasets however it also performs
badly on other datasets and is not as stable as the LD-kNN on the experimental
datasets. NBC performs badly in the experimental classification tasks principally
due to the fact that the class conditional independence assumption is too severe
in practical problems.

The LD-kNN can be viewed in terms of a Bayesian classification method
as it is predicated on the Bayes theorem. Since the classification is based on
maximum posterior probability, the LD-kNN classifier can in theory achieve the
Bayes error rate. Additionally, As a kNN-type classifier, LD-kNN can inherit
the advantages of kNN method. Thus, it may be intuitively anticipated that
LD-kNN can perform much more effectively than NBC and other kNN-type
classifiers in most cases.

5 Conclusion

We have introduced the concept of local distribution to the kNN methods for
classification. The proposed LD-kNN method essentially considers the k nearest
neighbors of the query sample as several integral sets by the class labels and
then estimates the local distribution of these integral sets to achieve the LPP
for each class; then the query sample is classified based on the maximum LPP.
This approach provides a simple mechanism for quantifying the probability of
the query sample attached to each class and has been shown to present several
advantages. The experimental results demonstrate the effectiveness and robust-
ness for LD-kNN and show its potential superiority.

In the proposed method, a significant step is the estimation of local distri-
bution. In our experiments, we assume that the local probability distributions
of the instances for each class can be modeled as a Gaussian distribution. How-
ever, the Gaussian distribution assumption may not be always appropriate for all
practical problems; there are other probability distribution estimation methods
available, such as Gaussian mixture model [19] and kernel density estimation
[6]. Different local distribution estimation methods for LD-kNN may produce
different results. For a particular classification problem in a specific domain of
interest various methods may be tested to achieve good results; this represents
a future direction for our research.
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Abstract. To improve the classification performance of imbalanced
learning, a novel over-sampling method, Global Immune Centroids Over-
Sampling (Global-IC) based on an immune network, is proposed. Global-
IC generates a set of representative immune centroids to broaden the
decision regions of small class spaces. The representative immune cen-
troids are regarded as synthetic examples in order to resolve the imbal-
ance problem. We utilize an artificial immune network to generate
synthetic examples on clusters with high data densities. This approach
addresses the problem of synthetic minority oversampling techniques,
which lacks of the reflection on groups of training examples. Our com-
prehensive experimental results show that Global-IC can achieve better
performance than renowned multi-class resampling methods.

Keywords: Resampling · Immune network · Over-sampling · Imbal-
anced learning · Synthetic examples

1 Introduction

The class imbalance problem typically occurs when there are many more
instances belonging to some classes than others in multi-class classification.
Recently, reports from both academy and industry indicate that the imbalanced
class distribution of a data set has posed a serious difficulty to most classification
algorithms which assume a relatively balanced distribution. Furthermore, iden-
tifying rare objects is of crucial importance. In many real-world applications,
the classification performances on the small classes are the major concerns in
determining the property of a classification model.

In the research community of imbalanced learning, almost all reported solu-
tions are designed for binary classification. However, multi-class imbalanced
learning problems appear frequently. Identifying the concept for each class in
these problems is usually equally important. When multiple classes are present in
an application domain, solutions proposed for binary classification problems may
c© Springer International Publishing Switzerland 2015
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not be directly applicable, or may achieve a lower performance than expected.
For example, solutions at the data level suffer from the increased search space,
and solutions at the algorithm level become more complicated, since they must
consider small classes and it is difficult to learn the corresponding concepts for
these small classes. Additionally, learning from multiple classes itself implies a
difficulty, since the boundaries among the classes may overlap. The overlap would
downgrade the learning performance.

There exist many researches on multi-class imbalance learning. However,
most ex-isting researches transfer multi-class imbalance learning into binary
using different class decomposition schemes and apply existing binary imbal-
ance learning solutions. These decomposition approaches help reuse the existing
binary imbalance learning solutions. However, they have their own shortcom-
ings, which will be discussed in the next section related work. To overcome
these shortcomings, in this paper we present a novel global multi-class imbal-
ance learning approach, which does not need to transfer multi-class into binary.
This novel approach is based on immune network theory, and utilizes an aiNet
model [3] to generate immune centroids for the clusters of each small class, which
have high data density, called global immune centroids over-sampling (denoted
as Global-IC). Specifically, our novel approach Global-IC resamples each small
class by introducing immune centroids of the clusters of the examples belonging
to the small class. Our experimental results show that Global-IC achieves better
performance, comparing with existing methods.

The rest of this paper is organized as follows. We review related work in
Section 2. Section 3 presents our proposed over-sampling method Global-IC.
Our experimental results and comparisons are shown in Section 4. Finally, we
conclude this paper in Section 5.

2 Related Work

As we said before, most existing solutions for multi-class imbalance classifica-
tion problems use different class decomposition schemes to convert a multi-class
classifi-cation problem into multiple binary classification problems, and then
apply binary imbalance techniques on each binary classification problem. For
example, Tan et al. [4] used both one-vs-all (OVA) [2] and one-vs-one (OVO)
[1] schemes to break down a multi-class problem to binary problems, and then
built rule-based learners to im-prove the coverage of minority class examples.
Zhao [20] used OVA to convert a multi-class problem into multiple binary prob-
lems, and then used under-sampling and SMOTE [5] techniques to overcome
the imbalance issues. Liao [6] investigated a variety of over-sampling and under-
sampling techniques with OVA for a weld flaw classification problem. Chen et
al. [7] proposed an approach that used OVA to convert a multi-class classifica-
tion problem to binary problems and then applied some advanced resampling
methods to rebalance the data of each binary problem. All these methods are
based on multi-class decomposition. Multi-class decomposition oversimplifies the
original multi-class problem. It is obvious that each individual classifier learned
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for a binary sub-problem couldnt be trained with the full information of the
original data. This can cause classification ambiguity or uncovered data regions
with respect to each type of decomposition.

Different from the previous discussion, a global cost-sensitive algorithm
(called Global-GS) was proposed [8], which re-weights the instances from each
class accord-ing to their ratio without using class decomposition. In order to equi-
librate the signi-ficance of the examples for different classes in an imbalanced
framework, it resam-ples each class in a consistent manner by considering a fac-
tor of Ni/Nmax, where Ni the number of the examples of the ith class and Nmax

is the number of the examples for the majority class of the problem. Navarro et
al. [9] presented a preprocessing mechanism based on SMOTE, which iteratively
generates new synthetic samples from the least represented class at each step,
known as Static-SMOTE. The synthetic examples are obtained by applying the
SMOTE algorithm [5] only over the instances of the minority classes. Wang et
al. [10] developed a study regarding the extension of boosting techniques for
imbalance problems with ”multi-minority” and ”multi-majority” classes, called
AdaBoost.NC. Their approach is based on AdaBoost [22], combining with neg-
ative correlation learning. The initial weights of the examples in this boosting
approach are assigned in inverse proportion to the number of instances in the
corresponding class. Our novel approach Global-IC is closely related to these
methods. However, it introduces a complete new approach, immune centroid gen-
eration, to oversample the examples of the small classes for multi-class imbalance
learning.

3 Global Immune Centroids Over-Sampling

Before we introduce our solution Global-IC, we first briefly introduce the basic
con-cepts and knowledge of immune systems. After that, we present the details
of Global-IC.

3.1 Immune Systems

Before discussing our method, we sketch a few aspects of the human adaptive
im-mune system. The immune systems guard our bodies against infections due
to the attacks of antigens. The surface receptors on B-cells (one kind of lym-
phocyte) are able to recognize to specific antigens. The response of a receptor to
an antigen can activate its hosting B-cell. Activated B-cell then proliferates and
differentiates into memory cells. Memory cells secret antibodies to neutralize the
pathogens through complementary pattern matching. During the proliferation
of the activated B-cells, a mutation mechanism is employed to create diverse
antibodies by altering the gene segments. Some of the mutants may be a better
match for the corresponding antigen. In order to be protective, the immune sys-
tem must learn to distinguish between our own (self) cells and malefic external
(nonself) invaders. This process is called self/nonself discrimination: those cells
recognized as self dont promote an immune response. The system is said to be
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tolerant to them, while those that are not provoke a reaction resulting in their
elimination.

Immune network theory, originally proposed in [11], hypothesizes a novel
viewpoint of lymphocyte activities, natural antibody production, pre-immune
repertoire selection, tolerance and self/nonself discrimination, memory and the
evolution of an immune system. It was suggested that the immune system is com-
posed of a regulated network of cells and molecules that recognize one another.
The immune cells can respond either positively or negatively to the recognition
signal (antigen or other immune cell or molecule). A positive response would
result into cell proliferation, cell activation and antibody secretion, while a neg-
ative response would lead to tolerance and suppression.

Learning in the immune system involves raising the population size and affin-
ity of those lymphocytes that have proven themselves valuable by having recog-
nized any antigen. Burnet [12] introduced clonal selection theory by modifying
N.K. Jerne’s theory. The theory states that in a pre-existing group of lympho-
cytes (specifically B cells), a specific antigen only activates (i.e. selection) its
counter-specific cell so that a particular cell is induced to multiply (producing
its clones) for antibody production. With repeated exposures to the same anti-
gen, the immune system produces antibodies of successively greater affinities.
A secondary response elicits antibodies with greater affinity than in a primary
response. Based on the clonal selection principle, Castro proposed a computa-
tional implementation of the clonal selection principle that explicitly takes into
account the affinity maturation of the immune response. He also defined aiNet
(an artificial immune network model) for data analysis [3]. The aiNet is an edge-
weighted graph, not necessarily fully connected, composed of a set of nodes,
called antibodies, and sets of node pairs called edges with an assigned number
called weight or connection strength, associated with each connected edge. The
aiNet clusters serve as internal images (mirrors) responsible for mapping existing
clusters in the data set into network clusters. These clusters map those of the
original data set. The shape of the spatial distribution of antibodies follows that
of the antigenic spatial distribution.

3.2 Immune Centroids Resampling

In order to directly handle the imbalance problem of multi-class classification,
our Global-IC takes two separate major steps. Its first step resamples the exam-
ples of each class. Each class is resampled in a consistent manner by considering
a factor of (Nmax − Ni), where Ni is the number of the examples of the ith class
and Nmax is the number of the examples for the majority class of the problem.
The second step of Global-IC generates the synthetic examples for the small
classes. The synthetic ex-amples are generated based on our proposed immune
centroids over-sampling tech-nique (ICOTE), which is the core of our Global-IC.
Briefly, the synthetic examples are derived from the immune network and repre-
sent the internal images of original small class examples. The details of ICOTE
will be discussed later. The pseudo code of our Global-IC algorithm is shown in
Algorithm 1. Note that the size of the majority class will not be increased.
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Algorithm 1. Global-IC
Input: A training set D and The size of the training set N
Output: D with synthetic examples.

for each example x in D do
Obtain the class index i of x
class size[i]++ � the size of the ith class

end for
obtain max class size � the size of the majority class
for each class i do

find training examples with the class index i Dc[]
R = max class size − class size[i]
while R > 0 do

Ic = ICOTE(Dc, class size[i], 10, 10) � Ic is the synthetic examples
generated by ICOTE. Details of ICOTE in Algorithm 2

if length(Ic) > R then
append the first R rows of Ic to D

else
append Ic to D

end if
R = R − length(Ic)

end while
end for

Global-IC samples the small class examples to generate memory antibodies
(im-mune centroids). The shape of the spatial distribution of the immune cen-
troids follows that of the original examples. As illustrated in Fig.1 and Fig. 2,
Global-IC introduces the immune centroids and follows the shape of the neigh-
boring minority class examples. Global-IC thus not only creates larger and less
specific decision regions, but also overcomes small disjunct problem introduced
by over-sampling [13].
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Fig. 1. A data set with four clusters with high density
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Fig. 2. The extended data set with original examples and the immune centroids

After we present the framework (Global-IC) of our solution, here we will
discuss the details of the core of Global-IC, ICOTE. ICOTE uses the aiNet model
[3] to generate antibody-derived synthetic examples from the original examples
of a class. It includes five major steps as follows:

Step 1: Attribute selection In order to reduce computational cost, we first
remove the attributes whose values are constant.

Step 2: Unit-based normalization Then we adjust the values of attributes
on different scales to a notionally common scale [0, 1].

norm (x) =
x − xmin

xmax − xmin
(1)

Step 3: Immune centroids generation There are three sub-steps to generate
immune centroids. First, the selected antibodies Ab are going to proliferate
(clone) proportionally to their antigenic affinity. The higher the affinity, the
larger the clone size nc is for each selected antibody.

clone (Ab) = {Ab1 . . .Abnc} (2)

Note that the affinity (complementarity level) of the antigen-antibody match
is measured by their Euclidean distance, which is inversely proportional to their
Euclidean distance. That is, the smaller the distance, the higher the affinity is,
and vice-versa. Formally, the Euclidean distance of two vectors is defined as
follows.

dist(Xi,Xj) =
√∑ (

Xm
i − Xm

j

)2 (3)

where m is the dimension of each vector.
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Next, each antibody Ab from the clone set will suffer a mutation with a rate
αk, which is inversely proportional to the antigenic affinity of its parent antibody
Ag.

mutate (Ab) = Ab + αk (Ab − Ag) , αk =
1
d

∗ dist(Ab,Ag) (4)

And then we eliminate the memory antibodies (denoted as M) with a low
antigen-antibody affinity (clonal suppression) fij and a high antibody-antibody
affinity (network suppression) f ′

ij .

suppress (M) = M − Mfij>T1 − Mf ′
ij>T2 , T1 ∈ R, T2 ∈ R (5)

Step 4: De-normalization Next, we de-normalize memory antibodies M and
make synthetic examples identical to sample distribution.

de-norm (x) = xmin + (xmax − xmin) ∗ x (6)

Step 5: Attribute recovery The last step, we put back constant-value
attributes that are removed in Step 1.

Correspondingly, the pseudo code of our ICOTE algorithm is shown in Algo-
rithm 2:

4 Experiments

In this section, we will investigate the performance of our proposed method
Global-IC, and compare it with existing well-known resampling methods.

4.1 Experimental Settings

Our experiments are conducted using three base classifiers: kNN [15], C4.5 [16]
and SVM [17], respectively. We use these algorithms, since they are available
within the KEEL software tool [14]. In the experiments, the parameter values
are set based on the recommendations from the corresponding authors. The
specific settings are as follows:

1. Instance based learning kNN [15]: In this algorithm, we set k=3 and use the
Euclidean distance metric.

2. C4.5 Decision tree [16]: For C4.5, we set a confidence level as 0.25, the
minimum number of item-sets per leaf as 2, and use pruning.

3. Support vector machines (SVM) [17]: We choose Polykernel reference func-
tions, setting an internal parameter 1.0 for the exponent of each kernel func-
tion and a penalty parameter of the error term as 1.0.
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Algorithm 2. ICOTE
Input: Original examples O, The number of original examples n, The number of initial

antibodies K, the maximum number of generations R
Output: S with synthetic examples.

for each example x in O do
remove constant attributes of x

end for
for i = 1 to n do � generate antigens Ag

Ag[i] = norm(xi) � Eq.(1)
end for
Generate K random antibodies Ab[]
while N < R do

Initialize memory antibodies M []
for i = 1 to n do

for j = 1 to K do
Dist[] = dist(Ag[i], Ab[j]) � Eq.(3)

end for
Clone K antibodies in proportion to antigen-antibody affinities � Eq.(2)
Select a portion of antibodies to perform mutation � Eq.(4)
Dispose antibodies with antigen-antibody affinity less than 0.05 � Eq.(5)
Append antibodies to M []

end for
for i = 1 to the number of memory antibodies M [] do

Dist[] = dist(M [i], M [i]) � Eq.(3)
end for
Dispose memory antibodies with antibody-antibody affinity less than 0.05 �

Eq.(5)
Fill Ab[] with M [] and new K random antibodies
N = N + 1

end while
for i = 1 to the number of memory antibodies M [] do

S[i] = de-norm(M [i]) � Eq.(6)
end for
for i = 1 to the number of memory antibodies M [] do

recovery the removed attributes for S[i]
end for

We conduct experiments on 12 datasets from the KEEL dataset repository1,
whose characteristics are summarized in Table 1, namely the number of examples
(#Ex.), number of attributes (#Atts.), and the number of examples in each
class(separated by comma). The experiments are evaluated in terms of one of the
popular metrics, the Area Under the ROC Curve (AUC) [18]. Our experimental
results are obtained based on 10-fold cross-validation.
1 http://www.keel.es/dataset.php

http://www.keel.es/dataset.php
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Table 1. The characteristics of imbalanced datasets

Data #Ex. #Atts. Examples in each class
bal 625 4 (49, 288, 288)
con 1473 9 (629, 333, 511)
der 358 33 (60, 111, 71, 48, 48, 20)
eco 336 7 (143, 77, 2, 2, 35, 20, 5, 42)
gla 214 9 (70, 76, 17, 13, 9, 29)
hay 160 4 (65, 64, 31)
lym 148 18 (61, 81, 4, 2)
new 215 5 (150, 35, 30)
pag 5472 10 (4913, 329, 87, 115, 28)
shu 57999 9 (8903, 45586, 3267, 49, 173, 13)
win 178 13 (59, 71, 48)
yea 1484 8 (244, 429, 463, 44, 35, 51, 161, 30, 20, 5)

4.2 Experimental Results

In this section, we investigate the performance of different methods on the imbal-
anced datasets listed in Table 1.

As shown in the previous work [19] on the keel datasets, the “OVO+over-
sampling” and “OVO+cost-sensitive learning” outperforms both the direct
multi-class decompo-sition schemes OVO and OVA in almost all the cases. So
we will investigate our proposed method Global-IC with OVO+over-sampling
and OVO+cost-sensitive learning. In order to study the combination of pre-
processing and cost-sensitive ap-proaches for multi-class imbalance learning, we
combine OVO with four representa-tive methods, namely ROS [21], SMOTE-
ENN [21], SMOTE [5], and CS [20]. In addition, since our Global-IC is closely
related to Global-GS[8], Static-SMOTE [9], and AdaBoost.NC [10]. All of them
are the directed multi-class imbalance learning methods. It is nature for us to
make comparisons among these methods. The average experimental results for
each method are shown in Table 2-4 respectively, in term of three different base
learners, i.e., KNN, C4.5, and SVM.

From Table 2-4, we can see that our method Global-IC performs much better
than other seven resampling methods, on all the three base learners. When we
used KNN as the base learner, our Global-IC performs the best on nine out of
12 datasets. Its average AUC over the 12 datasets is 85.08, which is much higher
than the second highest (76.70) achieved by OVO+SMOTE. When we used C4.5
as the base learner, our Global-IC performs the best on 10 out of 12 datasets.
Its average AUC over the 12 datasets is 88.38, which is much higher than the
second highest (78.81) achieved by Ada-Boost.NC. When we used SVM as the
base learner, our Global-IC also performs the best on 10 out of 12 datasets. Its
average AUC over the 12 datasets is 84.57, which is much higher than the second
highest (78.88) achieved by Global-CS.

Except the excellent performance of our Global-IC, we couldn’t find the sec-
ond best method among the eight approaches on all the three base learners. From
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Table 2. AUCs of different resampling methods with kNN as the base learner

Data Global-
CS

Static-
SMOTE

Ada-
Boost.NC

OVO-
ROS

OVO-
SMOTE-
ENN

OVO-
SMOTE

OVO-
CS

Global-
IC

bal 56.29 55.67 49.46 54.14 61.40 56.15 53.70 81.37
con 42.58 42.58 45.53 44.24 47.52 44.44 44.32 47.27
der 94.86 95.13 95.22 96.82 97.13 96.49 95.93 97.76
eco 71.79 70.53 70.43 73.54 72.75 74.38 72.70 95.02
gla 71.73 74.16 69.19 73.87 70.60 71.52 74.23 87.74
hay 48.06 49.40 61.83 73.29 44.80 72.82 77.82 39.17
lym 77.88 83.99 81.21 73.02 72.81 74.68 72.81 92.56
new 95.17 96.50 91.83 94.28 94.00 96.00 95.39 98.67
pag 83.93 84.97 84.63 85.38 92.65 92.51 86.20 99.15
shu 91.02 92.71 96.13 89.73 91.58 92.67 89.73 99.88
win 98.10 97.14 96.06 96.25 95.30 96.25 95.30 96.71
yea 50.45 51.22 54.45 50.17 50.15 52.45 51.91 85.66
Average 73.49 74.50 74.66 75.39 74.22 76.70 75.84 85.08

Table 3. AUCs of different resampling methods with C4.5 as the base learner

Data Global-
CS

Static-
SMOTE

Ada-
Boost.NC

OVO-
ROS

OVO-
SMOTE-
ENN

OVO-
SMOTE

OVO-
CS

Global-
IC

bal 55.93 55.30 60.84 55.57 52.35 54.29 54.20 81.82
con 49.83 47.19 50.14 48.05 52.31 50.09 49.74 55.01
der 93.56 94.83 94.79 95.71 95.65 95.61 96.33 96.72
eco 66.28 65.15 74.79 72.89 70.97 70.99 73.65 91.44
gla 70.95 63.71 73.97 68.81 70.58 70.84 65.44 87.29
hay 83.49 86.03 88.17 82.86 70.08 83.49 83.49 83.00
lym 69.27 67.81 66.49 72.51 61.95 60.91 70.77 91.35
new 91.67 90.56 95.11 90.11 90.33 92.50 91.44 97.33
pag 88.28 85.55 90.59 91.52 89.88 90.24 90.69 98.98
shu 98.55 95.05 98.47 96.69 94.70 96.84 96.79 99.89
win 94.32 94.24 96.46 91.24 87.75 92.02 91.35 94.37
yea 47.66 51.77 55.94 50.72 50.70 52.10 52.30 83.33
Average 75.82 74.76 78.81 76.39 73.94 75.83 76.35 88.38

the average results shown in Table 2-4, we can see that the ranks of the perfor-
mance of all other methods are varied with the base learner. Besides the average
results shown in Table 2-4, we also rank these methods on each dataset with each
base learner for further comparison analysis. The average rank of each method
with each base learner is shown in Fig.3. From Fig.3, we can see that the aver-
age rank of Global-IC is the best under the three base learners. The ranks of the
other methods depend on the base learner. The other three directed multi-class
imbalance learning methods Global-CS, Static-SMOTE and AdaBoost.NC do not
consistently rank higher than the OVO combination methods (i.e., OVO+ROS,
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Table 4. AUCs of different resampling methods with SVM as the base learner

Data Global-
CS

Static-
SMOTE

Ada-
Boost.NC

OVO-
ROS

OVO-
SMOTE-
ENN

OVO-
SMOTE

OVO-
CS

Global-
IC

bal 91.63 91.63 90.64 91.63 91.63 91.63 91.63 91.67
con 51.66 49.01 53.18 50.95 50.95 51.72 50.48 51.46
der 95.78 95.60 97.08 95.93 95.93 95.78 95.44 98.96
eco 67.95 70.03 65.17 69.37 70.59 68.21 68.19 85.23
gla 64.72 58.31 55.62 62.42 61.69 63.95 67.91 75.00
hay 57.78 64.29 57.22 58.41 54.05 55.00 56.83 68.67
lym 82.60 82.74 82.04 82.81 70.33 70.79 82.39 93.52
new 96.89 95.78 92.67 94.67 95.56 97.11 96.89 98.89
pag 91.67 69.04 88.29 89.09 87.93 88.47 89.32 96.95
shu 92.68 63.70 83.87 84.25 84.17 84.39 84.14 99.34
win 97.77 97.22 95.98 97.22 97.68 97.22 97.77 95.78
yea 55.49 54.45 55.39 55.69 56.22 56.74 55.91 59.40
Average 78.88 74.31 76.43 77.70 76.39 76.75 78.08 84.57

OVO+SMOTE-ENN, OVO+SMOTE, and OVO+CS). OVO+CS has a relatively
robust rank with the three base learners.

Fig. 3. The average ranks of the resampling methods under three base learners respec-
tively

5 Conclusions

In this paper we present a novel global multi-class imbalance learning approach
Global-IC, which does not need to transfer multi-class into binary. This novel
approach is based on immune network theory, and generates immune centroids
for the clusters of each small class, which have high data density. It is completely
different from renowned resampling methods. Our experimental results showed
that Global-IC achieves better performance, comparing with existing methods.
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Abstract. The deployment of classification models is an integral com-
ponent of many modern data mining and machine learning applications.
A typical classification model is built with the tacit assumption that the
deployment scenario by which it is evaluated is fixed and fully character-
ized. Yet, in the practical deployment of classification methods, impor-
tant aspects of the application environment, such as the misclassification
costs, may be uncertain during model building. Moreover, a single classi-
fication model may be applied in several different deployment scenarios.
In this work, we propose a method to optimize a model for uncertain
deployment scenarios. We begin by deriving a relationship between two
evaluation measures, H measure and cost curves, that may be used to
address uncertainty in classifier performance. We show that when uncer-
tainty in classifier performance is modeled as a probabilistic belief that
is a function of this underlying relationship, a natural definition of risk
emerges for both classifiers and instances. We then leverage this notion of
risk to develop a boosting-based algorithm—which we call RiskBoost—
that directly mitigates classifier risk, and we demonstrate that it outper-
forms AdaBoost on a diverse selection of datasets.

1 Introduction

Many real-world problems necessitate the use of a classification model to assign
items in a collection to target categories or classes. The chief objective of a
classification model is to accurately predict the target class for each case in the
data. Accordingly, when evaluating a classification model, one desires an accurate
assessment of its performance on unseen data. Accurate model assessments are
important because they permit candidate models to be meaningfully compared
and allow one to determine whether a model will perform at an “acceptable”
level. The notion of acceptable performance may be defined solely by internal
concerns (e.g., the benefit of a model must outweigh its implementation cost)
or by external factors (e.g., regulators may hesitate to approve a diagnostic test
with a high false negative rate). No matter how it is applied, however, sound
model assessment is a critical element of any classification task [10].

There are many ways to quantifiably assess the performance of a classifier.
In this work, we quantify classifier performance via a simple linear cost model :

� = c0π0e0 + c1π1e1, (1)
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 264–276, 2015.
DOI: 10.1007/978-3-319-18038-0 21
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where ci is the cost of misclassifying a class i instance, πi is the proportion
of class i instances in the data, and ei is the error rate on class i instances.
This cost model is convenient and is commonly used in cost-sensitive learning.
However, cost-sensitive methods generally assume that the parameters πi and
ci are known and constant (e.g., [5,12,18,21]), an assumption that is often not
borne out in practice [14]. Zadrozny and Elkan [20] provide a framework for
estimating costs and probabilities when sample data are available, but for the
purpose of scenario analysis (i.e., the process of evaluating possible future events
for which such information is not readily available) [11].

In this work, we focus on developing classification models for hypothetical
future deployment scenarios engendered by uncertain operating environments.
We begin in Section 2 by connecting the current techniques for dealing with
uncertain operating environments with a notion of cost. We then demonstrate
in Section 3 that, as a result of this connection, there exists an underlying theo-
retical relationship between several of these methods that leads to a natural def-
inition of the risk of an individual classifier and instance. Further, we find that
this risk can be substantially mitigated via a boosting-based algorithm we call
RiskBoost. In Section 4, we demonstrate that RiskBoost outperforms AdaBoost
[8] over a diverse collection of datasets. Finally, we present our conclusions in
Section 5.

2 Addressing Uncertain Cost in Classifier Performance

Consider a binary classification task where we have several cases or instances,
each of which may be assigned to one of two categories or classes that are labeled
1 (positive) and 0 (negative). Further, assume that any classifier learned on the
training data is capable of producing, for each input vector x, a real-valued
score s(x) that is a monotonic function of p(1|x), which is the probability that x
belongs to class 1. These scores are mapped to binary classifications by choosing
a threshold t such that an instance x is classified as class 0 (negative) if s(x) < t
and class 1 (positive) if s(x) ≥ t.

Each classification threshold produces a unique classifier, the performance of
which can be characterized by a confusion matrix of particular true positive (tp),
false positive (fp), true negative (tn), and false negative (fn) values. Presently,
the de facto standard method for evaluating classification models from a confu-
sion matrix is the receiver operating characteristic, though alternatives such as
the H Measure and cost curves also exist. We first elaborate upon each of these
below, after which we define a clear relationship between all three.

For the reader’s convenience, a summary of the notations used in the this
work is given as Table 1. For the remainder of the work, we use the term classifier
to refer to a specific confusion matrix, whereas classification algorithm or learn-
ing algorithm is used to refer to a trained model for which a decision threshold
has not been defined.
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Table 1. The notation used in this work

Symbol Description

� The total classification loss.
πi The proportion of class i instance in test data.
ci The cost of misclassifying a class i instance.
c A normalized cost ratio, i.e., c = c0/(c0 + c1).
u(c) The likelihood distribution over cost ratios.
ei The error rate on class i instances.
ni The number of class i test instances.
Li The marginal cost of class i instances.
t A classification threshold.
(r1i , r0i) The ith point on the ROC convex hull.
fi(x) The ith line segment on the lower envelope in cost space.
tp,fp A true and false positive classification, respectively.
tn,fn A true and false negative classification, respectively.
tpr,fpr The true and false positive rate, respectively.
tnr,fnr The true and false negative rate, respectively.

2.1 Addressing Cost with ROC Curves

The Receiver Operating Characteristic (ROC) curve [7,13] forms the basis for
many of the techniques that we will discuss in the remainder of this work. An
ROC curve is formed by varying the classification threshold t across all possible
values. In a binary classification problem, each threshold produces a distinct
confusion matrix that corresponds to a two-dimensional point (r1, r0) in ROC
space, where r1 = fpr and r0 = tpr.

A point p1 in ROC space is said to “dominate” a point p2 in ROC space if p1
is both above and to the left of p2. It follows, then, that only classifiers on the
convex hull of the ROC curve are potentially optimal for some value of ci and πi,
as a point not on the convex hull will be dominated by a point that is on it [14].
As each point on the ROC convex hull represents classification performance at
some threshold t, different thresholds will be optimal under different operating
conditions c and πi. For example, classifiers with lower false negative rates will
be optimal at lower values of c, while classifiers with lower false positive rates
will be optimal at higher values of c.

Now, let pi = (r1i, r0i) and pi+1 = (r1(i+1), r0(i+1)) be successive points on the
ROC convex hull. Then pi+1 will produce superior classification performance to
pi if and only if the change in the false positive rate is offset by a corresponding
change in the true positive rate. That is, if we set Δxi = r1(i+1) − r1i and
Δyi = r0(i+1) − r0i, then pi+1 is optimal if

c <
π1Δy

π0Δx + π1Δy
. (2)
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Similarly, given a fixed value for c, we can determine the optimal classifier at a
given value of π0. Then for pi+1 to outperform pi, we require that

π0 <
(1 − c)Δy

cΔx + (1 − c)Δy
. (3)

Thus, the ROC convex hull can be used to select the optimal classification thresh-
old (and classifier) under a variety of different operating conditions, a notion first
articulated by Provost and Fawcett [14].

Relationship Between ROC Curves and Cost. Each point in ROC space
corresponds to a misclassification cost that can be specified via our simple linear
cost model as

� = c0π0r1 + c1π1(1 − r0). (4)

Note that only the ordinality (i.e., relative magnitude) of the cost is needed for
ranking classifiers. Accordingly, if we assume that the cardinality (i.e, absolute
magnitude) of the cost can be ignored, then, as c = c0/(c0 + c1), we find that

� = cπ0r1 + (1 − c)π1(1 − r0). (5)

This formulation will be used frequently throughout the remainder of this work.

2.2 Addressing Uncertain Cost with the H Measure

An alternative to the ROC is the H Measure, proposed by Hand [9] to address
shortcomings of the ROC. Unlike the ROC, the H Measure incorporates uncer-
tainty in the cost ratio c by integrating directly over a hypothetical probability
distribution of cost ratios. As the points on the ROC convex hull correspond
to optimal misclassification cost over a contiguous set of cost ratios (see Equa-
tion 2), then, given known prior probabilities πi, the average loss over all cost
ratios can be calculated by integrating Equation 4 piecewise over the cost regions
defined by the convex hull.

Relationship Between the H Measure and Uncertain Cost. To incorpo-
rate a hypothetical cost ratio distribution, we set c = c0/(c0 + c1) and weight
the integral by the cost distribution, denoted as u(c). The final loss measure is
then defined as:

�H =
m∑

i=0

∫ c(i+1)

c(i)

(
cπ0r1i + (1 − c)π1(1 − r0i)

)
u(c)dc. (6)

The H Measure is represented as a normalized scalar value between 0 and 1,
whereby higher values correspond to better model performance.

2.3 Addressing Uncertain Cost with Cost Curves

Cost curves [6] provide another alternative to ROC curves for visualizing classi-
fier performance. Instead of visualizing performance as a trade-off between false
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positives and true positives, they depict classification cost in the simple linear
cost model against the unknowns πi and ci.

The marginal misclassification cost of class i can be written as Li = πici.
This means that if the misclassification rate of class i instances increases by
some amount Δei, then the total misclassification cost increases by LiΔei. The
maximum possible cost of any classifier is �max = L0 + L1, when both error
rates are 1. Accordingly, we can define the normalized marginal cost (termed
the probability cost by Drummond and Holte [6]) as pci = Li/(L0 + L1), and
the normalized total misclassification cost as �norm = �/�max. Intuitively, the
quantity pci can be thought of as the proportion of the total risk arising from
class i instances, since we have pc0 + pc1 = 1, while �norm is the proportion of
the maximum possible cost that the given classifier actually incurs.

Each ROC point (r1i, r0i) corresponds to a range of possible misclassification
costs that depend on the marginal costs Li, as shown in Equation 4. We can
rewrite Equation 4 as a function of pc1 as follows:

�norm = (1 − pc1)r1i + pc1(1 − r0i)
= pc1(1 − r0i − r1i) + r1i.

Thus any point in ROC space translates (i.e., can be transformed) into a line in
cost space. Of particular interest are the lines corresponding to the ROC convex
hull, as these lines represent classifiers with optimal misclassification cost. These
lines enclose a convex region of cost space known as the lower envelope. The
values of pc1 for which a classifier is on the lower envelope provide scenarios
under which the classifier is the optimal choice.

One can compute the area under the lower envelope to obtain a scalar esti-
mate of misclassification cost. Here, we denote points on the convex hull by
(r1i, r0i), r00 < r01 < . . . < r0m in increasing order of x-coordinate, and we
denote the corresponding cost lines as fi(x) = mix + bi, where mi is the slope
and bi is the y-intercept of the ith cost line. The lower envelope is then composed
of the intersection points of successive lines fi(x) and fi+1(x). We denote these
points pi = (xi, yi), which can be calculated as

xi =
r1(i+1) − r1i

(r0(i+1) − r0i) + (r1(i+1) − r1i)

yi =
r1i − r1(i+1)

1 − r0(i+1) − r1(i+1)
+ r1i.

The area under the lower envelope can be calculated geometrically as the area
of a convex polygon or analytically as a sum of integrals (the areas under the
constituent line segments). For our purposes, it is convenient to express it as
follows:

A(f1 . . . fm) =
m∑

i=0

∫ xi+1

xi

fi(x)dx. (7)

The function A(·) represents a loss measure, where higher values of A correspond
to worse performance. This area represents the expected misclassification cost
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of the classifier, where all values of pc1 are considered equally likely. In the next
section, we discuss the implications of this loss measure.

3 Deriving and Optimizing on Risk from Uncertain Cost

In the previous section, we related several measures of classifier performance to
a notion of cost. In this section, we elaborate on the consequences of these con-
nections, from which we derive definitions of “risk” for classifiers and instances.

3.1 Relationship Between Cost Curves and H Measure

An interesting result emerges if we assume an accurate estimate of πi, either
from the training data or from some other source of background knowledge and
replace the pair (c0, c1) with (c, 1 − c). In this case, a hypothetical cost curve
represents �c = cπ0r1+(1−c)π1(1−r0) on the y-axis and c on the x-axis. We can
rewrite this expression into the standard form of an equation for a line, which
gives us �c = c(π0r1 − π1(1 − r0)) + (1 − r0).

The intersection points of successive lines, which would form the lower enve-
lope, can similarly be derived as

xi =
π1(r0i − r0(i+1))

π1(r0i − r0(i+1)) + π0(r1i − r1(i+1))
. (8)

Consequently, the area under the lower envelope can be expressed as:

A(f1 . . . fm) =
m∑

i=0

∫ xi+1

xi

(
cπ0r1 + (1 − c)π1(1 − r0)

)
dc. (9)

As the endpoints xi are the same as those used in the computation of the H
Measure (see Equation 2), it follows that the H Measure is equivalent to the
area under the lower envelope of the cost curve with uniform u(c) and prior
probabilities πi known. Further, Hand has demonstrated that, for a particular
choice of u(c), the area under the ROC curve is equivalent to the H Measure [9].

Thus, these three different techniques—ROC curves, H Measure, and cost
curves—are simply specific instances of the simple linear cost model. Rather
than debating the relative merits of these specific measures, which is beyond
the scope of this work (cf. [3,9] for such discussions), we instead focus on the
powerful consequences of adhering to the more general model.

Intuitively, since the simple linear model underlies several measures of classi-
fier performance, it also provides an avenue for interpreting model performance.
In fact, we find that it provides an insight into model performance under hypo-
thetical scenarios—that is, a notion of risk—that cannot be explicitly captured
by these other measures. We elaborate on this below.
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3.2 Interpreting Performance Under Hypothetical Scenarios

As a consequence of the relationship between the H Measure and cost curves, we
can actually represent the H Measure loss function in cost space. By representing
different loss functions on a single set of axes, we form a series of scenario curves,
each of which corresponds to a loss function.

Figure 1 depicts scenario curves for several different likelihood functions
alongside a standard cost curve. Each curve quantifies the vulnerability of the
classification algorithm over the set of all possible scenarios pc1 for different
probabilistic beliefs about the likelihood of different cost ratios. The likelihood
distributions include: (1) the Beta(2, 2) distribution u(c) = 1

6c(1 − c), as sug-
gested by [9]; (2) a Beta distribution shifted so that the most likely cost ratio
is proportional to the proportion of minority class instances (i.e., c ∝ π0); (3)
a truncated Beta distribution where the probability of minority class instances
is greater than the probability of majority class instances (i.e., p(c0 > c1) = 0),
motivated by the observation that the minority class typically has the highest
misclassification cost; (4) a truncated exponential distribution where the param-
eter λ is set to ensure that the expectation of class i is inversely proportional to
the proportion of that class in the data (i.e., ci ∝ 1/πi); and (5) the cost curve,
which assumes uniform distributions over probabilities and costs.

From the figure, it is clear that the choice of likelihood distribution can have
a significant effect on both the absolute assessment of classifier performance (i.e.,
the area under the curve) and on which scenarios we believe will produce the
greatest loss for the classifier. These curves also have intuitive meanings that
may be useful when analyzing classifier performance. First, as the cost curve
makes no a priori assumptions about the likelihood of different scenarios, it can
present the performance of an algorithm over any given scenario. Second, if and
when information about the likelihood of different scenarios becomes known,
the cost curve presents the set of classifiers the pose the greatest risk (i.e., the
components of the convex hull).

Both interpretations are important. On the one hand, an unweighted cost
curve can be used to identify the set of scenarios over which a classifier performs
acceptably for any domain-specific definition of reasonable performance. On the
other hand, a weighted scenario curve can be used to identify where an algorithm
should be improved in order to achieve the maximum benefit given the available
information. From the second observation arises a natural notion of risk.

3.3 Defining Risk

Given a likelihood distribution over the cost ratio c, each classifier on the convex
hull is optimal over some range of cost ratios (see Equation 2). From this, we
can derive two intuitive definitions: one for the risk associated with individual
classifiers and one for the risk associated with individual instances.

Definition 1. Assume that classifier C is optimal over the range of cost ratios
[c1, c2]. Then the risk of classifier C is the expected cost of the classifier over the
range for which it is optimal:
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(a) (b)

Fig. 1. Scenario curves for several different cost distributions u(c) generated by a
boosted decision tree model on the (a) pima and (b) breast-w datasets. The curves
have been normalized such that (1) the area under each curve represents the value of
the respective loss measure and (2) the maximum loss for the cost curve is 1.

risk(C ) =
∫ c2

c1

�H(c)dc (10)

Definition 2. The risk of instance x is the aggregate risk over all classifiers
that misclassify x.

We discuss how these definitions may be applied to improve to classifier perfor-
mance below.

3.4 RiskBoost: Optimizing Classification by Minimizing Risk

Since we can quantify the degree to which instances pose the greatest risk to our
classification algorithm, it is natural to strengthen the algorithm by assigning
greater importance to these “risky” instances.

Standard boosting algorithms such as AdaBoost combine functions based
on the “hardness” of correctly classifying a particular instance [8]. Instead, we
propose a novel boosting algorithm that reweights instances according to their
relative risk, which we call RiskBoost. RiskBoost uses the expected misclassifi-
cation loss � to reweight instances that are misclassified by the most vulnerable
classifier according to both classifier performance and the hypothetical cost ratio
distribution. Pseudocode for RiskBoost is provided as Algorithm 1.
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Algorithm 1. RiskBoost
Require: A base learning algorithm W , the number of boosting iterations n, and m

training instances x1 . . .xm.
Ensure: A weighted ensemble classifier.

Initialize a weight distribution D over the instances such that D1(xi) = 1/m.
for j = 1 to n do

Train a new instance Wj of the base learner W with weight distribution Dj .
Compute the loss � of the learner on the training data via Equation 6.
Set βj = 1−0.5∗�

0.5∗�
.

Compute the risk of each classifier on the ROC convex hull via Equation 10.
for each instance x misclassified by the classifier of greatest risk do

Set Dj+1(x) = βj · Dj(x).
end for
Otherwise set Dj+1(x) = Dj(x).
Normalize such that

∑
i Dj+1(xi) = 1.

end for
return The final learner predicting p(1|x) = z

∑
j pj(1|x)βj , where z is chosen such

that the probabilities sum to 1.

4 Experiments

To evaluate the performance of RiskBoost, we compare it with AdaBoost on 19
classification datasets from the UCI Machine Learning Repository [1]. We employ
RiskBoost by setting its risk calculation (i.e., Equation 10) as u(c) = Beta(2, 2),
as suggested by [9]. AdaBoost is employed with the AdaBoost.M1 variant [8]. For
both algorithms, we use 100 boosting iterations of unpruned the C4.5 decision
trees, which previous work has shown benefit substantially from AdaBoost [15].

In order to compare the classifiers, we use 10-fold cross-validation. In 10-
fold cross-validation, each dataset is partitioned into 10 disjoint subsets or folds
such that each fold has (roughly) the same number of instances. A single fold
is retained as the validation data for evaluating the model, while the remain-
ing 9 folds are used for model building. This process is then repeated 10 times,
with each of the 10 folds used exactly once as the validation data. As the cross-
validation process can exhibit a significant degree of variability [16], we average
the performance results from 100 repetitions of 10-fold cross-validation to gen-
erate reliable estimates of classifier performance. Performance is reported as
AUROC (area under the Receiver Operating Characteristic).

4.1 Statistical Tests

Previous literature has suggested the comparison of classifier performance across
multiple datasets based on ranks. Following the strategy outlined in [4], we first
rank the performance of each classifier by its average AUROC. The Friedman
test is then used to determine if there is a statistically significant difference
between the rankings of the classifiers (i.e., that the rankings are not merely
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Table 2. AUROC performance of AdaBoost and RiskBoost on several classification
datasets. Bold values indicate the best performance for a dataset. Checkmarks indicate
the model performs statistically significantly better at the confidence level 1 − α.

Dataset AdaBoost.M1 RiskBoost

breast-w 0.9829 0.9899
bupa 0.7218 0.7218
credit-a 0.8973 0.9187
crx 0.8970 0.9191
heart-c 0.8643 0.8919
heart-h 0.8531 0.8723
horse-colic 0.8501 0.8295
ion 0.9753 0.9744
krkp 0.9985 0.9996
ncaaf 0.8658 0.9144
pima 0.7803 0.7872
promoters 0.9611 0.8863
ringnorm 0.9793 0.9849
sonar 0.9281 0.9344
threenorm 0.9094 0.9210
tictactoe 0.9994 0.9986
twonorm 0.9834 0.9885
vote 0.9733 0.9856
vote1 0.9338 0.9543

Average Rank 1.79 1.21

α = 0.05 �

randomly distributed), after which the Bonferroni-Dunn post-hoc test is applied
to control for multiple comparisons.

4.2 Results

From Table 2, we observe that RiskBoost performs better than AdaBoost in 14
of the 19 datasets evaluated, with 1 tie. Further, we find that RiskBoost performs
statistically significantly better than AdaBoost at a 95% confidence level over
the collection of evaluated datasets. The 95% critical distance of the Bonferroni-
Dunn procedure for 19 datasets and 2 classifiers is 0.45; consequently, an average
rank lower than 1.275 is statistically significant, which RiskBoost achieves with
an average rank of 1.21. Similar results were achieved for 10 repetitions of 10-
fold cross-validation (where RiskBoost’s average rank was 1.11), 50 repetitions
(1.26), and 500 repetitions (1.21).
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(a) (b)

Fig. 2. Scenario curves for successive iterations of (a) AdaBoost and (b) RiskBoost
ensembles on the ncaaf dataset

4.3 Discussion

For a better understanding of the general intuition behind RiskBoost, Figure 2
shows the progression for AdaBoost and RiskBoost when optimizing the H
Measure with the Beta(2, 2) cost distribution. At each iteration, the RiskBoost
ensemble directly boosts the classifier of greatest risk, which is represented by the
global maximum in the figure. Successive iterations of RiskBoost lead to direct
cost reductions for this classifier, resulting in a gradual but consistent reduc-
tion from peak risk. By contrast, AdaBoost establishes an arbitrary threshold
for “incorrect” instances. As a result, AdaBoost does not always focus on the
instances that contribute greatest to the overall misclassification cost, which
ultimately results in the erratic behavior demonstrated by AdaBoost’s scenario
curves.

Though RiskBoost offers promising performance over a diverse array of clas-
sification datasets, we note that there is an expansive literature on cost-sensitive
boosting (e.g., [12,18,19]) and boosting with imbalanced data (e.g., [2,17,18])
that can be used to tackle similar problems. A critical feature that sets our work
apart from prior efforts, however, is that previous work tacitly assumes that mis-
classification costs are known, whereas RiskBoost can expressly optimize mis-
classification costs that are unknown and uncertain. Further, we demonstrate
that this strategy for risk mitigation actually arises naturally from the frame-
work of scenario analysis. We leave further empirical evaluation of RiskBoost
with cost-sensitive boosting algorithms as future work.
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5 Conclusion

Classification models are an integral tool for modern data mining and machine
learning applications. When developing a classification model, one desires a
model that will perform well on unseen data, often according to some hypo-
thetical future deployment scenario. In doing so, two critical questions arise:
First, how does one estimate performance so that the best-performing model
can be selected? Second, how can one build a classifier that is optimized for
these hypothetical scenarios?

Our work focuses on addressing these questions. By examining the current
approaches for evaluating classifier performance in uncertain deployment sce-
narios, we derived a relationship between H Measure and cost curves, two well-
known techniques. As a consequence of this relationship, we found that ROC
curves, H Measure, and cost curves can be represented as specific instances of
a simple linear cost model. We found that by defining scenarios as probabilistic
expressions of belief in this simple linear cost model, intuitive definitions emerge
for the risk of an individual classifier and the risk of an individual instance.
These observations suggest a new boosting-based algorithm—RiskBoost—that
directly mitigates the greatest component of classification risk, and which we
find to outperform AdaBoost on a diverse selection of classification datasets.
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Abstract. Support vector data description (SVDD) is a well-known ker-
nel method that constructs a minimal hypersphere regarded as a data
description for a given data set. However SVDD does not take into
account any statistical distribution of the data set in constructing that
optimal hypersphere, and SVDD is applied to solving one-class classi-
fication problems only. This paper proposes a new approach to SVDD
to address those limitations. We formulate an optimisation problem for
binary classification in which we construct two hyperspheres, one enclos-
ing positive samples and the other enclosing negative samples, and during
the optimisation process we move the two hyperspheres apart to max-
imise the margin between them while the data samples of each class
are still inside their own hyperspheres. Experimental results show good
performance for the proposed method.

Keywords: Repulsive SVDD · Support vector data description · Sup-
port vector machine · Classification

1 Introduction

Support vector data description (SVDD) [1] was proposed by Tax and Duin
to train a hyperspherically shaped boundary around a normal dataset while
keeping all abnormal data samples outside the hypersphere. This SVDD has
been a successful approach to solving one-class problems such as outlier detection
since the volume of this data description is kept minimal. One-class support
vector machine (OC-SVM) [2] is a similar approach proposed earlier to estimate
the support of a high-dimensional distribution. Although this method uses a
maximal-margin hyperplane instead of a hypersphere to separate the normal
data from the abnormal data, it has the same optimisation problem as SVDD.
In both OC-SVM and SVDD, the boundary in the feature space when mapped
back to the input space can produce a complex and tight description of the data
distribution.

There are various extensions to SVDD. A small hypersphere and large margin
approach was proposed in [3] for novelty detection problems where a minimal
hypersphere was trained to include most of normal examples while the margin
between the hypersphere and outliers is as large as possible. A further extension
using two large margins instead of one was proposed in [4], where an interior
margin between the hypersphere and the normal data and an exterior margin
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 277–288, 2015.
DOI: 10.1007/978-3-319-18038-0 22
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between the hypersphere and the abnormal data both are maximised. In [5],
the authors define an optimisation problem as maximising the separation ratio
(R + d)/(R − d), where R is the hypersphere’s radius and d is the hypersphere’s
margin. It is shown to be equivalent to minimising (R2 − kd2) where k is a
parameter to adjust between minimising R and maximising d. Hao et al. [6] also
used a similar formulation in which several similarity functions were used to
compute the distance to centres. Another extension of SVDD is [7] in which the
use of two SVDDs for the description of data with two classes was proposed.

However all of those models are for one-class problems in which the task is to
provide a tight data description or to detect outliers. When applying to a two-
class problem where the numbers of data samples of two classes are not much
different, the boundary of one-class methods is inappropriate. To overcome this
problem, the first straight forward approach is to train two SVDDs, one for each
class and define the decision boundary as the bisector between two surfaces of
the hyperspheres. Although this approach improves the performance of one-class
methods for two-class problems, they are limited by the small-sphere constraint
of the data description.

In this paper, we propose a method using two SVDDs, one enclosing posi-
tive samples and the other enclosing negative samples, for binary classification
tasks. The minimum bounding hypersphere constraint is relaxed to allow the
hyperspheres to acquire larger regions. This is achieved by imposing a criterion
that maximises the distance between two hyperspheres while still keeping the
data inside the spheres. A margin variable is added to the optimisation to fur-
ther improve the classification boundary. Since the proposed method trains two
SVDDs that repel each other, we call it repulsive-SVDD classification (RSVC).
RSVC decision boundary can be considered as a compromise between the bound-
ary of a SVM boundary and a bisector boundary of two SVDDs’ surfaces, this
is controlled by a trade off parameter to adjust the balance between describing
the data and maximising the distance between the two sphere centres.

The rest of the paper is organized as follows. The theory of the proposed
RSVC will be presented in Section 2. Comparison of RSVC with Two SVDDs
will be discussed in Section 3. Experimental results are presented to show the
performance of the proposed method in Section 4. Finally, Section 5 presents
our conclusions.

2 Proposed Approach: Repulsive-SVDD Classification
(RSVC)

To apply SVDD for binary classification problems, we construct a hypersphere
for each class to describe its data distribution with additional properties to dis-
criminate the two classes. First, the hypersphere constraint in SVDD is relaxed
to allow this hypersphere to acquire a larger area that is far from the other class.
This is achieved by imposing a criterion that maximises the distance between two
hyperspheres while still keeping all data samples of a class inside its hypersphere.
Second, the margin (i.e., the distance between surfaces of the two hypersphere)
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is maximised, similar to the maximal margin philosophy of a support vector
machine.

A visualisation of RSVC is demonstrated in Fig. 1. In the left figure, SVM
determines a maximum margin hyperplane without considering data distribu-
tions of positive and negative classes. Whereas in the middle figure, SVDDs
determine two minimal hyperspheres without considering the margin between
the two classes, and the decision boundary is the perpendicular hyperplane of
the line segment connecting the two hypersphere centres.

By contrast, our RSVC can provide an intermediate solution between SVM
and SVDDs. Given the problem in Fig. 1, the RSVC optimisation problem
attempts to keep the radii minimum while maximising the distance between
the two hyperspheres. As a result, the hyperspheres will expand in the direction
that increases the distance between the two hyperspheres. Moreover, the weights
of these two directions can be controlled by a parameter.
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Fig. 1. SVM (left figure) determines a maximum margin hyperplane without consider-
ing data distributions of positive and negative classes. SVDDs (middle figure) determine
minimum hyperspheres without considering the margin between two classes. RSVC
(right figure) determines two minimal hyperspheres, one enclosing positive samples
and the other enclosing negative samples, while maximising the distance between two
centres to a degree controlled by a parameter.

2.1 Problem Formulation

Consider a dataset {xi}, i = 1, . . . , n with two classes, positive class with n1 data
samples and negative class with n2 data samples, n1 + n2 = n. The problem
of RSVC is to determine two optimal hyperspheres (a1, R1) and (a2, R2), one
encloses data samples of the positive class and the other encloses data samples
of the negative class, and at the same time maximise the distance between the
two centres. In addition, all positive and negative data samples are forced to
stay outside the margin ρ1 and ρ2 of the positive hypersphere and the margin of
the negative hypersphere respectively. The optimisation problem is formulated
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as follows:

min
R1,R2,a1,a2,ρ1,ρ2

R2
1 + R2

2 − k||a1 − a2||2 − μ1ρ1 − μ2ρ2 (1)

s.t. ||φ(xi) − a1||2 ≤ R2
1 − ρ1, ∀i, yi = +1 (2)

||φ(xi) − a1||2 ≥ R2
1 + ρ1, ∀i, yi = −1 (3)

||φ(xi) − a2||2 ≤ R2
2 − ρ2, ∀i, yi = −1 (4)

||φ(xi) − a2||2 ≥ R2
2 + ρ2, ∀i, yi = +1 (5)

ρ1 ≥ 0, ρ2 ≥ 0 (6)

where k is a parameter which represents the repulsive degree between two cen-
tres, μ1 and μ2 are two parameters controlling the support vectors, and φ is the
mapping to transform the vector xi to a feature space.

The above problem is for separable datasets. In practice, to allow errors, the
constraints are relaxed by introducing slack variables ξ1i and ξ2i, and penal-
ized terms are added to its objective function. In addition, if we combine the
constraints in this problem to have a simpler form, the optimisation problem
becomes:

min
R1,R2,a1,a2,ρ1,ρ2,ξ1i,ξ2i

R2
1 + R2

2 − k||a1 − a2||2 − μ1ρ1 − μ2ρ2

+
1

ν1n1

∑

i

ξ1i +
1

ν2n2

∑

i

ξ2i (7)

s.t. yi||φ(xi) − a1||2 ≤ yiR
2
1 − ρ1 + ξ1i, ∀i (8)

yi||φ(xi) − a2||2 ≥ yiR
2
2 + ρ2 − ξ2i, ∀i (9)

ρ1 ≥ 0, ρ2 ≥ 0 (10)
ξ1i ≥ 0, ξ2i ≥ 0 ∀i (11)

where ν1 and ν2 are parameters controlling the number of support vectors,
together with μ1 and μ2. They will be explained in Proposition 1 below.

2.2 Convex Formulation of RSVC

Although the optimisation in (7) has a non-convex objective function, it can be
reformulated to have a convex form as follows:

min
R1,R2,a1,a2,ρ1,ρ2,ξ1i,ξ2i

R2
1 − a2

1 + R2
2 − a2

2 + a2
1 + a2

2 − k||a1 − a2||2

−μ1ρ1 − μ2ρ2 +
1

ν1n1

∑

i

ξ1i +
1

ν2n2

∑

i

ξ2i (12)

s.t. yiφ(xi)2 − 2yiφ(xi)a1 ≤ yi(R2
1 − a2

1) − ρ1 + ξ1i,∀i (13)
yiφ(xi)2 − 2yiφ(xi)a2 ≥ yi(R2

2 − a2
2) + ρ2 − ξ2i,∀i (14)

ρ1 ≥ 0, ρ2 ≥ 0 (15)
ξ1i ≥ 0, ξ2i ≥ 0 ∀i (16)
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Let δ1 = a2
1 − R2

1, δ2 = a2
2 − R2

2 and 0 ≤ δ0 ≤ ||a1 − a2||2, (12) becomes

min
δ1,δ2,δ0,a1,a2,ρ1,ρ2,ξ1i,ξ2i

−δ1 − δ2 + a2
1 + a2

2 − kδ0 − μ1ρ1 − μ2ρ2

+
1

ν1n1

∑

i

ξ1i +
1

ν2n2

∑

i

ξ2i (17)

s.t. 2yiφ(xi)a1 − yiφ(xi)2 ≥ yiδ1 + ρ1 − ξ1i, ∀i (18)
2yiφ(xi)a2 − yiφ(xi)2 ≤ yiδ2 − ρ2 + ξ2i, ∀i (19)
ρ1 ≥ 0, ρ2 ≥ 0 (20)
ξ1i ≥ 0, ξ2i ≥ 0 ∀i (21)
||a1 − a2||2 ≥ δ0 (22)
δ0 ≥ 0 (23)

We can construct the Lagrange function below using these following Lagrange
multipliers α1i, α2i, γ1i, γ2i, θ1, θ2, β, λ:

L(δ1, δ2, δ0, a1, a2, ρ1, ρ2, ξ1i, ξ2i, α1i, α2i, γ1i, γ2i, θ1, θ2, β, λ) = −δ1 − δ2

+a2
1 + a2

2 − kδ0 − μ1ρ1 − μ2ρ2 +
1

ν1n1

∑

i

ξ1i +
1

ν2n2

∑

i

ξ2i

−
∑

i

α1i(2yiφ(xi)a1 − yiφ(xi)2 − yiδ1 − ρ1 + ξ1i) −
∑

i

γ1iξ1i − θ1ρ1

+
∑

i

α2i(2yiφ(xi)a2 − yiφ(xi)2 − yiδ2 + ρ2 − ξ2i) −
∑

i

γ2iξ2i − θ2ρ2

−β(||a1 − a2||2 − δ0) − λδ0

(24)

Using KKT conditions, we have:

∂L

∂δ1
= 0 ⇒ −1 +

∑

i

α1iyi = 0 ⇒
∑

i

α1iyi = 1 (25)

∂L

∂δ2
= 0 ⇒ −1 +

∑

i

α2iyi = 0 ⇒
∑

i

α2iyi = 1 (26)

∂L

∂δ0
= 0 ⇒ −k + β − λ = 0 ⇒ β − λ = k (27)

∂L

∂a1
= 0 ⇒ (1 − β)a1 + βa2 =

∑

i

α1iyiφ(xi) = A (28)

∂L

∂a2
= 0 ⇒ (1 − β)a2 + βa1 = −

∑

i

α2iyiφ(xi) = −B (29)

∂L

∂ξ1i
= 0 ⇒ 1

ν1n1
− α1i − γ1i = 0 ⇒ α1i + γ1i =

1
ν1n1

∀i (30)

∂L

∂ξ2i
= 0 ⇒ 1

ν2n2
− α2i − γ2i = 0 ⇒ α2i + γ2i =

1
ν2n2

∀i (31)
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∂L

∂ρ1
= 0 ⇒ −μ1 +

∑

i

α1i − θ1 = 0 ⇒
∑

i

α1i − θ1 = μ1 (32)

∂L

∂ρ1
= 0 ⇒ −μ2 +

∑

i

α2i − θ2 = 0 ⇒
∑

i

α2i − θ2 = μ2 (33)

Equations (28) and (29) leads to

{
a1 + a2 = A − B
a1 − a2 = A+B

1−2β

⇒
{

a1 = (1−β)A+βB
1−2β

a2 = −βA+(β−1)B
1−2β

(34)

By substituting the KKT conditions into the Lagrangian function we obtain
the dual form of the optimisation:

min
1

1 − 2k

[
(1 − k)

∑

i,j

α1iα1jyiyjK(xi, xj) + (1 − k)
∑

i,j

α2iα2jyiyjK(xi, xj)

+2k
∑

i,j

α1iα2jyiyjK(xi, xj)
]

+
∑

i

α1iyiK(xi, xi) −
∑

i

α2iyiK(xi, xi) (35)

s.t.
∑

i

α1iyi = 1 ,
∑

i

α2iyi = −1 (36)

∑

i

α1i = μ1 ,
∑

i

α2i = μ2 (37)

0 ≤ α1i ≤ 1
ν1n1

, 0 ≤ α2i ≤ 1
ν2n2

∀i (38)

where the inner product between vectors has been replaced by the kernel K,
and the Lagrange multipliers γ1i ≥ 0, γ2i ≥ 0, θ1 ≥ 0, θ2 ≥ 0, λ ≥ 0 have been
removed from Equations (30), (31), (32), (33) and (27) respectively. Similarly to
ν-SVC,

∑
i α1i is set to μ1,

∑
i α2i is set to μ2 and β is set to k, where k is a

parameter chosen in the range k ∈ [0, 1
2 ).

It can be seen that if k is set to 0 in the above optimisation problem then the
RSVC optimisation problem (35) can be broken into two independent optimi-
sation problems similar to SVDDs except for the extra constraints

∑
i α1i = μ1

and
∑

i α2i = μ2 resulting from the margin requirements in the original RSVC
problem (1).

Solving the problem (35) gives a set of α1i, α2i. Then the centres a1, a2 can
be determined from Equations (34).

To determine the radius R1, the support vector xt that lies on the surface
of the hypersphere (a1, R1) and corresponds to the smallest α1t ∈ (0, 1

ν1n1
) is

selected. Then the radius R1 is calculated as R1 = d1(xt), where d1(xt) is the
distance from xt to the centre a1 and is determined as follows:

d21(xt) = ‖φ(xt) − a1‖2 =K(xt, xt) − 2
1 − k

[
(1 − k)

∑

i

α1iyiK(xt, xi)

+ k
∑

i

α2iyiK(xt, xi)
]
+ a2

1

(39)



Repulsive-SVDD Classification 283

The radius R2 is calculated similarly:

d22(xt) = ‖φ(xt) − a2‖2 =K(xt, xt) − 2
1 − k

[ − k
∑

i

α2iyiK(xt, xi)

+ (k − 1)
∑

i

α2iyiK(xt, xi)
]
+ a2

2

(40)

In the test phase, a sample x can be determined whether it belongs to the
hypersphere (a1, R1) or (a2, R2), i.e. class +1 or class -1, by the following decision
function:

sign(d22(x) − d21(x)) (41)

2.3 ν-Property

Following [8], a data sample xi is called a support vector if it has Lagrange
multiplier αi > 0; a data sample is called a margin error if it has positive slack
variable ξi > 0.

Similarly to the property of the ν parameter in ν-SVC [8], we derive the
property for the ν1, ν2, μ1 and μ2 parameters and use it for parameter selection
to train the RSVC.

Proposition 1. Let m1 and m2 denote the number of margin errors of the
positive sphere and negative sphere respectively, and let s1 and s2 denote their
numbers of support vectors. Then for parameters ν1, ν2, μ1 and μ2 we have:

1. μ1ν1 and μ2ν2 are upper bounds on the fraction of margin errors, and a lower
bound on the fraction of support vectors for the positive sphere and negative
sphere respectively:

m1

n1
≤ μ1ν1 ≤ s1

n1
and

m2

n2
≤ μ2ν2 ≤ s2

n2
(42)

2. The feasible ranges of ν1, ν2, μ1 and μ2 are:

0 < ν1 ≤ 1 , 1 ≤ μ1 ≤ 1
ν1

and 0 < ν2 ≤ 1 , 1 ≤ μ2 ≤ 1
ν2

(43)

Proof. We first prove for the positive hypersphere.

1. By the KKT conditions, all data points with ξ1i > 0 imply γ1i = 0. From (30)
we have the equation α1i = 1/(ν1n1) holds for every margin error. Summing
up α1i and using

∑
i α1i = μ1 from (37) we have:

m1

ν1n1
≤

∑

i

α1i = μ1 (44)

On the other hand, (38) indicates that each support vector of the positive
hypersphere can get at most 1/(ν1n1). Therefore summing up α1i for support
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vectors of positive hypersphere, plus α1i = 0 for non-support vectors, and
from (37) we have:

s1
νn1

≥
∑

i

α1i = μ1 (45)

Combining (44) and (45) we have the inequalities (42) for the positive hyper-
sphere.

2. From (42) we have 0 < μ1ν1 ≤ 1. In addition, from (36) we have
∑

i

α1iyi = 1,

or
∑

{i:yi=+1}
α1i = 1 +

∑

{i:yi=−1}
α1i.

Since α1i ≥ 0 ∀i, this leads to μ1 =
∑

i

α1i ≥ ∑

{i:yi=+1}
α1i ≥ 1.

Combining these results we have the proof of (43).

The proof of inequalities (42) and (43) for the negative hypersphere is similar.

The proposed RSVC is for binary classification problems. It can be extended
for multi-class classification problems by using “one-against-the rest” approach
or “one-against-one” approach. Following [9], we use the one-against-one app-
roach in this paper where data of every pair of classes are used to train a binary
classifier that separates the two classes, resulting in M(M − 1)/2 classifiers in
a M -class classification problem. In the test phase, a voting strategy is used:
each binary classification of a test sample generates a vote, and the class with
the maximum number of votes for this test data sample is output as the overall
classification result. In case that two classes have identical votes, one can simply
choose the class appearing first in the array of storing class names as in [9].

3 Comparison of RSVC with Two SVDDs

SVDD can be extended to two SVDDs to describe a data set of two classes.
Consider a data set {xi}, i = 1, . . . , n of two classes, positive class with n1 data
samples and negative class with n2 data samples, n1 +n2 = n. The optimisation
problem is formulated as follows [7]:

min
R1,R2,a1,a2,ξ1i,ξ2i

R2
1 + R2

2 +
1

ν1n1

∑

i

ξ1i +
1

ν2n2

∑

i

ξ2i

s.t. ||xi − a1||2 ≤ R2
1 + ξ1i, ∀i, yi = +1

||xi − a1||2 ≥ R2
1 − ξ1i, ∀i, yi = −1

||xi − a2||2 ≤ R2
2 + ξ2i, ∀i, yi = −1

||xi − a2||2 ≥ R2
2 − ξ2i, ∀i, yi = +1

ξ1i ≥ 0, ξ2i ≥ 0 ∀i

(46)

where (a1, R1) and (a2, R2) are two hyperspheres, ν1, ν2 are parameters.
This optimisation can produce a description of two minimal hyperspheres

enclosing two classes. The decision boundary can be defined as the bisector
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between their surfaces. However this model is for one-class problems in which
the task is to provide a tight data description or to detect outliers. When applying
to a two-class problem where the data samples of two classes are balance the
boundary of one-class methods is inappropriate. The RSVC can overcome this
problem by allowing hyperspheres to acquire a larger area by minimising −k||a1−
a2||2 and creating a larger margin by minimising −μ1ρ1 −μ2ρ2 while still trying
to provide data description for two classes.

4 Experiments

4.1 2-D Demonstration of RSVC

Figure 2 shows visual results for experiments performed on a simple 2-D datasets
using RSVC. When parameter k = 0, the RSVC optimisation function becomes
the optimisation function for two SVDDs, hence two SVDDs is a special case of
RSVC. It can be seen that when k increases, two hyperspheres repulsed each
other, resulting in a larger margin in between. Those data samples outside
the hyperspheres but inside this margin are penalised by a cost proportional
to 1/(ν1n1) or 1/(ν2n2). The decision boundary is the bisector between the
hyperspheres’ surfaces. The first row in Figure 2 shows that when parameter k
increases, the hypersphere enclosing positive samples is moving away from neg-
ative samples while keeping all the positive samples inside it. The second row
in Figure 2 shows that when μ1ν1 and μ2ν2 increase, more positive samples are
outside the hyperspheres.

Classification experiments were conducted on 9 UCI datasets1. Details of
these datasets are listed in Table 1. The datasets were divided in to 2 subsets, the
subset contained 50% of the data is for training and the other 50% for testing.
The training process was done using 5-fold cross validation. The parameters for
the methods are as follows. Gaussian mixture models (GMM) [10] use 64 mix-
ture components. OC-SVM parameters are searched in γ ∈ {2−13, 2−11, . . . , 21}
and ν ∈ {2−5, 2−4, . . . , 2−2}. Parameters of SVDD and SVDD with nega-
tive examples (Two SVDDs) are searched in γ ∈ {2−13, 2−11, . . . , 21} and
ν ∈ {2−5, 2−4, . . . , 2−2}. SVM parameters are search in γ ∈ {2−13, 2−11, . . . , 21}
and C ∈ {2−1, 23, . . . , 215}; and RSVC parameters are searched in γ ∈
{2−7, 2−5, . . . , 2−1}, ν1 = ν2 ∈ {0.001, 0.01}, μ1 = μ2 ∈ {10, 30, . . . , 90}, and
k ∈ {0.5, 0.7, 0.9}.

Note that the parameter γ in RSVC is searched in a narrower range than
that in SVM, while ν1n1 and ν2n2 are searched in a roughly similar number
of options as of parameter C. This is to produce a sparse number of support
vectors and avoid over fitting of the two SVDDs. Parameter k ∈ {0.5, 0.7, 0.9}
is to favour classification more than tight description. After the best parameters
are selected in the cross validation step, the models are trained again with them
on the whole training set and are tested on the 50% unseen test set. Experiments
1 Available online at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 2. The first row contains screenshots for RSVC when k = 0, 0.3 and 0.6, and
μ1ν1 = μ2ν2 = 0.2. The second row contains screenshots for RSVC when μ1ν1 =
μ2ν2 = 0.1, 0.2 and 0.5, and k = 0.9. A Gaussian RBF kernel was used, with γ = 5.
Red points are positive samples and blue points are negative samples.

were repeated 10 times and the results were averaged with standard deviations
given.

Table 2 shows the prediction rates in cross validation training. Table 3 shows
the prediction rates on unseen test sets with best parameters selected.

It can be seen that the GMM, OCSVM and SVDD have undesirable perfor-
mance in the classification task.

The two SVDDs have much higher performance than these one-class meth-
ods since they describe two minimal hyperspheres enclosing two classes and the

Table 1. Dataset information: number of classes, dataset size and number of features

Data set #class size #feature

Fourclass 2 862 2
Liver disorders 2 345 6

Heart 2 270 13
Wine 3 178 13

Breast Cancer 2 683 10
Diabetes 2 768 8

Australian 2 690 14
Ionosphere 2 351 34

German numer 2 1000 24
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decision boundary is the bisector between their surfaces. It can be seen that
SVM has higher performance than two SVDDs, it trains a maximal-margin sep-
arating hyperplane rather than two minimal hyperspheres. RSVC show highest
performance in most datasets. RSVC can overcome the limitation of two SVDDs
for the classification task by training two SVDDs that repel each other, allowing
spheres to acquire a larger area and creating a larger margin while still trying
to provide data description for two classes.

Table 2. Prediction rates in cross validation training of classification methods

Dataset GMM OCSVM SVDD Two SVDDs SVM RSVC

Fourclass 67.24 ±5.73 62.15 ±3.3 54.01 ±4.97 71.44 ±4.15 75.08 ±4.4 77.98 ±4.52
Liver disorders 40.86 ±5.63 50.41 ±5.69 55.41 ±5.87 55.15 ±5.49 59.90 ±3.53 60.14 ±5.56

Heart 46.33 ±4.26 60.24 ±5.89 46.41 ±4.24 61.11 ±5.98 72.56 ±4.24 76.44 ±4.45
Wine 33.43 ±5.03 55.57 ±4.07 46.43 ±5.8 59.89 ±3.7 75.24 ±5.56 83.15 ±4.59

Breast cancer 56.52 ±3.34 73.85 ±4.11 62.91 ±4.15 77.16 ±4.08 81.29 ±4.44 81.49 ±4.46
Diabetes 55.24 ±5.06 51.84 ±3.99 40.24 ±5.16 50.95 ±5.63 63.47 ±5.93 66.87 ±3.28

Australian 54.15 ±5.84 58.36 ±5.52 48.23 ±5.16 61.03 ±5.75 70.96 ±3.53 71.90 ±3.66
Inosphere 57.12 ±3.61 65.48 ±3.85 34.26 ±3.48 68.92 ±4.59 73.69 ±4.51 75.86 ±4.29

German numer 40.09 ±5.49 58.96 ±5.39 58.14 ±5.31 59.65 ±5.51 64.04 ±5.99 65.75 ±3.35

Table 3. Prediction rates on unseen test sets; classification methods on 9 datasets

Dataset GMM OCSVM SVDD Two SVDDs SVM RSVC

Fourclass 67.24 ±5.73 59.08 ±3.24 54.44 ±5.09 72.24 ±5.04 70.72 ±5.64 75.65 ±5.92
Liver disorders 40.86 ±5.63 43.48 ±4.88 47.68 ±4.4 50.25 ±5.15 52.03 ±3.03 54.12 ±5.53

Heart 46.33 ±4.26 57.49 ±4.83 46.41 ±4.24 61.08 ±3.02 71.51 ±4.47 72.12 ±4.36
Wine 33.43 ±5.03 42.09 ±6.99 21.41 ±2.35 46.46 ±5.84 75.66 ±4.86 76.99 ±4.69

Breast cancer 56.52 ±3.34 73.08 ±4.01 48.34 ±7.87 75.03 ±4.33 79.92 ±4.34 79.79 ±5.07
Diabetes 55.24 ±5.06 55.68 ±5.34 39.30 ±4.98 54.10 ±5.71 60.21 ±3.16 59.00 ±3.81

Australian 54.15 ±5.84 56.44 ±5.53 48.38 ±5.03 55.75 ±3.83 69.71 ±3.42 68.95 ±3.53
Inosphere 57.12 ±3.61 62.55 ±4.71 38.41 ±2.7 65.79 ±5.72 69.07 ±4.3 70.74 ±4.63

German numer 40.09 ±5.49 58.07 ±5.47 58.40 ±5.34 57.46 ±5.32 62.30 ±5.7 63.90 ±5.67

5 Conclusion

We have proposed the repulsive-SVDD classification to extend SVDD for binary
classification problems. Two hyperspheres are trained in an optimisation problem
to describe the distribution of two classes. Additional requirements are added to
the optimisation problem to help with the discrimination task. First, the distance
between two hypersphere centres is maximised to allow hyperspheres to expand.
Second, margins between the hypersphere surfaces and data are maximised. The
resulting method can create a decision boundary that takes information not only
from distributions of the classes but also the boundary’s margins. Experimental
results on 9 datasets validate the good performance of the proposed method.
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Abstract. This paper presents word embedding-based approach to text
classification. In this study, we introduce a new vector space model
called Semantically-Augmented Statistical Vector Space Model (SAS-
VSM) that is a statistical VSM with a semantic VSM for information
access systems, especially for automatic text classification. In the SAS-
VSM, we first implement a primary approach to concatenate continuous-
valued semantic features with an existing statistical VSM. We, then,
introduce the Centroid-Means-Embedding (CME) method that updates
existing statistical feature vectors with semantic knowledge. Experimen-
tal results show that the proposed CME-based SAS-VSM approaches are
promising over the different weighting approaches on the 20 Newsgroups
and RCV1-v2/LYRL2004 datasets using Support Vector Machine (SVM)
classifiers to enhance the classification tasks. Our approach outperformed
other approaches in both micro-F1 and categorical performance.

Keywords: Text classification · Word embedding · Machine learning ·
Term weighting · Semantic indexing

1 Introduction

Due to the growing availability of digital textual documents, automatic text clas-
sification (ATC) has been actively studied to organize a vast amount of unstruc-
tured documents into a set of categories, based on the textual contents of the
document. Most automatic classification systems analyze documents statistically
and linguistically, determine important terms from the documents, and gener-
ate vector representations from these important terms. A good text-to-vector
representation is necessary in order to enhance ATC and accomplish effective
document retrieval [1], [6], [14], [15].

In recent years, in addition to supervised statistical learning approaches,
many studies have been carried out with showing success in adopting unsuper-
vised methods for learning continuous word embedding [3], [5], [7] from unlabeled
texts. Word embedding features have actively studied on word analogies, word
similarity, chunking, and named entity recognition (NER). Word embeddings
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 289–300, 2015.
DOI: 10.1007/978-3-319-18038-0 23
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are also used in ATC [22], but there remains the task of investigating how word
embedding features can be infused into existing statistical features.

In ATC, words or terms in a certain document are Zipf distributed, that is,
most of the words in some documents appear a few times or completely absent
in other documents or in some categories. These infrequent words usually can-
not be fully trained by term frequency-based approaches. Weighting approaches
like the TF.IDF thus give positive discrimination to infrequent terms by biasing
them against frequent terms. Furthermore, the training set may not have enough
discriminative features to obtain a good vector space model (VSM). Some doc-
uments in the training or test set may not share enough information to classify
the test set properly. Therefore, word embedding can be useful as input to clas-
sification models or as additional features to enhance existing systems. In this
paper embedding vectors are generated using the global vectors (GloVe) model
[5].

The motivation for exploiting word embedding features for ATC can be
attributed to two main properties. First, in generating a more information-rich
VSM, it is interesting to understand how continuous embedding features may
assist to enhance ATC. Second, there is a demand for document representation
to integrate semantic VSM into statistical VSM.

In this paper, we propose a new Centroid-Means-Embedding (CME)-based
Semantically-Augmented Statistical-VSM (SAS-VSM) approach that exploits
infusing embedding features, where the degree of semantic similarity is esti-
mated using word co-occurrence information from unlabeled texts into features
for ATC. This study makes the following major contributions with introducing
the CME based SAS-VSM approach to address ATC.

• The word embedding vectors help to enrich categorical performances, and
the augmented approaches outperformed all baseline approaches.

• The CME approach enriches the existing statistical VSMs using semantic
knowledge.

• The CME enriches every category performance on the 20 Newsgroups and
RCV1-v2 datasets over the statistical VSM-based system.

• The proposed CME-based SAS-VSM is a prominent approach in ATC.

2 SAS-VSM: Semantically-Augmented Statistical-VSM

In the ATC, the construction of VSM has always been considered as the most
important step. Most ATC systems analyze documents statistically, determine
important terms from document space D = {d1, d2, ...dn} and generate a text-to-
vector representation from these important terms in order to reduce the complex-
ity of the documents and make them easier to handle. To generate text-to-vector
representation, two properties are main concern to determine the important
terms from documents: the widely used statistical-VSM and recently-focused
semantic-based VSM.

Of greater interest with both of these VSMs to enhance ATC, we introduce
SAS-VSM that merges together statistical VSM and word-co-occurrence-based
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continuous embedding vectors. The architecture of SAS-VSM for a document
space can be represented as:

SAS-VSM = Statistical-VSM || Semantic-VSM,

where || denotes the concatenation of two different VSMs. An SAS-VSM feature
vector x(d) for a document d is:

x(d) =
(
xStat(d),xSem(d)

)
,

where xStat(d) is a statistical feature vector and xSem(d) is a semantic feature
vector.

In this work, the Statistical-VSM is formulated based on different weighting
approaches for a given corpus. In contrast, to represent the Semantic-VSM, we
consider a context prediction GloVe model for learning word embedding. Word
embedding is useful to inject additional semantic features to the existing VSM. It
is an open question how continuous word embedding features should be infused
into discrete weights of term vectors. We considered two approaches to repre-
senting the SAS-VSM: (1) the primary approach, which shows the motivation
to incorporate two different VSM and (2) the CME approach.

2.1 Primary Approach

In the above formulation of SAS-VSM, where the Statistical-VSM denotes term
weightings based on discrete weights of terms for a corresponding document d.
A Statistical-VSM vector is an xStat(d) =

(
xStat
1 (d), ... , xStat

M (d)
)
. For term ti,

xStat
i (d) is defined as:

xStat
i (d) =

{
f(ti), if ti ∈ d

0, otherwise
, (1)

where f(ti) is a term weighting function representing any weighting approach for
term ti which will be later discussed on Section 3. In contrast, a Semantic-SVM
vector is an xSem(d) = (xSem

1 (d), ... , xSem
N (d)) for document d. Using a word

embedding matrix V , xSem(d) is defined as:

xSem(d) = xStat(d)V . (2)

In the ATC, document d consists of a sequence of terms or words ti =
{t1, t2, ...tn}. Let Σ be the vocabulary set of a given corpus. Word embedding
matrix V is an M×N matrix with the vocabulary size M and the dimensionality
N of word embedding vector. That is, V is defined as follows:

V =

⎡

⎢
⎢
⎢
⎣

v1

v2

...
vM

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

v11 v12 · · · v1N

v21 v22 · · · v2N

...
...

. . .
...

vM1 vM2 · · · vMN

⎤

⎥
⎥
⎥
⎦

.
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Each row vi represents the embedding vector for term ti. This approach is our
primary approach which leads to generate centroid-means-embedding vector.
From the Eqn. 2, we can see that new updated augmented features for doc-
ument d are incorporated with discrete and continuous weights. However the
existing supervised discrete weights based on different term weighting schemes
are remained free from getting continuous weight.

2.2 CME with SAS-VSM

In this proposed approach, we will introduce how to infuse continuous word
embedding vectors into existing discrete weights by rewriting Eqn. 1 and 2. We
first compute a sum centroid embedding (SCE) for a candidate document d. The
SCE is the sum of all continuous embedding weights for the column vectors of V
that correspond to word embedding of terms in a certain document d. Therefore,
the SCE weight of a certain term ti∈Σ for a given document d can be represented
as:

SCE(d) = A(d)V = (SCE1(d), ..., SCEN (d)) (3)

Ai(d) =

{
1, if ti ∈ d

0, otherwise
, (4)

where A is an M -dimensional row vector. In the next computational step, we
compute the mean of the SCE which we call centroid-means-embedding (CME)
for a certain term ti in document d.

SCE(d) =
1
N

N∑

i=1

SCEi(d). (5)

We then rewrite Eqn.1 as:

xStat′
(d) = xStat(d) × SCE(d). (6)

From the Eqn. 2, the new generated weight gets a larger weight than exist-
ing vector which may turn training ovefit. We therefore scale the embedding
vectors by setting a hyper parameter. The goal of using hyper parameter is to
scale large weights that overfit the training data. We introduce Gaussian or nor-
mal distribution based scaling function for a certain document d to scale each
new generated weight for SAS-VSM. The hyper parameter λ = (λ1, ..., λN ) for
document d can be denoted as:

λi(d) =
1

√
2πσ2

d

exp

(

−
(
xSem

i (d) − μd

)2

2σ2
d

)

, (7)

where the mean μd and standard deviation σd for a document d are calculated
from candidate documents as:
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μd =
1
M

M∑

i=1

f(ti) (8)

σd =

√
√
√
√ 1

M

M∑

i=1

(f(ti) − μ)2. (9)

We rewrite Eqn. 2 as:

xSem′
(d) = λ(d)◦

(
xStat′

(d)V
)

, (10)

where ◦ denotes the element-wise multiplication of two row vectors.

3 Term Weighting Schemes

Recently, several studies have been conducted using different term weighting
approaches [2], [4], [10], [11], [18], [21] to address the ATC. TF.IDF is the most
widely-used, conventional, document-indexing-based [1], [8], [9], [19], [21] term
weighting approach for ATC. The common TF.IDF [12], [14], is defined as:

WTF.IDF (ti, d) = tf(ti,d) ×
(

1 + log
D

#(ti)

)

, (11)

where D denotes the total number of documents in the training corpus, tf(ti, d)
is the number of occurrences of term ti in document d, #(ti) is the number of
documents in the training corpus in which term ti occurs at least once, #(ti)/D
is referred to as the documents frequency (DF), and D/#(ti) is the inverse
document frequency (IDF) of term ti.

In terms of class-oriented indexing [1], [13], Ren and Sohrab [1] discussed
two different weighting approaches, TF.IDF.ICF and TF.IDF.ICSδF, where the
global document-indexing-based IDF and class-indexing-based inverse class fre-
quency (ICF) and inverse class space density frequency (ICSδF) are incorporated
with local weights term frequency (TF). We can also define two class-indexing-
based weighting approaches TF.ICF and TF.ICSδF. These two representations
of class-indexing-based category mapping are represented as:

WTF.ICF (ti, d, ck) = tf(ti,d) ×
(

1 + log
C

c(ti)

)

, (12)

WTF.ICSδF (ti, d, ck) = tf(ti,d) ×
(

1 + log
C

CSδ(ti)

)

, (13)

where C denotes the total number of predefined categories in the training corpus,
c(ti) is the number of categories in the training corpus in which term ti occurs
at least once, c(ti)

c is referred to as the class frequency (CF), and C
c(ti)

is the ICF
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of the term ti.
CSδ(ti)

C is referred to as the class space density frequency (CSδF)
and C

CSδ(ti)
is the ICSδF of term ti.

TF.IDF.ICF and TF.IDF.ICSδF for a certain term ti in document d with
respect to category ck, are defined in as:

WTF.IDF.ICF (ti, d, ck) = tf(ti,d) ×
(

1 + log
D

#(ti)

)

×
(

1 + log
C

c(ti)

)

, (14)

WTF.IDF.ICSδF (ti, d, ck) = tf(ti,d) ×
(

1 + log
D

#(ti)

)

×
(

1 + log
C

CSδ(ti)

)

.

(15)

4 Evaluation

In this section, we provide empirical evidence for the effectiveness of the proposed
approaches. In this evaluation, we employ two commonly-used ATC datasets: 20
Newsgroups1 and RCV1-v2/LYRL2004 [16]. We employ a 10-fold cross validation
scheme for the 20 Newsgroups dataset in which the dataset is randomly divided
into 10 subsets. For each fold, one subset is used for testing and the remaining
subsets are used for training. For the RCV1-v2/LYRL2004 dataset, we split the
corpus into training and test data, which is discussed in Ren and Sohrab [1]. We
have kept the same splits and experiment setup that are used in Ren and Sohrab
[1]. The standard evaluation metrics like precision, recall, F1-measure and the
micro-average of precision, recall, and F1-measure are used to judge the system
performances. Please refer to Ren and Sohrab [1] for more details.

4.1 Experimental Datasets

To evaluate the performance of the proposed model with existing different base-
line weighting approaches, we conducted our experiments using the 20 News-
groups and RCV1-v2/LYRL2004, which are widely used benchmark collections
in the ATC task.

20 Newsgroups Dataset. The first dataset that we used in this experiment is
the 20 Newsgroups, which is a popular dataset to use against machine learn-
ing techniques such as ATC and text clustering. It contains approximately
18,828 news articles across 20 different newsgroups. For convenience, we call
the 20 categories: Atheism (Ath), CompGraphics (CGra), CompOsMsWindows-
Misc (CMWM), CompSysIbmPcHardware (CSIPH), CompSysMacHardware
(CSMH), CompWindowsx (CWin), MiscForsale (MFor), RecAutos (RAuto),
RecMotorcycles (RMot), RecSportBaseBall (RSB), RecSportHockey (RSH), Sci-
Crypt (SCry), SciElectronics (SEle), SciMed (SMed), SciSpace (SSpa), SocReli-
gionChristian (SRChr), TalkPoliticsGuns (TPG), TalkPoliticsMideast (TPMid),
TalkPoliticsMisc (TPMisc), and TalkReligionMisc (TRMi).
1 Available at http://people.csail.mit.edu/jrennie/20Newsgroups/

http://people.csail.mit.edu/jrennie/20Newsgroups/
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RCV1 Dataset. The RCV1 dataset, RCV1-v2/LYRL2004 is adopted, which
contains a total of 804,414 documents with 103 categories from four parent
topics. As single-label classification is in concern in this study, we extract all the
documents which are labeled with at least once. We found that only approximate
23,000 documents out of 804,414 are labeled with at least once. To create larger
dataset for the single-label classification problem, we extracted all the documents
which are labeled with two categories, a parent and a child category. Then we
removed the parent category from the document label and child category is
assigned in order to produce the single-label classification problem. From RCV1-
v2/LYRL2004, a single category is assigned to a total of 219,667 documents and
there are 54 different categories in total. We have kept the same split, the first
23,149 documents as for training and the remainder 196,518 documents are for
testing according to RCV1-v2/LYRL2004.

4.2 Word Embedding Training with GloVe Model

In this paper, the word embedding matrix V M×N is generated using GloVe
model. We consider the GloVe model for learning word representation from unla-
beled data to generate word embedding vectors, since it is outperformed other
methods on word similarity and NER tasks. The GloVe model is an weighted
least squares regression model that performs global matrix factorization with
a local context window models. In this work, the word embedding vectors are
generated from the available source code2. All parameters were left at default
values in this toolbox.

4.3 Support Vector Machine Classifier

In the machine learning workbench, support vector machine (SVM) has been
achieved great success in ATC and considered as one of the most robust and
accurate methods among all well-known algorithms [15]. Therefore, as a learn-
ing classifier, SVM-based classification toolbox SVM-multiclass3 is used in this
experiment. All parameters were left at default values. The regularization param-
eter c was set to 1.0.

4.4 Results with the 20 Newsgroups and RCV1 dataset

In this paper, we compare our primary and CME approaches for SAS-VSM
with baseline weighting schemes including TF, TF.IDF, TF.ICF, TF.ICSδF,
TF.IDF.ICF, and TF.IDF.ICSδF approaches. In Tables 1, 2, 3, and 4, EV=4,
EV=10, EV=20, and EV=40 indicate the vector sizes of word embedding that
are injected in SAS-VSM with respect to different weighting approaches.
2 Available at http://nlp.stanford.edu/projects/glove/
3 Available at http://svmlight.joachims.org/svm multiclass.html

http://nlp.stanford.edu/projects/glove/
http://svmlight.joachims.org/svm_multiclass.html
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Table 1. Primary approach performances on the 20 Newsgroups dataset

Term Baseline Word Embedding with Primary Approach
Weighting EV=4 EV=10 EV=20 EV=40

(%) (%) (%) (%) (%)

TF 69.60 69.66(+0.06) 69.14(–0.47) 69.75(+0.14) 69.19(–0.41)
TF.IDF 85.01 85.52(+0.51) 85.46(+0.46) 85.44(+0.44) 85.40(+0.40)
TF.ICF 85.82 85.93(+0.11) 86.17(+0.36) 85.92(+0.10) 85.90(+0.08)
TF.ICSσF 85.45 85.57(+0.12) 85.40(–0.05) 85.35(–0.11) 85.43(–0.02)
TF.IDF.ICF 85.34 85.75(+0.41) 85.85(+0.51) 85.88(+0.54) 85.75(+0.41)
TF.IDF.ICSσF 92.78 92.93(+0.15) 92.94(+0.16) 92.94(+0.16) 92.96(+0.18)

Note: Results in parentheses indicating the performance in/decrease from baseline

Table 2. Primary approach performances on the RCV1 dataset

Term Baseline Word Embedding with Primary Approach
Weighting EV=4 EV=10 EV=20 EV=40

(%) (%) (%) (%) (%)

TF 71.23 71.38(+0.15) 71.41(+0.18) 71.46(+0.24) 71.55(+0.32)
TF.IDF 76.86 76.91(+0.05) 77.16(+0.30) 77.13(+0.27) 77.05(+0.19)
TF.ICF 73.46 74.01(+0.56) 74.07(+0.61) 74.00(+0.54) 73.90(+0.44)
TF.ICSσF 76.27 76.40(+0.13) 76.44(+0.17) 76.54(+0.27) 76.46(+0.19)
TF.IDF.ICF 80.01 79.90(–0.12) 79.65(–0.37) 79.75(–0.28) 79.70(–0.31)
TF.IDF.ICSσF 84.79 84.80(+0.01) 84.80(+0.01) 84.80(+0.01) 84.81(+0.01)

Note: Results in parentheses indicating the performance in/decrease from baseline

Results with the Primary Approach. Tables 1 and 2 show the performance
comparison with micro-F1 on six different term weighting approaches over the
20 Newsgroups and RCV1 datasets using the SVM classifier. In Table 1, it is
noticeable that the primary approach shows a marginal improvement over the
baseline weighting approaches. In some cases when feeding with a bit larger aug-
mented vectors including EV=10, EV=20, and EV=40, the performance shows
a minimal drop from the baseline TF and TF.ICSδF approaches. In Table 2, it
is also noticeable that the results on RCV1 show marginal improvements over
all baseline weighting approaches except for a minimal drop on TF.IDF.ICF.

Results with the CME Approach. Tables 3 and 4 show the performance
comparison with micro-F1 on six different term weighting approaches over the
20 Newsgroups and RCV1 datasets using the SVM classifier. Table 3 shows
that by applying CME to SAS-VSM over the different weighting approaches,
CME enriches system performance not only from the baseline approaches but
also from our proposed primary approach using SAS-VSM. In Table 4, it is
also noticeable that the CME-based SAS-VSM approach outperforms all the
baselines and primary proposed approaches.
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Table 3. Word embedding with CME performances on the 20 Newsgroups dataset

Term Baseline Word Embedding with CME Approach
Weighting EV=4 EV=10 EV=20 EV=40

(%) (%) (%) (%) (%)

TF 69.60 76.82(+7.21) 76.22(+6.62) 77.35(+7.74) 77.92(+8.32)
TF.IDF 85.01 87.78(+2.77) 87.70(+2.70) 88.07(+3.07) 88.50(+3.50)
TF.ICF 85.82 87.04(+1.22) 86.82(+1.01) 86.98(+1.16) 87.35(+1.60)
TF.ICSσF 85.45 87.74(+2.29) 87.68(+2.25) 87.95(+2.50) 88.50(+3.05)
TF.IDF.ICF 85.34 89.17(+3.84) 89.06(+3.73) 89.35(+4.01) 89.69(+4.35)
TF.IDF.ICSσF 92.78 94.34(+1.60) 94.29(+1.51) 94.40(+1.62) 94.41(+1.62)

Note: Results in parentheses indicating the performance in/decrease from baseline

Table 4. Word embedding with CME performnaces on the RCV1 dataset

Term Baseline Word Embedding with CME Approach
Weighting EV=4 EV=10 EV=20 EV=40

(%) (%) (%) (%) (%)

TF 71.23 73.06(+1.83) 72.99(+1.76) 73.13(+1.90) 74.07(+2.84)
TF.IDF 76.86 83.48(+6.63) 83.45(+6.59) 83.87(+7.01) 84.42(+7.57)
TF.ICF 73.46 77.51(+4.05) 77.27(+3.81) 77.59(+4.13) 78.49(+5.04)
TF.ICSσF 76.27 83.64(+7.37) 83.53(+7.27) 83.95(+7.68) 84.51(+8.24)
TF.IDF.ICF 80.01 85.05(+5.03) 84.93(+4.91) 85.08(+5.07) 85.28(+5.26)
TF.IDF.ICSσF 84.79 85.99(+1.20) 85.90(+1.11) 85.90(+1.10) 85.91(+1.12)

Note: Results in parentheses indicating the performance in/decrease from baseline

Categorical Performance Comparison. In ATC, besides overall perfor-
mance, it is also important to judge the categorical performance for a certain
dataset. Because of space limitation we only provide the TF.IDF categorical per-
formance for 20 Newsgroups dataset. Fig. 1 shows the categorical performance
based on F1-measure, where our primary approach is performing lower than the
baseline on some categories. In contrast, the CME-based SAS-VSM approach
shows its superiority over the baseline classifiers on 19 out of 20 categories.

4.5 Discussions

The results of the above experiments show that the CME-based SAS-VSM
consistently outperforms over the baseline approaches, including TF, TF.IDF,
TF.ICF, TF.ICSδF, TF.IDF.ICF, and TF.IDF.ICSδF, which are used to create
statistical VSMs. From the results with our primary approach, it is important
to note that the combination of statistical and semantic VSM can marginally
improve the system performance. In the primary approach, it is noticeable
that continuous-valued embedding matrix is updated with both statistical and
semantic knowledge but the discrete weights are remaining unchanged in the
primary approach. In contrast, we introduce CME approach in the SAS-VSM
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Fig. 1. Categorical performance based F1-measure in the 20 Newsgroups dataset.
Embedding vector EV=40 was employed for the CME.

to update the discrete weight and provide semantic knowledge into statistical
VSMs. These results indicate that our CME-based SAS-VSM approach can sig-
nificantly improve the system performance.

Our experiments also show that the CME-based SAS-VSM is a novel VSM
that produces a consistently higher performance over different term weighting
approaches. Thus, the word embedding vectors are useful to enhance ATC.

5 Related Works

Ren and Sohrab [1] performed their experiments with eight different weighing
approaches: local weight TF incorporated with global weights including coeffi-
cient correlation (TF.CC), mutual information (TF.MI), odds ratio (TF.OR),
probability based (TF.PB), relevance frequency (TF.RF), IDF (TF.IDF),
IDF.ICF (TF.IDF.ICF), and IDF.ICSδF (TF.IDF.ICSδF). The results showed
that the class-indexing-based TF.IDF.ICSδF is useful with an SVM classifier.
The TF.IDF-.ICSδF approach showed its superiority in all the categories of the
20 Newsgroups and a majority of the Reuters-21578 datasets using SVM. This
work emphasizes on statistical supervised approach with semantic information
for a certain document, which is neither discussed nor empirically evaluated.

Jeffrey et al. [5] introduced global vectors for word representation where the
work proposed specific weighted least square model that trains global word-word
co-occurrence counts and produce a word vector space. The results demonstrate
that the GloVe model outperforms existing models over word analogy, word
similarity, and NER tasks. This work left a key note that word embedding vectors
can be used as features in ATC.

Jiang et al. [3] introduced a distributional prototype approach for utilizing
the embedding features applied on NER. The basic idea of the distributional
prototype features is that similar words are supposed to be tagged with the
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same label. The experiment result shows that continuous embedding features
improve the system performance for NER.

Luo et al. [18] proposed a semantic term weighting by exploiting the seman-
tics of categories using WordNet and replaced the IDF function with a semantic
weight (SW). The TF.SW approach that outperformed TF.IDF in overall sys-
tem performance but it was unable to outperform TF.IDF on the categorical
performance.

6 Conclusions

In this study, we investigated the effectiveness of exploiting word embedding in
the ATC and proposed a novel CME-based SAS-VSM for ATC.

After analyzing the result, four conclusions seem warranted. First, from the
experiment results, it is noticeable that the proposed CME-based SAS-VSM can
significantly improve the performances of different weighting approaches, includ-
ing TF, TF.IDF, TF.ICF, TF.ICSδF, TF.IDF.ICF, and TF.IDF.ICSδF. There-
fore, this approach can apply to any existing weighting approaches to improve the
existing system. Second, a properly feeding method for augmented features can
be useful as input to a VSM, especially SAS-VSM to enhance ATC. Third, the
results of this study indicate that the proposed CME-based SAS-VSM can signif-
icantly improve the categorical performance for different weighting approaches
in two different datasets. The proposed approach is very effective to enhance
ATC. Forth, SVM is considered one of the most robust and accurate classifica-
tion methods in machine learning workbench, and here our results show that the
CME-based SAS-VSM is effective with SVM method in two different datasets
to address classification task.

Possible ideas for future work would be to conduct experiments on very large
scale multi-label hierarchical text classification for Wikipedia medium and large
datasets4. It might be interesting to investigate the behavior of SAS-VSM for
the large scale datasets which have thousands of categories and one or more
categories are assigned for a certain document in order to address multi-label
hierarchical classification.
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Abstract. Multi-task learning offers a way to benefit from synergy of
multiple related prediction tasks via their joint modeling. Current multi-
task techniques model related tasks jointly, assuming that the tasks
share the same relationship across features uniformly. This assumption
is seldom true as tasks may be related across some features but not
others. Addressing this problem, we propose a new multi-task learning
model that learns separate task relationships along different features.
This added flexibility allows our model to have a finer and differential
level of control in joint modeling of tasks along different features. We for-
mulate the model as an optimization problem and provide an efficient,
iterative solution. We illustrate the behavior of the proposed model using
a synthetic dataset where we induce varied feature-dependent task rela-
tionships: positive relationship, negative relationship, no relationship.
Using four real datasets, we evaluate the effectiveness of the proposed
model for many multi-task regression and classification problems, and
demonstrate its superiority over other state-of-the-art multi-task learn-
ing models.

1 Introduction

In machine learning, one often encounters multiple prediction tasks that are
related to each other. Multi-task learning (MTL) offers principled frameworks
to benefit from synergy of these related tasks via their joint modeling. MTL
has been used in diverse applications - digit recognition [1], face recognition
[2], landmine detection [3], disease progression modeling [4], cancer mortality
prediction [5] are some examples.

Multi-task learning techniques introduce an inductive bias in the common
hypothesis space of all the tasks. Typically, it is done via using some commonality
on task parameters e.g. the use of a common subspace [1,6,7], induction of a
common prior in a probabilistic setting [3,8], structural regularization [9,10].
One of the major challenges in the MTL framework is to find “related” tasks
and quantify task-to-task relatedness. Initial works in this area [9,11] assumed
all the tasks to be well-related and näıvely combined them for joint learning.

c© Springer International Publishing Switzerland 2015
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However, when tasks are unrelated or even negatively related, such combination
may lead to poor performance. Addressing this, later works estimate some form
of task relatedness and combine the tasks accordingly. For example, Jacob et al.
propose a model [12] that clusters similar tasks into groups and joint modeling
is achieved by maximizing the pairwise-similarity between task parameters of
all tasks in a group. A similar model via alternating structure optimization is
proposed by Zhou et al. in [13]. Taking a subspace learning approach, Argyriou et
al. [6] develop a model that combines the knowledge from tasks sharing the same
basis vectors. To encourage sparsity in the subspace representation, Kumar et
al. [7] propose a model that alleviates noisy task relations. When there are many
outlier tasks or unrelated tasks, the performance of these methods suffers as they
include all the tasks in joint modeling without any grouping. To overcome this
problem, Kang et al. [1] extend the model in [6] adding the flexibility to learn
multiple task groups and then confining the joint modeling within a group. More
advanced models along these lines using nonparametric Bayesian frameworks are
done in [14,15]. Although all these models are able to separate unrelated tasks
from joint modeling, they are unable to exploit negatively related tasks. This
problem is addressed by Zhang et al. [16], who propose a model that uses a task
covariance matrix to learn all types of task relationships. A common problem of
all the aforementioned techniques is that they assume same relationship between
two tasks along all the features. This assumption is seldom true in reality and
causes a problem when task-to-task relationship varies from feature-to-feature.

Consider an example of predicting user ratings of desktop computers for a
set of users based on features such as CPU speed, RAM size, screen size, price
etc. Learning the rating function for each user can be considered as a task.
Users may be related as they may have similar preferences over certain features
e.g. most might like lower prices. However, users may differ on other features
e.g. some prefer higher screen size, whilst others might prefer high performance
(faster CPU and larger RAM). Consider two users, say A and B, where both
give similar importance to price but user A may give more importance to screen
size whilst user B give more importance to CPU speed. Conventional MTL algo-
rithms would compute a single relatedness score based on all the features, which
assumes both users to have similar level of agreement on both screen size and
CPU speed. Clearly, this is not the case. Moreover, due to using a single relat-
edness score, which is averaged considering all the features, their agreement on
price is underestimated. Therefore, a multi-task learning method that learns
feature-specific task relationships is required. Learning task-to-task relationships
for every single feature may be unnecessary as tasks may have similar relation-
ships along many semantically related features. For example, high CPU speed
and large RAM are associated to high performance. Therefore, we hypothesize
that it may be sufficient to learn a task relationship for each semantically related
feature group.

We propose a new multi-task learning model that (a) extracts groups of
related features, (b) computes task relatedness based on each feature group and
(c) uses these relationships for joint modeling of tasks. To extract the groups
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of related features we learn a low-dimensional subspace from the set of task
parameters. Each subspace basis captures the set of semantically related fea-
tures. Next, we compute a separate task relationship along each subspace basis.
To capture all form of task relationships (low to high, positive and negative) we
use a covariance matrix that is computed from the projection of the task param-
eters on each basis. Joint modeling of tasks is achieved via an optimization
formulation that combines the standard least-squares loss with an appropriate
regularization term involving the task covariance matrices. We derive an efficient
iterative solution to this optimization problem. Due to the use of multiple rela-
tionships, our model is called Multi-Relational Multi-Task Learning (MR-MTL).
We illustrate the behavior of our MR-MTL model using a synthetic dataset in
scenarios where tasks relationships vary based on different feature groups. We
evaluate the effectiveness of MR-MTL on two regression and two classification
real-world datasets and demonstrate its superiority over other state-of-the-art
multi-task learning methods.

Our contributions are:

– Proposal of a new multi-task learning model, capable of learning different
task relationships between two tasks with respect to different feature subsets.
This has implications in modeling partial relatedness and avoiding negative
knowledge transfer.

– Formulation of the model as an optimization problem, providing an efficient
iterative solution.

– Illustration of the behavior of the proposed model using a synthetic dataset
that demonstrates algorithmic performance for varied feature-dependent task
relationships: positive relationship, negative relationship, no relationship.

– Evaluation of the proposed MR-MTL model on four real datasets validating
its effectiveness over a variety of regression and classification problems, and
demonstrating its superiority over several state-of-the-art multi-task learning
models.

The significance of our approach is that it is capable of exploiting knowledge
across tasks from multiple heterogeneous sources that might differ in their fea-
tures. For example, in a multi-hospital scenario, patient records extracted from
different hospitals may contain hospital-specific features apart from the usual
phenotypical features. Hospital-specific features may include additional infor-
mation such as genomic data, which may not be widespread across all hospitals,
or differential features may result from different interventions practices across
hospitals. Our model can separate the hospital-specific features from the phe-
notypical features, and confine the joint modeling only along the common phe-
notypical features. This capability offers accurate modeling of real data and is
absent in conventional models.

2 The Proposed Model

We propose a new multi-task learning model that can capture finer relationships
between tasks by modeling feature-specific task relatedness. Let us assume we
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have T0 learning tasks, indexed as t = 1, . . . , T0. For the t-th task, the training
set is denoted as {(xti, yti) | i = 1, . . . , Nt} where xti ∈ R

M is a M -dimensional
feature vector and yti is the target, usually real-valued for regression and binary-
valued for binary classification problems. Let βt denote the weight vector for the
task t, we also refer to this as task parameter. Collectively, we denote the data
of t-th task by Xt = (xt1, . . . ,xtNt

)T and yt = (yt1, . . . , ytNt
)T and all the task

parameters as β = (β1, . . . , βT0). When tasks differ in some of the features, a
common feature list can be obtained via their union.

2.1 Formulation

Since our goal is to develop a MTL model that allows multiple task relationships
(one for each correlated feature subset) between any two tasks, we simultane-
ously learn several correlated feature subsets and use a task covariance matrix to
capture task relationships with respect to each feature subset. In learning these
correlated feature subsets, our idea is that relatedness of tasks along the fea-
tures of a subset are similar. These feature subsets can be thought of the latent
semantic bases of a low dimensional subspace. We represent this low dimensional
subspace using a matrix U where each column is a basis vector of the subspace.
The task parameter βt is represented in this subspace using θt as βt = Uθt. Col-
lectively, we denote these representations as Θ = (θ1, . . . , θT0). The k-th row of
this matrix is denoted as θ(k). We unify the subspace learning with the regular-
ized multi-task learning to construct a model that allows joint modeling between
tasks at a finer level using multiple task relatedness instead of a single aggre-
gated relatedness. The proposed model is learnt by minimizing the following cost
function

min
U,Ω1:K ,θ1:T0

∑

t

||XtUθt − yt||2 + η||U||2F +
K∑

k=1

[
λ1θ

T
(k)θ(k) + λ2θ

T
(k)Ω

−1
k θ(k)

]

(1)

s.t. Ωk � 0, tr(Ωk)=1 ∀k,

where the multi-task learning is achieved due to the last two terms that reg-
ularize the least-square loss using parameters λ1, λ2, and Ωk is a task-to-task
covariance matrix specific to k-th feature subset. We refer to this model as
Multi-Relational Multi-Task Learning (MR-MTL).

2.2 Optimization

The optimization of the cost function in Eq (1) involves minimization with
respect to U, Ω1:K and θ1:T0 . Given U, the cost function is jointly convex in Ω1:K

and θ1:T0 , and separable for each k. Similarly, given Ω1:K and θ1:T0 , the cost func-
tion is convex in U and the optimal solution has a closed form expression. This
property of the cost function suggests an iterative algorithm for optimization.
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Optimizing U given Θ, Ω1:K : For a fixed Θ, Ω1:K , the cost in (1) becomes
a regularized least square function in U and has a closed form solution. The
optimal solution can be obtained by equating the gradient of Eq (1) to zero as
below

∑

t

XT
t (XtUθt − yt) θT

t + ηU = 0.

To solve the above equation, we apply ‘vec’ operator. This operator when applied
to a matrix concatenates all the columns one-by-one below the previous columns
to form a long vector. Applying ‘vec’ operator, the above linear equation in U
can be written as

vec

(
∑

t

XT
t XtUθtθ

T
t

)

+ vec (ηU) = vec
(
XT

t ytθ
T
t

)
,

which can be simplified to obtain the following linear equation for U
[
∑

t

(
θtθ

T
t

) ⊗ (
XT

t Xt

)
+ ηI

]

vec (U) = vec
(
XT

t ytθ
T
t

)
(2)

where we use the following property of vec operator: vec (AXB) =(
BT ⊗ A

)
vec (A). The above equation can be solved using LU or QR factoriza-

tions, which are more efficient and offer better numerical stability than a matrix
inverse based solution.

Optimizing Θ given U, Ω1:K : Given U, Ω1:K , the optimization problem in
(1) becomes

min
θ1:T0

∑

t

||XtUθt − yt||2 +
K∑

k=1

[
θT
(k)

(
λ2Ω

−1
k + λ1I

)
θ(k)

]
,

where the first term involves the columns of matrix Θ and the second term
involves the rows of matrix Θ. Although at first instance, it seems like a difficult
problem to solve, we can optimize the above cost function in terms of rows of Θ,
i.e. θ(k) and obtain a closed form solution. For this, we take its derivative w.r.t.
θ(k) and set it to zero to obtain the following relation

[
θT
1 C

1
(k), . . . , θ

T
T0
CT0

(k)

]T

+
(
λ2Ω

−1
k + λ1I

)
θ(k) =

[
d1k, . . . , dT0

k

]T

where we define Ct � UTXT
t XtU and dt � UTXT

t yt for task t. We note
that Ct

(k) and dt
k denotes k-th row of matrix Ct and k-th element of vector dt

respectively. The above equation can be further simplified to a system of linear
equations as below

[
λ2Ω

−1
k + λ1I + diag (ck)

]
θ(k) =

[
d1k, . . . , dT0

k

]T

− z(k), (3)
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where we define z(k) �
[∑

k′ �=k θk′1C1
kk′ , . . . ,

∑
k′ �=k θk′T0C

T0
kk′

]T

and ck �
[
C1

kk, . . . ,CT0
kk

]
. We note that Eq (3) can be efficiently solved using Cholesky

decomposition.

Optimizing Ω1:K given Θ, U: Given Θ, U, the optimization problem in (1)
becomes

min
Ω1:K

K∑

k=1

[
θT
(k)Ω

−1
k θ(k)

]
s.t. Ωk � 0, tr(Ωk)=1 ∀k, (4)

which can be independently optimized for each Ωk. To get the solution of above
problem, define Sk = θ(k)θ

T
(k) and consider

θT
(k)Ω

−1
k θ(k) = tr

(
Ω−1

k Sk

)
tr (Ωk) = tr

((
Ω

− 1
2

k S
1
2
k S

1
2
k Ω

− 1
2

k

)
tr

(
Ω

1
2
k Ω

1
2
k

))
.

In the above we have used tr (Ωk) = 1. Further defining A = Ω
− 1

2
k S

1
2
k , B = Ω

1
2
k

and noting the positive semi-definite property of these matrices, we can apply a
Cauchy-Schwarz Inequality on the inner product of trace, i.e. tr

(
A2

)
tr

(
B2

) ≥
(tr (AB))2 to get

tr
((

Ω
− 1

2
k S

1
2
k S

1
2
k Ω

− 1
2

k

)
tr

(
Ω

1
2
k Ω

1
2
k

))
≥

(
tr

(
Ω

− 1
2

k S
1
2
k Ω

1
2
k

))2

=
(
tr

(
S

1
2
k

))2

.

In the above expression, an Ωk that leads to the equality, corresponds to the
optimal solution of (4). The equality is satisfied when Ωk = 1

αS
1
2
k where α is a

scalar. Since the optimal Ωk has to satisfy the constraint tr (Ωk) = 1, we get

α = tr
(
S

1
2
k

)
. Therefore, Ωk = S

1
2
k /tr

(
S

1
2
k

)
. Algorithm 1 outlines step-by-step

procedure for MR-MTL.

Computational Complexity: The order of complexity for updating θ(k)in Eq
(3) is O

(
T 3
0

)
. Similarly, the order of complexity to update U is O

(
M3 × K3

)
.

Finally the order of complexity to update Ωk for each k is O
(
T 2
0

)
. There-

fore, overall complexity for the proposed MR-MTL per iteration is of the order
O

(
M3K3 + T 3

0 + KT 2
0

)
.

3 Experiments

We present our experimental results on synthetic and real datasets. Synthetic
data is used to create a niche scenario where the proposed MR-MTL model is
expected to work better than other models. To evaluate the effectiveness of our
model for real world applications, we use two classification and two regression
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Algorithm 1. The proposed MR-MTL
1: Input: Multi-task data {Xt,yt}T0

t=1, parameters λ1, λ2, η and subspace dimension
K.

2: Output: Task parameters β1:T0 , matrix U, matrix Θ and matrices Ω1:K .
3: Initialization: Initialize β1:T0 using single task learning and matrix U randomly.

Initialize matrix Θ as Θ = U†β.
4: repeat
5: update U using Eq. (2).
6: for k = 1 : K do
7: update θ(k) using Eq. (3).

8: update Ωk as Ωk = S
1
2
k /tr

(
S

1
2
k

)
where Sk = θ(k)θ

T
(k).

9: end for
10: until convergence

datasets and compare MR-MTL with single-task learning (STL) and three state-
of-the-art multi-task learning baselines: MTFL [6], GMTL [1] and MTRL
[16]. All these models are based on optimization frameworks. Similar to the pro-
posed MR-MTL, the first two baselines (MTFL and GMTL) learn a low dimen-
sional subspace for task parameters. In the optimization, MTFL uses a L2/L1

mixed norm penalty term for joint modeling of all tasks while GMTL first learns
groups of related tasks and uses a L2/L1 mixed norm penalty for each task
group. MTRL, on the other hand, uses a covariance matrix for learning task
relationship allowing to exploit the knowledge from negatively related tasks. All
these models use regularization parameters, which are learnt using a grid search
over

{
10−3, 10−2, 10−1, 100

}
via cross-validation. For performance evaluation, we

use the following metrics: Explained variance (R2) and root-mean-square-error
(RMSE) for regression; area under ROC curve (AUC) and F1-measure for clas-
sification.

Table 1. Performance evaluation for Synthetic data in terms of Explained Variance
(R2) and root-mean-square-error (RMSE). The performance is averaged over 40 ran-
domly generated datasets. The numbers in parenthesis are the corresponding standard
errors.

Performance Metric STL MTRL MR-MTL

Explained Variance (↑) 0.882 (0.006) 0.798 (0.007) 0.993 (0.000)

RMSE (↓) 0.532 (0.012) 0.727 (0.015) 0.132 (0.003)

3.1 Experiments with Synthetic Data

Our synthetic data is generated by creating 30 related tasks where each task is to
learn a linear regression model in a 9-dimensional feature space given 15 super-
vised training instances. We create three groups of tasks: group-1 (tasks 1-10),
group-2 (tasks 11-20) and group-3 (tasks 21-30). We ensure that tasks in each
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Fig. 1. Experimental results for Synthetic data. (a) True task parameters (b) task
parameters estimated by MTRL [16] (c) task relatedness estimated by MTRL, shown
as Hinton plot (‘green’ denotes positive values and ‘red’ denotes negative values); (d)
task parameters estimated by the proposed MR-MTL (e) Performance variations of
MR-MTL w.r.t. subspace dimension (f) Convergence plot for MR-MTL algorithm (g)-
(i) task relatedness estimated by MR-MTL for the features in the first, second and
third basis respectively, shown as Hinton plot. The first basis is about features ‘1-3’,
the second basis is about features ‘4-6’ and the third basis is about ‘7-9’.
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group have the same parameters and are thus strongly correlated. Given these
tasks, our idea is to create multiple relationships across task groups by using
feature-dependent task relationships in various forms: positive relationship, neg-
ative relationship and no relationship. Figure 1 (a) depicts the simulated task
parameters (i.e. β) for all the tasks along 9 features. Along the first three fea-
tures, task group-2 and task group-3 are positively related but both are unrelated
to task group-1. Similarly, along the next three features, task group-1 and task
group-3 are positively related but both are unrelated to task group-2. Finally,
along the last three features, task group-1 and task group-2 are negatively related
but both are unrelated to task group-3. Given these task parameters, feature
vectors are randomly drawn from a 9-dimensional multi-variate Gaussian dis-
tribution as xti ∼ N (0, I). The corresponding target yti is randomly drawn as
yti ∼ N (

βT
t xti, 0.1

)
.

We randomly split the synthetic dataset in two parts using 70% instances for
training and the remainder for test. We run our proposed MR-MTL algorithm
and compare its performance to one of the related baseline, MTRL for illustration
purposes. Figure 1 (b) and (d) show the task parameters estimated by MTRL
and the proposed MR-MTL respectively. Clearly the task parameter estimates of
MR-MTL are much closer to the true task parameters (Figure 1 (a)). The better
estimates by MR-MTL can be explained by looking at the task relationships
learnt by both methods, which are shown in Figure 1 (c) for MTRL and Figure
(g)-(i) for MR-MTL using Hinton plots. The task relationship learnt by MTRL
is averaged across all 9 features, causing overestimation of the unrelatedness
while underestimation of the strong relatedness. In contrast, the proposed MR-
MTL accurately estiamtes task relationships by using three separate feature
groups (one feature group represented by each basis of the subspace as we use
K = 3) and thus learning one task relationship matrix for each feature group.
This added flexibility allows MR-MTL to have a finer and differential level of
control in joint modeling of tasks along different features. We use the held out
test set to evaluate the performance of MR-MTL and compare it with MTRL in
Table 1. The reported results are averaged over 40 randomly generated datasets
along with corresponding standard errors. As seen from the Table, MR-MTL
clearly outperforms both STL and MTRL with respect to two evaluation metrics
- Explained variance (R2) and root mean square error (RMSE). Due to presence
of different task relationships in data, MTRL is unable to estimate the task
relationships and thus performs worse than STL. The performance variations
of MR-MTL with respect to subspace dimension (K) is shown in Figure 1 (e),
wherein the best performance is achieved at K = 3, however, the performance
degrades very slowly with increasing values of K. An example of the convergence
behavior of proposed MR-MTL is shown in Figure 1 (f) - the algorithm quickly
converges within 50 iterations.

3.2 Experiments with Real Data

We use the following classification and regression datasets.
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Landmine Data (Classification): This dataset is created from radar images
collected from 19 landmine fields. This is a benchmark dataset and used widely
for multi-task learning. Each data instance is a 9-dimensional representation of
each image formed by concatenating different image based features. The task
is to detect images with landmines. Treating each landmine field as a task, we
jointly model them via multi-task learning. For each task we randomly split the
data in two parts: 30% instances for training and the remainder for testing. The
results are averaged over 40 training-test splits.

Acute Myocardial Infarction (AMI) Data (Classification): This dataset is col-
lected from a hospital in Australia (Ethics approval #12/83). It contains records
of patients who visited the hospital during 2007-2011 with AMI as the primary
reason for admission. The cohort is first divided into two main AMI types:
STEMI and Non-STEMI, each of which is further divided into 4 subcohorts
based on the major interventions administered (coronary artery bypass surgery,
coronary artery stenting, other intervention or no intervention at all), resulting
in a total of 8 subcohorts. The task is to predict readmission within the first
30-days of discharge due to any heart related medical emergency. Out of the
original 8 subcohorts only 5 are chosen as they have at least 2 positive examples
per year. In the selected subcohorts, total number of patients varied from 50-182
per year. The features used are patients demography (gender, age, occupation)
and health status in terms of Elixhauser comorbidities [17], aggregated over 3
time scales: 1 month, 3 months and 1 year prior to their AMI admission. Evalu-
ation is performed progressively with patients from 2009, 2010 and 2011 for test
whilst using all past patients data before the test year for training.

Computer Survey Data (Regression): This dataset [6] contains ratings of 20
computers by 190 students based on 13 binary features (cf. Figure 2). Each
rating value lies between 0-10 indicating likelihood of buying a computer. We
treat ratings by each student as a task, thus having a total of 190 tasks. As these
tasks are related, we jointly model them under the setting of multi-task learning.
Following [15], we use the first 15 computer ratings for training and test using
ratings of the last 5 computers.

SARCOS Data (Regression): The data relates to an inverse dynamics problem
for a seven degrees-of-freedom SARCOS anthropomorphic robot arm. The task is
to map from a 21-dimensional input space (7 joint positions, 7 joint velocities, 7
joint accelerations) to the corresponding 7 joint torques, giving rise to 7 mapping
tasks. For this dataset 100 random examples are sampled for training and another
400 are sampled randomly for test. This is to demonstrate the efficacy of multi-
task learning algorithm for small data. We average the performance over 40
random training-test datasets.

Experimental Results. Table 2 presents a comparison of our proposed MR-
MTL algorithm with STL, and other baseline MTL algorithms on Landmine
dataset in terms of both prediction AUC and F1. Predictive performance of
MR-MTL for different numbers of feature subsets (K=1, 2, and 3) are also
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reported. Clearly, MR-MTL with K=2 (AUC 0.775, F1 0.880) outperforms all
other methods by a good margin. The closest performer is MTRL (AUC 0.760,
F1 0.872), whilst other methods are further lower. The landmine dataset con-
tains tasks which can be broadly divided into two groups based on whether a
task is a landmine detection problem at a foliated region or in a desert region.
Interestingly, MR-MTL also found K=2 to be the best for this dataset.

Table 3 presents a similar comparison of performance on the AMI dataset.
Predictive performance at three different training-test scenarios are presented.
For all those settings K=2 is found to give the best performance for MR-MTL.
For the test year 2009, MR-MTL closely follows MTRL in terms of AUC and
GMTL in terms of F1. For the two other test years, MR-MTL convincingly
outperforms all other methods in terms of both AUC and F1. For both the
scenarios, the AUC is above 0.6 and F1 is above 0.75, whilst the same for other
methods are much lower. There is also gradual improvement of performance by
MR-MTL as more and more training data is available when tested on later years,
whilst all other methods behaved erratically.

Table 2. Comparative AUC of MR-MTL against baseline methods on Landmine
dataset. Training and test splits are generated randomly with 30% for training and
the rest for test. Average over 40 such splits are reported. Corresponding standard
errors are reported in brackets.

MR-MTL
STL K=1 K=2 K=3 MTRL MTFL GMTL

AUC
(std
err)

0.734
(0.002)

0.664
(0.007)

0.775
(0.003)

0.757
(0.002)

0.760
(0.001)

0.733
(0.002)

0.720
(0.002)

F1
(std
err)

0.853
(0.013)

0.795
(0.012)

0.880
(0.008)

0.873
(0.008)

0.872
(0.008)

0.847
(0.012)

0.839
(0.014)

Table 3. Comparative AUC and F1 of MR-MTL on AMI dataset against baseline
methods. Test is performed progressively at 2009, 2010, and 2011 with corresponding
past years data being used for training.

MR-
MTL

Training years Test
year

Measure STL K=2 MTRL MTFL GMTL

2007-08 2009
AUC 0.507 0.584 0.588 0.570 0.487
F1 0.517 0.568 0.518 0.452 0.613

2007-09 2010
AUC 0.558 0.606 0.521 0.539 0.552
F1 0.676 0.781 0.492 0.576 0.669

2007-10 2011
AUC 0.545 0.614 0.588 0.554 0.535
F1 0.683 0.826 0.502 0.723 0.599

Table 4 & 5 presents results on two regression dataset namely, Computer and
SARCOS datasets. For computer dataset, MR-MTL with K=3 performs (RMSE
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Table 4. Comparative RMSE and explained variance (R2) of MR-MTL on Computer
dataset against the baselines. Rating data from the first 15 computers are used for
training and the remaining 5 for test. MR-MTL is evaluated at four different numbers
of latent basis (K=2, 3 and 4).

MR-
MTL

STL K=2 K=3 K=4 MTRL MTFL GMTL

RMSE 2.085 1.711 1.664 1.673 1.766 2.056 2.638

Explained
Variance (R2)

0.238 0.309 0.318 0.317 0.291 0.220 0.160

Table 5. Comparative RMSE and explained variance (R2) of MR-MTL on SARCOS
dataset with respect to the baselines methods. Randomly selected 100 data points
are used for training and 1400 for test. Average performance over 40 such random
experiments are reported. Respective standard errors are reported in brackets.

MR-MTL
STL K=5 K=6 K=7 MTRL MTFL GMTL

RMSE
(std err)

3.449
(0.025)

3.257
(0.019)

3.248
(0.017)

3.218
(0.018)

6.945
(0.032)

4.722
(0.030)

3.496
(0.025)

Explained
Variance (R2)

(std err)

0.823
(0.001)

0.798
(0.003)

0.818
(0.003)

0.829
(0.002)

0.379
(0.003)

0.640
(0.003)

0.821
(0.002)

1.664, R2 0.318) the best followed by MTRL (RMSE 1.766, R2 0.291). All other
baselines have higher RMSE values. To illustrate the behavior of MR-MTL fur-
ther, we present the basis vectors corresponding to K=3 in Fig 2 (a). The three
basis vectors captures 3 different grouping of features. The first basis (U1) cap-
tures positive preference for high performance (CPU speed, RAM size) along
with positive preference for having CD-ROM. The second basis (U2) captures
positive preference for CD-ROM, whilst non-preference for higher CPU speed
with larger cache. The third basis (U3) captures price of the unit as a major
factor. Fig 2(b) shows the histogram of task relatedness along different basis.
It is interesting to note that task-relatedness along U3, whose major factor is
price shows higher prevalence of positive relatedness (the histogram for U3 is
skewed on the positive side), which implies that many raters give importance to
price similarly. This is intuitive since price is always a major factor in consumer
spending. We see that histogram on U1 have high peak around zero, imply-
ing that preference for high performance and CD-ROM is more independent in
nature. Conversely, highest disagreement among the raters is observed along U2.
For SARCOS dataset, MR-MTL with K=7 performs (RMSE 3.198, R2 0.832)
the best, followed by GMTL (RMSE 3.349, R2 0.821). Other baseline methods
have considerable higher RMSE and lower R2 values. For this dataset, the tasks
are low-related, therefore, other MTL methods which tries to regularize strongly
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(a) Subspace basis matrix. (b) Histogram of task relatedness.

Fig. 2. Illustration of results of MR-MTL with K=3 on Computer dataset. (a) Subspace
basis matrix with basis U1, U2 and U3. Only weights with absolute value more than
0.1 are shown., and (b) Histogram of task relatedness with respect to each basis.

performed lower, whereas, MR-MTL with K=7 is able to offer the right balance
between the flexibility and regularization leading to better performance.

4 Conclusion

We have presented a novel multi-task learning framework that allows joint mod-
eling of tasks based on multiple relationship between them, where each relation
is independently defined on a set of semantically related features. This helps in
modeling scenarios where task-to-task relationships differ based on feature sets
or where tasks have slightly different features sets. To model multiple task relat-
edness, we learn several feature subsets using a low dimensional subspace and
use a task covariance matrix to capture task relationships (both positive and
negative) along each feature subset. We formulate the model as an optimization
problem and derive an efficient solution. Using both synthetic and real datasets,
we demonstrate that the performance of proposed model is better than several
state-of-the-art multi-task learning algorithms.
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Abstract. Multi-task learning (MTL) has been shown to improve pre-
diction performance in a number of different contexts by learning models
jointly on multiple different, but related tasks. In this paper, we propose
to do MTL on general network data, which provide an important context
for MTL. We first show that MTL on network data is a common problem
that has many concrete and valuable applications. Then, we propose a
metric learning approach that can effectively exploit correlation across
multiple tasks and networks. The proposed approach builds on structural
metric learning and intermediate parameterization, and has efficient an
implementation via stochastic gradient descent. In experiments, we chal-
lenge it with two common real-world applications: citation prediction
for Wikipedia articles and social circle prediction in Google+. The pro-
posed method achieves promising results and exhibits good convergence
behavior.

Keywords: Multi-task learning · Metric learning · Social network · Link
prediction

1 Introduction

Multi-task learning (MTL) [2,3,6,7,21] considers the problem of learning models
jointly and simultaneously over multiple, different but related tasks. Compared
to single-task learning (STL), which learns a model for each task independently
using only task specific data, MTL leverages all available data and shares knowl-
edge among tasks, thereby resulting in better model generalization and predic-
tion performance. The underlying principle of MTL is that highly correlated
tasks can benefit from each other via joint training, but additional care should
be taken to respect the distinct nature of each task, i.e., it is usually inappro-
priate to pool all available data and learn a single model for all tasks.

Despite the popularity and value of MTL, most MTL methods are developed
for tasks on i.i.d. data. Standard examples include phoneme recognition [14] and
image recognition [19]. Explicitly correlated data, often represented in the form
of a network, is widely available, such as social network, citation network and
influence network. It provides a rich source of new application contexts to MTL.
Due to the diversity and variation in networks (e.g., multi-relational links or
multi-category entities/nodes), various tasks can be performed and often a rich
correlation exists between them. In the following, we give two common scenarios
where there is abundant correlation between tasks and it is beneficial to apply
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 317–329, 2015.
DOI: 10.1007/978-3-319-18038-0 25
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MTL to exploit it. (These scenarios are also the settings for the experiments
using real-world data that we present in Section 4).

Scenario 1: Article Citation Prediction
The citation prediction problem has been studied extensively [1,8–10,18]. People
either build a predictive model for a unified network [10] (i.e., a citation network
that contains papers across all subject areas) or build predictive models for each
area independently [16]. Since article content and citation pattern varies across
different areas, the former methodology ignores the difference between areas.
However, some areas, while labeled as different are still related, in the sense of
both content and citation pattern. Thus the latter methodology fails to exploit
the correlation among subject areas. For example, computer science and elec-
trical engineering articles may be classified or tagged as different areas, but in
many cases they may still have much in common, or at least have significant sim-
ilarity or overlap. In this case, to build predictive models for citations, a learning
algorithm that is capable of utilizing these overlaps and explicit commonalities
has advantages over traditional methods.

Scenario 2: Social Circle Prediction
Members of online social networks tend to categorize their links to followers/
followees. For example, many social networking platforms enable coarse-scale
categorizations such as “family members,” or “friends and colleagues.” Finer
gradations allow for categorizations such as colleagues at particular companies
or classmates at specific schools. A person’s social circle, studied in [11], is the
ego network of a social network user (or “ego”). This is the (star-shaped) sub-
graph on “ego” and all of ego’s followers comprising all the links joining ego
to ego’s followers that belong to the same category. Given a friend or stranger,
the goal of social circle prediction is to assign him/her to appropriate social
circles. Because some social circles are related to each other (e.g., family mem-
bers and childhood friends may share some common informative features such
as geographical proximity), advantages may very well accrue if the relatedness
of the entities is used for the various predictions, instead of building a predictive
assignment model for each social circle independently.

As these scenarios suggest, correlations commonly exist among tasks on net-
work data and there should be significant advantages to developing methods that
can leverage it. Different from i.i.d. data, network data not only has attributes
(metadata) associated with each entity (node), but also rich structural informa-
tion, mainly encoded in the links. Therefore, we employ structural learning to
exploit both attributes and structure of networks. Specifically, we adopt structure
preserving metric learning (SPML) [16], which was originally developed for single-
task learning on networks. Our proposed method, MT-SPML, empowers SPML
with the ability of doing MTL over multiple tasks and networks. SPML learns a
single Mahalanobis distance metric on node attributes for a single task by using
network structure as supervision, so that the learned distance function encodes
the structure. Our method learns Mahalanobis distance metrics jointly over all
tasks. More precisely, it learns a common metric for all tasks and one metric for
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each individual task. The common metric construction follows the methodology
of shared intermediate parameterization [7,12], which allows sharing knowledge
between tasks. While a task specific metric alone captures task specific informa-
tion, when combined they work together to preserve the connectivity structure
of the corresponding network. The learned metrics of SPML and MT-SPML are
useful to many tasks on network, one of which is predicting future link pattern.
We further show that as in the case of SPML, MT-SPML can be optimized with
efficient online methods similar to OASIS [4] and PEGASOS [15] via stochastic
gradient descent. Finally, MT-SPML is designed for general networks, thus can
be applied extensively in a wide variety of problems. In experiments, in order to
demonstrate the advantages of MTL on network data, we apply MT-SPML to two
common real-world prediction problems (citation prediction and social circle pre-
diction), and achieve promising results for link prediction.

2 Related Work

MTL is a popular research topic and has been studied extensively and systemat-
ically for i.i.d. data. To name a few, Yu et al. [21] applied hierarchical Bayesian
modeling for text categorization. Evgeniou et al. [7] extended Support Vector
Machines (SVMs) to MTL via parameter sharing. Following [7], Parameswaran
et al. [12] proposed the multi-task version of large margin nearest-neighbor met-
ric learning [20]. However, there have been only few works focusing on MTL
on relational data [5,17,22]. Of greatest relevance for our work is [13] wherein
Qi et al. carefully designed a mechanism to sample across networks to predict
missing links in a target network. Our paper differs from it in several ways.
First, we aim at improving prediction performance of all networks, while [13]
targets at a specific network and uses other networks as additional sources.
Second, MT-SPML learns a joint embedding of both attribute features and net-
work topological structure. Thus, the learned metrics can predict link patterns
solely from node attributes while [13] tries to combine linearly attribute features
with hand-constructed local structure information such as the number of shared
neighbors between nodes. This suffers from the well-known “cold start” problem
when structure information is limited (e.g. new nodes).

3 Our Approach

In this section, we first cover the technical details of SPML and then those of
MT-SPML.

3.1 Notations and Preliminaries

Given a network on n nodes we represent it as a pair G = (X,A), where
X ∈ R

d×n represents the node attributes and A ∈ R
n×n is the binary adja-

cency matrix, whose entry Aij indicates the linkage information between node
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i and node j. Recall that a Mahalanobis distance is parameterized by a positive
semidefinite (PSD) matrix M ∈ R

d×d, where M � 0. The corresponding distance
function is defined as dM(xi, xj) = (xi − xj)�M(xi − xj). This is equivalent to
the existence of a linear transformation matrix L on the feature space such that
M = L�L. Given a metric M, to predict the structure pattern of X we adopt a
simple k-nearest neighbor algorithm, which is denoted as C, meaning each node
is connected with its top-k nearest neighbors under the defined metric. Mathe-
matically, we say M is structure preserving or that it preserves A, if C(X,M)
closely approximates A.

Let G = {G1,G2, . . . ,GQ} denote a set of networks. Each individual network
Gq has its own Xq and Aq. We use q to index the network so that Aqij stands
for element (i, j) in Aq. Similarly, xqi represents the feature of node i in Xq. In
algorithms, we will use a superscript to index over iteration, e.g., Mk refers to
the k-th iteration of M under the relevant iterative process.

3.2 SPML

The goal of SPML is to learn M from a network G = (X,A), such that M
preserves A. This problem has a semidefinite max margin learning formulation,

min
M�0

λ

2
||M||2F + ξ (1)

subject to the following constraints:

∀i,j , dM(xi, xj) ≥ (1 − Aij)max
l

(AildM(xi, xl)) + 1 − ξ. (2)

In Eq.(1) || · ||F denotes the Frobenius norm and it takes on the role as a regu-
larizer on M with λ representing the corresponding weight parameter. The key
piece for achieving structure preserving is the set of linear constraints in Eq.(2).
This essentially enforces that from node i, the distances to all disconnected
nodes must be larger than the distance to the furthest connected node. Thus,
when the constraints in Eq.(2) are all satisfied, C(X,M) will exactly reproduce
A. Furthermore, to allow for violation (with penalty), the slack variable ξ is
introduced.

With the many constraints in Eq.(2), optimizing Eq.(1) becomes unfeasible
when the network has even a few hundred nodes. But a rewriting of the problem
as follows makes possible the use of stochastic subgradient descent (see Algorithm
1):

f(M) =
λ

2
||M||2F +

1
|S|

∑

(i,j,l)∈S

max(ΔM(xi, xj , xl) + 1, 0) (3)

where ΔM(xi, xj , xl) = dM(xi, xl)−dM(xi, xj) and S = {(i, j, l)|Ai,l = 1∧Ai,j =
0}. Thus, inclusion of the triplet (i, j, l) means that there is a link between node i
and node l, but not between i and j. The subgradient of Eq.(3) can be calculated
as
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� f = λM +
1

|S|
∑

(i,j,l)∈S+

(

(xi − xl) (xi − xl)� − (xi − xj)(xi − xj)�
)

(4)

where S+ is the set of triplets whose hinge losses are positive. At every itera-
tion t of Algorithm 1, B triplets are randomly sampled and the corresponding
stochastic subgradient is calculated with regard to the current metric Mt and
these triplets. Since Algorithm 1 is a variant of PEGASOS [15], its complexity
does not depend on the training set size n, but on the feature dimensionality d.
For the number of iterations T needed to reach convergence, as proved by [15,16]
it depends on the parameter λ and the optimization error, which measures how
close the final objective value is to the global optimal objective value. Notice that
after updating M, it is optional to project the current M to be positive semidef-
inite (PSD). Experiments in [16] show that delaying this operation to the end
of the algorithm works well in practice and reduces computational complexity.

3.3 MT-SPML

In this section, we explain how MT-SPML extends SPML to the multi-task
setting. The input is a set of networks G = {G1,G2, . . . ,GQ}. Once again,
each network is Gq = (Xq,Aq). Our approach is a general method. It works in
settings for which there either are or are not nodes overlapping between networks.
Note that the nodes of all networks are assumed to have a common feature
space. MT-SPML treats each network as a task. It follows the idea of shared
intermediate parametrization [12] to enable knowledge transfer between tasks.
The goal is to learn jointly over G a task specific metric Mq for each task and
a common metric M0, through which knowledge transfers among tasks, so that
the combined metric (M0 + Mq) respects the structure of Gq, for all Gq ∈ G.
The distance between two nodes xqi, xqj ∈ Gq is defined as dq(xqi, xqj) = (xqi −
xqj)�(M0 +Mq)(xqi −xqj). And MT-SPML is formulated as the solution to the
regularized learning problem

min
M0,M1,...,MQ

γ0
2

||M0 − I||2F +
Q∑

q=1

γq

2
||Mq||2F +

Q∑

q=1

ξq (5)

subject to the following constraints:

∀q, i, j, : dq(xqi, xqj) ≥ (1 − Aqij)max
l

(Aqildq(xqi, xql)) + 1 − ξq. (6)

In order to solve this we rewrite it by incorporating the constraints

f(M0,M1, . . . ,MQ) =
γ0
2

||M0 − I||2F +
Q∑

q=1

γq

2
||Mq||2F

+
Q∑

q=1

1
|Sq|

∑

(i,j,l)∈Sq

max(Δq(xqi, xqj , xql) + 1, 0)

(7)
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where Δq(xqi, xqj , xql) = dq(xqi, xql) − dq(xqi, xqj). Although Eq.(7) has more
unknown variables than Eq.(3), with respect to each unknown, it is in the same
form as Eq.(3). Therefore, Eq.(7) can be solved with the same stochastic sub-
gradient descent method using partial subgradient. The partial subgradients of
Eq.(7) with respect to M0 and Mq are

�M0 f = γ0 (M0 − I) +
Q∑

q=1

1
|Sq|

∑

(i,j,l)∈Sq+

(

(xqi − xql) (xqi − xql)
�

− (xqi − xqj) (xqi − xqj)
�

)

(8)

and

�Mq f = γqMq +
1

|Sq|
∑

(i,j,l)∈Sq+

(

(xqi − xql) (xqi − xql)
� − (xqi − xqj) (xqi − xqj)

�
)

(9)

The optimization algorithm outlined in Algorithm 2 runs for T iterations. Within
each iteration, it does two things: (1) Randomly samples B triplets for each task,
then calculates the partial subgradient and updates the corresponding unknowns;
(2) Calculates the partial subgradient of the common metric M0 and updates it
using the Q × B triplets already sampled. Optionally, the metric matrices can
be projected to be PSD. The analysis of Algorithm 1 still holds for Algorithm
2. Thus it scales with regard to feature dimensionality, optimization error and
the parameters γq, but not the training set size.

Algorithm 1 . Optimization of
SPML
Input: G = (X,A), λ, T, B
Output: M � 0

1: M0 ← Id×d

2: for t = 1, 2, . . . , T do
3: ηt ← 1

λ×t

4: s ← ∅
5: for b = 1, 2, . . . , B do
6: Random sample (i, j, l) from S
7: s ← s ∪ (i, j, l)
8: end for
9: Mt ← Mt−1 − ηt � f(Mt−1, s)
10: Mt ← [Mt]+
11: end for
12: return MT

Algorithm 2 . Optimization of MT-
SPML
Input: G = {G1,G2, . . . ,GQ}, where Gq =
(Xq,Aq),

γ0, γ1, . . . , γQ, T , B
Output: M0,M1, . . . ,MQ � 0

1: for q = 0, 1, . . . , Q do
2: M0

q ← Id×d

3: end for
4: for t = 1, 2, . . . , T do
5: for q = 1, 2, . . . , Q do
6: ηt

q ← 1
λ×t

7: sq ← ∅
8: for b = 1, 2, . . . , B do
9: Random sample (i, j, l) from Sq

10: sq ← sq ∪ (i, j, l)
11: end for
12: Mt

q ← Mt−1
q − ηt

q �Mq f(Mt−1
q , sq)

13: Mt
q ← [Mt

q ]+

14: end for
15: Mt

0 ← Mt−1
0 − ηt

0 �M0
f(Mt−1

0 , {s1, s2, . . . , sQ})
16: Mt

0 ← [Mt
0]+

17: end for
18: return MT

0 ,MT
1 , . . . ,MT

Q � 0
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4 Experiments

In this section, we present experimental results on real-world data and we adopt
link pattern prediction as the performance measurement. We apply MT-SPML
to the two scenarios mentioned in Section 1: article citation prediction and social
circle prediction. We show that in both cases, MT-SPML significantly improves
performance and has various advantages.1

4.1 Citation Prediction on Wikipedia

The data is obtained from [16]. The articles of the following three areas were
crawled from Wikipedia: search engine, graph theory and philosophy, each of
which has 269, 223 and 303 articles respectively. The citations between articles
within each area are also crawled. The number of citations within each area are
332, 917 and 921. The goal is, given an article, to predict the referencing of
other articles within its area solely from its content. Therefore, at test time, no
reference information from the test article is made available at all. The challenge
of this problem is the fact that: (1) there is little node overlap between networks
(i.e., an article belongs to only one area), thus the marginal distribution of node
attributes P (Xq) may vary dramatically from area to area, which poses difficulty
for knowledge transfer; (2) the conditional probability of structure on attributes
P (A|X) may also vary, because some words are informative and indicative for
some areas, but not for others. Bag-of-words (i.e., word frequency) is used to
capture article content and the dimensionality is 6695. The high dimensionality
reduces the need to learn full matrices. Therefore, we choose to learn diagonal
metric matrices. This further reduces computational complexity. We split the
dataset 80%/20% as training and testing respectively, then fix the testing part
and vary the size of the training set by sampling from the training part. We end
up sampling 20%, 40%, 60%, 80%, and finally 100% of the training part. Model
selection is carried out on the sampled training set via 5-fold cross-validation.
At test time, the goal is to predict links between testing nodes from attributes.
For every test example our algorithm ranks other articles for citation according
to their distances. We build the receiver operator characteristic (ROC) curve for
every test article, and use the average area under the curve (AUC) of the entire
test set as performance measurement. We compare our results with two families
of methods:

SVM Methods. We apply SVM-based methods as part of our baselines. Since
SVM-based methods do not model network structure, we need to construct fea-
tures to encode this information. The training examples are constructed by tak-
ing the pairwise difference of the attributes between two nodes. The training
labels are binary, with 1 representing the existence of a link between two nodes
and 0 the absence. For a given edge, we measure its distance/length using the
output of the classification score, which represents the confidence of having a
link. Although the classification score is inversely proportional to the notion of
1 Code and data are available at author’s website.
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distance, a simple conversion can make the two variables proportional. Thus
ROC and AUC can be calculated. The following specific methods are included:

(1) ST-SVM: This is the normal single-task SVM. An SVM is trained for
each network independently. It does not explore the correlation between tasks.

(2) U-SVM: We train one SVM for all networks by pooling all data together.
We use the capital letter “U” to denote the naive strategy of data pooling. This
ignores the fact that training examples are from different tasks and treats it as
single task learning.

(3) MT-SVM: This is the multi-task SVM in [7]. It jointly learns a common
decision boundary for all and a specific boundary for each task. At test time,
the common and task specific decision boundary together form the final model
for each task. This method exploits task correlations via intermediate parameter
sharing, but does not use network structure at the model level.

SPML methods: We apply three methods that are based on SPML. Com-
pared to SVM-based methods, these methods explicitly model the network struc-
ture information. Therefore, the feature used here is simply the node attributes
and links become linear constraints. Given an edge, its distance is just the Maha-
lanobis distance defined by learned metrics. The following methods are included:

(1) ST-SPML: This is the single-task SPML [16]. A metric is learned for
each network independently. It does not model task correlations.

(2) U-SPML: “U” means data pooling. Training examples from all tasks are
pooled together and the learning procedure is simply ST-SPML. This is a naive
way of sharing knowledge between tasks, but it does not respect the differences
between and distinctiveness of tasks. Thus we expect inferior results, particularly
for less related tasks.

(3) MT-SPML: This is our proposed method. Comparison with these other
methods demonstrates the fact that MT-SPML exploits relatedness missed by
these other methods while respecting the distinctive nature of the individual
tasks.

Finally, we also compare to the direct use of the original feature vector, i.e.,
using Euclidean distance. Other methods in link prediction literature, such as
Adamic-Adar [10], typically heavily rely on local structure of test nodes, thus
will suffer from “cold start” prescribed in our experimental framework.

The results are reported in Fig.1. The first thing we see is that SVM-based
methods perform the worst when there are fewer training examples while the
SPML family achieves good results in all settings, due to its ability to model
structure information. We also find that among the SPML methods, MT-SPML
consistently outperforms the others, which implies that MT-SPML is better at
exploiting task correlations. The least amount of improvement from MT-SPML
is found for philosophy articles. This is in line with intuition as papers related to
search engines and graph (network) theory should have more in common with
each other than either has with philosophy papers.

We also show the convergence behavior of MT-SPML by plotting the value
of |Sq+|, the number of violated constraints among those randomly sampled
triplets, for every task in each iteration. The fewer the number of violated
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constraints, the better the new metric respects the network structure. In experi-
ments we set B, the time of random sampling, to be 10. In order to make a clearer
demonstration, in Fig.2 we set B to be 100. As Fig.2 shows, the numbers of vio-
lated constraints of all tasks drop quickly within the first 1000 iterations and
stabilizes after 4000 iterations. This is in accordance with the previous analysis
and experiments of convergence and efficiency of SPML [16].

4.2 Social Circle Prediction on Google+

Every member of an online social network (e.g., Google+) is the ego of his/her
(sub-)network and tends – or may be forced – to categorize his/her relationships
(e.g. family members, college friends or childhood friends). For each type of rela-
tionship, there is a sub-network associate with it, the social circle (SC), which is
directly formalized in the online structures of Google+ (see [11]). In this section,
given a Google+ social network user (the ego) and his/her friends, we want to pre-
dict his/her SC, namely the type of relationships between ego and ego’s friends
based on profile information. We are only interested in the ego network, mean-
ing that we do not predict the links between friends. A similar topic is studied by
McAuley et al. [11], where the setup is very different from ours. They assume the
observation of an entire ego network, including node attributes and structure, but
not any SC labels, and the goal is to assign SC labels to links in an unsupervised
manner. Our problem uses a supervised learning setting, where we observe only
parts of the network and the corresponding SC labels. For the prediction of each
social circle, we treat it as link prediction. However, as mentioned in Section 1,
the correlation between social circles should be exploited. Thus, we treat the pre-
diction of each social circle as a task, and MT-SPML is applied to learn metrics
jointly over the underlying ego networks of all social circles. Note that, as reported
in [11], SCs largely overlap with each other, which implies strong correlations and
MTL is thus likely to achieve a more significant performance gain. We obtain data
from [11], which was from Google+ users and information is anonymous. We ran-
domly pick one user and his/her social circles for our experiment. The entire ego
network has 4402 nodes and 5 social circles. The profile of all nodes is also pre-
served. There are 6 types of feature: gender, institution, job title, last name, place,
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Fig. 1. Link prediction performance on Wikipedia article data. Training set size is
varied. The larger figure on left is the average AUC performances over all three areas.
Smaller figures on the right separate out the individual performance for each area.
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and university. We build a bag-of-words feature for all feature types and concate-
nate them all, resulting in a feature vector of 2969 dimensions. The data are split
80%/20% as non-overlapping training and testing.

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

Iterations

N
u

m
b

er
 o

f 
vi

o
la

te
d

 c
o

n
st

ra
in

ts

 

 

Search Engine
Graph Theory
Philosophy

Fig. 2. Number of violated con-
straints within first 5500 iterations

Table 1. Node overlap between SCs. Over-
lapping ratios are presented in percentage
(%).

SC 1 2 3 4 5

1 100 1.1 81.9 89.6 84.1

2 1.1 100 0.9 1.1 1.1

3 81.9 0.9 100 73.5 68.9

4 89.6 1.1 73.5 100 93.7

5 84.1 1.1 68.9 93.7 100

ST−SPML MT−SPML{1,2} MT−SPML{1,2,3} MT−SPML{1,2,3,4} MT−SPML{1,2,3,4,5}
0.55

0.6

0.65

0.7

0.75

0.8

0.85

L
in

k 
P

re
d

ic
ti

o
n

 A
U

C
 (

%
)

 

 

Social circle 1
Social circle 2
Social circle 3
Social circle 4
Social circle 5

Fig. 3. Link prediction performance on Google+. SCs are color coded. The compar-
ison is between ST-SPML and MT-SPML. The first group contains the prediction
performance of ST-SPML on all SCs, while the others show the performance of MT-
SPML that learned and tested on multiple combinations of SCs, for example, MT-
SPML{1,2,3} means learning and testing on SC 1, 2, 3.

In this experiment, we adopt a slightly different procedure for clear demon-
stration and a more detailed analysis. We index the SCs from 1 to 5. We start
by using ST-SPML to learn a metric for each SC independently. Then, for com-
parison we run MT-SPML on various numbers of SCs. There are 26 nontrivial
combinations of SCs, so for reasons of space and clarity we explore in detail a
single sequence of combinations. Similar results were achieved with the other
combinations. We begin by running on {1,2} and add one more SC at a time
in order, resulting in the following four combinations: {1,2}, {1,2,3}, {1,2,3,4},
{1,2,3,4,5}. We use these in later experiments as well. In this way, we can com-
pare the behavior of the algorithms as more tasks join the process. In Fig.3, we
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Fig. 4. Link prediction performance on Google+ data. The comparison is between
MT-SPML and U-SPML. SCs are color coded. Different methods for the same task are
compared side by side. U-SMPL is marked by a down pointing triangle. Each group is
trained and tested on a set of SCs. For example, {1,2,3} means learning and testing on
SC 1, 2, 3.

compare ST-SPML to MT-SPML on the four combinations of SCs. Note that,
because of the inferior performance of SVM based methods on Wikipedia article
data, we omit them in this experiment. There two clear observations from Fig.3:
(1) All SCs benefit from MTL and the improvement is significant; (2) Perfor-
mance continues to improve as more tasks are involved, which demonstrates the
superior ability of joint learning. One exception is SC 2, where the performance
gain is small. We speculate that SC 2 is not closely related to other circles (e.g.,
in terms of the number of overlapping nodes). We will discuss the case of SC 2
later.

Now we compare MT-SPML to U-SPML, which simply pools all data together
and estimates a model for all tasks. Both MT-SPML and U-SPML are applied
to the four combinations of SCs. As shown by Fig.4, MT-SPML consistently and
significantly outperforms U-SPML at all locations.

Now we would like to further investigate SC 2. We first show some statistics
in Table 1, where we show the percentage of node overlapping between SCs. The
overlap is defined as the intersection of nodes over the union. As we can see,
some circles largely overlap (e.g., SC 1 and 3 have 81.9% nodes in common),
while SC 2 barely overlaps with the others. Although overlapping is not the only
quantitative measurement of correlations between social circles, a substantial set
of common nodes suggests that there are some shared semantics between two
relationships. Thus Table 1 supports our earlier speculation as to why SC 2 does
not benefit from joint learning as much as the others.

Furthermore, we would like to again show the advantage of MT-SPML by
showing the results on a pair of tasks that are less correlated to each other.
We choose SCs 1 and 2, since they have only 1.1% nodes in common. In Fig.5,
MT-SPML is jointly learned on {1,2}, U-SPML is learned via data pooling, and
ST-SPML is trained on 1 and 2 independently. The prediction performances
of two tasks are reported in the two groups of bars respectively. As shown in
Fig.5, MT-SPML still gets 2%-5% performance improvement over ST-SPML
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Fig. 5. U-SPML hurts performance when training on {1,2}, two less relevant tasks.
MT-SPML is able to improve performance compared to ST-SPML by exploiting useful
correlations.

(bars with circles on top). However, the naive data pooling strategy of U-SPML
(bars with down pointing triangles) produces results even worse than ST-SPML.
This observation suggests that on difficult cases where tasks are not as related,
MTL is still able to utilize useful correlations, while respecting the boundaries
between tasks.

5 Conclusions

In this paper, we deal with MTL on general network data. We first show that
correlation widely exist between tasks on network data by giving two common
scenarios where it is beneficial to employ MTL. Then we proposed MT-SPML,
a multi-task structural metric learning method. It learns task specific metrics as
well as a common distance metric. By combining them, the final metric preserves
the structure of the networks. We applied MT-SPML to citation network and
social network, and measure the performance in link prediction. Improvements
were achieved and detailed analysis was provided. Moreover, its SGD implemen-
tation is easy and efficient with good convergence behaviour, thus the proposed
method can scale up to larger problems and be a strong baseline approach to
future research works.
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Abstract. Regression is at the cornerstone of statistical analysis. Mul-
tilevel regression, on the other hand, receives little research attention,
though it is prevalent in economics, biostatistics and healthcare to name
a few. We present a Bayesian nonparametric framework for multilevel
regression where individuals including observations and outcomes are
organized into groups. Furthermore, our approach exploits additional
group-specific context observations, we use Dirichlet Process with
product-space base measure in a nested structure to model group-level
context distribution and the regression distribution to accommodate the
multilevel structure of the data. The proposed model simultaneously par-
titions groups into cluster and perform regression. We provide collapsed
Gibbs sampler for posterior inference. We perform extensive experiments
on econometric panel data and healthcare longitudinal data to demon-
strate the effectiveness of the proposed model.

1 Introduction

Real data is complex. They hardly conform to simple flat structure or a well-
defined regular pattern. Multilevel, or hierarchical and nested, data structure
persists in almost every day analysis tasks. Patients organized in different cohorts
in multiple hospitals; economic activities of a city nested within a state, which
is in turn influenced by national economic status and so on. Multilevel analysis
[11,14,23] is an approach to analyze group contexts as well as the individual
outcomes. In multilevel analysis, multilevel regression are commonly used in
econometrics (panel data), biostatistics and sociology (longitudinal data) for
regression estimation. Examples include panel data measures GDP observations
over a period of time tracking in multiple states of the USA or longitudinal
studies on a collection of patients’ admissions to a hospital. To the best of our
knowledge, almost no work of multilevel regression has attempted to model group
context information to form ‘optimal’ cluster of groups to be regressed together.
The main challenge is how to model the optimal or ‘correct’ clustering to leverage
shared statistical strengths across groups.

In this paper, we consider the multilevel regression problem in multilevel anal-
ysis where individuals including observations and outcomes are organized into
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 330–342, 2015.
DOI: 10.1007/978-3-319-18038-0 26
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groups. Our modelling assumption is that individuals exhibit similar regression
behaviours should be grouped and perform regression task together to lever-
age on their shared statistical strengths. For example, children with the same
parents tend to be more alike in their physical and mental characteristics than
individuals chosen at random from large population. Particularly, we focus on
the multilevel regression problem for predicting individuals in unseen groups,
the groups do not appear in the training set. For example, in health research -
relied on patient’s history of electronic medical record (EMR) - patient history
records can be empty for patients have not admitted to a hospital before. Pre-
dicting individuals in unseen groups using multilevel regression presents another
contribution of our work.

Traditional single regression method often treats hierarchical data as flat
independent observations. Hence, it tends to mis-specify the regression coeffi-
cients, leading to poor fitting in overall populations. The well-known approach
to multilevel regression is the Linear Mixed Effect model [16,20]. However, it is
not well applicable for predicting individuals from unseen groups because the
random effect is fixed to the given training groups.

Another way to multilevel regression is via multitask learning where each
data group is treated as a task and individual seen as examples. Multi-task
regression aims to improve generalization performance of related tasks by joint
learning [4]. A few works have attempted to partition related tasks into task-
groups [12]. Bayesian nonparametric approach is used to overcome the difficulty
in defining the degree of relatedness among tasks [10]. For testing and evaluation,
previous works use a proportion of examples in each task for training and the
rest is further used for testing. Given a testing example, the task which the
example belonged to, is identified from the hierarchical structure of the data.
Nevertheless, given a testing example from unseen task, there is no proper way
to perform prediction.

Addressing this gap, we present a Bayesian Nonparametric Multilevel Regres-
sion (BNMR) model. The model uses a Dirichlet Process as a product base-
measure of group-context distribution and regression distribution to discover the
unknown number of group clusters and do regression jointly. The group cluster
is estimated based on the group-context observation and regression outcome
of individuals. The goal is making the related groups strengthen each other in
regression while unrelated groups do not affect themselves. In addition, simulta-
neously clustering groups and performing regression can prevent from overfitting
to each training group. By using group-context information, the proposed model
can assign the unseen group into an existing group-cluster for regression.

2 Multilevel Regression

Regression is a large research field. Within the scope of the paper, we focus on
the model which can perform multilevel regression where the data presented in
groups.

Observations in the same group are generally not independent, they tend to
be more similar than observations from different groups. Standard single level
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regression models are not robust against violation of the independence assump-
tion. That is why we need special multilevel treatment.

Dealing with grouped data, a popular setting known as multilevel analy-
sis [11,23] has a board applications from multilevel regression [8] to multilevel
document modelling and clustering [18].

We consider a pair of outcome and observation in hierarchical structure (yji ∈
R,xji ∈ Rd) where yji is an outcome (or response) and xji is an observation for
trial i in group j. The multilevel models are the appropriate choice that can be
used to estimate the intraclass correlation and regression in the multilevel data.
Specifically, we consider Linear Mixed Effects models which are extensions of
linear regression models for data that are organized in groups.

Linear Mixed Effects Model. The LME model [16] describes the relationship
between a response variable and independent variables in multilevel structure,
with coefficients that can vary with respect to one or more grouping variables. A
mixed-effects model consists of two parts, fixed effects and random effects. Fixed-
effects terms are usually the conventional linear regression part, and the random
effects are associated with individual experimental units drawn randomly from
population. The random effects have prior distributions whereas fixed effects do
not. Linear Mixed Effects model can represent the covariance structure related to
the grouping of data by associating the common random effects to observations
in the same group. The standard form of a linear mixed-effects model is following:

yji = βj0 + xT
jiβj1 + εji εji ∼ N (

0, σ2
ε

)

where the regression coefficients for group j: βj0 and βj1 are computed:

βj0 = γ00 + γ01cj + uj0 uj0 ∼ N (
0, σ2

u0

)

βj1 = γ01 + γ11cj + uj1 uj1 ∼ N (
0, σ2

u1

)

Therefore, the final form to predict the individual outcome variable yji using
individual explanatory variables xji and group explanatory variable cj is fol-
lowed:

yji = γ00 + γ01cj + γ01xji + γ11cjxji
︸ ︷︷ ︸

fixed effects

+ uj0 + uj1xji + εji
︸ ︷︷ ︸

random effects

Fixed effects have levels that are of primary interest and would be used
again if the experiment were repeated. Random effects have levels that are not
of primary interest, but rather are thought of as a random selection from a
much larger set of levels. We present the graphical representation of LME model
in Fig. 1a. The common parameter estimation methods for linear mixed effect
include Iterative Generalized Least Squares [9] and Expectation Maximization
algorithm.
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3 Preliminary

3.1 Linear Regression

Regression is an approach for modelling the relationship between a scalar outcome
variable y and one or more explanatory variables denoted x. In linear regression,
data are modelled using linear predictor functions, and unknown model param-
eters are estimated from the data. Given a data collection

{
yi ∈ R,xi ∈ Rd

}N

i=1
of N units, linear regression model assumes the relationship between the outcome
variable yi and the d-dimension vector of observation xi is linear. Hence, the model
takes the form: yi = xT

i β + εi where εi is a residual or error term, β is a regres-
sion coefficient, including intercept and slope parameters. The solution for β is:

β̂ =
(
XT X

)−1

XT Y where X = {xi}N
i=1 and Y = {yi}N

i=1.

3.2 Bayesian Linear Regression

Bayesian linear regression is an approach to linear regression in which the statis-
tical analysis is undertaken within the context of Bayesian inference with a prior
distribution for parameter β. In this setting, the regression errors (or residual)
is assumed to follow a normal distribution εi ∼ N (

0, σ2
)
. Given a data point

x ∈ Rd and its respond variable y, the likelihood of Bayesian linear regression
model with parameter β is defined as:

p
(
y | x,β, σ2

)
=

1√
2πσ

exp
{

−1
2
||y − xT β||2

}

Posterior probability distributions of the model’s parameter under conjugate
prior distribution β ∼ N (0, Σ0) is estimated following:

p (β | x1:N , y1:N , Σ0, σ) ∝ N (μn, Σn) (1)

where the posterior mean μn = Σn

{
Xσ−1/2Y

}
, and posterior covariance Σn =

(
Σ−1

0 + Xσ−1/2XT
)−1

[3]. The likelihood for predicting new explanatory xnew

with new response ynew is computed:

p (ynew | xnew, μn, Σn) =
∫

β

p
(
ynew | xnew,β, σ2

)
p (β | .) dβ

= N (
xT

newμn, σ2
n(xnew)

)
(2)

where σ2
n(xnew) = σ2 + xT

newΣnxnew.
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3.3 Bayesian Nonparametric

We provide a brief account of the Dirichlet Process Mixture and the Nested
Dirichlet Process [21] which related to our work.

A Dirichlet Process [7] DP (γ,H) is a distribution over discrete random prob-
ability measure G on (Θ,B). Sethuraman [22] provides an alternative construc-
tive definition which makes the discreteness property of a draw from a Dirichlet
process explicit via the stick-breaking representation: G =

∑∞
k=1 βkδφk

where

φk
iid∼ H, k = 1, . . . ,∞ and β = (βk)∞

k=1 are the weights constructed through
a ‘stick-breaking’ process. As a convention, we hereafter write β ∼ GEM (γ).
Dirichlet Process has been widely used in Bayesian mixture models as the prior
distribution on the mixing measures, resulting in a model known as the Dirichlet
Process Mixture model (DPM) [1].

Dirichlet Process can also be constructed hierarchically to provide prior dis-
tributions over multiple exchangeable groups. One particular attractive approach
is the Hierarchical Dirichlet Processes (HDP) [24] which posits the dependency
among the group-level DPM by another Dirichlet process.

Another way of using DP to model multiple groups is to construct random
measure in a nested structure in which the DP base measure is itself another DP.
This formalism is the Nested Dirichlet Process [21], specifically Gj

iid∼ U where
U ∼ DP (α × DP (γH)). modelling Gj (s) hierarchically as in HDP and nestedly
as in nDP yields different effects. HDP focuses on exploiting statistical strength
across groups via sharing atoms φk (s), but it does not partition groups into
clusters. Whereas, nDP emphasizes on inducing clusters on both observations
and distributions, hence it partitions groups into clusters. Finally we note that
this original definition of nDP in [21] does not force the atoms to be shared
across clusters of groups, but this can be achieved by introducing a DP prior for
the nDP base measure [18,19].

4 Bayesian Nonparametric Multilevel Regression

In this section, we describe our framework of Bayesian Nonparametric Multilevel
Regression (BNMR). Our goal is to simultaneously clustering the groups and
estimating regression for individuals. The fundamental assumption is that when
the groups are related, the group-level explanatory variable (or group-context
observation) is induced in the same distribution component (e.g., Gaussian dis-
tribution). Firstly, we aim to use the related groups to strengthen regression esti-
mation for improving regression performance (prevent from overfitting to each
group) while unrelated groups do not influence themselves. Second, the induced
group-context distribution can be used to identify cluster for new groups (based
on group-context observations in new groups).

Iteratively modelling and clustering group context and individual regression
would gain benefit and mutually promote each other. First, good groups cluster-
ing will produce good regression estimation (e.g. we assume individuals in the same
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group-cluster have similar regression behavior). Second, the good regression esti-
mation in return provides important information for the group-clustering process
previously.

4.1 Model Representation

We consider data presented in a two-level structure. Denote by J the num-
ber of groups, we assume that the groups are exchangeable. Each group j
contains Nj exchangeable explanatory variable and response variable, repre-
sented by

{
xji ∈ Rd, yji ∈ R} Nj

i=1. The collection of {cj}J
j=1 represents group-

level explanatory or group-level context (e.g., age of the patient, population of
the state).

We now describe the generative process of BNMR (c.f Fig. 1b). Denote H is a
base measure for generating group-context distribution and S is a base measure
for generating regression coefficients. We use a product base measure of H × S
to drawn a DP mixture for jointly clustering groups and regression individuals.
Particularly, we have:

G ∼ DP(α,H × S)
(
θc

j , θ
y
j

)
= θj

iid∼ G

Each realization θj includes a pair
(
θc

j , θ
y
j

)
that θc

j is then used to generate
the group-level explanatory observation cj and θy

j is further used to drawn the
individual response variables yji following:

cj ∼ F
(
θc

j

)
yji ∼ N (

xji × θy
j , σ2

ε

)

where σε is a standard deviation of residual error.

(a) Linear Mixed Effects
model.

(b) Bayesian Nonparametric Multilevel Regression.

Fig. 1. Graphical representation. Left: LME. Middle: BNMR stochastic process view.
Right: BNMR stick-breaking view. There are J groups with group-level explanatory
variable cj , each group has Nj individuals including explanatory variable xji and
response variable yji.
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Stick-breaking representation. We further derive the stick-breaking repre-
sentation for BNMR (c.f Right Fig. 1b) where all of the random discrete measures
are characterized by a distribution over integers and a countable set of atoms.

The random measure G has the form: G =
∑K

k=1 πkδ(φk,βk) where π ∼
GEM (α), φk

iid∼ H(λc), and βk
iid∼ S(λy). Next, we draw an indicator cluster

for each group zj
iid∼ π and generate group-context explanatory variable cj ∼

F
(
φzj

)
. Accordingly, the response variables in group j given the cluster zj = k

is drawn yji ∼ N (
xT

jiβk, σ2
ε

)
.

4.2 Inference

We derive collapsed Gibbs sampling for BNMR. Due to the conjugacy property,
we would integrate out φk,βk, and π. The remaining latent variable z and hyper-
parameter α will be sampled.

– Sampling zj . The conditional distribution for sampling z is:

p
(
zj = k | cj , {yji,xji}Nj

i=1

)
∝ p (zj = k | z−j , α)

×p (cj | zj = k, c−j , z−j ,H) × p (yji | xji, zj = k, S)

The first expression p (zj = k | z−j , α) is the Chinese Restaurant Process
(CPR) with concentration parameter α. The second term is the predictive like-
lihood of group-context observation under component (or topic) k. This can
be analytically computed due to conjugacy of likelihood distribution and prior
distribution H. The last term is the likelihood contribution from regression
observations (including explanatory and response variables) in group j following
Eq. 2.

– Sampling concentration parameter α is similar to Escobar et al [6]. Assum-
ing α ∼ Gamma (α1, α2) with the auxiliary variable t: p (t | α,K) ∝ Beta
(α1 + 1, J)

where J is the number of groups and πt

1−πt
= α1+K−1

J(α2−log t) .

p (α | t,K) ∼πtGamma (α1 + K,α2 − log(t))
+ (1 − πt)Gamma (α1 + K − 1, α2 − log(t))

We integrate out the regression coefficient βk for collapsed Gibbs inference.
However, for visualization and analysis of the regression coefficient βk can be
re-computed as p (βk | xi,yi, zi = k,Σ0) following Eq 1.

Given unseen groups of data include
{
xTest

ji , cTest
j

}
, we wish to estimate

{
yTest

ji

}
. We observe that if βk and σ2

ε are known, then yTest
ji will be distributed

by N
(
βT

k xTest
ji , σ2I

)
.
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ŷTest
ji ∝

K∑

zTest
j =1

[
βT

zj
xTest

ji

]
× p

(
zTest

j | cTest
j

)

where p
(
zTest

j | cTest
j

) ∝ p
(
zTest

j | π
)
p

(
cTest
j | φzTest

j

)
.

5 Experiment

We demonstrate the proposed framework on multilevel regression task, especially
for regression individuals in unseen groups of data. Throughout this section,
unless explicitly stated, the training and testing sets are randomly split, and
repeated 10 times. The variables xji and yji is centralized to have the mean of
0 as recommended in regression tasks [11]. Our implementation is using Matlab.
For synthetic and Econometric panel data, each iteration takes about 1-2 seconds
and it takes 30-35 seconds for Heathcare dataset. All experiments are converged
quickly within 30 iterations of collapsed Gibbs sampling. Initialization for con-
centration parameter α = 1, α ∼ Gamma (1, 2). The conjugate distribution for
group-level context is NormalGamma. We use four baseline methods for com-
paring the regression performance on individuals of unseen groups followings:

1. Naive Estimation: using the overall average of individuals outcome in train-
ing groups ŷTest

new = 1
J

∑J
j=1

1
Nj

∑Nj

i=1 yTrain
ji as the predicted value.

2. No-Group MultiTask Learning (NG-MTL) [2]: where all tasks are considered
in a single group.

3. No-Group MultiTask Learning With Context (NG-MTL-Context): where
all tasks are considered in a single group, and context is treated as another
explanatory variable.

4. LME: yji = γ00 +γ01cj +γ01xji +γ11cjxji + εji, we ignore random variables
uj0 and uj1 from original LME for predicting unseen groups because we do
not have uj(s) for unseen groups. (uj is representing for group j given in
training set).

The regression performance is evaluated using two metrics: Root Mean Square
Error (RMSE), and Mean Absolute Error (MAE). Since the errors are squared
before they are averaged, the RMSE gives a relatively high weight to large errors.
The MAE measures the average magnitude of the errors in a set of forecasts,
without considering their direction. The regression algorithm is the ideal when
it has lower error in both RMSE and MAE.

5.1 Synthetic Experiment

Our goal is to investigate BNMR’s ability to recover the true group clusters
and number of regression atoms. We first create three univariate Normal dis-
tributions φk(s) with different variances (Fig. 2) for generating group-context
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Fig. 2. Synthetic Experiment for Bayesian Nonparametric Multilevel Regression

observations. Conditional on these context distribution, we initialize three linear
regression atoms βk(s) with standard deviation for residual error σ2 = 50. Then,
we randomly sample J = 200 groups, each group comprises a group-context cj

and Nj = 20 pairs of observation (xji, yji).

Table 1. Regression performances on synthetic experiment. The lower is the better.
Standard deviation is in a parenthesis.

Metrics\Methods Naive Estimation NG-MTL NG-MTL-Context LME BNMR

RMSE 343.3 (11.3) 332.6 (6.9) 230.9 (8.7) 190.1 (8.5) 118.0 (34.0)

MAE 278.9 (8.1) 284.0 (4.1) 180.1 (9.2) 152.9 (5.4) 56.0 (9.7)

The model recovers correctly the ground truth atoms. Visualizations of the
group-context distribution and generated data are plotted in Fig. 2. For evalu-
ation, we split data into 70% number of groups for training and the rest (30%
groups) for testing. The performance comparison is displayed in Table 1 so that
our model gains great improvement in regression than the baseline methods.

5.2 Econometric Panel Data: GDP Prediction

The Panel Data [17] includes 48 states (ignoring Alaska and Hawaii) and 17
years of GDP collection from 1970 to 1986. There are nine divisions in the
United States, e.g., New England, Mid-Atlantic, Pacific, and so on (Fig. 3a).
Each division contains from 3 to 8 states.

The explanatory variable xji for each year i in a state j includes 11 dimen-
sions, such as public capital stock, highways and streets capital stock, water and
sewer facilities capital stock, employees on non-agricultural payrolls, unemploy-
ment rate, and so on. The response variable yji is a GDP.

We consider the state population (Wyoming has the lowest population of
0.57 millions and the highest population of 38 millions belongs to California,
as of 2012) is an explanatory variable for group level. Population is one of the
key factor determining the GDP [13,15]. Hence, states which alike number of
population tend to have similar GDP outcome than other states in different
number of population. We model the context distribution using univariate Gaus-
sian distribution. The mean and precision for group context distribution are
(μ, τ) ∼ NormalGamma(4, 0.25, 0.01, 1) and the standard deviation for regres-
sion residual error is set as σε = 7000.
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(a) US maps of 48 States.
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(c) MAE evaluation.

Fig. 3. Panel Data. Left: Maps have been modified from the Census Regions and
Divisions www.census.gov/geo/maps-data/maps/pdfs/reference/us regdiv.pdf. Middle
and Right: Regression performance comparison.

We split the data into training set and testing set such that the states in
the testing set do not appear in the training. We vary the proportion of training
states from 40% to 90% and perform prediction on the rest. The number of state
clusters are identified as K = 3 (indicating low, mid, and high population). The
regression performance of BNMR versus NG-MTL, NG-MTL-Context and LME
are plotted in Fig. 3. We do not include the scores of Naive Estimation into the
figure because of its poor performance in this dataset. This poor performance
of Naive Estimation can be explained by the high variance in the outcome (e.g.,
the GDPs of California and Texas are 10-20 times higher than GDPs of Vermont
and Delaware). The proposed method achieves the best regression performance
in term of RMSE (Fig. 3b) and MAE (Fig. 3c) scores. The more state we observe,
the more accuracy in prediction we achieve.

5.3 Healthcare Longitudinal Data: Prediction Patient’s Readmission
Interval

Meaningful use, improved patient care and competition among providers are a
few of the reasons electronic medical records are succeeding at hospitals. Read-
mission interval prediction could be used to help the delivery of hospital resource-
intensive and care interventions to the patients. Ideally, models designed for this
purpose would provide close estimation of the admission interval for the next
admission. Very often, patients come to a hospital without any existed elec-
tronic medical records because they may have not been admitted before. This
fact causes problem for existing multilevel regression approaches. We aim to
use the proposed framework to improve performance for predicting readmission
interval on new patients.

Our data collected from regional hospital (ethics approval 12/83.). Our main
interest is in the chronic Polyvascular Disease (PolyVD) cohort. The collected
data includes 209 patients with 3207 admissions in total. We consider the read-
mission interval within less than 90 days between two consecutive admissions.
We treat a patient as a group consisting of multiple admissions as individuals.
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Fig. 4. Regression on HealthData with BNMR. Left: The estimated patient’s age dis-
tributions. Middle: Two examples of the learned regression coefficient (βk), discover-
ing the correlation of disease code versus patient age ( e.g., Inflammatory disorders of
scrotum affects elder group of 78, not the group of 50). Right: Regression performance
comparison on new patients.

The feature for each admission xji (in patient j) includes External Factor Code,
and Diagnosis Code in 289 dimension.

The readmission interval outcome yji indicates how many days between this
admission to the next admission. We use patient’s age as a group-context cj . We
assume that patients within the same ‘age region’ would have the similar effects on
diseases and readmission gap. For example, under the same diseases, patients in
the age of 40-50 would be readmitted to a hospital differently from patients in the
age of 70-80 because the prevalence of most chronic diseases increases with age [5].

Themeanandprecision forcontextdistributionare(μ, τ)∼ NG(40, 0.25,0.2, 1.1)
and the standard deviation for regression residual error is specified as σε = 24.

The data is split with 147 patients (70%) for training and the rest of 62
patients are used for testing (as unseen patients). The posterior inference results
in K = 6 patient clusters. The univariate Normal distribution of age is plotted
in Left Fig. 4 where we discover the patient’s age distribution. In addition, we
visualize the two conditional regression coefficients (βk) on two patient’s group
of age 50 and 78 respectively. The estimated βk(s) also reveal the correlation
among disease codes to patient age clusters (Middle Fig. 4). There are several
disease codes, such as Inflammatory disorders of scrotum (feature dimension
287), affecting on the elder of 78 rather than the younger of 50 (resulting zero
value in vector regression coefficient).

Our model uses group-level explanatory variable to identify patient’s clusters,
then do regression using the regression coefficients produced by the patients in
the same cluster. Thus, we prevent from overfitting on each training patient and
obtain better prediction on testing patients than the three baseline methods
(Right Fig. 4).

6 Conclusion and Discussion

We have presented a novel approach for multilevel regression where prediction
target is for individuals in new groups. The need of multilevel regression for
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individuals in unseen groups are commonly encountered in many data domains
from econometrics panel data and healthcare longitudinal data domains. Our
BNMR provides a join model for clustering groups and do regression for indi-
viduals. The unknown number of group cluster and regression coefficients are
identified using Bayesian nonparametric setting. By clustering group, the esti-
mated regression coefficients are more generalized and do not overfit to each
training group.
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Abstract. Data usually present in heterogeneous sources. When deal-
ing with multiple data sources, existing models often treat them inde-
pendently and thus can not explicitly model the correlation structures
among data sources. To address this problem, we propose a full Bayesian
nonparametric approach to model correlation structures among multiple
and heterogeneous datasets. The proposed framework, first, induces mix-
ture distribution over primary data source using hierarchical Dirichlet
processes (HDP). Once conditioned on each atom (group) discovered in
previous step, context data sources are mutually independent and each
is generated from hierarchical Dirichlet processes. In each specific appli-
cation, which covariates constitute content or context(s) is determined
by the nature of data. We also derive the efficient inference and exploit
the conditional independence structure to propose (conditional) parallel
Gibbs sampling scheme. We demonstrate our model to address the prob-
lem of latent activities discovery in pervasive computing using mobile
data. We show the advantage of utilizing multiple data sources in terms
of exploratory analysis as well as quantitative clustering performance.

1 Introduction

We are entering the age of big data. The challenges are that these data not only
present in massive amount but also co-exist in heterogeneous forms including
texts, hypertexts, images, graphics, videos, speeches and so forth. For exam-
ple, in dealing with social network analysis, data present in network connection
accompanying with users’ profiles, their comments, activities. In medical data
understanding, the patients’ information usually co-exists with medical infor-
mation such as diagnosis codes, demographics, laboratory tests. This deluge of
data requires advanced algorithms for analyzing and making sense out of data.
Machine learning provides a set of methods that can automatically discover low-
dimensional structures in data which can be used for reasoning, making decision
and predicting. Bayesian methods are increasingly popular in machine learning
due to their resilience to over-fitting. Parametric models assume a finite number
of parameters and this number needs to be fixed in advance, hence hinders its
practicality. Bayesian nonparametrics, on the other hand, relax the assumption
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 343–354, 2015.
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of parameter space to be infinite-dimensional, thus the model complexity, e.g.,
the number of mixture components, can grow with the data1.

Two fundamental building blocks in Bayesian nonparametric models are the
(hierarchical) Dirichlet processes [14] and Beta processes [15]. The former is usu-
ally used in clustering models, whereas the later is used in matrix factorization
problems. Many extensions of them are developed to accommodate richer types
of data [12,16]. However, when dealing with multiple covariates, these models
often treat them independently, hence fail to explicitly model the correlation
among data sources. The presence of rich and naturally correlated covariates
calls for the need to model their correlation with nonparametric models.

In this paper, we aim to develop a full Bayesian nonparametric approach to
the problem of multi-level and contextually related data sources and modelling
their correlation. We use a stochastic process, being DP, to conditionally “index”
other stochastic processes. The model can be viewed as a generalization of the
hierarchical Dirichlet process (HDP) [14] and the nested Dirichlet process (nDP)
[12]. In fact, it provides an interesting interpretation whereas, under a suitable
parameterization, integrating out the topic components results in a nested DP,
whereas integrating out the context components results in a hierarchical DP.
For simplicity, correlated data channels are referred as two categories: content
and context(s). In each application, which the covariates constitute content or
context(s) is determined by the nature of data. For instance, in pervasive com-
puting application, we choose the bluetooth co-location of user as content while
contexts are time and location.

Our main contributions in this paper include: (1) a Bayesian nonparametric
approach to model multiple naturally correlated data channels in different areas
of real-world applications such as pervasive computing, medical data mining,
etc.; (2) a derivation of efficient parallel inference with Gibbs sampling for mul-
tiple contexts; (3) a novel application on understanding latent activities contex-
tually dependent on time and place from mobile data in pervasive applications.

2 Background

A notable strand in both recent machine learning and statistics literature focuses
on Bayesian nonparametric models of which Dirichlet process is the crux. Dirich-
let process and its existence was established by Ferguson in a seminal paper in
1973 [4]. A Dirichlet process DP (α,H) is a distribution of a random probabil-
ity measure G over the measurable space (Θ,B) where H is a base probability
measure and α > 0 is the concentration parameter. It is defined such that, for
any finite measurable partition (Ak : k = 1, . . . , K) of Θ, the resultant random
vector (G (A1) , . . . , G (Ak)) is distributed according to a Dirichlet distribution
with parameters (H (A1) , . . . , H (Ak)). In 1994, Sethuraman [13] provided an
alternative constructive definition which makes the discreteness property of a
Dirichlet process explicitly via a stick breaking construction. This is useful while
dealing with infinite parametric space and defined as
1 This characteristic is usually called “let the data speak for itself”.
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G =
∞∑

k=1

βkδφk
where φk

iid∼ H, k = 1, . . . ,∞ and β = (βk)∞
k=1 , (1)

βk = vk

∏

s<k

(1 − vs) with vk
iid∼ Beta (1, α) , k = 1, . . . ,∞.

It can be shown that
∑∞

k=1 βk = 1 with probability one, and as a conven-
tion in [11], we hereafter write β ∼ GEM (α). Due to its discreteness, Dirichlet
processes is used as a prior for mixing proportion in Bayesian mixture models.
Dirichlet processes mixture models (DPM) [1,7] which are nonparametric coun-
terpart of well-known Gaussian mixture models (GMM)2 with the relaxation of
the number of components to be infinite were first introduced by Antoniak [1]
and elaborated efficiently computational aspect by Neal [7].

However, in practice, data usually appear into collections which can be mod-
elled together. From statistical perspective, it is interesting to extend the DP to
accommodate these collections with dependent models. MacEachern [6] intro-
duced framework that induces dependencies over these collections by using a
stochastic process to couple them together. Following this framework, Nested
Dirichlet process [12] induces dependency by using base measure as another
Dirichlet process shared by collections which are modeled by Dirichlet process
mixtures. Another widely used model driven by idea of MacEachern is hierar-
chical Dirichlet process [14] in which dependency is induced by sharing stick
breaking representation of a Dirichlet process. All of these models are supposed
to model single variable in data. In topic modeling, for instance, HDP is used
as a nonparametric counterpart of Latent Dirichlet Allocation (LDA) to model
word distributions over latent topics. In this application, the model ignores other
co-existing variables such as time, authors.

When dealing with multiple covariates, one can treat the covariates as indepen-
dent factors.With such independent assumption, he cannot leverage the correlated
nature of data. There are several works dealing with these situations. Recently,
the work by Nguyen et. al. [8] tried to model secondary data channel (called con-
text) attachedwith primary channel (content). In thismodel, secondary data chan-
nel is collected in group-level, e.g time or author for each document (consisting
of words) or tags in each image. In the case of other data sets, observations are
not at group-level but data point-level. For instance, in pervasive computing, each
bluetooth co-location of eachuser includes several observations such as co-location,
time stamp, location, etc. There is a motivation for modelling in these kind of appli-
cations. Dubey et. al. [2] tried to model topics over time where time are treated
as context. The models can only handle one context while modelling but can not
leverage the multiple correlated data channels. Another work by Wulsin et. al. [16]
proposed the multi-level clustering hierarchical Dirichlet process (MLC-HDP) for
clustering human seizures. In this model, authors assumed that data channels are
clustered into multi-level which may not suitable for aforementioned data sets. In
2 Indeed, DPM models are more general than (infinite) GMM since we can not only use

Gaussian distribution but different kinds of distribution, e.g. Multinomial, Bernoulli,
etc., to model each component.
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consequence, there is the need for nonparametric models to handle naturally corre-
lated data channels with certain dependent assumptions. In this paper, we propose
a model that can model jointly the topic and the context distribution. Our method
assumes a conditional dependence between two sets of stochastic process (content-
context) which are coupled in a fashion similar to nested DP. The content models
the primary observation with HDP and the dependent co-observations are mod-
eled as nested DP with group index provided by the stochastic process from the
content side. The set of DPs from the context side is further linked hierarchically
in the similar fashion to HDP. Since our inference derivations rely on hierarchical
Dirichlet processes, we briefly reviewhierarchicalDirichlet processes and someuse-
ful properties for inference. The justification for these properties can be found in
[1,14, Proposition 3].

Let consider the case when we have a corpus with J documents. With the
assumption that each document is related to several topics, we can model each
document as a mixture of latent topics using Dirichlet process mixture. Though
different documents may be generated from different topics, they usually share
some of topics each others. Hierarchical Dirichlet process (HDP) models this
topic sharing phenomenon. In HDP, the topics among documents are coupled
using another Dirichlet process mixture G0. For each document, a Dirichlet
process Gj , j = 1, . . . , J , is used to model its topic distribution. Formally,
generative representation is as below:

G0 | γ,H ∼ DP (γ,H) Gj | α,G0 ∼ DP (α,G0) (2)
θji | Gj ∼ Gj xji | θji ∼ F (θji).

Similar to DPs, stick breaking representation of HDP is described as follows

β = β1:∞ ∼ GEM(γ) G0 =
∞∑

k=1

βkδφk
πj = πj1:j∞ ∼ DP (α, β)

Gj =
∞∑

k=1

πjkδφk
zij ∼ πj φk ∼ H(λ) xji ∼ F (φzji

). (3)

Given the HDP model as described in Equation (3) and θj1, . . . θjNj
be i.d.d

samples from Gj for all j = 1, . . . , J . All of these samples of each group Gj are
grouped into M j factors ψj1, . . . , ψjMj . These factors from all groups can be
grouped into K sharing atoms φ1, . . . , φK . Then the posterior distributions stick
breaking of G0(denoted as β = (β1, . . . , βK , βnew) is

(β1, . . . , βK , βnew) ∼ Dir (m1, . . . , mK , γ) , (4)

where mk =
∑J

j=1

∑Mj

i=1 1 (ψji = φk) .
Another useful property for posterior of number of cluster K of a Dirichlet

process is that if G ∼ DP (α,H) and θ1, . . . , θN be N i.i.d samples from G . These
θ’s values can be grouped into K clusters where 1 ≤ K ≤ N . The conditional
probability of K given α and N is

p(K = k | α,N) = αk Γ (α)
Γ (α + N)

s(N, k), (5)

where s(N, k) is the unsigned Stirling number of the first kind.
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3 Framework

3.1 Context Sensitive Dirichlet Processes

Model Description: Suppose we have J documents in our corpus, and each has
Nj words of which observed values are xji’s. From topic modeling perspective,
there are a (specified or unspecified) number of topics among documents in
corpus where each document may relate to several topics. We have an assumption
that each of these topics is correlated with a number of realizations of context(s)3

(e.g. time). To link the context with topic models we view context as distributions
over some index spaces, governed by the topics discovered from the primary data
source (content), and model both content and contexts jointly. We impose a
conditional structure in which contents provide the topics, upon which contexts
are conditionally distributed. Loosely speaking, we use a stochastic process to
model content, being DP, and to conditionally “index” other stochastic processes
which models contexts.

In details, we model the content side with a HDP, where xji’s are given in J
groups. Each of group is modeled by a random probability distribution Gj , which
shares a global random G0 probability distribution. G0 is draw from a DP with
a base distribution H and concentration parameter γ. The distribution G0 plays
as a base distribution in a DP with concentration parameter α to construct Gj ’s
for groups. The specification for this HDP is similar to Equation (2) in which
the θji’s are grouped into global atoms φk(k = 1, 2, . . .).

For each observation xji, there is an associated context observation sji which
is assumed to depend on the topic atom θji of xji. Furthermore, the context
observations of a given topic Sk = {sji | θji = φk} are assumed to be distributed
a mixture Qk. Given the number of topics K, there are the same number of
context groups. Now to link these context groups, we again use the hierarchical
structure that have the similar manner with HDP [14] where Qk’s share the
global random probability distribution Q0. Formally, generative specification for
conditional independent context is as follows

Q0 ∼ DP (η,R) Qk ∼ DP(ν,Q0) (6)
ϕji ∼ Qk, s.t θji = φk sji ∼ Y (· | ϕji) .

The stick breaking construction for content side is similar to the HDP, how-
ever, for the context size we have to take into account of the partition as induced
by the content atoms. The stick breaking construction for context is

ε ∼ GEM (η) τk ∼ DP(ν, ε) ψ ∼ R

Q0 =
∞∑

m=1

εmδψm
Qk =

∞∑

m=1

τkmδψm
lji ∼ τzji

sji ∼ Y
(
ψlji

)
(7)

The graphical model for generative representation is depicted in Figure (1a).
Inference: we illustrate the auxiliary conditional approach using stick break-

ing scheme for inference. We briefly describe inference result of model. We also
3 For simplicity, we will consider one context and generalize to multiple contexts.
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assume conjugacy between F and H for content distributions as well as Y and
R for context distributions since the conjugacy allows us to integrate out the
atoms φk and τm. The sampling state space now consists of {z,β, l, ε}. Further-
more, we endow Gamma distributions as priors for hyperparameters {γ, α, η, ν}
and sample through each Gibbs iteration. During sampling iterations, we main-
tain the following counting variables: njk - the number of content observations
in document j belong to content topic k, the marginal counts are denoted as
nj. =

∑
k njk, and n.k =

∑
j njk; wkm - the number of context observations

given the topic k belong to context m. The marginal counts are denoted simi-
larly to njk. Sampling equations for content side are described below.

Sampling z: the sampling of zji have to take into account of influence from
the context apart from cluster assignment probability and likelihood.

p(zji = k | z−ji, l, x, s) ∝ p(zji = k | z−ji).

p(xji = k | zji = k, z−ji, x−ji)p(lji | zji = k, l−ji). (8)
The first term of above equation in the RHS is the predictive likelihood of

prior at the content side similar to HDP in [14] while the second term indicates
the predictive likelihood of the observation for content topic k (except xji),
denoted as f

−xji

k (xji) . The last term is the context predictive likelihood given
the content topic k. As a result, conditional sampling for zji is

p(zji = k | z−ji, l, x, s) =

{(
n−ji

.k + αβk

)
wkm+νεm

wk.+ν
f
−xji

k (xji) if k previously used

αβnewεmf
−xji
new (xji) if k = knew

Sampling β: we use the posterior stick breaking of HDP in Equation (4).
In order to sample m, we use the result from Equation (5), i.e. mjk ∝

(αβk)m
s (njk,m) for m = 1 . . . njk where s (njk,m) is the unsigned Stirling

number of the first kind and compute mk =
∑J

j1 mjk.
Next, we present sampling derivations for context variables.
Sampling l: given the cluster assignment of content observations (z), con-

text observations are grouped into K groups of context. Let sk be the set
of context observations indexed by the same content cluster k. i.e. sk �
{sji : zji = k, ∀j, i}, while s−ji

k is the same set as sk but excluding sji. The
posterior probability of lji is computed as follows

p (lji = m | l−ji, z, s, ν, ε) ∝ p (lji = m | l−ji, zji = k, ε) .

p (sji | lji = m, l−ji, zji = k, s−ji) . (9)
The first term is the conditional Chinese restaurant process given content

cluster k while the second term, denoted as y
−sji

k,m (sji), is recognized to be
a form of predictive likelihood in a standard Bayesian setting of which like-
lihood function is Y , conjugate prior S and a set of observation s−ji

k (m) �{
sj′ i′ : lj′ i′ = m, zj′ i′ = k, j

′ �= j, i
′ �= i

}
. The sampling equation for lji is

p (lji = m | l−ji, z, s, ν, ε) =

{
(wkm + νεm) y

−sji

k,m (sji) if mpreviously used

εnewy
−sji

k,mnew
(sji) if m = mnew
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(a) Generative view for pro-
posed model with single
context

(b) Generative view for pro-
posed model with C con-
texts

(c) The stick breaking
view for the proposed
model C contexts

Fig. 1. Graphical representation for the proposed model. (a) & (b) Generative view
for single and multiple contexts which conditional independent given content topic. (c)
Stick breaking view with C contexts, for single context, one can set C = 1.

Sampling ε: different from HDP, sampling ε requires more works as it is
dependent on both z and l. Let isolate context variables lkji’s generated by the
same topic zji = k into one group lk � {lji : zji = k,∀j, i}, context obser-
vations are also isolated in the similar way sk � {sji : zji = k,∀j, i}. Now
the context side is modeled with the structure similar to HDP in which the
observations related Qk are sk. We can sample ε as follows (ε1, . . . , εM , εnew) ∼
Dir (h.1, . . . , h.M , η) where h.m, m = 1 . . . M are auxiliary variables which rep-
resent number of active context factors associated with atom m. Similar to
sampling m, the value of each h.m will be computed using samples hkm ∝
(νεm)h

s (wkm, h) for h = 1 . . . wkm and summed up as h.m =
∑K

k=1 hkm.
Moreover, there are four hyper-parameters in our model: α, γ, ν, η. Sam-

pling α and γ is identical to HDP and therefore we refer to [14] for details.
Sampling other hyperparameters is also doable, one can refer to [10] for details.

3.2 Context Sensitive Dirichlet Processes with Multiple Contexts

Model Description. When multiple contexts exist for a topic, the model can
easily be extended to accommodate this. The generative and stick breaking spec-
ifications for content side remain the same as in Equation (2) and (3). The spec-
ification for multiple contexts will be duplicated from one context in Equation
(6). Figure (1) depicts the graphical model for context sensitive Dirichlet process
with multiple contexts. The generative model is

Qc
0 ∼ DP(ηc, Rc) Qc

k ∼ DP(νc, Qc
0) ϕc

ji ∼ Qc
k, where θji = φk

xji ∼ F (· | θji) sc
ji ∼ Y c

(· | ϕc
ji

)
for all c = 1, . . . , C.

The stick breaking construction for the context side is duplicated the speci-
fications of context side in Equation (7) for C contexts which is provided below
for all c = 1, . . . , C:
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Algorithm 1. Multiple Context CSDP Gibbs Sampler
1: procedure mCSDPGibbsSampler(D) � D: input including xij and sc

ij

2: repeat � J: the number of groups

3: for j ← 1, J ; i ← 1, Nj do � Nj : the number of data in j-th group

4: Sample zji using Equation (10) � Sampling content side

5: for c ← 1, C do � Sampling context side (can be parallised)

6: Sample lcji using Equation (9)
7: end for
8: end for
9: Sample β and ε using Equation (4) and hyperparameters

10: until Convergence
11: return z, l1:C , β, ε � return learned parameters of model

12: end procedure

εc ∼ GEM (η) τ c
k ∼ DP(ν, ε) ψc ∼ Rc

Qc
0 =

∞∑

m=1

εc
mδψc

m
Qk =

∞∑

m=1

τ c
kmδψc

m
lcji ∼ τ c

zji
sc

ji ∼ Y c
(
ψc

lcji

)
.

Inference: using the same routing and assumptions on conjugacy of H and
F , Rc and Y c, we derive the sampling equations for variables as follows

Sampling z: in multiple context setting, the sampling equation of zji involves
the influence from multiple context rather than one:

p(zji = k | z−ji, l, x, s) ∝ p(zji = k | z−ji). (10)

p(xji = k | zji = k, z−ji, x−ji)
C∏

c=1

p(lcji = mc | zji = k, lc
−ji).

It is straightforward to apply the result for one context case. The final sam-
pling equation for zji is

p(zji = k | z−ji, l, x, s) =

{(
n−ji

.k + αβk

)
f
−xji

k (xji)
∏C

c=1

wc
kmc+νcεc

mc

wc
k.+νc if k used

αβnewf
−xji

knew
(xji)

∏C
c=1 εc

mc if k = knew.

Sampling derivation of β is unchanged compared with one context.
Sampling equations of l1...C , ε1...C are similar to one context case where each

set of context variables {lc, εc} is dependent given sampled values of z. We can
perform sampling for each context in parallel thus the computation complexity
in this case should remain the same as in the single context case given enough
number of core processors to execute in parallel. We summarize sampling pro-
cedure for the model in Algorithm 1.

4 Experiments

In this section we demonstrate the application of our model to discover latent
activities from social signals which is a challenging task in pervasive comput-
ing. We implemented model using C# and ran on Intel i7-3.4GHz machine with
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installed Windows 7. We then used Reality Mining, a well-known data set col-
lected at MIT Media Lab [3] to discover latent group activities. The model
not only improves grouping performance but also reveals when and where these
activities happened. In the following sections, we briefly describe data set, data
preparation, parameter settings for the model and exploratory results as well as
clustering performance using our proposed model.

4.1 Reality Mining Data Set

Reality Mining [3] is a well-known mobile data set collected by MIT Media
Lab on 100 users over 9 months (approximately 450.000 hours). The collected
information includes proximity using Bluetooth devices, cell tower IDs, call logs,
application usage, and phone status. To illustrate the capability of proposed
model, we extract proximity data recorded by Bluetooth devices and users’
location via cell tower IDs. In order to compare with the results from [9], we
preprocessed to filter users whose affiliations are missing or who do not share
affiliation with others and then sampled proximity data for every 10 minutes. In
the end we had 69 users. For each user, at every 10 minutes, we obtained a data
point of 69-dimension which represents co-location information with other users.
Each data point is an indicator binary vector of which i-th element set to 1 if
the i-th user is co-located and 0 otherwise (self-presence set to 1). In addition,
we also obtain the time stamp and cell ID data vectors. As a consequence, we
have 69-user data groups. Each data point in group includes three observations:
co-location vector, time stamp, cell tower ID.

4.2 Experimental Settings and Results

In proposed model, one data source will be chosen as content, the rest will be
considered as contexts. We use two different settings in our experiment.

In the first setting, co-location data source is modelled as content which
is (69-dimension) Multinomial distribution (corresponding to F distribution in
model), time and cell tower IDs are modelled as Gaussian and Multinomial
distributions respectively (corresponding to Y 1 and Y 2 distribution in model).
We use the conjugate prior H as Dirichlet distribution, while R1 and R2 are
GaussianGamma and Dirichlet distributions, respectively. We run the data set
with 4 different settings for comparison: HDP - standard use of HDP on co-
location observations (similar to [9]); CSDP-50% time - co-location and 50%
time stamp data (supposing 50% missing) used for CSDP; CSDP-time - similar
to CSDP-50% time, except that whole time stamp data are used; CSDP-celltower
- resembling to CSDP-time but additional cell tower ID observations are used.

When modelling withHDP as in [9], the model merely discovered hidden activ-
ities of users. It fails to answer more refined questions such aswhen and where these
activities happened? Our proposed model can naturally be used to model the addi-
tional data sources to address these questions. InFigure (2a), the topic 1 (sloan stu-
dents) usually happened at specific time on Monday, Tuesday and Thursday while
topic 5 (master frosh students) mainly gathered on Monday and Friday (less often
on the other days). Similarly, when we modelled cell tower IDs data, the results
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(a) Top 7 topics explored with CSDP-time

(b) Top 7 topics explored with CSDP-celltower

Fig. 2. Corresponding top 7 topics discovered by proposed model

revealed a deeper understanding on latent activities. In Figure (2b), we can observe
the places (cell phone tower IDs)4 where the activities took place. For topic 1 - sloan
student group activities, apart from Sloan School building (cell no.1 or 40 ), they
sometimes gathered at the restaurants (cell no. 44 ).

When using more contextual information, it does not only provide more
exploratory information but also help the classification to be more discriminated.
When using only time as context in Figure (2a), the user no. 94 is (confusingly)
recognized in both topic 2 and 6. But when location data is incorporated into our
proposed model, the user no. 94 is now dominantly classified into topic 6. To quan-
titatively evaluate proposed model when using more context data, we use the same
setting with the work in [9]. First, we ran the data model to discover the latent
activities among users. We then used the Affinity Propagation (AP) algorithm [5]
to perform clustering among users with similar activities. We evaluated cluster-
ing performance using popular metrics: F-measure, cluster purity, rand index (RI)
and normalized mutual information (NMI). As it can be clearly seen in Table 1,
with more contexts we observed, CSDP achieves better clustering results. Purity
andNMI are significantly improved when more contextual data are observed while
other metrics slightly improved when modelling with contextual data.
4 Since Reality Mining does not provide exact information about these cell towers how-

ever we can infer information about some of them by using users’ descriptions. For
example, cell no.1 and 40 are MIT Lab and Sloan School of Management which are
two adjacent buildings. While cell no. 35 is located near Student Center and cell no.
44 is around some restaurants outside MIT campus.



Learning Conditional Latent Structures from Multiple Data Sources 353

Table 1. Clustering performance improved when more contextual data used in the
proposed model

Purity NMI RI F-measure

HDP 0.7101 0.6467 0.9109 0.7429

CSDP-50% time 0.7391 0.6749 0.9186 0.7651

CSDP-100% time 0.7536 0.6798 0.9169 0.7503

CSDP-celltower 0.7826 0.6953 0.9186 0.7567

In the second setting, we model time as content and the rest (co-locations,
cell towers) as contexts. The conjugate pairs are remained the same in previous
setting. In Figure (3), we demonstrate top 4 time topics including Friday, Thurs-
day (upper row), Tuesday, and Monday (lower row) which are Gaussian forms.
The groups of users who gathered in that time stamp are depicted under each
Gaussian. It is easy to notice that the group with user 27, 58 usually gathered
on Friday and Monday whereas other groups met on all four time slots.

Fig. 3. Top 4 time topics and their corresponding conditional user-IDs groups discov-
ered by proposed model

5 Conclusions

We propose a full Bayesian nonparametric approach to model explicit corre-
lation structures in heterogeneous data sources. Our key contribution is the
development of a context sensitive Dirichlet processes, its Gibbs inference and
its parallelability. We have further demonstrated the proposed model to discover
latent activities from mobile data to answer who (co-location), when (time) and
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where (cell-tower ID) – a central problem in context-aware computing appli-
cations. With its expressiveness, our model not only discovers latent activities
(topics) of users but also reveals time and place information. Qualitatively, it was
shown that better clustering performance than without them. Finally, although
the building block of our proposed model is the Dirichlet process, based on HDP,
it is straightforward to apply other stochastic processes such as nested Dirich-
let processes or hierarchical Beta processes to provide alternative representation
expressiveness for data modelling tasks.
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Abstract. Learning from multi-view data is important in many appli-
cations. However, traditional multi-view learning algorithms require the
availability of the representation from multi-view data in advance, it is
hard to apply these methods to recommendation task directly. In fact,
the idea of multi-view learning is particularly suitable for alleviating
the sparsity challenge faced in various recommender systems by adding
additional view to augment traditional view of sparse rating matrix.
In this paper, we propose a unified Collaborative Multi-view Learn-
ing (CML) framework for recommender systems, which can exploit task
adaptive multi-view representation of data automatically. The main idea
is to formulate a joint optimization framework, combining the merits of
matrix factorization model and transfer learning technique in a multi-
view framework. Experiments on real-life public datasets show that our
model outperforms the compared state-of-the-art baselines.

Keywords: Collaborative filtering · Neural network · Representation
learning

1 Introduction

With the explosive growth and variety of information available on the Web,
the interest in recommender systems has dramatically increased from both
research and industrial communities. In this filed, Collaborative Filtering (CF)
approaches, especially matrix factorization models, have achieved significant suc-
cess [11], based on users’ previous interest encoded by the rating matrix reflecting
the similarities of similar users or items. However, CF performs poorly when lit-
tle collaborative information is available. This is referred to as the data sparsity
problem [10,17], which is a common problem in many newly launched recom-
mender systems.

There are two main directions for solving this challenging in various recom-
mender systems. The first one lies in traditional single task setting, i.e., how
to effectively use existing user-item1 pairs combined with auxiliary information,
1 Here item is a general term, e.g., book in Amazon and music in LastFM.
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such as content [1,14] or complex network structure [11] given in advance. The
second one lies in recently developed transfer learning setting [9], i.e., how to
exploit related task-beneficial auxiliary information, learned from source rec-
ommender containing dense interactive data, to strengthen target recommender
performance. Specifically, 1) the first direction is extensively studied using side
information. Although side information is beneficial for improving recommender
performance, it is usually restricted by the availability of predictive data repre-
sentations or restricted by relying on feature engineering. Thus, this motivates
us to seek a general method that can automatically exploit side information for
existing CF approaches. 2) The second direction becomes a recently hot research
topic [17], but it needs more resources, i.e., cross-system information. For exam-
ple, we need both Twitter and Facebook resources to improve the target system
of Facebook, which is not always easy to acquire due to individual privacy or
commercial issues. In addition, it usually makes strong assumptions for design-
ing learning algorithms. For example, cross-system entity correspondence [10] is
usually a crucial prerequisite. Thus, this motivates us to seek a novel cost-saving
way to achieve knowledge transfer, i.e., attempting to employ the idea of transfer
learning to the first direction.

In addition to the issues above for solving sparsity problem, we also consider
how to incorporate discriminative power into existing CF algorithms, inspired by
Supervised Matrix (or tensor) Factorization (SMF) approach [16]. The idea of
SMF is to faithfully reconstruct the original matrix using discriminative priors
(corresponding class labels), i.e., with additional discriminative constraints, such
as max-margin criterion for classification [16] on the basis variables or factorized
latent features. However, in our task, the supervised label information for unrated
item, i.e., like or dislike for a user is uncertain. Thus, how to actively determine
label certainty and use this predicted label information for improving discrimi-
native power is a key challenge applying supervised setting to CF task. Due to
this obstacle, most of CF algorithms in both mentioned directions act as unsuper-
vised manners that failed to exploit the inherent discriminative priors of the data
objects. In fact, this knowledge is useful in many real world applications, such as
item with tags etc. Ideally, this obstacle and the above challenging issues for solv-
ing sparsity problem should be well considered jointly in a unified framework.

To solve all the above challenges, in this paper, we propose a unified multi-
view framework for collaborative filtering. This framework can be seen as a com-
promised approach between the two directions of single task view and transfer
learning setting. It combines the merits of these two directions with discrimina-
tive power to solve the rating sparsity problem. More specifically, our approach
is from multi-view perspective [4,5], which can exploit side information automat-
ically for CF task with the ability of knowledge transfer to construct discrimi-
native prior from different views. In contrast with the two directions above, our
method can work on a very extremely sparse rating matrix 1) without needing
the multi-view data representation available in advance, 2) and only maintaining
minimal external resources compared with transfer learning approach to achieve
knowledge transfer. The following sections will discuss those in detail.
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2 Preliminaries

In this paper, we address missing rating prediction problem from multi-view
perspective. We employ the idea of transfer learning in a multi-view setting with
side information2, to complete a sparse rating matrix. For simplicity, we focus
on the basic recommending case that the value of user rating has only binary
states, which also can be extended easily for ordinal case in various applications.

Transfer Learning for CF. The idea of transfer learning [9,17] for address-
ing the data-sparsity problem in the target recommender system is to use the
data from some related recommender systems. In this category, these approaches
assume that the knowledge of a source CF model built with rich collaborative
data can be extracted as a prior to assist the training of a more precise CF
model for the target recommender systems. For example, many commercial Web
sites often attract similar users (e.g., Twitter, Facebook, etc.), or provide sim-
ilar product items (e.g., Amazon, eBay, etc.), thus we can bridge two related
systems by cross-system entity correspondence [8,10] or using the group level
similarity [7] to improve target system performance. However, all the algorithms
of transfer learning rely on cross-system resources, which are usually not easy
to acquire because of commercial competition or individual privacy. Thus, we
extend this good idea to a more cost-saving resource setting, for CF task based
on side information in a single system.

Multi-view Learning for CF. To achieve the goal of extending the idea of
transfer learning to a more cost-saving resource setting mentioned above, we
propose to use multi-view learning approach to incorporate the ability of knowl-
edge transfer for CF. The basic idea of multi-view learning [4,5] is to leverage
the redundancy and consistency among distinct views to strengthen the overall
performance. We use this idea [4] originally for clustering problem to deal with
data sparsity problem for recommendation. In traditional multi-view learning
for classification problem, each view of objective function is assumed to be capa-
ble of correctly classifying labeled examples separately. Then, they are smoothed
with respect to similarity structures in all views. Similarly, for the CF task in this
paper, we also assume that our individual views of user-item rating matrix and
side information are complementary with similar latent structure. The difference
is that both views are bridged through a bi-directional prior with discriminative
power, which extends the idea of transfer learning to multi-view framework.

3 The Overall Collaborative Multi-view Learning
Framework

The key idea is that we exploit learning multi-view representations with multiple
task oriented objectives (loss functions) in a unified optimization framework,
to improve recommendation performance. Our framework is a general solution,
2 We use item content as side information which also can be substituted by user
content similarly.
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which introduces different views of modeling for recommendation via item prior
as a bridge.

The general framework3 shows the high level generative process of the pro-
posed basic model and the extension. The differences lie in that are modeled by
different prior modeling approaches for each latent item representation, which
will be discussed in the proposed basic model and the extension respectively.

– For each user i,
• draw a user latent vector ui ∼ N(0, λ−1

u IK), multivariate Gauss distri-
bution with zero mean.

– For each item j,
• draw a multi-view representation variable θj via representation learning

(that is different in the proposed basic model and the extension).
• draw an item latent vector vj ∼ N(θj , λ

−1
v IK), multivariate Gauss dis-

tribution.
– For each user-item pair (i, j),

• draw the response rij ∼ N(uT
i vj , c

−1
ij ), univariate Gauss distribution,

where cij is a confidence parameter [14] for rating rij , a > b. If rij is
large, we trust rij more.

cij =

{
a, rij = 1
b, rij = 0.

(1)

It is noted that the different ways to model prior as view specific representa-
tion lead to different recommendation models. The appropriate choice of data
representation (or features) plays a key role in acquiring optimal performance
of the state of arts machine learning methods. In particular, we use neural net-
work approach to learn view specific prior automatically from data, instead of
pre-defined fashion by hands in the framework.

4 Details of the Framework with Active Discriminative
Prior

Our work shares similar intuition of a recent trend [14] which brings two well-
established approaches together, i.e., probabilistic topic modeling and latent
factor models. However, previous approach is not from multi-view perspective.
These methods [3,11,14,15] cannot incorporate multi-view loss into a joint opti-
mization framework and are not capable of transferring knowledge actively.

3 For notations used in this paper, we use capital letters to represent matrices, use
boldface lower-case letters to represent vectors, and use lowercase letters to represent
scalars.
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4.1 The Proposed Basic Model

Model Formulation: To model view specific prior, we incorporate Stacked
Denoising Auto-encoder (SDA) [13] into our optimization framework as initial
estimate for our neutral network. SDA is one of building blocks of (deep) rep-
resentation learning as an extension of Auto-Encoder (AE). Given the input x
representing document as a binary bag-of-words vector, Denoising Auto-encoder
(DA) randomly masks 1 with 0 with a pre-defined probability. Since the miss-
ing components have to be recovered from partial input, DA has the chances of
capturing general concepts and ignoring noise like function words. Then, as the
standard AE, it performs encoding process h(x) and decoding process g(h(x)),
minimizing the reconstruction error L(x, g(h(x))) to retain maximum informa-
tion.

Specifically, in this basic model, we use one hidden layer DA to learn view
specific representation of each item as prior in a joint optimization framework.
The reconstruction criterion is given in view 2 part of Eq. 2.

Fig. 1. Active knowledge transfer with bi-directional prior mechanism in a multi-view
framework

Model Learning: For learning the parameters, we develop a coordinate descent
optimization algorithm to maximize a posteriori (MAP) estimate of U, V with
column vectors ui and vj respectively. It is equivalent to minimizing the complete
negative log-likelihood with respect to W,U, V,b, c:

L1 =
∑

j=1

‖σ2(WT σ1(Wx(j) + b) + c) − x(j)

︸ ︷︷ ︸
view2

‖22+

λv

2

∑

j

(vj − σ1(Wx(j) + b)
︸ ︷︷ ︸

bridge

)T (vj − σ1(Wx(j) + b))+

λu

2

∑

i

uT
i ui +

∑

i

∑

j

λcij

2
(rij − uT

i vj)2
︸ ︷︷ ︸

view1

+
λw

2
‖W‖2F ,

(2)

where σ1(x) = 1/1 + exp(−x) as nonlinear mapping and σ2(x) = x as linear
reconstruction function in an element-wise way. W is the weights matrix of
Neural Network (NN). Note that the prior θj in general framework is modeled
as

θj = σ1(Wx(j) + b). (3)
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Specifically, we iteratively optimize the collaborative filtering variables U, V and
the parameters of representation learning W,b, c. By setting the derivative of
L1 with respect to ui,vj to zero, we obtain the update rule

ui ← (V CiV
T + λuIK)−1V CiRi, (4)

vj ← (UCjU
T + λvIK)−1(UCjRj + λvσ1(Wx(j) + b)), (5)

where Ci is a diagonal matrix with elements cij for each j, Ri is a column vector
with elements rij for each j. For item j, Cj and Rj are similarly defined.

Then, given U and V , we update the parameters W,b, c via computing the
corresponding gradient of L1, which is similar to back-propagation in NN but
with additional regularization term and sharing weights constraint. Thus, to
update W, b, c, we can only modify the existing optimization procedure of autoen-
coder (AE) by adding our regularization term. The additional adding gradient
for W during each gradient descent iteration in our case is

λv

M
(H − V ) ◦ dH · XT , (6)

where ◦ denotes Hadamard product performing matrix element wise product, H
is a matrix with column representations outputted from the hidden layer in NN
for each item {σ1(Wx(j) + b)}. dH is the matrix with corresponding derivative
value of H. X is a data matrix which contains column vectors as bag of word
features for each item. M is the total number of items. The adding gradient for
b to existing AE optimization is

λv

M
(H − V ) ◦ dH · 1, (7)

where 1 is a column vector in which all elements are equal to one.

4.2 Extension with Active Discriminative Prior

Model Formulation: The proposed approach has three merits. First, we model
item prior using a discriminative learning approach rather than a generative fash-
ion. Thus, it allows us to flexibly incorporate any multiple task oriented objec-
tives instead of a pre-defined generative process with lower bound of objective
like CTR [14], for joint optimization. Second, this discriminative prior modeling
naturally offers explicit weighs for mapping new samples out of training data, not
needing a re-sampling procedure as in generative models, e.g., LDA [2]. Third,
our method is a general framework which can be easily extended to exploiting
other side information, such as social network data for modeling user prior.

a) Discriminative Prior Modeling We extend the basic model to multi-
view multi-objective setting. Traditionally, collaborative filtering via matrix fac-
torization is to solve an unsupervised matrix reconstruction problem under root
mean squared error (RMSE) criterion. However, the ultimate goal of any rec-
ommender is to generate recommendation lists for users, which is a ranking
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problem in nature. Thus, we incorporate ranking based loss explicitly, into our
joint optimization framework, with representation learning for prior modeling.
Any measures for ranking can be incorporated into our framework. For simplic-
ity, we define the pairwise ranking criterion as loss function appeared in view 2
part of Eq.8, stacking on the output layer of SDA for joint optimization. Dif-
ferent from supervised matrix factorization case [16], in our CF task, accurately
acquiring label information of unrated item is non-trivial.

b) Active Knowledge Transfer for Constructing Negative Samples
To achieve discriminative prior modeling, the main obstacle is that the super-
vised information is not available. Here we cannot acquire the true label of
unrated item for each user, i.e., like or dislike, because rij = 0 can be inter-
preted into two ways. One is that user i is not interested in item j; the other
is that user i does not know about item j. Instead, inspired by the work [17],
we actively compute the predicted (label) rating of each unrated item in each
optimization iteration, and then use this predicted label as the supervised infor-
mation for training discriminative prior. The selection rule for negative sample
set is to choice the top-K unrated items for current user in the predicted rating
list sorted in ascending order, according to the score of inner product of latent
user ui and item vj .

c) Bi-directional Prior Mechanism In this mechanism, the prior as a
bridge between two views (i.e., rating matrix and side information), is not iden-
tical for each direction while optimization as shown in Figure 1. The key idea
behind this mechanism is that we assume side information for similarity learn-
ing is more reliable than for that using a extremely sparse rating matrix. More
specifically, while we optimize the variables related to rating matrix view, the
variables related to side information are active as a regularization for it. On
the contrary, while we optimize the variables related to side information view,
the regularization effect of variables related to rating matrix view is not allowed
to be active explicitly, but with a way of using active transfer learning approach
implicitly. Thus, the most confident knowledge encoded by actively constructed
negative samples, learned from rating matrix view, can be utilized for correctly
directing the optimization process with corresponding loss.

Model Learning: For the extended model, similarly, Maximizing A Posteri-
ori (MAP) estimate of U, V is equivalent to minimizing the following complete
negative log-likelihood with respect to W1,W2, U, V,b, c:

L2 =
λu

2

∑

i

uT
i ui +

∑

i

∑

j

λcij

2
(rij − uT

i vj
︸ ︷︷ ︸

view1

)2

+
λv

2

∑

j

(vj − hj
1︸ ︷︷ ︸

bridge

)T (vj − hj
1) +

λw

2
‖W‖2F

−
∑

i

∑

j∈Ri

log
exp(dot(σ(WT

2 hj
1 + c),ui))

∑
k∈Cni

exp(dot(σ(WT
2 hk

1 + c),ui))
︸ ︷︷ ︸

view2

,

(8)
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where h·
1 = σ(W1x

(·) +b), W = [W1,W2] is the weights matrix in NN with two
hidden layers, Ri denotes the rated item set of user i, Cni denotes the candidate
set including the current item j and all other unrated items as negative samples
constructed by active knowledge transfer for user i. σ is a nonlinear sigmoid
function as shown in our basic model. Note that the prior θj in general framework
is modeled as

θj = hj
1 = σ(W1x

(j) + b). (9)

Similarly, we follow the same strategy used for the basic model to derive the
optimization procedure here. It is noted that we only consider two views of each
item, ignoring the effect of user regularization through ranking based loss (view
2) when optimizing each latent user representation. Thus, for ui and vj , we
derive the similar update rule as shown in basic model to guarantee the closed
optimal solution for updating ui and vj respectively, which can also reduce
computational cost simultaneously for our extended model.

ui ← (V CiV
T + λuIK)−1V CiRi, (10)

vj ← (UCjU
T + λvIK)−1(UCjRj + λvh

j
1). (11)

Then, we use the same way discussed in our basic model to modify standard
AE optimization procedure by adding additional gradient for regularization of
ranking based loss in view 2. Specifically, one modification refers to computing
the desired partial derivatives for output layer of NN. We define the output value
of NN for each item j, hj

2 = σ(WT
2 hj

1 + c). The partial derivative of L2 with
respect to hj

2 is

∂L2

∂hj
2

=
∑

i

(
uiexp(dot(ui,h

j
2))∑

k∈Cni
exp(dot(ui,hk

2))
− ui). (12)

The other gradient modification of AE is the consideration for regularization
term appeared in bridge part through view 2, which is similar to our basic
model but with 2 hidden layers structure. Thus, the similar derivation can be
obtained.

Speeding Up the Optimization: To reduce computational costs when updat-
ing ui and vj , we adopt the same strategy of matrix operation shown in [6].
Specifically, directly computing V CiV

T and UCjU
T requires time O(K2J) and

O(K2I) for each user and item, where J and I are the total number of items and
users respectively, K is the dimension of latent representation space. Instead, we
rewrite

UCjU
T = U(Cj − bIK)UT + bUUT . (13)

Then, bUUT can be pre-computed and Cj − bIK has only Ir non-zeros elements,
where Ir refers to the number of users who rated item j and empirically Ir � I.
For V CiV

T , it is similar. Thus, we can significantly speed up computation by
this sparsity property.

Prediction: Using the learned parameters above, we can make in-matrix and
out-of-matrix predictions defined in [14]. For in-matrix prediction, it refers to
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the case where those items that have been rated by at least one user in the
system. To compute predicted rating, we use r∗

ij ≈ (u∗
i )

Tv∗
j . For out-of-matrix

prediction, it refers to the case where those items that have never been rated
by any user in the system. To compute predicted rating, we use r∗

ij ≈ (u∗
i )

T θ∗
j ,

where the corresponding θ∗
j is defined in Equation 9.

5 Experiments

5.1 Data and Metric

Datasets 1) CiteULike Dataset: For a fair comparison, we use the same
CiteULike dataset4 as the benchmark, following the prior work in [14]. This
dataset is challenging. Though it contains 204,986 pairs of observed ratings with
5551 users and 16,980 articles, the sparseness is quite low, i.e., merely 0.2175%
, which is much lower than that of the well-known Movielens dataset with the
sparseness 4.25% . On average, each user has 37 articles in the library, ranging
from 10 to 403, and each article appears in 12 users libraries, ranging from 1
to 321. For each article, the title and abstract information are used as the bag-
of-word representation. After the text processing by selecting informative words
via tf-idf and removing stop words, 8,000 distinct words are remained in the
corpus. 2) LastFM Dataset: We further evaluate our proposed method on
real life dataset 5 from LastFm6. This dataset is also challenging. Though it
contains 92,834 pairs of observed ratings with 1892 users and 17,632 items, the
sparseness is quite low, i.e., merely 0.2783% , which is also much lower than that
of the well-known Movielens dataset with the sparseness 4.25%. On average,
each user has 44.21 items in the play list, ranging from 0 to 50, and each item
appears in 4.95 users libraries, ranging from 0 to 611. For each item, the tag
information is used as bag-of-word representation. After text processing, 11,946
distinct words are remained in the corpus. In addition, we further remove noisy
users which have no items.

Evaluation Metric. Two possible metrics are precision and recall. As discussed
in [11,14,15], zero ratings are uncertain which may indicate that a user does not
like an article or does not know about it. Thus, we use recall as our metric.
Recall@k = �relevance@k

�total relevance , where � denotes the number of relevant items in
top-k result and total relevant items respectively.

5.2 Baselines and Settings

Baselines

– CML-ADP-Bi: The proposed extended model with active discriminative
prior, in which the bi-directional prior modeling mechanism is enabled. It is
noted that the initialization of NN is from the values of CML-ADP.

4 Data available at http://www.cs.cmu.edu/∼chongw/citeulike/
5 Data available at http://grouplens.org/datasets/hetrec-2011/
6 http://www.last.fm/

http://www.cs.cmu.edu/~chongw/citeulike/
http://grouplens.org/datasets/hetrec-2011/
http://www.last.fm/
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Fig. 2. Comparison of recall for our model and the state-of-the-arts. Left Plot: ’in
matrix prediction’ case and Right Plot: ’out-of-matrix prediction’ case. It is noted that
our method can achieve the significant improvements only using content information,
in contrast with [3,11,15] which rely on both content and social information to achieve
the comparable improvements.

– CML-ADP: The proposed extended model with active discriminative prior,
in which the bi-directional prior modeling mechanism is not used.

– CML-Basic: The proposed basic model without active discriminative prior.
– CTR: The model described in [14], which is the most similar state-of-the-

art approach combining the merits of traditional collaborative filtering and
probabilistic topic modeling.

– PMF: The model described in [12], which is a state-of-the-art matrix fac-
torization approach widely applied without using side information.

Fig. 3. Parameter sensibility analysis for lambda V on in-matrix (Left Plot) and out-
of-matrix (Right Plot) prediction with the number of top recommended item at 50,
100, 150 and 200

Settings. We evaluate our models in three cases. 1) In Matrix and Out-of
Matrix Cases (CiteULike Dataset): We use 5-fold cross-validation scheme
following [14] and we use grid search to find corresponding optimal parameters
on a small heltout dataset. We found that the common parameters v = 100;
u = 0.01; a = 1; b = 0.01; K = 200 gives good performance for PMF and CTR
approach. For CTR, we set additional parameters λu = 0.01; For our model,
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we set additional parameters λw = 10; and vary parameter λv to study their
effect on prediction accuracy. We also select our optimal parameter λv = 10.
For DAE, the number of hidden variables K = 300 selected for the optimal
performance. Particularly, we use a masking noise probability in 0.7 for the
input layer and a Gaussian noise with standard deviation of 0.1 is used for
higher output. For parameter analysis with different λv and ratio of unrated
items for knowledge transfer, we perform this testing for our proposed models
for different top items {50,100,150,200} with 300 factors. 2) Randomly Split
Case (CiteULike Dataset): We randomly split the dataset into two parts,
training (90%) and test datasets (10%), with constraint that users in test dataset
have more than half of the average number of rated items, i.e., 20. This expands
the range of performance analysis for our evaluation compared with [11]. The
optimal parameters are obtained on a small held-out dataset. For PMF, we set
λv = 100, λu = 0.01. For all CTR, we set a = 1, b = 0.01, λv = 0.1. and set
λu = 0.01. The remaining setting is the same as that described above.

5.3 Results and Analysis

1) CiteULike Dataset: For in matrix prediction, from Figure 2 (left), we
can see that our models consistently outperform CTR model and PMF under
recall and achieves considerable improvement. In addition, we study how the con-
tent parameter λv affect the overall performance of the recommendation system.
From Figure 3 (left), we observe that the value of λv impacts the recommenda-
tion results significantly, which demonstrates that fusing representation learning
with PMF improves recommendation accuracy considerably. For out of matrix

(a) In Matrix Predication (b) Out-of-Matrix Predication

Fig. 4. Parameter sensibility analysis of the ratio of unrated items for knowledge trans-
fer on in-matrix (Left Plot) and out-of-matrix (Right Plot) prediction

prediction task, PMF is useless in this problem. Thus, we only compare CTR
with the proposed models in this paper. From Figure 2 (right), we can also
see that our models consistently outperforms CTR model under recall metric.
Similarly, we study how the content λv affects the overall performance in out
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of matrix prediction task setting. We also can find that λv impacts the recom-
mendation results significantly from Figure 3 (right). It is noted that although
the improvement compared with in matrix predication case is not considerable,
it is also much better than that in original CTR which compares with LDA
in its original paper [14]. This could be explained that the task-oriented opti-
mization benefits from the discriminative learning approach compared with a
generative fashion as in CTR, which makes a strong assumption in generative
process. We further exploit how the ratio of unrated items for knowledge trans-
fer can influence the recommendation performance in Figure 4. It is shown that
the performance is increased with the ratio but the computation costs are also
increased. Thus, we choose 20% as our optimal value. With a more larger one,
it may introduce more some uncertain negative samples to undermine the per-
formance. Moreover, we can see that the ranking based objective as additional
optimization view in the extended model (CML-ADP and CML-ADP-Bi), to
augment the RSME error criterion, is also a necessary, which is proven by our
experiment results in both in-matrix and out-of-matrix tasks. This ability to
incorporate multiple task related optimization objectives is a salient advantage
in our proposed collaborative multi-view learning framework, which is not easily
achieved in the generative approach, e.g., CTR.

2) LastFM Dataset: From Figure 5, we can find the similar results as shown
in previous discussion on CiteULike dataset, which further demonstrates the
effectiveness of the proposed method in randomly splitting case. Thus, all three
cases in various real applications have proved the promising performance of the
proposed method.

(a) Recall Performance (b) Parameter Analysis (c) Transfer Analysis

Fig. 5. Comparison of recall for our model and the state-of-the-arts. It is noted that to
well illustrate, the result of PMF is omitted due to its poor performance in our exper-
iment. Our method performs significantly better than CTR, using the same content
information, without introducing additional side information as in [3,11,15] to achieve
the comparable improvements.
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6 Conclusions

In this paper, we propose a multi-view learning framework with the ability of
knowledge transfer for recommendation. We can learn multi-view representation
automatically from data, without needing multi-view data representation avail-
able in advance. Our method achieves significant improvements on all three cases
compared with the state-of-the-arts. In particular, our models achieve such con-
siderable improvements only using content information, in contrast with the
models relying on more external resources, such as both content and social
network information. Thus, the proposed method serves as a fundamental frame-
work, which can be further improved by incorporating additional side informa-
tion using the same fashion in [3,11,15].
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Abstract. Online and stochastic gradient methods have emerged as
potent tools in large scale optimization with both smooth convex and
nonsmooth convex problems from the classes C1,1(Rp) and C1,0(Rp)
respectively. However, to our best knowledge, there is few paper using
incremental gradient methods to optimization the intermediate classes of
convex problems with Hölder continuous functions C1,v(Rp). In order to
fill the difference and the gap between the methods for smooth and non-
smooth problems, in this work, we propose several online and stochastic
universal gradient methods, which we do not need to know the actual
degree of the smoothness of the objective function in advance. We expan-
ded the scope of the problems involved in machine learning to Hölder con-
tinuous functions and to propose a general family of first-order methods.
Regret and convergent analysis shows that our methods enjoy strong
theoretical guarantees. For the first time, we establish algorithms that
enjoys a linear convergence rate for convex functions that have Hölder
continuous gradients.

1 Introduction and Problem Statement

Online and stochastic gradient methods (or referred to as incremental gradient
methods) are of the most promising approaches in large scale machine learning
tasks in these days [5,9,10,13,15,16]. Important advances of incremental gradi-
ent methods have been made on sequential learning in the recent literature on
similar and famous problems, including lasso, logistic regression, ridge regression,
and support vector regression. Composite objective mirror descent (COMID) [2]
generalizes mirror descent [1] to the online setting. Regularized dual averaging
(RDA) [14] generalizes dual averaging [7] to online and composite optimization,
and can be used for distributed optimization [3]. Online alternating direction
multiplier method (ADMM) [12], RDA-ADMM [12] and online proximal gradi-
ent (OPG) ADMM [13] generalize classical ADMM [4] to online and stochastic
settings. In stochastic gradient methods, more recent descent techniques like
MISO [5], SAG [9] and SVRG [15] take update steps in the average gradient
direction, and achieve linear convergence rate.

However, most current incremental gradient methods deal with smooth func-
tions or non-smooth functions with Lipschitz-continues function values. In this
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 369–379, 2015.
DOI: 10.1007/978-3-319-18038-0 29
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paper, we consider incremental gradient methods with an objective function that
has Hölder continuous gradients with degree v:

‖∇g(x) − ∇g(y)‖∗ ≤ Mv‖x − y‖v, (1)

where 0 ≤ v ≤ 1 and ∇g(x) means any subgradient if g(x) is nonsmooth. It can
be seen that g(x) becomes smooth function with Lipschitz-continues gradients
when v = 1 and becomes non-smooth Lipschitz-continues function when v = 0.
Mv is mainly used to characterize the variability of the (sub)gradients, all of
this kind of functions form the class C1,v(Rp). In this paper, we consider the
problems of the following form:

min
x∈Rp

f(x) :=
1
n

n∑

i=1

gi(x) + h(x), (2)

where gi is a convex loss function with Hölder continuous gradients associated
with a sample in a training set, and h is a convex penalty function or regularizer.
Let g(x) = 1

n

∑n
i=1 gi(x).

If the Problem (2) is treated as minimizing of composite functions g(x) +
h(x), Nesterov has proposed the universal gradient methods (UGM) to solve it
in [8]. However, UGM for Problem (2) is a learning procedure in batch mode,
which cannot deal with training data appearing in succession, such as audio
processing [11]. Furthermore, one can hardly ignore the fact that in reality the
size of the data is rapidly increasing in various domain and thus training set for
the data probably cannot be loaded into the memory simultaneously in batch
mode methods. In such situation, sequential learning becomes powerful tools.
In this paper, we generalize UGM to online and stochastic settings to deal with
objective functions which have Hölder continuous gradients.

Assume x∗ is a solution of Problem (2), and in this work, we introduce a novel
kind of regret definition and seek bounds for this regret in the online learning
setting with respect to x∗, defined as

R(T, x∗, ε) :=
T∑

t=0

fgt
(xt) −

T∑

t=0

fgt
(x∗), (3)

where ε if a pre-specified error limit. All of our algorithms need to first assume a
fixed accuracy ε, and then the smaller the ε, the smaller the regret. For example,
if we assume ε = 1/T , then we will have a regret bound of O(1) after T iterations.
And if ε = 1/

√
T , then we will have a regret bound of O(

√
T ) after T iterations.

Thus, we have the results that look too good to be true, since our algorithms
are different from previous online algorithms, and we have an extra parameter
describing the accuracy. The regret bound is not in a standard sense. Ours are
in a sense that, for any fixed T , we can obtain an O(1) bound after T iterations.

We now outline the rest of the study. In Section 2, we propose online prime/
dual universal gradient methods to solve the online optimization problem for the
data that appear in succession and present the regret and convergence analysis.
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Section 3 states the stochastic universal gradient (SUG) method for the data that
cannot be loaded into the memory at the same time and show that the SUG
achieves a linear convergence rate. We conclude in Section 4. Some applications
of our theory will be presented in the appendix, but due to space limitation, the
detail of these applications, the numerical experiments and further the proofs
will be shown in another paper or a long version of this paper.

1.1 Notations and Lemmas

Before proceeding, we introduce the notations and some useful lemmas formally
first. In this work, we most adopt the nomenclature used by Nesterov on universal
gradient methods [8]. The functions encountered in this work are all convex if
there are no other statements.

This inequality (1) ensures that

|g(x) − g(y) − ∇g(y)T (x − y)| ≤ Mv

1 + v
‖x − y‖1+v. (4)

Bregman distance is defined as

ξ(x, y) := d(y) − d(x) − 〈∇d(x), y − x〉, (5)

where d(x) is a prox-function, which is differentiable strongly convex with con-
vexity parameter equal to one and its minimum is 0. Take derivative for y, we
have

∇yξ(x, y) = ∇d(y) − ∇d(x).

Bregman mapping is defined as

x̂ = arg min
y

[
g(x) + 〈∇g(x), y − x〉 + Mξ(y, x) + h(y)

]
, (6)

where h(y) is the fixed regularizer.
The first-order optimality condition for Problem (6) is

〈∇g(x) + M(∇d(x̂) − ∇d(x)) + ∇h(x̂), y − x̂〉 ≥ 0. (7)

Some useful lemmas and equations introduced by [8] are frequently employed
in establishing the results and are stated below for the sake of completeness.

Lemma 1. If ε > 0 and M > (1ε )
1−v
1+v M

2
1+v
v , then for any pair t ≥ 0 we have

Mv

1 + v
t1+v ≤ 1

2
Mt2 +

ε

2
. (8)

This lemma play an important role in this paper, which is been used to
transform the Hölder Continuous conditions to Lipschitz-continues conditions.
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Lemma 2. If g satisfy condition (1), assume ε > 0 and M > ( 1ε )
1−v
1+v M

2
1+v
v ,

then for any pair x, y we have

g(y) ≤ g(x) + 〈∇g(x), y − x〉 +
1
2
M‖y − x‖2 +

ε

2
. (9)

If x̂ is the Bregman mapping at x obtained by (6), then we have

g(x̂) + h(x̂) ≤ g(x) + 〈∇g(x), x̂ − x〉 + Mξ(x̂, x) + h(x̂) +
ε

2
. (10)

Throughout this work, we denote γ(Mv, ε) := (1ε )
1−v
1+v M

2
1+v∞ .

Lemma 3. If φ(x) is convex and φ(x) − Md(x) is subdifferentiable, let x̄ =
arg minx φ(x), then we have

φ(y) ≥ φ(x̄) + Mξ(x̄, y). (11)

These lemmas are proposed in [8], please refer there for proofs if interested.

2 Online Universal Gradient Method

In this section, we extend UGM to the online learning setting to deal with situ-
ation that the training data appearing in succession, such as multimedia infor-
mation processing [11]. The modification of UGM that we proposed is simple:
just change fT (x) to fgt

(x) in each iteration and output the average value in
each iteration. Our online algorithms are almost the same as the UGM with an
important difference: we only meet and process one sample (one function) at
each iteration. This methodology mainly comes from [2] and [13]. In the sequel,
we consider two types of methods according to the original work of [8], from
whose proofs we also draw some ingredients in ours.

2.1 Online Universal Prime Gradient Method (O-UPGM)

Lemma 2 shows that the Bregman mapping can move the current point more
close to the real solution, and this intuition form the core of the UGM and our
online algorithms. In UGM, the Bregman mapping is employed to update the
xt in each iteration, and xt is output as the solution after all the iterations.
Here we offer the general online universal primal gradient method (O-UPGM)
to solves Problem (2) in the following algorithm, where the same as UGM,
Bregman mapping is also employed to update the xt in each iteration seeing
current sample, while unlike UGM that the average of these xt is output as
solutions after all the iterations.
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Algorithm 1. A generic O-UPGM
Input: L0 > 0 and ε > 0.
1: for t = 0, 1, · · · , T do
2: Find the smallest it ≥ 0 such that gt(x̂) + h(x̂) ≤ gt(xt) + 〈∇gt(xt), x̂ − xt〉 +
2itLtξ(x̂, xt) + h(x̂) + ε

2
.

3: Set xt+1 = x̂ and Lt+1 = 2it−1Lt.
4: t = t + 1.
5: end for
Output: x̄ = 1

ST

∑T+1
t=1

1
Lt

xt, where ST =
∑T+1

t=1
1

Lt
.

The above online UPGM is similar as batch UPGM except the xt update in
O-UPGM uses a time varying function fgt

. The following establishes the regret
bound and the convergence rate for UPGM for general convex function with
Hölder continuous gradients.

Theorem 1. Assume Mv(gt) < Mv and h(x) is a simple convex function. Let
the sequence {xt} be generated by the general O-UPGM in Algorithm 1. Then
we have

T∑

t=0

1
Lt+1

[fgt
(xt+1) − fgt

(x∗)] ≤ ε

2
ST + 2r0(x∗), (12)

where ST =
∑T+1

t=1
1

Lt
.

The ideas of the proof is closed related to that of UPGM by Nesterov [8],
but due to the space limitation, the proof will be given in a long version of this
paper.

If we replace Step 2 and 3 in Algorithm 1 with xt+1 = B2γ(Mv,ε),gt
(xt), then

Lt+1 = γ(Mv, ε). Thus Theorem 1 becomes

Corollary 1. Assume Mv(gt) < Mv and h(x) is a simple convex function. Let
the sequence {xt} be generated by O-UPGM with fixed steps Lt+1 = γ(Mv, ε).
Then we have the standard regret bound

R(T, x∗, ε) ≤ ε

2
(T + 1) + 2r0(x∗)γ(Mv, ε). (13)

Further, let ε = T− 1+v
2 , we have

R(T, x∗, ε) = O(T
1−v
2 ). (14)

We have the following remarks regarding the above result:

Remark 1. All of our online algorithms (O-UPGM and the following O-UDGM)
need to first assume a fixed accuracy ε, and then the smaller the ε, the more
accurate the solution. For example, if we assume ε = 1/T , then we will have
a regret bound of O(1) after T iterations. And if ε = 1/

√
(T ), then we will
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have a regret bound of O(
√

(T )) after T iterations. Thus, we have the results
that look too good to be true, since our algorithms are different from previous
online algorithms, and we have an extra parameter describe the accuracy. And
the regret bound is not in a standard sense. Ours are in a sense that, for any
fixed T , we can obtain an O(1) bound after T iteration.

2.2 Online Universal Dual Gradient Method (O-UDGM)

The original batch UDGM is based on updating a simple model for objective
function of Problem (2). We built a general online UDGM based on this principle
for online or large scale problems.

Algorithm 2. A generic O-UDGM
Input: L0 > 0, ε > 0 and φ0(x) = ξ(x0, x).
1: for t = 0, 1, · · · , T do
2: Find the smallest it ≥ 0 such that for point xt,it = arg minx φt(x) + 1

2itLt
[gt(xt) +

〈∇gt(xt), x − xt〉 + h(x)], we have fgt(B2itLt,gt
(xt,it)) ≤ ψ∗

2itLt,gt
(xt,it) + 1

2
ε.

3: Set xt+1 = xt,it , Lt+1 = 2it−1Lt and φt+1(x) = φt(x) + 1
2Lt+1

[gt(xt) + 〈∇gt(xt), x −
xt〉 + h(x)].
4: t = t + 1.
5: end for
Output: x̄ = 1

ST

∑T+1
t=1

1
Lt

xt, where ST =
∑T+1

t=1
1

Lt
.

Theorem 2. Assume Mv(gt) < Mv and h(x) is a simple convex function. Let
the sequence {xt} be generated by the general O-UDGM. Then we have

T∑

t=0

1
2Lt+1

fgt
(xt) −

T∑

t=0

1
2Lt+1

fgt
(x∗) ≤ ST

ε

4
+ ξ(x0, x

∗) (15)

where ST =
∑T+1

t=1
1

Lt
.

We have the following remarks regarding the above result:

Remark 2. If we replace Step 2 and 3 in Algorithm 2 with

xt+1 = arg min
x

{φt(x) +
1

2γ(Mv, ε)
[gt(xt) + 〈∇gt(xt), x − xt〉 + h(x)]} (16)

and

φt+1(x) = φt(x) +
1

2γ(Mv, ε)
[gt(xt) + 〈∇gt(xt), x − xt〉 + h(x)] (17)

respectively, then Lt+1 = γ(Mv, ε) and Theorem 2 becomes
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Corollary 2. Assume Mv(gt) < Mv and h(x) is a simple convex function. Let
the sequence {xt} be generated by O-UDGM with fixed steps Lt+1 = γ(Mv, ε).
Then we have the standard regret bound

R(T, x∗, ε) ≤ ε

2
(T + 1) + 2ξ(x0, x

∗)γ(Mv, ε). (18)

Further let ε = T− 1+v
2 , thus Corollary 2 becomes

Corollary 3. Assume Mv(gt) < Mv and h(x) is a simple convex function. Let
the sequence {xt} be generated by the specific O-UDGM with xt updated by (16)
and (17). Then we have

R(T, x∗, T− 1+v
2 ) = O(T

1−v
2 ). (19)

3 Stochastic Universal Gradient Method

In this section, we propose the stochastic universal gradient (SUG) method to
deal with situation that the data probably cannot be loaded into the memory
at the same time in batch mode methods since the size of the data is rapidly
increasing. We summarize the SUG method in Algorithm 3.

Algorithm 3. SUG: A generic stochastic universal gradient method
Input: start point x0 ∈ dom f ; for i ∈ {1, 2, .., n}, let g0

i (x) = gi(x
0) + (x −

x0)T ∇gi(x
0) + M i

0ξ(x
0, x), and G0(x) = 1

n

∑n
i=1 g0

i (x).
1: repeat
2: Solve the subproblem for new approximation of the solution: xk+1 ←
arg minx

[
Gk(x) + h(x)

]
.

3: Sample j from {1, 2, .., n}, and update the surrogate functions:

gk+1
j (x) = gj(x

k+1) + (x − xk+1)T ∇gj(x
k+1) + M i

k+1ξ(x
k+1, x), (20)

while leaving all other gk+1
i (x) unchanged: gk+1

i (x) ← gk
i (x) (i 	= j); and Gk+1(x) =

1
n

∑n
i=1 gk+1

i (x).
4: until stopping conditions are satisfied.
Output: xk.

3.1 Convergence Analysis of SUG

Theorem 3. Suppose gi(x) satisfy condition (1) and M ≥ M i
0 > ( 2ε )

1−v
1+v M

2
1+v
v

for i = 1, ..., n, d(x) satisfy ‖∇d(x) − ∇d(y)‖∗ ≤ Md‖x − y‖d, h(x) is strongly
convex with μh ≥ 0, then the SUG iterations satisfy for k ≥ 1:

E[f(xk)] − f∗ ≤ Mρk−1‖x∗ − x0‖2 +
3ε

4nμh

1 − ρk−1

1 − ρ
+

3ε

4
, (21)

where ρ = 1
n

M
μh

+ (1 − 1
n ).
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We have the following remarks regarding the above result:

– In order to satisfy E[f(xk)] − f∗ ≤ ε̃, the number of iterations k needs to
satisfy

k ≥ (log ρ)−1 log
[(

ε̃ − 3ε

4nμh

1
1 − ρ

− 3ε

4
) 1
M‖x∗ − x0‖2

]
+ 1.

– Inequality (21) gives us a reliable stopping criterion for SUG method.

Since E[f(xk)] − f∗ ≥ 0, Markov’s inequality and Theorem 3 imply that for
any ε > 0,

Prob
(
f(xk) − f∗ ≥ ε̃

)
≤ E[f(xk)] − f∗

ε̃
≤ Mρk−1‖x∗ − x0‖2

ε̃
+

3ε

4ε̃nμh

1

1 − ρ
+

3ε

4ε̃
.

Thus we have the following high-probability bound.

Corollary 4. Suppose the assumptions in Theorem 3 hold. Then for any ε > 0
and δ ∈ (0, 1), we have

Prob
(
f(xk) − f(x�) ≤ ε̃

) ≥ 1 − δ̃

provided that the number of iterations k satisfies

k ≥ (log ρ)−1 log
[(

δ̃ − 3ε

4ε̃
− 3ε

4ε̃nμh

1
1 − ρ

) ε̃

M‖x∗ − x0‖2
]
+ 1.

4 Conclusions

In this paper, in order to fill the difference and gap between methods for smooth
and nonsmooth problems, we propose efficient online and stochastic gradient
algorithms to optimization the intermediate classes of convex problems with
Hölder continuous functions C1,v(Rp). We establish regret bounds for the objec-
tive and linear convergence rates for convex functions that have Hölder continu-
ous gradients. There are some directions that the current study can be extended.
In this paper, we have focused on the theory; it would be meaningful to also do
the numerical evaluation and implementation details, and we give some simple
applications in Section 4. Second, combine with randomized block coordinate
method [6] for minimizing regularized convex functions with a huge number of
varialbes/coordinates. Moreover, due to the trends and needs of big data, we
are designing distributed/parallel SUG for real life applications. In a broader
context, we believe that the current paper could serve as a basis for examining
the method for the classes of convex problems with Hölder continuous func-
tions C1,v(Rp).

Appendix

In this appendix, we will present some applications of our methods.
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1. Lasso Problem

The lasso problem is formulated as follows:

min
x∈Rp

1
n

n∑

t=1

‖aT
t x − bt‖2 + μ‖x‖1,

where at, x ∈ R
p and bt is a scalar.

Throughout this subsection, let g(x) = 1
n

∑n
t=1 ‖aT

t x − bt‖2 and h(x) =
μ‖x‖1, d(x) = 1

2‖x‖2, then
The Bregman mapping associate with g(x) and the component function

gt(x) = ‖aT
t x − bt‖2 are

x̂ = arg min
y

{ 1

T

T∑

t=1

‖aT
t x − bt‖2 + 〈 2

T

T∑

i=1

(aT
t x − bt)at, y − x〉 + M

1

2
‖x − y‖2 + μ‖y‖1}

= sign(x − 2

MT

T∑

i=1

(aT
t x − bt)at) · max{abs x − 2

TM

T∑

i=1

(aT
t x − bt)at − μ

M
, 0}

and

x̂ = arg min
y

{‖aT
t x − bt‖2 + 〈 2(aT

t x − bt)at, y − x〉 + M
1
2
‖x − y‖2 + μ‖y‖1}

= sign(x − 2
M

(aT
t x − bt)at) · max{abs x − 2

M
(aT

t x − bt)at − μ

M
, 0}

respectively.
In online UDGM and SUG, we have

φt+1(x) = φt(x) + at[gt(xt) + 〈∇gt(xt), x − xt〉 + μ‖x‖1]
= ξ(x0, x) +

∑t
i=1 ai[gi(xi) + 〈∇gi(xi), x − xi〉 + μ‖x‖1].

Then we have

xt+1 = arg minx φt+1(x) = arg minx{ 1
2
‖x0 − x‖2 +

∑t
i=1 ai[〈∇gi(xi), x〉 + μ‖x‖1]}

= sign(x0 −∑t
i=1 ai∇gi(xi)) · max{abs x0 −∑t

i=1 ai∇gi(xi) − μ
∑t

i=1 ai, 0}.

2. Steiner Problem

In continuous Steiner problem we are given by centers ci ∈ R
p, i = 1, ...,m. It is

necessary to find the optimal location of the service center x, which minimizes
the total distance to all other centers. Thus, our problem is as follows:

min
x∈Rp

g(x) :=
1
m

m∑

i=1

‖x − ci‖,

where all norms in this problem are Euclidean. UGM solves that problem effec-
tively. However, in real application, new locations will be added to the system,
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such as new shop opening or new warehouse establishing. Thus our online and
stochastic gradient algorithms are needed.

Let h(x) = 0, d(x) = 1
2‖x‖2, then ξ(x, y) = 1

2‖x − y‖2. The subdifferential
of the Euclidean norm ‖x‖ is x

‖x‖ if x 
= 0 or {g|‖x‖ ≤ 1} if x = 0. In order to
simplify the formula, we here denote ∇‖x‖ = x

‖x‖ instead distinguishing between
x = 0 and x 
= 0.

The Bregman mapping associate with 1
m

∑m
i=1 ‖x − ci‖ and the component

function ‖x − ci‖ are

x̂ = arg min
y

{ 1
m

m∑

i=1

‖x − ci‖ + 〈 1
m

m∑

i=1

x − ci

‖x − ci‖ , y − x〉 + M
1
2
‖x − y‖2}

= x − 1
mM

m∑

i=1

x − ci

‖x − ci‖

and

x̂ = arg min
y

{‖x − ci‖ + 〈 x − ci

‖x − ci‖ , y − x〉 + M
1
2
‖x − y‖2} = x − 1

M

x − ci

‖x − ci‖
respectively

In online UDGM and SUG for Steiner problem, we have

φt+1(x) = φt(x) + at[gt(xt) + 〈∇gt(xt), x − xt〉]
= ξ(x0, x) +

∑t
i=1 ai[gi(xi) + 〈∇gi(xi), x − xi〉]

where gi(xi) = ‖xi − ci‖ and ∇gi(xi) = xi−ci
‖xi−ci‖ . Thus we have

xt+1 = arg minx φt+1(x) = arg minx
1
2‖x0 − x‖2 +

∑t
i=1 ai〈 xi−ci

‖xi−ci‖ , x〉
= arg minx

1
2‖x0 − x‖2 + 〈∑t

i=1 ai
xi−ci

‖xi−ci‖ , x〉 = x0 − ∑t
i=1 ai

xi−ci
‖xi−ci‖ .
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Abstract. The malicious modification of articles, termed vandalism,
is a serious problem for open access encyclopedias such as Wikipedia.
Wikipedia’s counter-vandalism bots and past vandalism detection
research have greatly reduced the exposure and damage of common and
obvious types of vandalism. However, there remains increasingly more
sneaky types of vandalism that are clearly out of context of the sen-
tence or article. In this paper, we propose a novel context-aware and
cross-language vandalism detection technique that scales to the size of
the full Wikipedia and extends the types of vandalism detectable beyond
past feature-based approaches. Our technique uses word dependencies to
identify vandal words in sentences by combining part-of-speech tagging
with a conditional random fields classifier. We evaluate our technique on
two Wikipedia data sets: the PAN data sets with over 62,000 edits, com-
monly used by related research; and our own vandalism repairs data sets
with over 500 million edits of over 9 million articles from five languages.
As a comparison, we implement a feature-based classifier to analyse the
quality of each classification technique and the trade-offs of each type of
classifier. Our results show how context-aware detection techniques can
become a new counter-vandalism tool for Wikipedia that complements
current feature-based techniques.

1 Introduction

Wikipedia is the largest free and open access online encyclopedia that attracts
tens of thousands volunteer editors1 and tens of millions of article views every
day2 [19,20]. The open nature of Wikipedia also facilitates many types of vandals
that deliberately make malicious edits, such as changing facts, inserting obscen-
ities, or deleting text. To combat vandalism, editors repair vandalised articles
with an edit that removes the vandalised text or with a revert back to a pre-
vious revision, and commonly leave a comment indicating a repair. Wikipedia
distinguishes many types of vandalism on its policy articles3 and provides best
practice guides to counter vandalism.
1 http://stats.wikimedia.org/EN/TablesWikipediansEditsGt5.htm
2 http://stats.wikimedia.org/EN/TablesPageViewsMonthly.htm
3 http://en.wikipedia.org/wiki/Wikipedia:Vandalism
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The introduction and prevalence of counter-vandalism bots since 2006 [7]
have reduced the exposure time of vandalism and the extra work needed by
editors to repair vandalism [8,11]. Vandalism detection research has introduced
new techniques that improve the detection rate. These techniques often focus on
developing features as input to machine learning algorithms [10,22,23]. A variety
of features based on the metadata, editor characteristics, article structure, and
content of Wikipedia articles have shown to be effective in distinguishing normal
revisions and revisions containing vandalism [19,20]. As new vandalism detection
techniques are integrated into counter-vandalism bots on Wikipedia, vandalism
of article content continues to become more sophisticated to avoid detection.

Wikipedia defines sneaky vandalism3 as difficult to find, where the vandal
may be using concealment techniques such as pretending to revert vandalism
while introducing vandalism, or subtle changes in the article text that aim to
deceive other editors to be legitimate changes. Subtle changes can be identified
as vandalism because they may break the consistency of text used in other
articles or past revisions, deviate from common or correct grammatical structure,
introduce uncommon word patterns, or change the meaning of a sentence. Text
features used in vandalism research do not inherently capture the context of the
sentences being edited as they do not consider word dependencies [16].

In this paper, we propose a novel vandalism detection technique that is
context-aware by considering word dependencies. Our technique focuses on a
particular type of sneaky vandalism, where vandals make sophisticated modifi-
cations of text that change the meaning of a sentence without obvious markers
of vandalism. We use a part-of-speech (POS) tagger [17] to tag types of words
in sentences changed in each edit, and conditional random fields (CRF) [12,13]
to model dependencies between tags to identify vandalised text.

We hypothesise that sneaky vandalism is out of context of sentences on
Wikipedia, but seem normal with respect to the text features used in vandal-
ism detection research. We evaluate our technique on the PAN data sets with
over 62,000 edits, commonly used by related research; and the full vandalism
repairs data sets with over 500 million edits of over 9 million articles from five
languages: English, German, Spanish, French, Russian. As a comparison, we
implement a feature engineering classifier, and analyse both classification results
and the trade-offs of each type of classifier. Our results show how context-aware
detection techniques can become a new state-of-the-art counter-vandalism tool
for Wikipedia that complements current feature engineering based techniques.

Our contributions are (1) developing a novel context-aware vandalism detec-
tion technique; (2) demonstrating how our technique is scalable to the entire
Wikipedia data set; (3) demonstrating the cross language application of classifi-
cation models and the relationships between the languages considered; (4) repli-
cating our experiments on the smaller PAN data sets often used in related work;
and (5) demonstrating how our technique differs and contributes to traditional
feature engineering approaches. These contributions backed by our results show
how context-aware detection techniques can become a new counter-vandalism
tool for Wikipedia that complements current feature-based techniques.
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2 Related Work

The interpretation of vandalism differs amongst Wikipedia users, which can lead
to incomplete or inconsistent labelling of vandalised revisions. [15] developed
two corpora by crowd-sourcing votes on whether a Wikipedia revision contains
vandalism using Amazon’s Mechanical Turk. The PAN workshops in 2010 and
2011 held competitions to encourage development of machine learning based
vandalism detection techniques.

For the PAN 2010 data set, Mola-Velasco [14] uses a set of 21 features to
detect vandalism, which resulted in a first place ranking at the PAN 2010 com-
petition. Adler et al. [2] improve on this winning entry by adding metadata,
text, user reputation, and language features, totalling 37 features. Javanmardi
et al. [10] further improve the classification results by introducing 66 features
and applying feature reduction. For the PAN 2011 data sets, West et al. [23]
develop 65 features that include many of the features from the entries from the
PAN 2010 competition. The PAN data sets continue to be used to evaluate van-
dalism detection techniques after the workshops were held, with other types of
features, such as syntactic and semantic features [21], statistical models of words
and editor actions [5], or styles of words [9].

Other vandalism techniques used their own data sets constructed from sam-
pled articles and revisions, or from a smaller Wikipedia [4,22].

Two vandalism detection techniques that are most similar to our work look
at the relationship of words over time, and co-occurrence of pairs of words. Wu
et al. [24] present a text-stability approach to find increasingly sophisticated
vandalism. This technique builds on ideas presented in Adler et al. [1] on the
longevity of words over time to determine the probability that parts of an article
will be modified by a normal or a vandal edit. Ramaswamy et al. [16] propose
two metrics that measure the likelihood of words contributed in an edit of a
Wikipedia article belonging to that article with respect to the article’s content
and topic. The numerous words and word pairs resulting the data processing
mean both techniques could only be evaluated using articles sampled from the
PAN 2010 data set. Our work presents a feasible approach to context-aware van-
dalism detection with demonstrative evaluation on the full Wikipedia vandalism
repairs data sets and all PAN data sets.

Overall, a variety of vandalism detection techniques has been developed and
evaluated on different data sets, where many techniques are now evaluated on
the PAN data sets. We show in our work that one of the many problems with
using small data sets (the PAN data sets contain only around 2,000 vandalised
edits) is that there are insufficient numbers of vandalism cases available for our
classifiers – both context-aware and feature engineering – to effectively distin-
guish vandalism. Many features presented in related work show good classifi-
cation performance on the PAN data sets, but they need to be evaluated on
the full Wikipedia data set to truly gauge their effectiveness in distinguishing
vandalism. Furthermore, while counter-vandalism bots have a strong presence
on Wikipedia since 2006 [3,7] – especially in the English Wikipedia – they are
not well represented in the PAN data sets.
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Table 1. Number of edits and sentences in different Wikipedia languages, split by
type. “all” means combining or union of all data sets.

Edits Sentences
Data Set Normal Vandal Repairs Normal Vandal Repairs

Wiki

en 256,796,879 (98.4%) 4,909,181 (1.9%) 1,642,267,638 (96.6%) 58,183,825 (3.4%)
de 52,895,509 (99.7%) 164,097 (0.3%) 370,010,973 (99.5%) 1,805,862 (0.5%)
es 31,742,769 (99.0%) 330,135 (1.0%) 161,871,444 (98.9%) 1,879,431 (1.1%)
fr 41,657,071 (99.5%) 189,849 (0.5%) 248,064,661 (99.3%) 1,671,695 (0.7%)
ru 24,335,713 (99.8%) 39,234 (0.2%) 202,672,387 (99.6%) 747,854 (0.4%)
all 407,427,941 (98.6%) 5,632,496 (1.4%) 2,624,887,103 (97.6%) 64,288,667 (2.4%)

Data Set Normal Vandal Cases Normal Vandal Cases

PAN

2010 en 23,025 (92.7%) 1,804 (7.3%) 236,721 (96.4%) 8,967 (3.6%)
2011 en 6,876 (89.1%) 844 (10.9%) 82,256 (94.9%) 4,396 (5.1%)
2011 de 7,359 (95.1%) 381 (4.9%) 80,308 (98.7%) 1,085 (1.3%)
2011 es 6,922 (89.7%) 792 (10.3%) 42,998 (85.3%) 7,418 (14.7%)
2011 all 21,157 (91.3%) 2,017 (8.7%) 205,562 (94.1%) 12,899 (5.9%)

3 Wikipedia Data Sets

We downloaded the first Wikipedia data dump available in 2013 and use all
revisions of encyclopedic articles from 2001 to December 31st 2012 (our cut-off
date) for the five languages English (en), German (de), French (fr), Spanish
(es), and Russian (ru). When vandalism is discovered and repaired, the edi-
tor usually leaves a comment in the repaired revision with keywords indicating
a repair of vandalism, such as “rvv” (revert due to vandalism), “vandalism”,
“...rv...vandal...”, and analogues in the other languages.

As we are interested in sneaky vandalism introduced in edits, we can reduce
the size of the revision content by using the Python unified diff4 algorithm
to obtain only the sentences (marked by a period) that were changed by an
edit. We reason that changes within existing sentences are more difficult to find
than additions or removals of text that are relatively easier types of vandalism
to detect. For each sentence changed, we perform a sentence diff (subtracting
common words) to obtain the words that were repaired in the vandalism case,
and label each word with ‘n’ (normal) or ‘v ’ (vandal).

Table 1 shows the number of edits and sentences obtained from our data
processing (named ‘Wiki’) for the full Wikipedia, and the PAN data sets. We
map these sentences to their edits to manually verify correctness, and com-
pare classification results with a text-feature based detection technique. We find
approximately 1.9% of all edits on the English encyclopedic articles are repairs
of vandalism, which is consistent with results from Kittur et al. [11]. The PAN
data sets show a higher percentage of vandalism because they estimate all vandal
edits, whereas we are interested only in edits that repair vandalism.

To illustrate our data set, sneaky vandalism, and our detection technique, we
present a running example in Fig. 1 that continues in Figs. 2 and 3.
4 http://docs.python.org/2/library/difflib.html

http://docs.python.org/2/library/difflib.html
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We present a fictitious example sentencea with sneaky vandalism to illustrate our tagging and
classification technique in the following sections:

− Repaired: Bread crust has been shown to have more dietary fibers and antioxidants.
− Vandalised (word label): Bread (n) crust (n) has (n) been (n) shown (n) to (n) make

(v) hair (v) curlier (v) because (v) of (v) antioxidants (n).
The bolded words are changed words in the sentence diff that are identified as vandalised (v)
or normal (n) from comparing the repaired and vandalised revisions. In the later examples,
labels and tags are accumulated for each word are contained in the parentheses.

a
Adapted from a vandalised revision of http://en.wikipedia.org/wiki/Bread.

Fig. 1. POS labelling example

4 Part-of-Speech Tagging

We process the labelled sentences further and tag each word with descriptive
information that allows our context-aware classifier to exploit contextual infor-
mation. We use part-of-speech (POS) tags provided by the TreeTagger5 software,
where the aim is to place words from a text corpus into text categories [17]. Tree-
Tagger uses binary decision trees to estimate the transition probabilities of POS
tags and select the most appropriate tag from the available training data. For
each sentence in our data sets, a POS tagger analyses known words (trained
from a large manually labelled corpus) and assigns each word the most probable
tag that describes it. In sneaky vandalism cases on Wikipedia, small changes
can alter the meaning of sentences while not disrupting the correctness of text
patterns in words (spelling) or sentences (grammar).

Our example in Fig. 1 illustrates this sneaky vandalism case, where in Fig. 2,
we show the output of the tagging by TreeTagger. We describe only the tags rel-
evant to our example from the full English tag set documentation5: coordinating
conjunction (CC), preposition or conjunction (IN), adjective (JJ), adjective -
comparative (JJR), noun (NN), noun - plural (NNS), to (TO), verb - base form
(VB), verb - past participle (VBN), verb - 3rd person (VBZ). We train the CRF
classifier on these tag sequences to predict the sequence of labels.

Continuing our example from Fig. 1, we have tags generated by TreeTagger as:
− Repaired (tag, word label): Bread (NN, n) crust (NN, n) has (VBZ, n) been (VBN, n)

shown (VBN, n) to (TO, n) have (VB, n) more (JJR, n) dietary (JJ, n) fibers (NNS,
n) and (CC, n) antioxidants (NNS, n).

− Vandalised (tag, word label): Bread (NN, n) crust (NN, n) has (VBZ, n) been (VBN, n)
shown (VBN, n) to (TO, n) make (VB, v) hair (NN, v) curlier (JJR, v) because (IN,
v) of (IN, v) antioxidants (NNS, n).

The parentheses contain the accumulated labels and tags for each word that are to be used in
the CRF classifier.

Fig. 2. TreeTagger tagging example

5 http://www.cis.uni-muenchen.de/∼schmid/tools/TreeTagger/

http://en.wikipedia.org/wiki/Bread
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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5 Context-Aware Vandalism Detection

Context-aware detection techniques are needed because some types of vandalism
cannot be easily detected with feature engineering approaches [16]. Our running
example illustrates a case of potential vandalism that would likely require a
human editor to repair, because there are no clear markers of vandalism such as
vulgarities, odd letter patterns in words, or radical changes to text.

Our vandalism detection technique uses conditional random fields (CRF) [13],
a probabilistic undirected graphical model for segmenting and labelling sequence
data. The full development and derivation of CRF are given by Lafferty et al. [13],
and additional models and discussion by Sutton and McCallum [18].

From our processed data, we have for each sequence of words s (i.e. a sen-
tence) and its word labels l = (l1, l2, ..., ln) (i.e. n or v) and word tags t =
(t1, t2, ..., tn) (given by the POS tagger). To exploit the contextual information
of the sequence of word tags, we define three binary feature functions fj , gj , and
hj – on the training data sets – for three separate experiments:

fj(lk, t), gj(lk−1, lk, lk+1, t), hj(lk−2, lk−1, lk, lk+1, lk+2, t), 1 ≤ k ≤ n (1)

The feature functions fj , gj , and hj return 1 when certain conditions – as learnt
from the data set and explained below – are met, and 0 otherwise. This means
for each tag, we define features that express some characteristics of the model
only with its current label (fj), with the labels of the two adjacent tags (gj),
or the four (two on each side) adjacent tags (hj). We choose these number of
adjacent tags to explore the benefits of context to detecting vandalised words.

For each feature function, such as fj , we assign weights θj that are also learnt
from the training data sets through maximum likelihood estimation. This creates
a language model for each word from the surrounding words. Now, we can score
a labelling l of tags t by summing the weighted features for each tag:

sumk(l|t) =
m∑

j=1

θjfj(lk, t) (2)

Note that feature function fj can be interchanged with gj or hj , with the appro-
priate function parameters. Then we transform the scores into probabilities sim-
ilar to the joint distribution of HMMs [18]:

p(l, t) =
1
Z

K∏

k=1

exp {sumk(l, t)} (3)

where Z is a normalisation constant to keep p(l, t) between 0 and 1, which is
cancelled in the fraction of the next step below.

Finally, we have the conditional probability that models the conditional dis-
tribution as a linear-chain CRF [18]:

p(l|t) =
p(l, t)

∑
l p(l, t)

(4)
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The training phase above gives us a model of the many sentences in each
Wikipedia data set. To predict the labels (n or v) of a new input set of tags t
(e.g. POS) extracted from an unseen sentence, we compute:

l∗ = argmaxl p(l|t) (5)

which gives us the predicted tags (e.g. POS), which are combined with the true
labels, POS tags, and words of the sentence.

An advantage to using CRF in our application is the diversity of word labels
that allow immediate identification of vandalised words for evidence or manual
verification. A disadvantage of CRF is the potential slow convergence of training
models when the feature functions are complex or have strong dependencies [18].

We use an open source implementation of CRF by Kudo [12], named CRF++,
to evaluate our vandalism detection technique. We process our data further as
required by CRF++ and recover classification results of test sentences for each
edit for further evaluation. Our resulting testing data sets resemble our example
below in Fig. 3, where we can now evaluate classification performance.

This final example continues from our example in Fig. 2. Assuming we have trained the CRF
classifier on sentences, then we may have an optimal classification labelling of our vandalised
sentence as:

− Vandalised (tag, word label, predicted label): Bread (NN, n, n) crust (NN, n, n) has
(VBZ, n, n) been (VBN, n, n) shown (VBN, n, n) to (TO, n, n) make (VB, v, v) hair
(NN, v, v) curlier (JJR, v, v) because (IN, v, n) of (IN, v, n) antioxidants (NNS, n, n).

The predicted labels are n and v, and the correct labelled vandal words are in bold text and
coloured as green for a correct label and red for incorrect label.
The implications of these mislabellings are that they may be common phrases (as shown
above), or incorrect patterns that need to be manually readjusted.

Fig. 3. CRF classification example

6 Results

We split each data set by the number of edits for 10-fold cross-validation. We
perform sampling for the Wikipedia repairs data sets with different ratios of
normal edits to vandal repair edits to investigate the effects of class imbalance
and data sampling for context-aware classification techniques. For example, “2-
to-1” means 2 normal edits for every 1 vandal repair edit.

We present our classification results compactly by plotting the area under
the precision-recall (PR) curve (AUC-PR) against the area under the receiver-
operator characteristic (ROC) curve (AUC-ROC) [6]. The AUC-PR score gives
the probability that a classifier will correctly identify a randomly selected pos-
itive sample (e.g. vandalism) as being positive. The AUC-ROC score gives the
probability that a classifier will correctly identify a randomly selected (positive
or negative) sample. Both scores range from 0 to 1, where a score of 1 means
100% or complete correctness in labelling all samples considered by the measures.

6.1 CRF with POS Tags

The CRF classifier in our first set of results is trained and tested on the same
source and target language, or named as “within” language classification. CRF
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Fig. 4. CRF results for classification within the same language on the PAN data sets.
Upper right is better.

Fig. 5. CRF results for classification within the same language on the Wikipedia van-
dalism repairs data sets. Upper right is better.

classification results for the PAN data sets are presented in Fig. 4 and for the
Wikipedia vandalism repairs data sets in Fig. 5.

The CRF classification results for the PAN data sets in Fig. 4 generally show
consistent AUC-ROC scores for each data set. The 2010 English data set (2010-
en) shows consistently high results for both AUC-PR and AUC-ROC scores
compared to the 2011 data sets. Combining all 2011 data sets (“all”) shows an
average of the results for each 2011 data set.

The results for the Wikipedia data sets in Fig. 5 show significantly higher
AUC-PR and AUC-ROC scores than the PAN data sets for each ratio of sampled
data sets. Non-English Wikipedias have much higher scores than the English
Wikipedia, suggesting vandalism in non-English Wikipedias more often break
sentence structure detectable through changes in the sequence of POS tags. The
different feature functions show minor improvements to AUC-PR and AUC-
ROC classification scores, similar to the PAN data sets. Combining all data sets
(“all”) shows scores highly similar to the English (en) results because of the
overwhelming number of English vandalism cases as seen from Table 1.

6.2 Reusing Models Across Languages

We investigate the cross-language performance of our context-aware technique,
where Wikipedia vandalism detection models are trained on one language and
reused to classify on other languages. The definition of CRF does not include a



388 K.-N. Tran et al.

Fig. 6. CRF results with one standard deviation for out of language classification on
the PAN data sets. Upper right is better.

Fig. 7. CRF results with one standard deviation for out of language classification on
the Wikipedia vandalism repairs data sets. Upper right is better.

model for the probability of tags p(t)6, which makes CRF suitable for classifying
unseen tags [18].

For a target language, we reuse the CRF models trained in other languages.
For example, for the English (en) target language, we reuse the German (de),
Spanish (es), French (fr), and Russian (ru) models, and report the average and
one standard deviation of these classification scores. Our results are in Fig. 6 for
the PAN data sets, and in Fig. 7 for the Wikipedia data sets.

The PAN data sets show lower classification scores compared to classification
within the same language. The range of scores varies widely, especially for the
AUC-ROC scores. Reusing CRF models trained on small data sets (e.g. German
(de)) does not provide any significant benefits as observed by a lower convergence
of average scores and clusters of results for the sampling ratios.

The Wikipedia data sets show higher classification scores compared to the
PAN data sets, similar to within language classification. The feature functions
with more adjacent tags also reduce the variance in the standard deviation, sim-
ilarly to the PAN data sets, and especially for AUC-PR scores. This suggests the
CRF classifier is more precise in classifying vandalism cases when it has contex-
tual awareness of other tags. The non-English CRF models may be identifying
sneaky vandalism that is lost within the English CRF model because of the large
size difference in the training data sets.
6 From the joint distribution of HMMs, which is often difficult to model because p(t)

may contain highly dependent features [18].
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Table 2. Features for feature engineering vandalism detection. Features P01 to P12 are
from winning entries from the PAN workshop competitions [2,10,14,23]. Features F01

to F12 are our contributions from previous work [20].

Feature Description Feature Description

P01-PW Pronoun words F01-NWD Number of unique words
P02-VW Vulgar words F02-TWD Number of all words
P03-SW Slang words F03-UL Highest ratio of upper to lower case letters
P04-CW Capitalised words F04-UA Highest ratio of upper case to all letters
P05-UW Uppercase words F05-DA Highest ratio of digit to all letters
P06-DW Digit words F06-NAN Highest ratios of non-alphanumeric letters

to all letters
P07-ABW Alphabetic words F07-CD Lowest character diversity
P08-ANW Alphanumeric words F08-LRC Length of longest repeated character
P09-SL Single letters F09-ZLIB Lowest compression ratio, zlib compressor
P10-SD Single digits F10-BZ2 Lowest compression ratio, bz2 compressor
P11-SC Single characters F11-WL Longest unique word
P12-LZW Lowest compression ratio

with lzw compressor
F12-WS Sum of unique word lengths

Fig. 8. Comparison of scores for the CRF and Random Forest (RF) classifiers

6.3 Comparing to Feature Classification

As a comparison to our context-aware technique, we implement a feature engi-
neering based classifier with features in Table 2 following our previous work [20]
and similar to related work [2,10,14,23]. We select a relevant subset of fea-
tures from winning entries of the PAN workshop competitions (features P01-PW
to P12-LZW), and contribute our own subset of features (features F01-NWD to
F12-WS). We follow our previous work by extracting these features from the
data sets in Sect. 3, and use 10-fold cross-validation with the same Random
Forest (RF) classifier7 that was shown to be the most robust and generally
best performing classifier. We present our comparison plots for the 1-to-1 data
sampling ratio in Fig. 8 for within language classification and for out of language
classification.

For within language classification, the RF classifier has strong classification
results for both PAN and Wikipedia data sets. For the PAN data sets, the RF
7 http://scikit-learn.org

http://scikit-learn.org
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classifier performs consistently well, as expected from related work [2,10,14,
19,23]. The tight cluster of RF PAN results (Fig. 8) suggests the features are
language independent and have strong performance. The RF classifier on the full
Wikipedia data sets shows similar strong classification performance. The CRF
and RF Wikipedia results show trade-offs in AUC-PR and AUC-ROC scores.

For out of language classification, we see a tight cluster of RF results for both
the PAN and Wikipedia data sets (Fig. 8). This is expected as within language
classification shows similar classification scores. Interestingly, the CRF and RF
Wikipedia scores for the English (en) and “all” data set have almost opposite
AUC-PR and AUC-ROC scores. This shows a trade-off in precision (P) and FPR
when using each classifier. The CRF classifier has higher TPR and FPR scores
instead of the higher precision (P) scores of the RF classifier.

7 Conclusion

In this paper, we have proposed a novel context-aware detection technique for
sneaky vandalism on Wikipedia based on a conditional random fields (CRF)
classifier. We evaluated this classifier on two data sets, the PAN data sets com-
monly used by related works, and our own much more comprehensive vandalism
repairs data set built from the complete Wikipedia edits from five languages.
We used part-of-speech (POS) tagging to tag all sentences changed in edits from
both data sets. Then we used the CRF classifier to train and evaluate our data
sets using 10-fold cross-validation. As a comparison, we developed a set of text
features and detected vandalism using a random forest classifier on the same
data sets. We have shown through our results that context-aware techniques can
become a new counter-vandalism tool for Wikipedia that complements current
feature engineering based approaches.

In future work, we aim to develop a language independent tag set that uses
information from feature engineering approaches. Our working set of languages
contains some shared POS tags, where we can unify these tags into higher level
word tags that have direct mappings across languages, such as nouns, pronouns,
verbs, adverbs, and adjectives. We plan to extend our linear-chain CRF to a gen-
eral CRF that allows modelling of dependencies between articles, where vandals
may also target adjacent internally linked articles. Our proposed novel context-
aware vandalism detection technique is an exploratory step towards more com-
plex detection techniques for progressively sneakier text vandalism on Wikipedia.
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Abstract. Crowdsourcing provides a new way to distribute enormous
tasks to a crowd of annotators. The divergent knowledge background and
personal preferences of crowd annotators lead to noisy (or even incon-
sistent) answers to a same question. However, diverse labels provide us
information about the underlying structures of tasks and annotators.
This paper proposes latent-class assumptions for learning-from-crowds
models, that is, items can be separated into several latent classes and
workers’ annotating behaviors may differ among different classes. We
propose a nonparametric model to uncover the latent classes, and also
extend the state-of-the-art minimax entropy estimator to learn latent
structures. Experimental results on both synthetic data and real data
collected from Amazon Mechanical Turk demonstrate our methods can
disclose interesting and meaningful latent structures, and incorporating
latent class structures can also bring significant improvements on ground
truth label recovery for difficult tasks.

1 Introduction

Researches and applications in the field of artificial intelligence are relying more
and more on large-scale datasets as the age of Big-data comes. Convention-
ally, labels of tasks are collected from domain experts, which is expensive and
time-consuming. Recently, online distributed working platforms, such as Ama-
zon Mechanical Turk (MTurk) , provide a new way to distribute enormous tasks
to a crowd of workers [1]. Each worker only needs to finish a small part of the
entire task in this crowd labeling mode, so that the tasks can be done faster and
cheaper. However, the labels given by the crowd annotators are less accurate
than those given by experts. In order to well recover the true labels, multiple
annotators are usually needed to evaluate every micro task. Furthermore, dif-
ferent annotators may have different backgrounds and personal preferences, and
they may give inconsistent answers to a same question. This phenomenon brings
us more difficulties to recover ground truth labels from noisy answers and raises
a research topic in the crowdsourcing area.

On the other hand, the diverse labels can provide us with a lot of additional
information for both data characteristics and people’s behaviors [2]. For exam-
ple, they may reflect some latent structures of the complicated data, such as the
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 392–404, 2015.
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grouping structure of tasks according to their difficulty levels and/or the group-
ing structure of annotators according to their similar education background or
preferences. In the perspective of psychology, users’ labels actually show their
understanding of the given tasks. For example, in a problem of classifying flow-
ers in pictures, users’ choices may be influenced by many different features, such
as petal color, petal shape, background, size in the picture, etc; and personal
choices of different users are influenced by users’ tastes. These features are usu-
ally unknown. Some features are significantly related to the flower species and
some features are not. So we think the observed user labels are generated from
tasks’ latent structures and annotators’ abilities, but not directly from the truth
category. By exploring these latent structures, we can have a better understand-
ing of the data, and may also accomplish tasks like category recovery better.

Dawid and Skene’s work [3] is a milestone in learning from crowds. They pro-
posed an annotator-specific confusion matrix model, which is able to estimate
the ground truth category well. Raykar et al. [4] extended Dawid and Skene’s
model by ways, such as taking item features into account or modifying the out-
put model to fit regression or ranking tasks. Zhou et al. [5,6] proposed a minimax
entropy estimator, which outperforms most previous models in category estimat-
ing accuracy, and later on they extended their model to handle ordinal labels.
However, none of these models have taken latent structures into account. We
extend some of them to learn latent structures from dataset. Welinder et al. [7]
proposed a multidimensional annotation model, which was the earliest to con-
sider latent structure in this field. But this model often suffers from overfitting
and so performs averagely on many tasks [8]. Tian and Zhu [9] also proposed an
idea on the latent structure for crowdsourcing but aimed at a different problem;
our work draws some inspiration from their nonparametric ideas.

We propose two latent-class assumptions for learning from crowds: (I) each
item belongs to one latent class, and annotators have a consistent view on items
of the same class but maybe inconsistent views on items of different classes; and
(II) several different latent classes consist in one label category. To recover the
latent-class structures, we propose a latent class estimator using a nonparamet-
ric prior. We also extend the minimax entropy estimator to fine tune such latent
class structures. Under the latent class assumptions, the estimators remain com-
pact through parameter sharing. The experimental results on both synthetic
and real MTurk datasets demonstrate our methods can disclose interesting and
meaningful latent structures, and incorporating latent class structures can bring
significant improvements on ground truth label recovery for difficult tasks. We
summarize our contributions as: (1) We propose the latent-class assumptions for
crowdsourcing tasks. (2) We develop appropriate nonparametric algorithms for
learning latent-class structures, and extend previous minimax entropy principle.
(3) We present an algorithm to recover category labels from latent classes, and
empirically demonstrate its efficiency.

The rest paper of the is structured as follows. Sec. 2 describes related crowd-
sourcing models. Sec. 3 introduces latent-class assumptions and provides details
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of our latent class models. Sec. 4 presents category recovery methods. Sec. 5
shows empirical results for latent class and category recovery. Sec. 6 concludes.

2 Preliminaries

We introduce three major methods for label aggregation in learning from crowds.
We focus on classification tasks in this paper. In a dataset consisting of M items
(e.g., pictures or paragraphs), each item m has a specific label Ym to denote its
affiliated category. Y is the collection of these ground truth category labels, and
all the possible label values form a set D. To obtain the unknown ground truth,
we have N workers examine the dataset. Wnm is the label of item m given by
worker n. W is the collection of these workers’ labels. I is the collection of all
worker-item index pairs corresponding to W . The goal of learning from crowds
is to infer the values of Y from the observations of W .

2.1 Majority Voting (MV)

The simplest label aggregation model is the majority voting. This method
assumes that: For every worker, the ground truth label is always the most com-
mon to be given, and the labels for each item are given independently. From this
point of view, we just need to find the most frequently appeared label for each
item. We use qmd = P (Ym = d) to denote the probability that the mth task has
true label d, then

qmd =

∑
(n,m)∈I δWnm,d

∑
d,(n,m)∈I δWnm,d

,∀m, (1)

where δ·,· is an indicator function: δa,b equals to 1 whenever a = d is true, oth-
erwise it equals to 0. The estimated label is represented by Ym = maxd qmd,∀m.

2.2 Dawid-Skene Estimator (DS)

Dawid and Skene [3] proposed a probabilistic model, which is widely used in this
area. They made an assumption that: The performance of a worker is consistent
across different items, and his or her behavior can be measured by a confusion
matrix. Diagonal entries of the confusion matrix indicate the probability that this
worker gives correct labels; while off-diagonal entries indicate that this worker
makes specific mistakes to label items in one category as another. Extensive
analysis of this model’s error bound has been presented [10,11].

More formally, we use pn to denote the confusion matrix of worker n, with
each element pndl being the probability that worker n gives label l to an item
when the ground truth of this item is d. We use qd to denote the probability
that an item has the ground truth label d. Under these notations, parame-
ters of workers can be estimated via a maximum likelihood estimator, {q̂, p̂} =
argmax P (W |q,p), where the margined likelihood is
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P (W |q,p) =
∏

m

( ∑

d

qd

∏

n,l

pndl
δWnm,l

)
, (2)

by marginalizing out the hidden variables Y . This problem is commonly solved
using an EM algorithm.

2.3 Minimax Entropy Estimator (ME)

Minimax entropy estimator [5,6] is another well-performing method which com-
bines the idea of majority voting and confusion matrix. This model assumes
that: Labels are generated by a probability distribution over workers, items, and
labels; and the form of the probability distributions can be estimated under the
maximum entropy principle. For example, pnm is a probability distribution on
the label of item m given by worker n. To incorporate the idea of majority voting
that ground truth labels are always the most common labels to be given, the
count of empirical observations that workers give an item a certain label should
match the sum of workers’ probability corresponding to these observations within
the model. So they come up with the first type of constraints:

∑

n

pnmd =
∑

n

δWnm,d,∀m, d. (3)

To combine the confusion matrix idea that a worker is consistent across different
items in the same category, the count of empirical observations that workers give
items in the same category a certain label should match the sum of workers’
probability corresponding to these observations within the model. So there is
another type of constraints:

∑

m
s.t.Ym=d

pnmd =
∑

m
s.t.Ym=d

δWnm,d,∀n, d. (4)

Under these constraints and the minimax entropy principle, we choose Y to
minimize the entropy but choose p to maximize the entropy. This rationale
leads to the learning problem:

min
Y

max
p

−
∑

n,m,d

pnmd log pnmd, (5)

subject to constraints (3) and (4). In practice, hard constraints can be strict.
Therefore, soft constraints with slack variables are introduced to the problem.

3 Extend to Latent Classes

Both DS and ME use specific probabilities to represent workers’ behaviors. How-
ever, we can dig deeper into the structure of the items. For example, in a flower
recognition task, we ask workers to decide whether the flower in a given picture
is peach flower or not. When the standard DS estimator is used, the confusion
matrix should contain 4 probabilities, that is, the probability that worker labels
the picture correctly when it is peach flower; the probability that worker labels
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Fig. 1. Illustration for categories and latent classes of a vegetable vs. fruit classification

the picture incorrectly when it is peach flower; the probability that worker labels
the picture correctly when it is not peach flower; and the probability that worker
labels the picture incorrectly when it is not peach flower. If there are 2 breeds of
peach flowers in the testing set, say mountain peach flowers and flowering peach
flowers, then the probabilities that a worker recognizes them as peach flowers
correctly might be different. For example, some workers who are very familiar
with mountain peach may point out mountain peach flowers as peach flowers
with an extraordinary high accuracy, but their accuracy of recognizing flowering
peach might be close to random guess. Our experiments show that this phe-
nomenon does exist. So we come to one conclusion that the latent structure of
items can affect the workers’ labeling results significantly, and we can take this
influence into account in our label aggregation algorithm. Latent class structure
is one of the simplest latent structures of items. The latent class here refers to a
finer level structure of items than the category. In the flower example, the latent
classes may correspond to the flower species such as flowering peach and moun-
tain peach, while the categories can only recognize both these species as peach
flower with no inner structure. If we restrict the number of latent classes to be
the same as the number of categories, different classes will naturally correspond
to the classification categories. Yet as a general rule, the number of latent classes
should be larger than the category number.

A category of items might be divided into several latent classes, but a latent
class belongs to one specific category only. Thus, we make two basic assumptions
in the crowd labeling situations:

– Assumption I. Each item belongs to one specific latent class only.
– Assumption II. Items in a same latent class belong to a same category.

From another point of view, we believe that no label is spam. When the standards
of solving our problems match the workers’ own criterion, based on which they
make their choices, the DS estimator works well. But if they do not, much
information will be left unutilized by this estimator. In order to improve the
aggregation performance and uncover more information hiding behind the noisy
labels, we build up new models which take latent structures into account.
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3.1 Nonparametric Latent Class Estimator (NDS)

For the DS estimator, a confusion matrix is used to measure workers’ behavior,
with each entry pndl representing the probability that worker n gives label l to
an item when the ground truth of this item is d. Now we realise that the latent
classes affect the output labels directly. We can replace the category dimension of
the confusion matrix representation with the latent class dimension. Therefore,
we have a latent class version confusion matrix pn for each worker. An entry
pnkl denotes the probability that worker n gives label l to an item which belongs
to latent class k. Similarly we use Zm to represent the latent class that item m
belongs to, and use q to denote the probability that each latent class appears,
so that qk denotes the probability that an item belongs to latent class k.

Probabilistic Model. Since it is hard to decide the number of latent classes K
in advance, we put a nonparametric prior on the latent class assignment variable
Z, which can represent arbitrary number of classes. The Chinese restaurant
process (CRP) is used here, it is a construction of Dirichlet process [12], and
can be described using the metaphor of a restaurant with customers entering
and sitting next to tables with different probabilities depending on the tables’jj
relative sizes. αc is the discount parameter of this process. We also put a Dirichlet
prior Dirichlet(αd) on every pnk, where αd is the concentration parameter. So
the probabilistic model is represented as follow,

Z|αc ∼ CRP(αc), pnk|αd ∼ Dirichlet(αd), ∀n, k, (6)

Wnm|Z,pn· ∼ Multinomial(Anm), ∀n,m, (7)

where Anm = {Anm1, · · · , AnmD}, and Anmd =
∏K

k=1 pnkd
δZm,k . Here W is

the given labels, p is the parameters to learn, and Z is the hidden variable. If
annotator n do not give item m a label, the probabilities of all Wnm values are
set to be one.

Conditional Distribution. To infer their values, we build a Gibbs sampler to
get samples from the joint posterior distribution. The conditional distribution
for the confusion matrix parameter is

P (pnk|Z,W ) ∝ P (pnk)
M∏

m=1

P (Wnm|Z,pnk) (8)

∝
( D∏

d=1

pnkd
αd/D−1

)( M∏

m=1

D∏

d=1

pnkd
δWnm,dδZm,k

)
.

So the conditional distribution pnk|Z,W ∼ Dirichlet(pnk|Bnk),∀n, k, where
Bnk = {Bnk1, · · · , BnkD}, and Bnkd =

∑M
m=1 δWnm,dδZm,k + αd/D. As for the

hidden variables, when k ≤ K,
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P (Zm = k|Z−m,p,W ) ∝ P (Zm = k)
N∏

n=1

P (Wnm|Zm = k,pnk) (9)

∝ nk

N∏

n=1

D∏

d=1

pnkd
δWnm,d ,

where nk is the number of tasks that have latent class label k. When generating
a new class,

P ( Zm = knew|Z−m,p,W ) ∝ P (Zm = knew)
N∏

n=1

P (Wnm|Zm = knew) (10)

∝ P (Zm = knew)
N∏

n=1

∫

P (Wnm|Zm = knew,pnknew
)P (pnknew

)dpnknew

∝ αc

N∏

n=1

∏D
d=1 Γ (δWnm,d + αd/D)

Γ (1 + αd)
.

Then we can get samples from the posterior distribution of our model by
iteratively updating hidden variables and parameters.

3.2 Latent Class Minimax Entropy Estimator (LC-ME)

Many existing estimators can be extended to learn latent class structures. The
nonparametric latent class estimator can be regarded as an extension of DS esti-
mator, we can also incorporate latent class structures into the minimax entropy
estimator. Some constraints need to change for this extension, as detailed below.

We still assume that the ground truth label will always get more probability
to be given by workers, so the first type constraints remain unchanged. As for
the other constraints, now we apply the idea of latent class version DS estimator:
When worker n deals with items in latent class k, he may label it as category d
with a constant probability. So the constraints can be written as

∑

m
s.t.Zm=k

pnmd =
∑

m
s.t.Zm=k

δWnm,d,∀n, k. (11)

To relax constraints, we introduce slack variables τ and σ and their regulariza-
tion terms. Under these new constraints, the optimization problem is slightly
changed comparing with the previous version:

min
Z

max
p,τ ,σ

−
∑

n,m,d

pnmd log pnmd −
∑

m,d

αmτ2
md

2
−

∑

n,m,d

βnσ2
ndk

2

s.t.
∑

n

(
pnmd − δWnm,d

)
= τmd,∀m, d,

∑

m

(
pnmd − δWnm,d

)
δZm,k = σndk,∀n, k,

∑

d

pnmd = 1,∀n,m.

(12)
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To solve this optimization problem, we update {τmd, σndk} and qmk respectively.
Since the inference procedure is similar to the original minimax entropy estimator
in [5], we only express the final iterative formula here.
Step-1: we need to solve a simple sub-problem:

{τ t
md, σ

t
ndk} = argmin

τ,σ

∑

n,k,d

qt−1
mk

[
log

∑

d

exp(τmd + σndk)

−
∑

d

(τmd + σndk)δWnm,d

]
+

∑

m,d

1
2
αmτ2

md +
∑

n,m,d

1
2
βnσ2

ndk,∀n,m, d, k,
(13)

where qt
mk ∝ P t(Zm = k) represents the probability that the item m is in latent

class k. This optimization task can be solved by gradient descent and any other
optimization methods.
Step-2: the probability distribution of each item’s label is

qt
mk ∝qt−1

mk

∏

n

exp (
∑

d (τ t
md + σt

ndk)δWnm,d)∑
d exp(τ t

md + σt
ndk)

,∀m, k. (14)

Iteratively updating {τmd, σndk} and qmk, it will converge to a stationary
point. Then we can get the latent class numbers Z by the peak positions of q.
Since the algorithm is sensitive to the initial point, we use the result of NDS as
the latent class number K and the initial point Z of the LC-ME.

4 Category Recovery

In order to obtain the ground truth labels, we need to recover the category
information from latent classes. According to our second basic assumption that
each latent class belongs to one specific category, we can recover the ground
truth labels by associating latent classes to categories.

A re-estimating method can be used here to recover the categories. After we
get the latent class information for items, we can regard items in a same class
as one imaginary item, here we call it a hyper-item. Then there are totally K
hyper-items, every hyper-item may have several different labels by each worker.
This setting has been considered in the original Dawid-Skene estimator.

We use a generalized Dawid-Skene estimator with hyper-items to estimate the
category assignments, which solves a maximum likelihood estimation problem.
The margined likelihood of given labels is

P (W |q,p) =
∏

k

( ∑

d

qd

∏

n,l

pndl
nnkd

)
, (15)

where nnkd =
∑

m δWnm,dδZm,k is the count of labels that worker n gives to
hyper-item k. The EM algorithm for solving this problem also needs some modi-
fication. Specifically, we use Ck to represent the category of latent class k. Then
in the E-Step, the probability distribution is

P (Ck = d|W , q,p) ∝ P (Ck = d)P (W |Ck = d) ∝ qd

∏

n,l

pndl
nnkd , (16)
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and the estimated category of each latent class is Ck = maxd P (Ck = d|W ),∀k.
In the M-Step, we have the update equations:

qd =
1
K

∑

k

δCk,d, pndl =
∑

k nnklδCk,d∑
k,l nnklδCk,d

. (17)

5 Experiment Results

We now present experimental results to evaluate the performance of the proposed
models on both one synthetic dataset and real dataset collected from MTurk. We
present both quantitative results on ground truth label recovery and quantitative
results on latent structure discovery, with comparison to various competitors.

5.1 Synthetic Dataset

We designed a synthetic dataset to show the latent class recovery ability of
each model. This dataset consists of 4 latent classes and 2 types of workers. We
generated 40 items’ parameters for each latent class and simulated 20 workers
of each type. We set the confusion matrix for all simulating worker types and
randomly sample labels. The probabilistic distribution values of different classes
in the confusion matrices are dispersive, e.g. [0.8, 0.2], [0.5, 0.5], [0.2, 0.8]. So the
effect of latent structure is more significant. The results on learning latent classes
and category recovery are shown below.

0 20 40 60 80 100
0

10

20

30

40

50

60

# Iterations

K

 

 
α

c
=0.1

α
c
=0.2

α
c
=0.8

α
c
=0.4

α
c
=1.6

(a)

0.1 0.2 0.4 0.8 1.6
0

0.01

0.02

0.03

0.04

0.05

0.06

α
c

E
rr

or
 R

at
e 

(%
)

(b)

Fig. 2. Performance on synthetic dataset. (a) shows the numbers of latent classes found
by NDS with different color. (b) shows the average category recovery error rates.

Sensitivity: We use the NDS model to recover the latent structure of this
dataset. Fig. 2(a) shows the learnt latent class number K by models with different
parameters. We set αd = 2 for all trials, and vary αc from 0.1 to 1.60. We can
see when parameter changes, the steady state value only changes a little, and
all the values are close to the true latent class number. This result shows that
our model is insensitive to the discount parameter. So when we use this model
to learn latent structures for some purposes, we only need to find a rough range
of the parameter with a validate dataset.
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(a) NDS (b) LC-ME (c) NDS+CR (d) LC-ME+CR

Fig. 3. Latent class and category visualization. Each subfigure shows a 50× 4 matrix,
with each entry corresponding to a flower image and each column corresponding to a
unique flower species, which is flowering peach, sakura, apricot and mountain peach
from left to right. For (a) and (b), each color denotes one latent class. For (c) and (d),
each color denotes a classification category. (a) and (c) are learned by NDS, (b) and
(d) are learned by LC-ME. (best viewed in color).

Category Recovery: To evaluate the ground truth category recovery accu-
racy, we compare the error rates of NDS with different αc. We can see from
Fig. 2(b) that the final accuracy is insensitive to the parameter αc, and it is
about 3.75% for all parameter settings. We also compare the NDS with other
methods. Majority voting achieves error rate 9.38%, original Dawid-Skene esti-
mator achieves error rate 12.50%, both of them are worse than NDS.

5.2 Flowers Dataset

To show the semantic meaning of the latent structure learned by our models, we
designed a flower recognition task and collected crowd labeling data from MTurk
annotators. Four flower species, mountain peach flower, flowering peach flower,
apricot flower and sakura, make up the dataset of 200 images. Each species have
50 different pictures. Only mountain peach flower and flowering peach flower
are peach flower while apricot flower and sakura are not. Workers were asked to
choose whether the flower in picture is prunus persica (peach flower).

We collected labels on the Amazon Mechanical Turk (MTurk) platform. 36 of
all the different participants completed more than 10 Human Intelligence Tasks
(HIT) on each. And they provided 2366 HIT in total. During the annotating
procedure, two hints are shown to make sure that workers can distinguish prunus
persica and sakura or distinguish prunus persica and apricot. Each picture was
labeled by 11.8 workers and each worker provided 65.7 labels on average.

To visualize the structures learned by our models, we draw colormaps to show
the partitions of different latent classes and different categories in Fig. 3(b)-3(d).
Each subfigure contains a 50 × 4 color matrix, with each entry representing a
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Fig. 4. Representative pictures for different latent classes.(best viewed in color).

Table 1. Performance of models on flowers dataset. Workers in use are randomly
selected for each trial, and the average error rate of 10 trials, together with standard
deviation, are presented. αc = 0.09 and αd = 1 are used for latent class recovery.

# 20 25 30 35

MV 0.1998 ± 0.0506 0.2383 ± 0.0216 0.2153 ± 0.0189 0.2170 ± 0.0096

DS 0.1590 ± 0.0538 0.1555 ± 0.0315 0.1310 ± 0.0213 0.1300 ± 0.0041
NDS 0.1595 ± 0.0737 0.1605 ± 0.0434 0.1330 ± 0.0371 0.1475 ± 0.0354

ME 0.1535 ± 0.0695 0.1470 ± 0.0339 0.1315 ± 0.0200 0.1335 ± 0.0078
LC-ME 0.1415±0.0382 0.1430±0.0286 0.1215±0.0133 0.1190±0.0168

flower image in the dataset, and each column corresponding to a unique flower
species. Specifically, the first column is flowering peach flower, second is sakura,
third is apricot flower and forth is mountain peach flower.

In Fig. 3(a) and Fig. 3(b), each color denotes one latent class learned by the
estimator. We can see that the first three columns almost have pure color boxes,
which means these three latent classes are strongly related to the flower species.
The fourth column is kind of miscellaneous, which means that lots of mountain
peach flowers are misclassified into other species. This is because mountain peach
flowers have no distinct features comparing with other flower species.

In Fig. 3(c) and Fig. 3(d), each color denotes a classification category, either
peach flower or not. This result comes from putting blue and azure boxes into
peach flower category and other two colors’ boxes into another. Fig. 4 shows
some representative flower pictures for different latent classes we learned. These
results suggest that the structures we learned have explicit semantic meaning,
and these latent class patterns could be used in many further applications.

Finally, we evaluate the category recovery performance. The average worker
error rate in this flower recognition task is 30.00%, and majority voting gets
an error rate of 22.00%. The latent class minimax entropy estimator (LC-ME)
wins on this dataset with error rate 11.00%, and the nonparametric latent class
estimator (NDS,αc = 1.6, αd = 2) achieves 11.50%. The original Dawid-Skene
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estimator (DS) achieves 13.00%. The minimax entropy estimator (ME) 1 also
achieves 13.00%. We also generated some sub-datasets with different numbers of
workers in order to make more comparisons. Results are shown in Table 1, which
consistently show the improvements by exploring our latent class assumptions.

6 Conclusions and Future Work

We have carefully examined the effectiveness of latent class structures in crowd-
sourcing. Our methods characterize that items in one dataset can be separated
into several latent classes and workers’ annotating behaviors may differ among
different classes. By incorporating such fine-grained structures, we can describe
the generation mechanism of noisy labels more clearly. Our methods can dis-
close meaningful latent classes, as demonstrated in real data experiments. After
we get the latent class assignments, a category label recovery algorithm is devel-
oped, which is empirically demonstrated to achieve higher accuracies on category
recovery tasks. Our latent structure models can preserve the structure informa-
tion of data. For the future work, we plan to investigate the effectiveness of such
hidden structure information further in handling other interesting tasks, such as
online task selection and user behavior analysis.
Acknowledgments. The work was supported by the National Basic Research Pro-
gram (973 Program) of China (No. 2013CB329403), National Natural Science Founda-
tion of China (Nos. 61322308, 61332007), and the Tsinghua National Laboratory for
Information Science and Technology Big Data Initiative.
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Abstract. This paper proposes a new method to train stable extreme
learning machines (ELM). The new method, called StaELM, uses corre-
lation coefficients in Gaussian process to measure the similarities between
different hidden layer outputs. Different from kernel operations such as
linear or RBF kernels to handle hidden layer outputs, using correlation
coefficients can quantify the similarity of hidden layer outputs with real
numbers in (0, 1] and avoid covariance matrix in Gaussian process to
become a singular matrix. Training through Gaussian process results in
ELM models insensitive to random initialization and can avoid over-
fitting. We analyse the rationality of StaELM and show that existing
kernel-based ELMs are special cases of StaELM. We used real world
datasets to train both regression and classification StaELM models. The
experiment results have shown that StaELM models achieved higher
accuracies in both regression and classification in comparison with tra-
ditional kernel-based ELMs. The StaELM models are more stable with
respect to different random initializations and less over-fitting. The train-
ing process of StaELM models is also faster.

Keywords: Extreme learning machine · Correlation coefficient · Gaus-
sian process · Neural network

1 Introduction

Extreme learning machine (ELM) is a special single-hidden layer feed-forward
neural network (SLFN) [6]. Due to its lower computational complexity and bet-
ter generalization performance, ELM has recently attracted a lot of interests
in research and industry and is used in a wide range of applications [5]. ELM
uses a random method to determine input weights/hidden layer biases and ana-
lytically computes the output weights. Therefore, it is extremely fast to train
an ELM model. It has also been proved that ELM can guarantee the universal
approximate capability of ELM [3].
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 405–417, 2015.
DOI: 10.1007/978-3-319-18038-0 32
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Currently, ELM has two main problems in practical applications. The first
problem is that the trained ELM model is sensitive to the random initial set-
tings [15]. Different initial settings often result in different performances, which
implies that the training process produces instable ELM models from different
initial settings. The second problem is over-fitting [3], which is usually caused
by the numerous hidden layer nodes specified to best approximate the train-
ing data set. A number of improvements have been proposed to tackle these
problems. One approach is to optimize the random weights with different evo-
lutionary algorithms. Examples include E-ELM [15], SaE-ELM [1], and O-ELM
[9]. Another approach is to select better architectures for ELM, for instance, I-
ELMs [3,4], OP-ELM [10], and localized generalization error ELM [13]. Although
the literatures reported the better performances of these improved ELM models,
the higher computational complexity makes them impractical to deal with the
regression and classification tasks with a large number of training instances.

A different direction to improve ELM without increase of computational com-
plexity is to estimate the prior probability distribution of ELM models. Soria-
Olivas et al. [12] designed a Bayesian ELM (BELM). Luo et al. [8,14] proposed
sparse Bayesian ELM (SBELM).1. Chatzis et al. [2] proposed the one-hidden-
layer nonparametric Bayesian kernel machine (1HNBKM). Because BELM and
1HNBKM used linear and RBF kernels to handle the hidden layer outputs, we
call them kernel-based ELMs in this paper. The empirical analysis shows that
kernel-based ELMs are still sensitive to random initialization. For example, there
is an obvious difference between the predictive results of BELM and 1HNBKM
on Libras Movement dataset2 with random input weights in intervals [0, 1] and
[−1, 1]. In addition, the over-fitting still exists for 1HNBKM.

In this paper, we propose to use Gaussian process to train ELM models
and present a stable extreme learning machine algorithm, StaELM. In this algo-
rithm, we use correlation coefficients in Gaussian process to measure the sim-
ilarity between different hidden layer outputs with real numbers in (0, 1]. The
advantages of using Gaussian process in ELM model training over aforemen-
tioned training methods are that the training process is fast and the trained
ELM models are insensitive to random initialization and can avoid over-fitting.
In the training process, we use correlation coefficients to avoid the covariance
matrix to become a singular matrix and make the inverse of covariance matrix
solvable.

We have used 12 UCI and KEEL3 datasets to conduct the experiments and
compared the performances of accuracy and running time of StaELM, orginal
ELM, BELM, and 1HNBKM. The experimental results show that StaELM mod-
els achieved higher accuracies and lower running time in both regression and
1 The main difference between SBELM and BELM is that the independent regular-

ization priors in SBELM are imposed on each weight instead of one shared prior for
all weights in BELM. Because SBELM and BELM are homologous, we only discuss
and analyse BELM in this paper due to its simplicity.

2 http://archive.ics.uci.edu/ml/
3 http://sci2s.ugr.es/keel/datasets.php

http://archive.ics.uci.edu/ml/
http://sci2s.ugr.es/keel/datasets.php
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classification than other methods. The StaELM models are stable with respect
to different random initializations and less over-fitting.

The rest of this paper is organized as follows: In Section 2, we briefly sum-
marize kernel-based ELMs. Section 3 introduces our proposed StaELM. Exper-
imental simulations are presented in Section 4. Finally, we conclude this paper
in Section 5.

2 Kernel-based ELMs

In this section, we review three existing ELMs models, i.e., the original ELM,
BELM, and 1HNBKM. Because the first two use linear kernels to handle the
hidden layer outputs whereas the last one uses RBF kernel for that purpose. We
call them kernel-based ELMs.

2.1 ELM

ELM [6] is a single-hidden layer feed-forward neural network (SLFN) and does
not require any iterative optimization to input/output weights. Given the train-
ing dataset (XN×D,YN×C) and testing dataset (X′

M×D,Y′
M×C):

XN×D =

⎡

⎢
⎢
⎢
⎣

x1
x2

.

.

.
xN

⎤

⎥
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⎥
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. . .
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and

X
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, (2)

where N is the number of training instances, D is the number of input variables,
M is the number of testing instances, and C is the number of output variables.
Usually, Y′

M×C is unknown and needs to be predicted. ELM determines Y′
M×C

as follows:

Y′
M×C = H′

M×LβL×C =

{
H′ (HTH

)−1 HTY, if N ≥ L

H′HT (
HHT

)−1
Y, if N < L

, (3)

where βL×C is the output weights, L is the number of hidden layer nodes,

HN×L =

⎡
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⎢
⎢
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h (x1)
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...
h (xN )
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g (w1x1 + b1) g (w2x1 + b2) · · · g (wLx1 + bL)
g (w1x2 + b1) g (w2x2 + b2) · · · g (wLx2 + bL)

...
...

. . .
...
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⎥
⎦

(4)
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is the hidden layer output matrix for training instances,

H′
M×L =

⎡

⎢⎢⎢⎣

h (x′
1)

h (x′
2)

...
h (x′

M )

⎤

⎥⎥⎥⎦ =

⎡
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g (w1x
′
1 + b1) g (w2x

′
1 + b2) · · · g (wLx′

1 + bL)
g (w1x

′
2 + b1) g (w2x

′
2 + b2) · · · g (wLx′

2 + bL)
...
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. . .

...
g (wLx′

M + bL) g (w2x
′
M + bL) · · · g (wLx′

M + bL)

⎤

⎥⎥⎥⎦ (5)

is the hidden layer output matrix for testing instances, g (z) = 1
1+e−z is sigmoid

activation function,

WD×L =
[
w1 w2 · · · wL

]
=

⎡

⎢
⎢
⎢
⎣

w11 w21 · · · wL1

w12 w22 · · · wL2
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...

. . .
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w1D w2D · · · wLD
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⎥
⎥
⎥
⎦

and b =
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⎢
⎢
⎣

b1

b2

...
bL

⎤

⎥
⎥
⎥
⎦

(6)

are input weight and hidden layer biases which are randomly determined. ELM is
sensitive to random initialization and has obvious over-fitting. In order to tackle
these problems, two improvements, i.e., BELM and 1HNBKM, are discussed
below.

2.2 BELM

BELM [12] optimizes the output weights β by using Bayesian linear regression
as follows:

y = h (x)β + ε, (7)

where ε ∼ N
(
0, σ2

N

)
and β ∼ N

(
0, α−1IL×L

)
. The posterior distribution over

output weights β is expressed as

P (β |H,Y) = N (β, S) , (8)

where β = σ−2
N SHTY and S =

(
αI+σ−2

N HTH
)−1

are the mean and covariance
matrix respectively. For a new instance x′ = (x′

1, x
′
2, · · · , x′

D), the output y′

predicted with BELM obeys the Gaussian distribution N
(
μ, σ2

)
, where

μ = h (x′) β, (9)

σ2 = σ2
N + h (x′) ShT (x′) . (10)

In BELM, μ is deemed as the prediction of new instance x′, i.e., y′ = μ,
and σ2 is the variance which is used to determine the confidence interval of
prediction y′. There are two parameters that need to be determined in BELM:
σ2
N and α > 0. BELM effectively controls the over-fitting but still sensitive to

randomly initial weights is still not solved.
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2.3 1HNBKM

Given a training dataset (XN×D,YN×C), 1HNBKM [2] predicts the output y′

for new instance x′ via the following joint probability distribution
[

Y
y′

]

∼ N
(

0,

[
K (H,H) + σ2

N I kT (h (x′) ,H)
k (h (x′) ,H) k (h (x′) ,h (x′))

])

, (11)

where the meaning of σ2
N is same as in BELM,

K (H, H)N×N =

⎡

⎢⎢⎢⎣

k (h (x1) , h (x1)) k (h (x1) , h (x2)) · · · k (h (x1) , h (xN ))
k (h (x2) , h (x1)) k (h (x2) , h (x2)) · · · k (h (x2) , h (xN ))

...
...

. . .
...

k (h (xN ) , h (x1)) k (h (xN ) , h (x2)) · · · k (h (xN ) , h (xN ))

⎤

⎥⎥⎥⎦ (12)

is a kernel matrix,

k (h (x′) ,H) =
[
k (h (x′) ,h (x1)) k (h (x′) ,h (x2)) · · · k (h (x′) ,h (xN ))

]
(13)

is a kernel vector, and

k (u, v) = exp

(

−‖u − v‖2

2λ2

)

. (14)

is the RBF kernel function. We can find k (u, v) = 1, when u=v.
Then, the posterior distribution of predicted output y′ is

P (y′ |h (x′) ,H,Y) = N
(
μ, σ2

)
, (15)

where
μ = k (h (x′) ,H)

(
K (H,H) + σ2

N I
)−1

Y, (16)

σ2 = k (h (x′) ,h (x′)) − k (h (x′) ,H)
(
K (H,H) + σ2

N I
)−1

kT (h (x′) ,H) . (17)

Similarly, μ is the prediction of x′ and σ2 is the variance of prediction. Param-
eters σ2

N and λ2 are unknown and need to be determined. 1HNBKM suffers severe
over-fitting due to the usage of the RBF kernel and is also sensitive to random
initialization.

3 Gaussian Process-based Stable ELM

In this section, we describe our proposed StaELM which conducts the inference
based on Gaussian process and uses the correlation coefficient to construct the
covariance matrix. StaELM also predicts the output y′ for new instance x′ based
on Eq. (15), where

μ = q (h (x′) ,H)
(
Q (H,H) + σ2

N I
)−1

Y, (18)
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(d) L = 300

Fig. 1. Comparison on Matlab computational time between kernel and correlation
matrices in HNBKM and StaELM respectively

σ2 = σ2
N + q

(
h
(
x′) , h

(
x′))− q

(
h
(
x′) , H

) (
Q (H, H) + σ2

N I
)−1

qT (h
(
x′) , H

)
, (19)

Q (H, H)N×N =

⎡

⎢⎢⎢⎣

q (h (x1) , h (x1)) q (h (x1) , h (x2)) · · · q (h (x1) , h (xN ))
q (h (x2) , h (x1)) q (h (x2) , h (x2)) · · · q (h (x2) , h (xN ))

...
...

. . .
...

q (h (xN ) , h (x1)) q (h (xN ) , h (x2)) · · · q (h (xN ) , h (xN ))

⎤

⎥⎥⎥⎦ (20)

is a correlation matrix,

q (h (x′) ,H) =
[
q (h (x′) ,h (x1)) q (h (x′) ,h (x2)) · · · q (h (x′) ,h (xN ))

]
(21)

is a correlation vector,

q (u, v) =
(

ρuv + 1
2

)2

(22)

is correlation function, and

ρuv =
Cov (u, v)

√
D (u)

√
D (v)

(23)

is the correlation coefficient which measures the strength and direction of the
linear relationship between two variables u and v. Cov (u, v) is the covariance
of variables u and v, and D (u) and D (v) are the standard deviations of u
and v respectively. Note that Eq. (22) is to normalize the correlation coefficient
into interval (0, 1]. Other normalization is also allowable. We can find that the
inference process of StaELM is similar to 1HNBKM. The main difference between
StaELM and 1HNBKM is that StaELM measures the similarity between two
hidden layer outputs with correlation function in Eq. (22) instead of RBF kernel
in 1HNBKM. The advantages of using correlation function are summarized as
follows. (1) The correlation coefficient evaluates the relationship between two
different hidden layer output h (u) and h (v) with probabilistic approach. This
makes StaELM consider the inherent prior knowledge of training dataset more
directly and comprehensively than kernel function based 1HNBKM. (2) The
correlation coefficient reduce the chance of over-fitting of StaELM. For 1HNBKM
with L hidden layer nodes, the prediction Ŷ for training dataset is

Ŷ = K (H,H)
(
K (H,H) + σ2

N I
)−1

Y. (24)
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Fig. 2. Curves for training and testing accuracies of different ELMs changing with L on
Concrete Compressive Strength Dataset. StaELM is without over-fitting and obtains
higher testing accuracies with less hidden nodes.

With the increase of L, k (u, v) → 0 when u �= v. This leads to K (H,H) → I.
Then, we can get Ŷ → Y. This indicates that the RBF kernel easily results in the
over-fitting of 1HNBKM. This is also confirmed by the following experimental
validation. (3) Calculating the correlation matrix in Eq. (20) is more time-saving
than kernel matrix in Eq. (12). We validate this fact via the following simulation
on Matlab. For different L, we compare computational time of correlation matrix
and kernel matrix. From Fig. 1, we can see that the computational time of kernel
matrix grows exponentially with the increase of N .

StaELM is derived from Gaussian process regression (GPR) y = h (x)β + ε
with prior β ∼ N(0,Σ) and ε ∼ N

(
0, σ2

N I
)

[11]. The mean and covariance are

E [y] = h (x) E [β] + E [ε] = 0, (25)

E [yy′] = h (x) E
[
ββT

]
hT (x′) + E

[
εεT

]
= h (x) ΣhT (x′) + σ2

N . (26)

The key of GPR is how to determine the term h (x) ΣhT (x′) in Eq. (26). Because
Σ is a symmetric positive definite matrix, Σ can be decomposed into AAT, where
A is a lower triangular matrix. Then, we can get

h (x) ΣhT (x′) = h (x) AAThT (x′) = [h (x) A] [h (x′) A]T

= φ (h (x))φT (h (x′)) = k (h (x) ,h (x′))
, (27)

where k (u, v) is a kernel function which is used to measure the similarity between
u and v. In StaELM, we replace k (u, v) with q (u, v) and use the correlation
rather than distance to measure this similarity. In fact, we can find that the
linear kernel k (u, v) = uvT is used in ELM and BELM. Then, ELM, BELM,
and 1HNBKM are all the specials cases of StaELM which conducts the prediction
based on GPR.
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Fig. 3. Curves for training and testing accuracies of different ELMs changing with L
on Treasury Dataset

4 Experiments

In this section, we use 12 UCI and KEEL datasets to compare the performances
of ELM, BELM, 1HNBKM, and StaELM, where 6 datasets are for regression
problems and the other 6 datasets for classification problems. The basic descrip-
tions to these datasets are listed in Tables 1 and 2 respectively. For the experi-
mental procedure and parameter setting, we give the following descriptions.

– The input variables for regression datasets are normalized in [−1, 1] and for
classification datasets normalized in [0, 1].

– We compare the training/testing accuracies and time for different learn-
ing algorithms. The accuracies for regression and classification problems are
respectively measured with root mean square error (RMSE) and correct clas-
sification rate (CCR). The experimental results are the averages of 10 runs
of 10-fold cross-validation.

– In our comparison, the parameters for different ELMs are set as
(
σ2
N , α

)
=

(0.001, 1) in BELM,
(
σ2
N , λ2

)
= (0.001, 1) in 1HNBKM and σ2

N = 0.001 in
StaELM respectively. The input weights and hidden biases are the random
numbers in [0, 1].

Tables 1 and 2 respectively give the comparative results on regression and
classification datasets. According to the statistical analysis with Wilcoxon signed-
ranks test at 95% significance level [7], we know that StaELM obtains the signifi-
cantly better testing accuracies than other algorithms. Meanwhile, StaELM also
has the better training accuracies than ELM and BELM. In addition, StaELM
is also faster than 1HNBKM. On Concrete Compressive Strength and Treasury
datasets, we give the curves for training and testing accuracies changing with
the number of hidden layer nodes in Figs. 2 and 3. From these figures, we can
clearly see that ELM and 1HNBKM have serious over-fitting problems. With the
increase of L, the training RMSEs of ELM and 1HNBKM gradually decrease.
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However, their testing RMSEs initially decrease with the increase of L, pass
through a minimum, and then increase. Although the learning curves of BELM
and StaELM all gradually decrease with the increase of L, we can find that
StaELM has a faster convergence speed than BELM. This indicates that StaELM
can obtain the lower RMSE with less hidden layer nodes.

The main reason that 1HNBKM has an obvious over-fitting is that the value
of RBF kernel in Eq. (14) gradually approaches 0 with the increase of L. This
leads to kernel matrix in Eq. (12) approximates an identity matrix. Assume the
hidden layer outputs of instances u and v are

hL (u) =
[
g (û1) g (û2) · · · g (ûL)

]
, (28)

hL (v) =
[
g (v̂1) g (v̂2) · · · g (v̂L)

]
, (29)

where ûl = wlu + bl and v̂l = wlv + bl, l = 1, 2, · · · , L. With the increase of
hidden layer nodes from L to L1 (L1 > L), the hidden layer outputs of instances
u and v are changed into

hL1 (u) =
[
g (û1) · · · g (ûL) g (ûL+1) · · · g (ûL1)

]
, (30)

hL1 (v) =
[
g (v̂1) · · · g (v̂L) g (v̂L+1) · · · g (v̂L1)

]
. (31)

Then, we can calaulate

k (hL (u) ,hL (v)) = exp

⎡

⎢
⎢
⎢
⎣

−

L∑

l=1

[g (ûl) − g (v̂l)]
2

2λ2

⎤

⎥
⎥
⎥
⎦

, (32)

k (hL1 (u) , hL1 (v)) = exp

⎡

⎢⎢⎢⎣−

L∑
l=1

[g (ûl) − g (v̂l)]
2 +

L1∑
l1=L

[g (ûl1) − g (v̂l1)]
2

2λ2

⎤

⎥⎥⎥⎦ . (33)

.

Because of
L∑

l=1

[g (ûl) − g (v̂l)]
2

<
L∑

l=1

[g (ûl) − g (v̂l)]
2+

L1∑

l1=L

[g (ûl1) − g (v̂l1)]
2,

k (hL (u) ,hL (v)) > k (hL1 (u) ,hL1 (v)) (34)

can be derived. This indicates that the value of k (h (u) ,h (v)) gradually decreases
with the increase of hidden layer nodes. k (h (u) ,h (v)) is non-negative, so k(h(u),
h(v)) → 0 with the increase of L. This leads to K → I and Ŷ → Y.

For the correlation function in Eq. (22), there is not an ordering relationship
between q (hL (u) ,hL (v)) and q (hL1 (u) ,hL1 (v)), because the correlation coef-
ficient in Eq. (23) measures the similarly between h (u) and h (v) with vectorial
angle cosine rather than distance between them. The increase of vector dimen-
sion will not cause the vectorial angle cosine approaches 0. Then, we can know
that Q � I with the increase of L. This reduces the chance of over-fitting.
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5 Conclusion

In this paper, we have presented a stable ELM (StaELM) by using correlation
coefficient to measure the similarity between different hidden layer outputs. We
have further analysed the rationality of StaELM in the framework of Gaussian
process regression. Compared with the kernel-based methods, StaELM obviously
reduces the chance of singular covariance matrix and make ELM more stable
to random initialization of input weights and hidden biases. In addition, our
improvement does not cause the significant increase of computational complexity.
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Mixture for Online Density Estimation
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Abstract. In this paper, we propose an incremental and local adaptive
gaussian mixture for online density estimation (LAIM). Using a similar-
ity threshold based criterion, the method is able to allocate components
incrementally to accommodate novel data points without affecting previ-
ously learned components. A local adaptive learning strategy is presented
for estimating density with complex structure in an online way. We also
adopt a denoising scheme to make the algorithm more robust to noise.
We compared the LAIM to the state-of-art methods for density estima-
tion in both artificial and real data sets, the results show that our method
outperforms the compared online counterpart and produces comparable
results to the compared batch algorithms.

Keywords: Online density estimation · Gaussian mixture · Local adap-
tive · Incremental learning

1 Introduction

Let X = (x1, x2, ...xn)T be a sample of size n from an unknown distribution
F with density function f , the problem of density estimation is to construct a
estimator f̂ from X to approximate f as good as possible. Traditionally, the
methods for density estimation are generally divided into two categories, para-
metric methods and non-parametric ones. Finite mixture models [1] have been
used for constructing parametric probabilistic models successfully, but they suf-
fer from choosing the appropriate number of mixture components and are sen-
sitive to initialization. The traditional nonparametric kernel density estimator
(Parazen Window) [2] is guaranteed to converge to the underlying density under
practical assumptions without worrying about the magic number k (every data-
point is itself a component) [3]. However, it is not easy to choose an appropriate
bandwidth parameter to achieve a good performance. A lot of researches have
been made to find a data-driven criterion to search for a good value of band-
width parameter [4], [5], [6]. In addition, the non-parametric methods and the
bandwidth selection algorithms generally need to store all the training data in
memory which is unfeasible in many cases.

There have been several attempts to address the problems of parametric and
nonparametric methods. RSDE [7] reduces the computational cost of full sample
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KDE through a sparsity induced optimization process. [8] presents an adaptive
kernel density estimator based on linear diffusion process and achieves satisfac-
tory performance. In [9], the author proposes a greedy algorithm for learning a
gaussian mixture model, which starts with a single component and adds com-
ponents sequentially until a maximum number k. Due to the global and local
search procedure, this algorithm need to keep all training data around and is
not suitable for online learning. [10] uses a user defined likelihood based thresh-
old parameter to add new gaussian components for the purposed of incremental
learning of gaussian mixture models. However, its learning strategy involves all
the components in the current model for every input sample. That makes the
model converges slowly and tends to over-smooth the density in the context of
online learning. SOMN [11] adopts Self-Organizing Map as its structure and pro-
poses a learning algorithm that minimizes the Kullback-Leibler distance between
the estimator and the objective density function, the learning process is limited
within a small number of nodes around the input data to accelerate the con-
vergence of nodes. The problem of SOMN is the same as SOM, that is, it is
difficult to specify a network topology in advance. oKDE [12] combines the mix-
ture model and the KDE to realize online multivariate density estimation, it
maintains and updates a mixture model of the observed data from which the
KDE can be calculated, compression and revitalization procedures are executed
regularly to balance the accuracy and model complexity. The final estimator is
defined as a convolution of the sample distribution by a kernel. This convolution
strategy makes oKDE easy to over-smooth the underlying density.

To realize online density estimation that sensitive to local density structure,
we propose an incremental and local adaptive gaussian mixture which estimates
object density function in an online way by maximizing the sample likelihood
locally around each mixture component. Unlike the SOMN, LAIM need not to
specify the network structure in advance. Using a similarity threshold based
criterion, the method is able to allocate components incrementally to accommo-
date novel data-points without destroying previously learned components. We
also adopt a density based denoising algorithm that make the model more robust
to noise.

2 Proposed Method

For density estimation, the LAIM is the same as traditional gaussian mix-
ture model. Every gaussian component of LAIM could be summarized by three
parameters: the mean vector μ, covariance matrix Σ and n the effective number
of data-points it possesses. We introduces n here for the purpose of extending the
maximum likelihood estimation for single gaussian to a local adaptive learning
strategy(see Section 2.2).

The final density estimator of LAIM is

f̂ (x) =
K∑

i=1

wiφ (x|μi, Σi) , (1)
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where wi = ni∑
j nj

is the mixing proportion for component i, μi and Σi are mean
and covariance matrix of the ith component. φ (x|μ,Σ) is the gaussian density
function with mean μ and covariance matrix Σ.

The LAIM has three key steps:

1. Component Allocation. Construct a neighborhood set for input data-
point and decide whether it is necessary to insert a new gaussian component
into the current model.

2. Local Adaptive Learning. Update the parameters of the components in
the neighborhood set based on maximum likelihood principle.

3. Denoising. Eliminate the components induced by the noisy data.

We now give the details of each step.

2.1 Component Allocation

Suppose we have built a mixture model for a series of data x1, x2, . . . , xt−1 ∈ R
n

f̂ (x|Θ) =
K∑

i=1

wiφ (x|θi) , (2)

where φ (x|θi) is the gaussian density function, wi is the mixing proportion for
component i and Θ = (θi, θ2, . . . , θK)T is the parameter matrix for the mixture
model. When the new data point xt is available, traditional EM-based algorithm
would make a global adaption for all the components in the current model.
This operation is guaranteed to increased the sample likelihood in the long run,
however, it could also destroy the previously learned structures and trapped
into local optimum if xt and following inputs are somewhat novel to the current
mixture model. It is also possible that xt is just a noise that should not be
learned.

Therefore, to fit the novel data without destroying the old model, we need
to decide when to allocate a new component. If we could keep all the historical
samples at hand, it is possible to make choice based on the sample likelihood or
some model selection criterion. In the context of online learning, we must rely
on the current learned model and make choices locally. To measure the novelty
of the new coming data point xt, we first evaluate its distance D(xt, i) to the
components around it weighted by its covariance matrix

D(xt, i) =
√

(xt − μi)TΣ−1
i (xt − μi) , (3)

here i = 1, 2, . . . , Kt, Kt is the number of gaussian components at time t. Then
we construct the neighbourhood set St of xt

St = {i = 1, 2, . . . ,Kt|D(xt, i) < Ti} , (4)

St contains the set of components in the current model that should most respon-
sible for xt, their parameters will be updated to fit xt(see Section 2.2). Ti is the
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similarity threshold for component i, it controls the tendency of the correspond-
ing component to absorb an input sample nearby, therefore the smaller the Ti,
the more local the algorithm will be. We know that D2(xt, i) ∼ χ2

n, if the current
mixture model is indeed well fitted, we could just let Ti be the value such that

Pr
[
(xt − μi)TΣ−1

i (xt − μi) < T 2
i

]
= q , (5)

where q is the confidence level, in practice we just set it with 0.9. However, we
can’t make the assumption that the previously learned model is reliable due to
the context of online learning, the initialized components need enough samples
to converge to a state of well fitted. Therefore, we let Ti be some constant α times
Ti, here α is a user defined parameter. To let the new components converge fast,
we usually set it with value ranged 1.5 to 2.0 at insertion and decreases to 1
through the training procedure.

If the neighborhood set St is empty, we’ll regard xt as a novel data that
deserves a new component to fit it. The initialization of the new component is
as follows:

nnew = 1 , μnew = xt , Σnew = h2I . (6)

where h is a user defined parameter, I is the identity matrix. h serves as a initial
bandwidth for a new component, it should be relatively small compared to the
actual standard deviation along each dimension in order to keep the locality
sensitivity of LAIM.

2.2 Local Adaptive Learning

Once the neighborhood set St is determined for the input data at time t, we
limit the learning process within St. The local learning strategy does not only
accelerate the learning process, but also gives the LAIM the ability to fit new data
without destroying the learned components far away from the current input. This
property is essential for online learning due to the locality of the information,
we could never have the global information about the whole training set, only
the current model and current input are available. Doing things locally is a safe
strategy so that we can handle the non-stationary input stream.

Starting from the incremental version of maximum likelihood estimation for
a single gaussian density function [13]

μ(n) = μ(n−1) +
1
n

(
xn − μ(n−1)

)
, (7)

Σ(n) =Σ(n−1) +
n − 1
n2

(xn − μ(n−1))(xn − μ(n−1))T − 1
n

Σ(n−1) . (8)

It is easy to see the learning step here is 1/n, where n is the current number of
samples. We want the learning step of each component could be different accord-
ing to the current model and the learning process within the neighborhood region
could be accelerate further since the members of the set are supposed to generate
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the current sample with high probability. Therefore, for every component i ∈ St

we make the following updates:

r
(t)
i =

φ
(
xt|θ(t−1)

i

)

∑
j φ

(
xt|θ(t−1)

j

)

n
(t)
i = n

(t−1)
i + r

(t)
i

μ
(t)
i = μ

(t−1)
i + r

(t)
i

1

n
(t)
i

(
xt − μ

(t−1)
i

)

Σ
(t)
i = Σ

(t−1)
i +

n
(t−1)
i

(
n
(t)
i

)2

(
xt − μ

(t−1)
i

)(
xt − μ

(t−1)
i

)T

− 1

n
(t)
i

Σ
(t−1)
i .

(9)

The quantity ri evaluates the responsibility of component i to the current data
xt, it distributed the effective number of observed samples to each component
in St respectively weighted by their responsibilies. We also use it to adapt the
updating stepsize for each component i ∈ St. Notice that when multiple com-
ponents exist in set St, this quantity would slow the process of the learning by
shrinking the learning stepsize. In the case that St has only one element, the
above updating rules degenerate to the original maximum likelihood estimation
for single gaussian component naturally.

2.3 Denoising

For density estimation in practice, it is common that the training data are contam-
inated by noise. With the assumption that the noisy data are mostly distributed
over the regions where the objective density function f has low probability density
and their distribution is sparse enough so that the main structure of f could still
be discovered, we adopt a denoising scheme based on the effective numbers of each
components, which is used by some prototype based neural networks like [14], [15].
According to the insertion ruledescribedbySection2.1, thosenoisydatawould lead
to node insertion with high probability. However, the resulted components should
not possess large effective numbers, i.e., their n is relatively small compared to the
non-noise components. Let

M =
K∑

i=1

ni

K
(10)

be the mean effective number of the current mixture model, where K is the
current number of components. We eliminates those components whose effective
number is lower than some constant β ∈ [0, 1] times M after every λ input
samples. Here β and λ are user defined parameters, large value of β and small
values of λ should be set if the amount of noise is large.

2.4 Complete Algorithm

As a summary, we give the complete algorithm of LAIM here.
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Algorithm 1.. Local Adaptive and Incremental Gaussian Mixture
1: Initialize a component for the first sample according to (6).
2: Input new sample x ∈ R

n.
3: Determine the neighborhood set S for x according to (4).
4: If S = ∅, initialize a new component for x according to (6), then goto step 2.
5: If S �= ∅, update the parameters of components in S according to (9).
6: If the number of input presented so far is a multiple of the parameter λ, make the

denoising operation as Section 2.3.
7: Go to step 2 if there is new sample available, otherwise the algorithm terminates

and return the trained mixture model.

3 Experiments

3.1 Artificial Data-Sets

The artificial density functions used here are the same to those in [8]. We first
adopt the common used bimodal density to verify the effectiveness of our method

1
2
N

(
0, (0.1)2

)
+

1
2
N (5, 1) . (11)

We compared the proposed method with oKDE[12], a batch kernel den-
sity estimator(kernel density estimation via diffusion, KDE-d for simple)[8] and
gaussian mixture models with 2 components (the optimal choice) trained by
batch EM algorithm. The parameters are set as follows: oKDE(Dth = 0.1),
LAIM(h = 0.5, α = 1.5, β = λ = inf). 3000 samples are drawn from (11) as
training set, the resulted estimators are shown in fig. 1. We can see from fig. 1(a)
and fig. 1(d) that our method and batch EM reconstruct the underlying density
function almost perfectly. That is reasonable since the assumption of mixture
of gaussian is perfect for (11), but LAIM doesn’t need to specify the number of
components due to the incremental nature of the algorithm. From fig. 1(b), we
can see that oKDE fits the right hand gaussian pretty well but over-smoothes
the left hand gaussian component, that’s mainly because its estimation is based
on a global convolution operation that lacks of locality sensitivity. fig. 1(c) also
shows some under-smoothness on the right hand gaussian. This result shows that
LAIM achieves the comparable performance to the batch EM algorithm in this
simple bimodal situation.

Then we use the density function “claw”, which has more complex structure.
The parameters are set as follows: oKDE(Dth = 0.1), LAIM(h = 0.5, α = 1.5,
β = λ = inf), the number of components for GMM is identical to LAIM, which
is 10 in this case.

1
2
N

(
0, (0.1)2

)
+

4∑

k=0

1
10

N
(
k/2 − 1, (0.1)2

)
. (12)

the results shown in fig. 2 suggest that our method could approximate the
density function in each local region hence gives a reliable estimation. Batch EM
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(c) KDE-d
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Fig. 1. Blue dashed line is the density function (11), red solid line is the coresponding
estimator. The estimator of proposed method and GMM with 2 components is almost
perfect. oKDE over-smoothed the left hand gaussian while KDE-d under-smoothes the
right hand gaussian.

algorithm fails to capture the whole structure of (12). Fig .2(b) is also a result
of over-smoothing the sample distribution constructed by oKDE.

To quantify the approximation performance of our method, we did the numer-
ical experiments on five artificial data sets (including (10), (11)). The criterion
for the comparison is the numerical approximation to the following ratio,

Ratio =
||f̂ − f ||2
||ĝ − f ||2 (13)

which was adopted by KDE-d [8]. Here ĝ is the estimator with which we
want to compare, f̂ is our estimator and f is the underlying density function.
(11) is the integrated squared error of the diffusion estimator to the integrated
squared error of the alternative estimator. The results are shown in table .1.
When compared to online method oKDE, our approach has lower integrated
squared error, which means the corresponding estimator is more accurate. The
proposed method outperformes the batch method KDE-d in case 1 and 3, that is
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reasonable since the density in those two cases are well-separated gaussians that
are more suitable for the mixture models. In case 2 where the density function
contains complex local structure, LAIM achieves comparable result to batch
algorithm KDE-d.
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(d) GMM with 10 components

Fig. 2. Blue dashed line is the density function (12), red solid line is the corresponding
estimator. The proposed method and KDE via diffusion gave the satisfactory estimation
results. oKDE over-smoothes the peaks of the density. Batch EM algorithm didn’t
capture the whole density structure.

3.2 Real Data-Sets

We compared our method with oKDE, RSDE and KDE with bandwidth selected
by cross validation(CV) on the real datasets obtained from the UCI Machine
learning Repository[16]. Five data-sets are used here for testing, Iris, Pima, Wine,
WineRed and WineWhite. For the density estimation, we estimated the density
for each class separately. The data were randomly reordered, 75% of the data
in each class were used for training, and the rest for testing. We conduct the
same experiment twelve times and recorded the mean and standard deviation
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Table 1. Ratio of approximated integrated squared error

Case Target density Ratio(oKDE) Ratio(KDE-d)

1 1
2
N
(
0, (1/10)2

)
+ 1

2
N (5, 1) 0.04 0.38

2 1
2
N
(
0, (1/10)2

)
+
∑4

k=0
1
10

N
(
k/2 − 1, (1/10)2

)
0.67 1.05

3 1
2
N
(−2, (1/4)2

)
+ 1

2
N
(
2, (1/4)2

)
0.26 0.76

4 2
3
N (0, 1) + 1

3
N
(
0, (1/10)2

)
0.90 1.42

5 3
4
N (0, 1) + 1

4
N
(
3/2, (1/3)2

)
0.91 1.78

Table 2. Negative log likelihood on real datasets

Dataset Proposed oKDE RSDE(batch) CV(batch)

Iris 0.3(±0.2) 2.1(±0.5) 2.5(±0.9) 2.7(±0.9)

Pima 28.8(±0.4) 32.3(±0.3) 38.4(±11.3) 29.5(±0.5)

Wine 23.5(±3.1) 26.4(±3.4) 12.3(±1.9) 11.6(±1.5)

Winered 13.9(±2.7) 18.4(±3.5) -12.3(±4.9) -27.2(±1.0)

Winewhite 8.7(±0.3) 11.4(±0.3) 91.3(±44.6) 11.6(±0.4)

Table 3. Average classification rate

Dataset Proposed oKDE RSDE(batch) CV(batch) SVM(batch)

Iris 97(±3) 97(±3) 96(±4) 96(±3) 96(±2)

Pima 73(±3) 72(±2) 65(±3) 72(±2) 78(±3)

Wine 89(±3) 94(±3) 91(±5) 92(±6) 96(±3)

Winered 65(±2) 64(±2) 44(±4) 64(±1) 63(±3)

Winewhite 63(±2) 55(±1) 25(±6) 62(±1) 60(±2)

as the result. The oKDE were initialized by the first 10 samples and parame-
ter Dth was set to 0.1. Two parameters of LAIM are set as follows: α = 2.2,
β = 0.05, λ = 0.1N , where N is the total number of training samples. h is set
according to the the scale of the data because it will affect the the complex-
ity of the model: Iris(0.01), Pima(15), Wine(15), Winered(15), Winewhite(5).
To measure the quality of estimation, we have computed the average negative
likelihood(NLL) per test point, lower NLL generally suggests more accurate esti-
mation.

The results of the experiments after observing all the data-points are summa-
rized in Table 2. Compared to the online method oKDE, the proposed method
achieves better results on all the data-sets. LAIM also ourperforms the batch
methods on Iris, Pima and WineWhite.
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We have also tested the classification ability of the proposed method on the
previous five data-sets. Although density estimator is not generally the most
accurate classifier, the classification results based on simple Bayesian criterion

ŷ = arg max
k

p(x|ck)p(ck) (14)

still reflects the quality of density estimation. We have chosen a multiclass SVM
with RBF kernel[17] as the baseline classifer and compares our method with
oKDE, RSDE, and KDE with cross validation. The results of classification are
summarized in Table 3. From the table, we can see that the proposed method
outperformes the online counterparts in most data-sets except for Wine and
produces comparable results to the batch methods. Noticed that in the context
of online learning, we don’t store any historical data but the current input and
the learned model, therefore, the time complexity and space complexity of LAIM
are much smaller than the batch methods.

4 Conclusion

In this paper, the incremental and local adaptive gaussian mixture for online den-
sity estimation(LAIM) is proposed. With the similarity threshold, the method
could allocate components incrementally while training without specifying the
number of gaussian components in advance. We proposes a local learning algo-
rithm for updating the parameters of mixture model based on maximum like-
lihood principle, this locality sensitivity enables the our model to discover the
local density structure of the data samples in the context of online learning.
A denoising scheme is used to eliminate the components initialized by noise.
Experiments show that it outperforms the compared online density estimators
and produces comparable results to the compared batch methods while keeping
a lower model complexity.
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Abstract. Streaming heterogeneous information is ubiquitous in the era
of Big Data, which provides versatile perspectives for more comprehen-
sive understanding of behaviors of an underlying system/process. Human
analysis of these volumes is infeasible, leading to unprecedented demands
for mathematical tools which effectively parse and distill such data. How-
ever, the complicated nature of streaming heterogeneous data prevents
the conventional multivariate data analysis methods being applied imme-
diately. In this paper, we propose a novel framework together with an
online algorithm, denoted as LSTH, for latent space tracking from hetero-
geneous data. Our method leverages the advantages of dimension reduc-
tion, correlation analysis and sparse learning to better reveal the latent
relations among heterogeneous information and adapt to slow variations
in streaming data. We applied our method on both synthetic and real
data, and it achieves results competitive with or superior to the state-
of-the-art in detecting several different types of anomalies.

1 Introduction

In the era of Big Data, heterogeneity of various information generated from
a same yet complex underlying system/process has become ubiquitous. Exam-
ples of such heterogeneous data include video and audio from a sensor network,
acoustic and articulatory signals during a speech, etc. Such heterogeneous data
provides complimentary or augmented depiction of the system from different
perspectives, allowing more comprehensive understanding of the system than
that from homogeneous data. Albeit the high dimensionality and heterogene-
ity, these data often exhibits low dimensional nature and can be characterized
by a (low dimensional) latent space. Correctly identifying the latent space ben-
efits classical machine learning tasks (e.g., classification [6]), as well as more
novel applications (e.g., the anomaly detection). However, learning from het-
erogeneous data is highly nontrivial. The requirement of operating in real time
imposes further challenges and prevents straightforward extensions of existing
methods.
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 429–441, 2015.
DOI: 10.1007/978-3-319-18038-0 34
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Principal Component Analysis (PCA) [7] is arguably the most well-known
method for extracting the low dimensional latent space. A common assump-
tion in applying PCA is that most data is near the low dimensional space. The
anomalies are assumed to be significantly deviated from the space such that using
some simple statistics is sufficient to identify them. Inspired by this assumption,
online PCA [12] techniques are developed to conduct anomaly detection on data
streams. Representative online PCA algorithms include [4] as well as its exten-
sion [17] under union-of-subspace assumption. However, PCA based methods do
not model the relations between the heterogeneous data sources. Therefore, PCA
cannot identify anomalies corresponding to violation of the relations. In contrast,
Canonical Correspondence Analysis (CCA) [5] is a classical method for analyzing
the relation between multiple data sources. And online CCA through stochastic
gradient on generalized Stiefel manifold has been applied to anomaly detection
on time series [19]. However, it still does not fully consider the heterogeneous
nature of the data.

Recently, learning from heterogeneous data has attracted much attention in
machine learning community, particularly in transfer learning, multi-task learn-
ing and multi-view learning. Transfer learning utilizes an auxiliary source domain
data to learn a better model in a target domain, where the two domains are often
heterogeneous [13]. Multi-task learning leverages the relation between multiple
tasks, each of which may work on a different/heterogeneous data domain [6].
Multi-view learning leverages multiple views of same instances for better mod-
els [18]. Many of these works assume a common low dimensional latent space,
and learn a mapping from each data source/view to the latent space in a super-
vised fashion. However, adapting these methods to an online and unsupervised
setting (e.g., anomaly detection task) is not straightforward.

In this paper, we tackle the problem of online learning of heterogeneous
data via latent space tracking. In specific, we propose a framework to track the
low-dimensional latent structures of heterogeneous data and learn their inher-
ent relations. Our formulation incorporates the key insights underlying PCA, CCA,
and sparse learning to enable dimension reduction together with feature selection
for anomaly detection from heterogeneous data. We develop an efficient online
algorithm that effectively conducts Latent Space Tracking from Heterogeneous
data, denoted as LSTH. Based on the learned latent space, we further design
an anomaly detection method that reports anomalies significantly outlying the
latent space. We test LSTH on both synthetic and real datasets. Experimental
results demonstrate that LSTH is effective in revealing relations among heteroge-
neous data for anomaly detection.

The paper is organized as follows. Section 2 formulates the latent space track-
ing problem. Section 3 presents the tracking algorithm. Section 4 further designs
an anomaly detection method as an application of the learned latent space.
Experimental results and conclusions are in Section 5 and 6 respectively.
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2 Problem Formulation

Throughout this paper, vectors are represented by lower-case letters (e.g., x),
and matrices are represented by upper-case letters (e.g., U). By default, all
the vectors are column vectors, while row vectors are represented by having a
transpose superscript� (e.g., x�). We use subscript i and j to index an element
in a matrix (e.g., Vi,j) and subscript t to index a data point at timestamp t (e.g.,
xt) in a data steam. The estimate of a variable is represented by having a hat
over the variable (e.g., Û represents the estimate of U).

We assume xt ∈ R
Dx and yt ∈ R

Dy are the high-dimensional heterogeneous
data samples from a same system at timestamp t, where Dx and Dy are the
number of features in xt and yt, respectively. The heterogeneity of particular
interest in this paper is that xt’s features are correlated, whereas only very few
features in yt describe the states of the system. Heterogeneous data in many real-
life applications exhibits such kind of property. For example, during a speech, yt

can be data recorded by articulatory sensors, which are highly correlated [3] due
to connected muscles. In contrast, xt can be Mel-frequency cepstrum coefficients
(MFCC). Obtained by appending higher order derivatives of acoustic signal,
it contains much redundancy and often need a feature selection [11] step before
further processing. In a stock market, xt could be the prices of multiple correlated
stocks, and yt is massive news about the market [14].

In order to learn the underlying structures and relations among xt and yt,
we monitor the joint probability density p(xt, yt) at each timestamp t:

p(xt, yt) = p(yt|xt)p(xt). (1)

However, since both xt and yt are of high dimensionality, online density estima-
tion for p(yt|xt) or p(xt) is prohibitively difficult. Therefore, we assume there is
a d dimensional latent space (d � Dx,Dy) underlying the data, into which xt

and yt can be transformed via two linear projectors U ∈ R
Dx×d and V ∈ R

Dy×d.
Their projections are denoted as U�xt and V �yt, respectively, which can be con-
sidered as realizations of a common latent variable that determines the states
of the underlying system. U and V will exhibit different structures. Specifically,
while U may span a low-rank subspace as in PCA, V may model a latent space
impacting only a subset of the features in yt.

3 Proposed Approach

We constrain U to be orthonormal (i.e., U�U = I, where I is the identity
matrix) to preserve the magnitude of xt. Thus, the reconstruction error of xt is
‖xt − UU�xt‖2. In this case, we measure the probability distribution of xt by
the reconstruction error [17]:

p(xt) ∝ exp
(−‖xt − UU�xt‖2/σ2

x

)
, (2)
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where σ2
x is the variance of reconstruction error in each dimension. Since the

projections of xt and yt are considered as realizations of a common latent vari-
able, they are expected to be close. Hence, we measure p(yt|xt) by the distance
of the projections in the latent space:

p(yt|xt) ∝ exp
(−‖V �yt − U�xt‖2/σ2

y

)
, (3)

where σ2
y is the variance of the difference between xt and yt in the latent space.

By substituting Equation (2) and (3) into (1) and taking the logarithm, the
log-likelihood can be represented as

log p(xt, yt) ∝ −
[‖V �yt − U�xt‖2

σ2
y

+
‖(I−UU�)xt‖2

σ2
x

]

.

In addition, we constrain V to exhibit “group sparse” structure so that applying
V performs feature selection from yt to identify the most informative features.
We use the mixed norm ‖V ‖1,2 �

∑Dy

i=1 ‖v�
i ‖2 to introduce sparsity into V ,

where v�
i is the i-th row of V .

To enable tracking in a slowly evolving environment, we apply an exponen-
tially decaying window to downweigh the historical samples. In addition, we
define σ = σ2

y/σ2
x, and denote the estimates of U and V at timestamp t as Ût

and V̂t, respectively. Then we formulate the following optimization problem to
find the projectors U and V at timestamp t:

(Ût, V̂t) = arg min
U�U=I,V

F (U, V ; t, α, σ, λ)

= arg min
U�U=I,V

t−1∑

k=0

αk

2

(
‖U�xt−k − V �yt−k‖2 + σ‖(I−UU�)xt−k‖2

)
+ λ‖V ‖1,2,

(4)

where α ∈ (0, 1] is a forgetting factor over historical samples to implement
the decaying window, σ balances between projection residual and discrepancy
in the latent space, and λ is the regularization parameter for sparsity. Note that
the data stream starts from t = 1.

In the above F (U, V ; t, α, σ, λ), the first term measures the discrepancy of
two data sources in the latent space. It has the flavor of CCA that maximizes
the correlation of two projections. Same as PCA, the second term imposes low-
dimensional structure in xt. It is important to highlight the ‖V ‖1,2 term here.
‖v�

i ‖2 indicates the significance of the i-th feature in yt. In addition, ‖V ‖1,2 is
invariant if multiplying an unitary matrix to the right of V . Therefore, the cost
of (4) depends on the subspace spanned by Ût and V̂t rather than the particular
basis chosen.

3.1 A Batch Algorithm

We first present a batch algorithm, denoted as bLSTH, to solve U and V for
simplicity. The bLSTH algorithm will be further modified into an online version
in Section 3.2.
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Algorithm 1. The Batch Algorithm bLSTH

Input: samples X ∈ R
Dx×L, Y ∈ R

Dy×L

Parameters: λ, σ, latent dimension d
Output: Û and V̂

i ← 0, U [0] ← the first d principal components of X
repeat

i ← i + 1
Z ← U [i − 1]�X

V [i] ← arg min
V

1
2
‖V �Y − Z‖2F + λ‖V ‖1,2 (6)

W ← V [i]�Y

U [i] ← arg min
U�U=I

1
2

(‖U�X − W‖2F + σ‖(I−UU�)X‖2F
)

(7)

until U [i], V [i] converge or i is large enough
Û ← U [i], V̂ ← V [i]

In bLSTH, L buffered samples X = [x−L+1, · · · , x0], Y = [y−L+1, · · · , y0] are
used to solve the following optimization problem:

(Û , V̂ ) = arg min
U�U=I,V

1
2

(
‖U�X − V �Y ‖2F + σ‖(I−UU�)X‖2F

)
+ λ‖V ‖1,2.

We use an alternating method to solve for Û and V̂ , as presented in Algorithm 1.
The optimization problem in Equation (6) of Algorithm 1 is a well-studied con-
vex optimization problem. Now we focus on the optimization problem in Equa-
tion (7). The objective can be reformulated as:

f(U ;σ) � 1
2

(‖U�X − W‖2F + σ‖(I−UU�)X‖2F
)

=
1
2
(1 − σ) tr

{
U�XX�U

} − tr
{(

XW�)
U�}

,

(5)

where U�U = I and W = V �Y . This orthonormality constrained problem is
non-convex. However, we are able to find a local minimum within a few itera-
tions and our experiments show that even local minimum is able to give good
results. Following the idea in [8], we use a majorization minimization scheme.
The basic idea is to construct a non-decreasing sequence f(U [1]), . . . , f(U [k]), . . .
that converges to a local minimum of f(U). Specifically, suppose we are at U [k],
we construct a surrogate function gk(U) that satisfies

f(U) ≤ gk(U) and f(U [k]) = gk(U [k]). (8)

That is, gk(U) is an upper bound of f(U) and the equality holds when U =
U [k]. Assign the global minimizer of gk(U) to U [k + 1], thus the sequence
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f(U [1]), . . . , f(U [k]), . . . is guaranteed to be non-increasing due to the properties
of gk(U) as in Equation (8) and the notion of global minimizer. In practice, a
surrogate function should be constructed such that its global minimizer is eas-
ily obtained. The following two lemmas suggest one form of such gk(U) and its
global minimizer.

Lemma 1. For any given orthonormal matrix U [k] ∈ R
Dx×d, the following

gk(U ; a) defined on the set of orthonormal matrices U ∈ R
Dx×d

gk(U ; a) = tr
{[

(1 − σ)(XX� − a I)U [k] − (XW�)
]�

U
}

+ c

is a surrogate function for the f(U ;σ) in Equation (5), where c is some constant
independent of U . And the scalar a chosen as

a =
{

λ∗ σ < 1
0 σ ≥ 1 ,

where λ∗ is the maximum eigenvalue of XX�.

Proof. The proof leverages Rayleigh quotient inequality and is omitted for con-
ciseness.

Lemma 2. [10] The global minimizer of

min
U�U=I

− tr{A�U}

is PQ�, where PΣQ� = A is the Singular Value Decomposition (SVD) of A.

Using Lemma 2, the global minimizer of the surrogate function gk(U ; a) has a
closed form arg minU�U=I gk(U ; a) = PQ�,where PΣQ� is the SVD of XW � −
(1−σ)(XX� −a I)U [k].Thus, by applying Lemma 1 and 2, the problem in Equa-
tion (7) can be solved via the iterative majorization minimization process as
presented in Algorithm 2, where G � XW� = XY �V and Cx � XX�. A
special case is when σ = 1, in which the minimizer of f(U ;σ) is given by the
closed-form solution directly by Lemma 2.

3.2 An Online Algorithm

Here we derive the online algorithm LSTH from bLSTH. We use the solution (Û ,
V̂ ) by bLSTH on the samples X = [x−L+1, · · · , x0], Y = [y−L+1, · · · , y0] as the
initialization (Û0, V̂0) for the online updates, assuming the online process starts
from timestamp t = 1. We also use an alternating method to track (Ut, Vt) with
the following definition of projections of xt and yt into the latent space:

zt � U�
t xt, wt � V �

t yt.

The online algorithm LSTH consists of an initialization via bLSTH and iterative
online updates of U and V , as presented in Algorithm 3.
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Algorithm 2. Updating U for bLSTH

Input: orthonormal U , scalar σ, cross-covariance matrix G
auto-covariance matrix Cx

Output: Uupdated

k ← 0, U [k] ← U

repeat
k ← k + 1

compute SVD: PΣQ� = G − (1 − σ)(Cx − a I)U [k − 1] (9)
U [k] ← PQ�

until U [k] converged or k is large enough
Uupdated ← U [k]

Online Tracking of Ut. Upon arrival of new data (xt, yt) at t, we use V̂t−1 to
estimate the projection of yt at t as follows:

ŵt = V̂ �
t−1yt. (10)

Substituting the ŵt into Equation (4), we will see that the objective function
of U is of the same form as (5), except that the historical xt are downweighed.
Therefore it can be minimized via Algorithm 2 with the only modification that
G in Equation (9) is replaced by

∑t−1
k=0 αkxt−kŵ�

t−k, and Cx is replaced by
∑t−1

k=0 αkxt−kx�
t−k. Both of these two summations can be incrementally updated.

Online Tracking of Vt. Given Ût solved as in Section 3.2, we use Ût to estimate
zt at current timestamp t as follows

ẑt = Û�
t xt. (11)

Substituting ẑt into Equation (4), we can get the following objective function
w.r.t V ,

FV (V ; t) =
t−1∑

k=0

[
αk

2

∥
∥V �yt−k − ẑt−k

∥
∥2

2

]

+ λ‖V ‖1,2. (12)

For the above problem, we derive a Stochastic Coordinate Descent (SCD) method
with a similar spirit as [9]. The SCD admits a row-wise updating of V̂t, details
can be found in Equation (13) in Algorithm 3.

3.3 Complexity Analysis

The complexity of LSTH is O(c ·D2
xd+D2

yd), where c ·D2
xd is due to the SVD step

in Equation (9) and c is the number of iterations in majorization minimization
for U (c = 1 suffices in practice). Efficient algorithms for computing the SVD of a
sequentially updated matrix [2] can be applied to reduce the complexity. D2

y ·d is
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due to the coordinate descent algorithm on V , for which further acceleration can
be achieved via active set tricks. Our experiments show that LSTH is sufficiently
fast for real applications, for example, 20 ms for the XRMB dataset (sampling
interval: 25 ms/sample). The experimental details will be presented in Section 5.
To reduce the complexity of LSTH is very important and it is left for future
exploration for now.

4 Application: Anomaly Detection

The basic idea of our anomaly detection method is to monitor ‖U�xt−V �yt‖2+
σ‖(I−UU�)xt‖2. We define the a priori error:

ξt � ‖Û�
t−1xt − V̂ �

t−1yt‖2 + σ‖xt − Ût−1Û
�
t−1xt‖2, (14)

and use ξt as the detection statistic. An anomaly is claimed only when p(xt, yt)
appears to be significantly small, corresponding to ξt being significantly large.
We maintain a sliding window over ξt with the mean μt and standard deviation
νt within the window. When the new (xt+1, yt+1) arrives, we compare its ξt+1

Algorithm 3. The Online Algorithm LSTH

Parameters: d, α, λ, σ
Input: data stream: · · · , (x0, y0), · · · , (xt, yt), · · ·
Obtain Û0 and V̂0 by Algorithm 1
for t = 1, 2, . . . do

//update Ût

ŵt ← V̂ �
t−1yt

Gt ← αGt−1 + xtŵ
�
t /*G0 =

∑0
τ=−L+1 xτw�

τ */
Cx,t ← αCx,t−1 + xtx

�
t /*Cx,0 =

∑0
τ=−L+1 xτx�

τ */
get Ût via Algorithm 2 with (Ût−1, σ, Gt, Cx,t) as input
//update V̂t

ẑt ← Û�
t xt

Ht ← αHt−1 + ytẑ
�
t /*H0 =

∑0
τ=−L+1 yτz�

τ */
Cy,t ← αCy,t−1 + yty

�
t /*Cy,0 =

∑0
τ=−L+1 yτy�

τ */
for i = 1, 2, . . . ,Dy do

Calculate the i-th row of V̂t:

v̂�
t,i =

S(‖h�
t,i − ∑

j �=i v�
t−1,jCy,t,i,j‖, λ)

Cy,t,i,i
× h�

t,i − ∑
j �=i v�

t−1,jCy,t,i,j

‖h�
t,i − ∑

j �=i v�
t−1,jCy,t,i,j‖

, (13)

where S(·, λ) is the soft thresholding function with parameter λ.
end for

end for
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with a threshold bt = μt +γνt, where γ > 0 indicates the effect of variance. Once
ξt+1 exceeds the threshold, an anomaly is claimed.

Additional care need to be taken for the claimed anomalous data points. In
specific, if the anomaly behaves as a sudden outlier after which the data stream
goes back to normal state, then the anomalous data point should be excluded
for model updating. The other case is that the anomaly is in fact the start of
a different stage in the data stream, then the anomalous data point should be
included in model updating. These two cases will be addressed in synthetic and
real data experiments respectively.

5 Experiments

In this section, we conduct comparative experiments to demonstrate the perfor-
mance of LSTH in tracking the latent space for anomaly detection. All types of
tracking methods as well as their corresponding anomaly detection statistics are
summarized in Table 1.

Table 1. Latent space tracking methods and corresponding detection statistics

method detection statistics semantics

LSTH ξt = ‖Û�
t−1xt − V̂ �

t−1yt‖2 + σ‖xt − Ût−1Û�
t−1xt‖2

latent discrepancy
and projection
residual

δt = Ĉx,t−1rx,t/Dx + r
�
y,tĈy,t−1ry,t/Dy where

rx,t = (Ĉ
−1
x,t−1 − Ût−1Û

�
t−1)xt and ry,t = (Ĉ

−1
y,t−1 − V̂t−1V̂

�
t−1)yt

projection residual
(online) onto Generalized
CCA Stiefel manifold

[19]
(online) projection residual
PCAx εx,t = ‖(I−Ût−1Û

�
t−1)xt‖2 onto individual or

PCAy εy,t = ‖(I−Ût−1Û
�
t−1)yt‖2 joint signal subspace

PCAxy εxy,t = ‖(I−Ût−1Û
�
t−1)[xt; yt]‖2 [4]

5.1 Experiments on Synthetic Data

We generated a synthetic dataset with continuous data xt ∈ R
500 and sparse,

discrete and non-negative data yt ∈ R
1000. The xt’s are generated via a linear

model xt = Aθt + nt, t = 1, . . . , 10500. where A ∈ R
500×10, θt ∈ R

10 and
nt is white Gaussian noise. The yt’s are generated as of dimension 1000. The
first 50 features of yt’s are relevant to the underlying system, generated via
Bθt + mt, t = 1, . . . , 10500, where B ∈ R

50×10 and mt is white Gaussian noise.
The rest 950 dimensions are padded as noise. We introduced sparsity into yt

by randomly setting half of its values to zero. In the end we round the yt to
non-negative integers. In this way, yt is analogous to the real-world documents
in bag-of-words representation. In this generated dataset, we introduced three
types of anomalies, all of them are sudden outliers.
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Table 2. Synthetic dataset: AUC and parameters

method Type-1 Type-2 Type-3
AUC parameters AUC parameters AUC parameters

LSTH 0.863/0.860 10,10,1,10 0.995/0.993 10,10,1,10 0.984/0.979 10,20,1,0
CCA 0.848/0.859 10 0.020/0.019 10 0.971/0.950 500
PCAx 0.500/0.525 10, 1 0.015/0.018 10, 1 0.013/0.016 10, 1
PCAxy 0.644/0.662 20, 1 0.744/0.730 20, 1 0.977/0.971 20, 1
PCAy 0.298/0.365 10, 1 0.015/0.015 10, 1 0.977/0.960 20, 1
The parameters for LSTH are d (dimension of the latent space), λ, α and σ, respectively, The param-
eter for CCA is d. The parameters for PCAx, PCAxy and PCAy are d and the forgetting factor, respec-
tively. AUC of the precision-recall plot is used for evaluation; the larger the AUC value is, the better
the performance is. The values under AUC column (i.e., x/y) are the performance on training and
testing set, respectively. Bold numbers correspond to the best performance for each anomaly type
among all the methods.

Type-1 anomaly: at t = 500, 600, . . . , 10400, xt is distorted to x̃t = Ãθt+nt,
where Ã is identical to A except that one row of Ã is randomly re-drawn from
N (0, 1). At the same timestamps when A is distorted, B in generating yt is
also distorted to B̃ by randomly re-drawing 5 of its rows from N (1, 0.32). This
corresponds to the scenario when both xt and yt behave anomalously at same
time.

Type-2 anomaly: at t = 500, 600, . . . , 10400, only xt is distorted to x̃t =
Aθ̃t + nt with θ̃t ∼ N (3.5, 1), that is, the latent variable θt is distorted. In
this way, a discrepancy is introduced between the latencies of x̃t and yt. This
corresponds to the scenario when xt has anomalies but yt behaves normally.

Type-3 anomaly: At t = 500, 600, . . . , 10400, three relevant features and
three among the rest 950 features of yt are exchanged. This corresponds to the
scenario when some relevant features in yt are changed while xt remains normal.

Experimental Results on Synthetic Data. We compare all methods in
Table 1 for anomaly detection task. For all the methods, the first 100 samples
are used for initialization. The γ in computing detection threshold is varied to
produce a full precision-recall plot. The parameters are selected as the ones that
maximize the Area Under Curve (AUC) of the precision-recall plot on a training
set generated separately from the same data generation protocol. Results are pre-
sented in Table 2. For the three types of anomalies, LSTH consistently achieves the

0

4

8

12

16

25 50 75 100 125 · · · 1000

‖v
� i
‖

V row index

row norm of V

Fig. 1. Feature selection effects of LSTH

Table 3. XRMB results

method AUC parameters

LSTH 0.342 20,300,0.95,1000
CCA 0.045 30
PCAx 0.035 20, 1e-5
PCAxy 0.035 30, 1e-5
PCAy 0.033 30, 1e-5

The parameters for each method are
same as those in Table 2 in paper.
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best detection performance. CCA is competitive for Type-1 and Type-3 anomalies
but completely fails for Type-2, due to the fact that its detection statistic cannot
capture the changes in the signal/latent space. The failure of PCAx on Type-2 has
a same reason as that of CCA on Type-2. On average, PCA based methods perform
worst among all the methods except for Type-3. However, by joining two data
sources properly, PCAxy is able to detect the change of the “joint” subspace so
as to achieve better performance than PCAx and PCAy.

Figure 1 shows the norm of each row of the learned V , after all the updates
of LSTH at t = 10500. For the relevant (i = 1, . . . , 50) features in yt, ‖v�

i ‖ are
non-zero. For the irrelevant features (i > 50), ‖v�

i ‖ are zero or very small. This
demonstrates that LSTH can successfully identify the relevant features via the
mixed norm on V .

5.2 Experimental Results on Real Data: XRMB

XRMB [16] contains synchronous 273-dim MFCC and 112-dim articulatory infor-
mation of length 51K. Each timestamp has a label indicating which word it
corresponds to. Details on the data are available in [1]. Speech segmentation
has attracted lots of attention for treating related diseases [15]. The task in our
experiment is to detect the boundary of words from acoustic and articulatory
features. During each segment, a tracking algorithm, e.g., LSTH, gradually learns
the underlying latent subspace. Upon arrival of a new segment, the underlying
latent space has a sudden change. This event may induce a drastic change of the
detection statistics provided by the tracking algorithms, and therefore is consid-
ered as an anomaly. In this case, the claimed anomalous data point should be
incorporated in learning the new latent space in the new segment.

When applying LSTH, we assign to xt the articulatory features with highly
correlated dimensions [3]. And yt is designated as the MFCC, which is redun-
dant and sparse filtering has been shown necessary for feature selection [11]. We
randomly select 1000 frames for parameter tuning for all the methods, and use
the tuned parameters for testing on the rest of the frames. Figure 2 shows the
detection statistics of all methods on the parameter tuning dataset. Out of 25
words within the 1000 frames, LSTH is able to identify 15 words with clear and
strong spikes in the detection statistics. After each alarm of anomaly (start of
a new segment), it quickly adapts to the new latent space in the new segment.
PCA based methods only show weak spikes. CCA fails in this case, as the conclu-
sion in [1]. Based on their results, kernel CCA should be a better approach on
this dataset than CCA. However, there is not a meaningful detection statistic for
kernel CCA, so we leave this approach for later research.

We then applied all the methods on the rest of the data with their optimal
parameters tuned on the training set. The parameters and the performance of
different methods are presented in Table 3. LSTH has an AUC value 0.342 (note
that a random guess would give an AUC of 412/51000 = 0.008) and it is the
only method that can detect the boundaries of the words from XRMB dataset.
All the other methods fail with AUC values smaller than 0.05.
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Fig. 2. Detection statistics on XRMB training data

6 Conclusions and Discussions

We developed LSTH, a latent space tracking method for heterogeneous stream-
ing data. Under the assumption that anomalies significantly deviate from the
latent space, we further designed an anomaly detection method based on LSTH.
Experimental results demonstrate that LSTH’s detection statistics outperform
the other state-of-the-art in identifying anomalies. Therefore LSTH better char-
acterizes the latent structure of heterogeneous data than does the other methods.
Future work on LSTH includes non-linear mapping into the latent space via ker-
nelization, online supervised learning in the latent space, and extending to cases
with more than two views of a system.
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Abstract. Stochastic gradient methods are effective to solve matrix fac-
torization problems. However, it is well known that the performance of
stochastic gradient method highly depends on the learning rate schedule
used; a good schedule can significantly boost the training process. In this
paper, motivated from past works on convex optimization which assign
a learning rate for each variable, we propose a new schedule for matrix
factorization. The experiments demonstrate that the proposed schedule
leads to faster convergence than existing ones. Our schedule uses the
same parameter on all data sets included in our experiments; that is, the
time spent on learning rate selection can be significantly reduced. By
applying this schedule to a state-of-the-art matrix factorization pack-
age, the resulting implementation outperforms available parallel matrix
factorization packages.

Keywords: Matrix factorization · Stochastic gradient method · Learn-
ing rate schedule

1 Introduction

Given an incomplete matrix R ∈ R
m×n, matrix factorization (MF) finds two

matrices P ∈ R
k×m and Q ∈ R

k×n such that ru,v � pT
uqv,∀u, v ∈ Ω, where Ω

denotes the indices of the existing elements in R, ru,v is the element at the uth
row and the vth column in R, pu ∈ R

k is the uth column of P , qv ∈ R
k is the

vth column of Q, and k is the pre-specified number of latent features. This task
is achieved by solving the following non-convex problem

min
P,Q

∑
(u,v)∈Ω(ru,v − pT

uqv)2 + λ(‖pu‖2 + ‖qv‖2), (1)

where λ is a regularization parameter. Note that the process to solve P and Q
is referred to as the training process. To evaluate the quality of the used solver,
we can treat some known elements as missing in the training process and collect
them as the test set. Once P and Q are found, root-mean-square error (RMSE)
on the test set is often used as an evaluation criterion. It is defined as

√
1

|Ωtest|
∑

(u,v)∈Ωtest
e2u,v, eu,v = ru,v − pT

uqv, (2)
c© Springer International Publishing Switzerland 2015
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where Ωtest represents the indices of the elements belonging to test set.
Matrix factorization is widely used in recommender systems [11], natural lan-

guage processing [16], and computer vision [9]. Stochastic gradient method1(SG)
is an iterative procedure widely used to solve (1), e.g., [2,7,14]. At each step, a
single element ru,v is sampled to obtain the following sub-problem.

(ru,v − pT
uqv)2 + λ(‖pu‖2 + ‖qv‖2). (3)

The gradient of (3) is

gu =
1
2
(−eu,vqv + λpu), hv =

1
2
(−eu,vpu + λqv). (4)

Note that we drop the coefficient 1/2 to simplify our equations. Then, the model
is updated along the negative direction of the sampled gradient,

pu ← pu − ηgu, qv ← qv − ηhv, (5)

where η is the learning rate. In this paper, an update of (5) is referred to as an
iteration, while |Ω| iterations are called an outer iteration to roughly indicate
that all ru,v have been handled once. Algorithm 1 summarizes the SG method
for matrix factorization. In SG, the learning rate can be fixed as a constant
while some schedules dynamically adjust η in the training process for faster
convergence [4]. The paper aims to design an efficient schedule to accelerate the
training process for MF.

Algorithm 1 . Stochastic gradient
methods for matrix factorization.
Require: Z: user-specified outer iterations
1: for z ← 1 to Z do
2: for i ← 1 to |Ω| do
3: sample ru,v from R
4: calculate sub-gradient by (4)
5: update pu and qv by (5)
6: end for
7: end for

The rest sections are organized
as follows. Section 2 investigates the
existing schedules for matrix factor-
ization and a per-coordinate sched-
ule for online convex problems. Note
that a per-coordinate schedule assigns
each variable a distinct learning rate.
We improve upon the per-coordinate
schedule and propose a new schedule
in Section 3. In Section 4, experimen-
tal comparisons among schedules and state-of-the-art packages are exhibited.
Finally, Section 5 summarizes this paper and discusses potential future works.
In summary, our contributions include:

1. We propose a new schedule that outperforms existing schedules.
2. We apply the proposed schedule to an existing package. The resulting imple-

mentation, which will be publicly available, outperforms state-of-the-art par-
allel matrix factorization packages.

1 It is often called stochastic gradient descent method. However, it is actually not a
“descent” method, so we use the term stochastic gradient method in this paper.
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2 Existing Schedules

In Section 2.1, we investigate three schedules that are commonly used in matrix
factorization. The per-coordinate schedule that inspired the proposed method is
introduced in Section 2.2.

2.1 Existing Schedules for Matrix Factorization

Fixed Schedule (FS). The learning rate is fixed throughout the training pro-
cess. That is, η equals to η0, a pre-specified constant. This schedule is used in,
for example, [8].

Monotonically Decreasing Schedule (MDS). This schedule decreases the
learning rate over time. At the zth outer iteration, the learning rate is

ηz =
α

1 + β · z1.5
,

where α and β are pre-specified parameters. In [19], this schedule is used. For
general optimization problems, two related schedules [6,10,12] are

ηz =
α

z
and ηz =

α

z0.5
, (6)

but they are not included in some recent developments for matrix factorization
such as [4,19]. Note that [4] discusses the convergence property for the use of (6),
but finally chooses another schedule, which is introduced in the next paragraph,
for faster convergence.

Bold-Driver Schedule (BDS). Some early studies on neural networks found
that the convergence can be dramatically accelerated if we adjust the learning
rate according to the change of objective function values through iterations [1,
15]. For matrix factorization, [4] adapts this concept and considers the rule,

ηz+1 =

{
αηz if Δz < 0
βηz otherwise,

(7)

where α ∈ (1,∞), β ∈ (0, 1), and η0 ∈ (0,∞) are pre-specified parameters, and
Δz is the difference on the objective function in (1) between the beginning and
the end of the zth outer iteration. Clearly, this schedule enlarges the rate when
the objective value is successfully decreased, but reduces the rate otherwise.

2.2 Per-Coordinate Schedule (PCS)

Some recent developments discuss the possibility to assign the learning rate
coordinate-wisely. For example, ADAGRAD [3] is proposed to coordinate-wisely
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control the learning rate in stochastic gradient methods for convex online opti-
mization. For matrix factorization, if ru,v is sampled, ADAGRAD adjusts two
matrices Gu and Hv using

Gu ← Gu + gug
T
u , Hv ← Hv + hvh

T
v ,

and then updates the current model via

pu ← pu − η0G
−1/2
u gu, qv ← qv − η0H

−1/2
v hv. (8)

ADAGRAD also considers using only the diagonal elements because matrix
inversion in (8) is expensive. That is, Gu and Hv are maintained by

Gu ← Gu +

⎡

⎢
⎣

(gu)21
. . .

(gu)2k

⎤

⎥
⎦ , Hv ← Hv +

⎡

⎢
⎣

(hv)21
. . .

(hv)2k

⎤

⎥
⎦ . (9)

We consider the setting of using diagonal matrices in this work, so the learning
rate is related to the squared sum of past gradient elements.

While ADAGRAD has been shown to be effective for online convex clas-
sification, it has not been investigated for matrix factorization yet. Similar to
ADAGRAD, other per-coordinate learning schedules such as [13,20] have been
proposed. However, we focus on ADAGRAD in this study because the compu-
tational complexity per iteration is the lowest among them.

3 Our Approach

Inspired by PCS, a new schedule, reduced per-coordinate schedule (RPCS), is
proposed in Section 3.1. RPCS can reduce the memory usage and computa-
tional complexity in comparison with PCS. Then, in Section 3.2 we introduce a
technique called twin learners that can further boost the convergence speed of
RPCS. Note that we provide some experimental results in this section to justify
our argument. See Section 4 for the experimental settings such as parameter
selection and the data sets used.

3.1 Reduced Per-Coordinate Schedule (RPCS)

The cost of implementing FS, MDS, or BDS schedules is almost zero. How-
ever, the overheads incurred by PCS can not be overlooked. First, each coordi-
nate of pu and qv has its own learning rate. Maintaining Gu and Hv may need
O((m + n)k) extra space. Second, at each iteration, O(k) additional operations
are needed for calculating and using diagonal elements of Gu and Hv.
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Algorithm 2. One iteration of SG algo-
rithm when RPCS is applied.

1: eu,v ← ru,v − pT
uqv

2: Ḡ ← 0, H̄ ← 0

3: ηu ← η0(Gu)− 1
2 , ηv ← η0(Hv)

− 1
2

4: for d ← 1 to k do
5: (gu)d ← −eu,v(qv)d + λ(pu)d
6: (hv)d ← −eu,v(pu)d + λ(qv)d
7: Ḡ ← Ḡ + (gu)2d, H̄ ← H̄ + (hv)

2
d

8: (pu)d ← (pu)d − ηu(gu)d
9: (qv)d ← (qv)d − ηv(hv)d

10: end for
11: Gu ← Gu + Ḡ/k, Hv ← Hv + H̄/k

These overheads can be dramat-
ically reduced if we apply the same
learning rate for all elements in pu (or
qv). Specifically, at each iteration, Gu

and Hv are reduced from matrices to
scalars. Instead of (9), Gu and Hv are
now updated by

Gu ← Gu +
gT

ugu

k
, Hv ← Hv +

hT
v hv

k
.

(10)
In other words, the learning rate of pu

or qv is the average over its k coor-
dinates. Because each pu or qv has
one learning rate, only (m + n) addi-
tional values must be maintained. This storage requirement is much smaller than
(m + n)k of PCS. Furthermore, the learning rates,

η0(Gu)− 1
2 and η0(Hv)− 1

2 ,

become scalars rather than diagonal matrices. Then the update rule (8) is
reduced to that in (5). However, the cost of each iteration is still higher than
that of the standard stochastic gradient method because of the need to maintain
Gu and Hv by (10). Note that the O(k) cost of (10) is comparable to that of
(5). Further, because gu and hv are used in both (10) and (8), they may need
to be stored. In contrast, a single for loop for (5) does not require the storage of
them. We detailedly discuss the higher cost than (5) by considering two possible
implementations.
1. Store gu and hv.

– A for loop to calculate gu,hv and Gu,Hv. Then gu and hv vectors are
stored.

– A for loop to update pu, qv by (8).
2. Calculate gu and hv twice.

– A for loop to calculate gu,hv and then Gu,Hv.
– A for loop to calculate gu,hv and update pu, qv by (8).

Clearly, the first approach requires extra storage and memory access. For the
second approach, its second loop is the same as (5), but the first loop causes
that each SG iteration is twice expensive. To reduce the cost, we decide to use
Gu and Hv of the previous iteration. Specifically, at each iteration, we can use a
single for loop to calculate gu and hv, update pu and qv using past Gu and Hv,
and calculate gT

ugu and hT
v hv to obtain new Gu and Hv for the next iteration.

Details are presented in Algorithm 2. In particular, we can see that in the for
loop, we can finish the above tasks in an element-wise setting. In compared with
the implementation for (5), Line 7 in Algorithm 2 is the only extra operation.
Thus, the cost of Algorithm 2 is comparable to that of a standard stochastic
gradient iteration.
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In Figure 1, we check the convergence speed of PCS and RPCS by showing the
relationship between RMSE and the number of outer iterations. The convergence
speeds of PCS and RPCS are almost identical. Therefore, using the same rate
for all elements in pu (or qv) does not cause more iterations. However, because
each iteration becomes cheaper, a comparison on the running time in Figure 2
shows that RPCS is faster than PCS.

We explain why using the same learning rate for all elements in pu (or qv)
is reasonable for RPCS. Assume pu’s elements are the same,

(pu)1 = · · · = (pu)k,

and so are (qv)’s elements. Then (4) implies that all elements in each of gv and
hv has the same value. From the calculation of Gu, Hv in (9) and the update
rule (8), elements of the new pu (or qv) are still the same. This result implies
that learning rates of all coordinates are the same throughout all iterations. In
our implementation of PCS, elements of pu and qv are initialized by the same
random number generator. Thus, if each element is treated as a random variable,
their expected values are the same. Consequently, pu’s (or qv’s) initial elements
are identical in statistics and hence our explanation can be applied.

3.2 Twin Learners (TL)

Conceptually, in PCS and RPCS, the decrease of a learning rate should be con-
servative because it never increases. We observe that the learning rate may be
too rapidly decreased at the first few updates. The reason may be that the ran-
dom initialization of P and Q causes comparatively large errors at the beginning.
From (4), the gradient is likely to be large if eu,v is large. The large gradient
further results in a large sum of squared gradients, and a small learning rate
η0(Gu)− 1

2 or η0(Hv)− 1
2 .

To alleviate this problem, we introduce a strategy called twin learners which
deliberately allows some elements to have a larger learning rate. To this end, we
split the elements of pu (or qv) to two groups {1, . . . , ks} and {ks + 1, . . . , k},
where the learning rate is smaller for the first group, while larger for the second.
The two groups respectively maintain their own factors, Gslow

u and Gfast
u , via

Gslow
u ← Gslow

u +
(gu)T

1:ks
(gu)1:ks

ks
, Gfast

u ← Gfast
u +

(gu)T
ks+1:k(gu)ks+1:k

k − ks
.

(11)

We refer to the first group as the “slow learner,” while the second group as the
“fast learner.” To make Gfast

u smaller than Gslow
u , we do not apply the second

rule in (11) to update Gfast
u at the first outer iteration. The purpose is to let the

slow learner “absorb” the sharp decline of the learning rate brought by the large
initial errors. Then the fast learner can maintain a larger learning rate for faster
convergence. We follow the setting in Section 3.1 to use Gslow

u , Hslow
v , Gfast

u , and
H fast

v of the previous iteration. Therefore, at each iteration, we have
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Fig. 1. A comparison between PCS and RPCS: convergence speed
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Fig. 2. A comparison between PCS and RPCS: running time

1. One for loop going through the first ks elements to calculate (gu)1:ks
, (hv)1:ks

,
update (pu)1:ks

, (qv)1:ks
, and obtain the next Gslow

u , Hslow
v .

2. One for loop going through the remaining k − ks elements to calculate
(gu)ks+1:k, (hv)ks+1:k, update (pu)ks+1:k, (qv)ks+1:k, and obtain the next
Gfast

u , H fast
v .

Figure 3 shows the average learning rates of RPCS (TL is not applied), and
slow and fast learners (TL is applied) at each outer iteration. For RPCS, the
average learning rate is reduced by around half after the first outer iteration.
When TL is applied, though the average learning rate of the slow learner drops
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even faster, the average learning rate of the fast learner can be kept high to
ensure fast learning. A comparison between RPCS with and without TL is in
Figure 4. Clearly, TL is very effective. In this paper, we fix ks as 8% of k. We
also tried {2, 4, 8, 16}%, but found that the performance is not sensitive to the
choice of ks.
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Fig. 3. A comparison among the average learning rates of the slow learner (SLOW),
the fast learner (FAST), and RPCS. Note that we use η0 = 0.1 and initial Gu = Hv = 1
following the same settings in our experimental section. Hence the initial learning rate
is 0.1.

4 Experiments

We conduct experiments to exhibit the effectiveness of our proposed schedule.
Implementation details and experimental settings are respectively shown in Sec-
tions 4.1 and 4.2. A comparison among RPCS and existing schedules is in Section
4.3. Then, we compare RPCS with three state-of-the-art packages on both matrix
factorization and non-negative matrix factorization (NMF) in Sections 4.4 and
4.5, respectively.

4.1 Implementation

For the comparison of various schedules, we implement them by modifying
LIBMF,2 which is a parallel SG-based matrix factorization package [21]. We choose
it because of its efficiency and the ease of modification. Note that TL is applied to
RPCS in all experiments. In LIBMF, single-precision floating points are used for
2 http://www.csie.ntu.edu.tw/∼cjlin/libmf

http://www.csie.ntu.edu.tw/~cjlin/libmf
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Fig. 4. A comparison between RPCS with/without TL

data storage, and Streaming SIMD Extensions (SSE) are applied to accelerate
the computation.

The inverse square root operation required in (8) is very expensive if it is
implemented in a naive way by writing 1/sqrt(·) in C++. Fortunately, SSE
provides an instruction mm rsqrt ps(·) to efficiently calculate the approximate
inverse square roots for single-precision floating-point numbers.

4.2 Settings

Data Sets. Six data sets listed in Table 1 are used. We use the same train-
ing/test sets for MovieLens, Netflix, and Yahoo!Music following [21], and the
official training/test sets for Webscope-R1 and Webscope-R2.3 For Hugewiki,4

the original data set is too large for our machine, so we sample first half of the
original data. Within this sub-sampled data set, we randomly sample 1% as the
test set, and using the remaining for training.

Platform and Parameters. We run the experiment on a machine with 12
cores on two Intel Xeon E5-2620 2.0GHz processors and 64 GB memory. We
ensure that no other heavy tasks are running on the same computer.

A higher number of latent features often leads to a lower RMSE, but needs
a longer training time. From our experience, 100 latent features is an accept-
able balance between speed and RMSE, so we use it for all data sets. For the
regularization parameter, we select the one that leads to the best test RMSE
among {2, 1, 0.5, 0.1, 0.05, 0.01} and present it in Table 1. In addition, P and Q

3 http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
4 http://graphlab.org/downloads/datasets/

http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://graphlab.org/downloads/datasets/
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Table 1. Data statistics, parameters used in experiments, and the near-best RMSE’s
(see Section 4.2 for explanation) on all data sets

Data Set m n k λ #training #test
RMSE
MF NMF

MovieLens 71,567 65,133 100 0.05 9,301,274 698,780 0.831 0.835
Netflix 2,649,429 17,770 100 0.05 99,072,112 1,408,395 0.914 0.916
Webscope-R1 1,948,883 1,101,750 100 1 104,215,016 11,364,422 23.36 23.75
Yahoo!Music 1,000,990 624,961 100 1 252,800,275 4,003,960 21.78 22.10
Webscope-R2 1,823,180 136,737 100 0.05 699,640,226 18,231,790 1.031 1.042
Hugewiki 39,706 25,000,000 100 0.05 1,703,429,136 17,202,478 0.502 0.504

are initialized so that every element is randomly chosen between 0 and 0.1. We
normalize the data set by its standard deviation to avoid numerical difficulties.
The regularization parameter and the initial values are scaled by the same factor
as well. A similar normalization procedure has been used in [18].

Table 2. The best parameters for each
schedule used.

Data Set FS MDS BDS PCS
η0 α β η0 η0

MovieLens 0.005 0.05 0.1 0.05 0.1
Netflix 0.005 0.05 0.1 0.05 0.1
Webscope-R1 0.005 0.05 0.1 0.01 0.1
Yahoo!Music 0.01 0.05 0.05 0.01 0.1
Webscope-R2 0.005 0.05 0.1 0.05 0.1
Hugewiki 0.01 0.05 0.01 0.01 0.1

The best parameters of each
schedule are listed in Table 2. They
are the fastest setting to reach
1.005 times the best RMSE obtained
by all methods under all parame-
ters. We consider such a “near-best”
RMSE to avoid selecting a parame-
ter that needs unnecessarily long run-
ning time. Without this mechanism,
our comparison on running time can
become misleading. Note that PCS
and RPCS shares the same η0. For BDS, we follow [4] to fix α = 1.05 and
β = 0.5, and tune only the parameter η0. The reason is that it is hard to tune
three parameters η0, α, and β together.

4.3 Comparison Among Schedules

In Figure 5, we present results of comparing five schedules including FS, MDS,
BDS, PCS, and RPCS. RPCS outperforms other schedules including the PCS
schedule that it is based upon.

4.4 Comparison with State-of-the-art Packages on Matrix
Factorization

We compare the proposed schedule (implemented based on LIBMF, and denoted
as LIBMF++) with the following packages.
– The standard LIBMF that implements the FS strategy.
– An SG-based package NOMAD [19] that has claimed to outperform LIBMF.
– LIBPMF:5 it implements a coordinate descent method CCD++ [17].

5 http://www.cs.utexas.edu/∼rofuyu/libpmf

http://www.cs.utexas.edu/~rofuyu/libpmf
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Fig. 5. A comparison among different schedules

For all packages, we use single-precision storage6 and 12 threads. The com-
parison results are presented in Figure 6. For NOMAD, we use the same α and β
parameters in [19] for Netflix and Yahoo!Music, and use parameters identical
to MDS for MovieLens and Webscope-R1. We do not run NOMAD on Webscope-R2
and Hugewiki because of the memory limitation. Taking the advantage of the
proposed schedule RPCS, LIBMF++ is significantly faster than LIBMF and LIBPMF.
Our experimental results for NOMAD are worse than what [19] reports. In [19],
NOMAD outperforms LIBMF and CCD++, but our experiments show an opposite
result. We think the reason may be that in [19], 30 cores are used and NOMAD
may have comparatively better performance if using more cores.

4.5 Comparison with State-of-the-art Methods for Non-negative
Matrix Factorization (NMF)

Non-negative matrix factorization [9] requires that all elements in P and Q are
non-negative. The optimization problem is

min
P,Q

∑
(u,v)∈Ω(ru,v − pT

uqv)2 + λ(‖pu‖2 + ‖qv‖2)
subject to Pdu ≥ 0, Qdv ≥ 0, ∀d ∈ {1, . . . , k}, u ∈ {1, . . . , m}, v ∈ {1, . . . , n}.

SG can perform NMF by a simple projection [4], and the update rules used are

pu ← max
(
0,pu − ηgu

)
, qv ← max

(
0, qv − ηhv

)
,

6 LIBPMF is implemented using double precision, but we obtained a single-precision
version from its authors.
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Fig. 6. A comparison among packages for MF
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Fig. 7. A comparison among packages for NMF

where the max operator is element-wise. Similarly, the coordinate descent method
in LIBPMF [5] solves NMF by projecting the negative value back to zero at each
update. Therefore, except NOMAD, all packages used in the previous experiment
can be applied to NMF. We compare them in Figure 7.

A comparison between Figure 6 and Figure 7 shows that all methods con-
verge slower for NMF. This result seems to be reasonable because NMF is a
more complicated optimization problem. Interestingly, we see the convergence
degradation is more severe for CCD++ (LIBPMF) than SG (LIBMF and LIBMF++).
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5 Conclusions

In this paper, we propose a new and effective learning-rate schedule for SG meth-
ods applied to matrix factorization. It outperforms existing schedules according
to the rich experiments conducted. By using the proposed method, an extension
of the package LIBMF is shown to be significantly faster than existing packages on
both standard matrix factorization and its non-negative variant. The experiment
codes are publicly available at

http://www.csie.ntu.edu.tw/∼cjlin/libmf/exps

Finally, we plan to extend our schedule to other loss functions such as logistic
loss and squared hinge loss.
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Abstract. Structural health monitoring is a condition-based technol-
ogy to monitor infrastructure using sensing systems. In structural health
monitoring, the data are usually highly redundant and correlated. The
measured variables are not only correlated with each other at a cer-
tain time but also are autocorrelated themselves over time. Matrix-based
two-way analysis, which is usually used in structural health monitoring,
can not capture all these relationships and correlations together. Tensor
analysis allows us to analyse the vibration data in temporal, spatial and
feature modes at the same time. In our approach, we use tensor analysis
and one-class support vector machine for damage detection, localization
and estimation in an unsupervised manner. The method shows promis-
ing results using data from lab-based structures and also data collected
from the Sydney Harbour Bridge, one of iconic structures in Australia.
We can obtain a damage detection accuracy of 0.98 and higher for all the
data. Locations of damage were captured correctly and different levels
of damage severity were well estimated.

Keywords: Tensor analysis · Structural health monitoring · Damage
identification · Unsupervised learning

1 Introduction

Most structural and mechanical system maintenance is time-based, which an
inspection is carried out after a predefined amount of time. Structural health
monitoring (SHM) is a condition-based technology to monitor infrastructure
using sensing systems. The potential for life-safety and economic benefits has
motivated the needs for SHM, facilitating the shift from time-based to condition-
based maintenance [8].
c© Springer International Publishing Switzerland 2015
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Damage identification is a key problem in SHM. It is classified by Rytter into
four different levels of complexity [14]:

– Level 1 (Detection): to detect if damage is present in the structure.
– Level 2 (Localization): to locate the position of the damage.
– Level 3 (Assessment): to estimate the extent of the damage.
– Level 4 (Prediction): to give information about the safety of the structure,

e.g. a remaining life estimation.

Among the four, level 4 requires an understanding of the physical charac-
teristics of the damage progression in the structure. Machine learning methods
can solve levels from 1 to 3, which level 1 can be solved using an unsupervised
learning while levels 2 and 3 usually require a supervised learning approach [18].
Since we usually only have data associated with healthy states of structures, an
unsupervised approach is more practical.

In SHM, the data are usually highly redundant and correlated. There are
many sensors at different locations collecting similar vibration data over time.
For instance, numerous sensors are installed at different locations on a long-span
bridge to measure vibration signals due to traffic loading over long periods of
time. One vehicle event at a specific time has multiple signals measured by dif-
ferent sensors. The measured variables are not only correlated with each other at
a certain time but also autocorrelated themselves over time. Two-way analysis
using matrix, which is usually used in SHM, can not capture all these relation-
ships and correlations together. It is normally based on a matricization of a
multiway array and then matrix-based techniques such as principal component
analysis (PCA) or singular value decomposition (SVD) are used to analyse the
data. However, unfolding the multiway data and analyse them using two-way
methods may result in information loss and misinterpretation, especially when
the data are noisy [1]. Tensor analysis allows us to analyse data in multiple
modes at the same time [9].

This work is part of the efforts which have applied SHM to the Sydney
Harbour Bridge. Unsupervised tensor analysis combined with one-class support
vector machine (SVM) is used for damage identification including detection,
localization and estimation of the damage. The contribution of the paper is as
follows.

– SHM sensing data are formed as a tensor, from which tensor analysis is
used to obtain the latent subspaces from the multiway data. Using tensor
decomposition, data are mapped to a subspace with much lower dimension
so that the learning can be done effectively and efficiently.

– Damage detection, localization and estimation are achieved in an unsuper-
vised approach, which is more practical for a SHM problem.

– Experiments using data obtained from laboratory-based structures and the
Sydney Harbour Bridge show the effectiveness of the approach in damage
identification.

The remainder of the paper is organized as follows. Sections 2 and 3 sum-
marize the related work and background for this work. Section 4 describes our
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damage identification approach using tensor analysis and one-class SVM. Exper-
imental results are in Section 5. We conclude our work in Section 6.

2 Related Work

Unsupervised methods in SHM normally train the model using only healthy
data. Events which significantly deviate from the normal behaviour of the trained
model are considered as damage. Worden et al. used Mahalanobis distance to
find anomalies in the data, which are likely to be damage [17]. Chan et al. [6]
studied auto-associative neural networks for damage detection of the three cable-
supported bridges in Hong Kong. However, due to the limitation of unsupervised
learning techniques as noted in [18], these methods are only able to detect dam-
age. Not much work available to discuss damage localization and estimation in
an unsupervised approach.

Tensor analysis has been successfully applied in many application domains
including chemistry, neuroscience, social network analysis and computer vision
[1,10]. Prada [13] used three-way analysis of SHM data for damage detection
and feature selection. However, this work was purely studied to detect damage,
not to localize and estimate the extent of damage.

Sun et al. [16] proposed different methods on dynamically updating compo-
nent matrices from a Tucker decomposition for online applications like computer
network intrusion detection. Liu et al. [12] utilized the common substructures of
graphs to accelerate the Tucker factorization for dynamic graphs. A difference
with our work is they focus on Tucker analysis while we do that for CP, which
has its simplicity in interpretation of the results.

3 Background

3.1 Tensor Analysis for SHM Data

In SHM, usually many sensors at different locations are used to measure the
vibration signals over time. The data can be considered as a three-way tensor
(feature × location × time) as described in Figure 1. Feature is the informa-
tion extracted from the raw signals in time domain (e.g. features in frequency
domain). Location represents sensors, and time is data snapshots at different
timestamps. Each cell of the tensor is a feature value extracted from a particu-
lar sensor at a certain time. Each slice along the time axis shown in Figure 1 is
a frontal slice representing all feature signals across all locations at a particular
time. For simplicity, in this paper we represent a tensor as a three-way array,
which is often a case in SHM. However, it is also possible to generalize all the
theories for a n-way array.

Two typical approaches for tensor decomposition areCPdecomposition (CAN-
DECOMP/ PARAFAC decomposition) and Tucker decomposition [9]. After a
decomposition from a three-way tensor, three component matrices can be obtained
representing information in each mode. In the case of SHM data as in Figure 1,
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they are associated with feature (denoted matrix A), location (matrix B) and time
modes (matrix C), respectively. In CP method, it is able to interpret the artifact in
eachmode separatelyusing its correspondingcomponentmatrix. InTuckermethod,
any component can interact with other component in other mode quantified by the
core tensor [2]. It makes the interpretation of a Tucker model more difficult than
CP. Therefore, in this work we only use CP method for damage identification.

CP Decomposition. The CP decomposition factorizes a tensor as a sum of a
finite number of rank-one tensors. In case of a three-way tensor X ∈ R

I×J×K ,
it is expressed as

X =
R∑

r=1

λrA:r ◦ B:r ◦ C:r + E , (1)

where R is the latent factor, A:r, B:r and C:r are r-th columns of component
matrices A ∈ R

I×R, B ∈ R
J×R and C ∈ R

K×R, and λ is the weight vector so that
the columns of A, B, C are normalized to length one. The symbol ‘◦’ represents
a vector outer product. E is a three-way tensor containing the residuals. It can
also be written in term of the k-th frontal slice of X :

Xk = ADkBT + Ek, (2)

where the diagonal matrix Dk = diag(λCk:) (Ck: is the k-th row of matrix C).
CP decomposition is typically solved using alternating least square (ALS)

technique. The technique iteratively solves each component matrix using a least
square method by fixing all the other components and repeats the procedure
until it converges [9]. The results by CP are unique provided that we permute
the rank-one components [10].

3.2 One-class Support Vector Machine

In this work, we use one-class SVM [15] as an anomaly detection method. SVM is
well-known for its strong regularization property which is the ability to generalize
the model to new data. One-class SVM finds a small region containing most
of data points and the anomalies elsewhere. It is done by mapping data into
a feature space using kernel and then separating them from the origin with
maximum margin. This can be shown as an optimization problem:

min
w,ξ,ρ

1
2

‖ w ‖2 +
1
vn

n∑

i=1

ξi − ρ (3)
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s.t. w · xi ≥ ρ − ξi, ξi ≥ 0, i = 1, . . . , n,

where w and ρ are parameters of the model and can be learned from a training
process. ξi is a slack variable for controlling how much training error is allowed.
{xi}n

i=1 is a training event, ‘·’ is the dot product, and v controls the rate of
anomalies in the data.

This optimization problem can be solved by Lagrangian multiplier and
quadratic programming. Once a model is obtained from training data, it can
generate a decision value for every new instance. A new instance with a negative
decision value is an anomaly, indicating a damaged event [15].

4 Tensor Analysis for Damage Identification

This section describes an approach to identify damage using tensor analysis.
Excitations to structures are measured over time by accelerometers or other
kinds of sensors. Next, features are extracted from the raw data of all accelerom-
eters, which form a three-way tensor data. Then the tensor is decomposed into
matrices of different modes as described in previous section. Analysis of these
factor matrices will help to identify the damage of the structure.

4.1 Damage Detection

Given a three-way tensor X (feature × location × time) which represents data
in a healthy condition of a structure, we want to decide if a new event Xn (a
frontal slice of size feature × location) is an anomaly with respect to all other
healthy events in the training data. Therefore, subspace corresponding to the
time mode after decomposition will be used to detect damage.

Building a Benchmark Model. X is decomposed into three component
matrices A, B and C using CP decomposition. Each row of C represents an
event in time mode. Using one-class SVM, we build a model using healthy train-
ing events which are represented by rows of the component matrix C.

Damage Detection. Due to an arrival of a new event (a new frontal slide in
time mode), an additional row will be added to the component matrix C. As in
Equation 2, Xk = ADkBT . When a new frontal slice Xn comes, we have:

Xn ≈ ADnBT ,

where Dn = diag(λCn:) which is a diagonal matrix based on the new row Cn:

of component matrix C caused by the new slice Xn. The new row Cn: can be
obtained via Dn [13]:

Dn = arg min ||Xn − ADnBT ||, (4)

which can be solved using a least square method.
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Algorithm 1. Damage detection
Input: Component matrices A, B, C, a trained SVM model, a new frontal slice Xn

Output: +1/ − 1 if Xn corresponds to a healthy/damaged event, respectively

Compute the new row x = Cn: of C so that Dn = arg min ||Xn − ADnBT || and
Dn = diag(λCn:).
Feed this event to the trained SVM model and estimate its decision value s.
If s < 0 return −1, otherwise return +1.

After having Cn:, this new row will be checked if it agrees with the benchmark
model built in the training, answering the condition of the structure. In case of
one-class SVM, a negative decision value indicates that the new event is likely a
damaged event. The damage detection method is described in Algorithm 1.

4.2 Damage Localization and Estimation

In order to locate the position of the damage, components of the decomposed
matrix in location mode are analysed to extract meaningful artifacts from dif-
ferent states of the structure. By analysing and comparing these components, it
is able to find anomalies, which correspond to damaged locations.

To estimate the extent of the damage, we analyse decision values returned
from the one-class SVM model. The rationality is that a structure with a more
severe damage (e.g. a longer crack) will behave more differently from a normal
behaviour. Different ranges of the decision values may present different severity
levels of damage. These analyses will be shown in the experimental results.

5 Experimental Results

5.1 Case Studies

We conducted experiments on two case studies, representing two typical types
of civil structures. One case study is an laboratory-based building structure
obtained from Los Alamos National Laboratory (LANL) [11], and the other is
the Sydney Harbour Bridge. For the Sydney Harbour Bridge data, it includes
both laboratory testing and field trial.

Building Data. A dataset was obtained from LANL [11]. The data are from a
three-story building structure constructed of Unistrut columns and aluminium
floor plates. Plates and columns were connected by bolts and brackets. Dimen-
sions of the structure and floor layout are presented in Figure 2. A shaker was
used to generate excitation. As it appears in Figure 2, two accelerometers were
attached to each joint, resulting in eight accelerometers within each floor.

There were 270 vibration events generated. Each event contained 8192 sam-
ples, which were sampled at 1600 Hz. Among those events, 150 healthy events
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Fig. 2. Three-story building and floor layout [11]

were created using different shaker input levels and bandwidths to represent dif-
ferent environmental and operational conditions. In the remaining 120 events,
there were 30 events with damage in location 1A (i.e. corner A at level 1), 60
events with damage in location 3C, and 30 events with damage in both locations
(i.e. 1A and 3C). The damage was introduced by loosening the bolts and then
hand tightening them, or by removing bolts and brackets at the joints, allowing
the plate to move freely relative to the column.

The Sydney Harbour Bridge. The Sydney Harbour Bridge is one of major
bridges in Australia, which was opened in 1932. There are 800 jack arches on
the underside of the deck of the bus lane (lane seven) needed to be monitored,
as shown in Figure 3a. Vibration data caused by passing vehicles were recorded
by three-axis accelerometers installed under the deck of lane seven. Each joint
was instrumented with a sensor node, which connected to three accelerometers
mounted to the joint in left, middle and right positions as shown in Figure 3c.

There are two datasets used: a bridge specimen built from laboratory and
real data collected from the bridge.

Specimen Data: A steel reinforced concrete beam was manufactured with a
similar geometry to those on the Sydney Harbour Bridge (Figure 3b). The data
were collected from two sets of sensor nodes placed on the base of the joint, one
nodes is positioned at the tip while the other was mounted 750 mm away from
the tip. The locations of three accelerometers from each node are similar to those
on the joints of the bridge. The excitation was made using an impact hammer.
Once the node was triggered by a hammer, it records data for 3 seconds at a
sampling rate of 500 Hz, resulting in 1500 samples for each event.
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(a) Lane 7, the first lane from the
left

(b) Laboratory specimen

(c) Field trial with cracking

Fig. 3. The Sydney Harbour Bridge

After testing the benchmark in a healthy condition, a crack was gradually
introduced into the specimen with four level of crack dimensions: (75 × 50)mm,
(150 × 50)mm, (225 × 50)mm and (270 × 50)mm. The same test was conducted
again in each damage severity. About 200 events were collected in healthy con-
dition and in each level of damage severity.

Bridge Data: For this case study, only two instrumented joints on the bridge
were considered (named joints 1 and 2 as in Figure 3c). A known crack existed
at joint 2 at the time of measurement while joint 1 was in a good condition.

An event is defined as a time period during which a motor vehicle is driving
across the joint. An event is normally triggered after the acceleration value is
greater than a pre-set threshold. After the triggering occurs, the node records
for a period of 1.5 seconds at a sampling rate of 400 Hz. Each event contains 100
samples before the event started and 500 samples are collected during and after
the event. Denote Ai an instantaneous acceleration at i-th sample, Ar the rest
vector which is the average of three readings (x, y, z) from the first 100 samples.
One metric is extracted from three-axis readings: V = |Ai| − |Ar|, which is
independent on the accelerometer orientations.

5.2 Feature Extraction

For all datasets, the features in the frequency domain were created as follows.
For every vibration event, the data from each accelerometer were standardized
to have zero mean and one standard deviation. Then the data were converted to
the frequency domain using Fourier transform. Differences between vibrations of
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adjacent accelerometers in each location in the frequency domain were used as
features. The rationality is that if a joint is healthy the accelerometers attached
to it would move together. If the joint is damaged they would move differently.
These features will be reflected in the differences of the signals.

Building Data. For every event, the difference between signals collected by
two accelerometers at a joint in the frequency domain was taken (in total there
are 12 joints in three stories). Then only frequency up to 150Hz was selected as
features. So the data is a tensor of (768 features × 12 locations × 270 events).

Specimen Data. For each sensor node, differences between V feature men-
tioned above of accelerometers 1 and 2, 1 and 3, and 2 and 3 in the frequency
domain were used as features. Only frequency up to the first 150Hz was selected.
Finally we had a tensor of (450 × 6 × 960).

Bridge Data. Since only accelerometers in the same joints of the bridge are
synchronized in time, only data from one joint was put in the tensor. It is all
right since the vibration of each joint is quite independent to each other in this
case. Since we have healthy data in joint 1 and damaged data in joint 2, to
demonstrate the effectiveness of the method we combined the data from joints
1 and 2. Events from three accelerometers from joint 2 were used as damaged
events while data from three accelerometers in joint 1 were used as the healthy
events.

Then differences between V feature of accelerometers 1 and 2, 1 and 3, and
2 and 3 in the frequency domain were used as features. Only frequency up to
the first 150Hz was selected. Finally we had a tensor of (150 × 3 × 1341).

5.3 Results

For building dataset, 100 healthy events were randomly selected as training data.
The other were used for testing. There were 150 healthy events randomly selected
as training data for specimen dataset and 500 random healthy events were used
for training in bridge dataset. As described in Section 4.1, a benchmark model
was built on the training tensor data and each new event (a tensor frontal slide)
was test against the model to detect damage.

To increase the reliability of the results, multiple testing was used. In stead of
computing the decision values for each event (single testing), we took a median
value of a block of 10 sequential events in a chronological order. The reported
accuracy was a block accuracy. The rationality for this is that there may be
noisy events overtime but the health status of sequential events in a short time
should be very similar. All the results shown were averaged over ten trials of
experiment.

The tensor toolbox for Matlab [4] was used for tensor operations and LIBSVM
for Matlab was used for one-class SVM [7]. In order to decide the number of
rank-one tensors R in the CP method, core consistency diagnostic technique
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(b) Specimen data
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(c) Bridge data

Fig. 4. Damage detection accuracy using different values of R

(CORCONDIA) described in [5] was applied, in which a Tucker core is used for
assessing the appropriateness of a CP model. This technique was implemented
using the N-way Toolbox for Matlab [3].

Damage Detection. In this section, the damage detection using method
described in Section 4.1 was investigated. For CP, we tried different values of R
from one to five and used CORCONDIA method to decide the appropriate one.
For one-class SVM model, the rate of anomalies ν = 5% was selected.

We use F1 = 2 precision∗recall
precision+recall as a damage detection accuracy. Figure 4 shows

the F1 scores for all new test instances in three datasets using both single testing
and multiple testing. The best results almost agree with the parameter selection
method (CORCONDIA). CORCONDIA selected R = 2 for the specimen and
bridge data and R = 1 for the building data. Since R = 2 also gave similar
results for the building data, we selected R = 2 for all datasets and it will be
used for damage localization and estimation. Then we have F1 scores of 0.99, 0.98
and 1 (using multiple testing) for the building, specimen and bridge datasets,
respectively. The results also show that multiple testing can significantly improve
the detection results, especially for the specimen data.

Damage Localization. Figure 5 shows two components of the location mode
(R = 2) with color values for all sensor locations in the building data. The first
component corresponded to a healthy state of the building when there was no
damage while the second component presented a damaged state. In the damaged
state, the colors with high values correctly associated with locations of known
damage (1A and 3C). Therefore, this analysis is promising to localize damage
in structures. For the bridge datasets, since all accelerometers were in the same
joint, there was no need to localize the damage.

Damage Estimation. The decision values returned from the one-class SVM
model were used to characterize the level of damage. The result in Figure 6
presents the decision values of every block of test events in the building and
specimen data using one-class SVM (we did not do that for the bridge data
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Fig. 5. Damage localization for building dataset
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(b) Specimen with four levels of damage

Fig. 6. Damage characterization using decision values obtained by CP and one-class
SVM

since there are no ground truth for damage severity in this case). The dotted
lines show the boundary between healthy and damaged events. Different ranges
of the decision values matched with different severity levels of damage described
in the datasets.

In Figure 6a, the first 50 events (i.e. 5 blocks) were decision values from
healthy data. The next 30 events were damaged data when the damage occurred
in both locations 1A and 3C (among them the first and the next 15 events had
different levels of severity). The following 60 events corresponded to damage in
location 3C with four levels of damage severity. And the last 30 events presented
the decision values for damaged events in location 1A in two levels of severity.
Moreover, for the same kind of damage, the decision values were lower when
damage happened in both locations compared with those occurred in one loca-
tion only. Figure 6b shows that the decision values successfully separated healthy
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events and four different levels of damaged events. In addition, events with more
severe damage tended to have lower decision values. Therefore, it suggests that
we can use the decision values obtained by CP and one-class SVM as structural
health scores to characterize the damage severity in an unsupervised manner.

Comparison with a Traditional Approach. In this section, we will compare
between the tensor approach with the approach without using tensor. For all
datasets, individual one-class SVM model was built for each sensor location using
the same train and test data with the same feature as in previous experiments.
An average detection accuracy of all the location models was used to compared
against the tensor approach. Figure 7 shows the F1 score (multiple testing) of
the two approaches for all three datasets. It shows that the tensor approach had
better detection accuracies than the one without using tensor, especially for the
specimen dataset. Moreover, it is impossible for the damage localization and
estimation using the results obtained from each location model.

Building Specimen Bridge
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Fig. 7. Comparison between tensor and location models

6 Conclusion

This work presents a damage identification approach using tensor analysis for
SHM applications where sensing data were converted to a three-way tensor form.
A structural benchmark model was built using one-class SVM on a component
matrix in time mode learned from the tensor decomposition. Then new events
were updated using a simple least square approach and were tested against the
benchmark model to detect damage. Moreover, in our approach damage detec-
tion, localization and assessment were achieved in an unsupervised manner. The
approach was shown to work very well using data from lab-based structures and
real data from the Sydney Harbour Bridge. We can obtain a damage detection
F1 scores of 0.98 and higher for all the datasets. Damage was localized correctly
and different levels of damage severity were well estimated.
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Abstract. The recent advancements in online social networks and mobile
devices have provided valuable data sources to track users’ smartphone
adoption, i.e., the usage of smartphones over time. An incisive understand-
ing of users’ smartphone adoption can benefit many useful applications,
ranging from user behavior understanding to targeted marketing. This
paper studies smartphone adoption prediction in social networks by lever-
aging the wisdom of an online world. A critical challenge along this line is
to identify the key factors that underline people’s adoption behaviors and
distinguish the relative contribution of each factor. Specifically, we model
the final smartphone status of each user as a result of three influencing
factors: the social influence factor, the homophily factor, and the personal
factor. We further develop a supervised model that takes all three factors
for smartphone adoption and at the same time learns the relative contri-
bution of each factor from the data. Experimental results on a large real
world dataset demonstrate the effectiveness of our proposed model.

Keywords: Smartphone adoption · Social network · Social influence ·
Homophily

1 Introduction

Smartphones (e.g., iPhone and Android based mobile phones) are now ubiquitous
in our daily lives. There were 1.82 billion smartphones being used worldwide at the
end of 2013. Furthermore, according to a forecast by International Data Corpora-
tion, the smartphone market is expected to increase to 70.5% in 2017 in terms of all
smart devices, including desktop PCs, portable PCs, tablets and smartphones [1].

With the expanding opportunities in the smartphone market, an incisive
understanding of smartphone adoption among users has significant applications
ranging from user behavior understanding in scientific disciplines [4,19] to tar-
geted advertising for marketing strategies [7,10]. Thus, acceptance or adoption
of smartphones has long been studied in the past from a variety of angles, such as
cultural factors [23], technology needs [22] and perceived usefulness [18]. Nearly
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all these studies were based on traditional survey based approaches, e.g., by sur-
veying hundreds of people. With both the time and money costs of collecting
data, few researchers have attempted to investigate the smartphone adoption
within a large-scale social network.

Luckily, with the recent advancements of online social networks and smart-
phones, an increasing number of people are sharing their daily lives with friends
on these platforms through smartphones. Due to the mobile nature of the login
devices, these mobilized social networks record the smartphone footprints of
users. To illustrate this, we provide the following example. Weibo (weibo.com)
is the leading microblog service in China. When a user posts a message in
Weibo, the platform forwards an enriched message to all of the user’s follow-
ers as shown in Fig. 1, which includes the post message, the timestamp and the
sending device (iPhone). This device information creates valuable data sources
to track smartphone adoption within a large-scale social network.

Fig. 1. A sample post from Weibo

As a matter of fact, even with the mobilized social network data, accurately
understanding a user’s smartphone adoption is still technically challenging from
at least two aspects. On the one hand, there are various factors that underline
person’s decision-making process. How can we leverage them in a unified frame-
work? Researchers have long identified three key factors for this process: the
social influence factor that argues users are influenced by their social neighbors
to make decisions [11,25]; the homophily factor refers to linked users perform-
ing similar decisions [15]; and the personal factor states users have their own
personalized preferences [29,30]. On the other hand, though all these key fac-
tors help predict users’ adoption behaviors, they lead to significantly different
results [2,14]. Accurately understanding and distinguishing the relative contri-
bution of each factor is critically important to guiding the firm’s marketing
strategy. E.g., if the social influence is responsible for users’ decisions, then it is
effective for the firm to incentivize several seed customers to trigger a cascade
of information diffusion [11]. If the homophily factor dominates, then the firm
can identify new potential customers based on each user’s neighbors’ decisions.
If the final adoption behavior is driven by the personal factor, a better idea is to
select the targeted customers based on their historical preferences for marketing.
Nevertheless, few previous methods have incorporated all these principal factors
together for product adoption prediction. Therefore, how to leverage all these



474 L. Wu et al.

key factors and distinguish them at the same time for smartphone adoption
prediction remains pretty much open.

In order to solve both the data barrier and technical challenges mentioned
above, in this paper, we propose a supervised machine learning model for smart-
phone adoption prediction. As a preliminary, we leverage a mobilized online
social network to discover the smartphone usage patterns of a large group of net-
worked users. Then, by borrowing the traditional user segmentation concept, we
identify two groups of users based on their current smartphone status, i.e., poten-
tial first-time smartphone adopters and potential brand changers, respectively.
After that, we develop a Supervised H omophily-Influence-Personality (SHIP)
model for smartphone adoption prediction, in which the key factors that under-
line people’s adoption are explicitly integrated. In fact, the proposed model can
easily be extended to other product adoption tasks. Finally, the experimental
results on 200K active mobile users show the effectiveness of our proposed model.
To the best of our knowledge, this is the first comprehensive attempt to predict
smartphone adoption from a social perspective with large-scale real world data.

2 Data Description and Problem Definition

Given a snapshot of a social network as a directed graph G = < U, F,T >, where
the node set U = {1, 2, ..., N} is the users and F represents the relationships
of users. T = [tji]N∗N is an edge strength matrix, where tji represents the tie
strength from user j to user i. Specifically, if user i follows user j, then (i, j) ∈ F

and tji >0, otherwise tji =0. Since we mainly focus on the smartphone adoption
of users, for ease of later explanation, a mobile post is defined as a post that
is sent from a smartphone, rather than a PC client or a tablet. If a user sends
more than τ mobile posts in a time period, we regard him/her as a mobile user.

Data Collection and Description. During the data crawling process, we
collected the post streams of nearly 235 thousand users from January 2013 to
July 2013 from Weibo. For data cleaning, we only selected mobile users (i.e.,
τ = 10 empirically) and their associated relations. After pruning, we still had
nearly 200 thousand users, 15 million edges, and 45 million post streams. Now
we introduce how to infer each user’s smartphone status from the continuous
post streams. Similar to many smartphone marketing research [1], we treat each
quarter as a time slice and further split each user’s device streams into two time
slices, i.e., the first quarter (2013Q1) and the second quarter (2013Q2) of 2013.
Then we take the most popular device brand as the smartphone status of the
user at that time. Note that a user may use several smartphones during a time
slot, however, it is reasonable to discard the infrequent uses of other smartphone
brands since users prefer those phones that they use the most frequently. Table 1
shows an example of the inferred smartphone status of two typical users.

Problem Definition. Generally, our goal is to predict the smartphone adoption
status of users in time t based on the available data in the previous time t−1. In
marketing research, a common practice is to first divide a broad target market
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Table 1. Examples of two typical users’ post device streams in Weibo

Alice Bob
Time slice Timestamp Sent device Device status Time slice Timestamp Sent device Device status

2013Q1

20130211 Web Weibo

=⇒ Desktop 2013Q1

20130211 Nokia 5230

=⇒ Nokia
20130212 Web Weibo 20130220 Nokia 5230
... ... ... ...
20130331 Web Weibo 20130331 Nokia 5230

2013Q2

... ...

=⇒ Samsung 2013Q2

... ...

=⇒ iPhone
20130421 Web Weibo 20130419 Nokia 5230
20130425 Samsung Galaxy S2 20130422 iPhone
20130428 Samsung Galaxy S2 20130423 iPhone
... ... ...

into subsets of consumers and then design strategies to target each group of
consumers. Following this approach, we divided users into two groups based
on their smartphone status in t−1: potential first-time smartphone buyers and
potential brand changers. The potential brand changers are those who have
already used a smartphone in t−1 and their next action is deciding whether
to change brands in t. E.g., as illustrated in Table 1, Bob is a potential brand
changer as he had the Nokia smartphone in 2013Q1 (i.e., time t−1). We regard
those who do not use any smartphone in t−1 as potential first-time smartphone
buyers. This assumption may not be accurate when applied to each person, but
the overall trend is well supported by the high penetration of mobilized social
networks in our everyday life. Alice is a potential first-time buyer as shown in
Table 1. After segmenting users into these two groups, we set the target for each
group as follows:
Task 1: First-time Buying Prediction. If a user is a potential first-time
buyer in t−1, we predict whether she/he will buy a particular brand b in time t
or not.
Task 2: Brand Change Prediction. If a user is a potential brand changer in
time t−1, we predict whether this user will change to another brand in the next
time period t.

We next assigned a label to each user based on the group information and
the smartphone adoption status in t. E.g., Alice is a member of Task 1 and
buys a Samsung in t, so she is a positively labeled user if we focus on predicting
whether she will buy a Samsung. Bob is a positively labeled user in Task 2 as
he changed from Samsung to iPhone in t. In summary, after user segmentation
and label assignment for each task, these two tasks can be summarized in a
unified prediction problem: Given a snapshot of a directed social network G =

< U, F,T > with a positively labeled user set UP and a negatively labeled user
set UN in time t, our goal is to predict the labels of all unknown users at time t
as accurate as possible. In the next section, we focus on the model.

3 The Proposed SHIP Model

Researchers have long converged on the idea that there are three principal fac-
tors that drive people’s adoption decisions: the social influence factor and the
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homophily factor that lead to correlated user behaviors among linked users and
the personal factor that states users’ unique preferences [15,25,29]. Obviously,
each of these three factors can exploit a specific part of users’ decisions. In
addition, as illustrated before, different factors result in significantly different
marketing strategies [2,14]. Thus, simply aggregating all these factors for pre-
diction will not be the best choice. A better idea is to distinguish the relative
effect of each factor in the decision making process. In the following, we propose
a Supervised H omophily-Influence-Personlity (SHIP) model that can automat-
ically learn the contribution of each factor for users’ smartphone adoption. Next
we describe how to construct the SHIP model step by step.

Overview of Smartphone Adoption Function. For each user i, we explicitly
model the smartphone adoption status pi as a combination of the three key
factors:

pi = (1 − α)
∑

j∈Fi

tji[(1 − β)pj + βuji] + αbi, (1)

where pi is the predicted smartphone adoption probability that ranges from 0
to 1. Fi are the users that i follows in this network. tji represents the strength
between i and j. If i follows j, then tji = 1

|Fi| , otherwise tji =0. We have two parts
in this equation, the first part captures the social network effect (including social
influence and homophily) and the second part (bi) mimics the personal bias.
Specifically, for user i and any user j that i links (j ∈ Fi), i’s adoption probability
pi is balanced by the influence of j’s adoption status pj (social influence) and
the homophily effect uji, where β controls the relative contribution of these
two factors in social networks. α (0 ≤ α ≤ 1) is a parameter that controls the
relative effect of the social network and personal bias. The larger the α, the more
personal preference plays a role in the task.

Since for each pair of linked users, we have a vector eji that captures the var-
ious features between them, we model the homophily, i.e., the similarity between
each pair of linked users as:

uji = s(w · (eji)) = s(
∑

k

wk × ejik), (2)

where ejik is the k-th element of eji. Similarly, for each user i, we have xi, which
captures her various characteristics. Then the personal bias can be defined as:

bi = s(v · xi) = s(
∑

k

vk × xik). (3)

In the above two equations, s(l) can be set as any monotonically increasing
function. As ∀i ∈ U, 0 ≤ pi ≤ 1, for fair comparison of the different effects, these
values are better ranges in [0, 1]. Thus, a natural idea is to set s(l) as a logistic
function s(x) = 1

1+e(−x) .
Note that the proposed smartphone adoption probability function (Eq.(1))

has close relationship with the recent progress in supervised random walk based
models. These models incorporated the node and edge features to supervise
the random walk process for node classification tasks [3,28]. E.g., the works of
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[3] utilized the social influence factor and [28] further extended this work by
incorporating the personal bias. Nevertheless, the homophily factor is neglected
by all these previous works in the modeling process, while we explicitly depict the
homophily factor between each pair of linked users. In other words, the previous
works for node classification can be seen as special cases of our models, e.g.,
our work is reduced to the models proposed by Zeng et al. when excluding the
homophily factor [28].

Optimization Function Construction. Based on Eq. (1) , in order to get
the final label preference pi for each user i, we have to learn four parameters
θ = [α, β,w,v] in the training process. As we have a set of users’ labels in the
training data at time t, an intuitive idea is to train a supervised model that
automatically learns the parameters θ such that all labeled positive users in the
training data have larger probabilities than the labeled negative ones. Next, we
model the objective learning function as:

min
θ

L =
∑

i∈UP

∑

j∈UN

h(pj − pi) + λ[w′w + v′v], (4)

where the first term models the goodness for fitting the data and the second term
controls model complexity. Since j is a negatively labeled user and i a positively
one, the larger the pi the better and the smaller the pj the better. Based on the
above, we empirically set h(x) as:

h(x) =

{
0 if x < 0

1
1+e−cx if x ≥ 0.

(5)

Thus if pj−pi >0, the loss value is about 1. Otherwise, it approximates to zero.

Model Learning. We apply the power iteration method to solve the opti-
mization problem in Eq.(4) [17]. Specifically, we write the derivatives of each
parameter of θ as:

∂L

∂α
=

∑

i,j

∂h(δij)

∂δij
(
∂pj

∂α
− ∂pi

∂α
),

∂L

∂w
=

∑

i,j

∂h(δij)

∂δij
(
∂pj

∂w
− ∂pi

∂w
) + 2λw,

∂L

∂β
=

∑

i,j

∂h(δij)

∂δij
(
∂pj

∂β
− ∂pi

∂β
),

∂L

∂v
=

∑

i,j

∂h(δij)

∂δij
(
∂pj

∂v
− ∂pi

∂v
) + 2λv. (6)

According to Eq. (1) of the predicted adoption rate, we have:

∂pi

∂α
=−

∑

j∈Fi

tji[(1 − β)pj + βuji] + (1 − α)
∑

j∈Fi

tji(1 − β)
∂pj

∂α
+ bi,

∂pi

∂β
=(1 − α)[

∑

j∈Fi

tji[−pj + (1 − β)
∂pj

∂β
+ uji]],

∂pi

∂w
=(1 − α)[

∑

j∈Fi

tji[(1 − β)
∂pj

∂w
+ β

∂uji

∂w
]],

∂pi

∂v
=(1 − α)

∑

j∈Fi

tji[(1 − β)
∂pj

∂v
] + α

∂ui

∂v
. (7)

Now it is easy to determine the remaining derivative of ∂uji

∂w and ∂bi
∂v :
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Algorithm 1. Parameter Learning Process for the Proposed SHIP Model

Initialize α0 = β0 = 0.5, w, v and p0 with small positive values;
for k = 1; k ≤ K; k + + do

//Part 1:Given θ(k−1) =[α(k−1), β(k−1),w(k−1),v(k−1)], calculate pk;

while not converged for pk do
for each user i ∈ U do

Calculate pk
i based on Eq.(1);

//Part 2: Given pk, calculate the following equations;
while not converged do

for each user i ∈U do
compute the equations in (7);

//Part 3: Given pk, calculate θk based on Eq.(6) ;

αk = α(k−1) − step size ∗ ∂kL
∂α

, wk = w(k−1) − step size ∗ ∂kL
∂w

;

βk = β(k−1) − step size ∗ ∂kL
∂β

, vk = v(k−1) − step size ∗ ∂kL
∂v

;

Return pK , θK = [αK , βK ,wK ,vK ] ;

∂uji

∂w
=

∂s(w · eji)

∂eji

eji,
∂bi

∂v
=

∂s(w · xi)

∂(w · xi)
xi (8)

Convergence Analysis. Algorithm 1 shows the entire optimization process of
our proposed model. There are two power iterations as shown in Part 1 (Eq. (1))
and Part 2 (Eq. (7)) of the algorithm. For all of these equations, they could
be rewritten as a unified form as zi = (1 − d)

∑
k∈Fi

tkizk + dy. This unified
representation defines a linear system problem and its closed form is Z = α(I −
(1 − α)T)−1Y. This closed form satisfies the convergence condition of Gauss-
Seidel iterative method [16]. In conclusion, all of the iterations can be solved in
linear time with a convergence guarantee.

4 Experiments

4.1 Experimental Settings

We conduct experiments on the collected Weibo data as described in Section 2.
We focus on predicting smartphone adoption in 2013Q2 (time t) based on the
smartphone status in 2013Q1 (time t−1). Given a snapshot of the social network,
for each task, we randomly split users into five equal parts and each time we
select 80% of the users as labeled users for training and the remaining 20%
users are used for prediction. We conduct five-fold cross validation and report
the average results. In fact, we only choose the leading four brands (i.e., iPhone,
Samsung, Nokia and Xiaomi) in Task 1 for prediction as the remaining brands
take less than 1% market share. The detailed data statistics can be found in
Table 2. As shown in this table, the data is very unbalanced, for most tasks, the
number of negative records is much larger than that of the positive records.
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Table 2. Dataset statistics of the two tasks. #P: the number of labeled positive users,
#N: the number of labeled negative users (#P+#N=#users). P ratio = #P

#P+#N
.

Task Users Edges Brand #P #N P ratio

Task 1 12,306 125,876

iPhone 5,152 7,154 41.9%
Samsung 854 11,452 6.94%
Xiaomi 458 11,848 3.72%
Nokia 313 11,993 2.54%

Task 2 144,567 15,829,075 / 22,192 122,374 15.35%

For the evaluation, we first use the AUC (i.e., Area Under the ROC Curve)
measure, which is especially useful for evaluating the performance of an unbal-
anced dataset [27]. A random guess would result in an AUC value around 0.5 and
the larger the value the better the performance. In addition, as we focus on the
most likely positive users of the test data, which can be used for marketing. We
measure the relative gain of the precision as Rel gain@N = Pre@N

P ratio
−1= #hits

N∗P ratio
-1.

This measure evaluates how the proposed models improve the precision com-
pared to random guess. A random guess will lead to a Rel gain@N result of 0.0
and the larger the value the better the performance.

Table 3. Summarization of different kinds of features

Type Feature Description Type Feature Description

Social

# of followers that have positive labels in t − 1

Profile

gender, location
is this user a verified account

# of followers that have negative labels in t − 1 #followers, #followees, #friends
# of friends that have positive labels in t − 1 #posts that the user sent in t − 1
# of friends that have negative labels in t − 1 #posts that the user sent in t − 1

Edge

whether they are friends

Brand
the brand the user used in
t − 1 (only available in Task
2)

# of co-followers that have positive labels in t − 1
# of co-friends that have positive labels in t − 1
# of co-followers that have negative labels in t − 1
# of co-friends that have negative labels in t − 1

Baselines. To the best of our knowledge, few researchers have tried to explore
the smartphone adoption problem with real world collected data. However, we
can borrow several classic models that are widely used for the binary class pre-
diction task in a social network: the first category builds classifiers using the
extracted graph information as features, and the second category directly prop-
agates the existing labels via random walks in this graph [5]. In the first kind, we
choose the logistic regression (LR) model. Specifically, we implemented the LRS

baseline that purely relies on Social network features and the LRSP baseline
which uses both Social network features and the user Profiles. For the second
kind, we choose label propagation (LP), which performs node class prediction
based on partially labeled data in a graph [31]. Specifically, LP can be seen
as an unsupervised version of our model that only utilizes the graph structure
information, i.e., the social influence factor in our model.
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Fig. 2. Comparison of the AUC results of different models for Task 1
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Fig. 3. Comparison of the Rel gain@100 results of different models for Task 1

Also, to demonstrate the fitness of the three proposed factors in our model,
we compare the proposed SHIP with three related models: SHI (Supervised
Homophily-Influence), SHP (Supervised Homophily-Personlity) and SIP (Super-
vised Influence-Personality). Please note that the simplified SIP model can be
seen as a superior version of the work proposed in [28], which can automatically
learn the relative importance parameter α between influence and personality. In
both LR and our proposed models, we have the regularization parameter λ. As
the dataset is very large, choosing λ in a reasonable range (e.g., [0.01, 100]) has
little impact on the final prediction results. For the remaining experiments, we
empirically set λ = 10. We summarize the profile, edge, and social features we
used in this paper in Table 3.

4.2 Experimental Results

Overall Performance. Task 1 focuses on predicting whether a user will buy a
particular brand as first-time buying behavior. Fig. 2 reports the AUC results of
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different models, where each brand’s prediction result is shown in the sub figure
and the detailed AUC value is followed by each method in the legend. First,
we observe that all models have better performance than a random guess.(i.e.,
an AUC value of 0.5) Among them, our proposed SHIP model is better than all
baselines with regard to all brands, followed by the three related models (i.e., SIP,
SHI and SHP), indicating the superiority of our proposed model and the impor-
tance of combining the three key factors together for predicting smartphone
adoption. Although the overall trend is the same, the detailed AUC results vary.
Among all brands, “whether to choose a Samsung for a first-time buying” is the
hardest to predict and the best AUC result is only 0.605. One possible reason is
that Samsung has too many device types, ranging from high-end smartphones
that compete with the iPhone to entry-level smartphones. The reasons why peo-
ple buy Samsung smartphones vary and are harder to predict. For the other
brands, the AUC reaches about 0.7 for SHIP. The average improvement is 3%
to 10% over LRSP and 15% to 30% for the remaining baselines. Similar trend
can be found for the Rel gain@100 comparison as shown in Fig. 3. Based on the
above analysis, we conclude that the proposed SHIP can help better capture the
decision process for first-time buying behavior, thus generating better results
than other baselines and related models for Task 1.
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Fig. 4. Overall comparison of Task 2: brand change prediction

In Task 2, we predict whether users will change brand in the next time period.
Fig. 4 reports both the AUC and the Rel gain@100 for different models in Task 2.
The overall trends are the same as Task 1. For both metrics, SHIP performs the
best, followed by our two related models (i.e., SIP and SHP) and LRSP baseline.
However, the related SHI model and the LRS baseline, which do not consider
the user preference factor, perform badly. In other words, after adding the user
preference factor (i.e., the user profile features as shown in Table 3 and the brand
feature), the performance improvement is very significant. E.g., the improvement
of LRSP over LRS is 20.66% for AUC and 100% for Rel gain@100, the improvement
of SHIP over SHI is 35% for AUC and more than 100% for Rel gain@100. Why is
the improvement so significant after adding the user preference factor? We leave
the explanations for the next section.
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Table 4. The learned relative weight of each factor

Factor Weight Representation
Task 1

Task 2
iPhone Samsung Xiaomi Nokia

Influence (1 − α) × (1 − β) 0.822 0.644 0.540 0.692 0.157

Homphily (1 − α) × β 0.081 0.138 0.181 0.219 0.42

Personality α 0.097 0.218 0.278 0.089 0.423

Impacts of the Parameters. As shown in Eq. (1), α and β are two important
parameters that control the relative effects of the three key factors for decision-
making. We summarize the learned relative weight of each factor of the two tasks
in Table 4. As shown in this table, in Task 1, the personality effect (α) and the
homophily effect (i.e., (1−α)∗β) for all brands are very small while the relative
contribution of social influence for all brands is larger than 50%. That is to say,
users are easily influenced by social neighbors for first-time buying behavior. In
contrast to this, the social influence effect is very small in Task 2 (i.e., 15.7%)
while there is a high impact of the personality factor and the homophily effect
for brand change behavior. In other words, users are not easily influenced by
social neighbors for changing brand. Their brand change behavior is more liked
caused by the homophily effect and their own preferences.

Table 5. Part of v in Task 2: the weight of the feature “the brand the user used in
t−1”

Brand iPhone Samsung Xiaomi Nokia

Weight -0.555∗ -0.269∗ -0.222∗ 0.266∗
∗Pass the T test at the confidence level of 0.005.

For brand manufactures, they would like to explore the inherent reasons
that may prevent customer loss, i.e., the brand change behavior in Task 2.
As explained before, after adding the user preference factor, the performance
improvement is prominent in Task 2. Also, the user personality effect contributes
more than 40% to brand change behavior. So we will focus on the user person-
ality effect of Task 2 in this section. Specifically, each dimension of parameter v
controls the importance of the corresponding user related feature for smartphone
adoption (Eq.(3)). The larger the absolute value of this dimension, the greater
the corresponding feature weights for smartphone adoption. In Task 2, we have
two kinds of user personality features: user profile features and the brand fea-
ture, which describes the brand a user used in t−1. To our surprise, all profile
features’ weights are around 0 and the weight of the brand feature dominates.
Next, we try to use this brand feature only in the logistic regression model and
the AUC reaches 0.7229, while LRSP’s result is 0.7300. The improvement is less
than 1% when adding so many user profiles and social features, which also indi-
cates social neighbors’ smartphone adoption status does not have a large impact
on users’ choices of changing smartphones. Thus, we argue, the most prominent



Predicting Smartphone Adoption in Social Networks 483

factor that determines whether a user will change brands later is the current
brand she/he uses. A user’s decision on whether to change brands follows the
overall brand loyalty. If most people that uses a particular brand in the current
time period are likely to change brand in the next time, then this user is also
likely to change without a discussion. Table 5 shows the learned weights of the
brand feature in Task 2. Among all the listed brands, iPhone users are most
loyal. They do not like to change to another brand in the next time period,
followed by Samsung and Xiaomi.

5 Related Work

Smartphone usage mining has attracted considerable attentions due to the rapid
growth of the smartphone market in recent years. Some researchers revealed
the correlation between mobile phone usage and user profiles [12,20,21]. Oth-
ers attempted to consider the factors that affect people’s choices when adopt-
ing a mobile device from various perspectives, such as culture [23], technology
needs [22] and perceived usefulness [18]. Among them, Harsha et al. found com-
pelling evidence of social influence in the purchase of mobile phones by sam-
ple surveys from Asian countries [8]. However, nearly all these works relied on
small-scale questionnaires without considering the smartphone adoptions in a
large-scale social network.

Our work is closely related to the problem of production adoption prediction
in social networks. Generally, some models purely utilized user’s profiles in social
networks for product adoption prediction [29,30]. Others further incorporated
the aggregated features extracted from social networks to boost product adoption
performance [6,9]. However, the global product diffusion process among linked
users is rarely analyzed, not to mention distinguishing the relative contributions
of each factor. While the importance of distinguishing various factors underlining
people’s correlated decisions in social networks has been well recognized, the
related work mainly focused on the homophily factor and the social influence
factor that lead to correlated user behaviors [2,14]. The proposed solutions either
estimated the upper bound of each factor or needed additional group information
of users. On the contrary, our proposed model explicitly balances the correlated
user behaviors and each user’s own preference. Also, the relative performance of
each factor can be learned automatically in the training process.

Our proposed model is also related to the node classification task, i.e., predict
the classes of unlabeled nodes with partially labeled nodes in this graph [5,13,26].
A basic assumption of these models is the label correlations in the network, thus
we can propagate the labels with respect to the intrinsic graph structure [24,31].
To leverage both the social network structure and the edge features, in recent
years, [3] first proposed a supervised random walk algorithm that guides label
propagation, where the social influence factor is explicitly modeled. Zeng et
al. [28] further extended the supervised random walk model for user affiliation
prediction by incorporating both the social influence and the user bias factors.
Nevertheless, the homophily effect between linked users was neglected by all



484 L. Wu et al.

these works. Thus our model can be seen as generalizing the recent advances of
these related methods in node classification tasks. Moreover, in contrast to these
previous approaches, our proposed model can automatically learn the relative
effect of each factor while others needed to tune the parameters manually.

6 Conclusion

In this paper, we have proposed a SHIP model for predicting smartphone adop-
tion in a social network. Our model identified the three key factors in the
decision-making process and can automatically distinguish the relative contri-
butions of each factor. Experimental results on a large-scale dataset showed the
strong prediction power of our model. An incisive conclusion is that the potential
first-time smartphone buyers are largely influenced by social neighbors’ choices
while a user’s decision on whether to change to another brand follows overall
brand loyalty. In fact, the proposed model is also generally applicable to other
node classification tasks. In the future, we plan to apply our model to other
smartphone markets, and we will study the adoption in a finer granularity of
time periods.
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Abstract. There is growing interest in using trajectory data of moving vehicles 

to analyze urban traffic and improve city planning. This paper presents a 
framework to assess the impact of traffic intervention measures, such as road 
closures, on the traffic network. Connected road segments with significantly 
different traffic levels before and after the intervention are discovered by com-
puting the growth rate. Frequent sub-networks of the overall traffic network are 
then discovered to reveal the region that is most affected. The effectiveness and 
robustness of this framework are shown by three experiments using real taxi 
trajectories and traffic simulations in two different cities. 

1 Introduction 

Urban traffic planning and control is a critical problem for many cities. One specific 
problem in urban traffic management is the analysis and assessment of the impact of 
traffic interventions, such as road closures, on the road traffic. For example, when a 
new subway line is to be built in a city, many roads may be closed for a considerable 
period. Consequently, the traffic flow in the city may be disturbed and traffic conges-
tion may worsen. Therefore, it is essential that an evaluation of the impact of road 
closures on the traffic be conducted. However, this evaluation is challenging due to 
the complexity of the traffic network. Traditional technologies such as induction loop 
sensors installed at intersections may provide part of the solution, but they are ex-
tremely limited as the trajectory information of cars is lost and the change in the flow 
of traffic cannot be traced. Fortunately, vehicle GPS trajectories data, which has  
already been used to tackle many urban computing challenges [1], can assist the de-
velopment of a solution. In this paper, we propose a framework that uses contrast 
mining on vehicle trajectories to analyze the change in traffic flow due to road closure 
events. Specifically, our contributions are: 
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1. Traffic Modelling. We model the road traffic network of a city as a graph G, 
generate “n-Edgesets” and analyze vehicle trajectories to find traffic volume on con-
nected subsets of edges in G. 

2. Mining Emerging n-Edgesets. We propose the MineEmergingEdgeset algo-
rithm to extract the n-Edgesets with significantly different traffic patterns before and 
after the traffic intervention (the Emerging n-Edgesets).  

3. Mining Frequent Emerging Network. We propose the MineFreqNetwork algo-
rithm to find frequently occurring emerging networks using Emerging n-Edgesets.  
This frequent network reveals the most severely affected sub-network of the city as a 
result of the intervention. 

The rest of the paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 defines the problem and gives an overview of our framework. In Section 4, we 
discuss our methodology in detail. Section 5 presents the experiments and evaluation 
of our algorithms. In Section 6, we conclude and discuss future research directions.  

2 Related Work 

Urban computing using vehicle trajectory data has received a considerable amount of 
attention recently.  Zheng et. al.  [1] have given an extensive review on the current 
research progress and outlined some major challenges. Liu et. al. [2] have discovered 
spatio-temporal causal relationships between anomalous traffic links using a tree struc-
ture.  Zheng et. al. [3] have used taxi GPS trajectories to find badly connected regions 
and urban design flaws in a city. Chawla et. al. [4] have mined traffic anomalies using 
Principle Component Analysis and investigated root cause of these anomalies. These 
works mainly focus on discovering urban traffic issues, whereas this paper addresses a 
further question: once some traffic intervention occurs, for instance, building a new road 
or closing a road segment, what will be its impact? To the best of our knowledge, this 
problem has not been given sufficient attention. Miller and Chetan [5] have studied the 
impact of short-term highway traffic incidents. In our framework, we are not restricted 
to highways and also consider long-term traffic interventions that can last for weeks or 
months. Salcedo-Sanz et. al. [6] performed simulations to reconfigure one-way streets in 
a town to find the shortest path in order to cross an area affected by a large event. How-
ever, real traffic data were not used, whereas we use both real vehicle GPS data and 
simulated vehicle trajectories to identify regions of impact. 

Traditional transport systems research mainly uses loop sensors embedded under 
the road network to monitor traffic. Farnoush et. al. [7] have used loop sensor data in 
Los Angeles to cluster road segments and found a limited number of distinctive “sig-
nature” traffic patterns on all road segments. However, the connections between road 
segments are not discussed, which is a major limitation in using loop sensors. Our 
approach can be configured to study single road segment or a connected set of roads, 
which is more powerful than using loop sensors. 

3 Overview 

In this section, we introduce some definitions, formally define our problem of emerg-
ing sub-trajectory mining and provide an overview of our framework. 
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Fig. 1. An example illustrating the proposed framework. (a) Road network of Beijing.  
(b) Graph model extracted from the road network. (c) GPS trajectories showing traffic flow.  
(d) Edgesets representing directions of traffic flow. 

3.1 Preliminaries 

Definition 1. Road Network Graph. A Road Network Graph G (Figure 1 (b)) is an 
undirected graph where road intersections form its nodes and road segments form its 
edges. Each node in G is a triplet <NodeID, longitude, latitude> and each edge is a 
triplet <EdgeID, N1, N2> where N1 and N2 are the node pair connecting the edge.  

Definition 2. Trajectory. A trajectory, Traj, is a sequence of time-stamped geographi-
cal locations of a moving object. A Traj can be expressed as a vector triplets <longi-
tude, latitude, time>. Figure 1 (c) shows two trajectories. 

Definition 3. n-Edgeset. An n-Edgeset nES is an itemset consisting of a sequence of n 
connected edges in a Road Network Graph. An nES represents the direction of traffic 
flow though the edges. Figure 1 (d) illustrates some 2-Edgesets and 3-Edgesets. Traf-
fic flow from edge 1 to edge 2 is denoted as {1,2}. The trajectories in Figure 1 (c) 
traverse 3-Edgeset {1,2,6} and 2-Edgeset {3,4}. 

Definition 4. Emerging n-Edgesets. Given two time periods T1 and T2, if the traffic 
profile of an n-Edgeset changes significantly during these times, it is called an Emerg-
ing n-Edgeset (EnES).  

Definition 5. Frequent Emerging Network. A connected sub-network of a Road Net-
work Graph is a Frequent Emerging Network (FEN) if it consists of frequently occur-
ring Emerging n-Edgesets. 

3.2 Problem Statement 

In this paper, we propose a method to model the traffic network in a city and charac-
terizing the difference in traffic conditions before and after an event. Specifically, 
given road map data R and vehicle trajectories Traj, we address the problem of con-
structing a Road Network Graph G, finding all Emerging n-Edgesets (EnES) using G 
and Traj and lastly finding the Frequent Emerging Network (FEN) using all EnES. 
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3.3 Framework 

Our framework is illustrated in Figure 2. Using the GPS trajectories and road net-
work, the first step is modeling the city traffic by matching trajectories to edges. Next, 
we generate the n-Edgesets, compute the Growth Rate and find Emerging n-Edgesets 
(Section 4.2). The final step is to detect a Frequent Emerging Network from the 
Emerging n-Edgesets (Section 4.3). 

 

Fig. 2. Framework of our method 

4 Methodology 

In this section, we describe our method in three sub-sections: traffic modeling, detect-
ing Emerging n-Edgesets (EnES) and detecting the Frequent Emerging Network 
(FEN). We focus on finding the Growth Rate of the traffic on n-Edgesets, which gives 
information about the change in traffic flow following an event. 

4.1 Traffic Network Modelling 

We model a road network as an undirected graph where intersections are the nodes 
and road segments are the edges. This approach is different with some popular model-
ling approaches such as modelling the map as regions enclosed by major roads [8]. 
Region-based approaches can be useful to provide higher-level semantic information, 
but the capability of inferring traffic conditions on individual roads is limited. On the 
other hand, modelling road segments can provide finer details about the traffic net-
work. We extracted road segments and intersections manually from OpenStreetMap 
to ensure robustness. The road network is modelled as an undirected graph since  
direction information is embedded in the trajectory data, and n-Edgesets will be able 
to capture it.  

The second step in our traffic network modeling is to map GPS trajectories to the 
edges of our Road Network Graph. This is performed by a nearest neighbor (NN) 
algorithm. Between any pair of connected nodes, a linear interpolation of “dummy 
nodes” is created. These dummy nodes carry the same edge ID as the edge connecting 
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the real nodes. For each trajectory point, we find its nearest dummy node within a 
certain radius r and the edge ID of that dummy node is used as the edge ID of the 
point, thereby converting its representation <longitude, latitude, time> to <EdgeID, 
time> (see Definition 1 & 2). We use this nearest-neighbor-based approach mainly 
due to its computational efficiency (O(nlog(n)) time when implemented using a kd-
tree).  

4.2 Mining Emerging n-Edgesets 

For each edge e in a Road Network Graph G, we exhaustively search for all con-
nected sets of non-repeating edges of depth n that start from e, and each of these sets 
form an n-Edgeset. Table 1 illustrates an example of several 3-Edgesets in Figure 1 
(c). Edgeset {1,2,6} represents the traffic flow in the following path: edge 1 to edge 2 
to edge 6. Using the n-Edgesets and the GPS trajectories, we calculate the traffic  
volume on each n-Edgeset for different time periods. The vehicle trajectory database 
is divided into two parts, D1 and D2, where: D1 = data collected before a road closure 
event; D2 = data collected after the closure (Section 5.1 gives more details). Given the 
n-Edgesets, at each time step i, n new trajectory points are retrieved from the data-
base. The id of these new trajectory points are compared to ensure that they belong to 
the same car. The edge labels are then matched to the list of n-Edgesets. If a match is 
detected, the traffic volume count of that n-Edgeset is incremented. 

Table 1. An example of mining Emerging 3-Edgesets 

3-Edgesets TraffBe SuppBe TraffAf SuppAf Growth Rate 
{1,2,6} 9 0.09 0 0.00 0.00 
{1,3,4} 10 0.10 16 0.16 1.58 
{5,8,7} 19 0.19 16 0.16 0.83 
{5,8,9} 30 0.30 31 0.30 1.02 
{8,7,6} 33 0.33 39 0.38 1.17 

TraffBe: Number of Cars before event. SuppBe: Support of Edgeset before event. TraffAf: 
Number of Cars after event. SuppAf: Support of Edgeset after event. 
 

Using the traffic volume on each n-Edgeset, we compute the support of all n-
Edgesets in D1 and D2 where the support of an n-Edgeset X, Supp(X), is the traffic 
volume on X divided by the sum of traffic volume on all n-Edgesets. Assuming that 
the routing behaviour of most drivers does not change significantly on a daily basis, 
the difference in the support is likely to carry information about the impact of the 
event. Therefore, we compute the Growth Rate (or simply Growth) of support of an n-
Edgeset using the following definition: 

Growth Rate: Given two datasets D1 and D2, the Growth of itemset X is: 
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This concept was initially proposed by Dong [9], but to the best of our knowledge, 
it has never been used in road traffic analysis. The original definition defines Growth 
= 0 if Supp1(X) = 0 and Supp2(X) = 0. However, we filter and remove those  
n-Edgesets with no trajectory data to reduce noise. Hence, we define Growth = 0 
Supp1(X) ≠ 0 and Supp2(X) = 0. Table 1 shows the Growth of several 3-Edgesets. For 
example, Edgeset {1,3,4} has support before event = 0.10 and after event = 0.16. 
Thus its Growth = 0.16/0.10 = 1.58. 

 

Fig. 3. Growth Rate and LOF scores. (a) Growth Rate for 2-Edgesets. (b) LOF scores with 
number of neighbors = 25, threshold = 1.6. The blue triangles are above the threshold. 

After computing the Growth Rate of n-Edgesets, we sort Growth from high to low. 
Figure 3 (a) shows a plot of the sorted Growth for 2-Edgesets between consecutive 
days. It can be seen that the majority of 2-Edgesets have Growth of approximately 
1.0. This is expected since the total traffic volume on most major roads is unlikely to 
change significantly between consecutive days. If viewed from a probability theory 
perspective, the middle region of the graph approximately corresponds to values 
drawn from a uniform distribution, whereas the side regions are from some form of 
tail distributions. Growth of the 2-Edgesets at the tails of the sorted edgesets deviates 
significantly from the majority. These 2-Edgesets are most likely under the effect of 
the road closure. Thus we apply the definition of emerging patterns [9] and define 
Emerging n-Edgesets as the n-Edgesets whose Growth deviate from “normal” by a 
certain threshold value. To find the upper and lower thresholds, we observe that the 
tail regions have much lower density than the middle region. Therefore, the Local 
Outlier Factors (LOF) [10] is used to select Emerging n-Edgesets as follows: 

1. Find the LOF scores for each n-Edgeset in all n-Edgesets using sorted Growth 
2. Find all n-Edgesets with LOF scores larger than a threshold thres. They are the 

Emerging n-Edgesets (EnES). 

3. If an EnES has growth larger 1, add it to the list of EnESes with increased traffic. 

If its growth is less than 1, add to the list of EnESes with decreased traffic.  

Although the LOF method is used, this is not anomaly detection. In anomaly detec-
tion, there is no prior knowledge about the time of occurrence of the anomaly, 
whereas we compare the traffic system before and after traffic intervention such as 
road closure. We evaluate the effect of the traffic intervention rather than detecting its 
presence. Figure 3 (b) shows the resulting LOF scores for 2-Edgesets where the tails 

(a) (b) 
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with low density have been successfully discovered and are marked with blue trian-
gles. The weakness of LOF is that it requires two parameters, k, the number of 
neighbours and thres, a threshold. In Section 5.1 we show that our method is robust 
against variations in these two parameters. 

4.3 Mining Frequent Emerging Network 

The Emerging n-Edgesets reveals the paths that have been affected before and after a 
traffic intervention. As shown in Figure 3 (b), many Edgesets can be affected. To 
identify the region that has suffered the most significant impact, we proposed the 
method of finding the Frequent Emerging Network in the Emerging n-Edgesets  
(Algorithm MineFreqNetwork). We require that an edge in the list of Emerging  
n-Edgeset is a part of the Frequent Emerging Network if and only if it has occurred at 
least m times in the Emerging n-Edgesets and has a neighbouring edge which is also 
frequent. The advantage of this method is that it can extract the “core” part of the 
network that is most affected. In a real trajectory dataset (more details in Section 5.1), 
noise in the trajectories can cause issues in defining the boundary between affected 
and unaffected areas. By applying frequent itemset mining, this problem can be miti-
gated since the same noise is unlikely to occur repeatedly. 
 
Algorithm. MineFreqNetwork 
Input: EmerEdgesets: Emerging n-Edgesets, RNGraph: Road Network Graph 
Output: FreqEmergNetwork: Frequent Emerging Network  

1:   Uniq ← unique edges in EmerEg 
2:   Network ← empty list 
3:   forall edge in Uniq do   // count frequency of each edge 
4:      count ← frequency of occurance of edge in EmerEg 
5:      if count > freq_thres then Network.add(edge) end if 
6:   end for 
7:   forall freqEdge in Network do  // find neighbours that are also in Network 
8:      Neighb ← neighbours of freqEdge in RNGraph 
9:      if there exists no edge in Neighb that is also in Network then 
10:       Network.remove(freqEdge) 
11:     end if 
12:  end for 
13:  return Network 

5 Experiments and Evaluation 

In this section, we present two case studies to evaluate the effectiveness and robust-
ness of our algorithms. We first present a real-life case study using taxi GPS trajecto-
ries and two traffic simulations with a microscopic traffic simulator. 
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5.1 Real-life Case Study 

We used a Beijing taxi GPS trajectory dataset, which is publicly available from Mi-
crosoft Research Asia [11, 12]. The dataset consists of trajectories generated by 
10,357 taxis travelling in Beijing and its surroundings over a seven-day period 
(02/Feb/2008 – 08/Feb/2008). The road map of Beijing is obtained from openstreep-
map.org. During the seven days, one road closure event is examined in this paper. 

Road Closure Event: South Xinhua Street was closed daily between 8:00 – 18:00, 
from 07/Feb/2008 to 11/Feb/2008 due to Chinese New Year. Therefore, two days of 
the road closure event are captured in the taxi trajectory dataset. 

We average the data of the closed days (07/Feb – 08/Feb) and mine emerging pat-
terns from the average of two previous days without road closure (05/Feb – 06/Feb). 
A smoothing step is required since taxi trajectories can suffer from noise issues 
caused by insufficient data on smaller roads due to the GPS sampling rate. To further 
reduce the effect of noise, we filter and remove the Edgesets with fewer than 10 cars 
in total during the two days. Since our focus is on the major roads, the above steps 
will not affect our results. 

 

Fig. 4. Emerging 2-Edgesets (E2ES) and Frequent Emerging Network (FEN) extracted using 
these Edgesets. (a) E2ES with increased traffic. (b) E2ES with decreased traffic. (c) FEN with 
increased traffic. (d) FEN with decreased traffic. 

Effectiveness  
Figure 4 shows the emerging patterns we found due to the road closure. Figure 4 (a) 
depicts the 2-Edgesets with increased traffic after the road closure (red), while Figure 
4 (b) illustrates the decreased traffic (green). Edge 1, shown in green in Figure 4 (b) 
was the road that was closed. As expected, the area surrounding the closed road has 
increased traffic levels since cars would have had to detour around the closed road. 
The paths that traverse the closed road, for example, path 5 to 1 and 1 to 21 have re-
duced traffic after the road closure, which is also expected as no cars can travel 
through the closed road. Figure 4 (c) and (d) depicts the Frequent Emerging Network 
extracted from the Emerging 2-Edgesets in Figure 4 (a) and (b). For roads with  
increased traffic (Figure 4 (c)), the edges adjacent to the road closure are part of the 
Frequent Emerging Network. This is expected since the impact should be inversely 
correlated to distance. For decreased traffic, only the closed road is reported. There-
fore, the overall impact of the road closure on the traffic is mostly localized. Some 
isolated Emerging Edgesets in Figure 4 (a) can be observed, such as {64, 65} and 
{95,14}. Due to the unsupervised nature of the problem, whether these Edgesets are 
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true positives or noise is unknown. However, as they are infrequent and removed 
from FEN (Figure 4 (c)), they are unlikely to have a large impact on the traffic. 
Therefore, these Emerging Edgesets are likely to be noise, and the robustness of FEN 
is demonstrated. 

Parameter Sensitivity  
For the LOF algorithm, two parameters are essential, k, the number of neighbours; 
and thres, the threshold of LOF scores. We varied one parameter while fixing the 
other, and compare the number of Edgesets (NoE) selected (Figure 5). To choose k, 
one typically starts from a small positive integer and then increase k. This is because k 
defines the size of the neighbourhood that a data point can compare against, and a 
larger k provides more “smoothing” effect. Too much smoothing will not reflect the 
actual property of the system. In Figure 5 (a), NoE only varies slightly when k is be-
tween 15 and 30. Therefore, results are not sensitive to the selection of k in that range, 
and k is set to 25 for future experiments. To choose thres, one starts from a number 
slightly large than 1.0 and increase thres. This is because the majority of the Edgesets 
usually have LOF scores of near 1.0, which indicates that their Growth values are 
similar. When thres increases from 1.0, NoE decreases steadily. Finally, NoE tends to 
converge when the difference between adjacent LOF values is large, and thres should 
be set in this area. Therefore, from Figure 5 (b), thres is selected to be 1.6 and thereby 
used in other experiments.  

 

Fig. 5. Number of 2-Edgesets selected by LOF with varying parameters. (a) Fixing thres = 1.6 
and vary k. (b) Fixing k = 25 and vary thres. 

During our experiment, we can easily extract emerging patterns for 2 and 3-Edgesets. 
However, due to the low sampling rate of GPS devices (1 to 10 minutes), it is difficult 
to extract meaningful patterns for Edgesets longer than three edges. In the next section, 
we show the results of using a traffic simulator, which overcomes this limitation. 

5.2 Traffic Simulation 

We used a microscopic traffic simulator, which can perform large-scale and highly de-
tailed traffic simulations, to validate our algorithms. Vehicles are individually 
modelled to simulate realistic car-following and lane-changing. Various traffic rules are 
implemented, such as how to give way to trams at tram stops. The simulator can also 
simulate traffic lights, whose timing can be controlled by static or dynamic strategies.  
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Fig. 6. Simulation results and Frequent Emerging Network for 4-Edgesets in Sydney with 
George Street closed. (a) Increased Traffic. (b) Decreased Traffic. 

We simulated traffic in two cities, Beijing and Sydney. For Beijing, we replicated 
the road closure event on South Xinhua Street; for Sydney, we closed a few segments 
of George Street, which is one of the main streets in the CBD of Sydney. Since the 
sampling frequency of data can be set to a high value and no longer poses a limita-
tion, we easily extracted Emerging 2,3,4-edgesets. The results of extracting the  
Frequent Emerging Network of 4-Edgesets for Sydney are shown in Figure 6. The 
simulation was initially performed with 900 cars and the closed segments of  
George Street are circled in blue. Figure 6 (a) shows that the edges near the closed 
street have increased traffic levels (red), while there is a decrease in the traffic on the 
closed road (Figure 6 (b)). The simulation results are consistent with our real-life case 
study using taxi GPS trajectories from Beijing. 

Robustness  
We evaluate the robustness of the LOF-based method using different numbers of cars 
(300, 600, 900, 1200, 1500) in the simulation. The common Edgesets are found and 
treated as ground truth. Using the common Edgesets, we evaluate the precision and 
recall of each single experiment for the case of increased traffic (Figure 7 (a) and (b)) 
and decreased traffic (Figure 7 (c) and (d)). The LOF-based method was compared 
with a baseline method, which sets arbitrary thresholds to the Growth value to select 
Emerging Edgesets. For precision, it can be seen that overall, the LOF-method out-
performs the baseline. When traffic volume is high (1500 cars), the precision of the 
LOF method is 0.89 for both increased traffic and decreased traffic, whereas the base-
line method only has a precision of 0.39 for increased traffic and 0.26 for decreased 
traffic. This implies that the variance in the value of Growth can be large for a large 
number of cars and the results of the baseline method can be sensitive to the threshold 
chosen. However, the LOF method is not affected since the variance in the data densi-
ty of Growth can be much smaller than the variance in the value of Growth. When the 
traffic volume is very low (300 cars), the precision of the LOF method (0.61 for in-
creased traffic, 0.64 for decreased traffic) is slightly below the baseline (0.69 for both 
increased and decreased traffic). This might be caused by the fact that a small number 
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of cars are less likely to traverse all the edges in the whole road network. Consequent-
ly, traffic volume calculations can become noisy, and the performance of the LOF 
method can be slightly affected. For other experiments, the precision of the LOF me-
thod is at least comparable (600 cars) or better than the baseline (900 and 1200 cars). 

 

Fig. 7. Precision and recall of LOF and the baseline method under different settings of traffic 
load in the simulation. (a) Precision of increased traffic. (b) Recall of increased traffic. (c) 
Precision of decreased traffic. (d) Recall of decreased traffic. 

For recall, the LOF-based method and the baseline show comparable results for 
both increased and decreased traffic (Figure 7 (b) and (d)). This is because the Edge-
sets being significantly affected by the road closure are usually adjacent to the closed 
road (Figure 4 and 6). Therefore, these Edgesets appear significantly more dominat-
ing than other Edgesets, and both methods are able to find them. The recall for de-
creased traffic of both methods is the same, which is also expected since the traffic 
reduction on the closed road is obvious (Growth dropping to 0).  From the evaluation 
of both precision and recall, it can be seen that the LOF-based method is more robust 
than the baseline. 

5.3 Computational Complexity 

The most computationally intensive part of our framework is the traffic volume calcu-
lation for each n-Edgeset. Let s denote the total number of n-Edgesets, and d denote 
total number of trajectory points in our database. Note that the number of n-Edgesets 
is constrained by the connectivity between edges in the road network. This problem is 
equivalent to finding multiple matches of s strings in d, which is a well-studied prob-
lem and an average case of O(s+d) time can be achieved using a hash table. For other 
parts of our framework, mining both Emerging n-Edgeset and Frequent Emerging 
Network take O(s) time since each n-Edgeset is visited only once. Therefore, the 
overall complexity is O(s+d). 

6 Conclusions and Future Work 

We have proposed a framework to assess the impact of traffic intervention on the road 
traffic system of cities.  We have mined the Emerging n-Edgesets by computing the 
Growth Rate and Local Outlier Factor (LOF) score. We have also proposed the algorithm 
MineFreqNetwork to identify Frequent Emerging Networks, which is the sub-network of 
a road system that is significantly affected by the intervention. Our experiments using 
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real taxi GPS data and simulated vehicle trajectories show that our approach using the 
LOF method outperforms a baseline algorithm. A possible future research direction is to 
integrate our approach with optimization techniques to improve decision making for 
applications in navigation and logistics. 
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Abstract. Delivery failure and re-scheduling cause the delay of services
and increase the operation costs for logistics companies. Setting up self-
collection points is an effective solution that is attracting attentions from
many companies. One challenge for this model is how to choose the
locations for self-collection points. In this work, we design a methodology
for locating self-collection points. We consider both the distribution of a
company’s potential customers and the people’s gathering pattern in the
city. We leverage on citizens’ public transport riding records to simulate
how the crowds emerge for particular hours. We reasonably assume that
a place near to a people crowd is more convenient for customers than
a place far away for self parcel collection. Based on this, we propose a
kernel transformation method to re-evaluate the pairwise positions of
customers, and then do a clustering.

1 Introduction

The last-mile logistics is the final stage to deliver freight to urban customers
from the port or consolidation centers in a city. The efficiency of the last-mile
logistics directly affects the quality of delivery services. On the other hand, the
last-mile logistics is a costly phase in a supply chain. Since the destinations
are quite diverse within a city and in most cases delivering vehicles cannot be
fully loaded, the last-mile logistics can take up to 28% of total cost for goods
shipment and delivery [7]. For small parcel and package delivery services, whose
major customers are the general public, the operating cost on last-mile could
be even higher, due to the high chance of unsuccessful deliveries. According to
the data from our partner company, 18.8% delivery jobs were failed in their first
attempt due to the absence of customers, and the company has to re-schedule a
second delivery. This significantly increases the cost.

One common way to reduce cost for delivery failures is to set up self-collection
points in each neighborhood [12]. For example, Singapore’s leading delivery ser-
vice provider, SingPost uses their 59 post offices all over the island to temporarily
store the parcels that were failed to deliver to the customers. Those customers
will find a slip under the door to notify them that the delivery was failed and
their parcels are ready for collection in the neighborhood post office. This method
can effectively reduce the number of re-deliveries and thus reduce the additional
cost brought by delivery failures. However, for most foreign logistics companies,
c© Springer International Publishing Switzerland 2015
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the few number of physical offices becomes the obstacle for the adoption of self
collection of parcels. To break the bottleneck, the companies need to look for
suitable partner stores for setting up self-collection points.

In this work, we help our partner company to solve the problem that given
a fixed budget, i.e., the rough number of self-collection points to be set up,
how to effectively select the locations for partnership so that more customers
can be served at their convenience. This problem is different from the tradi-
tional facility location problem in operations research, which will be discussed
in Section 2. It is also different from classic data mining problems. Suppose we
divide the customers into clusters based on their locations and consider the cen-
ter of each cluster as a self-collection point. When we examine the result with
background knowledge, we find it not good. First, the customers living far away
from each center are anyway not convenient to visit it though we take them into
account when we choose the centers. In other words, shifting a self-collection
point towards a outlying area by considering the customers living there may
still not benefit those people. Second, the center in each cluster may not be a
convenient place for customers. The reason is that we did not consider, and it
is also hard to define the “convenience” of a self-collection point. Based on the
knowledge provided by our partner, most customers would like to collect their
parcels on their ways back home from offices. This information can guide us on
selecting convenient places for customers.

We adopt a heuristic approach to help the logistics company to find suitable
locations for self-collection points. The key point we use to tackle the problem is
to find the gathering pattern of people, and use it to estimate the “convenient”
places for customers. For example, if we find an MRT station (MRT is the public
transport system in Singapore) in suburban is dense of people during the evening
peak hours, we can say the surrounding places near the MRT station are more
convenient for people to collect their parcels than those places far away.

We first leverage on the public transport data to get insight of the temporal
crowd pattern, which will be used later to guide us sensing the places that are
convenient for customers. In particular, we fit a multivariate Gaussian mixture
model (GMM) to describe the distribution of people for a certain time period.
The model is supposed to reflect how people gather and where the crowd centers
are. Intuitively, we should put self-collection points nearer to the crowd centers
identified by the GMM model. On the other hand, we consider the distribution of
potential customers. By combining their physical locations and their gathering
patterns learnt from public transport data, we design a kernel function to re-
define the positional relationship among customers and crowd centers, and finally
cluster the customers and find locations for self-collection points.

Technical Novelty. Compared to the existing clustering methods, which are
generally considered unsupervised, our approach uses a non-parametric clus-
tering method that is supervised by the knowledge learnt from another data
source by a parametric model. As more and more data are published and
fused, this methodology to correlate multiple independent data sources and
pipeline the learning result to get more useful insight can be widely adopted.
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Social Impact. Most governments maintain rich data about the residents and
the cities, and would like to promote analytics on their data for the social
good. This work explores the opportunity to make use of government data
to service customers from private sectors. It showcases the possibility and
advantage to do this, and probably opens a new business model.

The rest of the paper is organized as follows. We define the problem in
Section 2. We introduce the datasets in Section 3. Section 4 is the main section to
present our approach. We show some analysis and experiment result in Section 5.
Related work is reviewed in Section 6. Finally, we conclude this paper in
Section 7.

2 Problem

2.1 Formulation

The customers are represented by a set of locations. The target is to set up
a number K of self-collection points to serve utmost number of customers at
their convenience. As suggested by domain experts, we assume that the places
with dense crowd tend to be more convenient for customers. Then there are
two objectives when we choose the locations for self-collection points: (1) to
minimize the average distance between a customer and her nearest self-collection
point, and (2) to maximize the neighborhood people flow of the self-collection
points.

The problem can be formulated as a multi-objective optimization problem.
Let C = {yj |j = 1, . . . , m} be the set of customer locations. Let D = {(xi, fi)|i =
1, . . . , n} be the collection of people crowd where xi stands for the center of a
crowd with people flow of fi. Let S = {s1, . . . , sK} be the K self-collection points,
and ε be the distance threshold to define neighborhood of a self-collection point
for the people flow estimation. Let zj be the distance between customer yj and
her nearest self-collection point and hi ∈ {0, 1} indicate whether a people crowd
xi lies within the circle centered at some self-collection point with a radius of ε.
Then the objective of the problem is: min(

∑m
j=1 zj ,−

∑n
i=1 hifi).

To maximize the neighborhood people flow of the self-collection points, one
näıve way is to set up self-collection points at the centers of people crowds. Then
the problem can be modeled as a mixed integer linear programming problem
with two objectives. The classic way to solve a multi-objective problem is to
convert it into a single objective problem by defining a cost function of the
objectives [8]. The new cost function can be a importance order of the objectives
or a scalarization of the objectives. However, it can hardly be applies to our
problem. First, since both of the two objectives are on continuous values, it is
almost impossible to have two feasible solutions with the same objective value.
Hence the importance order will trivially lead to optimizing the more important
objective and ignoring the other one. Second, since the objectives are distance
and number of people, it is meaningless to aggregate the two to obtain a cost.
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3 Data Description

3.1 Delivery Data

We study the 3-month (April to June, 2014) parcel delivery data provided by our
partner. The detailed data schema is omitted, as we are only interested in cus-
tomer locations and delivery status. To find out what locations are suitable for
self-collection points, we need to analyze the clusters of potential customers that
will need this service. We have three choices to simulate potential customers’
locations, i.e., the citizens’ residences, the company’s historical customer loca-
tions, and the locations of the company’s historical customers who failed to
receive parcels. We select the last choice and explain why.

(a) Delivered vs. failed locations (b) Distribution comparison

Fig. 1. Comparison between customers and citizens

We visualize the successful and failed delivery locations in Fig. 1(a), in which
successful deliveries are marked as blue points, and the failed attempts are
marked as red points. We can see that the two sets of points are not follow-
ing the same distribution. There are more dense blue points in the city center,
and more red point clusters in suburban areas, e.g., center north and east. Thus,
in our study, we should use failed locations for learning, which is more represen-
tative for future customers of self-collection points.

Also, we do not use the entire residents. For example, some residential regions
have been existing for over 30 years, and accommodates more senior citizens
than those newly developed regions. There may be more delivery business in
new regions because young people are more active in online shopping and over-
seas delivery. Fig. 1(b) further validates our assumption, which visualizes the
distribution comparison between local residents and the company’s customers
by different colors that indicate the inconsistency of the two distributions. Due
to the space limit, we do not further explain it.

3.2 Public Transport Data

The other dataset we use is the public transport data. The public transport,
including MRT (subway) and bus, is the major transportation tool used by
most residents in Singapore. In 2012, there are 77.8% working people using
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public transport1. Thus it is reasonable to assume that the crowd pattern of
working people can be estimated from the public transport data, by studying
passengers’ riding records. Furthermore, since the public transport commuters
are the main target customers that self-collection points would like to benefit
(the location is less important for private car drivers), the use of public transport
data to estimate customers’ gathering pattern is meaningful.

4 Approach

4.1 Overview

The basic idea of our work is to incorporate crowd gathering pattern into the
distribution of customers in Singapore, to find better locations for self-collection
point setup. Fig. 2 shows the general workflow. We first learn spatial temporal
models to represent the people gathering pattern, based on the public transport
data. Then according to the company’s suggestion, we choose the model for the
evening peak hour period, i.e., 5pm to 9m, to guide self-collection point locating.

Model 
Builder

Transport 
Data

Customer 
Data Kernel FunctionLocation Mapper Clustering

Fig. 2. Approach overview diagram

On the other hand, we extract the customer locations from the unsuccessful
delivery data. By incorporating the model built from the public transport data,
we design a kernel function to shift customers’ locations to nearby crowd centers,
and thus re-define the distance among customer locations. Finally, based on the
new locations of customers, we divide the customers into a few clusters according
to the budget.

4.2 Model Fitting

We are interested in the gathering pattern of residents on a time basis. Then we
would try to shift the self-collection points toward the center of a crowd according
to the common time period that customers tend to collect their parcels.

In a certain time period, there will be multiple crowds in Singapore. To model
the crowds for the whole population across the Singapore island, we should
exploit a mixture model because the crowd in different regions may distribute
differently. For each sub-population, we assume a multivariate Guassian model to

1 Estimated from LTA’s annual report: http://www.lta.gov.sg/

http://www.lta.gov.sg/
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represent the spatial distribution of people. For example, suppose a popular MRT
station is located at (xi, yi), where (xi, yi) are latitude-longitude coordinates,
then we assume the probabilities that a person appears in this neighborhood
during morning peak hours follow a multivariate Guassian distribution, where
the mean along the two dimensions of latitude and longitude takes place at
xi and yi respectively. We explain why we use Guassian model to represent
the distribution of people. In this example, MRT, as the main transport tool
attracts working people from all directions in the neighborhood. As a result,
there are more people appearing at the MRT stations. Furthermore, since the
people centered at the MRT stations are converged from surrounding places,
for a particular moment or taking the average over a short period, the density
distribution should be in a bell shape. Note that other distribution models can
also be used if they can reasonably capture the characteristics of people flow.
In our assumption, if all crowds follow a multivariate Guassian distribution, for
the whole population at a certain period, the probability that a person appears
in each place in Singapore will follow a Gaussian Mixture Model (GMM).

We process the public transport data by finding the total number of alighting
passengers in each MRT station and bus stop during the period, and consider it
as the crowd size in each place. We use this data to fit a mixture model f of M
Gaussian functions:

f =
M∑

i=1

wiN (μi, Σi),

where wi is the weight of the i -th Gaussian component (i.e., the peak passenger
flow), μi is the mean of the corresponding Gaussian component (i.e., the center
of a crowd) and Σi is the corresponding covariance matrix (i.e., how passenger
flow spread from the center to the two dimensions).

Let Θ be the collection of all the parameters (w, μ,Σ). Let D = {(xi, yi, fi)|i =
1, . . . , n} be the collection of each bus stop or MRT station’s geographic location
(xi, yi) with the passenger flow fi. Then the likelihood of Θ given the observation
D is defined as:

L(Θ|D) = Pr[D|Θ]

Suppose the observations are independent. Then

Pr[D|Θ] =
n∏

i=1

Pr[f(xi, yi) = fi|Θ]

Θ can be estimated by the Expectation-Maximization (EM) algorithm.

4.3 Kernel Transformation

We propose a transformation function based on which the attractiveness between
customers and crowds can be and the closeness between customers can be re-
defined.

Let x be a crowd center and y be a customer. If their distance square ||x−y||2
is large, we just move y very slightly. On the other hand, we should move y to a
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new location that is closer to x. By doing this, we can shift a customer’s location
towards a crowd center. Thus we define the kernel function between a customer
and a crowd center as

kσ(x, y) = e− ||x−y||2
2σ2

Note that the purpose here is to define a rule to shift a customer location
towards a crowd center according to the above mentioned property. Other kernel
functions may also be applied to achieve the same goal. Then the movement of
y according to x is

v(x, y) = kσ(x, y) · (x − y)

It is normal that a customer will be attracted by more than one crowd centers.
A natural way to aggregate the moving vectors to different crowd centers is to
take the weighted sum of these vectors. However, this aggregation does not
work well for our case. For example, if some customers are lying in between of
two crowd centers with identical weight along the opposite direction, and the
distances from the customer to the two crowd centers are also identical, then no
matter how near the customer is to the crowd centers, she will not be moved by
the function. In order to avoid such situations, we define the final moving vector
of a customer to be the moving vector to its nearest crowd center. If there are
more than one nearest centers, one will be randomly chosen.

Let x∗
y be the nearest crowd center to the customer y.

x∗
y = arg min

x
||x − y||

and the total movement of a client towards a set of crowd centers is:

v(y) = v(x∗
y, y)

The new location of a customer with a location y will be

T (y) = v(y) + y

After doing the transformation, the customers’ locations are supposed to
be closer to each crowd center. Then we can apply the K -means method to
{T (y)|y ∈ C}, to find locations for self-collection point setup.

4.4 Optimizing Variance Parameter

The variance parameter σ in the kernel function controls how the movement
decreases with the distance, and therefore determines the new locations and
the final clustering performance. Note that our purpose is to minimize aver-
age distance from customers to self-collection points, and also to maximize the
neighborhood people flow of the self-collection points. Thus we try to optimize
σ according to these two criteria.

In the first scheme, we focus on the minimization of average distance. With
different σ, we have different clustering results. We define the optimal variance
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to be the one returning minimal average distance after clustering.

σd = arg min
σ

m∑

j=1

zj

In the second scheme, we focus on the maximization of neighborhood people
flow. Let ε be the radius defining the neighborhood area, which is pre-set. Then
we define the optimal variance to be the one returning maximal neighborhood
people flow after clustering.

σf = arg max
σ

n∑

i=1

hifi

By enabling user’s input on choosing different optimization schemes for σ,
the overall flow of the algorithm can be summarized in Algorithm 1.

Algorithm 1.. Kernel-based Clustering
Input: set of customers C, set of passenger records D, radius to define neighborhood

ε, number of clusters K, set of candidate variance parameters S = {σl|l = 1, . . . , L}
and choice of optimization schemes H

Output: Resulting locations for self-collection points
1: Fit the GMM with D and obtain the set of crowd centers A
2: Initiate result set O
3: for l = 1 to L do
4: Compute the new customer locations C(l) = T (C) with respect to A and S
5: Apply K -means clustering algorithm to C(l) with cluster number K and let O(l)

be the centers of resulting clusters
6: if H == 1 then
7: Compute cost(l) the average distance from each customer to her nearest clus-

ter center
8: else if H == 2 then
9: Compute flow(l) the total people flow within the circle centered at some

cluster centers with radius ε
10: if H == 1 then
11: Let opt = argl min cost(l)
12: else if H == 2 then
13: Let opt = argl max flow(l)
14: return O(opt)

5 Result Presentation and Discussion

5.1 GMM Fitting

We take the exit records of passengers in each MRT station and bus stop between
5pm and 9pm. We consider that 1) most customers prefer collecting parcels on
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(a) Means of the Gaussian components (b) Means of the Gaussian components

Fig. 3. GMM training result

their ways home, as assumed, thus we only use the exit records; 2) 5m to 9pm
is a reasonable period of off hours for working people.

There are several criteria to balance the likelihood and the complexity of the
model. We use the R package mixmod [2], which considers Bayesian Information
Criterion [14], Integrated Completed Likelihood [1], and Normalized Entropy
Criterion [3]. The best model is chosen based on the lowest value among all.

The result shows that the best fitted model has 22 components. The means of
the components are shown in Fig. 3(a). The result is reasonable, as most of the
means are located near the major MRT stations or bus exchanges. For example,
Fig. 3(b) shows a zoom-in view of a mean, which is quite close to the Boonlay
MRT station, which is a main transportation hub in the west of Singapore.

5.2 Location Transformation

We set the range of the candidate variance parameters in the kernel function to
be [0.05, 0.1]. Each variance parameter gives a different movement of customers.
In this section, we only show an example in in Fig. 4. The figure on the left shows
the original customer distribution in the northeast of Singapore. After applying
the kernel transformation, as shown in the right figure, the customers are clearly
shifted towards different centers.

Fig. 4. Zoom-in distribution comparison before and after kernel transformation
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5.3 Result
We try different values of K in [10, 50] and use the elbow method to choose K =
21 as the number of clusters. This number is also consistent with the company’s
budget. We present the clustering results using the two functions in Fig. 6, in
which the center of each cluster is marked out on the map. For the kernel method,
we use the second scheme, i.e., based on neighborhood people flow, to optimize
the variance parameter, as it returns better result as discussed later.

Basically, both approaches can identify reasonable customer clusters for self-
collection point setup. The one using the kernel function (Fig. 5(b)) chooses
more locations in the center of the island and those places are more in line
with the crowd centers returned by GMM (Fig. 3(a)), compared to the one
using original distance function (Fig. 5(a)). Although these areas are not major
residential areas, there are many people taking bus or MRT transfer there, as
shown in Fig. 3(a). Thus, it is reasonable to put more collection points in these
areas. Another highlight is the removal of the leftmost location from Fig. 5(a).
Although there are customers over there, based on the crowd patterns, that place
may not attract many people. As a result, in the new clustering result by the
kernel transformation, that location is no longer there.

(a) Using original distance function (b) Using metric function

Fig. 5. Clustering results

5.4 Quantitative Comparison
In this section, we try to quantify the results generated by using the Euclidean
distance and the kernel function (under two optimization approaches) respec-
tively, to compare the quality. In the first test, we compare the average distance
from customers to the chosen self-collection points. As mentioned, the purpose
of self-collection points is not for serving all the customers. In Fig. 6(a), we
show the comparison of average distance under five clustering results, for dif-
ferent portion of customers to be served. The x-axis represent the percentage
of nearest customers to each selected location, and the y-axis shows the corre-
sponding average distance. The five results include the clustering result based on
original distance, kernel function with variance parameter optimized by average
distance, and kernel function with variance parameters optimized by people flow
using radiuses of 1 to 3. From Fig. 6(a) we can see that there is not much differ-
ence between the five results, which means our proposed methods can guarantee
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a good average distance that is similar to the original approach which returns
the optimal value for this metric.

(a) Average distance (b) Passenger flow

Fig. 6. Quantitive analysis

Next, we compare the number of people that can be potentially served within
each size of neighborhood, as shown in Fig. 6(b). We can see that the method
using the original customer locations performs worst. For each given value of
the radius, after kernel transformation, the chosen self-collection points will be
nearer to the crowd centers, and thus can potentially serve more people. Further,
the second scheme performs better than the first. Combining with the result in
Fig. 6(a), in which all the results give similar performances, we can conclude
that the kernel method with the second optimization scheme is the best choice.

6 Related Work

6.1 Facility Location Problem

Facility location problem studies the optimal placement of facilities to minimize
the cost of facility opening and the cost of servicing customers from the facilities.
It is an important branch of operations research. There are many variants of the
facility location problem, and most of them are proven NP-hard [6]. Different
kinds of facility location problems have been extensively explored by researchers,
in which many works focus on approximation. Since it is not quite related to
this paper, we do not review the works here. Some surveys include [5].

As mentioned, the major reason that the existing works are not suitable for
our problem is that our problem can be hardly reduced to a unique objective for
optimization. Besides, we do not assume the self-collection points can serve all
the customers. Our purpose is to serve a reasonable number of customers who
can conveniently visit the collection points. As a result, although the problems
sound similar, they should be approached differently.

6.2 Clustering

Clustering is a useful method for descriptive data analysis. The popular cluster-
ing methods can be divided into two categories, parametric model-based meth-
ods and non-parametric similarity (or distance) -based methods. In the first
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category, the dataset is assumed to follow a mixture model of finite number of
components. Each component is a probability distribution. The most widely used
mixture model is the one with multivariate Gaussian components [15]. There are
also other types of mixture model. A detailed review can be found in [10]. The
Expectation-Maximization (EM) algorithm [4] is commonly used to estimate the
parameters of a mixture model. Since the EM algorithm is sensitive to initial
values and the number of components needs to be pre-defined, there are a lot of
research work focusing on the initialization problem of EM (e.g., for the recent
works [11,16]). The second category of clustering methods are based on objective
functions of similarity or distance measurement. K -means and its variants [9,13]
are the most popular algorithms in this category. In this approach, similarity or
distance between each pair of data points is defined, based on which the whole
dataset will be partitioned into different clusters.

Basically, clustering is considered as an unsupervised learning process. In our
approach, we do have some guidance for clustering, which is not from the labeled
customer data, but from the residential data which is not directly linked to the
customer data. Thus, in our work, we cannot apply existing methods directly.

7 Conclusion

In this paper, we jointly use the public transport data and the customer data to
help our partner logistics company choose suitable locations for self-collection
point setup. In particular, we use the public transport data to learn the people’s
gathering pattern, based on which, we design a kernel transformation to re-define
the pairwise locations of customers. Finally, we cluster customers based on their
new locations which are closer to people’s crowds and considered more convenient
for the customers. We also demonstrate the effectiveness of our approach.

Acknowledgment. This work was supported by the A*STAR SERC Grant
No. 1224200004.
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Abstract. Solar irradiance volatility is a major concern in integrating
solar energy micro-grids to the mainstream energy power grid. Account-
ing for such fluctuations is challenging even with supplier coordination
and smart-grid structure implementation. Short-term solar irradiance
forecasting is one of the crucial components for maintaining a constant
and reliable power output. We propose a novel stochastic solar predic-
tion framework using Conditional Random Fields. The proposed model
utilizes features extracted from both cloud images taken by Total Sky
Imagers and historical statistics to synergistically reduce the prediction
error by 25-40% in terms of MAE in 1-5 minute forecast experiments
over the baseline methods.

Keywords: Conditional random field · Stochastic model · Solar fore-
casting

1 Introduction

As the integration of photovoltaic (PV) power plants into the electricity net-
work becomes increasingly prevalent, utilities and grid operators confront major
challenges in maintenance and regulation stemming from the variability of solar
irradiance largely due to atmospheric interference (cloud and aerosol contents).
Within one minute, the ground solar irradiance can decrease more than 80%,
causing drastic drops in power output (see example in Figure 1), and such rapid
fluctuations can be constantly observed. Therefore, reliable short-term solar irra-
diance forecasting is the basis to control the usage of auxiliary systems such as
batteries and gas generators [1].

Global Horizontal Irradiance (GHI), which consists of both a direct solar
beam and a diffuse component, is an important indicator for PV power pro-
duction. Current GHI forecasting methods can be categorized into two classes:
statistical or physics based models. Statistical models use historical GHI data
to train models such as ARMA [2] and ANN [3] to predict future irradiances.
These tend to ignore physical atmospheric phenomenon, such as cloud micro-
physics and their interactions, and only showed a marginal improvement over
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 511–524, 2015.
DOI: 10.1007/978-3-319-18038-0 40
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Abbreviations

ANN Artificial Neural Network GHI Global Horizontal Irradiance PV Photovoltaic

ARMA Autoregressive Moving Average HMM Hidden Markov Model RBR Red-Blue Ratio

CRF Conditional Random Field LR Linear Regression RH Relative Humidity

DHI Direct Horizontal Irradiance MAE Mean Absolute Error SB Shadowband of TSI

DNI Direct Normal Irradiance NWP Numerical Weather Prediction TSI Total Sky Imager

EHI Extraterrestrial Horizontal Irradiance PM Persistent Model WSI Whole Sky Imager
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> 100 306 311

> 200 259 271
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> 500 122 137

Fig. 1. The ground solar irradiance can decrease by more than 80% due to cloud
interference. The table shows the number of days with GHI drops over 100-500W/m2

within 5 minutes in 2012 and 2013, at the Long Island Solar Farm (LISF), New York.

the benchmark persistent model (PM), which directly uses the present irradiance
as the prediction. On the other hand, physics based models, such as Numerical
Weather Prediction (NWP), utilize meteorological observations and measure-
ments with wind, temperature, and humidity as key variables [4]. While NWP
is preferred for forecast horizons of six hours or beyond, cloud imagery based
techniques (satellite or ground-based) produce more accurate short-term fore-
casts by propagating cloud movement into the future. Ground-based sensors
with high spatial and temporal resolution, such as a Total Sky Imager (TSI) or
Whole Sky Imager (WSI), are ideally suited to capture the local cloud variation
for intra-hour predictions [5]. Deterministic methods were subsequently adopted
as the standard approach, where the prediction is simply determined by the
amount of cloud cover in the predicted sky image [6–8]. However, they overlook
the correlated nature of time series data (temporal) and the strong dependence
on environmental variables (spatial).

With the support of cloud imagery, a stochastic model, rooted in observa-
tional data and accounts for temporal dependency, is hence ideal for capturing
the intrinsically non-deterministic nature of irradiance fluctuations. From the
theoretical end, a Markov process was used to simulate the stochastic behav-
ior of sunshine and cloud cover with respect to irradiance [9]. In practice, the
Hidden Markov Model (HMM), which is widely used in natural language pro-
cessing (NLP) tasks, made its first appearance in daily GHI prediction using
temperature as observations and irradiance as hidden states [10].

In this paper, we are the first to propose a stochastic solar irradiance forecast-
ing framework using Conditional Random Fields (CRFs). It accommodates a rich
set of overlapping, interdependent and multi-granularity features, which boost
performance over HMM. We estimate the cloud motion and extract features from
the predicted TSI images, to provide a better context of the future than only
historical statistics. Therefore, given the historical and predicted observation
sequence, CRFs can output the most probable sequence of irradiance levels.
Similar to making distinctions between appearances of identical phrases within
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different contexts in NLP, CRFs distinguish subtle variations of different com-
binations of features in our application. In this paper, we make the following
contributions :

1. Stochastic Modeling Framework. We examine the stochastic nature of
the solar irradiance and propose a GHI prediction model using Linear-Chain
Conditional Random Field, which has not been previously applied to solar
energy forecasting.

2. Correlated-Feature Engineering. We design a novel feature set that har-
nesses the advantage of multiple sources such as TSI images, meteorologi-
cal measurements and historical statistics and utilize CRFs as a method to
incorporate those overlapping features.

3. Systematic Evaluation. We implement a complete framework and evalu-
ate the proposed models by cross-validation on 345,600 raw images (24 days
of data). For 1-5 minute GHI forecasts, we observe an average of 36% MAE
improvement over the benchmark persistent model, which is reported to be
difficult to surpass [11].

The rest of the paper is organized as follows: in Section 2, we introduce TSI
imagery, the features we extracted from images, historical statistics, and mete-
orological measurements. Section 3 contains a brief overview of the theory and
application of the Linear-Chain CRF model, and other models for comparison.
In Section 4, we explain our experiment setup and model specifications, report
our experimental findings and compare the performance of both stochastic and
non-stochastic models. Finally in Section 5 we summarize our work.

2 Background and Methodology

2.1 Problem Setting and Related Work

GHI consists of Direct Normal Irradiance (DNI), the solar beam component,
and Diffuse Horizontal Irradiance (DHI), which emanates from the sky. The for-
mer corresponds particularly to the interference of clouds on the optical path of
sunlight, and the latter is rather a result of more complex atmospheric factors.
The challenge of sky imaging based prediction is to accurately correlate image
pixel values to irradiance for intra and inter-hour prediction over a location of
interest. Satellite images are not suitable for very short-term irradiance predic-
tions since they are taken every 30 minutes over a large area. TSI images of
the hemispherical sky (see example of Figure 2(a)) have a much higher spatial
(sub-kilometer) and temporal (seconds) resolution to reflect the complexity of
local meteorological conditions.

Various TSI cloud detection and tracking pipelines have been proposed recen-
tly: Fu et al. [12] solely made use of historical cloud features extracted from
the sky imager and predicted GHI several minutes ahead via linear regression.
Another class of methods calculates cloud velocity vectors allowing for the for-
ward propagation of clouds [7]. Deterministic forecasting methods based on the
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(a) (b) (c) (d)

(e)

Fig. 2. TSI cloud tracking steps. (a) Original image. (b) Image undistortion and SB
dispatch. (c) Cloud cover. (d) Multi-layer detection and cloud segment identification.
(e) Cloud Motion prediction and SB filling.

predicted level of cloud cover in images often relies heavily on the robustness of
the cloud motion estimation under the assumption that cloud cover is the only
predictor of GHI.

In our framework, we carefully analyze and examine TSI images with regards
to their correlations with GHI and propose the use of stochastic modeling to
utilize features that interdependently reflect complex atmospheric conditions.
The inherent flexibility of this model allows us to introduce new features such
as historical statistics of irradiance and meteorological measures, which are the
key inputs of the existing time series models, creating a synergistic improvement
on solar irradiance predictions.

2.2 Feature Engineering

We process a TSI image dataset collected over a two-month period in the summer
of 2014 from the Long Island Solar Farm (LISF). Corresponding irradiance and
meteorological data were retrieved from the same location. We then carefully
analyze and construct a combined set of features extracted from these sources.
The full feature set is provided in Table 1. These features are categorized by two
aspects according to the time and type.

Imagery-based Features. Figure 2 outlines our TSI image processing pipeline
[13] that serves as a crucial step in our stochastic modeling framework. A nar-
row strip on the TSI mirror, termed shadowband, blocks the intense sunlight and
casts a band from the image center to the perimeter (2(a)). The sun’s position
can be located on the image geometrically. We first sample the image streams to
discover meaningful cloud movement and undistort each frame from the curved
optical surface to a horizontal plane (2(b)). We then determine the cloud cover
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Fig. 3. TSI image feature extraction. (a) Partial autocorrelation of GHI on a cloudy
day. (b) Correlation between GHI and circumsolar RBR. High GHIs usually correspond
to low RBRs which indicate clear sky pixels. GHI decreases as RBR approaches one due
to the presence of clouds around the sun. (c) Correlation between GHI and circumsolar
cloud coverage. GHI is minimized when cloud coverage approaches one, but the negative
correlation is weaker.

Table 1. Feature Set

Historical statistics Propagation

Irradiance-based Meteorological-based Imagery-based

rad(t− 1) RH(t− 1) RBRmean RBR(t + i) mvsum(t + i)

Δrad(t− 1) Temppanel(t− 1) RBRvar Cc(t + i) mvcount(t+ i)

Diffinteg Tempair(t− 1) Ccmean bmax(t + i) mvmean(t+ i)

Diffderv Ccvar bmin(t + i)

SBbr(t− 1) int(t + i)

(1) (2) (3) (4) i = 0, 1, ...

(2(c)) and motion vectors for each cloud segment using cross correlation algo-
rithms between consecutive images (2(d)2(e)). To produce a predicted sky image,
the cloud movements are propagated to various future time points.

Among all of the properties of sky images, the pixel red-blue ratio (RBR) is
one of the most effective features for cloud identification [5]. In 3(b), circumsolar
RBR indicates the presences of clouds and is negatively correlated with GHI. The
spread of the data points, however, indicates the variance of cloud color. Another
suitable attribute, cloud cover (Cc), shows a similar negative trend, yet it is more
of a global statistic 3(c). Cloud motion vectors at the sun’s vicinity derived from
the image processing pipeline suggest potential irradiance fluctuations. Therefore
we incorporate the sum, number and mean quantity of motion vectors (mvsum,
mvcount, mvmean) in the feature sets. The shadowband brightness (SBbr) directly
corresponds to DNI, a component of GHI. In order to retain enough complexity
for better representation of various types of weather, we compare and select
additional features such as the maximum and minimum blue channel value of
an image (bmax, bmin), and the image intensity (int).

Because the image streams are being propagated into the future, we are able
to extract not only historical statistics but also from the predicted cloud images
as well. Thus, imagery-based features in Table 1 are categorized into Historical
Statistics such as mean and variance, and Propagated.
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Irradiance-based Features. Figure 3(a) displays a strong autocorrelation of
adjacent 1-3 min irradiance of a typical cloudy day. Thus, we use the current
irradiance measurement as a feature (rad(t − 1)), which is also the basis for the
benchmark, PM. In addition, the change in irradiance from time t − 2 to time
t−1 (Δrad(t−1)) provides information on the trend, discretized to rising, falling,
and unchanged. We also examine the extraterrestrial horizontal irradiance (EHI),
which is atmospherically attenuated to GHI. The difference between EHI and
GHI has been reported to be related to fluctuating weather conditions [3], and
thus we adopted both the 5-min integral of the calculated difference (Diffinteg)
and its third-order derivative (Diffderv) as features.

Meteorological-based Features. Meteorological measurements provide gen-
eral weather attributes, and we collected the relative humidity (RH(t−1)), solar
panel temperature (Temppanel), and surface air temperature (Tempair) from the
LISF.

3 Solar Irradiance Model

In this Section, we propose the stochastic models for the short-term solar irra-
diance prediction (minutes ahead). First we introduce two stochastic models,
the Linear Chain Conditional Random Field (CRF) model [14] and Hidden
Markov Model (HMM). For comparison, we explain non-stochastic baseline mod-
els. Section (4) will provide the detailed performance comparison among all mod-
els introduced here.

3.1 Stochastic Modeling

Linear-Chain Conditional Random Field. Conditional Random Field bel-
ongs to the discriminative probabilistic models [14,15]. It is encoded by a bi-
partite graph (Figure 4). As the name suggests, there are two types of nodes in
the graph, one for the set of factors denoted as F (shaded boxes), the other for
random variables denoted as V (circles). The graph is denoted by G = (V, F,E).
The edges E reflects the probabilistic dependency of factors F on elements of V .

y ...

...x

Fig. 4. Graph of Linear-Chain CRF model

CRF directly models the conditional probability distribution P (y|x), instead
of the joint probability P (x,y). The later can lead to difficulties when overlap-
ping, multi-granularity and non-independent features are involved. Both input
x ∈ X (dark circles) and output y ∈ Y (light circles) can be treated as real
valued random variables, while in (Figure 4) V = X ∪ Y includes both.
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P (y|x) is the product of all local factors depending on a subset of all variables,
labeled xA and yA for A ⊂ V .

P (y|x) =
1
Z

∏

A

ΨA(xA,yA),

with Z =
∑

{x,y}

∏

A

ΨA(xA,yA). (1)

The normalizing factor is the partition function Z that sums over all configura-
tions of yA. ΨA(xA,yA) ∈ R+ has the following form

ΨA(xA,yA) = exp

{
∑

k

θA kfA k(xA,yA)

}

, (2)

where θA k are real valued parameters and fA k(yA,xA) are termed as feature
functions. In the experiments, the values of θA k can be obtained by maximizing
the log-likelihood using training data.

We chose to use the sequential Linear-Chain CRF with the following proba-
bility distribution

P (y|x) =
1

Z(x)
exp

{
T∑

t=1

K∑

k=1

θkfk(yt, yt−1,xt)

}

, (3)

where Z(x) is an instance specific normalization function

Z(x) =
∑

y

exp

{
T∑

t=1

K∑

k=1

θkfk(yt, yt−1,xt)

}

. (4)

Notice the feature functions depend only on the input sequence x between
{1, t} and the output y at {t − 1, t}. This aspect of linear-chain CRF is similar
to that of HMM.

To estimate the CRF parameters, the log-likelihood is calculated from the
sample training data. If we use N sets of sample data, (x(i),y(i)), i = 1, 2, . . . , N ,
each set forming a time sequence over t = 1, 2, . . . , T , the overall likelihood is

�(θ) =
N∑

i=1

T∑

t=1

K∑

k=1

θkfk(y(i)
t , y

(i)
t−1,x

(i)
t ) −

N∑

i=1

log Z(x(i)
t ). (5)

As P (y|x) ∈ [0, 1] the function �(θ) has negative values. Given the exponential
form in the probability distributions, �(θ) is a concave function, and each local
optimum is also a global optimum.

Optimization involves computing the gradients of the objective function
such as L-BFGS algorithms [16,17], which requires the marginal distributions
p(yt−1, yt|xt). For Linear-chain CRF, distributions p(yt−1, yt|xt) can be obtained
using the recursive backward-forward algorithms (for details see [18]). One finds

p(xt−1, xt|yt) = αt−1(yt−1)Ψt(xt−1, xt, yt)βt(yt) (6)
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where αt and βt are the forward and backward recursions, namely

αt(yt) = p(x〈1...t〉|yt) , βt(yt) = p(x〈t+1...T 〉|yt) (7)

which are computed by

αt(yt) =
∑

xt−1

Ψ(xt, xt−1|yt)αt−1(xt−1)

βt(yt) =
∑

xt+1

Ψ(xt+1, xt|yt+1)βt+1(xt+1) (8)

The combination of L-BFGS and backward-forward algorithms then furnishes
our training algorithm package, allowing statistical inference of the sample data.

For forecasting, we use the dynamic programming algorithm to estimate the
Viterbi path of a sequence of features x which maximizes the probability

ŷvi = arg max
x

P (y|x) (9)

Each recursion gives us a prediction to the event for next step. Multistep fore-
casting can be similarly achieved [19], leading to the predictions of 1-, 2-, · · ·
and 5-minutes ahead.

Hidden Markov Model. HMM is a canonical probabilistic model for sequen-
tial or time series data that considers not only considers the transitions of the
value in the sequence, but also introduces a corresponding dependent sequence
of events. It is well known that HMM can be recast in a CRF form shown as
follows:

P (x,y) =
1
Z

exp(
T∑

t=1

(
∑

i,j∈S

λijfij(yt, yt−1, xt)+

∑

j∈S,o∈O

θjofjo(yt, yt−1, xt))),
(10)

where,
fij(yt, yt−1, xt) = δyt=jδyt−1=i, fio(yt, yt−1, xt) = δyt=iδxt=o. δ is a Kronecker
delta function, S stands for the space of all hidden states, λij encodes the tran-
sition probability between two states and θjo for the emission probability. Note
that we limit the feature functions to be binary indicator functions for both
one state transition and one output emission instead of K real values with the
state transitions. HMM models joint probability instead of conditional probabil-
ity, which leads to these differences in the feature functions between the general
CRF and HMM. The statistical inference algorithms for HMM are similar as
the aforementioned Linear-Chain CRF. Historically, these inference algorithms
were in fact first developed for HMM. In summary, HMM is a highly restricted
Linear chain CRF model with a single feature function, which captures the RBR
dependence, but no other useful features are used from TSI images.
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3.2 Non-Stochastic Models

For comparison to the stochastic models, we also consider two non-stochastic
models as our baselines. First, our baseline Persistent Model (PM) is a valid
benchmark in the solar forecasting field [11]. Next, a straightforward extension
of PM is to combine all terms with linear relationships, also known as Linear
Regressions (LRs).

Persistent Model (PM). The baseline persistent model (PM) assumes that
the irradiance at time t is best predicted with its value previously observed at
time t − 1. Therefore, PM contains only one feature rad(t − 1) from our feature
set aforementioned in Section 2.2:

ˆrad(t) = rad(t − 1) (11)

PM is simple but highly effective especially for very short term prediction.
Recent studies have shown that this baseline is very difficult to beat for forecasts
of GHI and DNI within 15 minutes [7,8,11].

Linear Regression (LR). The Linear Regression (LR) model gives a linear
relation between solar irradiance and the features introduced in the Linear-Chain
CRF. We have

y = wX + b. (12)

We then minimize the objective function

||y − wX − b||22 + k||w||22, (13)

where w is the weight coefficient vector, b is an intercept, X is an N ·K matrix and
k is a regularization parameter. With the l2-norm of the second term, the linear
regression is also called Ridge Regression. k controls the degree of regularization
and it helps the learned model from being overfitted.

We considered two LR models. As discussed in Section 2.2, pixel RBR around
the sun in the image is the most direct indicator of cloud conditions and highly
correlated with irradiance. We subsequently combine the persistent model (PM)
with the extracted RBR feature as LR 2 which uses two features, rad(t−1) and
RBR(t). We then expand LR 2 to LR all , which incorporates all candidate
features. Note that LR does not consider a sequence of predictions together.
Although we incorporated the previous time stamp irradiance values as a feature,
it solely focus on the current state prediction and prior or later prediction could
not affect the current status. So, non-stochastic model is myopic compared to
CRFs.

4 Experiments

In this Section, we present strong experimental evidence that the stochastic
multi-feature CRF model outperforms all the other models, including Linear
Regression, Hidden Markov model and Persistent Model.
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4.1 Experimental Setup and model specification

Our experimental data set consists of 345,600 raw TSI images and corresponding
Pyranometer recordings for 24 days gathered at the LISF (Long Island Solar
Farm), from April to August of 2013. The TSI images are received once per
second, and sampled every 20 seconds to produce effective and accurate motion
estimation. The length of our sample data sequence is T = 5760, obtained by
uniformly sampling predicted images every minute from 10:00 am to 14:00 pm
on each experiment day. Corresponding meteorological data from this location is
retrieved from the LISF station. We included all cloud conditions which represent
all weather types. Compared to average annual weather statistics, our dataset
includes a smaller percentage of overcast and clear sky, and a larger fraction of
the fluctuating weather conditions. It is therefore more difficult to predict, which
is where the real challenge of solar irradiance forecasting lies. We evaluate the
prediction performance using mean-absolute-error (MAE) and ran 24 fold cross
validations to tune model parameters and evaluate performances.

For CRF, we included all feature types shown in Table 1 for every timestamp.
Since we could not see the future data in real time forecasting, we separate the
sequence T into short segments of length n� = 5, which imitates the real-time
forecasting of 1-5 minutes ahead respectively. Recall the features we introduced
in Section 2:

{xt} ={rad(t − 1),Δrad(t − 1),Diffinteg,Diffderv,RH(t − 1),Temppanel(t − 1),
Tempair(t − 1),RBRmean,RBRvar,Cc(t + i),Ccmean,Ccvar,
RBR(t + i),bmax(t + i),bmin(t + i),mvsum(t + i),mvcount(t + i),
mvmean(t + i),SBbr(t − 1), int(t + i)}.

(14)

To be comparable to the HMM features, we discretize the numerical features
into categorical data. Regarding the output variable, irradiance readings are
also discretized, and each value is mapped to an integer if the value falls in
the corresponding interval. We tested different discretization levels (number of
states), including nS = 5, 10, 15, 20, 40 states and the best result was obtained
with 10 states. We also tested with different feature combinations from Table 1,
which will be compared later.

4.2 Model Performance Comparisons

The results of the different models are shown in Figure 5. The performance of
baseline PM is sensitive to cloud variability and decreases with respect to time
span.Our stochastic models CRF and HMM show an average of 36% and 16%
improvement, respectively, over the baseline PM and maintain a quite stable
performance even with an increased prediction time span. Even though for a
one minute prediction, HMM does not perform as well as PM or LR, but its per-
formance is relatively constant throughout the 1-5 minute predictions. The LR
model on the other hand, deteriorates quickly as the forecast horizon increases.
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LR all shows a similar trend as PM, while LR 2 particularly stands out for one
minute predictions by taking advantage of the key features and the simplicity
of the modeling. It merges with LR all after 3 minutes. CRF performs the best,
or second best, for 1-5 minute predictions, and is consistent as the forecasting
horizon expands.

In terms of feature sets, we summarize the results in Table 3. The best per-
formance is achieved using a combination of Irradiance-based and Imagery-based
features (1, 3, 4). Imagery-based features alone (3, 4) cannot provide sufficient
information about the previous trend of GHI, but Historical statistics features
(1, 2, 3), on the other hand, do not include information on future cloud move-
ment, and thus both showed less accuracy. Note that Meteorological-based fea-
tures are generally useful proxies for longer term predictions which involve more
seasonal changes and tend to introduce noise to our short-term predictions.

We also provide comparisons on the performance of HMM and CRF with
different number of states. CRF finds the best result at 10 states and HMM at
15 states. Both of them suffer from a small number of states which increases
discretization error, and a large number of states where models require a larger
amount of training datasets.

The performance of CRF is further verified by Figure 6 which gives the
distribution of the difference ΔGHI between the forecasted and measured solar
irradiance. The peaks at zero for the CRF are higher than other models, and it
has a smaller dispersion over the non-stochastic models. Within ±50W/m2, the
CRF model achieves an accumulated precision of roughly 80%.

As an example, in Figure 7, June 6th, 2013 shows a strong agreement between
the 5-minute forecasted GHI with the ground measurement using CRF. Under
such cloudy conditions, PM shows noticeable shifting effect for 5-minutes fore-
cast, missing apparent spikes, and thus has a limited utility for grid operators.
Both HMM and CRF cover the correct range of values for the measured irradi-
ance from the pyranometer, while LR either over-predicts or under-predicts the
solar irradiance. HMM captured all the large spikes but suffers from the lack
of varying features to resolve finer changes. CRF is able to catch most of the
fluctuations, and is more responsive to minor variations in irradiance compared
to all the other models.
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Fig. 5. Comparison among different mod-
els for 1-5 min forecast

Table 2. MAE values for Figure 5.
For comparison, the number of states
of HMM and CRF presented here are
both chosen to be 10.

Method 1 min 2 min 3 min 4 min 5 min
CRF 33.71 39.53 44.20 47.48 51.79
PM 45.52 64.59 72.87 79.66 84.67
LR 2 23.75 46.95 58.83 65.55 70.19
LR all 38.18 52.11 58.70 64.83 68.34
HMM 49.78 53.69 56.01 58.46 62.95
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Table 3. MAE for CRF with different feature
combinations

Feature Set 1
min

2
min

3
min

4
min

5
min

1-4 41.39 45.02 48.62 50.81 53.93
1-3 38.24 44.66 48.06 53.36 57.08
1,3 35.22 41.71 43.18 48.13 53.27
3,4 49.47 50.30 51.99 53.84 58.27

1,3,4 33.71 39.53 44.20 47.48 51.80

Table 4. MAE for different num-
bers of states of CRF and HMM

States CRF HMM
5 53.98 61.15
10 43.34 56.18
15 45.42 54.97
20 50.33 59.44
40 60.15 66.37
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Fig. 6. Comparison of forecasting precision using histogram distribution of the discrep-
ancy between forecasted and observed values of solar irradiance, with 28, 800 points in
each diagram (1-5 min).
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Fig. 7. Forecasting of 5-min ahead using LR, HMM and CRF against PM between
10:10 am and 14:00 pm on the day of June 6th, 2013. PM is displayed as a comparative
baseline. We use LR all here which outperforms LR 2 at 5-min prediction.

5 Conclusion

In this paper, a novel framework of short-term (1 − 5 minute scale) solar irradi-
ance forecasting based on Linear-Chain Conditional Random Field was proposed
and evaluated. Our stochastic model can integrate a rich array of correlated TSI
features from the cloud patterns to cope with the stochastic nature of irradiance
fluctuation. The combination of historical statistics and cloud images from the
TSI synergistically improves prediction performance. The experimental results
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showed that the CRF model demonstrated significant improvements over the
baseline models in terms of the MAE measurement metrics, reduced the fore-
casting discrepancy distribution, and generated a high-precision prediction. In
particular, the averaged error rate for 1 − 5 minute predictions of the CRF
model, measured with the MAE score, is 36% on average less than the baseline
persistent model (PM).
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Abstract. In this work we propose a framework for predicting chess
match outcome while the game is in progress. We make this prediction by
examining the moves made by the players. For this purpose, we propose
a novel ensemble based learning technique where a profile-based segmen-
tation is done on the training dataset, and one classifier is trained from
each such segment. Then the ensemble of classifiers is used to predict the
outcome of new chess matches. When a new game is being played this
ensemble model is used to dynamically predict the probabilities of white
winning, black winning, and drawing after every move. We have evalu-
ated our system with different base learning techniques as well as with
different types of features and applied our technique on a large corpus
of real chess matches, achieving higher prediction accuracies than tradi-
tional classification techniques. We have achieved prediction accuracies
close to 66% and most of the correct predictions were made with nine
or more moves before the game ended. We believe that this work will
motivate the development of online prediction systems for other games,
such as other board games and even some field games.

Keywords: Prediction · Classification · Chess · Data mining · Feature
extraction

1 Introduction

Chess is a well structured game as the states and moves of the games are well
defined. Unlike the games such as soccer, basketball and the like, where the
position of the players, movement of the ball, etc. are not predefined, chess
has predefined set of states (although very large) and moves. Our goal is to
investigate that with the help of machine learning, how well the outcome of such
a structured game can be predicted before the game ends just by examining
the moves made by each player. We believe that the results from this research
will motivate building prediction models for other structured or semi-structured
games, such as other board games, cricket and baseball. This prediction system
will be a useful application for spectators, players as well as trainers for various
purposes. For example, spectators may use this system to understand the status
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 525–537, 2015.
DOI: 10.1007/978-3-319-18038-0 41
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of each opponent’s hold in the game, players can use it to get an early warning
before a move is made, and trainers can use it during the post analysis of the
match to identify the turning points and bad moves in the match.

Computers have been programmed to play chess using AI based search tech-
niques since the second half of the 20th century. IBM’s Deep Blue was the first
computer to defeat World Chess Champion Garry Kasparov in 1997 [6]. Since
then, powerful chess engines have been evolving rapidly and now many com-
mercial chess playing software are available. However, in this work, rather than
proposing another smart chess playing agent, we focus on predicting the outcome
of a chess match before the game ends.

There has been several attempts in the past to predict chess game outcomes
[3,4]. These predictions are static, meaning, they don’t consider the dynamism
of the game, and predict the outcome before the game has started. On the
contrary, our proposed system dynamically updates the winning (or drawing)
probabilities after each move of the game. In our system, an ensemble training
and classification approach is used for the prediction task. We use a profiling
technique to separate chess games into different profiles based on the number of
moves in the games. Then we extract move-based features from each chess game
and develop feature vectors. These feature vectors are used to train a classifier
for each profile. We use an ensemble of the classifiers to predict the outcome of a
new game. We show both analytically and empirically that the ensemble based
classifier is superior to a single classifiers trained with all the historical data.

To the best of our knowledge, this is the first approach to dynamically predict
chess match outcome with the help of machine learning using only the informa-
tion obtained form the moves of the game. Our contributions are as follows.
First, we propose a learning technique that extracts move based features from
the games. Second, we have proposed a novel technique for training classifi-
cation models by carefully choosing and segmenting the training data with our
profiling-segmentation technique and applying the trained models to predict new
games. Third, we have proposed an online and adaptive ensemble classification
technique for improving the prediction accuracy. Finally, we have applied our
technique on a large corpus of real chess matches and obtained higher prediction
accuracy than traditional classification techniques.

The rest of the paper is organized as follows. Section 2 discusses the work
closely relevant to our work. Section 3 and 4 describe the proposed method in
details and Section 5 reports the experiments, results, and analyzes the results.
Finally, Section 6 concludes with direction to future works.

2 Related Work

Several works have been proposed for chess game prediction using machine learn-
ing or data mining techniques. A Chess Game Result Prediction System was
proposed by Fan et. al. [3]. Their project was to train a classifier with the World
Chess Federation (FIDE) rating system using a training dataset of a recent
eleven-year period, which ranges from year 2000 to 2011, and then use their
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system to predict the outcome of chess games played by the same players in the
following half year. Their success rate of the prediction was 55.64%.

Another similar work was reported by Ferreira [4], who also applied a predic-
tion model trained on the outcomes of chess games in past few years and used
to predict future games played by the same players. The model was trained iter-
atively, and it contained several parameters for tuning. However, it is not clear
what was the prediction accuracy of the proposed method. In another interest-
ing work, Ferreira [5] proposed a technique to determine the strength of a chess
player based on his actual moves in a game.

However, our approach is different from the above in several ways. First,
we do not use any information of the player (i.e. Elo rating) for training, and
second, we use an ensemble based classification technique. Finally, our approach
is dynamic, meaning, the prediction is updated as the game progresses. On the
contrary, all previous approaches are static prediction, meaning, the predictions
are fixed and computed before the game is played.

We now discuss some state-of-the-art ensemble classification techniques. En-
semble classification models have been effectively used in recent years for classify-
ing large data evolving data streams [1,8]. Ensemble classification models consist
of an ensemble (collection) of classifiers. When classifying an unknown instance,
each individual classifier outputs its own prediction and a majority vote is taken
to choose the winning class. This winning class is the predicted class for the
ensemble. There are different majority voting techniques available, namely, sim-
ple majority and weighted majority. The ensemble approaches mentioned above
are good in handling dynamic data stream, where the data are always evolv-
ing. However, as per our observation, the problem of predicting chess matches
is rather noisy data than evolving data. So we propose our own noise reduction
technique to achieve high prediction accuracy.

Fig. 1. Overview of the prediction system

3 Proposed Method

In this paper, we propose a general framework for the prediction system. The
high level design of the system is shown in figure 1. The chess database is a
collection of past chess games (Section 3.1). From this database, we extract and
select features (Section 3.2) to generate the training data, which is used to train
a classification model (Section 4.1). Finally, when a new game is played, the
probabilities of win/loss/draw are predicted after every move using the trained
classifier (Section 4.2). Following sections detail each component of the system.
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3.1 Chess Database

There are many chess databases available online. However, we choose the data-
base from ChessOK.com [2] because of several reasons. First, the database is
free. Second, it contains the games of all major tournaments from the year 2011.
Finally, the games in the database are well organized - month by month basis,
which is useful for our purpose.

The games in the database are stored in PGN format. Each month’s games
are divided into smaller chunks of games, each chunk containing approximately
1,900-2,000 games. Each game in the database contains several information about
the match, such as date, tournament name, players’ names and ratings. Then
the actual moves of the game are listed. An example of a PGN file is shown in
figure 2.

Fig. 2. Format of the PGN file

3.2 Feature Extraction and Selection

For each game we utilize the move-based information for the training and pre-
diction. We extract two types of features from the moves, namely, split-move
and n-ply features, as explained below.

Split-move Features: These features are generated by splitting each ply (a
move by one player) into five nominal features, namely, piece, column, row, check
and capture, which are explained below:

Piece type, having six possible values: {P, R, N, B, Q, K}, representing Pawn,
Rook, Knight, Bishop, Queen, and King, respectively.
Column (column or file of the chess board), having 8 possible values: {a - h }
Row (row of the chess board), having 8 possible values: { 1 - 8 }
Capture (captured opponent’s piece or not)= {0, 1}
Check (checked opponent’s King or not) = {0, 1}

For each game, we convert each ply into these five nominal features and
generate the feature vector. Therefore, if the game consists of 21 moves, meaning
42 plies, then there will be 42 * 5 = 210 nominal features, arranged in the same
order as the moves appear in the game. For example, for the game in figure 2,
the split-move features (comma separated) will be as follows:
{N,f,3,0,0,N,f,6,0,0,P,c,4,0,0,P,g,6,0,0,....}.

A game may have any number of moves. Therefore,this feature-based app-
roach generates different number of features for different games. However, most
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machine learning techniques require fixed size feature vector (i.e., same number
of features for all data). This issue is discussed in details in the next section
(Section 4). The advantage of this approach is that that the order of moves are
preserved in the feature vector.

n-ply Features: These features are generated by considering each ply (e.g.
‘Nf6+’) as a feature. There are two steps in generating the feature vector for
these features. In the first step, we scan the whole database of games and collect
all possible features from all games. Let S be the set of all such features obtained
from all the games. The next step is to generate a feature vector for each game.
The feature vector will be a vector of bits, where biti=0 of the i-th feature Si

is absent in the game and biti=1, if the i-th feature Si is present. One problem
in this approach is that the number of features, i.e., the size of S may be very
large. In this case, we apply a feature selection technique based on information
gain, and choose the best K features to be used in the feature vector.

Algorithm 1. PROSEGEN
Input: n: number of segments

T : Training data
Output: H: the segment boundaries of the segmented training data, H = {H1, ...Hm}

E: the ensemble classifier, E = {E1, ...Em}
1: N ← |T | //Training data size
2: Max ← Maximum number of moves in any game in T
3: for i ← 1 to Max do
4: Bi ← {x ∈ T |Moves(x) = i} /* Separate games into bins of i moves */
5: end for
6: i ← 0, j ← 0
7: G ← φ //segmented data
8: H ← φ //segment boundaries
9: while j < Max do

10: Gi ← Gi ∪ Bj

11: if |Gi| ≥ N/n then
12: Hi ← j /* set the current boundary */
13: i ← i + 1 /* segment is full, goto next one */
14: end if
15: j ← j + 1
16: end while
17: m ← i //actual number of segments
18: for i ← 0 to m − 1 do
19: Ei ← TrainClassifier(Gi)
20: end for

4 Training and Prediction

The training process consists of two stages: i) profiling and segmentation (PRO-
breakSEG) and ii) building the ensemble (EN) of classifiers. The prediction
involves using the ensemble classifier for predicting results of new games.
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4.1 Profiling and Segmentation of Data

As mentioned earlier, variable number of moves in the games lead to variable
number of split-move features, which is problematic for learning techniques that
rely on vector-based features. However, we can manipulate the feature vectors to
keep them equal. For example, suppose we choose vector size to be 200 moves.
Therefore, a game having only 20 moves will have to be padded by 180 null or
default values. This introduces noise in the training data, reducing the perfor-
mance of the trained classifier. To solve this problem, we propose a profiling
(PRO) and segmentation (SEG) technique, implemented with algorithm 1.

Description of Algorithm 1: It takes as input the training data T , and the
number of segments n to created. Let N be the dataset size, i.e., total number of
games in T . First, we create separate bins and keep all games having i moves into
bin i (lines 3-5). Then we create each segment by joining the adjacent bins in a
way such that each segment contains approximately the same number of games
(lines 9-16). This is done to avoid dominance by any data segment. Besides, since
we are going to build an ensemble of classifiers, we also need to ensure that each
classifier gets equal amount of training data so that all classifiers achieve same
quality (i.e., prediction power). Finally, we train one classifier from each data
segment. In the experiments (Section 5), we show a detailed analysis of the bin
sizes and performance of the ensemble on each bin.

Noise Reduction by Segmentation: Now we show that the segmentation
reduces noise in the training data. Let m be the maximum number of moves
considered in building the unsegmented training data, T . As mentioned earlier,
all instances (i.e., games) in the feature vector must have equal length. Therefore,
games having less than m moves must be padded with default feature values (e.g.
zero) to make the feature vectors equal length. Therefore, the padded values can
be considered as noise added to the features. For simplicity of representation,
suppose we divide the training data into two equal segments, T1 and T2, i.e.,
T = T1 ∪ T2 and |T1| = |T2|, such that T1 contains all the games having m1 or
less moves and T2 contains all the games having m1 + 1 or more (upto m) moves.
Also, let fi = number of instances (i.e., games) having i moves. Therefore,

m∑

i=1

fi = |T |;
m1∑

i=1

fi = |T1|;
m∑

i=m1+1

fi = |T2| (1)

Let η(T ) = Added noise in T = Total padded moves in T . Note that a game
having i < m moves is padded with m − i moves. Therefore,

η(T ) =

m∑

i=1

(m − i)fi =

m∑

i=1

mfi −
m∑

i=1

ifi = m|T | −
m∑

i=1

ifi (using equation (1) )

= m|T | −
m1∑

i=1

ifi −
m∑

i=m1+1

ifi > m|T | −
m1∑

i=1

ifi −
m∑

i=m1+1

mfi (since m ≥ i)
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= m(|T1| + |T2|) −
m1∑

i=1

ifi − m(|T2|) (using equation (1) )

= m(|T1|) −
m1∑

i=1

ifi > m1|T1| −
m1∑

i=1

ifi = η(T1) (2)

Where η(T1) is the added noise in the segment T1. The same proof is applicable to
segment T2. Therefore, equation (2) concludes that the added noise in segmented
training data is less than that of the combined training data. If we keep dividing
the segments into smaller and equal segments, the noise reduction will continue
upto a point where this advantage in noise reduction will be outweighed by
insufficient amount of training data. This trade-off between noise reduction and
diminished training data must be considered during training.

4.2 Ensemble Classification

The ensemble of classifiers is then used to classify new games. The classification
process is shown in algorithm 2.

Algorithm 2. Classification
Input: x: The game to classify

E: the ensemble classifier, E = {E1, ...Em}
H: the segment boundaries of the segmented training data, H = {H1, ...Hm}

Output: Y : the prediction vector for x, Y = {Pwhite, Pblack, Pdraw}
1: index ← SegId(H, Moves(x)) // Find the segment index for x
2: Y ← GetPrediction(Eindex, x)

Description of Algorithm 2: The input to the algorithm are the ensemble
(E) and the game to classify (x). The game x may be an ongoing game (i.e.,
not finished yet). First, based on the number of moves already made in the
game, we find the appropriate segment where the game fits in (line 1). Then we
predict the game using the corresponding classifier (line 2). This classification
is analogous to an weighted ensemble classification, where the weight for the
classifier corresponding to x’s segment is 1, and the weight of all other classifiers
in the ensemble is 0. This is done to minimize feature noise in the test data.

5 Experiments

In this section we describe the datasets, experimental environment, and discuss
and analyze the results.

5.1 Data Sets and Experimental Setup
The dataset [2] contains a collection of more than 300,000 chess games dated
from October 2011 upto August 2014. The data are divided into approximately
equal sized batches of about 2000 games, organized in a single PGN file. For each
month, there are 4-6 such batches. We use the games from 2011-2013 as training
and the games from 2014 for testing, i.e., evaluating the trained prediction model.
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Competing Approaches:
BC: The traditional batch learning classifier, which is trained with all the

training data.
EE: An ensemble classifier with equal weight given to each individual classifi-

cation model in the ensemble. The predicted class is the class that has majority
vote. Each such individual model is trained from one segment of the training
data, segmented using the proposed segmentation technique.

PE: This is the PROSEGEN ensemble model, which is an weighted ensemble
with highest weight (1) given to the individual classification model that belongs
to the same bin as the test instance. Other classifiers are given zero weight.

Base Classifiers: We have experimented with several classifiers. For each classi-
fier, we used the WEKA machine learning API [9]. The classifiers are NaiveBayes
(NB), Decision Tree (J48 in WEKA) Random Forest (RF), and Support Vector
Machine (SVM).

Besides these classifiers, we have also experimented with sequence-based clas-
sifiers by considering the game as a sequence of moves. The classifiers are: Hid-
den Markov Model (HMM) classifier and Bounded Coordinate-Descent sequence
classifier [7]. However, their prediction accuracies are far below the others and
so, we do not report them.

Feature Set: We have used both the split-move and n-ply features in our exper-
iments but due to space limitation, we report only the results for split-move
features because they achieve higher prediction accuracy.

Parameter Settings: The only parameter in our approach is the number of
segments (i.e., n), which also decides the ensemble size. In all experiments, we
keep 12 < n < 16 as we obtain the best results for these values. For the classifiers
used in WEKA, we use the default parameter values provided by the API.

Hardware and Software: The experiments were done on a standalone work-
station having Intel Core i5 2.4GHz processor with 8GB RAM and 750GB Hard
Drive. The OS was Windows 7. All programs have been developed with Java
with NetBeans IDE, and Weka API [9] has been used for the base classifiers.

5.2 Evaluation

Unless mentioned otherwise, we use prediction accuracy (Acc %) as the evalu-
ation metric, which is the percentage of instance correctly classified. Here the
classification problem is considered multi-class because there are three classes,
namely, white winning, black winning, and draw. Also, unless mentioned other-
wise, the accuracy are obtained by evaluating complete games (i.e., all moves are
considered). Also, in all the evaluations, the training data are the games played
in the years 2011 to 2013, and the evaluation (i.e., test) data are the games
played in year 2014.
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Fig. 3. (a) Number of training data vs accuracy, and (b) Feature set size vs accuracy

Effect of Varying Training Data: First, we evaluate the effectiveness of the learn-
ing techniques by varying the size of training data. Figure 3(a) shows the effect
for decision tree (J48) classifier. Similar effect is obtained for other classifiers.
We vary the training data from 33,000 to 270,000, where 33,000 dataset contains
only the games from year 2011 and 270,000 dataset contains all the games from
2011 to 2013 obtained from [2]. We see that all competing approaches show the
similar trend, i.e., increasing training data increases the classification accuracy.
For example, for 33K training data, the accuracies of PE, EE, and BC are 59.8,
36.4, and 51.6, respectively, whereas for 270K training data, the values are 65.6,
40.8, and 59.8, respectively. In all cases, PE has the highest accuracy being at
least 5% higher than that of BC, and 15% higher than that of EE.

Feature Set Size vs Accuracy: We varied the size of feature sets by capping the
number of moves to a lower value and this effect is shown in figure 3(b) for
Naive Bayes, using the 270,000 training dataset. The X axis shows the number
of moves chosen as features and the Y axis shows the accuracy for each complet-
ing approach. For example, X=40 means we choose only the first 40 moves of
each game as features and ignore the remaining moves. For this value of X, we
obtain accuracies of PE, EE, and BC as 57.8%, 51.4%, and 43.3%, respectively.
The general trend here is that with increasing size of feature set, the accuracy
increases. This is because as more moves are considered for features, more infor-
mation are obtained from the game, which facilitates achieving higher accuracy.
Also, here in all cases, PE has the highest accuracy.

Summary on All Datasets, Classifiers, and Competitors: Table 1 shows the sum-
mary of the results for each competing methods using each classifier and datasets.
The columns under “training data size” report the accuracy for different sizes of
training data, ranging from 33K to 270K. Also, the rows corresponding to each
classifier report the classification accuracy of each competing approach when
trained with different sizes of training data. Note that in all cases, the test data
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Table 1. Summary result

Classifier Competitor
Training data size (x1000)

Classifier Competitor
Training data size (x1000)

33 90 170 210 270 33 90 170 210 270

NB
PE 60.2 61.7 62.6 62.7 62.8

RF
PE 47.4 48.8 50.6 50.9 50.9

EE 43.4 40.5 39.5 39.6 46.8 EE 40.6 41.1 39.9 41.6 39.1
BC 47.5 47.8 48.1 47.8 48.0 BC 43.7 43.9 44.2 44.7 45.3

J48
PE 59.8 62 64 64.6 65.6

SVM
PE 58.4 62.0

EE 36.4 35.9 35.4 35.5 40.8 EE 45 46.4 — — —
BC 51.6 56.4 58.2 59.1 59.8 BC 51 —

is the same, which is the set of 23,000 games played in 2014. As an example, the
row headed by “J48”, and “PE” shows the accuracy of PE using decision tree
(J48) classifier when trained with training data having sizes ranging from 33,000
to 273,000. Note that the highest accuracy (65.6%) is obtained with J48 and PE
for 273,000 training data. We are only able to train the SVM with 33,000 train-
ing data, and with the 90,000 training data for PE and EE, because for larger
datasets, SVM crashed due to insufficient memory (we used upto 6GB memory
for JVM). Therefore, we are unable to report the accuracies for SVM for larger
training datasets. Also, note that in all settings, PE has the highest prediction
accuracy. The main reason of PE having higher accuracy than BC is because
of the noise reduction using profiling-segmentation and ensemble classification.
The reason for PE having higher accuracy than EE is because PE assigns proper
weight to the classifiers, whereas EE assigns equal weights, without judging the
relative importance of the classifiers in the ensemble.

How Early Can We Predict? In this experiment, we answer the question, i.e.,
how early can we correctly predict the outcome of the game? We answer this in
the number of moves, i.e., we say, we predict K move early, meaning, we correctly
predict the outcome of the chess match K moves before the game ended. Figure
4(a) shows the summary on the same test dataset, with PE using Naive Bayes
and 270,000 training data.

Figure 4(a) reports only the games that are correctly predicted. Note that
out of 23,000 games in the test data, about 14,500 were correctly predicted.
Each segment of the pie chart shows two values: the number of moves, and a
percentage. For example, consider the segment: 1 move, 9%. This means 9% of
the correctly predicted games (about 1,300 games) had the correct prediction 1
move before the game ended. Similarly, the segment 4-5 moves, 15% means 15%
of the correctly predicted games (about 3,500 games) had the prediction 4 or 5
moves before the game ended. If we examine carefully, we would notice that about
one third (31%) of the correctly predicted games (about 7,000 games) obtained
the correct prediction at least 16 moves before the game ended, which is really
promising. This means that with this data mining technique, we have a good
chance to predict correctly long before the game ends. In order to demonstrate
the effectiveness of this prediction system, we apply it on the so called “game
of the century”, played between Donald Byrne (white) and 13-year-old Bobby
Fischer (black) in 1956. The probabilities of white winning, draw, and black
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Fig. 4. (a) Early prediction stats: what % of games were correctly predicted how many
moves early, (b) The move-by-move update of probability for the game of the century
(Byrne-vs-Fischer:1956)

winning after each move is shown in the graphs in figure 4(b). At the beginning
of the game (< 10 moves), the chances of draw is high. Between 10 and 16, we
observe a seesaw between white and black but white seems to have the upper
hand. However, note that from move 17 and onward, winning probability of
black is raised to near 100%. This reflects the brilliant counter made at the 17th
move by Fischer, which is sometimes called the “counter of the century”. We see
that after this move, black is always on the top and black winning has highest
probability (some fluctuations between draw and black is observed between 30-
40 moves but the final outcome is correct). Therefore, our system could detect
well the turning point in the game and also predict the final outcome about 22
moves earlier than the game ended.

Other Statistics: We also report several statistics about the games and predic-
tions. In figure 5(a), we report the number of games having a particular number
of moves and how many of these games are correctly predicted in the test data.
The X-axis shows the number of moves. For a particular value of X, say 40,
the Y values indicate how many games have exactly 40 moves, which is 550,
according to the graph (the higher line); and how many games out of these 550
are correctly predicted by our approach (the lower line), which is 335 in this
case. From these two histograms we can come to two conclusions. First, most
of the games have 30-60 moves. We observe similar distributions in the training
data. The correct predictions are also similarly distributed, i.e, the prediction
accuracy does not depend on number of moves in the game.

Figure 5(b) shows the distribution of games having different outcomes (white
winning, black winning, and draw) in the test data, and the distributions are
similar to the training data. Note that these three outcomes have almost the
same probabilities, therefore, the datasets have balanced class distribution. Also,
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Fig. 5. (a) Histogram of total games and total correct predictions for different number
of moves (b) Statistics of three types of outcomes and correct prediction for each

about 70% of the white winning (6293/8860) or black winning (4829/6938) games
are correctly predicted. However, this accuracy is lower (43% = 3212/7370) for
the games ending with draw. This happens because of the higher uncertainty
involved in these games compared to the deciding games.

Table 2. Running time (in seconds) comparison

PE EE BC

NB J48 RF SVM NB J48 RF SVM NB J48 RF SVM

23 40 24 8,478 205 204 189 55,107 147 512 137 102,400

Table 2 shows the running times (training + testing, in seconds) of different
techniques when trained with 33,000 training data and tested with 23,000 test
data. It is evident that PE is the fastest approach. PE is faster than BC because
BC uses all training data together to build the classifier, whereas PE divides
the data into n approximately equal segments and builds one classifier out of
each segment. Therefore, training of PE is faster than that of BC. Also, PE has
lower running time than EE because PE uses only one classifier for prediction,
whereas EE uses all classifiers and takes the majority.

6 Conclusion

In this paper we proposed an online and dynamic prediction system for early
prediction of chess match results. To the best of our knowledge, this is the first
approach to use the move-based features, profiling-segmentation based ensem-
ble training for building the prediction models, and dynamic prediction of chess
game while the game is in progress. We have applied our technique on a large
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corpus of real chess matches and obtained higher prediction accuracy than bench-
mark contemporary techniques. In the future we would like to investigate more
on retrieving deeper domain knowledge and experiment with other features, such
as sequence of moves and sequence of states, and use relevant sequence or time
series classification techniques.
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Abstract. Interestingness measures stand as proxy for “real human
interest,” but their effectiveness is rarely studied empirically due to the
difficulty of obtaining ground-truth data. We propose a method based
on learning-to-rank algorithms that enables pairwise rankings collected
from domain community members to be used to learn a domain-specific
measure. We apply this method to study the interestingness measures in
finance, specifically, investment performance evaluation measures. More
than 100 such measures have been proposed with no way of knowing
which most closely matches the preferences of domain users. We use
crowd-sourcing to collect gold-standard truth from traders and quanti-
tative analysts in the form of pairwise rankings of equity graphs. With
these rankings, we evaluate the accuracy with which each measure pre-
dicts the user-preferred equity graph. We then learn a new investment
performance measure which has higher test accuracy than the currently
proposed measures, in particular the commonly used Sharpe ratio.

1 Introduction

The goal of data mining is to automatically identify “interesting” patterns in
a dataset. Data mining algorithms therefore utilize an interestingness measure,
a function that assigns a numerical score to a given pattern, to evaluate and
rank patterns. Several interestingness measures have been proposed, surveyed,
and evaluated for different domains [3,13,16,19,20,26,27]. The choice of inter-
estingness measure depends on the specific domain since a pattern can exhibit
multiple desirable attributes which must be traded-off against each other.

Designing an interestingness measure for a specific domain is challenging
and typically requires a domain expert to create a new function and identify a
set of features that can be calculated from the dataset attributes [22]. As an
alternate approach, we propose a method to learn an interestingness measure
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 538–549, 2015.
DOI: 10.1007/978-3-319-18038-0 42
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from crowd-sourced data collected from end-users in the domain community. In
our approach, domain users are presented with pairs of candidate patterns and
are asked to rank one over the other. Pairwise ranking is a non-arduous way for
domain users to share preference information. It also facilitates the combining of
preference information from multiple users. The collected pairwise rankings are
then provided as input to a learning-to-rank algorithm to learn a model of user
preference which can be used as an interestingness measure. The features in the
learning model are previously proposed interestingness measures for the domain.
The result is a custom measure that represents “real human interest” [22] in the
domain as expressed by its users.

We demonstrate the proposed approach and evaluate its effectiveness in the
domain of finance, specifically the task of learning an investment performance
measure that reflects the preferences of investment professionals. Investment
preference rankings are collected from users of online discussion forums com-
prised of quantitative analysts and traders. The model features that are used in
the learning-to-rank algorithm include currently used investment performance
metrics and ratios. The learned model achieves an accuracy of 80% for pre-
dicting the domain users’ preference, while the highest accuracy of any single
existing performance measure is 77%.

We believe that learning such an interestingness measure can benefit this
domain since there is a large number of investment choices. For instance, the
United States has over 5,000 exchange-traded stocks and over 7,000 mutual fund
choices. Our proposed approach can enable individuals to locate investments that
match their specific interests. Moreover, the learned interestingness measure can
also be used as an objective function for portfolio selection and optimization.

The contributions of this work are as follows:

1. We propose a novel approach based on learning-to-rank algorithms that
enables a domain-specific performance measure to be learned from domain
community contributions. The method requires only pairwise preferences
from domain experts.

2. We evaluate this approach in the domain of investment ranking and show
that the learned performance measure has higher accuracy than existing
domain-specific measures. We also address issues of data quality that are
critical in crowd-sourced datasets.

3. We provide all data collected as part of this study to encourage further
research in this area1.

2 Related Work

Ohsaki et al. [22] experimentally compared interestingness measures against real
human interest in medical data mining. They generated prognosis-prediction
rules from a clinical dataset on hepatitis. They then had a medical expert eval-
uate rules as Especially-Interesting, Interesting, Not-Understandable, and Not-
Interesting. Carvalho et al. [5] build on [22] with evaluations on eight datasets.
1 http://thames.usc.edu/rank.zip

http://thames.usc.edu/rank.zip
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They presented nine rules to each expert for each interestingness measure: the
best three, the worst three, and three in the middle. Experts were asked to assign
a subjective degree of interestingness to each rule. Tan et al. [26] studied ways
to select the best interestingness measure for association rules – instead of using
actual experts to rank contingency tables, they consider a held-out measure as
the expert (and repeat over all measures). None of these works attempt to learn
an interestingness measure from domain experts as we propose in this work.

To the best of our knowledge, no work has been published on compar-
ing investment performance measure rankings against real human interest. For
related work in finance, we summarize publications that describe the relative per-
formance of different evaluation measures in this domain. Justification for these
proposed measures is axiomatic, based on the properties of the measures [1,17].
Farinelli et al. [11] compare eleven performance ratios. Their work includes a lim-
ited empirical simulation, evaluating how well each ratio performed forecasting
five stock indexes. They find that asymmetrical performance ratios work bet-
ter and recommend that more than a single performance ratio be used. Cogneau
and Hübner [7] survey over 100 investment performance measures. They provide
a taxonomy and classification of measures based on their objectives, proper-
ties, and degree of generalization. Bacon [2] also provides a thorough survey of
measures grouped into categories.

Some of the current research indicates that different performance metrics
produce substantially the same rank orders. Hahn et al. [14] used 10 perfor-
mance measures to rank data from two proprietary trading books and found
high values of Spearman’s rank correlation. Eling and Schuhmacher [10] find
high rank correlation (0.96) between 13 performance measures that were used to
rank the returns of 2,763 hedge funds. Eling [9] confirmed the high rank correla-
tion between measures when applied to 38,954 mutual funds from 7 asset classes.
On the other hand, Zakamouline [28] describe several less correlated measures
and suggest the use of Kendall’s tau instead of Spearman’s rho for measuring
rank correlation. None of these four studies considered the Pain, Ulcer, and
Martin-related measures discussed in Section 3.3.

3 Finance Background

Investment performance measures are designed to weigh the risk as well as the
reward, and are therefore called “risk-adjusted returns.” Metrics are structured
as ratios, with return on investment in the numerator, and risk in the denom-
inator. In this way, a single metric can compare two investment options with
different risk profiles.

While return on investment is a standard measure of reward, there are mul-
tiple measures of risk and hence consensus has not yet been reached as to which
performance measure is best [11]. New performance metrics continue to be pro-
posed [7,21], and investors have to choose from among them [2].

We first describe equity graphs which provide a visualization of asset per-
formance, followed by a summary of performance measures that will be used as
features in our learning model.
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3.1 Equity Graphs

Historical performance is often presented as an equity graph, which shows the value
of one’s investment account over time. Equity graphs enable domain experts to
rapidly evaluate historical performance. While there are different types of equity
graphs, in our work we use the common variant where the graph presents a cumu-
lative sum of daily returns. This is equivalent to assuming exactly one dollar was
invested each day, with profits removed from the account. Such a graph is easy to
examine, since the ideal is a straight line from the lower left corner to the upper
right corner. Examples are shown in Figures 1, 2, and 3.

3.2 Distribution-Based Measures

Many performance measures calculate risk based on the distribution of returns.
For a time series R, the return on investment for each period, Rt is:

Rt ≡ St − St−1

St−1

where St is the asset value at time t.
The baseline investment performance measure is the reward to variability

ratio, the Sharpe ratio [23]. The Sharpe ratio is widely used [9], with surveys
showing its use by up to 93% of money managers [2]. This performance measure
is “optimal” if the return distribution is normal. The Sharpe ratio is closely
related to the t-statistic for measuring the statistical significance of the mean
differential return [24].

Using the same notation as Sharpe [24], let RFt be the return of the invest-
ment in period t, RBt the return of the benchmark security (commonly the
risk-free interest rate) in period t, and Dt the differential return in period t:

Dt ≡ RFt − RBt

Let D̄ be the average value of Dt from period t = 1 through T :

D̄ ≡ 1
T

T∑

t=1

Dt

and σD be the standard deviation over the period:

σD ≡
√

∑T
t=1(Dt − D̄)2

T − 1

The Sharpe Ratio (Sh) is:

Sh ≡ D̄

σD

Many performance evaluation measures are modifications of the Sharpe ratio.
Given that asset returns are often non-normal, researchers have developed mea-
sures that incorporate higher moments of the distribution [17]. The Sortino



542 G. Harris et al.

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

R
et

ur
ns

Time (most recent 5 years)

Sharpe ratio = 2.5
Maximum drawdown = −0.057

Time (most recent 5 years)

Sharpe ratio = 2.5
Maximum drawdown = −0.22

Fig. 1. The red chart on the right was generated by randomly permuting the daily
returns from the blue chart on the left. Both have the same distribution of daily returns,
and hence the same daily Sharpe ratio. This figure illustrates how distribution-based
performance measures cannot capture some features preferred by traders, such as a
small maximum drawdown.

ratio [25] is similar to the Sharpe ratio, except it uses the semi-standard devia-
tion (downside risk) in the denominator. Other measures consider only the very
worst returns in the tail of the return distribution [1,8].

3.3 Multi-Period-Based Measures

Shape-based measures focus on multi-period drawdowns instead of return dis-
tributions. The Maximum Drawdown is defined as the maximum peak-to-valley
decline in the equity graph. Figure 1 shows how two orderings of returns can
have very different maximum drawdowns while still having the same daily Sharpe
ratio. The chart on the right has an unappealing drawdown of 22%, yet it has
the exact same distribution of returns as the chart on the left (with a drawdown
of only 6%).

Drawdown can also be defined as a string of consecutive negative returns.
Many performance measures consider aspects of the distribution of such draw-
downs instead of returns, including the mean, standard deviation, and selected
number of worst drawdowns.

The Martin ratio, or “Ulcer performance index” has the same numerator as
the Sharpe ratio, but has the Ulcer index as the denominator. Using the notation
in Bacon [2], let D′

i be the drawdown since the previous peak in period i. The
Ulcer index is then defined as:

Ulcer index UI =

√
√
√
√

n∑

i=1

D′2
i

n

Figure 2 shows an equity graph with each D′
i shown in black. The Ulcer index

penalizes long drawdowns.
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The Pain ratio also has the same numerator as the Sharpe ratio. The denom-
inator is the Pain index, a modified form of the Ulcer index:

Pain index PI =
n∑

i=1

|D′
i|

n

The Pain index also penalizes long drawdowns but does not penalize deep draw-
downs as severely as the Ulcer index.

Max Days Since First at This Level is an intuitive measure that we define as
the longest horizontal line that can be drawn between two points on the graph, as
shown in Figure 3. We introduce it here because it is not found in the literature,
and we find it ranks highly in our experiments.

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

R
et

ur
ns

Time (most recent 5 years)

Fig. 2. The Pain index is the area col-
ored black. The Ulcer index is the root
mean squared height of each vertical
black line.
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Fig. 3. “Max Days Since First at This
Level” is the longest horizontal line that
can be drawn between two points on the
graph

4 Approach

We now describe our approach to learn an investment performance measure with
higher rank prediction accuracy than the current performance measures, using
crowd-sourced domain user input. The steps of our approach are as follows:

1. Generate equity graphs simulating reasonable investment performance.
2. Collect preference data for the generated equity graphs from domain users

in the form of pairwise rankings.
3. Use learning-to-rank algorithms with individual performance measures as

features to create a new performance measure.

4.1 Generating Equity Graphs

Our approach uses equity graphs as a means for enabling domain experts to
rapidly compare two strategies or investments. We generated (synthetic) equity
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graphs that follow a log-normal random walk. In this model, the asset price, St,
follows the stochastic differential equation:

dSt = μStdt + σStdWt

where μ is the constant drift, σ is the constant volatility, and dWt is a Wiener
process.

We generated discrete differential simple returns representing five years with
252 business days per year. The returns are normally distributed with a mean
of 0.125 and a standard deviation of 1. These values were chosen to lead to a
broad distribution of Sharpe ratios centered around 2. Of these, only graphs with
Sharpe ratios between 1.5 and 2.5 are retained. This range corresponds to the
range of Sharpe ratios typically encountered. Ratios below 1.5 are unattractive
as an investment, and ratios greater than 2.5 are very rare in practice. In total,
we generated 2,000 charts.

For each graph, we normalize the set of returns to sum to 1. Normalizing
the cumulative return enables domain experts to directly compare risk metrics
(such as the maximum drawdown) on the same scale.

4.2 Collection of Ranking Data

One of our innovations is the collection of domain expert preferences in the
form of pairwise rankings. We believe that it is easier for a participant to choose
between two equity graphs than to decide on a numeric score for every individual
graph. In particular, numeric scores require that these be normalized before
aggregating scores to account for the different preference scales of participants.
This normalization would be difficult for cases where a participant only labeled
a small number of charts. In contrast, our pairwise ranking-based method is fast
for human users with median ranking time between 3 and 4 seconds.

We created a web page that described our research goal and presented two
randomly chosen equity graphs side-by-side. A participant is asked which of
these two investments is more attractive to invest in for the future. We requested
participation from domain experts in two online forums. The first forum targets
quantitative analysts and risk managers. The second forum targets individual
traders, although some members run small hedge funds or are commodity trading
advisors. 66 different anonymous people from these forums ranked a total of 1,004
chart pairs. We believe that the participation of many professionals is validation
of community interest in improving investment performance measurement.

One author also ranked 1,659 equity graph pairs, including a re-ranking of
every pair ranked by the community. In order to estimate self-consistency of
rankings, the author later re-ranked each of the same 1,659 graph pairs. The
estimate of self-consistency is 90%. In all rankings and re-rankings, the equity
graph positions (i.e., left or right side) were chosen randomly.

4.3 Data Quality

Ensuring quality of crowd-sourced data is a recognized problem [18]. As expected,
we found that some of the crowd-sourced data was of low quality. In this section,
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we describe the steps performed to derive a higher quality data subset from the
crowd-sourced annotations.

One author tagged each of the pairs of equity graphs used for crowd-sourced
ranking as either “close call” (81%) or “clear choice” (19%). A “clear choice”
tag indicates that the author’s preference was strong and this view was likely
to reflect universal preferences. The author was 100% self-consistent when re-
ranking “clear choice” equity graph pairs.

To identify low quality contributions, we evaluated each contribution accord-
ing to the following characteristics:

– Small median time between clicks
– A high fraction of times the participant clicked the same button (i.e., left or

right), rather than alternating approximately uniformly between the two
– A systematic preference for the chart with the lower Sharpe ratio
– A relatively high fraction of rankings that contradict the author’s “clear

choice” rankings

Overall, we filtered out 129 rankings, leaving 875 of the original 1,004. As such
a data quality filter is subjective, we also ran all experiments on the unfiltered
dataset in addition to making the data publicly available.

4.4 Learning-to-Rank

A learning-to-rank algorithm predicts the order of two objects given training
data consisting of partial orders of objects (and their features). We use the
learning-to-rank algorithm proposed by Herbrich et al. [15]. In this method,
the ranking task is transformed into a supervised binary classification task by
considering the difference between corresponding features. This transformation
also enables the use of other learning algorithms in addition to support vector
machines as originally proposed by Herbrich et al. [15].

The three classification algorithms we use in this work are:

1. Logistic regression, with L1-norm regularization [12]
2. Random forests [4]
3. SVM with linear and RBF kernels [6]

Given two objects, A and B, the learning-to-rank task is to predict if A > B
based on their respective features. It is redundant to include both A > B and
B > A (with negated feature differences) when training a model. In order to
ensure balanced numbers of classes for the model to learn, we chose one of either
A > B or B > A for each instance such that there were equal numbers of
positive and negative instances in the training data. Balancing the training data
also ensures that the intercept or bias term will be zero for logistic regression.

Features. The features we use as inputs to the machine learning models include
relevant risk and performance metrics found in Bacon’s comprehensive survey [2]
which also provides descriptions of each measure using uniform notation. Note
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Fig. 4. Accuracy of learning-to-rank models trained and tested on crowd-sourced “real
human interest” data in the form of pairwise rankings

that for our normalized charts, risk metrics produce identical rank orderings as
their respective performance measures. We nevertheless include both, because
models such as logistic regression use linear combinations of features, and we do
not know a priori which feature will combine best with other features.

5 Experiments and Results

In our experiments, we consider the following three datasets:

1. The full set of all 1,004 community rankings (ACR)
2. The filtered set of 875 community rankings (FCR)
3. The set of 1,659 author rankings (AR)

Each experiment followed these steps for evaluation:

1. Randomly shuffle the data
2. Separate 25% of the data for testing
3. Choose optimal hyper-parameters using 5-fold cross-validation on the train-

ing data
4. Test the accuracy of the final model on the held-out test data

We performed each experiment 8 times and averaged the test accuracies. All
models were trained and tested on the same random shuffle of the data to better
compare their accuracies.

In order to estimate the impact of the number of pairwise rankings needed
for training on the accuracy of the learned performance measure, we tested pro-
gressively increasing amounts of training data. The data was not reshuffled as
training instances were added, i.e., for n = 200, the first 100 data points are the
same ones used for n = 100. Figure 4 shows accuracies obtained for each of the
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three datasets, using each of the models, trained with an increasing number of
pairwise ranking samples. Each point on the graphs represents the average of
8 runs. For reference, we show the most commonly used performance measure as
a baseline, the monthly Sharpe ratio. In addition, we also show the performance
of the ex post facto best measure for each dataset, although in practice which
measure would perform the best on a given dataset would not be known.

From these experiments, we observed that none of the established perfor-
mance measures in this domain is able to fully predict domain expert pref-
erences. Our performance measure trained from domain expert preferences is
able to achieve better prediction accuracy. For the filtered community ranking
dataset, the random forests approach narrowly outperformed logistic regression,
with 80% accuracy. The best baseline for this dataset is the monthly Pain index,
with 77% accuracy. For the dataset containing all community rankings, logistic
regression has the best performance, with 74% accuracy. The best baseline for
this dataset is the daily Pain index, with 74% accuracy. For the dataset contain-
ing author rankings, logistic regression again has the best performance, with 86%
accuracy. Note that for this dataset, the same author performed each pairwise
ranking twice. As these two sets of rankings have an agreement rate of 90%, this
forms an upper bound for any model’s predictive accuracy. The best baseline for
this dataset is the daily Martin ratio, with 79% accuracy.

Learning-to-rank accuracies are lower for the community datasets than the
author dataset. This is because community members have idiosyncratic prefer-
ences, contributing inconsistency to the community training and test data.

The learning curves in Figure 4 are relatively flat. This indicates that ranking
more equity graph pairs would not lead to higher accuracies, given the models
and features we have chosen. A small number of rankings (approximately 300)
is adequate to learn a trader’s preferences. Given median ranking times between
3 and 4 seconds, a trader would likely spend 15 to 20 minutes ranking 300 chart
pairs.

6 Conclusion

We presented a novel method using crowd-sourcing to learn a domain-specific
performance measure. This method uses pairwise learning-to-rank algorithms
with previously proposed performance measures as input features. We demon-
strated and evaluated this approach for the case of learning a performance mea-
sure to rank investments. Our experimental results showed that machine learning
algorithms can find linear combinations of performance measures that improve
accuracy in this domain.

We provide all data2 (equity graphs, measure calculations, and rankings)
to encourage further study. With the data, we also include a table unable to
fit in this paper, showing the accuracy of the individual baseline performance
measures on each dataset.

2 http://thames.usc.edu/rank.zip

http://thames.usc.edu/rank.zip
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Abstract. In this paper we describe a novel framework for the discovery
of the topical content of a data corpus, and the tracking of its complex
structural changes across the temporal dimension. In contrast to previous
work our model does not impose a prior on the rate at which documents
are added to the corpus nor does it adopt the Markovian assumption
which overly restricts the type of changes that the model can capture.
Our key technical contribution is a framework based on (i) discretiza-
tion of time into epochs, (ii) epoch-wise topic discovery using a hier-
archical Dirichlet process-based model, and (iii) a temporal similarity
graph which allows for the modelling of complex topic changes: emer-
gence and disappearance, evolution, splitting and merging. The power of
the proposed framework is demonstrated on the medical literature corpus
concerned with the autism spectrum disorder (ASD) – an increasingly
important research subject of significant social and healthcare impor-
tance. In addition to the collected ASD literature corpus which we made
freely available, our contributions also include two free online tools we
built as aids to ASD researchers. These can be used for semantically
meaningful navigation and searching, as well as knowledge discovery from
this large and rapidly growing corpus of literature.

1 Introduction

The Autism Spectrum Disorder (ASD) is a life-long neurodevelopmental disorder
with poorly understood causes on the one hand, and a wide range of potential
treatments supported by little evidence on the other. The disorder is character-
ized by severe impairments in social interaction, communication, and in some
cases cognitive abilities. Considering the social and economic burden of ASD
it is unsurprising that it has been attracting an increasing amount of research
attention which has resulted in a rapid growth of the relevant corpus of liter-
ature. Navigating this vast amount of data by conventional, manual means is
difficult and limiting. Consequently, the potential benefit of tools based on novel
data-mining and machine learning techniques is immense [1]. More meaningful
ways for visualising or searching for data could provide invaluable information in
c© Springer International Publishing Switzerland 2015
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clinical and administrative decision making as well as aid research, while auto-
matic knowledge discovery would in its own right advance the understanding of
the underlying phenomena (e.g. epidemiological patterns). In the present paper
we describe a novel method which contributes towards this goal.

More specifically, we describe a general framework for the analysis of medical
literature capable of (i) discovering the underlying topical structure, (ii) infer-
ring the relationships between different discovered topics, and (iii) tracking the
evolution of topics over time. The proposed framework uses hierarchical Dirichlet
process (HDP) to extract topics automatically, and then constructs a similar-
ity graph over them using an inter-topic similarity measure; topic evolution over
time can be inferred from this graph. The effectiveness of our approach is demon-
strated on the specific example of a large longitudinal data corpus of medical
literature on ASD which we collected. This corpus includes more than 18,000
articles published over the course of 42 years. Another contribution is this corpus
which is made publicly available.

The results we report on the collected ASD literature corpus illustrate the use-
fulness of our method and its ability to extract and track over time abstract topical
knowledge, inferring the point at which a certain topic comes into existence, how
its evolves, splits into multiple new topics or merges with the existing ones, and
lastly when it ceases to exist. This is demonstrated on examples of well-known
research directions in the field. Our additional contributions come in the form of
two free online tools which allow researchers to (i) navigate and search the litera-
ture in a semantically meaningful manner (see www.undersdtanfigutism.tk), and
(ii) understand the development and relationships between different ideas which
permeate research in the domain of ASD (see http://goo.gl/Ws7V64).

2 Previous Work

In this section we review the most relevant previous work on topic modelling. We
focus our attention first on latent topic models which have dominated the field
in the last decade, and then on biomedical text mining, given the application
domain in which our framework in evaluated in Section 4.

2.1 Latent Topic Models

An important early approach is the latent semantic indexing (LSI) [2] which
remains popular. Two notable limitations of LSI are its inability to deal effec-
tively with polysemy and to produce an explicit description of the latent space.
A probabilistic improvement of LSI [3] overcomes these by explicitly charac-
terizing the latent space with semantic topics, and by employing a probabilistic
generative model that addresses the polysemy problem. Nevertheless, probabilis-
tic LSI is prone to parameter overfitting caused by an uncontrolled growth in
the number of parameters as the document corpus is increased. In addition, the
necessary assignment of probabilities to documents is a nontrivial task [4].

www.undersdtanfigutism.tk
http://goo.gl/Ws7V64
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The recently proposed latent Dirichlet allocation (LDA) method [4] over-
comes the overfitting problem by adopting a Bayesian framework and a genera-
tive process at document level. While LDA has quickly become a standard tool
for topic modelling, it too experiences challenges when applied on real-world
data. In particular, being a parametric model the number of desired output
topics has to be specified in advance. The HDP model as the nonparametric
counterpart of LDA was introduced by Teh et al. [5] and addressed this limita-
tion by using a Dirichlet process (DP) (as opposed to a Dirichlet distribution)
as the prior on topics. Therefore, each document is modelled using an infinite
mixture model, allowing the data to inform the complexity of the model and infer
the number of resulting topics automatically. We discuss this model in further
detail in Section 3.

Temporal Topic Modelling: A notable limitation of most models described
in the previous section lies in their assumption that the data corpus is static.
However, in many practical applications documents are added to the corpus
in a temporal manner. Therefore their ordering has significance and at best
they might be exchangeable in short time slices. As a consequence, the topical
structure of the corpus changes over time. Existing work can be divided into two
groups.

First, the models that hold a Markov assumption over time by discretizing
and dividing it into multiple epochs. Then a topic model is fit to each epoch
where the parameters of adjacent models are tied together [6–9]. Whilst they
capture how the comprising words of a topic evolve over time, they assume the
data arrives in a uniform fashion whereas in our application documents may
arrive at irregular time intervals. Indeed we adopt the time desensitization from
this group. However our approach diverges from those in the current literature
thereafter. We do not consider the Markov assumption to obtain a model with
less complexity and easier inference. Second, the models that treat the document
time-stamps as an observed continuous random variable [10,11]. These models
are capable of modelling the life span of a topic, but not the capturing its evolu-
tion and trajectory (i.e. split and merge). The topic model used in both groups
can be parametric [6,7,10] or nonparametric [8,9]. Parametric models will still
suffer from the same problem as LDA in requiring the number of topics to be
specified in advance.

2.2 Biomedical Text Mining

The idea that the medical literature could be mined for new knowledge is typ-
ically attributed to Swanson [12]. For example by manually examining medical
literature databases he hypothesised that dietary fish oil could be beneficial for
Raynaud’s syndrome patients, which was later confirmed by experimental evi-
dence. Work that followed sought to develop statistical methods which would
make this process automatic. Previous work on biomedical text mining has
rather focused on (i) the tagging of names of entities such as genes, proteins,
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and diseases [13], (ii) the discovery of relationships between different entities
e.g. functional associations between genes [14], or (iii) the extraction of informa-
tion pertaining to events such as gene expression or protein binding [15].

Most existing work on biomedical knowledge discovery is based on what may
be described as traditional data mining techniques (neural networks, support
vector machines etc); comprehensive surveys can be found in [15,16]. The appli-
cation of state-of-the-art Bayesian methods in this domain is scarce. Amongst
the notable exceptions is the work by Blei et al. who showed how latent Dirichlet
allocation (LDA) can be used to facilitate the process of hypothesis generation
in the context of genetics [17]. Arnold et al. used a similar approach to demon-
strate that abstract topic space representation is effective in patient-specific case
retrieval [18]. In their later work they introduced a temporal model which learns
topic trends and showed that the inferred topics and their temporal patterns
correlate with valid clinical events and their sequences [19]. Wu et al. used LDA
for gene-drug relationship ranking [20].

3 Proposed Framework

We begin this section by reviewing the relevant theory underlying HDP mixture
modelling which plays the central rule in the proposed framework. Then we turn
our attention to the main technical contribution of our work and explain how
the HDP is employed to discover the topical content of a literature corpus and
track its structural changes over time.

3.1 Hierarchical Dirichlet Process Mixture Models

Dirichlet process as the building block of Bayesian non-parametric methods allows
the document collection to accommodate potentially infinite number of topics.
A Dirichlet process [21] DP (γ,H) is defined as a distribution of a random proba-
bility measure G over a measure space (Θ,B, μ), such that for any finite measur-
able partition (A1, A2, . . . , Ar) of Θ the random vector (G (A1) , . . . , G (Ar)) is
a Dirichlet distribution with parameters (γH (A1) , . . . , γH (Ar)). An alternative
view of the DP emerges from the so-called stick-breaking process which adopts
a constructive approach using a sequence of discrete draws [22]. Specifically, if
G ∼ DP(γ,H) then G =

∑∞
k=1 βkδφk

where φk
iid∼ H and β = (βk)∞

k=1 is the vec-
tor of weights obtained by the stick-breaking process that is βk = vk

∏k−1
l=1 (1 − vl)

and vl
iid∼ Beta (1, γ).

Owing to the discrete nature and infinite dimensionality of its draws, the DP
is a highly useful prior for Bayesian mixture models. By associating different
mixture components with atoms φk of the stick-breaking process, and assuming
xi|φk

iid∼ F (xi|φk) where F (.) is the likelihood kernel of the mixing components,
we can formulate the Dirichlet process mixture model (DPM). The DPM is
suitable for nonparametric clustering of exchangeable data in a single group
e.g. words in a document where the DPM models the underlying structure of
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the document with potentially an infinite number of topics. However, many
real-world problems are more appropriately modelled as comprising multiple
groups of exchangeable data (e.g. a collection of documents). In such cases it is
usually desirable to model the observations of different groups jointly, allowing
them to share their generative clusters to remain linked. This idea is known as
the “sharing statistical strength” and it is naturally obtained by hierarchical
architecture in Bayesian modelling.

. . .

(a) HDP (b) Proposed

Fig. 1. (a) Graphical model representation of HDP. Each box represents one docu-
ment whose observed data (words) is shown shaded. Unshaded nodes represent latent
variables. An observed datum xji is assigned to a latent mixture component parame-
terized by θji. γ and α are the concentration parameters and H is the corpus-level base
measure. (b) Graphical model representation of the proposed framework. The corpus
is temporally divided into tn epochs and each epoch modelled using an HDP (outer
boxes). Different epochs’ HDPs share their corpus-level DP and hyperparameters.

Amongst different ways of linking group-level DPMs, HDP [5] offers an inter-
esting solution whereby base measures of group-level DPs are drawn from a
corpus-level DP. In this way the atoms of the corpus-level DP (i.e. topics in our
case) are shared across the documents. Formally, if x = {x1, . . . ,xJ} is a docu-
ment collection where xj =

{
xj1, . . . , xjNj

}
is the j-th document comprising Nj

words, each document is modelled with a DPM Gj |α0, G0
iid∼ DP (α0, G0) where

its DP prior is further endowed by another DP G0|γ,H ∼ DP(γ,H). This is
illustrated schematically in Figure 1a. Since the base measure of Gj is drawn
from G0, it takes the same support as G0. Also the parameters of the group-level
mixture components, θji, share their values with the corpus-level DP support on
{φ1, φ2, . . .}. Therefore Gj can be equivalently expressed using the stick-breaking
process as Gj =

∑∞
k=1 πjkδφk

where πj |α0, γ ∼ DP (α0, γ)[5]. The posterior for
θji has been shown to follow a Chinese restaurant franchise process which can
be used to develop inference algorithms based on Gibbs sampling [5].
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3.2 Modelling Topic Evolution Over Time

In this section we show how the described HDP-based model can be applied to
the analysis of temporal topic changes in a longitudinal data corpus. We begin
by dividing the literature corpus by time into multiple epochs. Each epoch is
then modelled separately using an HDP. Different epochs’ models share their
hyperparameters and the corpus-level base measure. Hence if n is the number of
epochs, we obtain n sets of topics θ = {θt1 , . . . ,θtn} where θt = {θ1,t, . . . , θKt,t}
is the set of topics that describe epoch t, and Kt their number (which is inferred
automatically, as described previously). This is illustrated in Figure 1b. In the
next section we describe how given an inter-topic similarity measure the evolu-
tion of different topics across epochs can be tracked.

3.3 Measuring Topics Similarity

Our goal now is to track changes in the topical structure of a data corpus over
time. The simplest changes of interest include the emergence of new topics,
and the disappearance of others. More subtly, we are also interested in how a
specific topic changes – how it evolves over time in terms of the contributions of
different words it comprises, as well as how it splits into new topics or merges
with the existing ones. Clearly this information can provide valuable insight into
the refinement of ideas and findings in the scientific community, effected by new
research and accumulating evidence.

The key idea behind our approach stems from the observation that while top-
ics may change significantly over time, by their very nature their change between
successive epochs is limited. Therefore we infer the continuity of a topic in one
epoch by relating it to all topics in the immediately subsequent epoch which
are sufficiently similar to it under some similarity measure. This can be seen to
lead naturally to a similarity graph representation whose nodes correspond to
topics and whose edges link those topics in two epochs which are related. For-
mally, the weight of the directed edge that links φj,t , the j-th topic in epoch t,
and φk,t+1 is set equal to ρ (φj,t, φk,t+1) where ρ is an appropriate similarity
measure. Given that in our HDP-based model each topic is represented by a
probability distribution, suitable similarity metrics include the Jaccard similar-
ity, the Jenson-Shannon divergence, and the L2-norm.

A conceptual illustration of a similarity graph is shown in Figure 2a. It shows
three consecutive time epochs t−1, t, and t+1 and a selection of topics in these
epochs. Graph edge weight i.e. inter-topic similarity is encoded by varying the
thickness of the corresponding line connecting two nodes – a thicker line sig-
nifies more similar topics. We use a threshold to eliminate automatically weak
edges, retaining only the edges which correspond to sufficiently similar topics
in adjacent epochs. It can be seen that this readily allows us to detect the dis-
appearance of a particular topic, the emergence of new topics, as well as the
splitting or merging of different topics:

Emergence If a node does not have any edges incident to it, the corresponding
topic is taken as having emerged in the associated epoch (e.g. φj+2 at time
t in Figure 2a).
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Disappearance If no edges originate from a node, the corresponding topic is
taken to vanish in the associated epoch (e.g. φj at time t in Figure 2a).

Splitting If more than a single edge originates from a node, the corresponding
topic is understood as being split into multiple topics in the next epoch (e.g.
φi is split into φj and φj+1 in Figure 2a).

Merging If more than a single edge is incident to a node, the topics of the nodes
from which the edges originate are understood as having merged together
to form a new topic (e.g. φi and φi+1 merge to form φj+1 in Figure 2a).

4 Experimental Evaluation

Having introduced the main technical contribution of our work we now illustrate
its usefulness on the example of ASD literature analysis, and describe additional
contributions in the form of two free online tools that we developed to aid ASD
researchers.

4.1 Data Collection

fe To the best of our knowledge there are no publicly available corpora of ASD-
related medical literature. Hence we collected a comprehensive dataset ourselves
that we describe its collection methodology and the pre-processing of data we
performed to extract standard features used for text analysis.

Raw Data Collection: We used the PubMed search engine that allows users
to access the United States National Library of Medicine for abstracts and ref-
erences of life science and biomedical scholarly articles. We assumed a paper
is related to ASD if the term “autism” is present in its title or abstract, and
collected only papers written in English. The earliest publication fitting our cri-
teria is that by Kanner [23], and we collected all matching publications up to
the final one indexed by PubMed on 24th July 2014, yielding a corpus of 20,138
publications. We discarded the 1,946 which do not have an abstract indexed,
ending with the total of 18,192 papers in our dataset. We used the abstracts
text to evaluate our method.

Data Pre-processing: Following the standard practice in text processing
literature we applied soft lemmatization on the abstracts in our dataset, using
the freely available WordNet tool [24]. No stemming was performed to avoid
potential distortion of words which is sometimes effected by heuristic rules used
by stemming algorithms. After lemmatization and the removal of so-called stop
words, we obtained 1.9 million terms in the entire corpus when repetitions are
counted, and 37,278 unique terms. We construct the vocabulary for our method
by selecting the subset of the most frequent unique terms which explain 90% of
the energy of the corpus, which resulted in a 3,738 term vocabulary.
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4.2 Proposed Method Implementation

We divided the 42 year timespan of our data corpus into overlapping five year
epochs, with a two year lag between consecutive epochs, resulting in 18 epochs
in total. The topics of each epoch were then extracted as described in Section 3.2
and their dynamics inferred as per Section 3.3. The number of latent topics of
different epoch is plotted in Figure 2b. Notice the exponential rise in the number
of topics which mirrors the exponential increase in the number of publications
over time in our dataset. This increasing interest in ASD can be illustrated
by the observation that in 2013 there are five times as many publications as
in 2000. For our inter-topic similarity described in Section 3.3 we adopted the
use of the well-known Jaccard similarity; this similarity measure was used to
obtain all results reported in this section. Lastly, Gibbs sampling was used for
HDP inference, implemented in Python 2.7, with hyperparameter resampling as
described by Teh et al. [5].

(a) Topic similarity graph (b) Number of topics per epoch

Fig. 2. (a) Conceptual illustration of the proposed similarity graph that models topic
dynamics over time. A node corresponds to a topic in a specific epoch; edge weights
are equal to the corresponding topic similarities. (b) As the document corpus grows so
does the number of topics needed to model its latent structure.

4.3 Case Study 1: ASD and Genetics

While the exact aetiology of the ASD is still poorly understood, the existence
of a significant genetic component is beyond doubt [25]. Work on understand-
ing complex genetic factors affecting the development of autism, which possibly
involve multiple genes which interact with each other and the environment, is a
major theme of research and as such a good case study on which the usefulness
of the proposed method can be illustrated.

We started by identifying the topic of interest as that with the highest prob-
ability of the terms “gene” or “genetic” conditioned on the topic, and tracing
it back in time to the epoch in which it originated. This led to the discovery of
the relevant topic in the epoch spanning the period 1986–1991. Figure 4 shows
the evolution of this topic from 1992 revealed by our method (due to space
constraints only the most significant parts of the similarity graph are shown;
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Fig. 3. Interactive similarity graph analysis tool (see http://goo.gl/Ws7V64). Word
clouds of a few topics are shown for illustration. Nodes and links between them represent
respectively topics in particular epochs and their similarities.

minor changes to the topic before 1992 are also omitted for clarity, as indicated
by the dotted line in the figure). Each topic is labelled with its first few dom-
inant terms. The following interpretation of our findings is readily apparent.
Firstly, in the period 1992–1997, the topic is rather general in nature. Over time
it evolves and splits into topics which concern more specific concepts (recall that
such splitting of topics cannot be captured by any of the existing methods). For
example by the epoch 2002–2007 the single original topic has evolved and split
into four topics which concern:

– the relationship between mutations in the gene mecp2 (essential for normal
functioning of neurone), and mental disorders and epilepsy (it is estimated
that one third of ASD individuals also have epilepsy),

– gene alternations, for example the duplication of 15q11--13 and deletion of
16p11.2 both of which are associated with ASD,

– genetic linkage association analysis and heritability of autism, and

– observational work on autistic twins and probands with siblings on the spec-
trum.

Our framework also allows us to look ‘back’ in time. For example, by exam-
ining the topics that the 1992 genetics topic originate from we discovered that
the topic evolved from the early concept of “infantile ASD” (originated by
Kanner [23]).

http://goo.gl/Ws7V64
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Fig. 4. Dynamics of the topic most closely associated with the concept of “genetics”.
A few dominant words are shown for each topic (shaded boxes).

4.4 Case Study 2: ASD and Vaccination

For our second case study we chose to examine research on the relationship
between ASD development and vaccination. This subject has attracted much
attention both in the research community, as well as in the media and the gen-
eral public. The controversy was created with the publication of the work by
Wakefield [26] which reported epidemiological findings linking MMR vaccina-
tion and the development of autism and colitis. Despite the full retraction of the
article following the discovery that it was fraudulent, and numerous subsequent
studies who failed to show the claimed link, a significant portion of the general
public remains concerned with the issue.

As in the previous example, we begun by identifying the topic with the
highest probability of the terms “vaccine” and “vaccination” conditioned on
the topic, and tracing it back to the epoch in which it first emerged. Again, a
single topic was readily identified, in the epoch spanning the period 1996–2001.
Notice that this is consistent with the publication date of the first relevant pub-
lication by Wakefield [26]. The evolution of the topic is illustrated in Figure 5 in
the same way as in the previous section. It can be seen that the original topic
concerned the subjects initially brought to attention such as “measles”, “vac-
cine”, and “autism”. In the subsequent epoch, when the original claim was still
thought to have credibility, the topic evolves and splits into numerous others
mirroring research directions taken by various researchers. Following this period
and the revelations of its fraudulence, the topic assumes mainly single-threaded
evolution, at times incorporating various originally separate ideas. For exam-
ple observe the independent emergence of the term “mercury”. Though initially
unrelated to it this topic merges with the topic that concerns vaccination which
can be explained by the widely publicized thiomersal (vaccine preservative)
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Fig. 5. Dynamics of the topic most closely associated with the concept of “vaccination”.
Notwithstanding the rejection of any link between vaccination and autism, this topic
remains active albeit in a form which evolved over time.

controversy (again note that such merging of topics cannot be captured by the
existing methods). Although rejected by the medical community due to a lack
of evidence, this topic can be seen as persisting to date.

4.5 Topic Browser

A topic model can be seen as a dimensionality reduction framework that reduces
documents into a topic space. This transformation of data can provide power-
ful insight and allow for the browsing of documents in a more subject-specific,
semantic manner. For example by describing documents in the topic space, doc-
uments most related to a particular topic of interest can be readily identified and
retrieved. To provide this functionality to the research community interested in
ASD we used the framework described in this paper to model the entire litera-
ture corpus we collected, and built a website to facilitate free and ready use of
our model and data. Researchers can use our online tool to browse topics, anno-
tate them, and navigate through publications by topic. The website is available
at http://www.understandingautism.tk.

5 Conclusions

We described a novel framework for temporal modelling of the topical structure
of a longitudinal document corpus. Our approach consists of discretizing time
into overlapping epochs, modelling the static topic structure within each epoch
using an HDP, and tracking the evolution of topics over time using an inter-
topic similarity measure. The resultant similarity graph captures relationships
between topics in different epochs and allows for the automatic inference of the
time of emergence and disappearance of topics, their evolution over time, merging
and splitting. The power of the proposed general framework was demonstrated
on the example of ASD-related medical literature. On two case studies which
concern two important research issues in ASD literature we demonstrated that
our method extracts meaningful topics and their temporal changes. A novel data
corpus and free online tools are made freely available to researchers.

http://www.understandingautism.tk
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Abstract. Foodborne disease, a rapid-growing public health problem,
has become the highest-priority topic for food safety. The threat of
foodborne disease has stimulated interest in enhancing public health
surveillance to detect outbreaks rapidly. To advance research on food
risk assessment in China, China National Center for Food Safety Risk
Assessment (CFSA) sponsored a project to construct an online corre-
lation analysis system for foodborne disease surveillance beginning in
October 2012. They collect foodborne disease clinical data from sen-
tinel hospitals across the country. They want to analyze the foodborne
disease outbreaks existed in the collected data and finally find the link
between pathogen, incriminated food sources and infected persons. Rapid
detection of outbreaks is a critical first step for the analysis. The purpose
of this paper is to provide approaches that can be applied to an online sys-
tem to rapidly find local and sporadic foodborne disease outbreaks out of
the collected data. Specifically, we employ DBSCAN for local outbreaks
detection and solve the parameter self-adaptive problem in DBSCAN.
We also propose a new approach named K-CPS (K-Means Clustering
with Pattern Similarity) to detect sporadic outbreaks. The experimental
results show that our methods are effective for rapidly mining local and
sporadic outbreaks from the dataset.
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1 Introduction

The threat of foodborne disease has stimulated interest in public health surveil-
lance [1][2]. Theoretically, for foodborne disease, there is a link between pathogens,
incriminated food sources and each infected person. How to find out the link is cru-
cial for foodborne disease surveillance. Analysis of foodborne outbreak data is one
approach to find the link and it can estimate the proportion of human cases of
specific enteric diseases attributable to a specific food item. [3] employed mul-
tiple correspondence analysis(MCA) to further explore the relationship between
micro-organism, region and food vehicle. The analysis of foodborne outbreak data
is perceived as food attribution and is an important tool in food safety risk analy-
sis [4][5]. To advance research on food risk assessment in China, CFSA sponsored
a project to construct an online correlation analysis system for foodborne disease
surveillance beginning in October 2012. CFSA collects foodborne disease clini-
cal data from sentinel hospitals. They want to analyze the foodborne disease out-
breaks exist in the collected data and finally find out the link between pathogen,
incriminated food source and infected persons. A primary purpose of the project is
to detect problems in food and water production and delivery systems that might
otherwise have gone unnoticed. Rapid detection of outbreaks is a critical first step
to abate these active hazards and preventing their further recurrences. But how to
rapidly find the outbreaks in the data is a problem for them. The purpose of this
paper is to provide approaches that can be applied to the online system to rapidly
find the local and sporadic foodborne disease outbreaks out of the collected data.

There are some researches focused on disease outbreak detection. Clearly,
when an epidemic sweeps through a region or a foodborne outbreak emerges,
there will be extreme perturbations in the number of hospital visits. So some
anomaly detection approaches have been used to detect disease outbreaks based
on the change of morbidity number. These methods require a baseline number
which can be derived from historical data. [6] employs Fishers Exact Test to
examine whether a rule occurs today is abnormal or not based on the historical
occurrences. [7] develops a simple randomization-based framework to recognize
significant increases in event counts. Besides, intense spatial aggregation was
often observed in disease outbreaks. [8] presents a fast multi-resolution method
to detect significant spatial disease clusters. Given a grid of squares, where each
square has a count and an underlying population, the goal of the paper is to
find the square region with the highest density, and to calculate its significance
by randomization. [9] is the improvement of [8], which uses a novel overlap-kd
tree data structure to reduce the time complexity to find the spatial disease
clusters. [10] introduces a novel fast spatial scan algorithm, generalizing the
2D scan algorithm of [9] to arbitrary dimension. The work above on cluster
detection is purely spatial in nature. But for most disease cluster problems, time
is an essential component. Fortunately, there exist methods for the detection of
emerging space-time disease clusters. [11] proposes a new class of spatio-temporal
cluster detection methods designed for the rapid detection of emerging space-
time clusters. It focuses on detecting space-time clusters of disease cases resulting
from an emerging disease outbreak.
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Although many approaches are proposed for disease outbreak detection, they
are unsatisfactory for the problem we want to solve. In our scenario, the data
collection started in October, 2012. So the data available is very limited and there
are not enough historical data to predict a baseline. In fact, for foodborne disease
outbreaks detection, the method employed depends on what data is available.
Buckeridge et. give a practical classification for outbreak detection algorithms by
considering the types of information encountered in surveillance analysis [12]. In
our situation, we have a database of clinical cases from the 615 sentinel hospitals
in 34 provinces, municipalities or autonomous regions across the country. Each
record in this database contains information about the individual who has seen
a doctor.

When many people infect a foodborne disease in a short time in a nearby
location, we call that a local foodborne disease outbreak (LFDO), while if the
locations are not limited in a small area, we call that a sporadic foodborne
disease outbreak (SFDO). In this paper, we employ a density-based algorithm
for discovering clusters in large spatial databases with noise (DBSCAN) [13] to
detect LFDO and solve the parameter self-adaptive problem in DBSCAN. We
propose a new approach to detect SFDO.

The rest of this paper is organized as follows. After a description of the
dataset used in this paper in Section 2, we detail the detection approaches
in Section 3. Then in the following section, we present our experiments. In
Section 5, we give an analysis and a discussion of our experiment results. Finally,
in Section 6 we conclude our work and provide an outlook of the future work.

2 Data Collection

Diarrhea is the commonest symptom of foodborne illness. Foodborne diarrhea
provides one of the strongest signals for food safety. CFSA started to collect
information from diarrheal patients who visit the sentinel hospitals in October
2012. The rules of data collection are: a) the information collected are all the
diarrheal cases, but not all the diarrheal cases of sentinel hospitals are collected;
b) only the cases with diarrhea 3 or more than 3 times per day and character
of stool is abnormal are recorded; c) each sentinel hospital is required to collect
at least 10 cases per week. The above data collection strategy is waiting to be
improved. Currently, the detection has certain limitations in the way data is
recorded. Clearly, under this record strategy, the number of the cases doesn’t
reflect a true disease occurrence. But the change of the number of cases is a
significant signal for an outbreak. Thus, for this dataset, we can’t make use of
the methods that based on the number of cases to detect outbreaks.

Each record includes the information about the individuals. This information
contains fields such as age, gender, career, symptoms exhibited, home location,
diseased time and sampling or not (collected anal swab and stool). Parts of
these records have incriminated food information. This information includes food
name, food band, manufactures, place of purchase, place of eating, time of eating
and sampling or not. In this paper, we mainly use home location, diseased time
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and symptoms exhibited to detect probable local homologous foodborne disease
outbreaks. The incriminated food information is mainly used to preliminarily
verify whether the outbreak clusters detected are homologous or not. For spo-
radic outbreaks, we use symptoms exhibited field combined with the food name
to detect sporadic outbreaks. Note that the preliminary verification results made
by our method are not completely reliable. It just provides a possible clue for
researchers who will verify the results by professional analysis of the bacteria,
such as Salmonella, Shigella and Sapovirus, examined in the patient samples
(such as anal swab and stool), through a molecular typing system.

3 Approaches for Local and Sporadic Outbreaks
Detection

An outbreak of foodborne disease was defined as when a group of people consume
the same contaminated food and two or more of them come down with the
same illness. According to the definition, we give a hypothesis that patients in
an outbreak caused by the same contaminated source will exhibit similar or
same symptoms. In reality, patients in LFDO are not distributed randomly, and
the temporal and spatial clusters are obvious. So we use diseased time, home
location and symptoms exhibited as features for LFDO clustering. For sporadic
outbreaks, we hope to cluster the cases which have common symptoms and
similar food information. So we use symptoms combined with the corresponding
food information as features for sporadic outbreaks clustering.

3.1 LFDO Detection

Data Preprocessed. We use cases collected between 1 January 2013 and 16
January 2014 for local outbreak detection (We named it Dataset 1). The raw
disease time is a time format and we convert it to a long type. The raw home
location is a textual address, and we use the Google Geocoding API to capture
the longitude and latitude of each address. Then we use gausskruger projection
[14] to convert spherical coordinates to plane coordinates. Longitude and latitude
correspond to the x and y axes, respectively. We separate the raw symptom text
into symptom terms. In addition, we divided all the frequency of diarrhea, such
as 5 times per day, into 4 grades: Low, Medium, High, Ultrahigh (Specifically,
0-3,4-6,7-9,10 or more than 10 corresponding to Low, Medium, High, Ultrahigh
respectively). We also divided the temperature into the same 4 grades (Specifi-
cally, 37◦C-37.9◦C, 38◦C-38.9◦C, 39◦C-39.9◦C, 40◦C or above corresponding to
Low, Medium, High, Ultrahigh respectively). Besides, since all the cases con-
tain diarrhea, we eliminate it as a stop word for each case. Then, we generate
a 0-1 vector for each symptom description. Specifically, we use symptom terms
included in all cases of a dataset as features, and the value of each feature is
0 or 1. If the case contains the symptom term, the value of the feature is 1,
otherwise 0. Fig.1(a) is a simple example of the process of generating vectors.
Finally, we combine the processed disease time, home location and symptom
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into a vector as the input for DBSCAN. Fig.1(b) is an example of a combined
vector. It is also worth noting that the combined vectors need a normalization
process and the weight of these three different features should be adjusted.

Method Description. DBSCAN is a density based algorithm which discovers
clusters with arbitrary shape and with minimal number of input parameters. The
input parameters required for this algorithm are the radius of the cluster (Eps)
and minimum points required inside the cluster (Minpts). Based on combination
of the feature of DBSCAN and LFDO, DBSCAN has the following advantages
for LFDO: a) local disease clusters are arbitrary, b) the parameter Minpts enable
users to flexibly detect clusters of different sizes as required, for example, users
can set Minpts to 2 according to the definition of foodborne disease outbreak,
c) the local outbreaks maybe have different density because of the different
population density of regions, the parameter Eps enables users to detect clusters
of different density.

Dataset
Case1 {abdominal pain

diarrhea vomiting
fever}

Case2 {fatigue, headaches, 
loss of appetite}

Case3 {fatigue, fever}

Vectors

Features {abdominal pain diarrhea vomiting fever fatigue, headaches, loss of appetite}
Vector1 {            1,                     1                1            1         0,              0,                       0             }

Vector {                    0,                     0                0            0         1,              1,                       1           }

Vector3 {            0,                     0                0            1         1,              0,                       0             }

Features {longTime           x             y      abdominal pain diarrhea vomiting fever fatigue, headaches, loss of appetite}

Vector1 {            1,                     1                1            1         0,              0,                       0             }

 (a).The process of generating 0-1 vectors for symptoms

 (b).An example of a combined vector

Fig. 1. The process of generating vectors for cases

The research on DBSCAN methods within the project tend to focus on the
practical issues of applying existing algorithms for foodborne outbreak detection
rather than on the development of new algorithms. There is one major problem
for DBSCAN applied in foodborne disease clustering. How to automatically find
a proper Eps for a specific dataset. Martin et. proposed a simple and effective
heuristic to determine a desired Eps [13]. The heuristic defined a function k-dist
from a dataset D to real numbers, mapping each point to the distance from its
k-th nearest neighbor. We can get some hints about the density attribution of
D when sorting the points of D in ascending order of their k-dist values. The
threshold point is the first point in the first “valley” of the sorted k-dist graph
(see Fig.2) and the corresponding k-dist value is the desired Eps. Also, the paper
proposed an interactive approach for determining the threshold point. The inter-
active approach based on a realistic assumption that a user could easily see the
valley in a graphical representation. We hope to reduce the user participation
and provide an easy-to-use approach to be integrated into the online correlation
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analysis system for foodborne disease surveillance. This paper proposes an adap-
tive approach to determine the threshold point for a specific dataset without user
participation.

In Fig.2, the ideal threshold point is the one that points before it are normal
while after it are noises.Take 3-dist graph as an example, we can find the thresh-
old point T as illustrated in Fig.3. We take the first point P1 and the last point
P2 of the 3-dist graph to determine a line L. We take the point that has the
maximum distance to L as the threshold point. Connect all the points to a curve
and the threshold point T divides the curve into two parts. The slopes of left
curves are smaller than the slope of L while that of the right curves are bigger.
Intuitively, the 3-dist values in Part I increases slowly while the 3-dist values in
Part II increase rapidly. We regard the points in part II as noises, because the
3-dist values of normal points are small and almost the same, while the 3-dist
values of noise points are big and vary a lot. This method is very intuitive, simple
and effective.

Fig. 2. The k-dist graph of Dataset 1

p2

Part II

Part I
p1

T

L

Fig. 3. How to find the desire point

3.2 SFDO Detection

For sporadic outbreak, the temporal and spatial clusters are not obvious. Symp-
toms exhibited and food information are the only and useful signals for sporadic
outbreak detection. We describe a new approach for sporadic outbreak clustering
based on pattern similarity which produces more easily interpretable and usable
clusters. This approach is motivated by the following observation: an outbreak
happen when two or more people get ill because of a same contaminated food
source. So cases in a cluster may all contain a same symptom frequent pattern
and consume a same food. Since clustering algorithms have no knowledge of
these patterns, we propose and evaluate a new clustering algorithm for symp-
tom clustering K-Means Clustering with Pattern Similarity (K-CPS). We use
cases collected between 1 January 2013 and 9 June 2014 for sporadic outbreak
detection (We named it Dataset 2). We separate the raw symptom text to symp-
tom terms. In addition, we divided all the frequency of diarrhea and temperature
into four grade as in Dataset 1. Besides, the term “diarrhea” is eliminated as a
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stop word for each case. Most part of the food name of each case contains only
one term. There are a few cases contains two or more terms. In these cases, we
take them as one term.

Basic Concept of Frequent Patterns. We quickly review some standard
definitions of frequent patterns mining, which is a necessary and important step
for mining association rules [15]. Let I = i1, i1, ..., im be a set of items. Let T
be a set of transactions, where each transaction t is a set of items,t ⊂ I. The
support of an item-set X,X ⊂ I is the fraction of transactions contain X. If the
support is above a user-specified minimum, then we say that X is a frequent
pattern.

K-CPS: K-Means Clustering with Pattern Similarity. In this subsection,
we describe the details of K-CPS algorithm. First, Algorithm 1 shows the pseudo-
code for K-CPS.

K-CPS consists of two phases. In the first phase, K-CPS computes the closed
frequent patterns. In the second phase, the K-CPS algorithm computes the simi-
larity between frequent patterns and objects in Dataset2. We define the similarity

Algorithm 1.. K − CPSAlgorithm

Input: A dataset D; A minimum support threshold α; A denoising threshold β
Output: Clustering Result CR

Phase I
1: FP ← frequent pattern miner(α, D) � Mining the frequent patterns(FP ) of D
2: CFP ← closed frequent pattern(FP) � Screening out closed frequent patterns

CFP
3: SCFP ← screen closed frequent pattern(CFP) � Screening out the patterns

which contains both symptoms and food
4: #MaxFP ← maximal frequent pattern(SCFP) � Screening out maximal

frequent patterns MaxFP from SCFP, #MaxFP is the number of the MaxFP
Phase II

5: for i = D1 → Dm do
6: for j = SCFP1 → SCFPn do
7: if Di contains all the terms in SCFPj then

8: Similarityij ← dJAS
ij =

|Di
⋂

SCFPj |
|Di

⋃
SCFPj | =

|SCFPj |
|Di|

9: else
10: Similarityij ← 0
11: end if
12: end for
13: end for
14: D ← Denoising(β,D) � Removing the cases with every similarity is less than or

equal to a specified threshold β
15: CR ← Cluster(#MaxFP,D) � Running WEKA simple K-means on the processed

dataset D
16: return CR



570 X. Xiao et al.

using Jaccard similarity [16]. It is defined as the quotient between the inter-
section and the union of the pairwise compared variables among two objects.
Equation (1) illustrates the Jaccard similarity between object X and object Y.

dJAS(X,Y ) =
X

⋂
Y

X
⋃

Y
(1)

After the computation, we get an n-dimension feature vector for each object.
And n is the number of the frequent patterns. Then the processed data is clus-
tered using simple K-Means. K-CPS assigns all the objects that have similarity
symptom-food pattern to a same cluster.

4 Experimental Evaluation

In this section, we present an experimental evaluation of the parameter adaptive
DBSCAN and K-CPS algorithms. We use Dataset1 and Dataset2 for local and
sporadic outbreak detection respectively. Some characteristics of these two data
sets are shown in Table 1. We use cases both with and without food information
of Dataset1 for clustering and choose the cases with food information to evaluate
the effectiveness of the local outbreak detection. We choose cases with food
information of Dataset2 for sporadic outbreak detection. We don’t have any
training set or human-annotated data. So we can’t use the common evaluation
methods of clustering, such as purity, rand index (RI) and f measure [17] to
evaluate our algorithms. For our experiments, we will associate the cluster results
with food category. The local outbreaks will be statistically described by disease
time, home location, symptoms and food category. The sporadic outbreaks will
be statistically described by symptoms and food category. If the cases with a
same cluster label all relate to a same food category, then the cluster is a probable
foodborne disease outbreak. And these probable outbreaks we find are evidences
to illustrate the usefulness of our algorithms.

Table 1. Some characteristics of experimental data sets

Data set #cases Time span #province
contained

#cases with food
information

Dataset
1

77829 2013.01.01-
2014.01.16

31 26993

Dataset
2

91599 2013.01.01-
2014.06.09

31 33435

4.1 The Clustering Effect of Adaptive DBSCAN

In this experiment, we use the approach in section 3.1 to find an appropriate
Eps for every dataset. There are several implementation details. Firstly, time,
location and symptoms are three different types of data. We use normalization
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to unify these data from different sources into a same reference frame. Specifi-
cally, we normalize the data in every dimension to an interval [0, 1]. Secondly,
since symptoms are 0-1 vectors, the difference caused by a different symptom
term between two cases is much bigger than that of time and location. As a
result, the time and location have no effect on clustering result. So we reduce
the weight of symptoms. In practice, we set the weight of each dimension of
symptoms to 1 × 10−7, a heuristic weight derived from experiments and adjust-
ment. Thirdly, these three different features are not equally important in local
foodborne disease outbreak. And we use a rank-order weighting method [18]to
derive a weight for each feature. By doing this, our responsibility is reduced to
ranking the features based on their importances. It is easier and more reliable
than specifying exact values. Specifically, we hold that the order of importance is
time>location>symptoms in local outbreaks. Based on the importance order, we
employ the rank-order centroid (ROC) method [18][19][20]to compute weights for
these three features. Equation (2), where wk is the weight of the k-th dimension,
generalizes weights for n features.

wk(ROC) =
1
n

·
n∑

i=k

1
i
, k = 1, 2, ...n (2)

According to Equation (2), the weight of time, location and symptoms is
11
18 , 5

18 , 2
18 respectively. The location has two dimensions, the weight of each

dimension is 1
2 × 5

18 , and the same for symptoms. If the symptoms contain m
dimensions, the weight of each dimension is 1

m × 2
18 . Last but not the least,

the DBSCAN uses a global Eps for a dataset, but local outbreaks in different
provinces may have different density because of the different population density
and cases density of provinces. A global Eps can’t satisfy all provinces. To solve
this problem, we split Dataset 1 by provinces. And run each subset of Dataset 1
separately. We take the data of Anhui, Gansu, Guangxi, Henan, Hubei, Jiangsu,
Jiangxi, Sichuan, Yunnan and Zhejiang for experiments. These 10 provinces have
the most cases. Table 2 shows some statistical information of the experimental
results. The probable outbreak is hand-marked by an expert who has experience
in foodborne disease surveillance. The main basis of the hand-marking are the
following four: a) whether the disease time and location are close to each other;
b) whether the symptoms exhibited is similar or not; c) whether they are related
to a same incriminated food or not; d) whether they are infected by a same
bacteria (only very a few cases has the bacteria information). The experimental
results show our method is promising. With the adaptive Eps, DBSCAN can
effectively find all of the probable local outbreaks in the data. Rapid detection
of outbreaks is the critical first step for foodborn disease surveillance.

4.2 The Clustering Effect of K-CPS

We compare clustering results of K-CPS and WEKA simple K-means on Data-
set2 to show the effect of K-CPS on symptoms-food clustering. We use 33435
cases which the food information are not null. For further preprocessing, we
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Table 2. Statistics of the local outbreak detection results

Statistics
Provinces

#total
cases

#total
clusters

#probable
outbreaks

#cases in
outbreaks

incriminated food

Anhui 4107 138 5 40 kelp, roast, milk, sprouts

Gansu 3663 129 5 64 milk, noodle

Guangxi 3742 164 8 75 rice, pork, mushroom, beans,
vinegar

Henan 4965 204 0 0

Hubei 5645 256 3 52 wild mushroom, breast milk

Jiangsu 7024 516 12 107 soybean milk, pork, milk

Jiangxi 2427 107 7 96 rice soup, milk

Sichuan 5328 245 7 30 preserved egg, porridge, spiced
crispy duck

Yunnan 1526 106 2 9 wild mushroom, grape

Zhejiang 16606 994 14 196 cake, fish, seafood, duck intestines,
watermelon, banquet food

“#total cases” is all the clinic cases collected; “#total clusters” is the number of
clusters; “#probable outbreaks” is the number of clusters that are probable outbreaks
hand-marked by an expert in CFSA;“#cases in outbreaks” is the number of cases in
probable outbreaks.

delete the cases with unclear food information, such as the terms “unknown”.
Finally, there left 21898 cases for experiments. And each case contains a symp-
tom description and a kind of food. Note that there are some implementation
details. First, as we know, the determination of parameter k is a hard algo-
rithmic problem [21][22]. In K-CPS, we set parameter k to the number of the
maximum frequent patterns based on the assumption that each frequent pat-
tern represents a specific class. Second, in simple K-means, we only use the
terms (symptoms and food) which the number of occurrences are greater than
γ, γ = α×21898 as features. And we generate a 0-1 vector for each case by using
the same way that of illustrated in Fig. 1. The parameter k is set to the same
value as in the K-CPS. Third, we use “contain” not “equal to” when we decide
whether a case contains a specified symptom term or food or not. For example,
a case C1 which consists of the following terms: abdominal pain, nausea and
frozen watermelon. And there is a frequent pattern FP1 which consists of the
following terms: abdominal pain and watermelon. We think the C1 contains the
FP1. Accordingly, in simple K-means, we think C1 contains the term water-
melon. Fig.4 shows the mean entropy of food at different support thresholds of
K-CPS and simple K-means. As shown in Fig.4, the K-CPS has the outstanding
performance on clustering the same food together while balancing the similarity
of symptoms. Since the definition of foodborne outbreak is two or more people
get ill after consuming the same contaminated food. We can make an obvious
point that the K-CPS is more reasonable than simple K-means on the appli-
cation of sporadic foodborne outbreak detection. It can find out the probable
sporadic outbreaks in the data.
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Fig. 4. The mean entropy of food at different support thresholds of K-CPS and simple
K-means

5 Discussion

Based on the analyses mentioned above and the definition of foodborne diseases
outbreak, we give a deep insight on the characteristics of LFDO and SFDO,
which helps to find proper algorithms to detect outbreaks exist in data.

(1) In LFDO detection, the patient home location and disease time are the
most useful signals for an outbreak. The cases of a LFDO show obvious spatio-
temporal aggregation. Compared to time-space features, the symptoms exhibited
is not so significant in clustering, so a weighting strategy is needed to reduce its
weight.

(2) In SFDO detection, the time-space features are no longer the indicated
information of an outbreak. As a result, we have to make the most use of symp-
toms exhibited. However, because the diversity among individuals, even if two
people infected of same bacteria may have different symptoms exhibited. So we
take food information into account simultaneously. Then the found outbreaks
will have higher reliability. Through combining the experiment result to the
infected bacteria(in present, very few cases have the bacteria information), we
found that patients with very similar symptoms and at the same time consume
a same type of food are very likely to be homological infection.

Note that our method focuses on probable outbreaks only. We hope to provide
effective and rapidly screening of the raw collected data for experts worked on
disease surveillance and food safety. Based on our experimental results, there
are still a lot of work need to be done. And our work is the first critical step.

6 Conclusion

The detection of foodborne disease outbreak is important for food safety and
is a complicated task at the same time. The contribution of this paper is to
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find approaches to rapidly find the probable local and sporadic foodborne dis-
ease outbreaks respectively. Besides, since the final purpose is to develop an
online correlation analysis system for foodborne disease surveillance, we paid
great attention to the practical issues. First, in DASCAN, we give a parameter
adaptive method to automatically set the Eps. In K-CPS, we set the cluster
number as the number of the maximum frequent patterns. Though the selection
of cluster number to some extent is subjective, it is better than to let users
without computer science background to set a value by themselves. We hope to
reduce the number of parameters needed to be adjusted to as much as possible.
As the bacteria infected information is very limited, it is not feasible for us to
do exact quantitative estimate. In the future, we will continuously improve and
optimize our methods with the accumulation of collected data.
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Abstract. Social networks provide unparalleled opportunities for mar-
keting products or services. Along this line, tremendous efforts have been
devoted to the research of targeted social marketing, where the market-
ing efforts could be concentrated on a particular set of users with high
utilities. Traditionally, these targeted users are identified based on their
potential interests to the given company (product). However, social users
are usually influenced simultaneously by multiple companies, and not
only the user interest but also these social influences will contribute to
the user consumption behaviors. To that end, in this paper, we propose
a general approach to figure out the targeted users for social market-
ing, taking both user interests and multiple social influences into con-
sideration. Specifically, we first formulate it as an Identifying Hesitant
and Interested Customers (IHIC) problem, where we argue that these
valuable users should have the best balanced influence entropy (being
“Hesitant”) and utility scores (being “Interested”). Then, we design a
novel framework and propose specific algorithms to solve this problem.
Finally, extensive experiments on two real-world datasets validate the
effectiveness and the efficiency of our proposed approach.

1 Introduction

Recent years have witnessed the development of the social networking services
and famous companies usually have their official accounts on many social net-
work sites. For instance, Samsung, Huawei, HTC, and Xiaomi, all have their
official accounts on Weibo, (weibo.com, the largest social platform in China). As
users on social networks will follow the users (companies) they are interested in
and receive messages and information posted by these followees [1], social net-
work sites (e.g., Twitter, Facebook and Weibo) have become new resources and
platforms to conduct marketing campaign [2].

Like traditional marketing strategies, it is also essential to figure out one or a
few customer segments to target on for social marketing [3]. These targeted users
should have high utilities, and then the marketing efforts (e.g., personalized rec-
ommendation [4], viral marketing [5]) could be concentrated on them. Generally
speaking, both user profiles [6] and user’s historical consumption records [7] are
helpful for measuring their potential interests to the given company (product).
On the other hand, since multiple companies simultaneously have their accounts
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 576–590, 2015.
DOI: 10.1007/978-3-319-18038-0 45
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in the social network, they will significantly influence social users’ choice [8,9].
Thus, when conducting targeted social marketing, the given company should
consider both user interests and the social influences as they will contribute to
the users’ final consumption behaviors.

For instance, during one targeted social marketing campaign for Samsung, we
find three candidate targeted users u1, u2, u3 may be interested in the products of
Samsung (Interested Customers, i.e., mined based on their consumption records).
Then, the problem becomes who is the most valuable user among them? Sup-
pose there are two other competing companies of Samsung: Huawei and HTC,
and suppose we could compute that the influence value distribution from these
three companies to the three users are [0.8, 0.1, 0.1] for u1, [0.1, 0.1, 0.8] for u2,
[0.35, 0.34, 0.31] for u3, respectively. Let’s take u3 as an example, it means that
u3 has the probability of 35%,34%,31% to be influenced by Samsung, Huawei,
HTC, respectively. If these three users showed the similar interests to Samsung,
then the most valuable user for targeted marketing should be u3 rather than u1

and u2. Actually, u1 is already a big fun of Samsung and thus we do not have
to market on him, while u2 is deeply influenced by our competitor (i.e., HTC)
and thus he will have lower probability to choose our product1. Furthermore, it
means we should spare our energy for other users, e.g., u3, who has not been
deeply influenced by any company and has no bias on any company (we call
these users as the “Hesitant Customers”). If we pay attention on u3, this user
may choose our products. Thus, u3 is actually the most valuable user that Sam-
sung should market on. In summary, we argue that when the companies want to
market their products, it’s energy-efficient for them to target on the users, who
not only have the interest to buy the specific product (e.g., one Smartphone)
but also have no bias on any company and have not yet decided to choose which
company’s products (such as Samsung Galaxy or HTC one).

In this paper, we formulate the problem of figuring out these targeted users,
like u3, as an Identifying Hesitant and Interested Customers (IHIC) problem.
As a matter of fact, there are several challenges along this line, e.g., how to
compute the multiple companies’ influences on users efficiently, how to measure
the user hesitancy and the user interest. To address these challenges and to
solve the IHIC problem effectively and efficiently, we design a novel framework.
Specifically, we first propose an efficient algorithm(MIP) to compute the multiple
companies’ influences on users, and identify the hesitant customers by using
hesitant functions. Then, we use the collaborative filtering approaches to measure
the user’s utilities (interests). Finally, the targeted users are those having the
best balanced hesitancy scores and utility scores. Extensive experimental results
demonstrate that the targeted users selected by our framework could bring in
more benefit for the company than the users who are only interested or hesitant.

To the best of our knowledge, this is the first attempt on a comprehensive
study of targeted marketing that considers both user interests and multiple social
influences. Our solution could identify the most profitable potential targeted
users to optimize the marketing performance. Meanwhile, the proposed targeted

1 We will support this assumption by experimental analysis.
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marketing approach is a general framework and each step could be open to some
other algorithms.

2 Related Work

Marketers incline to conduct marketing campaign on social networks by employ-
ing various techniques and approaches [2], and some of them focus on (1) iden-
tifying the targeted customers who maybe interested in the specific product,
or (2) exploiting the information diffusion effect to influence social customers’
consumption decisions.

For identifying targeted customers [10,11], the techniques that are related to
recommender systems could be easily adopted. Along this line, there are gener-
ally three types of techniques: content-based, collaborative filtering and social
recommendations. The content-based methods leverage users’ profile (e.g., age,
job, and location) to predict whether the user’s interest matches the product [12].
In contrast, collaborative filtering usually relies on users’ past behaviors without
requiring the explicit profiles[13]. Furthermore, the social recommendation takes
the users’ social ties into consideration and predicts a user’s interest based on
his neighbors’ interests [10]. In real world scenarios, hybrid techniques are also
widely used, for instance, Jamali et al. proposed to combine the social-based and
the collaborative filtering approaches together to infer customer preference [7].
Unfortunately, few existing studies in this category pay attention to mining the
influences coming from the companies to customers.

For exploiting the information diffusion effect, i.e., social influence, resear-
chers first try to learn the information propagation probability between two
social neighbors [14,15]. Then some related work proposed to model/simulate
the entire process of information propagation, e.g., Independent Cascade (IC)
model [16] and Linear Threshold (LT) model [17] are two widely used ones.
However, both of them require Monto Carlo simulations to estimate the influ-
ence spread, which is very time-consuming; some efficient (or tractable) influ-
ence models are proposed, such as the stochastic information flow model [18]
and the linear social influence (Linear) model [19]. Though it’s convenient for
these models to get the influences of a given node on others, the computation
of the influences from multiple seed nodes on a given node is still inefficient.
Actually, we will address this inefficiency problem by proposing a novel way of
computing the influences from multiple companies on users. Meanwhile, note
that social influence is often used to change customers’ consumption decisions
in viral marketing (e.g., via social influence maximization) [5,9], in this paper,
we will show that it could also be helpful for targeted social marketing (i.e.,
identifying targeted customers).

3 Problem Statement and Formulation

The nodes in social networks could generally be classified into two categories,
namely users’ personal accounts and companies’ official accounts. Usually, each
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company may maintain several official accounts at the same time. E.g., both
“Xiaomi mobile” and “Xiaomi Company” are all official accounts of the Xiaomi
Company on Weibo. Here, let the directed graph G(V,E, T ) represent a social
network, where V = C ∪ U = {1, 2, ..., c} ∪ {c + 1, ..., n} are the two types of
nodes in this network, i.e., C = {C1, C2, ..., C|C|} is the set of an ensemble of
|C| companies’ official accounts and U is the users’ personal account set with
|U | = n − c users. Specifically, Ci denotes the set of associated accounts of the
i-th company, thus we have

∑|C|
i=1 Ci = c. E represents the relationship/links

between nodes and T = [tij ]n∗n is the influence propagation probability matrix.
For each directed link (i, j) ∈ E, tij ∈ (0, 1) denotes the influence propagation
probability from node j to i 2; for any link (i, j) /∈ E, tij = 0.

In addition, users can consume or buy many different products3 produced
by the same company. We use a user-item matrix R|U |×|M | to represent users’
past consumption behaviors/records, where M is the item set. In R, the value
of ruj denotes user u’s consumption for item j. In fact, the detailed value ruj
depends on the applications. E.g., it could be binary, indicating whether users
bought this product before. Also, it could be a rating value, (e.g., 1 to 5 rating).

According to the illustrations in Introduction, when a company wants to
market their products, it is energy efficient to target on the most valuable users
that have not been deeply influenced by any company (being “Hesitant”) and
are also interested in the marketed products (being “Interested”). In this paper,
we formulate this problem as an identifying hesitant and interested customers
(IHIC) problem.

Problem Formulation. Given a social network G(V,E, T ) and the user’s
past consumption behaviors R|U |×|M |, when a company wants to market a product
t to K customers with energy efficient, our goal is to automatically identify these
K targeted customers S who have both the hesitant quality and interested quality.

4 The Proposed Framework

Fig. 1 shows the flowchart of the proposed framework for solving the IHIC prob-
lem. Given a social network G(V,E, T ) and the users’ consumption behaviors
R|U |×|M |, our proposed framework could identify the hesitant users and the inter-
ested users in parallel. On one hand, we first propose an efficient MIP(Multiple
Influence Propagation) algorithm to construct an influence matrix F|V |×|C|,
where fij represents the j-th company’s influence on node i. Then we define
a function H(u) to measure the hesitancy of user u ∈ U . On the other hand,
based on R|U |×|M |, we infer the user preference by using collaborative filtering
approaches. For each user u, we use a utility function r(u, t) to measure the user
u’s interest. Finally, we combine the two functions H(u) and r(u, t) together and
2 Learning the specific propagation probability between neighbors is outside the scope

of this paper; in the experiments, we simply assign tij = 1/indegree(i) as widely
used [5,19].

3 We will use terms customers and products as synonyms to the users and items,
respectively.
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use a parameter η to balance the effect between user hesitancy and user interest.
In the following subsections, each step is illustrated in detail.

4.1 Identifying Hesitant Users

In social networks, multiple companies influence each user simultaneously and
the users also influence each other. Since we only identify the hesitant users, we
focus on the influences of companies on users.

Multiple Influence Computation. Following the modeling of influence
propagation [19], we propose to compute the influence of j-th company on each
node as:

fi←j =

⎧
⎨

⎩

1 , i ∈ Cj

0 , i ∈ {C − Cj}∑
k∈N(i) tikfk←j , i ∈ {V − C},

(1)

where N(i) is the neighbors of node i. In this definition, if the node i belongs
to the j-th company’s official accounts, then fi←j = 1,which means a company
always influence its official accounts; if i belongs to the other companies’ official
accounts, we assign fi←j = 0 for the reason that the company’s official accounts
is hard to be influenced by other companies; if i represents a user, we assign the
fi←j to the sum of the influence of j-th company on user i’s neighbors.

Based on the definition above, we define an influence matrix F|V |×|C|, where
the first c rows represent the company nodes and the remaining |U | rows rep-
resent user nodes; the j-th column represents the j-th company’s influence on
nodes. We propose the MIP (Multiple Influence Propagation) algorithm to con-
struct F = [fij ]|V |×|C|, and Alg. 1 shows the details of the MIP. There are 4
steps: (1) Initialize the F0 (lines 1-7 in Alg. 1); (2) Multiple influences propaga-
tion (line 9 in Alg. 1); (3) Reset the companies’ influences (lines 10-15 in Alg. 1);
(4) Repeat step 2 and 3 until F converges (lines 8-16 in Alg. 1). We should note
that step 3 is critical: Instead of letting the company nodes’ influences “fade
away”, we reset their values to the entries in F0, so the influence probability
mass is concentrated on these company nodes.
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Algorithm 1. The MIP algorithm

Input: G = (V, E, T ), where V = C ∪ U
Output: F|V |×|C|

1 //initialize F0;
2 foreach i ∈ V do
3 for j = 1 to |C| do
4 if i ∈ Cj then
5 fij = 1;

6 else
7 fij = 0;

8 repeat
9 F = T F ;

10 foreach i ∈ C do
11 for j = 1 to |C| do
12 if i ∈ Cj then
13 fij = 1;

14 else
15 fij = 0;

16 until F converges;
17 Return F;

Next, we analyze the convergence of the computation of influence matrix F.
For better presentation, we split F after the c-th row into 2 sub-matrices and
split T after the c-th row and the c-th column into 4 sub-matrices, namely,

F =

[
Fc

F|U|

]
, T =

[
Tcc Tc|U|
T|U|c T|U||U|

]
.

Thus, step 2 (line 8 in Alg. 1) can be rewritten as follows:
[
Fc

F|U|

]
=

[
Tcc Tc|U|
T|U|c T|U||U|

][
Fc

F|U|

]
.

Notice that Fc never really changes since it is reset after each iteration, and
we are solely interested in F|U |. Obviously, F|U | = T|U |c Fc + T|U ||U | F|U |, which
leads to F|U | = limt→∞ T t

|U ||U | F0
|U | + [

∑t
i=1 T i−1

|U ||U |] T|U |c F0
c , where F0

c and F0
|U |

are the top c rows and the remaining |U | rows of the initial F. According to step 1,
we know that F0

c = 0. It’s obvious that F|U | = (I −T|U ||U |)−1 T|U |c Fc is the fixed
point. Therefore, the iterative algorithm converges to the unique fixed point.

Hesitant Function H(u). Based on F|U |×|C| (the remaining |U | rows of
F|V |×|C|), we use a hesitant function H(u) to measure the user hesitancy and
identify the hesitant users (like u3, not u1 and u2 in the example of Introduction).
The higher of the value H(u), the higher the “degree of hesitancy” of the user
u. If the value H(u) is very low, that means the user u is influenced deeply by
some company. In this part, we introduce two different hesitant functions and
compare their performance in the experiments. The first HE(u) is transferred
from the information entropy [20] and the second HD(u) is transferred from the
information diversity [21]; their formulations are as below:

HE(u) =

|C|∑

j=1

(−fuj log|C| fuj), HD(u) =

|C|∑

j=1

fuj
1 + fuj

.

Now we could recognize the hesitant nodes by using the hesitant functions.
Please note that other rational functions H(u) are also acceptable, such as the
Gini index [20].
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4.2 Identifying Interested Users

Besides measuring the user hesitancy, another key point for selecting targeted
users is to measure the user interest, i.e., users’ preference on a product and
how likely users would consume the product. Many proposed recommendation
methods estimate a utility function r(u, t) to measure the user u’s interest on
item t and predict how the u will like t [13]. Since the focus of this paper is not to
devise more sophisticated recommendation methods, we choose the two existing
methods of collaborative filtering : item-based collaborative filtering (ICF) [22]
and user-based collaborative filtering (UCF) [13]. The corresponding formulas
are as below:

r(u, t)ICF =

∑
k∈M(u) sim(k, t) ruk∑

k∈M(u) sim(k, t)
, r(u, t)UCF =

∑
v∈S(u) sim(u, v) rvt∑

v∈S(u) sim(u, v)
,

where M(u) is the items that user u have consumed, S(u) is the users who are
most similar to u, sim(k, t) is the similarity between items k and t, and sim(u, v)
is the similarity between users u and v; both of them are computed based on
the user’s past consumption behaviors R|U |×|M |. In this paper, we choose the
Jaccard measure to calculate the similarities, and the formulas are as below:

sim(k, t) =
Uk ∩ Ut

Uk ∪ Ut
, sim(u, v) =

Iu ∩ Iv

Iu ∪ Iv
,

where Uk and Ut represent the users who have consumed k and t, respectively;
Iu and Iv represent the items which have been consumed by u and v,respectively.

Without loss of generality, we use ICF and UCF to select users with highest
values as the interested users, and we will experimentally compare the perfor-
mance of them.

4.3 Targeted User Selection

According to the illustrations above, we could compute the H(u) and r(u, t) to
measure the user hesitancy and the user interest. Finally, we combine the two
characters of user and propose the function P (u, t) to measure the overall quality
of each user. The final function P (u, t) is as follows:

P (u, t) = η
H(u)

H̄(u)
+ (1 − η)

r(u, t)

r̄(u, t)
, (2)

where η is used to balance the effect of the hesitancy and the interest, and the
H̄(u) and r̄(u, t) are the maximum H(u) and r(u, t), respectively. The smaller
the η, the more we pay on the interest measure. When η reduces to 0, the
function only considers the user interests, thus the approach turns to traditional
collaborative filterings.

Finally, a set S of K users with the highest value of P (u, t) will be selected
as the targeted customers for the given company when it wants to market the
product t.



Identifying Hesitant and Interested Customers for Targeted 583

5 Experiments

5.1 Experimental Setup

The experiments are conducted on real-world social datasets: Weibo and Epin-
ions.

(1) Weibo. We crawled from the social media weibo.com, where nodes rep-
resent the users or the companies’ official accounts, and edges are nodes’ fol-
lowships. When a user posts a message in Weibo, the sending device (e.g., the
mobile devices like Samsung Galaxy Note and iPhone5) are also recorded. That
is, we can obtain the mobile purchasing behaviors of users by their posted mes-
sages. For instance, if a user send messages using Samsung Galaxy Note, we
say he is a consumer of Samsung, and then he send another message by using
“Xiaomi 2”, we say the user is also a consumer of Xiaomi4. This data is collected
in March 2013. For better illustration, we sample a small network which only
contains the verified users and the official accounts of the five(|C| = 5) famous
mobile companies (namely, Samsung, Huawei, Xiaomi, HTC and ZTE) 5; more
specifically, each mobile company contains two or three official accounts(namely,
Ci = 2 or 3). In this way, we could obtain the consuming records R.

(2) Epinions. Epinions.com is a well known knowledge sharing and review
site. In this site, registered users can submit their personal opinions on some
topics such as products, movies or the reviews issued by other users, and assign
products or reviews integer ratings from 1 to 5. These ratings and reviews will
influence future customers when they are about to decide whether a product is
worth buying or a movie is worth watching, and each rating could be regarded
as a consumption from a user to an item (product or movie). Every member
of Epinions maintains a “trust” list which presents a social network of trust
relationships between users. To use this dataset, we select the |C| = 5 influential
users (having the most followers) and treat them as the companies (i.e., |Ci| = 1
for this dataset as each selected user/company has only one account). Then, the
items are the opinions/products shown by each user/company.

Table 1. Statistics of the Datasets

Data #Nodes #Items #Social Edges #Consumptions
Weibo 140,876 89 1,792,835 2,822,315
Epinions 49,290 139,738 487,183 664,824

Detailed information about the two datasets can be found in Table 1. For
each dataset, we split it into a training set and a test set, by selecting the first 80
percentage of the consumptions for training and the remaining ones to be part
of the test set. In this way, we could validate the performance of our methods
on the test set.
4 A user’s consumptions/messages using the same mobile device will be integrated

into a tuple record(user id, mobile id, number of records).
5 As Apple Inc. has none official account in Weibo, our collections does not contain it.
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5.2 The Correlation Analysis

In this subsection, we use Weibo as an example to show the strong correlations
between social follow-links (between users and companies) and users’ consump-
tion behaviors.

Fig. 2. Product Adoption Rate of the Company’s Followers

Fig. 3. Following Rate of the Companies’ Consumers

First, we calculate the product (mobile) adoption rate of each company’s
followers and the results are shown in Fig. 2. From each subfigure (with respect to
one company), we could observe that most of the followers adopt each company’s
products (Due to space limitation, we omit the result on ZTE). For instance,
the first subfigure shows the product adoption rate of Xiaomi’s followers, where
50% of these followers use the products (cellphones) produced by Xiaomi. Then,
we calculate the following rate of the companies’ consumers (the percentage of
each company’s consumers that follow this given company) and the results are
shown in Fig. 3. We can see that most of each company’s consumers incline to
follow this company’s accounts. For instance, the first subfigure of Fig. 3 shows
that among the users who consumed Xiaomi’s products, 71% of them followed
Xiaomi’s official accounts in Weibo, while only 13%, 8%, 4% of them followed
the official accounts of HTC, Huawei and Samsung, respectively.

The above results demonstrate that there exists an obvious correlation bet-
ween the social relations (influence) and the users’ consumption behaviors. Thus,
it is necessary to exploit the social influence for targeted marketing. More deeply
understanding will be shown in the following subsection.

5.3 Evaluation of the MIP Algorithm

We further validate the assumption (the users who are deeply influenced by a
company have much higher probability to choose the company’s new product)
by our MIP algorithm, and then demonstrate the performance of MIP.
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Assumption Validation based on MIP. We first use MIP to compute the
influence matrix F|V |×|C| on the training data. Then we select the top K users
who have been deeply influenced by each company j = 1, 2, ..., 5, and compute
the adoption (buy or rate the company’s products) rate of these deeply influenced
users on the test data, i.e., InfRate. We compare this InfRate with the average
adoption rate of all users, i.e., AvgRate. The results are shown in Fig. 4, where
we set K = 30 for Weibo and K = 500 for Epinion due to the different data
sparsity. Specifically, the left and middle subfigures of Fig. 4 are the comparison
results on Weibo and Epinion, and the right subfigure shows the Growth Rate of
InfRate compared to AvgRate. For instance, On Weibo, the users who are deeply
influenced by HTC (Company ID 1 in the right subfigure) have 60% probability
to choose HTC’s products (the left subfigure) and this rate is 16 times higher
than AvgRate (the right subfigure). Once again, we could conclude that the users
who are deeply influenced by a company have higher probability to choose the
company’s new product and lower probability to choose the competitors’. Hence,
when conducting targeted marketing, the company should pay more attention
to the hesitant customers, since the deeply influenced customers will choose the
influencer’s product.
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Fig. 4. Adoption Rate of the deeply influenced users

Efficiency and Effectiveness of MIP. Although several influence models
(such as IC [5], LT [17] and Linear [19]) have been proposed to compute the influ-
ence of one node to another, none of them are efficient or suitable for measuring
the influences from multiple companies on users. Without loss of generality, we
use the recently proposed Linear model (which is both efficient and effective) as
the baseline of our MIP algorithm, and the parameter settings (including the
entries in T ) are same to that in [19].

Specifically, we first use MIP and Linear, respectively, to get F, and then
compute the users’ hesitant value H(u). We run the process 100 times for dif-
ferent number of companies (i.e., |C| equals to 1,2,..., or 5) and then compare
the average runtime of the two methods. The results shown in Fig. 5 demon-
strate that MIP is much more efficient and is also invariant to the number of
companies. In addition, we compare the average hesitant values (H(u)MIP and
H(u)Linear ) of the randomly selected 25 nodes, and then compute the differ-
ence rate (H(u)MIP − H(i)Linear)/H(u)Linear under the |C| = 3. This result is
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shown in Fig. 6. The results illustrate that the value of H(u)MIP and H(u)Linear

are very similar as the difference rate are almost less than 0.05. In other words,
MIP has the similar ability to measure the social influence prorogation process
as Linear, while MIP is much more efficient for computing the influences from
multiple companies on users.

1 2 3 4 5
0

5

10

15

|C|

R
un

tim
e 

(s
)

Weibo

 

 

MIP
Linear

1 2 3 4 5
0

100

200

300

400

|C|

R
un

tim
e 

(m
s)

Epinions

 

 

MIP
Linear

Fig. 5. Runtime Comparisons

5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1

1.1

Uid

H
(i)

Difference

 

 

Weibo−MIP
Weibo−Linear
Epinions−MIP
Epinions−Linear

5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

Uid

D
iff

er
en

ce
 R

at
e

Difference Rate

 

 

Weibo
Epinions

Fig. 6. H(u) Comparisons

5.4 Evaluation of Function P (u, t)

In this subsection, we first show the effects of the parameter η for final targeted
user selection, and then compare the performance of P (u, t) with two baselines.
Finally, we generalize the P (u, t) with different functions of H(u) and r(u, t).

Specifically, we choose HE(u) to identify hesitant users, and use r(u, t)ICF to
identify interested users (the generality of other functions will be evaluated later).
Then the quality function P (u, t) = ηHE(u)/H̄(u)+(1−η)r(u, t)ICF /r̄(u, t)ICF

is used to select targeted users (i.e., IHIC). We select two related benchmarks:
– ICF is short for item-based collaborative filtering, only takes the user inter-

est into consideration. Actually, ICF is a special case of IHIC when η = 0.
– IHC is short for identifying hesitant customers. The IHC method only con-

siders the user hesitancy and is a special case of IHIC when η = 1 for P (u, t).
The Effects of η. We first show whether different values of η can help

select different targeted customers. For comparison, we first use ICF to identify
a targeted user set SICF . Then we change the values of η from 0 to 1 with a
stepsize of 0.1, and each time we select another targeted use set SIHIC with the η
value and compute the Jaccard similarity between the two targeted user sets. We
also further compute the Jaccard similarity of the consumed items of the selected
users. In practice, the size of the targeted user set is set to 30 and the results are
averaged over 50 randomly selected items. The final results are shown in Fig. 7;
we can see that the larger the η, the bigger the difference between the user sets
and the consumption behaviors of the selected targeted users. We conclude that
IHIC(P (u, t)) is able to select different targeted users with different η, and these
users also have different item preferences.

Performance Comparisons. For a marketing item, we select the targeted
users S on the training data by each method. Then, we compute the precision
and recall of S on the test data to measure the performance of these methods,
e.g., precision equals to the percentage of these targeted users that consumed
the item.
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Fig. 7. The Jaccard Similarity of the user sets and their consumed items

Before detailed comparison with other models, we need to first select the
best η for our proposed IHIC model. We randomly select 50 items and get
the target users by IHIC with different η values under different target user
size (|S| = {10, 20, 30}). Fig. 8 and Fig. 9 show the results on Weibo and Epinions
respectively, which illustrate that the performance (both precision and recall) of
IHIC changes with different η; additionally, IHIC could achieve the better per-
formance with some value η ∈ (0.1, 0.4). This implies that we could change the
performance of selected targeted users by considering the user hesitancy with
different weight(η), and choose the η leading to the best performance.

Then, we compare the performances of targeted users with different |S|
selected by the three methods (IHIC, ICF, IHC); we set η = 0.2 for better per-
formance 6. Fig. 10 and Fig. 11 show the results of the performance comparisons
on Weibo and Epinions respectively. The results illustrate that the traditional
recommendation method ICF not always achieve the best results. Nevertheless,
IHIC, which considers both the user interest and hesitancy, usually obtains bet-
ter performance. This implies that many higher interested users selected by ICF
are deeply influenced by another company, and they incline to choose the similar
products of the competitor’s. Hence, it’s necessary to consider the user hesitancy
when conducting product marketing.
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Comparing P (u, t) with Different H(u) and r(u, t). We show the gen-
erality of the P (u, i), that is, we will compare the performance of P (u, t) with
different H(u) and r(u, t). For better comparisons, we combine these functions
reported in Section 4 and propose the following methods to calculate P (u, t):

6 In fact, the optimum η could be estimated by using a validation set.
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– HE-ICF. P (u, t) = ηHE(u) /H̄E(u) + (1 − η)r(u, t)ICF /r̄(u, t)ICF .
– HE-UCF. P (u, t) = ηHE(u) /H̄E(u) + (1 − η)r(u, t)UCF /r̄(u, t)UCF .
– HD-ICF. P (u, t) = ηHD(u) /H̄D(u) + (1 − η)r(u, t)ICF /r̄(u, t)ICF .
– HD-UCF. P (u, t) = ηHD(u) /H̄D(u) + (1 − η)r(u, t)UCF /r̄(u, t)UCF .

We randomly select 30 items for marketing. For each item, we select tar-
geted users (|S| = 30) by the 4 methods under different η ∈ [0, 1], and then
validate the precision and recall of the users on the test data. Fig. 12 shows the
average precision and recall of these select targeted users on Weibo7; the results
demonstrate that the performance of the 4 methods are affected by different η
and all of them could achieve the best performance under some η value. For
instance, HD-UCF achieves its best performance under η = 0.1. Then, we set
η = 0.1 for the 4 methods and use them to select targeted users with different
size |S| = 5, 10, ..., 50. Fig. 13 shows the average precision and recall of these
targeted users; the results demonstrate that the different H(u) or r(u, t) also
affect the performance of the selected targeted users. Hence it’s necessary to
devise more rational hesitant function H(u) and propose more accurate r(u, t).

In summary, when using recommending methods to conduct product mar-
keting, we should take both the hesitant quality and the interest of users into
consideration.
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Fig. 12. Comparisons with Different η
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6 Conclusion

In this paper, we proposed a novel framework to solve the problem of identi-
fying hesitant and interested customers (IHIC) for targeted social marketing.
Specifically, we first proposed an efficient MIP algorithm to calculate the mul-
tiple companies’ influences on users, and defined two hesitant functions H(u)
to measure the user hesitancy. Then we measure the user interest on items by

7 Similar results could be observed on Epinions, we omit it due to space limitation.
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using two collaborative filtering approaches. Finally, we combined the two types
of measures together and proposed the function P (u, t) to identify the hesitant
and interested customers. Extensive experiments validated the performance of
our proposed approaches.
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Abstract. In many activities, such as watching movies or having
dinner, people prefer to find partners before participation. Therefore,
when recommending activity items (e.g., movie tickets) to users, it makes
sense to also recommend suitable activity partners. This way, (i) the
users save time for finding activity partners, (ii) the effectiveness of the
item recommendation is increased (users may prefer activity items more
if they can find suitable activity partners), (iii) recommender systems
become more interesting and enkindle users’ social enthusiasm. In this
paper, we identify the usefulness of suggesting activity partners together
with items in recommender systems. In addition, we propose and com-
pare several methods for activity-partner recommendation. Our study
includes experiments that test the practical value of activity-partner rec-
ommendation and evaluate the effectiveness of all suggested methods as
well as some alternative strategies.

1 Introduction

In real-world recommendation applications, many items are related to activities
that people like to participate with their folks. For example, items such as online
game invitations, movie tickets, dinner discounts are related to social activities
(playing games, watching movies, and dining). We call such items (social) activ-
ity items. Activity items are commonly found in real-world e-commerce web-
sites such as Groupon (www.groupon.com) and Meituan (www.meituan.com),
as shown in the examples of Figure 1(a).

Previous work on recommending activity items typically focused on improv-
ing the precision, recall, or diversity of recommended items [1]. In this paper, we
follow a totally new direction: as Figure 1 shows, instead of recommending only
activity items to users, we combine the activity-item sale platform and social
network platform to make the activity-item sales benefit from also recommend-
ing activity partners for the suggested items. Our rationale is that, for activities
in which people like to participate with their folks, if a system recommends a
related item alone, the user may give up attending the activity (i.e., reject the
item) if s/he cannot immediately think of someone to invite to attend the activity
together. The Figure 1(c) illustrates the effectiveness of recommending activity
partners via an example. The recommended product “tickets of Bruno Mars’
concert” is an activity item and the corresponding activity can be described as
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 591–604, 2015.
DOI: 10.1007/978-3-319-18038-0 46
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“watching Bruno Mars’ concert”. Imagine that you have some interest in Bruno
Mars’ show; however, when you see the recommendation message, it may be
hard for you to think of suitable partners for watching the show together. This
could be a good reason for you to give up attending this activity since you don’t
feel like going to a concert alone. On the other hand, if the recommendation also
includes suggestions for possible partners, you can try inviting them and enjoy
the show together. Based on this example, we designed a simple questionnaire
to collect feedback from real web-users on the potential effectiveness of recom-
mending activity partners. The results (shown in Section 4.1) demonstrate that
the great majority of web users would favor such an approach as opposed to a
simple activity item recommender. In summary, we assert that including partner
recommendations not only improves the quality of recommender systems, but
may also increase the positive response rate of users, improving therefore the
revenue of the involved businesses.

Fig. 1. Our recommendation service

As discussed above, recommending activity partners is likely to improve the
success rate of activity item recommendations. On the other hand, to the best of
our knowledge, there are no previous studies or applications of this idea in the
research community or the industry, respectively. This motivates us to investi-
gate methods for activity-partner recommendation. We firstly explore how atten-
dance preference and social context can be used to recommend activity partners.
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Then, we propose a method that analyzes the historical records of user prefer-
ences on activity partners to predict future activity partners. This is a reasonable
methodology, since the past user preferences on activity partners would be avail-
able after the activity-partner recommendation system has been set up and used
to collect training data.

In summary, the contributions of this paper are as follows:

– We bring in the idea of recommending suitable activity partners, in order
to improve the effectiveness of activity item recommendation. A survey was
conducted to confirm that real users favor the recommendation of activity
partners together with the proposed items. We formulate the problem of
activity-partner recommendation, accordingly.

– We study how to derive activity-partner recommendations using user-item
preferences and the social context of users. Since such data are commonly
tracked in current recommendation systems, our results can directly be
embedded into an existing recommender system to turn it into an activity-
partner recommender.

– We also propose a methodology for recommending activity partners based
on past partner knowledge of users. This method extends conventional col-
laborative filtering techniques to make them more suitable for our problem.

– We conduct an experimental evaluation based on real data that tests the
effectiveness of all proposed methods in recommending activity partners.

The remainder of this paper is organized as follows. Section 2 formulates our
problem. Section 3 describes our methods for activity-partner recommendation.
Section 4 includes our experiments. Section 5 discusses related work. Finally,
Section 6 concludes with a discussion about future work.

2 Problem Formulation

As Figure 2 shows, typically there are two types of objects (i.e., user and item)
in recommendation systems for activity items. Let U = {u1, u2, . . . , unu

} be the
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set of users and A = {a1, a2, . . . , ana
} be the set of activity items. Two common

types of relationships exist among these entities. First, users can be connected
to each other in a social network; we use fi,j to represent the friendship status
between users ui and uj , i.e., fi,j = 1 if ui and uj are friends and fi,j = 0
otherwise. Second, users may indicate their preference to activity items. Since,
in our case, items are related to activities, we call the preference of users to items
attendance preference. For each user ut and activity item al, we use pf(ut → al)
to denote how much ut prefers al. pf(ut → al) can take value from a range (e.g.,
1 to 5) or it can be binary number (i.e., pf(ut → al) = 1 means that ut likes
al). Besides the above two types of relationships (i.e., friendship and attendance
preference), we bring in another relationship, called together preference, which
indicates whether or how much a user prefers to attend a given activity item
together with another user. For example, if Tom clicks the “Invite Jerry” button
in the exemplary user interface in Figure 1(c), this indicates that Tom prefers to
attend activity “Bruno Mars’ show” together with Jerry. The together preference
relates a user and an activity item [ut, al], i.e., a ua-pair, to another user ux. For
example, the fact that Tom prefers the tickets of Bruno Mars’ concert creates
pair [Tom, tickets of Bruno Mars’ concert]; if Tom likes Jerry to join him to
the concert, then there is a relationship between [Tom, tickets of Bruno Mars’
concert] and Jerry. We use pf([ut, al] → ux) to indicate how much user ut

prefers to attend the activity of al together with ux. pf([ut, al] → ux) can take
numerical or binary values, similar to the attendance preference defined above.
For example, we can set the binary value of p([Tom, tickets of Bruno Mars’
concert]→ Jerry) to 1 if Tom clicks the “Invite Jerry” button or to 0 if Tom
does not click the button.

As Figure 2 shows, the objective of our work is, for each activity item rec-
ommended by an activity-item recommendation system, to predict the users’
together preference on the activity item. With the above notation, our prob-
lem can be stated as follows. Given a target user ut and an activity item
al (recommended by some activity-item recommender), use any known friend-
ship, attendance preference, and together preference relationships to estimate
p([ut, al] → uc), where uc is any candidate activity partner. Then, rank the
partner candidates uc by their pf([ut, al] → uc) values and extract the top-k
candidates as the recommended activity partners.

3 Activity-Partner Recommendation

3.1 Utilizing Attendance Preference and Social Context

In this section, we first utilize attendance preference and social context to imple-
ment activity-partner recommendation.

Social-Closeness Hypothesis. The majority of web services nowadays allow
users to establish friendship relationships between them. Thus, the most intuitive
relationship between users is their social closeness. Here we use the neighborhood
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overlap [2] (commonly used owing to its low computational complexity) to model
the social closeness SC(ut, uc) between two users: Thus, one user-user relation-
ship that may help predict together preference pf([ut, al] → ux) is the social
closeness SC(ut, uc) between ut and ux. Here we assume that people prefer to
attend activities with users who are socially close to them. Therefore, we can
predict together preference as follows:

pf([ut, al] → uc) ∝ SC(ut, uc) =
F t

⋂ Fc

F t
⋃ Fc

, (1)

where F t (Fc) is the friends set of ut (uc). In order to recommend activity
partners to a target user ut, we rank the activity-partner candidates according to
their social closeness to ut and return the top ones as the recommended partners.
We call this method Social-Closeness based Activity-Partner Recommendation
(SCAPR).

Similar-Interest Hypothesis. The similarity between user interests (homo-
philly) is commonly used in previous recommender systems. For recommending
activity partners based on user homophilly, we can rank the activity-partner can-
didates according to their similarity to the target user. This approach assumes
that users prefer to participate in activities with people who have similar interests
to them. For example, we can measure the cosine similarity between user-profile
vectors and use it to define Similar-Interest based Activity-Partner Recommen-
dation (SIAPR):

p([ut, al] → uc) ∝ SI(ut, uc) = SimCosine(rt, rc) =
rt · rc

||rt||||rc|| , (2)

where the vectors rt and rc capture the interests (i.e., the sets of preferred items)
of ut and uc, respectively.

Also-Like Hypothesis. Besides the above hypothesises, assuming that users
prefer to attend an activity together with users who also prefer to attend the
activity, we rank the activity-partner candidates by their attendance preference
to the activity item:

pf([ut, al] → uc) ∝ AL(uc, al) = pf(uc → al), (3)

We call this methodAlso-Like basedActivity-Partner Recommendation (ALAPR).
The attendance preference of the activity-partner candidates to the activity item
can be estimated by any activity-item recommendation system. For example, we
can use user-based collaborative filtering [5] (explained in detail in Section 3.2)
to estimate the attendance preference.

3.2 Utilizing Training Together Preference

In this section, we propose an alternative method to the simple strategies intro-
duced in Section 3.1. Our objective is to predict a user’s together preference



596 W. Tu et al.

via his/her past together preference records. We first discuss about the possible
sources of past together preference data for the target user. Then, we will show
how known together preference data can be used to predict together preference
for a new item.

Extracting Together Preference Data. Several methods can be used to
retrieve together preference data. First, some domains own the together prefer-
ence data already. For example, consider the case where the activity items are
online games. The system that hosts the games can easily record whether two
users have played some game together. Together preferences can also be derived
from users’ behavior at the activity-partner recommendation web service. For
example, if we set up an activity-partner recommendation system with an inter-
face similar to the one in the of Figure 1(c), users’ clicking behavior on the invi-
tation button is a indicator of activity-partner preference. One typical source of
together-preference data are the check-in records of geo-social networks. Assume
that we have access to the check-in data of users together with their social con-
nections. If two users who are friends checked in at the same activity venue very
close in time, we can infer that they attended the activity together. For example,
two friends who checked in at the same Chinese restaurant at 8:00 pm and 8:15
pm on the same day, most probably had dinner together.

Using Together Preference Data. With the availability of past together-
preference data, recommending activity partners seems to be a typical recom-
mendation problem if we regard the combination of target user and activity
(e.g. [ut, al]) as a special “user”. Up to now, two main classes of recommenda-
tion approaches exist: collaborative [3] or content-based filtering [4]. Content-
based filtering methods extract features from the items and recommend to users
items with similar features to past items chosen by them. In our problem, the
“items” to be recommended are activity partners, which lack a generalized def-
inition of content. Therefore, collaborative filtering (CF) appears to be a more
suitable approach for activity-partner recommendation. Therefore, we propose a
method, called Collaborative Filtering based Activity-Partner Recommendation
(CFAPR), which appropriately extends the idea of CF methods to solve our
problem.

Before presenting CFAPR, we first explain how user-based CF [5] works.
Since it can be used for predicting the attendance preferences in our APR prob-
lem, here we take the process of accessing pf(ut → al) of single user ut on item
al as an example. The first step of the approach is to calculate for each other
user ui the vector similarity between rating profiles of ut and ui (denoted as rt
and ri). For example, we can use the similar interests Equation (2) to calculate
the similarity Su

t,i between ut and ui. The second step is as follows: if Su
t,i sat-

isfies some condition (e.g., larger than a threshold or in the set of top-k highest
similarities), we regard ui to be in the neighborhood of ut. To predict the pref-
erence pAt,l of user ut to activity al, we aggregate (weighted sum) the (known)
preferences pAi,l to al of all users ui in the neighborhood of ut, as follows:
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pAt,l ∝ 1
∑

ui∈Nt Su
t,i

∑

ui∈Nt

Su
t,iri,l, (4)

where N t denotes the set of ut’s neighbor users who have rated al.
Now, assume that we try to apply this conventional user-based CF approach

to predict the together preference pf([ut, al] → uc). Similarly, we can regard each
[ut, al] as a special user unit. We call such a “user” unit a ua-pair. First, we should
try to find the neighborhood of ua-pair [ut, al]. However, since a conventional
activity-item recommender always recommends to users activity items they have
not rated yet, there must not be any historical together preference of [ut, al].
The above fact means that all the elements of the profile vector of [ut, al] are
unknown, thus we are not able to find neighbor ua-pairs of [ut, al] by computing
the vector similarity between the row of [ut, al] and those of other ua-pairs. This
problem is not unique to user-based CF. It also occurs when we try to use item-
based [6] or matrix-factorization-based CF [7] methods, since the profile row of
[ut, al] does not contain any known values.

To solve the problem discussed above, we employ an alternative method to
define the neighbors of [ut, al] and their similarity. We just consider all [ut, am]
(m �= l) as candidate neighbor ua-pairs of [ut, al]. In other words, we only take the
ua-pairs for which the user element is same as the target user ut as candidates
of neighbor ua-pairs, since we found that the together-preference patterns of
different users are very different (this will be demonstrated in the next section).
Then, we regard the similarity between [ut, al] and [ut, am] as the similarity
between al and am (m �= l). For example, we can use the similarity between the
profile vectors of al and am (i.e., item similarity) to model the similarity between
[ut, al] and [ut, am]. Note that we can also use content similarity between the
activity items if the activity item carry a rich description. After calculating the
similarity between [ut, al] and all [ut, a∗], we select the most similar [ut, a∗] as the
neighbors of [ut, al] (i.e., those with similarity larger than a threshold or those
with the highest similarities). Finally, we can predict pTt,l,c (i.e., pf([ut, al] → uc))
by aggregating all together preferences pTt,m,c (i.e. pf([ut, am] → uc)) of [ut, am]
(m �= l) on uc as:

pTt,l,c ∝ 1
∑

[ut,am]∈N t,l Sa
l,m

∑

[ut,am]∈N t,l

Sa
l,mpTt,m,c, (5)

where N t,l denotes the neighbor ua-pairs of [ut, al]. We denote the above exten-
ded CF method by CFAPR. From the above equation, we can see that CFAPR
actually assumes that people have similar preferences for patterns on similar
activities, which is a reasonable assumption. For example, John likes to watch
football matches and play football with his sports buddies, but prefers to watch
romantic movies and have dinner in a restaurant with his girlfriend.

Algorithm 1 summarizes the whole process of CFAPR. Note that the size of
the candidate set Ct,l of activity partners is an important parameter, since the
problem size is determined by it. For example, in our experiments, we restrict the
candidate set of activity partners to include only the users who have a friendship
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connection with ut to control the problem size and the cost of CFAPR. Studying
the effect of alternative methods for restricting the candidate-set is an important
direction of our future work.

Algorithm 1. CFAPR

Input: (i), Ct,l: the candidate set of partners recommended to user ut when recom-
mended activity-related item is al; (ii), Sa(al, am): similarity function between two
activity-items (i.e., al and am); (iii), neighbor condition: a threshold or a value k for
defining the number of neighbor ua-pairs.
Output: K partners recommended for ut to attend al together

Initial N t,l = ∅; At = the activity items previously preferred by ut;
for all am ∈ At do Sim([ut, al], [ut, am]) = Sa(al, am)
for all al ∈ Ai

if Sim([ut, al], [ui, am]) satisfies neighbor condition

then Add [ut, am] into N t,l

for all uc ∈ Ct,l do Compute pf([ut, al] → uc) using Eq.(5)

Return K users in Ct,l having the highest K pf([ut, al] → u∗) values.

4 Experiments

Section 4.1 demonstrates the meaningfulness of activity-partner recommendation
via feedback collected from real web users. Section 4.2 evaluates the activity
partner recommendation strategies described in Section 3.

4.1 Users’ Favor of Activity-Partner Recommendation

To confirm the practical value of our work, we conducted an electronic survey
that involved real-world web-users. The objective is to find out whether users to
whom activity items are recommended are also interested in activity-partner rec-
ommendation for these items. The designed questionnaire, which has the format
shown in Figure 3 asks people whether they prefer to be also recommended by
activity partners and was released to public Chinese web-users from November
21, 2014. Until the submission of this work, 57 web-users (from various provinces
of China) returned their answers to us. Although we did not get a lot of feedback
(there were very few web users willing to fill-in the on-line questionnaire with-
out a reward), we believe that the sample is big enough to reflect the opinion of
typical web-users. Finally, about 93% of participating users expressed their pref-
erence to activity-partner recommendation, compared to recommending activity
items alone. This indicates that our study has good potential in improving the
quality of current recommender systems.

4.2 Effectiveness of Activity-Partner Recommenders

Data. In our effectiveness evaluation, we used data from location-based social
networks (LSBN) to simulate a real-world scenario for our problem. We regard
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Fig. 3. The questionnaire used to assess the favor of web-users to activity-partner
recommendation

locations in LSBN datasets as activity items. This is reasonable, since many
activity items (e.g., tickets, dinner vouchers) refer to particular locations at par-
ticular time periods or moments. For example, location Han Dynasty (Chinese
Restaurant, 4356 Main St, Philadelphia, PA 19127) can be regarded as activity-
item “Coupon for eating Chinese food in Han Dynasty”. Moreover, the activity
partners with whom users attend (check-in) some activity items (location) can
be inferred based on the check-in timestamps and the friendship relationships
between users, as discussed in Section 3.2: if two users are friends and check-in
at a same location at close timestamps (i.e., the time difference between their
check-in timestamps is less than three hours), we regard that the two users
attend the corresponding activity item (location) together and thus they are
activity partners of each other with respect to the activity item. We used data1

crawled from three popular LSBN websites: Gowalla (gewalla.com), Foursquare
(foursquare.com) and Brightkite (brightkite.com). All these datasets have check-
in timestamps and social links between users. Finally, we obtained 101400 (from
Gowalla), 16220 (from Foursqure), and 1690 (from Brightkite) [user, activity]
ua-pairs for testing (each such ua-pair is associated with at least one activity
partners, e.g., [John, Han Dynasty]→ {Jerry, Bella, Nicole· · · })2.

Evaluation Measures. After extracting the testing ua-pairs and their corre-
sponding activity-partner knowledge, we use the tested methods to recommend
1 Released on http://i.cs.hku.hk/∼wttu/apr project.html
2 We discard the ua-pairs without any extracted activity partners. For example, if

we find that none of John’s friends checked in Han Dynasty at a close timestamp
to John’s, we infer that there are no activity partners of the ua-pair [John, Han
Dynasty]; thus, we do not use [John, Han Dynasty] as a ua-pair in our experiments.

gewalla.com
foursquare.com
brightkite.com
http://i.cs.hku.hk/~wttu/apr_project.html


600 W. Tu et al.

0 10 20 30 40 50
0

2

4

6

8

10
x 10

4

#partners

(a) On Gowalla.

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

#partners

(b) On Foursqure.

0 10 20 30 40 50
0

200

400

600

800

1000

#partners

(c) On Brightkite.

Fig. 4. The number of valid user-activity pairs (y-axis) having a given number of
activity partners (x-axis)

K activity partners for each valid user-activity pair. We denote the set of valid
user-activity pairs as V, the real activity-partners of a testing ua-pair [ut, al] as
Pareal(ut, al), and the recommended partners to [ut, al] as Parec(ut, al). We use
the classic precision and recall measures to evaluate the performance of recom-
mending activity partners.

Precision =

∑
(ut,al)∈V |Parec(ut, al)

⋂
Pareal(ut, al)|

∑
(ut,al)∈V |Parec(ut, al)| , (6)

Recall =

∑
(ut,al)∈V |Parec(ut, al)

⋂
Pareal(ut, al)|

∑
(ut,al)∈V |Pareal(ut, al)| . (7)

Competitors. Besides methods SCAPR, SIAPR, ALAPR (introduced in Sec-
tion 3.1), and CFAPR (introduced in Section 3.2), we include in the evaluation
an additional strategy, which also employs together preference training. This
method is called Popular-Partner based APR (PPAPR) and models the popu-
larity of a activity partner candidate by the times s/he is preferred as an activity
partner by the target user only. PPAPR is based on a partner consistency hypoth-
esis, while CFAPR assumes that partners are sensitive to activities. In PPAPR,
the popularity of a partner candidate uc for a target user ut is defined as follows:

pf([ut, al] → uc) ∝ Pop(ut, uc) = |Vt
c|, (8)

where Vt
c is the set of valid user-activity pairs of user ut whose activity partners

include uc.
While evaluating all methods, for each testing user-activity pair (e.g. [ut, al]),

we set the candidate set of activity partners as the friends set of ut. More-
over, we use all neighbor candidates in CFAPR as the ua-pair neighbors (set
neighbor condition in Algorithm 1 initially as TRUE) and use the Cosine sim-
ilarity between activities’ rated vectors. Besides, for implementing ALAPR, we
used user-based CF as a basis with the neighbors of a user being the 100 most
similar users to the target user.
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Results and Analysis. Before performing performance comparison, we ana-
lyze the number of activity partners users prefer when attending an activity.
According to the check-in records of LBSN datasets, we found that most of
(more than 95% in our experiments) the user-activity pairs have 1 to 5 activ-
ity partners. Therefore, we will test the performance of the methods introduced
above on activity-partner recommendation when the size of recommendation list
of activity partners is changing from 1 to 5. Figure 5 shows the results of all
methods while K is varying from 1 to 5. Note that the precision of all methods
falls and the recall increases as K increases, which indicates the predictions more
close to the top are more accurate. When comparing performance of different
methods, we can observe that:

– CFAPR outperforms all other methods.
This indicates the suitability of CFAPR for activity-partner recommendation
with training together-preference knowledge.

– CFPAR outperforms PPAPR.
Both of CFAPR and PPAPR take use of past together preference. The differ-
ence between CFAPR and PPAPR is that CFPAR considers the influence of
activity item together preferences. CFAPR assumes that the together pref-
erences of a user on similar activity items are similar. The fact that CFAPR
outperforms PPAPR has verified this assumption.

– CFPAR and PPAPR outperform SIAPR, SCAPR, ALAPR.
In general, the methods which use past together preferences (i.e., CFAPR
and PPAPR) of the target user perform better than methods which ignore
this parameter (i.e., SIAPR, SCAPR, ALAPR). This fact shows that past
together preferences play an important role in predicting activity partners.

– SIAPR outperforms SCAPR, ALAPR.
SIAPR, ALAPR, SCAPR are three methods which uses information com-
monly seen in many current websites. Exploring their performance can pave
the way toward constructing an initial activity-partner recommender for the
case where there is no past partner knowledge about the target user. As
the results show, SIAPR performs best among these three simple methods.
Therefore, when there is no raining together-preference knowledge, SIAPR
is a good choice to start up a activity-partner recommendation system.

Note that results in Figure 5 are on warm-start users; prior knowledge of
together preferences is a requirement for methods such as CFAPR and PPAPR.
The results show that CFAPR performs best for this set of users. In the case,
where there are users with no past together preferences, we propose a hybrid
strategy, where (i) CFAPR is used for recommending activity partners to users
with past together preferences and (ii) SIAPR is used for the remaining users
(recall that SIAPR performs best among the simple methods that do not rely
on past together preference knowledge). We denote this hybrid method as SIC-
FAPR. Figure 6 shows the result of SICFAPR, compared with using SIAPR to
all users. Observe that SICFAPR exhibits constantly good performance on all
tested cases.
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Fig. 5. Performance comparison of methods CFAPR, PPFAPR, SCAPR, SIAPR and
ALAPR.

5 Related Work

The most related work to ours includes recommendation approaches that also
utilize social or user-profile information (Section 3.1) and work on collaborative
filtering (Section 3.2). We also discuss related work on problems that are similar
to activity-partner recommendation.

Recommender Systems. Research on recommender systems in the previ-
ous years can be divided into two directions. The first is to improve existing
models (e.g. collaborative filtering, content-based filtering, SVD based models)
for recommendation. Another direction, which gains in popularity in the recent
years, is to discover interesting applications of these models and extend base
recommenders to domain-specific models and methods. Our work also falls in
this direction. We study a new recommendation problem: recommend activity
partners for the activity items suggested to a user.

Friend Recommendation. Recently, friend recommendation [11] became a
popular research topic, assisting social networks to improve their service. Com-
monly to friend recommendation, the recommended object in our problem is also
a user. However, the tasks of friend recommendation and activity-partner rec-
ommendation are very different. Friend recommendation systems predict user-
user relationships (i.e., friendships) while our work explores (user, item)-user
relationship (i.e., together preference from [user, activity item] to an activity
partner). Friend recommendation estimates the likelihood that two non-friends
will become friends in the future. Actually, the relatively bad performance of
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Fig. 6. Performance comparison of methods SICFAPR and SIAPR on all users (the
ratio of #warm-start users to #cold-start users is about 2.0 (Gowalla), 1.5 (Foursqure)
and 0.5 (Brightkite)).

the SCAPR method, which employs the social closeness between users to rec-
ommend activity partners, verifies the intrinsic difference between friendships
and activity partners.

Group Recommendation. Group recommendation [12] is to explore the pref-
erence of a group of users to items. Currently, many services (e.g., Movielens,
Tencent QQ) allow users to create groups that consist of several users. Then, a
typical objective of group recommendation is to aggregate the preferences from
group members to find relevant items for groups. The problem of activity-partner
recommendation is different from the problem of group recommendation. Most
works in group recommendation aim at selecting items for fixed groups, while
activity-partner recommendation strives to find users as activity partners hav-
ing as fixed variables a target user and an activity item (recommended by any
activity-item recommendation system).

6 Conclusion and Future Work

In this paper, we have proposed and studied the problem of recommending
activity partners to web-users for activity items suggested to them. Based on
a questionnaire, we verify that real users have great interest in such a type of
recommendation. We then show how to take advantage of different types of data
and relationships, including attendance preference from users to activities, social
context of users, and past together preference knowledge for activity-partner rec-
ommendation. Our experiments analyzed the strengths and weaknesses of the
proposed activity partners recommendation models.
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We have five directions in mind for future research. The first is to study how
to combine the hypothesises introduced in this work into a hybrid component
that considers all mentioned factors (social, attendance, and together preference)
to rank the activity-partner candidates. The second is to investigate the effective-
ness of activity-partner recommendation and the performance of CFAPR (and
the other approaches tested in this paper) in additional application domains
and with additional real-world data. Third, we plan to study how to combine
together-preferences and attendance-preferences in order to adjust the ranking
of activity items shown to the users. One idea would be to increase the rank-
ing of activity items for which people can find more suitable activity partners.
The fourth direction of future work is to integrate content information (e.g.,
the categories or geographical information of activity items) into our CFAPR
framework, to see how far content information can improve activity-partner
recommendation. Last, we also plan to study the problem of Partner-Activity
Recommendation, where in friend recommendation we also include suggested
activities for them to meet (e.g., the dating location and activity). This type of
recommendation finds use in real-world applications, such as dating sites (e.g.,
www.jiayuan.com).
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Abstract. Collaborative Filtering (CF) technique is used by most of
the Recommender Systems (RS) for formulating suggestions of item rel-
evant to users’ interest. It typically associates a user with a community
of like minded users, and then recommend items to the user liked by
others in the community. However, with the rapid growth of the Web in
terms of users and items, majority of the RS using CF technique suffers
from the scalability problem. In order to address this scalability issue, we
propose a decomposition based Recommendation Algorithm using Multi-
plicatively Weighted Voronoi Diagrams. We divide the entire users’ space
into smaller regions based on the location, and then apply the Recom-
mendation Algorithm separately to these regions. This helps us to avoid
computations over the entire data. We measure Spatial Autocorrelation
indices in the regions or cells formed by the Voronoi decomposition. One
of the main objectives of our work is to reduce the running time with-
out compromising the recommendation quality much. This ensures scal-
ability, allowing us to tackle bigger datasets using the same resources.
We have tested our algorithms on the MovieLens and Book-Crossing
datasets. Our proposed decomposition scheme is oblivious of the under-
lying recommendation algorithm.

Keywords: Collaborative Filtering · Spatial autocorrelation · Weighted
Voronoi Diagrams · Recommendation algorithms · Scalability

1 Introduction

Recommender Systems (RS) have been developed to address the problem of
information overloading, where people face difficulties in finding their required
information from an overwhelming set of choices. Collaborative Filtering (CF) [1,
13] is one of the most widely studied and widely adapted techniques behind rec-
ommendation algorithms. It tries to recommend items to users based on user-
user or item-item similarities computed from existing data, often in the form of
c© Springer International Publishing Switzerland 2015
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ratings given by users. Existing CF methods based on correlation criteria [9],
non-negative matrix factorization (NNMF) [6] and singular value decomposition
(SVD) [10] typically predict ratings accurately. However, these CF techniques
suffer from high computational complexity. As a result, the methods do not
scale well on very large datasets. To address this scalability problem, we pro-
pose a decomposition based CF algorithm. Our goal is to partition the entire
users’ space into smaller regions and apply the Recommendation Algorithm sepa-
rately to the regions. However, without using any arbitrary partitioning method,
we employ an intelligent partitioning technique using Multiplicatively Weighted
Voronoi Diagrams. In this work, we partition the users’ space according to the
location of the user. The proposed work first find the weights (initial) associated
with each of the voronoi cells formed by the ordinary (non-weighted) Voronoi
Diagram, and then use these initial weights to construct the multiplicatively
weighted Voronoi Diagram in an iterative manner. One of the objective of our
work is to tessellate the users’ space into clusters in such a way that the cor-
related users (users having similar preferences over items) end up in the same
clusters. We find the Spatial Autocorrelation index (Geary’s index) value in the
regions (clusters) formed by the decomposition process to measure the correla-
tion among the users in the regions.

In CF, finding similarity amongst N users is an O(N2) process. If N is large
then similarity computation becomes quite expensive. Decomposition avoids this
quadratic blowup and allows us to process bigger datasets even with limited
computational resources. As for example, if we partition a region with n users
into k partitions with nearly equal sizes, then the overall time required for per-
forming collaborative filtering in all those k partitions will be proportional to
k.(n/k)2 = (n2/k2).k = n2/k. So we can achieve a k order speed up by dividing
the users’ space into k partitions. The advantage of the proposed method is that
less similarity computations are needed as we apply the CF algorithm to the
partitions and not to the entire users’ space. One disadvantage of this recom-
mendation technique is that the recommendation quality may degrade, since we
recommend only using the data of a particular region, and not the entire rating
dataset. Our goal is to reduce the overall running time without sacrificing rec-
ommendation quality much. Experiments conducted indicate that our method is
effective in reducing the running time, while maintaining an acceptable quality
of recommendation. Moreover our proposed decomposition scheme is oblivious
of the underlying recommendation algorithm.

The rest of the paper is organized as follows: In section 2, we provide back-
ground information about Weighted Voronoi Diagram, Spatial Autocorrelation
and also review some of the past works related to Collaborative Filtering based
RS. Section 3 outlines our contribution while sections 4 and 5 present our Decom-
position and Recommendation Algorithms respectively. In section 6, we report
and analyze the experimental results. Section 7 concludes discussing our future
research directions.
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2 Background and Related Work

2.1 Weighted Voronoi Diagram

Voronoi Diagrams1 are used in computational geometry to decompose a metric
space into regions based on distances from a specified finite set of points. These
points are also called sites on the plane that provide certain services. Suppose
that there is a person located at point x on the plane. Now, the question is which
site he should access to get service from. Generally it is the site which is nearest
from the point x, based on a suitable distance function. Voronoi Diagrams tessel-
late the plane into regions around each site, so that we know the service region
for a particular site. Voronoi Diagrams can be generalized on the basis of the
distance function that is used. One can define a distance function by assigning
weights to the sites. The resultant diagrams are called Weighted Voronoi Dia-
grams. They are of two types - multiplicatively weighted and additively weighted
Voronoi Diagrams. In a multiplicatively weighted Voronoi Diagram, we define
the distance function as

d (p, si) =‖ p − si ‖ /wi (1)

where wi is the weight of the site si. Here the effective distance is obtained
by dividing the Euclidean distance by the weight or strength of the site, and
therefore the region belonging to a site with higher weight will have a relatively
larger area. Note that in the plane under the Euclidean metric, the edges of
a multiplicatively weighted Voronoi Diagram can be circular arcs or straight
line segments. Figure 1(a) shows an ordinary Voronoi Diagram consisting of 11
sites (from A to K), and the corresponding multiplicatively weighted Voronoi
Diagram is shown in Figure 1(b). Applications of weighted Voronoi Diagrams
can be found in various domains [2,3,8]. Dong developed a raster-based approach
to generating and updating both ordinary and multiplicatively weighted Voronoi
diagrams for point, line, and polygon features in a GIS environment [3]. Boots
applied multiplicatively weighted Voronoi Diagrams to generate trade areas using
store characteristics and assumptions about customer behaviour [2]. In this work,
we use a multiplicatively weighted Voronoi Diagram to partition the users of our
system with respect to location.

2.2 Spatial Autocorrelation

Spatial Autocorrelation [7] measures the co-variance of properties within a geo-
graphic space and it deals with both attributes and locations of spatial features.
Spatial data tends to be highly self-correlated, i.e., people with similar character-
istics, occupations and backgrounds tend to cluster in the same neighborhood.
A commonly used measure of Spatial Autocorrelation is Geary’s index (c) [4].
Geary’s index measures the similarity of i’s and j’s attributes, cij , which can be
calculated as follows:
1 http://www.cs.utah.edu/suresh/compgeom/voronoi.pdf

http://www.cs.utah.edu/suresh/compgeom/voronoi.pdf
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(a) Ordinary (b) Multiplicatively weighted

Fig. 1. Voronoi diagram

cij = (zi − zj)
2

where zi and zj are the values of the attribute of interest for objects i and j.
A locational similarity wij is used in the calculation of Geary’s index, where

wij = 1 if i and j share a common boundary, and wij = 0 if not. Geary’s index
is expressed as follows:
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Here σ2 is the variance of the attribute z values. If c = 1, the attributes are
distributed independently of location. If c < 1, similar attributes coincide with
similar locations, and if c > 1, attributes and locations are dissimilar.

2.3 Collaborative Filtering Based Recommender Systems

CF systems generate recommendations based on a subset of users that are most
similar to the active user. However, each time a recommendation is requested,
the algorithm needs to compute the similarity between the active user and all
other users, based on their co-rated items. This similarity computation becomes
very expensive with the growth of both the number of users and items in the
database. We briefly discuss some of the past works that address this scalability
problem in the remaining of this section.

Sarwar et al. [11] addressed the scalability issue associated with the CF task by
clustering the complete user set on the basis of user-user similarity and used the
cluster as the neighborhood. With the same perspective George and Merugu [5]
use a collaborative filtering approach based on a weighted co-clustering algorithm
that involves simultaneous clustering of users and items. Sarwat et al. [12] also pro-
posed a scalable location-aware recommender system using location based rating.
They employed user partitioning technique and produced recommendations twice
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as accurate compared to existing recommendation approaches. In this work, we
address the scalability problem of the CF process by clustering the users’ space
on the basis of a Weighted Voronoi diagram.

3 Our Framework

The primary objective of our work is to deal with the computational complexity
associated with the traditional CF algorithms. We propose a user partition-
ing technique using multiplicatively weighted Voronoi Diagrams to partition the
entire users’ space into smaller cells (regions) based on the location, and then
apply the Recommendation Algorithm separately to these regions. In this work,
we use two popular datasets MovieLens2 and Book-Crossing3 to test the effec-
tiveness of our proposed algorithm. However, our core approach can be easily
adapted to the other scenarios. One of our main goal is to partition the users’
space in such a way that the correlated users are placed in the same regions.
Our aim is to find the presence of spatial autocorrelation in the regions, and
then recommend items with the idea that the suggested items will be liked by
the user.

4 The Decomposition Algorithm

In this work, we use a multiplicatively weighted Voronoi Diagram based approach
for space decomposition. Space partitioning is done on the basis of locations
(zip-codes or cities) of the users. In order to construct the Voronoi Diagram, we
represent each city or zip-code by 2D coordinates. Our work use the longitude-
latitude of the centroids of the polygonal regions representing the zip-codes as
the coordinates.

Generally, when weighted Voronoi Diagrams are used in a particular scenario,
there are some weights associated with each voronoi site that we use in the
distance function as described in Section 2.1. However, in our case, to start with
we just have a flat set of user locations without any hierarchy. To identify some
of them as voronoi sites, we introduce a threshold criterion described below.
However, that is not enough to signify what weight should be associated with
each of the sites. A natural expectation is that the weight associated with a
particular site should be proportional to the number of users that will be present
in the corresponding voronoi cell. With the above idea in mind, we proceed to
construct the multiplicatively weighted Voronoi Diagram in two stages.

In stage I, the algorithm finds some cities having a minimum number of
users (threshold), and use those cities as the voronoi sites (facilities). Each site S
corresponds to a voronoi cell V(S) consisting of all the points (zip-codes or cities)
closer to S than any other site. For the remaining points (cities) in the plane, we
calculate the distance of a point (city) from each of the site points, and the point

2 http://grouplens.org/datasets/movielens/
3 http://www.informatik.uni-freiburg.de/cziegler/BX/

http://grouplens.org/datasets/movielens/
http://www.informatik.uni-freiburg.de/cziegler/BX/
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is allocated to the region represented by the site that has the minimum distance
from that point. In this way, we map each point onto some voronoi cell. The
Haversine distance formula4 that computes great-circle distances between two
points on a sphere from their longitudes and latitudes is being used to find the
distances. Now we have a set of voronoi polygons consisting of user cities. These
voronoi polygons correspond to an ordinary Voronoi Diagram, i.e., weights are all
considered to be uniform and the boundaries between all cells are straight lines.
Next we find how many users are located in each of the voronoi cells formed,
and then use these numbers as the preliminary weights of those cells.

In stage II, we create the multiplicatively weighted Voronoi Diagram starting
with the preliminary weights in an iterative manner. The preliminary weights
of the cells are used to calculate the initial boundaries of the weighted Voronoi
Diagram. As the boundaries change, due to the consideration of weights, the
number of users belonging to each voronoi cell also change accordingly. We use
these new numbers to modify the corresponding weights of each cell. Then we
calculate the boundaries again on the basis of these new weights. We continue
the above procedure for several iterations by which the boundaries get corrected
again and again. Continuing this process for several iterations, we find that the
weights of each voronoi cell reach a point of stability, when none of the weights
change in two successive iterations. At this point, we accept the cell boundaries
as the final boundaries of the weighted Voronoi Diagram. As we discuss later, the
iterative process takes only a small part of the total time. We use these saturated
weights as the final weights of the voronoi cells for further experimentations. The
scheme is detailed in its algorithmic form as follows:
Algorithm WeightedVoronoi Decomposition
Step 1: Select those zip-codes (or cities) as voronoi sites that satisfy the thresh-
old criteria.
Step 2: Construct the initial Voronoi Diagram using these site points.
Step 3: Map the remaining cities to their destined voronoi cell (represented by
the site closest to the city).
Step 4: Find the initial weights for the voronoi cells by calculating the total
number of users in each cell.
Step 5: Create the weighted Voronoi Diagram in an iterative manner starting
with the initial weights of the cells found in step 4.

Step 5.1: The initial weights are used to define the initial boundaries of
the weighted Voronoi Diagram.

Step 5.2: Using the initial boundaries find the total number of users in
each cell, and use these new numbers to modify the corresponding weights of
each cell.

Step 5.3: Calculate the boundaries again on the basis of these new weights.
Step 6: Continue steps 5.2 and 5.3 until the weights for the cells reach a stable
point (saturated weights).

Note that for each user, we merely need to determine to which voronoi cell
he or she belongs, which can be done in O(Number of cells) time. Therefore we

4 http://www.movable-type.co.uk/scripts/latlong.htm

http://www.movable-type.co.uk/scripts/latlong.htm
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determine this information implicitly, avoiding the explicit construction of the
cell boundaries of the weighted Voronoi Diagram, which is otherwise expensive.
We next compute the value of Geary’s index in the voronoi cells to verify whether
users with similar tastes and preferences are grouped in the same neighborhood.
In order to calculate the Geary’s index, we use movie (or book) ratings as the
parameter for computing attribute similarity (cij), while locational similarity
(wij) is measured by calculating the distance between the pairs of user city and
then use the inverse of that distance (as discussed in sub-section 2.2).

5 The Recommendation Approach

We investigate two popular CF methods - user-based and item-based and then
combine these recommendation methods with our framework to verify whether
their performance is improved. We use Pearson’s correlation coefficient [13] as
the similarity metric for finding user-user similarity while item-item similarity is
captured using Cosine-Based similarity metric [13].

User-based Top-N recommendation algorithm first identify the K most simi-
lar users of the target user by computing the similarities between the target user
and all other users in the region (cluster). Next, we form a set of top rated items
(movies or books) by using the ratings of the K similar users. This set include
only those items whose average rating from all the K similar users is more than
a threshold value. Then the items in this set are again ranked in order of their
rating frequency (no. of users rating the item). The system recommends to the
target user the top-N items from the item set not rated by the user.

In item-based Top-N recommendation algorithm, we first compute the K
most similar items for each item present in the cluster according to the similarity
score. Then we form a set, RC, as recommendation candidates by taking the
union of the K most similar items and then removing the items already rated by
the target user. Let RI denote the set of items rated by the target user. Next,
we calculate the similarities between each item of the set RC and the set RI.
Then the items in the set RC are sorted in descending order of the similarity
and the Top-N items from this set are recommended to the target user.

6 Experiments and Results

6.1 Data Description

Our experiments are performed on the MovieLens-1M and Book-Crossing data-
sets. MovieLens-1M data consists of 1,000,209 anonymous ratings (1-5) of approx-
imately 3,900 movies made by 6,040 MovieLens users where each user has rated at
least 20 movies. Book-Crossing dataset contains 278,858 users (anonymized but
with demographic information) providing 1,149,780 ratings (explicit/implicit) on
271,379 books. Ratings are either explicit, expressed on an integral scale from 1-10
(higher values denoting higher appreciation), or implicit, expressed by 0.
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6.2 Evaluation Metric Discussion

We use Mean Absolute Error (MAE) [13] and Root Mean Square Error (RMSE)
[13] to evaluate the prediction accuracy while quality of the recommendation
is measured using the Precision, Recall and F1 score metric. We have depicted
the different combinations of recommendation that can be generated in a typical
recommendation problem in Table 1. Note that a customer likes an item (movie
or book) if he has given a rating of 4 or 5 to that item (in a scale of 1 to 5),
otherwise dislikes it, i.e., his rating is 1, 2 or 3. A recommendation is positive if
recommended rating coincides with the actual rating.

Table 1. Possible Recommendations

Customer Likes Customer Dislikes
(rating = 4 or 5) (rating = 1, 2 or 3)

Recommend True positives False positives

Do not recommend False negatives True negatives

Precision: Precision measures the degree of accuracy of the recommenda-
tions produced by the algorithm. In our system, Precision measures what fraction
of the recommended items are liked by the customers.

Recall: In our Recommender System, Recall measures what fraction of the
items liked by the customers, has been recommended by the algorithm.

F1 score: F1 score is the harmonic mean of Precision and Recall.

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives
and F1 =

2 ∗ Precision ∗ Recall

Precision + Recall

6.3 Experimentation with Decomposition Algorithm

The Decomposition algorithm use threshold values (as discussed in section 4),
which define the minimum number of users a city must have to be considered
as a site in the Voronoi Diagram. For the MovieLens data, we use {5, 10, 15} as
the threshold values, and for Book-Crossing we use {50, 100, 150} as threshold
values. Note that, we used higher threshold values for the Book-Crossing data
than the MovieLens data because the total number of users in the Book-Crossing
dataset is significantly more than the MovieLens dataset. If lower threshold
values (like 5, 10 and 15) are used then we will have a number of small cells
with very few users (and ratings), which in turn may affect the recommendation
quality. Table 2 shows the result of the weighted Voronoi decomposition using the
thresholds. It also shows the total number of iterations required for the weights
of the voronoi cells to reach a stable point. From Table 2, it can be noted that
the time required to generate the weighted Voronoi Diagram using the iterative
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Table 2. Results of Weighted Voronoi Decomposition

MovieLens-1M Book-Crossing

Threshold No. of No. of Time % of Threshold No. of No. of Time % of
cells iterations (sec) total time cells iterations (sec) total time

5 172 18 5.85 0.4 50 144 13 4.51 0.08

10 35 14 3.96 0.1 100 66 15 5.5 0.02

15 10 10 3.52 0.02 150 37 12 4.45 0.006

process is really negligible (< 0.4%) compared to the total time required for
recommendation as reported in Table 7.

We report the results of spatial autocorrelation performed on the MovieLens
dataset in Table 3 and that of Book-Crossing dataset in Table 4. In the Tables,
we compare the spatial autocorrelation values of the entire users’ space with the
corresponding values of the regions formed by the initial and weighted Voronoi
Diagrams. We know that if the Geary’s index value is less than 1, then spa-
tial autocorrelation is present, otherwise absent. To measure correlation among
the users in the regions we define two metrics - CI1 and CI2. CI1 reports the
percentage of items (movies or books) that falls below the correlation value
0.75, and CI2 reports the percentage of items that falls below the correlation
value 1.0. As for example, in Table 3, we notice that on an average 14.46% of
the movies of the entire users’ space fall below the correlation value 0.75 while
60.44% of the movies fall below 1.0. Similarly, for the Initial Voronoi Diagram,
using Threshold = 5, 80.81% of the movies averaged across all the 172 regions
fall below 0.75, and 94.53% of the movies fall below 1.0. We have the best results
for spatial autocorrelation using the Weighted Voronoi approach (CI1 = 85.14
and CI2 = 97.18). Here, we achieve about 70.00% improvement in CI1 value and
about 37.00% in CI2 over the entire space. In Table 3, we can also observe that
the Weighted Voronoi approach also gives us better correlation values over the
Initial (non-weighted) Voronoi for all the threshold values. Similar results can
also observed in Table 4. In the tables, one can also observe that as the number
of cells increases, or in other words sizes of the cells decrease, the percentage of
spatial autocorrelation increases within each cell. However we cannot decrease
the cell sizes beyond a certain point, since too few users in a cell will result in
fewer number of ratings based on which the recommendations will be made and
this in turn will affect the quality of recommendations.

6.4 Experimentation with Recommendation Algorithm

As we have already seen in the previous section that spatial autocorrelation exists
in the regions, and therefore it seems very promising that if you recommended
only using the users (or items) in the region of the target user, recommendation
quality will improve. For both MovieLens and Book-Crossing datasets, we ran-
domly split the user ratings into two sets - observed items (80%) for training
and held-out items (20%) for testing. Ratings for the held-out items are to be
predicted. We execute the algorithm with K = 100 and N = 10. That is we
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Table 3. Correlation Comparisons on
MovieLens Dataset

No. of CI1 CI2
Cells (% < 0.75) (% < 1.0)

(Average) (Average)

Entire Space 1 14.46 60.44

Threshold = 5

Initial Voronoi 172 80.81 94.53

Weighted Voronoi 172 85.14 97.18

Threshold = 10

Initial Voronoi 35 52.05 78.19

Weighted Voronoi 35 67.80 90.43

Threshold = 15

Initial Voronoi 10 34.45 66.78

Weighted Voronoi 10 49.41 79.71

Table 4. Correlation Comparisons on
Book-Crossing Dataset

No. of CI1 CI2
Cells (% < 0.75) (% < 1.0)

(Average) (Average)

Entire Space 1 72.97 88.10

Threshold = 50

Initial Voronoi 144 94.43 97.51

Weighted Voronoi 144 96.05 99.38

Threshold = 100

Initial Voronoi 66 91.21 95.31

Weighted Voronoi 66 93.20 98.58

Threshold = 150

Initial Voronoi 37 88.52 94.14

Weighted Voronoi 37 89.41 97.34

Table 5. Performance on MovieLens
Dataset

No. of P@10 R@10 F1@10 MAE RMSE
Cells (Avg) (Avg) (Avg) (Avg) (Avg)

User-based

Base 1 0.970 0.736 0.815 0.379 0.460

Th = 5 172 0.858 0.830 0.828 0.419 0.571

Th = 10 35 0.896 0.829 0.842 0.435 0.585

Th = 15 10 0.903 0.766 0.804 0.446 0.589

Item-based

Base 1 0.882 0.735 0.797 0.412 0.501

Th = 5 172 0.812 0.803 0.804 0.421 0.532

Th = 10 35 0.824 0.751 0.783 0.405 0.511

Th = 15 10 0.896 0.753 0.818 0.442 0.562

Table 6. Performance on Book-Crossing
Dataset

No. of P@10 R@10 F1@10 MAE RMSE
Cells (Avg) (Avg) (Avg) (Avg) (Avg)

User-based

Base 1 0.589 0.401 0.476 1.011 1.167

Th = 50 144 0.502 0.501 0.495 1.132 1.203

Th = 100 66 0.576 0.570 0.565 1.143 1.227

Th = 150 37 0.630 0.616 0.613 1.217 1.329

Item-based

Base 1 0.576 0.417 0.484 1.121 1.23

Th = 50 144 0.491 0.462 0.475 1.17 1.272

Th = 100 66 0.536 0.525 0.528 1.142 1.213

Th = 150 37 0.563 0.594 0.57 1.18 1.331

consider a maximum of 100 similar users or items and recommend top-10 items
to the user.

We report the results of the Recommendation Algorithm performed on the
MovieLens dataset in Table 5, and that of the Book-Crossing dataset in Table
6. Here term Th is abbreviation for threshold. In the Tables, we make a com-
parative analysis of the recommendation performance using different evaluation
metrics. Here base performance indicates the performance of the algorithm using
the entire users’ space (without decomposition). We compare the overall perfor-
mance in the regions formed by weighted Voronoi decomposition with the base
performance. We use MAE and RMSE to evaluate the prediction accuracy and
also use Precision@K, Recall@K and F1@K to evaluate the quality of the top-K
recommended items. Note that, we present Precision (P@10), Recall (R@10)
and F1 (F1@10) score on position 10. The bold numbers indicate that its value
has an improvement over the base value.

In Tables 5 and 6, we have reported the performance of our recommendation
algorithm averaged over all the regions. As for example, in Table 5, for thresh-
old 5 (User-based case), we have an average Precision, Recall, F1, MAE and
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Table 7. Running Time Comparisons on MovieLens and Book-Crossing Dataset

MovieLens-1M Book-Crossing

No. of Time(min) Time(min) No. of Time(min) Time(min)
Cells (WV) (MV) Cell (WV) (MV)

base 1 1233.3 1233.3 base 1 2755.56 2755.56

Th = 15 10 539.41 257.36 Th = 150 37 1355.50 1106.22

Th = 10 35 324.42 45.18 Th = 100 66 771.05 373.42

Th = 5 172 460.5 20.45 Th = 50 144 580.46 93.5

RMSE of 0.858, 0.830, 0.828, 0.419 and 0.571 respectively averaged across all
the 172 regions. Here we can see that the algorithm performs better in terms
of Recall and F1 score while in terms of Precision, MAE and RMSE, the base
performance is slightly better. Similar results can also be observed in Table 6.
Since we executed the algorithm only using the ratings of a particular region,
it may sometimes compromise our recommendation quality as two users in two
different regions may have similarity in the rating patterns. However, from the
above tables, it is clear that our algorithm always performs better (in terms of
Recall) than the base performance, while for the other evaluation metrics it has
values which are nearly equal to the base.

6.5 Scalability

We report the running time of our algorithm for the MovieLens and Book-
Crossing datasets in Table 7. In the 3rd and 7th column of Table 7, we record
the overall time required for testing the algorithm (in minutes) in all the regions
formed by Weighted Voronoi (WV) decomposition using the different thresholds.
Note that, the running time comprises of both the spatial correlation calculation
time and recommendation generation time for all the users of a region. Here base
represents the entire dataset without decomposition. Our experiments are run
on a computer with Core i3 - 2100 @ 3.10GHz x 4 CPU and 4 GB RAM.

From the 3rd and 7th column of Table 7, we can observe that the running
time improves significantly when we divide the entire dataset into smaller cells
and apply the algorithm independently to those cells. As for example, for Movie-
Lens dataset, the overall time required for recommending all the users in the 172
regions is 460.5 minutes while that of the entire dataset is 1233.3 minutes. Thus
the running time reduces by about 63% over the base performance. Similarly
for the Threshold value of 10 and 15, the runtime reduces by about 73% and
57% respectively. However, to improve the runtime further, we analyzed our
algorithm and found that the weights associated with some of the voronoi cells
are significantly higher than the rest of the cells. For this reason, the recom-
mendation algorithm spends considerable amount of time in recommending the
users in those cells, which in turn affects the overall performance. In order to
distribute the cell weights evenly, we then modified the distance function defined
in equation 1 as follows.
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d (p, si) =‖ p − si ‖ /
√

wi (2)

Then we again constructed the diagram using the distance function in equation 2.
Note that using square root of weight is intuitively justified as weight of each cell
is directly related to its area, whose dimension varies with the square of distance.
We report the overall running time of our recommendation algorithm considering
the cells as per this modified Voronoi diagram in Table 7 (4th and 8th column).
Here the term MV is abbreviation for Modified Voronoi. Comparing the results of
MV with WV approach, we can clearly observe that this small change produces
significantly faster recommendations. The bold numbers indicate improvement
over WV. As for example, for MovieLens dataset, using MV approach, the overall
time required for recommending all the users in the 172 regions is 20.45 minutes
while the recommendation time for the corresponding 172 regions using WV
approach is 460.5 minutes. Thus the runtime reduces by an order of 2. Similar
results can also be seen for the other threshold values. Thus we can conclude
that our MV based technique is effective in reducing the running time further.

(a) MovieLens Data (b) Book-Crossing Data

Fig. 2. Recommendation Time

In figure 2, we report the average recommendation time (in seconds) per
user in the entire users’ space (Base) and in the regions formed by both WV
and MV based decomposition techniques. We can clearly observe that for both
the MovieLens and Book-Crossing datasets, MV approach outperforms both the
Base and WV based recommendation methods.

7 Conclusion and Future Work

In this paper, we have presented a scalable decomposition based Recommender
System. We have implemented a decomposition technique that divides the users’
space into some smaller regions with respect to location and then use spatial
autocorrelation measures to capture the correlation among the users in a region.
Experimental analysis using real datasets show that our model is efficient and
scalable. Our proposed approach deals with the Scalability problem of the CF
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based recommendation methods by applying the Recommendation Algorithm
separately to the regions. The focus of our future work is to use other metrics
for finding the spatial correlation and similarities between users with the aim of
optimizing the splitting technique and the Recommendation Algorithm. Finally
as noted earlier, our proposed decomposition scheme is oblivious of the underly-
ing recommendation algorithm and hence applicable with other recommendation
algorithms as well. How this can be leveraged is a matter of future research.
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Abstract. We present a novel algorithm (Principal Sensitivity Analysis;
PSA) to analyze the knowledge of the classifier obtained from supervised
machine learning techniques. In particular, we define principal sensitivity
map (PSM) as the direction on the input space to which the trained
classifier is most sensitive, and use analogously defined k-th PSM to
define a basis for the input space. We train neural networks with artificial
data and real data, and apply the algorithm to the obtained supervised
classifiers. We then visualize the PSMs to demonstrate the PSA’s ability
to decompose the knowledge acquired by the trained classifiers.

Keywords: Sensitivity analysis · Sensitivity map · PCA · Dark
knowledge · Knowledge decomposition

1 Introduction

Machine learning is a powerful methodology to construct efficient and robust pre-
dictors and classifiers. Literature suggests its ability in the supervised context
not only to reproduce “intuition and experience” based on human supervision [1],
but also to successfully classify the objects that humans cannot sufficiently clas-
sify with inspection alone [2,3].

This work is motivated by the cases in which the machine classifier eclipses
the human decisions. We may say that this is the case in which the classifier
holds more knowledge about the classes than us, because our incompetence in
the classification problems can be attributed solely to our lack of understanding
about the class properties and/or the similarity metrics. The superiority of non-
linear machine learning techniques strongly suggests that the trained classifiers
capture the “invisible” properties of the subject classes. Geoff Hinton solidified
this into the philosophy of “dark knowledge” captured within the trained classi-
fiers [4]. One might therefore be motivated to enhance understanding of subject
classes by studying the way the trained machine acquires the information.

Unfortunately, trained classifiers are often so complex that they defy human
interpretation. Although some efforts have been made to “visualize” the classi-
fiers [5,6], there is still much room left for improvement. The machine learning
techniques in neuroimaging, for example, prefer linear kernels to nonlinear ker-
nels because of the lack of visualization techniques [7]. For the visualization
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 621–632, 2015.
DOI: 10.1007/978-3-319-18038-0 48
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of high-dimensional feature space of machine learners, Zurada et al. [8,9] and
Kjems et al. [10] presented seminal works. Zurada et al. developed “sensitiv-
ity analysis” in order to “delete unimportant data components for feedforward
neural networks.” Kjems et al. visualized Zurada’s idea as “sensitivity map” in
the context of neuroimaging. In this study, we attempt to generalize the idea
of sensitivity analysis, and develop a new framework that aids us in extract-
ing the knowledge from classifiers that are trained in a supervised manner. Our
framework is superior to the predecessors in that it can:

1. be used to identify a pair of discriminative input features that act oppositely
in characterizing a class,

2. identify combinations of discriminative features that strongly characterize
the subject classes,

3. provide platform for developing sparse, visually intuitive sensitivity maps.

The new framework gives rise to the algorithm that we refer to as “Principal
Sensitivity Analysis (PSA),” which is analogous to the well-established Principal
Component Analysis (PCA).

2 Methods

2.1 Conventional Sensitivity Analysis

Before introducing the PSA, we describe the original sensitivity map introduced
in [10]. Let d be the dimension of the input space, and let f : Rd → R be the
classifier function obtained from supervised training. In the case of SVM, f may
be the discriminant function. In the case of nonlinear neural networks, f may
represent the function (or log of the function) that maps the input to the output
of a unit in the final layer. We are interested in the expected sensitivity of f
with respect to the i-th input feature. This can be written as

si :=
∫ (

∂f(x)
∂xi

)2

q(x)dx, (1)

where q is the distribution over the input space. In actual implementation, the
integral (1) is computed with the empirical distribution q of the test dataset.
Now, the vector

s := (s1, . . . , sd) (2)

of these values will give us an intuitive measure for the degree of importance that
the classifier attaches to each input. Kjems et al. [10] defined s as sensitivity
map over the set of input features.
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2.2 Sensitivity in Arbitrary Direction

Here, we generalize the definition (1). We define s(v) as the sensitivity of f in
arbitrary direction v :=

∑d
i viei, where ei denotes the i-th standard basis in R

d:

s(v) :=
∫ (

∂f(x)
∂v

)2

q(x) dx. (3)

Recall that the directional derivative is defined by

∂f(x)
∂v

:=
d∑

i=1

vi
∂f(x)
∂xi

.

Note that when we define the sensitivity inner product

〈ei,ej〉s :=
∫ (

∂f(x)
∂xi

)(
∂f(x)
∂xj

)

q(x) dx, (4)

we can rewrite s(v) with the corresponding sensitivity norm, as follows:

‖v‖2s := 〈v,v〉s

=

〈
∑

i

viei,
∑

j

vjej

〉

s

=
∑

i,j

vivj 〈ei,ej〉s .

(5)

This inner product defines the kernel metric corresponding to the positive definite
matrix K with ij-th entry given by Kij := 〈ei,ej〉s. This allows us to write

s(v) = vTKv. (6)

2.3 Principal Sensitivity Map and PSA

The classical setting (2) was developed in order to quantify the sensitivity of f
with respect to each individual input feature. We attempt to generalize this idea
and seek the combination of the input features for which f is most sensitive, or
the combination of the input features that is “principal” in the evaluation of the
sensitivity of f . We can quantify such combination by the vector v, solving the
following optimization problem about v:

maximize vTKv

subject to vTv = 1.
(7)

The solution to this problem is simply the maximal eigenvector ±v∗ of K. Note
that vi represents the contribution of the i-th input feature to this principal
combination, and this gives rise to the map over the set of all input features.
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As such, we can say that v is the principal sensitivity map (PSM) over the
set of input features. From now on, we call s in the classical definition (2) as
the standard sensitivity map and make the distinction. The magnitude of vi

represents the extent to which f is sensitive to the i-th input feature, and the
sign of vi will tell us the relative direction to which the input feature influences
f . The new map is thus richer in information than the standard sensitivity map.
In Section 3.1 we will demonstrate the benefit of this extra information.

Principal Sensitivity Analysis (PSA). We can naturally extend our con-
struction above and also consider other eigenvectors of K. We can find these
vectors by solving the following optimization problem about V :

maximize Tr
(
V TKV

)

subject to vT
i vj = δij ,

(8)

where V is a d × d matrix. As is well known, such V is given by the invertible
matrix with each column corresponding to K’s eigenvector. We may define k-
th dominant eigenvector vk as the k-th principal sensitivity map. These
sub-principal sensitivity maps grant us access to even richer information that
underlies the dataset. We will show the benefits of these additional maps in
Fig. 3. From now on, we will refer to the first PSM by just PSM, unless noted
otherwise.

Recall that, in the ordinary PCA, K in (8) is given by the covariance
E

[
xxT

]
, where x is the centered random variable. Note that in our particu-

lar case, if we put

r(x) :=
((

∂f(x)
∂x1

)

, . . . ,

(
∂f(x)
∂xd

))T

, (9)

then we may write K =
∫

r(x)r(x)Tq(x) dx = E
[
r(x)r(x)T

]
. We see that

our algorithm can thus be seen as the PCA applied to the covariance of r(x)
without centering.

Sparse PSA. One may use the new definition (8) as a starting point to develop
sparse, visually intuitive sensitivity maps. For example, we may introduce the
existing techniques in sparse PCA and sparse coding into our framework. We may
do so [11] by replacing the covariance matrix in its derivation with our K. In par-
ticular, we can define an alternative optimization problem about V and αi:

minimize
1
2

N∑

i

‖r (xi) − V αi‖22 + λ

p∑

k

‖vk‖1

subject to ‖αi‖2 = 1,

(10)

where p is the number of sensitivity maps and N is the number of samples. For
the implementation, we used scikit-learn [12].
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2.4 Experiments

In order to demonstrate the effectiveness of the PSA, we applied the analysis
to the classifiers that we trained with artificial data and MNIST data. Our
artificial data is a simplified version of the MNIST data in which the object’s
orientation and positioning are registered from the beginning. All samples in the
artificial data are constructed by adding noises to the common set of templates
representing the numerics from 0 through 9 (Fig. 1). We then fabricated the
artificial noise in three steps: we (1) flipped the bit of each pixel in the template
picture with probability p = 0.2, (2) added Gaussian noise N (0, 0.1) to the
intensity, and (3) truncated the negative intensities. The sample size was set to
be equal to that of MNIST. Our training data, validation data, and test data
consisted respectively of 50,000, 10,000, and 10,000 sample patterns. Using the

Fig. 1. (a) Templates. (b) Noisy samples. Each figure is of 28 × 28 pixels.

artificial dataset above and the standard MNIST, we trained a feed forward
neural network for the classification of ten numerics. In Table 1, we provide the
structure of the neural network and its performance over each dataset. For either
dataset, the training was conducted via stochastic gradient descent with constant
learning rate. We also adopted a dropout method [13] only for the training on
the MNIST dataset. The output from each unit in the final layer is given by the
posterior probability of each class c. For computational purpose, we transform
this output by log:

fc(x) := log P (Y = c |x), (11)

where Y is, in the model governing the neural network, a random variable repre-
senting the class that the classifier assigns to the input x. We then constructed
the PSM and the standard sensitivity map for the fc given above.

Table 1. Summary of training setups based on neural networks

Data set Architecture Unit type Dropout Learning rate Error[%]

Digital data 784-500-10 Logistic No 0.1 0.36
MNIST 784-500-500-10 ReLU Yes 0.1 1.37
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3 Results

3.1 PSA of Classifier Trained on Artificial Dataset

We will describe three ways in which the PSA can be superior to the analysis
based on standard sensitivity map.

Fig. 2 compares the PSM and standard sensitivity map, which were both
obtained from the common neural networks trained for the same 10-class clas-
sification problem. The color intensity of i-th pixel represents the magnitude
of vi. Both maps capture the characters that the “colorless” rims and likewise
“colorless” regions enclosed by edges are insignificant in the classification. Note
that the (1st) PSM distinguishes the types of sensitivities by their sign. For each
numeral, the PSM assigns opposite signs to “the edges whose presence is crucial
in the characterization of the very numeral” and “the edges whose absence is
crucial in the numeral’s characterization.” This information is not featured in the
standard sensitivity map. For instance, in the sensitivity map for the numeral 1,
the two edges on the right and the rest of the edges have the opposite sensitivity.
As a result, we can verify the red figure of 1 in its PSM. We are able to clearly
identify the unbroken figures of 2, 4, 5 and 9 in their corresponding PSM as well.
We see that, with the extra information regarding the sign of the sensitivity over
each pixel, PSM can provide us with much richer information than the standard
counterpart.

Fig. 2. (a) The standard sensitivity maps. (b) The PSMs.

Next, we will show the benefits of sub-principal sensitivity maps computed
from PSA. Fig. 3(a) shows the 1st PSM through the 3rd PSM for the numerals 0
and 9.1 In order to show how this extra information benefits us in visualization
of the classification problem, we consider the following “local” sensitivity map
integrated over the samples from a particular pair of classes:

sc,c′(v) =
∫ (

∂fc(x)
∂v

)2

qc,c′(x)dx, (12)

where qc,c′ is the empirical distribution over the set of samples generated from
the classes c and c′. To get the intuition about this map, note that this value for
(c, c′) = (9, 4) can also be pictorially written as

1 We list the PSMs for all the numerals (0, . . . , 9) in the Appendix.
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lim
ε→0

E{9,4}

⎡

⎣

(
log P

(
Y = | + εv

) − log P
(
Y = | )

ε

)2
⎤

⎦ , (13)

where v can be the 3rd PSM of class 9, , for example. If vk is the k-th PSM
of the classifier, then sc,c′(vk) quantifies the sensitivity of the machine’s answer
to the binary classification problem of “c vs c′” with respect to the perturbation
of the input in the direction of vk. By looking at this value for each k, we
may visualize the ways that the classifier deals with the binary classification
problem. Such visualization may aid us in learning from the classifiers the way
to distinguish one class from another. Fig. 3(b) shows the values of sc,c′(vk) for
c ∈ {0, 9} and k ∈ {1, . . . , 10}. We could see in the figure that, for the case
of (c, c′) = (9, 4), sc,c′(v3) was larger than sc,c′(v1). This suggests that the 3rd
PSM is more helpful than the 1st PSM for distinguishing 4 from 9. We can
actually verify this fact by observing that the 3rd PSM is especially intense
at the top most edge, which can alone differentiate 4 from 9. We are able to
confirm many other cases in which the sub-principal sensitivity maps were more
helpful in capturing the characters in binary classification problems than the 1st
PSM. Thus, PSA can provide us with the knowledge of the classifiers that was
inaccessible with the previous method based on the standard sensitivity map.

(a) (b)

Fig. 3. (a) 1st ∼ 3rd PSMs of the classifier outputs fc for the numerals 0 and 9. (b)
sc,c′(vk) for c ∈ {0, 9}, k ∈ {1, . . . , 10}, and c′ ∈ {0, . . . , 9}\{c}.

Finally, we demonstrate the usefulness of formulation (8) in the construc-
tion of sparse and intuitive sensitivity map. Fig. 4 depicts the sensitivity maps
obtained from the application of our sparse PSA in (10) to the data above.
Note that the sparse PSA not only washes away rather irrelevant pixels from
the canvas, but it also assigns very high intensity to essential pixels. With these
“localized” maps, we can better understand the discriminative features utilized
by the trained classifiers.
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Fig. 4. Results of the sparse PSA on the classifiers fc with p = 3 for the numerals 0 and 9.
We ranked the 3 basis elements by the magnitude of s(v). We selected the regularization
term of λ = 5, and each PSM was normalized so that its L2 norm was 1.

3.2 PSA of Classifier Trained on MNIST Dataset

We trained a nonlinear neural network-based classifier on the MNIST dataset,
which consists of hand-written digits from 0 through 9. We then analyzed the
trained classifier with our PSA. This dataset illuminates a particular challenge
to be confronted in the application of the PSA. By default, hand-written objects
do not share common displacement and orientation. Without an appropriate reg-
istration of input space, the meaning of each pixel can vary across the samples,
making the visualization unintuitive. This is typical in some of the real-world
classification problems. In the fields of applied science, standard registration pro-
cedure is often applied to the dataset before the construction of the classifiers. For
example, in neuroimaing, one partitions the image data into anatomical regions
after registration based on the standard brain, and represents each one of them
by a group of voxels. In other areas of science, one does not necessarily have to
face such problems. In genetics, data can be naturally partitioned into genes [14].
Likewise, in meteorology, 3D dataset is often translated into voxel structures,
and a group of voxels may represent geographical region of specific terrain [15].
In this light, the digit recognition in unregistered MNIST data may not be an
appropriate example for showing the effectiveness of our visualization method.
For the reason that we will explain later, registration of multiclass dataset like
MNIST can be difficult. We chose MNIST dataset here because it is familiar
in the community of machine learning. Fig. 5 summarizes the results. Both the
standard sensitivity map and the PSM were able to capture the character that
outer rims are rather useless in the classification.

Fig. 5. Standard sensitivity map, PSA, and sparse PSA for c ∈ {0, 9}, k ∈ {1, 2, 3},
and c′ ∈ {0, . . . , 9}\{c}. Ave. stands for the average of the testing dataset for the
corresponding numerals.
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Fig. 6 shows the values of sc,c′(vk). We can verify that small numbers of PSMs
are complementing each other in their contributions to the binary classifications.

Fig. 6. sc,c′(vk) for c ∈ {0, 9}, k ∈ {1, . . . , 15}, and c′ ∈ {0, . . . , 9}\{c}

We also applied sparse PSA to the classifier with p = 3 and λ = 40 (Fig. 5).
We see that the sparse PSA highlights the essential pixels much more clearly
than the normal PSA.

Since the orientation and position of each numeral pattern varies across the
samples in this dataset, input dimensions hold different meanings in different
samples. To perform more effective visualization, we would need registration
to adjust each numeral pattern to a common standard template. This problem
might not be straightforward, since one must prepare different templates for
different numeral patterns. An elegant standardization suitable for our PSA-
based visualization remains as a future study.

4 Discussion

We proposed a method to decompose the input space based on the sensitivity
of classifiers. We assessed its performance on classifiers trained with artificial
data and MNIST data. The visualization achieved with our PSA reveals at least
two general aspects of the classifiers trained in this experiment. First, note in
Fig. 3(b) and Fig. 6 that the first few (∼ 10) PSMs of the trained classifier dom-
inate the sensitivity for the binary classification problem. Second, we see that
the classifier use these few PSMs out of 784 dimensions to solve different binary
classification problems. We are thus able to see that the nonlinear classifiers of
the neural network solve vast number of specific classification problems (such as
binary classification problems) simultaneously and efficiently by tuning its sensi-
tivity to the input in a data-driven manner. One cannot attain this information
with the standard sensitivity map [8–10] alone. With PSA, one can visualize the
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decomposition of the knowledge about the input space learnt by the classifier.
From the PSA of efficient classifier, one may obtain a meaningful decomposition
of the input space that can possibly aid us in solving wide variety of problems.
In medical science, for example, PSA might identify a combination of the bio-
logical regions that are helpful in diagnosis. PSA might also prove beneficial in
sciences using voxel based approaches, such as geology, atmospheric science, and
oceanography.

We may incorporate the principle of the PSA into existing standard statis-
tical methods. A group Lasso analogue of the PSA, which is currently under
our development, may enhance the interpretability of the visualization even fur-
ther by identifying sets of voxels with biological organs, geographical location,
etc. By improving its interpretability, PSA and the PSA-like techniques might
significantly increase the applicability of machine learning techniques to various
high-dimensional problems.

Appendix

In this section we list the figures that we omitted in the main text.

Fig. 7. 1st ∼ 3rd PSMs of the classifier trained on the artificial dataset

Fig. 8. sc,c′(vk) on the artificial dataset
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Fig. 9. Results of the sparse PSA on the classifiers trained on the artificial dataset

Fig. 10. Average, standard sensitivity map, PSA, and sparse PSA on MNIST data

Fig. 11. sc,c′(vk) on MNSIT dataset
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Abstract. How can we predict Smith’s main hobby if we know the main
hobby of Smith’s friends? Can we measure the confidence in our predic-
tion if we are given the main hobby of only a few of Smith’s friends? In
this paper, we focus on how to estimate the confidence on the node classi-
fication problem. Providing a confidence level for the classification prob-
lem is important because most nodes in real world networks tend to have
few neighbors, and thus, a small amount of evidence. Our contributions
are three-fold: (a) novel algorithm; we propose a semi-supervised learning
algorithm that converges fast, and provides the confidence estimate (b)
theoretical analysis; we show the solid theoretical foundation of our algo-
rithm and the connections to label propagation and Bayesian inference
(c) empirical analysis; we perform extensive experiments on three dif-
ferent real networks. Specifically, the experimental results demonstrate
that our algorithm outperforms other algorithms on graphs with less
smoothness and low label density.

1 Introduction

If we know that 5 out of 6 of Smith’s friends love to play tennis, what would you
say about Smith’s main hobby? Same question, when we know that Johnson’s
50 out of 60 friends love to play tennis - are we more confident about Smith, or
about Johnson? Most people would be more confident in the latter case, despite
the fact that the ratio of tennis-to-non-tennis friends, is the same in both cases.
In this paper, we address the node classification problem on networks. Networks
appear in numerous real-world applications, like social networks, citation net-
works, and biological networks. Often, the nodes of these networks have labels:
E.g., users in social networks have demographic attributes (gender, age bracket,
education level, e.t.c.) [10]. Although these labels are useful for a lot of practical
applications, labels of a majority of nodes are often unavailable, which makes
the node classification problem more important.

The node classification problem is informally as follows: given a partially
labeled graph with labeled and unlabeled nodes, find correct labels of unlabeled
nodes based on labeled nodes. Real-world applications of this setting are numer-
ous, include research paper classification [2], personalized video suggestion [3],
and anomaly detection [9].
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 633–645, 2015.
DOI: 10.1007/978-3-319-18038-0 49
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(a) Example graph. (b) Posterior.
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Fig. 1. (a)-(b) Main idea: An example where we want to classify nodes A and B.
Our algorithm provides more confident posterior for node A because A has sufficient
evidence (i.e., neighbors). (c): Proposed SocNL wins or ties in the first place:
against other methods on POKEC network.

Here we propose SocNL, a semi-supervised learning (SSL) algorithm for the
node classification problem. The SSL algorithm is one of the most promising algo-
rithms for the node classification problem on sparsely labeled networks [4,14,15].
Similar to the other SSL algorithms, SocNL is also based on the smoothness
hypothesis where a connected nodes tend to share a label. The main advan-
tage of our algorithm is to provide the reliable confidence for each result1. From
Bayesian inference perspective, the more evidence we observe, the more confident
the estimate is, which is the principle we adopt in this paper.

The Main Idea and the Main Results. Figures 1(a) and 1(b) show our main
idea. Suppose we have an example graph where nodes A and B are classified
into conservative or liberal. As the intermediate result, SocNL can output the
posterior distribution of the probability of being conservative for A and B shown
in Figure 1(b), which have different shapes. The important point is that the
posterior of A has more focused peak than B because A gets more evidence
from its neighbors. By taking the posterior into account, the final result of the
probability of being conservative is 0.76 for A while 0.59 for B, which agrees with
our intuition that A is more confidently conservative. This result is quite differ
from the result by label propagation [15] that does not consider the amount of
evidence, where both nodes are assigned the identical probability 0.86. Figure
1(c) shows our main result illustrating SocNL wins or ties in the first place
against other methods on POKEC network (see details in Section 6).

Contributions. Our contributions are summarized as follows:

1. Novel Algorithm: We propose a semi-supervised algorithm that is (a)
simple; it only requires solving a linear system, (b) fast ; each iteration of
its recursive inference is linear on the input size and is proved to converge,
and (c) provides reliable confidence; it takes into account the amount of the
evidence to provide the reliable confidence.

1 The name SocNL stands for Socratic Node Labeling, since it is self-aware, in the
sense that it knows what it does not know, reminiscing of the Socratic principle ”I
know that I know nothing.”
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2. Theoretical Analysis: We show the solid theoretical foundation of our
algorithm, indicating the convergence guarantee and the complexity. Also,
we show that the special case of SocNL is equivalent to label propagation [15]
and Bayesian inference over Dirichlet compound multinomial.

3. Empirical Analysis: We perform extensive experiments on three different
real networks: a blog-citation network, a co-authorship network, and a social
network with millions of nodes and edges. The experimental results demon-
strate that our algorithm outperforms other algorithms on graphs with less
smoothness and low label density.

Outline. The rest of the paper is organized as standard: problem definition,
algorithm description, theoretical analysis, empirical analysis, and conclusion.

2 Related Work

In this section, we overview the semi-supervised learning, which makes use of
unlabeled data in addition to labeled data to improve the performance. Most
of SSL algorithms are classified into the generative models, the low-density sep-
aration, and the graph-based methods [5]. Here, we focus on the graph-based
methods which our algorithm belongs to.

There have been proposed a lot of graph-based SSL algorithms, such as label
propagation (LP) [15], label spreading [14], and manifold regularization [4].
Although these methods have achieved successful improvements, they do not
consider the amount of evidence. This may cause some problems when we deal
with the node classification. Because most of real-world networks have power law
distributions [6] where a majority of nodes have a small number of neighbors,
which means we cannot obtain sufficient evidence from neighbors.

Recently, a few algorithms aiming at providing the reliable confidence have
been proposed [7,8,11]. Fang et al. [7] proposed DGR (Dirichlet-based Graph
Regularization) that assumes every node has a Dirichlet prior and propagates
it along edges. Although DGR provides the posterior like our algorithm, it has
to solve a optimization problem numerically for each iteration, indicating it
does not scale so much. Orbach et al. [11] devised an algorithm called TACO
(Transduction Algorithm with Confidence). TACO infers the label probability
and the uncertainty of it simultaneously. Chen et al. [8] also proposed an SSL
algorithm called ReLISH (Reliable Label Inference via Smoothness Hypothesis).
ReLISH is also formulated as a convex optimization problem and has a clear
closed-form solution. However, it requires O(n3) complexity, meaning it does
not fit large scale networks.

Table 1 shows the qualitative comparison between our algorithm and these
algorithms. Note that LP can also incorporate the prior knowledge, but it does
not consider the amount of evidence, meaning that LP does not provide the
reliable confidence (evaluated in Section 6).
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Table 1. Qualitative comparison

LP [15] DGR [7] TACO [11] ReLISH [8] SocNL

Confidence � � � �
Large scale networks � � �
Closed-form solution � � �
Interpretable parameters � � �

3 Problem Definition

This section defines the terminologies and formulates the node classification
problem. Table 2 gives the list of symbols. Let G = (V,E) be a partially labeled
graph where V is set of N nodes and E is set of M edges. The set of nodes is
composed of two types of nodes. V L ⊂ V is a set of L labeled nodes whose labels
are known, while V U = V \ V L is a set of U unlabeled nodes whose labels are
unavailable. Let Y be the set of K possible labels, and YL = {y1, y2, · · · , yL} be
the label assignments for the corresponding nodes in V L. Using these terminolo-
gies, the node classification problem is formulated as follows:

Problem 1 (Node Classification)

– Given: a partially labeled graph G = (V,E)
– Find: label probability fij that node i has label j.

After obtaining the label probability for unlabeled nodes, we can develop a
classification function C(vi) = arg maxk fik. Note that the maximum probability
value maxk fik for each node indicates how confident the result is, which is used
in the experiments.

Table 2. Symbols and Definitions

Symbols Definitions

A Adjacency matrix.

N, M, K # of nodes, edges, and labels.

L, U # of labeled and unlabeled nodes.

αj Prior belief that nodes have label j

4 Proposed Method

In this section, we propose SocNL, a novel semi-supervised node classification
algorithm. Similar to the other SSL algorithms, SocNL is also based on the
smoothness hypothesis: connected nodes are likely to share a label. Also, we
adopt Bayesian principle that the estimate is inherently uncertain and becomes
the more confident if we observe the mode evidence. This principle is suitable
to our problem because if a node has many neighbors, we can obtain much
evidence to infer the label probability of that node. On the other hand, if we
cannot obtain sufficient evidence (i.e., a small number of neighbors), the inference
result is unreliable. To formulate these ideas, SocNL adopts the followings:
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– Label propagation: SocNL propagates labels from labeled nodes to unlabeled
nodes based on the smoothness hypothesis.

– Bayesian inference: SocNL assigns each node with the prior label probability
and then updates it by the evidence from its neighbors, which takes into
account the amount of evidence and thus provides the reliable confidence.

4.1 The Model

In this section, we formulate the model. For now, let’s ignore the unlabeled
neighbors of target node i for simplicity. What we want to do here is to infer
i’s label probability fik = P (ŷi = k|Ñi) for all k given the set of i’s labeled
neighbors Ñi, where ŷi is the predicted label of i.

SocNL assumes that the label is a categorical random variable as P (ŷi =
k|θ) = θk where θ is the parameter of the categorical distribution. According to
the smoothness hypothesis, we believe that a neighbor of node i shares the same
parameter θ as i. Then we get the multinomial likelihood function of labels of
neighbors of i as follows:

P (Ñi|θ) = Mul(Ñi|θ) ∝
K∏

k=1

∏

j∈Ñi

θ
δ(yj ,k)
k =

K∏

k=1

θnik

k , (1)

where δ(yj , k) takes 1 if yj = k otherwise 0, and nik =
∑

j∈Ñi
δ(yj , k) is the

number of i’s neighbors whose label is k. Here we assume that labels of neigh-
bors are i.i.d. As the conjugate prior of the multinomial distribution is Dirichlet
distribution, let’s think that the prior of parameter θ is Dirichlet distribution:

P (θ) = Dir(θ|α) ∝
K∏

k=1

θαk−1
k , (2)

where α = (α1, α2, · · · , αK)T is the parameter of Dirichlet distribution. Putting
these together, we get the posterior distribution as follows:

P (θ|Ñi) ∝
K∏

k=1

θnik+αk−1
k . (3)

After obtaining the posterior distribution, we can write the posterior predic-
tive distribution for node i’s label as follows:

P (ŷi = k|Ñi,α) =
∫

θ

P (ŷi = k|θ)P (θ|Ñi,α)dθ =
nik + αk

|Ñi| + α0

, (4)

where α0 =
∑K

k=1 αk. By integrating out parameter θ of the posterior distribu-
tion, SocNL takes into account all the possible value of θ according to the poste-
rior. We name this solution Myopic baseline, which only uses labeled neighbors
Ñi of target node i.
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Algorithm 1. Iterative Algorithm
Require: explicit labels YL, adjacency matrix A, prior α
1: F 0 ← initializeF ()
2: k ← 0
3: repeat

4: F k+1
U ← (DU + α0I)−1

(
AUF k + 1αT

)

5: k ← k + 1
6: until error between F k+1

U and F k
U becomes sufficiently small

7: return F k
U

4.2 Iterative Algorithm

In this section we develop our full algorithm, SocNL, which utilizes both labeled
and unlabeled neighbors Ni. In this case, we do not know δ(yj , k) for unlabeled
nodes. Hence, instead of simply counting δ(yj , k), we calculate nik as follows:

nik =
N∑

j=1

AijP (ŷj = k|Nj), (5)

where we use the adjacency matrix A. We can think that nik behaves as the
expectation value of the number of i’s neighbors with label k. For labeled nodes,
we set P (ŷj = k|Nj) = δ(yj , k). Plugging Eqn 5 into Eqn 4 and using fik =
P (ŷi = k|Ni), we get:

fik =

∑N
j=1 Aijfjk + αk

∑N
j=1 Aij + α0

. (6)

Since this equation is in the recursive fashion, we devise an iterative algorithm
to solve it.

Hereafter, we formulate the matrix form of the iterative algorithm. Let F be
row normalized N × K matrix. We write F L and F U as the upper L × K and
lower U × K sub-matrices of F , respectively. Also, we write AL and AU in the
same way. The subscript L and U mean that the sub-matrices correspond to the
labeled nodes in V L and unlabeled nodes in V U , respectively. Recall that each
labeled node has fik = δ(yi, k), which corresponds to the components of F L.

Using the matrices defined thus far, we write the following assignment for-
mula:

F U ← (DU + α0I)−1 (
AUF + 1αT

)
, (7)

where 1 is U dimensional column vector where each component is 1. DU is
U × U diagonal matrix with diagonal component [DU ]ii =

∑
j Aij . As we will

prove in Section 5, the iterative algorithm repeating this assignment formula
always converges to the solution if αk > 0 for all k, which corresponds to valid
Dirichlet prior. The iterative algorithm of SocNL is shown in Algorithm 1. All
fik of unlabeled nodes are initialized as arbitrary values. Note that SocNL is
applicable to directed graphs without any modification of Algorithm 1, where
the adjacency matrix A is asymmetric.
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5 Theoretical Analysis

In this section, we show that SocNL has the solid theoretical foundation and
connections to label propagation and Bayesian inference. All omitted proofs are
shown in the appendix.

Convergence and Complexity. Here we show the convergence guarantee, the
convergence speed, and the complexity of SocNL.

Theorem 1. The iterative algorithm of SocNL always converges on arbitrary
graphs if αk > 0 for all k.

Corollary 1. The fixed point solution of SocNL is written as:

F U = (I − P UU )−1 (
P ULF L + rαT

)
, (8)

where
P UU = (DU + α0I)−1

AUU , (9)

P UL = (DU + α0I)−1
AUL,

r = (DU + α0I)−1 1.

Proof. It follows directly from the proof of Theorem 1 (Appendix A). ��
Theorem 2. SocNL with prior strength α0 converges faster than SocNL with
another prior strength β0 if α0 > β0.

Theorem 3. The time complexity of SocNL is O(hK(N + M)) where h is the
number of iterations.

Connection to label propagation. Next, we show that LP is a special case
of SocNL.

Theorem 4. The special case of SocNL with parameter αk = 0 for all k is
equivalent to LP.

This means SocNL still works even if parameter αk = 0 for all k although it
corresponds to invalid Dirichlet prior.

Corollary 2. SocNL converges faster than LP.

Proof. It follows directly from Theorems 2 and 4. ��

Connection to Bayesian inference. As mentioned in Section 4, SocNL is a
natural extension of Bayesian inference.

Theorem 5. SocNL is equivalent to Bayesian inference over Dirichlet com-
pound multinomial if we ignore all the unlabeled neighbors of target node i.

According to Theorems 4 and 5, SocNL behaves as the bridge between label
propagation and Bayesian inference.



640 Y. Yamaguchi et al.

Table 3. Datasets

N M K Smoothness Directed

POLBLOGS [1] 1,490 19,090 2 0.91 (0.49) �
COAUTHOR [12] 27,644 66,832 4 0.80 (0.23)

POKEC [13] 1,632,803 30,622,564 187 0.45 (0.01) �

6 Empirical Analysis

In this section, we report the empirical analysis of our algorithm to answer the
following questions:

– Q1 - Prior: How does the prior strength affect the performance of SocNL?
– Q2 - Accuracy: How accurate SocNL is compared to LP and Myopic?
– Q3 - Convergence: How fast does SocNL converge?

Datasets. Three network datasets described in Table 3 are used in our experi-
ments. Smoothness is the probability that a connected pair has the same label.
Values in parentheses are the smoothness after performing randomization of
labels. POLBLOGS is a blog-citation network where the labels are political
leanings of blogs. COAUTHOR is a co-authorship network where node i and j
are connected if they co-write a paper. Labels on this network are the research
field of authors (DB, DM, ML, and AI). POKEC is a social network in Slovakia
where node i has an out-going edge to node j if i follows j. Labels are home
locations of users.

Evaluation. We divide a set of labeled nodes into training nodes (30%), vali-
dation nodes (35%), and test nodes (35%), where labels of validation nodes and
test nodes are hidden. Validation nodes are used in Section 6.1 to validate the
prior strength, and test nodes are used in Section 6.2 to compare the perfor-
mance. We perform node classification to infer hidden labels. Then we report
the precision@p that is the precision of top p% of test (or validation) nodes
ordered by the confidence value maxk fik.

Reproducibility. The datasets we use in this paper are all available on the web
as shown in Table 3. Also, our code is available on our website2.

6.1 Q1 - Prior

In this section we study how the prior strength affects the performance of SocNL.
Throughout the experiments in this paper, we use the class mass ratio as the
prior αk = λLk/L where Lk denotes the number of labeled nodes with label k
and λ is the prior strength parameter which equals to α0. Figure 2 shows the
results where we vary the prior strength λ from 0.001 to 10.

We can see that larger λ results in well-calibrated confidence (i.e., higher
precision at lower recall) but lower overall precision (right-most). For this reason
2 https://github.com/yamaguchiyuto/socnl

https://github.com/yamaguchiyuto/socnl
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(c) POKEC.

Fig. 2. Larger prior strength is needed for less smoothness

we need to choose the correct value for λ to get a good trade-off between them.
We can see that larger λ is needed to get well-calibrated confidence on POKEC
network that has the relatively small smoothness. This is intuitive because if
the smoothness is small, the data is not reliable and then we need more data to
correctly update the prior, meaning that the large prior strength is needed.

Observation 1. Strong prior is needed for graphs with weak smoothness.

This agrees with intuition: the higher the value of α0, the more emphasis it
implies on the priors and the less emphasis on the evidence from the graph.
Thus, if we know there is weak smoothness, then we should use the large prior.
From the results, we choose 0.1 for POLBLOGS and COAUTHOR, and 10 for
POKEC as the best prior strength for the experiments in the next section.

6.2 Q2 - Accuracy

Figure 3 shows the results, where we compare the accuracy of three algorithms.
Myopic uses the same prior as SocNL. We can see that SocNL wins or ties in the
first place on all networks. Specifically, LP shows low precision for ”confident”
results (left) because LP does not consider the amount of evidence. According to
the results in this section and the last section, we can say that SocNL performs
better than LP on graphs with less smoothness (e.g., POKEC) because the larger
prior strength is needed.

Myopic shows low overall precision (right) because small-degree nodes do
not have enough labeled neighbors. On the other hand, our algorithm achieves
higher precision than Myopic because SocNL can propagate the evidence from
more than 1-step away. This result means that similar to other SSL algorithms,
SocNL tolerates low label density (i.e., small fraction of labeled nodes).

Observation 2. SocNL outperforms LP and Myopic baseline on graphs with
less smoothness and low label density.

6.3 Q3 - Convergence

In this section, we compare the convergence speed of LP and SocNL with different
λ. Figure 4 shows the results where x-axis indicates the number of iterations and
the y-axis indicates the error between F k

U and F k−1
U . The results confirm that

SocNL converges faster if it uses the larger prior strength.
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Fig. 3. SocNL wins or ties in the first place on all networks
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Fig. 4. Faster convergence when using larger prior strength

Observation 3. SocNL converges faster if it uses the larger prior strength.

7 Conclusion

In this paper, we proposed SocNL, which addresses the node classification prob-
lem on networks. Specifically, we studied how to provide the reliable confidence
of the classification result. Our contributions in this paper are:

– Novel Algorithm: we proposed a novel semi-supervised learning algorithm,
called SocNL (Section 4).

– Theoretical Analysis: SocNL provably converges, and has connections to
label propagation and Bayesian inference (Section 5).

– Empirical Analysis: experiments on three different real networks show
that SocNL wins or ties in the first place (Section 6).

Our future work includes investigating how to address the ordinal or numer-
ical labels such as movie ratings and user locations as coordinates. We plan to
study the other distributions for the model.
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Appendix

A. Proof of Theorem 1

Proof. By rearranging Eqn 7, we get:

F U ← P UUF U + P ULF L + rαT .

It directly leads to

F U = lim
n→∞

[

(P UU )nF 0
U +

{
n∑

i=0

(P UU )i

}
(
P ULF L + rαT

)
]

.

Since α0 > 0, the ∞-norm ||P UU ||∞ = maxi

∑
j |[P UU ]ij | is less than 1, which

also means that the spectral radius ρ(P UU ) is less than 1. Therefore, the infinite
series

∑n
i=0(P UU )i converges to (I − P UU )−1, and also limn→∞(P UU )n = O,

which means SocNL converges. ��

B. Proof of Theorem 2

Proof. Here, let ρ(α0) be the spectral radius of matrix P UU when using prior
strength α0. According to Eqn 9, larger α0 makes all the components of P UU

smaller, which means that all the eigenvalues of P UU become smaller. Hence, the
spectral radius satisfies ρ(α0) < ρ(β0). Also, the smaller spectral radius results
in the faster convergence of the infinite series limn→∞(P UU )n. Consequently,
SocNL with α0 converges faster than SocNL with β0. ��

C. Proof of Theorem 3

Proof. In line 4 of Algorithm 1, the matrix multiplication needs O(KM) and
the matrix addition requires O(KN) time. Putting together these operations, the
time complexity of the iterative algorithm of SocNL is O(hK(N + M)). ��

D. Proof of Theorem 4

Proof. By setting the prior αk = 0 for all k, we get:

F U =
(
I − D−1

U AUU

)−1
D−1

U AULF L,

which is exactly the same fixed point solution of LP. ��
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E. Proof of Theorem 5

Proof. Ignoring all the unlabeled neighbors means that we discard all edges
among unlabeled nodes, leading to AUU = O. Hence, the fixed point solution of
SocNL becomes:

F U = P ULF L + rαT . (10)

The element-wise form is as follows:

fik =

∑N
j=1 Aijδ(yj , k) + αk
∑N

j=1 Aij + α0

=
nik + αk

|Ñi| + α0

, (11)

where we use fik = δ(yi, k) for labeled nodes. This equation is the same as Eqn
4, which is the solution for Bayesian inference. ��
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Abstract. We present an Incremental Local Distribution Network
(ILDN) for unsupervised learning, which combines the merits of matrix
learning and incremental learning. It stores local distribution informa-
tion in each node with covariant matrix and uses a vigilance parameter
with statistical support to decide whether to extend the network. It has
a statistics based merging mechanism and thus can obtain a precise and
concise representation of the learning data called relaxation representa-
tion. Moreover, the denoising process based on data density makes ILDN
robust to noise and practically useful. Experiments on artificial and real-
world data in both “closed” and “open-ended” environment show the
better accuracy, conciseness, and efficiency of ILDN over other methods.

Keywords: Incremental learning · Matrix learning · Relaxation repre-
sentation

1 Introduction

In the field of unsupervised learning, many algorithms are designed to extract
information from the distribution of data. Classic methods include k-means [1]
and Neural Gas [2], which use fixed number of nodes to get different clusters.
Self-Organizing Map [3] and Topology Representing Networks [4] represent the
distribution and topological structure of the data with some given nodes.

Two drawbacks are obvious for these early methods. First, each node stores
the mean feature vector of patterns belonged to the node and the metric is
Euclidean. Correspondingly, each node is a simple unit with isotropic form and
spherical class boundary, and thus has a poor description ability. Second, these
methods need a predefined structure or number of nodes that requires additional
knowledge of the data which is often hard to know. Also, the fixed structures
render them unable to perform incremental learning or to handle the “open-
ended” environment, i.e. data from new distributions may occur during learning.
c© Springer International Publishing Switzerland 2015
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Two kinds of improvements have been made corresponding to these two prob-
lems, namely matrix learning and incremental networks. For the first problem, in
order to obtain a precise yet concise representation of the data, a more expressive
node is preferred, often based on mixture model, including PCASOM [5], Self-
Organizing Mixture Network [6], localPCASOM [7], and MatrixNG and Matrix-
SOM [8]. López-Rubio [9] gave a detailed review about these Mixture Model
based Self-Organizing Maps which they called the Probabilistic Self-Organizing
Map. For the second problem, many “growing networks” or “incremental net-
works” are proposed. Some grow after a fixed number of inputs learned such as
GNG [11] and GSOM [12]; some use an adaptive threshold including GWR [13],
Adjusted-SOINN [14], and TopoART [15]. Araujo and Rego [16] gave a detailed
review about these incremental Self-Organizing Maps.

On one hand, though matrix learning methods record rich local distribu-
tion information and consider the anisotropy on different basis vectors, they
have a common shortcoming - they cannot deal with the Stability-Plasticity
Dilemma [10], i.e. many of these methods cannot learn data from new distri-
butions after they are trained on the current data set; the other methods is
able to learn data from new distributions but the previous learned knowledge
will be forgotten, known as the “Catastrophic Forgetting”. Thus, they can only
work in a “closed” environment, with no new distributions occurring during
learning. On the other hand, incremental networks process flexible structures
that can adapt well for various data and environments, but they lose much use-
ful information of the original learning data. Recently, an online Kernel Density
Estimator (oKDE) [17] is proposed to introduce the Kernel Density Estimator to
online learning. However, the learning environment (“closed” or “open-ended”)
must be known in advance to set different parameters.

We propose an Incremental Local Distribution Network (ILDN), which, by
combining the advantages of matrix learning and incremental learning, is able to
obtain a precise and concise representation of the data as well as learning incre-
mentally without forgetting previous knowledge. In summary, the characteristics
of ILDN are:

(1) By storing in each node the covariant matrix to record rich local distribu-
tion information of the learning data, and adopting statistically supported node
merging and denoising criterions, ILDN is able to obtain a precise and concise
representation of the learning data, called a relaxation data representation.

(2) Through giving each node an adaptive vigilance parameter with statistics
theoretical supporting, ILDN is able to learn new distributions data effectively
without forgetting the previous learnt but still useful knowledge. That is, ILDN
can handle the Stability-Plasticity Dilemma effectively.

2 Incremental Local Distribution Network

ILDN is an online incremental learning model which combines the advantages
of matrix learning and incremental networks. The nodes in the network record
not only the weight vector but also the data distribution information around its
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local region, i.e. the covariance matrix. Nodes which are close to each other in the
feature space are connected. The connected nodes will be merged during learning
if a concise data representation can be obtained, which is called a relaxation data
representation.

In ILDN, each node i is associated with a 4-tuple 〈ci,Mi, ni,Hi〉: ci, Mi and
ni are the mean vector, covariance matrix and number of input patterns belonged
to node i. Hi is a vigilance parameter to decide whether an input pattern belongs
to node i, it dynamically changes with the learning process. Assume that ILDN
receives d-dimensional data x ∈ R

d, the node can be described as a hyper-
ellipsoid region using ci, Mi and Hi:

i :

√
(x − ci)TM−1

i (x − ci) < Hi x ∈ R
d (1)

The entire workflow of ILDN is as follows: when an input pattern comes,
ILDN first conducts the Node Activation to find some activated nodes which are
recorded in an activating node set S. Then Node Updating is conducted accord-
ing to set S: If there is no activated node in S, a new node will be established
for this input pattern; Else ILDN will find a winner among the activated nodes
and update this winner node. Topology Maintaining module will create connec-
tions between the nodes in S and record these connections in the connection list
set C. After that, ILDN will check the merging condition between the winner
node and its neighbor nodes, if the merging condition is satisfied, Node Merging
between the winner node and its neighbors will be executed to get a concise local
representation. When all the steps above are done, ILDN will process the next
input pattern. Denoising is implemented every λ patterns are learned. When the
learning process is finished or users want the learning result, ILDN will Cluster
the learned nodes and output the learning result.

2.1 Node Activation

When an input pattern x comes, ILDN first calculates the Mahalanobis distance
between x and all node i ∈ N :

Di(x) =

√
(x − ci)TM−1

i (x − ci), i = 1, 2, ..., |N | (2)

where N is the set of nodes, |N | represents the total number of the nodes. If
Di(x) < Hi, we say node i is activated. Then we put i in an activating set S
and we get:

S = {i|Di(x) < Hi} (3)

Then set S records all the activated nodes by the input pattern x.

2.2 Node Updating

If S = ∅, i.e. no node is activated by x, it means x is a new knowledge. A new
node a is created for x as:

a : 〈ca = x, Ma = σI, na = 1, Ha = εna ∗ χ2
d,q〉 (4)
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To make Ma be nonsingular, we initialize it as σI, where I is the identity matrix
and σ is a small positive parameter. This initialization ensures that the covari-
ance matrix Ma is positive definite during learning. A small positive σ guarantees
that the initial hyper-ellipsoid is compact convergence to the input pattern x, it
decides the initial hyper-ellipsoid size of the new node. εna

is a function of na to
control the expansion trend of ellipsoid. χ2

d,q is a value of χ2 distribution with
d degrees of freedom and q confidence, usually q is equal to 0.90 or 0.95. The
details of such parameters will be discussed in Section 3.

If S �= ∅, i.e. some nodes are activated by x, it means x is not new knowledge.
ILDN will find a winner node i∗ from set S:

i∗ = argmin
i∈S

Di(x) (5)

Then node i∗: 〈c,M, n,H〉 is updated in a recursive way as:

cnew = c + (x − c)/(n + 1); nnew = n + 1; Hnew = εnnewχ2
d,q

Mnew = M + [n(x − c)(x − c)T − (n + 1)M ]/(n + 1)2 (6)

2.3 Topology Maintaining

A topology preserving feature map is determined by a mapping Φ from a man-
ifold M onto the vertices (or nodes) i ∈ N of a graph (or network) G. The
mapping Φ is neighborhood preserving if similar feature vectors are mapped to
vertices that are close within the graph. This requires that feature vectors vi and
vj that are neighboring on the feature manifold M are assigned to vertices (or
nodes) i and j that are adjacent (or connected) in the graph or network G [4].

Some methods achieve the topology preserving feature map through a prede-
fined structure G such as SOM [3]. In this paper, the connections between nodes
of G are built according to Hebbian learning rule: If two nodes are activated by
one pattern, a connection between the two nodes is created. According to the
definition of set S, we know that all nodes in S are activated by the current
input pattern x. Thus, if no connection exists between node i and j in S, ILDN
will add a new connection {〈i, j〉|i ∈ S ∧ j ∈ S ∧ i �= j} into the connection list
C. After a period of learning, these connections is able to organize the nodes
into groups to represent different topology of the learning data.

2.4 Node Merging

As learning continues, there may be some nodes closing to each other and having
similar principal components. Such nodes will be merged to obtain a concise
local representation. At merging stage, two nodes will merge if the following two
conditions are satisfied:

(i) two nodes i and j are connected by an edge; and
(ii) the volume of the combined node m is less than the sum volume of the

two nodes i and j, i.e.
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V olume(m) < V olume(i) + V olume(j) (7)

If the above conditions are satisfied for node i and j, we merge i and j and let
m represent the data in i and j collectively:

cm = (nici + njcj)/nm; nm = ni + nj ; Hm = εnmχ2
d,q

Mm = ni
nm

(Mi + (cm − ci)(cm − ci)
T ) +

nj

nm
(Mj + (cm − cj)(cm − cj)

T )

(8)

In practice, we only merge the winner node and its neighbors when a pattern is
fed into ILDN. After merging, all the connections with original nodes in C are
attached to the new node.

2.5 Denoising

The data from the learning environment may contain noise. Some nodes may be
created by these noise data. Since ILDN records the distribution density of each
node, we can use this information to judge whether a node is a noise node.

After every λ patterns learned, ILDN first calculates the mean value of the
number of the input patterns belonged to each node as:

Mean =

|N|∑

i=1

ni/|N | (9)

where |N | represents the total number of the nodes, ni is the number of input
patterns belonged to node i. We assume that the probability density of the noise
is lower than the useful data. Based on this assumption, if ni is smaller than
a threshold k ∗ Mean, we mark node i as a noise node and remove it. Where
0 ≤ k ≤ 1 control the intensity of denoising. After denoising, all the connections
with deleted nodes in C are also deleted.

2.6 Cluster

In [2], it is proved that the competitive Hebbian rule forms perfect topology
preserving map of a manifold if the data is dense enough. Based on this opinion,
we take each cluster as a manifold, therefore we can find different connected node
domains as different clusters. Algorithm 1 shows the details of the clustering
method.

2.7 Complete Algorithm of ILDN

As a summary for this section, we give the complete algorithm of ILDN (Algo-
rithm 2).
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Algorithm 1. Cluster Nodes
1: Initialize all nodes as unclassified.
2: Choose one unclassified node i from node set N . Mark i as classified and label it

as class Ci.
3: Search node set N to find all unclassified nodes that are connected to node i with a

“path”. Mark these nodes as classified and label them as the same class as node i.
4: Go to Step 2 to continue the classification process until all nodes are classified.

Note: if two nodes can be linked with a series of connections, we say that a
“path” exists between the two nodes.

Algorithm 2. Incremental Local Distribution Network
1: Initialize the network with N = ∅, C = ∅.
2: Input new sample x ∈ R

d.
3: Determine set S using formula (3), where the elements of S is the nodes which activated

by sample x.

4: If S = ∅, initialize a new node as formula (4) then goto Step 2.

5: If S �= ∅, choose the winner node i∗ by formula (5) and update i∗ using formula (6).

6: Establish connections between the activated nodes in set S.
7: If the winner node i∗ and its neighbors satisfy the merging conditions (i) and (ii), implement

merging procedure as formula (8).

8: If the number of input patterns presented so far is an integer multiple of parameter λ.
Denoising as in Section 2.5.

9: If the learning process is not finished, go to Step 2 to continue unsupervised online learning.

10: Cluster using Algorithm 1 and output the learning result.

3 Analysis

3.1 The Expansivity of the Nodes

As each node records the local regional distribution, we can assume that the pat-
terns belonged to one node are generated by a Gaussian distribution N (cX , ΣX)
where cX is the center and ΣX the covariance matrix. The hyper-ellipsoid bound-
ary equation of each node is:

(x − cX)TΣ−1
X (x − cX) = H2 (10)

Let K = H2, then K is a χ2 distribution with d degrees of freedom. Giving a
confidence q, the patterns from random variables X lie in the hyper-ellipsoid
drawn by K can be described as:

P{(x − cX)TΣ−1
X (x − cX) < K} = q (11)

Then K can be solved by K = χ2
d,q. For K = H2, we can get the value of H. In

practice, for node i we set Hi = εni

√
χ2
n,q, where εni

≥ 1 and εni
decreases when

ni increases. This strategy let the hyper-ellipsoid has a tendency of expansivity at
the preliminary stage when εni

> 1. With more patterns included in node i, H2
i

approaches to χ2
d,q, then the hyper-ellipsoid arrives a stable state. We set εni

=(1+
2 ∗ 1.051−ni).
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In ILDN, σ decides the initial hyper-ellipsoid size of new nodes. It can be
understood as the initial size of the window we observe the learning data. Very
big σ may lead to a new node cover several different clusters. Therefore, ILDN
prefers small σ. Though small σ may make ILDN initially generate many nodes
with small hyper-ellipsoid size, ILDN can merge these nodes following the learn-
ing process.

3.2 The Relaxation Data Representation

With the hyper-ellipsoid defined in formula (1), the volume of node n can be
calculated:

V olume(n) = 2[ d+1
2 ]π[ d2 ]

⎛

⎝
[d/2]−1∏

i=0

1

d − 2i

⎞

⎠√|Mn|Hd
n (12)

where Mn and Hn are the covariance matrix and vigilance parameter of node
n. |Mn| represents the determinant of Mn, [·] represents the rounding operation.
d is the dimension of the sample space. However, |M | in formula (12) may be
very close to 0 in some high dimensional task and thus not suitable to calculate
the volume directly with it. To avoid directly calculate the volume with formula
(12), for the covariance matrix Mi, Mj and Mm of node i, j and merging node
m in node merging condition (ii), we do Singular Value Decomposition (SVD)
as:

M = ET diag(λ1, λ2, ..., λd)E (13)

where λ1 ≥ λ2 ≥ . . . ≥ λd, and we get λi
1, λi

2,..., λi
d for node i, λj

1, λj
2,..., λj

d for
node j and λm

1 , λm
2 ,..., λm

d for node m.
Then we find a truncated position t of all singular value with a predefined

scaling factor ρ: p=argmin
1≤p≤d

t∑

i=1

λi ≥ ρ
d∑

i=1

λi. For node i, j and merging node m,

we get ti, tj and tm respectively. In this paper, we set ρ=0.95. Finally, we get
a common truncated position t=max(pi, pj , pmerge) and calculate |Mk| by using
λk
1 × λk

2 × . . . × λk
t , k = i, j,m. Substituting |Mk| (where k = i, j,m) into for-

mula (12) and replace d with t, we get V olume(i), V olume(j) and V olume(m).
Substituting these three volumes and after a series of simplification, we get an
equivalence merging condition:

√
λi
1Hi

λm
1 Hm

· λi
2Hi

λm
2 Hm

· · · λi
tHi

λm
t Hm

+

√
λj
1Hj

λm
1 Hm

· λj
2Hj

λm
2 Hm

· · · λj
tHj

λm
t Hm

≥ 1 (14)

In practice, we use formula (14) to judge the merging condition (ii). If formula
(14) is not satisfied, node i and j will remain unchanged.

At the node merging step, we have two candidate data representation that
are: (1) representation before merging and (2) representation after merging.
Assume the domain of distribution Qi(x) of node i is x ∈ Ri, the domain of
distribution Qj(x) of node j is x ∈ Rj . Then the data representation f1 before
node merging in domain Ri ∪ Rj is:
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f1 :

⎧
⎨

⎩

√
(x − ci)TM−1

i (x − ci) < Hi x ∈ Ri√
(x − cj)TM−1

j (x − cj) < Hj x ∈ Rj

(15)

The data representation f2 after node merging in domain Ri ∪ Rj is:

f2 :

√
(x − cm)TM−1

m (x − cm) < Hm x ∈ Ri ∪ Rj (16)

When assume learning data in domain Ri ∪ Rj are generated by a Gaussian
distribution, setting Hm = χ2

d,q will guarantee the probability that the learning
data in domain Ri ∪ Rj falls in f2 equals to q (usually q ≥ 90%). Meanwhile,
according to node merging condition (ii), the volume of node m is less than the
total volume of node i and j. Thus, we get a much concise data representation
on domain Ri ∪ Rj .

Comparing of the two representations, f1 uses more parameters than f2, and
the two regions in f1 overlap each other. Thus, the representation f1 is tight and
we call f1 as a tight data representation. On the other hand, the representation f2
expresses the data distribution more concisely than f1, it relaxes the requirement
of the parameters, correspondingly, we call representation f2 as a relaxation data
representation.

4 Experiments

As ILDN aims to combine the advantages of incremental learning and matrix
learning, we compare it with some classical and state-of-the-art methods of
matrix learning and incremental learning. The matrix learning methods include
localPCASOM [7], BatchMatrixNG [8] and oKDE (oKDE is also an incremental
learning method) [17]. The incremental learning methods include TopoART [15]
and Adjusted-SOINN (ASOINN) [14].

4.1 Artificial Data

Observe the Periodical Learning Results. We use the artificial data which
is distributed in two belt areas (also used in [5]). Each belt area represents a

(a) After 50 patterns (b) After 100
patterns

(c) After 200
patterns

(d) After 4000
patterns

Fig. 1. Periodical learning results of ILDN. The pink area represents the distribution
of the learning data. Ellipses with black boundary-line are the learning result.
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cluster and generates samples uniformly. Parameters of ILDN are χ2
d,q = χ2

(2,0.90),
σ = 1e-5, k = 0.01, λ = 1000. Fig. 1 illustrates the learning process of ILDN. At
the early stage, many ellipsoids are generated to cover the learning data set (Fig.
1(a)). With the learning process continues, some ellipsoids are merged together,
as at the 100 patterns stage (Fig. 1(b)). After 200 patterns, all ellipsoids are
merged into 2 ellipsoids (Fig. 1(c)). Finally, ILDN gets 2 ellipsoids which fits the
original data set very well. ILDN does not need to predetermine the number of
the nodes, it automatically generates 2 nodes in this task.

Work in Complex Environment. In this section, we conduct our experiment
on the data set shown in Fig. 2. The dataset is separated into five parts containing
20000 samples in total. Data sets A and B satisfy 2-D Gaussian distribution. C
and D are concentric rings distribution. E is sinusoidal distribution. We also add
10% Gaussian noise and random noise to the dataset. Noise is distributed over
the entire data set.

Fig. 2. Artificial data set used for the experiment. 10% noise is distributed over the
entire data set.

The experiments are conducted in two environments. In the “closed” envi-
ronment, patterns are randomly selected from the whole learning set. In the
“open-ended” environments, five parts of the data are presented successively. In
stage I, i.e. step 1 to 4000, patterns are chosen randomly from data set A. In
stage II, i.e. step 4001 to 8000, the environment changes and patterns from B
are chosen, etc.

We set the parameters of localPACSOM as N = 20, ε=0.01, H=1.5; Batch-
Matrix as N = 20, epoch = 1000; ASOINN as λ=200, agemax=25, c=0.5;
TopoART as βsbm=0.32, ρ=0.96, ϕ=5, τ=100; oKDE as Dth = 0.01, N = 10, f =
1 for the “closed” environment and f = 0.99 for the “open-ended” environment.
ILDN as χ2

(d,q)=χ2
(2,0.90), σ=1e-5, k=0.5, λ = 1000.

Fig. 3 shows the results. localPCASOM and BatchMatrix suffer from the
Stability-Plasticity Dilemma. oKDE is vulnerable to noise. ILDN obtains best
fitting with least nodes. On one hand, ILDN can merge some local small ellipsoids
into a big one, leading to a more concise data representation than other matrix
learning methods and can learn incrementally. On the other, ILDN learns the
local distribution to describe original data while other incremental networks have
to use a large number of nodes.
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(a) localPCASOM (b) TopoART

(c) BatchMatrixNG (d) ASOINN

(e) oKDE (f) ILDN

Fig. 3. Comparing results in the closed and open-ended environment. The left col-
umn of a method is the result in the closed environment, the right is the open-ended
environment.

(a) localPCASOM (b) BatchMatrix (c) oKDE (d) ILDN

tight relaxation

Fig. 4. The relaxation data representation vs. the tight data representation

In order to clearly observe the performance of the relaxation and the tight
data representations, we use the dataset in Fig. 2 without noise to test localPCA-
SOM, BatchMatrix, oKDE, and ILDN in the “closed” environment. The result
is shown in Fig. 4. The relaxation representation can generate a more concise
representation than the tight representation on the two Gaussian distributions.
For the distribution which cannot be further simplified, the relaxation represen-
tation is able to get comparable result with the tight representation, such as the
sinusoidal distribution. This experiment demonstrates that the relaxation data
representation gets a much concise representation than the tight data represen-
tation while maintaining the same level of details and preciseness.
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4.2 Real-World Data

In this section, we first do an experiment on the ATT FACE database. There are
40 persons in the database and each person has 10 images differing in lighting
conditions, facial expressions and details. The original image (size 92 × 112) is
re-sampled to 23 × 28 image using the nearest neighbor interpolation method.
Then Gaussian smoothing is used to smooth the 23 × 28 image with HSIZE =
[4; 4], σ = 2.

The experiments are conducted in the “closed” and “open-ended” environ-
ment for oKDE, ASOINN, TopoART and ILDN. In the closed environment,
patterns are randomly selected from the whole learning set. In the open-ended
environment, from step 1 to 200, patterns are chosen randomly from person 1.
From step 201 to 400, the environment changes and patterns from person 2 are
chosen, etc. For BatchMatrix and localPCASOM are not incremental method,
we only conduct these two methods in the closed environment. Such methods
need a predefined node number, to guarantee a good learning result, we set it as
200 which gives it a good initial condition: the initial nodes contain images of
all 40 persons. We set the parameters of localPCASOM as N = 200, ε = 0.01;
BatchMatrix as N = 200, epoch = 200; oKDE as Dth = 0.01, N = 10, f =
1 for the closed environment and f = 0.99 for the open-ended environment;
the parameters of ASOINN is set as λ=100, agemax=50, c=0.25; TopoART as
βsbm=0.6, ρ=0.96, ϕ=3, τ=100; ILDN as χ2

(d,q)=χ2
(644,0.90), σ=1e-3, k=0.01,

λ=1000.

Table 1. Mean node number, missing person number and accuracy of 100 times learn-
ing results in closed and open-ended environment for ATT FACE. The best perfor-
mance is bolded.

Environment localPCASOM BatchMatrix oKDE ASOINN TopoART ILDN

Node number
closed 200∗ 200∗ 3 276.24 16.65 247.29

open-ended — — 3 317.33 260.82 247.31

Missing persons
closed — — 38 0 26.05 0

open-ended — — 38 5.01 0 0

Accuracy
closed 23.4% 24.1% — 96.7% 48.25% 98.5%

open-ended — — — 89.6% 96.3% 98.5%

We adopt 3 factors to evaluate the learning results: node number, missing
person number and recognition ratio. Table 1 gives the learning results of 100
times learning results in both environments. oKDE only gets 3 nodes in the
learning result in both environments, losing 38 persons. Though ILDN gets larger
node number in the closed environment than TopoART, it does not lose any
person. In the open-ended environment, ILDN gets the smallest node number
(excluding oKDE) and does not lose any person. On the other hand, the ASOINN
“forget” 5.01 persons. Moreover, the proposed ILDN has the least difference of
number of node and do not “forget” any person in the two environments, which
means ILDN is a more stable incremental method than others. At last, nearest
neighbor is used to classify vectors in the original image vector. We do not
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Table 2. Learning results on some UCI datasets. N/A represents that the methods do
not give the learning result within 10 days. The best performance on each data set is
bolded.

Dataset localPCASOM BatchMatrix oKDE ASOINN TopoART ILDN

Segment
465∗ 465∗ 24 376 110 465

10.00% 15.16% 73.55% 85.01% 37.10% 90.32%

Shuttle
9∗ 9∗ 30 69 63 9

79.16% 81.37% 90.66% 90.39% 86.48% 92.96%

Webspam
745∗ 745∗

N/A
3531 4643 745

65.78% 67.25% 85.45% 83.05% 86.50%

KDD99 N/A N/A N/A
127 149 32

92.15% 92.10% 92.81%

test the oKDE because it is unsuitable for this task. Table 1 shows that the
recognition accuracy of ILDN is higher than the other methods.

Next, we do the experiments on some UCI datasets including Segment, Shut-
tle, Webspam and KDD99 which differ in the length, dimensionality as well as
the number of classes. The parameters of the comparison methods are set as
they suggest. The parameters of ILDN are set as σ=1e-3, k=0.01, λ=1000. We
define the node number of localPCASOM and BatchMatrix as same as ILDN,
marked with ∗ in the learning result.

The learning results are shown in Table 2. ILDN obtains highest accuracy
in all datasets. Compared with three matrix learning methods localPCASOM,
BatchMatrix and oKDE, ILDN uses far less nodes in three out of four datasets.
Moreover, ILDN can handle very large scale dataset like KDD99, while localP-
CASOM, BatchMatrix and oKDE cannot give a learning result within 10 days.
We can also find that the incremental (or online) matrix learning method oKDE
cannot give a learning result on the relatively small data set like Webspam within
10 days. Thus, ILDN is a more practical incremental (or online) matrix learning
method than others.

5 Conclusion

This paper presents an incremental local distribution learning network (ILDN).
It combines the advantages of matrix learning and incremental learning. The
covariant matrix, statistical vigilance parameter and merging mechanism enable
it to obtain precise and concise representation of the data and learn incremen-
tally. Moreover, the denoising processing based on data density makes it robust
to noise. The experiments on both artificial datasets and real-world datasets val-
idate our claims and show that ILDN is more effective over other matrix learning
methods and incremental networks, obtaining higher accuracy and being able to
handle large-scale data.
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Abstract. This paper aims to predict the future impact, measured by the citation 
count, of any papers of interest. While existing studies utilized the features re-
lated to the paper content or publication information to do Citation Count Pre-
diction (CCP), we propose to leverage the citation count trend of a paper and 
develop a Trend-based Citation Count Prediction (T-CCP) model. By observ-
ing the citation count fluctuation of a paper along with time, we identify five 
typical citation trends: early burst, middle burst, late burst, multi bursts, and no 
bursts. T-CCP first performs Citation Trend Classification (CTC) to detect the 
citation trend of a paper, and then learns the predictive function for each trend 
to predict the citation count. We investigate two categories of features for CCP, 
CTC, and T-CCP: the publication features, including author, venue, expertise, 
social, and reinforcement features, and the early citation behaviors, including 
citation statistical and structural features. Experiments conducted on the Arnet-
Miner citation dataset exhibit promising results that T-CCP outperforms CCP 
and the proposed features are more effective than conventional ones. 

Keywords: Citation count · Citation link · Citation category · Citation graph 

1 Introduction 

Nowadays, a large volume of research articles, in the order of hundreds per year if not 
in thousands, from diverse disciplines are continuously generated and published. 
When researchers kick off their research work, either during the seeking of emerging 
areas or after coming up with trending topics of interest, they would usually need to 
read a bundle of relevant and influential papers so that they can catch the trend and 
even be in the lead. However, due to the limitation of time, researchers might not be 
able to follow every paper and could be very difficult to determine which studies will 
possess high impact in the future. In addition, some relevant studies with different 
terms or keywords may be neglected due to limited human effort. Therefore, it would 
be useful if we can accurately measure the future impact or the influence of a paper at 
early stages after it gets published. As for funding agencies of government and indus-
try, it is also essential to understand which projects are more potential based on either 
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the paper publications of researchers’ projects or the possible impact of a field. Hence 
being able to estimate the future impact of papers can support their decision to fairly 
and effectively distribute the resources. 

To quantify the potential impact or influence of a particular paper, one of the most 
intuitive, objective, and commonly adopted measures is the number of citations, a.k.a. 
citation count, after the paper gets published [3]. The number of citations is the times 
a paper get cited by other articles. In fact, the citation count of a paper is also vali-
dated to be the major factor that affects the performance for the retrieval task of re-
search articles [1], and also be the most influential factor in Google Scholar’s ranking 
[6]. Nevertheless, regarding citation count to measure the impact suffers from a criti-
cal issue: it works only for papers that passed a long period of time after it gets pub-
lished, say going beyond five years. Most scientific articles that have only few years 
after getting published tend to have a lower citation count, and thus the citation count 
would fail to estimate its impact. To deal with this problem, in this paper, we aim to 
predict the future number of citations for scientific papers. We believe that an accu-
rate estimation of the long-term citation count will be beneficial for understanding the 
impact of a paper at early stages after it gets published (e.g., 1-3 years). Specifically, 
we propose to tackle three problems about citation count prediction. First, can we 
predict the number of citations of a paper given only its publication information, such 
as authors and venues? Second, can we accurately predict the citation count of a pa-
per, given its citation information at early stages after it gets published? Third, what 
are the most important factors that determine whether a paper will get a large number 
of citation counts? To address these problems about citation behaviors, we develop a 
novel Trend-based Citation Prediction (T-CCP) framework, which can effectively 
model and predict the long-term citation count of a given paper.  

Related Work. Castillo et al. [9] used the author reputation, measured by the number of 
papers, citations, and authority, with linear regression to estimate future citation counts. 
Yogatama et al. [10] mined textual features with graphical models to predict the down-
load times of papers. Stern [13] identified the high-ranked papers using early citation 
information. Shi et al. [8] studied the structural properties of citation graphs in various 
disciplines. Pobiedina and Ichise [11] mined frequent graph patterns in a citation graph to 
estimate the future citation counts. Yan et al. [7][16], which is the most relevant work to 
this paper, combined content features, author features, and venues features, and used the 
regression models to learn the prediction function. In this work, we not only include the 
advantages of their proposed features, but also investigate more advanced features and 
propose the citation trends to boost the prediction accuracy. First, we investigate more 
content-independent features categorized into publication features and early citation be-
havioral features, in which the former not only contains the features used by Yan et al. 
[7][16] but also includes more new features (i.e., expertise, social, and reinforcement 
features). Second, analyzing and extracting features of paper content might be costly in 
terms of space and time as the number of research articles grows rapidly and drastically. 
We do not consider the paper contents for the citation count prediction. Third, instead of 
learning the prediction function directly from all the papers, we categorize the papers into 
several citation trends, train a predictive model for papers belonging to each trend, and 
find the most proper model for the test paper to do the task of citation count prediction.  
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We first analyze the behaviors of citation count over time and find that the evolu-
tion of citation count can be categorized into several patterns of trend. For example, 
some papers immediately burst to get lots of citation right after got published, but the 
citation count gradually decreased as time proceeds. On the contrary, some are inglo-
rious at early stages but abruptly get a great number of citations. In addition, some 
articles never have bursts while others can obtain more than one bursts in their evolu-
tion of citation counts. Based on the stage that the bursts happen and the number of 
bursts, we divide the behaviors of citation count into five categories, termed citation 
trends. Given a scientific article, we first aim to classify which citation trend it should 
belong to, and then to predict its citation count after ∆ݐ years according to its classi-
fied citation trend. In other words, the proposed Trend-based Citation Prediction 
consists of two stages. The first is to classify which trend the target paper will behave. 
The second is to predict the exact citation count after n years. Moreover, to response 
the abovementioned questions, we divide the features into two sets: the publication 
features and the early citation features. The former is to capture the knowledge about 
authors, venues, and paper contents while the latter is the statistical and structural 
information of citation behaviors in the first k years of papers. We combine both fea-
ture sets and empirically derive accurate performance. 

Contributions. We summarize the contributions of this paper as follows. 

(a) We predict the future citation counts of papers based on the content-independent 
features of publication knowledge and/or the early citation information, to esti-
mate the impact of papers in the long term. We also empirically investigate what 
factors are most influential on making a paper get a higher number of citations. 

(b) We categorize the evolution of citation counts, termed citation trends, into five 
types, according to the stages of bursts of citation count as well as the number of 
bursts in papers’ evolution of citation counts. 

(c) We devise a trend-based citation prediction (T-CCP) model to estimate the future 
citation counts of papers. TCP is a two-stage prediction method, which first clas-
sifies the given paper into a potential citation trend, and predicts its exact citation 
count based the learned model of the corresponding trend. 

(d) Experiments conducted on the well-known ArnetMiner citation data exhibit that 
the proposed T-CCP averagely outperforms CCP with 0.18 improvement in terms 
of R2 measure, the early citation features can significantly boost the prediction 
accuracy with 0.34 improvement in average, and combining all of our features are 
averagely 0.43 better than conventional features in terms of R2. 

The structure of this paper is summarized as follows. We first introduce concrete 
definitions as well as the problem statements in Section 2. Then in Section 3, we de-
scribe the proposed method, followed by the elaboration of experimental results in 
Section 4. Finally we conclude this work in Section 5. 
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2 Problem Statements 

Definition 1: Citation Count. For an archive of academic papers ܦ, given a paper ݀ ∈ its citation count ܿሺ݀ሻ is the number of papers that cite ݀, denoted by ܿሺ݀ሻ ,ܦ ൌ |ሼ݀ᇱ ∈ :ܦ ݀ᇱܿ݅ݏ݁ݐ ݀ሽ|, where |ܵ| is the number of elements in set ܵ. 

Definition 2: Citation Sequence. A citation sequence of a paper ݀, denoted by ݏ∆௧ሺ݀ሻ ൌ ,ଵሺ݀ሻܿۃ ܿଶሺ݀ሻ, … , ܿ∆௧ሺ݀ሻۄ, is a sequence of citation count ܿሺ݀ሻ over a pe-
riod of time 1, 2, … ,  where ܿ is the citation count of the ݅-th year after ݀ gets ,ݐ
published.  

Definition 3: Citation Trend. A citation trend  is a collection of citation sequences 
sharing a common pattern of evolution of citation count. Citation sequences of differ-
ent citation trends demonstrate dissimilar evolutions of citation count.  

Problem 1: Citation Count Prediction. Given a scientific article ݀ ∈  the goal is ,ܦ
to learn a predictive function ݂, and use the function ݂ሺ݀,  ሻ to predict the citationݐ∆
counts of ݀, i.e., ܿ∆௧ሺ݀ሻ, at a particular time period ∆ݐ after it gets published. 

In order to effectively solve the citation count prediction problem, we propose a 
trend-based citation prediction model, which consists of two stages. The first is to 
classify the potential citation trend of the given paper while the second aims at pre-
dicting the citation count based on the model trained from papers belonging to the 
corresponding citation trend. We think for the model training, grouping papers into 
several citation trends is able to not only select the effective and representative data 
instances but also to reduce the noise. Hence the prediction performance is expected 
to be boosted. What follows gives the problem definitions for these two stages. 

Problem 2: Citation Trend Classification. Given a scientific article ݀ ∈  our goal ,ܦ
is to accurately classify ݀ into a certain citation trend  that it should belong to. 

Problem 3: Trend-based Citation Count Prediction. Given a scientific article ݀ ∈  and use , it belongs to, the goal is to learn a predictive function ݂, which is trained from papers whose citation sequences belong to trend  and the citation trend ܦ
the function ݂ሺ݀,  ሻ to predict the citation counts of ݀, i.e., ܿ∆௧ሺ݀ሻ, at a particularݐ∆
time period ∆ݐ after it gets published. 

3 The Proposed Method 

In this section, we first introduce five categories of citation trends, which are derived 
based on the time of getting bursts and the number of bursts. Then we describe a se-
ries of features used in this work, which can be divided into two main categories: 
publication features and early citation features. Finally, we present the predictive 
model that exploits the citation trends as well as the proposed features. 

3.1 Categories of Citation Trends 

To exploit the citation trends of paper for citation count prediction, we first investi-
gate the evolution of citation count of papers over time. While existing study [15] has 
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presented that the evolution of citation count is non-linear, we simplify the objective 
into identifying the patterns of citation count evolution, i.e., citation trends. The cita-
tion data collected by Arnetminer [5] is utilized for citation trend analysis. For each 
paper, we observe its citation counts within future ∆ݐ years after it gets published. 
Our goal is to exploit the idea of burst to categorize the citation count evolutions into 
several citation trends. A burst of citation count of a paper happens in a particular 
year ݐ whose citation count is ܪ% higher than the previous year (i.e., ݐ െ 1). The 
evolution of citation count of a paper can have multiple bursts. We identify the cita-
tion trends according to two criteria. The first is burst time: when will the citation 
count of a paper gets burst, i.e., in which particular year the paper has the largest 
amount of citation count. We simply divide the time of getting burst into three stages: 
early stage, middle stage, and late stage within the first ∆ݐ years. The second is 
burst number: the number of bursts of citation count of a paper. We consider three 
kinds of burst number: zero, single, and multiple.  

Based on burst time and burst number, we use ArnetMiner citation data to manual-
ly divide the citation trends into five categories, (a) early burst, (b) middle burst, (c) 
late burst, (d) multi bursts, and (e) no bursts, by using the findpeaks function in Mat-
lab with the setting of ∆ݐ ൌ 8 and ܪ% ൌ 75%. Four of the five identified citation 
trends are shown in Figure 1, except for no bursts which refers to the citation trends 
whose average citation counts over eight years is below 1 and represents papers hav-
ing nearly no impact in the future. Note that the x-axis of Figure 1 is the year while 
the y-axis is the average normalized citation count (i.e., for a paper, the citation count 
of a particular year divided by the highest citation count within its eight years). Every 
paper with the early, middle, or late burst trend has a single citation burst and exhibits 
the highest citation counts at early, middle, or late stages respectively in their evolu-
tion of its citation count. The temporal positions of such three kinds of single burst are 
demonstrated in Figure 1. In addition, for the category of multi bursts, we do not con-
sider burst time but burst number. Papers with more than one burst fall into this cate-
gory. After averaging papers belonging to this category, in Figure 1, we can find the 
citation count goes up gradually and becomes stable in their evolution of citations. 

 

Fig. 1. Four of the five categories of citation trends 
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3.2 Publication Features 

The publication features can be divided into five categories: (1) author, (2) venue, (3) 
social, (4) expertise, and (5) reinforcement. The extraction of publication features of a 
target paper is performed at the year that the paper gets published. Since there might 
be new authors or venues that have never appeared in the past with respect to the year 
of publication, we use zero values for such kind of features. In addition, since a paper 
may contain several authors, for each of author features, we use the average and the 
maximum scores among authors of a paper to be the feature values. We elaborate the 
detailed features of each category as follows. Note that some features in the first three 
categories have been explored in existing work [7][16]. 

Author Features. (a) An author with more papers published can be considered as 
having high productivity, and tends to get higher number of citations for his papers 
[7]. Therefore, we use the number of papers published to reflect the productivity of an 
author. (b) The h-index metric [3] has been widely used to evaluate the impact of an 
author. We regard the value of the h-index as one of the author features. (c) Famous 
authors usually ensure a certain amount of citations because their papers can perma-
nently gain attention in the research communities. We measure an author’s reputation 
as a feature, which is defined by his/her average number of citations (i.e., the citation 
count per paper). (d) The reputation of an author can be estimated in a relative man-
ner as well. We calculate the rank of average citation count among those of all au-
thors in a descending order. (e) If an author had ever co-worked with many other 
researchers, he/she has higher potential to be an influential scholar [1] because his/her 
expertise can attract the collaborations from others. We consider the number of coau-
thors to estimate the collaboration capability of an author. 

Venue Features. (a) If a venue gets more citations, its prestige tends to be higher. We 
compute the average number of citations over the papers of a venue to capture its 
prestige. (b) The prestige can be also estimated relatively. Hereby we measure the 
relative venue prestige by calculating the rank of average number of citations over 
years. (c) The impact of a venue might change due to the growth of a research area. 
We measure the recent impact of a venue based on the average citation count over the 
papers of such venue in recent three years. (d) Some venues target at a particular field 
and obtain rare citations of other fields while some are interdisciplinary and thus at-
tract citations across fields. We characterize the extent of cross-field or cross-venue 
citations for a venue. We construct a directed venue citation graph to capture the cita-
tion relationships between venues, in which edge weights are the normalized citation 
count from one venue to the other. We use centrality measures, including (e) close-
ness, (f) betweenness, (g) eigenvector, and (h) PageRank, to be the features. 

Social Features. Different authors have diverse extents of influence on their research 
communities. Some are the pioneers or the masters of a field who had ever guided, 
collaborated, and advised many other researchers. Some concentrate on doing inter-
disciplinary studies, and play the role of mediators that connecting researchers from 
different fields. Some are junior researchers or passer-by individuals who might have 
less influence in their research communities. Therefore, we think it is critical to esti-
mate the influence of an author considering the collaboration between authors.  
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We construct a collaboration graph to represent the co-authorships between authors. 
In addition, we further model the effectiveness of collaboration between authors into 
edge weights. Two authors with more co-authored papers are considered as having a 
good collaboration. We compute edge weights using Jaccard coefficient:  ݓ൫ܽ, ܽ൯ ൌ ห ܵ ת ܵห/ห ܵ  ܵห, where ܵ is the set of papers published by author ܽ. 
To capture the influence of authors, based on the collaboration graph, we calculate 
several centrality measures, including (a) betweenness, (b) closeness, (c) eigenvector, 
and (d) PageRank, as the feature values. Based on the collaboration graph, we further 
investigate the membership of authors of a paper in terms of research communities. 
The collaboration between different research communities brings more audiences and 
leads to higher number of citations. We detect communities in the collaboration graph 
using Louvain’s algorithm [14]. Then we measure the distribution of community 
membership of authors using the following scores: (e) the percentage of authors be-
long to the same community, (f) the percentage of new authors (i.e., never appear in 
the past), and (g) the number of communities for authors in the paper. (h) The number 
of authors is also an indicator that can reflect the visibility of a paper, and thereby 
affects the citations of a paper [17]. We regard the number of authors of a paper as a 
feature. 

Expertise Features. Diverse expertise reflects different groups of audiences in either 
research topics or communities. An author who either has many distinct research 
skills or is involved in more research topics tends to have higher visibility and thus 
has higher potential to attract more audiences which lead to more citations. Likewise, 
a venue that includes more different topics of interest can gather more attention, 
which results in more readers and more potential citations. We propose to measure the 
expertise diversity for an author, a venue, and the reference of a paper. We model the 
expertise from two perspectives. The first is using the research fields provided by 
ArnetMiner [18] as the expertise. The second is exploiting the communities detected 
from the venue citation graph using Louvain’s algorithm [14]. In other words, venues 
belonging to the same community are considered to be the same expertise. We take 
advantage of the entropy to measure (a) the author expertise diversity in terms of 
fields: ࢊࢋࢌ࢜ࡰ࢞ࡱሺࢇሻ ൌ െ ∑ ࢊࢋࢌࡱ∋ࢋሻሻࢇ|ࢋሺࡼሺ ܗܔሻࢇ|ࢋሺࡼ , where ࡼሺࢇ|ࢋሻ is the proba-
bility that the papers of author ࢇ belong to expertise ࢋ, and ࢊࢋࢌࡱ is the set of  
fields. Similarly, we can derive, (b) the reference expertise diversity in terms of  
fields: ࢊࢋࢌ࢜ࡰ࢞ࡱሺ࢘ሻ, (c) the author expertise diversity in terms of communities: ࢉ࢜ࡰ࢞ࡱሺࢇሻ, and (d) the reference expertise diversity in terms of communities: ࢉ࢜ࡰ࢞ࡱሺ࢘ሻ. Note that the author expertise diversity of fields had been proved to be 
useful [9][16] while the other five expertise diversity features are newly proposed in 
this paper. (e) The number of references of a paper is able to distinguish survey pa-
pers from regular, short, and poster papers. Since survey papers usually gain more 
citations than regular papers, we use the number of references as a feature. (f) If the 
research topic of a paper can either catch the tendency or be the lead of a potential 
area, the paper will have higher visibility and tend to have more citations. We meas-
ure the tendency of a paper by calculating the average year difference between the 
year of its publication and the years of its references.  
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Reinforcement Features. Important or influential authors tend to recognize repre-
sentative and potential papers; hereby their papers usually cite the papers of important 
and renowned authors. On the other hand, influential authors also have higher poten-
tial to be cited by other essential papers due to their visibility and indicativity. In other 
words, the citation relationships between authors, i.e., citing and being cited, can be 
considered as a process of mutual reinforcement. We think the idea of reinforcement 
can benefit to the future citation count of a paper, and thus aim to characterize the 
reinforcement for both authors and papers. We construct an author citation graph, 
which is a directed and weighted graph, to represent the citation relationship between 
authors. Specifically, if the papers of author ࢇ had ever cited the papers of author ࢇ, we construct an directed edge from ࢇ to ࢇ, in which the edge weight is  
defined as ݓሺܽଵ, ܽଶሻ ൌ  ሺܽଵሻ is the set of papers ofܦ ሺܽଵሻ|, whereܦ|/|ሺܽଶ|ܽଵሻܦ|
author ܽଵ  and ܦሺܽଶ|ܽଵሻ  is the set of ܽଵ ’s papers that cite ܽଶ ’s papers. We  
exploit the graph-based ranking algorithms, PageRank and HITS, to measure the cita-
tion influence of authors. We denote the scores of PageRank, hub, and authority  
of author ܽ  as ݅݊ ݂ሺܽሻ , ݅݊ ݂௨ሺܽሻ , and ݅݊ ݂௨௧ሺܽሻ . We compute the to-
tal/maximum/ average score for authors of paper ࢊ, and derive nine feature values: ሼ݉ݑݏ, ,ݔܽ݉ ሺܽሻݔሽ∈ሺௗሻ݂݅݊݃ݒܽ , where ݔ ൌ ሼݎ, ,ܾݑ݄ ሽݐݑܽ  and ܣሺ݀ሻ  is the set of 
authors of paper ݀. 

3.3 Early Citation Features 

Citation Statistical Features. (a) Existing study pointed out that the citation count at 
early stages as a paper gets published is highly correlated to its long-term citation count 
[2]. We directly utilize the citation sequence of the first ∆ݐ years of a paper ݀, termed ݏ∆௧ሺ݀ሻ ൌ ,ଵሺ݀ሻܿۃ ܿଶሺ݀ሻ, … , ܿ∆௧ሺ݀ሻۄ, to be the feature values, where ∆ݐ ൏  ݐ∆ is a long time (e.g., 10 years). (b) In addition to the citation counts at the first ݐ∆ and ݐ∆
years after getting published, we should also estimate the performance of authors of that 
paper. In other words, if an author is a rising star, his/her citation behavior of other pa-
pers within such ݐ years might be also promising. Let ܿ௧ሺܽሻ be the total number of 
citations, which are contributed from all the papers of author ܽ before time ݐ, where ݐ ൌ ௦ݐ   ௦ is the year that paper ݀ gets published. Let ݊௧ሺܽሻ be the totalݐ and ݐ∆
number of papers published by author ܽ before time ݐ. Also let ݉௧ሺܽሻ be the total 
number of coauthors from all the papers of author ܽ before time ݐ. Then we can have 
the following nine features to characterize the early citation behaviors of paper ݀  
within the first ݐ  years: the total/maximum/average increased citation count of  
coauthors of ݀ : ሼ݉ݑݏ, ,ݔܽ݉ ሽ∈ሺௗሻሺܿ௧ሺܽሻ݃ݒܽ െ ܿ௧ೞሺܽሻሻ , the total, maximum, and  
average increased number of papers of coauthors of ݀ , which is denoted by ሼ݉ݑݏ, ,ݔܽ݉ ሽ∈ሺௗሻሺ݊௧ሺܽሻ݃ݒܽ െ ݊௧ೞሺܽሻሻ, and the total, maximum, and average increased 
number of coauthors of ݀: ሼ݉ݑݏ, ,ݔܽ݉ ሽ∈ሺௗሻሺ݉௧ሺܽሻ݃ݒܽ െ ݉௧ೞሺܽሻሻ. 
Citation Structural Features. The citation behavior of papers that are cited by paper ݀ 
reflects the role about how ݀ correlates with existing papers. The citation behavior of 
the set of papers that cite paper ݀ within the first ∆ݐ years exhibits how ݀ affects 
either the ecology of a certain field or the formation of multiple research fields. Papers 
that connect papers of different research fields or communities tend to have higher visi-
bility and more citations. Papers that encourage the citation links within a field or a 
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community might gain more attention and citations. Therefore, we think characterizing 
the citation behaviors of papers can benefit the prediction of citation count. We con-
struct the paper citation graph to represent the citation behaviors of papers. Paper ݀ଵ is 
connected to paper ݀ଶ  if ݀ଵ  has ever cited ݀ଶ . All the papers published before ݐ௦    ௦ is the year that paper ݀ gets published. Based on the paper citation graph, we compute the scores of (a)ݐ  are used to construct the paper citation graph, whereݐ∆
PageRank, (b) clustering coefficient, (c) hub, and (d) authority of ݀ to be feature val-
ues, denoted by ݅݊ ݂ሺ݀ሻ, ݅݊ ݂ሺ݀ሻ, ݅݊ ݂௨ሺ݀ሻ, and ݅݊ ݂௨௧ሺ݀ሻ. (e) To measure the 
citation behaviors of papers cites ݀, we further compute the average and maximum 
values of these scores over the set of papers that cite ݀ within the first ∆ݐ years, 
denoted by ܦ∆௧ሺ݀ሻ : ሼܽ݃ݒ, ሺܽሻݔሺ݀ሻ݂݅݊݁ݐ∆ܦ∋ሽௗݔܽ݉ , where ݔ ൌ ሼݎ, ܿܿ, ,ܾݑ݄ ሽݐݑܽ .  
(f) We consider the numbers of fields and communities over venues of papers in ܦ∆௧ሺ݀ሻ as two features values. (g) The expertise diversity over venues of papers  
in ܦ∆௧ሺ݀ሻ: ࢊࢋࢌ࢜ࡰ࢞ࡱሺ࢜ሻ and ࢉ࢜ࡰ࢞ࡱሺ࢜ሻ. (h) The average venue rank for pa-
pers in ܦ∆௧ሺ݀ሻ. (i) The average author rank for papers in ܦ∆௧ሺ݀ሻ.  

3.4 The Prediction Models 

Recall that we are tackling three problems based on a certain model trained by the 
proposed features. The first is to directly do the citation count prediction (CCP). The 
second is to the citation trend classification (CTC) of papers. Based on the trends 
derived by CTC, the third is the trend-based citation count prediction (T-CCP). For 
CCP and T-CCP, we leverage the technique of Support Vector Regression (SVR) [4] 
to learn the prediction function. Note that Yan et al. [16] have shown that SVR is one 
of the best methods to predict the citation count. For CTC, we use the technique of 
linear Support Vector Machine (LibLinear) [12] to classify the trend of a paper, in 
which the features used for CTC contain the publication features and early citations of 
the first three years after the paper gets published. It is worthwhile to note that for T-
CCP, we train a separate predictive function ݂ሺሻ for each of the five trends . As a 
paper ݀ is classified to trend , we utilize the corresponding function ݂ሺሻ to pre-
dict the future citation count. 

4 Experiments 

We conduct experiments to validate the effectiveness of our method. We aim to an-
swer four questions: (1) can the proposed collection of features beat the state-of-the-
art method by Yan et al. [9]? (2) To what extent can the citation information provided 
from the early stages after a paper gets published boost the performance? (3) Can the 
proposed model beat the direct prediction of citation counts? (4) Which category of 
features has the greatest impact on the accuracy of citation count prediction? 

4.1 Evaluation Settings 

We employ the ArnetMiner citation dataset [18], which contains major computer 
science publication data, for the experiments. The ArnetMiner citation data contains 
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1,383,158  papers, 855,629 authors, and 6,145 venues. We follow Yan et al. [7][16] 
to use the coefficient of determination (ܴଶ), , to be the evaluation metric, ܴଶ ൌ∑ ሺܿௗሺ݀ሻ െ ܿሺܦ௧௦௧ሻሻଶௗ∈ೞ ∑ ሺܿ௨ௗሺ݀ሻ െ ܿሺܦ௧௦௧ሻሻଶௗ∈ೞൗ , where ܿௗሺ݀ሻ is 
the predicted citation count for paper ݀ in the test set ்ܦ௦௧, ܿሺܦ௧௦௧ሻ is the 
mean of the ground-truth counts for papers in ்ܦ௦௧, and ܿ௨ௗሺ݀ሻ is the ground-
truth citation count of paper ݀. ܴଶ ∈ ሾ0,1ሿ, and a larger ܴଶ value indicates better 
performance. 

Table 1. Experimental results (R2) by varying different future time period ∆ݐ, using different 
combinations of feature sets, and under CCP and T-CCP 

 CCP T-CCP 
Features ∆ݐ ൌ 12 ݐ∆ ൌ 11 ݐ∆ ൌ 10 ݐ∆ ൌ 12 ݐ∆ ൌ ݐ∆ 11 ൌ 10 

Yan et al. [7][16] 0.06 0.07 0.08 0.19 0.15 0.17 

P
ub

lic
at

io
n 

(P
) 

Author 0.18 0.27 0.20 0.33 0.27 0.30 
Venue 0.07 0.09 0.11 0.17 0.13 0.13 

Expertise 0.07 0.07 0.08 0.10 0.09 0.10 
Social 0.06 0.07 0.08 0.10 0.09 0.14 

Reinforce 0.06 0.07 0.09 0.14 0.10 0.12 
Combined (P) 0.19 0.28 0.23 0.38 0.46 0.34 

E
ar

ly
 

C
it

at
io

n 
(E

C
) 

ݐ∆ ൌ ݐ∆ 0.32 0.33 0.43 0.24 0.18 0.32 1 ൌ ݐ∆ 0.43 0.44 0.41 0.29 0.29 0.44 2 ൌ ݐ∆ 0.49 0.57 0.48 0.40 0.43 0.41 3 ൌ 4 0.52 0.52 0.52 0.53 0.59 0.65 

C
om

-
bi

ne
d 

P+EC(∆ݐ ൌ 1) 0.39 0.33 0.30 0.63 0.53 0.46 
P+EC(∆ݐ ൌ 2) 0.41 0.37 0.32 0.52 0.51 0.53 
P+EC(∆ݐ ൌ 3) 0.45 0.47 0.41 0.69 0.63 0.63 
P+EC(∆ݐ ൌ 4) 0.53 0.53 0.52 0.67 0.68 0.67 

 

For papers in a particular year ܻ, we divide the papers into a training set and a testing 
set using five-fold cross validation. That says, the paper instances are divided into five 
parts, and each part is used for testing while the other parts are used for training. In addi-
tion, we consider the citation count accumulated up to 2013 as the ground-truth of a 
paper. The average ܴଶ over such five results is reported. We vary ܻ ൌ 2001, 2002, 2003 
so that we can see how the time period ∆ݐ ൌ 12,11,10 after it gets published affects the 
performance. We compare the features we proposed with those utilized by Yan et al. 
[7][16], which has the most robust feature set to do the task of CCP. Those features used 
by Yan et al. is a small subset of ours, include author feature – {(a), (b), (c), (e)}, venue 
feature – {(c), (b), (h)}, social feature – {(d)}, and citation structural feature – {(a)}. Note 
that the settings of our experiments are different from those of Yan et al. [7][16]. Since 
their data contains the complete information of exact citation counts for every year, they 
are able to train the predictive model using papers before a particular year ܻ, and predict 
the citation counts of the future ∆ݐ years for papers published in ܻ. Because we do not 
know the citation counts for each year, we train and test on papers in the same year by 
regarding 80% as training and 20% as testing data. In addition, since we propose to use 
content-independent features, the content-related features of Yan et al. [7][16], including 
topic rank, topic diversity and versatility, will not be considered in our experiments. Due 
to different settings and using no content-related features, the prediction results of this 
paper are different from those of their work. 
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The evaluation consists of three parts. The first is the main experiment, which an-
swers the four questions mentioned in the beginning of this section, by different com-
bination of feature sets, various years, and those results under both CCP and T-CCP. 
The second is to report the performance of papers belonging to each citation trend 
over different future time periods. The third is to show the accuracy of CTC. 

4.2 Experimental Results 

The main results are shown in Table 1. First, T-CCP averagely outperforms CCP with 
0.18 improvement among different feature combinations and future time periods. 
Such results reflect the usefulness of citation trends: predictive functions trained from 
separate trend can effectively capture the future citations, avoid learning the noise 
instances, and thus lead to the boost of accuracy. Second, the results of early citation 
features are better than those of publication features with 0.34 improvement in aver-
age, even using only the first or two years after getting published. This indicates that 
early citations tend to reveal the potential impact of a paper, and such clue is either 
more informative or at least equal to the knowledge provided by publication. In addi-
tion, it is natural to see that as more future time periods are used (e.g. up to ∆ݐ ൌ 4), 
the performance significantly goes up, because more citation information is revealed. 
Third, as among the publication features, we can find the author feature has the most 
impact on the performance. We think it is due to the fact that researchers usually fol-
low the research work of famous and outstanding authors, who might have high prod-
uctivity or good reputation. Hence the author is the best indicator to distinguish the 
impact of a paper. Besides, though other publication features are not as effective as 
the author feature, they are competitive to those features used in Yan et al. [7][16], 
and combining all the publication features can improve the performance. Fourth, 
combining both publication and early citation features can further boost the perfor-
mance with 0.43 improvement in average, compared to features used by Yan et al. 

We report the performance of papers belonging to different citation trends using T-
CCP with features P+EC (∆ݐ ൌ 3) under different future time periods. The results are 
shown in Table 2. The performance of papers possessing with at least one burst is at 
least 0.6 in general. Papers without bursts (i.e., “no bursts”) are the most difficult to 
be accurately predicted. We think the reason is two-fold: (a) papers belonging to 
trends “no bursts”, “middle burst”, and “late burst” tend to have similar few citations 
at the early stage after getting published; (b) the publication features are able to dis-
tinguish whether or not a paper gets bursts.  

Table 2. Experimental results (R2) of different citation trends over different future time periods 

T-CCP(P+EC3) Early Burst Middle Burst Late Burst Multi-Bursts No Bursts ∆ݐ ൌ ݐ∆ 0.21 0.68 0.63 0.67 0.62 (2001) 12 ൌ ݐ∆ 0.33 0.69 0.69 0.63 0.84 (2002) 11 ൌ 10 (2003) 0.59 0.53 0.84 0.71 0.46 
 

Finally, we report the accuracy of citation trend classification (CTC) using T-CCP 
with features P+EC(∆ݐ ൌ 3). The confusion matrix of accuracy is shown in Table 3. 
We can find papers whose trends belonging to “no bursts” can be perfectly classified. 
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Sometimes papers with the remaining four trends have higher possibility to be classi-
fied to “multi-bursts” than other three types of citation trends. We think it is because 
“multi-bursts” can be considered as a combination of “early burst”, “middle burst”, 
and “late burst”, and thus papers belonging to trend “multi-bursts” might share similar 
features with those papers belonging to the other three trends. 

Table 3. Confusion matrix of accuracy for CTC using Publication and 3-years Early Citations 

CTC(P+EC3) Early Burst Middle Burst Late Burst Multi-Bursts No Bursts 
Early Burst 0.479 0.142 0.076 0.227 0.076 

Middle Burst 0.080 0.419 0.145 0.295 0.062 

Late Burst 0.080 0.123 0.353 0.442 0.001 
Multi-Bursts 0.090 0.245 0.220 0.446 0.000 

No Bursts 0.005 0.005 0.004 0.006 0.980 

5 Conclusion 

This paper considers citation trends to predict the future citation counts of papers 
using a robust set of features, consisting of publication and early citation features. 
Experimental results prove the effectiveness of T-CCP as well as the proposed fea-
tures. In fact we can generalize the proposed model as a novel trend-based popularity 
predictor, and it can be exploited to predict the evolution of numbers in different types 
of time series data, such as the popularity of YouTube videos, the number of retweets 
of a post and the times of mentions of hashtag in Twitter. Nevertheless, the categories 
of trends might vary for different data. In the future, the mechanisms to automatically 
learn the trends such that the prediction accuracy is boosted need to be well tackled 
for not only citation count prediction, but also other types of time series data. 
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Abstract. The paper presents an approach to mining text enriched
heterogeneous information networks, applied to a task of categorizing
papers from a large citation network of scientific publications in the field
of psychology. The methodology performs network propositionalization
by calculating structural context vectors from homogeneous networks,
extracted from the original network. The classifier is constructed from a
table of structural context vectors, enriched with the bag-of-words vec-
tors calculated from individual paper abstracts. A series of experiments
was performed to examine the impact of increasing the number of publi-
cations in the network, and adding different types of structural context
vectors. The results indicate that increasing the network size and com-
bining both types of information is beneficial for improving the accuracy
of paper categorization.

Keywords: Network analysis · Heterogeneous information networks ·
Text mining · Document categorization · Centroid classifier · PageRank

1 Introduction

The field of network analysis is a well established field which has existed as
an independent research discipline since the late seventies [Zachary, 1977] and
early eighties [Burt and Minor, 1983]. In recent years, analysis of heterogeneous
information networks [Sun and Han, 2012] has gained popularity. In contrast to
standard (homogeneous) information networks, heterogeneous networks describe
heterogeneous types of entities and different types of relations. To encode even
more information into the network, analysis of enriched heterogeneous infor-
mation networks, where nodes of one type carry additional information in the
form of experimental results or text documents, has arisen in recent years
[Dutkowski and Ideker, 2011; Hofree et al., 2013].

This paper addresses the task of mining text enriched heterogeneous informa-
tion networks [Grčar et al., 2013]. Compared to the original methodology, our
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-18038-0 52



Mining Text Enriched Heterogeneous Citation Networks 673

implementation allows for the analysis of much larger heterogeneous networks
given significantly decreased computation time. This was achieved by a modified
PageRank computation, which takes into account only the parts of the network
reachable from the given node, as explained in the methodology section. We
showcase the utility of the improved approach on a large citation network in
the field of psychology, where nodes—representing publications—are enriched
with the publication abstracts. We analyze how the size of the network and the
amount of structural information affect the accuracy of paper categorization.

The paper is structured as follows. Section 2 presents the related work.
Section 3 presents the upgraded methodology used to analyze text enriched
heterogeneous information networks. Section 4 presents the application of the
methodology on a large data set of publications from the field of psychology.
Section 5 presents the evaluation and analysis of information different compo-
nents contribute to the quality of classifiers. Section 6 concludes the paper and
presents the plans for further work.

2 Related Work

Network mining algorithms perform data analysis in a network setting, where
each data instance is connected to other instances in a network of connections.

In ranking methods like Hubs and Authorities (HITS) [Kleinberg, 1999],
PageRank [Page et al., 1999], SimRank [Jeh and Widom, 2002] and diffusion
kernels [Kondor and Lafferty, 2002], authority is propagated via network edges
to discover high ranking nodes in the network. Sun and Han [2012] introduced
the concept of authority ranking for heterogeneous networks with two node types
(bipartite networks) to simultaneously rank nodes of both types. Sun et al. [2009]
address authority ranking of all nodes types in heterogeneous networks with a
star network schema, while Grčar et al. [2013] apply the PageRank algorithm to
only find PageRank values of nodes of a particular node type.

Classification is another popular network analysis task. Typically, the task
is to find class labels for some of the nodes in the network using known class
labels for a part of the network. A typical approach to solving this problem
involves propagating the labels in the network, a concept used in [Zhou et al.,
2004] and [Vanunu et al., 2010]. The concept of label propagation was expanded
to heterogeneous networks by Hwang and Kuang [2010], performing label prop-
agation to different node types with different diffusion parameters, similarly to
the GNETMINE algorithm proposed by Ji et al. [2010]. Classification in hetero-
geneous networks can also be assisted by ranking, as shown by the ranking based
classification approach described by Sun and Han [2012].

Another important concept, related to our work, is the concept of min-
ing enriched information networks. While Dutkowski and Ideker [2011] and
Hofree et al. [2013] explore biological experimental data using heterogeneous
biological networks, Grčar et al. [2013] perform videolectures categorization in
a heterogeneous information network of nodes enriched with text information.

Following the work of Grčar et al. [2013], our work is related also to text
mining. The task addressed is text categorization in which one has to predict
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the category of a given document, based on a set of prelabeled documents. Most
text mining approaches use the bag-of-words vector representation for each pro-
cessed document. The resulting high dimensional vectors can be used by any
machine learning algorithm capable of handling such vectors, such as a SVM
classifier [D’Orazio et al., 2014; Kwok, 1998; Manevitz and Yousef, 2002], kNN
classifier [Tan, 2006], Naive Bayes classifier [Wong, 2014], or a centroid classifier
[Han and Karypis, 2000].

3 Methodology

This section presents the basics of the methodology of mining text enriched
information networks, first introduced by Grčar et al. [2013]. The methodology
combines text mining and network analysis on a text enriched heterogeneous
information network (such as the citation network of scientific papers) to con-
struct feature vectors which describe both the node content and its position in
the network.

The information network is represented as a graph, a structure composed of a
set of vertices V and a set of edges E. The edges may be either directed or undi-
rected. Each edge may also have a weight assigned to it. The vertices (or nodes)
of the graph in the information network are data instances. A heterogeneous
information network, as introduced by Sun and Han [2012], is an information
network with an additional structure which assigns a type to each node and
edge of the network. The requirement is that all starting (or ending) points of
edges of a certain type belong to the same type.

The data in a text enriched heterogeneous information network represents a
fusion of two different data types: heterogeneous information networks and texts.
Our data thus comprises of a heterogeneous information network with different
node and edge types, where nodes of one designated type are text documents.

Network Decomposition. In the first step of the methodology, for the desig-
nated node type (i.e., text documents), the original heterogeneous information
network is decomposed into a set of homogeneous networks. In each homogeneous
network, two nodes are connected if they share a particular direct or indirect link
in the original heterogeneous network. Take an example of a network containing
two types of nodes, Papers and Authors, and two edge types, Cites (linking
papers to papers) and Written by (linking papers to authors). From it, we can
construct two homogeneous networks of papers: the first in which two papers
are connected if one paper cites another, and the second in which they are con-
nected if they share a common author1. The choice of links to be used in the
network decomposition step is the only manual step of the methodology: taking
into account the real-world meaning of links, the domain expert will select only
the decompositions relevant for the given task.
1 Depending on the application, any link between two papers, given by the heteroge-

neous network, may be used to construct either a directed or an undirected edge in
the homogeneous network.
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Feature Vector Construction. In the second step of the methodology, a set of
feature vectors is calculated for each text in the original heterogeneous network:
one bag-of-words vector constructed from the text document itself, and one
feature vector constructed from every individual homogeneous network.

In bag-of-words (BOW) construction, each text is processed using traditional
natural language processing techniques. Typically the following steps are per-
formed: preprocessing using a tokenizer, stop-word removal, stemming, construc-
tion of N-grams of a certain length, and removal of infrequent words from the
vocabulary.

For each homogeneous networks, obtained through network decomposition,
the personalized PageRank (P-PR) algorithm [Page et al., 1999] is used to con-
struct feature vectors for each text in the network.

The personalized PageRank of node v (P-PRv) in a network is defined as
the stationary distribution of the position of a random walker which starts its
walk in node v and at either selects one of the outgoing connections or travels
to his starting location. The probability (denoted p) of continuing the walk is
a parameter of the personalized PageRank algorithm and is usually set to 0.85.
The PageRank vector is calculated iteratively. In the first step, the rank of node
v is set to 1 and the other ranks are set to 0. Then, at each step, the rank is
spread along the connections of the network using the formula

r(k+1) = p(AT r(k)) + (1 − p)r(0) (1)

where r(k) is the estimation of the PageRank vector after k iterations, and A is
the coincidence matrix of the network, normalized so that the elements in each
of its rows sum to 1.

Haveliwala and Kamvar [2003] have shown that the iteration, described by
Equation 1, converges to the PageRank vector at a rate of p. In our experi-
ments, the number of steps required ranged from 50 to 100, and since each step
requires one matrix-vector multiplication, the calculation of a single P-PR vector
may take several seconds for a large network, making the calculation of tens of
thousands of P-PR vectors computationally very demanding.

Compared to Grčar et al. [2013], this work improves upon the original method
by considerably decreasing the amount of computation for cases, where the size
of the network taken into account during computation can be decreased. For each
network node v, we can consider only the network Gv, composed of all the nodes
and edges of the original homogeneous network that lie on paths leading from v.
The P-PRv values, calculated on Gv, are equal to the P-PR values, calculated on
the entire homogeneous network. If the network is strongly connected, Gv will
be equal to the original network, yielding no change in the performance of the
P-PR algorithm, However, if the network Gv is smaller, the calculation of the
P-PRv algorithm will be faster as it is calculated on Gv instead of on the whole
network. In our implementation we first estimate if the network Gv contains
less than 50% of the original nodes. This is achieved by expanding all possible
paths from node v and checking the number of visited nodes in each step. If the
number of visited nodes stops increasing after a maximum of 15 steps, we know
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we have found the network Gv and can count its nodes. If the number of nodes is
still increasing, we abort the calculation of Gv. We limit the maximum number
of steps because each step of Gv is computationally comparable to one step in
the PageRank iterative algorithm which converges in about 50 steps. Therefore
we can considerably reduce the computational burden if we do not perform too
many steps in the search for Gv.

Once calculated, the resulting PageRank and BOW vectors are normalized
according to the Euclidean norm.

Data Fusion. The result of running both the text mining procedure and the
personalized PageRank is a set of vectors {v0, v1, . . . , vn} for each node v, where
v0 is the BOW vector, and where for each i (1 ≤ i ≤ n, where n is the number of
network decompositions), vi is the personalized PageRank vector of node v in the
i-th homogeneous network. In the final step of the methodology, these vectors are
combined to create one large feature vector. Using positive weights α0, α1, . . . , αn

which sum to 1, a unified vector is constructed which fully describes the publi-
cation from which it was calculated. The vector is constructed as

v =
√

α0b ⊕ √
α1v1 ⊕ · · · ⊕ √

αnvn.

where the symbol ⊕ represents the concatenation of two vectors. The values of
the weights αi can either be set manually using a trial-and-error approach or
can be determined automatically.

A simple way to automatically set weights is to use an optimization algorithm
such as the multiple kernel learning (MKL), presented in [Rakotomamonjy et al.,
2008] in which the feature vectors are viewed as linear kernels. For each i, the
vector vi corresponds to the linear mapping vi : x �→ x · vi. Another possibil-
ity is to determine the optimal weights using a general purpose optimization
algorithm, e.g., differential evolution [Storn and Price, 1997].

4 Application and Experiment Description

In previous work, Grčar et al. [2013] used the described methodology to assist
in the categorization of video lectures, hosted by the VideoLectures.net repos-
itory. The methodology turned out useful because of the rapid growth of the
number of hosted lectures and the fact that there is a relatively large number
of possible categories into which the lectures can be categorized. In this paper,
the methodology is applied to a much larger network which allowed us to see 1)
how the methodology scales up to big data and 2) if the information contained
in the network structure is necessary at all when the textual data is abundant.

We collected data for almost one million scientific publications from the field
of psychology. Like the video lectures, the publications belong to one or more
categories from a large set of possible categories. The motivation is to construct
a classifier which is capable to find appropriate categories for new publications
with more probable categories listed first. Such a classifier can be used to assist
in the classification of new psychology articles. The same methodology and data
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set could be exploited to form reading recommendations based on selected paper
and to assist authors in submitting their papers to the most appropriate journal.

We first describe the structure and origin of the analyzed data set. Then,
we describe creation of heterogeneous network of publications and authors and
experiments performed on the data set.

Data Collection. The first step in the construction of a network is data collec-
tion. To the best of our knowledge, there is no freely available central database
containing publications in the field of psychology. Because of this, we decided to
crawl the pages connected with psychology on Wikipedia.

Wikipedia pages are grouped into categories which form a hierarchy. We
visited the hierarchical tree of Wikipedia’s subcategories of the category Psy-
chology. We examined all categories up to level 5 in the hierarchy. The decision
was based on the difference between the number of visited categories and the
number of articles at depths 4, 5 and 6. We crawled through all Wikipedia pages,
belonging to the visited categories, and extracted the DOIs (digital object iden-
tifiers) of all publications, referenced in the pages.

We queried Microsoft Academic Search (MAS) for each of the collected DOIs.
If a publication was found on MAS, we collected the information about the
title, authors, year of publication, the journal, ID of the publication, IDs of the
authors, etc. Whenever possible, we also extracted the publication’s abstract.
Additionally, we collected the same information for all the publications that cite
the queried publications.

Dataset. The result of our data collection process is a network consisting of
953,428 publications of which 63,862 “core publications” were obtained directly
from Wikipedia pages. Other publications were citing the core publications. Each
of the core publications was labelled with one or more Wikipedia categories from
which it was collected. The categories at levels 3, 4 and 5 were transformed into
higher level categories by climbing up the category hierarchy to level 2. This was
done to decrease the total number of classes. We collected 93,977 abstracts of
the publications, of which 4,551 belong to the core publications.

The heterogeneous network was decomposed into three homogeneous net-
works: the paper-author-paper (PAP) network, the paper-cites-paper (PP) net-
work and a symmetric copy of the PP network in which directed edges are
replaced by undirected edges (PPS).

Experiment Description. In all the experiments we used the same settings
to obtain the feature vectors. As in [Grčar et al., 2013], n-grams of size up to 2
and a minimum term frequency of 0 was used to calculate the BOW vectors. For
the calculation of personalized PageRank vectors the damping factor was set to
0.85 (the standard setting also used by Page et al. [1999]). In the experiments
with more than one feature vector, the vectors were concatenated using weights
determined by the differential evolution optimization [Storn and Price, 1997]. In
all the experiments we used the centroid classifier using the cosine similarity
distance. This classifier first calculates the centroid vector for each class (or
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category) by summing and normalizing all vectors belonging to instances of that
class. For a new instance with feature vector w, it then calculates the cosine
similarity distance

d(ci, w) = 1 − ci · w

which represents the proximity of the instance to class i. The class (category)
with the minimal distance is selected as the prediction outcome. We also use the
”top n” classifier, where the classifier returns n classes with the minimal dis-
tances. As in [Grčar et al., 2013], we consider a classifier successful if it correctly
predicts at least one label of an instance.

We use the centroid classifier for two reasons. First, Grčar et al. [2013] show
that it performs just as well as the SVM and the k-nearest neighbor classifier.
Second, for large networks calculating all the personalized PageRank vectors is
computationally very expensive. As shown in [Grčar et al., 2013], the centroids
of each class can be calculated in a single iteration of the PageRank algorithm.

We performed three sets of experiments using different number of papers and
different homogenization of the heterogeneous network.

In the first set, we use the publications for which abstracts are available.
Because most of the 93,977 qualifying papers are not core publications, we con-
struct only two feature vectors for each publication: a bag-of-words (BOW) vec-
tor and a personalized PageRank vector obtained from the PAP network. We
examine how the predictive power of the classifier increases as the number of
publications used increases. We use 10,000, 20,000, 30,000, 40,000, 50,000, 70,000
and 93,977 publications.

In the second round of experiments all the collected papers are used (953,428
papers). Because the papers are labelled using citations the PP and PPS net-
works are not used because the links in this network were used to label the
papers. Since the abstracts are not available for most of these papers, only the
personalized PageRank vectors obtained from the PAP network are used in the
classification.

In the third round of experiments, we use only the core publications for
which an abstract is available (4,551 papers). While this is the smallest data set,
it allows us to use all of the feature vectors the methodology provides: the BOW
vectors and the personalized PageRank obtained from all three networks (PP,
PPS and PAP).

5 Evaluation and Results

In each of the experiments, described in Sect. 4, we predicted the labels of the
analyzed publications. The classification accuracy was measured for the top 1,
3, 5 and 10 labels, returned by the classifiers. For each experiment the data set
was split into a training set, a validation set and a test set. In the first and third
round of experiments, the sizes of the testing and validation set were fixed to
2500 instances, all the remaining instances were used for training. In the second
round of experiments, the size of the validation and testing set was set to 1500
instances. The centroids of all classes were calculated using the training set and
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(c) The centroid classifier using both BOW
and PAP.

Fig. 1. The classification accuracy of classifiers using different number of publications
to predict labels

concatenated according to the weights optimized using the validation set. The
performance of the algorithm (the percentage of papers for which the label is
correctly predicted) was calculated using the test set.

The results of the first round of experiments are shown in Fig. 1. The perfor-
mance of the classifier using BOW vectors does not increase with more instances,
while the classifier using PAP vectors is steadily improving as we increase the
number of publications. The classifier using both BOW and PAP vectors con-
sistently outperforms the individual classifiers. This shows that combining the
network structural information and the content of the publication is useful. As
the performance of the PAP classifier increases, the gap between the BOW clas-
sifier and the classifier using both vectors also increases. The results obtained
with all the 93,977 publications are shown also in Table 1.

Table 1. The classification accuracy of the centroid classifiers in the first and second
round of experiments (the publications with abstracts)

top N BOW+PAP PAP BOW PAP

1 55.5 35.6 49.9 38.8
3 75.8 53.7 72.6 59.3
5 85.6 66.0 82.8 71.0
10 93.5 78.3 92.0 81.4
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The classifier using the full PAP network (calculated in the experiment 2),
also shown in Table 1, outperforms the classifiers using all other networks, show-
ing that increasing the network size does help the classification. However, its
performance is still lower than that of the BOW classifier for smaller networks.
It appears that authors in the field of psychology are not strictly limited to one
field of research, making prediction using co-authorship information difficult.

Table 2. The classification accuracy of the centroid classifiers in the second round of
experiments, (the core publications with abstracts)

top N All noBOW noPAP noPP noPPS BOW+PAP BOW+PP BOW+PPS PAP+PP PAP+PPS PP+PPS
1 64.9 49.5 64.7 61.3 65.9 57.7 59.1 62.8 50.3 49.0 44.3
3 84.3 64.6 82.5 74.3 83.5 80.0 78.4 82.0 65.6 63.7 56.7
5 90.2 72.5 90.0 88.6 90.6 88.1 86.4 89.6 72.7 72.0 64.0
10 95.4 81.7 95.4 94.7 95.9 94.9 94.4 95.1 81.5 81.4 73.2

top N BOW PP PPS PAP
1 55.4 43.5 42.9 30.6
3 78.8 55.8 54.2 47.5
5 87.4 62.4 61.5 58.9
10 93.8 72.1 72.8 72.7

Table 2 shows the accuracies, obtained in the third round of experiments.
Because more information was extracted from the network, these results are the
most comprehensive overview of the methodology. The results show that using
a symmetric citation network (PPS), i.e. allowing the PageRank to use both
directions of a citation yields better results than using the unidirectional cita-
tion network (PP). Combining both the PP and PPS vectors does not improve
the performance of the classifier, which means that vectors, obtained from the
PP network, carry no information that is not already contained in the PPS net-
work. However, this is an exception and training classifiers with other vectors
combinations increases the prediction accuracy over single vectors: using both
BOW and PAP is better than using only BOW, and adding also PP increases
the performance even further.

We also analyze the performance of classifiers for different class values. We
analyze each class c in the following way. First, we obtain the ordered list of
labels that the classifier returns for each test instance from class c. In this list,
class values are ordered according to the distance between the instance and the
(already computed) class centroids. The first element in the list is the class value
whose centroid is closest to the given instance. We then find the rank of class c
on this list. For each instance, we compute the minimum value of n for which
the top-n classifier predicts class c for this instance. For each class value, we
average the obtained ranks n over test instances with this class. This gives us
an estimate of the ranking error.

We plot these average ranks versus number of instances with each class value.
The results are shown in Fig. 2. The graphs are similar for classifiers using
BOW, PPS and PAP vectors. We can see that classes containing a small num-
ber of instances have considerably higher average ranks than classes with many
instances, meaning that prediction is much less successful for underrepresented
class values. The classifier using PP vectors is the only classifier for which this
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(d) The centroid classifier using PP.

Fig. 2. Graphs showing the average index of a class versus the class size

trend does not appear. For the PP classifier, the results for small classes show
much more noise than for larger classifiers, but average ranks (i.e., error) does
not decrease with increasing number of instances.

6 Conclusions and Further Work

While network analysis in general is an established field of research, analysis of
heterogeneous networks is a much newer field. Methods taking the heterogeneous
nature of the networks into account show an improved performance, as shown
in Davis et al. [2011]. Some methods like RankClus and others presented in
[Sun and Han, 2012] are capable of solving tasks that cannot even be defined on
homogeneous information networks (like clustering two disjoint sets of entities).
Another important novelty is joining network analysis with the analysis of data,
either in the form of text documents or results obtained from various experiments
[Dutkowski and Ideker, 2011], [Hofree et al., 2013] and [Grčar et al., 2013].

This paper presents a more efficient implementation of the methodology by
[Grčar et al., 2013], which combines the information from heterogeneous net-
works with textual data. By improving the computational efficiency of the app-
roach we were able to address a novel application, i.e. the analysis of a large
citation network of psychology papers. Our contribution is also the analysis of
performance with different number of instances and different types of network
structures included. The results show that relational information hidden in the
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network structure is beneficial for classification, while the errors are shown to
be mostly due to low number of instances for some categories.

In the work presented, we only use a part of the information we collected
about the publications. In future, we will to examine how to incorporate the
temporal information into our methodology; we have already collected the year
of publication, which allows us to observe the dynamics of categories, aiming to
improve the classification accuracy. In addition, we plan to use a combination of
network analysis and data mining on PubMed and DBLP articles. We will also
address biological networks enriched with experimental data and texts.
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Abstract. Margin distribution is crucial to AdaBoost. In this paper,
we propose a new boosting method by utilizing the Emargin bound
to approach the optimal margin distribution. We first define the k∗-
optimization margin distribution, which has a sharper Emargin bound
than that of AdaBoost. Then we present two boosting algorithms, KM-
Boosting and MD-Boosting, both of which approximately approach the
k∗-optimization margin distribution using the relation between the kth
margin bound and the Emargin bound. Finally, we show that boost-
ing on the k∗-optimization margin distribution is sound and efficient.
Especially, MD-Boosting almost surely has a sharper bound than that
of AdaBoost, and just needs a little more computational cost than that
of AdaBoost, which means that MD-Boosting is effective in redundancy
reduction without losing much accuracy.

Keywords: Boosting · Emargin bound · k∗-optimization margin distri-
bution

1 Introduction

Aiming to construct a “strong” classifier by combining a series of “weak” classi-
fiers, boosting is currently one of the most successful techniques in classification.
The “weak” classifier produced by weak learning algorithm only needs a clas-
sification ability better than a random guess. AdaBoost is the first practical
boosting algorithm proposed by Freund and Schapire [5,6], and has exhibited
excellent performance on benchmark datasets and real applications [4,19].

Behind the success, theworkingmechanismofAdaBoosthasnotbeenexplained
completely. Especially, the generalization error of AdaBoost keeps decreasing after
a large number of base classifiers having been combined, which seems violating the
Occams razor [1], intuitively.

In the statistics community, researchers have devoted much effort to study
why and how boosting works, Breiman [2] and Friedman et al. [7] viewed boost-
ing algorithm as gradient descent optimization in functional space. Mason et al.
[13] developed AnyBoost for boosting arbitrary loss functions with a similar idea.
In addition, some boosting algorithms have been proved to be consistent with
c© Springer International Publishing Switzerland 2015
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Bayesian classifiers under some limitations [3,10]. However, these theories can’t
explain the resistance to overfitting of boosting. Margin theory is another pop-
ular explanation proposed by Schapire et al. [16], which argues that AdaBoost
reduces the generalization error via improving the margin. Breiman [2] proved a
minimum margin bound that is sharper than the bound given by Schapire et al.
[16], thus they considered that minimum margin is more relevant to the boost-
ing algorithms. Thus, much works [2,9] focused on maximizing the minimum
margin. However, these algorithms do not always yield better performance. In
fact, more often the opposite is true, and margin theory suffered serious doubt.
Later, Koltchinskii et al. [11,12] showed the bound in Schapire et al. [16] can be
improved based on Rademacher and Gaussian complexities, but these bounds
can not be proved to be sharper than Breiman’s minimum margin bound. Reyzin
and Schapire [15] duplicated the experiments of Breiman’s and they observed
some flaws that lead to poor control in model complexity. They emphasized that
margin distribution rather than minimum margin is crucial to boosting.

Recently, Wang et al. [21] proposed a new bound in terms of margin distri-
bution called Emargin bound, which was proved to be sharper than previously
well-known bounds [2,16]. In particular, they showed that if a boosting algorithm
minimizes the Emargin bound, the learned classifier would converges to the opti-
mal classifier in the hypothesis space. Gao et al.[8] presented the kth margin bound,
from which they reformulated Emargin bound as the infimum of all the kth margin
bound, that is, they proved that the Emargin bound is sharper than the minimum
margin bound [2] from a new perspective. These results suggest a new boosting
approach via optimizing Emargin bound. However, the Emargin bound can not
be optimized easily. Although Wang et al. [20] designed the EEM algorithm to
verify Emargin theory and obtained exciting results, the algorithm is not suitable
in real applications due to the computational complexities.

Now the margin distribution of boosting algorithms is becoming more impor-
tant [11,12,16]. Shen et al. [17] optimized the margin distribution through the
expectation and variance, and they proved that AdaBoost approximately max-
imizes the unnormalized average margin and minimizes the margin variance.
However, they provided no generalization error bound to support their method.

In this paper, we explicitly define an approximately optimal margin dis-
tribution called k∗-optimization margin distribution, and demonstrate that it
would lead to a sharper generalization error bound than that of AdaBoost. From
the definition we then develop two approximate algorithms, KM-Boosting and
MD-Boosting. Both of the two algorithms present good results on benchmark
datasets. In particular, the classifier generated by MD-Boosting empirically has
a sharper generalization error bound than that of AdaBoost almost surely. More-
over, MD-Boosting can be viewed as an effective method to reduce redundancy
because of its limited computational cost and less loss of accuracy.

2 Background and Related Work

Let the training set S = {(xi, yi)}n1 chosen independently from underlying distri-
bution D over X×Y . Here we focus on binary classification, that is, Y = {−1, 1}.
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H is a given hypothesis space, and ∀h ∈ H is a mapping from X to Y . Let C(H)
be the completion of the convex hull H, i.e.,

C(H) = {f |f =
∑

αihi,
∑

αi = 1 and αi ≥ 0}.

AdaBoost first initializes the weights of the training data uniformly. Then at each
iteration, AdaBoost returns a base classifier h ∈ H, and changes the distribution
of the training data according to h. i.e., decrease the weights of the correctly
classified examples and increase the weights of the misclassified examples simul-
taneously. The final classifier is a sign function of f , where f =

∑
αtht ∈ C(H),

and αt is the corresponding weight of ht.
For an example (xi, yi), the margin yif(xi) reflects the difference between

the weights of correctly classified base classifiers and misclassified, that is

yif(xi) =
∑

t:yi=ht(xi)

αt −
∑

t:yi �=ht(xi)

αt. (1)

PrS(yf(x) < θ) can be regarded as a distribution over θ (θ ∈ [−1, 1]), called mar-
gin distribution, and denoted by MD(f). A “good” margin distribution means
that most examples have large margins so that PrS(yf(x) < θ) is small while the
value of θ is not too small. The kth margin ŷkf(x̂k) is defined as the kth smallest
value in {yif(xi), i = 1, 2, . . . , n}. We define prediction matrix H ∈ Qn×T , where
Hij = hj(xi) is the label of xi given by hj(·). We use Hi: to denote the ith row
of H, which describes all the outputs of the classifiers on xi.

Denote Bernoulli relative entropy function by

Δ(u; r) = u log
u

r
+ (1 − u) log

1 − u

1 − r
, 0 ≤ u, r ≤ 1.

It’s easy to get that Δ(u; r) is a monotone increasing function of r for u ≤ r ≤ 1,
thus the inverse of Δ(u; r) for a fixed u can be given

Δ−1(u; v) = inf
w

{w : w ≥ u and Δ(u;w) ≥ v}.

Theorem 1. (The kth margin bound [8]) For any δ > 0, if θk = ŷkf(x̂k) >√
8

|H| , then with probability at least 1− δ over the random choice of sample with

size n, every voting classifier f ∈ C(H) satisfies the following bound:

Pr
D

[yf(x) < 0] ≤ ln |H|
n

+ Δ−1

(
k − 1

n
;
q

n

)

, (2)

where

q =
8 ln(2|H|)

θ2k
ln

2n2

ln |H| + ln |H| + ln
n

δ
. (3)

The minimum margin bound is the trivial condition of kth margin bound
with set k = 1, and the Emargin bound can be reformulated as:

Pr
D

[yf(x) < 0] ≤ ln |H|
n

+ inf
k∈{1,2,...,n}

Δ−1

(
k − 1

n
;
q

n

)

. (4)
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For convenience, we denote the Emargin bound and the kth bound of f by EB(f)
and KB(f, k), respectively. Thus, we have

EB(f) = inf
k∈{1,2,...,n}

KB(f, k).

3 k∗-optimization Margin Distribution

We first define a kind of margin distribution that has good property according
the margin theory of boosting.

Definition 1. For ∀f, g ∈ C(H), f is produced by AdaBoost, MD(g) is the k∗-
optimization margin distribution if the inequality:

ŷk∗f(x̂k∗) ≤ ŷk∗g(x̂k∗)

holds for k∗ = arg mink∈{1,...,n} KB(f, k).

To describe the property of k∗-optimization margin distribution, we give the
following lemma.

Lemma 1. Δ−1(u; v) ia a monotone increasing function of v.

Proof. Since
Δ−1(u; v) = inf

w
{w : w ≥ u and Δ(u;w) ≥ v},

for ∀ u ≤ v1 ≤ v2 < 1, we have

Δ−1(u; v1) = inf
w

{w : w ≥ u and Δ(u;w) ≥ v1}
≤ inf

w
{w : w ≥ u and Δ(u;w) ≥ v2}

=Δ−1(u; v2),

where the inequality holds from the relation

{w : w ≥ u and Δ(u;w) ≥ v2} ⊂ {w : w ≥ u and Δ(u;w) ≥ v1}.

This completes the proof of the lemma.

Theorem 2. If MD(g) is k∗-optimization margin distribution, g has sharper
Emargin bound than f , i.e., EB(g) ≤ EB(f).

Proof. Since ŷk∗f(x̂k∗) ≤ ŷk∗g(x̂k∗) holds for k∗ = arg mink∈{1,...,n} KB(f, k),
and from Lemma 1 and formulae (2) and (3) we can easily get

KB(g, k∗) ≤ KB(f, k∗),

then

EB(g) = inf
k∈{1,...,n}

KB(g, k) ≤ KB(g, k∗) ≤ KB(f, k∗) = EB(f). (5)

This completes the proof.

Theorem 2 guarantees the superiority of the k∗-optimization margin distri-
bution, and the purpose of this paper is to develop a new boosting algorithm
with the k∗-optimization margin distribution.
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4 Two Optimization Strategies

This section introduces two approximate strategies to obtain k∗-optimization
margin distribution. For simplicity, we assume g(x) =

∑
βtht(x), where ht(x) is

the hypothesis returned by the tth step of AdaBoost.

4.1 KM-Boosting

Definition 1 directly suggests a way to generate a voting classifier that has k∗-
optimization margin distribution, which consists of two key steps, the first is to
find the k∗ corresponding to the Emargin bound, and the second is to improve
the kth margin for a fixed k = k∗.

We first discuss the second step. First run the standard AdaBoost T steps,
then a hypothesis set {h1(x), h2(x), . . . , hT (x)} and their corresponding coeffi-
cients {α1, α2, . . . , αT } can be obtained. Compute the margin of each sample and
sort them in ascending order. Then drop out the points with margin ordered in
the first k − 1 and maximize the minimum margin for the rest points, where the
rest points are marked {(xs1 , ys1), (xs2 , ys2), . . . , (xsn−k+1 , ysn−k+1)}, i.e., improv-
ing kth margin can be reduced to the following linear program.

max
β,m

m

s.t. yi

T∑

t=1

βtht(xi) ≥ m (i = s1, s2, . . . , sn−k+1),

βt ≥ 0,

T∑

t=1

βt = 1.

(6)

Theorem 3. The classifier f ′ with coefficients solved from formula (6) has a
larger kth margin than f .

Proof. Obviously (α, ŷkf(x̂k)) is a feasible solution of formula (6), then

yif
′(xi) ≥ ŷkf(x̂k)

holds for ∀i ∈ {s1, s2, . . . , sn−k+1}. That is, there are at most k −1 samples that
have margin less than ŷkf(x̂k). Therefore, we have

ŷkf
′(x̂k) ≥ ŷkf(x̂k).

This completes the proof of the theorem.

Actually, formula (6) can be understood to maximize the minimum margin
but ignores the outliers, that is, the dropped k − 1 samples are interpreted as
outliers. In particular, the LP-AdaBoost is the trivial condition with k = 1. This
is why LP-AdaBoost performs rather poor when much noise exists.
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Algorithm 1. KM-Boosting
Input :
Sample set S = {(x1, y1), (x1, y2), . . . , (xn, yn)},
the number of iterations T .

Procedure:

Run AdaBoost T steps to obtain f(x) =
∑T

t=1 αtht(x).
Compute the margin of each sample as (1).
Sort the margins in ascending order.
Confirm k∗ through validation error of AdaBoost as (7).
According to k∗ drop outliers and get new training set.
Solve new coefficients {β1, β2, . . . , βT } from the linear program (6).
Output:
The final classifier G(x) = sgn(g(x)), where g(x) =

∑T
t=1 βtht(x).

Now we talk about how to choose k∗. Since we interpret the first k∗ − 1
samples as outliers, choosing k∗ means confirming the percentage of outliers.
Here we consider the percentage of outliers in training set as follows:

e′ = Pr[Pr
S

(ŷ = y|x) < 0.5] ≈ Pr[Pr
D

(ŷ = y|x) < 0.5],

i.e., the Bayes error, where ŷ is the prediction of y given by Bayes classifier, and
the approximation comes from the fact that S drawn independently from D.
Further more, we approximate it by the validation error ve′ of AdaBoost. That
is, we take

k∗ = �ve′ ∗ n
 + 1. (7)

Algorithm 1 is the formal description of KM-Boosting. In fact, KM-Boosting
is highly consistent with margin theory. Remind that “good” margin distribution
can be simply described as the distribution in which most examples has large
margins. This idea is completely reflected in KM-Boosting, namely, the n−k∗+1
examples are viewed as the “most” examples. We maximize the minimum margin
of them and don’t care the margins of the other k∗ − 1 points.

4.2 MD-Boosting

KM-Boosting directly optimize the k∗th margin, however, it must save some
points as validation sets. Here we present another method that could obtain
k∗-optimization margin distribution simply.

First look at the fact in Figure 1, it shows the kth margin increase along with
the growth of iteration when k is small. However, when k reaches a certain value,
the kth margin always decrease. We have mentioned that larger kth margin
would produce smaller kth margin bound for a fixed k. This means, it’s the
increased kth margin that really help to improve the Emargin bound. Based on
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Fig. 1. The change of minimum margin, average margin and the kth margin as the
iterations increase in “twonorm”. In each subgraph, the horizontal axis is the iterations
and the vertical axis is the corresponding kth margin.

these results, we define set K∗ as follows

K∗ = {k | ŷkf(x̂k) >

√
8

|H| ∧

the kth margin increase with the iteration},

where ŷkf(x̂k) >
√

8
|H| comes from Theorem 1, and then approximate the orig-

inal Emargin bound by

Pr
D

(
yf(x) < 0

) ≤ EB(f)

= min
k∈{1,2,...,n}

KB(f, k) ≈ min
k∈K∗

KB(f, k)
(8)

Proposition 1. For ∀g ∈ C(H), MD(g) is k∗-optimization margin distribution
if the inequality

ŷkg(x̂k) ≥ ŷkf(x̂k)

holds for all k ∈ K∗.

This proposition is easy to get from formula (8). Therefore, the object turns
to finding a learner satisfying Proposition 1:

max
g∈C(H),ξ

∑
ξk

s.t. ŷkg(x̂k) ≥ ŷkf(x̂k) + ξk (k ∈ K∗),
ξk ≥ 0.

(9)



Boosting via Approaching Optimal Margin Distribution 691

Solving equation (9) is intractable, and we approximately formulate it as

max
β,ξ

∑
ξi

s.t. ykHi:β ≥ ykHi:α + ξi ((xi, yi) ∈ S∗),

βt ≥ 0,
∑

βt = 1,

ξi ≥ 0,

(10)

where
S∗ = { (xi, yi) | od(yif(xi)) ∈ K∗ },

and od(yif(xi)) is the order of yif(xi) in all the margins.
Many researchers have discussed that it’s the hard points that really influence

the result of AdaBoost, while the weights of easy points quickly vanish and give
no (asymptotic) contribution. Actually, formula (10) can be viewed as a method
to improve the margins of the hard points.

Then we turn to the question how to build the set K∗. Notice that Figure
1 shows that the average margin decreases while the iteration increases. In fact,
this phenomenon appears in all datasets we have tested. So empirically we have
for ∀k ∈ K∗,

ŷkf(x̂k) < μS(Y f(X))

where μS(Y f(X)) is the average margin of f in S. Shen et al. [18] proved the
margin of AdaBoost follows the Gaussian distribution, thus |K∗| ≤ n

2 , approxi-
mately.

Tracking the change of the kth margin to build K∗ would lead to additional
computation and storage costs. Actually, it’s unnecessary since we find K∗ is not
very sensitive to the result, that is, as long as |K∗| reaches some certain value,
the result will be good. So we replace the original K∗ with

K∗ = {k | n ∗ q0 ≤ k ≤ max{500, 0.1 ∗ n} + nq0 ∧
ŷkf(x̂k) < μS(Y f(X))},

(11)

where q0 = PrS [yf(x) ≤ 0]. Therefore, the problem size of formula (10) is at
most 0.1 ∗ n + T when n is very large while other modified boosting algorithms
usually require to solve a linear program with size n + T .

5 Experimental Results and Analysis

The goal of this paper is not to find a boosting algorithm that outperforms all
the other variants of boosting, but to show a way to approach the optimal margin
distribution. So we only compare the proposed algorithms with AdaBoost. We
verify the proposed algorithms on 13 benchmark datasets with two types of
base classifiers, decision stumps and three-layer decision trees. We train on a
randomly drawn subset of 40% of the examples in a data sets and validate on a
subset of 20% of the examples, which is disjointed with the above training set,



692 C. Liu and S. Liao

Algorithm 2. MD-Boosting
Input :
Sample set S = {(x1, y1), (x1, y2), . . . , (xn, yn)},
the number of iterations T .

Procedure:
Run AdaBoost T steps
to obtain base classifiers ht(x) and corresponding coefficients αt.
Compute the margin of each sample as (1).
Sort the margin in ascending order and confirm K∗ as (11).
Solve the new coefficients {β1, β2, . . . , βT } by (10).
Output:
The final classifier G(x) = sgn(g(x)), where g(x) =

∑T
t=1 βtht(x).
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Fig. 2. Comparison of the margin distributions on different datasets with decision
stumps, where the horizontal axis is θ, and the vertical axis is the percentage of the
samples with margin less than θ.

the other 40% is used as the test set. For comparison, the iteration steps in each
experiment is fixed at 200, and we repeat 10 times for each settings.

Figure 2 and 3 present the comparison of the margin distributions on different
datasets with decision stumps and three-layer decision trees, respectively. From
the figures we can see that the black line representing the margin distribution
of MD-Boosting and the blue line representing the margin distribution of KM-
Boosting usually appear bellow the red line representing the margin distribution
of AdaBoost. We assert that both MD-Boosting and KM-Boosting can improve
the margin distribution, and that for the classifier g generated by MD-Boosting,

∀θ > 0
(
Pr
S

[yig(xi) < θ] ≤ Pr
S

[yif(xi) < θ]
)

holds on all the datasets. This means that the classifier yielded by MD-Boosting
has a sharper generalization bound than that of AdaBoost according the mar-
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Fig. 3. Comparison of the margin distributions on different datasets with decision trees,
where the horizontal axis is θ, and the vertical axis is the percentage of the samples
with margin less than θ.

gin theory of boosting. As far as we know, MD-Boosting is the first boosting
algorithm that has this property. For all the other modified boosting algorithms,
such as LPReg-AdaBoost [14], MDBoost [17], and the KM-Boosting, the margin
distribution curve usually appear above that of AdaBoost for some θ > 0.

Table 1 shows the comparison among AdaBoost, KM-Boosting and MD-
Boosting, where the best performances are marked in bold face. The last row is
the average ranking of the three methods on all 13 datasets. We can see both MD-
Boosting and KM-Boosting have a better performance than that of AdaBoost on
decision stumps, while KM-Boosting performs a little worse than AdaBoost does
on decision trees. This may be due to the fact that some leaf nodes have no sam-
ple, causing uncontrolled complexities. In consideration of both of accuracy and
performance, it seems that decision stumps are more suitable for KM-Boosting.

Figure 4 shows the size of the base classifier in the final classifier generated
by MD-Boosting, which is a decision stump and a decision tree respectively. The
sizes of both base classifiers could be reduced, especially the decision stump, the
size does not exceed 50 on ten datasets. That is, MD-Boosting with decision
stump is more effective for feature selection where small ensembles are needed.

6 Conclusion

It is widely accepted that margin distribution plays an important role in the
success of AdaBoost. Following this line, we first define the k∗-optimization
margin distribution, which is closer to the optimal margin distribution than
that of AdaBoost. Then we propose two boosting algorithms: KM-Boosting and
MD-Boosting, both of which can approximate the k∗-optimization margin distri-
bution and improve the accuracy of AdaBoost. Especially, MD-Boosting almost
surely has a sharper generalization error bound than that of AdaBoost, and can
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Table 1. Comparison among AdaBoost, KM-Boosting and MD-Boosting: Estimation
of generalization error in % on 13 datasets

Data
Alg decision stumps decision trees (deep = 3)

AdaBoost KM-Boosting MD-Boosting AdaBoost KM-Boosting MD-Boosting
heart 23.06±5.65 20.09±7.13 22.50±8.06 22.13±7.50 22.87±5.93 21.94±5.83
wisconsin 4.74±2.19 4.65±2.65 4.93±1.64 3.47±1.28 3.68±1.50 3.87±1.31
german 27.25±2.95 26.95±6.00 26.18±6.08 28.08±4.18 27.15±2.38 27.63±5.20
diabetes 24.90±4.45 24.90±3.99 25.18±4.29 26.56±5.91 26.40±4.32 27.79±4.74
australian 15.82±2.64 15.69±3.50 15.25±3.95 15.87±4.78 15.25±4.02 16.52±3.48
phoneme 18.88±1.07 18.83±1.34 19.08±0.96 14.20±1.16 14.19±0.94 13.97±0.93
spambase 6.11±1.11 6.44±1.05 6.03±0.98 5.50±0.77 5.66±1.09 5.48±1.19
chess 4.42±0.90 3.96±1.15 4.29±1.03 1.05±0.54 1.13±0.69 1.02±0.42
twonorm 3.30±0.49 3.49±0.48 3.28±0.51 3.04±0.46 3.23±0.41 3.01±0.36
breast 4.38±0.17 3.89±2.32 4.27±1.82 3.21±2.26 3.32±1.79 3.39±1.72
coil2000 5.98±0.40 5.98±0.38 5.97±0.39 6.56±0.88 6.24±0.69 6.37±0.78
magic 15.92±1.02 15.91±0.97 15.92±1.09 13.44±0.53 13.48±0.56 13.42±0.61
adult 14.41±0.38 14.45±0.38 14.42±0.37 14.21±4.96 14.25±0.53 14.19±0.57
avg-rank 2.46 1.69 1.92 2.08 2.15 1.77
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Fig. 4. The size of base classifiers in the final classifier generated by MD-Boosting. MD-
stumps denotes MD-Boosting + decision stumps, and MD-trees denotes MD-Boosting
+ decision trees.

reduce redundancy without accuracy loss. As far as we know, MD-Boosting is
the first boosting algorithm that has these properties.
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Abstract. Nowadays, with the development of the Internet, large
amount of continuous streaming news has become overwhelming to the
public. Constructing a dynamic topic hierarchy which organizes the news
articles according to multi-grain topics can enable the users to catch what-
ever they are interested in as soon as possible. However, it is nontrivial due
to the streaming and time-sensitive characteristics of news data. In this
paper, to address the challenges, we propose a Hierarchical Entity Topic
Model (HETM) which considers the timeliness of news data and the impor-
tance of named entities in conveying information of who/when/where in
news articles. In addition,we propose onlineHETM(o-HETM)bypresent-
ing a fast online inference algorithm for HETM to adapt it to streaming
news. For better understanding of topics, we extract key sentences for each
topic to form a summary. Extensive experimental results demonstrate that
our model HETM significantly improves the topic quality and time effi-
ciency, compared to state-of-the-art method HLDA (Hierarchical Latent
Dirichlet Allocation). In addition, our proposed o-HETM with an online
inference algorithm further greatly improves the time efficiency and thus
can be applicable to the streaming news.

Keywords: News streams · Topic hierarchy · Hierarchical entity topic
model · Online inference

1 Introduction

Recently, once a thing of great concern such as “The Missing Flight MH370” hap-
pens, massive news articles 1 covering a wide spectrum of aspects ranging from the
missing situation to possible causes, to investigation and searching will be contin-
ually published. Though many web sites have created a “Special Topic” web page
for organizing all the related news article URLs together, it is still impossible for
users to go through all the contents and manually identify the newly emerging and
important sub-topics. This necessitates a dynamic structured summarization for
1 e.g., http://news.sohu.com/s2014/jilongpofeiji gd/
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the streaming news. Using a hierarchical structure which presents topics at differ-
ent levels of granularity can enable the users to feel free to find whatever they are
interested as soon as possible.

Considerable studies have been done on streaming text. One of the most
popular researches is topic detection which aims to discover the topics reported
in news articles and group them in terms of their topics [1–3]. Most of the state-
of-art topic detection systems are based on probabilistic generative models, clus-
tering techniques and Vector Space Model (VSM) model. Under the frameworks,
researchers have proposed several practicalmethods such as LDA(LatentDirichlet
Allocation), single-pass clustering and incremental K-means clustering etc.
However, most of them focused on flat topical structures. Some researches [4] con-
structed hierarchical document-level clusters instead of hierarchical theme-level
topics. Hierarchical topic models have been successfully applied for topic hierar-
chy construction in text mining [5,6]. Considering that the news is time sensitive
and named entities are critical in conveying when, where, who in news articles, we
present a new hierarchical entity topic model as well as an online inference method
for streaming news.

The Missing Flight MH370

Search and Rescue Cause of Air Disaster Volunteers

Passenger Information Waters Search Investigation about 
Boeing Planes

Explosion and 
Breakup Accompanyi W

d R C f Ai Di t V l t

igation about Exp

Fig. 1. The topic hierarchy about The Missing Flight “MH370”

In this paper, we propose to dynamically construct a hierarchy of topics and
subtopics from the streaming news articles about a special topic. For example, Fig.
1 shows part of the topic hierarchy about “TheMissing FlightMH370”. Each topic
is represented as ranked lists of words and entities. The task is not trivial due to
various challenges in analyzing streaming news data. First, the whole data cannot
be fit into memory at once and has to be processed incrementally. Second, the algo-
rithm need to be efficient due to real-time response rate requirements. In addition,
news data is time-sensitive and puts emphasis on named entities (persons, loca-
tions, organizations and time) which convey the information of when, where and
who [7]. These challenges necessitate algorithms that should meet the following
demands: 1) be incremental; 2) run in real time; 3) take the arriving time of news
documents into consideration; 4) model the relationship between topics and enti-
ties. To this end, we develop an online Hierarchical Entity Topic Model (o-HETM)
to automatically construct topic hierarchies from fast-comingnews streams. Specif-
ically, we incorporate the time factor into the well-known nCRP (nested Chinese
RestaurantProcess) and construct anon-parametric hierarchical topicmodel based
on it. The topic model distinguishes entities from topics and models the relation-
ship between topics and entities. To adapt the model to online news streams, we
present an online Gibbs sampler for fast inference. The main contributions of this
work can be summarized as follows:
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(1) We propose a nonparametric hierarchical entity topic model HETM for topic
hierarchy construction from news data. The model considers the timeliness of
news data and the relationship between topics and entities.

(2) Wepropose onlineHETM(o-HETM)bypresenting a fast online inference algo-
rithm for HETM to adapt it to streaming news data.

(3) Experimental results on real datasets demonstrate that our model HETM sig-
nificantly improves the topic quality and time efficiency, compared to HLDA
(Hierarchical LatentDirichletAllocation).With the online inference algorithm
based on Gibbs sampling, o-HETM further improves the time efficiency dra-
matically and can be used for streaming news.

2 OurModel

Inthissection,wedetailourproposedonlinenonparametrichierarchicalentitytopic
model o-HETM for dynamic topic hierarchy construction from news streams. We
first introduce the Time-Dependent nCRP which considers the timeliness of news
data for constructing nonparametric hierarchical topic models in Section 2.1. Then
we present the graph representation and document generative process of HETM
basedontheTime-DependentnCRP inSection2.2.Themodel combines theadvan-
tages of the hierarchical topicmodelHLDA [8] and the entity topicmodelCorrLDA
[9]. Last, we construct the model o-HETM by presenting an online inference algo-
rithm for HETM in Section 2.3.

2.1 Time-Dependent nCRP

As described in HLDA [8], the nCRP places priors over trees and does not limit the
branching factors or the depths of the trees. It supposes that there are an infinite
number of infinite-tableChinese restaurants.A customer enters the root restaurant
with infinite tables where each refers to another restaurant and each restaurant is
referred to exactly once. He chooses a table according to CRP (Chinese Restau-
rant Process) which is a “preferential attachment” way. Specifically, the (n + 1)th

customer chooses a new table with probability γ
n+γ and chooses an already exist-

ing ith table with probability proportional to the number of people sitting there,
namely ni

n+γ . Then he reaches another restaurant which is referred to by this table.
And so forth, the structure repeated infinite times will reach an infinitely branched
and deep tree.

In this paper, considering that news data is time-sensitive, we present a variant
of nCRP,Time-Dependent nCRP. It supposes that the much former customers will
have less influence to the current customer [10]. Therefore, in ourTime-Dependent
nCRP, we use a common time discount function in drawing a table for a customer.
We use t to denote time (period). The (n + 1)th customer at time t chooses a new
table with probability γ

n′+γ where n′ denotes the discounted number of customers

before time t. He chooses an already occupied table with probability n′
i

n′+γ where

n′
i =

∑Δ
δ=0 e− δ

λ ni,δ is the discounted number of customers sitting at table i at
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time t and n′ is the total discounted number of customers at time t. This expres-
sion defines a time-decaying function parameterized by Δ (width) and λ (decay
factor). The Time-Dependent nCRP supposes that only the previous customers
in the time period from t − Δ to t will influence the current customer at t. The
parameter λ controls the decay rate of the influence of previous customers with
time. When Δ = 0, the Time-Dependent nCRP only considers the previous cus-
tomers at current time t. When Δ = t and λ = ∞, it degenerates to a common
nCRP without considering the factor of time.

2.2 Online Hierarchical Entity Topic Model

In this section, based on the Time-Dependent nCRP, we can construct our hier-
archical entity topic model HETM. Considering a document as a customer, the
model first chooses a table for the customer in the root restaurant. Then the cus-
tomer enters another restaurant at deeper level referred to by the table. And so
forth, we can finally get a path for the document and each node on the path repre-
sents a topic. The depth of the infinite tree is controlled by Stick-Breaking Process
parameterized by (m,π) in which m ∈ (0, 1) controls the mean of the stick lengths
and π > 0 determines the variance of the stick lengths [8]. The process supposes
that there is a stick whose length equals to 1. We sample stick lengths ranging in
(0, 1) according to ViBeta(mπ, (1 − m)π). In most applications, we fix the depth
of a tree as L. Therefore, for the last level L, the stick length is 1 − ∏L−1

i=1 (1 − Vi).
These lengths correspond to the probabilities of topics on the path and form the
prior distribution of the document over the topics. Then words are sampled from
the L topics along that path. After sampling all the words of the document, entities
are drawn according to the topics of words.

Table 1. Notations

Sym Definition Sym Definition

S news stream M the number of documents in S

L the number of levels K the number of topics

θ topic distribution β word distribution

β̃ entity distribution γ, δ parameters of Time-Dependent nCRP

m, π level distribution hyperparameter η word distribution hyperparameter

η̃ entity distribution hyperparameter N the number of words in a document

Ñ the number of entities in a document c a document path containing c1, ..., cL

Table 1 summarizes the notations that will be used throughout this paper. The
graph representation of our hierarchical entity topic model HETM is illustrated
in Figure 2. The model assumes a tree with infinite branches but fixed depth of L
levels. It combines the advantages of the hierarchical topic model HLDA [8] and
the entity topic model CorrLDA [9][7], namely, it not only generates a structured
topic hierarchy for the news data but also models the relationship between topics
and entities. Thus, it can better fit the news data.

The document generative process of the model is as follows:
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Fig. 2. Graph Representation of HETM

1. For each table k ∈ T in the infinite tree, draw a word distribution βk ∼ Dir(η)
and entity distribution β̃k ∼ Dir(η̃)

2. For each document d ∈ S
– draw cd ∼ Time − Dependent nCRP (γ, δ)
– draw a distribution over levels in the tree,θd|m,π∼stick−breaking(m,π)

3. For each word w ∈ d
– choose a level zd,n|θd ∼ Mult(θd)
– choose a word wd,n|z, cd, β ∼ Discrete(βcd

[zd,n])
4. For each entity e ∈ d

– choose a level z̃d,n ∼ Unif(zw1 , zw2 , ..., zwNd
)

– choose an entity ed,n ∼ Discrete(β̃z̃d,n
)

As shown in the generative process, first, we associate each table (topic) in the tree
with a prior word distribution and entity distribution. When generating a docu-
mentd, wefirst determine its path according to theTime-Dependent nCRP process
parameterized by γ and δ. Then the topic distribution of the document is drawn
from a stick-breaking process parameterized by (m,π). The following process of
generating words and entities is similar to the entity topic model CorrLDA [9].
First, we sample topics for words w and then sample topics for entities e based on
the sampling results of word-topic assignments. Therefore, we can learn the rela-
tionship between topics and entities.

2.3 Online Inference Algorithm

In this section, we introduce the online inference algorithm for our model to fit
the streaming news. We apply Gibbs sampling which uses p(zi|z¬i,w) to simulate
the intractable posterior distribution p(z|w). The desired Gibbs sampler runs a
Markov chain for enough iterations and then it converges to the desired posterior
distribution. Inspired by the online LDA [11], we have the following extension for
our o-HETM:

In Algorithm 1, we first apply batch Gibbs Sampler [8] on the first 10% data
because its content can cover most content of the later coming data [11] (Line 1).
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Algorithm 1. Online Gibbs Sampler for o-HETM
1 Use batch Gibbs Sampler on the first 10% data;
2 foreach document d ∈ S do
3 sample a path cd according to p(cd|w, c−d, z);
4 foreach word wi ∈ w do
5 sample a topic according to p(zi|z¬i,w, c);
6 foreach entity ei ∈ e do
7 sample a topic according to p(z̃i|z̃¬i, e, c);
8 if the index of d can be divided by Count (we set Count = 100 in this work)

then
9 foreach document in the previous Count documents before d do

10 repeat 3-7;

Afterwards, we sample topics of each new word by conditioning words of previous
documents observed so far (Lines 2-7).To improve the accuracy of topics,we resam-
ple the topics of some previous words (Lines 8-10). The probability distribution
p(cd|w, c−d, z) is used for path sampling, where c−d denotes paths of documents
before time of document d , p(zi|z¬i,w), p(z̃i|z̃¬i, e) is used for level (topic) sam-
pling where z¬i denotes all the topics of all words except the ith word, so dose z̃¬i.
They can be derived as:

p(cd|w, c−d, z, η, γ, δ) ∝ p(cd|c−d, γ, δ)p(wd|c,w−d, z, η) , (1)

where the first term is the prior on paths implied by the Time-Dependent nCRP
and the second term denotes the probability of the data given a particular choice
of path. We can refer to [8] for details. For sampling topics for words:

p(zd,i|z−(d,i), c,w,m, π, η) ∝ p(zd,i|zd,−i,m, π)p(wd,i|z, c,w−(d,i), η) , (2)

where the first term is the conditional topic distribution given all other words’
topics,p(zd,i = k|zd,−i,m, π) = mπ+#[zd,−i=k]

π+#[zd,−i≥k] Πk−1
j=1

(1−m)π+#[zd,−i>j]
π+#[zd,−i≥j] . It is deter-

mined by the prior distribution and the word-topic assignments. The prior distri-
bution is the truncated stick breaking process parameterized by m,π where larger
m indicates a larger probability of higher levels. The second term is the word dis-
tribution given all the other variables.

p(wd,i|z, c,w−(d,i), η) ∝ #[z−(d,i) = zd,i, czd,i
= cd,zd,i

,w−(d,i) = wd,i] + η .

After sampling all the words, we sample levels for entities according to the already
known topic distribution among words and the distributions of the topics over enti-
ties. Formally,

p(z̃d,i|z, c, e,m, π, η̃) ∝ p(z̃d,i|zd)p(ed,i|z, c, e−(d,i), η̃) (3)

Due to space limitation, we don’t present how to commutate the distributions in
detail. For more details, we can refer to HLDA [8].



702 L. Hu et al.

3 Topic Summary

Key sentences are selected to form a summary for each topic. We note that the title
of a news article briefly summarizes the content of the article. Therefore, we utilize
the titles of the news articles belonging to the same topic to construct the candi-
date sentences for the topic’s summary. The representative sentences are selected
as follows. First, a topic signature word set TWz and entity set TEz are generated
by extracting top 10 words and 10 entities with highest p(w|z) and p(e|z). Second,
for each sentence s, a word set TWs and an entity set TEs are formed by extracting
informative words (i.e., noun, verb, adj, and adv.) and entities from the the sen-
tence [12]. Third, each sentence is ranked by measuring the weighted average score
of the similarity between its word set and the topic signature word set and the sim-
ilarity between its entity set and the topic signature entity set. Jaccard Similarity2

is used as the similarity metric. Formally, Sim(s, z) = λ1 · SimJac(TWs, TWz) +
λ2 ·SimJac(TEs, TEz). The higher the similarity, the higher the rank. The weight
parameters λ1 and λ2 allow the users to freely control the importance of entities
compared to words. In this work, they are empirically set as 0.4 and 0.6 respectively
to emphasize entities more.

4 Experiments

4.1 Datasets

Due to restrictions of data crawling on many websites, it is difficult to collect data
for our experiments. We collect three news datasets about different topics. The first
dataset (in Chinese) and the third dataset (in English) were respectively crawled
from the news agency Sohu and Sina, while the second dataset (in English) was
collected from the well-known news agency The Guardian. For each news docu-
ment, we keep the publication time, title and body content. For all the datasets, we
sort the documents by their publication time and perform preprocessing as follows:
1) word segmentation (for only Chinese dataset) and entity recognition with ICT-
CLAS or StandfordNER 3; 2) removal of stop words (e.g.,“a”, “the”, “of”, etc.).
Statistics of the three datasets including the number of documents, vocabulary size
and entity vocabulary size after preprocessing are summarized in Table 2.

4.2 Experimental Setup

Our evaluation of the efficacy of our proposed online hierarchical entity topicmodel
is threefold: 1) comparison with state-of-the-art method HLDA implemented by
Chua et al. [13]; 2) comparison with gold standards constructed according to the
manually created tables of contents in related Wikipedia articles; 3) a case study.

Comparison with State-of-the-art Methods. For fair comparison, on one
hand, the common hyper-parameters shared by these methods are set as the same,

2 Defined as SimJac = |A∩B|
|A∪B| , A and B are two sets

3 http://nlp.stanford.edu/software/CRF-NER.shtml

http://nlp.stanford.edu/software/CRF-NER.shtml
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Table 2. Statistics of the collected datasets

Datasets � Docs |Vocabulary| | Entity Vocabulary|
The Missing Flight MH370 798 8,125 2,344

2012 US Election 940 31,240 7,184

2010 Chile Earthquake 170 5,918 1,277

i.e., m = 0.25, π = 500, η = 〈1.0, 0.5, 0.25〉, γ = 1 according to the previous stud-
ies [8]. For additional hyper-parameters η̃ of HETM and o-HETM, we set them as
same as η. We set the maximum level of all the models to 3. On the other hand, as
HLDA didn’t consider the factor of time, we set the time width as Δ = t and the
decay factor as λ = ∞ which makes Time-dependent nCRP degenerate to nCRP.
We compare our models HETM and o-HETM with HLDA in terms of time effi-
ciency and topic coherence.

ComparisonwithGoldStandards.Weconstruct a gold standard for each topic
by leveraging the Contents table in Wikipedia articles (e.g., “2010 Chile earth-
quake” 4 ). The Contents tables summarize the topics about the thing that the
title stands for. We ask five college students to work together to pick up the effec-
tive topics which forms the gold standard hierarchy. Only when all of them reach
a consensus, we will consider a topic in the tables of contents as effective. Then we
in our results with the the gold standards manually.

CaseStudy.For qualitative analysis of topic hierarchies generatedbyourmethod,
we present the result of the largest dataset “2012 US Election” generated by our
method as a case study.

4.3 Evaluation Metrics

TopicCoherence.Weuse topic coherence to evaluate the topic quality [14].Given
a list of words, the more often the words co-occur, the larger the topic coherence
is and the list is more likely to represent a topic. Formally, it is computed as
C(t,W(t)) =

∑N
n=2

∑n−1
l=2 log((D(w(t)

n , w
(t)
l ) + 1)/D(w(t)

l )) where a topic is
described using top N words with the largest probabilities,W(t) = {w

(t)
1 , ..., w

(t)
N },

D(wi) is the document frequency of word wi, D(wi, wj) is the co-document
frequency of word wi and wj . suppose .

Recall.The recall of our topic hierarchy is defined as R(H) = (|TH ∩THS
|)/|THS

|
where TH and THS

are respectively the topic sets of our topic hierarchy and the
gold standard.

4.4 Results and Analysis

Comparisonwith State-of-the-artMethods.Table 3 shows the average topic
coherence scores and running time of different methods. As we can see, our model
HETM significantly outperforms HLDA in terms of both topic quality and time
efficiency. It shows that distinguishing entities fromwords can not only discover the
4 http://en.wikipedia.org/wiki/2010 Chile earthquake

http://en.wikipedia.org/wiki/2010_Chile_earthquake
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Table 3. Topic Coherence and Time Efficiency

MH370 Election Earthquake
TC Time TC Time TC Time

HLDA -68.17 9h -88.09 121h -44.2 2.13h
HETM -66.15 7h -48.46 65h -36.89 1.53h

o-HETM -75.36 0.17h -92.84 4.26h -52.5 0.09h

relations between topics and entities but also improve the time efficiency. With the
online inference algorithm, o-HETM further improves the time efficiency by more
than 20-50 times. The time of dealing with a document reaches 2-50 milliseconds,
which meets the demand of real-time news processing. However, without surprise,
the topic quality of o-HETM is of inferior quality, compared to HLDA in terms of
topic coherence. The significant improvement of the time efficiency is made at the
expense of the topic quality.

Comparison with the Gold Standards. The recall values of our topic hierar-
chies about the three events “The Missing Flight MH370”, “2012 US Election”
and “2010 Chile Earthquake” are respectively 71.4%, 62.5% and 90.9%. Consid-
ering that our topic hierarchies are generated from the real news data while the
gold standard are constructed manually without referring to the news, the recall
of 62.5%-90.9% has demonstrated the effectiveness of our method. For example,
the gold standard about the “2012 US presidential election” 5 include topics of
“primaries”, “campaigns” and “races”, most of which can be found in our topic
hierarchy as shown in Fig. 3. In addition to that, our method discovers many pop-
ular topics such as “tax” and “scandals” and provides a more complete view. The
gold standard of “The Missing MH370” contains some specific topics that don’t
occur a lot in news articles such as “electrical fire speculation” and thus cannot be
discovered by our method. In future work, we can leverage the “table of contents”
for semi-supervised topic modeling of news to improve our results. The recall vale
on the dataset of “2010 Chile earthquake” is the highest. There are 10 aligned top-
ics (e.g., tsunami, damage, government response and so on). Only one topic, i.e.,
“prison escape” is not in our topic hierarchy. However, our model discovers hot
topics such as “copper”.

Case Study. Due to space limitation, we present only the main part of the topic
hierarchy about the “2012 US election” in Fig. 3. As we can see, the topic of “econ-
omy” is the most hot topic, which includes more than 2/3 of the documents and
has subtopics of “job” and “primaries”. Another small but hot topic is “Affair
about sex”. It has subtopics of “sexual harassment” and “Corruption”. Other top-
ics which are not shown in the figure are in smaller size. In terms of topic summary,
we can see an example that the most related news title to the topic of “job” is “US
politics live blog:RickPerry’s jobs policy,NewHampshire vNevada,HermanCain’s
9-9-9 tax plan”. Overall, our results accord well with our common sense. However,
5 http://en.wikipedia.org/wiki/United States presidential election, 2012

http://en.wikipedia.org/wiki/United_States_presidential_election,_2012
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Romney|Obama/PER
     said|Gingrich/PER
Republican|Paul/PER

campaign|Romney/ORG
state|New/LOC

president|Romney/PER
presidential|Iowa/LOC
election|House/ORG
debate|Barack/PER

voters|America/LOC

economy |Obama/PER
spending|House/ORG

year|Mitt/ORG
administration|Florida/LOC
victory|Washington/LOC

court|2008/TIME
Obama|Congress/ORG
re-election|Barack/PER
Democrats|Senate/ORG
month|Tuesday/TIME

jobs|Romney/ORG
tax|Cain/PER

climate|Perry/PER
change|Texas/LOC

economic|Ohio/LOC
unemployment|Santorum/PER

rate|Florida/LOC
figures|Herman/PER

Latino|Ryan/PER
rape|Rick/PER

primary|Iowa/LOC
primaries|Palin/PER

governors|Gingrich/PER
stand|2012/TIME

speaker|Texas/LOC
paper|Hampshire/LOC

favorite|New/LOC
endorsement|Bachmann/PER

formally|Perry/PER
activists|Sarah/PER

minister|Iran/LOC
Israeli|Israel/LOC
prime|India/LOC

sanctions|East/LOC
Netanyahu|Netanyahu/PER

Iranian|Middle/LOC
peace|Chen/PER

publicly|1967/TIME
challenges|Palin/PER
zombie|Russia/LOC

affair|Colbert/PER
sex|Tuesday/TIME

restaurant|Monday/TIME
sessions|2011-November-08/TIME

settlement|Friday/TIME
harassed|Times/ORG

interviews|Bachmann/PER
admitted|National/ORG
supporters|Press/ORG
involving|Palin/PER

sexual|Cain/PER
harassment|Herman/PER
allegations|National/ORG
women|Association/ORG

association|Restaurant/ORG
woman|Washington/LOC

cain|Bialek/PER
details|Mr/PER

complaint|Iowa/LOC
female|Gloria/PER

Nobel|Morrison/PER
PAC|Colbert/PER

expenditure-committee|Zimmerman/PER
protective|$1m/MONEY

Trayvon|Josh/PER
corrupt|Rèalnamè/PER

experiences|ballot-New/ORG
used|Bradley/PER

hurts|Whitford/PER
police|FEC/ORG

US politics live blog: Rick Perry's jobs 
policy, New Hampshire v Nevada, 

Herman Cain's 9-9-9 tax plan

Sarah Palin's Iowa trip points to 
2012 presidential run

Herman Cain admits settlement was 
made over sexual harassment claims

Stephen Colbert's run for US presidency 
raises $1m

Sarah Palin uses India visit to fuel 
rumours of her White House 

ambitions

Fig. 3. The main part of the topic hierarchy about the “2012 US election”. We show
top 10 words and entities separated by “|” in each topic and manually label the topic for
better understanding. The number in the bracket is the number of documents belonging
to the topic. The bottom shows the topics’ most relevant news titles.

some expected topics such as “debate” and “voting” are mixed with the root topic
of “Campaign” as we can see the top 10 words contain “debate” and “voters”. All
the models have the problems. The reason may be that these topics are too related
to each other and thus cannot be separated.

Parameter Analysis. We also test the model with different values of the param-
eters Δ and λ, and find that the quality of the topic hierarchy is highly insensitive
to the parameters. However, smaller Δ and λ are likely to result in more specific
topics. A user can choose different parameters according to the datasets and prac-
tical demands. In terms of the parameter of online-algorithm, if Count is larger,
the model will be more approximate to the algorithm of batch sampling, and will
get better results at the expense of time.

5 RelatedWork

Topic discovery from streaming data has been studied a lot. For example, [2] pre-
sented general probabilistic methods for discovering and summarizing the evolu-
tionary patterns of themes in a text stream. Topic detection and tracking aims to
discover topics and group the streaming documents in terms of their topics [1–3].
However, most of the studies focused on flat structures of the topics. Some studies
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focus hierarchical structures in streams [4,15], but their focus is document level
clustering, while we perform theme level word clustering.

Topic hierarchy construction is another problem relevant to our work. A lot of
hierarchical topic models, e.g., HLDA [5], HPAM [6], and hHDP [16] have been
successfully applied in text mining. Different from these studies, we focus on the
streaming time-sensitive news data which puts emphasis on named entities, and
incorporate the timeliness of news data and the relationship between topics and
entities into hierarchical topic modeling. There is also considerable work on entity
topic models [7,17–19]. However, they extract flat topic structures.

Fitting a topic model given a set of documents requires approximate inference
techniques that are computationally expensive. Therefore, our work is also rele-
vant to studies about efficient inference of topic models [11,20]. Inspired by online
inference with LDA [11], we develop an online inference algorithm for our o-HETM
in order to deal with the streaming news in real time.

6 Conclusion and FutureWork

In this paper, we present an online hierarchical entity topic model o-HETM to
dynamically construct topic hierarchies from news streams. The model consid-
ers the timeliness of news data and the relationship between topics and entities,
which are very important for news data. The fast online inference algorithm signif-
icantly improves the time efficiency of the model and thus adapt it to the streaming
news. Extensive experiments have verified the effectiveness and efficiency of the
proposed model, compared to the baseline model HLDA. In future work, we can
investigate and visualize the hierarchical topic evolutionary patterns based on the
current work.
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Abstract. To explain why a user generates some observed content and
behaviors, one has to determine the user’s topical interests as well as
that of her community. Most existing works on modeling microblogging
users and their communities however are based on either user generated
content or user behaviors, but not both. In this paper, we propose the
Community and Personal Interest (CPI) model, for modeling interest
of microblogging users jointly with that of their communities using both
the content and behaviors. The CPI model also provides a common
framework to accommodate multiple types of user behaviors. Unlike the
other models, CPI does not assume a hierarchical relationship between
personal interest and community interest, i.e., one is determined purely
based on the other. We build the CPI model based on the principle
that a user’s personal interest is different from that of her community.
We further develop a regularization technique to bias the model to learn
more socially meaningful topics for each community. Our experiments
on a Twitter dataset show that the CPI model outperforms other state-
of-the-art models in topic learning and user classification tasks. We also
demonstrate that the CPI model can effectively mine community inter-
est through some representative case examples.

Keywords: Microbloggings · Topic modeling · Behavior mining

1 Introduction

In microblogging sites, users can publish short messages (called tweets), as well
as adopt a wide range of behaviors spontaneously. The behaviors include follow-
ing other users, mentioning hashtags or other users in tweets, and forwarding (or
retweeting) messages received from other users, etc.. Empirical and user stud-
ies have shown that both the tweets and behaviors of a microblogging user are
determined by her personal interest or that of her community [14,29,34,38].
However, most existing works on modeling user personal interests and commu-
nity interest in microbloggings consider only either user generated content or
user behaviors but not both (e.g.,[16,22,28,44]). This existing approach neglects
the relationship between user generated content and behavior, and thus learning
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the two type of interests can be inaccurate. It also cannot leverage user generated
content to provide a semantic interpretation of the behaviors.

Moreover,mostworks onmodelingmicroblogging content andbehavior assume
that there is adependent relationshipbetweenuser andcommunity interests.These
works either determine a user’s interests purely based on her communities (e.g.,
[32,33,43]), or determine a community’s interests purely by aggregating it’s mem-
bers’ interests ([21,22]). This approach suffers from twodrawbacks. First, it ignores
the fact that a user’s personal interests may be different from that of the commu-
nities she belongs to. For example, a user can belong to a political community at
the same time expressing interest in entertainment topics. Second, it suffers from
trivial topics. These are popular but not socially meaningful topics. One such topic
may be about food and drinks, and another about daily activities. These trivial
topics are shared by many microblogging users ([17]). These topics are also likely
be modeled by existing models as community interest leading to multiple commu-
nities sharing these common topics. While sharing trivial topics is reasonable for
overlapping communities ([15,40]), it is not practical for mutually exclusive com-
munities (e.g., political communities, and professional communities, etc.). These
communities should be characterized by clear topics.

In this work, we therefore aim to model topical interest of microblogging
users and that of their mutually exclusive communities considering both user
generated content and behavior. Moreover, we want to differentiate between
topical interests of each user and that of each community. For each user, we also
want to learn the bias of the user towards her community in generating both
content and behavior. Lastly, for each community, we want the community to
be clearly distinguished by socially meaningful topics.

Our main contributions in this work consist of the following.

– We propose a generative model, called Community and Personal Interest
model (abbreviated as CPI), for modeling topics and user topical interest as
well as modeling user community in microbloggings. Our model is designed to
work with data consists of user communities that are mutually exclusive. The
CPI model encapsulates different types of user behaviors in a common frame-
work, and associates the behaviors with the user generated content through a
set of latent topics.

– We develop a sampling method to infer the model’s parameters. We also
develop a technique to regularize the sampling process so that: (1) trivial
topics are less likely to be assigned as community interest topics; while (2)
non-trivial topics shared mostly by users within a community are more likely
be assigned to be interest of the community.

– We apply CPI model on a Twitter dataset and show that it outperforms other
state-of-the-art models in modeling content topics and user classification tasks.
We also conduct an empirical analysis of personal interest and community
topics found in the dataset to demonstrate the efficacy of the CPI model.

The rest of the paper is organized as follows. We first discuss the related works
in Section 2. We then present the CPI model in detail in Section 3. The algorithm
for learning parameters of the CPI model and the regularization technique are
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presented in Section 4. Next, we describe the experimental dataset and report the
results of experiments of applying the proposed model on the dataset in Section 5.
Finally, we give our conclusions and discuss future work in Section 6.

2 Related Work

2.1 Topic and Community Analyis

Michelson et. al. first examined topical interests of Twitter users by analyzing
the named entities mentioned in their tweets [25]. Hong et. al. [16], Mehrotra
et. al. [24], and Ramage et. al [29] conducted empirical studies on different
ways of performing topic modeling on tweets using the original LDA model [16],
Author-topic model [31], and Supervised LDA model [30]. Later, Zhao et. al. [44]
proposed TwitterLDA model in which: (a) each user has a topic distribution and
they share a common background topic; and (b) a topic is assigned to each tweet
(instead of to each word). Recently, Qiu et. al. proposed to use TwitterLDA for
jointly modeling topics of tweets and their associated posting behaviors (i.e.,
tweet, retweet, or reply) [28]. These works however only consider user generated
content in modeling user interest. Our work, in the other hand, considers both
user generated content and user behaviors.

Early works on community mining in social networks are purely based on
either social links among the users (e.g., [1,27]) or user generated content (e.g.,
[39,45]). Ding et. al. conducted an empirical studies showing that both social
links and user generated content should be considered in community mining in
order to find coherent user communities [10]. Our work considers the social links
among users as part of user behaviors, e.g., users follow and retweet other users,
and users mention other users in tweets. Moreover, most of existing works that
consider both social link and user content are based on the assumption that
users/documents within a community have similar interest and are densely con-
nected (e.g., [2,4,5,26,43]). This assumption is not practical in microblogging
context where users express interest in a vast variety of topics, and their interest
is therefore not always determined by their communities only. Our model, on the
other hand, seeks to differentiate between a user’s personal interest from that of
her community. It is also important to note that, unlike works on mining over-
lapping communities (e.g., [2,15,43]), our work aims to mine mutually exclusive
communities where each user belongs to only one of the communities.

Lastly, there are also existing works on finding community interest. However
these works either (a) determine a community’s interest by aggregating interest
of users within the communitiy (e.g., [21,22]), or (b) determine a user’s interests
purely based on interest of communities the user belongs to (e.g., [13,33,43]). The
first approach suffers from trivial topics which are shared by many users, and hence
more likely be assigned to community interests. The second approach is not able
to differentiate between user personal interest and community interest. In con-
trast, our model differentiates between users’ personal interests and communities’
interests. We learn the two interests simultaneously with a regularization so that
socially meaningful topics are more likely be assigned to community interests.
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2.2 User Behavior Analyis

There has been a number of works analyzing user behavior in microblogging
data. For example, Kwak et. al. [19,20], Wu et. al. [38], and Feller et. al. [11]
studied the patterns of following behavior; Conover et. al. [7], Wu et. al. [38],
and Suh et. al. [35] examined retweet behaviors; Hannon et. al. [12] and Yin
et. al. [42] proposed models for recommending following behavior; and Yang
et. al. [41], Dabeer et. al. [9], and Cui et. al. [8] proposed models for modeling
retweet behavior. However, most of these works (i) only consider a single type of
behaviors, or (ii) do not consider the user generated content when studying user
behaviors. Our model, on the other hand, allows different types of user behaviors
to be modeled simultaneously when modeling user generated content.

3 Community and Personal Interest (CPI) Model

In the CPI model, each tweet is a bags-of-words chosen from a vocabulary
denoted by Vt, and each behavior belongs to one of L behavior types. Each
type-l behavior is drawn from a set of all possible values denoted by Vbl. CPI
model has K latent topics, where each topic k has a multinomial distribution φk

over the vocabulary Vt and a multinomial distribution λlk over the vocabulary
Vbl for each behavior type-l.

The CPI model assumes that there are C mutually exclusive communities
and U users. Each community c has a multinomial distribution σc over the K
topics that represents interest of the community. The personal interest of each
user u is also represented by a topic distribution θu over the K topics. Each user
belongs to one of the C communities following a multinomial distribution π. We
denote the community of user u by cu. Moreover, each user u has a dependence
distribution μu which is a Bernoulli distribution indicating how likely the user
behaves according to her own personal interest (μ0

u) or according to interest of
her community (μ1

u = 1 − μ0
u). Lastly, we assume that θu, πu, σ, λl, and φ have

Dirichlet priors α, τ , η, γl, and β respectively, while μu has Beta prior ρ.
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Fig. 1. Plate notation for the CPI model

The generative process of CPI
model is shown in Figure 1. To
generate a tweet t for user u, we
first flip a biased coin yt (whose
bias is μu) to decide if the tweet
will be based on u’s personal
interest or that of her commu-
nity. If the coin is head up, (i.e.,
yt = 0), we then choose the topic
zt for the tweet according to u’s
topic distribution θu. Otherwise,
(i.e., yt = 1), we choose zt accord-
ing to her community’s topic dis-
tribution σcu . As tweets are short
with a limited number of charac-
ters, we assume that each tweet has only one topic. Once the topic zt is chosen,
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words in t are then chosen according to the topic’s word distribution φzt
. Sim-

ilarly, we assume the same process for all adopted behaviors, except that, for a
behavior b of type l, once the topic zb is chosen, the behavior is then sampled
according to the topic’s behavior distribution λlzb

. In summary, the generative
process is as follows.

– Sample the community distribution π ∼ Dirichlet(τ)
– For each k = 1, · · · , K, sample the k-th topic φk ∼ Dirichlet(β)
– For each c = 1, · · · , C, sample c-th community’s topic distribution σc ∼ Dirichlet(ηc)
– For each type of behavior l (l = 1, · · · , L), and each topic k, sample type-l’s k-th

behavior distribution λlk ∼ Dirichlet(γl)
– For each user u: sample the user’s community cu ∼ Dirichlet(π), topic distribution

θu ∼ Dirichlet(α), and dependence distribution μu ∼ Beta(ρ)
– Generate tweets for the user u: for each tweet t that u posts:

1. Sample coin yt ∼ Bernoulli(μu)
2. Sample topic for the tweet: if yt = 0, sample zt ∼ Multinomial(θu); otherwise

(yt = 1), sample zt ∼ Multinomial(σcu)
3. Sample the tweet’s words: for each word slot n, sample the word wt,n ∼

Multinomial(φzt)
– Generate behaviors for the user u: for each behavior b of type-l that u adopts:

1. Sample yb ∼ Bernoulli(μu)
2. Sample topic for the behavior: if yb = 0, sample zb ∼ Multinomial(θu); other-

wise (yu = 1), sample zb ∼ Multinomial(σcu)
3. Sample behavior instance b ∼ Multinomial(λlzb)

4 Model Learning

4.1 Gibbs Sampling

In learning the parameters of theCPImodel, we use collapsedGibbs sampler ([23])
to iteratively sample the latent variables (i.e., coins, topics, and communities) for
tweets, behaviors, and users. Due to the space limitation and its similarity to the
sampling for tweet, we do not present in the following the sampling for behaviors
and leave it out to the full version of this paper [37]. We also describe in [37] the
details about implementation and complexity of the learning procedure.

We use W and T to denote the number of words in the tweet vocabulary
Vt and the set of all tweets in the dataset respectively. For each user ui, we
denote her j-th tweet by tij . Each tweet tij is a bag-of-words with length Nij ,
i.e., tij = {wij

1 , · · · , wij
Nij

}, where each word wij
n is drawn from the vocabulary

Vt. Also, for each tweet tij , we denote its topic and coin by zi
j , yi

j respectively.
We use C to denote the bag-of-communities of all the users; and use Z and Y
to denote the bag-of-topics and bag-of-coins of all the tweets and behaviors. We
use Y−tij

and Z−tij
to denote the bag-of-coins and bag-of-topics, respectively, of

all the behaviors and all other tweets in the dataset except the tweet tij . Lastly,
we use C−cui

to denote the bag-of-communities of all the users except ui, and
use Z−ui

to denote the bag-of-topics of the tweets behaviors posted/adopted by
all other users except ui
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Sampling for Tweet tij. The coin yi
j is sampled according to Equations 1

and 2, while the topic zi
j is sampled according to Equations 3 and 4. In these

equations, ny(y, u,Y) records the number of times the coin y is observed in the
set of tweets and behaviors of user u. Similarly, nzu(z, u,Z) records the number
of times the topic z is observed in the set of tweets and behaviors of user u (i.e.,
those tweets and behaviors currently have coins 0); nzc(z, c,Z, C) records the
number of times the topic z is observed in the set of tweets and behaviors that
are tweeted/adopted based on interest of community c and by any user; and
nw(w, z, T ,Z) records the number of times the word w is observed in the topic
z for the set of tweets T and the bag-of-topics Z.

p(y
i
j = 0|rest) ∝

ny(0, ui, Y−ti
j
) + ρ0

1∑

y=0

(
ny(y, ui, Y−ti

j
) + ρy

)

nzu(z
i
j , ui, Z−ti

j
) + α

zi
j
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k=1
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j
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p(y
i
j = 1|rest) ∝
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)
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, Z−ti
j
, C) + η
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Sampling for User ui. The community cui
is sampled according to Equa-

tion 5. In the equation, nc(c, C) records the number of times the community
c is observed in the bag-of-communities C, and nz(z, u) records the number of
tweets/ behaviors of uare observed in the topic z and has coin 1.

p(cui
= c|rest) ∝

nc(c, C−cui
) + τcui

C∑

g=1

(
nc(g, C−cui

) + τg
)

K∏

z=1

[ nzc(z, c, Z−ui
, C−cui

) + ηcz

K∑

k=1

(
nzc(k, c, Z−ui

, C−cui
) + ηck

)

]nz(z,ui,Y,Z,B)

(5)

4.2 Semi-supervised Learning

The CPI model presented as above is totally unsupervised with two parame-
ters, i.e., number of topics K and number of communities C. In some settings,
however, we may have known the community labels for some users but not the
others. For example, a subset of users may explicitly share their political and
professional labels. By assigning users within the same known community labels
with the same community label (i.e., a value of c), and by fixing their community
label assignments during the sampling process (i.e., do not sample community
for those users), we can use CPI model as a semi-supervised model. On one
hand, this helps to bias the CPI model to more socially meaningful communi-
ties. On the other hand, this also helps to overcome the weakness of supervised
methods that require large number of labeled users in user classification task [6].
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4.3 Sparsity Regularization

Community Topic Regularization. To avoid learning trivial community top-
ics, community topic regularization aims to make every topic covered by mostly
one community. Trivial topics (see Section 1) are usually shared by almost all
users and hence are likely covered by multiple communities. Such topics are
less likely be clear community topics. In contrast, a community topic is pre-
ferred to be more unique among users within the community. We thus apply the
entropy based regularization technique [3] to obtain the sparsity in the distribu-
tion p(c|z). We implement this regularization in each coin and topic sampling
steps for tweets and behaviors since they are main steps to determine whether
a topic is community topic or personal interest topic. Again, due to the space
limitation, we do not present in the following the regularization in sampling for
behaviors and leave it out to [37].

When sampling coin for the tweet tij , we multiply the right hand side of Equa-
tions 1 and 2 with a corresponding regularization term Rcoin(y|cui

, zi
j) which is

defined by Equation 6. Similarly, when sampling topic for the tweet tij , we multi-
ply the right hand side Equation 4 with regularization term RtopicComm(z|cui

, tij)
which is defined by Equation 7. Lastly, when sampling community for user ui, we
multiply the right hand side of Equation 5 with a corresponding regularization
term R(c) which is defined by Equation 8.

Rcoin(y|cui
, z

i
j) = exp

(

−

(
H

yi
j
=y

(
p(cui

|zi
j)
)− EtopicComm

)2

2σ2
topicComm

)

(6)

RtopicComm(z|cui
, t

i
j) =
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exp
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=z
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|z′)
)− EtopicComm
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2σ2
topicComm

)

(7)

RtopicComm(c|ui) =

K∏

z=1

exp

(

−

(
Hcui

=c

(
p(c|z))− EtopiComm

)2

2σ2
topicComm

)

(8)

In Equations 6, 7, and 8, Hyi
j=y

(
p(cui

|zi
j)

)
is the empirical entropy of p(cui

|zi
j)

when yi
j = y; and Hzi

j=z

(
p(cui

|z′) and Hcui
=c

(
p(c|z)

)
has similar meaning with

respectively regards to p(cui
|z′) and p(c|z). The parameters EtopicComm and

σtopicComm are the expected mean and variance of the entropy of p(c|z) respec-
tively. These are pre-defined parameters. Obviously, with a small expected mean
EtopComm (which is corresponding to a skewed distribution), these regulariza-
tion terms (1) increase weight for values of y and z that give lower empirical
entropy of p(cui

|zi
j) (or p(cui

|zi,l
j ), hence increasing the sparsity of these distri-

butions; and (2) decrease weight for values of y and z that give higher empirical
entropy of p(cui

|zi
j) (or p(cui

|zi,l
j ), hence decreasing the sparsity of these distri-

butions. The expected variance σtopicComm can be used to adjust the strictness
of the regularization: smaller σtopicComm imposes stricter regularization. When
σtopicComm = ∞, the model has no regularization on p(c|z).

Community Distribution Regularization. Even with the above community
topic regularization, we may still have an extreme case where there is a com-
munity that (1) includes all if not most of the users, and (2) covers largely
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trivial topics. To avoid this extreme case, we need to achieve a balance of user
populations among the communities, i.e., we need to regularize the community
distribution so that it is not too skewed to a certain community. To achieve this,
we again use entropy based regularization technique [3] to facilitate a balanced
community distribution p(c). We implement this regularization in each commu-
nity sampling step for users since it is the main step to determine the community
distribution. That is, when sampling community for user ui, we also multiply
the right hand side of Equation 5 with the regularization term defined by the
Equation 9.

Rcomm(c|ui) = exp

(

−

(
Hcui

=c

(
p(c)
)− Ecomm

)2

2σ2
comm

)

(9)

In Equation 9, Hcui
=c

(
p(c)

)
is the empirical entropy of p(c) when cui

= c. Simi-
lar to above, the pre-defined parameters Ecomm and σcomm are the expected mean
and variance of the entropy of p(c) respectively. With a high enough expected
mean value of Ecomm (which corresponds to a balanced distribution), this regu-
larization term (1) decreases the weight for values of c that give lower empirical
entropies of p(c) (and hence increases the balance of the distribution); while (2)
increases weight for values of c, that give higher empirical entropies of p(c) (and
hence decreases the balance of these distributions). Similarly, the expected vari-
ance σcomm can be used to adjust the strictness of the regularization: smaller
σtopicComm imposes stricter regularization. When σcomm = ∞, the model has no
regularization on p(c).

In our experiments, we set EtopicComm = 0 (this is corresponding to the case
where each topic is assigned to at most one community) and σtopicComm = 0.2;
and set Ecomm = ln(C) where C is the number of the communities (this is
corresponding to the case where the communities are perfectly balanced), and
σcomm = 0.3. We also used symmetric Dirichlet hyperparameters with α =
50/K, β = 0.01, ρ = 2, τ = 1/C, η = 50/K, and γl = 0.01 for all l = 1, · · · , L.
Given the input dataset, we train the model with 600 iterations of Gibbs sam-
pling. We took 25 samples with a gap of 20 iterations in the last 500 iterations
to estimate all the hidden variables.

5 Experimental Evaluation

5.1 Dataset

We collected tweets from a set of Twitter users who are interested in software
engineering for evaluating the CPI model. To construct this dataset, we first
utilized the list of 100 most influential software developers in Twitter provided
in [18] as seed users. These are highly-followed users who actively tweet about
software engineering topics, e.g., Jeff Atwood1, Jason Fried2, and John Resig3.
We further expanded the user set by adding all users following at least five seed
users so as to get more technology savvy users. Lastly, we took all tweets posted
1 http://en.wikipedia.org/wiki/Jeff Atwood
2 http://www.hanselman.com/blog/AboutMe.aspx
3 http://en.wikipedia.org/wiki/John Resig

http://en.wikipedia.org/wiki/Jeff_Atwood
http://www.hanselman.com/blog/AboutMe.aspx
http://en.wikipedia.org/wiki/John_Resig
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by these users in August to October 2011 to form the experimental dataset. In
this work, we consider the following behavior types: (1) mention, and (2) hashtag,
and (3) retweet. These are messaging behaviors beyond content generation that
users may adopt multiple times.

We employed the following preprocessing steps to clean the dataset. We first
removed stopwords from the tweets. Then, we filtered out tweets with less than
3 non-stopwords. Next, we excluded users with less than 50 (remaining) tweets.
Lastly, for each behavior, we filtered away the behaviors with less than 10 adopt-
ing users; and for each user and each type of behaviors, we filtered out all the
user’s behaviors if the user adopted less than 50 behaviors of the type. These
minimum thesholds are necessary so that, for each behavior and each user, we
have enough number of adoption observations for learning both influence of the
user’s personal interest and that of her community on behavior adoption.

Table 1. Statistics of the
experimental dataset

#user 14,595
#labeled users 3,023

#tweets 3,030,734
#mention adoptions 354,463
#hashtag adoptions 894,619
#retweet adoptions 909,272

Based on the biographies of the users, we were
able to manually label 3,023 users, including 2,503
Developers and 520 Marketers. The labeling
work is mostly unambiguous as the biographies are
quite short and clear, and only users with explicit
declaration of their professionals were labeled. We
therefore used these labels as ground truth commu-
nity labels in our experiments.

Table 1 shows the statistics of the experimental dataset after the preprocess-
ing steps. The statistics show that the dataset after the filtering is still large.
This allows us to learn the parameters accurately.

5.2 Experimental Tasks

Content Modeling. In this task, we compare CPI against TwitterLDA
model [44] in modeling topics in the content. TwitterLDA is among state-
of-the-art modeling methods for microblogging content. To evaluate the perfor-
mance, we run both models with the number of topics varied from 10 to 100.

User Classification. In this task, we evaluate the performance of the CPI
model as a semi-supervised learner (see Section 4.2). The task is chosen since:
(1) we have ground truth community labels (Developer and Marketer) for only
a small fraction of users the dataset (20.7%); and (2) the supervised learning
approach for user classification in microbloggings may not practical as shown in
[6]. We compare CPI model against the state-of-the-art semi-supervised learning
(SSL) methods provided in [36]. Those are label propagation based methods
which iteratively update label for each (unknown label) user u based on labels
of the other users who are most similar to u. Here, we use cosine similarity
between pairs of users. We represent each user as a vector of features, which
include: (a) tweet-based features, and (b) bags-of-behaviors of the users. The
tweet-based features for each user are the components in topic distribution of
the user’s tweets discovered by TwitterLDA model. For the CPI model, we
set the communities to 3 since: (a) it is reasonable to have one more community
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in each of the two datasets since there are users who do not belong to any of
the two manually identified communities; and (b) this is to ensure that the CPI
model run with the same settings as the SSL baseline methods.

5.3 Evaluation Metrics

We adopt likelihood and perplexity for evaluating the content modeling task. To
do this, for each user, we randomly selected 90% of tweets of the user to form a
training set, and use the remaining 10% of the tweets as the test set. Then for
each method, we compute the likelihood of the training set and perplexity of the
test set. The method with a higher likelihood, or lower perplexity is considered
better for the task.

For user classification task, we adopt average F1 score as the performance
metric. We first evenly distributed the set of labeled users in each dataset into 10
folds such that, for each user label, every fold has the same proportion of users
having the label. Then, for each method, we run 10-fold cross validation. More
precisely, for each method and each time, we chose 1 fold of labeled users as test
set. We hide label of user in this fold and consider them as unlabeled users. Then,
we use 9 remaining folds of labeled users and all unlabeled users as the (semi-)
training set. We then compute the average F1 score obtained by each method in
both label classes (i.e., Developer and Marketer). The method with a higher
score is the winner in the task.
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Fig. 2. (a) Likelihood and (b) Perplexity of TwitterLDA and CPI models in the
content modeling task; and (c) Average F1 scores of SSL and CPI models in the user
classification task

5.4 Results

ContentModeling.Figures 2 (a) and (b) show theperformance ofTwitterLDA
model and CPI model in content modeling task when varying the number of top-
ics K. As expected, larger number of topics K gives larger likelihood and smaller
perplexity, and the amount of improvement diminishes as K increases. The figures
show that CPI model significantly outperforms TwitterLDA model in the task.
Considering both time and space complexities, we set the number of topics to 80
for the remaining experiments.

User Classification. Figure 2 (c) shows the performance of SSL methods and
the CPI model in the user classification task. In the figure, the SSL bar shows
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Table 2. Top topics of each community found by different models

Community
TwitterLDA+SSL CPI

Topic Topic Label Prob Topic Topic Label Prob

Developer
32 Daily activities 0.072 46 Programming languages 0.57
77 Programming languages 0.052 36 Project hosting services 0.34
64 Daily life 0.036 71 Operating systems 0.03

Marketer
57 Online marketing 0.142 7 Online marketing 0.987
72 Business 0.098 78 Mobile business 0.009
4 Social networks 0.056 59 Technology business 0.003

the best performance obtained by methods provided in [36]. The figure clearly
shows that the CPI model significantly outperforms the SSL baseline methods
in the task.

5.5 Topic Analysis

Community Topics. We now examine the representative topics for each com-
munity as found by the CPI model and TwitterLDA in both the two datasets.
As the TwitterLDA model does not identify community for each user, we first
use the best user classifier among the learnt SSL classifiers to determine com-
munity for all the users. We then compute topic distribution of each community
by aggregating topic distributions of all users within the community.

Table 2 shows the top topics for each ground truth community in the experi-
mental dataset found by TwitterLDA+SSL method and CPI model. Note
that the topic labels are manually assigned after examining the topics’ top
words4) and top tweets. For each topic, the topic’s top words are the words
having the highest likelihoods given the topic, and the topic’s top tweets are the
tweets having the lowest perplexities given the topic. Table 2 clearly shows that
the top topics found by TwitterLDA+SSL method are neither clear (as their
proportions are small) nor socially meaningful (e.g., topic 32 (Daily activities) or
topic 64 (Daily life)). On the other hand, the table also shows that the top topics
for each community as found by the CPI model are both clear (as the commu-
nities are extremely skewed to the topics) and socially meaningful (e.g., topic
46 (Programming languages) for Developer community; and topic 7 (Online
marketing) for Marketer community). These top topics are also semantically
reasonable. It is expected that the Developer community are mainly interested
in programming related topics, and the Marketer community are mainly inter-
ested in marketing related topics.

Table 3. Top personal interest top-
ics found by CPI

Topic Topic Label Probability
34 Entertainment 0.054
33 Daily life 0.041
39 Smartphone 0.031

Personal Interest Topics. Next, we exam-
ine the representative personal interest topics
found by CPI model. Table 3 shows the top
topics in aggregated personal topic distribu-
tions of all users in the dataset. The table
clearly shows that these representative top-
ics are reasonable. It is expected that the
top personal interest topics include Enter-
tainment (topic 34) and a trivial topic (Daily
4 The top words of topics found by the models are not shown here due to the space

limitation.
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Table 4. Top behaviors of representative topics found by CPI model

Topic Top hashtags Top mentions Top retweeted

7
#seo,#socialmedia,#marketing @jeffbullas,@leaderswest mashable,sengineland
#sm,#marketin,#facebook @markwschaefer,@smexamine marketingland,jeffbullas

34
#debat,#debate,#debate201 @twitter,@mike,@nytimes robdelaney,pourmecoffee
#vpdebat,#breakingbad @mat,@medium,@branch anildash,theonion

36
#fail,#ruby,#nodejs @twitter,@github,@dropbox codinghorror,oatmeal
#github,#mongodb,#android @kickstarter,@newsycombinator rickygervais,github

46
#javascript,#programming @github,@skillsmatter,@twitter codinghorror,garybernhardt
#java,#ruby,#python,#php @rubyrogues,@steveklabnik steveklabnik,dhh,mfeathers

78
#mobile,#mobil,#facebook @techcrunc,@sa,@mashabl techmeme,gigaom,mashable
#app,#retail,#advertising @fastcompan,@mediapos allthingsd,sai,techcrunch

life - topic 33). It is also expected that a technology related topic (Smartphone -
topic 39) is among the top personal interest topics of users in the experimental
dataset as most of its users are working in IT industry. This also shows the
effectiveness of our regularization technique in differentiating between trivially
popular topics and socially meaningful ones so that to assign the formers to user
personal interest, and assign the latter to community interest.

5.6 User Behaviors Analysis

Lastly, we examine the user behaviors associated with the result topics. Table 4
show some of representative topics (shown in Tables 2 and 3) together with the
topics’ top behaviors. For each topic, the topic’s top behaviors are the behaviors
having the highest likelihoods given the topic. The table show that the extreme
behaviors for each of the topics are reasonable. For example, it is expected that
people use marketing and social media related hashtags (#seo, #socialmedia,
#marketing, etc.), mention online marketers and bloggers (@jeffbullas, @leader-
swest, @markwschaefer, etc.), and retweet from marketing magazines (mashable,
sengineland, marketingland) for topic Online marketing (topic 7); people also
use programming related hashtags (#javascript, #programming, #java, ruby,
etc.), mention big IT companies and hosting services (@twitter, @github, etc.),
and retweet from influential developers (codinghorror, garybernhardt, steveklab-
nik, etc.) for topic Programming languages (topic 46). A qualitatively similar
result holds for the remaining topics as well as topics that are not shown in the
two tables. We leave out these analysis due to the space limitation.

6 Conclusion

In this paper, we propose a novel topic model for simultaneously modeling mutu-
ally exclusive community and user topical interest in microblogging data. Our
model is able to integrate both user generated content and multiple types of
behaviors to determine user and community interests, as well as to derive the
influence of each user’s community on her generated content and behaviors. We
also report experiments on a Twitter dataset showing the improvement of the
proposed model over other state-of-the-art models in content modeling and user
classification tasks.

In the future, we would like to extend the proposed model to incorporate
social factors in studying user generate content and behavior. These factors
include the users’ interaction, their social communities, and the temporal and
spatial dynamics of the users and the communities.
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Abstract. Jumping Emerging Patterns (JEP) are patterns that only
occur in objects of a single class, a minimal JEP is a JEP where none of
its proper subsets is a JEP. In this paper, an efficient method to mine the
whole set of the minimal JEPs is detailed and fully proven. Moreover,
our method has a larger scope since it is able to compute the essential
JEPs and the top-k minimal JEPs. We also extract minimal JEPs where
the absence of attributes is stated, and we show that this leads to the
discovery of new valuable pieces of information. A performance study is
reported to evaluate our approach and the practical efficiency of minimal
JEPs in the design of rules to express correlations is shown.

Keywords: Pattern mining · Emerging patterns · Minimal jumping
emerging patterns · Ruled-based classification

1 Introduction

Contrast set mining is a well established data mining area [14] which aims at
discovering conjunctions of attributes and values that differ meaningfully in their
distributions across groups. This area gathers many techniques such as subgroup
discovery [17] and emerging patterns [2]. Because of their discriminative power,
contrast sets are highly useful in supervised tasks to solve real world problems
in many domains [1,7,12].

Let us consider a dataset of objects partitioned into several classes, each
object being described by binary attributes. Initially introduced in [2], emerg-
ing patterns (EPs) are patterns whose frequency strongly varies between two
datasets. A Jumping Emerging Pattern (JEP) is an EP which has the notable
property to occur only in a single class. JEPs are greatly valuable to obtain
highly accurate rule-based classifiers [8,9]. They are used in many domains like
chemistry [12], knowledge discovery from a database of images [7], predicting
or understanding diseases [3], or DNA sequences [1]. A minimal JEP designates
a JEP where none of its proper subsets is a JEP. Minimal JEPs are of great
interest because they capture the vital information that cannot be skipped to
characterize a class. Using more attributes may not help and even add noise in
a classification purpose. Mining minimal JEPs is a challenging task because it is
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 722–733, 2015.
DOI: 10.1007/978-3-319-18038-0 56
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a time consuming process. Current methods require either a frequency thresh-
old [4] or a given number of expected patterns [16]. On the contrary, one of the
results of this paper is to be able to compute the whole set of minimal JEPs.

The contribution of this paper can be summarized as follows. First, we intro-
duce an efficient method to obtain all minimal JEPs. A key idea of our method
is to introduce an alternative definition of a minimal JEP which stems from
the differences between pairs of objects, each of a different class. A backtrack
algorithm for computing all minimal JEPs is detailed and the related proofs are
provided. Our method does not require either a frequency threshold or a number
of patterns to extract. It provides a general approach and its scope encompasses
the essential JEPs [4] (i.e., JEPs satisfying a given minimal frequency thresh-
old) and the k most supported minimal JEPs [16] which constitute the state
of the art in this field. Second, taking into account the absence of attributes
may provide interesting pieces of knowledge to build more accurate classifiers
as experimentally shown by Terlecki and Walczak [15]. We address this issue.
Our method integrates the absence of attributes in the process by adding their
negation. It produces the whole set of minimal JEPs both with the present and
absent attributes. Practical results advocate in favor of this addition of negated
attributes in the description of the objects. Third, the results of an experimental
study are given. We analyze the computation of the minimal JEPs, including the
absence of attributes and comparisons with essential JEPs and top-k minimal
JEPs. Finally, we experimentally assess the quality of minimal JEPs, essential
JEPs and top-k minimal JEPs as correlations between a pattern and a class.

Section 2 gives the preliminaries. The description of our method is provided
in Section 3. Section 4 presents the experiments. We review related work in
Section 5 and we round up with conclusions and perspectives in Section 6.

2 Preliminaries

Let G be a dataset, a multiset consisting of n elements, an element of G is named
an object. The description of an object is given by a set of attributes, an attribute
being an atomic proposition which may hold or not for an object. The finite set
of all the attributes occurring in G is denoted by M. In the remainder of this
text, for the sake of simplicity, the word “object” is also used to designate the
description of an object.

A pattern denominates a set of attributes, an element of the power set M,
denoted P(M). A pattern is included in the object g if p is a subset of the
description of g: p ⊆ g. The extent of a pattern p in G, denoted p′

G , corresponds
to the set of the objects that include p: p′

G = {g ∈ G : p ⊆ g}. A pattern is
supported if it is included in at least one object of the dataset. Moreover, we
define a relation, I, on G × P(M) as follows: for any object g and any pattern
p, gIp ⇐⇒ p ⊆ g.

Usual data mining methods only consider the presence of attributes. With
binary descriptions, the absence of an attribute can be explicitly denoted by
adding the negation of this attribute in order to build patterns conveying this
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Table 1. A dataset of 6 objects

Objects
Attributes

1 ¬1 2 ¬2 3 ¬3 4 ¬4

G+
g1 x x x x
g2 x x x x

G−
g3 x x x x
g4 x x x x
g5 x x x x
g6 x x x x

Table 2. Differences from the dataset in
Table 1

g3 g4 g5 g6

g1 1,3,¬2 1,¬2 1 ¬2,4
g2 3,¬4 ¬4 2,¬4 ¬1

D•j 1,3,¬2,¬4 1,¬2,¬4 1,2,¬4 ¬1,¬2,4

information. We integrate this idea in this paper by adding the negation of
absent attributes and thus the description of an object always mentions every
attribute either positively or negatively. In other words, M explicitly contains
the negation of any of its attributes, the symbol ¬ is used to denote the negation
of an attribute (cf. Table 1 as an example).

Minimal Jumping Emerging Pattern. We now suppose that the dataset G is
partitioned into two subsets G+ and G−, every subset of such a partition is
usually named a class of the dataset. We call an object of G+ a positive object
and an object of G− a negative object. We say that a supported pattern p is a
JEP if it is never included in any negative object: p′

G �= ∅ and p′
G ⊆ G+.

A JEP is minimal if it does not contain another JEP as a proper subset.
The set of the minimal JEPs is a subset of the set of the JEPs which groups all
the most general JEPs. As a JEP contains at least one minimal JEP, when an
object includes a JEP then it includes a minimal JEP.

Table 1 displays a dataset of 6 objects partitioned in two datasets: G+ =
{g1, g2} and G− = {g3, g4, g5, g6}. The pattern p = {1,¬2} is a JEP as p′

G+
=

{g1} and p′
G− = ∅ and {1} and {¬2} are not JEPs, p is thus a minimal JEP.

3 Contribution

Section 3.1 introduces the key notion of a difference between two objects, it pro-
vides a new definition of a minimal JEP. The latter is the support of our algo-
rithm for extracting minimal JEPs which is detailed and proven in Section 3.2.

3.1 A Relation Between the Minimal JEPs and the Differences
Between Objects

Let G be a dataset partitioned into two subsets G+ and G−. The difference
between an object i and an object j groups the attributes of i that are not
satisfied by j: Di,j = i \ j = {m ∈ M : i I m and ¬j I m}. When one focuses
on a negative object j, the gathering of the differences for a negative object j
corresponds to the union of the differences between i and j, for any positive
object i: D•j = ∪i∈G+Di,j . In Table 2, the gathering of the differences for the
negative object 4 is D•4 = D1,4 ∪ D2,4 = {1,¬2} ∪ {¬4} = {1,¬2,¬4}.

The following lemma is a direct consequence of the definition of the gathering
of the differences for a negative object.
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Lemma 1. Let j be a negative object and p be a pattern. If D•j ∩ p �= ∅ then p
is not included in j : ¬(j I p).

It follows that, if a supported pattern p intersects with every gathering of the
differences for a negative object and, thanks to Lemma 1, p cannot be included
in any negative object, thus p is a JEP. We now reason by contraposition and
we suppose that a supported pattern p does not intersect with the gathering of
the differences for one negative object j0: D•j0 ∩ p = ∅ . If p is supported by a
positive object i0, as D•j0 ∩ p = ∅ implies Di0,j0 ∩ p = ∅, then p is supported by
j0. Thus p cannot be a JEP.

A JEP corresponds to a supported pattern which has at least one attribute
in every D•j , for j a negative object. Proposition 1 follows:

Proposition 1. A supported pattern p is a JEP if D•j ∩ p �= ∅, ∀j ∈ G−

On the example, the JEP p = {1,¬2} intersects with every D•j (see Table
2): D•g3 ∩ p = {1,¬2},D•g4 ∩ p = {1,¬2} , D•g5 ∩ p = {1} and D•g6 ∩ p = {¬2}.

We now establish a relation between the gathering of the differences and the
minimal JEPs.

Proposition 2. A JEP p is a minimal JEP if, for every attribute a of p, ∃j ∈
G− such that p ∩ D•j = {a}.

On the example, the JEP p = {3, 1,¬2} is not a minimal JEP since it contains
the JEP {1,¬2}. Proposition 2 gives another point of view: since no intersection
between p and a D•j (for j a negative object) corresponds to {3}, the attribute
{3} does not play a necessary part in the discriminative power of p, thus p is
not a minimal JEP.

Proof (of Proposition 2). Let p be a JEP.
Suppose p is not minimal: there exists a JEP q, different from p, such that

q � p. Consider an attribute a such that a ∈ p\q. As q is a JEP, Prop. 1 imposes
that ∀j ∈ G−, q ∩ D•j �= ∅, it ensues that ∀j ∈ G−, p ∩ D•j �= {a}. One now
can state that, if p is not minimal, then p contains one attribute a such that
∀j ∈ G−, p ∩ D•j �= {a}.

Conversely, suppose there exists an attribute a in p such that ∀j ∈ G−, p ∩
D•j �= {a}. As p is a JEP, Prop. 1 ensures that D•j ∩ p �= ∅, ∀j ∈ G−. It follows
that, ∀j ∈ G−,D•j ∩ p \ {a} �= ∅. By applying Prop. 1, p \ {a} is a JEP and p
cannot be minimal. �

Prop. 2 states that a minimal JEP is a supported pattern that excludes all
the negative objects and where every attribute is necessary to exclude (at least
one) object. It follows:

Consequence of Prop. 2. Let p be a minimal JEP for the dataset G+ ∪ G− and
g− ∈ G−. If p is not a minimal JEP for the dataset G+ ∪ G− \ {g−} then there
exists a unique attribute a, a ∈ p, such that p\{a} is a minimal JEP for the
dataset G+ ∪ G− \{g−}.
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3.2 Calculation of the Minimal JEPs

We now introduce a structure designed to generate all the minimal JEPs for a
dataset: a rooted tree whose “valid” leaves are in a one-to-one correspondence
with the minimal JEPs. We suppose here that for ∀j ∈ G−, D•j �= ∅, as it follows
from Prop. 1 that this condition is a necessity for the existence of at least one
minimal JEP. We also assume that an arbitrary order is given on the negative
objects: for two negative objects j and j′, j ≺ j′ if j is accounted before j′.

Rooted Tree. A rooted tree (T, r) is a tree in which one node, the root r, is
distinguished. In a rooted tree, any node of degree one, unless it is the root, is
called a leaf. If {u, v} is an edge of a rooted tree such that u lies on the path
from the root to v, then v is a child of u. An ancestor of u is any node of the
path from the root to u. If u is an ancestor of v, then v is a descendant of u, and
we write u � v; if u �= v, we write u < v.

A Tree of the Minimal JEPs. We create the tree (T, r) as a rooted tree in which
each node x, except the root r, holds two labels: an attribute, lattr(x) ∈ M, and a
negative object lobj(x) ∈ G−. For a node x of (T, r), Br(x) gathers the attributes
that occur along the path from the root to x: Br(x) = {lattr(y), y � x};
Br(x) indicates the pattern considered at x. For any node x of T and any
attribute a, a ∈ Br(x), crit(a, x) gathers the negative objects already considered
at the level of x and whose exclusion is due to the sole presence of a in Br(x):
crit(a, x) = {j � lobj(x) : D•j ∩ Br(x) = {a}}.

Definition 1 (A tree of the minimal JEPs (ToMJEPs)). A rooted tree
(T, r) is a tree of the minimal JEPs for G if:

i) any node x, except the root r, holds two labels: an attribute label, lattr(x) ∈
M, and a negative object label, lobj(x) ∈ G−.

ii) if x is an internal node then:
a) the children of x hold the same negative object label: lobj(y) = min{j ∈

G− : D•j ∩ Br(x) = ∅},∀y a child of x,
b) every child of x holds a different attribute label,
c) the union of the attribute labels of the children y of x corresponds to

D•lobj(y).
iii) x is a leaf if it satisfies one of the following conditions:

a) ∃z � x such that crit(lattr(z), x) = ∅,
b) ∀j ∈ G−, D•j ∩ Br(x) �= ∅.

A leaf which satisfies the criteria iii)a) is named dead-end leaf, otherwise it
is named a candidate leaf.

Figure 1 depicts a ToMJEPs for the dataset of Tables 1 and 2. The nodes
with a dashed line are the dead-end leaves, the nodes surrounded by a solid
line the candidate leaves. A candidate leaf surrounded by a bold plain line is
associated to a supported pattern: it represents a minimal JEP. For example, the
node x such that Br(x) = {1,¬2} is associated to a minimal JEP while the node
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Fig. 1. Example of a tree for minimal JEPs

y such that Br(y) = {¬4,¬2} is associated to a pattern which is not supported
by the dataset. The node z such that Br(z) = {3,¬2} is a dead-end leaf: since
∀j ∈ { g3, g4}, {3,¬2} ∩ D•j �= {3}, the attribute 3 does not fulfill the constraint
raised by Prop. 2, thus crit(3, z) = ∅.

We will now demonstrate that there is a one-to-one mapping between the
“supported” candidate leaves of a ToMJEPs and the minimal JEPs. The follow-
ing lemma is an immediate consequence of the definition of a ToMJEPs, together
with the application of Prop. 1 and 2.

Lemma 2. Let (T, r) be a ToMJEPs and x be a node of T , different from a dead-
end leaf. If there exists i ∈ G+ such that i I Br(x) then Br(x) is a minimal
JEP for the dataset G′ = G+ ∪ {j ≤ lobj(x)}.
Proof. By definition of a ToMJEPs, for a node x, we have Br(x)∩D•j �= ∅,∀j ≤
l ≤ lobj(x). Thanks to Prop. 1, it follows that Br(x) is a JEP for G+ ∪ {j ≤
lobj(x)}.

If x is not a dead-end leaf, by definition of a ToMJEPs, we have ∀z ≤
x, crit(lattr(z), x) �= ∅, thus ∀a ∈ Br(x), ∃j ∈ ∪{j ≤ lobj(x)} such that Br(x)∩
D•j = {a}. Prop. 2 ensures that Br(x) is a minimal JEP for the dataset
G+ ∪ {j ≤ lobj(x)}. �
Lemma 3. Let (T, r) be a ToMJEPs. Let p be pattern. If p is a minimal JEP
for the dataset G+ ∪ G− then there exists a unique candidate leaf x such that
Br(x) = p.

Proof. The proof reasons inductively on G−. For a sake of simplicity, we denote
here the set of the negative objects as {1, . . . , k} with k = |G−| and ∀1 ≤ j ≤
k − 1, j ≺ j + 1.

Definition 1 implies that the children of the root r deal with 1 (the first
negative object), we have D•1 = {lattr(x) : x is a child of r}. Moreover, as
by definition of a ToMJEPs, crit(lattr(x), x) �= ∅, no child of r is a dead-end
leaf. Thus, associated to any pattern p which is a minimal JEP for the dataset
G+ ∪ {1}, there is a unique node x, different from a dead-end leaf such that
Br(x) = p.
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Let us now suppose that, considering any minimal JEP p for G+ ∪ {1, . . . , l}
with l < k, there exists a unique node x, different from a dead-end leaf, such
that Br(x) = p. When we consider a pattern q, minimal JEP for the dataset
G+ ∪ {1, . . . , l, l + 1}, two cases arise:

– If q is a minimal JEP for G+ ∪ {1, . . . , l}, then, thanks to the induction
hypothesis, there exists a unique node xq such that Br(xq) = q.

– Otherwise, thanks to the consequence of Prop. 2, there exists one attribute
a such that D•l+1 ∩ q = {a} and D•j ∩ a �= {a},∀j � l. Prop 2 ensures
that q \ {a} is minimal JEP for G+ ∪ {1, . . . , l}. Thanks to the induction
hypothesis, there exists a unique node x, different from a dead-end leaf, such
that Br(x) = q\{a}. By definition of a ToMJEPs, there exists a unique child
of x, such that Br(q) = x. As q is a minimal JEP, x is not a dead-end leaf.
�
Prop. 3 is a consequence of Lemmas 2 and 3:

Proposition 3 (One-To-One correspondence). Let (T, r) be a ToMJEPs.
There is a one-to-one correspondence between the set of the candidate leaves x
such that Br(x) is a supported pattern and the set of the minimal JEPs.

Prop. 3 ensures that we can generate the minimal JEPs by simply performing
a depth first traversal of a ToMJEPs and output the candidate leaves such that
Br(x) is a supported pattern. Note that it is not necessary to compute and store
the entire ToMJEPs. A depth first traversal only requires to store the path from
the root to the node currently visited.

The sketch of implemention provided in Section 4.1 gives information about
the calculation of the extent, the calculation of the essential JEPs and the top-k
minimal JEPs that are inferred from a ToMJEPs.

4 Experimental Evaluation

This section provides and comments results from a study conducted on 13 bench-
mark datasets. We investigate the computation of the JEPs according to running
time, setting a minimum frequency threshold. It also indicates the reliability of
correlation between a JEP and a class. In the following, a JEP denominates a
supported pattern with respect to any class.

4.1 Material and Methods

The datasets. The study is conducted on 13 usual datasets described in Table 3.
All the datasets are available from the UCI Machine Learning repository [10].
We selected these datasets because they have been used, at least once, in an
experimental assessment of JEPs [3,4,16]. Non binary attributes were converted
into a binary valued format by applying a sanctioned method [6,11] which is
available at Frans Coenen’s website1.
1 http://cgi.csc.liv.ac.uk/∼frans/KDD/Software/LUCS-KDD-DN/exmpleDNnotes.

html

http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/exmpleDNnotes.html
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/exmpleDNnotes.html


Minimal Jumping Emerging Patterns 729

Table 3. The datasets and their characteristics

Datasets Objects Attributes Classes Datasets Objects Attributes Classes
breast 699 20 2 mushroom 8124 90 2
congres 435 34 2 pima 768 38 2
ecoli 336 34 8 tic-tac-toe 958 29 2
glass 214 48 7 waveform 5000 101 3
heart 303 52 5 wine 178 68 3

hepatitis 155 56 2 zoo 101 42 7
iris 150 19 3

Implementation. Our algorithm partially explores a ToMJEPs in a depth first
manner, it outputs every candidate leaf whose associated pattern is a supported
one. We implemented two solutions to ensure to only output supported pat-
terns. The first one, called post-filtering solution, generates all the candidate
leaves and then checks whether their extent is empty or not. The second one,
named maintaining extent solution, integrates the computation of the extents
with the calculation of the child of an internal node of a ToMPJEPs. It enables
to backtrack as soon as the extent is empty.

Moreover, when a minimum frequency threshold is provided, the maintain-
ing extent solution is straightforwardly adapted to improve the computing of the
essential JEPs. Indeed, the frequency of candidate essential JEPs [4] is directly
derived from the cardinality of the extent. For the same reason, this solution
also enables to compute the top-k minimal JEPs [16] when a value for k is pro-
vided. Moreover, the pruning strategy becomes more and more efficient during
the mining step because the minimal frequency threshold to belong to the top-k
minimal JEP only increases during the mining.

Protocol. In order to compute all the minimal JEPs whatever the positive class
is, we successively consider each class (of the dataset) as the positive class while
the union of the others classes constitutes the negative class. Computations were
performed on a server using Ubuntu 12.04 with 2 processors Intel Xeon 2.80 GHz
and 512 gigabytes of RAM.

4.2 Results and Discussions

Computation of the Minimal JEPs. We computed all the minimal JEPs on the
13 selected datasets, by using the post-filtering and maintaining extent solutions.
Moreover, essential JEPs are computed with two minimum frequency thresholds
(1% and 5%), and the top-k JEPs with k = 10 and k = 20. Table 4 gives the
cardinalities of the sets of the minimal JEPs and the running times. For comput-
ing all the minimal JEPs, the maintaining extent solution always operates faster
than the post-filtering solution, by a factor varying from 1.6 to 3. By observing
the results for the essential JEPs and top-k minimal JEPs, one notes that the
running time decreases significantly when a minimal threshold is set for the car-
dinality of the extent. The use of a frequency constraint related to the cardinality
of the extent is efficient, obviously there is the risk to miss interesting patterns.

Minimal JEPs as Rules to Express Correlations. A JEP expresses a correlation
between the occurrence of a pattern and one class of objects. This part provides
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Table 4. Computation of minimal JEP including negation of attributes

All minimal JEPs Essential JEPs Top-K minimal JEPs

post-filtering maintaining extent 1% 5% 10 20

Datasets Min.JEPs Time Time Time Time Time Time

iris 40 70.564 ms 24.348 ms 14.316 ms 9.783 ms 13.043 ms 17.303 ms

breast 38 924.998 ms 347.572 ms 190.432 ms 79.198 ms 95.212 ms 119.213 ms

ecoli 200 842.345 ms 353.734 ms 173.658 ms 98.982 ms 134.314 ms 136.712 ms

zoo 3323 1339.008 ms 579.208 ms 232.023 ms 101.032 ms 67.178 ms 79.032 ms

pima 1443 7.323 s 3.093 s 895.053 ms 532.123 ms 1.009 s 1.694 s

glass 59747 27.172 s 12.418 s 6.927 s 3.241 s 1.439 s 2.081 s

congres 55449 89.396 s 38.077 s 19.145 s 8.380 s 3.107 s 4.929 s

hepatitis 410404 123.520 s 53.706 s 25.576 s 14.419 s 2.978 s 3.097 s

heart 122865 3.351 mn 1.194 mn 29.560 s 15.201 s 9.432 s 8.921 s

tic-tac-toe 109949 5.664 mn 2.797 mn 55.860 s 13.182 s 4.541 s 6.325 s

wine 1353996 200.321 mn 99.366 mn 58.053 mn 36.324 mn 8.342 mn 11.821 mn

mushroom 17345228 673.563 mn 423.116 mn 192.743 mn 101.765 mn 27.545 mn 50.325 mn

waveform 23895434 1845.431 mn 954.190 mn 421.813 mn 238.425 mn 47.342 mn 59.175 mn

experimental results to assess the interest of such rules: do these rules cover a
large part of the objects? Are they confident enough? We have also performed
experiments to evaluate the usefulness of the explicit description of the absent
attributes by adding their negations.

The study has been conducted by using a leave-one-out framework: every
object has been successively discarded from the dataset. For every object g, the
minimal JEPs have been extracted by considering G \{g} as the dataset and the
resulting rules have been applied on g.

Table 5 provides results obtained by applying minimal JEPs, essential JEPs,
or top-k minimal JEPs as association rules. No Negated attributes designates the
descriptions which do not explicitly take into account the absence of attributes
whereas With Negated attributes points the descriptions that explicitly consider
the absence of attributes. The column Cov denotes the coverage of the set of
association rules (the part of the objects for which at least one association rule
has applied). The column Con refers to the average confidence (i.e., the ratio
between the number of correct applications of the rules over the whole number
of applications of the rules). For example, if we consider the dataset named breast,
whith the No Negated attributes description, 47.78% of the objects contain at
least one minimal JEP, this coverage raises to 49.33% of the objects when the
descriptions With Negated attributes are accounted. With the same dataset, by
using the No Negated attributes description, 98.19% of the rules resulting from
a minimal JEP apply on an object of the proper class ; this average confidence
slightly decreases to 96.13% when the No Negated attributes description is used.

First of all, the JEPs often apply on a large portion of the objects: for 7
datasets among the 13 datasets, more than 80% of the objects contain at least
one JEP. Note that this coverage increases when the description turns from No
Negated attributes to With Negated attributes, up to 8% for the hepatitis dataset.

The average confidences indicate that minimal JEPs often point a reliable asso-
ciation between a pattern and a class, even when no frequency constraint is set.
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Table 5. Evaluation of minimal JEPs as rules to express correlations

N
o

n
eg

a
ted

a
ttrib

u
tes

W
ith

N
eg

a
ted

a
ttrib

u
tes

A
ll

M
in

.
J
E

P
s

eJ
E

P
to

p
-k

A
ll

M
in

.
J
E

P
s

eJ
E

P
to

p
-k

1
%

5
%

1
0

2
0

1
%

5
%

1
0

2
0

D
a
ta

se
ts

C
o
v

C
o
n

C
o
v

C
o
n

C
o
v

C
o
n

C
o
v

C
o
n

C
o
v

C
o
n

C
o
v

C
o
n

C
o
v

C
o
n

C
o
v

C
o
n

C
o
v

C
o
n

C
o
v

C
o
n

b
re

a
st

4
7
.7

8
9
8
.1

9
4
5
.2

9
8
.3

2
4
4
.8

1
9
9
.1

0
3
9
.1

6
9
8
.5

4
3
.2

9
9
7
.0

1
4
9
.3

3
9
6
.1

3
4
7
.4

2
9
7
.4

9
4
5
.2

5
9
8
.5

1
3
8
.2

1
9
7
.9

2
4
0
.2

1
9
5
.8

5

c
o
n
g
re

s
9
9
.0

8
8
9
.7

9
1
.2

9
9
1
.9

8
8
0
.3

7
9
2
.3

1
7
1
.3

2
9
3
.7

2
7
8
.5

3
9
1
.6

7
9
9
.0

0
8
8
.1

0
9
2
.2

8
9
0
.3

1
8
5
.4

2
9
2
.1

3
6
0
.4

3
9
5
.2

3
7
0
.1

4
9
4
.2

3

e
c
o
li

3
4
.5

2
6
3
.7

9
3
0
.7

1
6
6
.3

8
2
5
.7

4
7
1
.6

3
2
0
.3

2
7
5
.7

3
2
5
.9

2
6
8
.9

7
3
7
.3

2
7
1
.2

3
3
2
.1

2
7
3
.9

8
2
6
.4

3
7
4
.2

1
2
5
.9

2
7
5
.4

3
2
7
.1

3
7
4
.0

1

g
la
ss

9
0
.1

8
6
2
.1

7
8
0
.3

2
7
0
.3

8
7
7
.9

0
7
8
.1

2
7
0
.4

5
7
0
.3

2
7
5
.2

7
6
8
.4

3
9
4
.1

3
6
4
.1

5
8
7
.1

2
6
6
.5

3
8
0
.2

3
6
8
.4

3
7
5
.4

3
7
0
.2

9
7
8
.5

8
6
5
.2

3

h
e
a
rt

9
7
.0

2
5
8
.5

8
3
.3

2
6
1
.9

0
8
0
.3

2
6
4
.8

7
7
0
.3

2
7
1
.4

3
7
4
.2

3
6
9
.2

5
9
8
.0

2
5
6
.4

2
8
6
.3

2
5
7
.8

2
8
2
.5

5
6
0
.4

3
6
1
.2

1
8
0
.3

2
6
7
.0

1
7
8
.4

3

h
e
p
a
titis

8
2
.4

2
7
8
.3

9
7
2
.6

3
8
1
.3

0
6
9
.3

2
8
4
.0

1
6
9
.9

1
8
5
.9

0
7
2
.7

2
8
3
.9

4
9
1
.0

3
7
5
.3

8
7
3
.2

3
7
9
.1

7
7
0
.3

1
8
1
.8

3
6
2
.6

2
8
0
.7

2
7
0
.3

9
7
7
.3

8

iris
8
8
.6

7
9
0
.9

8
7
9
.6

4
9
2
.2

3
7
5
.4

3
9
4
.6

1
7
1
.6

0
9
6
.1

0
7
4
.3

8
9
4
.6

7
9
1
.3

3
8
9
.4

0
8
5
.3

2
9
5
.3

9
8
3
.2

1
9
6
.3

7
7
8
.6

2
9
7
.2

3
8
2
.7

6
9
6
.3

7

m
u
sh

ro
o
m

7
0
.1

5
7
7
.1

2
5
2
.2

0
7
9
.4

4
4
7
.5

3
8
8
.4

3
5
8
.1

8
8
1
.3

8
6
0
.0

6
7
9
.9

2
7
4
.7

6
7
8
.4

3
5
7
.9

2
8
0
.0

1
5
3
.9

1
8
2
.5

4
6
3
.7

4
8
0
.3

2
6
6
.3

4
7
7
.9

8

p
im

a
1
7
.0

5
5
4
.2

1
4
.4

7
5
8
.1

2
1
3
.5

4
6
0
.0

1
1
3
.0

1
6
2
.4

3
1
4
.4

3
5
8
.9

1
1
8
.5

4
6
1
.2

0
1
6
.0

3
6
3
.0

1
1
4
.9

2
6
5
.5

3
1
0
.7

4
6
2
.9

1
1
3
.5

9
5
9
.5

4

tic
-ta

c
-to

e
8
1
.6

2
8
6
.5

7
6
5
.3

2
8
8
.1

0
6
1
.9

3
8
9
.2

1
6
0
.4

3
8
0
.2

1
6
2
.3

2
7
8
.3

2
8
2
.1

2
8
2
.3

4
7
0
.6

4
8
3
.2

1
6
5
.4

7
8
4
.2

4
7
2
.3

1
6
9
.4

3
7
5
.3

2
6
7
.3

0

w
a
v
e
fo
rm

4
5
.2

8
7
2
.1

9
3
2
.9

3
7
4
.9

1
2
9
.9

9
7
5
.1

0
3
3
.1

9
7
3
.1

0
3
5
.9

2
7
2
.0

1
4
8
.0

9
7
6
.9

8
4
0
.6

7
7
8
.0

1
3
9
.5

2
8
2
.9

4
3
7
.9

1
7
9
.6

3
4
0
.4

7
7
4
.7

8

w
in
e

7
2
.9

1
6
7
.4

3
5
6
.7

2
7
1
.9

3
4
1
.7

3
8
3
.0

1
5
1
.8

4
7
0
.8

4
5
3
.4

2
6
2
.8

1
7
3
.5

4
6
5
.8

9
6
1
.9

2
6
7
.8

1
5
9
.0

2
6
9
.6

7
5
5
.8

1
6
9
.5

1
6
1
.9

0
6
7
.3

9

z
o
o

8
9
.1

1
9
2
.2

2
7
2
.1

9
9
4
.4

4
6
0
.9

1
9
5
.1

0
6
8
.9

2
9
3
.7

8
7
3
.2

4
8
7
.3

2
9
3
.2

4
9
1
.4

3
7
9
.3

2
9
2
.4

7
7
7
.1

9
9
3
.9

3
6
0
.3

3
9
2
.4

8
6
7
.3

9
9
0
.0

3

By paying the price of a lower coverage, setting a minimum frequency threshold –
as it is done for the essential JEPs or, indirectly, for the top-k minimal
JEPs – causes an increase of the average confidence, depending on the dataset. The
average confidence levels reached by the two descriptions, No Negated attributes
and With Negated attributes, are very comparable.

As a conclusion, both description families, With Negated attributes and No
Negated attributes, lead to minimal JEPs reaching a similar level of confidence.
However, the minimal JEPs extracted with the With Negated attributes
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descriptions cover a wider range of objects than the minimal JEPs extracted
with the No Negated attributes descriptions, but with a longer running time.

5 Related Work

Since the key paper of Dong and Li [2], subsequent research has focused on min-
ing emerging patterns and contrast sets. However, there are very few attempts
to tackle the discovery of minimal JEPs. Fan and Ramamohanarao have pro-
posed an algorithm extracting the minimal JEPs whose frequency of occurrence
is greater than a given threshold, such JEPs are called essential JEPs [4]. Ter-
lecki and Walczak have designed a computational method based on a CP-Tree to
get the k most supported minimal JEPs, named top-k minimal JEPs [16]. These
methods require either a frequency threshold or a given number of expected pat-
terns. On the contrary, our method is free from these parameters and computes
the whole set of minimal JEPs. Terlecki and Walczak [15] have experimentally
shown that taking into account the absence of attributes may provide interest-
ing pieces of knowledge to build more accurate classifiers. We have dealt with
this issue since our method extracts minimal JEPs including the negation of the
attributes which are absent.

In addition, JEPs can be associated to version space [13]. A version space
gathers the descriptions that match all objects of one class and no object of the
other class. Therefore a version space corresponds to the JEPs that match all
objects of one class. JEPs are also related to the concept of disjunctive version
space since a JEP corresponds to all descriptions of objects that match at least
one object of one class and no object for the other classes. In Formal Concept
Analysis, a JEP is also named “hypothesis” [5] (a hypothesis brings together the
descriptions of objects that match at least one object in one class and no object
in others).

6 Conclusion

We have introduced an efficient method to extract the whole set of minimal JEPs.
To the best of our knowledge, it is the first method which does not require either
a frequency threshold or a given number of expected patterns. Our method is also
able to straightforwardly extract the essential JEPs and the k most supported
minimal JEPs. Moreover it enables the integration of negated attributes that
can be precious for a classification purpose. We have experimentally analyzed
the computation of these JEPs, together with the reliability of the correlations
between a JEP and a class.

The structure of tree of the minimal JEPs constitutes a framework for design-
ing and expressing algorithms to compute the minimal JEPs from a dataset. In
order to speed up the calculation, this framework will be used to seek for efficient
orderings on the attributes or on the objects. Another direction is to produce
patterns correlated to one class to a lesser extent and mine emerging patterns
with high growth-rate values. Beyond this work, we plan to use minimal JEPs
in the design of an advanced rule-based classifier.
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Abstract. We introduce the problem of rank matrix factorisation
(RMF). That is, we consider the decomposition of a rank matrix, in
which each row is a (partial or complete) ranking of all columns. Rank
matrices naturally appear in many applications of interest, such as sports
competitions. Summarising such a rank matrix by two smaller matrices,
in which one contains partial rankings that can be interpreted as local
patterns, is therefore an important problem.

After introducing the general problem, we consider a specific instance
called Sparse RMF, in which we enforce the rank profiles to be sparse,
i.e., to contain many zeroes. We propose a greedy algorithm for this prob-
lem based on integer linear programming. Experiments on both synthetic
and real data demonstrate the potential of rank matrix factorisation.

Keywords: Matrix factorisation · Rank data · Integer linear program-
ming

1 Introduction

In this paper, we study a specific type of matrix called rank matrices, in which
each row is a (partial or complete) ranking of all columns. This type of data
naturally occurs in many situations of interest. Consider, for instance, sailing
competitions where the columns could be sailors and each row would correspond
to a race, or consider a business context, where the columns could be companies
and the rows specify the rank of their quotation for a particular service. Rankings
are also a natural abstraction of numeric data, which often arises in practice and
may be noisy or imprecise. Especially when the rows are incomparable, e.g.,
when they contain measurements on different scales, transforming the data to
rankings may result in a more informative representation.

Given a rank matrix, we are interested in discovering a set of rankings that
repeatedly occur in the data. Such sets of rankings can be used to succinctly
summarise the given rank matrix. With this aim, we introduce the problem of
rank matrix factorisation (RMF). That is, we consider the decomposition of a
rank matrix into two smaller matrices.
c© Springer International Publishing Switzerland 2015
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Fig. 1. Rank matrix factorisation toy example. Rank matrix M is approximated by
the product of indicator matrix C and sparse profile matrix F (k = 3).

To illustrate the problem of rank matrix factorisation, let us consider the
toy example in Figure 1. It depicts a rank matrix that is approximated by the
product of two smaller matrices. Rank matrix M consists of five rows and six
columns. Assuming no ties and complete rankings, each row contains each of the
numbers one to six exactly once. Now, the task is to decompose a n × m rank
matrix M into a n × k matrix C and a k × m matrix F, where C is a binary
indicator matrix, F consists of rank profiles, and k is a user-specified parameter.
Intuitively the rank profiles in F are (partial) rankings and can be interpreted as
local patterns. For example, together C and F show that the first two columns
are ranked first and second in the first row.

In this paper we focus on a specific rank matrix factorisation problem: the
problem of finding sparse rank profiles where rows of F contain zeroes. This
allows us to discover recurrent structure that occurs in the rankings of M, and
not to focus on any noise that may be present. Within this setting we do not
necessarily aim at finding a factorisation that approximates the original matrix
as closely as possible; the reconstructed rank matrix C⊗F may deviate from M,
as long as its overall structure is captured. Hence, here we focus on one specific
of choices within the RMF framework; we would like to stress that within the
generic framework many other choices are possible. The same can be said with
regard to the choices made for, e.g., rank profile aggregation and quantification
of the reconstruction error. RMF is a general framework with numerous possi-
bilities, and we propose and solve a first instance to demonstrate its potential.

The key contributions of our paper are 1) the introduction of the problem of
rank matrix factorisation (RMF), 2) the introduction of a scoring function and an
algorithm, based on integer linear programming, for Sparse RMF, an instance
of rank matrix factorisation, and 3) an empirical evaluation on synthetic and
real-life datasets that demonstrates the potential of RMF. It is shown that rank
matrix factorisations can provide useful insights by revealing the rankings that
underlie the data.
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2 Related Work

To the best of our knowledge, we are the first to investigate the problem of rank
matrix factorisation. Mining rank data, although a very new topic, has attracted
some attention by the community lately. In our earlier work [1] we proposed
to mine ranked tiles, e.g., rectangles with high ranks, and we will empirically
compare to them in the experiments. Furthermore, Henzgen and Hüllermeier
[2] proposed to mine frequent subrankings. The latter approach aims to mine
individual patterns, whereas we aim to find a set of patterns that together covers
most of the data.

RMF is clearly related to matrix factorisation approaches such as NMF [3,4],
BMF [5,6], and positive integer matrix factorisation (PIMF) [7]. NMF, PIMF,
and RMF have in common that the values in the factorisation are constrained to
be positive, but are quite different otherwise. RMF specifically targets rank data,
which requires integer values, making the results easier to interpret, a different
scoring function, and a different algebra. RMF considers rank matrices instead
of Boolean matrices and is therefore clearly different from BMF.

3 Rank Matrix Factorisation

In this section we formally define rank matrices and introduce the rank matrix
factorisation problem that we consider.

Definition 1 (Rank matrix). Let M be a matrix consisting of m rows and
n columns. Let R = {1, ...,m}, C = {1, ..., n} be index sets for rows and for
columns respectively. The matrix M is a rank matrix iff:

∀r ∈ R : ∪c∈CMr,c ⊆ σ, (1)

where σ = {1, 2, ..., n} ∪ {0}.
In our setting, columns are items or products that need to be ranked; rows
are rankings of items. Here, the rank value 0 has a special meaning. It denotes
unknown rankings. For example, in rating datasets, it might happen that there
are items that are not rated. Such items will have rank value 0.

Given a rank matrix, we would like to find a short description of the rank
matrix in terms of a fixed number of rank profiles, or patterns, consisting of
partial rankings. We formalise this problem as a matrix factorisation problem.

Problem 1 (Rank matrix factorisation). Given a rank matrix M ∈ σm×n

and an integer k, find a matrix C∗ ∈ {0, 1}m×k and a matrix F∗ ∈ σk×n such
that:

(C∗,F∗) ≡ argmax
C,F

d(M,C ⊗ F). (2)

where d(, ) is a scoring function that measures how similar the rankings in the
two matrices are, and ⊗ is an operator that creates a data matrix based on two
factor matrices. Rows Fi,: of matrix F indicate partial rankings, columns C:,i of
matrix C indicate in which rows a partial ranking appears.
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Within our generic problem statement we first need to specify the operator
⊗. If multiple patterns are present in one row, this operator essentially needs
to combine the different partial rankings into a single ranking. This problem
is well-known in the literature as the problem of rank aggregation. In this first
study, we use a very simple aggregation operator, namely, we use normal matrix
multiplication to combine the matrices. More complex types of aggregation are
left for future work.

An important drawback of normal matrix multiplication is that the product
CF is not necessarily a rank matrix even if C is binary and F contains partial
rankings. We address this here by restricting the set of acceptable matrices to
those for which (CF)ij ≤ n for all i ∈ R and j ∈ C.

Next, we need to define the scoring function d. In the definition of this func-
tion we first need the concept of a cover for a rank matrix factorisation. The
cover of a factorisation is the set of cells in the reconstructed matrix where at
least one pattern occurs, i.e., where the reconstructed matrix is non-zero.

Definition 2 (Ranked factorisation cover)

cover(C,F) ≡ {(i, j)|i ∈ R, j ∈ C, (CF)i,j 	= 0}. (3)

Coverage is the size of the cover, i.e., coverage(C,F) = |cover(C,F)|.
To support the aim of mining patterns in rank matrices, the scoring function

d(, ) in Equation 2 needs to be designed in such a way that it: 1) rewards patterns
that have a high coverage, 2) penalises patterns that make a large error within
the cover of the factorisation.

To penalise patterns that make a large error, we define an error term that
quantifies the disagreements between the reconstructed and the original rank
matrix. We first define notation for the data matrix identified by the cover of a
factorization.

Definition 3 (Ranked data cover). The ranked data cover matrix
U(M,C,F) is a matrix with cells uij, where:

uij =
{
Mi,j if (i, j) ∈ coverage(C,F)
0 otherwise. (4)

Now the ranked factorisation error is defined as follows.

Definition 4 (Ranked factorisation error)

error(M,C,F) =
m∑

i=1

d(U(M,C,F)i,:,Ci,:F) (5)

Here, d(·, ·) is a function that measures the disagreement between two rankings
over the same items.
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Hence, the ranked factorisation error is the total of rank disagreements between
the reconstructed rank matrix and the true ranks in the original rank matrix.
The score is calculated row by row.

Many scoring functions can be used to measure the disagreement between
rows, for instance, Kendall’s tau or Spearman’s Footrule (see [8] for a survey).
For an efficient computation, we choose the Footrule scoring function.

Definition 5 (Footrule scoring function). Given two rank vectors, u =
(u1, . . . , un) and v = (v1, . . . , vn), the Footrule scoring function is defined as
dF (u, v) =

∑n
i=1 |ui − vi|.

Having defined the ranked factorisation coverage and ranked factorisation
error, we now can completely define the Sparse Rank Matrix Factorisation
(Sparse RMF) problem as solving the following maximisation problem:

(C∗,F∗) ≡ argmax
C,F

d(M,CF) (6)

≡ argmax
C,F

α ∗ coverage(C,F) − error(M,C,F) (7)

= argmax
C,F

m∑

i=1

n∑

j=1

(α[(i, j) ∈ coverage(C,F)]−

|U(M,C,F)ij −
k∑

t=1

Ci,tFt,j |) (8)

where α is a threshold and [.] are the Iverson brackets.
Note that in this scoring function, for each cell we have a positive term if the

error is smaller than α; we have a negative term if the error is larger than α.
In practice, we often use a relative instead of an absolute threshold. We denote
such a threshold as a percentage, i.e., α = a% implies α = a% × n.

4 Sparse RMF Using Integer Linear Programming

We propose a greedy algorithm that uses integer linear programming (ILP).
First, we present two theorems that can be used to calculate the ranked factori-
sation coverage and ranked factorisation error. Then, we present the algorithm.

Theorem 1. Let CF be a decomposition of a rank matrix M. Let A ∈ {0, 1}m×n

satisfy the following two properties:

Ai,j ≤
k∑

t=1

Ci,tFt,j (9)

nAi,j ≥
k∑

t=1

Ci,tFt,i (10)

then
Aij = 1 ↔ (i, j) ∈ cover(C,F) (11)
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Theorem 2. Let A be a binary matrix that satisfies Theorem 1, then

error(M,C,F) =
m∑

i=1

n∑

j=1

|Mi,jAi,j −
k∑

t=1

Ci,tFt,j | (12)

Given a binary matrix A satisfying Theorem 1, the ranked factorisation in
Equation 8 can be formulated as:

arg max
C,F,Y

m∑

i=1

n∑

j=1

αAi,j − Yi,j (13)

subject to

Mi,j −
k∑

t=1

Ci,tFt,j ≤ Yi,j for i = 1, . . . , m, j = 1, . . . , n (14)

−Mi,j +
k∑

t=1

Ci,tFt,j ≤ Yi,j for i = 1, . . . , m, j = 1, . . . , n (15)

Ai,j ≤
k∑

t=1

Ci,tFt,j for i = 1, . . . , m, j = 1, . . . , n (16)

nAi,j ≥
k∑

t=1

Ci,tFt,i for i = 1, . . . , m, j = 1, . . . , n (17)

k∑

t=1

Ci,tFt,j ≤ n for i = 1, . . . , m, j = 1, . . . , n (18)

Ci,t ∈ {0, 1} for i = 1, . . . , m, t = 1, . . . , k (19)
Ft,j ∈ σ for j = 1, . . . , n, t = 1, . . . , k (20)

where Yi,j is the upper bound of |Mi,j − ∑k
t=1 Ci,tFt,j |, i = 1, . . . , m, j =

1, . . . , n.
Inequalities (14) and (15) are introduced to remove the absolute operator of

the summations in Equation (12). Inequalities (16) and (17) are due to Theorem 1.
Inequality (18) ensures that the reconstructed matrix is a rank matrix.

Note that the newly introduced optimisation problem in (13) - (20) is an ILP
problem if either C or F is known. This makes it possible to apply an EM-style
algorithm as shown in Algorithm 1, in which the matrix F is optimised given
matrix C, and matrix C is optimised given matrix F, and we repeat the iterative
optimisation till the optimal score cannot be improved any more.

To avoid local maxima, we need to initialise the iterative process in a reason-
able way, i.e., smarter than random. The solution we choose is to initialise the
matrix C using the well-known K-means algorithm. To compute the similarities
of rank vectors in K-means, we use the Footrule scoring function. The K-means
algorithm clusters the rows in k groups, which can be used to initialise the k
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columns of C. Note that this results in initially disjoint patterns, in terms of
their covers, but the iterative optimisation approach may introduce overlap.

We implemented the algorithm in OscaR1, which is an open source Scala
toolkit for solving Operations Research problems. OscaR supports a modelling
language for ILP. We configured OscaR to use Gurobi2 as the back-end solver.
Source code can be downloaded from our website, http://dtai.cs.kuleuven.be/
CP4IM/RMF.

Algorithm 1. Sparse RMF algorithm
Require: Rank matrix M, integer k, threshold α
Ensure: Factorisation C, F
1: Initialise C using K-means algorithm
2: while not converged do
3: F ← Optimise (13) - (20) given C
4: C ← Optimise (13) - (20) given F
5: end while

5 Experiments on Synthetic Datasets

The goal of Sparse RMF is to find a set of rank profiles (local patterns), which can
be used to summarise a given rank matrix. Alternative methods for summaris-
ing matrices are bi-clustering [9] and ranked tiling [1]. While ranked tiling and
Sparse RMF work on ranked data, bi-clustering algorithms are mostly applied
to numeric data. Hence, to compare to all of these algorithms, we first gener-
ate continuous data and then convert them to ranked data as in [1]. The main
idea is to benchmark the performance of the considered algorithms in terms of
recovering implanted tiles in the synthetic data. Different from ranked tiling [1],
where implanted tiles only have high average values, we now implant tiles that
have both low and high average values.
Data Generation. We use the generative model that we introduced in [1] to
generate continuous data. First, we generate background data whose values are
sampled from normal distributions having mid-ranged mean values. Second, we
implant a number of constant-row tiles whose values are sampled from normal
distributions having low/high mean values. Finally, we perform a complete rank-
ing of columns in every row to obtain a rank matrix.

Formally, background data is generated by this generative model:

∀r ∈ R,∀c ∈ C, Mr,c ∼
⎧
⎨

⎩

N(μ1
r, 1) if x1 = 1

N(μ2
r, 1) if x2 = 1

N(μ3
r, 1) if x3 = 1

(21)

1 https://bitbucket.org/oscarlib/oscar/wiki/Home
2 http://www.gurobi.com/

http://dtai.cs.kuleuven.be/CP4IM/RMF
http://dtai.cs.kuleuven.be/CP4IM/RMF
https://bitbucket.org/oscarlib/oscar/wiki/Home
http://www.gurobi.com/
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where μ1
r ∼ U(3, 5), μ2

r ∼ U(−5,−3), μ3
r ∼ U(−3, 3); x = (x1, x2, x3), xi ∈

{0, 1},
∑

i xi = 1, x has mass probability function μ = (p, p, 1 − 2p), 0 ≤ p ≤ 0.5.
A constant-row tile MR,C having high average values is generated as:

∀r ∈ R, μr ∼ U(3, 5) (22)
∀r ∈ R,∀c ∈ C, Mr,c ∼ N(μr, 1) (23)

Tiles having low average values are generated in a similar way. However their
mean values are sampled from a different uniform distribution: U(−5,−3).
Setup. We generate four 500 rows × 100 columns datasets for different p, i.e.,
p ∈ {0.05, 0.10, 0.15, 0.20}. In each dataset, we implant seven constant-row tiles.
Three tiles have low average values, the other four have high average values.

We evaluate the ability of the algorithms to recover the implanted set of
tiles. We do this by measuring recall and precision, using the implanted tiles as
ground truth. Overall performance is quantified by the F1 measure, which is the
average of the two scores.

Fig. 2. Average precision and recall on the
four synthetic datasets with varying param-
eters α and k

Varying the Parameters. We var-
ied the parameters k and α in Equa-
tion 8 and then applied the Sparse
RMF algorithm on the four synthetic
datasets. For each parameter combi-
nation, the algorithm was executed
ten times and the result maximising
the score was used. This is to get rid
of effects that are due to differences in
the initialization based on K-means.

Precision and recall are calculated
based on the union of the cover-
age area, which has non-zero val-
ues, by the k components C(:, i)
F(i, :), i = 1 . . . k. The average perfor-
mance of the algorithm on the four
datasets is summarised in Figure 2.
The figure shows that the Sparse
RMF can recover implanted tiles and
remove noise outside when k = 5 and α ∼ 15%. When α is too small, i.e., 5%,
the algorithm cannot recover the tiles. In general, the algorithm has high per-
formances when k is large. This matches our expectation though, since a higher
α results in higher tolerance to noise and a larger k results in more patterns and
hence a more detailed description of the data.
Comparison to Other Algorithms. In this experiment, we compare our app-
roach to ranked tiling [1] and several bi-clustering algorithms. These include CC
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Table 1. Comparison to ranked tiling and bi-clustering. Precision, recall and F1 quan-
tify how accurately the methods recover the seven implanted tiles

Algorithm Data type Pattern type Prec. Recall F1

Sparse RMF Ranks Rank profile 99% 94% 96%
Ranked tiling [1] Ranks Ranked tile 37% 41% 39%
CoreNode [16] Numerical Coherent values bicluster 30% 8% 19%
FABIA [13] Numerical Coherent values bicluster 99% 51% 75%
Plaid [12] Numerical Coherent values bicluster 91% 46% 67%
SAMBA [14] Numerical Coherent evolution bicluster 52% 9% 31%
ISA [15] Numerical Coherent values bicluster 43% 17% 30%
CC [10] Numerical Coherent values bicluster 7% 5% 6%
Spectral [11] Numerical Coherent values bicluster - - -

[10], Spectral [11], Plaid [12], FABIA3 [13], SAMBA4 [14]and ISA5 [15]. CC,
Spectral and Plaid are part of the R biclust6 package.

Since large noise levels may conversely affect the performance of the algo-
rithms, we use a dataset also used for the previous experiments, with p = 0.05
(low noise level). We ran all algorithms on this dataset and took the first seven
tiles/bi-clusters they produced, which have the highest scores (SAMBA) or
largest sizes (all other). For most of the benchmarked algorithms, we used their
default values. For CoreNode, we use msr = 1.0 and overlap = 0.5. For ISA, we
applied its built-in normalised method before running the algorithm itself.

The results in Table 1 show that our algorithm achieves much higher precision
and recall on this task than any of the ranked tiling and bi-clustering methods.
Note that Spectral could not find any patterns. Ranked tiling only finds highly
ranked tiles, whereas our rank matrix factorisation is more general and allows
to capture any recurrent partial rankings in the rank matrix. Some of the bi-
clustering methods attain quite high precision, e.g., FABIA and Plaid, but their
recall is much lower than for Sparse RMF. The reason is that the synthetic
data contains incomparable rows, with values on different scales. These results
confirm that converting such data to rank matrices is likely to lead to better
results.

6 Real World Experiments

This section presents results on three real world datasets: 1) Eurovision Song
Contest voting data, 2) Sushi preferences, and 3) NBA basketball team rankings.

We previously collected the European Song Contest (ESC) dataset [1]. This
dataset contains aggregated voting scores that participating countries gave to
3 http://www.bioinf.jku.at/software/fabia/fabia.html
4 http://acgt.cs.tau.ac.il/expander/
5 http://cran.r-project.org/web/packages/isa2/
6 http://cran.r-project.org/web/packages/biclust/

http://www.bioinf.jku.at/software/fabia/fabia.html
http://acgt.cs.tau.ac.il/expander/
http://cran.r-project.org/web/packages/isa2/
http://cran.r-project.org/web/packages/biclust/
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Table 2. Dataset properties, parameter settings, and performance statistics of Sparse
RMF on three datasets

Dataset EU Song Contests [1] NBA team rankings [17] Sushi dataset [18]

Size 44x37 34x30 5000x10
0s in data 40% 60.4% 0%

#runs 200 200 10
k 10 9 8
α 10% 5% 20%

Coverage 30% 86% 78.2%
Average error 1.59 1.0 1.31
0s/pattern 59.7% 12.6% 13.8%
Overlapping 2% 0% 0%
Convergence 6.1±1.7 3.2±1.6 6.2±1.1
Time/run 3s 1.2s 53min

competing countries during the period from 2010 to 2013. We aggregated the
data by calculating average scores that voting countries award to competing
countries and transformed it to ranked data. The NBA basketball team ranking
dataset was collected by the authors of [17]. It consists of rankings of 30 NBA
basketball teams by a group of professional agencies and groups of students. The
Sushi dataset was collected by the authors of [18]. It contains preferences of five
thousand people over ten different sushi types.

We initially applied sparse rank matrix factorisation on these datasets with
varying α and k. Based on these preliminary experiments, we used the following
heuristics to choose reasonable parameter values to report on. We choose α such
that it results in high coverage and low error. Given the chosen α, for k we choose
the largest value such that each resulting pattern is used in at least two rows.
When k is further increased, patterns are introduced that are used in only one
row of the rank matrix, or even in none. This would clearly result in redundancy,
which we would like to avoid.

Table 2 presents a summary of the results obtained by the Sparse RMF
algorithm on all datasets. The upper five rows describe dataset properties and
the used parameter values. For each dataset, the algorithm is executed a number
of times (#runs) and the highest-scoring result is used for the remaining statistics
(except for convergence and time/run, for which all runs are used).

The coverages and average errors (per covered cell) show that the algorithm
can achieve high coverage with low error. With the Sushi dataset, for example,
78% of the matrix can be covered by just 8 rank profiles, and on average the
ranks in the reconstructed rank matrix differs just 1.3 from those in the covered
part of the matrix. The numbers of zeroes per pattern demonstrate that the
algorithm successfully finds local patterns in the three studied datasets: partial
rankings are used to cover the matrix. The overlapping statistic indicates that
only the ESC dataset needs multiple patterns per row to cover a large part of
the matrix: 2% of the rows are covered by more than one pattern.
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(a) Example 1 (b) Example 2

Fig. 3. Rank patterns discovered on the ESC dataset. Voters are painted green. Com-
petitors are painted by their ranks: the darker the red, the higher the score.

Convergence indicates the average number of iterations in which the run
converges, with standard deviation. This shows that the algorithm needs only
few iterations to converge, typically 3 to 6. Finally, the average time per run
shows that our algorithm runs very efficiently on modestly sized rank matrices,
but making it more efficient for larger datasets is left for future work.

To show how rank patterns can provide insight into the data, we visualise two
typical rank profiles obtained on the European Song Contest data in Figure 3.
Both depict a set of voting countries (in green) and their typical voting behaviour
(in red). For example, countries in Eastern Europe tend to give higher scores to
Russia and nordic countries than to other countries.

7 Conclusions

We introduced the novel problem of rank matrix factorisation (RMF), which
concerns the decomposition of rank data. RMF is a generic problem and we
therefore introduced Sparse RMF, a concrete instance with the goal to discover
a set of local patterns that capture the recurrent rankings in the data.

We formalised Sparse RMF as an optimisation problem and proposed a
greedy, alternate optimisation algorithm to solve it using integer linear pro-
gramming. Experiments on both synthetic and real datasets demonstrate that
our proposed approach can successfully summarise rank matrices by a small
number of rank profiles with high coverage and low error.
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Abstract. In social networks, the link between a pair of friends has
been reported effective in improving recommendation accuracy. Previ-
ous studies mainly based on the assumption that any pair of friends
shall have similar interests, via minimizing the gap between user’s taste
and the average (or similar) taste of this user’s friends to reduce the
error of rating prediction. However, these methods ignore the diversity
of user’s taste. In this paper, we focus on learning the diversity of user’s
taste and effects from this user’s friends in terms of rating behavior. We
propose a novel recommendation approach, namely Personal factors with
Weighted Social effects Matrix Factorization (PWS), which utilities both
user’s taste and social effects to provide recommendations. Experimental
results carried out on 3 datasets, show the effectiveness of the proposed
approach.

Keywords: Personal factors · Social effects · Rating prediction

1 Introduction

In recent years, due to the rapid growth and increasing popularity of social
networks, social recommendation [20] receives much attention. The task of social
recommendation is to provide recommendations by systematically leveraging the
social links [21] between users as well as their past behavior.

The link between a pair of friends has been reported effective in improving
recommendation accuracy (e.g., [1,5,9,22]). However, the diversity of user’s taste
is one of the most challengeable problems which decreases the improvement of
accuracy. Informally, users at both ends of a link may rate common items, but
may rate different items at most occasions. As Figure 1(a) shows, given user u1

and u3 is a pair of friends, they both rated item i2, but u1 preferred item i1
while u3 do not. Hence, a prediction of preference from u3 to i1 directly via the
preference of u1 to i1 will be a slip.

We consider that user’s ratings are affected by (1)personal factors: user’s per-
sonal taste and interests, as well as (2)social effects: the effects from the interests

c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 747–758, 2015.
DOI: 10.1007/978-3-319-18038-0 58
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i1
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i3

u1

u2

u3

rate link predict

4.0

?

(a) A social rating network

Personal factors

Social effects

Rating

(b) Our interest

Fig. 1. A sample social network and our interest

of this user’s friends, as shown in Figure 1(b). The later case is illustrated with
the following example. Given user u1 and user u3 are friends, and the attitude
of user u1 on item i2 is between neutral and good (Let’s say 3.5 stars), but she
has to choose either the neutral (3 stars) or the good (4 stars). Probably, she
has chosen the rating 4 because of her friend u3 rated 4 on item i2.

We aim to improve the recommender performance by capturing both personal
factors and social effects. There are two challenges: (1) How to build up the
relation between personal factors and social effects? (2) How to observe personal
factors and social effects solely on the basis of rating logs?

To address these challenges, we propose Personal factors with Weighted Social
effects Model (PWS), which is based on matrix factorization technique [8] and
incorporates personal factors with weighted social effects.

To summarize, our main contributions are as follows:

– We consider that a rating is affected by personal interests and interests of
friends. In particular, we formulate the relation between personal factors and
social effects in terms of rating prediction.

– Based on the consideration, we develop PWS to learn personal factors and
social effects and provide recommendations.

– Finally, We demonstrate how the model can be applied to improve recom-
mendation. We systematically compared our approaches with other algo-
rithms on 3 public real datasets.

The rest of the paper is organized as follows. Section 2 provides a brief review of
related work on social recommendation methods. Section 3 presents our proposed
recommendation approach. Section 4 presents the experimental setup. Section 5
shows the experimental results and analyses. Finally, we conclude in Section 6.

2 Related Work

In this section, we review several popular approaches for social recommendation.
According to the way the trust links are used in each method, social recom-

mendation techniques can be categorized into two types: memory-based (e.g.,
[1,5,14,15]) and model-based (e.g., [4,6,10,11,13,24]).
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Typically, memory-based methods generate predictions via similar users or
items which are usually calculated by predefined similarity functions (e.g., Cosine
or Pearson similarity measurement). In trust networks, methods in this category
use social trust metric to represent the similarity between two users, and the
degrees of trust are estimated by means of propagation over the trust network.
In [16], Massa et al. propose a trust-aware method for recommender systems.
In this work, the weight for prediction function is measured by the combination
of estimated degree of trust and user similarity. The experiments on Epinions
dataset show that the enhancement of precision while preserving the coverage
(number of ratings that are predictable). In [1,5], trust-aware methods are pro-
posed to improve standard collaborative filtering methods. The experimental
results reveal that the social trust information can help enhance recommenda-
tion performance.

In contrast, the model-based approaches use the observed ratings to train a
designed learning model. User social information is fused into traditional matrix
factorization framework to improve recommendation accuracy, since the effec-
tiveness and efficiency of this framework. In [12], social relations are integrated
into probabilistic matrix factorization [18] to reduce prediction error. In [11],
social trust ensemble (STE) is proposed to linearly combine user rating and
friends’ rating on an item in matrix factorization framework. In [13], Ma et
al. propose social regularization terms to constraint matrix factorization objec-
tive functions. In cases of explicit social relations are not available, [10] pro-
poses implicit social recommendation methods, and the implicit social relation
is built on the top-N similar users which are calculated by Pearson Correlation
Coefficient.

The aforementioned matrix factorization based social recommendation meth-
ods move a nice step forward in the research of recommender systems by fusing
(explicit or implicit) social relations into a regularizer term to constraint learning
process or embedding trust links into.

However, regularizer methods often ignore the diversity of user’s taste, and
embedding methods can not be directly used for learning the personal factors
and social effects, In this paper, we present an empirical study on PWS which
provides insights for learning personal factors and social effects on rating pre-
diction.

3 Personal Factors and Social Effects Modeling

In this section, we present our approaches PWS, to incorporate personal factors
and social effects into a matrix factorization model for rating prediction.

3.1 Problem Definition

In social rating networks (See Figure 1(a)), we can get two major data sources:
1) the user-item rating matrix R which records users’ past behavior, and 2) the
binary social trust matrix T which denotes trusts among users.
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Let U , I be the set of users and items, respectively, and V be the set of values
users can assign to items. Let rui present the entry of matrix R, which indicates
the rating of user u on item i. The ratings are explicitly defined as:

R = {(u, i, rui)|u ∈ U , i ∈ I, rui ∈ V}
where V is set of integers usually in the range [1, 5]. Let tuv denote the value of
social trust u has on v as a real number in [0, 1], 0 means no trust and 1 means
full trust. Therefore, the trust relations among users are formulated as:

T = {(u, v, tuv)|u ∈ U , v ∈ U , u �= v, tui ∈ [0, 1]}
note that T is asymmetric in general.

The task of rating prediction is as follows: Given a user u ∈ U and an item
i ∈ I for which r̂ui is unknown, predict the rating for u on i using R and T .

3.2 Matrix Factorization (MF)

In this subsecition, we review the matrix factorization method that is widely
studied in the literature.

Given a m×n rating matrix R describing m users’ ratings on n items. the low-
rank approach builds a rank-d representation of R, decomposing it a user-factor
matrix P ∈ R

d×m and an item-factor matrix Q ∈ R
d×n with d � min(m,n),

such that R ≈ PTQ. The predicted rating for a user u and an item i is calculated
as follows:

r̂ui = qTi · pu (1)

where pu denotes the u-th column of P , and qi denotes the i-th column of Q.
The basic MF model can be enhanced to include user and item biases [7], e.g.,

the tendency of users and items to deviate from the global rating mean. when
biases are included, Equation 1 becomes:

r̂ui = μ + b
′
u + b

′′
i + qTi · pu (2)

where μ is the global mean rating, b
′
u and b

′′
i indicate the observed deviations of

user u and item i respectively, pu denotes the u-th column of P , and qi denotes
the i-th column of Q.

Typically, R is very sparse. This poses a challenge for training the model,
which is addressed by learning P,Q, b

′
u, b

′′
i from observed ratings by minimising

the following objective function [8]:

L = min
P,Q,b′

u,b
′′
i

1
2

∑

rui∈R

(rui − (μ + b
′
u + b

′′
i + qTi · pu))2

+
λ1

2
‖P‖2 +

λ2

2
‖Q‖2 +

λ3

2

∑

u∈U
b

′
u

2
+

λ4

2

∑

i∈I
b

′′
i

2
(3)

where λ1, ..., λ4 are parameters to the regularisation part of the objective func-
tion, which avoid overfitting.
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The optimization problem in Equation 3 is minimized by implementing a
stochastic gradient descent method1.

3.3 PWS

In this subsection, we present our approach PWS to fuse social links into the
matrix factorization.

Social Interests. We use social interests to present the taste of user’s friends.
As the example shown in Figure 2(a), user’s taste are positively (or negatively)
affected by this user’s friends. The pattern of these interests is formulated as:

X̄u =

∑
v∈T (u) tuvxv

∑
v∈T (u) tuv

=

∑
v∈T (u) xv

|T (u)| (4)

where X̄u is the estimated latent social interests vector of user u, xv ∈ R
d×1

is latent factors of user v, tuv is a binary variable which indicates a trust link
between user u and v, and |T (u)| is the number of neighbors of user u.

User space

ui

Friend of ui

stronger 
influences

Interest of ui

(a) The social effects in user space. The

assumption is that the more similar (or

opposite) interests between a pair of

friends, the more stronger influences they

affect each other.

θ

|p
v|

soc
θ

pv

pu

Influences

(b) The degree of influences from user v → u

is presented in a inner product manner. The

similar interests will have a positive effect,

and the dissimilar taste leads to a weak effect.

Fig. 2. Presenting social effects in user space

In order to reduce the complexity of parameter learning, we use the user
latent factor vector pv to represent the pattern of social interests xv, v ∈ T (u).
By this means, the interacted rating opinions between user and her friends will
be directly connected. Hence, equation 4 is transformed to:
1 The stochastic gradient descent is chosen due to its speed and ease of implementation.

An alternative strategy is alternating least square (ALS) [2,3]. While ALS can be
parallelised (Parallel threads or processes) [17,19], these advantages are irrelevant
in our case.
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X̄u =

∑
v∈T (u) pv

|T (u)| (5)

where X̄u means the total interests of u’s friends.

Weighted Social Effects. Due to the diversity of user’s taste, as Figure 2(a)
shows, the social effects to a target user contain both relative stronger (or weaker)
influences. More realistically, for a pair of friends, the influences tend to be
strengthened if their interests are more similar. By benefiting from inner product
(as shown in Figure 2(b)), we formulate the social effects as:

S̄u = X̄ T
u · pu =

∑
v∈T (u) pTv

|T (u)| · pu (6)

where S̄u denotes the effects received from friends of user u, |T (u)| is the number
of neighbors who are directly linked to user u, and pu, pv denote the latent factor
of user u, v respectively.

We use the constant parameter w to control the degree of social influences
from neighbors to a user. Therefore, we have:

S̄u = (
w

|T (u)|
∑

v∈T (u)

pTv ) · pu (7)

where S̄u denotes the weighted effects received from friends of user u, |T (u)| is
the number of neighbors who are directly linked to user u.

In order to learn the social effects from ratings, we fuse the social effects into
the basic rating function (Equation 2) and get:

r̂ui = μ + bu + bi + qTi pu + (
w

|T (u)|
∑

j∈T (u)

pTj )pu

= μ + bu + bi + (
w

|T (u)|
∑

j∈T (u)

pTj + qTi )pu
(8)

where r̂ui is the predicted rating of user u to item i, μ is the global mean rating,
bu and bi indicate the observed deviations of user u and item i respectively, pu
denotes the u-th column of P , and qi denotes the i-th column of Q, T (u) is the
friends of user u.

Therefore, we substitute Equation 8 into Equation 3, and get the objective
function:

L = min
P,Q,bu,bi

∑

rui∈R

(rui − μ − bu − bi − (
w

∑
j∈T (u) pTj

|T (u)| + qTi )pu)2

+
λ1

2
‖P‖2 +

λ2

2
‖Q‖2 +

λ3

2

∑

u∈U
b

′
u

2
+

λ4

2

∑

i∈I
b

′′
i

2
(9)

where λ1, ..., λ4 are parameters to the regularisation part of the objective func-
tion, which avoid overfitting.
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As shown in Algorithm 1, we exploit stochastic gradient descent to learn the
proposed model. In order to update the parameters more easily in training pro-
cess, we scan the datasets according to each user (Line 4-13). The updating rules
are as follows:

pu ← pu + γ(eui · qi − λ1(pu +
w

|T (u)|
∑

j∈T (u)

pTj ))

qi ← qi + γ(eui · pu − λ2qi)

b
′
u ← b

′
u + γ(eui − λ3b

′
u)

b
′′
i ← b

′′
i + γ(eui − λ4b

′′
i )

where

eij = rij − (μ + b
′
u + b

′′
i + qTi · pu + (

w
∑

j∈T (u) pTj

|T (u)| + qTi )pu)

and γ is the learning rate.

Algorithm 1. Pseudo code for minimising Equation 9 by stochastic gradient
descent
Input:

R, user-item rating matrix; T , social trust links;
D, dimensionality of latent vectors
λ1, λ2, λ3, λ4, γ, MaxEpoch, w

Output:
P , user-factor matrix; Q, item-factor matrix
bu, biases of users; bi, biases of items

1: Initialise P, Q, bu, bi with random values in [0,1] and D;
2: μ ←∑rui∈R rui/|R|;
3: for epoch = 1 to MaxEpoch do
4: for all user u ∈ U do
5: for all rating rui ∈ I(u) do
6: X̄u ← w

|T (u)|
∑

j∈T (u) pT
j // Social interests

7: eui ← rui − (μ + bu + bi + qTi · pu + X̄u · pu)
8: bu ← bu + γ(eui − λ3bu)
9: bi ← bi + γ(eui − λ4bi)

10: pu ← pu + γ(euiqi − λ1(pu + X̄u))
11: qi ← qi + γ(euipu − λ2qi)
12: end for
13: end for
14: end for

Algorithm 1 exhibits the steps for learning the proposed PWS.

4 Experimental Setup

In this section, we illustrate dataset collections, evaluation metrics, algorithm
configurations and comparable methods.
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4.1 Datasets

Epinions Dataset. Epinions2 is a consumer review site which allows visitors
read reviews about a variety of items to help them decide on a purchase. The
social relationships in epinions are directed. The Epinions dataset3 we use was
published by authors of [15]. Each user has on average 13.5 expressed ratings
and 9.9 neighbors.

Flixster Dataset. Flixster4 is a social networking service in which user can
rate movies5. Users can also add other users to their friend list and create a
social network. Unlike epinions, the social relations in Flixster are undirected
[6]. Possible rating values in Flixster are 10 discrete numbers in the range [0.5,
5] with step size 0.5. On average each user has 8.9 friends and each users has
rated 10.4 movies. However, if we ignore the many users who have not rated any
movies and only consider users with at least one rating, each user has rated 55.5
movies on average.

DouBan Dataset. DouBan6 is a Chinese social website providing user rating,
review and recommendation services for movie, book and music. Users can make
friends with each other through the emails. DouBan dataset7 is crawled and
shared by Ma [13]. In this dataset, users can rate movies, books and songs in a
5-start numerical rating scale.

Table 1. General Statistics of Epinions, Flixster and DouBan Datasets

Statistics Epinions Flixster DouBan

Users 49,290 787,213 129,490

Items 139,738 48,794 58,541

Ratings 664,824 8,196,077 16,830,839

Social Relations 487,183 7,058,819 1,692,952

Users with Rating 40,163 147,612 129,490

Users with Friend 49,288 786,936 111,210

The general statistics of the Epinions, Flixster and DouBan dataset are shown
in Table 1.

4.2 Evaluation Metrics

We adopt two metrics, the Mean Absolute Error (MAE) and the Root Mean
Square Error (RMSE), to evaluate the performance of our proposed in compar-
ison with traditional methods.
2 www.epinions.com
3 http://www.trustlet.org/wiki/Epinions dataset/
4 www.flixster.com
5 http://www.sfu.ca/∼sja25/datasets/
6 www.douban.com
7 http://dl.dropbox.com/u/17517913/Douban.zip

http://www.trustlet.org/wiki/Epinions_dataset/
http://www.sfu.ca/~sja25/datasets/
http://dl.dropbox.com/u/17517913/Douban.zip
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The metric MAE is defined as:

MAE =
1

|R′ |
∑

rij∈R′
|rij − r̂ij | (10)

where rij denotes the rating user i gave to item j in the test dataset R
′
, r̂ij

denotes the rating user i gave to item j as predicted by a method, and |R′ |
denotes the number of tested ratings. The metric RMSE is defined as:

RMSE =

√
√
√
√

1
|R′ |

∑

rij∈R′
(rij − r̂ij)2 (11)

We can see that a smaller MAE or RMSE value means a better performance.

4.3 Comparable Methods

SR-MF. Social regularization based matrix factorization (SR-MF)[13] explicitly
utilizes the social relationships to regulate the latent user factors.

Note that to make a better reading, Equations in comparable methods are
represented by the symbols used in this paper.

ASS-MF. Adaptive Social Similarity based matrix factorization [23] is proposed
to alleviate the zero similarity problem among friends who are without common
items.

SWS. To study how the social influences S̄u affects user rating behavior and
performance without the interference of biases (Equation 2), we introduce Simple
Weighted Social Effect Model (SWS) by fusing the social effects (Equation 6)
into the basic rating function (Equation 1). Hence, we have:

L = min
P,Q

1
2

∑

rui∈R

(rui − (
w

∑
j∈T (u) pTj

|T (u)| + qTi )pu)2 +
λ1

2
‖P‖2 +

λ2

2
‖Q‖2 (12)

where λ1, λ2 are parameters which avoid overfitting, T (u) is the friends of user
u, pu denotes the u-th column of P , and qi denotes the i-th column of Q.

In all experiments, the learning rate is set to 0.01 and the dimensionality D
is set to 10. In the experiments conducted on Epinions dataset, we set λ1 =
λ2 = 0.01. In the experiments conducted on Flixster and DouBan datasets, we
set λ1 = 0.005, λ2 = 0.02. And λ3 is configured as 0.01 with respect to SR-MF
or ASS-MF. For the proposed PWS, we configure λ3 = λ4 = 0.01.

5 Experimental Results

In this section, we use the real world user rating data and their corresponding social
networkstoempiricallyvalidatetheproposedPersonal factorswithWeightedSocial
effects Matrix Factorization (PWS). Our experiments are intended to address the
following questions:
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– How the weight of social influence w affects the learning of social effects S̄u

and recommendation performance?
– Can personal factors and social effects be learned by the designed rating

pattern?
– Can the recommendation performance benefit from the captured personal

factors and social effects?

5.1 Effects on Parameter w

To study how the social effects S̄u affects the learning process of proposed model
and recommendation, we measure the performance in terms of MAE and RMSE
as w changes.

In the experiments based on SWS, we configure the step size of w as 0.2 to
observed the recommendation performance, and w is still increased until the
model became hard to be learned. As shown in Figure 3, (1) the performance
is greatly improved when fusing the social effect S̄u into. (2) the optimal rec-
ommendation performance can be obtained when w are set to 2.6, 5.0 and 0.4
respectively in these datasets. According to the obtained optimal w values, we
can find that users tend to communicate 2.6 times (in average) on an item in
Epinions.com. But users tend to deliver 0.4 messages in DouBan.com, a possi-
ble reason is that users in DouBan.com are inconvenient to communicate with
each other. For users in Flixster.com, each user communicates with 5.0 friend
averagely, the possible reason is that item categories in Flixster.com are mainly
about movies, while items are multiple in both DouBan.com and Epinions.com.
(3) as w increases to a given value, the error of output of this model become
larger. This phenomenon reveals that a user is affected by some of this user’s
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Fig. 3. The effects of parameter w on results
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friend. And if w is so large, the rating noisy from this user’s friends (e.g., some
friends tend to rate higher) would be intolerable according to this model.

Therefore, the more realistic model PWS is proposed by leveraging personal
biases (See Equation 8). Experimental results carried on PWS show that the
optimal values can be found when w is set to 0.01. We illustrate the experimental
results of PWS in the following subsection.

5.2 Comparing with Regularization

We perform 5-fold cross validation in our experiments. For each dataset used
in this paper, we randomly select 80% ratings as training set and other 20% as
test set. For comparison purpose, the dimensionality D is set to 10 in all the
experiments conducted in this paper.

Table 2. Performance comparisons with MAE and RMSE on the provide datasets

Models Epinions Flixster DouBan
MAE RMSE MAE RMSE MAE RMSE

SR-MF 1.1204 ± .0005 1.4775 ± .0007 0.6410 ± .0005 0.8770 ± .0008 0.5576 ± .0008 0.7125 ± .0010
ASS-MF 1.1105 ± .0004 1.4570 ± .0006 0.6404 ± .0005 0.8772 ± .0009 0.5566 ± .0007 0.7112 ± .0010

SWS 1.0166 ± .0007 1.3422 ± .0010 0.6330 ± .0007 0.8620 ± .0010 0.5560 ± .0006 0.7075 ± .0012
PWS 0.8016±.0005 1.0489 ± .0007 0.6207 ± .0003 0.8365 ± .0006 0.5519 ± .0005 0.7009 ± .0010

Table 2 reports the MAE and RMSE values of all comparison partners on
the three datasets. The parameter w is set to 2.0 for experiments on SWS, and
0.01 for PWS. As Table 2 reveals, (1) SWS slightly improves the state-of-the-art
social regularizer methods SR-MF and ASS-MF, (2) PWS outperforms the SWS
on the provided three datasets, and (3) the improvement of PWS on Epinions
dataset is more significant (by 28%) than other 2 datasets (by 1%-4%), which
shows the effectiveness of PWS in dealing the with diversity of item, since the
item classes are multiple in Epinions [6].

It should be noted that the datasets we use in this paper are the raw data.
Hence, there is a slip between the duplicated experimental results (See Table 2)
and the result in literatures (SR-MF [13] and ASS-MF [23]), since some items
are filtered out in data preprocess stage.

6 Conclusions and Future Work

In this paper, we focus on learning the behavior of personal factors and social
effects when a user rates an item. We consider the social effects as a variation of
ratings. Based on this consideration, we propose PWS to model the connection
between ratings and social links, which extends matrix factorization framework.
Experimental results conducted on 3 public available datasets show the effec-
tiveness of rating prediction.

The study of common but differentiated weight of social effects for each user
is a potential future direction of this work.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able comments and suggestions to improve the quality of this paper. This work is
supported by the National Key Technology R&D Program (No.2012BAH93F03) and
the Shanghai Science and Technology Commission Foundation (No.13511506201).



758 Z. Wang et al.

References

1. Bedi, P., Kaur, H., Marwaha, S.: Trust based recommender system for semantic
web. In: IJCAI 2007, pp. 2677–2682 (2007)

2. Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neigh-
borhood interpolation weights. In: ICDM 2007, pp. 43–52 (2007)

3. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: ICDM 2008, pp. 263–272 (2008)

4. Huang, J., Cheng, X., Guo, J., Shen, H., Yang, K.: Social recommendation with
interpersonal influence. In: ECAI 2010, pp. 601–606 (2010)

5. Jamali, M., Ester, M.: TrustWalker: a random walk model for combining trust-
based and item-based recommendation. In: KDD 2009, pp. 397–406 (2009)

6. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for
recommendation in social networks. In: Recsys 2010, pp. 135–142 (2010)

7. Koren, Y.: Collaborative filtering with temporal dynamics. In: KDD 2009,
pp. 447–456 (2009)

8. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recom-
mender systems. IEEE Computer 42(8), 30–37 (2009)

9. Lu, W., Ioannidis, S., Bhagat, S., Lakshmanan, L.V.S.: Optimal recommendations
under attraction, aversion, and social influence. In: KDD 2014 (2004)

10. Ma, H.: An experimental study on implicit social recommendation. In: SIGIR 2013,
pp. 73–82 (2013)

11. Ma, H., King, I., Lyu, M.R.: Learning to recommend with social trust ensemble.
In: SIGIR 2009, pp. 203–210 (2009)

12. Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using prob-
abilistic matrix factorization. In: CIKM 2008, pp. 931–940 (2008)

13. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social
regularization. In: WSDM 2011, pp. 287–296 (2011)

14. Massa, P., Avesani, P.: Trust-aware collaborative filtering for recommender sys-
tems. In: Meersman, R. (ed.) OTM 2004. LNCS, vol. 3290, pp. 492–508. Springer,
Heidelberg (2004)

15. Massa, P., Avesani, P.: Trust-aware bootstrapping of recommender systems. In:
ECAI 2006 Workshop on Recommender Systems, pp. 29–33 (2006)

16. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Recsys 2007,
pp. 17–24 (2007)

17. Pilászy, I., Zibriczky, D., Tikk, D.: Fast als-based matrix factorization for explicit
and implicit feedback datasets. In: Recsys 2010, pp. 71–78 (2010)

18. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS 2007
(2007)

19. Schelter, S., Boden, C., Schenck, M., Alexandrov, A., Markl, V.: Distributed matrix
factorization with mapreduce using a series of broadcast-joins. In: Recsys 2013,
pp. 281–284 (2013)

20. Shen, Y., Jin, R.: Learning personal + social latent factor model for social recom-
mendation. In: KDD 2012, pp. 1303–1311 (2012)

21. Victor, P., Cock, M.D., Cornelis, C.: Trust and recommendations. In: Recom-
mender Systems Handbook, pp. 645–675 (2011)

22. Yao, Y., Tong, H., Yan, G., Xu, F., Zhang, X., Szymanski, B.K., Lu, J.: Dual-
regularized one-class collaborative filtering. In: CIKM 2014, pp. 759–768 (2014)

23. Yu, L., Pan, R., Li, Z.: Adaptive social similarities for recommender systems. In:
Recsys 2011, pp. 257–260 (2011)

24. Yuan, Q., Chen, L., Zhao, S.: Factorization vs. regularization: fusing heterogeneous
social relationships in top-n recommendation. In: Recsys 2011, pp. 245–252 (2011)



Author Index

Ai, Xusheng I-251
Al-Hamoudi, Asmaa I-525
Al-Hassani, Shamma I-525
Al-Shamsi, Eiman I-525
Al-Shehhi, Ameera I-525
An, Yuan II-598
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