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PREFACE

The primary motivation for adopting intelligent agent in knowledge mining
is to provide researcher, students and decision/policy makers with an
insight of emerging techniques and their possible hybridization that can
be used for dredging, capture, distributions and utilization of knowledge in
the domain of interest e.g., business, engineering, and science. Knowledge
mining using intelligent agents explores the concept of knowledge discovery
processes and in turn enhances the decision making capability through
the use of intelligent agents like ants, bird flocking, termites, honey bee,
wasps, etc. This book blends two distinct disciplines—data mining and
knowledge discovery process and intelligent agents based computing (swarm
intelligence 4+ computational Intelligence) — in order to provide readers
with an integrated set of concepts and techniques for understanding a
rather recent yet pivotal task of knowledge discovery and also make them
understand about their practical utility in intrusion detection, software
engineering, design of alloy steels, etc.

Several advances in computer science have been brought together under
the title of knowledge discovery and data mining. Techniques range from
simple pattern searching to advanced data visualization. Since our aim is to
extract knowledge from various scientific domain using intelligent agents,
our approach should be characterized as “knowledge mining”.

In Chapter 1 we highlight the intelligent agents and their usage in
various domain of interest with gamut of data to extract domain specific
knowledge. Additionally, we will discuss the fundamental tasks of knowledge
discovery in databases (KDD) and a few well developed mining methods
based on intelligent agents.

Wu and Banzhaf in Chapter 2 discuss the use of evolutionary
computation in knowledge discovery from databases by using intrusion
detection systems as an example. The discussion centers around the role
of evolutionary algorithms (EAs) in achieving the two high-level primary
goals of data mining: prediction and description. In particular, classification
and regression tasks for prediction and clustering tasks for description. The
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use of EAs for feature selection in the pre-processing step is also discussed.
Another goal of this chapter was to show how basic elements in EAs, such
as representations, selection schemes, evolutionary operators, and fitness
functions have to be adapted to extract accurate and useful patterns from
data in different data mining tasks.

Natural evolution is the process of optimizing the characteristics
and architecture of the living beings on earth. Possibly evolving the
optimal characteristics and architectures of the living beings are the most
complex problems being optimized on earth since time immemorial. The
evolutionary technique though it seems to be very slow is one of the most
powerful tools for optimization, especially when all the existing traditional
techniques fail. Chapter 3, contributed by Misra et al., presents how these
evolutionary techniques can be used to generate optimal architecture and
characteristics of different machine learning techniques. Mainly the two
different types of networks considered in this chapter for evolution are
artificial neural network and polynomial network. Though lots of research
has been conducted on evolution of artificial neural network, research on
evolution of polynomial networks is still in its early stage. Hence, evolving
these two networks and mining knowledge for classification problem is the
main attracting feature of this chapter.

A multi-objective optimization approach is used by Chen et al,
in Chapter 4 to address the alloy design problem, which concerns
finding optimal processing parameters and the corresponding chemical
compositions to achieve certain pre-defined mechanical properties of alloy
steels. Neurofuzzy modelling has been used to establish the property
prediction models for use in the multi-objective optimal design approach
which is implemented using Particle Swarm Optimization (PSO). The
intelligent agent like bird flocking, an inspiring source of PSO is used as
the search algorithm, because its population-based approach fits well with
the needs of multi-objective optimization. An evolutionary adaptive PSO
algorithm is introduced to improve the performance of the standard PSO.
Based on the established tensile strength and impact toughness prediction
models, the proposed optimization algorithm has been successfully applied
to the optimal design of heat-treated alloy steels. Experimental results show
that the algorithm can locate the constrained optimal solutions quickly and
provide a useful and effective knowledge for alloy steels design.

Dehuri and Tripathy present a hybrid adaptive particle swarm
optimization (HAPSO)/Bayesian classifier to construct an intelligent and
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more compact intrusion detection system (IDS) in Chapter 5. An IDS plays
a vital role of detecting various kinds of attacks in a computer system or
network. The primary goal of the proposed method is to maximize detection
accuracy with a simultaneous minimization of number attributes, which
inherently reduces the complexity of the system. The proposed method
can exhibit an improved capability to eliminate spurious features from
huge amount of data aiding researchers in identifying those features that
are solely responsible for achieving high detection accuracy. Experimental
results demonstrate that the hybrid intelligent method can play a major
role for detection of attacks intelligently.

Today networking of computing infrastructures across geographical
boundaries has made it possible to perform various operations effectively
irrespective of application domains. But, at the same time the growing
misuse of this connectively in the form of network intrusions has jeopardized
the security aspect of both the data that are transacted over the network
and maintained in data stores. Research is in progress to detect such
security threats and protect the data from misuse. A huge volume of data
on intrusion is available which can be analyzed to understand different
attack scenarios and devise appropriate counter-measures. The DARPA
KDDcup’99 intrusion data set is a widely used data source which depicts
many intrusion scenarios for analysis. This data set can be mined to acquire
adequate knowledge about the nature of intrusions thereby one can develop
strategies to deal with them. In Chapter 6 Panda and Patra discuss on the
use of different knowledge mining techniques to elicit sufficient information
that can be effectively used to build intrusion detection systems.

Fukuyama et al., present a particle swarm optimization for multi-
objective optimal operational planning of energy plants in Chapter 7. The
optimal operational planning problem can be formulated as a mix-integer
nonlinear optimization problem. An energy management system called
FeTOP, which utilizes the presented method, is also introduced. FeTOP
has been actually introduced and operated at three factories of one of the
automobile companies in Japan and realized 10% energy reduction.

In Chapter 8, Jagadev et al., discuss the feature selection problems
of knowledge mining. Feature selection has been the focus of interest
for quite some time and much work has been done. It is in demand in
areas of application for high dimensional datasets with tens or hundreds
of thousands of variables are available. This survey is a comprehensive
overview of many existing methods from the 1970s to the present. The
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strengths and weaknesses of different methods are explained and methods
are categorized according to generation procedures and evaluation
functions. The future research directions of this chapter can attract many
researchers who are novice to this area.

Chapter 9 presents a hybrid approach for solving classification problems
of large data. Misra et al., used three important neuro and evolutionary
computing techniques such as polynomial neural network, fuzzy system,
and Particle swarm optimization to design a classifier. The objective of
designing such a classifier model is to overcome some of the drawbacks
in the existing systems and to obtain a model that consumes less time in
developing the classifier model, to give better classification accuracy, to
select the optimal set of features required for designing the classifier and
to discard less important and redundant features from consideration. Over
and above the model remains comprehensive and easy to understand by the
users.

Traditional software testing methods involve large amounts of manual
tasks which are expensive in nature. Software testing effort can be
significantly reduced by automating the testing process. A key component
in any automatic software testing environment is the test data generator.
As test data generation is treated as an optimization problem, Genetic
algorithm has been used successfully to generate automatically an optimal
set of test cases for the software under test. Chapter 10 describes a
framework that automatically generates an optimal set of test cases to
achieve path coverage of an arbitrary program.

We take this opportunity to thank all the contributors for agreeing
to write for this book. We greatfully acknowledge the technical support of
Mr. Harihar Kalia and financial support of BK21 project, Yonsei University,
Seoul, South Korea.

S. Dehuri and S.-B. Cho
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Chapter 1

THEORETICAL FOUNDATIONS OF KNOWLEDGE
MINING AND INTELLIGENT AGENT

S. DEHURI and S.-B. CHO
Department of Information and Communication Technology,
Fakir Mohan University, Vyasa Vihar Campus,
Balasore 756019, Orissa, India
satchi.lapa@gmail.com

Department of Computer Science,
Yonsei University, 262 Seongsanno, Seodaemun-gu,
Seoul 120-749, South Korea
sbcho@yonsei.ac.kr

Studying the behaviour of intelligent agents and deploy in various domain of
interest with gamut of data to extract domain specific knowledge is recently
attracting more and more number of researchers. In this chapter, we will
summarize a few fundamental aspects of knowledge mining, the fundamental
tasks of knowledge mining from databases (KMD) and a few well developed
intelligent agents methodologies.

1.1. Knowledge and Agent

The definition of knowledge is a matter of on-going debate among
philosophers in the field of epistemology. However, the following definition
of knowledge can give a direction towards the goal of the chapter.

Definition: Knowledge is defined as i) an expertise, and skills acquired
by a person through experience or education; the theoretical and practical
understanding of a subject, ii) what is known in a particular field or in total;
facts and information or iii) awareness or familiarity gained by experience
of a fact or a situation.

The above definition is a classical and general one, which is not directly
used in this chapter/book. Given the above notion we may state our
definition of knowledge as viewed from the narrow perspective of knowledge
mining from databases as used in this book. The purpose of this definition
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is to specify what an algorithm used in a KMD process may consider
knowledge.

Definition: A pattern obtained from a KMD process and satisfied some
user specified threshold is known as knowledge.

Note that this definition of knowledge is by no means absolute. As
a matter of fact, it is purely user oriented and determined by whatever
thresholds the user chooses. More detail is described in Section 1.2.

An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors. A
human agent has eyes, ears, and other organs for sensors, and hands, legs,
mouth, and other body parts for effectors. A robotic agent substitutes
cameras and infrared range finders for the sensors and various motors for
the effectors. A software agent has encoded bit strings as its percepts and
actions. Here the agents are special kinds of artificial agents created by
analogy with social insects. Social insects (bees, wasps, ants, and termites)
have lived on Earth for millions of years. Their behavior is primarily
characterized by autonomy, distributed functioning and self-organizing
capacities. Social insect colonies teach us that very simple organisms can
form systems capable of performing highly complex tasks by dynamically
interacting with each other. On the other hand, a great number of
traditional models and algorithms are based on control and centralization.
It is important to study both advantages and disadvantages of autonomy,
distributed functioning and self-organizing capacities in relation to
traditional engineering methods relying on control and centralization.

In Section 1.3 we will discuss various intelligent agents under the
umbrella of evolutionary computation and swarm intelligence.

1.2. Knowledge Mining from Databases

In recent years, the rapid advances being made in computer technology have
ensured that large sections of the world population have been able to gain
easy access to computers on account of falling costs worldwide, and their
use is now commonplace in all walks of life. Government agencies, scientific,
business and commercial organizations are routinely using computers not
just for computational purposes but also for storage, in massive databases,
of the immense volume of data that they routinely generate, or require
from other sources. The bar code scanners in commercial domains and
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sensors in scientific and industrial domains are an example of data
collection technology, generates huge amounts of data. Large scale computer
networking has ensured that such data has become accessible to more and
more people around the globe.

It is not realistic to expect that all this data be carefully analyzed
by human experts. As pointed out by Piatetsky-Shapiro,' the huge size of
real world database systems creates both a need and an opportunity for
an at lest partially automated form of knowledge mining from databases
(KMD), or knowledge discovery from databases (KDD) and or data mining.
Throughout the chapter, we use the term KMD or KDD interchangeably.

An Inter-disciplinary Nature of KMD: KMD is an inter-disciplinary
subject formed by the intersection of many different areas. These areas can
be divided into two broad categories, namely those related to knowledge
mining techniques (or algorithms) and those related to data itself.

Two major KM-related areas are machine learning (ML),>® a branch
of Al, and statistics,*® particularly statistical pattern recognition and
exploratory data analysis. Other relevant KM-related areas are data
visualization®® and cognitive psychology.’

Turning to data related areas, the major topic relevant to KDD is
database management systems (DBMS),! which address issues such as
efficiency and scalability in the storage and handling of large amounts
of data. Another important, relatively recent subject is data warehousing
(DW),11:12 which has a large intersection with DBMS.

KMD: As a Process: The KMD process is interactive and iterative,
involving numeruous steps with many decisions being made by the
user. Brachman & Anand!?® give a practical view of the KMD process
emphasizing the interactive nature of the process. Here we broadly outline
some of its basic steps:

(1) Developing an understanding of the application domain, the relevant
prior knowledge, and the goals of the end-user.

(2) Creating a dataset: selecting a data set, or focusing on a subset of
variables or data samples, on which discovery is to be performed.

(3) Data cleaning and preprocessing: basic operations such as the removal
of noise or outliers if appropriate, collecting the necessary information
to model or account for noise, deciding on strategies for handling
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missing data fields, accounting for time sequence information and
known changes.

Data reduction and projection: finding useful features to represent the
data depending on the goal of the task. Using dimensionality reduction
or transformation methods to reduce the effective number of variables
under consideration or to find invariant representations for the data.
Choosing the data mining task: deciding whether the goal of the KMD
process is classification, regression, clustering, etc.

Choosing the data mining algorithms: selecting methods to be used for
searching patterns in the data. This includes deciding which models
and parameters may be appropriate (e.g., models for categorical data
are different than models on vectors over the reals) and matching a
particular data mining method with the overall criteria of the KMD
process.

Data mining: searching for patterns of interest in a particular represent-
ational form or a set of such representations: classification rules or deci-
sion trees, regression, clustering, and so forth. The user can significantly
aid the data mining method by correctly performing the preceding
steps.

Interpreting mined patterns, possibly return to any of the steps 1-7 for
further iteration.

Consolidating discovered knowledge: incorporating this knowledge into
the performance system, or simply documenting it and reporting it
to interested parties. This also includes checking for and resolving
potential conflicts with previously believed (or extracted) knowledge.

The KMD process can involve significant iteration and may contain

loops between any two steps. Most of the literatures on KDD has focused
on step 7-the data mining. However, the other steps are of considerable

importance for the successful application of KDD in practice.

13

1.2.1. KMD tasks

A number of KMD systems, developed to meet the requirements of many

different application domains, has been proposed in the literature. As a

result, one can identify several different KMD tasks, depending mainly on

the application domain and on the interest of the user. In general each
KMD task extracts a different kind of knowledge from a database, so that
each task requires a different kind of KMD algorithm.
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1.2.1.1. Mining Association Rules

The task of mining association rules was introduced by Agrawal et al.'* In
its original form this task is defined for a special kind of data, often called
basket data, where a tuple consists of a set of binary attributes called
items. Each tuple corresponds to a customer transaction, where a given
item has value true or false depending on whether or not the corresponding
customer bought the item in that transaction. This kind of data is usually
collected through bar-code technology — the typical example is a grand-
mart scanner.

An association rule is a relationship of the form X = Y, where X and Y’
are sets of items and X N'Y = ¢. Each association rule is assigned a support
factor Sup and a confidence factor Conf. Sup is defined as the ratio of the
number of tuples satisfying both X and Y over the total number of tuples,
ie., Sup = |XUY‘ , where N is the total number of tuples, and | A| denotes the
number of tuples containing all items in the set A. Con f is defined as the ratio
of the number of tuples satisfying both X and Y over the number of tuples

satisfying X, i.e., Conf = ‘)I(;T| . The task of discovering association rules

consists of extracting from the database all rules with Sup and Con f greater
than or equal to a user specified Sup and Conf.

The discovery of association rules is usually performed in two steps.
First, an algorithm determines all the sets of items having Sup greater
than or equal to the Sup specified by the user. These sets are called frequent
itemsets—sometimes called large itemsets. Second, for each frequent itemset,
all possible candidate rule are generated and tested with respect to Conf.
A candidate rule is generated by having some subset of the items in the
frequent itemset to be the rule antecedent, and having the remaining items
in the frequent itemset to be the rule consequent. Only candidate rules
having Conf greater than or equal to the Conf specified by the user are
output by the algorithm.

1.2.1.2. Classification

This is the most studied KDD task. In the classification task each tuple
belongs to a class, among a pre-specified set of classes. The class of a tuple
is indicated by the value of a user specified goal attribute. Tuples consists of
a set of predicting attributes and a goal attribute. This later is a categorical
(or discrete) attribute, i.e., it can take on a value out of a small set of discrete
values, called classes or categories.
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The aim of the classification task is to discover some kind of relationship
between the predicting attributes and the goal one, so that the discovered
knowledge can be used to predict the class (goal attribute value) of a new,
unknown-class tuple.

1.2.1.3. Clustering

Clustering is a common descriptive task where one seeks to identify a finite
set of categories or clusters to describe the data. This is typically done in
such a way that tuples with similar attribute values are clustered into the
same group. The categories may be mutually exclusive and exhaustive, or
consist of a richer representation such as hierarchical or overlapping clusters.

1.2.1.4. Dependency Modeling

This task consists of finding a model which describes significant
dependencies between variables. Dependency models exists at two levels:
the structural level of the model specifies which variables are locally
dependent on each other, whereas the quantitative level of the model
specifies the strengths of the dependencies using some numerical scale.
These dependencies are often expressed as “IF-THEN” rules in the
form “IF (antecedent is true) THEN (consequent is true)”. In principle
both the antecedent and the consequent of the rule could be any logical
combination of attribute values. In practice, the antecedent is usually a
conjunction of attribute values and the consequent is a single attribute
value. Note that the system can discover rules with different attributes in
the consequent. This is in contrast with classification rules, where the rules
must have the same user-specified attribute in the consequent. For this
reason this task is sometimes called generalized rule induction. Algorithms

to discover dependency rule are presented in Mallen and Bramer.'?

1.2.1.5. Change and Deviation Detection

This task focuses on discovering the most significant changes in the data

from previously measured or normative values.'6-18

1.2.1.6. Regression

Regression is learning a function which maps a data item to a real valued
prediction variable. Conceptually, this task is similar to classification. The
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major difference is that in the regression task the attribute to be predicted
is continuous i.e., it can take on any real valued number or any integer
number in an arbitrarily large range rather than discrete.

1.2.1.7. Summarization

This involves methods for finding a compact description for a subset of data.
A simple example would be tabulating the mean and standard deviations
for all attributes. In other words, the aim of the summarization task is to
produce a characteristic description of each class of tuples in the target
dataset.'® This kind of description somehow summarizes the attribute
values of the tuples that belong to a given class. That is, each class
description can be regarded as a conjunction of some properties shared
by all (or most) tuples belonging to the corresponding class.

The discovered class descriptions can be expressed in the form of
“IF-THEN” rules, interpreted as follows: “if a tuple belongs to the class
indicated in the antecedent of the rule, then the tuple has all the properties
mentioned in the consequent of the rule”. It should be noticed that in
summarization rules the class is specified in the antecedent (“if part”) of
the rule, while in classification rules the class is specified in the consequent
(“then part”) of the rule.

1.2.1.8. Causation Modeling

This task involves the discovery of relationships of cause and effect among
attributes. Causal rules are also “if-then” rules, like dependence rules, but
causal rules are intuitively stronger than dependence rules.

1.3. Intelligent Agents
1.3.1. Ewvolutionary computing

This section provides an overview of biologically inspired algorithm

2021 T biological evolution,

drawn from an evolutionary metaphor.
species are positively or negatively selected depending on their relative
success in surviving and reproducing in their current environment.
Differential survival and variety generation during reproduction provide
the engine for evolution. These concepts have metaphorically inspired a
family of algorithms known as evolutionary computation. The algorithms

like genetic algorithms, genetic programming, evolution strategies,
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differential evolution, etc. are coming under the umbrella of evolutionary
computation.

Members of the evolutionary computation share a great deal in common
with each other and are based on the principles of Darwinian evolution.??
In particular, a population of individuals is evolved by reproduction and
selection. Reproduction takes place by means of recombination, where a
new individual is created by mixing the features of two existing individuals,
and mutation, where a new individual is created by slightly modifying one
existing individual. Applying reproduction increases the diversity of the
population. Selection is to reduce the population diversity by eliminating
certain individuals. To have this mechanism work, it is required that a
quality measure, called fitness, of the individuals is given. If reproduction
is applied to the best individuals and selection eliminates the worst
individuals, then in the long run the population will consist of individuals
having high fitness values—the population is evolving. An overview of the
field can be found in Darwin.??

1.3.2. Swarm intelligence

Swarm intelligence is the branch of artificial intelligence based on the study
of behavior of individuals in various decentralized systems.

Many phenomena in nature, society, and various technological systems
are found in the complex interactions of various issues (biological,
social, financial, economic, political, technical, ecological, organizational,
engineering, etc.). The majority of these phenomena cannot be successfully
analyzed by analytical models. For example, urban traffic congestion
represents complex phenomenon that is difficult to precisely predict and
which is sometimes counterintuitive. In the past decade, the concept of
agent-based modeling has been developed and applied to problems that
exhibit a complex behavioral pattern. Agent-based modeling is an approach
based on the idea that a system is composed of decentralized individual
“agents” and that each agent interacts with other agents according to
localized knowledge. Through the aggregation of the individual interactions,
the overall image of the system emerges. This approach is called the bottom
up approach. The interacting agents might be individual travelers, drivers,
economic or institutional entities, which have some objectives and decision
power. Transportation activities take place at the intersection between
supply and demand in a complex physical, economic, social and political
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setting. Local interactions between individual agents most frequently lead
to the emergence of global behavior. Special kinds of artificial agents are the
agents created by analogy with social insects. Social insects (bees, wasps,
ants, and termites) have lived on Earth for millions of years. Their behavior
in nature is, first and foremost, characterized by autonomy and distributed
functioning and self-organizing. In the last couple of years, the researchers
started studying the behavior of social insects in an attempt to use the
swarm intelligence concept in order to develop various artificial systems.

Social insect colonies teach us that very simple organisms can form
systems capable of performing highly complex tasks by dynamically
interacting with each other. On the other hand, great number of traditional
models and algorithms are based on control and centralization. It is
important to study both advantages and disadvantages of autonomy,
distributed functioning and self-organizing capacities in relation to
traditional engineering methods relying on control and centralization.

Swarm behavior is one of the main characteristics of many species in the
nature. Herds of land animals, fish schools and flocks of birds are created
as a result of biological needs to stay together. It has been noticed that,
in this way, animals can sometimes confuse potential predators (predator
could, for example, perceive fish school as some bigger animal). At the same
time individuals in herd, fish school, or flock of birds has a higher chance
to survive, since predators usually attack only one individual. Herds of
animals, fish schools, and flocks of birds are characterized by an aggregate
motion. They react very fast to changes in the direction and speed of their
neighbors.

Swarm behavior is also one of the main characteristics of social insects.
Social insects (bees, wasps, ants, and termites) have lived on Earth for
millions of years. It is well known that they are very successful in building
nests and more complex dwellings in a societal context. They are also
capable of organizing production. Social insects move around, have a
communication and warning system, wage wars, and divide labor. The
colonies of social insects are very flexible and can adapt well to the
changing environment. This flexibility allows the colony of social insects to
be robust and maintain its life in an organized manner despite considerable
disturbances.?* Communication between individual insects in a colony of
social insects has been well recognized. The examples of such interactive
behavior are bee dancing during the food procurement, ants pheromone
secretion and performance of specific ants which signal the other insects to



10 S. Dehuri and S.-B. Cho

start performing the same actions. These communication systems between
individual insects contribute to the formation of the “collective intelligence”
of the social insect colonies. The term “Swarm intelligence”, denoting this
“collective intelligence” has come into use.?®

The self-organization of the ants is based on relatively simple rules
of individual insects behavior. The ants successful at finding food leave
behind them a pheromone trail that other ants follow in order to reach the
food. The appearance of the new ants at the pheromone trail reinforces
the pheromone signal. This comprises typical autocatalytic behavior, i.e.,
the process that reinforces itself and thus converges fast. The “explosion”
in such processes is regulated by a certain restraint mechanism. In the ant
case, the pheromone trail evaporates with time. In this behavioral pattern,
the decision of an ant to follow a certain path to the food depends on the
behavior of his nestmates. At the same time, the ant in question will also
increase the chance that the nestmates leaving the nest after him follow the
same path. In other words, one ants movement is highly determined by the
movement of previous ants.

Self-organization of bees is based on a few relatively simple rules of
individual insects behavior. In spite of the existence of a large number of
different social insect species, and variation in their behavioral patterns, it
is possible to describe individual insects behavior as follows.

Each bee decides to reach the nectar source by following a nestmate
who has already discovered a patch of flowers. Each hive has the so-called
dance floor area in which the bees that have discovered nectar sources
dance, in that way trying to convince their nestmates to follow them. If
a bee decides to leave the hive to get nectar, she follows one of the bee
dancers to one of the nectar areas. Upon arrival, the foraging bee takes a
load of nectar and returns to the hive relinquishing the nectar to a food
storer bee. After she relinquishes the food, the bee can (a) abandon the
food source and become again an uncommitted follower, (b) continue to
forage at the food source without recruiting nestmates, or (c¢) dance and
thus recruit nestmates before returning to the food source. The bee opts for
one of the above alternatives with a certain probability. Within the dance
area the bee dancers “advertise” different food areas. The mechanisms by
which the bee decides to follow a specific dancer are not well understood,
but it is considered that the recruitment among bees is always a function
of the quality of the food source. It is important to state here that the
development of artificial systems does not entail the complete imitation of



Theoretical Foundations of Knowledge Mining and Intelligent Agent 11

natural systems, but explores them in search of ideas and models. Similarly
wasps and termites have their own strategies of solving the problems.

1.3.2.1. Particle Swarm Optimization

The metaheuristic Particle swarm optimization (PSO) was proposed by
Kennedy and Eberhart.?8 Kennedy and Eberhart?® were inspired by the
behaviors of bird flocking. The basic idea of the PSO metaheuristic could
be illustrated by using the example with a group of birds that search for a
food within some area. The birds do not have any knowledge about the food
location. Let us assume that the birds know in each iteration how distant
the food is. Go after the bird that is closest to the food is the best strategy
for the group. Kennedy and Eberhart26:27 treated each single solution of
the optimization problem as a “bird” that flies through the search space.
They call each single solution a “particle”. Each particle is characterized by
the fitness value, current position in the space and the current velocity.?®
When flying through the solution space all particles try to follow the current
optimal particles. Particles velocity directs particles flight. Particles fitness
is calculated by the fitness function that should be optimized.

In the first step, the population of randomly generated solutions is
created. In every other step the search for the optimal solution is performed
by updating (improving) the generated solutions. Each particle memorizes
the best fitness value it has achieved so far. This value is called PB.
Each particle also memorizes the best fitness value obtained so far by any
other particle. This value is called p?. The velocity and the position of
each particle are changed in each step. Each particle adjusts its flying
by taking into account its own experience, as well as the experience of
other particles. In this way, each particle is leaded towards ppest and gpest
positions.

The position X; = {x;,%2,...,2;p} and the velocity V; = {v;,
vi2, ..., v;p} of the ¢th particle are vectors. The position X,iH of the ith
particle in the (k + 1)st iteration is calculated in the following way:

Xir = Xi+ Vi AL (1.1)

where V[, is the velocity of the ith particle in the (k + 1)st iteration and
At is the unit time interval.

The velocity V! 1 equals:
PB' — X! Py — X!
———Etyry- k

— "k 1.2
At At (1.2)

V,f+1=w~V,§+c1-r1-
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where w is the inertia weight, r1,7r2 are the random numbers (mutually
independent) in the range [0, 1], ¢1, c2 are the positive constants, PB?
is the best position of the ith particle achieved so far, and P9 is the
best position of any particle achieved so far. The particles new velocity
is based on its previous velocity and the distances of its current position
from its best position and the groups best position. After updating velocity
the particle flies toward a new position (defined by the above equation).
Parameter w that represents particles inertia was proposed by Shi and
Eberhart.?? Parameters ¢; and ¢y represent the particles confidence in its
own experience, as well as the experience of other particles. Venter and
Sobieszczanski-Sobieski®? used the following formulae to calculate particles
velocity:

PB' - X! P! — X}
[ + Co - To _,
At At

In other words, when calculating the particles velocity, Venter and
Sobieszczanski-Sobieski®® replaced the best position of any particle achieved
so far P9, by the best position of any particle achieved in the kth iteration
Py

The PSO represents search process that contains stochastic components
(random numbers 71 and r2). Small number of parameters that should be
initialized also characterizes the PSO. In this way, it is relatively easy to
perform a big number of numerical experiments. The number of particles is
usually between 20 and 40. The parameters ¢; and co were most frequently
equal to 2. When performing the PSO, the analyst arbitrarily determines
the number of iterations.

Vi =w-Vi+e - (1.3)

1.3.2.2. Ant Colony Optimization (ACO)

We have already mentioned that the ants successful at finding food leave
behind them a pheromone trail that other ants follow in order to reach
the food. In this way ants communicate among themselves, and they are
capable to solve complex problems. It has been shown by the experiments
that ants are capable to discover the shortest path between two points
in the space. Ants that randomly chose the shorter path are the first
who come to the food source. They are also the first who move back to
the nest. Higher frequency of crossing the shorter path causes a higher
pheromone on the shorter path. In other words, the shorter path receives
the pheromone quicker. In this way, the probability of choosing the shorter
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path continuously increases, and very quickly practically all ants use the
shorter path. The ant colony optimization represents metaheuristic capable
to solve complex combinatorial optimization problems. There are several
special cases of the ACO. The best known are the ant system,3! ant colony

32,33 and the maxmin ant system.3*

system

When solving the Traveling Salesman Problem (TSP), artificial ants
search the solution space, simulating real ants looking for food in the
environment. The objective function values correspond to the quality of
food sources. The time is discrete in the artificial ants environment. At
the beginning of the search process (time ¢t = 0), the ants are located in
different towns. It is usual to denote by 7;;(¢) the intensity of the trail on
edge(i, j) at time ¢. At time ¢t = 0, the value of 7;;(0) is equal to a small
positive constant c. At time ¢t each ant is moving from the current town to
the next town. Reaching the next town at time (¢ + 1), each ant is making
the next move towards the next (unvisited) town. Being located in town 4,
ant k chooses the next town j to be visited at time ¢ with the transition
probability pfj (t) defined by the following equation:

[7i; ()] - [n3;)°
ph(t) = { Eneato [Tin (0] - [min]

0 otherwise

; k

where QF(t) is the set of feasible nodes to be visited by ant k (the set of
feasible nodes is updated for each ant after every move), d;; is the Euclidean
distance between node 7 and node j, 1;; = %j is the “visibility”, and o and
[ are parameters representing relative importance of the trail intensity and
the visibility. The visibility is based on local information. The greater the
importance the analyst is giving to visibility, the greater the probability
that the closest towns will be selected. The greater the importance given
to trail intensity on the link, the more highly desirable the link is since
many ants have already passed that way. By iteration, one assumes n moves
performed by n ants in the time interval (¢,¢+1). Every ant will complete a
traveling salesman tour after n iterations. The m iterations of the algorithm
are called a “cycle”. Dorigo et al.3! proposed to update the trail intensity
7,5 (t) after each cycle in the following way:

7ij(t) — p.1iz (t) + ATy, (1.5)

where p is the coefficient (0 < p < 1) such that (1—p) represents evaporation
of the trail within every cycle. The total increase in trail intensity along
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link (i, 7) after one completed cycle is equal to:
Arii(t) =Y Arh() (1.6)
k=1

where AT@ (t) is the quantity of pheromone laid on link(s, j) by the kth ant
during the cycle.

The pheromone quantity ATZ; (t) is calculated as AT{; = %(t), if the
kth ant walks along the link(é, j) in its tour during the cycle. Otherwise,
the pheromone quantity equals: Arfj = 0, where @ is a constant; L(t)
is the tour length developed by the kth ant within the cycle. As we
can see, artificial ants collaborate among themselves in order to discover
high-quality solutions. This collaboration is expressed through pheromone
deposition. In order to improve ant system Dorigo et al.3® proposed
ant colony optimization (ACO) that represents metaheuristic capable
to discover high-quality solutions of various combinatorial optimization
problems.

The transition probability pfj(t) is defined within the ant colony
optimization by the following equation:

rg max k Tih i,'ﬁ <
j:{ag axpeqr oy {Tin(Olnnl"} 4 < q @

J q<qo

where ¢ is the random number uniformly distributed in the interval [0, 1],
qo is the parameter (0 < go < 1), and J is the random choice based on the
above relation; one assumes « = 1 when using the equation (1.4).

In this way, when calculating transition probability, one uses pseudo-
random-proportional rule (equation (1.8)) instead of random-proportional
rule (equation (1.4)). The trail intensity is updated within the ACO by
using local rules and global rules. Local rule orders each ant to deposit a
specific quantity of pheromone on each arc that it has visited when creating
the traveling salesman tour. This rule reads:

Tij(t) — (]_ — p)Tij(t) + pTo, (18)

where p is the parameter (0 < p < 1), and 7y is the amount of pheromone
deposited by the ant on the link(%, j) when creating the traveling salesman
tour. It has been shown that the best results are obtained when 7y is equal
to the initial amount of pheromone c.
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Global rule for the trail intensity update is triggered after all ants create
traveling salesman routes. This rule reads:

Tij(t) — (1 — Oz)TZ‘j(t) + Oz(;TZ‘j, (19)

5 (Lgu(t)) if (i,7) € to the best created traveling salesman tour
Tis —
Y 0 otherwise

(1.10)

Lgy(t) is the length of the best traveling salesman tour discovered
from the beginning of the search process, and « is the parameter that
regulates pheromone evaporation (0 < a < 1). Global pheromone updating
is projected to allocate a greater amount of pheromone to shorter traveling
salesman tours.

1.3.2.3. Artificial Bee Colony (ABC)

The bee colony optimization (BCO) metaheuristic has been introduced
fairly recently®® as a new direction in the field of swarm intelligence. It
has been applied in the cases of the Traveling salesman problem,3® the
ride-matching problem (RMP),*” as well as the routing and wavelength
assignment (RWA) in all-optical networks.?8

Artificial bees represent agents, which collaboratively solve complex
combinatorial optimization problem. Each artificial bee is located in the
hive at the beginning of the search process, and from thereon makes a
series of local moves, thus creating a partial solution. Bees incrementally
add solution components to the current partial solution and communicate
directly to generate feasible solution(s). The best discovered solution of such
initial (first) iteration is saved and the process of incremental construction of
solutions by the bees continues through subsequent iterations. The analyst-
decision maker prescribes the total number of iterations.

Artificial bees perform two types of moves while flying through the
solution space: forward pass or backward pass. Forward pass assumes a
combination of individual exploration and collective past experiences to
create various partial solutions, while backward pass represents return to
the hive, where collective decision-making process takes place. We assume
that bees exchange information and compare the quality of the partial
solutions created, based on which every bee decides whether to abandon the
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created partial solution and become again uncommitted follower, continue
to expand the same partial solution without recruiting the nestmates, or
dance and thus recruit the nestmates before returning to the created partial
solution. Thus, depending on its quality, each bee exerts a certain level of
loyalty to the path leading to the previously discovered partial solution.
During the second forward pass, bees expand previously created partial
solutions, after which they return to the hive in a backward pass and engage
in the decision-making process as before. Series of forward and backward
passes continue until feasible solution(s) are created and the iteration ends.
The ABC also solves combinatorial optimization problems in stages (see
Fig. 1.1).

Ry
First Second Third
Stage Stage Stage

r 1t 1

First Second Third
Stage Stage Stage

Fig. 1.1. First forward and backward pass.
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Each of the defined stages involves one optimizing variable. Let us
denote by ST = st1, sto, ..., st,, a finite set of pre-selected stages, where m
is the number of stages. By B we denote the number of bees to participate
in the search process, and by I the total number of iterations. The set
of partial solutions at stage st; is denoted by S; (7 = 1,2,...,m). The
following is pseudo-code of the bee colony optimization:

Bee colony optimization:

(1) Step 1: Initialization:- Determine the number of bees B, and the number
of iterations I. Select the set of stages ST = sti, sts,..., st,. Find
any feasible solution x of the problem. This solution is the initial best
solution.

(2) Step 2: Set ¢ = 1. Until ¢ = I, repeat the following steps:

(3) Step 3: Set j = 1. Until j = m, repeat the following steps:

Forward pass: Allow bees to fly from the hive and to choose B partial
solutions from the set of partial solutions S; at stage st;.

Backward pass: Send all bees back to the hive. Allow bees to exchange
information about quality of the partial solutions created and to
decide whether to abandon the created partial solution and become
again uncommitted follower, continue to expand the same partial solu-
tion without recruiting the nestmates, or dance and thus recruit the
nestmates before returning to the created partial solution. Set, j = j+1.

(4) Step 4: If the best solution x; obtained during the ith iteration is better
than the best-known solution, update the best known solution (z = x;).

(5) Step b5:seti =14+ 1.

Alternatively, forward and backward passes could be performed until
some other stopping condition (i.e., the maximum total number of
forward/backward passes, or the maximum total number of forward/
backward passes between two objective function value improvements) is
satisfied. During the forward pass (Fig. 1.1) bees will visit a certain number
of nodes, create a partial solution, and return to the hive (node O),
where they will participate in the decision-making process, by comparing
all generated partial solutions. Quality of the partial solutions generated
will determine the bees loyalty to the previously discovered path and the
decision to either abandon the generated path and become an uncommitted
follower, continue to fly along discovered path without recruiting the
nestmates or dance and thus recruit the nestmates before returning to the
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O O O
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O
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B,

T

First Second Third
Stage Stage Stage

Fig. 1.2. Second forward pass.

discovered path. For example, bees B;, B2, and Bs compared all generated
partial solutions in the decision-making process, which resulted in bee Bjs
decision to abandon previously generated path, and join bee By. While
bees By and B> fly together along the path generated by bee Bs, at the
end of the path they will make individual decisions about the next node
to be visited. Bee Bs continues to fly along the discovered path without
recruiting the nestmates (see Fig. 1.2). In this way, bees are performing a
forward pass again.

During the second forward pass, bees will visit few more nodes,
expand previously created partial solutions, and subsequently perform the
backward pass to return to the hive (node O). Following the decision-
making process in the hive, forward and backward passes continue and
the iteration ends upon visiting all nodes. Various heuristic algorithms
describing bees behavior and/or “reasoning” (such as algorithms describing
ways in which bees decide to abandon the created partial solution, to
continue to expand the same partial solution without recruiting the
nestmates or to dance and thus recruit the nestmates before returning to the
created partial solution) could be developed and tested within the proposed
BCO metaheuristic.

1.3.2.4. Artificial Wasp Colony (AWC)

In both nature and marketing, complex design can emerge from distributed
collective processes. In such cases the agents involved—whether they are
social insects or humans—have limited knowledge of the global pattern they
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are developing. Of course, insects and humans differ significantly in what
the individual agent can know about the overall design goals.

Wasp colony optimization (WCO)3%4% mimics the behavior of social
insect wasp and serves as a heuristic stochastic method for solving discrete
optimization problem. Let us have a closure look on the behavior of wasp
colony in nature. The wasp colony consists of queens (fertile females),
workers (sterile female), and males. In late summer the queens and males
mate; the male and workers die off and the fertilized queen over winters
in a protected site. In the spring the queen collects materials from plant
fibre and other cellulose material and mixes it with saliva to construct a
typical paper type nest. Wasps are very protective of their nest and though
they will use the nest for only one season the nest can contain as many as
10,000 to 30,000 individuals. Wasps are considered to be beneficial because
they feed on a variety of other insects. Fig. 1.3 shows the different stages
of a wasp colony. A young wasp colony (Polistes dominulus) is founding a
new colony. The nest was made with wood fibers and saliva, and the eggs
were laid and fertilized with sperm kept from the last year. Now the wasp
is feeding and taking care of her heirs. In some weeks, new females will
emerge and the colony will expand.

Theraulaz et al*' introduced the organizational characteristic of a
wasp colony. In addition to the task of foraging and brooding, wasp
colonies organize themselves in a hierarchy through interaction between
the individuals. This hierarchy is an emergent social order resulting in a
succession of wasps from the most dominant to the least dominant and is
one of the inspirations of wasp colony optimization (WCO). In addition
it mimics the assignment of resources to individual wasps based on their
importance for the whole colony. For example, if the colony has to fight
a war against an enemy colony, then the wasp soldiers will receive more
food than others, because they are currently more important for the whole
colony than other wasps.

1.3.2.5. Artificial Termite Colony (ATC)

During the construction of a nest, each termite places somewhere a soil
pellet with a little of oral secretion containing attractive pheromone. This
pheromone helps to coordinate the building process during its initial stages.
Random fluctuations and heterogeneities may arise and become amplified
by positive feedback, giving rise to the final structure (mound). Each time
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Fig. 1.3. Stages of wasp colony in nature.

one soil pellet is placed in a certain part of the space, more likely another soil
pellet will be placed there, because all the previous pellets contribute with
some pheromone and, thus, attract other termites. There are, however, some
negative feedback processes to control this snowballing effect, for instance,
the depletion of soil pellets or a limited number of termites available on the
vicinity. It is also important to note that the pheromone seems to loose its

biological activity or evaporate within a few minutes of deposition.*?
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A simple example of the hill building behavior of termites provides a
strong analogy to the mechanisms of Termite. This example illustrates the
four principles of self organization.*? Consider a flat surface upon which
termites and pebbles are distributed. The termites would like to build a
hill from the pebbles, i.e., all of the pebbles should be collected into one
place. Termites act independently of all other termites, and move only on
the basis of an observed local pheromone gradient. Pheromone is a chemical
excreted by the insect which evaporates and disperses over time. A termite
is bound by these rules: 1) A termite moves randomly, but is biased towards
the locally observed pheromone gradient. If no pheromone exists, a termite
moves uniformly randomly in any direction. 2) Each termite may carry
only one pebble at a time. 3) If a termite is not carrying a pebble and it
encounters one, the termite will pick it up. 4) If a termite is carrying a
pebble and it encounters one, the termite will put the pebble down. The
pebble will be infused with a certain amount of pheromone. With these
rules, a group of termites can collect dispersed pebbles into one place.
The following paragraphs explain how the principles of swarm intelligence
interplay in the hill building example.

Positive Feedback: Positive feedback often represents general guide-
lines for a particular behavior. In this example, a termites attraction
towards the pheromone gradient biases it to adding to large piles. This
is positive feedback. The larger the pile, the more pheromone it is likely to
have, and thus a termite is more biased to move towards it and potentially
add to the pile. The greater the bias to the hill, more termites are also likely
to arrive faster, further increasing the pheromone content of the hill.

Negative Feedback: In order for the pheromone to diffuse over the
environment, it evaporates. This evaporation consequently weakens the
pheromone, lessening the resulting gradient. A diminished gradient will
attract fewer termites as they will be less likely to move in its direction.
While this may seem detrimental to the task of collecting all pebbles into
one pile, it is in fact essential. As the task begins, several small piles will
emerge very quickly. Those piles that are able to attract more termites will
grow faster. As pheromone decays on lesser piles, termites will be less likely
to visit them again, thus preventing them from growing. Negative feedback,
in the form of pheromone decay, helps large piles grow by preventing small
piles from continuing to attract termites. In general, negative feedback is
used to remove old or poor solutions from the collective memory of the
system. It is important that the decay rate of pheromone be well tuned to
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the problem at hand. If pheromone decays too quickly then good solutions
will lose their appeal before they can be exploited. If the pheromone decays
too slowly, then bad solutions will remain in the system as viable options.

Randomness: The primary driving factor in this example is
randomness. Where piles start and how they end is entirely determined
by chance. Small fluctuations in the behavior of termites may have a
large influence in future events. Randomness is exploited to allow for new
solutions to arise, or to direct current solutions as they evolve to fit the
environment.

Multiple Interactions: It is essential that many individuals work
together at this task. If not enough termites exist, then the pheromone
would decay before any more pebbles could be added to a pile. Termites
would continue their random walk, without forming any significant piles.

Stigmergy: Stigmergy refers to indirect communications between
individuals, generally through their environment. Termites are directed to
the largest hill by the pheromone gradient. There is no need for termites
to directly communicate with each other or even to know of each others
existence. For this reason, termites are allowed to act independently of
other individuals, which greatly simplifies the necessary rules.

Considering the application of intelligent agents segregated in different
chapters of this book one should also expect much more applications in
various domain. We do believe that the method based on intelligent agents
hold a promise in application to knowledge mining, because this approach
is not just a specific computational tool but also a concept and a pattern
of thinking.

1.4. Summary

Let us conclude with some remarks on the character of these techniques
based on intelligent agents. As for the mining of data for knowledge the
following should be mentioned. All techniques are directly applicable to
machine learning tasks in general, and to knowledge mining problems in
particular. These techniques can be compared according to three criteria:
efficiency, effectivity and interpretability. As for efficiency, all the agent
based techniques (considered in this chapter) may require long run times,
ranging from a couple of minutes to a few hours. This however is not
necessarily a problem. Namely, the long running times are needed to find
a solution to a knowledge mining problem, but once a solution is detected,
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applying such a solution in a new situation can be done fast. Concerning the
issue of effectivity, we can generally state that all agent based techniques are
equally good. However, this is problem dependent and one has to take the
time/quality tradeoff into account. As far as interpretability is concerned,
one can say that the simple techniques are generally the easiest to interpret.
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This chapter discusses the use of evolutionary computation in data mining
and knowledge discovery by using intrusion detection systems as an example.
The discussion centers around the role of EAs in achieving the two high-
level primary goals of data mining: prediction and description. In particular,
classification and regression tasks for prediction, and clustering tasks for
description. The use of EAs for feature selection in the pre-processing step
is also discussed. Another goal of this chapter was to show how basic elements
in EAs, such as representations, selection schemes, evolutionary operators, and
fitness functions have to be adapted to extract accurate and useful patterns
from data in different data mining tasks.

2.1. Introduction

As a result of the popularization of the computer and the Internet, the
amount of data collected from various realms of human activity continues
to grow unabatedly. This creates great demand for new technology able
to assist human beings in understanding potentially valuable knowledge
hidden in huge, unprocessed data. Knowledge Discovery in Databases
(KDD) is one of the emergent fields of technology that concerns itself with
the development of theories and tools to extract interesting information
from data with minimum human intervention. Data Mining (DM) as the
core step in KDD studies specific algorithms for extracting patterns from
data and their real-world applications.
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This chapter discusses the use of evolutionary computation in data
mining and knowledge discovery. We restrict our discussion to Intrusion
Detection Systems (IDSs) as an application domain. IDSs are an
indispensable component of security infrastructure used to detect cyber
attacks and threats before they inflict widespread damage. We choose
IDSs as an example, because it is a typical application for DM. Popular
DM algorithms and techniques applied in this domain reflect the state of
the art in DM research. In addition, intrusion detection is well-studied,
though from a practical perspective still an unsolved problem. Some of its
features, such as huge data volumes, highly unbalanced class distribution,
the difficulty to realize decision boundaries between normal and abnormal
behavior, and the requirement for adaptability to a changing environment,
present a number of unique challenges for current DM research. Also, the
findings obtained in intrusion detection research can be easily transformed
to other similar domains, such as fraud detection in financial systems and
telecommunication.

There are two high-level primary goals of data mining: prediction
and description.! This chapter focuses on how evolutionary algorithms
actively engage in achieving these two goals. In particular, we are
interested in their roles in classification and regression tasks for prediction
and clustering for description. We also discuss the use of EC for
feature selection in the pre-processing step to KDD. When designing
an evolutionary algorithm for any of these DM tasks, there are many
options available for selection schemes, evolutionary operators, and fitness
functions. Since these factors greatly affect the performance of an
algorithm, we put effort into systematically summarizing and categorizing
previous research work in this area. Our discussion also covers some
new techniques designed especially to fit the needs of EC for knowledge
acquisition. We hope this part of the discussion could serve as a good
source of introduction to anyone who is interested in this area or
as a quick reference for researchers who want to keep track of new
developments.

The chapter is organized as follows. Section 2.2 presents a brief
introduction to KDD, data mining, evolutionary computation, and IDSs.
Section 2.3 discusses various roles EC can play in the KDD process.
Sections 2.4 and 2.5 discuss how genetic operators and fitness functions
have to be adapted for extracting accurate and useful patterns from data.
Section 2.6 presents conclusions and outlook for future research.
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2.2. Background
2.2.1. Knowledge discovery and data mining

KDD is the nontrivial process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data.! The whole KDD process
comprises three steps. The first step is called data pre-processing and
includes data integration, data cleaning and data reduction. The purpose
of this step is to prepare the target data set for the discovery task according
to the application domains and customer requirements. Normally, data
are collected from several different sources, such as different departments
of an institution. Therefore, data integration will remove inconsistencies,
redundancies and noise; data cleaning is responsible for detecting and
correcting errors in the data, filling missing values if any, etc.; data
reduction, also known as feature selection, removes features that are less
well-correlated with the goal of the task. Once all preparation is complete,
KDD is ready to proceed with its core step: data mining. DM consists of
applying data analysis and discovery algorithms that, within acceptable
computational efficiency boundaries, produce a particular enumeration
of patterns (or models) over the data.! Patterns should be predictively
accurate, comprehensible and interesting. The last step is post-processing.
In this step, mined patterns are further refined and improved before actually
becoming knowledge. Note that the KDD process is iterative. The output
of a step can either go to the next step or can be sent back as feedback to
any of the previous steps.

The relationship between KDD and DM is hopefully clear now: DM is
a key step in the KDD process. Data mining applies specific algorithms on
the target data set in order to search for patterns of interest. According to
different goals of the KDD task, data mining algorithms can be grouped
into five categories: classification, regression, clustering, association rules
and sequential rules. Classification and regression both predict the value
of a user-specified attribute based on the values of other attributes in the
data set. The predicted attribute in classification has discrete value whereas
it has continuous value in regression. Classification normally represents
knowledge in decision trees and rules, while regression is a linear or
non-linear combination of input attributes and of basic functions, such
as sigmoids, splines, and polynomials. Clustering, association rules and
sequential rules are used for common descriptive tasks. Clustering identifies
groups of data such that the similarity of data in the same group is high
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Table 2.1. Confusion matrix.

Prediction Result

Not C C
Actual Result
Not C True Negative (TN)  False Positive (FP)
C False Negative (FN)  True Positive (TP)

but is low between different groups; association rules reveal correlations
between different attributes in a data set; sequential rules summarize
frequent sequences or episodes in data.

Once an appropriate DM algorithm is adopted, one needs to divide the
data set being mined into two subsets, the training set and the test set.
Data mining algorithms are trained on the training set for construction
of patterns. These patterns are then verified on the test set. The verified
results are summarized in a confusion matrix such as the one shown in
Table 2.1. C in the table denotes the value of a predicted attribute. Based on
the confusion matrix, the following measures are used to quantify the
performance of a data mining algorithm:

e True Negative Rate (TNR): %, also known as Specificity.

e True Positive Rate (TPR): %7 also known as Detection Rate (DR)
or Sensitivity.

e False Positive Rate (FPR): % = 1 — Specificity, also known as
False Alarm Rate (FAR).

e False Negative Rate (FNR): =LY = 1 — Sensitivity.

TPIFN
) TN+TP
* Accwracy: 7P FNTFP

2.2.2. FEvolutionary computation

Evolutionary computation, inspired by natural selection and variation of
Darwinian principles, is often viewed as an optimization process, as it favors
the best solutions among a set of randomly varied ones. Nevertheless, EC is
also useful for acquiring knowledge. The learning problem can be formulated
as a search problem by considering it as a search for a good model inside
the space of models. Such a space might consist of if-then rule sets or points
representing cluster centers. Compared with traditional search techniques,
evolutionary algorithms (EAs) are more efficient in that they involve search
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with a “population” of solutions, not a single solution which might have to
backtrack. Because of other advantages such as adaptiveness, robustness,
and flexibility, EC has been demonstrated to be an important tool for
learning and extracting knowledge in data mining tasks.?

The EC family encompasses Genetic Algorithms (GAs),>* Genetic
Programming (GP),%% Evolution Strategies™® and Evolutionary Program-
ming.? Although these different types of evolutionary methods were deve-
loped independently, the underlying idea of these algorithms is the same, as
shown in Fig. 2.1.

Initially, a set of candidate solutions are randomly generated. In the
terminology of EC, we call this set “population” and candidate solutions
“individuals”. The performance of every individual is evaluated according
to an explicitly defined fitness metric. Given this fitness metric to be
maximized, individuals with higher fitness are selected to enter the mating
pool with a higher probability (refers to parent selection). Reproduction
takes place in the mating pool. With probability p, two individuals
recombine and produce one or two offspring. With probability ¢ (often
¢ < p), an individual mutates and produces another offspring. Based on
their fitness, these offspring compete with their parents for a spot in the
next generation (refers to survivor selection). This process is iterated until
a solution is found or a preset limit of iterations is reached.

Evidently, selection and variation are two fundamental forces that push
evolution forward. Fitter individuals have greater chances to survive due
to the strong selective pressure, and will reproduce more varied offspring.
Offspring generated by crossover and mutation is biased towards regions of
the search space where good solutions have already been discovered. As a
result, the fitness of a population increases over the generations.

In this chapter, GA and GP are of particular interest, because they
are the two most popular evolutionary algorithms employed in data mining

Parent

Initialization : z
Selection Mating Pool

Population

5 (parents)
Termination
Survivor Reproduction
Selection (Crossover/Mutation)

Offspring

Fig. 2.1. The flow chart of a typical evolutionary algorithm.
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Fig. 2.2. A chromosome in a GA contains n genes, where n is the number of parameters
to be optimized. Each gene contains several nucleotides, which stores the specific value
of a parameter.

tasks. The main difference between them is the representation of solutions;
GP works on a superset of representations compared to GAs. GAs were
introduced by John H. Holland in the early 1960s? for solving machine
learning problems, so it represents candidate solutions as fixed length binary
strings (i.e., chromosomes), as shown in Fig. 2.2. A chromosome in a GA
contains n genes, where n is the number of parameters to be optimized.
Each gene contains several nucleotides which carry the binary encoding of
the specific value of a parameter. Over the years of development, other types
of encodings have been suggested, such as real values, categorical values, or
the combinations of them.

Genetic programming provides a framework for automatically creating
computer programs. Originally computer programs were confined to tree
structures, as illustrated in Fig. 2.3(a). Functions are located at the inner
nodes, while variables and constants are at leave nodes. The main limitation
of tree-based GP is the translation from tree structures to S-expressions
in LISP, and then to instructions understood by computers at the fitness
evaluation step. In order to boost the evolutionary process, Linear Genetic
Programming (LGP), another major approach to GP, evolves sequences
of instructions from an imperative programming language or from a
machine language.!® As shown in Fig. 2.3(b), instructions operate on
one or two indexed variables (registers), or on constants from predefined
sets. Therefore, individuals are manipulated and executed directly without
passing an interpreter during fitness calculation. Other variants of GP
in the literature include Grammatical Evolution,'? Cartesian Genetic
Programming (CGP),!? Gene Expression Programming (GEP),'* etc.

Figure 2.1 is only a conceptual framework that reflects the
Darwinian principle. In fact, when one starts to design an evolutionary
algorithm, specific representations, fitness functions, selection schemes and
evolutionary operators should be considered according to the application
domain and data mining task at hand. We will discuss this in the following
sections.
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Fig. 2.3.  Chromosome structures of Tree GP and Linear GP; (a) Tree GP Chromosome
(b) Linear GP Chromosome.!!

2.2.3. Intrusion detection systems

An intrusion detection system dynamically monitors the events taking place
in a system, such as traffic on a network or activities on a host, and decides
whether these events are symptomatic of an attack or constitute a legitimate
use of the system.!®

In general, IDSs fall into two categories according to the detection
methods, namely misuse detection and anomaly detection. Misuse detection
identifies intrusions by matching observed data with pre-defined signatures
of intrusive behavior. So, well-known intrusions can be detected efficiently
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with a very low false positive rate. However, intrusions are usually
polymorph, and evolve continuously. Misuse detection fails easily when
facing unknown intrusions. Manually updating the intrusion signatures is
generally infeasible because it is time consuming and laborious. A possible
way is to automatically extract intrusive patterns from history data for
future prediction. Anomaly detection is orthogonal to misuse detection.
It hypothesizes that abnormal behavior is rare and different from normal
behavior. Hence, it builds models for normal behavior and detects anomaly
in observed data by noticing deviations from these models. Clearly, anomaly
detection has the capability of detecting new types of intrusions, and
only requires normal data when building the profiles. However, its major
difficulty lies in discovering boundaries between normal and abnormal
behavior, due to the scarcity of abnormal samples in the training phase.
The two detection methods perfectly match the two high-level primary
goals of data mining: prediction and description. Therefore, classification
and regression tasks for prediction are suitable for automatically construct-
ing misuse models, while clusterings, association rules or sequential rules
for description fit the need of establishing a profile for normal behavior.

2.3. The Role of Evolutionary Computation in KDD

Evolutionary algorithms actively engage in the three steps of the KDD
process. In this section, we mainly concentrate on feature selection in the
pre-processing step, and prediction and description tasks in data mining. In
the post-processing step, an EA is often used for resolving contradictions
when several patterns disagree with the output for a given data instance.
An example can be found in Ref. 16.

2.3.1. Feature selection

One of the main obstacles for improving the performance of IDSs is the high
dimensionality of data; for example, there are 41 features in the KDD99
data set.!” High dimensional data means huge research spaces, hence requires
expensive computation. However, the information in attributes sometimes
overlaps, orisredundant. Feature selection by eliminating useless features can
enhance the accuracy of the detection while speeding up the computation,
thus improving the overall performance of an IDS. Feature selection studies
fall into two categories based on whether or not they perform selection
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independently of learning algorithms. Independent selection is known as a
filter approach; the opposite is called a wrapper approach.®

Research work conducted by Faraoun et al.'® is an typical example
of GA-based filter approach for feature selection. Individuals are vectors
of integer numbers which represent the index of a selected feature. The
fitness function computes the information gain of a given feature subset
with regard to all the classes or a specific class. Hence, it guides the GA to
search for the best feature subset that maximizes the information gain for
all the classes, or for a given class.

In the wrapper approach, in contrast, the definition of a fitness function
is no longer necessary. Instead, different classification models are called to
measure the importance of a feature or feature subsets, such as a Decision
Tree Model,2’ a Support Vector Machine,?' a Naive Bayesian Network,??
a k-Nearest Neighbor method.?? The results returned from these external
models are used as the fitness of an individual. Therefore, the goal of the
GA is to maximize the predicted classification accuracy. This approach,
while more computationally expensive, tends to provide better results than
the simpler filter method.

Another commonly used GA representation for feature selection tasks
is binary strings that represent the set of all existing features, with a value
of 1 at the ith position if the ith feature is selected, and 0 otherwise.?0-22
If one changes the representation from binary strings to real vectors, the
feature selection can be extended to feature ranking. The ranking value of
each feature reflects the relative importance or relevance of the attribute
to the classification task. A value in a real vector, indicating the ranking
of an attribute on that position, ranges between 0 and 1, with 0 showing
the attribute is not selected and 1 for the most important attribute.?!:23
Research work discussed in Refs. 24 and 25 also demonstrates the capability
of LGP in feature ranking and selection. The evolved high-ranking programs
are analyzed for the number of times each attribute appears in a way that
it contributes to the fitness of the programs. The best feature subset is then
output as the recommended feature set to be used in the actual input for
classifiers.

2.3.2. Classification

Classification is probably the most studied data mining task. Every data
sample in a data set used for classification contains two parts, namely a set
of predictor attributes and a goal attribute. EC discovers a combination of
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conditions on predictor attributes that describes and distinguishes different
values in the goal attribute. The goal attribute is also known as class label.

2.3.2.1. Representation

Classification rules are normally represented by IF-THEN rules with the
following format:

IF(condi) AND--- AND (cond,,) THEN class = ¢;

This type of rules contains two parts. The rule antecedent (the IF part)
contains a conjecture of m conditions on predictor attributes (i.e., cond;),
and the rule consequent (the THEN part) contains a prediction about
the value of a goal attribute (i.e., ¢;). cond; is a predicate of the form
attri; operator wvalue;;, where attri; denotes the i-th attribute in the
predictor attribute set, value;; means the j-th value of attribute ¢ and
operator is a comparing operator (e.g., =,#,>,>,<,< for continuous
attribute, = and # for nominal or boolean attributes).

Encoding such complicated rule structure by GAs is not obvious, since
GAs use fixed length binary strings for representation. Therefore, the rule
format is normally simplified by only considering “=" as the operator.
In this case, given n attributes, if referring to Fig. 2.2, there will be n
genes in the chromosome, where the first n — 1 genes represent values of
n — 1 attributes in the IF part, and the last gene represents the value
of the goal attribute. Two ways are available to decide the number of
nucleotides for each gene. Suppose a given attribute attri; can take k
discrete values, then there will be k nucleotides for this gene. For example, if
the value of attribute “login_time” can be “morning”, “noon”, “afternoon”,
“evening”, and “midnight”, then the gene for this attribute has five bits.
If the gene has the value “01001”7, then they would be representing a
condition like (login_time = “noon” OR, “midnight”). Obviously, such type
of representation is able to encode more than one value for an attribute
at the same time, but will suffer performance issues if an attribute has
hundreds of values. Another way to decide the number of nucleotides is to
use the equation len = [logh],26:27
attribute. So this time there will be three bits for attribute “login_time”.
The binary string “010” here means (login_time=“afternoon”).

With the development of GAs, other encoding schemes were conceived
28,29 30,31

where n is the number of values of an

and applied, such as hexadecimal strings, real-number vectors or a

vector mixed with real numbers and characters.??33 Sometimes, a special
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symbol, called “don’t care” (“#”) symbol, is used as a wild card that allows
any possible value in a gene, thus improving the generality of rules.2833
More complicated representations consider different kinds of logic operators
between conditions.?”

Compared to GAs, tree-based GP integrates more operators into the
representation of classification rules, such as using various comparison
operators (i.e., =, #,>, >, <, <) to connect leaf nodes, and logic operators
such as “OR”, “AND”, “NOT” to connect conditions. Applying different
operators to attributes will produce many different attribute combinations
that will greatly increase the descriptive power of classification rules, which
could not be considered by a traditional GA. An example is shown in
Fig. 2.4(a). Because the execution of such a parse tree only outputs “True”
or “False” when given an input data instance, and the class label cannot be
encoded as a part of the representation, an extra step is needed to map a
specific class label, such as “Intrusion”, to an output, say “True”. Obviously,
such kind of representation is only suitable for binary classification. Another
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Fig. 2.4. Tree GP for Classification; (a) Binary Classification. (b) Multiple Class
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representation option for tree-based GP is a decision tree, as illustrated in
Fig. 2.4(b). Internal nodes are predicates of the form (cond;). In the leaf
nodes we have a class assignment of the form (class = ¢;), where ¢; is
a category selected from the domain of the goal attribute. This type of
representation is normally adopted by GP in multiple class classification.

2.3.2.2. Learning approaches

For most real-world applications, due to the high volume of data sets
and the complicated relationship between predictor attributes and goal
attributes, it is impossible to use only one if-then rule to classify all data
instances accurately. Rather, a set of rules is needed, as depicted in Fig. 2.5.
In this 2D example, classification rules are represented as circles which
cover the data points (denoted as “+”) of unknown concepts (represented
as shaded regions). Now the task of the EA is to find the smallest rule set
in which each rule covers as much data samples as possible from its class,
and also generalizes well to unseen but similar data samples.

The learning approach for evolving a set of rules by EAs can broadly
be categorized into the following three branches:

e Michigan Approach:®® In the Michigan approach, each individual in
the population represents an if-then rule, and is only a part of the
solution for the problem under consideration. The complete solution
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is provided by the entire population. Crossover and mutation act on
individual rules.

e Pittsburgh Approach:®® In the Pittsburgh approach, each individual is
a set of rules, representing a complete solution for the target problem.
Crossover exchanges rules in two sets, and mutation creates new rules.
Please refer to Tsang et al. and Tsang et al.>"38 for examples.

e Iterative Rule Learning Approach:3* 4! Individuals are defined in the
same way as in the Michigan approach. After a pre-defined number of
generations the best classification rule is added to the set which keeps
track of the best individuals found so far. The data covered by this rule
are either removed from the training data set3® or their probability of
being selected again is decreased.*®4! In the latter case, a weight is
normally associated with every training instance with the same initial
value. Weights of misclassified instances remain the same, while weights
of correctly classified instances are decreased. Therefore, hard instances
have a higher probability to be selected again.

The three approaches have pros and cons. The goal of an EA is not to
find the best rule but the best set of rules, therefore the interactions between
rules (i.e., changes in one rule affect other rules) must be considered. The
Pittsburgh approach evaluates the quality of the whole rule set, therefore
directly considering interactions. However, in the Michigan and Iterative
Rule Learning approach, rules are evaluated separately, so the quality of
the entire rule set is ignored. Furthermore, in order to maintain multiple
distinct rules inside of the population, special techniques have to be used
to prevent the population from converging to a single individual. Credit
assignment and niching are then introduced. The iterative rule learning
approach, because of the reduction of training instances, is more efficient
at the fitness evaluation step.

2.3.2.3. Rule discovery

Research exploring the evolution of classification rules for intrusion
detection is summarized in Table 2.2. The difference between binary
classifiers and multi-classifiers is the representation.

For a GA, the consequent part of rules is usually omitted from the
representation for binary classifiers, because the same class label applies to
all rules. The contributions listed for GAs all employ the Michigan approach
as their learning approach, but are based on various GA models. Research
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Table 2.2. Evolving classification rules by EC.

Type Contributions

GA
Binary Classifiers  Refs. 29, 32, 33, 26, 27, 28, 42
Multi-classifiers Refs. 30, 31, 43, 44, 45, 46, 47, 48
Tree GP

Binary Classifiers  Refs. 49, 50, 51
Multi-classifiers Refs. 52, 53

work described in Refs. 28-31 and 43 uses classic GAs with niching to help
cover all data instances with a minimum set of accurate rules. Mischiatti
and Neri®?33 use the REGAL to model normal network traffic. REGALS* is
a distributed genetic algorithm-based system. It exhibits several novelties,
such as a hybrid Pittsburgh and Michigan learning approach, a new
selection operator allowing the population to asymptotically converge
to multiple local optima, a new model of distribution and migration,
etc. Dam and Shafi** *® report initial attempts to extend XCS, an
evolutionary Learning Classifier System (LCS), to intrusion detection
problems. Although XCSs have shown excellent performance on some data
mining tasks, many enhancements, such as mutation and deletion operators,
and a distance metric for unseen data in the testing phase, are still needed
to tackle hard intrusion detection problems.**

Tree-based GP, on the other hand, uses different tree structures for
binary and multi-class classification: the parse tree shown in Fig. 2.4(a)
4951 and a decision tree as in Fig. 2.4(b) for
multiple class classification.??%3 Crosbie*® and Folino et al.’?53 improve

for binary classification,

the performance of a GP system by introducing cooperation between
individuals. The former use autonomous agents, each being a GP-evolved
program to detect intrusions from only one data source. The latter deploy
their system in a distributed environment by using an island model.
Recently, there is a trend to evolve fuzzy classification rules, in
effect a combination of fuzzy logic and evolutionary computation. Fuzzy
logic, dealing with the vague and imprecise, is appropriate for intrusion
detection for two reasons. First, intrusion detection problems involve many
numeric attributes, and various derived statistical measures. Building
models directly on numeric data causes substantial detection errors. For
example, an intrusion that deviates only slightly from a model may not
be detected or a small change in normal behavior may cause a false alarm.
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Second, the security itself includes fuzziness, because the boundary between
the normal and abnormal is not well defined.
Compared with classic if-then rules, fuzzy rules have the following form:

IFz (1) = Ay and --- and z,, (!) = A, THEN Class C; with CF = CF}

where z; is a predictor attribute; A; is a fuzzy set; C; is the class label;
CF} is the degree of certainty of this fuzzy rule belonging to class Cj.
Technically, evolving fuzzy rules is identical as evolving classic if-then
rules, but with two extra steps. The first step is to determine fuzzy sets
and corresponding membership functions for continuous attributes before
evolution. Fuzzy sets define the linguistic notions for an attribute, such
as “small”, “high”, or “hot”. The transition from “belonging to a set” to
“not belonging to a set” is gradual, and is characterized by membership
functions. Take Fig. 2.6 as an example, the fuzzy space for a continuous
attribute, say attri; contains five fuzzy sets: xsmall, small, medium, large
and xlarge. Each fuzzy set has a membership function with a triangular
shape. This membership function maps the value of attri;, x, to a fuzzy
set with a continuous membership value between 0 and 1. Note that x
can be mapped to members in different fuzzy sets at the same time,
but with different membership degree. The functions mostly used include
triangular,26,27:40,41,55,56 1,57 d,;3738 and Gaussian.'®
However, it is difficult to guarantee that a partition of fuzzy sets for
each fuzzy variable is complete and well distinguishable. Therefore, genetic
algorithms have been useful6-37:38,58
The second step is to calculate the compatibility grade of each data
instance with the fuzzy rules either in the fitness evaluation or detection

trapezoida sigmoi

in tuning membership functions.
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Table 2.3. Fuzzy logic operators.

Logic Operator  Fuzzy Operator

p AND ¢ min{pp (), pe(y)}
p OR ¢ max{pp(z), tq(y)}
NOT p 1— iy ()

phase. To this end, the mapping between a logic operator and a fuzzy
operator has to be defined, as shown in Table 2.3,26:27:41
q are fuzzy sets, x and y are continuous values of attributes and g is

where p and

the membership function associated with a fuzzy set. According to this
table, the firing strength of a fuzzy rule can be calculated for a given
data instance. Since an input value can belong to more than one fuzzy
set, it is possible that a data sample will trigger more than one fuzzy rule

37,38 are two

with different class labels. Winner-takes-all'® or majority vote
commonly used techniques to resolve the conflict. “Winner” refers to the

rule with maximum CFj.

2.3.3. Regression

Regression is a process of estimating the value of a continuous target
attribute as a function of one or more predictor attributes, a set of
parameters, and a set of arithmetic operators. In the context of intrusion
detection or other similar domains, regression can be viewed as a special
case of classification. That is, regression outputs an equation which
transforms data in a high dimensional space into a specific value or a range
of values in a low dimensional space according to different class labels, as
shown in Fig. 2.7.

The simplest regression function is a linear regression function with
the following format: C(x) = Z?Zl
attributes, w; is a weight®® or coefficient®® of attribute y;. A GA usually

(w; x x;), where n is the number of

searches for the best set of weights or coefficient that map any data from the
normal class to a value larger than 6 (C(x) > ¢) and any data from the
anomaly class to a value less than 6 (C'(x) < 6). d is a user defined threshold.
Individuals in this case contain n genes, each standing for a weight or
coefficient.

Compared with GAs, regression equations evolved by GP have
more complex structures, normally employing nonlinear functions. Only

“ ”

arithmetic operators, such as “+7, “=7, “x7 6“7

, “log”, etc., and
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Fig. 2.7. Regression outputs an equation which transforms data in a high dimensional
space into a specific value or a range of values in a low dimensional space according to
different class labels.

numeric values are allowed in the representations of tree-based GP or LGP.
Categorical attributes have to be converted to a numeric value beforehand.

Abraham et al.57%% and Heywood et al.'1:6566 are two major research
groups working on LGP and its application in intrusion detection. Abraham
et al. focused on investigating basic LGP and its variations, such as Multi-
Expression Programming (MEP)®” and Gene Expression Programming
(GEP),* to detect network intrusion. Experiments, in comparing LGP,
MEP, GEP and other machine learning algorithms, showed that LGP
outperformed SVMs and ANNs in terms of detection accuracy at the
expense of time;%4%8 MEP outperformed LGP on Normal, U2R and R2L
classes and LGP outperformed MEP on Probe and DoS classes.®1 %3 Song
et al. implemented a page-based LGP with a two-layer subset selection
scheme to address the binary classification problem. An individual is
described in terms of a number of pages, where each page has the
same number of instructions. Page size was dynamically adjusted when
the fitness reached a “plateau” (i.e. fitness does not change for several
generations). Since intrusion detection benchmarks are highly skewed,
the authors pointed out that the definition of fitness should reflect the
distribution of class types in the training set. Two dynamic fitness schemes,
dynamic weighted penalty and lexicographic fitness, were introduced.
The application of this algorithm to other problems related to intrusion
detection can be found in Refs. 69 and 70.

The above mentioned transform functions evolved by GPs are only used
for binary classification. Therefore, Faraoun et al.”' and Lichodzijewski
et al.”® investigated the possibility of GP in multi-category classification.
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Table 2.4. Evolving regression functions by EC.

Type Research Work
Binary Classifiers
GA Refs. 60, 59
LGP Refs. 61, 62, 63, 73, 69, 70, 64, 65, 66, 11

Multi-classifiers
Tree-based GP Ref. 71
LGP Ref. 72

Faraoun et al. implemented multi-classification in two steps. In the first
step, a GP maps input data to a new one-dimensional space, and in
the second step, another GP maps the output to different class labels;
Lichodzijewski et al. proposed a bid-based approach for coevolving LGP
classifiers. This approach coevolves a population of learners that decompose
the instance space by the way of their aggregate bidding behavior.

Research work that investigates evolving regression functions for
intrusion detection is summarized in Table 2.4.

2.3.4. Clustering

Clustering is a process of partitioning a given set of n instances into
K groups based on some similarity metrics: instances in the same cluster
have high similarity, while similarity is low between different clusters.
The number of clusters and cluster centers are two factors that affect
the performance of a clustering algorithm. For example, the well-known
K-means clustering algorithm depends on the number of clusters as an
input parameter.

Evolutionary algorithms are useful in clustering algorithms in three
ways. First, genetic algorithms are used to search for the optimal number
of clusters. For example, Lu et al.”™7 proposed a clustering algorithm based
on Gaussian mixture model (GMM). This model assumes that the entire
data set can be seen as a mixture of several Gaussian distributions, each
potentially being a cluster. The GA, therefore, is asked to search for all
possible Gaussian distributions. Each individual is composed of a three-
tuple vector («, p, ), where « is the mixing proportions, p refers to the
mean of data samples and 6 stands for the variance of data samples. An
entropy-based fitness function is defined to measure how well the evolved
models approximate the real data distribution. The number of Gaussian
distributions returned at the end of evolution will be the optimal number
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of clusters. A K-means clustering algorithm is run subsequently to locate
the centers of clusters.

Another trend is to use a GA to optimize cluster centers. This type
of algorithm consists of two stages, namely deciding preliminary cluster
centers and genetic optimization.”®”” To establish the initial clusters,
simple clustering algorithms are used, such as the nearest neighbor
method”® or K-means algorithm.” This step groups very similar instances
into a cluster and filters instances that are not adjacent to any other.
In the second step, a genetic optimization process searches for the near
optimal cluster centers. Preliminary clusters are used to set up the initial
chromosomes. The main purpose of the first stage is to reduce the data set
to a moderate size which is suitable for GAs to search in the second stage.

GAs are also used to search for cluster centers directly without knowing
the number of clusters in advance, such as the unsupervised niche clustering
approach proposed by Leon et al.”® “Unsupervised” means that the cluster
number is automatically determined by the GA. An individual represents
a candidate cluster, which is determined by its center, an n-dimensional
vector, with n being the dimension of the data sample, and a robust measure
of its scale (or radius) ¢2. Niching maintains several distinct solutions in
the population, which result in different cluster centers.

2.3.5. Comparison between classification and regression

In the context of IDSs, classification and regression are suitable for
automatically constructing misuse models, but using different mechanisms.
To gain a better understanding of the strength and weakness of each
approach, we compared the algorithms of these two approaches based on
the KDD99 test data set. The results are shown in Table 2.5. The first five
rows in this table record the detection rates obtained by each algorithm on
each class; the last two rows list the overall detection rate and false positive
rate.

We can see from the table that EAs generally achieve better
performance than the winning entry which had 50 x 10 decision trees.
In particular, regression functions (column 7-9) have higher detection rates
than classification rules (column 3-4); they especially improve detection
rates on the “U2R” and “R2L”. This is because of the limited description
power provided by classification rules. In addition, rules are more or less a
high level abstraction of data samples. They cannot separate data in two
classes very well if the two classes overlap considerably. Classification rules
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Table 2.5. Performance comparison of various EC approaches on the KDD99 test
data set.

Type Wining Entry Classification Regression
Decision Tree GA (XCS) GP  Fuzzy Sets GP LGP Coevolution
79 44 53 38 16 71 11 72
Normal 94.5 95.7 — 98.365 98.4 99.93 96.5 99.5
DoS 97.1 49.1 — 97.202 99.5 98.81 99.7 97
Probe 83.3 93 — 88.598 89.2 97.29 86.8 71.5
U2R 13.2 8.5 — 15.790 12.8 45.2 76.3 20.7
R2L 8.4 3.9 — 11.014 27.3 80.22 12.35 3.5
DR 90.9 — 91.017 92.767 95.3 98 94.4 —
FPR 0.45 — 0.434 — 1.6 0.07 3.5 —

again cannot outperform evolved fuzzy rules (column 5-6). Fuzzy rules
obtain noticeable improvement on all classes, which clearly demonstrates
that fuzzy sets are able to increase the robustness and adaption of IDSs.
Transform functions and fuzzy rules achieve similar results, but fuzzy rules
are easier to comprehend.

2.4. Evolutionary Operators and Niching
2.4.1. FEwvolutionary operators

In EC, during each successive generation, some individuals are selected
with certain probabilities to go through crossover and mutation for the
generation of offspring. Table 2.6 summarizes commonly used selection,
crossover and mutation operators employed in intrusion detection tasks.
Some special evolutionary operators are introduced to satisfy
the requirements of representations. For example, page-based LGP

algOI‘itthll’65’66’69"7O

restrict crossover to exchange of pages rather than
instructions between individuals. Mutation operators take two forms: (i) the
mutation operator selects two instructions with uniform probability and
performs an XOR on the first instruction with the second one; (ii) the
mutation operator selects two instructions in the same individual with
uniform probability and then exchanges their positions. Hansen et al.”
propose a homologous crossover in LGP that attempts to mimic natural
evolution more closely. With homologous crossover, two programs are
juxtaposed and crossover is accomplished by exchanging sets of contiguous
instruction blocks having the same length and the same position between
the two evolved programs.
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Table 2.6. Evolutionary operators employed in intrusion
detection tasks.

Operators Research Work
Selection
Roulette wheel Refs. 44, 71
Tournament Refs. 80, 81, 73, 65
Elitist Refs. 82, 31
Rank Refs. 83, 42
Crossover
Two-point Refs. 44, 80, 71, 31, 50, 32, 33, 51
One-point Refs. 43, 83, 78, 42, 84
Uniform Refs. 82, 32, 33
Arithmetic Ref. 82
Homologous Refs. 73, 70, 69, 65, 66, 11
Mutation
Bit-flip Refs. 44, 80, 82, 78, 32, 33, 42, 84
Inorder mutation  Ref. 30
Gaussian Ref. 82
One point Refs. 71, 50, 51

Most researchers have confirmed the positive role mutation can play in
a searching process. However, they hold different opinions about crossover
in multimodal problems whose population contains niches. A mating
restriction is considered when individuals in different niches are recombined.
Recombining arbitrary pairs of individuals from different niches may lead
to unfit or lethal offspring. For example, if crossover were conducted on the
class label part, which means rules in different classes exchange their class
labels, it would cause a normal data point to be anomalous or vice versa.
Pillai et al.3° applies mutation, but not crossover, to produce offspring;
Dass®® only applies mutation and crossover to the condition-part of rules;
Leon et al.”® introduces an additional restriction on the deterministic
crowding selection for controlling the mating between members of different
niches.

In addition to these three operators, other operators are conceived for
improving detection rate, maintaining diversity or other purposes. Among
them, seeding and deletion are two emerging operators that are adopted by
many EC algorithms in intrusion detection applications.

o Seeding. 0:41,44,50,51,54-56 A¢ discussed earlier, evolving classification rules
can be regarded as a “set covering” problem. If some instances are not
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yet covered, seeding operators will dynamically generate new individuals
to cover them. Normally, this method is used to initialize the first
population.

e Deletion.** EC works with a limited population size. When newly
generated individuals are inserted into the population, but the maximum
population size is reached, some old individuals have to be removed from
the population. In traditional EC with a global optimum target, the less
fit individuals are preferably replaced. However, for multimodal problems,
other criteria in addition to fitness, such as niches or data distribution,
should be considered to avoid replacement errors. Dam et al.**
class distribution in the deletion operator, especially for highly skewed
data sets, to handle minority classes. For example, normal instances
constitute approximately 75% of total records in the KDD99 data set.
Rules which cover normal data points will have a higher fitness than rules
from other classes, hence have a much lower chance to be deleted.

e Adding and Dropping. These two operators are variations of mutation.
Dropping means to remove a condition from the representation, thus
resulting in a generalized rule.’%°! In contrast, adding conditions results
in specialized rules.

considers

2.4.2. Niching

Most EC applications have focused on optimization problems, which
means that individuals in the population compete with others to reach
a global optimum. Niching is an effective technique to preserve diversity
in the population long enough to perform a reasonable exploration of the
search space. However, pattern recognition or concept learning is actually
a multimodal problem in the sense that multiple rules (see Fig. 2.5)
or clusters’™ are required to cover the unknown knowledge space. In
this case, niching can promote the formation and maintenance of stable
subpopulations within a single population, which has been proven by
Forrest et al.3® Researchers in Refs. 28-31 and 43 suggested niching in
basic GAs when evolving classification rules.

28,86 crowding?® and
deterministic crowding (DC)"® have been applied to encourage diversity. DC

Within the context of intrusion detection, sharing,

is an improved crowding algorithm, which nearly eliminates replacement
errors of De Jong’s crowding. As a result, DC is effective to discover multiple
local optima compared to De Jong’s method.?” Unfortunately, there is
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no experimental result available in Sinclair et al.,>” so we cannot verify
the limitations of De Jong’s crowding in intrusion detection problems.

28,29 86 are used to measure the

Hamming distance or Euclidean distance
similarity between two individuals.

However, defining meaningful and accurate distance measures and
selecting an appropriate niching radius are difficult. Computational
complexity is also an issue for these algorithms. The shared fitness
evaluation requires, in each generation, a number of steps proportional to
M?, with M being the cardinality of the population.?* So, Giordana et al.
introduce a new selection operator in REGAL, called Universal Suffrage, to
achieve niching.’* The individuals to be mated are not chosen directly from
the current population, but instead indirectly through the selection of an
equal number of data points. It is important to note that only individuals
covering the same data points compete, and the data points (stochastically)
“vote” for the best of them. In XCS, a niching mechanism is demonstrated
via reward sharing. Simply, an individual shares received rewards with those
who are similar to them in some way.

Lu et al®® implemented niching neither via fitness sharing nor via
crowding, but via token competition.®® The idea is as follows: a token is
allocated to each record in the training data set. If a rule matches a record,
its token will be seized by the rule. The priority of receiving the token is
determined by the strength of rules. The number of tokens an individual
acquires also helps to increase its fitness. In this way, the odds of two rules
matching the same data are decreased, hence the diversity of the population
is maintained.

2.5. Fitness Function

An appropriate fitness function is essential for EC as it correlates closely
with the algorithm’s goal, and guides the search process. IDSs are designed
to identify intrusions as accurately as possible. Therefore, accuracy should
be a major factor when design a fitness function. In Table 2.7, we categorize
fitness functions from the research work we surveyed. The categorization is
based on three terms: detection rate (DR), false positive rate (FPR) and
conciseness.

The research contributions in the first row are all devoted to anomaly
detection problems. Since no attack presents in the training phase, DR is
not available. Fitness functions may vary in format, but all look for models
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Table 2.7. Fitness functions considering different factors {Con:Conciseness}.

Factors Examples References

DR FPR Con

H(C;)
X Va4 X Hnas(Ch) Refs. 83, 78, 75, 74
V4 v X T - % Refs. 60, 81, 71, 70, 30, 29, 59, 77
w1 X support + wa X confidence Refs. 43, 31, 50, 42, 51
1—|pp — | Refs. 89, 49, 63, 28, 65
v v v w1 X sensitivity + wo Ref. 27
X specificity + w3 X length
(14 Az) xe™ ™ Refs. 80, 32, 33

which cover most of the normal data. In this example, H(C;) represents
the entropy of data points who belong to cluster C;, and Hy,q.(C;) is the
theoretical maximum entropy for cluster C;.

Accuracy actually requires both DR and FPR, since ignoring either of
them will cause misclassification errors. A good IDS should have a high DR
and a low FPR. The first example in the second row directly interprets
this principle. « stands for the number of correctly detected attacks,
A the number of total attacks, 8 the number of false positives, and B the
total number of normal connections. As we know, patterns are sometimes
represented as if-then rules, so in the second example, the support-
confidence framework is borrowed from association rules to determine the
fitness of a rule. By changing weights w; and ws, the fitness measure can be
used for either simply identifying network intrusions or precisely classifying
the type of intrusion.?' The third example considers the absolute difference
between the prediction of EC (¢,) and the actual outcome (¢).

The third row considers another interesting property: conciseness. This
is for two reasons: concise results are easy to understand, and avoid
misclassification errors. The second reason is less obvious. Conciseness can
be restated as the space a model, such as a rule, or a cluster, uses to cover
a data set. If rule A and rule B have the same data coverage, but rule A
is more concise than B, so A uses less space than B does when covering
the same data set. Therefore, the extra space of B is more prone to cause
misclassification errors. Apparently, the first example of this kind considers
all three terms, where length correlates with conciseness. The second
example of this type considers the number of counterexamples covered by
a rule (w), and the ratio between the number of bits equal to one in the
chromosome and the length of chromosome (z), which is the conciseness of
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a rule. A is a user-tunable parameter. The fitness function in Ref. 78, also
prefers clusters with small radius if they cover the same data points.

2.6. Conclusions and Future Directions

This chapter discusses the use of evolutionary computation in data mining
and knowledge discovery by using intrusion detection systems as an
example. The discussion centers around the role of EAs in achieving the
two high-level primary goals of data mining: prediction and description. In
particular, classification and regression tasks for prediction, and clustering
tasks for description. The use of EAs for feature selection in the pre-
processing step is also discussed. Another goal of this chapter was to show
how basic elements in EAs, such as representations, selection schemes,
evolutionary operators, and fitness functions have to be adapted to extract
accurate and useful patterns from data in different data mining tasks.

Although experiments reasserted the effectiveness and accuracy of EC
in data mining algorithms, there are still challenges that lie ahead for
researchers in this area. The first challenge is the huge volume of data
that makes building effective evolutionary models difficult, especially in
fitness evaluation. We can either resort to hardware specific approaches,
such as to relocate the fitness evaluation step from CPU to GPU,%° or to
software approaches, such as various data sampling techniques,!!%¢ divide-
and-conquer algorithms,*%4! distributed and parallel EAs.%3:54:56 The second
challenge is handling imbalanced data distributions. Both Ref. 44 and Ref. 65
point out that individuals which have better performance on frequently
occurring patterns would be more likely to survive, even if they perform
worse than competing individuals on less frequent patterns. Therefore, when
designing a data mining algorithm based on EAs, one should consider how
to improve the accuracy on relatively rare patterns without compromising
performance on more frequent patterns. Finally, acquiring knowledge from
data is often regarded as a multimodal problem. In our perspective, it is
even harder than normal multimodal problems, simply because adaptation
and optimization occur on subsolutions (i.e., rules in a rule set such as
the Michigan approach) at the same time. New evolutionary techniques or
extensions in EAs are needed. We believe solving these challenges will further
improve the performance of EC-based data mining algorithms.
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Natural evolution is the process of optimizing the characteristics and
architecture of the living beings on earth. Possibly evolving the optimal
characteristics and architectures of the living beings are the most complex
problems being optimized on earth since time immemorial. The evolutionary
technique, though seems to be very slow, is one of the most powerful tools
for optimization, especially when all the existing traditional techniques fail.
This chapter presents how these evolutionary techniques can be used to
generate optimal architecture and characteristics of different machine learning
techniques. Mainly two different types of networks considered in this chapter
for evolution are Artificial Neural Network and Polynomial Network. Though
research has been conducted on evolution of Artificial Neural Network,
research on evolution of polynomial Networks is still in its early stage.
Evolution of both the networks have been discussed in detail. Experimental
results are presented for further clarification of the evolution process of such
networks.

3.1. Introduction

Evolutionary computation (EC) involves the study of the computational
techniques based on the principles of natural evolution. Evolution is
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responsible for the structural design of all living beings on earth. EC
employs this powerful philosophy to find solutions to complex problems.
The first work on the use of evolution-inspired approaches to problem
solving was attempted during late 1950s.'® Independent and almost
simultaneous research conducted by Rechenberg and Schwefel on evolution

10,11 and by Fogel on

strategies,®® by Holland on genetic algorithms,
evolutionary programming!?'? triggered the study and the application of
evolutionary techniques.

The introduction of evolutionary techniques has inspired different
subjects such as the optimal design of artificial neural network (ANN) and
fuzzy systems to solve their problem using it. EC follows heuristic and
stochastic principles based on populations made up of individuals with a
specified behavior similar to the biological phenomenon. EC techniques are
robust and efficient at exploring an entire solution space of the optimization
problem.

The designing of ANN architecture for a specific problem come across
a number of difficulties, such as finding optimal number of hidden layers,
optimal number of neurons for each hidden layer, choosing the node
transfer function for the neurons, learning rule, and the parameters for
the algorithm. Again after deciding all these values finding the optimal
connection weights between the nodes of different layers is also a highly
complex task. Further these ANN design requirements depend on one
another. This leaves little scope for a human designer to achieve optimal
result by manually choosing them from the vast multidimensional search
space using his personal expertise or by the trial and error method.
A suitable alternative is to employ the evolutionary approach to resolve
such complex problems. EC techniques have been successfully used to evolve
weights, structure, and learning parameters of ANN in recent years.'416

Though polynomial neural network (PNN) is similar to the feed forward
neural network in architecture it is also a self organizing network.!” 22
Therefore the difficulties associated with ANN to obtain an optimal
architecture are resolved in PNN. Normally the weights associated with
the neurons/partial descriptions (PDs) are estimated with least square
estimation (LSE) method. But there are certain complexities associated
with the PNN which can be efficiently resolved using the evolutionary
technique.

The input size is a constraint for PNN. If the input variables and data
points are very large, PNN algorithm has a tendency to produce overly
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complex network. On the other hand, if a small number of input variables
are available, PNN does not maintain good performance.

In addition to input variables, the type or order of polynomial used for
the PDs plays an important role in construction of the network model and
its performance. These parameters must be chosen in advance before the
architecture of the PNN is constructed. In most cases, they are determined
by trial and error method, leading to heavy computational load and low
efficiency. Evolutionary techniques may be used to determine the number
of input variables to be optimally chosen among many input variables for
each node and to determine the appropriate type of polynomials for each
PD.23-27

The rest of the chapter is organized as follows. Section 3.2 gives
a brief overview of the evolving neural network. Section 3.3 discusses
how swarm intelligence can be used for evolving neural network. Further,
the application of swarm intelligence for evolving polynomial network is
discussed in Section 3.4. This chapter is concluded at Section 3.5.

3.2. Evolving Neural Network

In evolving neural network (ENN) evolution is the fundamental form of
adaptation in addition to learning.?®3° Evolutionary algorithms (EA)
has been used successfully to perform various tasks, such as connection
weight training, architecture design, learning rule adaptation, input feature
selection, connection weight initialization, rule extraction from ANN, etc.
One important feature of ENN is its adaptability to a dynamic environment.
Evolution and learning are the basic two forms of adaptation required in
general for developing an evolving network. ENN adapts to the dynamic
environment much more effectively and efficiently. ENN may be considered
as a general framework for adaptive systems, where the system changes its
architecture and learning rule without involvement of the designer/user.

Figure 3.1 illustrates a feed forward ANN architecture consisting of
a set of processing elements called neurons or nodes performs a transfer
function f; of the form:

yi = fi <Z Wi T — 91’) (3.1)
i=1

where y; is the output of the node 7, z; is the jth input to the node, and w;;
is the connection weight between nodes ¢ and j. ©; is the threshold (or bias)



64 B. B. Misra, P. K. Dash and G. Panda

Input Layer

Hidden Layers OutputLlayer

Fig. 3.1. ANN architecture.

of the node. Usually, f; is nonlinear, such as sigmoid, Gaussian function,
etc. In general, the topological structure, i.e., the way the connections are
made between the nodes of different layers and the transfer functions used
determines the architecture of ANN. Learning in ANN can broadly be
classified into three groups; supervised, unsupervised, and reinforcement
learning. Supervised learning makes a direct comparison between the actual
output of an ANN and the desired/target output. Generally we formulate
it as the minimization of an error function such as the total mean square
error (MSE) between the actual output and the desired output summed
over all available data. To minimize the MSE, gradient descent-based
backpropagation (BP)3! algorithm is used to adjust connection weights
in the ANN iteratively.

Reinforcement learning may be considered as a special case of
supervised learning where the exact desired output is unknown; rather
it is based on the information that the estimated output is correct or
not. Unsupervised learning is mostly based on the correlations among
input data; no information regarding correctness of the estimated output
is available for learning. The mechanism to update the connection weights
are known as the learning rule, examples of popular learning rules include
the delta rule, the Hebbian rule, the anti-Hebbian rule, and the competitive
learning rule.??

The ideas and principles of natural evolution have been used to
develop the population based stochastic search evolution algorithms (EA),
which includes evolution strategies (ES),>*3* evolutionary programming
(EP)13:35:36 and genetic algorithms (GAs).'137 Population based search
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strategy is the common feature of all these algorithms. The candidates in
a population compete and exchange information with each other in order
to perform certain tasks; see Algorithm 3.1.

Algorithm 3.1. A general framework of EAs

(1) Generate the initial population P(0) at random, and set gen=0;
(2) Repeat

(a) FEwvaluate each individual in the population;

(b) Select parents from P(gen) based on their fitness in P(gen);

(c) Apply search operators to parents and produce offspring which form
P(gen+1);

(d) gen=gen+1;

(3) Until “termination criterion” is satisfied.

Many complex problems containing several numbers of local optima
uses EA, because it is less likely to be trapped in local minima than
traditional gradient-based search algorithms. EA do not depend on gradient
information and thus is quite suitable for problems where such information
is not available or very costly to estimate. EA can deal with problems where
no explicit and/or exact objective function is available. These features make
EA much more robust than many other search algorithms. An introduction
to various evolutionary algorithms has been given by Fogel®® and Back
et al.®
Generally we use evolution at three different levels: connection weights;
architecture; and learning rules. Difficulties with the gradient based training
methods can be alleviated by evolving the connection weights. Choosing an
appropriate topology for the ANN architecture is a complex task, needs
lots of hit and trail efforts of the designer. The evolution of architectures
helps ANNs to adapt appropriate topologies without human intervention.
The evolution of learning rules can be regarded as the automatic discovery
of novel learning rules.

3.2.1. The evolution of connection weights

The weight training in ANNs is usually the minimization of an error
function, such as the mean square error between target and actual
outputs. Most training algorithms, such as BP and conjugate gradient
algorithms, 324042 are based on gradient descent. BP has drawbacks due
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to use of gradient descent®? technique, which often gets trapped in a local
minimum of the error function and is incapable of finding a global minimum
if the error function is multimodal and/or non-differentiable.

ENN can be adapted to overcome the shortcomings of gradient descent
based training by evolving the connection weights. The fitness of an ANN
can be defined according to the needs; the fitness functions need not be
differentiable or even continuous like gradient descent methods. Further
since EAs do not depend on gradient information, EAs can handle large,
complex, non-differentiable and multimodal spaces.*> 69 A typical cycle of
the evolution of connection weights is shown in Algorithm 3.2.

Algorithm 3.2. Evolution of connection weights

(1) Decode each individual into a set of connection weights and construct
the corresponding ANN with the weights.

(2) Evaluate each ANN by computing its total mean square error between
actual and target outputs. The fitness of each individual is determined
by the error. The higher the error, the lower the fitness of the individual.

(3) Select parents for reproduction based on their fitness.

(4) Apply search operators, such as crossover and mutation to parents to
generate offspring, which form the next generation.

3.2.2. The evolution of architecture

In the previous discussion, it is assumed that architecture of ANN is
predefined and fixed during the evolution of connection weights. Here
the process of evolving the architecture of ANN will be discussed. The
architecture of an ANN includes its topological structure, and the transfer
function of each node in the ANN. Architecture design is crucial because the
architecture has significant impact on a network’s information processing
capabilities.

Architecture design is a human expert’s job till date. It depends heavily
on the expert experience and a tedious trial-and-error process. There is
no systematic way to design a near-optimal architecture of ANN for a
given task automatically. Constructive and destructive algorithms attempt
for the automatic design of architectures. % A constructive algorithm
starts with a minimal network with minimal number of hidden layers,
nodes with connections, and adds new layers, nodes, and connections when
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necessary during training. But a destructive algorithm starts with the
maximal network and deletes unnecessary layers, nodes, and connections
during training. However, such structural hill climbing methods are
susceptible to trapping at structural local optima. They only investigate
restricted topological subsets rather than the complete class of network
architectures.®?

Design of the optimal architecture for an ANN is considered to be a
search problem in the architecture space where each point represents an
architecture. Given an optimality criteria, e.g., lowest training error, lowest
network complexity, etc., the performance level of all architectures form a
discrete surface in the space. The optimal architecture design is as good
as finding the highest point on this surface. The characteristics of such
a surface has been indicated by Miller et al.”’ which make EAs a better
candidate for searching the surface than those constructive and destructive
algorithms mentioned above. These characteristics are:

(1) The surface is infinitely large since the number of possible nodes and
connections is unbounded;

(2) The surface is non-differentiable since changes in the number of nodes
or connections are discrete and can have a discontinuous effect on ENNs
performance;

(3) The surface is complex and noisy since the mapping from an
architecture to its performance is indirect, strongly epistatic, and
dependent on the evaluation method used;

(4) The surface is deceptive since similar architectures may have quite
different performance;

(5) The surface is multimodal since different architectures may have similar
performance.

Two major phases of the evolution of architectures are the genotype
representation and the EA used. With direct encoding, all the details, i.e.,
every connection and node of an architecture, can be represented in the
chromosome. Whereas with indirect encoding, only the most important
parameters of an architecture, such as the number of hidden layers and
hidden nodes in each layer, are encoded. Other details are left for the
training process to decide. The evolution of architectures can progress
according to Algorithm 3.3. Lot of research on evolving ANN architectures

69-79

has been carried out in recent years, maximum of the research has been

on the evolution of ANN topological structures.
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Algorithm 3.3. Evolution of architecture

(1) Decode each individual into an architecture.

(2) Train each ANN with the decoded architecture by the learning rule
starting from different sets of random initial connection weights and
learning rule parameters.

(3) Compute the fitness of each individual according to the above training
result and other performance criteria such as the complexity of the
architecture.

(4) Select parents from the population based on their fitness.

(5) Apply search operators to the parents and generate offspring which form
the next generation.

3.2.3. The evolution of node transfer function

The transfer function is often assumed to be the same for all the nodes in
an ANN] at least for all the nodes in the same layer and is predefined by the
human experts. But the transfer function for each node may be different
and has significant impact on ANNs performance.30-82

Stork et al.®3 first applied EAs to the evolution of both topological
structures and node transfer functions. The transfer function was specified
in the structural genes in their genotypic representation. A simpler approach
for evolving both topological structures and node transfer functions was
adopted by White and Ligomenides,” i.e., in the initial population, 80%
nodes in the ANN used the sigmoid transfer function and 20% nodes
used the Gaussian transfer function. The optimal mixture between these
two transfer functions evolved automatically, but parameters of the two
functions did not evolve.

Liu and Yao” used EP to evolve ANNs with both sigmoidal and
Gaussian nodes, where the growth and shrinking of the whole ANN is
done by adding or deleting a node. Hwang et al.” evolved ANN topology,
node transfer function, as well as connection weights for projection neural
networks.

3.2.4. FEwvolution of learning rules

An ANN training algorithm/learning rules used to adjust connection
weights depends on the type of architectures under investigation. Different
Hebbian learning rules proposed to deal with different architectures, but
designing an optimal learning rule becomes very difficult with no prior
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knowledge about the ANN’s architecture. It is difficult to say that a rule
is optimal for all ANNs. Hence an ANN should have the ability to adjust
its learning rule adaptively according to its architecture and the task to be
performed. Therefore the evolution of learning rules has been introduced
into ANNs in order to learn their learning rules.

The relationship between evolution and learning is extremely complex.
Various models have been proposed,®*92 but most of them deal with
the issue of how learning can guide evolution848°
between the evolution of architectures and that of connection weights.
Algorithm 3.4 describes the evolution of learning rules. If the ANN
architecture is predefined and fixed, the evolved learning rule should be
optimized toward this architecture. If a near-optimal learning rule for
different ANN architectures is to be evolved, the fitness evaluation should
be based on the average training result from different ANN architectures

and the relationship
86-88

in order to avoid overfitting a particular architecture.

Algorithm 3.4. Evolution of learning rules

(1) Decode each individual into a learning rule.

(2) Construct a set of ANNs with randomly generated architecture and
initial connection weights, and train them wusing the decoded learning
rule.

(3) Calculate the fitness of each individual according to the average training
result.

(4) Select parents according to their fitness.

(5) Apply search operators to parents to generate offspring which form the
new generation.

3.2.5. FEwvolution of algorithmic parameters

The adaptation of BP parameters such as the learning rate and momentum
through evolution may be considered as the first step of the evolution
of learning rules.”"?3 Harp et al.™' evolved the BP’s parameters along
with ANN’s architecture. The simultaneous evolution of both algorithmic
parameters and architectures facilitate exploration of interactions between
the learning algorithm and architectures such that a near-optimal
combination of BP with an architecture can be found.

Other researchers®?:7893 evolved the BP parameters while the ANN’s
architecture was kept fixed. The parameters evolved in this case tend to be
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optimized toward the architecture rather than being generally applicable
to learning.

3.3. Evolving Neural Network using Swarm Intelligence

J. Kennedy and R.C. Eberhart? proposed a new evolutionary computation
technique called the particle swarm optimization (PSO). It is inspired by
insect swarms and has proven to be a competitor to genetic algorithm
(GA) when it comes to optimization problems.”*% In comparison with
GA, PSO has some attractive characteristics. It retains previous useful
information; whereas GA destroys the previous knowledge of the problems
once the population changes. PSO encourages constructive cooperation and
information sharing between particles, which enhance the search for a global
optimal solution. Successful applications of PSO to some optimization
problems such as function minimization?*?> and ANN design,?6-1%! have
demonstrated its potential. It is considered to be capable of reducing the ill
effect of the BP algorithm of feedforward ANNs, because it does not require
gradient and differentiable information. Salerno® used PSO to evolve
parameters (i.e., weights and bias of neurons) of ANNs for solving the XOR
problem and parsing natural language. Lu et al.?” adopted PSO to train
MLPs to predict pollutant levels of air and their tendency. Their results
demonstrated that PSO-based ANN has a better training performance,
faster convergence rate, as well as a better predicting ability than BP-based
ANN. Juang® proposed a hybrid of GA and PSO (HGAPSO) for training
recurrent networks. HGAPSO used PSO to enhance the elites generated by
GA to generate higher quality individuals. The performance of HGAPSO
was compared to both GA and PSO in recurrent networks design problems,
demonstrating its superiority. Da and Ge”® proposed an improved PSO-
based ANN with simulated annealing (SA) technique for solving a rock-
engineering problem. Their results showed that SAPSO-based ANN has
a better training and generalization performance than PSO-based ANN.
Comparisons between PSO and GA for evolving recurrent ANNs were done
analytically by Settles et al.'%° Their comparisons indicated that the GA
is more successful on larger networks and the PSO is more successful on
smaller networks. However, in comparison with the wide applications of
GA in evolutionary ANNs, the applications of PSO for evolving ANNs are
relatively sparse.
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These references indicated that PSO-based ANN algorithms were
successful in evolving ANNs and achieved the generalization performance
comparable to or better than those of standard BP networks (BPNs)
or GA-based ANNs. However, they used PSO to evolve the parameters
(i.e., weights and bias) of ANNs without considering the optimization of
structure of the ANNs. Thus, the problem of designing a near optimal ANN
structure by using PSO for an application remains unsolved. However, this
is an important issue because the information processing capability of an
ANN is determined by its structure.

Although these researches have shown that PSO performs well for
global search because it is capable of quickly finding and exploring
promising regions in the search space, they are relatively inefficient in
fine-tuning solutions.’*?> Moreover, a potentially dangerous property in
PSO still exists: stagnation due to the lack of momentum, which makes it
impossible to arrive at the global optimum.?® To avoid these drawbacks of
the basic PSO, some improvements such as the time-varying parameters
and random perturbation (e.g., velocity resetting)?® have been proposed.
These improvements can enhance convergence of PSO toward the global
optimum, to find the optimum solution efficiently. Yu et al. proposed
evolutionary ANN algorithm ESPNet based on an improved PSO/DPSO
with a self-adaptive ES. This integration of PSO and DPSO enables
the ANN to dynamically evolve its structure and adapt its parameters
simultaneously. 0!

3.3.1. Particle swarm optimization

The particle swarm algorithm is an optimization technique inspired by the
metaphor of social interaction observed among insects or animals.?%%
The kind of social interaction modeled within a PSO is used to guide a
population of individuals (so called particles) moving towards the most
promising area of the search space. In a PSO algorithm, each particle is a
candidate solution equivalent to a point in a d-dimensional space, so the
ith particle can be represented as z; = (x;1,%;2,...,%;q). Each particle
“flies” through the search space, depending on two important factors,
pi = (pi1,Pi2,--.,Pid), the best position the current particle has found
so far; and py = (Pg1,Pg2, - - -, Pga), the global best position identified from
the entire population (or within a neighbourhood).
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The rate of position change of the ith particle is given by its velocity
v; = (vi1,Vig, .-, Viq). Equation (2) updates the velocity for each particle

in the next iteration step, whereas equation (3) updates each particle’s

position in the search space:*®

vid(t) = T(via(t = 1) + ¢1(pia = ia(t = 1)) + P2(pga — zia(t —1))) (3.2)

5Cid(t) = l'id(t — 1) + ’Uid(t) (3.3)

— 2 ___ and ¢ = 4.0
‘2*¢*\/M| an ¢ ¢1+¢27¢>

Two common approaches of choosing p, are known as gbest and

where 7 =

Ibest methods. In the gbest approach, the position of each particle in the
search space is influenced by the best-fit particle in the entire population;
whereas the lbest approach only allows each particle to be influenced
by a fitter particle chosen from its neighborhood. Kennedy and Mendes
studied PSOs with various population topologies,'®? and have shown that
certain population structures could give superior performance over certain
optimization functions.

3.3.2. Swarm intelligence for evolution of neural network
architecture

It has been seen that evolution can be introduced to ANN at different
stages with possible merits and demerits. Here we will demonstrate only
one example of evolving the ANN architecture and its connection weights
simultaneously.?%:6%193 An approach is presented here where the number
of hidden layers and number of neurons in the respective layer and set of
weights are adaptively adjusted using Swarm Intelligence. In this approach,
both the architecture and the set of weights are encoded in particles and
evolved simultaneously i.e., each particle represents a candidate solution of
the architecture and weight space. In abstract view, Algorithm 3.5 shows
the simultaneous evolution of architecture and weights.

Algorithm 3.5. Evolving neural network using PSO

(1) Ewvaluate each particle based on the predefined criterion.

(2) Find out the personal best (pbest) of each particle and global best (gbest)
from the swarm.

(3) Update particle velocity.

(4) If the performance is satisfactory then stop, otherwise go to step 1.
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In this swarm approach, evolving neural network is used to evolve feed
forward neural networks with a characteristic function. However, this is
not an inherent constraint. In fact, we have considered here the minimal
constraint on the type of artificial neural networks, which may be evolved.
The feed forward ANNs do not have to be strictly layered or fully connected
between adjacent layers. They may also contain hidden nodes with different
transfer functions. Let us verify how this approach is representing the
particles as well as evaluating the fitness of each particle.

3.3.2.1. Particle representation

For representing the particles we have to set the protocols such as maximum
number of hidden layers denoted as Lmax, and maximum number of nodes
for a particular hidden layer, denoted as Nmax apriori. Based on these
values the particle can be represented as given in Fig. 3.2.

The first attribute P;; of the particle represent the number of hidden
layers in the architecture. The value of P;; lies between 0 to Lmax. The
feature from P2 to PjiLmasz+1) tells about the number of neurons in the
respective hidden layer. The next features store the weights between input
layer and 1st hidden layer and so on except the last feature of the particle
Pj,. The last feature i.e., Py, stores the weight values of bias unit. Figure 3.3
shows a clear mapping of architecture and weights to a particle.

3.3.2.2. Fitness evaluation

The fitness of each individual particle of the proposed approach is solely
determined by the miss-classification rate based on the confusion matrix.
The complete set of instructions for the proposed approach is as follows:

(1) Generate an initial swarm of N particles at random. The number of
hidden layers and the respective number of nodes generate at random
within a certain range. Uniformly distribute the set of weights inside a
small range.

P, | Po | Ps | Py P

Fig. 3.2. A typical instance of a particle.
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Fig. 3.3. Mapping of architecture and weights of a particle.

(2) Evaluate the fitness of each particle by using the given training
set based on miss-classification error rate obtained from confusion
matrix.

(3) For each particle, if the fitness value (pbest) is better than the best
fitness value in history then set current value as the new pbest.

(4) Choose the particle with the best fitness value of all the particles as
the gbest.

(5) For each particle

(a) Calculate particle velocity according to equation (3.2).
(b) Update particle position according to equation (3.3).

(6) Continue step 2—7 until maximum iterations or minimum error criteria
is not attained.

3.3.3. Simulation and results

The Evolution of Artificial Neural Network with PSO has been
experimented with different benchmark datasets. Here we present the
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Table 3.1. Description of datasets.

Dataset Patterns Attributes Classes Patterns Patterns Patterns
in class 1 in class 2 in class 3

AUSTRA 690 14 2 307 383 —
BALANCE 625 4 3 288 49 288
CREDIT(GERMAN) 1000 20 2 700 300 —
HABERMAN 306 3 2 225 81 —
HOUSE 435 16 2 267 168 —
IRIS 150 4 3 50 50 50
MONK 124 6 2 62 62 —
PIMA 768 8 2 268 500 —
WBC 699 9 2 458 241 —
WINE 178 13 3 59 71 48

results of ten different datasets collected from UCI Repository of Machine
Learning database.'% A brief description of the properties of these dataset
is presented in Table 3.1.

For these simulations, we have preferred the two-fold cross validation.
Each database is divided into two sets. For the division, the records are
segregated depending on their class labels. Randomly we pick up the records
belonging to a class and place it in one of the sets. The distribution of
patterns to different sets of the databases is summarized in Table 3.2.

We have used PSO technique to evolve the architecture of the ANN for
the purpose of classification of the databases presented in Table 3.2. While
one set is used to evolve architecture, the other set is used for the purpose of
validation. Alternately both the sets are used to evolve the architecture and
for validation. The parameters of PSO used for the purpose of simulation
are presented in Table 3.3.

We have used ten real life databases for the purpose of evolving ANN
with PSO. The classification accuracies obtained from the training set and
testing set are presented in Table 3.4. The results obtained from the training
sets and test sets of a data base are averaged and the comparison of
the performance is presented in Fig. 3.4. The z-axis values 1,2,3,...,10
shown in Fig. 3.4 represents the databases AUSTRA, BALANCE,
CREDIT, HABERMAN, HOUSE, IRIS, MONK, PIMA, WBC, WINE
respectively.

Further, for the purpose of evolution of the ANN architecture, we have
restricted the number of hidden layers maximum to three and the number of
hidden neurons in each hidden layer to ten. The details of the architecture
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Table 3.2. Divison of dataset and its pattern distribution.

Datasets Patterns Patterns Patterns Patterns
in class 1 in class 2 in class 3

AUSTRA

Set1 345 153 192 —

Set2 345 154 191 —
BALANCE

Setl 313 144 25 144

Set2 312 144 24 144
CREDIT

Setl 500 350 150 —

Set2 500 350 150 —
HABERMAN

Setl 153 112 41 —

Set2 153 113 40 —
HOUSE

Set1 217 133 84 —

Set2 218 134 84 —
IRIS

Setl 75 25 25 25

Set2 75 25 25 25
MONK

Set1 62 31 31 —

Set2 62 31 31 —
PIMA

Set1 384 134 250 —

Set2 384 134 250 —
WBC

Setl 350 229 121 —

Set2 349 229 120 —
WINE

Set1 89 29 36 24

Set2 89 30 35 24

Table 3.3. Parameters of PSO considered for simulation.

Parameters Values

Population Size 30 Maximum Iterations 1000

Inertia Weight 0.729844

Cognitive Parameter 1.49445

Social Parameter 1.49445

Constriction Factor

1.0
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Table 3.4. Classification accuracy obtained from ENN.

Databases Hit Percentage Hit percentage
in the training set in the test set

AUSTRA

Setl 94.78 87.24

Set2 93.33 86.66

Average 94.05 86.95
BALANCE

Setl 73.07 64.21

Set2 68.05 75.32

Average 70.56 69.76
CREDIT

Setl 82.00 75.60

Set2 83.00 73.20

Average 82.50 74.40
HABERMAN

Setl 75.16 74.51

Set2 75.16 72.54

Average 75.16 73.52
HOUSE

Setl 97.70 94.47

Set2 94.47 94.03

Average 96.08 94.25
IRIS

Setl 100.00 97.33

Set2 97.33 97.33

Average 98.66 97.33
MONK

Setl 79.03 61.29

Set2 100.00 91.93

Average 89.51 76.61
PIMA

Setl 85.41 73.43

Set2 82.81 75.26

Average 84.11 74.34
WBC

Setl 97.70 96.85

Set2 97.42 97.13

Average 97.56 96.99
WINE

Setl 100.00 96.62

Set2 93.25 97.75

Average 96.62 97.19




78 B. B. Misra, P. K. Dash and G. Panda

ENN performance comparison

=
[
]

[£x]
]

[2)]
]

H training =et

M test set

-2
]

Average Clssification Accuracy
I
= o

Databhases

Fig. 3.4. Comparison of average classification accuracy of ENN using PSO for the
training set and test set.

evolved for each set of the database are presented below in Table 3.5. From
the results it can be seen that BALANCE, HABERMAN, IRIS databases
perform well without using a hidden layer. A single hidden layer is found
sufficient to map the non-linear relation in almost all other cases.

3.4. Evolving Polynomial Network (EPN) using Swarm
Intelligence

In comparison to ANN, relatively less work has been done on polynomial
neural network (PNN). It is a self-organizing architecture for neural
network, introduced in,'°%:19 based on the principle of Group Method of
Data Handling (GMDH).'%¢ PNN structure exhibits distinct advantages
over other methods of nonlinear modeling techniques. PNN consist of a
layered structure with each layer having nodes known as partial descriptions
(PD) describing partial mathematical models of the complete modeling
problem. Each PD possesses high degree of flexibility and realizes a
polynomial type of mapping (linear, quadratic and cubic) between input
and output variables. PNN has no fixed network architecture, where
model/layer development is achieved through learning. Thus, PNN is a
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Table 3.5. Architectures evolved for different sets of data.

Datasets Number of Number of neurons in hidden layers
hidden layers
Layer 1 Layer 2 Layer 3

AUSTRA

Setl 1 5 — —

Set2 1 10 — —
BALANCE

Setl 0 — — —

Set2 0 — — —
CREDIT

Setl 1 3 — —

Set2 1 1 — —
HABERMAN

Setl 0 — — —

Set2 0 — — —
HOUSE

Setl 1 2 — —

Set2 0 — — —
IRIS

Setl 0 — — —

Set2 0 — — —
MONK

Setl 0 — — —

Set2 1 10 — —
PIMA

Setl 1 10 — —

Set2 1 10 — —
WBC

Setl 0 — — —

Set2 1 5 — —
WINE

Setl 3 10 10 3

Set2 0 — — —

self-organizing network. In each layer, a set of qualified PDs is retained
based on magnitude of modeling error. The outputs of these retained PDs
are manipulated in the subsequent layer PDs for further modeling error
minimization. New layers are introduced till the modeling error reaches
some pre set level.
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3.4.1. GMDH-type polynomial neural network model

The GMDH belongs to the category of inductive self-organization data
driven approaches. It requires small data samples and is able to optimize
models’ structure objectively. Relationship between input-output variables
can be approximated by Volterra functional series, the discrete form of
which is Kolmogorov—Gabor Polynomial'®":

y=Co+ Y Chzm + Y Crikotirsz + Y CrikoksTirThotas (3.4)
k1 k1k2 k1k2k3
where C} denotes the coefficients or weights of the Kolmorgorov-Gabor
polynomial and x vector is the input variables. This polynomial can
approximate any stationary random sequence of observations and it can
be solved by either adaptive methods or by Gaussian Normal equations.
This polynomial is not computationally suitable if the number of input
variables increase and there are missing observations in input dataset. Also
it takes more computation time to solve all necessary normal equations
when the input variables are large.
A new algorithm called GMDH is developed by Ivakhnenko!%®1%9 which
is a form of Kolmogorov-Gabor polynomial. He proved that a second order
polynomial i.e.:

y = ap + a12; + asx; + asz;x; + a4xf + a5x? (3.5)

which takes only two input variables at a time and can reconstruct the
complete Kolmogorov-Gabor polynomial through an iterative procedure.
The GMDH algorithm has the ability to trace all input-output relationship
through an entire system that is too complex. The GMDH-type Polynomial
Neural Networks are multilayered model consisting of the neurons/active
units/Partial Descriptions (PDs) whose transfer function is a short term
polynomial described in equation (3.5). At the first layer L = 1, an
algorithm, using all possible combinations by two from m inputs variables,
generates the first population of PDs. Total number of PDs in first layer
is n = m(m — 1)/2. The output of each PD in layer L = 1 is computed
by applying the equation (3.5). Let the outputs of first layer be denoted as
yi,ys, ..., yL. The vector of coefficients of the PDs are determined by least
square estimation approach.

Depending on the growth of the PNN layers the number of PDs
in each layer also grows, which requires pruning of PDs so as to avoid
the computational complexity. From the experimental studies it has been
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observed that two best PDs does not join to produce better result, rather
a PD giving better result joins with another inferior result giving PD
yields the best result in the next layer. As the number of PDs grow
exponentially over the layers, preserving all the PDs are not practicable.
Further a substantial number of PDs need to be preserved to obtain
better performance. As a result the program implementation requires large
memory and computation time.

PNN layers are grown based on the error at each level. Performance
of the model is evaluated at each level of the generation of the layers. At
times the error level decreases gradually even up to the 10th layer. However,
while evaluating the performance of the model with unknown input data
results drop off beyond 3rd or 4th layer. This is due to overtraining by
the chosen training data. Moreover, the growth of the layers beyond 3rd or
4th requires a lot of memory and computational time. However obtaining
a suitable trade off is hard to determine, as it is not an iterative method.

3.4.2. Evolving polynomial network (EPN) using PSO

Evolution has been introduced to PNN at different levels by different
researchers.?> 27 Some of them have tried to evolve the optimal set of inputs
to each PD, some of them have evolved optimal type of the polynomial
required, selection of PDs for the next layer, optimal architecture
design, etc.

In most of these cases the polynomial used to develop the PDs are of
Ivakhnenko’s model. Generally the PDs are developed from a predefined
set of standard polynomials. These standard polynomial may take two or
three input and may be linear, quadratic or cubic. The combinations of
these standard polynomials may not always be a good choice to generate
the optimal model.

To alleviate these problems, in this section we suggest an evolving
technique that will not take any standard polynomial input, the number
and structure of PDs will be evolved. In addition to the number of inputs
to each neuron, what are the inputs to each neuron, what are the degrees
of each input in a neuron; along with the required biased weights will be
evolved. !0

In this approach we have used particle swarm optimization technique to
evolve polynomials to classify the data set. The representation of a particle
is shown at Fig. 3.5.



82 B. B. Misra, P. K. Dash and G. Panda

nth Bias

18t znu jth
neuron | Weight

neuron neuron neuron

Degree of the
respective features

Feature Subset
selected

Number
Of neurons

Optimal
featuressize
for i*t neuron

Bias weight
for i* neuron

Fig. 3.5. Representation of a particle.

First cell of the particle decides the number of neurons required for
the network. Accordingly the rest of the particle space is allocated to the
neurons. The space allocated for a neuron can be further divided into four
parts. First cell of this space is used for deciding the optimal number of
features required for this neuron and the last cell is used for the bias weight
of the neuron. Rest of the cell is divided into two parts, first part of which
decides the features to be selected and the second part decides the respective
degrees of the features.

The architecture design of the evolving polynomial network model is
given at Fig. 3.6. It can be seen that there are four distinct modules:

(1)
(2)
(3) optimal degree of each feature in each neuron, and
(4) bias weight.

Optimal set of neurons,
optimal subset of features for each neuron,

The first module decides the optimal size of the neurons required for
the network. Accordingly the second module decides how many features
and what are the features required for each neuron. The third module
determines the degree of each feature in each neuron. And the fourth module
works out the bias value required for each neuron and the final output unit.

Swarm Intelligence is above all to guide the different modules by
obtaining the error value from the output unit. Each neuron gets the
feature values and respective degrees. ®represents the raising of the feature
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Fig. 3.6. Architecture of evolving polynomial network.

values to the power of their respective degrees. The bias value is raised to
power one only. Then they are passed through a multiplier unit represented
by []. Finally the output of all the neurons are summed up and passed
through a linear function to the output unit. Then these estimated values
are compared with the actual target output to generate the mean square
error. This error signal is passed to the Swarm Intelligence module to guide
different modules for appropriate training of the network.

3.4.3. Parameters of evolving polynomial network (EPN)

In our proposed EPN approach we evolve a set of polynomial equations to
classify the data set. The polynomial equation considered in our approach
can be expressed as:

n P
y=Co+ > CiJ]at (3.6)
= =1
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where n is the number of polynomial terms chosen randomly from a suitable
range, p is the number of features in each term chosen randomly from the
given set of features for the dataset under consideration, r is the index of
feature a random integer value between 1 and number of features in the
respective dataset, and ¢ is the degree of the feature, a random integer
value chosen from a suitable range.

Our proposed model is a mimic of the PNN model. We have analyzed
the PNN model,"'! to obtain the suitable ranges for n,p and q.

3.4.3.1. Highest degree of the polynomials

While developing the models for different data sets using the Polynomial
Neural Network (PNN) algorithm,!'? we have observed that many of the
models are generated with satisfactory classification accuracy at the layer 3
or layer 4. Each PD in the model develops an output equation in the form

Y = Co + C1x; + C2xj + 37,5 + 0417? + C5ZE?

where ¢ and j take values from the range of 1 and number of features in
the data set under study, where ¢ is not equal to j, and x being the feature
value or the output of the PD in the previous layer. We have observed that
in many of the cases the competitive classification accuracy is obtained at
4th layer. A biquadratic polynomial equation having highest degree 2 is
used for our PNN approach. Hence in each subsequent layer it gets doubled
and at 4th layer the maximum degree of the polynomial is 16.

Figure 3.7 describes the possible generation of highest degree of
polynomials at different layers. Considering the performance of PNN model,
we have chosen the degree of polynomials in our EPN model to be in the
range of 0 to 16.

Layerl Layer2 Layer3 Layerd

Fig. 3.7. Highest possible degree of any feature in the PDs of different layer.
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Fig. 3.8. Highest possible number of terms in the polynomial equation.

3.4.3.2. Number of terms in the polynomials

For construction of PDs of first layer in the PNN model the biquadratic
polynomials (5) used consists of 6 terms. The second layer takes two such
inputs from the first layer, so the maximum number of terms possible in
layer 2 is 66 i.e. 36. In general the maximum number of terms that can be
generated in any layer is , where 1 is the number of layer. Figure 3.8 shows
the possibility of generations of maximum number of terms at different
layers. However, we know that if all the features belong to unique categories,
then generation of maximum terms may be possible. For example, let us
consider a,b,c and d are the four unique features, then multiplication of
polynomial of two terms generate four terms i.e.:

(a+b)*(c+d)=ac+ad+bec+ bd
But if we consider only a and b, it will generate three terms i.e.:
(a+b)* (a+b) = a® + b* + 2ab

In our PNN models'!! each PDs from layer 2 onwards get inputs which
are combinations of outputs from PDs of first layer and original inputs
given to layer 1. For example in layer 2, if the output of one such PDs is
produced by taking features z; and z» i.e.

2 2
Co + 1T + caxj + C3x;x5 + cqTy + C5 T

and the other input is feature, then the polynomial equation generated out
of it after ignoring the coefficients is as follows:
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l+21+PD+a1PD+ai+PD* =1+a1+ (1+z1+ a2+ 212+ 27 +
23)+x1(1+z +z2+ax1ma+ 23 +23) + 23 + (1 + 21 + 20+ 122 + 25 +23)° =
3+ 5wy + 4o + 4120 + 522 + 43 + Sxixe + 373 + T3 + 223 + 3xad +
223wy + 27175 + 7 + 75

The maximum number of terms expected is 51 but number of terms
actually generated is only 15. Further, as we always feed the different
combinations of the same group of features that is available in the dataset,
the number of polynomial terms is much less than the maximum which is
expected. From experimentations it has been revealed that depending on
the size of input features, a range of 10 to 30 numbers of polynomial terms
are enough to approximate the non-linear dataset.

3.4.3.3. Mazxzimum unique features in each term of the polynomials

The polynomial equation we have considered for the PNN models can have
at best two unique features at layer 1. If layer 2 gets input from two PDs of
layer 1, without any common features then at layer 2 any of the polynomial
terms can have maximum 4 unique features. Figure 3.9 shows the possibility
of unique features in each term up to layer 3. So if we consider our best
result within layer 4, maximum unique features may be up to 16 in each
polynomial term. From simulation of different datasets using PNN we have
seen maximum of 4 to 8 unique features (subject to availability of features
in the dataset) are enough to approximate the non-linearity of the data sets
under investigation.

3.4.4. Ezxperimental studies for EPN

The EPN technique has been experimented with databases presented at
Table 3.1 and the division of the data set with distribution of records to
classes has been presented at Table 3.2. The parameters of PSO considered
for training of the evolving polynomial network model is given in Table 3.6.

For the construction of the EPN models, maximum limits for different
modules have been fixed.

The percentage of correct classification for each data set using the EPN
model is presented in the Table 3.7.

The averages of the hit percentages for the training set and test set has
been compared in Fig. 3.10. The z-axis values 1,2, 3, ..., 10 shown in figures
represents the databases AUSTRA, BALANCE, CREDIT, HABERMAN,



Evolution of Neural Network and Polynomial Network 87

Max. no. of At layerl At layer2 At layer3
unique features 2 unique 4 unique 8 unique
features features features

i

\

>.\
e
-
-

HIHIIH

Fig. 3.9.

Table 3.6.
for simulation.

Number of unique features in each term of the polynomial.

Parameters of PSO considered

Parameters

Values

Population Size
Maximum Iterations
Inertia Weight
Cognitive Parameter
Social Parameter
Constriction Factor

40

200
0.729844
1.49445
1.49445
1.0

HOUSE, IRIS, MONK, PIMA, WBC, WINE respectively. From the figure
it can be revealed that the performance of the known database (training
set) and the unknown database (test set) are comparable.

Further the results of ENN have been compared with the results of
the EPN. Figure 3.11 shows the comparison of performance of the known
databases with ENN against EPN. Similarly Fig. 3.12 shows the comparison

for the unknown databases.
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Table 3.7. Classification accuracy obtained from EPN.

Databases Hit Percentage in  Hit percentage in
the training set the test set

AUSTRA

setl 84.64 86.96

set2 87.54 84.64

Average 86.09 85.80
BALANCE

setl 63.78 63.26

set2 63.14 59.10

Average 63.46 61.18
CREDIT

setl 73.20 72.60

set2 71.00 71.60

Average 72.10 72.10
HABERMAN

setl 79.09 75.16

set2 79.09 75.16

Average 79.09 75.16
HOUSE

setl 94.93 94.95

set2 94.47 91.28

Average 94.70 93.11
IRIS

setl 100 93.70

set2 100 96.85

Average 100 95.27
MONK

setl 75.80 75.80

set2 74.19 75.81

Average 74.99 75.80
PIMA

setl 75.80 75.80

set2 74.19 75.81

Average 74.99 75.80
WBC

setl 93.98 95.71

set2 95.99 94.29

Average 94.98 95.00
WINE

setl 85.00 81.64

set2 87.64 85.39

Average 86.32 83.51
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Fig. 3.10. Comparison of average classification accuracy of EPN for the training set
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Fig. 3.11. Comparison of average classification accuracy of EPN and ENN for the
training sets.
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Performance comparison of test sets
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Fig. 3.12. Comparison of average classification accuracy of EPN and ENN for the test
sets.

3.5. Summary and Conclusions

The process of adaptation of evolutionary techniques for the generation
of evolving neural network and polynomial network has been discussed in
this chapter. The designing of ANN architecture for a specific problem
encounters a number of uphill tasks. The number of hidden layers optimal
for the architecture, the number of neurons optimal for each hidden layer,
what should be the best node transfer function, is a single node transfer
function suitable for neurons or different functions required for different
nodes, what is the best learning rule for it, what should be the parameters
for the algorithm and what is its optimal value, the optimal values of the
connection weights between the nodes of different layers, are some of the
tasks a designer of the ANN architecture needs to resolve. Further none
of these tasks can be resolved in isolation, i.e., each one of it depends
on others, making it a NP-Hard problem. Normally the designer adapts a
trial and error method to solve it and forced to compromise with one of
the possibilities he could able to experiment with the available resources.
A suitable alternative is to employ the evolutionary approach to solve such
complex problems. Discussion has been made on the research to solve the
components of the problem in isolation as well as few of the components of
the entire problem simultaneously and rest of the complexities are solved



Evolution of Neural Network and Polynomial Network 91

as usual i.e., by hit and trial or by depending on the domain knowledge of
the designer.

A lot of research has been conducted on the use of GA to solve such
problems. The application of swarm intelligence to this area is relatively
new. In this chapter we have presented one of the techniques for evolving
the ANN architecture and the connection weights using particle swarm
optimization. The results obtained from the experimental studies are also
presented for reference.

Further, we have also discussed the use of evolutionary computation
to polynomial neural network (PNN). The help of evolutionary technique
has been taken to solve different components of the problem by different
researchers such as selection of optimal subset of inputs to a neuron/partial
description (PD), selection of optimal set of PDs for the next layer, selection
of appropriate polynomial function for PD, etc. We have presented a
technique used for the evolutionary approach to design evolving polynomial
network (EPN). We have not used any standard polynomials to develop the
PDs, rather, all the components of a PD or neuron are evolved using swarm
intelligence. We have used particle swarm optimization (PSO) to generate
an optimal set of neurons for the network, optimal number of features and
the different features needed for each neuron, the degree of each feature in
the neuron, and the biased weights.

Experiments have been conducted with different bench mark datasets
for the task of data classification. Few of them have been presented for
reference. The results obtained from ENN and EPN are also compared to
evaluate their relative performance for solving the task of data classification.
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In this chapter, a multi-objective optimization approach is used to address the
alloy design problem, which concerns finding optimal processing parameters
and the corresponding chemical compositions to achieve certain pre-defined
mechanical properties of alloy steels. Neurofuzzy modeling has been used to
establish the property prediction models for use in the multi-objective optimal
design approach which is implemented using Particle Swarm Optimization
(PSO). PSO is used as the search algorithm, because its population-
based approach fits well with the needs of multi-objective optimization.
An evolutionary adaptive PSO algorithm is introduced to improve the
performance of the standard PSO. Based on the established tensile strength
and impact toughness prediction models, the proposed optimization algorithm
has been successfully applied to the optimal design of heat-treated alloy steels.
Experimental results show that the algorithm can locate the constrained
optimal solutions quickly and provide a useful and effective guide for alloy
steels design.

4.1. Introduction

Multi-objective optimization (MOO) problems are commonly encountered
in science and engineering due to the multi-criteria nature of many
application problems. In many scientific and engineering fields, it is very
common to face a design challenge where there are several criteria or design
objectives to be met simultaneously. If these objectives conflict each other,
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then the problem becomes one of finding the best possible designs that
satisfy the competing objectives under some trade-off scenarios. In the
steel industry, optimal metal design is a challenging multi-objective problem
requiring a search for optimal processing parameters and the corresponding
chemical compositions to obtain the pre-defined mechanical properties of
the steels.

Over the past 15 years, the use of evolutionary algorithms for multi-
objective optimization has grown significantly, and a wide variety of
algorithms®? have been developed. One of the goals of MOO algorithm
designers is to improve the efficiency of both the operation of the
algorithms and the data structures used to store non-dominated vectors.
This is particularly challenging in real-world problems with many
conflicting objectives.? Similar to evolutionary computation, particle swarm
optimization (PSO) is based on a biological metaphor and this heuristic
global optimization technology mimics swarm intelligence; it was proposed,
in 1995, by Kennedy and Eberhart et al.* Unlike evolutionary algorithms,
which are based on the principle of survival of the fittest, PSO is motivated
by the simulation of the social behavior of flocks. As Kennedy states,® the
algorithm is based on a metaphor of social interaction, searches a space
by adjusting the trajectories of individual vectors, called “particles”, which
are conceptualized as moving points in multi-dimensional space. At every
iteration, the individual particles evaluate their positions relative to a goal.
They are drawn stochastically towards the positions of their own previous
best performance and the best previous performance of their companions.
The PSO algorithm has been shown to be a successful optimiser for a
wide range of functions.® Its concise conception and convenient realization
was demonstrated to the evolutionary computation research community®:”
and was subsequently effectively applied to constrained optimization, power
system optimization, the Travelling Salesperson Problem, neural network
training, traffic accident detection and system identification.® 12 The
integration of its self-adaptation, parameter optimization, neighbourhood
topology with other intelligent optimizing algorithms led to improved
exploration and experimental simulations.'3 19 PSO has proved successful
in a wide variety of optimization tasks, but until recently it had not been
extended to deal with multiple objectives.2’ PSO seems particularly well
suited to multi-objective optimization on account of its population-based
approach and the speed of convergence that the algorithm achieves for
single-objective optimization.®
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In this chapter, we combine neurofuzzy modeling and Particle Swarm
Optimization to deal with the multi-objective optimal alloy design problem.
An evolutionary PSO algorithm!? is introduced to improve the performance
of the standard PSO. Based on the established tensile strength and
impact toughness fuzzy prediction models,?' 23 the proposed optimization
algorithm has been successfully applied to the optimal design of heat-
treated alloy steels. The experimental results show that the algorithm can
locate the constrained optimal solutions quickly and is a useful and effective
tool for alloy steels design.

4.2. The Alloy Optimal Design Problem

In the development of alloy materials, the combined design and control
of chemical composition and the details of thermomechanical processing
schedules to develop optimum mechanical properties invariably constitute a
complex exercise. The required mechanical properties of modern alloy steels
are achieved by obtaining an optimum microstructure through a careful
combination of alloy compositions, rolling schedules and heat treatment.
In the steel industry, heat treatments (containing hardening and tempering
stages) are commonly used to develop the required mechanical properties
in a range of alloy steels. The mechanical properties of the material are
dependent on many factors, including the tempering temperature, the
quench temperature, the types of quench medium, the content of chemical
compositions of the steel and the geometry of the bar. Determining the
optimal heat treatment regime and the required weight percentages for
the chemical composites to obtain the pre-defined mechanical properties of
steel is a challenge for the steel industry. To address this problem, a metal
design paradigm which combines mechanical property prediction with an
optimization mechanism has been established,?? as shown in Fig. 4.1. It can
be seen that the design optimization consists of two important components:
a reliable prediction model and an efficient optimization paradigm. As
the available physical knowledge of the heat treatment process is not
enough to allow one to compute the mechanical properties, it is crucially
important to establish reliable property prediction models. These will
be obtained through elicited data-driven models, such as neural network
models?* 26 and neurofuzzy models.?' 23 These models are then used to
predict the mechanical properties of steel such as the Tensile Strength
(TS), the Reduction of Area (ROA), Elongation and Impact Toughness.
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Fig. 4.1. Metal design optimization.

The predicted properties can be used as objectives in optimal metal design.
In this study, the emphasis is on impact toughness and tensile strength-
based alloy design. Fuzzy models for impact toughness prediction are
used to support the optimization process for multi-objective approaches.
PSO is used as the optimization mechanism for alloy design. This chapter
combines two challenging problems — impact toughness prediction and
multi-objective optimization — into a unified framework and provides a
case study example for multi-objective industrial design problems.

4.3. Neurofuzzy Modeling for Mechanical Property Prediction

Fuzzy modeling is one of the most active research fields in fuzzy logic
systems. Compared with mathematical modeling and neural network
modeling, fuzzy modeling possesses some distinctive advantages, such as
the facility for explicit knowledge representation in the form of if-then rules
(the mechanism of reasoning in human-understandable terms), the capacity
for taking linguistic information from human experts and combining it
with numerical data, and the ability to approximate complicated non-
linear functions with simpler models. Also, the rapid development of hybrid
approaches based on fuzzy logic, neural networks and genetic algorithms has
enhanced fuzzy modeling technology significantly.

A variety of different fuzzy modeling approaches have been developed

27-31

and applied in engineering practice. The approaches provide powerful

tools for solving complex non-linear system modeling and control problems.
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However, most existing fuzzy modeling approaches place emphasis on
model accuracy, paying less attention to simplicity and interpretability
of the obtained models, a property which is considered to be a primary
benefit of fuzzy rule-based systems. In many cases, users require the model
not only to predict the system’s output accurately but also to provide
useful physical descriptions of the system that generated the data. Such
descriptions can be elicited and possibly combined with the knowledge
of domain experts, helping not only to understand the system but also
to validate the model acquired from data. In material engineering, it is
important to establish an appropriate composition-processing condition-
property model for materials development. This study aims to develop a
simple and interpretable prediction model with satisfactory accuracy, which
is practical and useful in industrial applications.

4.3.1. General scheme of neurofuzzy models

A fuzzy model is a system description in terms of fuzzy numbers or fuzzy
sets associated with linguistic labels. The general form of a fuzzy model can
be represented by a set of fuzzy rules:

R;: If 21 is A;; and @g is Aja, ..., and @z, is Ay, then y; = 2;(2),

where ¢ = (z1,22,...,%m) € U and y € V are linguistic variables, A;; are
fuzzy sets of the universes of discourse U; € R, and z;(x) is a function of
input variables.

Typically, z takes the following three forms: singleton, fuzzy set or a
linear function. Fuzzy logic systems with centre of average defuzzification,
product-inference-rule and singleton fuzzification have the following
form:

_ 2:21 Zi [H;n:1 pij ()]

Dt 2o bag(zg) (4.1)

where p1;;(x) denotes the membership function of x; belonging to the i
rule. Very commonly, a Gaussian function is chosen as the membership
function, i.e.

XTj — Cij 2
piij () = exp (—%) (4.2)
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Thus, Equation (2) can be rewritten as:

2o zima(x)
YT i)

where m;(z) = exp(—||x — ¢;||?/o?) represents the matching degree of the

(4.3)

current input x to the ith fuzzy rule. Using the Fuzzy Radial Basis Function
(FRBF) definition:
m;(x)

gi(r) = m (4.4)

The input-output relationship (2) can be represented as:

Y= Zzzgz(x) (4.5)

Then, the fuzzy system model can be represented as a RBF network with
p hidden neurons, as shown in Fig. 4.2.

Because of the functional equivalence between the fuzzy inference
system shown above and a RBF network,?? we can merge the merits of both
systems together. According to the neurofuzzy modeling paradigm proposed
in Chen and Linkens,?! a fuzzy modeling problem is equivalent to solving
the problem of generating an initial fuzzy rule-base from data, selecting
the important input variables, determining the optimal number of fuzzy
rules (i.e., the number of hidden neurons in the RBF network), optimizing
the parameters both in the antecedent part and consequent part of the
rules and optimizing the acquired fuzzy model by removing the redundant

Input EBF Output
layer laver layer

Fig. 4.2. General architecture of a fuzzy RBF network model.
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Fig. 4.3. General scheme of neurofuzzy modeling.

membership functions. Thus, a neurofuzzy model can be viewed as a neural
network-based fuzzy logic system whose rules are automatically generated
and optimized through network training. Compared with pure neural
network models, neuralfuzzy models possess some distinctive advantages,
such as the capacity for taking linguistic information from human experts
and combining it with numerical data, and the ability of approximating
complicated non-linear functions with simpler models. The general scheme
of the neurofuzzy modeling framework is depicted in Fig. 4.3. According
to the neurofuzzy modeling paradigm proposed by Chen and Linkens,?!
the modeling procedure consists of four stages. In the first stage, data pre-
processing including data cleaning, data transformation and normalization,
and model initialization should be undertaken. In this stage, data processing
techniques and prior knowledge about the modeled process are needed
for model initialization, such as determining the type of the fuzzy model,
and choosing the type of membership functions. The second stage involves
structure identification. There are two challenging problems in this stage:

(1) input selection, that is, to select the important inputs that affect the
system output significantly among all possible input variables; and

(2) fuzzy partition validation, which is to determine the optimal number
of rules for the fuzzy model.

The task of parameter optimization is carried out in stage 3. An
effective learning strategy should be used to find the optimal parameters
for the model. Stage 4 concerns the task of model validation. The
acquired fuzzy model should be validated under certain performance
indices, such as accuracy, generality, complexity, interpretability, etc. If
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the model performance is not good enough, further modification including
structure and parameter optimization would be required. Once the model
performance achieves the pre-defined criteria, the final model is produced.

4.3.2. Incorporating knowledge into neurofuzzy models

As previously mentioned, neurofuzzy modeling has the advantage of combin-
ning expert knowledge with numerical data, helping not only to understand
the system but also to validate the model acquired from data. This section
presents a hybrid modeling method which incorporates knowledge-based
components, elicited from human expertise, into underlying data-driven
neurofuzzy network models.?3

In the modeling of engineering processes, there are two kinds of
information available. One is numerical information from measurements and
the other is linguistic information from human experts. The aforementioned
neuralfuzzy model is designed for data-driven models and cannot directly
deal with fuzzy information. To enable the model to utilize expert
knowledge presented by fuzzy if-then rules, an information processing
mechanism must be established.

The use of linguistic qualitative terms in the rules can be regarded as a
kind of information quantization. Generally, there are two different ways to
incorporate knowledge into neuralfuzzy models, as shown in Fig. 4.4. The
first one is to encode expert knowledge in the form of If-Then rules into
input-output fuzzy data, and then to use both numerical and fuzzy data to
train the neuralfuzzy model, as shown in Fig. 4.4(a). In cases where the data
obtained from the system are incomplete but some expert knowledge with
regard to the relationship between system input and output is available, this
method can be used to incorporate linguistic knowledge into data-driven
neuralfuzzy models. Fuzzy sets can be defined by a collection of a-cut sets
according to the resolution identity theorem. Linguistic information can be
represented by a-cut sets of fuzzy numbers. Expert knowledge represented
in the form of If-Then rules can be converted to fuzzy clusters in the
input and output spaces. The neuralfuzzy model can be trained using both
numerical data and fuzzy data which complement each other.

On the other hand, in many cases the knowledge that links the system
input and output is not available or not sufficient to generate fuzzy relations
between system input and output. However, it is still possible to use expert
knowledge to improve model performance if some knowledge about model
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Fig. 4.4. Two approaches to the knowledge incorporation into neuralfuzzy models.

output assessment and adjustment rules is available from domain experts.
In such cases, the fuzzy rule-base is generated from expert knowledge.
Firstly, the neurofuzzy model is trained using numerical data, and then the
obtained model output is assessed and adjusted by the established fuzzy
rule-base, as shown in Fig. 4.4(b). This method is useful for knowledge-
based model modification, and will be demonstrated in alloy property
prediction.

4.3.3. Property prediction of alloy steels using neurofuzzy
models

In material engineering, it is important to establish an appropriate
property prediction model for materials design and development. For
many years the steel research community has been developing methods
for reliably predicting the mechanical properties of steels. Much of this
work has concentrated on the generation of structure-property relationships

34,35 These linear models are developed

based on linear regression models.
for a specific class of steels and specific processing routes, and are
not sophisticated enough to account for more complex interactions.

Recently, some neural-network-based models have been developed to
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predict mechanical properties of hot rolled steels.?4 26 These models provide
complex non-linear mapping and give more accurate prediction than
traditional linear regression models. However, the development of these
kinds of model is usually specific-problem-dependent and time-consuming.
Developing a fast, efficient and systematic data-driven modeling framework
for material property prediction is still needed.

The problem concerning the modeling of hot-rolled metal materials
can be broadly stated as: Given a certain material which undergoes a
specified set of manufacturing processes, what are the final properties of
this material?

Typical final properties in which we are interested are the mechanical
properties, such as tensile strength, yield stress, elongation, impact
toughness, etc. By using the proposed neural fuzzy modeling approach,
we have developed composition-microstructure-property and composition-
processing-property models for a wide range of hot-rolled steels.

In the steel industry, it is important to build a reliable composition-
processing-property model for alloy development. Particular emphases are
placed on tensile strength and impact toughness, which are two crucially
important mechanical properties in alloy steels. To build empirical models
capable of predicting mechanical test results for steels, more than 3000
experimental data points from different types of alloy steels have been
used to train and test the neurofuzzy model, which relates the chemical
compositions and process parameters with the mechanical properties. Root-
Mean-Square-Error (RMSE) was used to evaluate the performance of the
fuzzy models developed. Property prediction results for different types of
steels are given as follows.

4.3.3.1. Tensile strength prediction for heat-treated alloy steels

The proposed neurofuzzy modeling approach has been used to construct
composition-processing-property models for Ultimate Tensile Strength
(UTS) prediction of heat treated alloy steels. Using the proposed fuzzy
model-based input selection mechanism?®
knowledge, 13 out of 23 possible input variables, including steel plate size
(thickness and width), chemical compositions (C, Si, Mn, S, Cr, Mo, Ni,
V, Ti), processing variables QT (Quenching Temperature) and TempT

and the related metallurgical

(Tempering Temperature), were selected as the model inputs to predict
UTS. Over 400 industrial testing data points from 22 different types of
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Fig. 4.5. UTS prediction of the six-rule fuzzy model with RMSE = 33.1 (N/mm?).

steels were used to develop the prediction models. 70% of the data were
used for model training and 30% of the data for model testing.

Based on the neurofuzzy modeling approach mentioned in previous
sections, a six-rule fuzzy model with confidence interval estimation was
developed.'® A comparison of the model predicted UTS with the measured
UTS is shown in Fig. 4.5, (where Root Mean Square Error RMSE =
33.1 N/mm?), while Fig. 4.6 shows the prediction results of the training and
testing data respectively. 95% confidence intervals for testing data are also
displayed. It is seen that the model can not only predict UTS accurately but
can also provide the confidence measure for model output. The produced
confidence intervals have very good coverage, i.e., almost all testing data
are covered by the confidence bounds.

4.3.3.2. Impact toughness prediction for heat-treated alloy steels

In recent years, various models have been developed for tensile strength
prediction. However, there has not been much work done on impact
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Fig. 4.6. Tensile strength prediction of the neuralfuzzy model (Dot: measured UTS;
Solid line: predicted UTS; Cross: confidence bounds).

toughness prediction. The neurofuzzy modeling approach has being used to
construct composition-processing-property models for both tensile strength
and impact toughness prediction.

One of the most important characteristics of alloy steels, toughness, is
assessed by the Charpy V-notch impact test. The absorbed impact energy
and the transition temperature defined at a given Charpy energy level
are regarded as the common criteria for toughness assessment. Charpy
energy versus temperature curve for the test is often used to characterize
the ductile-brittle transition in steels.’” However, a value of Charpy
impact energy only allows a rather qualitative description of toughness
because of its complex and subtle connection with material composition
and microstructure. Recent years have seen work attempting to unravel
this through Charpy impact test modeling, such as instrumented Charpy
test,® modeling of Charpy impact energy data using statistical analyses>®
and numerical modeling of the ductile-brittle transition.?”3? However, not
much work has been done to date on establishing generic composition-
processing-impact toughness models. In this study, the fuzzy modeling
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approach has been used to establish generic toughness prediction models
which link materials compositions and processing conditions with Charpy
impact properties for heat-treated alloy steels.

The proposed hybrid neuralfuzzy model has been used for impact
toughness prediction for low alloy steels. 408 experimental data points,
including 22 types of steels, were used to develop the prediction models.
The data set contains chemical compositions, processing parameters and
Charpy energy C,(J) tested at different temperatures (between —120°C
and 60°C). 70% of the data were used for model training and 30% of the
data were used as testing data. Steel compositions C, Si, Mn, S, Ni, Nb, V,
processing variables RHT (Reheating Temperature), FRT (Finish Rolling
Temperature) and Charpy test temperature were selected as the model
inputs.

Based on the data-driven neuralfuzzy modeling approach mentioned in
previous sections, a six-rule fuzzy model was developed to predict Charpy
impact energy. The predicted result at —50°C with Root-Mean-Square-
Error RMSE = 22.5(J) is shown in Fig. 4.7. The resultant mean transition
curve of Charpy impact energy versus test temperature is displayed in
Fig. 4.8. This curve was generated on the basis of fixing all input variables
at their mean values while the test temperature was varied from —120°C
to 60°C. It can be seen that the model prediction is quite satisfactory
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Fig. 4.7. Impact energy prediction for TMCR steels.
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Fig. 4.8. Impact transition curve with confidence interval generated by the neuralfuzzy
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for intrinsically scattered Charpy test data. Since the developed neural
fuzzy model can generate the full brittle to ductile transition curves for
specific steels, we can apply the same model to predict Impact Transition
Temperature (ITT) at a pre-defined impact energy level without model
re-training. ITT),, in Table 4.1, shows the predicted ITT of AMS steels
at 60J energy level. It is seen that the predicted ITT values based on
the Charpy energy prediction model are scattered and non-conservative
(i.e., generally, ITT prediction is below the actual values). To improve
the model performance, we incorporated a small knowledge-base into the
obtained fuzzy model, which consists of three knowledge-based fuzzy rules:

R1: If RHT is Low and FRT is Low Then increase ITT by about X%

R2: If RHT is Medium and FRT is Medium Then increase ITT by
about Y%

R3: If RHT is High and FRT is High Then increase ITT by about Z%

The membership functions of terms Low, Medium and High are defined
by expert knowledge, with Gaussian functions used as the membership
functions. The values of X, Y and Z in the consequent part of the rules were
initialized by prior knowledge and then optimized via a simulated annealing
algorithm. The knowledge-base was incorporated into a data-based fuzzy



Design of Alloy Steels using Multi-Objective Optimization 113

Table 4.1. Charpy impact properties prediction for different steels.

Steel Type Charpy Energy (—50°C) ITT (60J)
Measured  Predicted CI ITT ITTK ITTP

A8M101 (V-Ti) 204, 178 185 33 =70 —64 —75
A8MOI8(V) 154, 148 152 30 —65 —66 —-71
A8M90 (Nb-Ni) 125, 62 84 44 =50 —55 —64
A8M94 (Nb-V-Ni) 80, 54 83 28  —45 —-50 —-53
A8M95 (Nb-Ni) 98, 63 81 28 =50 —48 —56
A8MI6(V-Ni) 176, 152 171 27 =80 —84 —89
A8M100 (0.045%Nb-V) 97, 51 75 38 —45 —55 —60
A8M102(Nb-V) 170, 135 143 47 =55 —65 —74
A8M105(Nb-V-Ti) 192, 176 190 35 =80 —80 -89
A8M104 (0.2%Mo-Nb-V) 104, 85 84 20 —45 -50 —54
A8M92(Low C Mn-Nb-V) 185, 184 182 23 =70 —70 —82
A8M93(Low C Nb-V) 206, 197 200 21 =70 —=75 —83
A8M99 (LowC 0.045%Nb-V) 199, 194 196 37 =85 —78 —89
A8M97(Nb-Ni-Ti) 186, 173 168 34 —-90 —87 —101
A8M91(Cu-Nb-V) 157, 138 136 35 =75 —70 —74

model in the second mode shown in Fig. 4.4(b). After knowledge-based
model modification, the RMSE of the ITT predictions was reduced
from 8.5°C to 6.2°C. In Table 4.1, the ITT predictions with knowledge
incorporation are represented by ITTK. The model predictions without
knowledge incorporation are denoted by ITTP. It can be seen that compared
with ITTP, the modified ITT predictions, ITTK, are more accurate
and reasonable. Based on the developed fuzzy model, we can predict
impact energy and transition temperature effectively. Table 4.1 shows the
predicted impact energies of different steels at a temperature of —50°C with
corresponding 95% confidence intervals, CI, and the transition temperature
at 60J energy level. It is seen that the model predicted energy values are
between the two measured Charpy test energy values, and the prediction of
ITT(60J) is also quite encouraging. In the proposed modeling framework,
expert knowledge in the form of If-Then rules can be incorporated into
data-driven RBFN models in different way. Simulation experiments show
that the developed FRBFN model has satisfactory prediction accuracy and
good interpretation properties. The model performance can be improved
by knowledge incorporation. The proposed modeling approach has been
successfully applied to alloy toughness prediction. Experimental results
show that the developed impact toughness prediction model not only
predicts the impact properties of alloy steels, but also provides a useful
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description of the link between composition-process conditions and Charpy
toughness. The developed knowledge-based neurofuzzy models are used to
facilitate the multi-objective optimal design of alloy steels.

4.4. Introduction to Multi-Objective Optimization

Multi-objective optimisation recognizes that most practical problems
invariably require a number of design criteria to be satisfied simultaneously,
viz: mingeqF(x), where © = [r1,22,...,24], @ defines the set of free
variables, x, subject to any constraints and F(z) = [f1(z), f2(z), ..., fa(z)]
contains the design objectives to be minimized.

Clearly, for this set of functions, f;(z), it is unlikely that there is one
ideal ‘optimal’ solution, rather a set of Pareto-optimal solutions for which
an improvement in one of the design objectives will lead to a degradation in
one or more of the remaining objectives. Such solutions are also known as
non-inferior or non-dominated solutions to the multi-objective optimisation
problem.

The concept of Pareto optimality in the two-objective case is illustrated
in Fig. 4.9. Here, points A and B are two examples of non-dominated
solutions on the Pareto front. Neither is preferred to the other. Point
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Fig. 4.9. Pareto-optimal surface or non-dominated solution set for a 2-objective
problem.
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A has a smaller value of fa than point B, but a larger value of fi.
Correspondingly, point B has a smaller value of f; than point A, but a larger
value of fa. Single-objective optimization has been widely used to address
multi-objective optimization problems but it has a limited capability.
Objectives are often non-commensurable and are frequently in conflict with
one another. Within a single-objective optimization framework, multiple
objectives are often tackled by the “weighted-sum” approach of aggregating
objectives. This has a number of significant shortcomings, not least of
which is the difficulty of assigning appropriate weights to reflect the relative
importance of each objective.

Besides providing the desired family of solutions approximating to the
non-dominated solution set, the multi-objective particle swarm optimizer
uses dynamic weights instead of fixed weights to obtain the Pareto solutions.

4.5. Particle Swarm Algorithm for Multi-Objective
Optimization

As mentioned in Section 4.3, alloy design is a challenging multi-
objective optimization problem, which consists of finding the optimal
chemical compositions and processing parameters for a pre-defined property
requirement. Neurofuzzy modeling has been used to establish the properties
prediction models which facilitate the Particle Swarm Optimization (PSO)
based multi-objective optimization mechanism. An evolutionary adaptive
PSO algorithm has been developed to improve the performance of the
standard PSO.

Based on the established tensile strength and impact toughness
fuzzy prediction models, the proposed optimization algorithm has been
successfully applied to the optimal design of heat-treated alloy steels.
The experimental results have shown that the algorithm can locate the
constrained optimal solutions quickly and provide a useful and effective
guide for alloy steels design.

4.5.1. Particle swarm optimization algorithm

The particle swarm algorithm works by “flying” a population of co-
operating potential solutions, called particles, through a problem’s solution
space, accelerating particles towards better solutions. The particles in PSO
consist of a d-dimensional position vector z, and a m-dimensional velocity
vector v, so the ith member of a population’s position is represented
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as r; = [Iﬂ, Ti2y .- ,Iim], and its VQIOCity as v; = [’Uﬂ, Vi2y e v 7vim]7
i = 1,2,...,N, where N is the number of particles in the population.
Individuals interact with one another while learning from their own
experience(s), and gradually, the population members move into better
regions of the problem space. The algorithm is simple — it can be described
in one straightforward formula — but is able to circumvent many of
the obstacles that optimization problems usually present, including those
associated with Genetic Algorithms (GA). The original formula, which
was developed by Kennedy and Eberhart,* was later improved by Shi and
Eberhart by introducing an inertia weight w, in order to balance the local
and global search during the optimization process.?® During each iteration,
the particle’s position is modified according to the following equations:

vi(t) = wu(t — 1)+ ciri(pi — zi(t — 1)) + cara(pg — zi(t — 1)) (4.6)

where w is the inertia weight, ¢; and ¢y are positive constants, and r1 and r
are random numbers obtained from a uniform random distribution function
in the interval [0, 1]. The parameter p; represents the best previous position
of the ith particle and p, denotes the best particle among all the particles
in the population.

In PSO, the search toward the global optimal solution is guided by
two stochastic acceleration factors (the cognitive part and the social part).
It has been observed that PSO quickly finds a good local solution but
sometimes remains in a local optimum solution for a considerable number
of iterations without improvement. To handle this problem, many modified
PSO algorithms have been proposed. Theoretical analysis of PSO has
revealed the influence of the inertia weight and constants on convergence,
but has not produced useful selection guidelines.*’ Most of the previous
empirical developments of PSO are based on either the inertia weight or
the constriction factor method.%15:16:40 However, for a complex multimodal
function, the control of the diversity of the population with a linearly
varying inertia weight may lead the particles to converge to a local
optimum prematurely. On the other hand, the constriction factor method is
ineffective for complex multimodal functions, despite its ability to converge
to stopping criteria at a significantly faster rate for unimodal functions.

Recently, hybrid PSO algorithms have been produced by introducing
evolutionary computation, such as selection and mutation. Mutation
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operators introduce new individuals into a population by creating a
variation of a current individual, thus adding variability into the population
and preventing stagnation of the search in local optima. Several modified
PSO algorithms with mutation operators have been proposed!”18:42-44 to
improve the global search capability of PSO. They use a mutation operator
to change a particle dimension value using a random number drawn from
a probability distribution, such as Gaussian or Cauchy distribution. A
particle is selected for mutation using a mutation rate that is decreased
during a run, i.e., as the number of iterations increases, the effect of the
mutation operator decreases.

4.5.2. Adaptive evolutionary particle swarm optimization
(AEPSO) algorithm

To enhance the global exploratory capability of PSO while maintaining
a fast rate of convergence, especially in the context of multi-objective
optimization, we incorporate non-dominated sorting, adaptive inertia
weight and a special mutation operator into the particle swarm optimization
algorithm.!” With this strategy, the particle’s velocity in Equation (4.6) is
modified as follows:

vi(t+ 1) = woi (t) + [r1(pi — zi(t)) + ra(pg — :(1))] + vm (2). (4.8)

The second term in Equation (4.8) can be viewed as an acceleration
term, which depends on the distances between the current position x;, the
personal best p;, and the global best p,. The acceleration factor is defined
as follows:

a:ao—FNit, t=1,2,..., Ny, (4.9)
where N; denotes the number of iterations, ¢ represents the current
generation, and the suggested range for ag is [0.5, 1].

As can be seen from Equation (4.9), the acceleration term will increase
as the number of iterations increases, which will enhance the global search
ability as the search proceeds and help the algorithm to jump out of local
optima, especially in the case of multimodal problems.

Furthermore, instead of using a linearly-decreasing inertia weight, we
use a random number, which has been shown by Zhang et al.!® to improve
the performance of the PSO in some benchmark functions. Hence, in this
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study, we change the inertia weight at every generation via the following
formula:

w = wy + r(w; — wp), (4.10)

where wg € [0, 1], wy; > wg are positive constants, and r is a random number
uniformly distributed in [0, 1]. The suggested range for wy is [0, 0.5], which
makes the weight w randomly vary between wy and w;. In this way, we
can obtain a uniformly distributed random weight combination, which is
generated at every iteration. The idea here is to use dynamic weights instead
of fixed weights to obtain the Pareto solutions.

The third term vy, (t) in Equation (4.8) is a mutation operator, which is
set proportionally to the maximum allowable velocity V.. If the historic
optimal position, p;, of the particle swarm is not improving with the
increasing number of generations, this may indicate that the whole swarm
is becoming trapped in a local optimum from which it becomes impossible
to escape. Because the global best individual attracts all particles of the
swarm, it is possible to lead the swarm away from a current location by
mutating a single individual. To this end, a particle is selected randomly
and then a random perturbation (mutation step size) is added to a randomly
selected modulus of the velocity vector of that particle by a mutation
probability. The mutation term is produced as follows:

U (t) = sign(2rand — 1)BVias - (4.11)

where 8 € [0,1] is a constant, rand is a random number uniformly
distributed in [0, 1], and the sign function is defined as sign(z) = 1 if
x > 0 and sign(z) = —1 if < 0, which is used to decide the particle’s
moving direction. It is noted that the mutation rate in this algorithm is not
decreased during a run. On the contrary, the mutation effect is enhanced
at the late stages of search. This special mutation operator can encourage
particles to move away from a local optimum and maintain the diversity of
the population.

In order to evaluate the performance of individual particles, an
appropriate evaluation function should be defined to select local best and
global best. We simply use a weighted aggregation approach to construct
the evaluation function F' for multi-objective optimization:

F = iwifi; iwl = 1, (412)
i=1 i=1

where m is the number of objectives, i =1,2,...,m.
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To approximate the Pareto front instead of a certain Pareto solution,
the weights w; for each objective are changed systematically and normalized
as follows:

Ai
Z:il Ai’
where, again, rand is a random number uniformly distributed in [0, 1]. In
this way, we can obtain a uniformly distributed random weight combination,
which is generated at every generation. The idea is to use dynamic weights
instead of fixed weights to obtain the Pareto solutions. This dynamically
weighted aggregation approach was introduced for the selection of the best
p; and py.

Finally, in order to strengthen the convergence properties of the multi-
objective optimization, the “non-dominated sorting” technique, which was
proposed and improved by Deb?*%6 and then introduced into the PSO
algorithm by Li,*” has been also used in our AEPSO algorithm. In the light
of the above considerations, the proposed algorithm can be summarized as
follows:

Ai = rand, (4.13)

w; =

(1) Initialization. Set the population size N and the maximum no. of
iterations, NV;. Initialize the position x; and velocity v; of the particles
within the pre-defined decision variable range. Vinq. is set to be the
maximum allowable velocity. Set the personal best position p; = z;,
and the iteration count, ¢t = 0.

(2) Evaluation. Set ¢t = ¢ + 1. Evaluate each particle in the current
population using a Pareto-based fitness assignment strategy. Update
individual best p; and global best p,.

(3) New particles generation. Calculate the new velocity NV; and new
position N X; based on the current x;, (i = 1,2,..., N), using equations
(9) and (8), and the objective function values for all the new particles.
Combine all z; and NX; (2N particles) together and store them in a
temporary list tempList.

(4) Non-dominated Sorting. (a) Identify non-dominated solutions in
tempList and store them in a matrix PFront (Pareto front). Set front
number k = 1. (b) Remove the non-dominated particles from tempList.
(c) Set k = k + 1. Identify non-dominated solutions in the remaining
tempList and store them in a matrix Frontk (front k). (d) Repeat (b)
and (c) until all 2N particles are ranked into different fronts.

(5) Select particles for next iteration. If PFront size > N, then randomly
select N particles from PFront and store them as NeztX. Otherwise,
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store PFront as NextX then randomly select particles in next front
(Frontk) and add them to NexztX until NextX size = N.

(6) Set the NextX as the current positions x for the next iteration.

(7) If |zy — x¢—1] < €, execute the mutation operation as follows, otherwise
go to Step 8. a) A mutation term vy, (t), calculated by equation (12),
is added to a randomly selected modulus of the velocity vector of
that particle by a mutation probability, store in Xtemp. b) Evaluate
the Xtemp and find the particles which dominate any particles in the
current Pareto front. Use these dominating particles to replace the
corresponding particles in the current x.

(8) If t < Ny, go to Step 2.

(9) Store the non-dominated solutions from the final population.

We will show that this proposed approach works very well with
both multi-objective optimization test problems and our industry-related
problem.

4.5.3. Comparing AEPSO with some leading multi-objective
optimization algorithms

Multi-objective optimization is becoming more and more the focus of
active research for many real-world problems, most of which are indeed
“multi-objective” in nature. A good multi-objective optimization algorithm
should not only converge to the global optima but also find as many well-
distributed Pareto optimal solutions as possible, to provide the final user
with the possibility of choosing the right solution following his/her own
criteria. In order to demonstrate the effectiveness of the proposed EPSO
algorithm, we used a set of commonly recognised benchmark functions
(ZDT1 ZDT4 functions®?) as test problems of multi-objective optimization.
The test functions are defined as:

Minimise F'(z) = (fi(x), fa(z))
Subject to fi(z1) = x1,
f2(z) = g(z2, ..., 2m)h(f1(21), 9(22, ..., 2m))
where z = (z1,z2,...,Tm)
ZDT1-Convex: g(x2,...,xp) = 1+9> ", z;/(m —1),m = 30,z; €
[0,1]

h(f1,9) =1—+/fi/g
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ZDT2-Non-Convex: ¢(x2,...,%n) = 1+ 9>, x;/(m — 1),m =
30,z; € [0, 1]

h(fi,9)=1- (f1/9)2

ZDT3-Non-Continuous: g(z2,...,2m) =14+9Y ", z;/(m —1),m =
30, ; € [0, 1]

h(fi,9) =1—+/f1/g9 — (f1/g)sin(1011f1)

ZDT4-Multimodal: g(za,...,2m) = 1+ 10(m — 1) + 37" [z? —
mecos(411x;)]

m =10,z € [0,1],2; € [-5,5],i=2,3,...,m

h(f1.9) =1-/(f1/9)

The function ZDT1 has a convex Pareto front while ZDT?2 has a concave
Pareto front. Discontinuities in the Pareto front for ZDT3 cause difficulties
in finding a diverse set of solutions. ZDT4 is a multimodal problem:;
the multiple local Pareto fronts cause difficulties for many algorithms to
converge to the true Pareto-optimal front. For all test functions, we set
wo = 0.5,w; = 1,9 = 0.5, the population size N = 100 and the number
of iterations N; = 300. The test results are shown in Fig. 4.10. It can
be seen that the proposed algorithm performed very well and converged
to the Pareto-optimal with a high accuracy while maintaining a good
diversity among the Pareto solutions. To compare the performance of
the AEPSO to other recently developed evolutionary algorithms, such as
the non-dominated sorting genetic algorithm-II (NSGA II),*® the strength
Pareto evolutionary algorithm (SPEA)*® and NSPSO,*" two performance
metrics, namely the Generational Distance (GD) and the Spread S, which
are described in,*? were used. GD measures the distance of the obtained
Pareto solution set Q from a known set of the Pareto-optimal set P*, which
is defined as follows:

Q1 gmy 2
ap - (2 Iglil Qo 4™ (4.14)

For a two-objective problem (M = 2), d; is the Euclidean distance between
the solution 7 € @) and the nearest member of P*. A set of P* (comprising
500 uniformly distributed Pareto-optimal solutions) is used to calculate the
closeness metric GD.
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Fig. 4.10. Pareto solutions of EPSO on ZDT1 ZDT4 solid line: Global optimal front;
Dots: EPSO optimal solutions.

The Spread S measures the diversity of the solutions along the Pareto
front in the final population and is defined as follows:

g _ Tt B+ 22 |di — d]
an\le de, +1Qld

where d; is distance between the neighbouring solutions in the Pareto
solution set @, d is the mean value of all d;, and d¢, is the distance
between the extreme solutions of P* and ) along the mth objective. It
is worth noting that for an ideal distribution of the solutions (uniform
distribution), S = 0.

(4.15)
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Table 4.2. Mean and variance values of the convergence measure, GD.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4
GD o2 GD o? GD o2 GD o2

SPEA 1.25e-3 0 3.04e-3  2.00e-5 4.42e-2 1.90e-5 9.514 11.321
NSGA II 8.94e-4 0 8.24e-4 0 4.34e-2  2.20e-5 2.92e-2  4.67e-2
NSPSO 7.53e-4 4.18e-5 8.05e-4 3.05e-5 3.40e-3 2.54e-4 7.82e-4 6.9le-5
MOPSO 1.33e-3 0 8.91e-4 0 4.18e-3 0 7.37e-1  5.48e-1
AEPSO 9.12e-5 2.61le-9 1.21e-4 1.40e-9 4.78e-4 2.85e-9 6.52e-4 4.08e-5

Table 4.3. Mean and variance values of the diversity measure, S.

Algorithm 7ZDT1 ZDT?2 7ZDT3 ZDT4

S O'QA S O'QA S O'QA S O'2A
SPEA 0.730  9.07e-3  0.678 4.48¢-3 0.666 6.66e-4 0.732  1.13e-2
NSGA I1 0.463  4.16e-2  0.435 2.46e-2 0.576 5.08¢e-3 0.655  1.98e-1
NSPSO 0.767  3.00e-2  0.758 2.77e-2 0.869 5.8le-2 0.768  3.57e-2
MOPSO 0.683 1.32e-2  0.639 1.12¢e-3 0.832 8.92e-3 0.962 1.11e-2
AEPSO 0.759  1.70e-3  0.622 4.90e-3 0.867 1.10e-2 0.636  7.04e-3

In order to establish repeatability, the AEPSO algorithm was run
ten times independently. The average performance metric values and
the corresponding variance, o2 are summarized in Tables 4.2 and 4.3
respectively. In the Tables, the compared results for SPEA, NSGA-II and
NSPSO were obtained from Deb?? and Li%” respectively. Results from using
the multi-objective PSO algorithm, MOPSO, proposed in Coello et al.2°
are also shown in the Tables. It can be seen that the proposed algorithm,
AEPSO, performed well as far as convergence and diversity are concerned.
From Table 4.2 we can see that AEPSO has achieved a better convergence
while maintaining a diverse population and achieving a well distributed
trade-off front. The results indicate that the approach is highly competitive
and that it can be considered a viable alternative to solve multi-objective
optimization problems.

4.6. Multi-Objective Optimal Alloy Design Using AEPSO

Having established the effectiveness of the algorithm, it was applied to the
optimal design for heat-treated alloy steels. In this section, details relating
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to the optimization of Charpy impact toughness and tensile strength using
the AEPSO algorithm are presented and discussed. The decision vector
consists of the weight percentages for the chemical composites, namely:
Carbon (C), Manganese (Mn), Chromium (Cr), Molybdenum (Mo), Nickle
(Ni) and Tempering temperature (Temp) respectively. All optimization
experiments are based on the neurofuzzy property prediction models.

4.6.1. Impact toughness oriented optimal design

Companies in the steel industry value highly the achievement of the required
levels of toughness properties of hot rolled steel products. The optimal alloy
toughness design aims at finding the appropriate chemical compositions and
tempering temperature with the criterion of a minimum Charpy impact
energy of 54 J at —20°C, which is equivalent to the ductile-brittle transition
temperature at 54 J energy level which is below —20°C. On the other hand,
we should consider the production costs of heat-treated steels, including
the costs of the addition of alloying elements, such as Cr, Mo, V, etc.,
and the costs of energy consumption during the heat-treatment process. In
this experiment, five factors: C, Mn, Cr, Mo and Tempering Temperature,
have been considered although other composites and temperatures could
also be included. According to the contribution of the chemical composites
and annealing to the cost of heat-treated steels, two objective functions are
defined for impact toughness optimal design as below:

Minimize:

where C,,, =54J (4.16)

5 = Jo0c, it G, <150,
"7 20,/C, ifC,>150,"

f2 = 18Mn + 21Cr 4 52.25Mo3 + 4.88Temp,/600. (4.17)

The first objective function f; indicates that the ideal solutions should
make the Charpy energy greater than 1.5 times of the target value, C,,_, the
greater the better. The second objective function represents the production
cost which includes the costs of addition of alloying elements, such as Mn,
Cr, Mo, etc. and the costs of energy consumption during the heat-treatment
process. The optimal alloy design is to find the suitable compositions and
tempering temperatures which ensure that the alloy product has a good
trade-off between high impact energy and low production cost.
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Fig. 4.11. Obtained Pareto solutions in the objective space.

Table 4.4. Selected Pareto solutions for two-objective optimization.

No. C Mn Cr Mo Temp Cv Cost$
1 0.1203 0.3498 0.0500 0.0102 691 126 14.5
2 0.1202 1.4231 0.0501 0.0979 730 183 38.8
3 0.1200 0.3679 0.0500 0.1908 728m 157 24.6
4 0.1200 0.8445 0.0500 0.1310 730 168 30.1
5 0.1201 1.7200 0.0500 0.2303 709 197 50.8

Figure 4.11 displays the optimization result in objective space using
the proposed AEPSO algorithm. It indicates that the two objectives are
in conflict, as any improvement in one objective causes deterioration in
the other. Table 4.4 displays different solutions selected from the Pareto
solutions. It can be seen that the algorithm converged to an optimal solution
front that provided optional solutions with different production costs while
meeting the pre-defined toughness requirement.

4.6.2. Optimal alloy design with both tensile strength and
impact toughness

This experiment aims at finding the optimal chemical compositions and
heat-treatment process parameters to obtain the required tensile strength
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(TS) and impact toughness (Cv) while pursuing the lowest possible
production cost. In order to achieve the pre-defined tensile strength and
toughness requirement, the model prediction error band should be taken
into account in the selection of objectives. It is worth noting that the error
band, which depends on model accuracy and training data density, provides
an accurate guide to the model prediction error. The objective functions
for alloy tensile strength and impact toughness design are defined as:

Minimize: F = (f1, f2, f3, f4, f5)

where
TS~ TS;|  if |TS— TS| < 0.1TS;
fi= ) (4.18)
100| TS — TS;| otherwise
f2 = EBr (4.19)

100C,  if Cy < 1.5C,,
5= where Cy,, =54 (4.20)

20,,/C, if C, > 1.5C,,’
fa=EB. (4.21)
f5 = 18Mn + 21Cr + 52.25Mo3 + 4.88Temp/600. (4.22)

In this case, the 95% confidence error band for the prediction models
EBT and EBC, corresponding to TS and toughness respectively, are
included in the objective functions, i.e., fo and f4. The target value for T'S
is set to TS, = 800(N/mm?). Among the five objectives, the first objective
function f; indicates that the ideal solutions should be close to the target
TS value, TS;, and the acceptable variation is 10% of T'S;. A penalty is
assigned to solutions that exceed the 10% variation range of the target.
Objectives f3 and f5 are defined as in the previous subsection for f; and fs.

Taking the above factors into account, the optimization experiment
has been conducted based on the objective functions f; and f5 defined by
Equations (4.19)—(4.23) using the AEPSO algorithm. The Pareto-solutions
were obtained in the objective space with the tensile strength target value
TS; = 800 (N/mm?) and Charpy impact energy target value C,, = 54J.
Again, five different solutions around the tensile strength target value are
selected from the Pareto solutions and listed in Table 4.5. It can be seen that
the algorithm converged to the region close to the pre-defined TS target
values and also provided different solutions which meet the toughness and
cost requirements of the alloy steels. It is also seen that the optimization
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Table 4.5. Selected Pareto solutions for two-objective optimization.

No. C Mn Cr Mo Temp TS EBt Cv EBc Cost$
1 0.341 0.800 0.806 0.225 602 819 22 92 28 66.4
2 0.347 0.887 1.350 0.144 651 809 37 97 28 85.5
3 0.344 0.841 0.558 0.308 592 803 28 90 29 59.5
4 0.375 0.839 1.119 0.011 640 794 56 289 28 67.8
5 0.298 0.985 1.202 0.252 655 817 57 117 30 86.7

method provides useful, practical composition and tempering temperature
levels, with acceptable mechanical property requirement, model reliability
and overall costs incurred. It indicates that the produced solutions are very
consistent and always converged to a specific area that minimized the above
objective functions.

4.7. Conclusions

A multi-objective alloy design approach was used to determine the optimal
heat treatment regime and the required weight percentages for the chemical
composites to obtain the desired mechanical properties of steel. Based on
data-driven neurofuzzy models, the tensile strength and Charpy impact
toughness can be predicted effectively and then used to facilitate optimal
alloy design. The alloy design experimental results have shown that the
optimization algorithm can locate the constrained minimum design with
very good convergence, and also provide a range of optional solutions
which fit the pre-defined property requirement while securing a reasonable
production cost. Simulations also indicate that the algorithm produced
very consistent solutions and can be effectively used in other industrial
optimization problems.

An adaptive evolutionary Particle Swarm Optimization approach was
described and successfully applied to this multi-objective optimal design of
heat-treated alloy steels. Using a new PSO algorithm, AEPSO, we overcame
problems commonly encountered in the standard PSO algorithm which
related to its shortcomings for effective local search in the early stages of
the run coupled with its shortcomings for effective global search during the
late stages of the run. The introduction of an adaptive inertia weight and a
special mutation operator improved the diversity of the Pareto solutions and
the exploratory capability while keeping the algorithm simple. Compared
with some recently developed algorithms, the proposed algorithm can
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achieve improved convergence while maintaining good diversity. (The well-
known functions ZDT1 ZDT4 were used for benchmark testing).

Further work on the multi-objective optimization method, AEPSO, will
seek to improve the ability of the algorithm to distribute more uniformly
along the Pareto front. There is a very strong continuing interest in the
literature on the use of PSO for multi-objective optimization. Important
recent papers include research into distributed co-evolutionary PSO,?°
improvements using crowding, mutation and epsilon-dominance®' and an
approach which draws heavily from the experience of evolutionary multi-

objective optimization research.?? Developing new optimization algorithms

with high performance on convergence, diversity and user preference®® is

our goal for future work.
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This chapter presents a hybrid adaptive particle swarm optimization
(HAPSO)/Bayesian classifier to construct an intelligent and more compact
intrusion detection system (IDS). An IDS plays a vital role of detecting
various kinds of attacks in a computer system or network. The primary
goal of the proposed method is to maximize detection accuracy with a
simultaneous minimization of number attributes, which inherently reduces the
complexity of the system. The proposed method can exhibits an improved
capability to eliminate spurious features from huge amount of data aiding
researchers in identifying those features that are solely responsible for achieving
high detection accuracy. Experimental results demonstrate that the hybrid
intelligent method can play a major role for detection of attacks intelligently.

5.1. Introduction

An intrusion detection system (IDS) is a program to detect various kinds
of misuse in computer system or network. An intrusion is defined as
any non-empty set of actions that attempt to compromise the integrity,
confidentiality or availability of a resource. Intrusion detection can be
grouped into two classes such as misuse intrusion detection and anomaly
intrusion detection.! Misuse intrusion detection uses well defined patterns
of the attack and exploit weaknesses in system and application software
to identify the intrusions. These patterns are encoded in advance and used
to match against the user behavior to detect intrusions. Anomaly intrusion
detection uses the normal usage behavior patterns to identify the intrusions.
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The normal usage patterns are constructed from the statistical measures of
the system features. The behavior of the user is observed and any deviation
from the constructed normal behavior is detected as an intrusion.?

The main goal of the IDS is to find intrusions among normal audit
data and this can be considered as a classification problem. One of the
main problems with IDS is the overhead which can become positively
high. As network speed becomes faster, there is an emerging need for
security techniques that will be able to keep up with the increased
network throughput.>* Several machine learning, soft computing and
computational intelligence techniques have been investigated for the design
of IDS, e.g., neural networks,” linear genetic programming,® support
vector machine (SVM), Bayesian networks, multivariate adaptive regression
splines (MARS),” fuzzy inference systems (FISs),® hybrid intelligent
systems (HISs),” etc. All these aforesaid efforts are primarily focussed
on high detection rates, which completely ignoring the computational
complexity aspect. In view of this the proposed method tried to make
an intelligent IDS which is lightweight, while guaranteeing high detection
rates. The present method tried to solve that by figuring out important
intrusion features through hybrid adaptive particle swarm optimization
(HAPSO). Feature selection is one of the important and frequently used
techniques in data preprocesing for IDS.° It reduces the number of features,
removes irrelevant, redundant or noisy features, and brings the immediate
effects for IDS. In this research the hybrid method HAPSO objective is two
folds: (i) learning of Bayesian coefficients and (ii) selection of optimal set
of intrusion features. HAPSO is based on the idea of adaptive PSO'! for
continuous search space exploration and binary PSO'? for discrete search
space exploration.

In terms of feature selection, many researchers have proposed
identifying important intrusion features through wrapper, filter and hybrid
approaches. Wrapper method exploits a machine learning algorithm to
evaluate the goodness of features or feature set. In the present study we use
HAPSO learnable extended Bayesian classifier'? to evaluate the optimality
of features or feature set.

The rest of the chapter is organized as follows. Section 5.2 provides the
related research. Preliminary materials are presented in Sec. 5.3. Section 5.4
comprises of HAPSO/Bayesian classifier for IDS. Experimental results and
analysis is presented in Secs. 5.5 and 5.6 concludes the chapter with a
possible feature research directions.



An Extended Bayesian/HAPSO Intelligent Method in Intrusion Detection System 135

5.2. Related Research

With the proliferation of distributed and networked computers and then
the Internet, their security has become a hot cake in research community.
Anderson in 1980 proposed that audit trails can be used to monitor
threats. The importance of such data was not comprehended at that time
and all the available system security procedures were focused on denying
access to sensitive data from an unauthorized source. Dorothy? proposed
the concept of intrusion detection as a solution to the problem of providing
a sense of security in computer systems. This intrusion detection model
is independent of system, type of intrusion and application environment.
This model served as an abstract model for further developments in the field
and is known as the generic intrusion detection model. Various techniques
and approaches have been used in later developments. The techniques used
are statistical approaches, predictive pattern generation, expert systems,
keystroke monitoring, model-based intrusion detection, state transition
analysis, pattern matching, and data mining.

Statistical approaches compare the recent behavior of a user of a
computer system with observed behavior and any significant deviation is
considered as intrusion. This approach requires construction of a model
for normal user behavior. Any user behavior that deviates significantly
from this normal behavior is flagged as an intrusion. Intrusion detection
expert system (IDES)!® exploited the statistical approach for the detection
of intruders. It uses the intrusion detection model proposed by Denning?
and audit trails data as suggested in Anderson.'* Attacks, which occur
by sequential dependencies, cannot be detected, as statistical analysis is
insensitive to order of events.'® Predictive pattern generation uses a rule
base of user profiles defined as statistically weighted event sequences.'” This
method of intrusion detection attempts to predict future events based on
events that have already occurred.

The state transition analysis approach uses the state transitions of the
system to identify intrusions. This method constructs the state transition
diagram, which is the graphical representation of intrusion behavior as a
series of state changes that lead from an initial secure state to a target
compromised state. State transition diagrams list only the critical events
that must occur for the successful completion of the intrusion. Using the
audit trail as input, an analysis tool can be developed to compare the
state changes produced by the user to state transition diagrams of known
penetrations. State transition diagrams are written to correspond to the
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states of an actual computer system, and these diagrams form the basis
of a rule-based expert system for detecting penetrations, called the state
transition analysis tool (STAT).!® The STAT prototype is implemented
in UNIX state transition analysis tool (USTAT)!® on UNIX-based
systems.

The keystroke monitoring technique utilizes a users keystrokes to
determine the intrusion attempt. The main approach is to pattern match
the sequence of keystrokes to some predefined sequences to detect the
intrusion. The main problems with this approach is a lack of support from
the operating system to capture the keystroke sequences. Furthermore,
there are also many ways of expressing the sequence of keystrokes for the
same attack. Some shell programs like bash, ksh have the user definable
aliases utility. These aliases make it difficult to detect the intrusion attempts
using this technique unless some semantic analysis of the commands is used.
Automated attacks by malicious executables cannot be detected by this
technique as they only analyze keystrokes.

In an expert system, knowledge about a problem domain is represented
by a set of rules. These rules consist of two parts, antecedent, which
defines when the rule should be applied and consequent, which defines
the action(s) that should be taken if its antecedent is satisfied. A rule
is fired when pattern-matching techniques determine that observed data
matches or satisfies the antecedent of a rule. The rules may recognize
single auditable events that represent significant danger to the system by
themselves, or they may recognize a sequence of events that represent an
entire penetration scenario. There are some disadvantages with the expert
system method. An intrusion scenario that does not trigger a rule will not be
detected by the rule-based approach. Maintaining and updating a complex
rule-based system can be difficult. Since the rules in the expert system
have to be formulated by a security professional, the system performance
would depend on the quality of the rules. The model-based approach
attempts to model intrusions at a higher level of abstraction than audit
trail records. The objective is to build scenario models that represent the
characteristic behavior of intrusions. This allows administrators to generate
their representation of the penetration abstractly, which shifts the burden
of determining what audit records are part of a suspect sequence to the
expert system. This technique differs from current rule-based expert system
techniques, which simply attempt to pattern match audit records to expert
rules.
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The model-based approach of Garvey and Lunt?° consists of three
parts, namely, anticipator, planner and interpreter. The anticipator
generates the next set of behaviors to be verified in the audit trail based
on the current active models and passes these sets to the planner. The
planner determines how the hypothesized behavior is reflected in the audit
data and translates it into a system-dependent audit trail match. The
interpreter then searches for this data in the audit trail. The system collects
the information in this manner until a threshold is reached, and then it
signals an intrusion attempt. Some of the drawbacks are that the intrusion
patterns must always occur in the behavior it is looking for and patterns
for intrusion must always be distinguishable from normal behavior and also
easily recognizable.

The pattern matching?! approach encodes known intrusion signatures
as patterns that are then matched against the audit data. Intrusion
signatures are classified using structural inter relationships among the
elements of the signatures. These structural interrelationships are defined
over high level events or activities, which are themselves, defined in terms
of low-level audit trail events. This categorization of intrusion signatures
is independent of any underlying computational framework of matching.
Model of pattern matching is implemented using colored petrinets in
IDIOT.?2

The data mining approach to intrusion detection was first implemented
in mining audit data for automated models for intrusion detection
(MADAMID).?? Since then data mining algorithms are applied by various
researchers to create models to detect intrusions.?* Data mining algorithms
includes rule-based classification algorithm (RIPPER), meta-classifier,
frequent episode algorithm and association rules. These algorithms are
applied to audit data to compute models that accurately capture the actual
behavior of intrusions as well as normal activities. The main advantage of
this system is automation of data analysis through data mining, which
enables it to learn rules inductively replacing manual encoding of intrusion
patterns. The problem is it deals mainly with misuse detection, hence
some novel attacks may not be detected. Audit data analysis and mining
(ADAM)?5 also uses data mining methods. Combination of association
rules and classification algorithm were used to discover attacks in audit
data. Association rules are used to gather necessary knowledge about the
nature of the audit data as the information about patterns within individual
records can improve the classification efficiency.
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Artificial neural networks (ANNs) are another data mining approaches
considered as an alternative tool in intrusion detection.?® Neural networks
have been used both in anomaly intrusion detection as well as in misuse
intrusion detection. In Debar et al.,?” the system learns to predict the next
command based on a sequence of previous commands input by a user.
Neural network intrusion detector (NNID)?® identifies intrusions based
on the distribution of commands used by the user. A neural network
for misuse detection is implemented in two ways.?? The first approach
incorporates the neural network component into the existing or modified
expert system. This method uses the neural network to filter the incoming
data for suspicious events and forwards them to the expert system. This
improves the effectiveness of the detection system. The second approach
uses the neural network as a stand alone misuse detection system. In this
method, the neural network receive data from the network stream and
analyzes it for misuse intrusion.

SVM are learning machines that plot the training vectors in high-
dimensional feature space, labeling each vector by its class. SVMs classify
data by determining a set of support vectors, which are members of the
set of training inputs that outline a hyper plane in the feature space. SVM
have proven to be a good candidate for intrusion detection because of their
speed. SVM are scalable as they are relatively insensitive to the number
of data points. Therefore the classification complexity does not depend
on the dimensionality of the feature space; hence, they can potentially
learn a larger set of patterns and scale better than neural networks.’
Peddabachigari et al.,” have presented two hybrid approaches for modeling
IDS like DT-SVM (i.e., a combination of decision tree and support vector
machine) and an ensemble approach combining the base classifiers. As a
result of hybridization and an ensemble their proposed IDS provide high
detection accuracy.

Neurofuzzy (NF) computing combines fuzzy inference with neural
networks.?? Knowledge expressed in the form of linguistic rules can be used
to build a fuzzy inference system (FIS). With data, ANNs can be built. For
building an FIS, the user has to specify the fuzzy sets, fuzzy operators and
the knowledge base. Similarly for constructing an ANN for an application
the user needs to specify the architecture and learning algorithm. An
analysis reveals that the drawbacks pertaining to these approaches are
complementary and therefore it is natural to consider building an integrated
system combining these two concepts. While the learning capability is
an advantage from the viewpoint of FIS, the formation of linguistic rule
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base is an advantage from the viewpoint of ANN. An adaptive neurofuzzy
IDS is proposed in Shah et al.,* Abraham et al.,3' has proposed a three
fuzzy rule based classifier to detect intrusion in a network. Further a
distributed soft computing based IDS has modeled by Abraham et al.,3' as
a combination of different classifiers to model lightweight and more accurate
(heavy weight) IDS.

MARS is an innovative approach that automates the building of
accurate predictive models for continuous and binary-dependent variables.
It excels at finding optimal variable transformations and interactions, and
the complex data structure that often hide in high-dimensional data. An
IDS based on MARS technology is proposed in Mukkamala et al.,” LGP is a
variant of the conventional genetic programming (GP) technique that acts
on linear genomes. An LGP-based IDS is presented in Mukkamala et al.®

Intrusion detection systems based on the human immunological system
have been proposed in Esponda et al.,>> and Hofmeyr and Forrest.??
Hofmeyr and Forrest proposed a formal framework for anomaly detection
in computer systems, inspired by the characteristics of the natural immune
t33 applied the concepts derived from natural
immune system to design and test an artificial immune system to detect

system. Hofmeyr and Forres

network intrusion.

5.3. Preliminaries
5.3.1. Naive Bayesian classifier

Classification is considered as the task of assigning a sample to one of the k
classes, {C4,C5,Cs,...,Cy}, based on the n-dimensional observed feature
vector 7. Let p(7'|C;) be the probability density function for the feature
vector, @, when the true class of the sample is C;. Also, let P(C;) be
the relative frequency of occurrence class C; in the samples. If no feature
information is available, the probability that a new sample will be of class
C; is P(C;) this probability is referred to as the a priori or prior probability.
Once the feature values are obtained, we can combine the prior probability
with the class-conditional probability for the feature vector, p(7'|C;), to
obtain the posteriori probability that a pattern belongs to a particular
class. This combination is done using Bayes theory:

P(Cy|T) = Z1C)P(C) - (5.1)
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Once the posterior probability is obtained for each class, classification
is a simple matter of assigning the pattern to the class with the
highest posterior probability. The resulting decision rule is Bayes decision
rule:

given T, decide C; if P(Cy|Z) > P(C;|Z)Vj

When the class-conditional probability density for the feature vector
and the prior probabilities for each class are known, the Bayes classifier can
be shown to be optimal in the sense that no other decision rule will yield a
lower error rate. Of course, these probability distributions (both a priori and
a posteriori) are rarely known during classifier design, and must instead be
estimated from training data. Class-conditional probabilities for the feature
values can be estimated from the training data using either a parametric or
a non-parametric approach. A parametric method assumes that the feature
values follow a particular probability distribution for each class and estimate
the parameters for the distribution from the training data. For example, a
common parametric method first assumes a Gaussian distribution of the
feature values, and then estimates the parameters u; and o; for each class,
C;, from the training data. A non-parametric approach usually involves
construction of a histogram from the training data to approximate the
class-conditional distribution of the feature values.

Once the distribution of the feature values has been approximated
for each class, the question remains how to combine the individual
class-conditional probability density functions for each feature, p(x1|C;),
p(x2|Cy), . .., p(xq|C;) to determine the probability density function for the
entire feature vector: p(7’|C;). A common method is to assume that the
feature values are statistically independent:

p(Z|Cy) = p(a1|Ci) x p(a2|Ci) x -+ x p(an|Ci) (5.2)

The resulting classifier, often called the naive Bayes classifier, has been
shown to perform well on a variety of data sets, even when the independence
assumption is not strictly satisfied.?* The selection of the prior probabilities
for the various categories has been the subject of a substantial body
of literature.?® One of the most common methods is to simply estimate
the relative frequency for each class from the training data and use
these values for the prior probabilities. An alternate method is to simply
assume equal prior probabilities for all categories by setting P(C;) = %,
i=1,2,...,k
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The naive Bayesian classifier is summarized using the following
computational procedure:

o (lassifier Construction

(1) Determine the probabilities, P(C;) using the training data.

(2) Use training data to determine the category means and variances
for continuous variables and category conditional probabilities for
discrete variable.

e Classification of Unknown Sample, =’

(1) Calculate p(z|C;)P(C;) for each C;.
(2) Assign @ to the category attaining the largest score.

5.3.2. Intrusion detection system

With the proliferation of inter connections among computers and
the internet, their security has become a crucial issue. Protection
against unauthorized disclosure of information, modification of data
and denial of services (DOS) attacks through providing the security
services confidentiality, integrity and availability is mandatory. In general,
preventive methods are being used for designing a secure system. However,
attackers can know the prevention techniques a prior, and exploit the design
clue and/flaw to compromise the security of the system by developing
sophisticated attacks and malwares. Intrusion Detection System (IDS) the
last line of defense, therefore, has become an important component in the
security infrastructure toolbox.

IDS is not an emerging research filed, but a specialized commercial area
as well. Recall that the concept of developing an IDS was evolved in 1980 by
Anderson'* followed by a model designed by Denning in 1986.2 Denning’s
model is a generic intrusion detection model regards as a rule-based pattern
matching system. The IDS model has an event generator and the events may
include audit records, network packets or other activities. Activity profile
contains description of a subjects normal behavior with respect to a set
of intrusion detection measures. Profiles are updated periodically allowing
the system to learn new behavior. The audit record is matched against
profiles. Then type information in the matching profiles determines what
rules apply to update the profile and check for abnormal behavior; reports if
anomalous detected. In 1988, some prototypes®® are proposed with the idea
that intrusion behavior involves abnormal usage of the system. Thereafter,
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both the researchers and commercial persons were motivated to develop IDS
using various techniques include statistical approaches, predictive pattern
generation, expert systems, keystroke monitoring, state transition analysis,
pattern matching, and data mining techniques.

The goal of an IDS is to monitor, detect and respond the unauthorized
activities referred as intrusion arises due to the inside or outside attackers.
Anderson'® identified three broad categories of intruders based on their
behaviors: Masquerader: Unauthorized individuals penetrates the system’s
access control to exploit a legitimate users account. Misfeasor: A legitimate
user misuses his/her priviliges. Clandestine user: An individual who seizes
supervisory control of the system and uses this control of the system and
uses this control to avoid auditing and access control.

The existing IDS schemes can be divided into two broad categories
depending on the detection mechanism: Misuse detection and anomaly
detection. Misuse detection detects the intrusion (user behavior that
deviates from the normal behavior) without using the behavior profile. Here
the decision is made on the basis of the definition of misuse of computer
resources called signature. So known intrusions can be detected efficiently
but, these techniques fail easily while faces unknown intrusions. Regularly
updating the knowledge base using supervised learning algorithm could
be an alternative solution. Unfortunately, data set for this purpose are
expensive.

The alternate detection mechanism anomaly detection recognizes a
particular (suspicious) incident by scanning the behavior of active user and
issue an appropriate alert. Apparently, it would be possible if an intrusion
exhibits the characteristics distinct from typical legitimate/normal
activities. A normal activity is characterized by user behavior profiles which
need to be updated continually. Therefore, this type of detection has the
capacity of recognizing new types of attacks and requires only the normal
data while building the profiles. The major difficulties of such a system is
for demarkation of normal and abnormal behaviors boundaries.

5.3.2.1. Architecture of IDS

An intrusion detection system can be considered as an automated auditing
mechanism comprises of the following four phases of tasks.

Data Collection: The first phase of an IDS is to collect or gather data from
various sources which is to be used for analysis. NIDSs collect data
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from network traffic using sniffers as tcp-dump and HIDSs glean data
observing process activities, memory usage, system call using ps, netstat
commands in unix based systems.

Feature Selection: The collected data is usually large and it slows down
the training and testing process if whole data is passed to analysis phase.
Therefore, a subset of the creating feature vectors that represent most
of the collected data is to be selected.

Analysis: The selected data is analyzed to determine if attack occurs by
observing the attack signature (in misuse detection) or comparing with
the normal behavior and finding the anomaly (in anomalous detection).

Action: The IDS alerts the system administrator for a possible attack.
Sometimes IDS participate actively to stop or control the intrusion by
closing network ports or killing process.

5.3.2.2. Efficiency of IDS

An IDS that is functionally correct but, much slower in operation to detect,
may be of little or no use. Therefore, the efficiency of an IDS is evaluated
by its effectiveness and performance.

5.3.2.3. Effectiveness

The effectiveness of an IDS is its capability to mark an event correctly
as normal or intrusion. But, there are four possible predictions of an
IDS at any instant: true positive (TP), true negative (TN), false positive
(FP) and false negative (FN). True positive and true negative correspond
to a correct operation of the IDS i.e., events are correctly identified as
intrusion or normal respectively. False positive refers to normal events
marked as intrusion while false negative refers to intrusions marked as
normal events. To evaluate the effectiveness, the following parameters need
to be determined by observing the outcomes of IDS for some time.

e True Negative Rate (TNR): %

o True Positive Rate (TPR):%

False Negative Rate (FNR): %

e False Positive Rate (FPR): =25

‘FPITN
) TN+TP
o AcCuracy: FxTrpLFNTFP

The TPR are called detection rate (DR) and FPR are called as
false alarm rate (FAR) are two most popular performance metrics for
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evaluating an IDS. An optimal IDS should have high DR and low FAR
as possible.

5.3.2.4. Performance of IDS

The performance of an intrusion-detection system is the rate at which
audit events are processed. The IDS performance requirements include the
following:

e The IDS should be fast enough that it can detect the presence of intrusion
in real-time and report it immediately to avoid the damage of resources
and loss of privacy.

e The IDS should be scalable enough to handle the additional
computational and communication loads.

5.3.3. Feature selection

In general an IDS deals with huge data, some times include irrelevant and
redundant data which can introduce noise data lead to drop the detection
accuracy and slow down training and testing process. Removing these
irrelevant features usually increases performance of classifiers. At the same
time, care must be taken such that the prediction accuracy of the classifier
is maintained while finding the subset of features.

Feature selection method involves four necessary steps. The process
begins with subset generation to generate a suitable feature subset. It is
essentially a heuristic search either (forward selection) initialize by an empty
set and a feature is added on at each iteration or (backward selection)
starts with full subset shrinking at each iteration. Besides this, search
may include both forward and backward selection. Each newly generated
subset in the subset generation stage is evaluated by an evaluation
criteria. The process stops once the terminating criteria is reached. Finally
the result is validated with some prior knowledge of data. Thus any
feature selection method must consider the following four basic issues:!°
(i) a starting point in the search space; (ii) organization of the search;
(iii) evaluation strategy of the generated subset; (iv) terminating criterion
for search.

Evaluation criteria is the most important issue in feature selection
process. The selected subset is evaluated considering the target concept and
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the learning algorithm. Depending on the evaluation criteria three different
approaches for the feature selection methods were reported in Ref. 37:

e wrapper approach
e filter approach
e embedded approach.

Wrapper Approach: In this approach, the selection algorithm searches
for a good subset of features using some induction algorithm. Once the
induction algorithm is fixed, train with these feature subset by the search
algorithm and estimate the error rate. The error rate can be assigned as the
value of the evaluation function of the feature subset. Thus in this approach
the selection of feature is based on the accuracy of the classifier.

Kohavi and John3® introduced wrappers for feature selection and the
approach is tailored to a particular learning algorithm and a particular
training set. The selection algorithm in a wrapper approach depends on
both the number of features and number of instances.

The major drawback of the wrapper approach would be feeding with an
arbitrary feature into the classifier may lead to biased results and therefore
the accuracy can not be guaranteed. Another drawback is that for a large
set of features trying all possible combinations to feed the classifier may
not be feasible. Therefore, some researchers are motivated to alleviate the
excessive loading of the training phase avoiding the evaluation of many
subsets exploiting intrinsic properties of the learning algorithms.?’

Filter Approach: This approach evaluates the goodness of the feature
set in regards only to the intrinsic properties of the data, ignoring the
induction algorithm. Since filter is applied to the algorithm to select relevant
features considering the data and the target concept to be learned, the
approach is referred as filter approach. Obviously, filter method would be
faster than the wrapper approach. Filter method feature selections are
appropriate for the huge database while wrapper methods are infeasible?

Embedded Approach: This approach has been identified in.'° In this
case the feature selection process is done inside the induction algorithm
itself.

5.3.4. Particle swarm optimization

Particle swarm optimization technique is considered as one of the modern
heuristic algorithm for optimization introduced by James Kennedy and
Eberhart in 1995.41 A swarm consists of a set of particles moving around



146 S. Dehuri and S. Tripathy

the search space, each representing a potential solution (fitness). Each
particle has a position vector (z;(t)), a velocity vector (v;(t)), the position
at which the best fitness (pbest;) encountered by the particle, and the index
of the best particle (gbest) in the swarm. Moreover, each particle knows the
best value so far in the group (gbest) among pbests. Each particle tries to
modify its position using the following information along with their previous
velocity:

(1) The distance between the current position and pbest,
(2) The distance between the current position and gbest.

In each generation, the velocity of each particle is updated to their
best encountered position and the best position encountered by any particle
using Equation (5.3):

vi(t) = vi(t—1)+cy xm1 (t) * (pbest; —x;(t)) +cox o (t) x (gbest —z;(t)) (5.3)

The parameters ¢; and co are called acceleration coefficients, namely
cognitive and social parameter, respectively. r1(t) and r3(t) are random
values, uniformly distributed between zero and one and the value of 7 (¢)
and ro(t) is not same for every iteration. The position of each particle is
updated every generation. This is done by adding the velocity vector to the
position vector, as given in Equation (5.4):

xl(t) = .’L‘i(t - ].) + vi(t) (54)

However, in the first version of PSO, there was no actual control over
the previous velocity of the particles. In the later versions of PSO, this
shortcoming was addressed by incorporating two new parameters, called
inertia weight introduced by Shi and Ebherhart*?
(x) introduced by Clerc and Kennedy*? addressed in Equations (5.5) and
(5.6) respectively:

and constriction factor

vi(t) = wxv;(t—1) + c1 71 (t) * (pbest; — x;(t)) + caxra(t) * (gbest — x;(t)),

(5.5)
where w is called the inertia weight.
v;(t) = x{vi(t — 1) + c1 * r1(t) * (pbest; — x;(t))
+ co * 1o(t) * (ghest — xz;(t)) } (5.6)
2
(5.7)

X 12 —c— V2 —4c|

where ¢ = ¢1 + ¢2,c > 4.
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Shi and Eberhart*? have found a significant improvement in the
performance of PSO with the linearly decreasing inertia weight over
the generations, time-varying inertia weight (TVIW) which is given in
Equation (5.8):

maxiter — iter
w = w2 —_—
maxiter

)t = ), (53)

where w; and wy are the higher and lower inertia weight values and the
values of w will decrease from w; to ws. iter is the current iteration (or
generation) and maziter is the maximum number of iteration (or total
number of generation).

Then, Ratnaweera and Halgamuge** introduced a time varying
acceleration co-efficient (TVAC), which reduces the cognitive component,
c1 and increases the social component, co of acceleration co-efficient with
time. With a large value of ¢; and a small value of cp at the beginning,
particles are allowed to move around the search space, instead of moving
toward pbest. A small value of ¢; and a large value of ¢y allow the particles
converge to the global optima in the latter part of the optimization. The
TVAC is given in Equations (5.9) and (5.10):

maxiter — iter

_ L e 5.9

“ (Ch le) * ( maxiter ) s ( )
maxiter — iter

_ L e 5.10

c2 = (2 ch) * ( maxiter ) c2f ( )

where c1; and c¢o; are the initial values of the acceleration coefficient ¢; and
c2 and c15 and cpf are the final values of the acceleration co-efficient ¢; and
ca, respectively.

Thus far we have discussed PSO for continuous space, however, many
optimization problems including the problem to be solved in this chapter are
set in a space featuring discrete, qualitative distinctions between variables
and between levels of variables.

5.4. HAPSO for Learnable Bayesian Classifier in IDS
5.4.1. Adaptive PSO

In the standard PSO method, the inertia weight is made constant for all
the particles in a single simulation, but the most important parameter that
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moves the current position towards the optimum position is the inertia
weight (w). In order to increase the search ability, the algorithm should be
redefined in a manner that the movement of the swarm should be controlled
by the objective function. In adaptive PSO,"! the particle position is
adjusted such that the highly fitted particle (best particle) moves slowly
when compared to the less fitted particle. This can be achieved by selecting
different w values for each particle according to their rank, between wy,;,
and Wpqz as in the following form:

Wi = Winin + Bmaz — Bmin rank;. (5.11)
Tpop

where T'pop is denoted as size of the swarm. From Equation (5.11), it can
be seen that the best particle assigned with first takes the inertia weight of
minimum value while that for the lowest fitted particle takes the maximum
inertia weight, which makes that particle move with a high velocity.

The velocity of each particle is updated using Equation (5.3), and
if any updated velocity goes beyond V., it is limited to V4. using
Equation (5.12):

v (t) = sign(vi; (t — 1)) * min(|vi; (¢ — 1)|, Vimaz)- (5.12)

The new particle position is obtained by using Equation (5.8), and if
any particle position goes beyond the range specified, it is adjusted to its
boundary using Equations (5.13) and (5.14):

Lij (t) = mm(mm (t)arangejmax); (513)

z5(t) = max(zi; (1), rangejmin), (5.14)

Furthermore the concept of re-initialization in APSO algorithm is
introduced to escape the algorithm from premature convergence to a local
optimum and further improvement is not noticeable.

5.4.2. Hybrid APSO

Most of the applications have been concentrated on solving continuous
optimization problems. However, in this research the problem space is
defined as the combination of continuous and discrete optimization. In
addition to invention of PSO for continuous search space, Kennedy and
Eberhart!? also developed a binary version of PSO for discrete optimization
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problems. The discrete PSO essentially differs from the original (or
continuous) PSO in two characteristics. First the particle is composed of
the binary variable. Second the velocity represents the probability of bit z;;
taking the value 1. In otherwords if v;; = 0.3, then there is a 30% chance
that z;; will be a 1, and a seventy percent chance it will be zero. Since
the velocity vector contains all the probabilistic values, therefore it must
be constrained to the interval [0.0,1.0].

In this research, we combined the best effort of adaptive PSO (APSO)
and binary PSO (BPSO) to explore the continuous and discrete search
space simultaneously. Like PSO, APSO is initialized with a group of random
particles (solutions) from continuous and discrete domain and then searches
for optima by updating each iteration. In every iteration, each particle is
updated by following two best values. The first one is the local best solution
a particle has obtained so far. This value is called personal best solutions.
Another, best value is that the whole swarm has obtained so far. This value
is called global best solution.

The representation of the Bayesian coefficients (discussed in Sec. 5.3)
on the particle is fairly direct— a real value from [0, 1]. In order to
infer the minimal set of features required for accurate classification, it is
desirable to promote parsimony in the discriminant function, that is, as
many coefficients should be reduced to zero (specifically nth and (n — 1)th
coefficients) as possible without sacrificing classification accuracy. While the
cost function encourages parsimony by penalizing a coefficient vector for
each non-zero value, a simple real valued representation for the coefficients
themselves does not provide an easy means for the APSO to reduce
coefficients to zero. Several method were tested to aid the search for a
minimal feature set, including reducing weight vales below a predefined
threshold value to zero, and including a penalty term in the cost function
for higher weight values. the method that proved most effective, however,
was a hybrid representation that incorporates both the ideas like PSO for
continuous domain (APSO) and PSO for discrete domain i.e., called binary
PSO. In this representation, a mask field is associated with each coefficients.
The contents of the mask field determine whether the coefficient is included
in the classifier or not. A single bit mask is assigned to each coefficients.
The particle representation is given below.

Coefficients(Real Values) | wy | way | w3 | wy

Mask (0/1) my | mo | m3 | my
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If the value of m;, i = 1(1)5 is 1, then the coefficient is weighted and included
in the classifier. If on the other hand, the mask bit for a coefficient was set to
0, then the weight was treated effectively as zero, eliminating the coefficient
from consideration by the classifier.

In a nutshell, the particle swarm formula:

Vi(t) =Vt — 1)+ 1 ®r1 © (phest; — Ti(t))
+co @19 @ (gbest — T'4(t)), (5.15)

remains unchanged. The position of each particle is changed by the following
rule:

The coefficient vector is changed like standard PSO, where as the
mask vector is changed like BPSO. However, the velocity of each particle
contains the probability, must be constrained to the interval [0, 1]. A logistic
transformation S(v;;) can be used to change the mask vector of each
particle.

if (rand() < s(vs5))
Tij =1
else

Tij = 0;

where the function s(.) is a sigmoidal limiting transformation and rand()
is a quasirandom number selected from a uniform distribution in [0, 1].

5.4.3. Learnable Bayesian classifier in IDS

The more general family of naive Bayesian classifier can be constructed
using the following formulation:

P(T|C;) =) (H P(xmci)), (5.16)
j=1 k=1

where P(zi|C;) is the kth largest of the P(z;|C;) and w; € [0,1],
Z?:]_ U)j =1.

Let us look at this formulation for some special cases of the weights.
In the case where w, =1 and w; = 0 for j # n we get the original naive
Bayesian classifier. At the other extreme is the case when w; = 1 and
w; = 0 for j # 1. In this case, the a priori probability P(7|c;) is using
the one feature value of the object 7 that most strongly supports as being
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a member of the class C;. Another special case is when w; = 1/n. In this
case P(T|Cs) = (X7, (T, PlaxlC1))).

The introduction of this more general classifier formulation provides us
with additional degrees of freedom in the form of the associated weights.
While the inclusion of the additional terms provides for a more general
model it brings with the problem of determining the values of these weights.
The hybrid APSO can be used as a suitable tool to obtain these weights
by using the training set. In the pure naive Bayesian classifier, no attempt
is made to assure that the training set itself will be correctly classified, the
training set is just used to determine the probabilities.

During the execution of HAPSO, each particle is passed to the classifier
for evaluation, and a cost score is computed, based primarily on the
accuracy obtained by the parameterized generalized Bayesian formulation
in classifying a set of samples of known class. Since the HAPSO seeks
to maximize the cost score, the formulation of the cost function is a key
element in determining the quality of the resulting classifier. Coefficients
are associated with each term in the APSO cost function that allow control
of each run. The following cost function is computed during the evaluation
of particle fitness:

f(T)=A.x CLgee + ﬁ, (5.17)
Str
where Sy, =m;*y .| * rank(w;), A. is the weight factor associated with
CLgec (Classification Accuracy) and Ay is the weight factor associated with
selected number of weights. Additionally, we assign a rank to each weight
factor— particularly highest rank to the weight factor associated with the
first largest of the P(x;|C;) and so on.

The coeflicients determine the relative contribution of each part of the
fitness function in guiding the search. The values for the cost function
coefficients are determined empirically in a set of initial experiments for each
data set. Typical values for these coefficients are A, = 20.0 and Ay = 10.0.

5.5. Experiments
5.5.1. Description of intrusion data

In the 1998 DARPA intrusion detection evaluation program, an
environment was set up to acquire raw TCP/IP dump data for a network
by simulating a typical US Air Force LAN. The LAN was operated like
a real environment, but being blasted with multiple attacks. For each
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TCP/IP connection, 41 various quantitative and qualitative features were
extracted.*® Of this database a subset of 494021 data were used, of which
20% represent normal patterns. The four different categories of attack
patterns are as follows.

5.5.1.1. Probing

Probing is a class of attacks where an attacker scans a network to
gather information or find known vulnerabilities. An attacker with a map
of machines and services that are available on a network can use the
information to look for exploits. There are different types of probes: some
of them abuse the computers legitimate features; some of them use social
engineering techniques. This class of attacks is the most commonly heard
and requires very little technical expertise. Different types of probe attacks
with same mechanism known as abuse of feature are shown in Table 5.1.

5.5.1.2. Denial of service attacks

DoS is a class of attacks where an attacker makes some computing or
memory resource too busy or too full to handle legitimate requests, thus
denying legitimate users access to a machine. There are different ways
to launch DoS attacks: by abusing the computers legitimate features;
by targeting the implementations bugs; or by exploiting the systems
misconfigurations. DoS attacks are classified based on the services that
an attacker renders unavailable to legitimate users. Some of the popular
attack types are shown in Table 5.2.

5.5.1.3. User to root attacks

User to root (U2R) exploits are a class of attacks where an attacker starts
out with access to a normal user account on the system and is able to exploit
vulnerability to gain root access to the system. Most common exploits in

Table 5.1. Probe attacks.

Type of Attack  Service Effect of the Attack
Ipsweep Icmp Identifies Active Machines

Mscan Many Looks for Known Vulnerabilities
Nmap Many Identifies Active Ports on a Machine
Saint Many Looks for Known Vulnerabilities

Satan Many Looks for Known Vulnerabilities
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Table 5.2. Denial of service attacks.

Attack Type Service Mechanism Effect of the Attack
Apache2 http Abuse Crashes httpd

Back http Abuse/Bug  Slows down server response
Land http Bug Freezes the machine

Mail bomb N/A Abuse Annoyance

SYN flood TCP Abuse Denies service on one or more ports
Ping of death  Icmp Bug None

Process table  TCP Abuse Denies new processes
Smurf Icmp Abuse Slows down the network
Syslogd Syslog Bug Kills the Syslogd

Teardrop N/A Bug Reboots the machine
Udpstrom Echo/Chargen  Abuse Slows down the network

this class of attacks are regular buffer overflows, which are caused by regular
programming mistakes and environment assumptions. Table 5.3 presents
some of the attack types in this category whose service and effect of the
attack type is user session and Gains root shell respectively for all type of
attacks.

5.5.1.4. Remote to user attacks

A remote to user (R2U) attack is a class of attacks where an attacker sends
packets to a machine over a network, then exploits machines vulnerability to
illegally gain local access as a user. There are different types of R2U attacks:
the most common attack in this class is done using social engineering. Some
of the R2U attacks are presented in Table 5.4.

5.5.2. System parameters

Complex relationships exist between features, which are difficult for humans
to discover. The IDS must therefore reduce the amount of data to be

Table 5.3. User to root attacks.

Type of Attacks Mechanism

Eject Buffer overflow

Ffbconfig Buffer overflow

Fdformat Buffer overflow

Loadmodule Poor environment sanitation
Perl Poor environment sanitation
Ps Poor temp file management

Xterm Buffer overflow
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Table 5.4. Remote to user attacks.

Attack Type Service Mechanism Effect of the Attack
Dictionary Telnet, rlogin, Abuse feature Gains user access

pop, ftp, imap
Ftp-write Ftp Misconfig. Gains user access
Guest Telnet, rlogin Misconfig. Gains user access
Imap Imap Bug Gains root access
Named Dns Bug Gains root access
Phf Http Bug Executes commands as http user
Sendmail Smtp Bug Executes commands as root
Xlock Smtp Misconfig. Spoof user to obtain password
Xnsoop Smtp Misconfig. Monitor key stokes remotely

processed. This is very important if real-time detection is desired. The
easiest way to do this is by doing an intelligent input feature selection.
Certain features may contain false correlations,which hinder the process of
detecting intrusions. Further, some features may be redundant since the
information they add is contained in other features. Extra features can
increase computation time, and can impact the accuracy of IDS. Feature
selection improves classification by searching for the subset of features,
which best classifies the training data. Feature selection is done based on
the contribution the input variables made to the construction of the HAPSO
learnable Bayesian classifier.

The data set has 41 attributes for each connection record plus one class
label. R2U and U2R attacks don’t have any sequential patterns like DOS
and Probe because the former attacks have the attacks embedded in the
data packets whereas the later attacks have many connections in a short
amount of time. Therefore, some features that look for suspicious behavior
in the data packets like number of failed logins are constructed and these
are called content features. Our experiments have two phases, namely, a
training (or model building) and a testing phase. In the training phase
the system constructs a model using the training data to give maximum
generalization accuracy (accuracy on unseen data) with a compact set of
features. The test data is passed through the constructed model to detect
the intrusion in the testing phase. Besides the four different types of attacks
mentioned above we also have to detect the normal class. The data set
for our experiments contained a subset of 11982 records (KDD cup 99
Intrusion detection data set), which were randomly generated from the
MIT data set. Random generation of data include the number of data
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from each class proportional to its size, except that the smallest class is
completely included. This data set is again divided into training data with
5092 records and testing data with 6890 records. All the intrusion detection
models are trained and tested with the same set of data. As the data set has
five different classes we perform a five-class classification. The normal data
belongs to class one, probe belongs to class two, denial of service (DoS)
belongs to class three, user to root (U2R) belongs to class four and remote
to local (R2U) belongs to class five.

HAPSO parameters have been choosen without performing a
preliminary tuning phase, rather they have been set on the basis of
the experience gained of multivariate optimization problem. Namely their
values are the following:

Swarm size, N 50
C1 2.0
C2 1.8

Inertia weight, wy,:, | 0.4

Inertia weight, wyae | 0.9

5.5.3. Results

The accuracy of the classifier is measured through the confusion matrix.
As it is a stochastic algorithm we reported the average training set results
obtained on ten simulations in Table 5.4. The top-left entry of the following
matrix shows that 1394 of the actual normal test set were detected to
be normal; the last column indicates that 99.57% of the actual normal
data points were detected correctly. In the same way, for Probe 658 of the
actual attack test set were correctly detected; the last column indicates
that 94.00% of the actual Probe data points were detected correctly.
Similarly for Dos 98.22% of the actual DoS test data points were detected
correctly. 64.00% of the U2Su test data points are correctly classified.
In the case of R2U class 95.71% of the test data points are correctly
classified. The bottom row shows that 96.87% of the test set said to
be normal indeed were normal and 89.52% of the test set classified, as
probe indeed belongs to probe. The overall accuracy of the classification
is 97.69%.

The most evident aspect of the results on this dataset is the feature
selection capability demonstrated by the HAPSO/Bayesian classifier. The
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Table 5.5. Classification accuracy on training set with
a selected set of features.

Attack Type Accuracy Optimal Set of Features

Normal 99.97 12

Probe 99.63 9.42
DoS 99.96 10.03
U2Su 99.64 8.15
R2L 99.98 11.75

CF Normal | Probe DoS U2Su R2L Class Acc.
Normal 1394 5 1 0 0 99.57%
Probe 40 658 2 0 0 94.00%
DoS 4 70 4127 1 0 98.22%
U2Su 0 1 6 16 2 64.00%
R2L 1 1 4 18 536 95.71%
% 96.87% | 89.52% | 99.69% | 45.71% | 99.63%

number of features selected for each class of the dataset ranges from seven
to twelve with a average training accuracy of 99.83%.

5.6. Conclusions and Future Research Directions

Effective intrusion detection and management systems are critical
components of cyber infrastructure as they are in the forefront of the
battle against cyber-terrorism. In this chapter we presented a HAPSO
learnable Bayesian classifier for simultaneous intrusion features selection
and detection.

The experimental results demonstrated that on an average 99.83% of
detection accuracy is obtained during training of the system. Additionally,
the features selected against each class ranges from seven to twelve. With
the increasing incidents of cyber attacks, building an effective and intelligent
intrusion detection models with good accuracy and real-time performance
are essential. This field is developing continuously. More swarm intelligence
techniques with possible hybridization should be investigated and their
efficiency should be evaluated as intrusion detection models.

Our future research will be directed towards developing more accurate
base classifiers particularly for the detection of U2R type of attacks.
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Today networking of computing infrastructures across geographical boundaries
has made it possible to perform various operations effectively irrespective
of application domains. But, at the same time the growing misuse of this
connectively in the form of network intrusions has jeopardized the security
aspect of both the data that are transacted over the network and maintained in
data stores. Research is in progress to detect such security threats and protect
the data from misuse. A huge volume of data on intrusion is available which
can be analyzed to understand different attack scenarios and devise appropriate
counter-measures. The DARPA KDDcup’99 intrusion data set is a widely used
data source which depicts many intrusion scenarios for analysis. This data set
can be mined to acquire adequate knowledge about the nature of intrusions
thereby one can develop strategies to deal with them. In this work we discuss
on the use of different data mining techniques to elicit sufficient information
that can be effectively used to build intrusion detection systems.

6.1. Introduction

Network intrusion refers to any activity that tries to compromise the
security of information stored in computers connected to a network. A wide
range of activities falls under this definition, including attempts to de-
stabilize the network, gain un-authorized access to files or privileges or
simply misuse of network resources. Intrusion Detection Systems (IDS) are
being developed to deal with such attacks and facilitate appropriate actions
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in order to safeguard against possible damage to vital information resources.
One of the major challenges in building IDS is its ability to report suspicious
and malicious network activities in real-time.

In a much cited survey on IDS, Axelsson' depicts a generalized model
of a typical intrusion detection system as shown in Fig. 6.1, where the solid
arrows indicate data/control flow and the dotted arrows indicate a response
to intrusive activity. According to Axelsson, the generic architectural model
of an intrusion detection system contains the following modules:

Audit data collection: This module is used during the data collection
phase. The data collected in this phase is analyzed by the intrusion
detection algorithm to find traces of suspicious activity. The source of the
data can be host/network activity logs, command based logs, application
based logs, etc.

Security Officers Response to

Intrusions
]
Fom s = _i
! i
! i
! i
! i
| .
. Entity
| Security
v v > A Authority
Monitored Reference P Configuration
> Entity Data B Data
A A
Audit ) o| Storage Data N Analygis and | Alarm
Collection Detection

A

A\ 4

Active/Processing
Data

Active Intrusion Response

Fig. 6.1. Organization of a generalized intrusion detection system.
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Audit data storage: Typical intrusion detection systems store the audit
data either indefinitely or for a sufficiently long time for later reference. The
volume of data is often exceedingly large. Hence, the problem of audit data
reduction is a major research issue in the design of intrusion detection
systems.

Analysis and detection: The processing block is the heart of an
intrusion detection system where the algorithms to detect suspicious
activities are implemented. Algorithms for the analysis and detection of
intrusions have been traditionally classified into three broad categories:
signature (or misuse) detection, anomaly detection and hybrid detection.

Configuration data: The configuration data is the most sensitive part
of an intrusion detection system. It contains information that pertains to
the operation of the intrusion detection system, namely; information on
how and when to collect audit data, how to respond to intrusions, etc.

Reference data: The reference data storage module stores information
about known intrusion signatures (in case of signature detection) or profiles
of normal behavior (in case of anomaly detection). In the latter case, the
profiles are updated whenever new knowledge about the system behavior
is available.

Active/processing data: The processing element must frequently store
intermediate results such as information about partially fulfilled intrusion
signatures.

Alarm: This part of the system deals with all output produced from
the intrusion detection system. The output may be either an automated
response to an intrusion or a suspicious activity that is informed to a system
security officer.

6.2. Mining Knowledge Using Data Mining Techniques

Huge amount of data is generated through the day-to-day functioning of
organizations. Many times vital information is hidden in such large volumes
of data which can influence the decision-making process of any organization.
Exploring knowledge from the available data sources in order to guide our
actions, be it in business, science or engineering, is an interesting domain of
research. Data mining is a technique which tries to automatically extract
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the predictive information from data sources that is not apparently visible.
The data mining process drills through huge volume of data, to discover the
hidden key facts in order to assist in the decision making process.? In
other words, data mining discovers patterns of data that can generate new
knowledge for organizational use. This of course entails huge computations,
and therefore, the process must be automated. For ensuring meaningful
results, the foremost requirement is that the data must have been expressed
in a well-understandable format. The first step in data mining is to describe
the data by summarizing its statistical attributes. The data description
alone does not provide any action plan. A predictive model must be built
based on the patterns determined from known results. Then the model is
tested on results outside the original sample of data.

A complete data mining process is depicted in Fig. 6.2 wherein
historical data is used for training the data mining algorithms which is later
evaluated on a subset of the same data set. Later, this learned model is used
for the purpose of prediction in case of any new data. The learning process
is broadly classified as: (i) supervised, and (ii) unsupervised. In supervised
learning, a tutor must help the system in the construction of the model,
by defining classes and providing positive and negative examples of objects

Hetorial
T Data Mining Algorithms

i

Evaluation

H-‘_‘-‘_H_‘_""""'— Score

@ Prediction — l

Fig. 6.2. Data mining process.
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belonging to these classes. Thus, supervised learning is a function fitting
algorithm.

In unsupervised learning, there is no tutor which defines the classes
a priori. The system must itself find some way of clustering the objects
into classes, and find appropriate descriptions for these classes. Thus,
unsupervised learning is a cluster finding algorithm.

Some of the most frequently used data mining techniques are as follows:

e Association Rule Mining.
o (lassification.
e Clustering.

6.3. Association Rule Mining

Association rules®* are one of many data mining techniques that describe
events that tend to occur together. The concept of association rules can be
understood as follows:

Association rule mining: Association rule mining finds interesting
association or correlation relationships among a large set of data items.*
The association rules are considered interesting if they satisfy both a
minimum support threshold and a minimum confidence threshold.> A more
formal definition is the following.® Let I = {I1,I5,I3,..., L} be a set of
items. Let D, the task relevant data, be a set of database transactions
where each transaction T is a set of items such that 7' C I. An association
rule is an implication in the form of X — Y, where X, Y C I are sets of
items called item sets, and X NY = ¢. X is called antecedent while Y is
called consequent; the rule means X implies Y. There are two important
basic measures for association rules, support(s) and confidence(c). Since the
database is large and users concern about only those frequently occurred
items, usually thresholds of support and confidence are pre-defined by users
to drop those rules that are not so interesting or useful. The two thresholds
are called minimal support and minimal confidence respectively, additional
constraints of interesting rules also can be specified by the users. The
two important measures for Association Rule Mining (ARM), support and
confidence, can be defined as follows.

The support(s) of an association rule is the ratio (in percent) of the
records that contain X Y to the total number of records in the database.
Support is the statistical significance of an association rule.
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The confidence(c) can be defined as the ratio (in percent) of the number
of records that contain X Y to the number of records that contain X.
Confidence is a measure of a rule’s strength. Often a large confidence is
required for association rules.

The problem of mining association rules can be decomposed into two
sub problems” as stated in Algorithm 6.1, shown in Fig. 6.3. The first
step in Algorithm 6.1 finds large or frequent item sets. Item sets other
than those are referred as small item sets. Here an item set is a subset of
the total set of items of interest from the database. An interesting (and
useful) observation about the large item sets is that: if an item set X
is small, any superset of X is also small. Of course the contra positive
of this statement (if X is a large item set than so is any subset of X)
is also important to remember. The second step in Algorithm 6.1 finds
association rules using large item sets in the first step. In this, it is desired to
generate strong association rules from the frequent item sets. By definition
these rules must satisfy both minimum support and minimum confidence.
Association rule mining is to find out association rules that satisfy the
pre-defined minimum support and confidence from a given database.” The
problem is usually decomposed into two sub problems. One is to find
those item sets whose occurrences exceed a pre-defined threshold in the
database, those item sets are called frequent or large item sets. The second
problem is to generate association rules from those large item sets with

Input:

LD s c
Output:

Association rules satisfying s and ¢
Algorithm

1. Find all sets of items which occur with a frequency that is greater
than or equal to the user specified threshold support s.

2. Generate the desired rules using the large item sets, which have user
specified threshold confidence, c.

Fig. 6.3. Basic association rule mining algorithms.
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the constraints of minimal confidence. Suppose one of the large item sets
is Ly, Ly = {I1,Is,...,Ix—1, I}, association rules with this item sets are
generated in the following way: the first rule is {1, Is, ..., Ix_1} — {Ix},
by checking the confidence this rule can be determined as interesting or not.
Then other rules are generated by deleting the last items in the antecedent
and inserting it to the consequent, further the confidences of the new rules
are checked to determine their interestingness. Those processes iterated
until the antecedent becomes empty. Since the second sub problem is quite
straight forward, most of the researches focus on the first sub problem.

Apriori algorithm: Apriori is a great improvement in the history of
association rule mining, Apriori algorithm was first proposed in Agrawal
and Srikant.” Apriori is efficient during the candidate generation process for
two reasons: it employs a different candidate generation method and a new
pruning technique. Figure 6.4 gives an overview of the Apriori algorithm
for finding all frequent item sets from the database.® The Apriori generates
the candidate item sets by joining the large item sets of the previous pass
and deleting those subsets which are small in the previous pass without
considering the transactions in the database. By only considering large
item sets of the previous pass, the number of candidate large item sets is
significantly reduced. The first pass of the algorithm simply counts item
occurrences to determine the large 1-itemsets. A subsequent pass, say
pass k, consists of two phases. First, the large item sets Ly_1 found in
the (k — 1)th pass are used to generate the candidate item sets Cf, using
the Apriori candidate generation function as described above. Next, the
database is scanned and the support of candidates in C}, is counted. A hash-
tree data structure” is used for this purpose. The Apriori-gen function takes
as argument Lj_1, the set of all large (k— 1)-item sets. It returns a superset
of the set of all large k-item sets, as described in Agrawal and Srikant.”

Extended association rule: Previous work as described earlier has
focused on mining association rules in large databases with single support.
Since a single threshold support is used for the whole database, it assumes
that all items in the data are of the same nature and/or have similar
frequencies. In reality, some items may be very frequent while others may
appear rarely in a data set. However, the latter may be more informative
and more interesting than the other. For example, it could be some items
in a super market which are sold less frequently but more profitable, for
example food processor and cooking pan.’ Therefore, it might be very
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Input: database D
Minimum Support s
Minimum Confidence ¢
Output:
R. All association rules
Algorithm:
Ly={large 1-itemsets);
for (k=2, L, 12@; k++) do begin
C.=apriori-gen (L.4); //New Candidates
for all transactions t D do begin
C=subset (C, t);
S/Candidates contained in t
For all candidates ¢ C. do
C.count++;
end
L= {cC,[c.countzminsupport}
end

Leelis

R.= Generate Rules (L c)

Fig. 6.4. Apriori algorithm.

interesting to discover a useful rule food Processor — Cooking Pan with a
support of 2%. If the threshold support is set too high, rules involving rare
items will not be found. To obtain the rules involving both frequent and
rare items, the threshold support has to be set very low. Unfortunately,
this may cause combinatorial explosion, producing too many rules, because
those frequent items will be associated with other items in all possible ways
and many of them may be meaningless. This dilemma is known as “rare
item problem”.? Therefore single threshold support for the entire database
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is inadequate to discover important association rules because it cannot
capture the inherent natures and/or frequency differences in the database.
In Liu and Ma,? the existing association rule model is extended to allow the
user to specify multiple threshold supports. The extended new algorithm is
named as MSApriori, as shown in Fig. 6.5. In this method, the threshold
support is expressed in terms of minimum item support (MIS) of the items
that appear in the rule. The main feature of this technique is that the user
can specify a different threshold item support for each item. Therefore, this
technique can discover rare item rules without causing frequent items to
generate too many unnecessary rules.

M=sart (I, M5); /* according to MIS {i)'s stored in M5*/
F=init-pass (M, T); /*make the first pass over T/
Ly= {<f>[fF f.count 2MIS (f)};
For (k=2; L.,#@; k++) do
Iif k=2 then C;=level2-candidate-gen (F)
else C=candidate-gen (L,,)
end
for each transaction t € T do
C=subset (C, t);
For each candidate ¢ € C, do
C.count++;
end
L={cC.[c.count=MIiS{c [1])}
end
Le=, Ly

R.=Generate Rules (L; ¢

Fig. 6.5. MS Apriori algorithm.
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MS Apriori algorithm: Let Li denotes the set of large k-item sets. Each
item set ¢, is of the following form (c[1], ¢[2], . .., c[k]) which consists of items
c[1],c[2],. .., c[k], where MIS(c[1]) < MIS(c[2]) <,...,< MIS(c[k]). The
algorithm is illustrated as follows:

Similar to conventional algorithms, the MS Apriori generates all large
item sets by making multiple passes on the data. In the first pass, it counts
the supports of individual items and determines whether they are large. In
each subsequent pass, it uses large item sets of the previous pass to generate
candidate item sets. Computing the actual supports of these candidate sets,
the MS Apriori determines which of the candidate sets are actually large at
the end of the pass. However, the generation of large item sets in the second
pass differs from other algorithms. A key operation in the MS Apriori is the
sorting of the items I in ascending order of their MIS values. This ordering
is used in the subsequent operation of the algorithm.

A comparison between Apriori and MS Apriori algorithm with respect
to execution time is shown in Fig. 6.6. From this, it is evident that the
MS Apriori algorithm with multiple support threshold values is faster than
the conventional Apriori algorithm with a single minimum threshold, while
building a network intrusion detection model.

comparison of single support and multi support ARM
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Fig. 6.6. Comparison of Apriori and MS Apriori algorithm.
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6.4. Measuring Interestingness

The number of discovered association rules using Apriori is very large and
many of the discovered rules do not have much meaning. Therefore, it
is important to implement pruning and interestingness measures so as to
obtain the most interesting generalized profile association rules. Here we
discuss about the implementation of a template based pruning technique
and interestingness measure to select the most interesting profile rules
among a set of generalized rules. More details can be found in Panda and
Patra.'?

Template based pruning: One way of selecting association rules that
are of interest is to specify template information in which we can explicitly
specify what is interesting and what is not. An implementation of the
template based pruning to extract relevant set of association rules can
be found in Giha et al.'' This technique is useful because not all rules
that passed the min.support and min.confidence values are interesting.
This technique filters the discovered association rules and selects the ones
that match some specified template criteria, while rejecting others. It is a
fact that strong association rules are not necessarily interesting.'? Several
measures, besides confidence, have been proposed to better measure the
correlation between X and Y. Some of them are as follows: Chi-Square
testing, lift, correlation, conviction and cosine.

Chi-Square testing: To perform the Chi-Square test, a table of expected
frequencies is first calculated using P(X) and P(Y') from the contingency
table. The expected frequency for (X and Y') is given by the product
of P(X)P(Y). Performing a grand total over observed frequencies versus
expected frequencies gives a number which we denote by Chi. we use
chi-square (x?) test to measure the degree of independence between two
different attributes by comparing their observed patterns of occurrence
(actual support) with the expected pattern of occurrence (expected
support). (x2) value is calculated as follows:

X2 :E(fo_fe)z/fea (6.1)

where f, represents an observed frequency (actual support) and f. is
an expected frequency (expected support). The contingency table is a
frequency table in which a sample from the population is classified according
to two or more attributes. The expected support is that all expected
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frequencies of the presence or absence of an item will be equal in a
category or not. The expected support/confidence is calculated as a product
of corresponding row and column totals divided by the total number of
elements in the lower right cell of the observed support/confidence table.
The calculated value of x? is compared with the table value of y? for
given degrees of freedom at a specified level of significance. If at the stated
level (generally 5% level is selected), the calculated value of x? is more
than the table value of 2, the difference between theory and observed is
considered significant, i.e., it could not have arisen due to fluctuations of
simple sampling. If on the other hand, the calculated value of x? is less than
the table value, the difference between theory and observed is not considered
as significant, i.e., it is regarded as due to fluctuations of simple sampling
and hence ignored. The observed value of x? is compared with a cut-off value
read from a Chi-Square table/Surf stat Chi-Square calculator. The degree of
freedom in this case is calculated as (r —1)(c—1), where, r and ¢ represents
the total number of rows and columns are present in the contingency table
under consideration. For the probability value of 0.05 with one degree of
freedom, the cut-off value is measured. If x value is greater than this, X and
Y are regarded as correlated with a 95% confidence level. Otherwise, they
are regarded as non-correlated also with a 95% confidence level.

R-interesting measures: this technique uses the information provided
in taxonomies to find the interesting rules among its ancestors, based on
the assumption of statistical independence and strength of the latter rule.
R is a threshold value specified by the user. A rule X — Y is interesting
if it passed the R-specified threshold with respect to its ancestors. This
technique is based on the idea implemented in Srikant and Agrawal'® and
states that: A rule (X — Y) is considered to be interesting in a given set of
rules, if it has no ancestors or it is R-interesting with respect to its ancestor
X > Y. Wecallarule X — Y R-interesting with respect to ancestor
X — )7, if the support of the rule X — Y is R-times the expected support
based on X — 37', or the confidence is R-times the expected confidence
based on X — Y.

Lift (X — Y) = conf(X — Y)/P(Y), an equivalent definition is:
P(X,Y)/P(X)P(Y). Lift is a symmetric measure. A lift well above one
indicates a strong correlation between X and Y. A lift around one says
that P(X,Y) = P(X)P(Y). In terms of probability, this means that the
occurrences of X and the occurrence of Y in the same transaction are
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independent events; hence X and Y are not correlated. Another definition
can be found in Webb.4

Correlation (X — Y) = [POX,Y) - PX)P(Y)) . Correlation is
VIP(X)P(Y)(1-P(X))(1-P(Y))]
a symmetric measure. A correlation around 0 indicates that X and Y are

not correlated, a negative figure indicates that X and Y are negatively
correlated and a positive figure that they are positively correlated. Note
that the denominator of the division is positive and smaller than 1. Thus
the absolute value |cor(X — Y)| is greater than |P(X,Y) — P(X)P(Y)].
In other words, if the lift is around 1, correlation can still be significantly
different from 0.

Conviction (X —Y) =[1-PY)]/[1 —conf(X — Y)]. Conviction is
not a symmetric measure. A conviction around 1 says that X and Y are
independent, while conviction is infinite as conf(X — Y) is tending to 1.
It is to be noted that if p(Y) is high, 1-P(Y) is small. In that case, even if
conf(X —Y) is strong, conviction (X — Y') may be small.

Cosine(X — Y) = %, where /[P(X)P(Y)] means the

square root of the product P(X)P(Y). An equivalent definition is:

|t;|t; contains both X and Y|
[|t; containing X||t; containing Y]’

Cosine(X —»Y) = \/ (6.2)

Cosine is a number between 0 and 1. This is due to the fact that both
P(X,Y) < P(X)and P(X,Y) < P(Y). A value close to 1 indicates a good
correlation between X and Y. Contrasting with the previous measures, the
total number of transactions n is not taken into account by the cosine
measure. Only the numbers of transactions containing both X and Y,
the number of transactions containing X and the number of transactions
containing Y are used to calculate the cosine measure. The results after
considering some of the above discussed interesting measures in network
intrusion detection data is provided in Table 6.1.

6.5. Classification

An intrusion detection system that classifies audit data as normal or
anomalous based on a set of rules, patterns or other affiliated techniques
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Table 6.1. Measuring interestingness {Con:Confidence, Exp. Con:Expected
Confidence}.

Rule Support Expected Con. Exp. Chi-square R > 1.1
Support Con

Service=Ntp_u — 151 113 1 0.72 50.778 —
class=normal

Flag=SH — 103 0.226 1 0.71 46839.447 0.9115
class=nmap

Service=auth — 84 63 1 0.71 28 371.681
class=normal

Service=other — 15 11 1 0.71 5.454 0.238
class=normal

Flag=RSTOS0 — 10 0.002 1 0.07 49990 0.909
class=port sweep

Service=smtp — 3083 2306 0.99 0.71 1038.8 1541500
class=normal

Service=domain_u — 1236 925 0.99 0.71 415.56 0.5359
class=normal

Service=ftp_data — 1079 807 0.99 0.71 363.677 1.1664
class=normal

Service=ecr_i — 11258 2708 0.98 0.071 35545 13.9504
class=smurf

Service=finger — 156 117 0.98 0.70 52 0.0576
class=normal

Service=ftp — 146 110 0.96 0.69 47.78 1.2478
class=normal

Service=pop_3 — 29 22 0.96 0.68 9.596 0.2636
class=normal

Flag=S0 — 416 3.702 0.96 0.06 46330.62 18.909
class=neptune

Service=http — 29036 21724 0.94 0.66 9774.79 7843.3279

class=normal

can be broadly defined as a classification based intrusion detection system.
The classification process typically involves the following steps:

(1) Identify class attributes and classes from training data;

(2) Identify attributes for classification;

(3) Learn a model using the training data; and

(4) Use the learned model to classify the unknown data samples.
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A variety of classification techniques have been proposed. Those include
inductive rule generation techniques, fuzzy logic, genetic algorithms, neural
networks, ensemble classifier, and hybrid algorithms.

Inductive rule generation algorithms: It typically involves the
application of a set of association of rules and frequent episode patterns
to classify the audit data. In this context, if a rule states that “if event
X occurs, then event Y is likely to occur”, then events X and Y can be
described as set of (variable, value)-pairs where the aim is to find the sets
X and Y such that X implies Y. In the domain of classification, we fix
Y and attempt to find sets of X which are good predictors for the right
classification. While supervised classification typically only derives rules
relating to a single attribute, general rule induction techniques, which are
typically unsupervised in nature, derive rules relating to any or all the
attributes. The advantage of using rules is that they tend to be simple and
intuitive, unstructured and less rigid. As the drawbacks they are difficult
to maintain, and in some cases, are inadequate to represent many types of
information. A number of inductive rule generation algorithms have been
proposed by many researchers. Some of them first construct a decision tree
and then extract a set of classification rules from the decision tree. Other
algorithms like RIPPER,'® C4.5'¢ directly induce rules from the data by
employing a divide-and-conquer approach. A post learning stage involving
either discarding (as in C4.5) or pruning (RIPPER) some of the learnt rules
is carried to increase the classifier accuracy. RIPPER has been successfully
used in a number of data mining based anomaly detection algorithms to
classify incoming audit data and detect intrusions. One of the primary
advantages of using RIPPER is that the generated rules are easy to use and
verify. Lee et al.,'” ' used RIPPER to characterize sequences occurring in
normal data by a smaller set of rules that capture the common elements
in those sequences. During monitoring, sequence violating these rules is
treated as anomalies.

Decision tree: These are powerful and popular tools for classification
and prediction. The attractiveness of tree-based methods is largely due to
the fact that, in contrast to neural networks, decision trees represent rules.
A decision tree is a tree that has three main components: nodes, arcs,
and leaves. Each node is labeled with a feature attribute which is most
informative among the attributes not yet considered in the path from the
root, each arc out of a node is labeled with a feature value for the node’s
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feature and each leaf is labeled with a category or class. A decision tree can
then be used to classify a data point by starting at the root of the tree and
moving through it until a leaf node is reached. The leaf node would then
provide the classification of the data point.

Fuzzy logic: These techniques have been in use in the area of computer
and network security since the late 1990s.2° Fuzzy logic has been used for
intrusion detection for two primary reasons.?! Firstly, several quantitative
parameters that are used in the context of intrusion detection e.g., CPU
usage time, connection interval, etc., can potentially be viewed as fuzzy
variables. Secondly, as stated by Bridges et al.,?! the concept of security is
fuzzy in itself. In other words, the concept of fuzziness helps to smooth out
the abrupt separation of normal behaviour from abnormal behavior. That
is, a given data point falling outside/inside a defined “normal interval”,
will be considered anomalous/normal to the same degree regardless of its
distance from/within the interval.

Genetic algorithms: It is a search technique used to find approximate
solutions to optimization and search problems. This has also been
extensively employed in the domain of intrusion detection to differentiate
normal network traffic from anomalous connections. The major advantage
of genetic algorithms is their flexibility and robustness as a global search
method. In addition, a genetic algorithm search converges to a solution
from multiple directions and is based on probabilistic rules instead of
deterministic ones. In the domain of network intrusion detection, genetic
algorithms have been used in a number of ways. Some approaches have
used genetic algorithms directly to derive classification rules, while others
use genetic algorithms to select appropriate features or determine optimal
parameters of related functions, while different data mining techniques
are then used to acquire the rules. While the advantage of the genetic
approach was that it used numerous agents to monitor a variety of network
based parameters, lack of intra-agent communication and a lengthy training
process were some issues that were not addressed.

Neural network: Neural network based intrusion detection systems have
traditionally been host based systems that focus on detecting deviations in
program behaviour as a sign of an anomaly. In the neural network approach
to intrusion detection, the neural network learns to predict the behaviour of
the various users and daemons in the system. The main advantage of neural
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networks is their tolerance to imprecise data and uncertain information and
their ability to infer solutions from data without having prior knowledge
of the regularities in the data. This in combination with their ability to
generalize from learned data has made them an appropriate approach
to intrusion detection. However, the neural network based solutions have
several drawbacks. First, they may fail to find a satisfactory solution
either because of lack of sufficient data or because there is no learnable
function. Secondly, neural networks can be slow and expensive to train.
The lack of speed is partly because of the need to collect and analyze
training data and partly because the neural network has to manipulate the
weights of the individual neurons to arrive at the correct solution. Anomaly
detection schemes also involve other data mining techniques such as support
vector machines (SVM) and other types of neural network models. Because
data mining techniques are data driven and do not depend on previously
observed patterns of network/system activity, some of these techniques
have been very successful at detecting new kinds of attacks. However, these
techniques often have a very high false positive rate.

Bayesian network: A Bayesian network is a graphical model that
encodes probabilistic relationships among variables of interest. When
used in conjunction with statistical techniques, Bayesian networks have
several advantages for data analysis.?? Firstly, because Bayesian networks
encode the interdependencies between variables, they can handle situations
where data is missing. Secondly, Bayesian networks have the ability to
represent causal relationships. Therefore, they can be used to predict
the consequences of an action. Lastly, because Bayesian networks have
both causal and probabilistic relationships, they can be used to model
problems where there is a need to combine prior knowledge with data.
Several researchers have adapted ideas from Bayesian statistics to create
models for anomaly detection.?> 2> The Bayesian network is a restricted
network that has only two layers and assumes complete independence
between the information nodes (i.e., the random variables that can be
observed and measured). These limitations result in a tree shaped network
with a single hypothesis node (root node) that has arrows pointing to a
number of information nodes (child node). All child nodes have exactly
one parent node, that is, the root node, and no other causal relationship
between nodes are permitted. The naive Bayesian networks have some
disadvantages. First, as pointed out in,2® the classification capability of
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naive Bayesian networks is identical to a threshold based system that
computes the sum of the outputs obtained from the child nodes. Secondly,
because the child nodes do not interact between themselves and their
output only influences the probability of the root node, incorporating
additional information becomes difficult as the variables that contain the
information cannot directly interact with the child nodes. Another area,
within the domain of anomaly detection, where Bayesian networks have
been frequently used is the classification and suppression of false alarms.
Although using the Bayesian for the intrusion detection or intruder behavior
prediction can be very appealing, there are some issues that one should be
concerned about them. Since the accuracy of this method is dependant on
certain assumptions that are typically based on the behavioral model of the
target system, deviating from those assumptions will decrease its accuracy.
Selecting an accurate model will lead to an inaccurate detection system.
Therefore, selecting an accurate behavioral model is not an easy task as
typical systems and/or networks are complex.

Principal component analysis: Typical data sets for intrusion
detection are typically very large and multidimensional. With the
growth of high speed networks and distributed network based data
intensive applications storing, processing, transmitting, visualizing and
understanding the data is becoming more complex and expensive. To tackle
the problem of high dimensional datasets, researchers have developed a
dimensionality reduction technique known as Principal component analysis
(PCA).26728 In mathematical terms, PCA is a technique where n correlated
random variables are transformed into d < n uncorrelated variables. The
uncorrelated variables are linear combinations of the original variables
and can be used to express that data in a reduced form. Typically, the
first principal component of the transformation is the linear combination
of the original variables with the largest variance. In other words, the
first principal component is the projection on the direction in which the
variance of the projection is maximized. The second principal component
is the linear combination of the original variables with the second largest
variance and orthogonal to the first principal component, and so on. In
many data sets, the first several principal components contribute most of
the variance in the original data set, so that the rest can be disregarded
with minimal loss of the variance for dimensional reduction of the dataset.
PCA has been widely used in the domain of image compression, pattern
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recognition and intrusion detection. In case of an anomaly detection scheme,
PCA was used as an outlier detection scheme and was applied to reduce
the dimensionality of the audit data and arrive at a classifier that is a
function of the principal components. They measured the mahalanobis
distance of each observation from the centre of the data for anomaly
detection. The mahalanobis distance is computed based on the sum of
squares of the standardized principal component scores. In Shyu et al.,?”
the authors have evaluated these methods over KDDcup1999 data and have
demonstrated that it exhibits better detection rate than other well known
outlier based anomaly detection algorithms such as the local outlier factor
“LOF” approach, the Nearest Neighbour approach and the kth Nearest
Neighbour approach.

Markov models: A hidden markov model is a statistical model, where
the system being modeled is assumed to be a Markov process with unknown
parameters. The challenge is to determine the hidden parameters from the
observable parameters. Unlike a regular Markov model, where the state
transition probabilities are the only parameters and the state of the system
is directly observable, in a hidden Markov model, the only visible elements
are the variables of the system that are influenced by the state of the system,
and the state of the system itself is hidden. A hidden Markov model’s state
represents some unobservable condition of the system being modeled. In
each state, there is a certain probability of producing any of the observable
system outputs and a separate probability indicating the likely next states.
By having different output probability distributions in each of the state,
and allowing the system to change states over time, the model is capable
of representing non-stationary sequences. To estimate the parameters of a
hidden Markov model for modeling normal system behaviour, sequences of
normal events collected from normal system operation are used as training
data. An expectation-maximization (EM) algorithm is used to estimate
the parameters. Once a hidden Markov model has been trained, when
confronted with test data, probability measures can be used as thresholds
for anomaly detection. In order to use hidden Markov models for anomaly
detection, three key problems need to be addressed. The first problem,
also known as the evaluation problem, is to determine given a sequence
of observations, what is the probability that the observed sequence was
generated by the model. The second is the learning problem which involves
building from the audit data, a model or set of models, that correctly
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describes the observed behavior. Given a hidden Markov model and the
associated observations, the third problem, also known as the decoding
problem, involves determining the most likely set of hidden states that
have led to those observations. The major drawback of using hidden
Markov models in anomaly detection technique is that it is computationally
expensive, because it uses parametric estimation techniques based on the
Bayes algorithm for learning the normal profile of the host/network under
consideration.

6.6. Ensemble of Classifier

Ensembles of classifiers are often better than any individual classifier. This
can be attributed to three key factors.3’

Statistical: Machine learning algorithms attempt to construct a hypo-
thesis that best approximates the unknown function that describes the data,
based on the training examples provided. Insufficient training data can
lead an algorithm to generate several hypotheses of equal performance.
By taking all of the candidate hypotheses and combining them to form
an ensemble, their votes are averaged and the risk of selecting incorrect
hypotheses is reduced.

Computational: Many machine learning approaches are not guaranteed
to find the optimal hypotheses; rather, they perform some kind of local
search which may find local minima (rather than the global minimum,
or the optimal hypothesis). For example, decision trees and ANNs
can often produce sub-optimal solutions. By starting the local search
in different locations, an ensemble can be formed by combining the
resulting hypotheses; therefore, the resulting ensemble can provide a better
approximation of the true underlying function.

Representational: The statistical and computational factors allow
ensembles to locate better approximations of the true hypothesis that
describes the data; however, this factor allows ensembles to expand the
space of representable functions beyond that achievable by any individual
classifier. It is possible that the true function may not be able to be
represented by an individual machine learning algorithm, but a weighted
sum of the hypotheses within the ensemble may extend the space of
representable hypotheses to allow a more accurate representation.
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These factors represent three key advantages that machine learning
ensembles hold; they also represent three of the major limitations often
recognized in specific machine algorithms. It is for this reason that
ensembles have the potential to deliver better performance in terms of
detection accuracy than many individual machine learning algorithms.

Ensemble of Classifiers which comes under Decision committee learning
has demonstrated spectacular success in reducing classification error from
learned classifiers. These techniques develop a classifier in the form of a
committee of subsidiary classifiers. The committee members are applied to
a classification task and their individual outputs combined to create a single
classification from the committee as a whole. This combination of outputs
is often performed by majority vote. Three decision committee learning
approaches, AdaBoost, Multi Boosting and Bagging have received extensive
attention. They are recent methods for improving the predictive power of
classifier learning systems. Some classification methods are unstable in the
sense that small perturbations in their training sets may result in large
changes in the changes in the constructed classifier. Breiman®' proved
that decision tress with neural networks are unstable during classification.
Unstable classifications can have their accuracy improved by perturbing and
combining, i.e., generating a series of classifiers by perturbing the training
set, and then combining these classifiers to predict together. Boosting is
one of the efficient perturbing and combining methods. Though a number of
variants of boosting are available, we use the most popular form of boosting,
known as AdaBoost (Adaptive Boosting) for our experimentation. Multi-
Boosting is an extension to the highly successful AdaBoost technique for
forming decision committees. MultiBoosting can be viewed as combining
AdaBoost with Wagging. It is able to harness both AdaBoost’s high
bias and variance reduction with Wagging’s superior variance reduction.
Bagging (Bootstrapped Aggregating) on the other hand, this combined
voting with a method for generating the classifiers that provide the votes.
The simple idea was based on allowing each base classifier to be trained
with a different random subset of the patterns with the goal of bringing
about diversity in the base classifiers. Databases can have nominal, numeric
or mixed attributes and classes. Not all classification algorithms perform
well for different types of attributes, classes and for databases of different
sizes. In order to design a generic classification tool, one should consider
the behaviour of various existing classification algorithms on different
datasets.
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AdaBoost boosting is a general method for improving the accuracy of
any given learning algorithm. Boosting refers to a general and provably
effective method of producing a very accurate prediction rule by combining
rough and moderately inaccurate rules of thumb. Boosting has its roots in
a theoretical framework for studying machine learning called the “PAC”
learning model, due to Valiant??> and Kearns and Vazirani,?® for a good
introduction to this model. They were the first to pose the question of
whether a “weak” learning algorithm which performs just slightly better
than guessing in the PAC model can be “boosted” into an arbitrary accurate
“strong” learning algorithm. Finally, the AdaBoost algorithm, introduced
by Freund and Schapiro,?* solved many of the practical difficulties of the
earlier boosting algorithms, and is the focus of this chapter. The algorithm
takes as input a training set {(x1,y1),..., (@m,ym)}, where each belongs
to some domain or instance space X, and each label is in some label set
Y. Foremost of this chapter, it is assumed Y = {—1, +1}; later, we discuss
extensions to the multiclass case. AdaBoost calls a given weak or base
learning algorithm repeatedly in a series of rounds t = 1,...,T. One of the
main ideas of the algorithm is to maintain a distribution or set of weights
over the training set. The weight of this distribution on training example
i on round t is denoted D(7). Initially, all weights are set equally, but on
each round, the weights of incorrectly classified examples are increased so
that the weak learner is forced to focus on the hard examples in the training
set. The weak learner’s job is to find a weak hypothesis h;: X — —1,+1
appropriate for the distribution D;. The goodness of a weak hypothesis is
measured by its error:

E(t) = Pricp, [Pe(7:) # yi] = Zichet) (@) ;D (9) (6.3)

Notice that the error is measured with respect to the distribution D; on
which the weak learner was trained. In practice, the weak learner may
be an algorithm that can use the weights D; on the training examples.
Alternatively, when this is not possible, a subset of the training examples
can be used to train the weak learner. Once the weak hypothesis h; has
been received, AdaBoost chooses a parameter «;. Intuitively, a; measures
the importance that is assigned to h;. Note that a; > 0 if e, < 1/2 (which
can be used without loss of generality), and that «; gets larger as ¢; gets
smaller. The distribution D; is next updated using the rule specified. The
effect of this rule is to increase the weight of examples misclassified by
h:, and to decrease the weight of correctly classified examples. Thus, the
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weight tends to concentrate on “hard” examples. The final hypothesis H is
a weighted majority vote of the T weak hypotheses where a; is the weight
assigned to hy.

MultiBoosting: MultiBoosting is an extension to the highly successful
AdaBoost technique for forming decision committees. MultiBoosting can
be viewed as combining AdaBoost with Wagging.?® MultiBoosting can be
considered as wagging committees formed by AdaBoost. A decision has to
be made as to how many sub-committees should be formed for a single run,
and the size of those sub-committees. In the absence of an a-priori reason for
selecting any specific values for these factors, the current implementation
of MultiBoosting, takes as an argument a single committee size T, from
which it by default sets the number of sub-committees and the size of those
sub-committees to \/m As both these values must be whole numbers,
it is necessary to round off the result. For ease of implementation, this
is achieved by setting a target final sub-committee member index, where
each member of the final committee is given an index, starting from one.
This allows the premature termination of boosting one sub-committee, due
to too great or too low error, to lead to an increase in the size of the
next sub-committee. If the last sub-committee is prematurely terminated,
an additional sub-committee is added with a target of completing the full
complement of committee members. If this sub-committee also fails to reach
the target, this process is repeated; adding further sub-committees until
the target total committee size is achieved. In addition to the bias and
variance reduction properties that this algorithm may inherit from each of
its constituent committee learning algorithms, MultiBoost has the potential
computational advantage over AdaBoost that the sub-committees may be
learned in parallel, although this would require a change to the handling
of early termination of learning a sub-committee. The AdaBoost process
is inherently sequential, minimizing the potential for parallel computation.
However, each classifier learned with wagging is independent of the rest,
allowing parallel computation, a property that MultiBoost inherits at the
sub-committee level.

Bagging: Bootstrapped Aggregating (Bagging) combines voting with a
method for generating the classifiers that provide the votes. The simple idea
was based on allowing each base classifier to be trained with a different
random subset of the patterns with the goal of bringing about diversity
in the base classifiers. Devising different ways of generating base classifiers
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that perform well but are diverse (i.e., make different errors) has historically
been one of the most active subtopics within ensemble methods which
comes under Meta classifier research. Bagging is a simple example of one
such method of generating diverse base classifiers; therefore, we discuss it
in more details here. Bagging generates multiple bootstrap training sets
from the original training set and uses each of them to generate a classifier
for inclusion in the ensemble. The algorithms for bagging and doing the
bootstrap sampling (sampling with replacement) are shown in Fig. 6.7. In
Fig. 6.7, T is the original training set of N examples, M is the number
of base models to be learned, L; is the base model learning algorithm,
the hi’s are the classification functions that take a new example as input
and return the predicted class from the set of possible classes Y, random
integer (a,b) is a function that returns each of the integers from a to b
with equal probability, and I(A) is the indicator function that returns 1 if
event A is true and 0 otherwise. To create a bootstrap training set from
a training set of size N, we perform N multinomial trials, where in each
trial; we draw one of the N examples. Each example has probability %

Input: n data objects, number of clusters

Output: membership value of each object in each cluster

Algorithm:

1. Select the initial location for the cluster centers

2. Generate g new partition of the doto by assigning each data
paint ta its closest centre.

3. Cafeulate the membership value of each abject in each cluster.
4. Calculate new cluster centers as the centroids of the clusters.

5. If the cluster partition is stoble then stop, otherwise go to
step? above.

Fig. 6.7. Bagging algorithm.
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of being drawn in each trial. The Bagging algorithm shown in Fig. 6.7
does exactly this-N times; the algorithm chooses a number r at random
from 1 to N and adds the rth training example to the bootstrap training
set S. Clearly, some of the original training examples will not be selected
for inclusion in the bootstrapped training set and others will be chosen
one time or more. On average, each generated bootstrapped training set
will contain 0.63 NV unique training examples even though it will contain N
actual training examples. In bagging, we create M such bootstrap training
sets and then generate classifiers using each of them. Bagging returns a
function h(z) that classifies new examples by returning the class y that
gets the maximum number of votes from the base models {hy, ha,...,har}.
In bagging, the M bootstrap training sets that are created are likely to
have some differences. If these differences are enough to induce noticeable
differences among the M base models while leaving their performances
reasonably good, then the ensemble will probably perform better than the
base models individually.

Random Forest: Random forest is an ensemble of unpruned classifi-
cation or regression trees, induced from bootstrap samples of the training
data, using random feature selection in the tree induction process.
Prediction is made by aggregating (majority vote for classification or
averaging for regression) the predictions of the ensemble. Random forest
generally exhibits a substantial performance improvement over the single
tree classifier such as CART and C4.5. It yields generalization error rate
that compares favorably to AdaBoost, yet is more robust to noise. However,
similar to most classifiers, random forest can also suffer from the curse of
learning from extremely imbalanced training data set. As it is constructed to
minimize the overall error rate, it will tend to focus more on the prediction
accuracy of the majority class, which often results in poor accuracy, for the
minority class.

In random forests, there is no need for cross validation or a test set to
get an unbiased estimate of the test error. Since each tree is constructed
using the bootstrap sample, approximately %rd of the cases are left out of
the bootstrap samples and not used in training. These cases are called out
of bag (oob) cases. These oob cases are used to get a run-time unbiased
estimate of the classification error as trees are added to the forest.

The error rate of a forest depends on the correlation between any two
trees and the strength of each tree in the forest. Increasing the correlation
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increases the error rate of the forest. The strength of the tree relies on the
error rate of the tree. Increasing the strength decreases the error rate of the
forest. When the forest is growing, random features are selected at random
out of the all features in the training data. The more discussion about this
along with the comparison of the results can be obtained from Panda and
Patra.?6

Support Vector Machines (SVM): SVMs are becoming increasingly
popular in the machine learning and computer vision communities. Training
a Support Vector Machine (SVM) requires the solution of a very large
quadratic programming (QP) optimization problem. In this chapter, we use
a variant of SVM for fast training using sequential minimal optimization
(SMO).3" SMO breaks this large QP problem into a series of smallest
possible QP problems avoiding large matrix computation. The amount
of memory required for SMO is linear in the training set size, which
allows SMO to handle very large training sets. SMO’s computation time
is dominated by SVM evaluation; hence SMO is fastest for linear SVMs
and sparse data sets. SVM ensembles can improve the limited classification
performance of the SVM. In boosting, each individual SVM is trained using
training samples chosen according to the sample’s probability distribution,
which is updated in proportion to the degree of error of the sample.

Boost-SMO: We apply boosting to SMO algorithm which is the most
efficient state-of-the art technique for training SVMs. Shortly, SMO
decomposes the quadratic programming (QP) problem arising in SVM
training into a sequence of minimal QP problems involving only two
variables, and each of these problems is solved analytically. SMO heuris-
tically selects a pair of variables for each problem and optimizes them. This
procedures repeats until all the patterns satisfy the optimality conditions.
A direct way to use the probability distribution over examples in training
SVMs is to create sub samples of data or the so-called boosting sets. The
boosting set that will be used for training the classifier on the th iteration
can be created by sampling examples from the original data set according
to probability distribution. Each individual SVM is trained using regular
SMO; hence it achieves maximum margin separability on the corresponding
boosting set. But because of the limited amount of data used to train
individual SVMs, their decision boundaries may be far from the global
optimal solution. However, the ensemble effect of a sequence of SVMs
(normally an order of 10-15) allows for a boosted classifier to have a high
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Comparison of Data Mining Algorithms
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Fig. 6.9. Comparison of data mining techniques.

generalization performance. Since, the boosting algorithm also has the effect
of improving the margin, Boost-SMO is capable to find a global solution
which is comparable in terms of accuracy to that obtained by the standard
SVM training algorithms. More details about this can be obtained from
Williums et al.3” and Panda and Patra.?® Some of the results based on
decision trees (ID3 and J48), naive bayes and neural network are shown in
Figs. 6.8 and 6.9. In Tables 6.2 and 6.3, the comparison of the ensemble
classifiers with different datasets and hybrid approach is done in order to
obtain high accuracy respectively.
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Table 6.2. Comparison of ensemble of classifiers over different data sets.

Ensemble of Iris Waveform  Students KDDCup’99

Classifiers Dataset Dataset Dataset IDS Dataset

Bagging + 94.8 94.47 94.47 Not
C4.5 provided

AdaBoost + 82.81 83.32 83.73
C4.5

MultiBoosting + 86.49 81.44 81.68
C4.5

Bagging + 70.33 57.41 87.22 67.94
Decision Stump

AdaBoost + 95.07 67.68 87.16 77.68
Decision Stump

MultiBoosting + 94.73 66.44 86.95 77.67
Decision Stump

Bagging + Not Not Not 99.37
REP tree provided provided provided

AdaBoost + 99.26
REP tree

MultiBoosting + 99.257
REP tree

Table 6.3. Performance comparison of classifiers {Acc: Accuracy}.

Attack  Hybrid DT +  SMO Acc (%) AdaBoost + MultiBoost +

Type SVM Acc (%) SMO Acc (%) SMO Acc (%)
Normal 99.7 97.47 98.8 97.88
Probe 98.57 66.20 71.0 71.00
DoS 99.92 100.00 99.41 99.00
U2R 48.00 54.3 45.00 67.00
R2L 37.80 38.1 29.42 30.00

6.7. Clustering

Clustering can be considered the most important unsupervised learning
problem; so, as every other problem of this kind, it deals with finding a
structure in a collection of unlabeled data. A loose definition of clustering
could be “the process of organizing objects into groups whose members are
similar in some way”. The basic clustering process is shown in Fig. 6.10.
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A A

Fig. 6.10. Basic clustering process.

A cluster is therefore a collection of objects which are “similar” between
them and are “dissimilar” to the objects belonging to other clusters. We can
show this with a simple graphical example: In this case we easily identify the
four clusters into which the data can be divided; the similarity criterion is
distance: two or more objects belong to the same cluster if they are “close”
according to a given distance (in this case geometrical distance). This is
called distance-based clustering. Another kind of clustering is conceptual
clustering: two or more objects belong to the same cluster if this one defines
a concept common to all objects. In other words, objects are grouped
according to their fit to descriptive concepts, not according to simple
similarity measures. So, the goal of clustering is to determine the intrinsic
grouping in a set of unlabeled data. But how to decide what constitutes a
good clustering? It can be shown that there is no absolute “best” criterion
which would be independent of the final aim of the clustering. Consequently,
it is the user which must supply this criterion, in such a way that the result
of the clustering will suit their needs. For instance, we could be interested in
finding representatives for homogeneous groups (data reduction), in finding
“natural clusters” and describe their unknown properties (“natural” data
types), in finding useful and suitable groupings (“useful” data classes) or
in finding unusual data objects (outlier detection).

Types of Clustering Algorithms:

The k-means algorithm: So, with intrusion detection we want to
define two clusters, and classify each observation (object) according to the
closest cluster (class). Initially, we don’t know what the clusters looks like.
Therefore we choose the k-means algorithm to find these clusters, and to
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assign one cluster to each observation. The k-means algorithm is a simple
and good candidate.

Algorithm description:

(1) First we select two observations randomly. These will act as an initial
mean vector, or centroids, for each cluster. They are simply two different
plots in Euclidian space (R™) where n is number of features (metrics)
used.

(2) Then, for each observation, we calculate the distance to each centroid.
The smallest distance from an observation to each of the clusters decides
which cluster the observation belongs to. Like in the example above,
where three individuals aged 10, 60, and 70 should be classified as
“Old” and “Young”. If vector (read: individual, object or observation)
10 was selected as centroid for cluster one, and vector 60 for cluster
two, the vector 70 would be closer to cluster two and should belong
to this cluster. Vector 10 and 60 will of course be located in the same
clusters where they are selected as centroids (null-distance).

(3) When all observations have been grouped together in their nearest
cluster, a new centroid is calculated for each cluster as the average
value of the vectors they contain. This will change the centre location
(centroid) of both clusters. In our age-example, cluster one 10 will
include only one observation and still have the centroid 10. For cluster
two, the new centroid will be (60 4+ 70)/2 = 65. Calculating new
centroids based on vector averages; If a cluster contains two vectors
(x1,22,23) and (y1,y2,ys) then the new centroid will be (z1, 22, 23)
where 21 = (21 +41)/2, 20 = (22 + y2)/2 and z3 = (x5 + y3)/2.

(4) Now we should try a new iteration with the new centroids (jump to
two). If all observations remain in their already assigned clusters after
the next iteration, the algorithm ends.

We now have two clusters with defined centers (centroids), and a
number of observations (vectors) in each cluster. It can be proved that
the k-means algorithm always terminates, but it does not necessarily find
the best solution. The selection of initial centroids might result in more or
less optimal results.

Example: For our three individuals aged 10, 60, and 70 we want to
find two clusters where we want to group “Old” and “Young”. If 10
and 60 are selected as initial centroids, we end up with two clusters
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with centroids 10 and 65. Ok, these might be candidates for “Old” and
“Young”. But, if 60 and 70 are selected as initial cluster centroids, vector
10 will be grouped together with 60 and we end up with two clusters
with centroids 35 and 70 which might be a less optimal definition. The
main advantage of the k-means algorithm is its simplicity and speed, a
good feature if and IDS want to use clustering techniques in real-time.
Also, its complexity increases in a linear matter with an increase in the
number of features used. Other algorithm exists and these too could be
candidates for automatic clustering, like; (i) The Fuzzy C-means algorithm,
(ii) Hierarchical clustering, (iii) Mixture of Gaussians.

Fuzzy c-Means (FCM) Clustering: Fuzzy ¢-Means (FCM) algorithm,
also known as fuzzy ISODATA, was introduced by Bezdek®® as extension
to Dunn’s algorithm to generate fuzzy sets for every observed feature.
The fuzzy c-means clustering algorithm is based on the minimization of
an objective function called c-means functional. Fuzzy c-means algorithm
is one of the well known relational clustering algorithms. It partitions the
sample data for each explanatory (input) variable into a number of clusters.
These clusters have “fuzzy” boundaries, in the sense that each data value
belongs to each cluster to some degree or other. Membership is not certain,
or “crisp”. Having decided upon the number of such clusters to be used,
some procedure is then needed to location their centers (or more generally,
mid-points) and to determine the associated membership functions and the
degree of membership for the data points. Fuzzy clustering methods allow
for uncertainty in the cluster assignments. FCM is an iterative algorithm
to find cluster centers (centroids) that minimize a dissimilarity function.
Rather that partitioning the data into a collection of distinct sets by fuzzy
partitioning, the membership matrix (U) is randomly initialized according
to Equation (6.2).

dug=1, Vj=1,23, ... .n (6.4)
=1

The dis-similarity function (or more generally the objective function),
which is used in FCM in given Equation (6.3).

J(U,017027...7cc):ZJi:ZZu?;d?j, (6.5)
i=1

i=1 j=1
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where, U;; is between 0 and 1; ¢; is the centroids of cluster ¢; d;; is the
Euclidean distance between ith centroids ¢; and jth data point. m € [1, 0]
is a weighting exponent. There is no prescribed manner for choosing the
exponent parameter, m. In practice, m = 2 is common choice, which is
equivalent to normalizing the coefficients linearly to make their sum equal
to 1. When m is close to 1, then the cluster centre closest to the point
is given much larger weight than the others and the algorithm is similar
to k-means. To reach a minimum of dissimilarity function there are two
conditions. These are given in (6.4) and (6.5).

Z;'l:1 (e
Z?:l ugy ,

1

C; =
uij = 32 -
Zc di]' m—1
k=1\dy,

This algorithm determines the following steps in Fig. 6.11. By
iteratively updating the cluster centers and the membership grades for each

Input: n data objects, number of clusters

Output: membership value of each abject in each cluster

Algorithm:

1. Select the initial location for the cluster centers

2. Generate a new partition of the dato by assigning each dato
point to its clasest centre.

3. Calculate the membership value of each object in each cluster.
4, Calculate new cluster centers gs the centroids of the clusters.

5. If the cluster partition is stable then stop, otherwise go to
step2 above.

Fig. 6.11. Fuzzy c-Means Clustering Algorithm.
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data point, FCM iteratively moves the cluster centers to the “right” location
within a dataset. FCM does not ensure that it converges to an optimal
solution, because the cluster centers are randomly initialized. Though, the
performance depends on initial centroids, there are two ways as described
below for a robust approach in this regard.

(1) Using an algorithm to determine all of the centroids.
(2) Run FCM several times each starting with different initial centroids.

EM (Expectation Maximization) Clustering

Extensions and generalizations: The EM (expectation maximization)
algorithm extends the k-means approach to clustering in two important
ways:

(1) Instead of assigning cases or observations to clusters to maximize
the differences in means for continuous variables, the EM clustering
algorithm computes probabilities of cluster memberships based on one
or more probability distributions. The goal of the clustering algorithm
then is to maximize the overall probability or likelihood of the data,
given the (final) clusters.

(2) Unlike the classic implementation of k-means clustering, the general
EM algorithm can be applied to both continuous and categorical
variables (note that the classic k-means algorithm can also be modified
to accommodate categorical variables).

The EM Algorithm: The EM algorithm for clustering is described
in detail in Fig. 6.12. The basic approach and logic of this clustering
method is as follows. Suppose you measure a single continuous variable in
a large sample of observations. Further, suppose that the sample consists
of two clusters of observations with different means (and perhaps different
standard deviations); within each sample, the distribution of values for
the continuous variable follows the normal distribution. The resulting
distribution of values (in the population) may look like this:

Details about the clustering algorithms can be found in Panda and
Patra.t?

Self-organizing Maps: Self-organizing map (SOM) is a data
visualization technique invented by Professor Teuvo Kohenen,*' which
reduces the dimensions of data through the use of self-organizing neural
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4. Compute the log estimate £; = ¥ log(Pri(x)). Stop if
|E; — Ejqil| < e Otherwise set j = j + 1 and go to Step 2.

Fig. 6.12. EM algorithm.

networks. The problem that data visualization attempts to solve is that
humans simply cannot visualize high dimensional data as is, so techniques
are created to help us understand this high dimensional data. The SOMs
can reduce dimensions by producing a map of usually one or two dimensions
which plot the similarities of the data by grouping similar data items
together. So, SOMs accomplish two things, they reduce dimensions and
display similarities. A winning neuron is one of neurons such that very
similar or close to the neighborhood data in which later on can be classified
as or belong to clusters. In this way, the SOM can provide specialized
platform for data representation of the input space.

A SOM consists of a grid shaped set of nodes. Each node j contains
a prototype vector m; € R™, where n is also the dimension of the input
data. SOM is trained iteratively. For each sample x; of the training data,
the best matching unit (BMU) in the SOM is located:

¢ = argming |lz; —vj|}. (6.8)

Index c¢ indicates the corresponding prototype (BMU) vector m.. The
Euclidean norm is usually chosen for the distance measure. The BMU m,
and its neighboring prototype vectors in this SOM grid are then updated
towards the sample vector in the input space.



Mining Knowledge From Network Intrusion Data Using Data Mining Techniques 195

Equation (6.8) states that each prototype is turned towards the sample
vector x; according to the neighborhood function h.;(t). Most commonly
used neighborhood function is the Gaussian neighborhood.

2
hej(t) = aft) - exp (%) (6.10)

The neighborhood is centered on the BMU. Norm ||n. — nj|| is the
topological distance between prototypes ¢ and j in the SOM grid. The
factors «a(t) and o(t) are the learning rate factor and the neighborhood
width factor, respectively. Both of these factors decrease monotonically as
training proceeds.

COBWEB Algorithm for Incremental Clustering: Whereas
iterative distance-based clustering, such as K-Means, iterate over the whole
dataset until convergence in the clusters is reached, COBWEB works
incrementally, updating the clustering instance by instance. The clustering
COBWEB creates is expressed in the form of a tree, with leaves representing
each instance in the tree, the root node representing the entire dataset,
and branches representing all the clusters and sub clusters within the tree.
In fact, that there is no limit to the total number of sub clusters except
the limit imposed by the size of the dataset. COBWEB starts with a tree
consisting of just the root node. From there, instances are added one by
one, with the tree updated appropriately at each stage. When an instance is
added, one of the four possible actions is taken: The option with the greatest
category utility is chosen. Category utility is defined by the function:

2 Prlal 3, 3 (Prla; = vi|C)? — Pria; = vi;]?)
N k

CU(Cy,Cy,...,Ck)

(6.11)
where C1,Cy, ..., Cy are the k clusters; the outer summation is over each
of the clusters, which is later divided by k to provide a “per cluster” figure;
the next inner summation sums over the attributes, and the inner-most
summations sums over the possible values; a; is the ith attribute, and it
takes on values which are dealt with by the sum over j. Pr[A] refers to
the probability of event A occurring and Pr[A|B] refers to the probability
of event A occurring conditional on event B. Thus the difference (Pr[a; =
vi;|C1)? — Prla; = vi;]?) refers to the difference between the probability
that a; has value v;; for an instance in cluster C; and the probability that
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a; has value v;;. The larger this value, the more good the clustering does
in terms of classification.

This category utility formula only applies to categorical attributes (if
it didn’t, the set v;1,v;2,... would be infinite, and the summation could
not be evaluated by conventional evaluation of a summation). However,
it is easily extended to numeric attributes by assuming their distribution
is normal, with an observed mean p and standard deviation o. Using the
probability density function yields the logical equivalency.

ZZ(P’I"[CEZ = ’Uij|Cl]2 - Pr[ai = ’Uij]Q)

&3 ([ raican - [rwpan) @12

where,

([ stasen?an— [ stran) = 52255 (2= ) @19

note that, if the standard deviation estimate is ever 0, an infinite value
is produced for the real-valued category utility function. To overcome this
potential problem, COBWERB allows one to set the acuity to a value which
is the minimum of the standard deviations. Table 6.4 shown a comparison

of clustering algorithms for intrusion detection.*?

Table 6.4. Comparison of clustering algorithms for intrusion detection {NC: Nearest
Cluster, FFT10: FFT for 10 clusters, FFT50: FFT with 50 clusters, SVM100: SVM
using K-means with 100 clusters}.

Attack/Method Probe DoS U2R R2L
DR FPR DR FPR DR FPR DR FPR

KDD Cup Winner 0.833 0.006 0.971 0.003 0.123 3E-5 0.084 5E-5

SOM Map 0.643 oK 0.951 ok 0.229 oK 0.113 ok
Linear GP 0.857 Hokk 0.967 kK 0.013 HoHx 0.093 kK
K-Means 0.876  0.026 0.973 0.004 0.298 0.004 0.064 0.001
NC 0.888 0.005 0.971 0.003 0.022 6E-6 0.034 1E-4
COBWEB 0.364 0.059 0.812 0.248 0.0 0.026 0.611 0.03
FFT10 0.28 0.066 1.0 0.0 0.17 0.021 0.611 0.034
FFT50 0.37 0.06 0.812 0.25 0.34 0.017  0.56 0.036

SVM100 0.67 0.05 0.99 0.05 0.0 0.05 0.29 0.05
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6.8. Conclusion

Building intrusion detection systems has been a real challenge as new types
of attacks are encountered every day. No single technique can effectively deal
with the growing intrusion scenarios. In this work we have applied different
data mining techniques to analyze available intrusion data sets to extract
knowledge about the nature of intrusions so that suitable counter-measures
can be developed to deal with them. We have discussed the association rule
mining with various interestingness measures in order to obtain the best
rules for the detection of intrusions. Results show that the use of multiple
minimum supports can enhance the performance compared to the single
minimum support threshold. It is observed that unsupervised clustering
algorithms like COBWEB and FFT provide promising results in detecting
network intrusions. Further, the ensemble classifiers can still improve the
accuracy of intrusion detection in many cases.
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Chapter 7

PARTICLE SWARM OPTIMIZATION FOR
MULTI-OBJECTIVE OPTIMAL OPERATIONAL
PLANNING OF ENERGY PLANTS

Y. FUKUYAMA*, H. NISHIDA and Y. TODAKA
Fugi Electric Systems Co. Ltd.,
No.1, Fuji-machi, Hino, Tokyo 191-8502, Japan
*fukuyama-yoshikazu@fugjielectric. co.jp

This chapter presents a particle swarm optimization for multi-objective optimal
operational planning of energy plants. The optimal operational planning
problem can be formulated as a mix-integer nonlinear optimization problem.
An energy management system called FeTOP, which utilizes the presented
method, is also introduced. FeTOP has been actually introduced and operated
at three factories of one of the automobile companies in Japan and realized
10% energy reduction.

7.1. Introduction

Recently, cogeneration systems (CGS) have been installed in energy plants
of various factories and buildings. CGS is usually connected to various
facilities such as refrigerators, reservoirs, and cooling towers. It produces
various energies including electric loads, air-conditioning loads, steam loads.
Since daily load patterns of the loads are different, daily optimal operational
planning for an energy plant is a very important task for saving operational
costs and reducing environmental loads.

In order to generate optimal operational planning for an energy
plant, various loads should be forecasted, and startup and shutdown
status and input values for the facilities at each control interval should
be determined using facility models. Therefore, the optimal operational
planning problem can be formulated as a mixed-integer linear problem
(MILP) and mathematical programming techniques such as branch and
bound, decomposition method, and dynamic programming have been
applied conventionally.! However, the facilities may have nonlinear

201
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input-output characteristics practically, and operational rules, which cannot
be expressed as mathematical forms, should be considered in actual
operation. For example, steam turbines usually have plural boilers and the
characteristics of the turbines cannot be expressed with only one equation
and the characteristics should be expressed with combination of equations
with various conditions. Therefore, when the models are constructed, we
should use concept of data mining. In addition, in the problem, various
objectives should be considered such as reduction of operational costs
and environmental loads. Consequently, the problem cannot be solved by
the conventional methods and the method for solving the multi-objective
MINLP problem with complex models has been eagerly awaited.

Particle Swarm Optimization (PSO) is one of the evolutionary
computation techniques.* PSO is suitable for the optimal operational
planning for energy plants because it can handle multi-objectives, such as
operation rules, constraints, and independent complex facility models easily.
The Original PSO was developed by Eberhart and Kennedy.® Recently,
various modified methods have been developed and applied to various
problems.* '* We have been developing an optimal operational planning
and control system of energy plants using PSO (called FeTOP).!516 FeTOP
has been actually introduced and operated at three factories of one of
the automobile company in Japan and realized 10% energy reduction.!”
Forecasting various loads is out of scope in this paper. However, we
have already developed the analyzable structured neural network (ASNN)
and other forecasting methods. The accurate load forecasting can be
realized for various loads.'® When we construct forecasting models, data
mining methods should be used so that the difference of models such
as weekdays and weekends can be treated. In this chapter, three PSO,
based methods: Original PSO, Evolutionary PSO, and Adaptive PSO are
compared for optimal operational planning problems of energy plants,
which are formulated as MINLPs. The three methods are compared using
typical energy plant operational planning problems.

7.2. Problem Formulation
7.2.1. State variables

State variables are electrical power output values of generator, heat energy
output values of genelink and heat exchanger, and heat energy input values
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of genelink per hour (24 points a day). The detailed variables and related
boundary constraints can be listed as follows:

Generator The state variables of generators are as follows:

P,y Electrical power output (24 points a day)

0gi € {0,1}: Startup/shutdown status, where, Pynmin < Fyni < Fgnmax
(i=0,...,23,n=1,...,N,),

Ng: Number of generator,

Pynmae: Maximum output,

Pynmin: Minimum output.

Genelink Genelink is a kind of absorption refrigerators, which can
decrease adding fuels by inputting wasted heat energy of generator. The
state variables of genelink are as follows:

Qggrni: Heat input values (24 points a day)

Qcgrni: Output heat values (24 points a day)

dq1; € {0,1}: Startup/shutdown status, where, (i = 0,...,23, n =
1,...,Ng,), (i=0,...,23,n=1,...,Nu,),

Ngi: Number of genelink,

QggLnimaz: Maximum heat input values determined by output heat
values,

Qcq;: Air-conditioning load,

Qrcgrn: Rated air-conditioning output.

Heat Exchanger The state variables of heat exchanger for heating/hot
water supply are as follows:

o Heat Exchanger for Heating Qgnn;: Heat energy input values (24
points a day) Opesni € {0,1}: Startup/shutdown status, where 0 <
Ahexthghni < Qhndis (Z =0,...,23,n=1,..., Nhexh)a Nhezn: Number
of heat exchanger for heating, Qnq;: Heat load, Apernn: Coefficients of
facility characteristics.

e Heat Exchanger for Hot Water Supply Qguwi: Heat energy input values
(24 points a day) Opegwi € {0,1}: Startup/shutdown status, where,
0 < Ahemangwni < Qudis (Z =0,...,23,n = 1,..., Nhe:cw)7 Nhezw:
Number of heat exchanger for hot water supply, Qwq;: Hot water supply
load, Apeawn: Coefficients of facility characteristics.
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Outputs of each facility for 24 points of the day should be determined.
Moreover, two or three variables are required for one facility (startup and
shutdown status (binary or discrete variables), and output or output/input
values (continuous variables)). Therefore, one state variable for one facility
is composed of vectors with 48 (24 points x 2 variables) or 72 (24 points x 3
variables) elements. Therefore, for example, handling two generators, two
genelinks, and two heat exchangers require 336 variables.

7.2.2. Objective function

The objective function is to minimize the operational costs and environ-
mental loads of the day.

Min wy - (CE+ Cg+ Cw) + wy - EL (7.1)

where, C'E: Total electricity charges of a day, C'g: Total fuel charges of a
day, Cw: Total water charges of a day, E'L: Environmental loads of a day,
wi: weighting factors.

7.2.3. Constraints

In this chapter, the following constraints are considered. Demand and
supply balance: Summation of energies supplied by facilities such as
electrical power, air-conditioning energy, and heat energy should be equal
to each corresponding load.

(1) Electric Energy Balance: Summation of purchase or sale electric
energies and electric power generation values by CGS should be equal
to electric loads:

Ng
Eyi+ Y Egni=Ea, (i=0,...,23) (7.2)

where, E,;: Purchase or sale electric energies, Fgy;: Electric power
generation values, Fg4;: Electric loads.

(2) Air-conditioning Energy: Balance Summation of air-conditioning
energies should be equal to air-conditioning loads.

Ngl
Z chLni = chi; (’L = 07 1; EREE) 23) (73)
n=1
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Heat Energy Balance: Summation of heat energy inputs and heat
energies produced by boilers should be equal to heat loads.

Npp

Qni+ Y Qohni = Qnair  (i=0,1,...,23) (7.4)
n=1
Nhexn

Qni= Y AncornQqnni» (i=0,1,...,23), (7.5)
n=1

where, Np,: Number of boiler for heating, Qpnni: Output of boiler for
heating.

Hot Water Supply Balance: Summation of hot water inputs and
hot waters produced by boilers should be equal to hot water loads.

Ny
Qwi + Z wani = deiv (7' = Oa 17 ) 23) (76)
n=1
Nheaw
Z Ahewagwni7 (’L = 07 ]-7 KRN} 23)7 (77)
n=1

where, Np,,: Number of boiler for hot water supply.

Heat Balance: Summation of the heat energy consumptions at
genelinks, for heat and hot water loads, and radiation values at cooling
towers should be equal to the (wasted) heat energy produced by CGSs.

Ng Nherh Nhemw
Z anz ZQggLnl + Z Qghnz + Z ngnz +Z Qctn27 7 8
n=1

gnz = f( gnz) (79)

where, Qcini: Radiation value at cooling tower, Qgn;: Heat output of
generator.

Facility constraints: Various facility constraints including the
boundary constraints with state variables should be considered. Input-
output characteristics of facilities should be also considered as facility
constraints. For example, the characteristic of genelink is nonlinear
practically and the nonlinear characteristic should be considered in the
problem.

Operational rules: If the facility is startup, then the facility should
not be shutdowned for a certain period. (Minimum up time). If the
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facility is shutdowned, then the facility should not be startup for a
certain period. (Minimum down time).

Facility models are constructed using the facility constraints and the
operational rules. The models are independent and all states of the energy
plant are calculated when all of the facility states are input from PSO.
Then, the operational costs and the environmental loads for the days can be
calculated. When we construct facility models using actual operation data,
we have to construct plural models even for one facility using data mining
concepts because we have to use various operating points for facilities so
that supply and demand balance of various energies should be maintained.
Namely, actual operation data can be divided into several groups and
facility models are constructed for each group using data mining concepts.

7.3. Particle Swarm Optimization

PSO has been developed through simulation of simplified social models. The
features of the method are as follows: (a) The method is based on research
about swarms such as fish schooling and a flock of birds. (b) It is based on
a simple concept. Therefore, the computation time is short and it requires
few memories. (c) It was originally developed for nonlinear optimization
problems with continuous variables. However, it is easily expanded to treat
problems with discrete variables. Therefore, it is applicable to a MINLP
with both continuous and discrete variables such as the optimal operational
planning of energy plants. The above feature (c¢) is suitable for the target
problem because practically efficient methods have not been developed for
the planning problem with both continuous and discrete variables.

According to the research results for a flock of birds, birds find food
by flocking (not by each individual). The observation leads the assumption
that every information is shared inside flocking. Moreover, according to
observation of behavior of human groups, behavior of each individual
(agent) is also based on behavior patterns authorized by the groups such as
customs and other behavior patterns according to the experiences by each
individual. The assumption is a basic concept of PSO. PSO is basically
developed through simulation of a flock of birds in two-dimension space. The
position of each agent is represented by XY-axis position and the velocity
(displacement vector) is expressed by vx (the velocity of X-axis) and vy
(the velocity of Y-axis). Modification of the agent position is realized by
using the position and the velocity information.
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7.3.1. Original PSO

The original PSO is a population based stochastic optimization technique
developed by Kennedy and Eberhart.>'* The current searching points are
modified using the following state equations:

VE L = ok 4 ey (phest; — s¥) + cory(gbest — s¥) (7.10)

sPTL = gk ohtl (7.11)

where, vf : Velocity of particle 4 at iteration k, w: Weighting function, ¢;:
Weighting coefficients, r;: Random number between 0 and 1, sf: Current
position of particle ¢ at iteration k, pbest;: pbest of particle ¢, gbest: gbest
of the group.

The original PSO algorithm can be expressed as follows:

(1) State variables (searching point): State variables (states and their
velocities) can be expressed as vectors of continuous numbers. PSO
utilizes multiple searching points as agents for search procedures.

(2) Generation of initial searching points: Initial conditions of searching
points in the solution space are usually generated randomly within
their allowable ranges.

(3) Evaluation of searching points: The current searching points are
evaluated by the objective function of the target problem. Pbests (the
best evaluated value so far of each agent) and gbest (the best of pbest)
can be modified by comparing the evaluation values of the current
searching points, and current pbests and gbest.

(4) Modification of searching points: The current searching points are
modified using the state equations of PSO.

(5) Stop criterion: The search procedure can be stopped when the
current iteration number reaches the predetermined maximum iteration
number. For example, the last gbest can be output as a solution.

7.3.2. Ewvolutionary PSO EPSO

The idea behind EPSO'"1? is to grant a PSO scheme with an explicit
selection procedure and with self-adapting properties for its parameters.
At a given iteration, consider a set of solutions or alternatives that we will
keep calling particles. The general scheme of EPSO is the following;:

(1) REPLICATION — each particle is replicated R times.
(2) MUTATION — each particle has its weights mutated.
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(3) REPRODUCTION — each mutated particle generates an offspring
according to the particle movement rule.

(4) EVALUATION — each offspring has its fitness evaluated.

(5) SELECTION — by stochastic tournament the best particles survive to
form a new generation.

The velocity of the state equations for EPSO is the following:
vE T = wly + w} (pbest; — s¥) + wiy (gbest™ — s¥) (7.12)

So far, this seems like PSO; the movement rule keeps its terms of inertia,
memory and cooperation. However, the weights undergo mutation.

why = wik + 7 N(0,1) (7.13)

where, N(0,1) is a random variable with Gaussian distribution, 0 mean,
variance 1, and 7 is the learning parameters.

7.3.3. Adaptive PSO(APSO)

The adaptive PSO is based on the results of the analysis and the simulations
on the basis of the stability analysis in discrete dynamical systems. The
new parameters (p) are set to each particle. The weighting coefficients are
calculated as follows. If the particle becomes pbest:

co=—, c¢1=any. (7.14)
p
If the particle is not pbest:
1 best —
=1 o= ootz (7.15)
D |pbest — s|

The search trajectory of PSO can be controlled by the parameter (p).
Concretely, when the value is enlarged more than 0.5, the particle may move
close to the position of gbest. The adaptive procedure can be expressed as
follows:

(1) If the particle becomes gbest, the weighting coefficient (w) is set to 1.
Besides, w is set to 0.

(2) When the particle goes out the feasible region, the parameter (p) is set
to 0.5 or more so that the particle may convergence.
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(3) When the objective function value of pbest of the particle is improved
for a certain period, the parameter (p) is reduced more than 0.5 so that
the particle may divergence.

7.3.4. Simple expansion of PSO for optimal operational
planning

In order to reduce the number of state variables, the following simple
expansion of PSO is utilized. Namely, all of the state variables can be
expressed as continuous variables. If the input value for a facility is under
the minimum input value, then the facility is recognized as shutdown.
Otherwise, the facility is recognized as startup and the value is recognized
as the input of the facility. The reduction method can reduce the number of
state variables to half, and drastic improvement of PSO search procedures
can be expected.

7.4. Optimal Operational Planning for Energy Plants
Using PSO

All of state variables have 24 elements and one state in the solution space
can be expressed as an array with number of all facilities multiplied by 24
elements. A flow chart is shown in Fig. 7.1.

The whole algorithm can be expressed as follows:

(1) Step 1: Generation of initial searching points (states): States and
velocities of all facilities are randomly generated. The upper and lower
bounds of facilities are considered.

(2) Step 2: Evaluation of searching points: The current states are input
to facility models and the total operational costs are calculated as the
objective function value. The pbests and gbest are updated based on
the value.

(3) Step 3: Modification of searching points: The current searching points
(facility states) are modified using the state equations. The upper and
lower bounds of facilities are considered when the current states are
modified.

(4) Step 4: Stop criterion: The search procedure can be stopped when
the current iteration number reaches the predetermined maximum
iteration number. Otherwise, go to Step 2. The last ghest is output as a
solution.
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Fig. 7.1. A flow chart of optimal operational planning for energy plants using PSO.

7.5. Numerical Examples

The proposed method is applied to the typical CGS system.

7.5.1. Simulation conditions

An office load model with 100,000 [m?] total floor spaces is utilized in
the simulation. Two CGS generators (750 [kW]/unit) and two genelinks
(4700 [kW]/unit) are assumed to be installed. At most, two genelinks can be
startup in summer season, one genelink in winter season, and one genelink
in intermediate season. The efficient rate of the heat exchanger is 0.975
and the rate of the boiler is 0.825. The rated capacity of the cooling tower
is 1050 [kW]/unit. The cooling tower is installed for each CGS generator.
The forecasted loads for three represented days are shown in Figs. 7.2-7.4.
Only daily costs are considered in the simulation for the sake of simplicity.
Number of particles is set to 200. The iteration number is set to 100. Twenty
trials are compared. The numbers may be able to be optimized and the
further investigation should be performed.
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Fig. 7.3. Energy loads in winter season (February).

7.5.2. Simulation results

Table 7.1 shows comparison of costs by three PSO based method and the
conventional rule based planning method. According to the results, the
total operational cost is reduced compared with the conventional method.
EPSO and APSO can generate better average results than original PSO.
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Fig. 7.4. Energy loads in intermediate season (November).

Table 7.1. Comparison of costs by the original PSO,
EPSO, and APSO methods.

Method Minimum  Average Maximum
Conventional 100.0 — —
Original PSO 98.68 98.80 98.86
Evolutionary PSO 97.96 97.97 98.00
Adaptive PSO 98.12 98.14 98.18

Many heat energies are input to genelink, and heating and hot water loads
are supplied by boilers using the original PSO method. On the contrary,
many heat energies are input to heat exchangers for heating load and air-
conditioning loads are supplied by fuel input in genelink by the evolutionary
PSO methods.

7.6. FeTOP — Energy Management System

An energy management system, called FeTOP, has been developed. It
provides an optimal operational planning and control scheme of energy
plants. It consists of three functions: an energy forecasting function, an
optimal operational planning function of the facilities such as a cogeneration
system, and a simulation function of the energy plant. Figure 7.5 shows
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an example of practical system structure using FeTOP. The functions of
FeTOP are installed in the PC servers. Data management and control signal
output functions are installed in the Database & Control server. The load
forecasting, the optimal planning, and the plant simulation functions are
installed in the Planning server. The two servers and the process control
system communicate through the local area network inside the factories and
buildings. Since the forecasting results of weather conditions are necessary
for the load forecasting functions, the weather forecast results are input
to FeTOP from the weather information service provider. The planning
results can be observed in the client PC installed in the energy management
office by the operators. The operators can modify the next control signal if
necessary.

FeTOP inputs measurement values of various sensors and consistency
of the sensor information is important for realizing real optimal planning.
The authors have developed the sensor diagnosis functions for FeTOP.2°
The functions can find the sensors which should be fixed and modify the
sensors’ measurement values to the consistent values by the other sensors’
measurement values. Using the functions, FeTOP can continue the optimal
control even if some of the sensor measurement values are inconsistent.
FeTOP has been actually introduced and operated at three factories of one
of the automobile company in Japan and realized 10% energy reduction.!”

7.7. Conclusions

This paper compares three PSO based methods for optimal operational
planning of energy plants: the original PSO, the evolutionary PSO, and
the adaptive PSO. The proposed methods are applied to operational
planning of a typical energy plant and the simulation results indicate
practical applicability of advanced particle swarm optimizations for the
target problems. Following the comparison, an energy management system,
called FeTOP, using the advanced particle swarm optimization has been
developed. FeTOP has been actually introduced and operated at three
factories of one of the automobile companies in Japan. Manual operation
by expertised operators has been done in three factories and realized 10%
energy reduction by introduction of an automatic and optimal control
system, FeTOP. As a future work, the target planning problem will be
formulated as a multi-objective function problem with Pareto optimal
solutions.
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Feature selection has been the focus of interest for quite some time and much
work has been done. It is in demand in areas of application for high dimensional
datasets with tens or hundreds of thousands of variables available. This survey
is a comprehensive overview of many existing methods from the 1970s to the
present; considering both soft and non-soft computing paradigm. The strengths
and weaknesses of different methods are explained and methods are categorized
according to generation procedures and evaluation functions. The objective of
feature selection is three fold: improving the prediction performance of the
predictors, providing faster and more cost-effective prediction and providing a
better understanding of the underlying process that generated the data. This
survey identifies future research areas in feature subset selection and introduces
newcomers to this field.

8.1. Introduction

A universal problem that all intelligent agents must face is where to
focus their attention, e.g., a problem-solving agent must decide which
aspects of a problem are relevant and so forth. The majority of real-world
classification problems require supervised learning where the underlying
class probabilities and class-conditional probabilities are unknown and
each instance is associated with a class label, i.e., relevant features are
often unknown a priori. In many applications, the size of a dataset is
so large that learning might not work as well before removing these
unwanted features. Theoretically, having more features implies more
discriminative power in classification. Many reduction algorithms have been
developed during past years. Generally, they can be divided into two broad
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categories:! feature transform (or feature extraction) and feature selection
(or variable selection). Feature transform constructs new features by
projecting the original feature space to a lower dimensional one. Principal
component analysis and independent component analysis are two widely
used feature transform methods.? Although feature transform can obtain
the least dimension, its major drawbacks lie in that its computational
overhead is high and the output is hard to be interpreted for users. Feature
selection is the process of choosing a subset of the original feature spaces
according to discrimination capability to improve the quality of data.
Unlike feature transform, the fewer dimensions obtained by feature selection
facilitate exploratory of results in data analysis. Due to this predominance,
feature selection has now been widely applied in many domains, reducing
the number of irrelevant redundant features which drastically reduces the
running time of a learning algorithm and yields a more general concept.
In our opinion, there are typically four basic steps in a feature selection
method shown in Fig. 8.1:

(1)
(2)
(3) A stopping criterion to decide when to stop, and
(1)

A generation procedure to generate the next candidate subset.
An evaluation function to evaluate the subset under examination.

A validation procedure to check whether the subset is valid.

The issue of feature selection comes to the spotlight because of the vast
amounts of data and increasing needs of preparing data for data mining

_Original I Generation Subsel | Evaluation

Feature Set

Goodness of
the subset

Stopping

No
Criterion

Validation

Fig. 8.1. Feature selection process with validation.
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applications. More often than not, we have to perform feature selection
in order to obtain meaningful results.> Feature selection has the following
prominent functions:

Enabling: Feature selection renders the impossible possible. As we know,
every data mining algorithm is somehow limited by its capability in
handling data in terms of sizes, types, formats. When a data set is too
huge, it may not be possible to run a data mining algorithm or the data
mining task cannot be effectively carried out without data reduction.*
Feature selection reduces data and enables a data mining algorithm to
function and work effectively with huge data.

Focusing: The data includes almost everything in a domain (recall that data
is not solely collected for data mining), but one application is normally
only about one aspect of the domain. It is natural and sensible to focus
on the relevant part of the data for the application so that the search is
more focused and the mining is more efficient.

Cleaning: The GIGO (garbage-in-garbage-out) principle® applies to almost
all, if not all, data mining algorithms. It is therefore paramount to clean
data, if possible, before mining. By selecting relevant instances; we can
usually remove irrelevant ones as well as noise and/or redundant data.
The high quality data will lead to high quality results and reduced costs
for data mining.

This procedure generates a subset of features that are relevant to the
target concept.® There are basically three kinds of generation procedure
which are listed below.

If the original feature set contains N number of features, then the total
number of competing candidate subsets to be generated are 2VV. This is a
huge number even for medium-sized N. There are different approaches for
solving this problem, namely: complete, heuristic, and random.

Complete: This generation procedure does a complete search for the
optimal subset according to the evaluation function used. An exhaustive
search is complete. However, Schimmer argues’ that “just because the
search must be complete do not mean that it must be exhaustive.” Different
heuristic functions are used to reduce the search without jeopardizing
the chances of finding the optimal subset.® Hence, although the order of
the search space is O(2"), a fewer subsets are evaluated. The optimality
of the feature subset, according to the evaluation function, is guaranteed
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because the procedure can backtrack. Backtracking” can be done using
various techniques, such as branch and bound, best first search, and beam
search.

Heuristic: In each iteration of this generation procedure, all remaining
features yet to be selected (rejected) are considered for selection (rejection).
There are many variations to this simple process, but generation of subsets
is basically incremental'? (either increasing or decreasing). The order of the
search space is O(N?) or less; some exceptions are Relief, DTM*! that are
discussed in detail in the next section. These procedures are very simple to
implement and very fast in producing results, because the search space is
only quadratic in terms of the number of features.

Random: This generation procedure is rather new in its use in feature
selection methods compared to the other two categories. Although the
search space is O(2%), these methods typically search a fewer number of
subsets than 2V by setting a maximum number of iterations possible.'?13
Optimality'# of the selected subset depends on the resources available. Each
random generation procedure would require values of some parameters.
Assignment of suitable values to these parameters are an important task

for achieving good results.

8.1.1. Definition

In this chapter, different existing FS methods are generalized and compared.
The following lists those that are conceptually different and cover a range
of definitions.

(1) Idealized: Find the minimally sized feature subset that is necessary and
sufficient to the target concept.!?

(2) Classical: Select a subset of M features from a set of N features, M <
N, such that the value of a criterion function is optimized over all
subsets of size M .16

(3) Improving Prediction accuracy: The aim of feature selection is to choose
a subset of features for improving prediction accuracy or decreasing
the size of the structure without significantly decreasing prediction
accuracy of the classifier built using only the selected features.'”

(4) Approximating original class distribution: The goal of feature selection
is to select a small subset such that the resulting class distribution,
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given only the values for the selected features, is as close as possible to
18

the original class distribution given all feature values.
Definition 1: Feature selection in supervised learning: feature selection
in supervised learning is the process of choosing a subset of the original
features that optimizes the predictive performance of a considered model
by eliminating the redundant features and those with little or no predictive
information.

Definition 2: Feature selection in wunsupervised learning: feature
selection in unsupervised learning is the process of choosing a subset of
the original variables that forms a high quality clustering for the given
number of clusters.

Consulting the above matter of fact, the approaches for selection of
relevant features are categorized below.

(1) Embedded Approach: It embeds the selection within the basic induction
algorithm usually weighting schemes is considered.'?-2°

(2) Filter Approach: This method filters out irrelevant attributes before
induction occurs. FOCUS and RELIEF follow feature selection with
decision tree construction. In RELIEF, features are given weights but
as the redundant features have same weight so the method may select
a duplicate feature which increases complexity,?! where as FOCUS
implements exhaustive search. PCA (Principal Component Analysis)?2
can reduce dimensionality. The approach is well described in Fig. 8.2.

f | Search (GA) | \
v Trimmed data with best

Data set attribute subset ML algorithm

) . (SVM)
Attribute set Merit

y

Attribute Evaluation with
a separate algorithm

K / Cross-validation
Accuracy and Best
e _/ set of attributes
~

Filter

Fig. 8.2. Filter approach in attribute selection.
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Fig. 8.3. Wrapper approach in attribute selection.

Wrapper Approach: Here Feature selection occurs outside the induc-
tion method but it uses that method as a subroutine rather than as a post
processor.?? It induces high computational cost as induction algorithm is
called for each subset of feature. There are two wrapper (classifier-specific)
methods: sequential forward selection (SFS) and sequential forward feature
selection (SFFS).2* Both SFS and SFFS take an iterative approach, and
the computation cost quickly becomes prohibitive for large-scale problems
like expression-based classification.?® Fig. 8.3 describes the approach.

Procedure:

(1) Input all features of the domain as the input.

(2) Generate a candidate feature subset.

(3) Run a classification algorithm with the feature subset generated in
Step 2.

(4) Measure performance of the algorithm.

(5) If performance satisfactory then stop and go to Step 6 otherwise go to
Step 2.

(6) Output a feature subset.

OBLIVION?S is a type of wrapper approach which uses backward
elimination and leave-one-out cross validation to estimate the accuracy of
subsets. In this approach induction algorithm is considered as a black box
i.e., no knowledge of algorithm is needed; only the interface has value.
The induction algorithm runs on a selected optimal subset of features that
generate a classifier such that accuracy of classifier?” is maximal, but the
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optimal feature subset may not be unique. This approach conducts a search
in the space of possible parameters. A search requires a state space,?®
an initial state, a termination condition and a search engine (either hill
climbing or best first search). For n features size of search space is O(2").

The drawbacks of wrapper methods are significant as well.

(1) In the mining contest, the number of features with which we have to
deal is quite large when the F'S process is carried out as a preprocessing
stage in these mining tasks. The complexity and the execution time
make the task unfeasible.

(2) As the feature selection depends on the classification algorithm, we lose
generality because of the behavior of the classification algorithm?? in
terms of accuracy and efficiency as the good performance of the system
depends directly on the goodness of the classification algorithm chosen.
Furthermore the selection of a classification method slightly suitable for
a certain problem may give rise to choose or eliminate features wrongly.

(3) The combination of the wrapper methods with Soft Computing3®
techniques such as GAS and Neural Networks to carry out the FS
process make it turns into a tough problem especially when the sets of
examples (and/or) features are large.

8.2. Non-Soft Computing Techniques for Feature Selection

In this Section we will discuss few of the classical non-evolutionary®! feature
selection methods.

8.2.1. Enumerative algorithms

e Exhaustive Search. All the possible P C; subsets are evaluated and the
best one among them is chosen. This guarantees the optimal solution,
but the computational time is intractable when the problem size is
not small.

e Branch and Bound.?? This algorithm generates a search tree that
identifies the features being removed from the original set. It achieves
a substantial reduction in the number of subset evaluations by pruning?!
those sub trees that will never be superior to the current best solution.
However, the main problem with this algorithm is its exponential time
complexity. Additionally, this algorithm requires the strict assumption of
monotonicity,?? i.e., adding new features never degrades the performance.
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8.2.2. Sequential search algorithms

e Sequential forward search: This search starts with a candidate feature
subset that is the empty set. Then it iteratively adds one feature at a time
to the candidate feature subset, as long as some measure of performance-
say predictive accuracy>® is improved. At each iteration the feature added
to the current feature subset is the feature whose inclusion maximizes the
measure of performance.

e Sequential backward search: It is just opposite strategy of sequential
forward search. It starts with a candidate feature subset that is the entire
set of available features. Then it iteratively removes one feature at a
time from the candidate attribute subset, as long as some measure of
performance is improved. At each iteration the feature removed from
the current feature subset is the feature whose removal maximizes the
measure of performance.

Note that both forward selection and backward selection are greedy
strategies,3® which can be trapped in local maxima in the search space. To
reduce this possibility one can use more robust search strategies. The next
section discusses how evolutionary based feature selection can work in view
of robustness.

8.2.3. Sampling

A spontaneous response to the challenge of feature selection is, without
fail, some form of sampling. Although it is an important part of feature
selection, there are other approaches that do not rely on sampling, but
resort to search or take advantage of data mining algorithms.3¢

Sampling is a procedure that draws a sample .S; by a random process in
which each S; receives its appropriate probability p;3” of being selected. In
practice, we seldom draw a probability sample by writing down the S; and
p; because it is intolerably laborious with a large dataset, where sampling
may produce billions of possible samples. The draw is most commonly
made by specifying probabilities of inclusion for the individual instances
and drawing instances, one by one or in groups until the sample of desired
size is constructed.?® It is not without a reason that people tend to first
think of sampling as a tool for instance selection. Sampling methods are
useful tools,?” have existed for quite many years and are available in many
system packages.
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Sampling does not consciously search for relevant instances. One
can’t help asking “how are the three functions (enabling, focusing, and
cleaning)?® of feature selection accomplished in sampling?” What does
the wonder is the random mechanism underlying every sampling method.
Enabling! and cleaning are possible as the sample is usually smaller than
the original data and noise and irrelevant instances in the sample will
become accordingly less if sampling is performed appropriately. Although
it does not take into account the task at hand, some forms of sampling
can, to a limited extent, help focusing. We present some commonly used

sampling methods below.

Purposive Sampling: It is a method in which the sample instances are
selected with definite purpose in view. For example, if we want to give
the picture that the knowledge of students in the P.G. Department of
Information and Communication Technology has increased, then we may
take individuals in the sample from students who are securing the marks
>60% and ignoring the rest. Hence this purposive sampling is a type of
favoritism sampling. This sampling suffers from the drawback of favoritism
and nepotism and does not give a representative sample of the population.

Random Sampling: In this case the sample instances are selected at
random?*? and the drawback of purposive sampling is completely overcome.
A random sample is one in which each unit of population has an equal
chance of being included in it. Suppose we want to select n instances out
of the N such that every one of the ¥ C,, distinct samples has an equal
chance of being drawn. In practice, a random sample is drawn instance by
instance. Since an instance that has been drawn is removed from the data
set for all subsequent draws, this method is also called random sampling
without replacement. Random sampling with replacement is feasible: at
any draw, all IV instances of the dataset are given an equal chance of being
drawn, no matter how often they have already been drawn.

Stratified Sampling: In this sampling the heterogeneous data set of
N instances is first divided into mq,ne,...,n; homogenous subsets. The
subsets are called strata. These subsets are non-overlapping, and together
they comprise the whole of the dataset (i.e., Zle n; = N).17 The instances
are sampled at random from each of these stratums; the sample size in each
stratum varies according to the relative importance of the stratum in the
population. The sample, which is the aggregate of the sampled instances of
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each of the stratum, is termed as a stratified sample and the technique of
drawing this sample is known as stratified sampling.*? If a sample is taken
randomly in each stratum, the whole procedure is described as stratified
random sampling.

Adaptive sampling: In many sampling applications, one may feel
inclined to make decision on further sampling based on what has been
observed so far. Adaptive sampling refers to a sampling procedure for
selecting instances to be included in the sample that depends on results
obtained from the sample. The primary purpose of adaptive sampling®* is
to take advantage of data characteristics in order to obtain more precise
estimates. It can be considered as sampling and mining are performed side
by side to take advantage of the result of preliminary mining for more
effective sampling®® and vice versa. Its variant can be found in sequential
sampling and progressive sampling.

The simplest way of applying sampling is to go through the data once
and obtain a sample, then work on the sample only. However, better results
can often be achieved following the common pattern below:

e Obtain some approximate mining result with a sufficiently large samples.
o Refine the result with the whole data V.

The above pattern is an ideal case, as we need to scan the whole data set
twice. However, in some cases, a few samples may be needed in the first step
so that sampling is conducted a few times. In some cases, the above pattern
(both steps) may be repeated a few times. If a mining algorithm is data
hungry and memory intensive,*8 it is obvious that one should maximize the
use of the data obtained in Step 1 and minimize the use of the whole data;
the ideal case would be going through Step 2 only once.

Determining a sample size: There are sampling theories and learning
theories that tell us how large the sample should be for what kind of results
we expect. In general, the more precise the result we want, the larger the
sample size. Examples can be found in''” which PAC learning theory,*7
the VC dimension,*® and Chernoff Bounds are mentioned for determining
sample sizes. Some more examples can be found in Refs. 49 and 50.
Moreover, in data mining applications, we are often constrained by the
computers memory capacity in processing data with a limited size. Besides
the efficiency issue of the mining algorithm, we often end up using as much
data as the computer can take. In other words, theoretical bounds help
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little in this situation. With increased memory capacity, we will be better
and better guided by theoretical bounds in determine sample size.

51 is also related to mining quality. However, samples of

Sample size
the same size could vary in terms of their qualities. In particular, some
samples are more representative or resemble the original data more than
others. Hence, there is a need for measuring sample quality; we then wish
to establish the positive correlation between sample quality and mining

quality.

8.2.4. Feature selection based on information theory

This method is a practical and efficient method which eliminates a
feature that gives little information. The proposed method addresses both
theoretical and empirical aspects of feature selection i.e., a filter approach?®
which can serve more features. It is a type of probabilistic approach i.e.,
for each instance:

Pr(C/F = f), (8.1)

where C' is the class, F' denotes the features, f is a tuple.

This method uses cross-entropy (KL-dist) to select G such that
Pr(C/G = fg) is close as previous.

Now:

Ag =Y Pr(f)da(F) (8:2)

and:
9c(F) = D(Pr(C/[), Pr(C/fc)) (8.3)

i.e., it employs backward elimination (eliminate F; which would cause
smallest increase in triangle).

Working principle:

o If Pr(A =alX =2,B =0b) = Pr(A = alX = z), then B gives us no
information.
e M is markov blanket for a feature F' if M does contain F'.

With these two measures, two new feature selection algorithms, called
the quadratic MI-based feature selection (QMIFS) approach and the MI-
based constructive criterion (MICC) approach. In classificatory analysis,
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such a criterion tries to measure the ability of a feature or a feature
subset to discriminate the different classes. Up to now, various criteria
like distance, dependence, and consistency measures have been used for
feature selection.’® % But these measures may be very sensitive to the
concrete values of the training data; hence they are easily affected by
the noise or outlier data. Whereas the information measures, such as
the entropy or mutual information, investigate the amount of information
or the uncertainty of a feature for classification. It depends only on the
probability distribution of a random variable rather than on its concrete
values. Fano®® has revealed that maximizing the mutual information
between the feature data and the desired target can achieve a lower bound
to the probability of error. Inspired by this idea, Battiti developed his
greedy feature selection method, MIFS.%! This method evaluates mutual
information between individual feature and class labels, and selects those
features that have maximum mutual information with class labels but less
redundant among the selected features. However, because of large errors in
estimating the mutual information, the performance of MIFS is degraded.
Kwak and Choi®? enhanced the MIFS method under the assumption of
uniform distributions of information of input features, and presented an
algorithm called MIFS-U. MIFS-U®® makes a better estimation of the
mutual information criterion than MIF'S, but it still fails to give the accurate
estimation formula without the parameter 3 to be preset by users, which is
related to the redundancy of selected features. So the problem of selecting
input features can be solved by computing the mutual information between
input features and output classes. This was formulated by Battiti as a
“feature reduction” problem as [FRn-k].%

Assume S is the subset of already-selected features, that F' is the subset
of unselected features, S F = ®, and that C is the output classes. For a
feature f; € F to be selected, the mutual information I(C; S, f;) should be
the largest one among those I(C; S, f;)s, fi € F.

Notice that the mutual information I(C; S, f;) can be represented as:

I(C; S, fi) = 1(C5.5) + 1(C5 filS) (8.4)

For a given feature subset S, since I(C;S) is a constant, to maximize
I(C; S, f;), the conditional mutual information I(C;f;|S) should be
maximized. Furthermore, the conditional mutual information I(C; f;|S) can
be represented as:

I(C; filS) = I(C; fi) = 1(C5 fi3.5) (8.5)
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To decrease the influence of parameter 3 on Battitis MIFS,?® we consider
a more accurate estimation of the redundant information Ir.

Proposition 1: For any fs € S, f; € F, suppose that the information is
distributed uniformly throughout the regions of H(fs), H(f;), and H(C),*
and that the classes C' do not change the ratio of entropy of fs; to the
mutual information between f; and f;; if all the selected features in S
are completely independent to each other, the total redundant information
of the candidate feature f; to all the selected features in subset S with
respect to output classes C, denoted by 1., can be calculated by the simple
summation.

QMIFS

(1) Initialization: Set F' < initial set of n features, S « empty set.

(2) Computation of the MI with the output class: Vf; € F, compute
I(C; fi).

(3) Selection the first feature: Find the feature that maximizes I(C; f;), set
F—Ffi,S<f

(4) Greedy selection: Repeat until desired numbers of features are selected.

e Computation of entropy: Vfs € S, compute H(fs) if it is not yet
available.

e Computation of the MI between variables: For all couples of features
(fifs) with f; € F, f, € S, compute I(f;,fs) and ¢;, =
I(fi; f)/H(fr), if it is not yet available.

e Selection of the next feature: Choose the feature f; € F that
maximizes I(C; f;) = B3 ;15 1. set F — F fi, S — f;.

(5) Output the set S containing the selected features.

8.2.5. Floating search for feature selection

Exhaustive search is computationally prohibitive. Heuristic search employs
monotonic features i.e., adding a feature to the current set, does not
decrease value of criterion function. But breakdown to sequential search is
structural errors which can cause non-monotonicity.5%%% So here sequential
search is combined with backtracking to improve accuracy. Here number
of forward and backtracking steps is dynamically controlled. The resulting
feature set are not nested as in (1, r) algorithm, so there is sufficient chance
to correct the decision in later steps. In general (1, r) there is no way of



230 A. K. Jagadev, S. Devi and R. Mall

predicting the best values of ‘I’ and ‘r’. In floating (1, r), there is no backward
steps at all if the performance can not be improved. Thus parameter setting
is not needed at all. Still there is no theoretical bound on the computational
cost of the algorithm.

8.2.6. Feature selection for SVM

Support vector machine can be utilized as a induction algorithm for
selecting features. Generally gradient descent technology can be used. Here
SVM?3b takes advantage of performance increase of wrapper methods.

Working Principle:

(1) An optimal hyper plane is selected.

(2) Maximal marginal hyper plane is chosen. The decision function is
f(x) = w.d(z) +b.

(3) Here performance depends upon large margin M and E (R?/M?) where
all training tuples are within a sphere of radius R.

(4) But SVM®S can suffer in high dimensional spaces where many features
are irrelevant.

8.2.7. Feature weighting method

It is easier to implement in on-line incremental settings, e.g., WINNOW
an algorithm that updates weights in a multiplicative manner, rather than
additively as in perception rule.5” So its behavior degrades logarithmically
with the number of irrelevant features.

(1) Initialize weights w;,i = 1(1)n of the features to 1.

(2) For (z1,...,2,) output ‘1" if wyzq + - - + wpzy, >=n else ‘0.

(3) If the algorithm predicts ‘—ve’ on a ‘+ve’ example, then for each z; = 1,
double the value of w; else make w; /2.

(4) Goto Step 2.

8.2.8. Feature selection with dynamic mutual information

DMIFS: Feature selection using dynamic mutual information.
Input: A training dataset T = D(F,C).
Output: Selected features S.
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—_

Initialize relative parameters: F' = F; S = ¢; D, = D; D; = ¢.
Repeat.

For each feature f € F' do.

Calculate its mutual information I(C; f) on Dy;

If I(C; f) =0 then F = F — f;

Choose the feature f with the highest 1(C; f);
S=SUf;F=F—f,

Obtain new labeled instances D; from D, induced by f;
Remove them from D,, i.e., D, = D, — Dy;

Until F' = ¢ or |Dy| = Ir.
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This algorithm works in a straightforward way. It estimates mutual
information for each candidate feature in F with the label C. During
calculating step, feature will be immediately discarded from F if its
mutual information is zero. In this situation, the probability distribution
of the feature is fully random and it will not contribute to predict the
unlabeled instances Du.”®"' After that, the feature with the highest mutual
information will be chosen. It is noticed that the search strategy in DMIFS
is sequential forward search. This means that the selected subset obtained
by DMIFS is an approximate one.

8.2.9. Learning to classify by ongoing feature selection

Existing classification algorithms use a set of training examples to select
classification features, which are then used for all future applications of the
classifier. A major problem with this approach is the selection of a training
set: a small set will result in reduced performance, and a large set will
require extensive training. In addition, class appearance may change over
time requiring an adaptive classification system. In this paper, we propose a
solution to these basic problems by developing an on-line feature selection
method, which continuously modifies and improves the features used for
classification based on the examples provided so far.

Online feature selection (n; k; e): Given a time point in the online
learning process following the presentation of e examples and n features,
find the subset with k < n features that is maximally informative about
the class, estimated on the e examples. For computational efficiency, an
23,72 method will also be of use when the set of features to
consider is large, even in a non-online scheme. It then becomes possible to

on-line selection
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consider initially a limited set of candidate features, and consider new ones
incrementally until an optimal subset is selected. The proposed algorithm
proceeds in an iterative manner: it receives at each time step either a new
example or a new feature or both, and adjusts the current set of selected
features. When a new feature is provided, the algorithm makes a decision
regarding whether to substitute an existing feature with the new one, or
maintain the current set of features, according to a value computed for
each feature relative to the current feature set. The value of each feature is
evaluated” by the amount of class information it contributes to the features
in the selected set. The algorithm also keeps a fixed-size set of the most
recent examples, used to evaluate newly provided features. In this way, the
evaluation time of the features value, which depends only on the number
of examples and the number of features in the selected set, is constant
throughout the learning. Given a feature f and a set of selected features
S, the desired merit value MV (f;S)™ should express the additional class
information gained by adding f to S. This can be measured using mutual
information by:

MV (f;8) =1(f;8:C) = I(5;C), (8.6)

where [ stands for mutual information.

8.2.10. Multiclass MTS for simultaneous feature selection
and classification

Here the important features are identified using the orthogonal arrays
and the signal-to-noise ratio, and are then used to construct a reduced
model measurement scale. Mahalanobis distance and Taguchi’s robust
engineering.” Mahalanobis distance is used to construct a multidimensional
measurement scale and define a reference point of the scale with a set
of observations from a reference group. Taguchi’s robust engineering is
applied to determine the important features and then optimize the system.
The goal of multiclass classification problems”® " is to find a mapping or
function,C; = f(X), that can predict the associated class label C' — (i) of a
given example vector X. Thus, it is expected that the mapping or function
can accurately separate the data classes. MTS is different from classical
multivariate methods in the following ways.”® ™ First, the methods used in
MTS are data analytic instead of probability-based inference. This means
that MTS does not require any assumptions on the distribution of input
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variables. Second, the Mahalanobis distance in MTS is suitably scaled and
used as a measure of severity of various conditions. MTS can be used not
only to classify observations into two different groups (i.e., normal and
abnormal) but also to measure the degree of abnormality of an observation.
Third, every example outside the normal space (i.e., abnormal example) is
regarded as unique and does not constitute a separate population.

To implement MMTS, there are four main stages:

(1) Construction of a full model measurement scale with Mahalanobis?®
space of each class as the reference.

(2) Validation of the full model measurement scale.

(3) Feature selection, and

(4) Future prediction with important features.

Thus, not only the class prediction ability but also the feature selection
efficiency (FSE) should be simultaneously considered when algorithms are

E60:80 was proposed and

evaluated. For this reason, a measurement of FS
used in this study in addition to employing balanced classification accuracy
(BCA)%2:8L as the classification accuracy index. FSE is defined as the
geometric mean of the feature stability and the percentage of removed

features, and a higher value is preferred in the feature selection.

8.3. Soft computing for feature selection

8.3.1. Genetic algorithm for feature selection

Among the different categories of feature selection algorithms, the
evolutionary algorithms (mainly genetic algorithm (GA)) is a rather recent
development. The GA is biologically inspired and has many mechanisms
mimicking natural evolution. It has a great deal of potential in scientific and
engineering optimization or search problems. Furthermore, GA is naturally
applicable to feature selection since the problem has an exponential search
space. The individual encoding and fitness function are two important steps
to be determined before proceeds into the details of genetic algorithm
for feature selection. The other genetic operators are the same with the
standard genetic algorithm but some authors are modified to some extent
for better effectiveness of their algorithms.
The following steps are relevant for GA based feature selection.

e 1st step is to isolate most relevant associations of features.
e 2nd step is to class individuals.
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e Then the crossover and mutation operations are performed to get the
next candidate subset.

Generally, genetic algorithm exhibits tournament selection as the
prime operation.’? Finally a fitness function evaluates the subset. Every
chromosome in the population represents an example of the set, where each
gene is a feature. There is not a unique representation of the features in the
chromosomes. In the case of a transactional database in database mining
and the vector space model in text mining. A gene has a value {0, 1},
meaning absence/presence of that feature in the example, respectively. The
weighting approach®® is also generalized. Especially in text mining, where
the features are represented by their frequency in the document or another
value based on it. Nevertheless, there are not too many approaches dealing
with other types of data, where the uncertainty is considered. The rest of the
genetic parameters are not generally fixed. The size of the population does
not seem to have a relation with the number of features, and the crossover
and mutation rate utilized are the standard (0.6 and 0.001, respectively).
Most of the approaches consider Wrapper methods, although the filter ones
seem to be the most adequate in problems with a large number of features,
especially when they are combined with GAS.54

8.3.2. ELSA

ELSA springs forms algorithms originally motivated by artificial life models
of adaptive agents in ecological environments.®* Modeling reproduction
in evolving populations of realistic organisms requires that selection, like
any other agent process, be locally mediated by the environments in
which the agents are situated. In a standard evolutionary algorithm, an
agent is selected for reproduction. Based on how its fitness compares to
that of other agents. In ELSA, an agent (candidate solution) may die,
reproduce, or neither based on an endogenous energy level that fluctuates
via interactions with the environment. The energy level is compared
against a constant selection threshold for reproduction. By relying on
such local selection, ELSA reduces the communication among agents to
a minimum. The competition and consequent selective pressure is driven
by the environment.®> There are no direct comparison with other agents.
Further the local selection naturally enforces the diversity of the population
by evaluating genetic individuals based on both quality measurements and
on the number of similar individuals in the neighborhood in objective
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Initialize population of agents, each with energy 6/2
While there are alive agents and for T iterations
for each energy source ¢
foreachv(0 .. 1)
Eenvtc (V)‘_2VEct0t
endfor
endfor
for each agenta
a’—mutate(crossover(a randommate))
for each energy source ¢
v« Fitness(a’ c)
AE—min(v, E_5 (V)
Een\-'tc (V)= Een\-'tc (v)- AE
E,«—E,+AE
endfor
Ea‘_ Ea'Ecost
if(E,= 8)
inserta’ into population
E,—E,2
E.— E.-E.
elseif (E,<0)
remove a from population
endif
endfor
endwhile

Fig. 8.4. Pseudo code of ELSA.

space. The bias of ELSA toward diversity makes it ideal for multi-objective
optimization, giving the decision maker a clear picture of pareto-optimal
solutions from which to choose. Previous research has demonstrated the
effectiveness of ELSA for feature selection in both supervised®$87 and
unsupervised®® learning. The pseudo code for ELSA is given in Fig. 8.4.

8.3.3. Neural network for feature selection

The development of the artificial neural networks (ANNs) has been inspired
in part by the fact that the most advanced learning system, human brains
consists of millions of interconnected neurons. Contrasted with decision
tree algorithms, ANNs can approximate well both real-valued and discrete-
valued target functions. In particular, ANNs have proven successful in
many practical problems. For example, ANNs®? have been applied in
management sciences, finance and marketing for stock market prediction,
bankruptcy prediction, customer clustering and market segmentation with
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Fig. 8.5. A typical neural network model.

some success. It was proved in that any function can be approximated to
arbitrary accuracy by a network with three layers of units when the output
layer uses linear units and the hidden layer uses sigmoid units. The back
propagation algorithm is the most common network learning algorithm.
Typically the neural network model consists of a number of neurons which
are connected by weighted links. We show a representative model with three
layers, an input layer, a hidden layer and an output layer in Fig. 8.5 below.
Neural networks with back propagation learning have great representational
power can be very effective for both discrete valued and real valued data
that are often noisy. However, it is more difficult for humans to understand
the resulting models from neural networks than learned rules from decision
tree algorithms. Further, the performance of ANNs also depend on many
parameters such as number of training approaches, the activation functions
at the hidden and output layers, learning rate and number of hidden nodes.
Longer training times than decision tree algorithm is another factors that
hinders the usage of ANNs for high dimensional data sets. For recurrent
networks that were proposed for the analysis of time series data and®® for
optimal brain damage approach that dynamically alters network structure.

8.4. Hybrid Algorithm for Feature Selection

Genetic algorithms (GAs) and support vector machines (SVMs)3! are
integrated effectively based on a wrapper approach. Specifically, the GA
component searches for the best attribute set by applying the principles
of an evolutionary process. The SVM then classifies the patterns in the
reduced datasets, corresponding to the attribute subsets represented by the
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Attribute 1 | [ Attribute 2 | ----e--e----ooo- [ Attribute N | [ Class Attribute

Fig. 8.6. Structure of a chromosome (bit set).

GA chromosomes. SVMs use kernel®® functions to transform input features
from lower to higher dimensions. Implementation of GAs is achieved by
translating the parameters into a coded string of binary digits, as is done
in this proposed hybrid. These strings denote the attributes present in the
data sets, with the length of the string being equal to the N + 1, where
N is the number of attributes excluding the class attribute. A typical
structure (a chromosome) is illustrated in following Fig. 8.6. After each
generation, the algorithm would then check two termination criteria.
Firstly, if convergence is achieved — the case when all chromosomes in
the population possess the same fitness levels — the evolution process
can then be halted. The maximum number of generations that the user
permits the algorithm to run before stopping the process is set prior to
commencement. The second criterion is based on this parameter that is
decided by the user. If convergence is not reached before the maximum
number of generations,%%:%9 the algorithm will cease.

Comparison with pure SVM: The GA-SVM hybrid was tested with
pure SVM to investigate the performance of the additional attribute
selection component. Pure SVM in this case means that no attribute
selection was done on the data sets. The GA-SVM hybrid incorporates the
stochastic nature of genetic algorithms together with the vast capability of
support vector machines in the search for an optimal set of attributes. The
eradication of the redundant attributes using the GA-SVM hybrid improves
the quality of the data sets and enables better classification of future unseen
data.

8.4.1. Neuro-Fuzzy feature selection

This feature selection approach is shown to yield a diverse population of
alternative feature subsets with various accuracy/complexity trade-off. The
algorithm is applied to select features for performing classification with
fuzzy model. Fuzzy®® models involving only a few inputs can be more
compact and transparent, thus offering improved interpretability of the
fuzzy rule base. Such subtleties are often overlooked when feature selection
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is based on simple correlation tests, or on information measures such
as mutual information, between the potential predictors and the output
variable. VEGA (Vector Evaluated Genetic Algorithm),? which develops
different subpopulations, optimizing each objective separately and the
overall population at each generation, is formed by merging and shuffling
the sub-populations.

(1) Individuals are randomly selected from the population to form a
dominance tournament group.

(2) A dominance tournament sampling set is formed by randomly selecting
individuals from the population.

(3) Each individual in the tournament group is checked for domination
by the dominance sampling group (i.e., if dominated by at least one
individual).

(4) If all but one of the individuals in the tournament group is dominated
by the dominance tournament sampling group, the non dominated one
is copied and included in the mating pool.

(5) If all individuals in the tournament group are dominated, or if at
least two of them are nondominated, the winner which best seems
to maintain diversity?! is chosen by selecting the individual with the
smallest niche count. The niche count for each individual is calculated
by the following formula:

m(i) =Y s(di;) (8.7)

j=1

where m; is the niche count of the ith individual in the tournament
group. s is calculated by the formula:

dij \“ .
s(dij) = b (0_s> i diy < 05 (8.8)
0 otherwise

where d;; is the Hamming distance of the above individual with each
of the N individuals already present in the mating pool and oy is
the Hamming distance threshold, below which two individuals are
considered similar enough to affect the niche count.

(6) If the mating pool is full end tournament selection; otherwise go back
to Step 1.
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Here we follow a fuzzy classifier design method based on cluster
estimation.”? The main characteristics of this approach are:

(1) An initial fuzzy classification model is derived by cluster estimation.

(2) The fuzzy rule base contains a separate set of fuzzy rules for each class.

(3) Double-sided Gaussian membership®® functions are employed for the
premise parts of the fuzzy rules. These are more flexible than the typical
Gaussian kernel.

(4) The classification outcome is determined by the rule with the highest
activation.

(5) Training is performed by a hybrid learning algorithm, which combines
gradient-based and heuristic adaptation of the membership functions
parameters. Only the rules with the maximum activation per class are
updated for each pattern. The cost function to be minimized is a
measure of the degree to which the rules for each class are activated
when a pattern that belongs to that particular class is inserted.
Specifically, for each pattern, the cost is defined as:

1
E= 5(1 — He,mazx + Mﬁc,maI)Q (89)

where ficmaz 1S the firing strength of the rule among the set of rules
belonging to the correct class, which achieves the maximum activation
among the correct class rules, while?? is the firing strength of the fuzzy
rule, which belongs to the wrong class and achieves the maximum
activation amongst the rules of its class. In such fuzzy models, it is
straightforward to study the effect of removing an input, by simply
removing all the antecedent clauses which are associated with the
deleted input.

8.5. Multi-Objective Genetic Algorithm for Feature Selection

Feature selection can naturally be posed as a multi-objective search
problem, since in the simplest case it involves minimization of both
the subset cardinality and modeling error. Therefore, multi-objective
evolutionary algorithms (MOEA) are well suited for feature selection.
Evolutionary Multi-Objective Feature Selection (EMOFS)* is employed
to handle such objectives, namely the specificity and sensitivity of
classifiers (shown in Fig. 8.8). The obvious choice for assessing a classifier’s
performance is to estimate its misclassification rate. Yet, in many problem
domains, such as in engineering or medical diagnosis, it makes more
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sense to optimize alternative objectives. A typical approach is to analyze
the diagnostic performance by means of a confusion matrix. Instead of
minimizing the misclassification rate, it is preferable to maximize the
specificity and sensitivity of a diagnostic model. If a fixed hypothesis space
and induction algorithm is assumed, then the feature selection problem is
to select a subset S7 so that:
S7(H(z)) = arg min{(J(z))}
Sies
= arg g}zeg{HSJL sensitivity, specificity]} (8.10)

where the objective function J(z) is a vector consisting of three terms,
the subset cardinality, S7, and the classifier’s specificity and sensitivity.
Typically in multi-objective optimization problems, there is no single
optimal solution, but a range of Pareto optimal solutions. The key concept
here is dominance: a solution J1 is said to dominate a solution J2 if and only
if J1 is no worse than J2 in any of the objectives, while it is strictly better
than J2 in at least one objective. Accordingly, the aim of multi-objective
feature selection is to identify a set of non-dominated feature subsets, rather
than a single optimal subset. Elitist Niched Pareto Genetic Algorithm
(ENPGA)% employs a simple and computationally appealing way to obtain
a reduced-size elite set. Individuals from the Archive Set are selected for
inclusion in the Elite Set by tournament selection, where the winner is
determined by fitness sharing. Here, binary tournaments are employed,
while sharing is performed in the Hamming and subset cardinality spaces,
in a way similar to that for selection for reproduction. The niche count
is calculated from the distances of the competing individuals to those
belonging to the partially filled Elite Set, thus encouraging diversity in
both the Hamming distance as well as the subset cardinality space. The
population management policy employed in ENPGA involves:

P,, P,: parent and offspring population respectively
P., P,: elite and archive set respectively
Np, Npmin: Parent population size, and minimum allowable population size
respectively.
N,: Offspring population size is twice the parent population size

N,, Ng: Elite and Archive set size respectively; Ngpqz 18 the maximum
allowable elite set size. P, is selected from P, by tournament
selection, while P, includes P., with the rest of P,’s individuals
selected from P, with Pareto domination tournament selection.
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A specialized crossover operator, the Subset Size-Oriented Common
Features crossover (SSOCF)% is employed to facilitate the exploration
around a wide area at the vicinity of the Pareto front, while avoiding
the “averaging” effect. Figure 8.7 describes averaging effect of crossover
operation.

Similarly the idea behind NSGA is that a ranking selection method is
used to emphasize good points and a niche method is used to maintain
stable subpopulations of good points. It varies from simple genetic
algorithm only in the way the selection operator works. The crossover and
mutation remain as usual. Before the selection is performed, the population
is ranked on the basis of an individual’s nondomination. The nondominated
individuals present in the population are first identified from the current
population. Then, all these individuals are assumed to constitute the first
nondominated front in the population and assigned a large dummy fitness
value. The same fitness value is assigned to give an equal reproductive
potential to all these nondominated individuals. In order to maintain the
diversity in the population, these classified individuals are then shared with
their dummy fitness values.?” Sharing is achieved by performing selection
operation using degraded fitness values obtained by dividing the original
fitness value of an individual by a quantity proportional to the number of
individuals around it.

8.6. Parallel Genetic Algorithm for Feature Selection

Parallelization of self-adaptive genetic algorithms (GAs) has received
considerable attention in recent years due to its significant speedup. GAs
resembles iterative methods but they aim to search the solution space more
broadly. The idea of GAs is to maintain a population of individuals, each
giving a solution to the problem in hand. The quality of an individual
is determined by calculating the value of a suitable fitness function.
A new generation of individuals is created by applying crossover and
mutation operations to the individuals. A self-adaptive genetic algorithm
for clustering (SAGA)% is described. In this algorithm, each individual
contains several parameter values in addition to the actual solution. The
algorithm still has a few parameters, but their values are not critical to
the result. SAGA was demonstrated to be very robust and to achieve
excellent results. The main drawback of the method is the long running
time. The performance of a sequential GA can often be somewhat improved
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Fig. 8.7. Averaging effect of n-point cross over.

gcncmtion =0
Trutialisation; Py(#; has approxumately uniform distnbution across all features and subset sizes
model construction/ evaluation for all subsets in P,(#; fitness assignment
extract iitial non donunated front; Form Py(0).
“"l'lllle reﬂninﬂtioll C.f_‘itelioll iS not Sﬂt‘-lsﬁad do
=+l
apply SSOCF to Produce Offspring P,(#) from Py(#; Inchude Po(#.
mutate P/(#) to produce Ps(#)
model construction/evaluation for all subsets in P,(#); fitness assignment
extract non domumated fl:ont; UPclatc I‘,{t)
# | P()|> N then
select P,(#) from P, (#) by tournament selection with fitness shanng
else P.(#)«<P,(#)
N, =min{N__ N,}

N, =min{N ., 10-N,}
select Py(#+7) from Py(# with Pareto domination tournaments
update mutation rate

end

end

Fig. 8.8. Pseudo code of EMOFS.
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GA:
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- genetic operations
Individual
fitness

Fitness Fitness Fitness
Calculation Calculation Calculation
Slave 1 Slave 2 Slave 3

Fig. 8.9. Master-slave model of parallelization.

by re-considering the representation of the individuals, redesigning the
reproduction operators, balancing between the population size and the
number of generations, introducing suitable local search operators, etc.
Parallel GAs are typically classified into three classes according to their
approach on parallelization: fitness level, population level and individual
level parallelization. Hierarchical or hybrid parallelization models are often
considered as the fourth class.

Fitness level: In the fitness level parallelization a master process
distributes the evaluation of the individuals to slave processes. The master
process performs all the other tasks of the GA shown in Fig. 8.9. This
kind of parallelization is useful when the fitness value calculation is time-
consuming so that the data transfer between the master and the slaves will
not become a bottleneck of the system.

Population level: In the population level parallelization a complete
GA including an entire population is placed at each process and an
interconnection network between the processes is constructed, which is well
described in Fig. 8.10.

Individual level: Parallelization can also be realized at individual level.
Commonly, the individuals are placed in a grid. Each grid node contains a
single individual.
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Fig. 8.10. Island model, bidirectional ring topology.

Crossover is performed on neighboring individuals and the neighbor for
crossover is selected by a suitable rule, such as tournament selection. This
kind of parallel algorithms are often called cellular parallel GAs due to their
resemblance of cellular automata® (see Fig. 8.11). The model is also called
fine-grained due to the distribution of memory and genetic information
among processors.

Hierarchical models: There is a rapidly growing set of parallel GA
models which contain features from more than one of the above types.
These are often called hierarchical or hybrid models. A hybrid model
consisting of coarse grained GAs connected in a fine-grained GA style
topology performed better than a plain coarse-grained or fine-grained GA.
On the other hand, a coarse-grained'°® GA with a fine-grained GA on each
island performed rather badly.

Parallel self-adaptive GA: Our parallel GA (ParSAGA) uses the island
parallelization model, where QGAs!'0!
with each other, see Sec. 2.2. The processes are seen as islands which

occasionally send individuals (“emigrants”) to other islands. We have

run independently and communicate

implemented island parallelization using a gene bank model. In the gene
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Fig. 8.11. Cellular model.

bank model, instead of sending emigrants directly to other islands, islands
communicate only with the gene bank process.

Self-adaptive genetic algorithm for clustering (SAGA).

(1) Generate S random individuals to form the initial generation.
(2) Iterate the following T' times.

e Select Sp surviving individuals for the new generation.
e Select S — Sp pairs of individuals as the set of parents.
e For each pair of parents (L4, Lg) do the following:

— Determine the strategy parameter values (yz,,, %5, , Vr, ) for the
offspring by crossing the strategy parameters (v, ¥r,, Vi, ) and
(vLy, YL, , Vi, ) of the two parents.

— Mutate the strategy parameter values of L,, with the probability
(a predefined constant).

— Create the solution wy, by crossing the solutions of the parents.
The crossing method is determined by vy, .

— Mutate the solution of the offspring with the probability ¥y, .
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— Add noise to wp,,. The maximal noise is V7, ,.
— Apply k-means iterations to wy,, .
— Add L, to the new generation.

e Replace the current generation by the new generation.

(3) Output the best solution of the final generation.

Steps added to SAGA for island processes in Step 2 above are:

e Send an individual to the gene bank.

e Receive an individual from the gene bank and add it to the current
population.

e Remove an individual from the current population.

Gene bank process

(1) Select coordinates K for each island g.
(2) Repeat the following steps until a stopping condition is fulfilled.

Sleep until an island process » makes a communication request.
Receive an individual L, from r.

Select an individual Lg from the gene bank.

Send L to island r.

Add L, to the gene bank.

If the gene bank contains B + 1 individuals, remove the worst
individual from the gene bank.

(3) Return the solution of the best individual in the gene bank.

8.7. Unsupervised Techniques for Feature Selection

Feature selection in unsupervised learning can be considered as a sub-
problem of unsupervised model selection. The problem of determining
an appropriate model in unsupervised learning has gained popularity in
the machine learning, pattern recognition and data mining communities.
Unsupervised model selection addresses either how to identify the optimal
number of clusters K or how to select feature subsets while determining the
correct numbers of clusters. The latter problem is more difficult because
of the inter dependency between the number of clusters and the feature
subsets used to form clusters. To this point, most research on unsupervised
model selection has considered the problem of identifying the right number
of clusters using all available features.!92103
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Fig. 8.12. Block diagram of multi-objective unsupervised feature selection.

We have described a multi-objective evolutionary approach to semi-
supervised clustering. In this algorithm, the concept of semi-supervision is
implemented by optimizing separate objectives related to the performance
with respect to internal and external information. Specifically, the algorithm
works through the optimization of an internal cluster validation technique,
the Silhouette Width, combined with the optimization of an external
validation technique, the Adjusted Rand Index.'% The Silhouette Width is
computed across both labeled and unlabelled data, whereas the Adjusted
Rand Index can be computed for the labeled data only. The optimization
algorithm used is an existing multi-objective evolutionary algorithm
(MOEA) from the literature, PESA-II'% which is shown in Fig. 8.12. In
order to obtain good scalability to large data sets, a specialized encoding
and specialized operators are used. In particular, both the encoding and
the mutation operator make use of nearest neighbor lists to restrict the size
of the search space.

(1) PESA-II: The optimizer used is the elitist MOEA, PESA-II, described
in detail. PESA-II updates, at each generation, a current set of
non-dominated solutions stored in an externale to undergo reproduction
and variation. PESA-II uses a selection policy designed to give
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equal reproduction opportunities to all regions of the current non-
dominated front; thus in our application, it should provide a diverse
set of solutions trading off the three different objectives. No critical

d” 196 selection policy, as it

parameters are associated with this “niche
uses an adaptiv population (but limited size), and uses this to build
an internal population size range equalization and normalization of the
objectives.

(2) Encoding and variation operators: The application of PESA-II to
feature selection requires the choice of an appropriate encoding and
operators. Due to the use of k-means, there are two components
of a solution that need to be coded for: the actual feature subset,
and the number of clusters. A simple binary encoding is used to
select /deselect!7 features: the genome comprises one bit for every
feature, with a value of 1 indicating the activation of a feature and
a value of 0 indicating its deactivation.

(3) Clustering algorithm: The k-means algorithm starts from a random
partitioning of the data into k clusters (where k is an input parameter).
It repeatedly:

e computes the current cluster centers (that is, the average vector of
each cluster in data space) and

e reassigns each data item to the cluster whose centre is closest to
it. It terminates when no more reassignments take place. By this
means, the intra-cluster variance, that is, the sum of squares of the
differences between data items and their associated cluster centers
is locally minimized.

(4) Objective functions: The Silhouette value'!'® for an individual data
item, which reflects the confidence in this particular cluster assignment,
is:

bi—ai

S(i) = (8.11)

max(a;, b;)

8.8. Evaluation functions

An optimal subset is always relative to a certain evaluation function (i.e., an
optimal subset chosen using one evaluation function may not be the same
as that which uses another evaluation function). Typically, an evaluation
function tries to measure the discriminating ability of a feature or a
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subset to distinguish the different class labels. Considering these divisions
and the latest developments, we divide the evaluation functions into five
categories: distance, information (or uncertainty), dependence, consistency,
and classifier error rate. In the following subsections we briefly discuss each
of these types of evaluation functions.

Distance measures: It is also known as separability, divergence, or
discrimination measure. For a two-class problem, a feature X is preferred
to another feature Y if X induces a greater difference between the two-class
conditional probabilities than Y; if the difference is zero, then X and Y are
indistinguishable. An example is the Euclidean distance measure.

Information measures: These measures typically determine the infor-
mation gain from a feature. The information gain from a feature X is defined
as the difference between the prior uncertainty*® and expected posterior
uncertainty using X . Feature X is preferred to feature Y if the information
gain from feature X is greater than that from feature Y (e.g., entropy
measure).108

Dependence measures: Dependence measures or correlation measures
qualify the ability to predict the value of one variable from the value of
another. The coefficient is a classical dependence measure and can be used
to find the correlation between a feature and a class. If the correlation of
feature X with class C is higher than the correlation!%? of feature Y with C,
then feature X is preferred to Y. A slight variation of this is to determine
the dependence of a feature on other features; this value indicates the degree
of redundancy of the feature. All evaluation functions based on dependence
measures can be divided between distance and information measures.!10:111
But, these are still kept as a separate category, because conceptually, they
represent a different viewpoint.''2 More about the above three measures
can be found in Ben-Basset’s survey.'!3

Consistency measures: These measures are rather new and have been
in much focus recently. These are characteristically different from other
measures, because of their heavy reliance on the training dataset and the
use of the Min-Features bias in selecting a subset of features.''* Min-
Features!!® bias prefers consistent hypotheses definable over as few features
as possible. These measures find out the minimally sized subset that satisfies
the acceptable inconsistency rate that is usually set by the user.
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Classifier error rate measures: The methods using this type of
evaluation function are called “wrapper methods”, (i.e., the classifier is
the evaluation function).''® As the features are selected using the classifier
that later on uses these selected features in predicting the class labels of
unseen instances, the accuracy level is very high.

8.9. Summary and Conclusions

Feature-selection method can significantly reduce the computational cost
and possibly find an even better feature subset than directly applying a
classifier-specific feature-selection algorithm to the full feature set. In the
first stage of a two-stage design,” a classifier-independent feature-selection
algorithm is used to remove most of the non informative features. In the
second stage, a classifier-specific feature-selection algorithm is applied to
further refine the feature set from the first stage.

This paper illustrates the pros and cons of various methods of feature
selection which are listed below.

Accuracy: The features used to describe the patterns implicitly define
a pattern language. If the language is not expressive enough, it fails to
capture the information necessary for classification. Hence, regardless of
the learning algorithm,3! the amount of information given by the features
limits the accuracy of the classification function learned.

Required learning time: The features describing the patterns impli-
citly determine the search space that the learning algorithm must explore.
An abundance of irrelevant features can unnecessarily increase the size
of the search space and hence the time needed for learning a sufficiently
accurate classification function.

Necessary number of examples: All other things being equal, the
larger the number of features describing the patterns, the larger the number
of examples needed to train a classification function to the desired accuracy.

Cost: In medical diagnosis, for example patterns consist of observable
symptoms along with the results of diagnostic tests. These tests have various
associated costs and risks; for instance, an invasive exploratory surgery
can be much more expensive and risky than, say, a blood test. Those
comparisons can enable new comers for more efficient work on these topics.



Soft Computing for Feature Selection 251

Finally, we outline few research directions in the area of feature

selection.

(1)

Define standardized evaluation criteriall?

comparison of existing and novel approaches.

Scale up intelligent focusing approaches by combining technologies from
machine learning research and the database community.

Develop more intelligent focusing solutions that provide data reduction

to enable systematic

techniques beyond pure statistical sampling*® and make use of the
specific characteristics of concrete contexts in data mining.

A more rigorous investigation is required to formulate and implement
unsupervised feature selection as a multi-objective problem.

Much work still remains to be done. Instance and feature selection

corresponds to scaling down data and reduce the feature space. When we
understand better instance and feature selection, it is natural to investigate

if this work can be combined with other lines of research in overcoming the

problem of huge amounts of data.
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This chapter presents a hybrid approach for solving classification problems.
‘We have used three important neuro and evolutionary computing techniques
such as Polynomial Neural Network, Fuzzy system, and Particle Swarm
Optimization to design a classifier. The objective of designing such a classifier
model is to overcome some of the drawbacks in the existing systems and to
obtain a model that consumes less time in developing the classifier model, to
give better classification accuracy, to select the optimal set of features required
for designing the classifier and to discard less important and redundant features
from consideration. Over and above the model remains comprehensive and easy
to understand by the users.

9.1. Introduction

mining. Given predetermined disjoint target classes C'q, Ca, ..

The classification task of data mining and knowledge discovery has received
much attention in recent years and is growing very fast. In addition
to classification task of data mining, there exist some more tasks like
association rule mining, clustering, dependency modeling, etc., in data
mining area. However, classification is a fundamental activity of data
.,Cn, a set of
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input features Fy, F, .., F};, and a set of training data T with each instance
taking the form (a1, aqg, ..., an), where a; (i =1,2,...,m) is in the domain
of attribute A;,7 = 1,2,...,m and associated with a unique target class
label the task is to build a model that can be used to predict the target
category for new unseen data given its input attributes values.

There are many classifiers like statistical, linear discriminant, k-nearest
neighbour, kernel, neural network, decision tree, and many more exist in the
literature. But linear classifiers are of special interest, due to their simplicity
and easy expansibility to non-linear classifiers. One of the most powerful
classical methods of linear classifiers is the least mean squared error
procedure with the Ho and Kashyap modification.! Two main disadvantages
of this approach are:

(1) The use of the quadratic loss function, which leads to a non- robust
method.

(2) The impossibility of minimizing the Vapnik-Chervonenkis (VC) dimen-
sion of the designed classifier.

The most important feature of the classifier is its generalization ability,
which refers to producing a reasonable decision for data previously unseen
during the process of classifier design (training). The easiest way to measure
the generalization ability is to use a test set that contains data that do
not belong to the training set. From statistical learning theory, we know
that in order to achieve good generalization capability, we should select a
classifier with the smallest VC dimension (complexity) and the smallest
misclassification error on the training set. This principle is called the
principle of Structural Risk Minimization (SRM).

In real life, noise and outliers may corrupt samples nominated for the
training set. Hence the design of the classifier methods needs to be robust.
According to Huber,? a robust method should have the following properties:

(1) Reasonably good accuracy at the assumed model.

(2) Small deviations from the model assumptions should impair the
performance only by a small amount.

(3) Larger deviations from the model assumptions should not cause a
catastrophe.

Many robust loss functions are discussed in Ref. 2. In this work the
absolute error loss function is taken due to its simplicity.
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The paper by Bellman et al.® was the starting point in the application
of fuzzy set theory to pattern classification. Since then, researchers have
found several ways to apply this theory to generalize the existing pattern
classification methods, as well as to develop new algorithms. There are two
main categories of fuzzy classifiers: fuzzy if-then rule-based and non if-then
rule fuzzy classifiers. The second group may be divided into fuzzy k-nearest
neighbors and generalized nearest prototype classifiers (GNPC). Several
approaches have been proposed for automatically generating fuzzy if-then
rules and tuning parameters of membership functions for numerical data.
These methods fall into three categories: neural-network-based methods
with high learning abilities, genetic (evolution)-based methods with the
Michigan and Pittsburg approaches, and clustering-based methods. There
are several methods that combine the above enumerated categories that
have proved effective in improving classification performance.* Recently, a
new direction in the fuzzy classifier design field has emerged: a combination
of multiple classifiers using fuzzy sets,” which may be included into the
non if-then fuzzy classifier category. In general, there are two types of the
combination: classifier selection and classifier fusion. In the first approach
each classifier is an expert in some local area of the feature space. In the
second approach all classifiers are trained over the whole feature space.
Thus, in this case, we have competition, rather than complementing, among
the fuzzy classifiers. Various methods have been proposed for fuzzy classifier
design; however, in contrast to statistical and neural pattern classifiers,
both theoretical and experimental studies concerning fuzzy classifiers do
not deal with the analysis of the influence of the classifier complexity on
the generalization error.

Feature selection happens to be an intrinsic part of most of the
classification methods. The task of feature selection is handled normally in
two different ways. The features are selected prior to use of the classification
technique or the feature selection is a part of the classification method. In
this chapter we will discuss a technique called Polynomial Neural Network
(PNN)® which requires no separate attention for features selection, rather
it selects the optimal set of features required for the model on the fly.

In this Chapter we have discussed the fuzzy swarm net,” which is
trained by the particle swarm optimization (PSO) technique. The fuzzy
swarm net contains a single layer perceptron. The input data is converted
to the fuzzy membership functions. These membership functions are
multiplied with the weights and fed to the perceptron. A set of such nets
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is considered as a swarm and the mean square error (MSE) of each net is
considered for training the nets using PSO.

Further this discussion has been extended by incorporating Polynomial
Neural Network (PNN) to the fuzzy swarm net architecture to design the
architectures for Optimal Polynomial Fuzzy Swarm Net (OPFSN).® To
design this model at the first step different combinations of the set of input
features are taken to generate linear/quadratic/cubic polynomials called
Partial Descriptions (PDs). Least Square Estimation (LSE) technique is
used to determine the coefficients of these PDs. The outputs of these PDs
are considered as the input to the fuzzy swarm net model to design the
classifier.

This chapter is organized as follows. In Sec. 9.2 the fuzzy net archi-
tecture is briefly discussed. Section 9.3 discusses the basics of particle swarm
optimization. Section 9.4 describes the fuzzy swarm net (FSN) classifier
design. The basic concept of PNN has been discussed in Sec. 9.5. Design
of classifier with Optimized Polynomial Fuzzy Swarm Net (OPFSN) has
been covered in Secs. 9.6. and 9.7 illustrates the experimental studies with
fuzzy swarm net and OPFSN models. We have concluded this chapter with
Sec. 9.8.

9.2. Fuzzy Net Architecture

The Multilayer Perceptron (MLP) architecture is used widely for many
practical applications, but it possesses certain drawbacks. A uniform or
standard model does not exist which will suit any type of application. For
each application a different model needs to be designed i.e., the user should
understand the complexity of the problem thoroughly and should decide
the number of hidden layers and the number of hidden nodes in each layer
to be taken. Understanding the complexity of a problem is not an easy
job for a new user, even an experienced user may face difficulties in making
correct decision about the architecture design. Therefore very often the user
opts for a trial and error method to decide the MLP architecture. But it
is also not viable to explore all possible designs from the vast search space
to find the best one. As a result instead of searching for the best one we
compromise with an architecture that is acceptable.

The user very often remains in search of a net that is free from such
complexities and time consuming efforts. As an alternative approach certain
flat nets are suggested such as Functional Link Artificial Neural Network
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(FLANN), Fuzzy Net, etc. Such network does not possess any hidden layer
and thereby completely overcomes the difficulties of deciding the number of
hidden layers and the number of hidden nodes in case of MLP architecture.
These flat nets normally use a single perceptron as its output layer which
makes the training process very simple and less cumbersome.

Functional link Artificial neural network (FLANN) originally proposed
by Pao? is a novel single-layer neural network capable of forming arbitrarily
complex decision regions. FLANN was developed as an alternative
architecture to the well-known multilayer perceptron network with
application to function approximation, pattern recognition and nonlinear
channel equalization.® 24 As a computationally efficient single-layer neural
network, the FLANN’s nonlinearity is introduced by the functional
expansion of the input pattern by linear, polynomial, trigonometric,
hyperbolic, Chebyshev orthogonal polynomial, Legendre, power series and
others. The main advantage of the FLANN is a reduced computational
burden by increasing the dimensionality of the input signal space with a set
of linearly independent nonlinear functions. These FLANN-based nonlinear
networks offer better performance in terms of the MSE level, convergence
rate and computational complexity over many networks such as the MLP
network, the RBF network and the polynomial perceptron network (PPN).

The objective of using Fuzzy net is not only to overcome the hazards
in MLP but much more. Using fuzzy set theory it is easy to model the
‘fuzzy’ boundaries of linguistic terms by introducing gradual memberships.
In contrast to classical set theory, in which an object or a case either is a
member of a given set or not, fuzzy set theory makes it possible that an
object or a case belongs to a set only to a certain degree.?? Interpretations of
membership degrees include similarity, preference, and uncertainty.2® They
can state how similar an object or case is to a prototypical one, they can
indicate preferences between sub optimal solutions to a problem, or they
can model uncertainty about the true situation, if this situation is described
in imprecise terms. In general, due to their closeness to human reasoning,
solutions obtained using fuzzy approaches are easy to understand and to
apply. Due to these strengths, fuzzy systems are the method of choice, if
linguistic, vague, or imprecise information has to be modeled.2”

Neural networks and fuzzy systems have established their reputation
as alternative approaches to information processing. Both have certain
advantages over classical methods, especially when vague data or prior
knowledge is involved. However, their applicability suffered from several
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weaknesses of the individual models. Therefore, combinations of neural
networks with fuzzy systems have been proposed, where both models
complement each other. These so-called fuzzy net systems allow overcoming
some of the individual weaknesses and offering some appealing features.
The basic idea of combining fuzzy systems and neural networks is to
design an architecture that uses a fuzzy system to represent knowledge
in an interpretable manner and the learning ability of a neural network
to optimize its parameters. The drawbacks of both of the individual
approaches — the black box behavior of neural networks, and the problems
of finding suitable membership values for fuzzy systems — could thus
be avoided. A combination can constitute an interpretable model that is

capable of learning and can use problem-specific prior knowledge.?8 3%

3137 is based on a fuzzy system which is trained by

A neuro fuzzy system
a learning algorithm derived from neural network theory. The (heuristical)
learning procedure operates on local information, and causes only local
modifications in the underlying fuzzy system.

A fuzzy net system can be viewed as a 3-layer feedforward neural
network. The first layer represents input variables, the middle (hidden)
layer represents fuzzy rules and the third layer represents output variables.
Fuzzy sets are encoded as (fuzzy) connection weights. It is not necessary
to represent a fuzzy system like this to apply a learning algorithm to it.
However, it can be convenient, because it represents the data flow of input
processing and learning within the model.

A fuzzy net can be interpreted as a system of fuzzy rules. It is also
possible to create the system out of training data from scratch, as it is
possible to initialize it by prior knowledge in form of fuzzy rules.

A fuzzy net system approximates an n-dimensional (unknown) function
that is partially defined by the training data. The fuzzy rules encoded within
the system represent vague samples, and can be viewed as prototypes of the
training data. A fuzzy net should not be seen as a kind of (fuzzy) expert
system, and it has nothing to do with fuzzy logic in the narrow sense.

The architecture of fuzzy net model uses a single perceptron.3?
The input vector is expanded into different membership functions. The
expansion input vectors effectively increases the dimensionality of the input
vector and hence the hyper planes generated by the fuzzy net?* 4! provides
greater discrimination capability in the input pattern space.

Let us discuss an example of designing a fuzzy net architecture. Figure 1
shows the architecture of this example of the fuzzy net. Each unit in the
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Fig. 9.1. A simple model of fuzzy net.

input layer has a triangular Gaussian membership function as its inner
function, given by:

1 xi—sm; 2

Oi (i, smy, thy) = 675( ) (9.1)
1(zi—me;?

O 2(x;, me;, th;) = 6_5( thi ) (9.2)
xz;—bg; 2

O,‘,_yg(l’,‘,, bgi, thL) = 67%( thy ) (9 3)
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where x; is the ith input feature, sm; is the low value of the ith input
feature, bg; is the high value of the ¢th input feature, me; is the medium
value of the ith input feature and th; is taken as (bg; — sm;)/3. Each input
data is the input of these membership functions (low, medium, high) and
the outputs of the units O;; (1 = 1 —n,j = 1,2,3) are the grades of
the membership functions. The inputs of the unit in the output layer are
w;,;O0; 5. The output unit has a sigmoid function f given by:

1

OZF(S):m

(9.4)

where s is the sum of the inputs of the output unit i.e.:

N 3
s= 330, (9.5)
i=1 j=1

o is the output of this network. The connection weights w; ; are modified
by the § rule.

9.3. Particle Swarm Optimization

The particle swarm algorithm is an optimization technique inspired by the
metaphor of social interaction observed among insects or animals. The
kind of social interaction modeled within a PSO is used to guide a
population of individuals (called particles) moving towards the most
promising area of the search space.*>”*” PSO was developed and first
introduced as a stochastic optimization algorithm by Eberhart and
Kennedy.*® During this period, PSO gained increasing popularity due to
its effectiveness in performing difficult optimization tasks. Among other

applications, it has been applied to tackle multi-objective problems,*’
minimax problems,’®®! integer programming problems,®> noisy and
53-55 56

continuously changing environments, errors-in-variables problems,

58-64 parameter learning of

71-73 modeling™ "¢ and

existence of function zeros,>” power systems
neural networks (NNs),%:6¢ control,5” " prediction,
numerous engineering applications.”” 88

In a PSO algorithm, each particle is a candidate solution equivalent to
a point in a d-dimensional space, so the ith particle can be represented as
z; = (x;1,%i2,...,%;q). Each particle “flies” through the search space,
depending on two important factors, p; = (pi1,pi2,---,Pid), the best
position found so far by the current particle and py = (pg1,Pg2, - - -, Pgd),
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the global best position identified from the entire population (or within a
neighborhood).*4

The rate of position change of the ith particle is given by its velocity
v; = (vi,1,%i2,...,0;q). Equation (9.6) updates the velocity for each
particle in the next iteration step, whereas Equation (9.7) updates each

particle’s position in the search space:®9

0id(t) = 7(via(t =1) + 61(pi.a = wi,a(t = 1)) + b2 (pga — wi,a(t = 1)) (9.6)

.’Ei,d<t) = .’L‘i’d(t -1)+ ’Ui,d(t) (9.7)

where:

|2 —5o Tz 7 ¢ =1+ P2, ¢ >4.0 (9.8)
7 is referred to as the constriction coefficient.

Two common approaches of choosing p, are known as gbest and
Ibest methods. In the gbest approach, the position of each particle in the
search space is influenced by the best-fit particle in the entire population;
whereas the lbest approach only allows each particle to be influenced
by a fitter particle chosen from its neighborhood. Kennedy and Mendes
studied PSOs with various population topologies,”® and have shown that
certain population structures could give superior performance over certain
optimization functions.

Further, the role of the inertia weight ¢, in Equation (9.8), is considered
critical for the PSO’s convergence behaviour. Improved performance can be
achieved through the application of an inertia weight applied to the previous
velocity:

V3,a(t) = ¢via(t —1) + ¢1(pia — Tia(t — 1)) + d2(pga — zia(t —1))  (9.9)

The inertia weight is employed to control the impact of the previous
history of velocities on the current one. Accordingly, the parameter ¢
regulates the trade-off between the global (wide-ranging) and local (nearby)
exploration abilities of the swarm. A large inertia weight facilitates global
exploration (searching new areas), while a small one tends to facilitate
local exploration, i.e., fine-tuning the current search area. A suitable value
for the inertia weight ¢ usually provides balance between global and local
exploration abilities and consequently results in a reduction of the number
of iterations required to locate the optimum solution. Initially, the inertia



268 B. B. Misra, P. K. Dash and G. Panda

weight was constant. However, experimental results indicated that it is
better to initially set the inertia to a large value, in order to promote global
exploration of the search space, and gradually decrease it to get more refined
solutions. Thus, an initial value around 1.2 and a gradual decline towards
0 can be considered as a good choice for ¢.

During the last decade the basic PSO algorithm has been modified
and new concepts have been introduced to it. Few of them improvise the
general performance, and the rest improved performance of particular kinds
of problems.

9.3.1. Fully informed particle swarm (FIPS)

In the basic PSO algorithm information pertaining to personal best
and neighborhood best are the two main sources which influence the
performance of the algorithm, whereas we ignore the information available
with the remaining neighbors. How the particles should interact with its
neighbors has been suggested by Mendes.”0 %2 In FIPS, the particle is
affected by all its neighbors and at times the personal best value does not
influence the velocity for the next iteration. FIPS can be depicted as follows:

K;
vi=x (vi o S U0,0) % (P, :m) 7 (9.10)
tp=1

T, = Ti +v; (9'11)

where K; is the number of neighbors in the ith particle, and nbr, is the
nth neighbor of ith particle. FIPS may find better solutions in less iteration
with appropriate parameter setting, but it is dependent on the population
topology.

9.3.2. Binary particle swarms

Kennedy and Eberhart®® presented a method that operates on bit-strings
rather than real numbers. In this method the velocity is used as a
probability threshold which determines whether x;; should be evaluated
as a zero or a one. A logistic function is operated on x;4 to obtain the
value:

1
s(@ia) = T (9.12)
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A random number r is generated for each bit and compared it to
s(x;,a). If v was less that the threshold, then z; 4 was interpreted as 1,
otherwise as 0.

Agrafiotis and Cedeno
matching task by using the particle locations as probabilities to select
features. Basing on the location value of the particle each feature was
assigned a slice of a roulette wheel. Depending on the selection of feature,
the values are discretized to 0, 1.

Mohan and Al-Kazemi®® suggested different methods for implementing
particle swarm on binary space. They have suggested a method called
“regulated discrete particle swarm,” which performs well on a test problem.

In Pampara et al% encoded each particle with small number of
coefficients of a trigonometric model (angle modulation) which was then
run to generate bit strings.

Clerc?%97: Moraglio et al.”® have extending PSO to more complex
combinatorial search spaces and observed some progress. However it is
difficult to predict if PSO will be a better choice for such combinatorial
search spaces.

78 performed feature selection in pattern

9.3.3. Hybrids and adaptive particle swarms

Different researchers have tried to utilize the information from the
environment for fine tuning the PSO parameters. Evolutionary computation
and other techniques have been followed for the purpose.

Angeline*? hybridized particle swarms in his model. He applied
selection to the particles, then the “good” particles were reproduced and
mutated, but the “bad” particles were eliminated. He obtained improved
results with this modification.

Evolutionary strategies concept was used by Miranda and Fonseca“?
to improve the performance of PSO. They modified the particle values by
adding random values distributed around a mean of zero; the variance of the
distribution is evolved along with function parameters. They used Gaussian
random values to perturb x, ¢, and ¢2, as well as the position of the
neighborhood best, but not the individual best by using selection to adapt
the variance. The evolutionary self-adapting particle swarm optimization
method has shown excellent performance in comparison to some standard
particle swarm methods. They have used it for the manufacture of optical
filters and for optimization of power systems.
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Breeding technique from genetic algorithm was used by Loovbjerg
et al.?? Few particles were selected and they were paired randomly.
Weighted arithmetic average was used to calculate both positions and
velocities from the parameters of the selected particles. To increase the
diversity they divided the particle swarm into subpopulations.

Wei et al.,' embedded velocity information in an evolutionary
algorithm. They replaced mutation with PSO velocity update technique in
a fast evolutionary programming (FEP) algorithm. Their obtained results
indicate that the approach is successful on a range of functions.

Krink and Loovbjerg!®! proposed a self-adaptive method where they
gave option to an individual to choose one among genetic algorithm, particle
swarm, or hill-climbing. An individual is allowed for this change, if it does
not improve after 50 iterations.

Poli and Stephens'®? hybridized PSO with hill-climbing technique,
where they have considered the particles to be sliding on a fitness landscape.
They have avoided the use of particle memory and thereby overcoming the
book-keeping task required for preserving the personal best values. However
they have used the mass and force to guide the exploration in the fitness
landscape.

Clerc®” used adaptation of the constriction factor, population size, and
number of neighbors. He obtained best performance when all three of these
factors were adapted. Clerc worked with three rules:

(1) Suicide and generation: a particle kills itself when it is the worst and
produces a clone when it is the best;

(2) Modifying the coefficient: increase the constriction coefficient with good
local improvement otherwise decrease;

(3) Change in neighborhood: reduce the number of neighbors for the locally
best particle and increase for poorly performing particles.

However Clerc did not performed the adaptive changes during the entire
period of simulation rather allowed the adaption occasionally.

103 ysed the idea of division of labor from insect

Vesterstroom et al.
swarm algorithms. When no improvement is noticed on the performance of
a particle it was allowed for local search at the global best position of the
population. However this particle was provided with a new random velocity
vector. The division of labor modification performed well on unimodal
problems but not on multimodal functions no significant improvement

observed.
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Holden and Freitas'®* proposed hybridization of PSO and ACO
algorithms for hierarchical classification. They applied it to the functional
classification of enzymes and obtained very promising results.

PSO was combined with differential evolution (DE) by Hendtlass.'%® He
obtained mixed results for this hybridization. On one multimodal problem
the hybridized algorithm performed better than PSO or DE. But PSO was
found to be faster and robust than DE and hybrid models. Subsequently
Zhang and Xie!'%® used hybridization of PSO and DE and reported to obtain
better results.

Poli et al'%719 proposed hybridization of PSO with genetic
programming (GP). For the control of the particle movement GP was used
to evolve new laws. This method provided better result than standard PSO
methods.

9.3.4. PSOs with diversity control

It has been reported by different researchers that the swarm has a tendency
of converging prematurely to local optima. Different approaches have
been suggested to overcome the premature convergence as the swarm
concentrates on a single optimum.

To help the PSO to attain more diversity and became less vulnerable
to local minima, Loovbjerg!®® proposed critically self organized PSO.
In his method if two particles became close to one another, a variable
called the “critical value” is incremented. When the variable reaches
the criticality threshold, one of the particles is allowed to relocate
itself.

Some researchers have tried to diversify the particles’ clustering too
closely in one region of the search space. Blackwell and Bentley!'? suggested
a method called the collision-avoiding swarms which achieves diversity by
reducing the attraction of the swarm center.

The “spatially extended” particles were proposed by Krink et a
where each particle was considered to be surrounded by a sphere of some

111
L

radius and if such a particle collides with another particle, it bounces off.

A negative entropy value is added to the particle swarm by Xie et al.''2
to discourage excessively rapid convergence towards a poor quality local
optimum. Considering different conditions they have weighed the velocity,
location of a particle with some random value to obtain dissipative particle
swarm.
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9.3.5. Bare-bones PSO

Kennedy''? has proposed bare-bones PSO with an objective to move the
particles according to its probability distribution rather than by addition of
velocity. In other words bare-bones PSO can be termed as velocity-free PSO.
Bare-bones PSO throw light on the relative importance of particle motion
and the neighborhood topology. The particle update rule was replaced with
a Gaussian distribution of mean (p;+py)/2 and standard deviation |p; —p|.
This empirical distribution resembled a bell curve centred at (p; + pg)/2.
This method works as well as the PSO on some problems, but less effective
on other problems (Richer and Blackwell).!14

Richer and Blackwell''* have replaced the Gaussian distribution on
bare-bones with a Levy distribution. The Levy distribution is bell-shaped
like the Gaussian but with fatter tails. The Levy has a tunable parameter, «,
which interpolates between the Cauchy distribution (o = 1) and Gaussian
(o = 2). This parameter can be used to control the fatness of the tails.
In a series of trials, Richer and Blackwell found that Levy bare-bones at
a = 1.4 reproduces canonical PSO behavior, a result which supports the
above conjecture. Levy spring constants PSO produced excellent results
(Richer and Blackwell''*). The explanation might lie at the tails again,
where large spring constants induce big accelerations and move particles
away from local optima.

9.4. Fuzzy Swarm Net Classifier

To implement the fuzzy net with swarm intelligence, initially we take a set
of fuzzy nets. Each net is treated as a particle and the set of fuzzy nets
are treated as swarm. Each net shares the same memory in a distributed
environment.”

At any instance of time all the nets are supplied with one input record
and the respective target. All the nets in the distributed environment are
initialized to random weights w;; in the range [0, 1].

Let us consider that the input-output data are given by:

(Xi,yi) = (X165, T205 -+ Tnsis Yi)

where i = 1,2,..., N. The input-output relationship of the above data can
be described in the following manner:

y:f(xth?"'va)
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The estimated output O produced by the nets in the distributed
environment can be represented as:

1

O:f(.’L'hiEQ,...,.CL'N) = m

where s = Zfil Z?:l Oi’jWi,j

Fuzzy Swarm Net architecture has been illustrated with the help of
Figs. 9.2 and 9.3. Figure 9.2 represents the block diagram of the net, where
Z1,...,T, are the input features to the net and the fuzzy membership values
of the ith input feature L;: Low, M;: Medium, H;: High, are generated by
the net in the 2nd layer of the FSN model. This block diagram has been
considered as a component in Fig. 9.3 for presenting the FSN model.

Figure 9.3 illustrates the architecture of the FSN model. FSN trains
the model taking two inputs i.e. X: input vector, and T": target vector. At
the beginning the values w: position of vector and T: velocity vector are
randomly initialized from the domain [0, 1]. After each iteration the values
w,v,p (personal best), p, (global best) are updated basing on e the error
term associated with each particle.

We calculate the error for all the nets in the distributed environment
after each iteration. The net giving minimum error is treated as the leader
or ghest among all the nets. The nets also preserve the best value achieved
by the respective nets during all the iterations in their local memory, which

=l

Fig. 9.2. Block diagram of the net.
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Fig. 9.3. Fuzzy swarm net model.

is treated as the personal best or pbest of it. Each net uses both gbest and
pbest values to update its weights for the next iteration as follows:

vka(t) = T(vka(t — 1) + ¢1(pr,a — Tr,alt — 1)) + ¢2(pga — Tkt — 1))
xk,d(t) = $k,d(t — 1) + Uk7d(t)

where k is the swarm size, d = i * j, w; ; obtains its value from zy, 4.

The stopping criterion may be allowing the nets to iterate till they
converge to a single decision. However in this process, the nets get
over trained leading to poor performance of the classifier. From different
simulations of a dataset, a suitable range of iteration can be fixed for it.
Different dataset require different range of iterations, one range may not
be suitable for all the datasets. The following high-level pseudocode gives
more insight view of the proposed model.
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Pseudocode

(1) Determine system’s input variables.

(2) Form training and testing data.

(3) Initialize the weights to the nets in the swarm.

(4) Calculate the output of the nets and determine their error.
(5) Update gbest and pbest if required.

(6) If stopping criterion not met go to Step 4.

9.5. Polynomial Neural Network

Group Methods of Data Handling (GMDH) is the realization of inductive
approach for mathematical modeling of complex systems. %116 It belongs
to the category of self-organization data driven approaches. With small
data samples, GMDH 1is capable of optimizing structures of models
objectively.!1?

The relationship between input-output variables can be approximated
by Volterra functional series, the discrete form of which is Kolmogorov-
Gabor Polynomial:*!®

y=co+ E Ck Ty + E Ck1koThy Thy T E Ckykoks Thy ThoThy + -~
k1 k1 ks k1k2ks (9.13)

where ¢ denotes the coefficients or weights of the Kolmogorov-Gabor
polynomial and x vector is the input vector. This polynomial can
approximate any stationary random sequence of observations and it can
be solved by either adaptive methods or by Gaussian equations.!'® This
polynomial is not computationally suitable if the number of input variables
increase and there are missing observations in input dataset. Also it takes
more computation time to solve all necessary normal equations when the
input variables are large.

A new algorithm called GMDH is developed by Ivakhnenko!!8:120,121
which is a form of Kolmogorov-Gabor polynomial. He proved that a second
order polynomial i.e.:

Y = ao + a1%; + a2x; + aswix; + a4x? + a5x? (9.14)

which takes only two input variables at a time and can reconstruct the
complete Kolmogorov-Gabor polynomial through an iterative procedure.
The GMDH method belongs to the category of heuristic self-organization
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methods, where the approaches like black-box concepts, connectionism and
induction concepts can be applied.!?° The black-box method is a principal
approach to analyze systems on the basis of input-output samples. And the
method of connection and induction can be thought of as representation
of complex functions through network of elementary functions. Thus the
GMDH algorithm has the ability to trace all input-output relationship
through an entire system that is too complex. The GMDH-type Polynomial
Neural Networks are multilayered model consisting of the neurons/active
units/Partial Descriptions (PDs) whose transfer function is a short-term
polynomial described in equation (9.11). At the first layer L = 1, an
algorithm, using all possible combinations by two from m inputs variables,
generates the first population of PDs. Total number of PDs in first layer is
n=m(m—1)/2.

The outputs of each PDs in layer L = 1 is computed by applying the
Equation (9.11). Let the outputs of first layer be denoted as yi, vy, ..., yl.
The vector of coefficients of the PDs are determined by least square
estimation approach.

The architecture of a PNN'22:123 with four input features is shown in
Fig. 9.4. The input and output relationship of the above data by PNN
algorithm can be described in the following manner:

y=f($1,$2,...,$m),

where m is the number of features in the dataset.

This process is repeated till error decreases. Overall framework of the
design procedure® 115124128 of the GMDH-type PNN comes as a sequence
of the following steps:

(1) Determine system’s input variables.
(2) Form training and testing data.

Fig. 9.4. Basic PNN model
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(3) Choose a structure of the PNN.
(4) Determine the number of input variables and the order of the polynomial
forming a partial description (PD) of data.

(5) FEstimate the coefficients of the PD.

(6) Select PDs with the best classification accuracy.
(7) Check the stopping criterion.

(8) Determine new input variables for the next layer.

The layers of PNN model grows as per the algorithm described above.
The residual error between the estimated output and the actual output
is calculated at each layer. If the error level is within the tolerable limit
then the growth of the model is stopped and the final model is derived
taking into account only those PDs that contribute to obtain the best
result. Otherwise the next layer is grown. It is observed that the error level
decreases rapidly at the first layers of PNN network and relatively slower
near to optimal number of layers, and further increasing the number of
layers causes increasing the value of error level because of over-fitting. 129131
Thus during simulation the number of layers in the model increases one-by-
one until the stopping rule, i.e., the tolerable error level is met at the layer r.
Subsequently we take a desired PNN model of nearly optimal complexity
from rth layer. Hence we preserve only those PDs that contribute to the
better result. From the simulation it is seen that the output of best two
PDs of previous layer not necessarily yields the best result in the next
layer. Hence, a substantial number of PDs that give above average result
in a layer are preserved for building the next layer. In turn, complexity of
the system grows in terms of time for building a model and the computer
memory required to preserve the system status at each layer of the network.
A number of different techniques have been suggested!3? 134 to handle such
a situation without compromising the efficiency of the system.

9.6. Classification with Optimized Polynomial Neural Fuzzy
Swarm Net

The Optimized Polynomial Fuzzy Swarm Net (OPFSN) model® is built in
different steps. In the first step we use the PNN algorithm to construct the
PDs for the first layer. If the number of features in the dataset is not too
large, we consider all the PDs for the subsequent steps, otherwise we select
a subset of PDs using one of the different pruning techniques.
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At the second step of execution we obtain the fuzzy membership values
for input feature. In general the output of the PDs in the first step becomes
the input to the second step. But for a better generalization we can use the
input features of the dataset along with the output of the PDs as the input
to the second step.

The membership values, along with the PDs and the original input
features of the dataset are jointly considered as input to the net consisting
of a single unit of perceptron. At this stage we use the concept of swarm
intelligence for two different purposes. Each particle of the swarm is treated
as a net and the input to each particle is different. The particles compete
among themselves to find the optimal subset of input to the third step.
Along with determining the optimal subset of input the particles also
optimize the weights associated with the net and for the bias. The OPFSN
architecture is shown in Fig. 9.5. The error associated with each particle
i.e., the error by selecting a subset of inputs and choosing a set of weight
for the net in the distributed environment is calculated for each iteration.
The net giving minimum error is treated as the leader or ghest among all
the nets. The nets also preserve their respective best value achieved till the
current iteration in their local memory, which is treated as the personal
best or pbest of it. Each net uses both gbest and pbest values to update its
weights for the next iteration as follows:

Uk,a(t) = T(Vk,a(t — 1) + ¢1(Pr,a — Tr,a(t — 1)) + d2(pg,a — Tr,a(t — 1)))
Tra(t) = 2ra(t — 1) + vka(t)

where £ is the swarm size, d = i*j, w; ; obtains its value from xy, 4. In general
the stopping criterion is to allow the nets to iterate till they converge to
a single decision. But for this net such a stopping criterion should not
be used. For example let us consider there are m number of features in
the dataset and let &k = m(m — 1)/2 be the number of PDs generated by
the PNN algorithm for its first layer. Then the number of input to the
fuzzy triangular membership system is (m + k) and the number of fuzzy
membership values generated are 3(m + k). We consider m features, k PDs
and 3(m + k) membership values as the input to the net i.e., the total
number of inputs to the net is say z = 4(m + k). The representation of
a particle for the swarm intelligence used in OPFSN model is shown at
Fig. 9.6.

Basing on the selection of the binary bits, the weights are considered
for evaluation of the respective nets. A large number of real valued weights



Optimized Polynomial Fuzzy Swarm Net for Classification 279

Fig. 9.5. Optimized polynomial fuzzy swarm net architecture.

remains part of the particle representation which does not takes part in the
competition. Such weights will never converge to the same value or even
nearby values as they are not part of the competition.

It is difficult to form a single rule which will hold good for different
types of dataset. From different simulations of a dataset, a suitable range
of iteration can be fixed for it. Different datasets require different range of
iterations, one range may not be suitable for all the datasets. The following
high-level pseudocode gives more insight to the OPFSN model.
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——>Sele ction bits——wa——— W erghts ———m bias

bl‘bz | bz Iy |1‘2‘ 17 |1

Fig. 9.6. Representation of a particle of the OPFSN model, b; represents the binary
selection bits and r; represents the real values of the weights on the links and ro for the
bias value.

Pseudocode

(1) Determine system’s input variables.

(2) Form training and testing data.

(3) Choose a structure of the PNN.

(4) Determine the number of input variables and the order of the

polynomial forming the PDs.

(5) Estimate the coefficients of the PD taking 2/3rd of training set.

(6) Select PDs with the best classification accuracy using rest 1/3rd of
training set.

(7) Generate fuzzy membership values taking output of PDs and features

of training set.

(8) Initialize the weights to the nets in the swarm.
(9) Calculate the output of the nets and determine their error.
(10) Update gbest and pbest if required.
(11) If stopping criterion not met, estimate the new particle position and

go to step 9.

9.7. Experimental Studies

In this Section the performance of the FSN model is evaluated using the
real world benchmark classification databases. The most frequently used in
the area of neural networks and of neuro fuzzy systems are IRIS, WINE,
PIMA, and BUPA Liver Disorders. All these databases are taken from the
UCI machine repository.!3®

9.7.1. Description of the datasets

Let us briefly discuss the datasets, which we have taken for our experimental
setup.

IRIS Plants Database: This dataset consists of d = 4 numerical
attributes describing the length and width of sepal and petal of iris plant
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and ¢ = 3 classes. There are n = 150 instances. These data relates to the
classification of iris plants.

WINE recognition data: The dataset consists of d = 13 numerical
attributes and ¢ = 3 classes. There are n = 178 instances. These data
are the results of a chemical analysis of wines grown in the same region in
Italy but derived from three different cultivars.

PIMA Indians Diabetes Database: This dataset consists of d = 8
numerical medical attributes and ¢ = 2 classes (tested positive or negative
for diabetes). There are n = 768 instances. Further, data set related to the
diagnosis of diabetes in an Indian population that lives near the city of
Phoenix, Arizona.

BUPA Liver Disorders: data set related to the diagnosis of liver
disorders and created by BUPA Medical Research, Ltd. The dataset consists
of d = 5 attributes and ¢ = 2 number of classes. There are n = 345 number
of instances.

Table 9.1 presents a summary of the main features of each database
that has been used in this study.

The dataset is divided into two parts. For the division of datasets,
initially samples are segregated to respective classes. Randomly two samples
are picked up from a class and added one to each sets. In the case of an
odd number of samples, the last sample is added randomly to one of the
sets or the set containing less number of samples. After distribution of
all the samples between two sets, the position of samples in the dataset
is shuffled. The division of datasets and its class distribution is shown in
Table 9.2.

One set is used for building the model and the other part is used
for testing the model. The protocol of parameters used for our simulation
studies is given in Table 9.3.

The average correct classification level obtained by the OPFSN is
presented in Table 9.4 for the training and testing phases. Average values of

Table 9.1. Description of datasets used.

Dataset  Patterns  Attributes  Classes Patterns Patterns Patterns
in Class 1  in Class 2 in Class 3

IRIS 150 4 3 50 50 50
WINE 178 13 3 59 71 48
PIMA 768 8 2 268 500 —
BUPA 345 6 2 145 200 —
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Table 9.2. Division of dataset and its pattern distribution.

Dataset  Patterns Patterns Patterns Patterns
in Class 1  in Class 2 in Class 3

IRIS
Set1 75 25 25 25
Set2 75 25 25 25
WINE
Setl 89 29 36 24
Set2 89 30 35 24
PIMA
Setl 384 134 250 —
Set2 384 134 250 —
BUPA
Setl 172 72 100 —
Set2 173 73 100 —

Table 9.3. Parameters considered
for simulation of OPFSN model.

Parameters Values
Population Size 20
Maximum Iterations 500
Inertia Weight 0.729844
Cognitive Parameter 1.49445
Social Parameter 1.49445
Constriction Factor 1.0

the results have been made bold and considered for comparison with other
models.

Further the same databases are presented to the MLP!36 and FSN;”
the results obtained are presented in Table 9.5. The average result of setl
and set2 for training and testing have been made bold and used for further
comparison with the OPFSN model.

The average results of MLP, FSN and OPFSN have been presented at
Table 9.6 for the purpose of comparison. From the table it can be seen that
OPFSN is giving better result in case of IRIS database.

The average performance of OPFSN is better in comparison to other
models for WINE and PIMA databases during the training phase only.
BUPA database is giving much better performance than FSN in the training
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Table 9.4. Classification accuracy of datasets
simulated in OPFSN model.

Data set used Hit Percentage Hit Percentage

for testing in the training set in the test set
IRIS
Setl 99.93 99.53
Set2 100.00 99.40
Average 99.96 99.46
WINE
Setl 98.14 97.07
Set2 98.76 96.12
Average 98.45 96.60
PIMA
Setl 80.24 77.33
Set2 78.88 76.05
Average 79.56 76.69
BUPA
Setl 75.86 69.21
Set2 77.25 70.52
Average 76.56 69.86

Table 9.5. Classification accuracy obtained from MLP AND
FSN.

Databases MLP FSN
Hit Percentage in the  Hit Percentage in the

training set  test set  training set test set

IRIS
Setl 97.33 100.00 94.53 100.00
Set2 97.33 97.33 95.47 97.73
Average 97.33 98.66 95.00 98.86
WINE
Setl 96.63 100 85.39 98.09
Set2 97.75 93.26 91.24 98.31
Average 97.19 96.63 88.315 98.20
PIMA
Setl 73.44 85.42 73.83 79.53
Set2 75.26 82.81 74.89 81.09
Average 74.35 84.11 74.36 80.31
BUPA
Set1 77.91 78.61 70.41 77.05
Set2 76.30 79.07 68.03 75.98

Average 77.10 78.84 69.22 76.51
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Table 9.6. Comparison Performance among MLP, FSN and OPFSN.

Databases Hit Percentage in the training set Hit Percentage in the test set
MLP FSN OPFSN MLP FSN OPFSN
IRIS 97.33 95.00 99.96 98.66 98.86 99.46
WINE 97.19 88.31 98.45 96.63 98.20 96.60
PIMA 74.35 74.36 79.56 84.11 80.31 76.69
BUPA 77.10 69.22 76.56 78.84 76.51 69.86

phase and a competitive performance with MLP. In case of test phase WINE
database is giving a competitive performance, but performance of BUPA
and PIMA databases is less than the performance of MLP. The best average
results in Table 9.6 are made bold to distinguish it from other results.

The training phase and test phase results are also presented separately
in Table. 9.6 and Fig. 9.7 for different models and for different databases.

Again the same datasets are simulated with OPFSN Model in a wrapper
approach. We allow the PSO to select different sets of features starting
from set cardinality one to ten. We perform 20 simulations for selection of
each set of features and the average classification accuracy is considered for
comparison. Figure 9.8 shows the mean value of average results obtained
from exposing train and test set to the model while different sets are taken
for training.

Training set performance
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Fig. 9.7. Comparison of average classification accuracy of MLP, FSN and OPFSN for
the training sets, X-axis values represent 1: IRIS, 2: WINE, 3: PIMA, and 4: BUPA
databases.



Optimized Polynomial Fuzzy Swarm Net for Classification 285

Test set performance

oy
ta
(=]

-
(=]
o

BO

60 el

4a B FEN

20 & OPFSN

(=]

Average Chssification Accuracy

Databases

Fig. 9.8. Comparison of average classification accuracy of MLP, FSN and OPFSN for
the test sets, X-axis values represent 1: IRIS, 2: WINE, 3: PIMA, and 4: BUPA databases.
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Fig. 9.9. Comparison of performance of different datasets for selecting different size of
features.

9.8. Conclusion

In this chapter, we have discussed the fuzzy swarm net (FSN) model for the
task of classification in data mining. The FSN model expands the given set
of inputs into three categories: low, medium and high. These inputs are fed
to the single layer feed forward artificial neural network. A set of such nets
is being taken to spread in a distributed environment. Swarm intelligence
technique is used to train these nets.

Further we have briefed the concept of Polynomial Neural Network
(PNN) algorithm and its use for handling the classification problems. The
PNN model takes a subset of the features to produce a polynomial called the
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Partial Description (PD), the coefficients of which are estimated using Least
Square Estimation (LSE) technique. The different combinations of subset
of features generate a set of PDs of the first layer of the PNN algorithm.
At this stage we use certain pruning techniques to preserve a set of PDs
that is most promising for generating PDs for the next layer.

In the next section, Optimized Polynomial Neural Fuzzy Swarm Net
(OPFSN) model is discussed. This model at the first step generates the PDs
for the first layer of the PNN and the output of these PDs along with the input
features are feed to a fuzzy system in the next step. The output of the fuzzy
system along with the output of the PDs and the input features are passed on
to a single unit of perceptron through swarm intelligence. The particles of the
Swarm compete among themselves in a distributed environment to choose the
optimal set of input sets required for the net as well as to determine the weight
associated with the links of this optimal network.

The experimental studies demonstrate the performance of the OPFSN
model in comparison to other models for the task of classification. The
efficiency of the models gets established with the fact that a very small
subset of input can also perform equally well.
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Traditional software testing methods involve large amounts of manual tasks
which are expensive in nature. Software testing effort can be significantly
reduced by automating the testing process. A key component in any automatic
software testing environment is the test data generator. As test data generation
is treated as an optimization problem, Genetic Algorithm has been used
successfully to generate automatically an optimal set of test cases for the
software under test. This chapter describes a framework that automatically
generates an optimal set of test cases to achieve path coverage of an arbitrary
program.

10.1. Introduction

Testing software is a very important and challenging activity. Nearly half of
the software production development cost is spent on software testing.! The
basic objective of software testing is to eliminate as many errors as possible
to ensure that the tested software meets an acceptable level of quality. The
tests have to be performed within budgetary and schedule limitations. Since
testing is a time consuming and expensive activity, an important problem
is to decide when to stop testing the software. An important activity in
testing is test case design. In the software testing process, each test case
has an identity and is associated with a set of inputs and a list of expected
outputs.? As the software industry always faces time and cost pressures,
test cost minimization has become an important research problem. This
cost could be reduced by making the testing process automatic. One of
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the most important components in a testing environment is test data
generator. Manually generating test data is too costly as it takes maximum
time in testing phase. So, the solution to reduce the high cost of manual
software testing is to make the test data generator automatic. It is found
that automatic test data generation has achieved some success by using
evolutionary computation algorithms such as genetic algorithms. Basically,
a test data generator system consists of three parts: program analyzer, path
selector and test data generator. The source code is run through a program
analyzer, which produces the necessary data used by the path selector and
the test data generator. The job of path selector is to inspect the program
data and find the paths leading to high code coverage. For the test data
generator, the input is a path and outputs are the test data that exercise
the given path. In this chapter, we focus on path selectors and test data
generators. Some test data are more proficient at finding errors than others.
So, testers have to choose the tests carefully to generate a good test suite. A
proficient test case is one that has a high probability of detecting an as-yet
undiscovered error.

One test case is not sufficient to satisfy all the test requirements.
Usually, a suite of test cases is required to satisfy all known possible
requirements. In every step of testing, a new test case may be generated and
added to the test suit. Thus, a test suite may undergo a process of expansion
in practice. Most of the times, it is found that a test suite contains more
than enough test cases for satisfying the target test requirements. So, some
test cases in a test suite are redundant. If those redundant test cases are
removed from the test suite, the resultant test suite may still satisfy all the
test requirements that can be satisfied by the original test suite. A good test
suite is one which contains no redundant test cases. Therefore, finding a sub-
suite of an existing test suite that can satisfy the same test requirements as
the original test suite becomes a research problem. This problem is usually
referred to as test suite reduction and the acquired sub-suite of test cases is
called the representative set. If no subset of a representative set can satisfy
all the requirements, the representative set is called optimal representative
set or minimum representative set. As the aim of test suite reduction is to
minimize the test suite, it is also referred to as test suite minimization. An
optimal testing strategy selects the best test cases each time during testing.
Since a large number of test cases can be designed, and an effective test
suite needs to choose out of these, test case design can be considered as
a typical search problem. A search algorithm must decide where the best
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values (test data) lie and concentrate its search there. Test suite reduction
is a multi-objective optimization problem, which is NP complete in nature.3

A test case is a property or a case to be tested; on the other hand, test
data for a test case are actual values of input necessary to test the case.
This is explained by an example. Consider a triangle verification program.
For a triangle to be valid, it must satisfy two conditions: length of all sides
must be greater than zero and each side must be shorter than the sum of all
sides divided by 2. In other words, if a, b, ¢ are the three sides of a triangle
and s = (a + b+ ¢)/2, then s > a; s > b; s > ¢ and a;b;¢ > 0 must hold.
There are four cases of a triangle: (i) invalid triangle; either s < a or s < b
or s < cor any of a, b, ¢ is zero (ii) valid triangle, equilateral; s > a; s > b;
s > ¢, a=b=c, and a;b;c > 0 (iii) valid triangle, isosceles; s > a; s > b;
$>c¢;a=>b#c and a;b;¢c > 0 (iv) valid triangle, scalene; s > a; s > b;
$>c¢,a#b+#c, and a;b;c > 0. These four cases (properties) are actually
the four test cases of a triangle verification program. On the other hand,
possible test data (values of input a, b, c¢) for the case (i), which is the
test case for invalid triangle, are ([0,0,0], [0,0,1], [0,1,0], [1,0,0], ..., [1,5,15],
[2,5,15], [3,5,15], ...). It is evident that for a test case, in general, there is
a large number of test data (which corresponds to the same test case).

Genetic Algorithm (GA) provides a general-purpose search metho-
dology, which uses principles of natural evolution.* GA has been used
successfully to optimize the generated test data. The overall objective of
this chapter is to automatically generate test data using GA.

10.2. Overview of Test Case Design

The main objective of software testing is how to select test cases with
the aim of uncovering as many defects as possible. Basically, testing is
broadly categorized as structural testing (white box) and functional (black
box) testing. The basic goal of functional (black box) testing is to test
a given program’s behavior against its specification. No prior knowledge
of internal structures of the program is necessary for this. At the time of
structural testing, test data are derived from the program’s structure with
the intension of covering each branch of software. A test suite is run on the
software under test, and the outputs are examined by the tester. He decides
whether it is correct, by comparing the actual output with the expected
output. If the output is incorrect, then an error has been discovered. So the
program must be changed and testing must start again.



300 M. Ray and D. P. Mohapatra

The basic white box testing method uses coverage criteria as a
measurement of the test data.? In this method, first the source code is
transformed to a control flow graph.! A simple program with its control
flow graph is shown in Fig. 10.2. The path of the graph which is covered by
test data is considered as the coverage criteria. There are three types of test
data generators for coverage criteria such as Path wise data generator, Data
specification generator and Random test data gemerator. Our discussion is
based on Path wise data generator.

10.2.1. Path wise test data generators

Path wise test data generator is a system that tests software using a
testing criterion which can be path coverage, statement coverage, branch
coverage, etc.® The system automatically generates test data to the chosen
requirements. The aim of this test data generator is to generate test data to
the chosen requirements. A path wise test data generator generally consists
of tools for Control Flow Graph (CFG) construction, path selection and
test data generation.

Once a set of test paths is defined, then for every path in this set the
test generator derives input data that results in the execution of the selected
path. In path testing, basically we have to generate test data for a boolean
expression. A Boolean expression has two branches with a true and a false
node as shown in Fig. 10.1. A reference to the sibling node means, the other
node, corresponding to the current executed node. For example the sibling
node of True branch is False branch.

Each path belongs to a certain sub domain, which consists of those
inputs which are necessary to traverse that path. For generating test cases

Boolean Condition

True Branch False Branch

Fig. 10.1. Sibling nodes.
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for each path, it is helpful to apply global optimization rather than local
search technique. It is because in local search technique, only local minima
for the branch function value may be found which might not be good enough
to traverse the desired branch. This problem can be solved by Genetic
Algorithms because it is a global optimization process.

In this chapter, partition testing is used to test each path. In partition
testing, a program’s input domain is divided into a number of sub domains.
At the time of testing, the tester selects one or more elements from each
sub domain for analysis. The basic idea of partition testing is that each
path of the software belongs to certain sub domain, which consists of those
inputs which are necessary to traverse that path.

The domain is the set of all valid test sets. It is divided into sub domains
such that all members of a sub domain cause a particular branch to be
exercised. The domain notation may be based upon which branch (true
or false) has been taken. The domain for the variables A and B of the
program in Fig. 10.2(a) is shown in Fig. 10.3. A character code shown
in Fig. 10.3 specifies the branch (here also path), e.g., TT (True True),
TF (True False), F (False), etc. In addition, the respective node is also
mentioned. In Fig. 10.3, the sub domain of node 5 is the dark grey area,
the sub domain of node 3 is the diagonal line, the sub domain of node 4 is
the light grey area whereas the sub domain of node 2 includes the light grey
area (node 2) plus the diagonal line (node 3). Domain testing tries to check
whether the border segments of the sub domains are correctly located by

Node Number 4>©

if A < B then

put("node 2");
if A =B then
put("node 3");
else A<B
put("node 4");
end if;

else A>B

put("node 5");

end if;

(@) (b)

Fig. 10.2. (a) A sample program. (b) It’s control flow graph.
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Sub Domain of Node 2
(=Sub Domains of Nodes 3 and 4)
TTorTF

0
A
(@) Sub Domain of Node 3
- — 7T
(o]
B © —
o) |
: |
o Sub Domain of Node 5
- | -5 F
ol |
‘T ’ |
-15|-10 -5 0 5 10 15
Sub Domain of Node 4
TF

Fig. 10.3. Example of input space partitioning structure in the range of —15 to 15.

the execution of the software with test data to find errors in the flow of
the control through the software. These test data belong to an input space
which is partitioned into a set of sub domains which belong to a certain
path in the software. The boundary of these domains is obtained by the
predicates in the path condition where a border segment is a section of the
boundary created by a single path condition. Two types of boundary test
points are necessary; on and off test points. The on test points are on the
border within the domain under test, and the off test points are outside the
border within an adjacent domain. If the software generates correct results
for all these points then it can be considered that the border locations are
correct.

Domain testing, therefore, is an example of partition testing. In this
testing, first a partition P = {D; U Dy U --- U D,} of the input domain
D is produced. It divides the input space into equivalent domains and it is
assumed that all test data from one domain are expected to be correct
if a selected test data from that domain is shown to be correct. This
form of assumption is called uniform hypothesis of partition testing. Each
sub-domain may be affected by two types of faults such as computation
faults, which may affect a sub-domain and domain faults, which may affect
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the boundary of a sub-domain. The tester detects computation faults by
choosing randomly one or more test cases from each sub-domain. One or
more test cases are selected from the boundaries to detect Domain faults.

Automatic generation of test data for a given path in a program is one
of the elementary problem in software testing, hence the difficulty lies in the
fact that how to solve nonlinear constraint, which is unsolvable in theory. As
GA has the property of solving non linear constraints, this chapter mainly
focuses on generating test data by applying GA, to check each path in a
control flow graph of a problem.

In the next section, we discuss the basic concepts of GA. Then, the
application of GA to test data generation for each path is explained in the
sub sequent section.

10.3. Genetic Algorithm

Optimization problems arise in almost every field, especially in the
engineering world. As a consequence many different optimization techniques
have been developed. However, these techniques quite often have problems
with functions which are not continuous or differentiable everywhere, multi-
modal (multiple peaks) and noisy.® Therefore, more robust optimization
techniques are under development which may be capable of handling such
problems. Many computational problems require searching through a huge
number of possible solutions. For these types of problems, heuristic methods
play a key role in selecting an appropriate solution.

10.3.1. Introduction to genetic algorithms

Genetic algorithms (GA) represent a class of adaptive search techniques
and procedures based on the processes of natural genetics and Darwin’s
principle of the survival of the fittest. There is a randomized exchange of
structured information among a population of artificial cromosomes. GA
is a computer model of biological evolution. When GA is used to solve
optimization problems, good results are obtained surprisingly as well as
quickly. In the context of software testing, the basic idea is to search the
domain for input variables which satisfy the goal of testing. Evolution avoids
one of the most difficult obstacles which the software designer is confronted
with: the need to know in advance what to do for every situation which may
confront a program. The advantage of GA is that it is adaptive. Evolution
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is under the influence of two fundamental processes: Natural selection and
Recombination.b

The former determines which individual member of a population is
selected, survives and reproduces, the latter ensures that the genes (or
entire cromosomes) will be mixed to form a new one.

10.3.2. Overview of genetic algorithms

GA offer a robust non-linear search technique that is particularly suited
to problems involving large numbers of variables. GA converges to
the optimum solution by the random exchange of information between
increasingly fit samples and the introduction of a probability of independent
random change. Compared to other search methods, there is a need for a
strategy which is global, efficient and robust over a broad spectrum of
problems. The strength of GAs is derived from their ability to exploit in a
highly efficient manner, information about a large number of individuals.
An important characteristic of genetic algorithms is the fact that they
are very effective when searching or optimizing spaces that is not smooth
or continuous. These are very difficult or impossible to search using
calculus based methods such as hill climbing. Genetic algorithms may
be differentiated from more conventional techniques by the following
characteristics:

(1) A representation for the sample population must be derived;

(2) GAs manipulate directly the encoded representation of variables, rather
than manipulation of the variables themselves;

(3) GAs use stochastic rather than deterministic operators;

(4) GAs search blindly by sampling and ignoring all information except the
outcome of the sample;

(5) GAs search from a population of points rather than from a single point,
thus reducing the probability of being stuck at a local optimum which
make them suitable for parallel processing.

The block diagram of GA is shown in Fig. 10.4(a) and the pseudo code of
GA is shown in Fig. 10.4(b). As shown in Fig. 10.4(a), GA is an iterative
procedure that produces new populations at each step. A new population
is created from an existing population by means of performance evaluation,
selection procedures, recombination and survival. These processes repeat
themselves until the population locates an optimum solution or some other
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Start
Initialising
Cross Over
Mutation
Service
Procedures

t=1
initialise P(t)
while not finished
Evaluate P(t)
SelectP(t+1) from P(t)
Recombine P(t+1) using cross over and mutation
Servive t =t +1

end
(a) (b)

Fig. 10.4. (a) Block diagram of GA. (b) Pseudo code of GA.

stopping condition is reached, e.g., number of generation or time. The terms
such as selection, cross over, mutation used in both Figs. 10.4(a) and (b)
are discussed comprhensively in Mitchell.® However, we briefly present them
here for completeness and ready reference.

e Selection: The selection operator is used to choose cromosomes from a
population for mating. This mechanism defines how these cromosomes
will be selected, and how many offsprings each will create. The
expectation is that, like in the natural process, cromosomes with higher
fitness will produce better offsprings. The selection has to be balanced:
too strong selection means that best cromosome will take over the
population reducing its diversity needed for exploration; too weak
selection will result in a slow evolution. Some of the classic selection
methods are Roulette-wheel, Rank based, Tournament, Uniform, and
Elitism.5

e Crossover: The crossover operator is practically a method for sharing
information between two cromosomes; it defines the procedure for
generating an offspring from two parents. The crossover operator is
considered the most important feature in GA, especially where building
blocks exchange is necessary. One of the most common crossover operator
is Single-point crossover: a single crossover position is chosen at random
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and the elements of the two parents before and after the crossover position
are exchanged.

e Mutation: The mutation operator alters one or more values of the allele
in the cromosome in order to increase the structural variability. This
operator is the major instrument of any particular area of the entire
search space. Survival step is required to choose the cromosomes for
next generation. Unlike selection and crossover phase, it is not always
mandatory to work out this phase. This phase is needed for selecting the
cromosomes from parent population as well as children population by
fitting some random numbers.

GA can solve optimization problems having a lot of constraints because
there is a very few chance of falling in local optima. An optimization
problem is a problem, where we have to maximize/minimize a function
of the kind f(z1,x2,...,2Zm) where (x1,22,...,2,,) are variables, which
have to be adjusted towards a global optimum. The bit strings of the
variables are then concatenated together to produce a single bit string
(cromosome) which represents the whole vector of the variables of the
problem. In biological terminology, each bit position represents a gene of
the cromosome, and each gene may take on some number of values called
alleles.

The search begins with an initial population comprising of a fixed
number of chromosomes. On the initial population, genetic operations are
carried out large number of times. The stopping criterion can be based
on considerations such as number of iterations, quality of the solution front
namely convergence, diversity etc. At the end of iteration, inferior solutions
are discarded and superior solutions are selected for reproduction [4].

10.4. Path Wise Test Data Generation Based on GA

Automatic test data generation strategy based on GA is explained in this
section through an example. For better understanding of the procedure, test
data are generated for the control flow graph given in Fig. 10.2(b). This
example along with the experimental results are taken from Sthamer.”

The most important parameters of GA(for this case) are given below:

e Selection of parents for recombination is random.
e The mutated genes (Bits) are marked bold in off spring population.
e Fitness is calculated according to reciprocal fitness function.
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Table 10.1. First generation.

P; A B Look Path Cromosome  Fitness  fi norm fi,aceu
Py 4 10 2 (1,2,4) 00100 01010  0.0278 0.365 0.365
P -7 —15 2 (1,5) 11101 11111 0.0156 0.205 0.570
P3 8 15 2 (1,2,4) 00010 11110  0.0204 0.268 0.838
Py 3 —6 2 (1,5) 11000 01101  0.0123 0.162 1.0

Fy =0.076

e Single crossover.
e Survival Probability P, = 0.5.
e Mutation Probability P, = 0.1.

Table 10.1 shows the first generation which is randomly generated by the
testing tool. Each row in the table represents a member of the population
whose size is four. The columns in Table 10.1 have the following meanings:

P; indicates a member of the parent population;

A and B are the values of the identifiers representing the input variables;

look (short for looking) gives the node number to be traversed;

Path indicates which nodes have been traversed by this current test data

of A and B;

e Cromosome displays the bit pattern of the test data in binary-plus-sign
bit format;

e Fitness gives the fitness value calculated according to the test data and

the node required to be traversed;

® finorm is the normalized fitness;
® fiaccu 1S the accumulated normalized fitness value;
e [} indicates the population total fitness value.

In Table 10.1, a 5 bit representation per input test data has been chosen.
Therefore, the cromosome size is 10 bits where the first five bits represents
the input data A and the rest five bits represents input data B. The least
significant bit is stored on the left hand side and the most significant bit
(sign bit) on the right hand side of the two substrings within the cromosome.
A large fi norm value indicates that these population members have a high
fitness value and hence have a higher probability of surviving into the next
generation.

The fitness function f, which calculates the test data performance based
on the condition A < B (in the code) is given by f= 1/(|A — B| + 0.01).2
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As the boundary condition to traverse the node A < B (node 2) is A = B,
this fitness function guides to generate test data to test on the boundary
and off the boundary for the node A < B (node 2). The test sets in the first
generation execute nodes 1, 2, 4, and 5 leaving only node 3 untraversed. This
fitness function ensures that test data where A and B are numerical, close to
each other have a higher fitness value. When a looking node is executed with
a test data (e.g. in this case node 2, first test data set in the first generation),
the fitness values of the remaining test data (here second, third and fourth
test data sets in the first generation) will be still calculated for the looking
node and no offspring population will be generated in this case. Therefore,
the first generation now becomes the starting point in the search for test
data which will execute node 3 (see Table 10.2). The predicate controlling
access to node 3 is the same as that for node 2, and hence the test data
and the fitness values shown in Table 10.2 for the second generation are the
same as those in Table 10.1.

Since the looking node (node 3) has not been traversed within
the second generation, GA now generates an offspring population using
crossover and mutation as shown in Table 10.3.

In Table 10.3 the new offspring test data are indicated by O; and
the parents which have been used for reproduction are indicated by P;.
These parents are chosen randomly. Two parent members generate two

Table 10.2. Second generation.

P; A B Look Path Cromosome  Fitness  fi norm fiaccu
P 4 10 3 (1,2,4) 00100 01010  0.0278 0.365 0.365
Py -7 —15 3 (1,5) 11101 11111  0.0156 0.205 0.570
Ps 8 15 3 (1,2,4) 00010 11110  0.0204 0.268 0.838
Py 3 —6 3 (1,5) 11000 01101 0.0123 0.162 1.0

F =0.076

Table 10.3. Offspring population generated by GA.

O; P; P; Look Path Cromosome fitness f; norm fiaceu A B K
O1 Py Py 3 (1,5) 11101 011171 0.0204 0.289 0.289 -7 —14 5
O 3 (1,5) 11100 11111 0.0021 0.029 0.318 7 —15
O3 PL P, 3 (1,5) 0000001101 0.0278 0.393 0.711 0 -6 3
Oy 3  (1,2,4) 11000 01010 0.0204 0.289 1.0 3 10

Fy =0.071
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offspring members during the recombination phase. The columns look, Path,
cromosome, fitness, fi norm, and fi qcew have the same meaning as for the
parent population. A and B represent the new test data values and K
indicates the single crossover point. The genes displayed in bold and italics
are the result of mutation.

The mating process has resulted in an offspring population which
includes the member O3 which is the same distance of 6 from node 3 as
P, in the parent population. This is manifested by both these members
having the same fitness value (0.0278). Additionally, O3 has the highest
fitness value among the offspring population and is rewarded with a high
value for f; norm Which in turn results in a high probability of this member
surviving into the next parent generation. However, the total fitness value
F; of the offspring population is less than that of the parent population
indicating that an overall improvement from one population to the next is
not guaranteed.

We now have two populations (parent and offspring) each containing
4 members which will provide the members of the next generation.
Because the probability of survival (i.e. Ps Value) is 0.5, on average the
next generation will be made up from two members of each population.
Table 10.4 shows how the members M1-M4 of the next generation are
selected. For each member of the new population a random number is
generated. This is shown in the parent vs. offspring row in Table 10.4. If the
random number is >0.5 (>Ps) the parent population is selected; otherwise
the offspring population is used. Once the population has been selected,
another random number in the range 0.0 to 1.0 is generated to select which
member of the chosen population survives to the next generation.

For example, when selecting member M1 for the next generation, the
parent vs. offspring random number generated is 0.678 which means the
parent population is selected. The next random number generated is 0.257
which selects member P; using the f; e column of Table 10.2. This process

Table 10.4. Survival of offspring members.

M1 M1 M2 M2 M3 M3 M4 M4

Parent vs. Offspring 0.678 — 0.298 — 0987 — 0457 —
Survived Parents 0.257 P1 — — 0.71 P3 — —
Survived Offspring — — 0.026 O1 — — 0.609 O3
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Table 10.5. Third generation.

P; A B Look Path Cromosome Fitness  fi norm fi,aceu
P 4 10 3 (1,2,4) 00100 01010 0.0277 0.288 0.288
Py -7 —14 3 (1,5) 11101 01111 0.0204 0.212 0.500
Ps 8 15 3 (1,2,4) 00010 11110 0.0204 0.212 0.712
Py 0 —6 3 (1,5) 00000 01101 0.02278 0.288 1.0

Ft = 0.096
o, P P — — — — — — A B K
O P3 P 3 (1,2,4) 00010 11010 0.1111 0.689 0.689 8 11 7
O2 3 (1,2,4) 1010011110 0.0099 0.062 0.751 5 15
O3 P> Py 3 (1,2,4) 1100001101 0.0123 0.077 0.828 3 —6 4
Oy 3 (1,5) 00011 01111 0.0278 0.172 1.0 -8 -—14

Fy = 0.161

M1 M1 M2 M2 M3 M3 M4 M4

Parent vs. Offspring 0.034 — 0.295 — 0.785 — 0.546 —
Survived Parents — — — — 0.540 P3 0.952 P4

Survived Offspring 0.158 o1 0.331 o1 — — — —

is repeated for each member of the new population. The new generation is
shown in the top part of Table 10.5.

The whole process repeats itself again, until all nodes are traversed.
Table 10.5 presents the third generation of the test run. The third
generation of the parent population has a total fitness increase over the
second generation which can be seen in F;. The offspring population,
produced by crossover and mutation, generated a test data Oy which is only
three integer units (11 — 8 = 3) away from the global optimum according
to node 3. A high fitness value is calculated for this member and is chosen
to survive twice into the next generation. Table 10.6 presents the fourth
generation.

In the offspring population, two test sets (O; and O4) have been
generated which are close to satisfying the goal. Oy is actually closer to
the global optimum and, therefore, has a higher fitness value. The total
fitness F} has improved by 280 from the third to the fourth generation.
Table 10.7 presents the fifth generation.

In general the total fitness value F} increases over several generations.
Node 3 has been traversed in the fifth generation with the test data set of
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Table 10.6. Fourth generation.
P; A B Look Path Cromosome Fitness finorm fi,aceu
P 8 11 3 (1,2,4) 00010 11010 0.1111 0.411 0.411
P> 8 11 3 (1,2,4) 00010 11010 0.1111 0.411 0.822
P3 8 15 3 (1,2,4) 00010 11110 0.0204 0.075 0.897
Py 0 —6 3 (1,5) 00000 01101 0.0278 0.103 1.0
Fy =0.27
o, P, P — — — — — — A B K
O1 P P, 3 (1,2,4) 10010 11010 0.2499 0.199 0.199 9 11 2
O2 3 (1,5) 00010 11011 0.0028 0.002 0.201 8 11
Os P+ P3 3 (1,2,4) 00000 01110 0.0051 0.004 0.205 0 14 8
Oy 3 (1,2,4) 00011 11101 0.9990 0.795 1.0 -8 -7
Fy =1.26
M1 M1 M2 M2 M3 M3 M4 M4
Parent vs. Offspring 0.691 — 0.124 — 0.753 — 0.498 —
Survived Parents 0.356 P1 — — 0.861 P3 — —
Survived Offspring — — 0.551 04 — — 0.050 o1
Table 10.7. Fifth generation.
P; A B Look Path Cromosome Fitness fi,norm fi,accu
P, 8 11 3 (1,2,4) 00010 11010 0.1111 0.081 0.081
Py -8 -7 3 (1,2,4) 00011 11101 0.9990 0.724 0.805
P3 8 15 3 (1,5) 00010 11110 0.0204 0.015 0.820
Py 9 11 3 (1,2,4) 10010 11010 0.2499 0.180 1.0
F; =1.38
O; P; P; T T 7 — — fi,accu A B K
O1 P1 P (1,2,3) 11010 11010 100.0 11 11 9
O2 00010 11011 8 —11
O3 P3 Py 00010 10010 8 9 6
Oy 10110 11110 13 15

O; with A = B = 11. As soon as the last node has been traversed the test
run finishes.
Figure 10.5 shows the test data in each parent population which were
generated using GA in the different sub domains. It can be seen that the
test data get closer to the domain of the path (1, 2, 3) (the diagonal). The
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Fig. 10.5. Example with generated test data for generation G1 to G5.

test data which traversed node 3 is the point (11, 11), as shown in Fig. 10.5.
No test points are drawn for the second generation G2, because they are
identical to the first generation G1. The limitation with the discussed test
data generator is that, it cannot generate boolean or enumerated type test
data. Miller et al. [8] have solved this problem. They [8] have proposed a
method for test data generation using Program Dependence Graph and GA.

10.5. Summary

Automatic test case generation is an important and challenging activity in
software testing. Again to get good test data is a NP—Complete problem.
In this chapter, we have discussed issues relating to the path wise test data
generator. We have also discussed the basic concepts of Genetic Algorithm.
The chapter concludes with a discussion of path wise test data generation
using GA with an example. It is observed that non redundant test data for
a test suite can be generated automatically using GA.
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