

Te-Ming Huang, Vojislav Kecman, Ivica Kopriva

Kernel Based Algorithms for Mining Huge Data Sets

Studies in Computational Intelligence, Volume 17

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 3. Bożena Kostek
Perception-Based Data Processing in
Acoustics, 2005
ISBN 3-540-25729-2

Vol. 4. Saman K. Halgamuge, Lipo Wang
(Eds.)
Classification and Clustering for Knowledge
Discovery, 2005
ISBN 3-540-26073-0

Vol. 5. Da Ruan, Guoqing Chen, Etienne E.
Kerre, Geert Wets (Eds.)
Intelligent Data Mining, 2005
ISBN 3-540-26256-3

Vol. 6. Tsau Young Lin, Setsuo Ohsuga,
Churn-Jung Liau, Xiaohua Hu, Shusaku
Tsumoto (Eds.)
Foundations of Data Mining and Knowledge
Discovery, 2005
ISBN 3-540-26257-1

Vol. 7. Bruno Apolloni, Ashish Ghosh, Ferda
Alpaslan, Lakhmi C. Jain, Srikanta Patnaik
(Eds.)
Machine Learning and Robot Perception,
2005
ISBN 3-540-26549-X

Vol. 8. Srikanta Patnaik, Lakhmi C. Jain,
Spyros G. Tzafestas, Germano Resconi,
Amit Konar (Eds.)
Innovations in Robot Mobility and Control,
2006
ISBN 3-540-26892-8

Vol. 9. Tsau Young Lin, Setsuo Ohsuga,
Churn-Jung Liau, Xiaohua Hu (Eds.)
Foundations and Novel Approaches in Data
Mining, 2005
ISBN 3-540-28315-3

Vol. 10. Andrzej P. Wierzbicki, Yoshiteru
Nakamori
Creative Space, 2005
ISBN 3-540-28458-3

Vol. 11. Antoni Ligêza
Logical Foundations for Rule-Based
Systems, 2006
ISBN 3-540-29117-2

Vol. 13. Nadia Nedjah, Ajith Abraham,
Luiza de Macedo Mourelle (Eds.)
Genetic Systems Programming, 2006
ISBN 3-540-29849-5

Vol. 14. Spiros Sirmakessis (Ed.)
Adaptive and Personalized Semantic Web,
2006
ISBN 3-540-30605-6

Vol. 15. Lei Zhi Chen, Sing Kiong Nguang,
Xiao Dong Chen
Modelling and Optimization of
Biotechnological Processes, 2006
ISBN 3-540-30634-X

Vol. 16. Yaochu Jin (Ed.)
Multi-Objective Machine Learning, 2006
ISBN 3-540-30676-5

Vol. 17. Te-Ming Huang, Vojislav Kecman,
Ivica Kopriva
Kernel Based Algorithms for Mining Huge
Data Sets, 2006
ISBN 3-540-31681-7

Te-Ming Huang
Vojislav Kecman
Ivica Kopriva

Kernel Based Algorithms
for Mining Huge Data Sets
Supervised, Semi-supervised,
and Unsupervised Learning

ABC

Te-Ming Huang
Vojislav Kecman
Faculty of Engineering
The University of Auckland
Private Bag 92019
1030 Auckland, New Zealand
E-mail: huangtm@learning-from-data.com

v.kecman@auckland.ac.nz

Ivica Kopriva
Department of Electrical and
Computer Engineering
22nd St. NW 801
20052 Washington D.C., USA
E-mail: ikopriva@gmail.com

Library of Congress Control Number: 2005938947

ISSN print edition: 1860-949X
ISSN electronic edition: 1860-9503
ISBN-10 3-540-31681-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31681-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer LATEX macro package

Printed on acid-free paper SPIN: 11612780 89/TechBooks 5 4 3 2 1 0

To Our Parents

Jun-Hwa Huang & Wen-Chuan Wang,
Danica & Mane Kecman,

Štefanija & Antun Kopriva,

and to Our Teachers

Preface

This is a book about (machine) learning from (experimental) data. Many
books devoted to this broad field have been published recently. One even feels
tempted to begin the previous sentence with an adjective extremely. Thus,
there is an urgent need to introduce both the motives for and the content of
the present volume in order to highlight its distinguishing features.

Before doing that, few words about the very broad meaning of data are in
order. Today, we are surrounded by an ocean of all kind of experimental data
(i.e., examples, samples, measurements, records, patterns, pictures, tunes, ob-
servations,..., etc) produced by various sensors, cameras, microphones, pieces
of software and/or other human made devices. The amount of data produced
is enormous and ever increasing. The first obvious consequence of such a fact
is - humans can’t handle such massive quantity of data which are usually
appearing in the numeric shape as the huge (rectangular or square) matri-
ces. Typically, the number of their rows (n) tells about the number of data
pairs collected, and the number of columns (m) represent the dimensionality
of data. Thus, faced with the Giga- and Terabyte sized data files one has to
develop new approaches, algorithms and procedures. Few techniques for cop-
ing with huge data size problems are presented here. This, possibly, explains
the appearance of a wording ’huge data sets’ in the title of the book.

Another direct consequence is that (instead of attempting to dive into the
sea of hundreds of thousands or millions of high-dimensional data pairs) we
are developing other ‘machines’ or ‘devices’ for analyzing, recognizing and/or
learning from, such huge data sets. The so-called ‘learning machine’ is pre-
dominantly a piece of software that implements both the learning algorithm
and the function (network, model) which parameters has to be determined by
the learning part of the software. Today, it turns out that some models used
for solving machine learning tasks are either originally based on using kernels
(e.g., support vector machines), or their newest extensions are obtained by an
introduction of the kernel functions within the existing standard techniques.
Many classic data mining algorithms are extended to the applications in the
high-dimensional feature space. The list is long as well as the fast growing one,

VIII Preface

and just the most recent extensions are mentioned here. They are - kernel prin-
cipal component analysis, kernel independent component analysis, kernel least
squares, kernel discriminant analysis, kernel k-means clustering, kernel self-
organizing feature map, kernel Mahalanobis distance, kernel subspace classi-
fication methods and kernel functions based dimensionality reduction. What
the kernels are, as well as why and how they became so popular in the learning
from data sets tasks, will be shown shortly. As for now, their wide use as well
as their efficiency in a numeric part of the algorithms (achieved by avoiding
the calculation of the scalar products between extremely high dimensional
feature vectors), explains their appearance in the title of the book.

Next, it is worth of clarifying the fact that many authors tend to label
similar (or even same) models, approaches and algorithms by different names.
One is just destine to cope with concepts of data mining, knowledge discovery,
neural networks, Bayesian networks, machine learning, pattern recognition,
classification, regression, statistical learning, decision trees, decision making
etc. All of them usually have a lot in common, and they often use the same set
of techniques for adjusting, tuning, training or learning the parameters defin-
ing the models. The common object for all of them is a training data set. All
the various approaches mentioned start with a set of data pairs (xi, yi) where
xi represent the input variables (causes, observations, records) and yi denote
the measured outputs (responses, labels, meanings). However, even with the
very commencing point in machine learning (namely, with the training data
set collected), the real life has been tossing the coin in providing us either
with

• a set of genuine training data pairs (xi, yi) where for each input xi there
is a corresponding output yi or with,

• the partially labeled data containing both the pairs (xi, yi) and the sole in-
puts xi without associated known outputs yi or, in the worst case scenario,
with

• the set of sole inputs (observations or records) xi without any information
about the possible desired output values (labels, meaning) yi.

It is a genuine challenge indeed to try to solve such differently posed machine
learning problems by the unique approach and methodology. In fact, this
is exactly what did not happen in the real life because the development in
the field followed a natural path by inventing different tools for unlike tasks.
The answer to the challenge was a, more or less, independent (although with
some overlapping and mutual impact) development of three large and distinct
sub-areas in machine learning - supervised, semi-supervised and unsupervised
learning. This is where both the subtitle and the structure of the book are
originated from. Here, all three approaches are introduced and presented in
details which should enable the reader not only to acquire various techniques
but also to equip him/herself with all the basic knowledge and requisites for
further development in all three fields on his/her own.

Preface IX

The presentation in the book follows the order mentioned above. It starts
with seemingly most powerful supervised learning approach in solving classi-
fication (pattern recognition) problems and regression (function approxima-
tion) tasks at the moment, namely with support vector machines (SVMs).
Then, it continues with two most popular and promising semi-supervised ap-
proaches (with graph based semi-supervised learning algorithms; with the
Gaussian random fields model (GRFM) and with the consistency method
(CM)). Both the original setting of methods and their improved versions will
be introduced. This makes the volume to be the first book on semi-supervised
learning at all. The book’s final part focuses on the two most appealing and
widely used unsupervised methods labeled as principal component analysis
(PCA) and independent component analysis (ICA). Two algorithms are the
working horses in unsupervised learning today and their presentation, as well
as a pointing to their major characteristics, capacities and differences, is given
the highest care here.

The models and algorithms for all three parts of machine learning men-
tioned are given in the way that equips the reader for their straight implemen-
tation. This is achieved not only by their sole presentation but also through
the applications of the models and algorithms to some low dimensional (and
thus, easy to understand, visualize and follow) examples. The equations and
models provided will be able to handle much bigger problems (the ones having
much more data of much higher dimensionality) in the same way as they did
the ones we can follow and ‘see’ in the examples provided. In the authors’
experience and opinion, the approach adopted here is the most accessible,
pleasant and useful way to master the material containing many new (and
potentially difficult) concepts.

The structure of the book is shown in Fig. 0.1.
The basic motivations and presentation of three different approaches in

solving three unlike learning from data tasks are given in Chap. 1. It is a kind
of both the background and the stage for a book to evolve.

Chapter 2 introduces the constructive part of the SVMs without going into
all the theoretical foundations of statistical learning theory which can be found
in many other books. This may be particularly appreciated by and useful for
the applications oriented readers who do not need to know all the theory back
to its roots and motives. The basic quadratic programming (QP) based learn-
ing algorithms for both classification and regression problems are presented
here. The ideas are introduced in a gentle way starting with the learning al-
gorithm for classifying linearly separable data sets, through the classification
tasks having overlapped classes but still a linear separation boundary, beyond
the linearity assumptions to the nonlinear separation boundary, and finally to
the linear and nonlinear regression problems. The appropriate examples follow
each model derived, just enabling in this way an easier grasping of concepts
introduced. The material provided here will be used and further developed in
two specific directions in Chaps. 3 and 4.

X Preface

Fig. 0.1. Structure of the book

Chapter 3 resolves the crucial problem of the QP based learning coming
from the fact that the learning stage of SVMs scales with the number of
training data pairs. Thus, when having more than few thousands data pairs,
the size of the original Hessian matrix appearing in the cost function of the
QP problem setting goes beyond the capacities of contemporary computers.
The fact that memory chips are increasing is not helping due to the much
faster increase in the size of data files produced. Thus, there is a need for
developing an iterative learning algorithm that does not require a calculation
of the complete Hessian matrix. The Iterative Single Data Algorithm (ISDA)
that in each iteration step needs a single data point only is introduced here.
Its performance seems to be superior to other known iterative approaches.

Chapter 4 shows how SVMs can be used as a feature reduction tools by
coupling with the idea of recursive feature elimination. The Recursive Fea-
ture Elimination with Support Vector Machines (RFE-SVMs) developed in
[61] is the first approach that utilizes the idea of margin as a measure of rel-
evancy for feature selection. In this chapter, an improved RFE-SVM is also
proposed and it is applied to the challenging problem of DNA microarray
analysis. DNA microarray is a powerful tool which allows biologists to mea-
sure thousands of genes’ expression in a single experiment. This technology
opens up the possibility of finding out the causal relationship between genes
and certain phenomenon in the body, e.g. which set of genes is responsible for
certain disease or illness. However, the high cost of the technology and the
limited number of samples available make the learning from DNA microarray
data a very difficult task. This is due to the fact that the training data set
normally consists of a few dozens of samples, but the number of genes (i.e.,
the dimensionality of the problem) can be as high as several thousands. The
results of applying the improved RFE-SVM to two DNA microarray data sets
show that the performance of RFE-SVM seems to be superior to other known
approaches such as the nearest shrunken centroid developed in [137].

Chapter 5 presents two very promising semi-supervised learning tech-
niques, namely, GRFM and CM. Both methods are based on the theory of

Preface XI

graphical models and they explore the manifold structure of the data set
which leads to their global convergence. An in depth analysis of both ap-
proaches when facing with unbalanced labeled suggests that the performance
of both approaches can deteriorate very significantly when labeled data is
unbalanced (i.e., when the number of labeled data in each class is different).
As a result, a novel normalization step is introduced to both algorithms im-
proving the performance of the algorithms very significantly when faced with
an unbalance in labeled data. This chapter also presents the comparisons of
CM and GRFM with the various variants of transductive SVMs (TSVMs)
and the results suggest that the graph-based approaches seem to have better
performance in multi-class problems

Chapter 6 introduces two basic methodologies for learning from unlabeled
data within the unsupervised learning approach: the Principal Component
Analysis (PCA) and the Independent Component Analysis (ICA). Unsuper-
vised learning is related to the principle of redundancy reduction which is
implemented in mathematical form through minimization of the statistical
dependence between observed data pairs. It is demonstrated that PCA, which
decorrelates data pairs, is optimal for Gaussian sources and suboptimal for
non-Gaussian ones. It is also pointed to the necessity of using ICA for non-
Gaussian sources as well as that there is no reason for using it in the case
of Gaussian ones. PCA algorithm known as whitening or sphering transform
is derived. Batch and adaptive ICA algorithms are derived through the min-
imization of the mutual information which is an exact measure of statistical
(in)dependence between data pairs. Both PCA and ICA derived unsupervised
learning algorithms are implemented in MATLAB code, which illustrates their
use on computer generated examples.

As it is both the need and the habit today, the book is accompanied with
an Internet site

www.learning-from-data.com

The site contains the software and other material used in the book and it
may be helpful for readers to make occasional visits and download the newest
version of software and/or data files.

Auckland, New Zealand, Te-Ming Huang
Washington, D.C., USA Vojislav Kecman
October 2005 Ivica Kopriva

Contents

1 Introduction . 1
1.1 An Overview of Machine Learning . 1
1.2 Challenges in Machine Learning . 3

1.2.1 Solving Large-Scale SVMs . 4
1.2.2 Feature Reduction with Support Vector Machines 5
1.2.3 Graph-Based Semi-supervised Learning Algorithms 6
1.2.4 Unsupervised Learning Based on Principle

of Redundancy Reduction . 7

2 Support Vector Machines in Classification
and Regression – An Introduction . 11
2.1 Basics of Learning from Data . 12
2.2 Support Vector Machines in Classification and Regression 21

2.2.1 Linear Maximal Margin Classifier
for Linearly Separable Data . 21

2.2.2 Linear Soft Margin Classifier for Overlapping Classes . . 32
2.2.3 The Nonlinear SVMs Classifier . 36
2.2.4 Regression by Support Vector Machines 48

2.3 Implementation Issues . 57

3 Iterative Single Data Algorithm for Kernel Machines
from Huge Data Sets: Theory and Performance 61
3.1 Introduction . 61
3.2 Iterative Single Data Algorithm for Positive Definite Kernels

without Bias Term b . 63
3.2.1 Kernel AdaTron in Classification . 64
3.2.2 SMO without Bias Term b in Classification 65
3.2.3 Kernel AdaTron in Regression . 66
3.2.4 SMO without Bias Term b in Regression 67
3.2.5 The Coordinate Ascent Based Learning for Nonlinear

Classification and Regression Tasks 68

XIV Contents

3.2.6 Discussion on ISDA Without a Bias Term b 73
3.3 Iterative Single Data Algorithm with an Explicit Bias Term b . 73

3.3.1 Iterative Single Data Algorithm for SVMs
Classification with a Bias Term b . 74

3.4 Performance of the Iterative Single Data Algorithm and
Comparisons . 80

3.5 Implementation Issues . 83
3.5.1 Working-set Selection and Shrinking of ISDA for

Classification . 83
3.5.2 Computation of the Kernel Matrix and Caching of

ISDA for Classification . 89
3.5.3 Implementation Details of ISDA for Regression 92

3.6 Conclusions . 94

4 Feature Reduction with Support Vector Machines and
Application in DNA Microarray Analysis 97
4.1 Introduction . 97
4.2 Basics of Microarray Technology . 99
4.3 Some Prior Work . 101

4.3.1 Recursive Feature Elimination
with Support Vector Machines . 101

4.3.2 Selection Bias and How to Avoid It 102
4.4 Influence of the Penalty Parameter C in RFE-SVMs 103
4.5 Gene Selection for the Colon Cancer and the Lymphoma

Data Sets . 104
4.5.1 Results for Various C Parameters 104
4.5.2 Simulation Results with Different Preprocessing

Procedures . 107
4.6 Comparison between RFE-SVMs and the Nearest Shrunken

Centroid Method . 112
4.6.1 Basic Concept of Nearest Shrunken Centroid Method . . 112
4.6.2 Results on the Colon Cancer Data Set

and the Lymphoma Data Set . 115
4.7 Comparison of Genes’ Ranking with Different Algorithms 120
4.8 Conclusions . 122

5 Semi-supervised Learning and Applications 125
5.1 Introduction . 125
5.2 Gaussian Random Fields Model and Consistency Method 127

5.2.1 Gaussian Random Fields Model . 127
5.2.2 Global Consistency Model . 130
5.2.3 Random Walks on Graph . 133

5.3 An Investigation of the Effect of Unbalanced labeled Data on
CM and GRFM Algorithms . 136
5.3.1 Background and Test Settings . 136

Contents XV

5.3.2 Results on the Rec Data Set . 139
5.3.3 Possible Theoretical Explanations on the Effect of

Unbalanced Labeled Data . 139
5.4 Classifier Output Normalization: A Novel Decision Rule for

Semi-supervised Learning Algorithm . 142
5.5 Performance Comparison of Semi-supervised Learning

Algorithms . 145
5.5.1 Low Density Separation: Integration of Graph-Based

Distances and ∇TSVM . 146
5.5.2 Combining Graph-Based Distance with Manifold

Approaches . 149
5.5.3 Test Data Sets . 150
5.5.4 Performance Comparison Between the LDS and the

Manifold Approaches . 152
5.5.5 Normalizatioin Steps and the Effect of σ 154

5.6 Implementation of the Manifold Approaches 154
5.6.1 Variants of the Manifold Approaches Implemented in

the Software Package SemiL . 155
5.6.2 Implementation Details of SemiL . 157
5.6.3 Conjugate Gradient Method with Box Constraints 162
5.6.4 Simulation Results on the MNIST Data Set 166

5.7 An Overview of Text Classification . 167
5.8 Conclusions . 171

6 Unsupervised Learning by Principal and Independent
Component Analysis . 175
6.1 Principal Component Analysis . 180
6.2 Independent Component Analysis . 197
6.3 Concluding Remarks . 208

A Support Vector Machines . 209
A.1 L2 Soft Margin Classifier . 210
A.2 L2 Soft Regressor . 211
A.3 Geometry and the Margin . 213

B Matlab Code for ISDA Classification . 217

C Matlab Code for ISDA Regression . 223

D Matlab Code for Conjugate Gradient Method with Box
Constraints . 229

E Uncorrelatedness and Independence . 233

XVI Contents

F Independent Component Analysis by Empirical
Estimation of Score Functions i.e., Probability Density
Functions . 237

G SemiL User Guide . 241
G.1 Installation . 241
G.2 Input Data Format . 243

G.2.1 Raw Data Format: . 243
G.3 Getting Started . 244

G.3.1 Design Stage . 245

References . 247

Index . 257

1

Introduction

1.1 An Overview of Machine Learning

The amount of data produced by sensors has increased explosively as a re-
sult of the advances in sensor technologies that allow engineers and scien-
tists to quantify many processes in fine details. Because of the sheer amount
and complexity of the information available, engineers and scientists now rely
heavily on computers to process and analyze data. This is why machine learn-
ing has become an emerging topic of research that has been employed by an
increasing number of disciplines to automate complex decision-making and
problem-solving tasks. This is because the goal of machine learning is to
extract knowledge from experimental data and use computers for complex
decision-making, i.e. decision rules are extracted automatically from data by
utilizing the speed and the robustness of the machines. As one example, the
DNA microarray technology allows biologists and medical experts to measure
the expressiveness of thousands of genes of a tissue sample in a single exper-
iment. They can then identify cancerous genes in a cancer study. However,
the information that is generated from the DNA microarray experiments and
many other measuring devices cannot be processed or analyzed manually be-
cause of its large size and high complexity. In the case of the cancer study, the
machine learning algorithm has become a valuable tool to identify the cancer-
ous genes from the thousands of possible genes. Machine-learning techniques
can be divided into three major groups based on the types of problems they
can solve, namely, the supervised, semi-supervised and unsupervised learning.

The supervised learning algorithm attempts to learn the input-output
relationship (dependency or function) f(x) by using a training data set
{X = [xi, yi], i = 1, . . . , n} consisting of n pairs (x1, y1), (x2, y2), . . . (xn, yn),
where the inputs x are m-dimensional vectors x ∈ �m and the labels (or
system responses) y are discrete (e.g., Boolean) for classification problems
and continuous values (y ∈ �) for regression tasks. Support Vector Machines
(SVMs) and Artificial Neural Network (ANN) are two of the most popular
techniques in this area.

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 1–9 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

2 1 Introduction

There are two types of supervised learning problems, namely, classification
(pattern recognition) and the regression (function approximation) ones. In the
classification problem, the training data set consists of examples from differ-
ent classes. The simplest classification problem is a binary one that consists
of training examples from two different classes (+1 or -1 class). The outputs
yi ∈ {1,−1} represent the class belonging (i.e. labels) of the corresponding
input vectors xi in the classification. The input vectors xi consist of mea-
surements or features that are used for differentiating examples of different
classes. The learning task in classification problems is to construct classifiers
that can classify previously unseen examples xj . In other words, machines
have to learn from the training examples first, and then they should make
complex decisions based on what they have learned. In the case of multi-class
problems, several binary classifiers are built and used for predicting the labels
of the unseen data, i.e. an N -class problem is generally broken down into N
binary classification problems. The classification problems can be found in
many different areas, including, object recognition, handwritten recognition,
text classification, disease analysis and DNA microarray studies. The term
“supervised” comes from the fact that the labels of the training data act as
teachers who educate the learning algorithms.

In the regression problem, the task is to find the mapping between input
x ∈ �m and output y ∈ �. The output y in regression is a continuous value
instead of a discrete one in the classification. Similarly, the learning task in
regression is to find the underlying function between some m-dimensional
input vectors xi ∈ �m and scalar outputs yi ∈ �. The regression problems
can also be found in many disciplines, including time-series analysis, control
system, navigation and interest rates analysis in finance.

There are two phases when applying supervised learning algorithms for
problem-solving as shown in Fig. 1.1. The first phase is the so-called learn-
ing phase where the learning algorithms design a mathematical model of a

Fig. 1.1. Two Phases of Supervised Learning Algorithms.

1.2 Challenges in Machine Learning 3

dependency, function or mapping (in an regression) or classifiers (in a classifi-
cation i.e., pattern recognition) based on the training data given. This can be
a time-consuming procedure if the size of the training data set is huge. One
of the mainstream research fields in learning from empirical data is to design
algorithms that can be applied to large-scale problems efficiently, which is
also the core of this book. The second phase is the test and/or application
phase. In this phase, the models developed by the learning algorithms are
used to predict the outputs yi of the data which are unseen by the learning
algorithms in the learning phase. Before an actual application, the test phase
is always carried out for checking the accuracy of the models developed in the
first phase.

Another large group of standard learning algorithms are those dubbed
as unsupervised algorithms when there are only raw data xi ∈ �m without
the corresponding labels yi (i.e., there is a ‘no-teacher’ in a shape of labels).
The most popular, representative, algorithms belonging to this group are var-
ious clustering techniques and (principal or independent) component analysis
routines. These two algorithms will be introduced and compared in Chap. 6.

Between the two ends of the spectrum are the semi-supervised learning
problems. These problems are characterized by the presence of (usually) a
small percentage of labeled data and a large percentage of unlabeled ones. The
cause of an appearance of the unlabeled data points is usually an expensive,
difficult and slow process of obtaining labeled data. Thus, labeling brings
additional costs and often it is not feasible. Typical areas where this happens
are speech processing (due to the slow transcription), text categorization (due
to huge number of documents and slow reading by people), web categorization,
and, finally, a bioinformatics area where it is usually both expensive and
slow to label a huge number of data produced. As a result, the goal of a
semi-supervised learning algorithm is to predict the labels of the unlabeled
data by taking the entire data set into account. In other words, the training
data set consists of both labeled and unlabeled data (more details will be
found in Chap. 5). At the time of writing this book, the semi-supervised
learning techniques are still at the early stage of their developments and they
are only applicable for solving classification problems. This is because they
are designed to group the unlabeled data xi, but not to approximate the
underlying function f(x). This volume seems to be the first one (in the line
of many books coming) on semi-supervised learning. The presentation here is
focused on the widely used and the most popular graph-based (a.k.a. manifold)
approaches only.

1.2 Challenges in Machine Learning

Like most areas in science and engineering, machine learning requires devel-
opments in both theoretical and practical (engineering) aspects. An activity

4 1 Introduction

on the theoretical side is concentrated on inventing new theories as the foun-
dations for constructing novel learning algorithms. On the other hand, by ex-
tending existing theories and inventing new techniques, researchers who work
in the engineering aspects of the field try to improve the existing learning
algorithms and apply them to the novel and challenging real-world problems.
This book is focused on the practical aspects of SVMs, graph-based semi-
supervised learning algorithms and two basic unsupervised learning methods.
More specifically, it aims at making these learning techniques more practical
for the implementation to the real-world tasks. As a result, the primary goal
of this book is aimed at developing novel algorithms and software that can
solve large-scale SVMs, graph-based semi-supervised and unsupervised learn-
ing problems. Once an efficient software implementation has been obtained,
the goal will be to apply these learning techniques to real-world problems and
to improve their performance. Next four sections outline the original contri-
butions of the book in solving the mentioned tasks.

1.2.1 Solving Large-Scale SVMs

As mentioned previously, machine learning techniques allow engineers and sci-
entists to use the power of computers to process and analyze large amounts
of information. However, the amount of information generated by sensors can
easily go beyond the processing power of the latest computers available. As a
result, one of the mainstream research fields in learning from empirical data is
to design learning algorithms that can be used in solving large-scale problems
efficiently. The book is primarily aimed at developing efficient algorithms for
implementing SVMs. SVMs are the latest supervised learning techniques from
statistical learning theory and they have been shown to deliver state-of-the-art
performance in many real-world applications [153]. The challenge of applying
SVMs on huge data sets comes from the fact that the amount of computer
memory required for solving the quadratic programming (QP) problem asso-
ciated with SVMs increases drastically with the size of the training data set n
(more details can be found in Chap. 3). As a result, the book aims at provid-
ing a better solution for solving large-scale SVMs using iterative algorithms.
The novel contributions presented in this book are as follows:

1. The development of Iterative Single Data Algorithm (ISDA) with the
explicit bias term b. Such a version of ISDA has been shown to perform
better (faster) than the standard SVMs learning algorithms achieving at
the same time the same accuracy. These contributions are presented in
Sect. 3.3 and 3.4.

2. An efficient software implementation of the ISDA is developed. The ISDA
software has been shown to be significantly faster than the well-known
SVMs learning software LIBSVM [27]. These contributions are presented
in Sect. 3.5.

1.2 Challenges in Machine Learning 5

1.2.2 Feature Reduction with Support Vector Machines

Recently, more and more instances have occurred in which the learning
problems are characterized by the presence of a small number of the high-
dimensional training data points, i.e. n is small and m is large. This often
occurs in the bioinformatics area where obtaining training data is an expen-
sive and time-consuming process. As mentioned previously, recent advances
in the DNA microarray technology allow biologists to measure several thou-
sands of genes’ expressions in a single experiment. However, there are three
basic reasons why it is not possible to collect many DNA microarrays and
why we have to work with sparse data sets. First, for a given type of cancer
it is not simple to have thousands of patients in a given time frame. Second,
for many cancer studies, each tissue sample used in an experiment needs to
be obtained by surgically removing cancerous tissues and this is an expensive
and time consuming procedure. Finally, obtaining the DNA microarrays is
still expensive technology. As a result, it is not possible to have a relatively
large quantity of training examples available. Generally, most of the microar-
ray studies have a few dozen of samples, but the dimensionality of the feature
spaces (i.e. space of input vector x) can be as high as several thousand. In
such cases, it is difficult to produce a classifier that can generalize well on the
unseen data, because the amount of training data available is insufficient to
cover the high dimensional feature space. It is like trying to identify objects
in a big dark room with only a few lights turned on. The fact that n is much
smaller than m makes this problem one of the most challenging tasks in the
areas of machine learning, statistics and bioinformatics.

The problem of having high-dimensional feature space led to the idea of
selecting the most relevant set of genes or features first, and only then the
classifier is constructed from these selected and “‘important”’ features by
the learning algorithms. More precisely, the classifier is constructed over a
reduced space (and, in the comparative example above, this corresponds to
an object identification in a smaller room with the same number of lights).
As a result such a classifier is more likely to generalize well on the unseen
data. In the book, a feature reduction technique based on SVMs (dubbed
Recursive Feature Elimination with Support Vector Machines (RFE-SVMs))
developed in [61], is implemented and improved. In particular, the focus is on
gene selection for cancer diagnosis using RFE-SVMs. RFE-SVM is included
in the book because it is the most natural way to harvest the discriminative
power of SVMs for microarray analysis. At the same time, it is also a natural
extension of the work on solving SVMs efficiently. The original contributions
presented in the book in this particular area are as follows:

1. The effect of the penalty parameter C which was neglected in most of
the studies is explored in order to develop an improved RFE-SVMs for
feature reduction. The simulation results suggest that the performance
improvement can be as high as 35% on the popular colon cancer data-set

6 1 Introduction

[8]. Furthermore, the improved RFE-SVM outperforms several other tech-
niques including the well-known nearest shrunken centroid method [137]
developed at the Stanford University. These contributions are contained
in Sects. 4.4, 4.5 and 4.6.

2. An investigation of the effect of different data preprocessing procedures
on the RFE-SVMs was carried out. The results suggest that the perfor-
mance of the algorithms can be affected by different procedures. They are
presented in Sect. 4.5.2

3. The book also tries to determine whether gene selection algorithms such
as RFE-SVMs can help biologists to find the right set of genes causing a
certain disease. A comparison of the genes’ ranking from different algo-
rithms shows a great deal of consensus among all nine different algorithms
tested in the book. This indicates that machine learning techniques may
help narrowing down the scope of searching for the set of ‘optimal’ genes.
This contribution is presented in Sect. 4.7.

1.2.3 Graph-Based Semi-supervised Learning Algorithms

As mentioned previously, semi-supervised learning (SSL) is the latest devel-
opment in the field of machine learning. It is driven by the fact that in many
real-world problems the cost of labeling data can be quite high and there is an
abundance of unlabeled data. The original goal of this book was to develop
large-scale solvers for SVMs and apply SVMs to real-world problems only.
However, it was found that some of the techniques developed in SVMs can be
extended naturally to the graph-based semi-supervised learning, because the
optimization problems associated with both learning techniques are identical
(more details shortly).

In the book, two very popular graph-based semi-supervised learning al-
gorithms, namely, the Gaussian random fields model (GRFM) introduced in
[160] and [159], and the consistency method (CM) for semi-supervised learn-
ing proposed in [155] were improved. The original contributions to the field
of SSL presented in this book are as follows:

1. An introduction of the novel normalization step into both CM and GRFM.
This additional step improves the performance of both algorithms signif-
icantly in the cases where labeled data are unbalanced. The labeled data
are regarded as unbalanced when each class has a different number of la-
beled data in the training set. This contribution is presented in Sect. 5.3
and 5.4.

2. The world first large-scale graph-based semi-supervised learning software
SemiL is developed as part of this book. The software is based on a Conju-
gate Gradient (CG) method which can take box-constraints into account
and it is used as a backbone for all the simulation results in Chap. 5.
Furthermore, SemiL has become a very popular tool in this area at the
time of writing this book, with approximately 100 downloads per month.
The details of this contribution are given in Sect. 5.6.

1.2 Challenges in Machine Learning 7

Both CM and GRFM are also applied to five benchmarking data sets in
order to compare them with Low Density Separation (LDS) method devel-
oped in [29]. The detailed comparison shows the strength and the weakness
of different semi-supervised learning approaches. It is presented in Sect. 5.5.
Although SVMs and graph-based semi-supervised learning algorithms are to-
tally different in terms of their theoretical foundations, the same Quadratic
Programming (QP) problem needs to be solved for both of them in order to
learn from the training data. In SVMs, when positive-definite kernels are used
without bias term, the QP problem has the following form:

max Ld(α) = −0.5αT Hα + pT α, (1.1a)
s.t. 0 ≤ αi ≤ C, i = 1, . . . , k, (1.1b)

where, in the classification k = n (n is the size of the data set) and the Hessian
matrix H is an n × n symmetric positive definite matrix, while in regression
k = 2n and H is a 2n × 2n symmetric semi-positive definite one, αi are the
Lagrange multipliers in SVMs, in classification p is a unit n×1 vector, and C
is the penalty parameter in SVMs. The task is to find the optimal α that gives
the maximum of Ld (more details can be found in Chap. 2 and 3). Similarly,
in graph-based semi-supervised learning, the following optimization problem
which is in the same form as (1.1) needs to be solved (see Sect. 5.2.2)

max Q(f) = −1
2
fTLf + yT f (1.2a)

s.t. − C ≤ fi ≤ C i = 1 . . . n (1.2b)

where L is the normalized Laplacian matrix, f is the output of graph-based
semi-supervised learning algorithm, C is the parameter that restricts the size
of the output f , y is a n × 1 vector that contains the information about the
labeled data and n is the size of the data set.

The Conjugate Gradient (CG) method for box constraints implemented
in SemiL (in Sect. 5.6.3) was originally intended and developed to solve large-
scale SVMs. Because the H matrix in the case of SVMs is extremely dense, it
was found that CG is not as efficient as ISDA for solving SVMs. However, it is
ideal for the graph-based semi-supervised learning algorithms, because matrix
L can be a sparse one in the graph-based semi-supervised learning. This is
why the main contributions of the book is across the two major subfields of
machine learning. The algorithms developed for solving the SVMs learning
problem are the ones successfully implemented in this part of the book, too.

1.2.4 Unsupervised Learning Based on Principle
of Redundancy Reduction

SVMs as the latest supervised learning technique from the statistical learning
theory as well as any other supervised learning method require labeled data in

8 1 Introduction

order to train the learning machine. As already mentioned, in many real world
problems the cost of labeling data can be quite high. This presented motivation
for most recent development of the semi-supervised learning where only small
amount of data is assumed to be labeled. However, there exist classification
problems where accurate labeling of the data is sometime even impossible.
One such application is classification of remotely sensed multispectral and
hyperspectral images [46, 47]. Recall that typical family RGB color image
(photo) contains three spectral bands. In other words we can say that family
photo is a three-spectral image. A typical hyperspectral image would contain
more than one hundred spectral bands. As remote sensing and its applications
receive lots of interests recently, many algorithms in remotely sensed image
analysis have been proposed [152]. While they have achieved a certain level
of success, most of them are supervised methods, i.e., the information of the
objects to be detected and classified is assumed to be known a priori. If such
information is unknown, the task will be much more challenging. Since the
area covered by a single pixel is very large, the reflectance of a pixel can be
considered as the mixture of all the materials resident in the area covered by
the pixel. Therefore, we have to deal with mixed pixels instead of pure pixels
as in conventional digital image processing. Linear spectral unmixing analysis
is a popular approach used to uncover material distribution in an image scene
[127, 2, 125, 3]. Formally, the problem is stated as:

r = Mα + n (1.3)

where r is a reflectance column pixel vector with dimension L in a hyperspec-
tral image with L spectral bands. An element ri in the r is the reflectance
collected in the ith wavelength band. M denotes a matrix containing p in-
dependent material spectral signatures (referred to as endmembers in linear
mixture model), i.e., M = [m1,m2, . . . ,mp], α represents the unknown abun-
dance column vector of size p×1 associated with M, which is to be estimated
and n is the noise term. The ith item αi in α represents the abundance fraction
of mi in pixel r. When M is known, the estimation of α can be accomplished
by least squares approach. In practice, it may be difficult to have prior infor-
mation about the image scene and endmember signatures. Moreover, in-field
spectral signatures may be different from those in spectral libraries due to
atmospheric and environmental effects. So an unsupervised classification ap-
proach is preferred. However, when M is also unknown, i.e., in unsupervised
analysis, the task is much more challenging since both M and α need to
be estimated [47]. Under stated conditions the problem represented by linear
mixture model (1.3) can be interpreted as a linear instantaneous blind source
separation (BSS) problem [76] mathematically described as:

x = As + n (1.4)

where x represents data vector, A is unknown mixing matrix, s is vector of
source signals or classes to be found by an unsupervised method and n is

1.2 Challenges in Machine Learning 9

again additive noise term. The BSS problem is solved by the independent
component analysis (ICA) algorithms [76]. The advantages offered by inter-
preting linear mixture model (1.3) as an BSS problem (1.4) in remote sensing
image classification are: 1) no prior knowledge of the endmembers in the mix-
ing process is required; 2) the spectral variability of the endmembers can be
accommodated by the unknown mixing matrix M since the source signals are
considered as scalar and random quantities; and 3) higher order statistics can
be exploited for better feature extraction and pattern classification. The last
advantage is consequence of the non-Gaussian nature of the classes what is
assumed by each ICA method.

As noted in [67] any meaningful data are not really random but are gen-
erated by physical processes. When physical processes are independent gen-
erated source signals i.e. classes are not related too. It means they are sta-
tistically independent. Statistical independence implies that there is no re-
dundancy between the classes. If redundancy between the classes or sources
is interpreted as the amount of information which one can infer about one
class having information about another one then mutual information can be
used as a redundancy measure between the sources or classes. This represents
mathematical implementation of the redundancy reduction principle, which
was suggested in [14] as a coding strategy in neurons. The reason is that, as
shown in [41], the mutual information expressed in a form of the Kullback-
Leibler divergence:

I(s1, s2, ..., sN) = D

(
p(s)

∥∥∥∥∥
N∏

n=1

pn(sn)

)
=
∫

p(s) log
p(s)

N∏
n=1

pn(sn)
ds (1.5)

is a non-negative convex function with the global minimum equal to zero for

p(s) =
N∏

n=1
pn(sn) i..e. when classes sn are statistically independent. Indeed,

as it is shown in Chap. 6, it is possible to derive computationally efficient
and completely unsupervised ICA algorithm through the minimization of the
mutual information between the sources. PCA and ICA are unsupervised clas-
sification methods built upon uncorrelatedness and independence assumptions
respectively. They provide very powerful tool for solving BSS problems, which
have found applications in many fields such as brain mapping [93, 98], wire-
less communications [121], nuclear magnetic resonance spectroscopy [105] and
already mentioned unsupervised classification of the multispectral remotely
sensed images [46, 47]. That is why PCA and ICA as two representative
groups of unsupervised learning methods are covered in this book.

2

Support Vector Machines in Classification
and Regression – An Introduction

This is an introductory chapter on the supervised (machine) learning from em-
pirical data (i.e., examples, samples, measurements, records, patterns or ob-
servations) by applying support support vector machines (SVMs) a.k.a. kernel
machines1. The parts on the semi-supervised and unsupervised learning are
given later and being entirely different tasks they use entirely different math
and approaches. This will be shown shortly. Thus, the book introduces the
problems gradually in an order of loosing the information about the desired
output label. After the supervised algorithms, the semi-supervised ones will
be presented followed by the unsupervised learning methods in Chap. 6. The
basic aim of this chapter is to give, as far as possible, a condensed (but system-
atic) presentation of a novel learning paradigm embodied in SVMs. Our focus
will be on the constructive part of the SVMs’ learning algorithms for both the
classification (pattern recognition) and regression (function approximation)
problems. Consequently, we will not go into all the subtleties and details of
the statistical learning theory (SLT) and structural risk minimization (SRM)
which are theoretical foundations for the learning algorithms presented be-
low. The approach here seems more appropriate for the application oriented
readers. The theoretically minded and interested reader may find an extensive
presentation of both the SLT and SRM in [146, 144, 143, 32, 42, 81, 123]. In-
stead of diving into a theory, a quadratic programming based learning, leading
to parsimonious SVMs, will be presented in a gentle way - starting with linear
separable problems, through the classification tasks having overlapped classes
but still a linear separation boundary, beyond the linearity assumptions to
the nonlinear separation boundary, and finally to the linear and nonlinear
regression problems. Here, the adjective ‘parsimonious’ denotes a SVM with
a small number of support vectors (’hidden layer neurons’). The scarcity of
the model results from a sophisticated, QP based, learning that matches the

1 This introduction strictly follows and partly extends the School of Engineering of
The University of Auckland Report 616. The right to use the material from this
report is received with gratitude.

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 11–60 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

12 2 Support Vector Machines in Classification and Regression

model capacity to data complexity ensuring a good generalization, i.e., a good
performance of SVM on the future, previously, during the training unseen,
data.

Same as the neural networks (or similarly to them), SVMs possess the well-
known ability of being universal approximators of any multivariate function to
any desired degree of accuracy. Consequently, they are of particular interest for
modeling the unknown, or partially known, highly nonlinear, complex systems,
plants or processes. Also, at the very beginning, and just to be sure what the
whole chapter is about, we should state clearly when there is no need for
an application of SVMs’ model-building techniques. In short, whenever there
exists an analytical closed-form model (or it is possible to devise one) there is
no need to resort to learning from empirical data by SVMs (or by any other
type of a learning machine)

2.1 Basics of Learning from Data

SVMs have been developed in the reverse order to the development of neural
networks (NNs). SVMs evolved from the sound theory to the implementation
and experiments, while the NNs followed more heuristic path, from applica-
tions and extensive experimentation to the theory. It is interesting to note that
the very strong theoretical background of SVMs did not make them widely
appreciated at the beginning. The publication of the first papers by Vapnik
and Chervonenkis [145] went largely unnoticed till 1992. This was due to a
widespread belief in the statistical and/or machine learning community that,
despite being theoretically appealing, SVMs are neither suitable nor relevant
for practical applications. They were taken seriously only when excellent re-
sults on practical learning benchmarks were achieved (in numeral recognition,
computer vision and text categorization). Today, SVMs show better results
than (or comparable outcomes to) NNs and other statistical models, on the
most popular benchmark problems.

The learning problem setting for SVMs is as follows: there is some un-
known and nonlinear dependency (mapping, function) y = f(x) between some
high-dimensional input vector x and the scalar output y (or the vector out-
put y as in the case of multiclass SVMs). There is no information about
the underlying joint probability functions here. Thus, one must perform a
distribution-free learning. The only information available is a training data
set {X = [x(i), y(i)] ∈ �m ×�, i = 1, . . . , n}, where n stands for the number
of the training data pairs and is therefore equal to the size of the training
data set X . Often, yi is denoted as di (i.e., ti), where d(t) stands for a desired
(target) value. Hence, SVMs belong to the supervised learning techniques.

Note that this problem is similar to the classic statistical inference. How-
ever, there are several very important differences between the approaches and
assumptions in training SVMs and the ones in classic statistics and/or NNs

2.1 Basics of Learning from Data 13

modeling. Classic statistical inference is based on the following three funda-
mental assumptions:

1. Data can be modeled by a set of linear in parameter functions; this is a
foundation of a parametric paradigm in learning from experimental data.

2. In the most of real-life problems, a stochastic component of data is the
normal probability distribution law, that is, the underlying joint proba-
bility distribution is a Gaussian distribution.

3. Because of the second assumption, the induction paradigm for parameter
estimation is the maximum likelihood method, which is reduced to the
minimization of the sum-of-errors-squares cost function in most engineer-
ing applications.

All three assumptions on which the classic statistical paradigm relied
turned out to be inappropriate for many contemporary real-life problems [143]
because of the following facts:

1. Modern problems are high-dimensional, and if the underlying mapping is
not very smooth the linear paradigm needs an exponentially increasing
number of terms with an increasing dimensionality of the input space (an
increasing number of independent variables). This is known as ‘the curse
of dimensionality’.

2. The underlying real-life data generation laws may typically be very far
from the normal distribution and a model-builder must consider this dif-
ference in order to construct an effective learning algorithm.

3. From the first two points it follows that the maximum likelihood estima-
tor (and consequently the sum-of-error-squares cost function) should be
replaced by a new induction paradigm that is uniformly better, in order
to model non-Gaussian distributions.

In addition to the three basic objectives above, the novel SVMs’ problem set-
ting and inductive principle have been developed for standard contemporary
data sets which are typically high-dimensional and sparse (meaning, the data
sets contain small number of the training data pairs).

SVMs are the so-called ‘nonparametric’ models. ‘Nonparametric’ does not
mean that the SVMs’ models do not have parameters at all. On the contrary,
their ‘learning’ (selection, identification, estimation, training or tuning) is the
crucial issue here. However, unlike in classic statistical inference, the parame-
ters are not predefined and their number depends on the training data used.
In other words, parameters that define the capacity of the model are data-
driven in such a way as to match the model capacity to data complexity. This
is a basic paradigm of the structural risk minimization (SRM) introduced by
Vapnik and Chervonenkis and their coworkers that led to the new learning
algorithm. Namely, there are two basic constructive approaches possible in
designing a model that will have a good generalization property [144, 143]:

1. choose an appropriate structure of the model (order of polynomials, num-
ber of HL neurons, number of rules in the fuzzy logic model) and, keeping

14 2 Support Vector Machines in Classification and Regression

the estimation error (a.k.a. confidence interval, a.k.a. variance of the
model) fixed in this way, minimize the training error (i.e., empirical risk),
or

2. keep the value of the training error (a.k.a. an approximation error, a.k.a.
an empirical risk) fixed (equal to zero or equal to some acceptable level),
and minimize the confidence interval.

Classic NNs implement the first approach (or some of its sophisticated
variants) and SVMs implement the second strategy. In both cases the result-
ing model should resolve the trade-off between under-fitting and over-fitting
the training data. The final model structure (its order) should ideally match
the learning machines capacity with training data complexity. This important
difference in two learning approaches comes from the minimization of differ-
ent cost (error, loss) functionals. Table 2.1 tabulates the basic risk functionals
applied in developing the three contemporary statistical models. In Table 2.1,
di stands for desired values, w is the weight vector subject to training, λ is
a regularization parameter, P is a smoothness operator, Lε is a SVMs’ loss
function, h is a VC dimension and Ω is a function bounding the capacity of
the learning machine. In classification problems Lε is typically 0-1 loss func-

Table 2.1. Basic Models and Their Error (Risk) Functionals

Multilayer perceptron (NN) R =
n∑

i=1

(di − f(xi,w))2︸ ︷︷ ︸
Closeness to data

Regularization Network(Radial
Basis Functions Network)

R =
n∑

i=1

(di − f(xi,w))2︸ ︷︷ ︸
Closeness to data

+λ ||Pf ||2︸ ︷︷ ︸
Smoothness

Support Vector Machine R =
n∑

i=1

Lε︸︷︷︸
Closeness
to data

+ Ω(n, h)︸ ︷︷ ︸
Capacity of
a machine

Closeness to data = training error, a.k.a. empirical risk

tion, and in regression problems Lε is the so-called Vapnik’s ε-insensitivity
loss (error) function

Lε = |y − f(x,w)|ε =

{
0, if |y − f(x,w)| ≤ ε

|y − f(x,w)| − ε, otherwise.
(2.1)

where ε is a radius of a tube within which the regression function must lie, after
the successful learning. (Note that for ε = 0, the interpolation of training data
will be performed). It is interesting to note that [58] has shown that under
some constraints the SV machine can also be derived from the framework
of regularization theory rather than SLT and SRM. Thus, unlike the classic

2.1 Basics of Learning from Data 15

adaptation algorithms (that work in the L2 norm), SV machines represent
novel learning techniques which perform SRM. In this way, the SV machine
creates a model with minimized VC dimension and when the VC dimension of
the model is low, the expected probability of error is low as well. This means
good performance on previously unseen data, i.e. a good generalization. This
property is of particular interest because the model that generalizes well is a
good model and not the model that performs well on training data pairs. Too
good a performance on training data is also known as an extremely undesirable
overfitting.

As it will be shown below, in the ‘simplest’ pattern recognition tasks, sup-
port vector machines use a linear separating hyperplane to create a classifier
with a maximal margin. In order to do that, the learning problem for the SV
machine will be cast as a constrained nonlinear optimization problem. In this
setting the cost function will be quadratic and the constraints linear (i.e., one
will have to solve a classic quadratic programming problem).

In cases when given classes cannot be linearly separated in the original
input space, the SV machine first (non-linearly) transforms the original in-
put space into a higher dimensional feature space. This transformation can
be achieved by using various nonlinear mappings; polynomial, sigmoid as in
multilayer perceptrons, RBF mappings having as the basis functions radially
symmetric functions such as Gaussians, or multiquadrics or different spline
functions. After this nonlinear transformation step, the task of a SV machine
in finding the linear optimal separating hyperplane in this feature space is ‘rel-
atively trivial’. Namely, the optimization problem to solve in a feature space
will be of the same kind as the calculation of a maximal margin separating
hyperplane in original input space for linearly separable classes. How, after
the specific nonlinear transformation, nonlinearly separable problems in input
space can become linearly separable problems in a feature space will be shown
later.

In a probabilistic setting, there are three basic components in all super-
vised learning from data tasks: a generator of random inputs x, a system
whose training responses y (i.e., d) are used for training the learning machine,
and a learning machine which, by using inputs xi and system’s responses yi,
should learn (estimate, model) the unknown dependency between these two
sets of variables (namely, xi and yi) defined by the weight vector w (Fig.2.1).
The figure shows the most common learning setting that some readers may
have already seen in various other fields - notably in statistics, NNs, con-
trol system identification and/or in signal processing. During the (successful)
training phase a learning machine should be able to find the relationship be-
tween an input space X and an output space Y , by using data X in regression
tasks (or to find a function that separates data within the input space, in clas-
sification ones). The result of a learning process is an ‘approximating function’
fa(x,w), which in statistical literature is also known as, a hypothesis fa(x,w).
This function approximates the underlying (or true) dependency between the
input and output in the case of regression, and the decision boundary, i.e.,

16 2 Support Vector Machines in Classification and Regression

Fig. 2.1. A model of a learning machine (top) w = w(x, y) that during the training
phase (by observing inputs xi to, and outputs yi from, the system) estimates (learns,
adjusts, trains, tunes) its parameters (weights) w, and in this way learns mapping
y = f(x,w) performed by the system. The use of fa(x,w) ∼ y denotes that we will
rarely try to interpolate training data pairs. We would rather seek an approximating
function that can generalize well. After the training, at the generalization or test
phase, the output from a machine o = fa(x,w) is expected to be ‘a good’ estimate
of a system’s true response y.

separation function, in a classification. The chosen hypothesis fa(x,w) be-
longs to a hypothesis space of functions H(fa ∈ H), and it is a function that
minimizes some risk functional R(w).

It may be practical to remind the reader that under the general name ‘ap-
proximating function’ we understand any mathematical structure that maps
inputs x into outputs y. Hence, an ‘approximating function’ may be: a multi-
layer perceptron NN, RBF network, SV machine, fuzzy model, Fourier trun-
cated series or polynomial approximating function. Here we discuss SVMs. A
set of parameters w is the very subject of learning and generally these para-
meters are called weights. These parameters may have different geometrical
and/or physical meanings. Depending upon the hypothesis space of functions
H we are working with the parameters w are usually:

• the hidden and the output layer weights in multilayer perceptrons,
• the rules and the parameters (for the positions and shapes) of fuzzy sub-

sets,
• the coefficients of a polynomial or Fourier series,
• the centers and (co)variances of Gaussian basis functions as well as the

output layer weights of this RBF network,
• the support vector weights in SVMs.

2.1 Basics of Learning from Data 17

There is another important class of functions in learning from examples tasks.
A learning machine tries to capture an unknown target function fo(x) that is
believed to belong to some target space T , or to a class T , that is also called
a concept class. Note that we rarely know the target space T and that our
learning machine generally does not belong to the same class of functions as an
unknown target function fo(x). Typical examples of target spaces are contin-
uous functions with s continuous derivatives in m variables; Sobolev spaces
(comprising square integrable functions in m variables with s square inte-
grable derivatives), band-limited functions, functions with integrable Fourier
transforms, Boolean functions, etc. In the following, we will assume that the
target space T is a space of differentiable functions. The basic problem we are
facing stems from the fact that we know very little about the possible under-
lying function between the input and the output variables. All we have at our
disposal is a training data set of labeled examples drawn by independently
sampling a(X×Y) space according to some unknown probability distribution.

The learning-from-data problem is ill-posed. (This will be shown on Figs.
2.2 and 2.3 for a regression and classification examples respectively). The
basic source of the ill-posedness of the problem is due to the infinite number
of possible solutions to the learning problem. At this point, just for the sake
of illustration, it is useful to remember that all functions that interpolate data
points will result in a zero value for training error (empirical risk) as shown
(in the case of regression) in Fig. 2.2. The figure shows a simple example of
three-out-of-infinitely-many different interpolating functions of training data
pairs sampled from a noiseless function y = sin(x).

In Fig. 2.2, each interpolant results in a training error equal to zero, but at
the same time, each one is a very bad model of the true underlying dependency
between x and y, because all three functions perform very poorly outside the
training inputs. In other words, none of these three particular interpolants can
generalize well. However, not only interpolating functions can mislead. There
are many other approximating functions (learning machines) that will mini-
mize the empirical risk (approximation or training error) but not necessarily
the generalization error (true, expected or guaranteed risk). This follows from
the fact that a learning machine is trained by using some particular sample of
the true underlying function and consequently it always produces biased ap-
proximating functions. These approximants depend necessarily on the specific
training data pairs (i.e., the training sample) used.

Figure 2.3 shows an extremely simple classification example where the
classes (represented by the empty training circles and squares) are linearly
separable. However, in addition to a linear separation (dashed line) the learn-
ing was also performed by using a model of a high capacity (say, the one with
Gaussian basis functions, or the one created by a high order polynomial, over
the 2-dimensional input space) that produced a perfect separation boundary
(empirical risk equals zero) too. However, such a model is overfitting the data
and it will definitely perform very badly on, during the training unseen, test
examples. Filled circles and squares in the right hand graph are all wrongly

18 2 Support Vector Machines in Classification and Regression

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

x

f(x)

Three different interpolations of the noise-free training
data sampled from a sinus function (solid thin line)

xi

yi = f(xi)

Fig. 2.2. Three-out-of-infinitely-many interpolating functions resulting in a training
error equal to 0. However, a thick solid, dashed and dotted lines are bad models of
a true function y = sin(x) (thin solid line).

x
1

x
2

x
1

x
2

Fig. 2.3. Overfitting in the case of linearly separable classification problem. Left :
The perfect classification of the training data (empty circles and squares) by both low
order linear model (dashed line) and high order nonlinear one (solid wiggly curve).
Right : Wrong classification of all the test data shown (filled circles and squares) by
a high capacity model, but correct one by the simple linear separation boundary.

classified by the nonlinear model. Note that a simple linear separation bound-
ary correctly classifies both the training and the test data.

A solution to this problem proposed in the framework of the SLT is restrict-
ing the hypothesis space H of approximating functions to a set smaller than
that of the target function T while simultaneously controlling the flexibility

2.1 Basics of Learning from Data 19

(complexity) of these approximating functions. This is ensured by an introduc-
tion of a novel induction principle of the SRM and its algorithmic realization
through the SV machine. The Structural Risk Minimization principle [141]
tries to minimize an expected risk (the cost function) R comprising two terms

as given in Table 2.1 for the SVMs R = Ω(n, h) +
n∑

i=1

Lε = Ω(n, h) + Remp

and it is based on the fact that for the classification learning problem with a
probability of at least 1 − η the bound

R(wm) � Ω(
h

n
,

ln(η)
n

) + Remp(wm) (2.2a)

holds. The first term on the right hand side is named a VC confidence (con-
fidence term or confidence interval) that is defined as

Ω(
h

n
,

ln(η)
n

) =

√
h
[
ln(2n

h) + 1
]
− ln(η

4)
n

. (2.2b)

The parameter h is called the VC (Vapnik-Chervonenkis) dimension of a set
of functions. It describes the capacity of a set of functions implemented in
a learning machine. For a binary classification h is the maximal number of
points which can be separated (shattered) into two classes in all possible 2h

ways by using the functions of the learning machine.
A SV (learning) machine can be thought of as

• a set of functions implemented in a SVM,
• an induction principle and,
• an algorithmic procedure for implementing the induction principle on the

given set of functions.

The notation for risks given above by using R(wm) denotes that an ex-
pected risk is calculated over a set of functions fan(x,wm) of increasing com-
plexity. Different bounds can also be formulated in terms of other concepts
such as growth function or annealed VC entropy. Bounds also differ for regres-
sion tasks. More detail can be found in ([144], as well as in [32]). However,
the general characteristics of the dependence of the confidence interval on the
number of training data n and on the VC dimension h is similar and given in
Fig 2.4.

Equations (2.2) show that when the number of training data increases,
i.e., for n → ∞(with other parameters fixed), an expected (true) risk R(wn)
is very close to empirical risk Remp(wn) because Ω → 0. On the other hand,
when the probability 1− η (also called a confidence level which should not be
confused with the confidence term Ω) approaches 1, the generalization bound
grows large, because in the case when η → 0 (meaning that the confidence level
1− η → 1), the value of Ω → ∞. This has an obvious intuitive interpretation

20 2 Support Vector Machines in Classification and Regression

0

50

100

0
2000

4000
6000

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Ω(h, n, η = 0.11)

VC Confidence i.e., Estimation Error

Number of data n VC dimension h

Fig. 2.4. The dependency of VC confidence interval Ω(h, n, η) on the number of
training data n and the VC dimension h(h < n) for a fixed confidence level 1− η =
1 − 0.11 = 0.89.

[32] in that any learning machine (model, estimates) obtained from a finite
number of training data cannot have an arbitrarily high confidence level. There
is always a trade-off between the accuracy provided by bounds and the degree
of confidence (in these bounds). Fig 2.4 also shows that the VC confidence
interval increases with an increase in a VC dimension h for a fixed number of
the training data pairs n.

The SRM is a novel inductive principle for learning from finite training
data sets. It proved to be very useful when dealing with small samples. The
basic idea of the SRM is to choose (from a large number of possibly candidate
learning machines), a model of the right capacity to describe the given train-
ing data pairs. As mentioned, this can be done by restricting the hypothesis
space H of approximating functions and simultaneously by controlling their
flexibility (complexity). Thus, learning machines will be those parameterized
models that, by increasing the number of parameters (typically called weights
wi here), form a nested structure in the following sense

H1 ⊂ H2 ⊂ H3 ⊂ . . . Hn−1 (2.3)

In such a nested set of functions, every function always contains a previous,
less complex, function. Typically, Hn may be: a set of polynomials in one
variable of degree n; fuzzy logic model having n rules; multilayer perceptrons,
or RBF network having n HL neurons, SVM structured over n support vec-
tors. The goal of learning is one of a subset selection that matches training

2.2 Support Vector Machines in Classification and Regression 21

data complexity with approximating model capacity. In other words, a learn-
ing algorithm chooses an optimal polynomial degree or, an optimal number
of HL neurons or, an optimal number of FL model rules, for a polynomial
model or NN or FL model respectively. For learning machines linear in pa-
rameters, this complexity (expressed by the VC dimension) is given by the
number of weights, i.e., by the number of ‘free parameters’. For approximating
models nonlinear in parameters, the calculation of the VC dimension is often
not an easy task. Nevertheless, even for these networks, by using simulation
experiments, one can find a model of appropriate complexity.

2.2 Support Vector Machines in Classification
and Regression

Below, we focus on the algorithm for implementing the SRM induction princi-
ple on the given set of functions. It implements the strategy mentioned previ-
ously - it keeps the training error fixed and minimizes the confidence interval.
We first consider a ‘simple’ example of linear decision rules (i.e., the separat-
ing functions will be hyperplanes) for binary classification (dichotomization)
of linearly separable data. In such a problem, we are able to perfectly classify
data pairs, meaning that an empirical risk can be set to zero. It is the easiest
classification problem and yet an excellent introduction of all relevant and
important ideas underlying the SLT, SRM and SVM.

Our presentation will gradually increase in complexity. It will begin with
a Linear Maximal Margin Classifier for Linearly Separable Data where there
is no sample overlapping. Afterwards, we will allow some degree of overlap-
ping of training data pairs. However, we will still try to separate classes by
using linear hyperplanes. This will lead to the Linear Soft Margin Classifier
for Overlapping Classes. In problems when linear decision hyperplanes are
no longer feasible, the mapping of an input space into the so-called feature
space (that ‘corresponds’ to the HL in NN models) will take place resulting in
the Nonlinear Classifier. Finally, in the subsection on Regression by SV Ma-
chines we introduce same approaches and techniques for solving regression
(i.e., function approximation) problems.

2.2.1 Linear Maximal Margin Classifier
for Linearly Separable Data

Consider the problem of binary classification or dichotomization. Training
data are given as

(x1, y), (x2, y), . . . , (xn, yn), x ∈ �m, y ∈ {+1,−1}. (2.4)

For reasons of visualization only, we will consider the case of a two-dimensional
input space, i.e., (x ∈ �2). Data are linearly separable and there are many

22 2 Support Vector Machines in Classification and Regression

different hyperplanes that can perform separation (Fig. 2.5). (Actually, for
x ∈ �2, the separation is performed by ‘planes’ w1x1 + w2x2 + b = d. In
other words, the decision boundary, i.e., the separation line in input space is
defined by the equation w1x1 + w2x2 + b = 0.). How to find ‘the best’ one?
The difficult part is that all we have at our disposal are sparse training data.
Thus, we want to find the optimal separating function without knowing the
underlying probability distribution P (x, y). There are many functions that
can solve given pattern recognition (or functional approximation) tasks. In
such a problem setting, the SLT (developed in the early 1960s by Vapnik and
Chervonenkis [145]) shows that it is crucial to restrict the class of functions
implemented by a learning machine to one with a complexity that is suitable
for the amount of available training data.

In the case of a classification of linearly separable data, this idea is trans-
formed into the following approach - among all the hyperplanes that min-
imize the training error (i.e., empirical risk) find the one with the largest
margin. This is an intuitively acceptable approach. Just by looking at Fig 2.5
we will find that the dashed separation line shown in the right graph seems
to promise probably good classification while facing previously unseen data
(meaning, in the generalization, i.e. test, phase). Or, at least, it seems to
probably be better in generalization than the dashed decision boundary hav-
ing smaller margin shown in the left graph. This can also be expressed as that
a classifier with smaller margin will have higher expected risk. By using given
training examples, during the learning stage, our machine finds parameters
w = [w1 w2 . . . wm]T and b of a discriminant or decision function d(x,w, b)
given as

Class 1

Class 2

x
1

x
2

Class 2

Class 1

x
1

x
2

Fig. 2.5. Two-out-of-many separating lines: a good one with a large margin (right)
and a less acceptable separating line with a small margin, (left).

2.2 Support Vector Machines in Classification and Regression 23

d(x,w, b) = wT x + b =
m∑

i=1

wixi + b, (2.5)

where x,w ∈ �m, and the scalar b is called a bias.(Note that the dashed
separation lines in Fig. 2.5 represent the line that follows from d(x,w, b) = 0).
After the successful training stage, by using the weights obtained, the learning
machine, given previously unseen pattern xp, produces output o according to
an indicator function given as

iF = o = sign(d(xp,w, b)). (2.6)

where o is the standard notation for the output from the learning machine. In
other words, the decision rule is:

• if d(xp,w, b) > 0, the pattern xp belongs to a class 1 (i.e., o = yp = +1),
• and if d(xp,w, b) < 0 the pattern xp, belongs to a class 2 (i.e., o = yp =

−1).

The indicator function iF given by (2.6) is a step-wise (i.e., a stairs-wise) func-
tion (see Figs. 2.6 and 2.7). At the same time, the decision (or discriminant)
function d(x,w, b) is a hyperplane. Note also that both a decision hyperplane
d and the indicator function iF live in an n + 1-dimensional space or they lie
‘over’ a training pattern’s n-dimensional input space. There is one more math-
ematical object in classification problems called a separation boundary that
lives in the same n-dimensional space of input vectors x. Separation bound-
ary separates vectors x into two classes. Here, in cases of linearly separable
data, the boundary is also a (separating) hyperplane but of a lower order than
d(x,w, b). The decision (separation) boundary is an intersection of a decision
function d(x,w, b) and a space of input features. It is given by

d(x,w, b) = 0. (2.7)

All these functions and relationships can be followed, for two-dimensional
inputs x, in Fig. 2.6. In this particular case, the decision boundary i.e., sep-
arating (hyper)plane is actually a separating line in a x1 − x2 plane and, a
decision function d(x,w, b) is a plane over the 2-dimensional space of fea-
tures, i.e., over a x1 −x2 plane. In the case of 1-dimensional training patterns
x (i.e., for 1-dimensional inputs x to the learning machine), decision func-
tion d(x,w, b) is a straight line in an x − y plane. An intersection of this line
with an x-axis defines a point that is a separation boundary between two
classes. This can be followed in Fig. 2.7. Before attempting to find an optimal
separating hyperplane having the largest margin, we introduce the concept
of the canonical hyperplane. We depict this concept with the help of the 1-
dimensional example shown in Fig. 2.7. Not quite incidentally, the decision
plane d(x,w, b) shown in Fig. 2.6 is also a canonical plane. Namely, the values
of d and of iF are the same and both are equal to |1| for the support vectors
depicted by stars. At the same time, for all other training patterns |d| > |iF |.

24 2 Support Vector Machines in Classification and Regression

Desired value y
iF

+1

-1

1 2

1 2

sign

dec
se

me

se
e

e

e

g

Fig. 2.6. The definition of a decision (discriminant) function or hyperplane
d(x,w, b), a decision boundary d(x,w, b) = 0 and an indicator function iF =
sign(d(x,w, b)) whose value represents a learning machine’s output o.

In order to present a notion of this new concept of the canonical plane, first
note that there are many hyperplanes that can correctly separate data. In Fig.
2.7 three different decision functions d(x,w, b) are shown. There are infinitely
many more. In fact, given d(x,w, b), all functions d(x, kw, kb), where k is a
positive scalar, are correct decision functions too. Because parameters (w, b)
describe the same separation hyperplane as parameters (kw, kb) there is a
need to introduce the notion of a canonical hyperplane:

A hyperplane is in the canonical form with respect to the training data
xi, i = 1, . . . , n, if

min︸︷︷︸
xi∈X

∣∣wT xi + b
∣∣ = 1. (2.8)

The solid line d(x,w, b) = −2x+5 in Fig. 2.7 fulfills (2.8) because its minimal
absolute value for the given six training patterns belonging to two classes is
1. It achieves this value for two patterns, chosen as support vectors, namely
for x3 = 2, and x4 = 3. For all other patterns, |d| > 1. Note an interesting
detail regarding the notion of a canonical hyperplane that is easily checked.
There are many different hyperplanes (planes and straight lines for 2-D and
1-D problems in Figs. 2.6 and 2.7 respectively) that have the same separation
boundary (solid line and a dot in Figs. 2.6 (right) and 2.7 respectively). At
the same time there are far fewer hyperplanes that can be defined as canonical
ones fulfilling (2.8). In Fig. 2.7, i.e., for a 1-dimensional input vector x, the
canonical hyperplane is unique. This is not the case for training patterns
of higher dimension. Depending upon the configuration of class’ elements,
various canonical hyperplanes are possible.

2.2 Support Vector Machines in Classification and Regression 25

Target y, i.e., d
The decision function is a (canonical) hyperplane d(x, w, b).
For a 1-dim input, it is a (canonical) straight line.

The decision boundary.
For a 1-dim input, it is a
point or, a zero-order
hyperplane.

The indicator function i
F

= sign(d(x, w, b)) is

a step-wise function. It is a SV machine output o.

The two dashed lines
represent decision functions
that are not canonical
hyperplanes. However, they
do have the same
separation boundary as the
canonical hyperplane here.

-5

-4

-3

-2

0
+1

2

3

4

5

1 2 3 4 5

Feature x
1

d(x, k
1
w, k

1
b)

d(x, k
2
w, k

2
b)

-1

Fig. 2.7. SV classification for 1-dimensional inputs by the linear decision function.
Graphical presentation of a canonical hyperplane. For 1-dimensional inputs, it is
actually a canonical straight line (depicted as a thick straight solid line) that passes
through points (+2, +1) and (+3, -1) defined as the support vectors (stars). The
two dashed lines are the two other decision hyperplanes (i.e., straight lines). The
training input patterns {x1 = 0.5, x2 = 1, x3 = 2}∈ Class1 have a desired or target
value (label) y1 = +1. The inputs {x4 = 3, x5 = 4, x6 = 4.5, x7 = 5} ∈ Class2 have
the label y2 = −1.

Therefore, there is a need to define an optimal separation canonical hy-
perplane (OCSH) as a canonical hyperplane having a maximal margin. This
search for a separating, maximal margin, canonical hyperplane is the ultimate
learning goal in statistical learning theory underlying SV machines. Carefully
note the adjectives used in the previous sentence. The hyperplane obtained
from a limited training data must have a maximal margin because it will
probably better classify new data. It must be in canonical form because this
will ease the quest for significant patterns, here called support vectors. The
canonical form of the hyperplane will also simplify the calculations. Finally,
the resulting hyperplane must ultimately separate training patterns.

We avoid the derivation of an expression for the calculation of a distance
(margin M) between the closest members from two classes for its simplicity
here. Instead, the curious reader can find a derivation of (2.9) in the Appendix
A. There are other ways to get (2.9) which can be found in other books or
monographs on SVMs. The margin M can be derived by both the geometric
and algebraic argument and is given as

M =
2

‖w‖ . (2.9)

26 2 Support Vector Machines in Classification and Regression

This important result will have a great consequence for the constructive (i.e.,
learning) algorithm in a design of a maximal margin classifier. It will lead to
solving a quadratic programming (QP) problem which will be shown shortly.
Hence, the ‘good old’ gradient learning in NNs will be replaced by solution of
the QP problem here. This is the next important difference between the NNs
and SVMs and follows from the implementation of SRM in designing SVMs,
instead of a minimization of the sum of error squares, which is a standard
cost function for NNs. Equation (2.9) is a very interesting result showing that
minimization of a norm of a hyperplane normal weight vector ‖w‖ =

√
wT w =√

w2
1 + w2

1 + . . . + w2
m leads to a maximization of a margin M . Because a

minimization of
√

f is equivalent to the minimization of f , the minimization
of a norm ‖w‖ equals a minimization of wT w =

∑m
i=1 w2

1 + w2
1 + . . . + w2

m,
and this leads to a maximization of a margin M . Hence, the learning problem
is

min
1
2
wT w (2.10a)

subject to constraints introduced and given in (2.10b) below. (A multiplication
of wT w by 0.5 is for numerical convenience only, and it doesn’t change the
solution). Note that in the case of linearly separable classes empirical error
equals zero (Remp = 0 in (2.2a)) and minimization of wT w corresponds to a
minimization of a confidence term Ω. The OCSH, i.e., a separating hyperplane
with the largest margin defined by M = 2/ ‖w‖, specifies support vectors, i.e.,
training data points closest to it, which satisfy yj [wT xj + b] ≡ 1, j = 1,
NSV . For all the other (non-SVs data points) the OCSH satisfies inequalities
yi[wT xi + b] > 1. In other words, for all the data, OCSH should satisfy the
following constraints

yi(wT xi + b) ≥ 1 i = 1, . . . , n. (2.10b)

where n denotes a number of training data points, and NSV stands for a
number of SVs. The last equation can be easily checked visually in Figs.
2.6 and 2.7 for 2-dimensional and 1-dimensional input vectors x respectively.
Thus, in order to find the OCSH having a maximal margin, a learning machine
should minimize ‖w‖2 subject to the inequality constraints (2.10b). This is
a classic quadratic optimization problem with inequality constraints. Such an
optimization problem is solved by the saddle point of the Lagrange functional
(Lagrangian) 2.

Lp(w, b,α) =
1
2
wT w −

n∑
i=1

αi{yi[wT xi + b] − 1}. (2.11)

2 In forming the Lagrangian, for constraints of the form fi > 0, the inequality
constraints equations are multiplied by nonnegative Lagrange multipliers (i.e.,
αi ≥ 0) and subtracted from the objective function.

2.2 Support Vector Machines in Classification and Regression 27

x
2

w

x
1

x
2

x
3

x
1

i i

i

i

Fig. 2.8. The optimal canonical separation hyperplane with the largest mar-
gin intersects halfway between the two classes. The points closest to it (satisfy-
ing yj

∣∣wT xj + b
∣∣ = 1, j = 1, NSV) are support vectors and the OCSH satisfies

yi(w
T xi + b) ≥ 1, i = 1, n (where n denotes the number of training data and NSV

stands for the number of SV). Three support vectors (x1 and x2 from class 1, and
x3 from class 2) are the textured training data.

where the αi are Lagrange multipliers. The search for an optimal saddle point
(wo, bo,αo) is necessary because Lagrangian Lp must be minimized with re-
spect to w and b, and has to be maximized with respect to nonnegative αi

(i.e., αi ≥ 0 should be found). This problem can be solved either in a primal
space (which is the space of parameters w and b) or in a dual space (which
is the space of Lagrange multipliers αi). The second approach gives insightful
results and we will consider the solution in a dual space below. In order to
do that, we use Karush-Kuhn-Tucker (KKT) conditions for the optimum of a
constrained function. In our case, both the objective function (2.11) and con-
straints (2.10b) are convex and KKT conditions are necessary and sufficient
conditions for a maximum of (2.11). These conditions are: at the saddle point
(wo, bo,αo), derivatives of Lagrangian Lp with respect to primal variables
should vanish which leads to,

∂Lp

∂wo
= 0 wo =

n∑
i=1

αiyixi , (2.12a)

∂Lp

∂b
= 0

n∑
i=1

αiyi = 0. (2.12b)

and the KKT complementarity conditions below (stating that at the solution
point the products between dual variables and constraints equals zero) must

28 2 Support Vector Machines in Classification and Regression

also be satisfied,

αi{yi[wT xi + b] − 1} = 0, i = 1, . . . , n (2.13)

This also means that the condition (2.13) must also be satisfied to ensure that
the solution of the primal Lagrangian Lp is the same as the solution of the orig-
inal optimization problem (2.10). The standard change to a dual Lagrangian
problem is to first substitute w from (2.12a) into the primal Lagrangian (2.11)
and this leads to a dual Lagrangian problem below

Ld(α) =
n∑

i=1

αi − 1
2

n∑
i, j =1

yiyjαiαjxT
i xj −

n∑
i=1

αiyib, (2.14a)

s.t. αi ≥ 0, i = 1, . . . , n (2.14b)

subject to the inequality constraints (2.14b). In a standard SVMs formula-
tion, (2.12b) is also used to eliminate the last term of (2.14a), so one only
needs to maximize Ld with respect to αi. As a result, the dual function to
be maximized is (2.15a) with inequality constraints (2.15b) and an equality
constraint (2.15c).

max Ld(α) =
n∑

i=1

αi −
1
2

n∑
i,j=1

yiyjαiαjxT
i xj (2.15a)

s.t. αi ≥ 0, i = 1, . . . , n and (2.15b)
n∑

i=1

αiyi = 0. (2.15c)

Note that the dual Lagrangian Ld(α) is expressed in terms of training data and
depends only on the scalar products of input patterns (xT

i xj). The dependency
of Ld(α) on a scalar product of inputs will be very handy later when analyzing
nonlinear decision boundaries and for general nonlinear regression. Note also
that the number of unknown variables equals the number of training data n.
After learning, the number of free parameters is equal to the number of SVs
but it does not depend on the dimensionality of input space. Such a standard
quadratic optimization problem can be expressed in a matrix notation and
formulated as follows:

max Ld(α) = −0.5αT Hα + pT α, (2.16a)

s.t. yT α = 0, (2.16b)
αi ≥ 0, i = 1, . . . , n, (2.16c)

where α = [α1, α2, . . . , αn]T , H denotes a symmetric Hessian matrix (with
elements Hij = yiyjxT

i xj), and p is an n × 1 unit vector p = 1 =
[1 1 . . . 1]T . (Note that maximization of (2.16a) equals a minimization of
Ld(α) = 0.5αT Hα − pT α, subject to the same constraints).The Hessian

2.2 Support Vector Machines in Classification and Regression 29

matrix has a size of n by n and it is always a dense matrix. This means
that the learning of SVMs scales with the size of training data. This is the
main reason for the development of a fast iterative learning algorithm which
does not need to store the complete Hessian matrix in Chap. 3.1 . Solution
αo of the dual optimization (2.15) determines the parameters of the optimal
hyperplane wo and bo according to (2.12a) and (2.13) as follows,

wo =
n∑

i=1

αoiyixi (2.17a)

bo =
1

NSV

∑NSV

s=1
(

1
ys

− xT
s wo) =

1
NSV

∑NSV

s=1
(ys − xT

s wo) s = 1, . . . , Nsv

(2.17b)

In deriving (2.17b) the fact that y can be either +1 or -1, and 1/y = y is
used. NSV denotes the number of support vectors. There are two important
observations about the calculation of wo. First, an optimal weight vector wo,
is obtained in (2.17a) as a linear combination of the training data points and
second, wo (same as the bias term bo) is calculated by using only the selected
data points called support vectors (SVs) . It is because they have nonzero αoi

and they are the data which support forming the decision function. Thus, the
data having αoi = 0 are called non-SVs here. The fact that the summation
in (2.17a) goes over all training data (i.e., from 1 to n) is irrelevant because
the Lagrange multipliers αoi for all non-SVs are equal to zero. Furthermore, if
now all the non-SVs are removed from the training data set and only the SVs
are used for training, then the same solution (i.e., the same values of wo and
bo) will be obtained as the ones obtained by using the complete training data
set. This is a very pleasing property of SVMs, because the solutions of good
models are generally sparse (only 10-20% of the complete data set are SVs).
For linearly separable training data, all support vectors lie on the margin
and they are generally just a small portion of all training data (typically,
NSV << n). Figs. 2.5, 2.7 and 2.8 show the geometry of standard results for
non-overlapping classes. Also, in order to satisfy the KKT complementarity
conditions (2.13), the output of the decision function (wT xs + b) at SVs
must have a magnitude of 1. This fact is used in the derivation of (2.17b).
Equation (2.17b) tries to find out the optimal bias term bo by taking the
average deviation between the desired output ys (+1 or -1) and xswo over
all SVs. After calculating wo and bo, a decision hyperplane and an indicator
function are obtained as follows

d(x) =
∑n

i = 1
woixi + bo =

∑n

i = 1
yiαixT

i x + bo, iF = o = sign(d(x)).
(2.18)

Before presenting a derivation of an OCSH for both overlapping classes
and classes having nonlinear decision boundaries, we will comment only on
whether and how SV based linear classifiers actually implement the SRM
principle. The more detailed presentation of this important property can be

30 2 Support Vector Machines in Classification and Regression

found in [81, 123]. First, it can be shown that an increase in margin reduces the
number of points that can be shattered i.e., the increase in margin reduces the
VC dimension, and this leads to the decrease of the SVM capacity. In short,
by minimizing ‖w‖ (i.e., maximizing the margin) the SV machine training
actually minimizes the VC dimension and consequently a generalization error
(expected risk) at the same time. This is achieved by imposing a structure on
the set of canonical hyperplanes and then, during the training, by choosing
the one with a minimal VC dimension. A structure on the set of canonical
hyperplanes is introduced by considering various hyperplanes having different
‖w‖. In other words, we analyze sets SA such that ‖w‖ ≤ A. Then, if A1 ≤
A2 ≤ . . . ≤ Am, we introduced a nested set SA1 ⊂ SA2 ⊂ SA3 . . . ⊂ SAm.
Thus, if we impose the constraint ‖w‖ ≤ A, then the canonical hyperplane
cannot be closer than 1/A to any of the training points xi. Vapnik in [144]
states that the VC dimension h of a set of canonical hyperplanes in �m such
that ‖w‖ ≤ A is

H ≤ min[R2, A2,m] + 1, (2.19)

where all the training data points (vectors) are enclosed by a sphere of the
smallest radius R. Therefore, a small ‖w‖ results in a small h, and mini-
mization of ‖w‖ is an implementation of the SRM principle. In other words, a
minimization of the canonical hyperplane weight norm ‖w‖ minimizes the VC
dimension according to (2.19). See also Fig. 2.4 that shows how the estima-
tion error, meaning the expected risk (because the empirical risk, due to the
linear separability, equals zero) decreases with a decrease of a VC dimension.
Finally, there is an interesting, simple and powerful result [144] connecting the
generalization ability of learning machines and the number of support vectors.
Once the support vectors have been found, we can calculate the bound on the
expected probability of committing an error on a test example as follows

En [P (error)] ≤ E [number of support vectors]
n

, (2.20)

where En denotes expectation over all training data sets of size n. Note how
easy it is to estimate this bound that is independent of the dimensionality of
the input space. Therefore, an SV machine having a small number of support
vectors will have good generalization ability even in a very high-dimensional
space.

Example below shows the SVM’s learning of the weights for a simple sepa-
rable data problem in both the primal and the dual domain. The small number
and low dimensionality of data pairs is used in order to show the optimization
steps analytically and graphically. The same reasoning will be in the case of
high dimensional and large training data sets but for them, one has to rely
on computers and the insight in solution steps is necessarily lost.

Example 2.1. Consider a design of SVM classifier for 3 data shown in Fig. 2.9
below. First we solve the problem in the primal domain: From the constraints
(2.10b) it follows

2.2 Support Vector Machines in Classification and Regression 31

Target y,
i.e., d

+1

-2 -1

Feature x
1

-1

b (a)

(c)

(b)

w

1
2

1

-1

Fig. 2.9. Left: Solving SVM classifier for 3 data shown. SVs are star data. Right:
Solution space w − b.

2w − 1 ≥ b (a)
w − 1 ≥ b (b)
b ≥ 1 (c)

(2.21)

The three straight lines corresponding to the equalities above are shown in
Fig. 2.9 right. The textured area is a feasible domain for the weight w and
bias b. Note that the area is not defined by the inequality (a), thus pointing
to the fact that the point -2 is not a support vector. Points -1 and 0 define the
textured area and they will be the supporting data for our decision function.
The task is to minimize (2.10a), and this will be achieved by taking the value
w = 2. Then, from (b), it follows that b = 1. Note that (a) must not be used
for the calculation of the bias term b.

Because both the cost function (2.10a) and the constraints (2.10b) are
convex, the primal and the dual solution must produce same w and b. Dual
solution follows from maximizing (2.15a) subject to (2.15b) and (2.15c) as
follows

Ld = α1+ α2 + α3 −
1
2
[α1 α2 α3]

⎡
⎣ 4 2 0

2 1 0
0 0 0

⎤
⎦
⎡
⎣α1

α2

α3

⎤
⎦ ,

s.t. - α1 − α2 + α3 = 0,
α1 � 0, α2 � 0, α3 � 0,

The dual Lagrangian is obtained in terms of α1 and α2 after expressing
α3 from the equality constraint and it is given as Ld = 2α1 +2α2 − 0.5(4α2

1 +
4α1α2 + α2

2) . Ld will have maximum for α1 = 0, and it follows that we have
to find the maximum of Ld = 2α2 − 0.5α2

2 which will be at α2 = 2. Note that
the Hessian matrix H is extremely bad conditioned and, if the QP problem
is to be solved by computer, H should be regularized first. From the equality
constraint it follows that α3 = 2 too. Now, we can calculate the weight vector
w and the bias b from (2.17a) and (2.17b) as follows,

32 2 Support Vector Machines in Classification and Regression

w =
3∑

i=1

αiyixi = 0(−1)(−2) + 2(−1)(−1) + 2(1)0 = 2

The bias can be calculated by using SVs only, meaning from either point -1
or point 0. Both result in same value as shown below

b = −1 − 2(−1) = 1, or b = 1 − 2(0) = 1

2.2.2 Linear Soft Margin Classifier for Overlapping Classes

The learning procedure presented above is valid for linearly separable data,
meaning for training data sets without overlapping. Such problems are rare
in practice. At the same time, there are many instances when linear sep-
arating hyperplanes can be good solutions even when data are overlapped
(e.g., normally distributed classes having the same covariance matrices have
a linear separation boundary). However, quadratic programming solutions as
given above cannot be used in the case of overlapping because the constraints
yi[wT xi + b] ≥ 1, i = 1, n given by (2.10b) cannot be satisfied. In the case of
an overlapping (see Fig. 2.10), the overlapped data points cannot be correctly
classified and for any misclassified training data point xi, the corresponding αi

will tend to infinity. This particular data point (by increasing the correspond-
ing αi value) attempts to exert a stronger influence on the decision boundary
in order to be classified correctly. When the αi value reaches the maximal
bound, it can no longer increase its effect, and the corresponding point will
stay misclassified. In such a situation, the algorithm introduced above chooses
all training data points as support vectors. To find a classifier with a maximal
margin, the algorithm presented in the Sect. 2.2.1, must be changed allowing
some data to be unclassified. Better to say, we must leave some data on the
‘wrong’ side of a decision boundary. In practice, we allow a soft margin and all
data inside this margin (whether on the correct side of the separating line or
on the wrong one) are neglected. The width of a soft margin can be controlled
by a corresponding penalty parameter C (introduced below) that determines
the trade-off between the training error and VC dimension of the model.

The question now is how to measure the degree of misclassification and
how to incorporate such a measure into the hard margin learning algorithm
given by (2.10). The simplest method would be to form the following learning
problem

min
1
2
wT w + C(number of misclassified data) (2.22)

where C is a penalty parameter, trading off the margin size (defined by ‖w‖,
i.e., by wT w) for the number of misclassified data points. Large C leads
to small number of misclassifications, bigger wT w and consequently to the
smaller margin and vice versa. Obviously taking C = ∞ requires that the
number of misclassified data is zero and, in the case of an overlapping this is
not possible. Hence, the problem may be feasible only for some value C < ∞.

2.2 Support Vector Machines in Classification and Regression 33

x
2

x
1

x
3

x
2

x
1

x
4

Fig. 2.10. The soft decision boundary for a dichotomization problem with data
overlapping. Separation line (solid), margins (dashed) and support vectors (textured
training data points).). 4 SVs in positive class (circles) and 3 SVs in negative class
(squares). 2 misclassifications for positive class and 1 misclassification for negative
class.

However, the serious problem with (2.22) is that the error’s counting can’t be
accommodated within the handy (meaning reliable, well understood and well
developed) quadratic programming approach. Also, the counting only can’t
distinguish between huge (or disastrous) errors and close misses! The possible
solution is to measure the distances ξi of the points crossing the margin from
the corresponding margin and trade their sum for the margin size as given
below

min
1
2
wT w + C(sum of distances of the wrong side points), (2.23)

In fact this is exactly how the problem of the data overlapping was solved
in [39, 40] - by generalizing the optimal ‘hard’ margin algorithm. They in-
troduced the nonnegative slack variables ξi(i = 1, n) in the statement of the
optimization problem for the overlapped data points. Now, instead of fulfilling
(2.10a) and (2.10b), the separating hyperplane must satisfy

min
1
2
wT w + C

n∑
i=1

ξi (2.24a)

s.t. yi(wT xi + b) ≥ 1 − ξi, i = 1, . . . , n, and (2.24b)
ξi ≥ 0. (2.24c)

i.e., subject to

34 2 Support Vector Machines in Classification and Regression

wT xi + b ≥ 1 − ξi, for yi = +1, ξi ≥ 0 (2.24d)

wT xi + b ≤ −1 + ξi, for yi = −1, ξi ≥ 0 (2.24e)

Hence, for such a generalized optimal separating hyperplane, the functional
to be minimized comprises an extra term accounting the cost of overlapping
errors. In fact the cost function (2.24a) can be even more general as given
below

min
1
2
wT w + C

n∑
i=1

ξk
i (2.24f)

subject to same constraints. This is a convex programming problem that is
usually solved only for k = 1 or k = 2, and such soft margin SVMs are dubbed
L1 and L2 SVMs respectively. By choosing exponent k = 1, neither slack
variables ξi nor their Lagrange multipliers βi appear in a dual Lagrangian Ld.
Same as for a linearly separable problem presented previously, for L1 SVMs
(k = 1) here, the solution to a quadratic programming problem (2.24), is given
by the saddle point of the primal Lagrangian Lp(w, b, ξ,α,β) shown below

Lp(w, b, ξ,α,β) =
1
2
wT w + C(

n∑
i=1

ξi)

−
n∑

i=1

αi{yi[wT xi + b] − 1 + ξi} −
n∑

i=1

βiξi. (2.25)

where αi and βi are the Lagrange multipliers. Again, we should find an op-
timal saddle point (wo, bo, ξo,αo,βo) because the Lagrangian Lp has to be
minimized with respect to w, b and ξi and maximized with respect to nonneg-
ative αi and βi. As before, this problem can be solved in either a primal space
or dual space (which is the space of Lagrange multipliers αi and βi.). Again,
we consider a solution in a dual space as given below by using - standard
conditions for an optimum of a constrained function

∂L

∂wo
= 0, i.e., wo =

n∑
i=1

αiyixi (2.26a)

∂L

∂bo
= 0, i.e.,

n∑
i=1

αiyi = 0 (2.26b)

∂L

∂ξio
= 0, i.e., αi + βi = C (2.26c)

and the KKT complementarity conditions below,

αi{yi[wT xi + b] − 1 + ξi} = 0, i = 1, . . . , n, (2.26d)
βiξi = (C − αi)ξi = 0, i = 1, . . . , n. (2.26e)

2.2 Support Vector Machines in Classification and Regression 35

At the optimal solution, due to the KKT conditions (2.26d) and (2.26e), the
last two terms in the primal Lagrangian Lp given by (2.25) vanish and the
dual variables Lagrangian Ld(α), for L1 SVM, is not a function of βi . In fact,
it is same as the hard margin classifier’s Ld given before and repeated here
for the soft margin one,

max Ld(α) =
n∑

i=1

αi −
1
2

n∑
i,j=1

yiyjαiαjxT
i xj (2.27a)

In order to find the optimal hyperplane, a dual Lagrangian Ld(α) has to be
maximized with respect to nonnegative and (unlike before) smaller than or
equal to C, αi. In other words with

0 ≤ αi ≤ C, i = 1, . . . , n (2.27b)

and under the constraint (2.26b), i.e., under

n∑
i=1

αiyi = 0. (2.27c)

Thus, the final quadratic optimization problem is practically same as for the
separable case the only difference being in the modified bounds of the Lagrange
multipliers αi. The penalty parameter C, which is now the upper bound on
αi, is determined by the user. The selection of a ‘good’ or ‘proper’ C is always
done experimentally by using some cross-validation technique. Note that in
the previous linearly separable case, without data over-lapping, this upper
bound C = ∞. We can also readily change to the matrix notation of the
problem above as in (2.16). Most important of all is that the learning problem
is expressed only in terms of unknown Lagrange multipliers αi, and known
inputs and outputs. Furthermore, optimization does not solely depend upon
inputs xi which can be of a very high (inclusive of an infinite) dimension, but
it depends upon a scalar product of input vectors xi. It is this property we will
use in the next section where we design SV machines that can create nonlinear
separation boundaries. Finally, expressions for both a decision function d(x)
and an indicator function iF = sign(d(x)) for a soft margin classifier are same
as for linearly separable classes and are also given by (2.18).

From (2.26d) and (2.26e) follows that there are only three possible solu-
tions for αi (see Fig. 2.10)

1. αi, ξi = 0, → data point xi is correctly classified,
2. C > αi > 0, → then, the two complementarity conditions must result

in yi[wT xi + b] − 1 + ξi = 0, and ξi = 0. Thus, yi[wT xi + b] = 1 and
xi is a support vector. The support vectors with C ≥ αi ≥ 0 are called
unbounded or free support vectors. They lie on the two margins,

36 2 Support Vector Machines in Classification and Regression

3. αi = C, → then, yi[wT xi + b] − 1 + ξi = 0, and ξi ≥ 0, and xi is
a support vector. The support vectors with αi = C are called bounded
support vectors. They lie on the ‘wrong’ side of the margin. For 1 > ξi ≥ 0,
xi is still correctly classified, and if ξi ≥ 1, xi is misclassified.

After the learning, the parameter wo of the optimal hyperplane is calcu-
lated using the same expression (2.17a) as in the linearly separable case. For
computing the optimal bias term bo, the same philosophy as in (2.17b) is used,
but the bounded support vectors BSV must not be included because they are
not supposed to be on the margin, i.e. the ξi term for BSV should be greater
than 0. Therefore, the formulation for working out the optimal bias bo does
not include BSV and it is given as follow,

bo =
1

NFSV

∑NF SV

s=1
(ys − xT

s wo), s = 1, . . . , NFSV (2.28)

where NFSV is the number of free support vectors. The same indicator func-
tion (2.18) is used for the soft margin SVMs as in the hard margin ones.

For L2 SVM the second term in the cost function (2.24f) is quadratic, i.e.,
C
∑n

i=1 ξ2
i , and this leads to changes in a dual optimization problem which

is now,

Ld(α) =
n∑

i=1

αi − 1
2

n∑
i, j =1

yiyjαiαj

(
xT

i xj +
δij

C

)
(2.29a)

subject to

αi ≥ 0, i = 1, n (2.29b)
n∑

i=1

αiyi = 0 (2.29c)

where, δij = 1 for i = j, and it is zero otherwise. Note the change in Hessian
matrix elements given by second terms in (2.29a), as well as that there is no
upper bound on αi. The detailed analysis and comparisons of the L1 and L2
SVMs is presented in [1]. Derivation of (2.29) is given in the Appendix A.
We use the most popular L1 SVMs here, because they usually produce more
sparse solutions, i.e., they create a decision function by using less SVs than
the L2 SVMs.

2.2.3 The Nonlinear SVMs Classifier

The linear classifiers presented in two previous sections are very limited.
Mostly, classes are not only overlapped but the genuine separation functions
are nonlinear hypersurfaces. A nice and strong characteristic of the approach

2.2 Support Vector Machines in Classification and Regression 37

presented above is that it can be easily (and in a relatively straightforward
manner) extended to create nonlinear decision boundaries. The motivation for
such an extension is that an SV machine that can create a nonlinear decision
hypersurface will be able to classify nonlinearly separable data. This will be
achieved by considering a linear classifier in the so-called feature space that
will be introduced shortly. A very simple example of a need for designing
nonlinear models is given in Fig. 2.11 where the true separation boundary is
quadratic. It is obvious that no errorless linear separating hyperplane can be
found now. The best linear separation function shown as a dashed straight
line would make six misclassifications (textured data points; 4 in the nega-
tive class and 2 in the positive one). Yet, if we use the nonlinear separation
boundary we are able to separate two classes without any error. Generally,
for n-dimensional input patterns, instead of a nonlinear curve, an SV machine
will create a nonlinear separating hypersurface.

x
2

x
1

li

oi i
i

i i
i

Fig. 2.11. A nonlinear SVM without data overlapping. A true separation is a
quadratic curve. The nonlinear separation line (solid), the linear one (dashed) and
data points misclassified by the linear separation line (the textured training data
points) are shown. There are 4 misclassified negative data and 2 misclassified positive
ones. SVs are not shown.

The basic idea of designing nonlinear SVMs is to map the input vectors
xi ∈ �m into vectors Φ(xi) ∈ �s of a high dimensional feature space S (where
Φ represents mapping: �m → �s) and to solve a linear classification problem
in this feature space:

x ∈ �m → Φ(x) = [φ1(x) φ2(x), . . . , φs(x)]T ∈ �s. (2.30)

38 2 Support Vector Machines in Classification and Regression

A mapping Φ is chosen in advance, i.e., it is a fixed function. Note that an
input space (x-space) is spanned by components xi of an input vector x and a
feature space S (Φ-space) is spanned by components φi(x) of a vector Φ(x). By
performing such a mapping, we hope that in a Φ-space, our learning algorithm
will be able to linearly separate images of x by applying the linear SVM formu-
lation presented above. (In fact, it can be shown that for a whole class of map-
pings the linear separation in a feature space is always possible. Such mappings
will correspond to the positive definite kernels that will be shown shortly). We
also expect this approach to again lead to solving a quadratic optimization
problem with similar constraints in a Φ-space. The solution for an indicator
function iF (x) = sign(wT Φ(x) + b) = sign

(∑n
i = 1 yiαiΦT (xi)Φ(x) + b

)
,

which is a linear classifier in a feature space, will create a nonlinear separat-
ing hypersurface in the original input space given by (2.31) below. (Compare
this solution with (2.18) and note the appearances of scalar products in both
the original X-space and in the feature space S).

The equation for an iF (x) just given above can be rewritten in a ‘neural
networks’ form as follows

iF (x) = iF (d(x)) = sign(wT Φ(x) + b) = sign(
n∑

i=1

yiαiK(xi,x) + b)

= sign(
n∑

i=1

viK(xi,x) + b).

(2.31)

where vi corresponds to the output layer weights of the ‘SVM’s network’
and K(xi,x) denotes the value of the kernel function that will be introduced
shortly. (vi equals yiαi in the classification case presented above and it is
equal to (αi − αi∗) in the regression problems). Note the difference between
the weight vector w which norm should be minimized and which is the vector
of the same dimension as the feature space vector Φ(x) and the weightings vi =
αiyi that are scalar values composing the weight vector v which dimension
equals the number of training data points n. The (n−NSV s) of vi components
are equal to zero, and only NSV s entries of v are nonzero elements.

A simple example below (Fig. 2.12) should exemplify the idea of a nonlin-
ear mapping to (usually) higher dimensional space and how it happens that
the data become linearly separable in the S-space.

Example 2.2. Consider solving the simplest nonlinear 1-D classification prob-
lem in Fig. 2.12 given the three input and output (desired) values as follows:
x = [−1 0 1]T and y = [−1 1 − 1]T . The following mapping is chosen to
form the feature space here: Φ(x) = [x2

√
2x 1]T = [φ1(x) φ2(x) φ3(x)]T . The

mapping produces the following three points in the feature space.

x1 = −1 y1 = −1
x2 = 0 y2 = +1
x3 = 1 y3 = −1

→
Φ(x1) = [1 −

√
2 1]T

Φ(x2) = [0 0 1]T

Φ(x3) = [1
√

2 1]T
(2.32)

2.2 Support Vector Machines in Classification and Regression 39

d(x)
i
F
(x)

Fig. 2.12. A simple nonlinear 1-D classification problem. A linear classifier cannot
be used to separate the data points successfully. One possible solution is given by the
decision function d(x) (solid curve). Its corresponding indicator function sign(d(x))
is also given as a dash line.

These three points are shown in Fig. 2.13 and they are now linearly separable
in the 3-D feature space. The figure also shows that the separating boundary
from the optimal separating (hyper)plane is perpendicular to the x2 direction
and it has the biggest margin. Note that the decision hyperplane cannot be
visualized in Fig. 2.13, because it exists in the space which is for one dimension
higher (namely, in a 4-D space).

Fig. 2.13. The three points of the problem in Fig. 2.12 are linearly separable
in the feature space (obtained by the mapping Φ(x) = [φ1(x) φ2(x) φ3(x)]T =
[x2

√
2x 1]T). The separation boundary from SVMs which gives maximal margin

is given by the plane φ1(x) = 0.5 as shown in the figure. Note that the decision
function is in the 4-D space.

40 2 Support Vector Machines in Classification and Regression

Although the use of feature mapping Φ allows learning machines to deal
with nonlinear dependency, there are two basic problems when performing
such a mapping:

1. the choice of mapping Φ that should result in a “rich” class of decision
hyperplane.

2. the calculation of the scalar product Φ(x)T Φ(x) can be computationally
very challenging if the number of features s (i.e., dimensionality s of a
feature space) is very large.

The second problem is connected with a phenomenon called the ‘curse of
dimensionality ’. For example, to construct a decision surface corresponding
to a polynomial of degree two in an m-D input space, a dimensionality of a
feature space s = m(m + 3)/2. In other words, a feature space is spanned by
s coordinates of the form

z1 = x1, . . . , zm = xm (m coordinates),

zm+1 = (x1)2, . . . , z2m = (xm)2 (next m coordinates),
z2m+1 = x1x2, . . . , zf = xmxm−1 (m(m − 1)/2coordinates),

and the separating hyperplane created in this space, is a second-degree poly-
nomial in the input space [143]. Thus, constructing a polynomial of degree
two only, in a 256-dimensional input space, leads to a dimensionality of a
feature space s = 33, 152. Performing a scalar product operation with vectors
of such, or higher, dimensions, is not a cheap computational task. The prob-
lems become serious (and fortunately only seemingly unsolvable) if we want
to construct a polynomial of degree 4 or 5 in the same 256-dimensional space
leading to the construction of a decision hyperplane in a billion-dimensional
feature space.

This explosion in dimensionality can be avoided by noticing that in the
quadratic optimization problem given by (2.15) and (2.27a), as well as in
the final expression for a classifier, training data only appear in the form
of scalar products xT

i xj . These products will be replaced by scalar products
ΦT (x)Φ(x)i = [φ1(x), φ2(x), . . . , φm(x)][φ1(xi), φ2(xi), . . . , φm(x)i]T in a fea-
ture space S, and the latter can be and will be expressed by using the kernel
function K(xi,xj) = ΦT (xi)Φ(xj).

Note that a kernel function K(xi,xj) is a function in input space. Thus, the
basic advantage in using kernel function K(xi,xj) is in avoiding performing
a mapping Φ(x) at all. Instead, the required scalar products in a feature
space ΦT (xi)Φ(xj), are calculated directly by computing kernels K(xi,xj)
for given training data vectors in an input space. In this way, we bypass a
possibly extremely high dimensionality of a feature space S. Thus, by using
the chosen kernel K(xi,xj), we can construct an SVM that operates in an
infinite dimensional space (such a kernel function is a Gaussian kernel function
given in Table 2.2). In addition, as will be shown below, by applying kernels

2.2 Support Vector Machines in Classification and Regression 41

we do not even have to know what the actual mapping Φ(x) is. A kernel is a
function K such that

K(xi,xj) = ΦT (xi)Φ(xj). (2.33)

There are many possible kernels, and the most popular ones are given in
Table 2.2. All of them should fulfill the so-called Mercer’s conditions. The
Mercer’s kernels belong to a set of reproducing kernels. For further de-
tails see [101, 4, 129, 143, 81]. The simplest is a linear kernel defined as
K(xi,xj) = xT

i xj . Below we show a few more kernels:

POLYNOMIAL KERNELS:
Let x ∈ �2 i.e., x = [x1 x2]T , and if we choose Φ(x) = [x2

1

√
2x1x2 x2

1]
T

(i.e., there is an �2 → �3 mapping), then the dot product

ΦT (xi)Φ(xj) = [x2
i1

√
2xi1xi2 x2

i1][x
2
j1

√
2xj1xj2 x2

j1]
T

= [x2
i1x

2
j1 + 2xi1xi2xj1xi2 + x2

i2x
2
j2] = (xT

i xj)2 = K(xi,xj), or

K(xi,xj) = (xT
i xj)2 = ΦT (xi)Φ(xj)

Note that in order to calculate the scalar product in a feature space ΦT (xi)Φ(xj),
we do not need to perform the mapping Φ(x) = [x2

1

√
2x1x2 x2

1]
T at all. In-

stead, we calculate this product directly in the input space by computing
(xT

i xj)2. This is very well known under the popular name of the kernel trick .
Interestingly, note also that other mappings such as an

�2 → �3 mapping given by Φ(x) = [x2
1 − x2

2 2x1x2 x2
1 + x2

2], or an

�2 → �4 mapping given by Φ(x) = [x2
1 x1x2 x1x2 x2

2]

also accomplish the same task as (xT
i xj)2.

Now, assume the following mapping

Φ(x) = [1
√

2x1

√
2x2

√
2x1x2 x2

1 x2
2],

i.e., there is an �2 → �5 mapping plus bias term as the constant 6th dimen-
sion’s value. Then the dot product in a feature space S is given as

ΦT (xi)Φ(xj) = 1 + 2xi1xj1 + 2xi2xj2 + 2xi1xi2xj1xi2 + x2
i1x

2
j1 + x2

i2x
2
j2

= 1 + 2(xT
i xj) + (xT

i xj)2 = (xT
i xj + 1)2 = K(xi,xj), or

K(xi,xj) = (xT
i xj + 1)2 = ΦT (xi)Φ(xj)

Thus, the last mapping leads to the second order complete polynomial.
Many candidate functions can be applied to a convolution of an inner

product (i.e., for kernel functions) K(x,xi) in a SV machine. Each of these
functions constructs a different nonlinear decision hypersurface in an input
space. In the first three rows, the Table 2.2 shows the three most popular ker-
nels in SVMs’ in use today, and the inverse multiquadrics one as an interesting
and powerful kernel to be proven yet. The positive definite (PD) kernels are

42 2 Support Vector Machines in Classification and Regression

Table 2.2. Popular Admissible Kernels

Kernel Functions Type of Classifier

K(x,xi) = (xT xi) Linear, dot product, kernel, CPDa

K(x,xi) = [(xT xi) + 1]d Complete polynomial of degree d, PDb

K(x,xi) = exp(−[‖x − xi‖2]/2σ2) Gaussian RBF, PDb

K(x,xi) = tanh[(xT xi) + b]* Multilayer perceptron, CPD
K(x,xi) = 1/

√
||x − xi||2 + β Inverse multiquadric function, PD

a Conditionally positive definite b Positive definite
* only for certain values of b

the kernels which Gramm matrix G (a.k.a. Grammian) calculated by using
all the n training data points is positive definite (meaning all its eigenvalues
are strictly positive, i.e., λi > 0, i = 1, n)

G = K(xi,xj) =

⎡
⎢⎢⎢⎢⎣

k(x1,x1) k(x1,x2) · · · k(x1,xn)

k(x2,x1) k(x2,x2)
... k(x2,xn)

...
...

...
...

k(xn,x1) k(xn,x2) · · · k(xn,xn)

⎤
⎥⎥⎥⎥⎦ (2.34)

The G is a symmetric one. Even more, any symmetric positive definite matrix
can be regarded as a kernel matrix, that is - as an inner product matrix in
some space.

Finally, we arrive at the point of presenting the learning in nonlinear clas-
sifiers (in which we are ultimately interested here). The learning algorithm
for a nonlinear SV machine (classifier) follows from the design of an optimal
separating hyperplane in a feature space. This is the same procedure as the
construction of a ‘hard’ (2.15) and ‘soft’ (2.27a) margin classifiers in an x-
space previously. In a Φ(x)-space, the dual Lagrangian, given previously by
(2.15) and (2.27a), is now

Ld(α) =
n∑

i=1

αi − 1
2

n∑
i, j =1

αiαjyiyjΦT
i Φj , (2.35)

and, according to (2.33), by using chosen kernels, we should maximize the
following dual Lagrangian

max Ld(α) =
n∑

i=1

αi −
1
2

n∑
i,j=1

yiyjαiαjK(xi,xj) (2.36a)

s.t. αi ≥ 0, i = 1, . . . , n and (2.36b)
n∑

i=1

αiyi = 0. (2.36c)

2.2 Support Vector Machines in Classification and Regression 43

In a more general case, because of a noise or due to generic class’ features,
there will be an overlapping of training data points. Nothing but constraints
for αi change. Thus, constraints (2.36b) will be replaced by

0 ≤ αi ≤ C i = 1, . . . , n. (2.36d)

Again, the only difference to the separable nonlinear classifier is the upper
bound C on the Lagrange multipliers αi. In this way, we limit the influence
of training data points that will remain on the ‘wrong’ side of a separating
nonlinear hypersurface. After the dual variables are calculated, the decision
hypersurface d(x) is determined by

d(x) =
n∑

i=1

yiαiK(x, xi) + b =
n∑

i=1

viK(x, xi) + b, (2.37)

and the indicator function is iF (x) = sign[d(x)] = sign
[

n∑
i=1

viK(x, xi) + b

]
.

Note that the summation is not actually performed over all training data
but rather over the support vectors, because only for them do the Lagrange
multipliers differ from zero. The existence and calculation of a bias b is now
not a direct procedure as it is for a linear hyperplane. Depending upon the
applied kernel, the bias b can be implicitly part of the kernel function. If, for
example, Gaussian RBF is chosen as a kernel, it can use a bias term as the
s + 1st feature in S-space with a constant output = +1, but not necessarily.
In short, all PD kernels do not necessarily need an explicit bias term b, but b
can be used. More on this can be found in [84] as well as in the [150]. Same
as for the linear SVM, (2.36) can be written in a matrix notation as

max Ld(α) = −0.5αT Hα + pT α, (2.38a)

s.t. yT α = 0, (2.38b)
0 ≤ αi ≤ C, i = 1, . . . , n, (2.38c)

where α = [α1, α2, . . . , αn]T , H denotes the Hessian matrix (Hij = yiyj

K(xi,xj)) of this problem, and p is an (n,1) unit vector p = 1 = [1 1 . . . 1]T .
Note that the Hessian matrix is a dense n by n matrix. As a result, the
amount of the computer memory required to solve the optimization prob-
lem is n2. This is why the next part of the book is focused on solving the
problem in an iterative way. The optimization problem (2.38) can be solved
without the equality constraint (2.38b) when the Hessian matrix is positive
definite (Note that if K(xi,xj) is the positive definite matrix, then so is the
matrix yiyjK(xi,xj) too.). This fact is also used extensively in next chapter
for deriving faster iterative learning algorithm for SVMs.

Example 2.3. The following 1-D example (just for the sake of graphical pre-
sentation) will show the creation of a linear decision function in a feature

44 2 Support Vector Machines in Classification and Regression

space and a corresponding nonlinear (quadratic) decision function in an input
space.

Suppose we have 4 1-D data points given as x1 = 1, x2 = 2, x3 = 5, x4 =
6, with data at 1, 2, and 6 as class 1 and the data point at 5 as class 2, i.e.,
y1 = −1, y2 = −1, y3 = 1, y4 = −1. We use the polynomial kernel of degree
2, K(x, y) = (xy + 1)2. C is set to 50, which is of lesser importance because
the constraints will not be imposed in this example due to the fact that the
maximal value of the dual variables alpha will be smaller than C = 50.

Case 1: Working with a bias term b as given in (2.37)
We first find αi(i = 1, . . . , 4) by solving dual problem (2.38) having a Hessian
matrix

H =

⎡
⎢⎢⎣

4 9 −36 49
9 25 −121 169

−36 −121 676 −961
49 169 −961 1369

⎤
⎥⎥⎦

Alphas are α1 = 0, α2 = 2.499999, α3 = 7.333333 α4 = 4.833333 and the
bias b will be found by using (2.17b), or by fulfilling the requirements that
the values of a decision function at the support vectors should be the given
yi. The model (decision function) is given by

d(x) =
4∑

i=1

yiαiK(x, xi) + b =
4∑

i=1

vi(xxi + 1)2 + b, or by

d(x) = 2.4999(−1)(2x + 1)2 + 7.3333(1)(5x + 1)2 + 4.8333(−1)(6x + 1)2 + b

d(x) = −0.666667x2 + 5.333333x + b

Bias b is determined from the requirement that at the SV points 2, 5 and 6,
the outputs must be -1, 1 and -1 respectively. Hence, b = −9, resulting in the
decision function

d(x) = −0.666667x2 + 5.333333x − 9.

The nonlinear (quadratic) decision function and the indicator one are shown
in Fig. 2.14. Note that in calculations above 6 decimal places have been used
for alpha values. The calculation is numerically very sensitive, and working
with fewer decimals can give very approximate or wrong results.

The complete polynomial kernel as used in the case 1, is positive definite
and there is no need to use an explicit bias term b as presented above. Thus,
one can use the same second order polynomial model without the bias term b.
Note that in this particular case there is no equality constraint equation that
originates from an equalization of the primal Lagrangian derivative in respect
to the bias term b to zero. Hence, we do not use (2.38b) while using a positive
definite kernel without bias as it will be shown below in the case 2.

2.2 Support Vector Machines in Classification and Regression 45

NL SV classification. 1D input. Polynomial, quadratic, kernel used

1 2 5 6

1

-1

Fig. 2.14. The nonlinear decision function (solid) and the indicator function
(dashed) for 1-D overlapping data. By using a complete second order polynomial
the model with and without a bias term b are same.

Case 2: Working without a bias term b
Because we use the same second order polynomial kernel, the Hessian matrix
H is same as in the case 1. The solution without the equality constraint for
alphas is: α1 = 0, α2 = 24.999999, α3 = 43.333333, α4 = 27.333333. The
model (decision function) is given by

d(x) =
4∑

i=1

yiαiK(x, xi) =
4∑

i=1

vi(xxi + 1)2, or by

d(x) = 24.9999(−1)(2x + 1)2 + 43.3333(1)(5x + 1)2 + 27.3333(−1)(6x + 1)2

d(x) = −0.666667x2 + 5.333333x − 9.

Thus the nonlinear (quadratic) decision function and consequently the
indicator function in the two particular cases are equal.

Example 2.4. XOR problems: In the next example shown by Figs. 2.15 and
2.16 we present all the important mathematical objects of a nonlinear SV
classifier by using a classic XOR (exclusive-or) problem. The graphs show
all the mathematical functions (objects) involved in a nonlinear classification.
Namely, the nonlinear decision function d(x), the NL indicator function iF (x),
training data (xi), support vectors (xSV)i and separation boundaries.

The same objects will be created in the cases when the input vector x is
of a dimensionality n > 2, but the visualization in these cases is not possible.
In such cases one talks about the decision hyperfunction (hypersurface) d(x),
indicator hyperfunction (hypersurface) iF (x), training data (xi), support vec-
tors (xSV)i and separation hyperboundaries (hypersurfaces).

Note the different character of a d(x), iF (x) and separation boundaries
in the two graphs given below. However, in both graphs all the data are

46 2 Support Vector Machines in Classification and Regression

D

Fig. 2.15. XOR problem. Kernel functions (2-D Gaussians) are not shown. The
nonlinear decision function, the nonlinear indicator function and the separation
boundaries are shown. All four data are chosen as support vectors.

correctly classified. Fig. 2.15 shows the resulting functions for the Gaussian
kernel functions, while Fig. 2.16 presents the solution for a complete second
order polynomial kernel. Below, we present the analytical derivation of the
(saddle like) decision function in the later (polynomial kernel) case. The ana-
lytic solution to the Fig. 2.16 for the second order polynomial kernel (i.e., for
(xT

i xj + 1)2 = ΦT (xi)Φ(xj), where

Φ(x) = [1
√

2x1

√
2x2

√
2x1x2 x2

1 x2
2],

no explicit bias and C = ∞) goes as follows. Inputs and desired outputs are,

x =
[

0 1 1 0
0 1 0 1

]T

, y = d = [1 1 − 1 − 1]T .

The dual Lagrangian (2.36a) has the Hessian matrix

H =

⎡
⎢⎢⎣

1 1 −1 −1
1 9 −4 −4
−1 −4 4 1
−1 −4 1 4

⎤
⎥⎥⎦

2.2 Support Vector Machines in Classification and Regression 47

e e e

Fig. 2.16. XOR problem. Kernel function is a 2-D polynomial. The nonlinear de-
cision function, the nonlinear indicator function and the separation boundaries are
shown. All four data are support vectors.

The optimal solution can be obtained by taking the derivative of Ld with
respect to dual variables αi(i = 1, 4) and by solving the resulting linear system
of equations taking into account the constraints, see [84]. The solution to

α1 + α2 − α3 − α4 = 1,
α1 + 9α2 − 4α3 − 4α4 = 1,
−α1 − 4α2 + 4α3 + α4 = 1,
−α1 − 4α2 + α3 + 4α4 = 1,

subject to αi > 0, (i = 1, 4), is α1 = 4.3333, α2 = 2.0000, α3 = 2.6667 and
α4 = 2.6667. The decision function in a 3-D space is

d(x) =
∑4

i = 1
yiαiΦT (xi)Φ(x)

= (4.3333
[
1 0 0 0 0 0

]
+ 2

[
1
√

2
√

2
√

2 1 1
]

−2.6667
[
1
√

2 0 0 1 0
]
− 2.6667

[
1 0

√
2 0 0 1

]
)Φ(x)

= [1 - 0.942 - 0.942 2.828 - 0.667 - 0.667] [1
√

2x1

√
2x2

√
2x1x2 x2

1 x2
2]

T

and finally

d(x) = 1 − 1.3335x1 − 1.3335x2 + 4x1x2 − 0.6667x2
1 − 0.6667x2

2

48 2 Support Vector Machines in Classification and Regression

It is easy to check that the values of d(x) for all the training inputs in x equal
the desired values in d. The d(x) is the saddle-like function shown in Fig.
2.16.

Here we have shown the derivation of an expression for d(x) by using
explicitly a mapping Φ. Again, we do not have to know what mapping Φ is
at all. By using kernels in input space, we calculate a scalar product required
in a (possibly high dimensional) feature space and we avoid mapping Φ(x).
This is known as kernel ‘trick’. It can also be useful to remember that the way
in which the kernel ‘trick’ was applied in designing an SVM can be utilized
in all other algorithms that depend on the scalar product (e.g., in principal
component analysis or in the nearest neighbor procedure) .

2.2.4 Regression by Support Vector Machines

In the regression , we estimate the functional dependence of the dependent
(output) variable y ∈ � on an m-dimensional input variable x. Thus, unlike in
pattern recognition problems (where the desired outputs yi are discrete values
e.g., Boolean) we deal with real valued functions and we model an �m to �1

mapping here. Same as in the case of classification, this will be achieved by
training the SVM model on a training data set first. Interestingly and impor-
tantly, a learning stage will end in the same shape of a dual Lagrangian as in
classification, only difference being in a dimensionalities of the Hessian matrix
and corresponding vectors which are of a double size now e.g., H is a (2n, 2n)
matrix. Initially developed for solving classification problems, SV techniques
can be successfully applied in regression, i.e., for a functional approximation
problems [45, 142]. The general regression learning problem is set as follows
- the learning machine is given n training data from which it attempts to
learn the input-output relationship (dependency, mapping or function) f(x).
A training data set X = [x(i), y(i)] ∈ �m ×�, i = 1, ..., n consists of n pairs
(x1, y1), (x2, y2), . . . , (xn, yn), where the inputs x are m-dimensional vectors
x ∈ �m and system responses y ∈ �, are continuous values. We introduce
all the relevant and necessary concepts of SVM’s regression in a gentle way
starting again with a linear regression hyperplane f(x,w) given as

f(x,w) = wT x + b. (2.39)

In the case of SVM’s regression, we measure the error of approximation in-
stead of the margin used in classification. The most important difference in
respect to classic regression is that we use a novel loss (error) functions here.
This is the Vapnik’s linear loss function with ε-insensitivity zone defined as

E(x, y, f) = |y − f(x,w)|ε =

{
0 if |y − f(x,w)| ≤ ε

|y − f(x,w)| − ε otherwise
,

(2.40a)

2.2 Support Vector Machines in Classification and Regression 49

or as,

E(x, y, f) = max(0, |y − f(x,w)| − ε). (2.40b)

Thus, the loss is equal to zero if the difference between the predicted
f(xi,w) and the measured value yi is less than ε. In contrast, if the difference
is larger than ε, this difference is used as the error. Vapnik’s ε-insensitivity
loss function (2.40) defines an ε tube as shown in Fig. 2.18. If the predicted
value is within the tube, the loss (error or cost) is zero. For all other predicted
points outside the tube, the loss equals the magnitude of the difference be-
tween the predicted value and the radius ε of the tube. The two classic error

ε

ε

Fig. 2.17. Loss (error) functions.

functions are: a square error, i.e., L2 norm (y − f)2, as well as an absolute
error, i.e., L1 norm, least modulus |y − f | introduced by Yugoslav scientist
Rudjer Boskovic in 18th century [48]. The latter error function is related to
Huber’s error function. An application of Huber’s error function results in a
robust regression. It is the most reliable technique if nothing specific is known
about the model of a noise. We do not present Huber’s loss function here in
analytic form. Instead, we show it by a dashed curve in Fig. 2.17a. In addition,
Fig. 2.17 shows typical shapes of all mentioned error (loss) functions above.

Note that for ε = 0, Vapnik’s loss function equals a least modulus func-
tion. Typical graph of a (nonlinear) regression problem as well as all relevant
mathematical variables and objects required in, or resulted from, a learning
unknown coefficients wi are shown in Fig. 2.18.

We will formulate an SVM regression’s algorithm for the linear case first
and then, for the sake of a NL model design, we will apply mapping to a
feature space, utilize the kernel ‘trick’ and construct a nonlinear regression
hypersurface. This is actually the same order of presentation as in classification
tasks. Here, for the regression, we ‘measure’ the empirical error term Remp by
Vapnik’s ε-insensitivity loss function given by (2.40) and shown in Fig. 2.17c
(while the minimization of the confidence term Ω will be realized through a
minimization of wT w again). The empirical risk is given as

Rε
emp(w, b) =

1
n

∑n

i=1

∣∣yi − wT xi − b
∣∣
ε

(2.41)

50 2 Support Vector Machines in Classification and Regression

ε
ε

ξ

ξ

Fig. 2.18. The parameters used in (1-D) support vector regression. Filled squares
data are support vectors. Hence, SVs can appear only on the tube boundary or
outside the tube.

ε

Fig. 2.19. Two linear approximations inside an ε tube (dashed lines) have the same
empirical risk Rε

emp on the training data as the regression function (solid line).

As in classification, we try to minimize both the empirical risk Rε
emp and ‖w‖2

simultaneously. Thus, we construct a linear regression hyperplane f(x,w) =
wT x + b by minimizing

R =
1
2
||w||2 + C

∑n

i=1
|yi − f(xi, w)|ε. (2.42)

2.2 Support Vector Machines in Classification and Regression 51

Note that the last expression resembles the ridge regression scheme. However,
we use Vapnik’s ε-insensitivity loss function instead of a squared error now.
From (2.40) and Fig. 2.18 it follows that for all training data outside an ε-tube,

|y − f(x,w)| − ε = ξ for data ‘above’ an ε-tube, or (2.43a)
|y − f(x,w)| − ε = ξ∗ for data ‘below’ an ε-tube, or (2.43b)

Thus, minimizing the risk R above equals the minimization of the following
risk

Rw, ξ, ξ∗ =
[
1
2
||w||2 + C

(∑n

i=1
ξi +

∑n

i=1
ξ∗i

)]
(2.44a)

under constraints

yi − wT xi − b ≤ ε + ξi, i = 1, . . . , n (2.44b)

wT xi + b − yi ≤ ε + ξ∗i , i = 1, . . . , n (2.44c)
ξi ≥ 0, ξ∗i ≥ 0 i = 1, . . . , n (2.44d)

where ξi and ξ∗i are slack variables shown in Fig. 2.18 for data points ‘above’
or ‘below’ the ε-tube respectively. Both slack variables are positive values.
Lagrange multipliers αi and α∗

i (that will be introduced during the minimiza-
tion below) related to the first two sets of inequalities above, will be nonzero
values for training points ‘above’ and ‘below’ an ε-tube respectively. Because
no training data can be on both sides of the tube, either αi or α∗

i will be
nonzero. For data points inside the tube, both multipliers will be equal to
zero. Thus αiα

∗
i = 0.

Note also that the constant C that influences a trade-off between an ap-
proximation error and the weight vector norm ‖w‖ is a design parameter that
is chosen by the user. An increase in C penalizes larger errors i.e., it forces
ξi and ξ∗i to be small. This leads to an approximation error decrease which is
achieved only by increasing the weight vector norm ‖w‖. However, an increase
in ‖w‖ increases the confidence term Ω and does not guarantee a small gener-
alization performance of a model. Another design parameter which is chosen
by the user is the required precision embodied in an ε value that defines the
size of an ε-tube. The choice of ε value is easier than the choice of C and it is
given as either maximally allowed or some given or desired percentage of the
output values yi (say, ε = 0.1 of the mean value of y).

Similar to procedures applied in the SV classifiers’ design, we solve the
constrained optimization problem above by forming a primal variables La-
grangian as follows,

52 2 Support Vector Machines in Classification and Regression

Lp(w, b, ξi, ξ∗i , αi, α∗
i , βi, β∗

i) =
1
2
wT w + C

∑n

i=1
(ξi + ξ∗i)

−
∑n

i=1
(β∗

i ξ∗i + βiξi)

−
∑n

i=1
αi

[
wT xi + b − yi + ε + ξi

]
−
∑n

i=1
α∗

i

[
yi - wTxi - b + ε + ξ∗i

]
(2.45)

A primal variables Lagrangian Lp(w, b, ξi, ξ
∗
i , αi, α

∗
i , βi, β

∗
i) has to be min-

imized with respect to primal variables w, b, ξi and ξ∗i and maximized with
respect to nonnegative Lagrange multipliers α, α∗

i , βi and β∗
i . Hence, the func-

tion has the saddle point at the optimal solution (wo, bo, ξio, ξ
∗
io) to the original

problem. At the optimal solution the partial derivatives of Lp in respect to
primal variables vanishes. Namely,

∂Lp(wo, bo, ξio, ξ∗io, αi, α∗
i , βi, β∗

i)
∂w

= wo −
∑n

i=1
(αi − α∗

i)xi = 0, (2.46)

∂Lp(wo, bo, ξio, ξ∗io, αi, α∗
i , βi, β∗

i)
∂b

=
∑n

i=1
(αi − α∗

i) = 0, (2.47)

∂Lp(wo, bo, ξio, ξ∗io, αi, α∗
i , βi, β∗

i)
∂ξi

= C − αi − βi = 0, (2.48)

∂Lp(wo, bo, ξio, ξ∗io, αi, α∗
i , βi, β∗

i)
∂ξ∗i

= C − α∗
i − β∗

i = 0. (2.49)

Substituting the KKT above into the primal Lp given in (2.45), we arrive
at the problem of the maximization of a dual variables Lagrangian Ld(α, α∗)
below,

Ld(αi, α
∗
i) = − 1

2

n∑
i, j =1

(αi − α∗
i)(αj − α∗

j)x
T
i xj − ε

n∑
i=1

(αi + α∗
i)

+
n∑

i=1

(αi − α∗
i)yi

= − 1
2

n∑
i, j =1

(αi − α∗
i)(αj − α∗

j)x
T
i xj −

n∑
i=1

(ε − yi)αi

−
n∑

i=1

(ε + yi)α∗
i

(2.50)

subject to constraints∑n

i=1
α∗

i =
∑n

i=1
αi or

∑n

i=1
(αi − α∗

i) = 0, (2.51a)

0 ≤ αi ≤ C i = 1, . . . , n, (2.51b)
0 ≤ α∗

i ≤ C i = 1, . . . , n. (2.51c)

2.2 Support Vector Machines in Classification and Regression 53

Note that the dual variables Lagrangian Ld(α,α∗) is expressed in terms of
Lagrange multipliers αi and α∗

i only. However, the size of the problem, with
respect to the size of an SV classifier design task, is doubled now. There are
2n unknown dual variables (n αi-s and n α∗

i -s) for a linear regression and
the Hessian matrix H of the quadratic optimization problem in the case of
regression is a (2n, 2n) matrix. The standard quadratic optimization problem
above can be expressed in a matrix notation and formulated as follows:

min Ld(α) = 0.5αT Hα + pα, (2.52)

subject to (2.51) where α = [α1, α2, . . . , αn, α∗
1, α

∗
2, . . . , α

∗
n]T , H = [G −

G;−G G] , G is an (n,n) matrix with entries Gij = [xT
i xj] in a linear

regression and Gij = K(xi,xj) for the nonlinear one, and p = [ε − y1, ε −
y2, . . . , ε−yn, ε+y1, ε+y2, . . . , ε+yn] (Note that Gij , as given above, is a badly
conditioned matrix and we rather use Gij = [xT

i xj + 1] instead). Equation
(2.52) is written in the form of a standard optimization routine that typically
minimizes given objective function subject to the same constraints (2.51).

The learning stage results in n Lagrange multiplier pairs (αi, α
∗
i). After

the learning, the number of SVs is equal to the number of nonzero αi and α∗
i .

However, this number does not depend on the dimensionality of input space
and this is particularly important when working in very high dimensional
spaces. Because at least one element of each pair (αi, α

∗
i), i = 1, n, is zero,

the product of αi and α∗
i is always zero,i.e. αiα

∗
i = 0. At the optimal solution

the following KKT complementarity conditions must be fulfilled

αi

(
wTxi + b − yi + ε + ξi

)
= 0, (2.53a)

α∗
i

(
- wTxi - b + yi + ε + ξ∗i

)
= 0, (2.53b)

βi ξi = (C − αi) ξi = 0, (2.53c)
β∗

i ξ∗i = (C − α∗
i) ξ∗i = 0. (2.53d)

(2.53c) states that for 0 < αi < C, ξi = 0 holds. Similarly, from (2.53d)
follows that for 0 < α∗

i < C, ξ∗i = 0 and, for 0 < αi, α
∗
i < C, from (2.53a)

and (2.53b) follows,

wTxi + b − yi + ε = 0, (2.54a)

- wTxi - b + yi + ε = 0. (2.54b)

Thus, for all the data points fulfilling y − f(x) = +ε , dual variables αi must
be between 0 and C, or 0 < αi < C, and for the ones satisfying y−f(x) = −ε
, α∗

i take on values 0 < α∗
i < C. These data points are called the free (or

unbounded) support vectors. They allow computing the value of the bias term
b as given below

b = yi − wT xi − ε for 0 < αi < C, (2.55)

b = yi − wT xi + ε for 0 < α∗
i < C. (2.56)

54 2 Support Vector Machines in Classification and Regression

The calculation of a bias term b is numerically very sensitive, and it is better
to compute the bias b by averaging over all the free support vector data points.

The final observation follows from (2.53c) and (2.53d) and it tells that for
all the data points outside the ε-tube, i.e., when both ξi > 0 and ξ∗i > 0 , both
αi and α∗

i equal C, i.e., αi = C for the points above the tube and α∗
i = C

for the points below it. These data are the so-called bounded support vectors.
Also, for all the training data points within the tube, or when |y − f(x)| < ε,
both αi and α∗

i equal zero and they are neither the support vectors nor do
they construct the decision function f(x).

After calculation of Lagrange multipliers αi and α∗
i , using (2.46) we can

find an optimal (desired) weight vector of the regression hyperplane as

wo =
∑n

i=1
(αi − α∗

i)xi. (2.57)

The best regression hyperplane obtained is given by

f(x,w, b) = wT
o x + b =

∑n

i=1
(αi − α∗

i)x
T
i x + b. (2.58)

More interesting, more common and the most challenging problem is to aim at
solving the nonlinear regression tasks. A generalization to nonlinear regression
is performed in the same way the nonlinear classifier is developed from the
linear one, i.e., by carrying the mapping to the feature space, or by using
kernel functions instead of performing the complete mapping which is usually
of extremely high (possibly of an infinite) dimension. Thus, the nonlinear
regression function in an input space will be devised by considering a linear
regression hyperplane in the feature space.

We use the same basic idea in designing SV machines for creating a nonlin-
ear regression function. First, a mapping of input vectors x ∈ �m into vectors
Φ(x) of a higher dimensional feature space S (where Φ represents mapping:
�m → �s) takes place and then, we solve a linear regression problem in this
feature space. A mapping Φ(x) is again the chosen in advance, or fixed, func-
tion. Note that an input space (x-space) is spanned by components xi of an
input vector x and a feature space S (Φ-space) is spanned by components
φi(x) of a vector Φ(x). By performing such a mapping, we hope that in a
Φ-space, our learning algorithm will be able to perform a linear regression hy-
perplane by applying the linear regression SVM formulation presented above.
We also expect this approach to again lead to solving a quadratic optimiza-
tion problem with inequality constraints in the feature space. The (linear in
a feature space S) solution for the regression hyperplane f = wT Φ(x) + b,
will create a nonlinear regressing hypersurface in the original input space.
The most popular kernel functions are polynomials and RBF with Gaussian
kernels. Both kernels are given in Table 2.2.

In the case of the nonlinear regression, the learning problem is again formu-
lated as the maximization of a dual Lagrangian (2.52) with the Hessian matrix
H structured in the same way as in a linear case, i.e. H = [G −G;−G G]
but with the changed Grammian matrix G that is now given as

2.2 Support Vector Machines in Classification and Regression 55

G =

⎡
⎢⎣G11 · · · G1n

... Gii

...
Gn1 · · · Gnn

⎤
⎥⎦

where the entries Gij = ΦT (xi)Φ(xj) = K(xi,xj), i, j = 1, n.
After calculating Lagrange multiplier vectors α and α∗, we can find an

optimal weighting vector of the kernels expansion as

vo = α − α∗ (2.59)

Note however the difference in respect to the linear regression where the ex-
pansion of a regression function is expressed by using the optimal weight
vector wo. Here, in a NL SVMs’ regression, the optimal weight vector wo

could often be of infinite dimension (which is the case if the Gaussian kernel
is used). Consequently, we neither calculate wo nor we have to express it in a
closed form. Instead, we create the best nonlinear regression function by using
the weighting vector vo and the kernel (Grammian) matrix G as follows,

f(x,w) = Gv0 + b (2.60)

In fact, the last result follows from the very setting of the learning (optimizing)
stage in a feature space where, in all the equations above from (2.44b) to
(2.58), we replace xi by the corresponding feature vector Φ(xi). This leads to
the following changes:

• instead Gij = xT
i xj we get Gij = ΦT (xi)Φ(xj) and, by using the kernel

function K(xi,xj) = ΦT (xi)Φ(xj), it follows that Gij = K(xi,xj).
• similarly, (2.57) and (2.58) change as follows:

wo =
∑n

i=1
(αi − α∗

i)Φ(xi) and, (2.61)

f(x,w, b) = wT
o Φ(x) + b =

n∑
i=1

(αi − α∗
i)Φ

T (xi)Φ(x) + b

=
n∑

i=1

(αi − α∗
i)K(xi,x) + b.

(2.62)

If the bias term b is explicitly used as in (2.60) then, for a NL SVMs’ regression,
it can be calculated from the upper SVs as,

b = yi −
∑Nfree upper SV s

j=1
(αj − α∗

j)Φ
T (xj)Φ(xi) − ε

= yi −
∑Nfree upper SV s

j=1
(αj − α∗

j)K(xi,xj) − ε, for 0 < αi < C
(2.63)

or from the lower ones as,

56 2 Support Vector Machines in Classification and Regression

b = yi −
∑Nfree lower SV s

j=1
(αj − α∗

j)Φ
T (xj)Φ(xi) + ε

= yi −
∑Nfree lower SV s

j=1
(αj − α∗

j)K(xi,xj) + ε, for 0 < α∗
i < C.

(2.64)

Note that α∗
j = 0 in (2.63) and so is αj = 0 in (2.64). Again, it is much better

to calculate the bias term b by an averaging over all the free support vector
data points.

There are a few learning parameters in constructing SV machines for re-
gression. The three most relevant are the insensitivity zone ε, the penalty
parameter C (that determines the trade-off between the training error and
VC dimension of the model), and the shape parameters of the kernel function
(variances of a Gaussian kernel, order of the polynomial, or the shape pa-
rameters of the inverse multiquadrics kernel function). All three parameters’
sets should be selected by the user. To this end, the most popular method for
their selection is a cross-validation. Unlike in a classification, for not too noisy
data (primarily without huge outliers), the penalty parameter C could be set
to infinity and the modeling can be controlled by changing the insensitivity
zone ε and shape parameters only.

The example below shows how an increase in an insensitivity zone ε has
smoothing effects on modeling highly noise polluted data. Increase in ε means
a reduction in requirements on the accuracy of approximation. It decreases
the number of SVs leading to higher data compression too. This can be readily
followed in the lines and Fig. 2.20 below.

Example 2.5. The task here is to construct an SV machine for modeling mea-
sured data pairs. The underlying function (known to us but, not to the SVM)
is a sinus function multiplied by the square one (i.e., f(x) = x2 sin(x)) and it
is corrupted by 25% of normally distributed noise with a zero mean. Analyze
the influence of an insensitivity zone ε on modeling quality and on a compres-
sion of data, meaning on the number of SVs. Fig. 2.20 shows that for a very
noisy data a decrease of an insensitivity zone ε (i.e., shrinking of the tube
shown by dashed line) approximates the noisy data points more closely. The
related more and more wiggly shape of the regression function can be achieved
only by including more and more support vectors. However, being good on the
noisy training data points easily leads to an overfitting. The cross-validation
should help in finding correct ε value, resulting in a regression function that
filters the noise out but not the true dependency and which, consequently,
approximate the underlying function as close as possible. The approximation
function shown in Fig. 2.20 is created by 9 and 18 weighted Gaussian basis
functions for ε = 1 and ε = 0.75 respectively. These supporting functions are
not shown in the figure. However, the way how the learning algorithm selects
SVs is an interesting property of support vector machines and in Fig. 2.21 we
also present the supporting Gaussian functions.

Note that the selected Gaussians lie in the ‘dynamic area’ of the function
in Fig. 2.21. Here, these areas are close to both the left hand and the right

2.3 Implementation Issues 57

-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

One-dimensional support vector regression
by Gaussian kernel functions

0 1 2 3-3 -2 -1 -3 -2 -1 0 1 2 3
-6

-4

-2

0

2

4

6
One-dimensional support vector regression by

Gaussian kernel functions

y

Fig. 2.20. The influence of an insensitivity zone ε on the model performance. A
nonlinear SVM creates a regression function f with Gaussian kernels and models
a highly polluted (25% noise) function x2 sin(x) (dotted). 31 training data points
(plus signs) are used. Left : ε = 1; 9 SVs are chosen (encircled plus signs). Right :
ε = 0.75; the 18 chosen SVs produced a better approximation to noisy data and,
consequently, there is the tendency of overfitting.

hand boundary. In the middle, the original function is pretty flat and there is
no need to cover this part by supporting Gaussians. The learning algorithm
realizes this fact and simply, it does not select any training data point in this
area as a support vector. Note also that the Gaussians are not weighted in
Fig. 2.21 , and they all have the peak value of 1. The standard deviation
of Gaussians is chosen in order to see Gaussian supporting functions better.
Here, in Fig. 2.21, σ = 0.6. Such a choice is due the fact that for the larger
σ values the basis functions are rather flat and the supporting functions are
covering the whole domain as the broad umbrellas. For very big variances one
can’t distinguish them visually. Hence, one can’t see the true, bell shaped,
basis functions for the large variances.

2.3 Implementation Issues

In both the classification and the regression the learning problem boils down
to solving the QP problem subject to the so-called ‘box-constraints’ and to
the equality constraint in the case that a model with a bias term b is used.
The SV training works almost perfectly for not too large data basis. However,
when the number of data points is large (say n > 2, 000) the QP problem be-
comes extremely difficult to solve with standard QP solvers and methods. For
example, a classification training set of 50,000 examples amounts to a Hessian
matrix H with 2.5 ∗ 109 (2.5 billion) elements. Using an 8-byte floating-point
representation we need 20,000 Megabytes = 20 Gigabytes of memory [109].
This cannot be easily fit into memory of present standard computers, and

58 2 Support Vector Machines in Classification and Regression

-3 -2 -1 0 1 2 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

Fig. 2.21. Regression function f created as the sum of 8 weighted Gaussian kernels.
A standard deviation of Gaussian bells σ = 0.6. Original function (dashed line) is
x2 sin(x) and it is corrupted by 25% noise. 31 training data points are shown as
plus signs. Data points selected as the SVs are encircled. The 8 selected supporting
Gaussian functions are centered at these data points.

this is the single basic disadvantage of the SVM method. There are three ap-
proaches that resolve the QP for large data sets. Vapnik in [144] proposed the
chunking method that is the decomposition approach. Another decomposition
approach is suggested in [109]. The sequential minimal optimization [115] al-
gorithm is of different character and it seems to be an ‘error back propagation’
for an SVM learning. A systematic exposition of these various techniques is
not given here, as all three would require a lot of space. However, the in-
terested reader can find a description and discussion about the algorithms
mentioned above in next chapter and [84, 150]. The Vogt and Kecman’s chap-
ter [150] discusses the application of an active set algorithm in solving small
to medium sized QP problems. For such data sets and when the high precision
is required the active set approach in solving QP problems seems to be su-
perior to other approaches (notably to the interior point methods and to the
sequential minimal optimization (SMO) algorithm). Next chapter introduces
the efficient iterative single data algorithm (ISDA) for solving huge data sets
(say more than 100,000 or 500,000 or over 1 million training data pairs). It

2.3 Implementation Issues 59

seems that ISDA is the fastest algorithm at the moment for such large data
sets still ensuring the convergence to the global minimum (see the compar-
isons with SMO in Sect.3.4). This means that the ISDA provides the exact,
and not the approximate, solution to original dual problem.

Let us conclude the presentation of SVMs part by summarizing the basic
constructive steps that lead to the SV machine.

A training and design of a support vector machine is an iterative algorithm
and it involves the following steps:

1. define your problem as the classification or as the regression one,
2. preprocess your input data: select the most relevant features, scale the

data between [-1, 1], or to the ones having zero mean and variances equal
to one, check for possible outliers (strange data points),

3. select the kernel function that determines the hypothesis space of the de-
cision and regression function in the classification and regression problems
respectively,

4. select the ‘shape’, i.e., ‘smoothing’ parameter of the kernel function (for
example, polynomial degree for polynomials and variances of the Gaussian
RBF kernels respectively),

5. choose the penalty factor C and, in the regression, select the desired ac-
curacy by defining the insensitivity zone ε too,

6. solve the QP problem in n and 2n variables in the case of classification
and regression problems respectively,

7. validate the model obtained on some previously, during the training, un-
seen test data, and if not pleased iterate between steps 4 (or, eventually
3) and 7.

The optimizing part 6 is computationally extremely demanding. First, the
Hessian matrix H scales with the size of a data set - it is an (n,n) and an
(2n, 2n) matrix in classification and regression respectively. Second, unlike in
classic original QP problems H is very dense matrix and it is usually badly
conditioned requiring a regularization before any numeric operation. Regu-
larization means an addition of a small number to the diagonal elements of
H. Luckily, there are many reliable and fast QP solvers. A simple search on
an Internet will reveal many of them. Particularly, in addition to the classic
ones such as MINOS or LOQO for example, there are many more free QP
solvers designed specially for the SVMs. The most popular ones are - the
LIBSVM, SVMlight, SVM Torch, mySVM and SVM Fu. All of them can be
downloaded from their corresponding sites.A user friendly software implemen-
tation of the ISDA that can handle huge data set can be download from the
web site of this book www.learning-from-data.com . Good educational soft-
ware in MATLAB named LEARNSC, with a very good graphic presentations
of all relevant objects in a SVM modeling, can be downloaded from the second
author’s book site www.support-vector.ws too.

60 2 Support Vector Machines in Classification and Regression

Finally we mention that there are many alternative formulations and ap-
proaches to the QP based SVMs described above. Notably, they are the linear
programming SVMs [94, 53, 128, 59, 62, 83, 81, 82], µ-SVMs [123] and least
squares support vector machines [134]. Their description is far beyond this
chapter and the curious readers are referred to references given above.

3

Iterative Single Data Algorithm for Kernel
Machines from Huge Data Sets: Theory
and Performance

3.1 Introduction

One of the mainstream research fields in learning from empirical data by sup-
port vector machines (SVMs), and solving both the classification and the re-
gression problems is an implementation of the iterative (incremental) learning
schemes when the training data set is huge. The challenge of applying SVMs
on huge data sets comes from the fact that the amount of computer memory
required for solving the quadratic programming (QP) problem presented in
the previous chapter increases drastically with the size of the training data
set n. Depending on the memory requirement, all the solvers of SVMs can be
classified into one of the three basic types as shown in Fig. 3.1 [150]. Direct
methods (such as interior point methods) can efficiently obtain solution in
machine precision, but they require at least O(n2) of memory to store the
Hessian matrix of the QP problem. As a result, they are often used to solve
small-sized problems which require high precision. At the other end of the
spectrum are the working-set (decomposition) algorithms whose memory re-
quirements are only O(n + q2) where q is the size of the working-set (for the
ISDAs developed in this book, q is equal to 1). The reason for the low memory
footprint is due to the fact that the solution is obtained iteratively instead of
directly as in most of the QP solvers. They are the only possible algorithms for
solving large-scale learning problems, but they are not suitable for obtaining
high precision solutions because of the iterative nature of the algorithm. The
relative size of the learning problem depends on the computer being used. As
a result, a learning problem will be regarded as a “large” or “huge” problem
in this book if the Hessian matrix of its unbounded SVs (HSf Sf

where Sf

denotes the set of free SVs) cannot be stored in the computer memory. Be-
tween the two ends of the spectrum are the active-set algorithms [150] and
their memory requirements are O(N2

FSV), i.e. they depend on the number
of unbounded support vectors of the problem. The main focus of this book
is to develop efficient algorithms that can solve large-scale QP problems for
SVMs in practice. Although many applications in engineering also require the

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 61–95 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

62 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

SVMs optimization

Small Medium Large

Memory O(n2) Memory O(N2
FSV) Memory O(n + q2)

Interior Point Active-Set Working-Set

�

�

�

�

�

�

�

� �

Fig. 3.1. QP optimization methods for different training data size.

solving of large-scale QP problems (and there are many solvers available),
the QP problems induced by SVMs are different from these applications. In
the case of SVMs, the Hessian matrix of (2.38a) is extremely dense, whereas
in most of the engineering applications, the optimization problems have rela-
tively sparse Hessian matrices. This is why many of the existing QP solvers are
not suitable for SVMs and new approaches need to be invented and developed.
Among several candidates that avoid the use of standard QP solvers, the two
learning approaches which recently have drawn the attention are the Itera-
tive Single Data Algorithm (ISDA), and the Sequential Minimal Optimization
(SMO) [69, 78, 115, 148].

The most important characteristic of ISDAs are that they work on one data
point at a time (per-pattern based learning) to improve the objective function.
The Kernel AdaTron (KA) is the earliest ISDA for SVMs proposed in [54],
which uses kernel functions to map data into SVMs’ high dimensional feature
space and performs AdaTron learning [12] in the feature space. The Platt’s
SMO algorithm [115] is a natural continuation of the various decomposition
algorithms (chunking in [144], decomposition algorithms in [108, 78]) which
operate on a working-set of two data points at a time. Because the solution
for a working-set of two can be found analytically, an SMO algorithm does
not invoke standard QP solvers. Due to its analytical foundation the SMO
approach is particularly popular and at the moment the widely used, ana-
lyzed and still continuously improving algorithm. At the same time, the KA
algorithm, although providing similar results in solving classification problems
(in terms of both the accuracy and the training computation time required),
did not attract that many devotees. There are two basic reasons for that.
First, until recently [147], the KA seemed to be restricted to the classification
problems only and second, it “lacked” the fleur of the strong theory (despite
its beautiful “simplicity” and strong convergence proofs). The KA is based

3.2 ISDA for Positive Definite Kernels without Bias Term b 63

on a gradient ascent technique and this fact might also have distracted some
researchers being aware of problems with gradient ascent approaches faced
with a possibly ill-conditioned kernel matrix. Another very important ISDA
is the no-bias version of the SMO algorithm developed recently in [148]. The
development of this ISDA is based on the idea that the equality constraint
of the SVMs optimization problem can be removed when a positive definite
kernel is used. At the same time, it also follows similar idea as in the original
SMO for working-set selection. This chapter is organized as follows:

• Section 3.2: The equality of two seemingly different ISDAs, which are a KA
method and a without-bias version of SMO learning algorithm in designing
the SVMs having positive definite kernels are derived and shown. The
equality is valid for both the nonlinear classification and the nonlinear
regression tasks, and it sheds a new light on these seemingly different
learning approaches. Other learning techniques related to the two above-
mentioned approaches are also introduced, such as the classic Gauss-Seidel
coordinate ascent procedure and its derivative known as the successive
over-relaxation algorithm as a viable and usually faster training algorithms
for performing nonlinear classification and regression tasks.

• Section 3.3: In the later part of this chapter, a method of including the
explicit bias term b efficiently into the ISDA will be presented. The explicit
bias term b is included into the ISDA, because many simulations show that
it leads to less support vectors. As a result, this version of the ISDAs can
reduce the training time.

• Section 3.4: A comparison in performance between different ISDAs derived
in this book and the popular SVM software LIBSVM is presented.

• Section 3.5: Efficient implementation of the ISDA software is discussed.
• Section 3.6: This section concludes the presentations here and discusses

possible avenues for the future research in the area of developing faster
iterative solver for SVMs.

3.2 Iterative Single Data Algorithm for Positive Definite
Kernels without Bias Term b

In terms of representational capability, when applying Gaussian kernels, SVMs
are similar to radial basis function networks. At the end of the learning, they
produce a decision function of the following form

d(x) = (
n∑

i=1

viK(x,x) + b). (3.1)

However, it is well known that positive definite kernels (such as the most
popular and the most widely used RBF Gaussian kernels as well as the com-
plete polynomial ones in Table 2.2) do not require bias term b [49, 85]. This

64 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

means that the SVM learning problems should maximize (2.36a) with box
constraints (2.36d) in classification and maximize (2.50) with box constraints
(2.51b) and (2.51c) in regression (Note that in nonlinear regression the xixj

terms in (2.50) should be replaced with K(xi,xj)). As a result, the optimiza-
tion problem for SVMs classification without the explicit bias term b is as
follows:

max Ld(α) =
n∑

i=1

αi −
1
2

n∑
i,j=1

yiyjαiαjK(xi,xj), (3.2a)

s.t. C ≥ αi ≥ 0, i = 1, . . . , n. (3.2b)

Hence, the dual optimization problem for nonlinear SVMs regression without
the explicit bias term b is as follows:

max Ld(αi, α
∗
i) = − 1

2

n∑
i, j =1

(αi − α∗
i)(αj − α∗

j)K(xi,xj) − ε

n∑
i=1

(αi + α∗
i)

+
n∑

i=1

yi(αi − α∗
i) (3.3a)

s.t. 0 ≤ αi ≤ C i = 1, . . . , n, (3.3b)
0 ≤ α∗

i ≤ C i = 1, . . . , n. (3.3c)

In this section, the KA and the SMO algorithms will be presented for
such a fixed (i.e., no-) bias design problem and compared for the classification
and regression cases. The equality of the two learning schemes and the re-
sulting models will be established. Originally, in [115], the SMO classification
algorithm was developed for solving (2.36a) including the equality constraint
(2.36c) related to the bias b. In these early publications (on the classification
tasks only) the case when bias b is a fixed variable was also mentioned but the
detailed analysis of a fixed bias update was not accomplished. The algorithms
here extend and develop a new method to regression problems too.

3.2.1 Kernel AdaTron in Classification

The classic AdaTron algorithm as given in [12] is developed for a linear clas-
sifier. As mentioned previously, the KA is a variant of the classic AdaTron
algorithm in the feature space of SVMs. The KA algorithm solves the maxi-
mization of the dual Lagrangian (3.2a) by implementing the gradient ascent
algorithm. The update ∆αi of the dual variables αi is given as:

∆αi = ηi
∂Ld

∂αi
= ηi

(
1 − yi

∑n

j=1
αjyjK(xi,xj)

)
= ηi (1 − yidi) , (3.4)

The update of the dual variables αi is given as

αi ← min{max{αi + ∆αi, 0}, C} i = 1, . . . , n. (3.5)

3.2 ISDA for Positive Definite Kernels without Bias Term b 65

In other words, the dual variables αi are clipped to zero if (αi + ∆αi) < 0. In
the case of the soft nonlinear classifier (C < ∞) αi are clipped between zero
and C, (0 ≤ αi ≤ C). The algorithm converges from any initial setting for the
Lagrange multipliers αi.

3.2.2 SMO without Bias Term b in Classification

Recently [148] derived the update rule for multipliers αi that includes a de-
tailed analysis of the Karush-Kuhn-Tucker (KKT) conditions for checking the
optimality of the solution. (As referred above, a fixed bias update was men-
tioned only in Platt’s papers). The no-bias SMO algorithm can be broken
down into three different steps as follows:

1. The first step is to find the data points or the αi variables to be optimized.
This is done by checking the KKT complementarity conditions of the αi

variables. An αi that violates the KKT condition will be referred to as a
KKT violator. If there are no KKT violators in the entire data set, the
optimal solution for (3.2) is found and the algorithm will stop. The αi

need to be updated if:

αi < C ∧ yiEi < −τ, or (3.6)
αi > 0 ∧ yiEi > τ (3.7)

where Ei = di−yi denotes the difference between the value of the decision
function di (i.e., it is a SVM output) at the point xi and the desired target
(label) yi and τ is the precision of the KKT conditions which should be
fulfilled.

2. In the second step, the αi variables that do not fulfill the KKT conditions
will be updated. The following update rule for αi was proposed in [148]:

∆αi = − yiEi

K(xi,xi)
= − yidi − 1

K(xi,xi)
=

1 − yidi

K(xi,xi)
(3.8)

After an update, the same clipping operation as in (3.5) is performed

αi ← min{max{αi + ∆αi, 0}, C} i = 1, . . . , n. (3.9)

3. After the updating of an αi variable, the yjEj terms in the KKT conditions
of all the αj variables will be updated by the following rules:

yjEj = yjE
old
j + (αi − αold

i)K(xi,xj)yj j = 1, . . . , n (3.10)

The algorithm will return to Step 1 in order to find a new KKT violator
for updating.

Note the equality of the updating term between KA (3.4) and (3.8) of SMO
without the bias term when the learning rate in (3.4) is chosen to be η =

66 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

1/K(xi,xi). Because SMO without-bias-term algorithm also uses the same
clipping operation in (3.9), both algorithms are strictly equal. This equality
is not that obvious in the case of a ‘classic’ SMO algorithm with bias term
due to the heuristics involved in the selection of active points which should
ensure the largest increase of the dual Lagrangian Ld during the iterative
optimization steps.

3.2.3 Kernel AdaTron in Regression

The first extension of the Kernel AdaTron algorithm for regression is presented
in [147] as the following gradient ascent update rules for αi and α∗

i ,

∆αi = ηi
∂Ld

∂αi
= ηi

(
yi − ε −

∑n

j=1
(αj − α∗

j)K(xj ,xi)
)

= ηi (yi − ε − fi)

= −ηi (Ei + ε) (3.11a)

∆α∗
i = ηi

∂Ld

∂α∗
i

= ηi

(
−yi − ε +

∑n

j=1
(αj − α∗

j)K(xj ,xi)
)

= ηi (−yi − ε + fi)

= ηi (Ei − ε) , (3.11b)

where Ei is an error value given as a difference between the output of the SVM
fi and desired value yi. The calculation of the gradient above does not take
into account the geometric reality that no training data can be on both sides
of the tube. In other words, it does not use the fact that either αi or α∗

i or
both will be nonzero, i.e. that αiα

∗
i = 0 must be fulfilled in each iteration step.

Below the gradients of the dual Lagrangian Ld accounting for geometry will
be derived following [85]. This new formulation of the KA algorithm strictly
equals the SMO method given below in Sect. 3.2.4 and it is given as

∂Ld

∂αi
= − K(xi,xi)αi −

∑n

j=1,j �=i
(αj − α∗

j)K(xj ,xi) + yi − ε + K(xi,xi)α∗
i

− K(xi,xi)α∗
i

= − K(xi,xi)α∗
i − (αi − α∗

i)K(xi,xi) −
∑n

j=1,j �=i
(αj − α∗

j)K(xj ,xi)

+ yi − ε

= − K(xi,xi)α∗
i + yi − ε − fi = − (K(xi,xi)α∗

i + Ei + ε) .

(3.12)

For the α∗ multipliers, the value of the gradient is

∂Ld

∂α∗
i

= −K(xi,xi)αi + Ei − ε (3.13)

The update value for αi is now

3.2 ISDA for Positive Definite Kernels without Bias Term b 67

∆αi = ηi
∂Ld

∂αi
= −ηi (K(xi,xi)α∗

i + Ei + ε) , (3.14a)

αi ← αi + ∆αi = αi + ηi
∂Ld

∂αi
= αi − ηi (K(xi,xi)α∗

i + Ei + ε) (3.14b)

For the learning rate η = 1/K(xi,xi) the gradient ascent learning KA is
defined as,

αi ← αi − α∗
i − Ei + ε

K(xi,xi)
(3.15a)

Similarly, the update rule for α∗
i is

α∗
i ← α∗

i − αi +
Ei − ε

K(xi,xi)
(3.15b)

Same as in the classification, αi and α∗
i are clipped between zero and C,

αi ← min(max(0, αi + ∆αi), C) i = 1, . . . , n (3.16a)
α∗

i ← min(max(0, α∗
i ∆α∗

i), C) i = 1, . . . , n (3.16b)

3.2.4 SMO without Bias Term b in Regression

The first algorithm for the SMO without-bias-term in regression, together
with a detailed analysis of the KKT conditions for checking the optimality of
the solution is derived in [148]. The following learning rules for the Lagrange
multipliers αi and α∗

i updates were proposed

αi ← αi − α∗
i − Ei + ε

K(xi,xi)
(3.17a)

α∗
i ← α∗

i − αi +
Ei − ε

K(xi,xi)
(3.17b)

The equality of equations (3.15a, b) and (3.17a, b) is obvious when the learning
rate, as presented above in (3.15a, b), is chosen to be η = 1/K(xi,xi). Thus,
in both the classification and the regression, the optimal learning rate is not
necessarily equal for all training data pairs. For a Gaussian kernel, η = 1 is
same for all data points, and for a complete nth order polynomial each data
point has a different learning rate η = 1/K(xixi). Similar to classification, a
joint update of αi and α∗

i is performed only if the KKT conditions are violated
by at least τ i.e. if

αi < C ∧ ε + Ei < −τ, or (3.18a)
αi > 0 ∧ ε + Ei > τ, or (3.18b)
α∗

i < C ∧ ε − Ei < −τ, or (3.18c)
α∗

i > 0 ∧ ε − Ei > τ (3.18d)

68 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

After the changes, the same clipping operations as defined in (3.16) are per-
formed

αi ← min(max(0, αi + ∆αi), C) i = 1, . . . , n (3.19a)
α∗

i ← min(max(0, α∗
i + ∆α∗

i), C) i = 1, . . . , n (3.19b)

After an update of α
(∗)
i (i.e. αi or α∗

i), the algorithm updates the KKT con-
ditions as follows [148]:

(Ej + ε) = (Ej + ε)old + (αi − α∗
i − αold

i + α∗old
i)K(xi,xj) j = 1, . . . , n

(3.20a)

(ε − Ej) = (ε − Ej)old − (αi − α∗
i − αold

i + α∗old
i)K(xi,xj) j = 1, . . . , n.

(3.20b)

The KA learning as formulated in this chapter and the SMO algorithm
without-bias-term for solving regression tasks are strictly equal in terms of
both the number of iterations required and the final values of the Lagrange
multipliers. The equality is strict despite the fact that the implementation is
slightly different [85, 84]. In every iteration step, namely, the KA algorithm
updates both weights αi and α∗

i without checking whether the KKT condi-
tions are fulfilled or not, while the SMO performs an update according to
conditions (3.18).

3.2.5 The Coordinate Ascent Based Learning for Nonlinear
Classification and Regression Tasks

When positive definite kernels are used, the learning problem for both tasks
is the same. The matrix notation of the optimization problem is derived by
removing the equality constraint (2.38b) and only keep the box constraints as
follows:

max Ld(α) = −0.5αT Hα + pT α, (3.21a)
s.t. 0 ≤ αi ≤ C, i = 1, . . . , k, (3.21b)

where, in the classification k = n and the Hessian matrix H is an (n, n)
symmetric positive definite matrix, while in regression k = 2n and H is a
(2n, 2n) symmetric semipositive definite one.

Note that the constraints (3.21b) define a convex subspace over which the
convex dual Lagrangian should be maximized. It is very well known that the
vector α may be looked at as the solution of a system of linear equations:

Hα = p (3.22)

subject to the same constraints as given by (3.21b). Thus, it may seem nat-
ural to solve (3.22), subject to (3.21b), by applying some of the well known

3.2 ISDA for Positive Definite Kernels without Bias Term b 69

and established techniques for solving a general linear system of equations.
The size of the training data set and the constraints (3.21b) eliminate di-
rect techniques. Hence, one has to resort to iterative approaches in solving
the problems above. There are three possible iterative avenues that can be
followed. They are; the use of the Non-Negative Least Squares (NNLS) tech-
nique [90], an application of the Non-Negative Conjugate Gradient (NNCG)
method [66] and the implementation of Gauss-Seidel (GS) i.e., the related
Successive Over-Relaxation technique (SOR). The first two methods origi-
nally solve for the non-negative constraints only. Thus, they are not suitable
in solving ‘soft’ tasks, when penalty parameter C < ∞ is used, i.e., when
there is an upper bound on maximal value of αi. Nevertheless, in the case
of nonlinear regression, one can apply NNLS and NNCG by taking C = ∞
and compensating (i.e. smoothing or ‘softening’ the solution) by increasing
the sensitivity zone ε. However, the two methods (namely NNLS and NNCG)
are not suitable for solving soft margin (C < ∞) classification problems in
their present form, because there is no other parameter that can be used in
‘softening’ the margin. As part of this book, the NNCG is extended to take
both upper and lower bounds into account. This development can be found
in Sect. 5.6.3.

Now, the extension of Gauss-Seidel (GS) and Successive Over-Relaxation
(SOR) to both nonlinear classification and to nonlinear regression tasks will
be shown. The Gauss-Seidel method solves (3.22) by using the i-th equation to
update the i-th unknown doing it iteratively, i.e. starting in the k-th step with
the first equation to compute the αk+1

1 , then the second equation is used to
calculate the αk+1

2 by using new αk+1
1 and αk

i (i > 2) and so on. The iterative
learning takes the following form,

αk+1
i

=

⎛
⎝pi −

i−1∑
j=1

Hijα
k+1
j

−
n∑

j=i+1

Hijα
k
j

⎞
⎠ /Hii

= αk
i
− 1

Hii

⎛
⎝i−1∑

j=1

Hijα
k+1
j

+
n∑

j=i

Hijα
k
j
− pi

⎞
⎠

︸ ︷︷ ︸
ri

= αk
i

+
1

Hii

∂Ld

∂α
i

∣∣∣∣
k+1

(3.23)

where we use the fact that the term within a second bracket (called the residual
ri in mathematics’ references) is the i-th element of the gradient of a dual
Lagrangian Ld given in (3.21a) at the k +1st iteration step. The (3.23) above
shows that GS method is a coordinate gradient ascent procedure as well as the
KA and the SMO are. The KA and SMO for positive definite kernels equal
the GS! Note that the optimal learning rate used in both the KA algorithm
and in the SMO without-bias-term approach is exactly equal to the coefficient
1/Hii in a GS method. Based on this equality, the convergence theorem for

70 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

the KA, SMO and GS (i.e., SOR) in solving (3.21a) subject to constraints
(3.21b) can be stated and proved as follows [85]:

Theorem 3.1. For SVMs with positive definite kernels, the iterative learning
algorithms KA i.e., SMO i.e., GS i.e., SOR, in solving nonlinear classification
and regression tasks (3.21a) subject to constraints (3.21b), converge starting
from any initial choice α0.

Proof. The proof is based on the very well known theorem of convergence of
the GS method for symmetric positive definite matrices in solving (3.22) with-
out constraints [107]. First note that for positive definite kernels, the matrix
H created by terms yiyjK(xi,xj) in the second sum in (3.2a), and involved
in solving classification problem, is also positive definite. In regression tasks
H is a symmetric positive semidefinite (meaning still convex) matrix, which
after a mild regularization given as (H ← H + λI, λ ≈ 1e − 12) becomes
positive definite one. (Note that the proof in the case of regression does not
need regularization at all, but there is no space here to go into these details).
Hence, the learning without constraints (3.21b) converges, starting from any
initial point α0, and each point in an n-dimensional search space for multipli-
ers αi is a viable starting point ensuring a convergence of the algorithm to the
maximum of a dual Lagrangian Ld. This, naturally, includes all the (starting)
points within, or on a boundary of, any convex subspace of a search space en-
suring the convergence of the algorithm to the maximum of a dual Lagrangian
Ld over the given subspace. The constraints imposed by (3.21b) preventing
variables αi to be negative or bigger than C, and implemented by the clip-
ping operators above, define such a convex sub-space. Thus, each “clipped”
multiplier value αi defines a new starting point of the algorithm guaranteeing
the convergence to the maximum of Ld over the subspace defined by (3.21b).
For a convex constraining subspace such a constrained maximum is unique
Q.E.D.

It should be mentioned in passing that both KA and SMO (i.e. GS and SOR)
for positive definite kernels have been successfully applied for many problems
(see references given here, as well as many other, benchmarking the mentioned
methods on various data sets). The standard extension of the GS method is the
method of successive over-relaxation that can reduce the number of iterations
required by proper choice of relaxation parameter ω significantly. The SOR
method uses the following update rule

αk+1
i

= αk
i
− ω

1
Hii

⎛
⎝i−1∑

j=1

Hijα
k+1
j

+
n∑

j=i

Hijα
k
j
− pi

⎞
⎠ = αk

i
+ ω

1
Hii

∂Ld

∂α
i

∣∣∣∣
k+1

(3.24)
and similarly to the KA, SMO, and Gauss-Seidel, its convergence is guaran-
teed. With a proper choice of the relaxation parameter ω, the performance of
the algorithms can be speed up significantly. Furthermore, the improvement

3.2 ISDA for Positive Definite Kernels without Bias Term b 71

in performance is more noticeable in the regression than in the classification.
The typical range of ω used in this book is between 1.5 and 1.9. Note that
the algorithm will not converge if ω is equal or greater than 2.

Example 3.2. To help visualize the connection between solving QP problem
(3.21) and system of linear equation (3.22) using ISDA, consider a simple 2D
QP problem as follows:

max Q(x) = −1
2
xT Hx + pT x

= −1
2
[x1, x2]

[
1 −0.5

−0.5 1

] [
x1

x2

]
+ [2, 2]

[
x1

x2

]
(3.25)

For an unconstrained problem, the solution is found by solving the following
system of linear equations:[

1 −0.5
−0.5 1

] [
x1

x2

]
=
[

2
2

]
(3.26)

x1

x2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Global Maximum

−x1+0.5x2+2=0

0.5x1−x2+2=0

Fig. 3.2. Optimization of 2-D QP problem with ISDA. The dashed and the dash-
dotted lines in the figure represent system of linear equations −x1 + 0.5x2 + 2 = 0
and 0.5x1 − x2 + 2 = 0 respectively.

In other words, the solution of the problem (3.25) is also equal to the
intersection of straight line −x1 + 0.5x2 + 2 = 0 and 0.5x1 − x2 + 2 = 0 as
shown in Fig. 3.2. Fig. 3.2 shows how ISDA solves such a problem starting
from the initial position of x = [0, 0]T . The update rule (3.23) is first applied

72 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

x1

x2

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Global Maximum

Box constraint

The solution is clipped back to (2,2)

Fig. 3.3. Optimization of 2-D QP problem with box constraint 0 ≤ x ≤ 2 using
ISDA. The dashed and the dash-dotted lines in the figure represent system of linear
equations −x1 + 0.5x2 + 2 = 0 and 0.5x1 − x2 + 2 = 0 respectively.

to the x1. It moves x from its initial position of zero to the line corresponding
to −x1 + 0.5x2 + 2 = 0. This is equivalent to performing the steepest ascent
on direction x1 and the position [x1, x2]T = [2, 0]T is the maximum along
the x1 direction when x2 is fixed at zero. In the second step, x1 is kept at
2 and x2 is updated by using (3.23). Note that the updating rule moves x
from line −x1 + 0.5x2 + 2 = 0 to −x1 + 0.5x2 + 2 = 0. As the process of
optimization continues, x oscillates between the two lines as shown in the
figure until the solution of the optimization problem is found. In this case, the
optimal solution is x = [4, 4]T .

Now, consider maximizing (3.25) subject to box constraints 0 ≤ x ≤ 2.
Figure 3.3 shows how ISDAs solve such a problem. Similarly to the uncon-
strained problem, the first step which moves x from [0, 0]T to [2, 0]T is un-
changed. However, after an updating of x2 in the second step, the vector x
becomes [2, 3]T and it is no longer inside the box constraints due to x2 > 2.
As a result, x2 is clipped back to 2 (i.e. x is equal to [2, 2]T after clipping) in
order to fulfill the box constraints. At x = [2, 2]T the algorithm can no longer
make any improvement without going outside the box constraints. As a result
x = [2, 2]T is the solution of the constrained optimization problem.

3.3 Iterative Single Data Algorithm with an Explicit Bias Term b 73

3.2.6 Discussion on ISDA Without a Bias Term b

Both the KA and the SMO algorithms were recently developed and intro-
duced as alternatives to solve quadratic programming problem while training
support vector machines on huge data sets. It was shown that when using a
positive definite kernels the two algorithms are identical in their analytic form
and numerical implementation. In addition, for positive definite kernels both
algorithms are strictly identical with a classic iterative Gauss-Seidel (optimal
coordinate ascent) learning and its extension successive over-relaxation. Un-
til now, these facts were blurred mainly due to different pace in posing the
learning problems and due to the heavy heuristics involved in the SMO imple-
mentation that shadowed an insight into the possible identity of the methods
[85, 84]. It is shown that in the so-called no-bias SVMs, both the KA and
the SMO procedure are the coordinate ascent based methods and they are
dubbed as ISDA. Hence, they are the inheritors of all good and bad “genes”
of a gradient approach and both algorithms have the same performance.

In the next section, the ISDAs with explicit bias term b will be presented.
The explicit bias term b is incorporated into the ISDAs by adding a constant
i/k to the kernel matrix. This technique and its connection with the classical
penalty method in optimization are presented in the book as the the novel
contributions to the SVMs field. The motivations for incorporating bias term
into the ISDAs are to improve the versatility and the performance of the
algorithms [69]. The ISDA without bias term developed in this section can only
deal with positive definite kernel, which may be a limitation in applications
where positive a semi-definite kernel such as a linear kernel is more desirable.
As will be discussed shortly, ISDA with explicit bias term b also seems to be
faster in terms of training time.

3.3 Iterative Single Data Algorithm
with an Explicit Bias Term b

Before presenting iterative algorithms with bias term b, some recent presen-
tations of the bias b utilization are discussed. As mentioned previously, for
positive definite kernels there is no need for bias b. However, one can use it
and this means implementing a different kernel. In [116] it was also shown
that when using positive definite kernels, one can choose between two types
of solutions for both classification and regression. The first one uses the model
without bias term (i.e.,d(x) =

∑n
j=1 vjK(x,xj)), while the second SVM uses

an explicit bias term b. For the second one d(x) =
∑n

j=1 vjK(x,xj) + b and
it was shown that d(x) is a function resulting from a minimization of the
functional shown below

I[d] =
∑n

j=1
V (yj , d(xj)) + λ ‖d‖2

K∗ (3.27)

74 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

where K∗ = K−a (for an appropriate constant a) and K is an original kernel
function (more details can be found in [116]). This means that by adding a
constant term to a positive definite kernel function K, one obtains the solution
to the functional I[d] where K∗ is a conditionally positive definite kernel.
Interestingly, a similar type of model was also presented in [95]. However,
their formulation is done for the linear classification problems only. They
reformulated the optimization problem by adding the b2/2 term to the cost
function, so 2

‖wb‖ is maximized instead of the margin 2
‖w‖ . This is equivalent

to an addition of 1 to each element of the original kernel matrix K. As a result,
they changed the original classification dual problem to the optimization of
the following one

Ld(α) =
n∑

i=1

αi −
1
2

n∑
i, j =1

yiyjαiαj(K(xi,xj) + 1). (3.28)

3.3.1 Iterative Single Data Algorithm for SVMs Classification
with a Bias Term b

In the previous section for the SVMs models when positive definite kernels
are used without a bias term b, the learning algorithms (originating from
minimization of a primal Lagrangian in respect to the weights wi) for classi-
fication and regression (in a dual domain) were solved with box constraints
only. However, there remains an open question - how to apply the proposed
ISDA scheme for the SVMs that do use explicit bias term b. The motivation
for developing the ISDAs for the SVMs with an explicit bias term b originates
from the fact that the use of an explicit bias b seems to lead to the SVMs
with less support vectors. This fact can often be very useful for both the data
(information) compression and the speed of learning. An iterative learning
algorithm for the classification SVMs (2.31) with an explicit bias b, subjected
to the equality constraint (2.36c) will be presented in this section.

There are three major avenues (procedures, algorithms) possible in solving
(2.36a) with constraints (2.36d) and (2.36c).

The first one is the standard SVMs algorithm which imposes the equality
constraint (2.36c) during the optimization and in this way ensures that the
solution never leaves a feasible region. As mentioned in Sect. 2.2.1 the last
term in (2.14a) will vanish if the derivate ∂Lp/∂b (2.12b) is substituted into
(2.14a) for nonlinear classification as below,

Ld(α) =
n∑

i=1

αi − 1
2

n∑
i, j =1

yiyjαiαjK(xi,xj) −
n∑

i=1

αiyib︸ ︷︷ ︸
=0

. (3.29)

Now, the solution will have to fulfill the equality constraint (2.15c). After the
dual problem is solved, the bias term b is calculated by using free (or un-
bounded) Lagrange multipliers as in (2.28) for linear SVMs. For the nonlinear

3.3 Iterative Single Data Algorithm with an Explicit Bias Term b 75

SVMs, a similar expression for calculation of bias b is used:

bo =
1

NFSV

NF SV∑
s=1

(ys −
n∑

j=1

αjyjK(xs,xj)), s = 1, . . . , NFSV . (3.30)

The original SMO algorithm tries to fulfill the equality constraint (2.15c) by
optimizing two αi variables at a time because the minimal number of variables
in order to keep the equality constraint fulfilled (2.15c) is two.

There are two other possible ways how the ISDA works for the SVMs
containing an explicit bias term b. In the first method, the cost function (2.10a)
is augmented with the term 0.5kb2 (where k ≥ 0) and this step changes the
primal Lagrangian Lp from

Lp(w, b, α) =
1
2
wT w −

∑n

i=1
αi

{
yi

[
wT Φ(xi) + b

]
− 1

}
, (3.31)

to the following one

Lp(w, b, α) =
1
2
wT w −

∑n

i=1
αi

{
yi

[
wT Φ(xi) + b

]
− 1

}
+ k

b2

2
. (3.32)

The derivative ∂Lp/∂b also changes from (2.12b) to the following one

∂Lp

∂b
= 0 b =

1
k

n∑
i=1

αiyi. (3.33)

After forming (3.31) as well as using (3.33) and ∂Lp/∂wo (2.26a) in the Φ
space (changing xi in (2.26a) to Φ(xi)), one obtains the dual problem without
an explicit bias b,

Ld(α) =
n∑

i=1

αi − 1
2

n∑
i, j =1

yiyjαiαjK(xi,xj)

− 1
k

n∑
i,j=1

αiyiαjyj +
1
2k

n∑
i,j=1

αiyiαjyj

=
n∑

i=1

αi − 1
2

n∑
i, j =1

yiyjαiαj(K(xi,xj) +
1
k

)

(3.34)

Actually, the optimization of a dual Lagrangian is reformulated for the SVMs
with a bias b by applying “tiny” changes 1/k only to the original matrix K
as illustrated in (3.34). Hence, for the nonlinear classification problems ISDA
stands for an iterative solving of the following linear system

Hkα = 1n (3.35a)
s.t. 0 ≤αi ≤ C, i = 1, . . . , n (3.35b)

76 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

where Hk(xi,xj) = yiyj(K(xi,xj) + 1/k), 1n is an n-dimensional vector con-
taining ones and C is a penalty factor equal to infinity for a hard margin
classifier. Note that during the updates of αi, the bias term b must not be
used because it is implicitly incorporated within the Hk matrix. Only after
the solution vector α in (3.35a) is found, the bias b should be calculated ei-
ther by using unbounded Lagrange multipliers αi as given in (3.30), or by
implementing the equality constraint from ∂Lp/∂b = 0 and given in (3.33) as

b =
1
k

Nsv∑
i=1

αiyi. (3.36)

Note, however, that all the Lagrange multipliers, meaning both bounded
(clipped to C) and unbounded (smaller than C) must be used in (3.36). Thus,
using the SVMs with an explicit bias term b means that, in the ISDA proposed
above, the original kernel is changed, i.e., another kernel function is used. This
means that the αi values will be different for each k chosen, and so will be the
value for b. The final SVM as given in (2.31) is produced by original kernels.
Namely, d(x) is obtained by adding the sum of the weighted original kernel
values and corresponding bias b. The approach of adding a small change to the
kernel function can also be associated with a classic penalty function method
in optimization as follows below.

To illustrate the idea of the penalty function, let us consider the problem
of maximizing a function f(x) subject to an equality constraint g(x) = 0.
To solve this problem using classical penalty function method, the following
penalty function is formulated:

max P (x, ρ) = f(x) − 1
2
ρ ‖g(x)‖2

2 , (3.37)

where ρ is the penalty parameter and ‖g(x)‖2
2 is the square of the L2 norm

of the function g(x). As the penalty parameter ρ increases towards infinity,
the size of the g(x) is pushed towards zero, hence the equality constraint
g(x) = 0 is fulfilled. Now, consider the standard SVMs’ dual problem, which
is maximizing (2.36a) subject to box constraints (2.36d) and the equality
constraint (2.36c). By applying the classical penalty method (3.37) to the
equality constraint (2.36c), the following quadratic penalty function can be
formed as

P (x, ρ) = Ld(α) − 1
2
ρ

∥∥∥∥∥
n∑

i=1

αiyi

∥∥∥∥∥
2

2

=
n∑

i=1

αi − 1
2

n∑
i, j =1

yiyjαiαjK(xi,xj) −
1
2
ρ

n∑
i, j =1

yiyjαiαj

=
n∑

i=1

αi − 1
2

n∑
i, j =1

yiyjαiαj(K(xi,xj) + ρ) (3.38)

3.3 Iterative Single Data Algorithm with an Explicit Bias Term b 77

The expression above is exactly equal to (3.34) when ρ equals 1/k. Thus, the
parameter 1/k in (3.34) for the first method of adding bias into the ISDAs can
be regarded as a penalty parameter of enforcing equality constraint (2.36c) in
the original SVMs dual problem. Also, for a large value of 1/k, the solution will

have a small L2 norm of
n∑

i=1

αiyi (2.36c). In other words, as k approaches zero

a bias b converges to the solution of the standard QP method that enforces the
equality constraints. However, we do not use the ISDA with small parameter
k values here, because the condition number of the matrix Hk increases as
1/k rises. Furthermore, the strict fulfillment of (2.36c) may not be needed in
obtaining a good SVM.

Example 3.3. The same 1-D problem in Example 2.2 will be used again to
show how the solution of ISDA with 1/k added to the kernel converges to
the solution from a standard QP solver which enforces the equality constraint
(2.36c). Figure 3.4 shows the same three data points from Example 2.2 mapped

Fig. 3.4. Two different decision boundaries, one from the decision function with the
equality constraint (2.36c) fulfilled and another from the decision function without
the equality constraint fulfilled (1/k = 0).

into the same 3-D feature space of the second order complete polynomial
(Φ(x) = [φ1(x) φ2(x) φ3(x)]T = [x2

√
2x 1]T). There are two separation

boundaries shown in the figure. The separation plane that is perpendicular to
the

√
2x-x2 plane is the solution from a standard QP solver with the equality

constraint (2.36c) satisfied. Another separation plane is from the ISDA algo-
rithm without the bias term b (i.e. 1/k = 0). Both planes separate the data
points perfectly. The decision function with the equality constraint fulfilled is
given as:

78 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

d(x) = w3φ3(x) + w2φ2(x) + w1φ1(x) + b = −2φ1(x) + 1︸︷︷︸
b=1

. (3.39)

As a result, the separation boundary of the decision function (3.39) is given
as:

w3︸︷︷︸
w3=0

φ3(x) + w2︸︷︷︸
w2=0

φ2(x) + w1︸︷︷︸
w1=−2

φ1(x) + b︸︷︷︸
b=1

= 0 (3.40)

The decision function without the equality constraint fulfilled is equal to:

d(x) = w3φ3(x) + w2φ2(x) + w1φ1(x) + b = −2φ1(x) + 1︸︷︷︸
w3=1

. (3.41)

As a result, the separation boundary is given as:

w3︸︷︷︸
w3=1

φ3(x) + w2︸︷︷︸
w2=0

φ2(x) + w1︸︷︷︸
w1=−2

φ1(x) + b︸︷︷︸
b=0

= 0

φ3(x) =
−w2φ2(x) − w1φ1(x) − b

w3
= 2φ1(x)

(3.42)

The two solutions have exactly the same decision function, but the separation
boundaries are different. The margin of the decision function with the equality
constraint fulfilled is larger (2/2=1) than the one of the decision function
without the equality constraint fulfilled (M = 2/

√
22 + 12 = 0.89). However,

the difference in the separation boundaries does not make any difference in
this case, because all the data points always have φ3(x) = 1 as long as the
same kernel function (xixj + 1)2 is used. In other words, all the data points
are not going to move up or down along the vertical axis of the 3-D feature
space and the separation can be made on the

√
2x − x2 plane alone. Now,

consider adding a constant of 1/k to the kernel matrix of (xixj + 1)2, then
the kernel expansion is now as follow:

(xixj + 1)2 + 1/k = x2
i x

2
j + 2xixj + 1 + 1/k. (3.43)

This means that the feature mapping is now equal to Φ(x) = [x2
√

2x√
1 + 1/k]T , i.e. the three points in Fig. 3.4 will be lifted up by an amount

of
√

1/k + 1 − 1. Instead of having constant of 1 at the feature φ3(x) (or the
vertical axis in Fig. 3.4), these points will have

√
1 + 1/k. This corresponds to

the fact that adding a positive constant into the kernel matrix is the equivalent
of using another kernel shown in [116], i.e., the data points are mapped into a
different feature space. As 1/k gets larger and larger, the decision boundary
made by the ISDA will be closer to the vertical one that is constructed from
the decision function with the equality constraint fulfilled. This effect can be
observed graphically in Fig. 3.5. In Fig. 3.6, the relationship between the size
of the margin and the constant 1/k added to the kernel function is shown. It
is clear that the solution of ISDA with large 1/k will converge to the solution

3.3 Iterative Single Data Algorithm with an Explicit Bias Term b 79

Fig. 3.5. The x2-const1 plane of the 3-D feature space in Fig. 3.4. The vertical thick
line in the figure is the decision boundary from the decision function (calculated
by a standard QP solver) with equality constraint fulfilled. The thin line is the
decision boundary from the decision function without the equality constraint fulfilled
(calculated by ISDA without bias). The arrows in the figure indicate how the points
and the decision boundary will change as 1/k increases. The solution from the ISDA
converges to the solution of the standard QP solver as 1/k approaches to infinite.

which has equality constraint fulfilled. Similarly, the explicit bias term b from
the ISDA with a larger 1/k will also converge to the solution with the equality
constraint fulfilled.

In the next section, it will be shown that in classifying the MNIST data
with Gaussian kernels, the value k = 10 proved to be a very good one, justify-
ing all the reasons for its introduction (fast learning, small number of support
vectors and good generalization).

The second method in implementing the ISDA for SVMs with the bias
term b is to work with original cost function (2.36) and keep imposing the
equality constraints during the iterations as suggested in [147]. The learning
starts with b = 0 and after each epoch the bias b is updated by applying a
secant method as follows

bk = bk−1 − ωk−1 bk−1 − bk−2

ωk−1 − ωk−2
(3.44)

where ω =
∑n

i=1 αiyi represents the value of equality constraint after each
epoch. In the case of the regression SVMs, (3.44) is used by implementing the

80 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

10
0

10
1

10
2

10
3

0.94

0.95

0.96

0.97

0.98

0.99

1

Constant (1/k) added to the kernel matrix

M
ar

gi
n

Solution from ISDA

Solution from QP

Fig. 3.6. The norm of the weight vector 2
‖w‖ from ISDA converges to the one from a

QP solver with the equality constraint (2.36c) fulfilled when the size of 1/k increases.

corresponding regression’s equality constraints, namely ω =
∑n

i=1(αi − α∗
i).

This is different from [147] where an iterative update after each data pair
is proposed. In the SVMs regression experiments that are done in this book
such an updating led to an unstable learning. Also, in an addition to change
expression for ω, both the K matrix, which is now (2n, 2n) matrix, and the
right hand side of (3.35a) which becomes (2n, 1) vector, should be changed
too and formed as given in [85].

3.4 Performance of the Iterative Single Data Algorithm
and Comparisons

To measure the relative performance of different ISDAs, all the algorithms are
run on a MNIST dataset with 576-dimensional inputs [44] with RBF Gaussian
kernels, and compared to the performance of ISDAs software developed in this
book with LIBSVM V2.4 [27] which is one of the fastest and the most popu-
lar SVM solvers at the moment based on the SMO type of an algorithm. The
MNIST dataset consists of 60,000 training and 10,000 test data pairs. To make
sure that the comparison is based purely on the nature of the algorithm rather
than on the differences in implementation, the encoding of the algorithms are
the same as LIBSVM’s ones in terms of caching strategy (LRU-Least Recent
Used), and in respect of data structure, heuristics for shrinking and stopping
criterions (more details on implementing ISDA will be discussed in the next
section). The only significant difference is that instead of two heuristic rules
for selecting and updating two data points at each iteration step aiming at

3.4 Performance of the Iterative Single Data Algorithm and Comparisons 81

the maximal improvement of the dual objective function, our ISDA selects
the worse KKT violator only and updates its αi at each step. Also, in order
to speed up the LIBSVM’s training process, the original LIBSVM routine was
modified to perform faster by reducing the numbers of complete KKT check-
ing without any deterioration of accuracy. All the routines were written and
compiled in Visual C++ 6.0, and all simulations were run on a 2.4 GHz P4
processor PC with 1.5 Gigabyte of memory under the operating system Win-
dows XP Professional. The shape parameter σ2 of an RBF Gaussian kernel
and the penalty factor C are set to be 0.3 and 10 [44]. The stopping criterion
τ and the size of the cache used are 0.01 and 250 Megabytes. The simulation
results of different ISDAs against both LIBSVM are presented in Tables 3.1
and 3.2, and in Fig. 3.7. The first and the second column of the tables show
the performance of the original and modified LIBSVM respectively. The last
three columns show the results for the single data point learning algorithms
with various values of constant 1/k added to the kernel matrix in (3.35a). For
k = ∞, ISDA is equivalent to the SVMs without bias term, and for k = 1, it
is the same as the classification formulation proposed in [95]. Table 3.1 illus-
trates the running time for each algorithm. The ISDA with k = 10 was the
quickest and required the shortest average time (T10) to complete the train-
ing. The average time needed for the original LIBSVM is almost 2T10 and the
average time for a modified version of LIBSVM is 10.3% bigger than T10. This
is contributed mostly to the simplicity of the ISDA. One may think that the
improvement achieved is minor, but it is important to consider the fact that
approximately more than 50% of the CPU time is spent on the final checking
of the KKT conditions in all simulations.

Table 3.1. Simulation times for different algorithms

LIBSVM LIBSVM Iterative Single Data Algorithm (ISDA)
Original Modified k = 1 k = 10 k = ∞

Class Time(sec) Time(sec) Time(sec) Time(sec) Time(sec)
0 1606 885 800 794 1004
1 740 465 490 491 855
2 2377 1311 1398 1181 1296
3 2321 1307 1318 1160 1513
4 1997 1125 1206 1028 1235
5 2311 1289 1295 1143 1328
6 1474 818 808 754 1045
7 2027 1156 2137 1026 1250
8 2591 1499 1631 1321 1764
9 2255 1266 1410 1185 1651

Time, hr 5.5 3.1 3.5 2.8 3.6
Time Increase +95.3% +10.3% +23.9% 0 +28.3%

82 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

During the checking, the algorithm must calculate the output of the model
at each datum in order to evaluate the KKT violations. This process is un-
avoidable if one wants to ensure the solution’s global convergence, i.e. that all
the data do satisfy the KKT conditions with precision τ indeed. Therefore,
the reduction of time spent on iterations is approximately double the figures
shown. Note that the ISDA slows down for k < 10 here. This is a consequence
of the fact that with a decrease in k there is an increase of the condition
number of a matrix Kk, which leads to more iterations in solving (3.35a). At
the same time, implementing the no-bias SVMs, i.e., working with k = ∞,
also slows the learning down due to an increase in the number of support
vectors needed when working without bias b. Table 3.2 presents the numbers
of support vectors selected. For the ISDA, the numbers reduce significantly
when the explicit bias term b is included. One can compare the numbers of
SVs for the case without the bias b (k = ∞) and the ones when an explicit
bias b is used (cases with k = 1 and k = 10). Because identifying less support
vectors definitely speeds up the overall training, the SVMs implementations
with an explicit bias b are faster than the version without bias. In terms of a
generalization, or a performance on a test data set, all algorithms had very
similar results and this demonstrates that the ISDAs produce models that
are as good as the standard QP, i.e., SMO based, algorithms (see Fig. 3.7).
The percentages of the errors on the test data are shown in Fig. 3.7. Notice
the extremely low error percentages on the test data sets for all numerals. In
the next section, the implementation details for developing ISDA software in
order to produce the results in this section will be discussed.

Table 3.2. Number of support vectors for each algorithm.

LIBSVM LIBSVM Iterative Single Data Algorithm
Original Modified k = 1 k = 10 k = ∞

Class # SV (BSV)a# SV (BSV) # SV (BSV) # SV (BSV) # SV (BSV)
0 2172 (0) 2172 (0) 2162 (0) 2132 (0) 2682 (0)
1 1440 (4) 1440 (4) 1429 (4) 1453 (4) 2373 (4)
2 3055 (0) 3055 (0) 3047 (0) 3017 (0) 3327 (0)
3 2902 (0) 2902 (0) 2888 (0) 2897 (0) 3723 (0)
4 2641 (0) 2641 (0) 2623 (0) 2601 (0) 3096 (0)
5 2900 (0) 2900 (0) 2884 (0) 2856 (0) 3275 (0)
6 2055 (0) 2055 (0) 2042 (0) 2037 (0) 2761 (0)
7 2651 (4) 2651 (4) 3315 (4) 2609 (4) 3139 (4)
8 3222 (0) 3222 (0) 3267 (0) 3226 (0) 4224 (0)
9 2702 (2) 2702 (2) 2733 (2) 2756 (2) 3914 (2)
Av.# of SV 2574 2574 2639 2558 3151
a Bounded Support Vectors

3.5 Implementation Issues 83

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Numerals to be recognized

E
rr

o
r’

s
p

er
ce

n
ta

g
e

%

LIBSVM original
LIBSVM modified
Iterative Single Data, k=10
Iterative Single Data, k=1
Iterative Single Data, k=inf

Fig. 3.7. The percentage of an error on the test data.

3.5 Implementation Issues

Despite the fact that ISDA is simpler than SMO (as shown in the previous
sections), implementing it efficiently in order to compare with the state of
the art SMO-based SVMs solver is a challenging problem. The important is-
sues for implementing ISDAs efficiently will be discussed in this section. To
help better understanding of these important details, the MATLAB codes of
ISDAs developed in this book for classification and regression are shown in
Appendix B and C. Note that implementing ISDA in a medium level com-
puter languages such as C++ can have much better performance than in
MATLAB because of the iterative nature of the algorithms. The MATLAB
implementations presented in Appendix B and C are used only for illustrating
the details of the concepts presented here. These important concepts will be
discussed in the following subsections. Pseudo-code of ISDAs for classification
and regression for large-scale problems will also be given shortly. The ISDA
software developed in this book is available at www.learning-from-data.com.

3.5.1 Working-set Selection and Shrinking of ISDA
for Classification

As discussed previously, the ISDA is classified as the working-set algorithm
for solving SVMs. The working-set is referred to as the set of data points
whose αi will be changed [78], i.e. the algorithm is only going to work or
optimize on selected αi keeping the non working-set αi fixed. In the original
SMO algorithm, the working-set is equal to two in order to satisfy the equality

84 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

constraint (2.36c) for classification and (2.51a) in the case of regression. The
ISDA presented in the previous sections has a working-set of one, because
each time only a single data point’s αi is optimized. An important step in the
original SMO algorithms is the checking of the KKT conditions in order to
decide whether there is a need for the update to a pair of data points. This
procedure is often referred to as the working-set selection and it is crucial
for obtaining a faster implementation. In the original SMO algorithms, there
are two heuristics for selecting two αi variables, whereas in the case of ISDA
there is only one rule or even no rule in the case of KA. The simplest KA
algorithm updates every data point in a sequential manner. However, KA
algorithm implemented in this way often results in long computational times
when comparing with the state of the art software implementations of SVMs
such as LIBSVM [27]. This is because most of the software implementations
available use the fact that the solution of the optimization problem (2.38) for
a good SVM should be sparse (i.e. only a small fraction of the αi variables
are different from zero). In order to explore the sparseness of the solution for
a faster convergence, the solvers should only concentrate on the points that
are either support vectors or at least have high potential to become support
vectors. This led to the idea of shrinking [78] the optimization problem (3.21)
for speeding up the SVMs algorithm.

During the early stage of the training, it is often possible to guess which
αi variables are going to be on the upper bound C (bounded SVs) or on the
lower bound 0 (non-SVs) at the final solution. Because good SVMs’ models
normally have a large proportion of non-SVs, and the bounded SVs cannot
be optimized any further, the idea of shrinking from [78] is to reduce the
size of the optimization problem (3.21) gradually by removing both bounded
SVs and the possible non-SVs during the optimization process. However, the
correct sets of non-SVs and bounded ones cannot be found without solving
the optimization problem (3.21) heuristics are used to shrink the optimiza-
tion problem. In general, the algorithms try to guess which variables are more
likely to stay as either non-SVs or bounded ones in the final solution of (3.21)
by considering the history of these variables in the last h iterations [78]. As
a result of shrinking, the algorithm needs to solve the following reduced opti-
mization problem (in an inner loop, see below):

max Ld(αA) = −0.5αT
AHAAαA + fT

AαA, (3.45a)
s.t. 0 ≤ (αA)t ≤ C, t = 1, . . . , q, (3.45b)

where the set A (with size q) is composed of the indices corresponding to the
remaining αi that are not removed by the heuristic for shrinking. This means
that the solver needs to perform the optimization on the αA which may be only
10% or 20% of the entire data set. Consequently, the size of the optimization
problem will be only 0.2n by 0.2n instead of n by n for classification tasks.

Currently, there are two approaches for working-set selection and shrink-
ing in ISDA. The first approach is similar to the original SMO [115] which

3.5 Implementation Issues 85

consists of an inner and an outer loop, and will be referred to as the two-loops
approach. The outer loop first iterates over the entire data set in order to
determine whether each data point violates the KKT conditions (3.6). Once
a data point violates the KKT conditions, it will be optimized using (3.4)
and clipped according to (3.5). The outer loop makes one pass through the
entire data set, and then the algorithm will switch to the inner loop. The
inner loop only iterates through the data points whose αi are neither 0 nor
C (i.e. it iterates through the unbounded or free SVs). Thus, the inner loop
solves the QP problem exactly by making repeated passes over the reduced
data set A until all the unbounded SVs satisfied the KKT conditions within
τ . The outer loop then iterates over the entire data set again. The algorithm
keeps alternating between the outer (single pass through the entire data set)
and the inner (multiple passes through on the unbounded SVs) loop until all
the data points obey KKT conditions within τ . The switching between the
outer and the inner loop is a form of shrinking, because the scope of the algo-
rithm for finding the working-set reduces from n data points to NFSV , i.e. the
algorithm solves the reduced optimization problem (3.45) in the inner loop.

The two-loops approach is generally faster than the one having only the
outer loop, because the use of the inner loop allows the algorithm to concen-
trate on the SVs which are generally a small fraction of the entire data set.
However, a major drawback of this approach is that one pass through the
entire data set will normally produce excessive number of unbounded SVs.
In other words, sweeping through the outer loops produces the number of
unbounded SVs which can be orders of magnitude larger than the number
that results at the end of the following inner loop. This problem also occurs
in SMO and it is often referred to as the “Intermediate SVs Bulge” in [43].
In Fig. 3.8, the numbers of unbounded SVs after the outer and inner loops
are shown during the course of solving a subset of MNIST with 8000 data.
The solid line shows the numbers of unbounded SVs after one pass through
the entire data set (i.e. the number of unbounded SVs before entering the
inner loop), whereas the dashed line shows the numbers of unbounded SVs
after the inner loop. This problem is more serious at the beginning of the
iteration and it can be shown by the ratio of 1.35 (1571/1162) between the
number of unbounded SVs before and after first entering the inner loop. [43]
proposed a method known as “digesting” to resolve this problem for the SMO
algorithm. The main idea of digesting is to apply a direct QP solver to the
unbounded SVs in the outer loop when the numbers of them exceed a certain
size (e.g. 1000 SVs). This procedure had the effect of reducing (digesting) the
excessive number of unbounded SVs and has been shown to improve the per-
formance of the SMO algorithm. However, a more complicated QP solver is
required for this approach and the actual speed improvement depends also on
the efficiency of the QP solver. Note that neither the two-loop approach nor
the related digesting step are used in the final implementation of the ISDAs
software in this book. The method used here is described below.

86 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

1 2 3 4
1100

1200

1300

1400

1500

1600

1700

1800

1900

Number of Iterations for Outer and Inner Loops

N
um

be
r

of
 u

nb
ou

nd
ed

 S
V

s

Outer Loop
Inner Loop

Fig. 3.8. The number of unbounded SVs after outer and inner loops for two loops
approach. The simulation is performed on the class 8 of the first 8000 data points
of the MNIST data set. The σ2 and C are equal to 0.3 and 10 respectively.

The second working-set selection that is similar to the ones used in [78],
LIBSVM [27] and BSVM [68] is employed in this book for implementing ISDA
classification and it is shown in Algorithm 3.1. The idea of the decomposition
in [78] is to find a steepest feasible direction d of descent which has only z
non-zero elements. Note that in the LIBSVM z = 2, in BSVM z is previously
selected number and in ISDA z = 1.

This led to the minimization of the following optimization problem [78]:

min V (d) = g(αt)T d (3.46a)

s.t. yT d = 0 (3.46b)
di ≥ 0 for i : αi = 0 (3.46c)
di ≤ 0 for i : αi = C (3.46d)
− 1 ≤ d ≤ 1 (3.46e)

|{di : di �= 0}| = z (3.46f)

Because ISDA optimizes only one variable at a time and the equality con-
straint (2.36c) is not required, the steepest direction can be found by com-
paring the absolute value of the derivative ∂Ld/∂αi for all the variables that
violate the KKT conditions. In other words, the algorithm optimizes the worst
KKT violator in each step in order to have the greatest improvement in the
objective function (3.21a). As a result, the working-set selection for classifica-
tion can be formulated as follows:

z = j if |yjEj | > |ykEk| (k �= j), j, k ∈ Jvio (3.47)

3.5 Implementation Issues 87

Algorithm 3.1 ISDA Classification
Consider a binary classification problem with input matrix X0 = [x1,x2, . . .xn]T

where n is the number of samples, the class labels y = [y1, y2, . . . , yn]T and y ∈
[+1,−1]. Let the set I denotes indices corresponding to all the training data, and
the set A(A ⊂ I) contains the indices αi in the reduced optimization problem (3.45).

1. Set A = I = [1 : n] and AC(the complement of A in I) is empty.
2. Find z which is the index of the worst KKT violator in the set A using the KKT

conditions (3.6) (repeated here for your convenience):

αi < C ∧ yiEi < −τ, or αi > 0 ∧ yiEi > τ,

where Ei = di − yi, yi stands for the desired value and di is the SVM output
value, and utilizing the working-set selection (3.47).

3. If |yzEz| of the worst KKT violator αz was smaller than τ , then the reduced
optimization problem (3.45) is solved. Go to step 8. Otherwise continue to Step
4.

4. Update αz using (3.8) as follow,

∆αz =
1 − yzdz

K(xz,xz)
,

and clip αz using (3.9) αz ← min{max{αz + ∆αz, 0}, C}.
5. Update the KKT conditions yiEi for all the i in the set A as follows:

yiEi = yiE
old
i + (αz − αold

z)K(xz,xi)yi i ∈ A.

6. Repeat Step 2 to 5 for h times. (Default value for h is 1000).
7. Shrink the set A by removing all indices of the non-KKT violators whose αi are

also equal to zero in the set A. In other words, the new set A will consist of all
the KKT violators currently in A and all the SVs. It is given as follows:

Anew = Jvio ∪ s, Jvio ⊂ A, (3.48)

where Jvio contains the indices corresponding to the αi variables that violate
the KKT conditions (3.6) in the set A and s contains the indices of SVs. Check
the KKT conditions yzEz of the worst KKT violators αz. Find AC which is the
complement of A in I. If |yzEz| is larger than τ , go to step 6.

8. Recompute yiEi = yi(di − yi) for the data points whose indices i are in set AC ,
where AC is the complement of A in I. In other words, recompute yiEi for all
the αi whose indices are not in A.

9. Find the index z of the worst KKT violator in set AC , if |yzEz| was smaller than
τ then αA is the solution of the original optimization problem. The algorithm
should stop. If set AC is empty, then the αA is also the solution of the original
optimization (3.21). Otherwise set A = I and go to step 7.

where the set Jvio contains the indices corresponding to the αi variables that
violate the KKT conditions in the set A. This working-set selection works
quite well with ISDA. It often reduces the computational time significantly and

88 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

requires fewer iterations in comparison with the two loops approach without
the digesting part. This is because the probability of the worst KKT violator
being a support vector is much higher than sequentially picking up an αi

variable for updating. As a result, this approach does not have the problem
of intermediate SV bulge. However, the most expensive part of this approach
is finding the worst KKT violator, because yiEi of the entire data set needs
to be updated for all the αi variables using (3.10) in order to find the worst
KKT violator. Consequently, the entire row of the kernel matrix needs to
be evaluated for αi. This is more expensive than optimizing only one αi per
iteration in the two-loops approach where only Ei needs to be computed from
all the SVs, but updating the worst KKT violator makes a larger improvement
on the objective function.

To speed up the algorithm, the idea of shrinking the data set is also used
here. Instead of trying to find the worst KKT violator of the entire data set,
the scope of searching for the worst KKT violator is reduced gradually. This
is done by removing the non-KKT violators whose αi are also equal to zero
after every h iterations as shown in Step 7 of the Algorithm 3.1. Initially, the
algorithm works on the complete data set. After shrinking, the algorithm tries
to solve the reduced optimization problem (3.45) by searching the worst KKT
violator in the set A only. Consequently, this improves the performance of the
algorithm, because only the KKT conditions of the variables αA that are in
the set A with size q need to be updated after each iteration.

Set A is shrunken dynamically after every h iterations as shown in Step
7 of the Algorithm 3.1. This is due to the fact that at the beginning almost
all the data points will be KKT violators, i.e. set A is close to the complete
data set. As a result, the size of A should be reduced every h iterations for
speeding up and A may be changed before the solution of (3.45) is reached.
Note that this is different from the two-loops approach mentioned after the
equation (3.45) above, where the set A is fixed and (3.45) is solved by the inner
loop. The algorithm continues to shrink A until all the αi in the set A obey
KKT conditions within τ (as shown in Step 7 of the Algorithm 3.1). In other
words, the algorithm will stop shrinking when the αi in the set A reach the
solution of the optimization problem (3.45) and there are no KKT violators
in the set A. The solution of the optimization problem (3.45) may or may
not solve the original problem (3.21). Consequently, the algorithm checks the
KKT conditions of the αi that are not in the shrunken set A (i.e. in set AC)
in order to make sure the rest of the αAC satisfied KKT conditions. Because
Step 5 of the Algorithm 3.1 only updates the yiEi of KKT conditions that are
in set A, all the yiEi in set AC need to be recomputed from the beginning as
follows:

yiEi = yi(
∑
j∈s

yjαjK(xi,xj)) − 1 i ∈ AC , (3.49)

where s corresponds to the indices of SVs. This is a very time-consuming
checking, especially for large-scale problems. For example, checking KKT con-
ditions for data points whose indices are in AC needs about 881 seconds for

3.5 Implementation Issues 89

class 8 of the MNIST data set, more than 50% of the total computation time.
In the best-case scenario, the algorithm only needs to perform one such KKT
checking when the solution of (3.45) is equal to the one of the globally op-
timal solutions. However, most of the simulations show that it is more likely
that the solution (3.45) is not equal to the globally optimal one at first, i.e.
there are still KKT violators outside A. In this case, the algorithm will form
a new A by including all the KKT violators as shown in Step 9 and 7. Thus,
a new (3.45) is optimized by the solver. This process of increasing the size of
A is referred to as “unshrinking” [27]. The shrinking and unshrinking of the
set A is repeated until there are no KKT violators in the complete data set.
This means that Algorithm 3.1 normally cannot finish when reaching Step 9
for the first time, and Step 8 needs to be executed twice. This was a major
bottleneck for the performance of the algorithm. In the earlier development
stage of the ISDA software, it was found that ISDA always needs at least
two such checkings, whereas LIBSVM only needs approximately one and a
half checkings for the MNIST data set. This is because LIBSVM performs
such checking (i.e. Step 8 of Algorithm 3.1) first when the reduced problem
(3.45) is solved in precision of 10τ rather than τ to compensate for its aggres-
sive shrinking strategy (More details can be found in [27]). This makes ISDA
rather disadvantageous in terms of performance. To overcome this problem an
additional caching strategy which only increases the memory requirement by
2n are implemented. They are discussed in detail in the following section. Note
that the default number of steps h for performing shrinking is 1000 (same as
in LIBSVM in [27]) in the ISDAs program developed. It proved to be a good
setting justifying all the reasons for its introduction.

3.5.2 Computation of the Kernel Matrix and Caching of ISDA
for Classification

In the SMO algorithms, the KKT conditions yiEi and part of the kernel matrix
are usually cached in the memory to speed up the learning. In most of the
large-scale SVMs problems, the most of the time is spent on the computation
of the kernel matrix entries. As a result, most of the SVM solvers allow users
to specify the amount of memory for caching parts of the kernel matrix after
they are computed, to speed up the computation. Because the size of the cache
can only store parts of the kernel matrix K, some strategies are required for
maintaining the cache. The most common caching strategy for SMO-based
routines is the Least Recent Used (LRS) strategy [27] and it is also used for
the software implementation of ISDAs. The idea of this strategy is to store
the elements of the kernel matrix that are computed or used recently and to
remove the elements that are the oldest or the least recently used from the
cache. In each iteration, in order to find the worst KKT violator, one row of
a kernel matrix needs to be computed in order to update yiEi for checking
KKT conditions. The row of the kernel matrix will be computed and stored if
it is currently not in the cache. When the cache is filled, the oldest row of the

90 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

kernel matrix in the cache will be removed in order to allow the most recently
computed row of kernel matrix to be stored. This simple strategy generally
works well, and the computational time reduces as a larger cache is used.

As mentioned in the previous section, ISDA normally requires more com-
plete KKT checkings (Step 8 of the Algorithm 3.1) than the SMO algorithms.
This slows down the algorithm significantly as each checking can take more
than 50% of the total training time. However, extensive simulations have
shown that after the first execution of Step 8 in Algorithm 3.1, ISDA tends
to update only a few αi variables, i.e. the ones that are newly added to A
from Step 9 to 7. This opens up the possiblity of speeding up the follow-
ing executions of Step 8 by caching two additional variables. At the current
implementation of ISDA, the KKT conditions yiEi are cached at two differ-
ent points. First, the recent KKT conditions yiEi are always cached in the
memory as in the SMO algorithms. In addition to that, all the yiEi are also
stored in different variables denoted as (yiEi)pre after the execution of Step 8.
(yiEi)pre will be kept fixed until the next execution of Step 8. Furthermore,
the true changes ∆αtr

i (after clipping) of all the αi are also cached and they
are reset to zero after the execution of Step 8. ∆αtr

z will be updated after each
updating of αz as follows:

∆αtr
z ← ∆αtr

z + (αz − αold
z) (3.50)

Instead of using (3.49) for computing the yiEi terms from the beginning using
all the SVs, the cached ∆αtr

i are then used to determine which αi are changed
after the previous execution of Step 8. These αi with ∆αtr

i �= 0 are used for
computing yiEi for i ∈ AC at current execution of Step 8 from (yiEi)pre as
follows:

yiEi = (yiEi)pre +
∑

j∈Jch

∆αtr
j yiK(xi,xj) for all i ∈ AC , (3.51)

where Jch denotes the indices corresponding to ∆αtr
j that are different from

zeros (i.e Jch = {j|∆αtr
j �= 0}). This approach can reduce the execution time

of Step 8 significantly if the number of element in Jch is relatively small in
comparison to the total number of SVs. This is often the case after Step 8 is
executed once. In other words, when all the ∆αtr

j of SVs are different from
zero, there is no improvement on using (3.51). As a result, (3.49) should be
used to compute yiEi from scratch, because (3.49) will give a better precision.
In general, (3.49) will be used for the first execution of Step 8 and (3.51) will
be used for the following ones. Without using (3.51), the simulation time
for class 8 of MNIST can be as long as 2300 seconds because the use of
(3.49) for both first and second executions of Step 8 is much slower than the
results presented in Table 3.1: 1321 seconds with k = 10. This uses (3.51)
for the second execution of Step 8 which takes approximately 40 seconds to
complete. This is also why the LIBSVM is modified to use this strategy in

3.5 Implementation Issues 91

order to make the comparison in Table 3.1 fair. The strategy only requires
2n additional memory for storage and the amount of speeding up is very
significant.

While computing the Gaussian RBF kernel matrix, the ISDA software uses
the Intel BLAS routines to accelerate the computation for dense data set. A
data set is considered to be dense if most of the features in its input vectors are
non-zero. For the calculation of the distance ‖xi − xj‖2, the following identity
from [115] is used very efficiently:

‖xi − xj‖2 = xi · xi − 2xi · xj + xj · xj . (3.52)

Note that during each iteration, a single row of the kernel matrix should
be calculated and this determines the way how the level 2 BLAS routine is
implemented. The terms xixi and xjxj are precomputed and stored in the
memory. The cross terms xixj are calculated in a batch using the level 2 BLAS
routine cblas dgemv as follow. For a given xi, cblas dgemv is used to compute
the product of XT xi where X = [x1,x2, . . . ,xj] where j = 1, . . . , q for the
reduced optimization problem (3.45). The amount of speeding up using the
BLAS routine is quite significant. For a class 8 of MNIST data set, the ISDA
with BLAS requires only 798 seconds to complete, which is much faster than
the result of 1384 seconds shown in Table 3.1 (Recall that for fair comparison
with LIBSVM the BLAS was not used for ISDA in creating results given in
Table 3.1). If the data set is sparse, the sparse input vector xi is stored in
the following format, xi = (idx, valx, length = numx), where idx contains
the indices of all the elements in xi that are nonzero, numx is the number of
nonzero elements and valx is a vector of length numx that holds the values
of all the nonzero elements in xi. To compute the dot product between two
sparse vectors, the same approach as in [115] is used here. The following
pseudo-code from [115] shows how to compute the dot product for two sparse
vectors (id1, val1, length = num1) and (id2, val2, length = num2).

p1 = 0, p2 = 0, dot = 0
while (p1 < num1 && p2 < num2)
{a1 = id1[p1], a2 = id2[p2]
if (a1 == a2)
{
dot += val1[p1]*val2[p2]
p1++, p2++
}
else if (a1 > a2)
p2++
else
p1++;}

92 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

3.5.3 Implementation Details of ISDA for Regression

The implementation of ISDA regression in this book is shown in Algorithm 3.2.
Similarly to ISDA classification, the working-set selection for ISDA regression
tries to find the worst KKT violator among all the αi and α∗

i . As a result, it
can be formulated using KKT conditions (3.18) as follows:

u = k if |Eu + ε| > |Ek + ε| (k �= u), u, k ∈ Uv (3.53a)
l = k if |ε − El| > |ε − Ek| (k �= l), l, k ∈ Lv (3.53b)
z = l if |ε − El| > |Eu + ε| else z = u. (3.53c)

where set Uv corresponds to indices of αi that violate the KKT conditions
(3.18a, b), set Lv contains the indices of the α∗

i variables that violate the
KKT conditions (3.18c ,d) and z is the index of the worst KKT violators.

The working-set selection above tries to compare the worst KKT violators
from αi and α∗

i (i.e. both above and below the ε-tube) and picks up the worst
one. As in classification, the optimization problem is reduced after every h
iterations by selecting only the KKT violators that are currently in set A
and the all SVs to form a new A. The only difference is that the reduced
optimization problem (3.45) is now 2q instead of q as in the classification.
This is due to the fact that both αi and α∗

i are included in αA. The checking
of KKT conditions can still cost a considerable amount of computational
time and the same strategy for speeding up the complete KKT checking in
classification is used in regression. The ISDA software will recompute Ei + ε
and ε − Ei for all the indices i in AC from the beginning when first-time
executing Step 9 of Algorithm (3.2) as follow:

Ei + ε =
∑
j∈s

(αj − α∗
j)K(xj ,xi) − yi + ε for i ∈ AC (3.54)

ε − Ei = yi + ε −
∑
j∈s

(αj − α∗
j)K(xj ,xi) for i ∈ AC (3.55)

where s corresponds to all the indices of SVs. Again, Ei + ε and ε − Ei are
cached at two different points as in the classification. One cache stores both
Ei +ε and ε−Ei variables at current iteration and another holds the values of
the two variables after Step 9 is executed. They will be denoted as (Ei + ε)pre

and (ε−Ei)pre. Similarly, the true total changes of (αi − α∗
i) are also cached

and they are denoted as ∆(αi−α∗
i)

tr and reset to zero after execution of Step
9. They will be updated after each update of α

(∗)
i (after clipping) as follows:

∆(αi − α∗
i)

tr ← ∆(αi − α∗
i)

tr + (αi − αold
i − α∗

i + α∗old
i) (3.56)

These additional variables can be used again to accelerate the execution
of Step 9 by updating Ei + ε and ε − Ei that are not in AC as follows:

3.5 Implementation Issues 93

Algorithm 3.2 ISDA Regression
Consider a regression problem with n × m input matrix X0 = [x1,x2, . . .xn]T

where m is the number of features, n is the number of samples, the outputs
y = [y1, y2, . . . , yn]T and y ∈ �. Let set I denote indices corresponding to all the

training data, and set A(A ⊂ I) contains the indices corresponding to α
(∗)
i that are

in the reduced optimization problem (3.45). AC is the complement of A in I.

1. Let A = I = [1 : n].
2. Find z which is the index of the worst KKT violator in set A using the KKT

conditions (3.18) and the working-set selection (3.53).
3. If the data point xz is above the ε tube (i.e. fz < yz) and |Ez + ε| was smaller

than τ , then the reduced optimization problem (3.45) is solved. Go to step 9.
4. If the data point xz is below the ε tube (i.e. fz > yz) and |Ez − ε| was smaller

than τ , then the reduced optimization problem (3.45) is solved. Go to step 9.
5. If the data point xz is above the ε tube then update αz using αz ← αz − α∗

z −
Ez+ε

K(xz,xz)
(3.17a), else update α∗

z with α∗
i ← α∗

z − αz + Ez−ε
K(xz,xz)

(3.17b). Then

clip α
(∗)
z using α

(∗)
z ← min(max(0, α

(∗)
z + ∆α

(∗)
z), C) (3.19).

6. Update the KKT conditions (Ei + ε) using (3.20a) (i.e. (Ei + ε) = (Ei + ε)old +
(αz −α∗

z −αold
z + α∗old

z)K(xz,xi)) and (ε−Ei) using (3.20b) (i.e. (ε−Ei) =
(ε − Ei)

old − (αz − α∗
z − αold

z + α∗old
z)K(xz,xi)) for all the indices i in set A.

7. Repeat Step 2 to 6 for h times.
8. Shrink set A by removing all indices of the non-KKT violators whose αi and α∗

i

are both equal to zero in the set A. In other words, the new set A is formed by
including all the KKT violators that are currently in the set A and all the SVs.
This is given as follows,

Anew = Uv ∪ Lv ∪ s, Uv, Lv ⊂ A (3.57c)

where, set Uv corresponds to indices of αi that violate the KKT conditions
(3.18a, b) in A, set Lv contains the indices of the α∗

i variables that violate the
KKT conditions (3.18c ,d) in A and s contains the indices of SVs. Find the worst
KKT violator in the new A. Check the KKT conditions |Ez + ε| for fz < yz

or |Ez − ε| for fz > yz of the worst KKT violators α
(∗)
z in A. If |Ez + ε| (for

fz < yz) or |Ez − ε| (for fz > yz) is larger than τ , go to Step 7. Otherwise, find
AC which is the complement of A in I.

9. Recompute both Ei + ε and Ei − ε for the data points whose indices i are in set
AC , where AC is the complement of A in I. In other words, recompute Ei + ε
and Ei − ε for all the α

(∗)
i whose indices are not in A.

10. Find the index z of the worst KKT violator in set AC . If any one of the follow-
ing three conditions is fulfilled, then the solution of the original optimization
problem is αoA (the solution of the reduced optimization problem (3.45)) and
the algorithm should stop: 1. if fz < yz and |Ez + ε| was smaller than τ , 2. if
fz > yz and |ε − Ez| was smaller than τ , or 3. if set AC is empty. Otherwise set
A = I and go to Step 8.

94 3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets

Ei + ε ← (Ei + ε)pre +
∑

j∈Jch

(∆(αj − α∗
j)

tr)K(xi,xj) for i ∈ AC ,

(3.57a)

ε − Ei ← (ε − Ei)pre −
∑

j∈Jch

(∆(αj − α∗
j)

∗tr)K(xi,xj) for i ∈ AC ,

(3.57b)

where Jch corresponds to indices of ∆(αj −α∗
j)

tr and are different from zero.
The same strategy is used as in the classification for deciding whether (3.57)
or (3.54) should be used for updating of Ei + ε and ε − Ei. If all of the
∆(αi − α∗

i)
tr of SVs are different from zero, then there is no improvement

by using (3.57). As a result, (3.54) should be used because it can give more
precise calculation on Ei + ε and ε − Ei.

As mentioned previously, iterative solvers such as ISDA and SMO are
more efficient to achieve precision around τ ≈ 1e − 3. They are ideal for
the SVMs classification because the precision of 1e − 3 is sufficiently smaller
than 1 which is the magnitude of the decision function on unbounded SVs.
In contrast, the precision τ in regression has to be sufficiently smaller than
the ε which can be very small. As shown in [149], the active set approach has
better performance than iterative approach such as LIBSVM [27] and ISDAs
in regression problems where a large C and a high precision (i.e. small τ)
are required. As a result, ISDA for regression developed in this book should
be used only when the direct or active-set [149] approach can not solve the
problem. In other words, the kernel matrix of unbounded SVs is too large to
be stored in memory.

3.6 Conclusions

In the first part of this chapter, a new learning algorithms, dubbed ISDA,are
introduced as an alternatives in solving the quadratic programming problems
while training support vector machines on huge data sets. ISDA is an iterative
algorithm which optimizes one variable in each step. This is because of the
fact that for positive definite kernel, the bias term b in the SVMs formulation
is not required.

The equality of two seemingly different ISDA methods, a KA method
and version of SMO learning algorithm without bias, is derived for designing
the SVMs having positive definite kernels. In addition, for positive definite
kernels both algorithms are strictly identical with a classic iterative Gauss-
Seidel (optimal coordinate ascent) learning and its extension successive over-
relaxation.

In the later part of this chapter, the use, calculation and impact of in-
corporating an explicit bias term b in SVMs trained with the ISDA has been
introduced. Furthermore, important issues for implementing ISDA on large-
scale problems have been also presented. The simulation results show that

3.6 Conclusions 95

models generated by ISDA (either with or without the bias term b) are as
good as the standard SMO based algorithms in terms of a generalization
performance. Moreover, ISDA with an appropriate k value are faster than
the standard SMO algorithms on large-scale classification problems (k = 10
worked particularly well in all our simulations using Gaussian RBF kernels).
This is due to both the simplicity of ISDA and the decrease in the number
of SVs chosen after an inclusion of an explicit bias b in the model. The sim-
plicity of ISDA is the consequence of the fact that the equality constraints
(2.36c) do not need to be fulfilled during the training stage. In this way, the
second-choice heuristics is avoided during the iterations. Thus, the ISDA is an
extremely good tool for solving large scale SVMs problems containing huge
training data sets because it is faster than, and it delivers “same” generaliza-
tion results as, the other standard (SMO) based algorithms. The fact that an
introduction of an explicit bias b means solving the problem with different ker-
nel suggests that it may be hard to tell in advance for what kind of previously
unknown multivariable decision (regression) function the models with bias b
may perform better, or may be more suitable, than the ones without it. As
it is often the case, the real experimental results, their comparisons and the
new theoretical developments should probably be able to tell one day. As for
the future development of ISDA, a possible directions may be to improve the
performance of the algorithm when high precision is required for regression
problems.

4

Feature Reduction with Support Vector
Machines and Application in DNA Microarray
Analysis

4.1 Introduction

Recently, huge advances in DNA microarrays have allowed scientists to test
thousands of genes in normal or tumor tissues on a single array and check
whether those genes are active, hyperactive or silent. Therefore, there is an
increasing interest in changing the criterion of tumor classification from mor-
phologic to molecular [11, 99]. In this perspective, the problem can be regarded
as a classification problem in machine learning, in which the class of a tumor
tissue with feature vector x ∈ �m is determined by a classifier. Each dimen-
sion, or a feature, in x holds the expression value of a particular gene which
is obtained from DNA microarray experiment. The classifier is constructed
by inputting n feature vectors of known tumor tissues into machine learning
algorithms. To construct an accurate and reliable classifier with every gene
included is not a straightforward task because in practice the number of tissue
samples available for training is smaller (a few dozens) than the number of
features (a few thousands). In such a case, the classification space is nearly
empty and it is difficult to construct a classifier that generalizes well. An
analogy to this problem is the task of figuring out in the dark the shape of a
footpath with a limited number of streetlights that are far apart. Each street-
light is like the sample or data point in the learning problem and the distance
between the streetlights can be viewed as the dimensionality of the problem.
With high dimensional inputs and a limited number of data points (i.e. data
are sparse), meaning the distance between the streetlights is longer (several
kilometers), it is impossible to guess the shape of the footpath accurately.
Therefore, there is a need to select a handful of the most decisive genes in
order to shrink the classification space and to improve the performance. Or,
the distance between the streetlights needs to be shrunk first before guessing
the shape of the footpath.

SVMs-based feature selection algorithm has been referred to as Recursive
Feature Elimination with Support Vector Machines (RFE-SVMs) and it has
been introduced as well as applied to a gene selection for a cancer classification

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 97–123 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

98 4 RFE-SVMs and Application in DNA Microarray Analysis

[61]. In the first part of this chapter, the results of improving the performance
of RFE-SVMs by working on two, often neglected, aspects of the algorithm
implementation which may affect the overall performance of the RFE-SVMs
are presented. These two aspects are - the selection of a proper value for the
penalty parameter C and the preprocessing of the microarray data. The C
parameter plays an important role for SVMs in preventing an overfitting but
its effects on the performance of RFE-SVMs are still unexplored. In terms
of the microarray data preprocessing, this book will only focus on the part
after the gene expressions have been calculated for each array. For example,
for an Affymetric array, only the preprocessing of the gene expressions which
have been calculated by passing the raw data from a scanner to MAS5 and
filtration procedures will be investigated.

To assess the relative performance of the RFE-SVMs to other learning al-
gorithms, comparisons with the nearest shrunken centroid classification algo-
rithm are carried out. The nearest shrunken centroid is one of the well-known
techniques developed in [137] from the field of statistics. The reason for se-
lecting this method is not only its popularity and robustness but also because
of the fact that the underlying philosophy behind this algorithm is completely
different from SVMs. Namely, the nearest shrunken centroid method is based
on the assumption that all the samples are normally distributed around its
centroid, whereas SVMs make no such assumption about the underlying dis-
tribution of the model. Therefore, it is interesting to see which philosophy
works better in the context of DNA microarray classification. Particularly,
interesting fact is that most of the simulations will be performed with a small
number of available training data. This is because each sample in the data
sets of microarray studies can take several months or years to collect. As a
result, the feature reduction techniques and the classifiers used in this type of
application should achieve relatively good performance when faced with small
number of samples.

As suggested in [119], it should be mentioned that the use of a more
complicated kernel may not yield better performance in a classification of
microarray data. This is because the original classification space is already
high dimensional and even a linear kernel will easily overfit the data in such a
space. As a result, it is appropriate to limit ourselves only on the linear form
of RFE-SVMs in this work.

Another major part of this book is to determine whether gene selection
algorithms such as RFE-SVMs can help the biologist in finding the right set
of genes causing a certain disease. Generally, this is done by submitting a
list of genes to the experts in the field for a qualitative assessment. In this
work, a quantitative assessment is achieved by comparing the genes selected
by different algorithms. This is done by using the Rankgene software [133]
which implements eight different classification, i.e. selection approaches.

This chapter is organized as follows:

• Section 4.2: The basics of microarray technology is presented.

4.2 Basics of Microarray Technology 99

• Section 4.3 reviews RFE-SVMs and some prior work in this area.
• Section 4.4 presents the results on the influence of the C parameter on a

correct selection of relevant features.
• Section 4.5 investigates the results of the improved RFE-SVMs on two

medical data sets (colon cancer and lymphoma data set) and it compares
two standard preprocessing steps in a microarray analysis for RFE-SVMs.

• Section 4.6: The performance of RFE-SVMs and the nearest shrunken
centroid on two medical data sets (colon cancer and lymphoma data set)
are compared.

• Section 4.7 discusses and compares in a detail the genes selected by
RFE-SVMs and by eight other different selection approaches implemented
within the Rankgene software.

• Section 4.8 is a concluding one in which several possible avenues for further
research in the area of DNA microarray in cancer diagnosis are suggested.

4.2 Basics of Microarray Technology

Since this chapter is mainly related to feature reduction using SVMs in DNA
microarray analysis, it is essential to understand the basic steps involved in a
microarray experiment and why this technology has become a major tool for
biologists to investigate the function of genes and their relations to a particular
disease.

In an organism, proteins are responsible for carrying out many different
functions in the life-cycle of the organism. They are the essential part of many
biological processes. Each protein consists of chain of amino acids in a specific
order and it has unique functions. The order of amino acids is determined by
the DNA sequences in the gene which codes for a specific proteins. To produce
a specific protein in a cell, the gene is transcribed from DNA into a messenger
RNA (mRNA) first, then the mRNA is converted to a protein via translation.

To understand any biological process from a molecular biology perspective,
it is essential to know the proteins involved. Currently, unfortunately, it is very
difficult to measure the protein level directly because there are simply too
many of them in a cell. Therefore, the levels of mRNA are used as a surrogate
measure of how much a specific protein is presented in a sample, i.e. it gives
an indication of the levels of gene expression. The idea of measuring the level
of mRNA as a surrogate measure of the level of gene expression dates back
to 1970s [21, 99], but the methods developed at the time allowed only a few
genes to be studied at a time. Microarrays are a recent technology which allows
mRNA levels to be measured in thousands of genes in a single experiment.

The microarray is typically a small glass slide or silicon wafer, upon which
genes or gene fragment are deposited or synthesized in a high-density man-
ner. To measure thousands of gene expressions in a sample, the first stage in
making of a microarray for such an experiment is to determine the genetic
materials to be deposited or synthesized on the array. This is the so-called

100 4 RFE-SVMs and Application in DNA Microarray Analysis

probe selection stage, because the genetic materials deposited on the array
are going to serve as probes to detect the level of expressions for various genes
in the sample. For a given gene, the probe is generally made up from only part
of the DNA sequence of the gene that is unique, i.e. each gene is represented
by a single probe. Once the probes are selected, each type of probe will be
deposited or synthesized on a predetermined position or “spot” on the array.
Each spot will have thousands of probes of the same type, so the level of
intensity pick up at each spot can be traced back to the corresponding probe.
It is important to note that a probe is normally single stranded (denatured)
DNA, so the genetic material from the sample can bind with the probe.

Fig. 4.1. The figure shows the core part of the microarray technology where a
DNA transcript with a fluorescence marker will only bind with the probe that is
complementary to the transcript during the hybridization.

Once the microarray is made, the next stage is to prepare the sample. The
mRNA in the sample is first extracted and purified. Then mRNA is reverse
transcribed into single stranded DNA and a fluorescent marker is attached
to each transcript. The core of the microarray technologies is reliant on the
fact that the single stranded DNA transcript (with fluorescent marker from
the sample) will only bind with the probe (part of the DNA sequences of
the gene) that is complementary with the transcript during the process of
hybridization (as shown in Fig. 4.1). This means that the binding will only
occur if the DNA transcript from the sample is coming from the same gene
as the probe. By measuring the amount of fluorescence in each spot (with
thousands of the same probes) using a scanner, the level of expression of each
gene can be measured (as shown in Fig. 4.2). Many preprocessing steps need
to be done before the raw data from the scanner can be converted into gene
expression (i.e. into a number representing a gene’s expression in a sample).

4.3 Some Prior Work 101

Fig. 4.2. The output of an DNA microarray experiment. The intensity level at each
spot indicates how much the corresponding gene’s expression is in the sample. More
fluorescence on a given spot indicates that the corresponding gene is more expressed.

As mentioned previously, these preprocessing steps will be neglected here.
The starting point of this book is after the gene expression profile of each
sample is given and the task is to find the most relevant genes that give the
best performance in classification of different diseases. The next section will
present some prior work in this area of feature reduction for DNA microarray
and the basic concept of RFE-SVMs.

4.3 Some Prior Work

4.3.1 Recursive Feature Elimination
with Support Vector Machines

As mentioned in Chap. 2, maximization of a margin has been proven to per-
form very well in many real world applications and makes SVMs one of the
most popular machine learning algorithms at the moment. Since the margin
is the criterion for developing one of the best-known classifiers, it is natural
to consider using it as a measure of relevancy of genes or features. This idea
of using margin for gene selection was first proposed in [61]. It was achieved
by coupling recursive features elimination with linear SVMs (RFE-SVMs) in
order to find a subset of genes that maximizes the performance of the clas-
sifiers. In a linear SVM, the decision function is given as f(x) = wT x + b or
f(x) =

∑n
k=1 wkxk + b. For a given feature xk, the size of the absolute value

of its weight wk shows how significantly does xk contributes to the margin of
the linear SVMs and to the output of a linear classifier. Hence, wk is used as a

102 4 RFE-SVMs and Application in DNA Microarray Analysis

feature ranking coefficient in RFE-SVMs. In the original RFE-SVMs, the al-
gorithm first starts constructing a linear SVMs classifier from the microarray
data with n number of genes. Then the gene with the smallest w2

k is removed
and another classifier is trained on the remaining n − 1 genes. This process
is repeated until there is only one gene left. A gene ranking is produced at
the end from the order of each gene being removed. The most relevant gene
will be the one that is left at the end. However, for computational reasons,
the algorithm is often implemented in such a way that several features are re-
duced at the same time. In such a case, the method produces a feature subset
ranking, as opposed to a feature ranking. Therefore, each feature in a subset
may not be very relevant individually, and it is the feature subset that is to
some extent optimal [61]. The linear RFE-SVMs algorithm is presented in
Algorithm 4.1 and the presentation here follows closely to [61]. Note that in
order to simplify the presentation of the Algorithm 4.1, the standard syntax
for manipulating matrices in MATLAB is used.

Algorithm 4.1 Recursive Feature Elimination with Support Vector Machines
Consider a binary classification problem with n × m input matrix X0 =
[x1,x2, . . .xn]T where m is the number of feature, n is the number of samples,
the class labels y = [y1, y2, . . . , yn]T and y ∈ [+1,−1]. Let s denote the set
of surviving features’ indices (i.e. features that are still left to be eliminated)
and r denote feature ranking list.

1. Set s = [1, 2, . . . , m] and r is an empty set.
2. Construct the training examples X with features in s, as X = X0(:, s) in

MATLAB.
3. Train the SVMs classifier α = SVM-train(X,y).
4. Compute for all the features i ∈ s their corresponding weight wi =∑n

k=1 αkykX0
ki.

5. Compute the ranking criteria ci = (wi)2, for all i ∈ s.
6. Find the set of features f = [f1, f2, . . . , fp] from s which has the p-smallest

ranking criterions.
7. Update the feature ranked list r = [s(f), r].
8. Eliminate the set of features f which has the p-smallest ranking criterions

s = setdiff(s, f) (Find the indices that are in s but not in f).
9. Repeat step 2 to 8 until s is empty. Finally output the feature ranked list

r.

4.3.2 Selection Bias and How to Avoid It

As shown in [61], the leave-one-out error rate of RFE-SVMs can reach as low
as zero percent with only 16 genes on the well-known colon cancer data set

4.4 Influence of the Penalty Parameter C in RFE-SVMs 103

from [8]. However, as it was later pointed out in [11], the simulation results in
[61] did not take selection bias into account. The leave-one-out error presented
in [61] was measured using the classifier constructed from the subset of genes
that were selected by RFE-SVMs using the complete data set. It gives a too
optimistic an assessment of the true prediction error, because the error is cal-
culated internally. To take the selection bias into account, one needs to apply
the gene selection and the learning algorithm on a training set to develop a
classifier, and only then to perform an external cross-validation on a test set
that had not been seen during the selection stage on a training data set. As
shown in [11, 99], the selection bias can be quite significant and the test error
based on 50% training and 50% test can be as high as 17.5% for the colon
cancer data set. Another important observation from [11] is that there are no
significant improvements when the number of genes used for constructing the
classifier is reduced: the prediction errors are relatively constant until approx-
imately 64 or so genes. These observations indicate that the performance and
the usefulness of RFE-SVMs may be in question. However, the influence of
the parameter C was neglected in [11] which restricts the results obtained.
As a major part of this work, the problem is further investigated by changing
(reducing) the parameter C in RFE-SVMs, in order to explore and to show
the full potentials of RFE-SVMs.

4.4 Influence of the Penalty Parameter C in RFE-SVMs

As discussed previously, the formulation presented in (2.10) is often referred
to as the “hard” margin SVMs, because the solution will not allow any point
to be inside, or on the wrong side of the margin and it will not work when
classes are overlapped and noisy. This shortcoming led to the introduction of
the slack variables ξ and the C parameter to (2.10a) for relaxing the margin by
making it ‘soft’ to obtain the formulation in (2.24). In the soft margin SVMs,
C parameter is used to enforce the constraints (2.24b). If C is infinitely large,
or larger than the biggest αi calculated, the margin is basically ‘hard’. If
C is smaller than the biggest original αi, the margin is ‘soft’. As seen from
(2.27b) all the αj > C will be constrained to αj = C and corresponding data
points will be inside, or on the wrong side of, the margin. In most of the
work related to RFE-SVMs e.g.,[61, 119], the C parameter is set to a number
that is sufficiently larger than the maximal αi, i.e. a hard margin SVM is
implemented within such an RFE-SVMs model. Consequently, it has been
reported that the performance of RFE-SVMs is insensitive to the parameter
C. However, Fig. 4.3 [72] shows how C may influence the selection of more
relevant features in a toy example where the two classes (stars * and pluses
+) can be perfectly separated in a feature 2 direction only. In other words,
the feature 1 is irrelevant for a perfect classification here.

As shown in Fig. 4.3, although a hard margin SVMs classifier can make
perfect separation, the ranking of the features based on wi can be inaccurate.

104 4 RFE-SVMs and Application in DNA Microarray Analysis

3.5 4 4.5 5 5.5 6 6.5

0

2

4

6

8

10

12

Ratio w
2
/w

1
 = 1.

Feature 1, i.e., Input x
1

F
ea

tu
re

 2
, i

.e
.,

In
pu

t x
2

Linear SVMs classification, C = 10000

3.5 4 4.5 5 5.5 6 6.5

0

2

4

6

8

10

12

Ratio w
2
/w

1
 = 38.4737

Feature 1, i.e., Input x
1

Linear SVMs classification, C = 0.0275

Fig. 4.3. A toy example shows how C may be influential in a feature selection.
With C equal to 10000, both features seem to be equally important according to
the feature ranking coefficients (namely, w1 = w2). With C = 0.025, a request for
both a maximal and a “hard” margin is relaxed and the feature 2 becomes more
relevant than feature 1, because w2 is larger than w1 (w2/w1 = 38.4). While the
former choice C = 10000 enforces the largest margin and all the data to be outside
of it, the later one (C = 0.025) enforces the feature “relevance” and gives a better
separation boundary because the two classes can be perfectly separated in a feature
2 direction only. Note that support vectors are marked by circle. Notice also the two
SVs inside the margin in the later case.

The C parameter also affects the performance of the SVMs if the classes
overlap each other. In the following section, the gene selection based on an
application of the RFE-SVMs having various C parameters in the cases of
two medicine data sets is presented.

4.5 Gene Selection for the Colon Cancer
and the Lymphoma Data Sets

4.5.1 Results for Various C Parameters

In this section, the selection of relevant genes for the two known data sets in
the gene microarray literature is presented. The colon data set was analyzed
initially in [8] and the lymphoma data was first analyzed in [7]. The colon
data set is composed of 62 samples (22 normal and 40 cancerous) with 2000

4.5 Gene Selection for the Colon Cancer and the Lymphoma Data Sets 105

genes’ expressions in each sample. The training and the test sets are obtained
by splitting the dataset into two equal groups of 31 elements, while ensuring
that each group has 11 normal and 20 cancerous tissues. The RFE-SVMs
is only applied to the training set in order to select relevant genes and to
develop classifiers. After the training the classifiers are used on the test data
set in order to estimate the error rate of the algorithms. 50 trials were carried
out with random split for estimating the test error rate. (This is the same
approach as in [11]). A simple preprocessing step is performed on the colon
data set to make sure each sample is treated equally and to reduce the array
effects. Standardization is achieved by normalizing each sample to the one
with zero mean and with a standard deviation of one [72]. To speed up the
gene selection process, 25% of the genes are removed at each step until less
than 100 genes remain still to be ranked. Then the genes are removed one at a
time. Because there were 50 trails, the gene ranking is based on averaging over
fifity runs. In other words, gene rankings produce from each run are combining
together to become one ranking. The simulation results for the colon data set
are shown in Fig. 4.4 [72].

0 2 4 6 8 10 12
0.1

0.15

0.2

0.25

0.3

0.35

Log2(number of genes)

E
rr

or
 r

at
e

From Ambroise and McLachlan (min error = 17.5%)
Sample Normalization C = 1000 (min error = 14.32%)
Sample Normalization C = 0.01 (min error = 11.81%)
Sample Normalization C = 0.005 (min error = 11.16%)

Fig. 4.4. Simulation result on the colon cancer data set with various C parameters.
The error bar represents the 95% confidence interval.

The Ambroise and McLachlan’s curve in Fig. 4.4 is directly taken from
[11], and it is unclear what C value is used in their paper. However, note
that the performance curve for C = 1000 is very similar to the one from
[11]. In both cases, the error rates are virtually unchanged as the number of
genes is reduced down to 16 genes. By comparing the error rates for various

106 4 RFE-SVMs and Application in DNA Microarray Analysis

C parameters, it is clear that changing the parameter C has a significant
influence on the performance of RFE-SVMs in this data set. The error rate
is reduced from the previous 17.5% as reported in [11] to 11.16% when C is
equal to 0.005. Also, for C = 0.01, the gene selection procedure improves the
performance of the classifier. This trend can be observed by looking at the
error rate reduction from initially around 15% at 2000 genes to 11.8% with
26 genes. A similar trend can be observed when C = 0.005, but the error
rate reduction is not as significant as in the previous case. This is because
the error rate of the linear SVMs with C = 0.005 is already low at the very
begining, when all the genes are used. The simulations shown demonstrate
that tuning the C parameter can reduce the amount of over-fitting on the
training data even in such a high dimensional space with small number of
samples. Note that the minimal error rate here is 11.16% and this coincides
with the suggestion in [11] that there are some wrongly labelled data in the
data set. This makes colon cancer data more difficult to classify than the
lymphoma data set presented next.

Table 4.1. Top 10 genes for colon cancer data obtained by RFE-SVM with
C=0.005. Genes are ranked in order of decreasing importance.

Ranking GANa Description

1 J02854 Myosin Regulatory light chain 2

2 X86693 H.sapiens mRNA for hevin like protein

3 H06524 GELSOLIN PRECURSOR, PLASMA (HUMAN);

4 M36634 Human vasoactive intestinal peptide (VIP) mRNA, com-
plete cds.

5 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6.

6 M63391 Human desmin gene, complete cds.

7 R87126 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gal-
lus)

8 T92451 TROPOMYOSIN, FIBROBLAST AND EPITHELIAL
MUSCLE-TYPE (HUMAN)

9 T47377 S-100P PROTEIN (HUMAN).

10 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor.

a Gene Accession Number: The Gene accession number is the unique iden-
tifier assigned to the entire sequence record (i.e. entire DNA sequence of a
gene) when the record is submitted to GenBank.

In terms of the gene selected, comparison can be made between Table
4.1 and Table 4.4 to show the differences caused by using different penalty
parameter C, namely C = 0.005 and C = 0.01. Except for the first gene in
the table, the rank of all the other genes is different. However, same seven
genes are selected into the top 10 genes by both C values.

4.5 Gene Selection for the Colon Cancer and the Lymphoma Data Sets 107

The second benchmarking data set is the lymphoma data set first analyzed
in [7]. This version of the lymphoma data set is also the same as the one used in
[34]. It is composed of 62 samples (42 diffuse large B-Cell (DLCL), 8 follicular
lymphoma (FL) and 12 chronic lymphocytic lymphoma (CL)) with 4000 genes
expressions in each sample. This is a multi-class problem and the data set is
split into 31 data pairs for training and 31 pairs for testing. Each part has 21
samples belonging to DLCL, 4 belonging to FL and 6 belonging to CLL. The
simulation results are shown in Fig. 4.5.

0 2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Log2(number of genes)

E
rr

or
 r

at
e

RFE−SVMs C = 10000(min error = 2.06%)
RFE−SVMs C = 0.01(min error = 2.06%)
RFE−SVMs C = 0.001(min error = 2.19%)

Fig. 4.5. Simulation results on the lymphoma data set with various C parame-
ters.The error bar represents the 95% confidence interval.

As shown in Fig. 4.5, there is not too much difference in terms of the lowest
error rate between the larger C values and the smaller ones, and all the models
have approximately 2% error rate. In this case, the choice of C parameter
does not influence the performance very much. This may be due to the fact
that this data set is an easy one (meaning, well separated), and that it may
be a relatively simple problem to perform the sorting out between different
classes disregarding the true value of parameter C. The top 10 genes for the
lymphoma data set selected by RFE-SVMs are listed in Table 4.2.

4.5.2 Simulation Results with Different Preprocessing Procedures

This section investigates the preprocessing of gene expressions after they have
been obtained via procedure such as MAS5 in Affymetrix array and their

108 4 RFE-SVMs and Application in DNA Microarray Analysis

Table 4.2. Top 10 genes for lymphoma data obtained by RFE-SVM with C
=0.01. Genes are ranked in order of decreasing importance.

Ranking GANa Description

1 GENE1636X osteonectin=SPARC=basement membrane protein;
Clone = 487878

2 GENE1610X Unknown; Clone=711756

3 GENE1637X *Fibronectin 1; Clone=139009

4 GENE1635X *Fibronectin 1; Clone=139009

5 GENE2328X *FGR tyrosine kinase; Clone=347751

6 GENE263X Similar to HuEMAP=homolog of echinoderm micro-
tubule associated protein EMAP; Clone=1354294

7 GENE1648X *cathepsin B; Clone=261517

8 GENE1609X *Mig=Humig=chemokine targeting T cells; Clone=8

9 GENE3320X Similar to HuEMAP=homolog of echinoderm micro-
tubule associated protein EMAP; Clone=1354294

10 GENE1641X *cathepsin B; Clone=261517

a Gene Accession Number

effects on classification performance are investigated. A very common pre-
processing step before inputting the training data into various machine learn-
ing algorithms (or into various other statistical methods), is to normalize each
feature vector. After such a step each feature (or gene here) has a mean of
zero and a standard deviation of one. On the other hand, in a microarray
analysis, it is common to normalize the sample vector so that the array effect
is minimized, obtaining in this way each sample with a zero mean and a stan-
dard deviation of one. In this section, the two straightforward preprocessing
procedures are investigated and compared using the colon cancer data set.

In the first one, all the expressions are converted to log expressions by
taking a logarithm on all the expressions. Then all the sample vectors in the
data set are normalized as follows: first the mean expression value of the
sample is subtracted from each gene expression within the sample. Then each
gene expression is divided by the standard deviation of the sample. After
this preprocessing step, each sample will have a mean of zero and a standard
deviation of one. This procedure is referred to as the sample normalization.
Note that here one does not have a selection bias phenomenon because each
sample is treated separately.

For the second preprocessing procedure, the same sample normalization is
applied to the complete data first and then a feature normalization step to
all the features in the data set follows. In order to perform a feature normal-
ization without the selection bias for a given feature, the mean expression of
the feature (calculated from the training data) is subtracted first from all the
expression values of the feature in the complete data set. Then all the expres-
sion values of the feature in the complete data set are divided by the standard

4.5 Gene Selection for the Colon Cancer and the Lymphoma Data Sets 109

deviation of the feature which is also calculated from the training data. Con-
sequently, after the feature normalization the mean of a feature will be zero
and its standard deviation will be one. However, note that the mean and the
standard deviation of the feature for the complete data set will not equal zero
and one respectively. The second procedure, which will be referred to as the
sample and feature normalization, is very similar to the one in [61] except that
the data are not passed through a squashing function here. To test these two
procedures, the same setting is used as in the previous section, i.e. 50 random
splits of 50% training data and 50% testing ones. Various C parameters are
tested again and the best results are presented for each procedure.

Example 4.1. The example below shows how the two simple preprocessing
steps work. Consider a DNA microarray data set with 3 samples and 4 gene
expressions as follows:

X = [x1,x2,x3]T =

⎡
⎣1 3 2.5 7

2 0.8 9 32
4 0.1 6 18

⎤
⎦ log→

⎡
⎣ 0 1.098 0.91 1.94

0.69 −0.22 2.19 3.46
1.38 −2.3 1.79 2.89

⎤
⎦ .

To perform the sample normalization, the mean value of each sample is sub-
tracted from each sample and then in this way obtained each gene expression
is divided by the standard deviation of the sample. The mean expression and
standard deviation of each sample are given as follows,

[x̄1, x̄2, x̄3]T = [0.987, 1.53, 0.94]T

[sx1, sx2, sx3]T = [0.7959, 1.62, 2.25]T

(4.1)

After the sample normalization, the input matrix X is now given as follows,

XSN =

⎡
⎣−1.24 0.37 1.14 2.43
−0.51 −1.13 1.34 2.12
0.19 −2.026 0.79 1.28

⎤
⎦ . (4.2)

While performing feature normalization one averages over all training data
samples and consequently splitting a data set into the training and test part
causes an bias dubbed as selection bias. Suppose sample x3 is the test data.
In order to perform feature normalization without selection bias, the mean
and the standard deviation of the feature are evaluated using training data
set x1 and x2 ones . As a result, the mean and the standard deviation of each
feature is as follows:

[f̄1, f̄2, f̄3, f̄4] = [−0.87,−0.377, 1.24, 2.28]
[sf1, sf2, sf3, sf4] = [0.511, 1.07, 0.14, 0.21].

Now these values are used for the normalization of all three samples, namely,
x1,x2,x3. After feature and sample normalization, the input matrix X is now
given as follows,

110 4 RFE-SVMs and Application in DNA Microarray Analysis

XSN&FN =

⎡
⎣−0.707 0.70 −0.707 0.710

0.707 −0.707 0.707 −0.707
2.09 −1.53 −3.12 −4.57

⎤
⎦ (4.3)

Note that the mean of each feature is zero for the training data x1 and x2.
However, the mean over the feature is not equal to zero if calculating with x3.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

Gene Ranking

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

Gene Ranking

Normalized feature and sample vector

Normalized sample vector

S
ta

nd
ar

d
de

vi
at

io
n

of
 lo

g
ex

pr
es

si
on

 fo
r

ea
ch

 g
en

e

Min. Test Error =11.18%

 Min. Test Error =14.39%

C =0.005

C =0.005

Fig. 4.6. Effect of different preprocessing procedures on the gene ranking for colon
cancer data set. The genes are ranked in the order of decreasing importance. The
gene with rank 1 is the most relevant gene.

In Fig. 4.6 [72], the gene rankings from RFE-SVMs with two different
preprocessing procedures are compared. In the figure, the standard deviation
of the log expression for each gene (calculated from the complete data set
without sample or feature normalization) is plotted on the vertical axis. Their
respective gene rankings from RFE-SVMs are plotted on the horizontal axis.

The top graph shows the result for the sample preprocessing procedure.
It is interesting to observe that the gene with the higher standard deviation
tends to have higher ranking. This trend suggests that RFE-SVMs with the
sample normalization are likely to pick up genes with expression that vary
more across the samples. This fits well with the assumption that a gene is
less relevant if its expression does not vary much across the complete data
set. Such a general trend cannot be observed in the bottom graph (where
both the sample and the feature normalization are applied). Note that there
is no connection between the standard deviation of the gene and gene ranking
now. This phenomenon may be due to the fact that the feature normalization

4.5 Gene Selection for the Colon Cancer and the Lymphoma Data Sets 111

Table 4.3. Colon cancer data. RFE-SVMs’ top 10 genes for C = 0.005 for
both the sample and the feature vectors normalization.

Ranking GAN Description

1 R39681 EUKARYOTIC INITIATION FACTOR 4 GAMMA
(Homo sapiens)

2 R87126 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gal-
lus)

3 H20709 MYOSIN LIGHT CHAIN ALKALI, SMOOTH-
MUSCLE ISOFORM (HUMAN);

4 H06524 GELSOLIN PRECURSOR, PLASMA (HUMAN);.

5 H49870 MAD PROTEIN (Homo sapiens)

6 R88740 ATP SYNTHASE COUPLING FACTOR 6, MITO-
CHONDRIAL PRECURSOR (HUMAN);

7 J02854 MYOSIN REGULATORY LIGHT CHAIN 2, SMOOTH
MUSCLE ISOFORM (HUMAN); contains element
TAR1 repetitive element ;.

8 M63391 Human desmin gene, complete cds

9 H09273 PUTATIVE 118.2 KD TRANSCRIPTIONAL REGU-
LATORY PROTEIN IN ACS1-PTA1 INTERGENIC
REGION (Saccharomyces cerevisiae)

10 X12369 TROPOMYOSIN ALPHA CHAIN, SMOOTH MUSCLE
(HUMAN);.

step in the second preprocessing procedure will make each gene have the same
standard deviation. Hence, a gene with higher standard deviation originally
will no longer be advantageous over a gene having a smaller standard devia-
tion. In Table 4.3 [72], the top 10 genes selected by C = 0.005 for both sample
and feature vectors normalization are presented. By comparing Table 4.3 and
Table 4.1, it is clear that the two preprocessing steps discussed here produced
two different rankings and only five of the top 10 genes are selected by both
preprocessing steps. This supports the trend that is observed in Fig. 4.6.

A general practice for producing good results with SVMs is to normalize
each input (feature) to the one with a mean of zero and a standard deviation
of one, as in the feature normalization step. However, in this case, this simple
rule does not perform as well as expected: the error rate of applying both
sample and feature normalization is higher than only the sample normaliza-
tion. This phenomenon may be due to the fact that the feature normalization
step in the second preprocessing procedure filters out the information about
the spread of the expression for each gene as discussed previously and this
information is helpful for selecting the relevant gene and classification. It is
beyond the scope of this book to find out the optimal preprocessing procedure
for RFE-SVMs. However, the simulation results presented here suggest that
different preprocessing procedures may influence the performance of RFE-
SVMs. Therefore, for a given problem, it may be wise to try different pre-

112 4 RFE-SVMs and Application in DNA Microarray Analysis

processing procedures in order to obtain an optimal performance while using
RFE-SVMs [72]. However, note that sample normalization only as shown in
Fig. 4.6 produced slightly better result.

4.6 Comparison between RFE-SVMs and the Nearest
Shrunken Centroid Method

4.6.1 Basic Concept of Nearest Shrunken Centroid Method

The nearest shrunken centroids method was first developed in [137, 138] and
it is currently one of the most popular methods for class prediction of DNA
microarrays data. This algorithm uses the nearest centroid method as a ba-
sis for classification and it incorporates the innovative idea of incrementally
shrinking the class centroid towards the overall centroid for feature reduction.
As a result, the algorithm can achieve equal or better performance than the
classical nearest centroid method with fewer genes. In order to understand
how the nearest shrunken centroid works, it is essential to review the nearest
centroid algorithm for classification.

A nearest centroid classification first uses the training data to calculate
the centroid of each class (or class centroid) as shown in Fig. 4.7. Then a new
sample will be classified to the class whose centroid has the shortest square
distance to the sample. In Fig. 4.7, L1 is smaller than L2, so the sample

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Feature 1

F
ea

tu
re

 2

Class 1
Class 2
Class 1 Centroid
Class 2 Centroid
New Sample

L1

L2

Fig. 4.7. A simple illustration of the nearest centroid classification. Centroids of
the circle and the asterisk classes shown here as diamond and square respectively
are used to classify new samples.

4.6 Comparison with the Nearest Shrunken Centroid Method 113

is classified to the circle class. This simple procedure can yield good results
as demonstrated in [137]. However a major drawback is that it uses all the
features available.

To overcome this drawback, in a nearest shrunken centroid method all
the class centroids are shrunk towards the overall centroid as shown in Fig.
4.8(a). In other words, the components of the class centroids in the feature are
increased or decreased in order to get closer to the component of the overall
centroid in the feature. For example, to move class 1’s centroid towards the
overall centroid in Fig. 4.8(a), both components of the class 1’s centroid have
to increase. Once all class centroids’ components in the feature are equal to
the overall centroid’s component in the feature (i.e., all of the class centroids
reach the overall centroid of the feature), this feature no longer contributes
to the classification. As an example, Fig. 4.8(b) shows the result of applying
an overall shrinkage of 0.5374 to both feature 1 and 2 of the original problem
in Fig. 4.7. In Fig. 4.8(b), the centroids of both classes in feature 1 direction
are equal to each other and it implies that feature 1 can no longer contribute
in differentiating the two classes after the shrinkage of 0.5374. The fact that
feature 2 still can contribute to the classification after the shrinkage means
that the centroids of the two classes are further apart from the overall centroid
and more separable in this direction. Therefore, feature 2 will have a higher
ranking than feature 1.

In a real world problem with thousand of genes, the algorithm uses all
the genes available to calculate the class centroids first, then it shrinks the
class centroids towards the overall centroid by an amount ∆ to form shrunken
class centroids. The shrunken class centroids are then used as nearest centroid
classifiers on the test set to determine the cross-validation errors. These clas-
sifiers are referred to as the nearest shrunken centroid classifiers. This process
of generating nearest shrunken centroid classifiers is repeated until all the
class centroids reach the overall centroid. As a result of this process, a set of
nearest shrunken centroid classifiers is generated and the optimal shrinkage is
determined by the cross-validation with the test set. The more shrinkage ∆
is applied on the class centroids, the less the number of genes will be used in
the nearest shrunken centroid classification, hence a set of optimal genes may
be selected from the process of shrinking the class centroids.

A crucial step to ensure good performance from the nearest shrunken
centroid classifier is to apply ∆ on the standardized distances between the
class centroid and the overall centroid as in [138]. For a given problem with
classes 1. . . c, the kth component of the standardized distance dkj for class j
can be computed as follows [138]:

dkj =
x̄kj − x̄k

mj · (sk + s0)
(4.4)

where x̄kj is the kth component of the centroid for class j, x̄k is the kth
component of the overall centroid, the value s0 is a positive constant and
mj makes the mj ·sk equal to the estimated standard error of the numerator

114 4 RFE-SVMs and Application in DNA Microarray Analysis

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Feature 1

F
ea

tu
re

 2
Class 1
Class 2
Class 1 Centroid
Class 2 Centroid
Overall Centroid

(a) The centroid of each class shrinks towards the overall centroid.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Feature 1

F
ea

tu
re

 2

(b) The original problem in Fig. 4.7 after shrinkage of 0.4375 towards
overall centroid. The feature 1 no longer contributes to the nearest
centroid classification.

Fig. 4.8. The class centroids are shrunk to extract useful features.

4.6 Comparison with the Nearest Shrunken Centroid Method 115

in dkj . (More details about nearest shrunken centroid can be found in [137]).
The purpose of this standardization is to give higher weight to the gene whose
expression is stable within samples of the same class. This means that a gene
will be ranked highly if its class centroids deviate more from the overall cen-
troid. At the same time it must also have a smaller standard deviation within
the samples of the same class.

4.6.2 Results on the Colon Cancer Data Set
and the Lymphoma Data Set

In this section, the results of comparisons between the nearest shrunken cen-
troid method and the RFE-SVMs are presented.

Figure 4.9 shows the result of applying the nearest shrunken centroid to the
colon cancer data set using the package Prediction Analysis for Microarrays
in R (Pamr) [63]. As the shrinkage (or threshold) ∆ increases, the number of
genes used for classification is reduced. As a result, the leave-one-out errors

0 1 2 3 4

Value of threshold

M
is

cl
as

si
fic

at
io

n
E

rr
or

2000 1010 427 208 93 39 15 9 4 3 0

Number of genes

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

x x x

Fig. 4.9. The leave-one-out error of the nearest shrunken centroid on the colon
cancer data set. Note that there are two different horizontal axis in the plot. The top
horizontal axis shows the number of genes that are used for classification, whereas
the bottom axis shows the size of the threshold ∆. When a larger threshold ∆ is
applied, a smaller number of genes is left to be eliminated.

116 4 RFE-SVMs and Application in DNA Microarray Analysis

are also changed. The minimum leave-one-out error is 9.68% in this case when
approximately 15 genes are used. This error rate is only slightly higher than
RFE-SVMs’ leave-one-out error rate of 8.06%.

0 2 4 6 8 10 12
0.1

0.15

0.2

0.25

0.3

0.35

Log2(number of genes)

E
rr

or
 r

at
e

Nearest Shrunken Centroid(min error = 13.45%)
RFE−SVMs C=0.005(min error = 10.9%)
RFE−SVMs C=0.01(min 11.45%)

Fig. 4.10. Test errors on the colon cancer data set for two different methods. The
error bar represents the 95% confidence interval.

In order to further test the performance of the two algorithms, the colon
cancer data set is split into 50% training and 50% testing as in the previous
section. However, in order to make the comparison statistically more signifi-
cant, 100 random experiments are performed instead of 50 as in the previous
section. Figure 4.10 from [71] shows the test errors and the corresponding 95%
confidence interval of RFE-SVMs and the nearest shrunken centroid with var-
ious number of genes. As shown in the figure, the performance of RFE-SVMs
(minimum error rate = 10.9%± 0.7%) is superior to the nearest shrunken
centroid (minimum error rate = 13.45%± 1%) in this test setting and the
difference is statistically significant. The difference in performance between
the two algorithms is more significant in this more difficult setting than in the
leave-one-out setting. This indicates that RFE-SVMs may have more superior
performance when the number of samples is low.

The results for the lymphoma data set are shown in Fig. 4.11. Again, in
order to make the comparison statistically more significant, 100 random ex-

4.6 Comparison with the Nearest Shrunken Centroid Method 117

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Log2(number of genes)

E
rr

or
 r

at
e

Nearest Shrunken Centroid(min error = 1.5%)

RFE−SVMs C=0.001(min error = 2.2%)

Fig. 4.11. Test errors on the lymphoma data set for two different methods. The
error bars refer to 95% confidence interval.

periments are performed instead of 50 as in the previous section. The training
is performed on 50% (31 samples) of the data set and the error rates are calcu-
lated on the other half of the data. The adaptive thresholding method is used
for the nearest shrunken centroid, because it improves the performance on this
data set as reported in [138]. The nearest shrunken centroid method achieves
the lowest error rate of 1.5%±0.3%, whereas the RFE-SVM has the lowest
error rate of 2.2%±0.4%. As a result, the difference between the two meth-
ods does not reach a statistically significant level. Furthermore, the nearest
shrunken centroid method requires almost all 4026 genes to achieve the mini-
mum error rate and its performance deteriorates significantly as the number of
genes is reduced. In contrast, RFE-SVMs’ best performance occurs when only
155 genes are used. This makes the model from RFE-SVMs more favourable
to use, because it is developed in a lower dimensional space. Furthermore,
the performances of RFE-SVMs are much better when fewer genes are used.
Note that the results obtained here are different from the ones shown in [138].
In [138], the nearest shrunken method can achieve an error rate close to 0
% when the number of genes used is equal to 81. However, [138] used a 10-
fold cross-validation for calculating the error rates instead of the harder test
setting used here (50% for training and 50% for testing).

118 4 RFE-SVMs and Application in DNA Microarray Analysis

To illustrate graphically how the selection of genes is different between the two
methods, the subspaces of the top two genes selected by the nearest shrunken
centroid and RFE-SVMs are presented in Fig. 4.12. First, it is important to
point out that the top gene (GENE1636X) selected by RFE-SVMs is ranked
as the second most discriminative gene by the nearest shrunken centroid. This
shows strong consensus between the two algorithms and coincides with the
finding in [72] presented later in Sect. 4.7, where the results of RFE-SVMs are
compared against 8 other different methods. Second, the FL and CL classes
cannot be separated in the subspaces of the top two genes for both methods,
as shown in Fig. 4.12. However, separation can be made between the DLCL
class (the biggest class) and the rest of the classes. As a result, the following
analysis will be based on separating DLCL from the rest of the classes. In Fig.
4.12(a), the nearest shrunken centroid selects GENE1622X over GENE1636X
(more details on this gene can be found in Table 4.2) as the most discrimi-
native genes because a perfect separation of the DLCL class from the other
two classes can be made. Furthermore, the within class standard deviation for
the GENE1622X is lower than the GENE1636X. This is represented by the
intensity of GENE1622X of the entire data set which distributes between -2
and 2, whereas the one for GENE1636X distributes between 6.5 and -2. This
coincides with the principle of the nearest shrunken centroid which is to select
genes that have lower within-class standard deviation and larger deviation be-
tween the class centroids and the overall centroid. As a result, GENE1622X
is regarded as a more discriminative feature than GENE1636X. In terms of
RFE-SVMs, the DLCL class cannot be separated from the rest of the classes in
either of the directions along (either GENE1636X or GENE1610X) as shown
in Fig. 4.12(b). Only when the top two genes are combined together, can the
separation be made (as shown by the decision boundary in Fig. 4.12(b)). This
demonstrates an important property of RFE-SVMs: to identify the “combina-
tion” of genes that can give separation with maximal margin. The comparison
presented above shows the major difference between the two approaches. RFE-
SVMs make no assumption about the underlying distribution of the data set
and it looks for a set of genes that can give best performance. In contrast,
the nearest shrunken centroid assumes data are normally distributed around
the centroids and it is more focused on an identification of the individual dif-
ferentially expressed genes. As a result, the nearest shrunken centroid cannot
pick up combinations of genes that are not differentially expressed but can
still make good separation when combined together. In this section, two of
the latest approaches for feature reduction and classification from the field of
machine learning and statistics, and the comparisons of their performance in
DNA microarray analysis are presented. In both of the benchmarking data
sets tested, RFE-SVMs have noticeably better performance than the nearest
shrunken centroid method when fewer genes and samples are used. The dif-
ference in the performance is more significant as the number of data available
for training is smaller. This may be due to the fact that the position of the
centroid and the spread of the classes are harder to estimate accurately as

4.6 Comparison with the Nearest Shrunken Centroid Method 119

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

5

6

7

Top Gene (GENE1622X)

S
ec

on
d

G
en

e
(G

E
N

E
16

36
X

)

DLCL Centroid

CL Centroid FL Centroid

DLCL
FL
CL
Centroid of DLCL
Centroid of FL
Centroid of CL
Overall Centroid

(a) Nearest Shrunken Centroid

−2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

Top Gene (GENE1636X)

S
ec

on
d

G
en

e
(G

E
N

E
16

10
X

)

Decision Boundary (DLCL vs all)
DLCL
FL
CL

(b) RFE-SVMs

Fig. 4.12. The subspace of the top two genes that are selected by (a) the nearest
shrunken centroid and (b) RFE-SVMs for the lymphoma data set. The values for
the top gene are plotted on the horizontal axis, whereas the values for the second
gene are plotted on the vertical axis. The corresponding gene associated numbers
(GAN) for selected genes are in brackets. Note that the nearest shrunken centroid’s
second-most discriminative gene is selected as the most discriminative one by RFE-
SVMs.

120 4 RFE-SVMs and Application in DNA Microarray Analysis

the amount of data is extremely low. This means that the assumption that
samples of the same class distribute normally around the class centroid does
not suffice in such an extreme situation. On the other hand, the fact that
RFE-SVMs do not make any assumption about the underlying distribution
of the data makes it a more robust option in the case of a small sample and
this is supported by the simulation results presented.

4.7 Comparison of Genes’ Ranking with Different
Algorithms

In Sects. 4.5.1 and 4.6, the performance of RFE-SVMs in two real world data
sets were presented. The results demonstrate that the RFE-SVMs classifiers
can have better performance when the number of genes is reduced. In this sec-
tion, the focus is on comparing the gene ranking from RFE-SVMs with eight
different algorithms implemented within the Rankgene software. (Rankgene
is a package developed in [133] which incorporates eight different methods to
produce a genes’ ranking, including information gain, twoing rule, sum minor-
ity, max minority, gini index, sum of variances, t-statistic and one dimensional
SVMs). The genes’ rankings from eight different methods are combined into
a single ranking and that ranking is compared with the RFE-SVMs’ ranking.
Table 4.4 [72] shows the top ten genes from the RFE-SVMs genes’ ranking for
C = 0.01. Genes printed in italics have been selected by the Rankgene too.

Table 4.4. Colon cancer data. RFE-SVMs’ top 10 genes with C = 0.01. Gene are
ranked in order of decreasing importance. The genes’ names printed in bold italic
letters have also been picked up by the Rankgene software within its top 10 genes.

Ranking GAN Description

1 J02854 MYOSIN REGULATORY LIGHT CHAIN 2

2 H06524 GELSOLIN PRECURSOR, PLASMA (HUMAN);.

3 R87126 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gal-
lus)

4 M63391 Human desmin gene, complete cds.

5 X86693 H.sapiens mRNA for hevin like protein.

6 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and
6.

7 T92451 TROPOMYOSIN, FIBROBLAST AND EPITHELIAL
MUSCLE-TYPE (HUMAN)

8 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor.

9 M31994 Human cytosolic aldehyde dehydrogenase (ALDH1) gene, exon
13.

10 M36634 Human vasoactive intestinal peptide (VIP) mRNA, complete
cds.

4.7 Comparison of Genes’ Ranking with Different Algorithms 121

Table 4.5. Colon cancer data. Top seven genes listed in [61]. Only the first gene,
printed in bold italic letters, has also been picked up by the Rankgene software
within its top 10 genes.

Ranking GAN Description

1 H08393 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)

2 M59040 Human cell adhesion molecule (CD44) mRNA, complete cds.

3 T94579 Human chitotriosidase precursor mRNA, complete cds.

4 H81558 PROCYCLIC FORM SPECIFIC POLYPEPTIDE B1-
ALPHA PRECURSOR(Trypanosoma brucei brucei)

5 R88740 ATP SYNTHASE COUPLING FACTOR 6, MITOCHON-
DRIAL PRECURSOR (human)

6 T62947 60S RIBOSOMAL PROTEIN L24 (Arabidopsis thaliana)

7 H64807 PLACENTAL FOLATE TRANSPORTER (Homo sapiens)

Table 4.6. The 10 genes selected by RFE-SVMs and eight other different meth-
ods implemented in Rankgene software within their respective top 100 genes. (Avg
Ranking = Average ranking of genes in nine different methods).

Avg Rankinga GAN Description

2.3 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6.

13.5 M63391 Human desmin gene, complete cds.

27.2 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor.

28.1 T60155 ACTIN, AORTIC SMOOTH MUSCLE (HUMAN).

5.7 R87126 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gallus)

7.5 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6.

15.7 T92451 TROPOMYOSIN, FIBROBLAST AND EPITHELIAL
MUSCLE-TYPE (HUMAN);.

21.3 H43887 COMPLEMENT FACTOR D PRECURSOR (Homo sapi-
ens)

6.9 J02854 MYOSIN REGULATORY LIGHT CHAIN 2, SMOOTH
MUSCLE ISOFORM (HUMAN).

31.3 M36634 Human vasoactive intestinal peptide (VIP) mRNA, complete
cds.

a Average Ranking of genes in nine different methods

Although the genes have been ranked differently, six out of the top ten genes
selected by RFE-SVMs have also been selected within the top ten genes by
the Rankgene package as shown in Table 4.4 . This means that there is still a
great deal of consensus on the genes’ relevance obtained by different ranking
methods. This may help in narrowing down the scope of the search for the
most relevant set of genes.

122 4 RFE-SVMs and Application in DNA Microarray Analysis

On the other hand, in Table 4.5 the top 7 genes listed in [61] are shown.
There is only one gene overlapping with the top ten genes from the Rankgene
package. Also, only the gene ATP SYNTHASE listed in [61] was selected by
the RFE-SVMs method as shown in Table 4.3. Furthermore, there are only 10
genes which have been selected by all nine methods (namely by the RFE and
by 8 different methods implemented in the Rankgene software) within their
respective top 100 genes. They are listed in Table 4.6. The average ranking of
these 10 genes shows that only the top ranked genes are overlapped and that
they are more likely to be selected by all the different methods. This strongly
suggests that the ten listed genes may be very relevant in an investigation of
a colon cancer.

4.8 Conclusions

This chapter has presented the performance of the improved RFE-SVMs algo-
rithm for genes extraction in diagnosing two different types of cancers. Why
and how this improvement is achieved by using different values for the C pa-
rameter was discussed in details. With a properly chosen parameter C, the
extracted genes and the constructed classifier will ensure less over-fitting of
the training data, leading to an increased accuracy in selecting relevant genes.
These effects are more remarkable in a more difficult data set such as the colon
cancer data. The simulation results also suggest that the classifier performs
better in the reduced gene spaces selected by RFE-SVMs than in the complete
2000 dimensional gene space in the colon data set. This is a good indication
that RFE-SVMs can select relevant genes, which can help in the diagnosis
and in the biological analysis of both the genes’ relevance and their function.

In terms of the raw data preprocessing, it is clear that the performance
of RFE-SVMs can also vary with different preprocessing steps. In the colon
cancer data set, normalizing only the sample vector produces better result.
The comparison of genes’ rankings obtained by the RFE-SVMs and by the
Rankgene software package (which implements 8 different methods for a gene
selection) shows that there is a great deal of consensus on genes’ relevance.
This may help in narrowing down the scope of search for the set of ‘optimal’
genes using machine learning techniques. The comparison between the im-
proved RFE-SVMs and the nearest shrunken centroid on the colon data set
suggested that the improved RFE-SVMs performs better when the number
of data used for training is reduced. Although the two methods have similar
minimal errors on the lymphoma data set, RFE-SVMs has much better per-
formance when fewer genes are available. This makes the classifier developed
by RFE-SVMs more desirable and robust.

Finally, the results in this book were developed from a machine learning
and data mining perspective, meaning they are unrelated to any valuable
insight from a biological and medical perspective. Thus, there is a need for a

4.8 Conclusions 123

tighter cooperation between the biologists and/or medical experts and data
miners in all future investigations. The basic result of this synergy should
gives the meaning to all the findings presented here and in this way ensure a
more reliable guide to the future research.

5

Semi-supervised Learning and Applications

5.1 Introduction

So far, the discussion in the previous chapters are centered around the su-
pervised learning algorithm SVMs which attempts to learn the input-output
relationship (dependency or function) f(x) by using a training data set {X =
[x(i), y(i)] ∈ �m × �, i = 1, . . . , n} consisting of n pairs (x1, y1), (x2, y2), . . .
(xn, yn), where the inputs x are m-dimensional vectors x ∈ �m and the la-
bels (or system responses) y ∈ � are continuous values for regression tasks
and discrete (e.g., Boolean) for classification problems. Another large group of
standard learning algorithms are the ones dubbed as unsupervised ones when
there are only raw data xi ∈ �m without the corresponding labels yi(i.e.,
there is a ‘no-teacher’ in a shape of labels). The most popular, representa-
tive, algorithms belonging to this group are various clustering and (principal
or independent) component analysis routines. They will be introduced and
discussed in Chap. 6.

Recently, however, there are more and more instances in which the learn-
ing problems are characterized by the presence of (usually) a small percentage
of labeled data only. In this novel setting, we may have enough information
to solve a particular problem, but not enough information to solve a gen-
eral problem. This learning task belongs to the so-called semi-supervised or
transductive inference problems. The cause for an appearance of the unlabeled
data points is usually expensive, difficult and slow process of obtaining labeled
data. Thus, labeling brings the additional costs and often it is not feasible.
The typical areas where this happens are the speech processing (due to the
slow transcription), text categorization (due to huge number of documents,
slow reading by people and their general lack of a capacity for a concentrated
reading activity), web categorization, and, finally, a bioinformatics area where
it is usually both expensive and slow to label a huge number of data produced.

In a semi-supervised learning problem, the algorithm must be able to uti-
lize both labeled and unlabeled data to predict the class labels of the unla-
beled points. Many semi-supervised learning algorithms have been developed

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 125–173 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

126 5 Semi-supervised Learning and Applications

by using the original supervised learning algorithm as a basic classifier and
they have incorporated unlabeled data with different strategies or heuristics.
For example, the pre-labeling approach shown in [55] designs a set of initial
classifiers from all the labeled data in the first iteration, then the second set
of classifiers is constructed from the original and the newly labeled data in
the second iteration. Another example will be the popular transductive SVMs
(TSVM) proposed in [144] which is developed by extending the idea of mar-
gin maximization (More details can be found in Sect. 5.5.1). However, these
algorithms generally converge to some locally optimal solutions instead of the
globally optimal ones. This is due to the fact that the underlying cost functions
of these algorithms are normally non-convex and it is not possible to find the
globally optimal solution for a large problem. For example, to find the glob-
ally optimal solution for TSVM, ideally, one requires to try all the possible
combination of labeling on the unlabeled data [79], but this approach becomes
intractable for a data set with more than 10 data points. As a result, most of
the TSVM implementations involve some heuristics to find a good local mini-
mum. In this chapter, two very popular graph based semi-supervised learning
algorithms, namely, the Gaussian random fields model (GRFM) introduced in
[160] and the consistency method (CM) for semi-supervised learning proposed
in [155, 158] will be presented and improved. These two algorithms are based
on the theory of graphical model and they explore the manifold structure of
the data set which leads to their global convergence. Because of the fact that
both algorithms try to explore the manifold structure of the data set, they are
dubbed as the manifold approaches when discussed together in this chapter.
The manifold approaches are also motivated by the novel idea [144] of not es-
timating the underlying function on the whole input space (i.e., not trying to
find f(x) as in the supervised learning), but to directly estimate the function
value on the point of interest (trying to find yu without finding f(x) for every
x). This means that in a classification problem only the label (a belonging to
some class) of the unlabeled data point is estimated and there is no model
developed as in the supervised learning. This idea may be more suitable in the
case of semi-supervised learning problem, because the amount of information
available (labeled points) may only be enough to solve a particular problem
(labeling the unlabeled points present) well, but not enough to solve a general
problem (labeling all the possible unlabeled points).

Because none of the original manifold approaches successfully analyzes the
possible problem connected with the situation where the proportion of the la-
beled data is unbalanced (the number of labeled data in each class differs
very much), the main scope of this chapter will be on presenting the novel
decision strategy (first proposed in [70, 74]) for improving the performance of
the two models in the cases of unbalanced labeled data. The novel decision
strategy is dubbed as normalization, because it is based on normalizing the
model output. The focus of this chapter will also be on the problem of text
classification, because it is where the semi-supervised learning can help to
speed up and reduce the cost of developing an automatic text categorization

5.2 Gaussian Random Fields Model and Consistency Method 127

system. The software package SemiL for solving the semi-supervised problems
by implementing the manifold approaches was developed as part of this work
in [75] and it will be presented at the end of the chapter. Finally, this chap-
ter will also present and discuss some of the important issues related to its
implementation.

This chapter is organized as follows:

• Section 5.2: The basic forms and concepts of the two manifold approaches
namely GRFM and CM are presented here.

• Section 5.3: The effects of the unbalanced labeled data on the performance
of the manifold approaches are discussed.

• Section 5.4: The novel decision rule for improving the performance of the
manifold approaches is presented and the simulation results on text clas-
sification problems are shown.

• Section 5.5: The improved manifold approaches are compared with other
state of the art semi-supervised learning algorithms on five different bench-
marking data sets.

• Section 5.6: The important implementation details of the software package
SemiL which is developed within this book is presented [75]. SemiL is
the first efficient large-scale implementation of the manifold approaches
introduced in this chapter.

• Section 5.7: Most of the results in this part of the work are first obtained
on the text classification problem which is one of the major application for
the semi-supervised learning algorithm, this section provides an overview
of the problem and the pre-processing steps used in this work for the
readers who do not have much backgrounds in this area.

• Section 5.8: This section concludes the presentations here and possible av-
enues for the further research in this novel area of semi-supervised learning.

5.2 Gaussian Random Fields Model
and Consistency Method

In this section, two basic types of semi-supervised learning algorithms will
be introduced. These two algorithms can be understood from the theory of
regularization or from the point of view of lazy random walks. More emphasis
will be on the later approach, because it is more intuitive to understand.
Furthermore, it also provides a theoretical explanation to the effect of the
unbalanced labeled data and the normalization which are the main themes
of this chapter. However, the important properties of the algorithms deduced
from the theory of regularization will still be mentioned.

5.2.1 Gaussian Random Fields Model

To begin, it is easier to first consider a binary classification with output y ∈
{−1, 1}. The manifold approaches treat the learning problem as a connected

128 5 Semi-supervised Learning and Applications

?

?

+

?

? ?

?

?

?

?

?

-

?

?

X

Y

(a)

?

?

+

?

? ?

?

?

?

?

?

-

?

?

X

Y

(b)

Fig. 5.1. Classification problem on a graph. Figure 5.1(a) shows the original classifi-
cation problem with only two data labeled (one in positive class with blue color and
another in the negative one with red color) and the rest of the points are unlabeled
(with question mark inside). The data set in (a) is shown as a connected graph G
in (b).

graph G = (V,E) defined on the data set X (as shown in Fig. 5.1) with nodes
V corresponding to the n data points and edges E (connection between the
points) are weighted by an n × n symmetric affinity (or weight) matrix W.
The first l points xl are labeled, and the remaining points xu(l + 1 ≤ u ≤ n)
are unlabeled. The main idea behind GRFM is to find a real-valued function
f : V → � on G that does not vary much between the nearby unlabeled points
(smoothness) and the value of the function on the initially labeled point fl

is equal to its initial label yl, i.e., fi = yi for i = 1 . . . l. To ensure that f is
smooth, the following quadratic energy function is used as the cost function
of the algorithm [160].

E(f) =
1
2

n∑
i,j=1

wij(fi − fj)2 (5.1)

It has been shown that the function f that minimizes the quadratic energy
function is harmonic. This means that (D − W)f = 0 on the unlabeled data
and fl = yl on the labeled points [160], where D = diag(di) is the diagonal
matrix with entries di =

∑
j Wij . The matrix (D−W) is often referred to as

the Laplacian matrix denoted as L.
The GRFM algorithm is shown in Algorithm 5.1 (the presentation here

follows the basic model proposed in [160] tightly):

Example 5.1. The example below shows how the GRFM algorithms work.
Consider a simple 1-D examples given in Fig. 5.2.

5.2 Gaussian Random Fields Model and Consistency Method 129

Algorithm 5.1 Gaussian Random Fields Model
1. Form the affinity matrix W defined by Wij = exp(−||xi − xj ||2/2σ2) if

i �= j and Wii = 0.
2. Construct the diagonal matrix D with its (i, i)-element equal to the sum

of the i-th row of W (Dii =
∑l

j=1 Wij , note Wii = 0).

3. Form the following two matrices W =
[

Wll Wlu

Wul Wuu

]
,D =

[
Dll 0
0 Duu

]
as

well as the vector f =
[
fl fu

]T , where l stands for the labeled data points
and u for the unlabeled ones. Note fl = yl.

4. Solve for fu as follows fu = (Duu − Wuu)−1Wulfl, which is the solution
for the unlabeled data points.

5. For i = u, if fi > 0 then yi = +1 otherwise yi = −1.

Fig. 5.2. A simple 1-D binary example. The task is to find out the labels of the
unlabeled points having only one labeled point in each class.

The output F is calculated as follow with σ = 0.8 and α = 0.9 :

u =
[
2 3 4 6 7

]
(5.2)

X =
[
x1 x2 x3 x4 x5 x6 x7

]T =
[
0 1 2 3 5 7 9

]T
y =

[
1 0 0 0 −1 0 0

]T
fl =

[
1 −1

]T
Wul =

[
0.46 0.04 8.8e − 04 0 0
0 8.8e − 04 0.04 0.04 0

]T

Wuu =

⎡
⎢⎢⎢⎢⎣

0 0.46 0.04 0 0
0.46 0 0.46 0 0
0.04 0.46 0 8.8e − 04 0
0 0 8.8e − 04 0 0.04
0 0 0 0.04 0

⎤
⎥⎥⎥⎥⎦

130 5 Semi-supervised Learning and Applications

Duu =

⎡
⎢⎢⎢⎢⎣

0.96 0 0 0 0
0 0.969 0 0 0
0 0 0.5409 0 0
0 0 0 0.08 0
0 0 0 0 0.04

⎤
⎥⎥⎥⎥⎦

fu = (D − W)−1Wulfu =
[
0.87 0.76 0.64 −0.99 −0.99

]T
yu = [+1 + 1 + 1 − 1 − 1]T

The output fu classifies the first three unlabeled points into the positive class
and the rest into the negative one. It is interesting to point out that x4 is closer
(shorter distance) to the negative labeled point x5, but it is still classified as
belonging to the positive class. This phenomenon is due to the fact that the
first four points are closer to each other, i.e., the average distance between
the points is shorter and the density of data is higher from 0 to 3. Hence,
they are considered by the GRFM algorithm as being in the same class. This
phenomenon also demonstrates that the GRFM algorithm is concerned about
finding out the manifold structure of the data.

This binary version of GRFM can be extended easily to a multi-class
problem by performing the same binary classification on different classes (one-
vs-all). In the next section, the multi-class version of CM will be presented.

5.2.2 Global Consistency Model

For a multi-class problem with c classes and n data points (both labeled and
unlabeled), let F denote the set of n× c matrices with nonnegative entries. A
matrix F = [FT

1 , . . . ,FT
n]T ∈ F corresponds to a classification on the dataset

X by labeling each point xi as a label yi = j if Fij > Fik (k �= j), j = 1, . . . , c
(Note that Fi is a 1× c vector). We can understand F as a vectorial function
F : X → �c which assigns a vector Fi of length c to each point xi. Define an
n×c matrix Y ∈ F as the initially labeled matrix with Yij = 1 if xi is labeled
as yi = j and Yij = 0 otherwise. Clearly, Y is consistent with the initial labels
according the decision rule.

The complete CM algorithm is shown in Algorithm 5.2. First, one calcu-
lates a pairwise relationship W on the dataset X with the diagonal elements
being zero. In doing this, one again can think of a graph G = (V,E) de-
fined on X , where the vertex set V is just equal to X and the edges E are
weighted by W. In the second step, the weight matrix W of G is normalized
symmetrically, which is necessary for the convergence of the iteration. The
first two steps are exactly the same as in spectral clustering [155]. Note that
self-reinforcement is avoided since the diagonal elements of the affinity matrix
are set to zero in the first step (Wii = 0). The model labels each unlabeled
point and assigns it to the class for which the corresponding F∗ value is the
biggest, as given in step 4 of Algorithm 5.2. The CM shown in Algorithm 5.2
is referred to as the one class labeling (or the original CM) version, because

5.2 Gaussian Random Fields Model and Consistency Method 131

Algorithm 5.2 Global Consistency Model
1. Form the affinity matrix W (same as in Algorithm 5.1.).
2. Construct the matrix S = D−1/2WD−1/2 in which D is a diagonal matrix

with its (i, i)-element equals to the sum of the i-th row of W.
3. Iterate F(t + 1) = αSF(t) + (1 − α)Y until convergence, where α is a

parameter in (0, 1) and t is the current step. Alternatively, one can solve
the system of equation (I − αS)F∗ = Y for F without performing the
iteration.

4. Let F∗ denotes the limit of the sequence {F (t)}. Label each point xi as a
label yi = j if Fij > Fik (k �= j), j = 1, . . . , c, i = 1, . . . , n.

in the j-th column of Y only the labeled points in the j-th class are different
from zero. An alternative labeling method is to assign 1 for the labeled points
in the j-th class, -1 for all the other labeled ones in other classes and 0 for all
the unlabeled ones. CM using such a labeling method will be referred to as
the two-class labeling CM in the rest of the chapter.

The iterative algorithm can be considered as trying to find a function F
that minimizes the cost function derived in [157] as follows:

min Q(F) =
1
2

⎛
⎝ n∑

i,j=1

Wij

∥∥∥∥∥ 1√
Dii

Fi −
1√
Djj

Fj

∥∥∥∥∥
2

+ λ

n∑
i=1

‖Fi − Yi‖2

⎞
⎠ .

(5.3a)

Note that in a matrix notation, the cost function is given as,

min Q(F) =
1
2
(FTLF − YT F). (5.3b)

where L denotes the normalized Laplacian matrix and it is given as L =
(I − αS). The first term on the right-hand side of (5.3a) is often referred to
as the ‘smoothness constraint’ which ensures that function F does not vary
much between nearby points. The second term which is often referred to as the
‘fitting constraint’ ensures that the classification function F will not disagree
too much with the labels of the initially labeled data, i.e., it controls how well
the classification fits the initially labeled data. The trade-off between these
two terms is controlled by a positive parameter λ and it has been shown that
the relationship between α and λ is α = 1

1+λ . Note that in such a formulation
[157], both labeled and unlabeled data are within the fitting constraint.

The CM problems are solved in an iterative way only when the size of
the problem is large (the amount of memory is not sufficient to store the S
matrix). In general, the corresponding system of linear equations (5.5) which
is derived by differentiating Q with respect to F as shown in (5.4) is solved

132 5 Semi-supervised Learning and Applications

by using conjugate gradient method which is a highly recommended approach
for dealing with huge data sets. Also, instead of using the complete graph,
the W matrix is approximated by using only the k -nearest neighbors. This
step decreases the accuracy only slightly, but it increases the calculation speed
significantly.

∂Q
∂F

∣∣∣∣∣
F=F∗

= F∗ − SF∗ + λ(F∗ − Y) = 0 (5.4)

⇒ (I − αS)F∗ = Y (5.5)

where α =
1

1 + λ
(5.6)

Example 5.2. The same 1-D problem in Example 5.1 is used again here to
show how the CM algorithm work.

The output F is calculated as follow with σ = 0.8 and α = 0.9 :

X =
[
x1 x2 x3 x4 x5 x6 x7

]T =
[
0 1 2 3 5 7 9

]T
Y =

[
1 0 0 0 0 0 0
0 0 0 0 1 0 0

]T

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.46 0.04 8.8e − 04 0 0 0
0.46 0 0.46 0.04 4.0e − 06 0 0
0.04 0.46 0 0.46 8.8e − 04 0 0

8.8e − 04 0.04 0.46 0 0.04 4.0e − 06 0
0 4.0e − 06 8.8e − 04 0.04 0 0.04 4.0e − 06
0 0 0 4.0e − 06 0.04 0 0.04
0 0 0 0 4.0e − 06 0.04 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0 0 0 0
0 0.96 0 0 0 0 0
0 0 0.96 0 0 0 0
0 0 0 0.54 0 0 0
0 0 0 0 0.08 0 0
0 0 0 0 0 0.08 0
0 0 0 0 0 0 0.04

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

F = (I − αD− 1
2 WD− 1

2)−1Y

=
[

2.5182 2.3764 1.8791 1.2593 0.3348 0.2519 0.1603
0.3348 0.5045 0.6282 0.6766 1.6857 1.2678 0.8069

]T

y = [+1 + 1 + 1 + 1 − 1 − 1 − 1]T

The output F classifies the first four points into the positive class and the rest
into the negative one. It is interesting to point out that x4 is closer (shorter
distance) to the negative labeled point x5, but it is still classified as belonging
to the positive class. This phenomenon is due to the fact that the first four

5.2 Gaussian Random Fields Model and Consistency Method 133

points are closer to each other, i.e., the average distance between the points
is shorter and the density of data is higher from 0 to 3. Hence, they are
considered by the CM algorithm as being in the same class. This phenomenon
also demonstrates that the CM algorithm is concerned about finding out the
manifold structure of the data as the GRFM algorithm.

To further demonstrate the properties of CM and the difference between
the semi-supervised learning algorithms and the supervised ones, a more com-
plicated toy example which is very similar to the one presented in [155] is
shown in Fig. 5.3. This toy problem is known as the two moons problem and
Fig. 5.3(a) shows the ideal solution for the problem. Figure 5.3(b) shows the
same problem in a typical semi-supervised learning setting where the number
of labeled points is much smaller than the number of unlabeled ones. In this
particular example, only one point from each class is labeled and the rest of
the data is unlabeled. The learning task is to find the labels for all the unla-
beled points using the algorithm presented in this section. Figures 5.3(c) to
5.3(e) show how the labeling done by an iterative version of CM propagates
as the number of iterations increases (where t denotes the time step). At the
beginning of the iterations, the unlabeled data points are labeled by their
closeness to the initially labeled point from each class. This can be observed
from Fig. 5.3(d) where the separation between the two classes is in the middle
of the two initially labeled points and perpendicular to the horizontal axis
(at approximately 1). As the algorithm keeps converging towards the final
solution, the influence of the unlabeled data which are labeled in the previ-
ous iterations (newly labeled data) becomes stronger. This ability of utilizing
the information of the newly labeled data is due to the αSF(t) term in the
step 3 of Algorithm 5.2 and it helps the algorithm to explore the half moon
shape (the manifold structure) of the problem. Therefore, it is clear that a
perfect labeling (separation) can possibly be done. In contrast, the solution
from a SVM which is based only on the initially labeled data (one from each
class) is a decision boundary perpendicular to the horizontal axis and it fails
to capture the half moon shape.

5.2.3 Random Walks on Graph

As mentioned previously, the graph-based approaches studied in this work can
also be interpreted by random walks as shown in [156] for CM and [160] for
GRFM. To help understanding the basic idea of random walks, a simple 1-D
example (similar to the one in [6]) is shown in Fig. 5.4.

Example 5.3. Suppose one is interested in modeling the horizontal propagation
of a bee between its hive and a flower. Assume there are 12 meters between
the hive (x1) and the flower (x6). This distance is divided into four zones
x2, . . . , x5 where the bee is likely to stay before reaching the flower or the
hive. Every minute the bee behaves in one of five ways, each with a given
probability:

134 5 Semi-supervised Learning and Applications

−2 −1 0 1 2 3 4
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

+1 Class
−1 Class

(a) Ideal classification for the two
moons problem

−2 −1 0 1 2 3 4
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

unlabeled data
+1 labeled data
−1 labeled data

+1 labeled point

−1 labeled point

(b) Solving the problem with one la-
beled data from each class. Unlabeled
data are shown as dots.

−2 −1 0 1 2 3 4
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

(c) Consistency method (t = 2)

−2 −1 0 1 2 3 4
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

(d) Consistency method (t= 13)

−2 −1 0 1 2 3 4
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

(e) Consistency method (t = 23)

−2 −1 0 1 2 3 4
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

(f) Solution from a linear SVM

Fig. 5.3. Classification of the two moons problem. (a) Ideal classification. (b)-(e)
Iteration of CM. (f) The solution of a linear SVM.

5.2 Gaussian Random Fields Model and Consistency Method 135

Fig. 5.4. A 1-D random walk

1. The bee flies toward the zone closer to the hive with probability of 1
3 .

2. The bee flies toward the zone closer to the flower probability of 1
2 .

3. The bee stay in the same zone with probability of 1
6 .

4. If the bee is in the flower or its hive, it will have probability of 1
3 to leave.

5. If the bee is in the flower or its hive, it will have probability of 2
3 of staying.

In this setting, it is possible to estimate where the bee is more likely
to reach first given the initial position of the bee after certain amount of
time. For example, if the bee has an initial position at x4, then this initial
condition can be represented by an output vector y0 = [0, 0, 0, 1, 0, 0]. As a
result, the probabilities of its position after one minute are given by the vector
[0, 0, 1

2 , 1
6 , 1

3 , 0] and after two minutes by [0, 1
4 , 1

6 , 13
36 , 1

9 , 1
9]. The probabilities

for the position of the bee after s minutes can be computed by the following
equation:

ys = y0Ps =
[
0 0 0 1 0 0

]
⎡
⎢⎢⎢⎢⎢⎢⎣

2
3

1
3 0 0 0 0

1
2

1
6

1
3 0 0 0

0 1
2

1
6

1
3 0 0

0 0 1
2

1
6

1
3 0

0 0 0 1
2

1
6

1
3

0 0 0 0 1
3

2
3

⎤
⎥⎥⎥⎥⎥⎥⎦

s

. (5.7)

The matrix P is known as the transition matrix for a random walk. Each row
contains non-negative numbers, called transition probabilities. In this setting,
one can find the expected number of steps for a random walk starting at
some initial position xi to reach xj and to return, e.g, the expected number
of minutes for a bee to reach flowers from its hive and to return. This expec-
tation is often referred to as the commute time between the two positions and
denoted by Cij .

The CM presented in Sect. 5.2.2 can be interpreted as a random walk on
graph with the following transition matrix as shown in [156]:

P = (1 − α)I + αD−1W, (5.8)

136 5 Semi-supervised Learning and Applications

where α is a parameter in (0,1). But instead of using the commute time as a
measure of closeness, CM algorithm uses a normalized commute time C̄ij and
it has also been shown that the normalized commute time is given as

C̄ij ∝ Ḡii + Ḡjj − Ḡij − Ḡji if xi �= xj , (5.9)

where Ḡij ∈ Ḡ which is the inverse of the matrix I − αS. If we are now
considering a binary classification in CM that is given by f = (I − αS)−1y
where y is either 1 or -1, then the classification will be based on the comparison
between p+(xi) =

∑
j|yj=1 Ḡij and p−(xi) =

∑
j|y=−1 Ḡij [156]. This means

that we are labeling an unlabeled point by summing up and comparing the
normalized commute times of the point to all the positive labeled points and
to all the negative labeled points. If an unlabeled point has a negative value
of f , then it will mean that less steps are required to reach the unlabeled
point from the negative labeled points. GRFM methods can be interpreted in
a similar way, however it uses hitting times [160], instead of the normalized
commute times between the labeled and the unlabeled points.

The use of random walk on a graph for semi-supervised learning has been
successful and it is the fundamental idea behind the two algorithms discussed.
However, classification based on comparing p−(xi) and p+(xi) for the unla-
beled data has an obvious problem. Namely, the number of labeled data in
each particular class can have an effect on the size of p−(xi) or p+(xi). The
effect of unbalanced labeled data to CM and GRFM is quite significant and
it will be discussed in the next section.

5.3 An Investigation of the Effect of Unbalanced labeled
Data on CM and GRFM Algorithms

5.3.1 Background and Test Settings

The extensive simulations on various data sets (as presented in [155]) have
indicated that both CM and GRFM behave similarly and according to the
expectations that with an increase in the number of labeled data points l,
the overall models’ accuracies improve too. There was just a slightly more
superior performance of CM from [155] with respect to GRFM, when faced
with a small number of unbalanced labeled data. At the same time, the later
model performs much better when only 1 labeled data in each class is available
(note that labeled data is balanced in this particular case).

Such a behavior needed a correct explanation and it asked for further
investigations during which several phenomena have been observed. While
working with the balanced labeled data (meaning with the same number of
labeled data per class) both models perform much better than in the case when
the data is not balanced. Furthermore, the performance improvement by using
the balanced labeled data can be as large as 50% [70, 74]. To demonstrate this

5.3 An Investigation on the Effect of Unbalanced labeled Data 137

2 3 4 5 6
6

6.5

7

7.5

8

8.5

2 3 4 5 6
6

6.5

7

7.5

8

8.5

2 3 4 5 6
6

6.5

7

7.5

8

8.5

2 3 4 5 6
6

6.5

7

7.5

8

8.5

Class 1
Class 2
Class 3
Labeled Data
Error

(a) A Multiclass Toy Example (b) Solution with Balanced Labeled Data

(c) Solution with Unbalanced Labeled Data (d) Solution with Normalization Step

Fig. 5.5. (a) A multi-class toy example for demonstrating the effect of unbalanced
labeled data. (b) With three balanced labeled data, the solution is perfect. (c) With
seven unbalanced labeled data, the performance is worse than in (b). (d) The nor-
malization step introduced in Sect. 5.4 corrects the problem of an unbalance in
labeled data.

phenomenon, a simple 2D multi-class example is constructed and it is shown
in Fig. 5.5. It is clear that with unbalanced labeled data, the performance of
the algorithm can deteriorate significantly despite the fact that more labeled
data is available. To further test this phenomenon on real world data sets, rec
data set is used and the simulation results using the CM algorithm are shown
in Fig. 5.6.

Rec data set is a subset of the popular 20-newsgroup (version 20-news-
18828) text classification data set and it contains four topics, autos, motorcy-
cles, baseball, and hockey. The articles were processed by the Rainbow soft-
ware package with the following options as discussed in Sect. 5.7: (1) passing
all words through the Porter stemmer before counting them; (2) tossing out
any token which is on the stop list of the SMART system; (3) skipping any
headers; (4) ignoring words that occur in 5 or fewer documents. No further
pre-processing was done. After removing the empty documents, the data set
consists of 3970 document vectors in a 8014-dimensional space. Finally the
documents were normalized into TFIDF representation. The cosine distance

138 5 Semi-supervised Learning and Applications

0 10 20 30 40 50
10

20

30

40

50

60

70

Number of labeled data

E
rr

or
 r

at
e

in
 %

Original rec data with unbalanced labeled data, width = 0.15
Original rec data with balanced labeled data, width = 2.25
Original rec data with unbalanced labeled data, width = 2.25
Generated rec data with balanced labeled data, width = 2.25

Huge fluctuation due to
the balance of labeled data

50% reduction in error rate

Fig. 5.6. The effect of a balance of the labeled data (rec data set). The generated
rec data is produced by removing 50% of class 1 (auto) and class 4 (hockey) from
the original rec data set.

between points was used as a measure of distance [20] here in forming matrix
W (i.e., Wij = exp(−d(xi,xj)/2σ2) where d(xi,xj) = 1−(xT

i xj/‖xi‖ ‖xj‖)).
The mentioned procedure is the same as in [155] just in order to ensure the
same experiment’s setting for the same data set.

In order to test the connection between the balance of the labeled data
and the proportion of the unlabeled data in each class, another data set is
generated from the original rec data set by removing 50% of class 1 (auto) and
class 4 (hockey). As a result, the ratio of the unlabeled data in each class is
16.6% for class 1, 33.33% for class 2, 33.33% for class 3 and 16.6% for class 4.
This proportion is different from the proportion of labeled data in each class
when the labeled data is balanced (25% in each class).

Two different types of selection processes were used to select the labeled
data. The balanced results shown in Fig. 5.6 were achieved by using a selection
process which keeps the number of labeled data selected from each class as
close to each other as possible. For examples, when five labeled points need to
be selected, the selection process selects one from each class randomly first,
then the fifth one is selected randomly from all the classes. As a result, the
labeled data is still close to balance. The unbalanced results in Fig. 5.6 are
obtained by randomly selecting labeled data from all classes. This selection
procedure is the same as the one [155] and it will make the number of labeled
data in each class being different (i.e., unbalanced).

5.3 An Investigation on the Effect of Unbalanced labeled Data 139

5.3.2 Results on the Rec Data Set

The first curve (dotted-circles) in Fig. 5.6 is directly taken from [155] with
a rather small σ value of 0.15. Working with such a small σ value, does not
make the effect of the balance of the labeled data visible and the algorithm
behaves according to the expectation that with more labeled points available,
the error rate should decrease. A larger σ is used here to show the effect of the
unbalanced labeled data. By comparing the lowest error rate of the first curve
(dotted-circles) from [155] and the one with better balanced labeled data (the
second curve (dashed-circles) in Fig. 5.6) using the original rec, it is clear that
the minimum error rate reduces significantly from 25% (when 50 unbalanced
labeled data are used) to 12% (when 48 balanced labeled data is available).
The use of both balanced labeled data and a larger σ parameter improves the
performance of the algorithm on this data set, but the former has stronger
influence, because the performance of the algorithm with σ = 2.25 and the
unbalanced labeling (the third curve (solid-diamonds) in Fig. 5.6) is similar
to the one from [155].

An important observation is that the error rate for the CM algorithm
increases sharply as soon as the labeled data become unbalanced. This phe-
nomenon can be clearly observed from the increase in error rate between 4
labeled points (balanced) to 5 labeled points (unbalanced) in the second and
the last curve in Fig. 5.6. It means that the method becomes very sensitive
to the balance of the labeled data. Another important result is that this fluc-
tuation also occurs on the generated rec data set where the four classes are
not equal in size: the model with four balanced labeled data outperforms the
model with five unbalanced labeled data as shown in the last curve of Fig. 5.6.
This means that the improvement in the performance may occur even if the
proportion of the labeled data in each class is not the same as the proportion
of the unlabeled data in each class, i.e., it is the balance of the labeled data
and the size of the σ parameter that produces improvements.

5.3.3 Possible Theoretical Explanations on the Effect
of Unbalanced Labeled Data

Further investigation on the effect of the balance of the labeled data shows
that a class with less labeled data will be more disadvantageous. It was found
[70, 74] that a class j with more labeled data will be more likely to have a
higher mean of F∗

j (where F∗
j is the j-th column vector of the output matrix

F∗ and its mean is given as F̄ ∗
j =

∑n
i=1 F ∗

ij/n) than the class with less labeled
data when the σ parameter is relatively large. Recall that F∗

j is the output of
class j’s classifier as well as that the labeling of the i-th data is based on the
biggest value in a row F∗

i . This means that an unlabeled data will more likely
be assigned to the class which has a higher F̄ ∗

j than to a disadvantageous class
with lower F̄ ∗

j . To demonstrate this phenomenon, the original rec data set is
used again and a different number of labeled data is selected from each class.

140 5 Semi-supervised Learning and Applications

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
0

50

100

150

200

250

300

Value of F

F
re

qu
en

cy

Class1

Class 2

Class 3 Class 4

Class 1(1 labeled data)
Class 2(2 labeled data)
Class 3(3 labeled data)
Class 4(4 labeled data)

Fig. 5.7. Histogram of output F∗
j from CM for each class with unbalanced labeled

data. Each F∗
j is represented by different colors. (Rec data set, σ = 2.25, Error rate

= 73.19%)

As shown in Fig. 5.7, the distribution of F∗
j is centered around its mean F̄ ∗

j

and class 4 (with 4 labeled data) has a much higher mean F̄ ∗
4 than class 1

(with 1 labeled data). This difference between the means of the distributions
makes class 1 much more disadvantageous than class 4. This is due to the fact
that a data point xi will only be classified as class 1 if the value of F ∗

i1 is higher
than F ∗

i4. However this is unlikely to happen because F̄ ∗
1 is much less than F̄ ∗

4

and the values of F∗
1 are distributed around its mean F̄ ∗

1 . It is this unfairness
between the output of each classifier that makes the error rate 73.19% and
almost all of the points are classified as class 4. Similar phenomenon can also
be found in GRFM as shown in Fig. 5.8.

Figure 5.8 shows the output of GRFM on the same problem with the same
points being labeled as in Fig. 5.7. The effect of unbalanced labeled points
is even more significant in GRFM. This can be easily seen comparing the
distances in Figs. 5.8 and 5.7. Namely, the distance between the class 1 and
the class 4’s centers of distributions is approximately 7 times larger in Fig.
5.8 (d ∼= 1) than in Fig. 5.7 (d ∼= 0.15).

The effect of the unbalanced labeled data on the mean of the classifier
can be explained by interpreting CM algorithms as random walks on graph
and GRFM as absorbing probability of standard random walk. As discussed
in Sect. 5.2.3, a binary classification using f = (I − αS)−1y is based on the
comparison between p+(xi) =

∑
j|yj=1 Ḡij and p−(xi) =

∑
j|y=−1 Ḡij [156],

i.e., on the total normalized commute times between positive and negative

5.3 An Investigation on the Effect of Unbalanced labeled Data 141

−0.8 −0.6 −0.4 −0.2 0 0.2
0

100

200

300

400

500

600

700

Value of F

F
re

qu
en

cy

Class 1

Class 2

Class 3

Class 4

Class 1(1 labeled data)
Class 2(2 labeled data)
Class 3(3 labeled data)
Class 4(4 labeled data)

Fig. 5.8. Histogram of output F∗
j from the GRFM of different classes with unbal-

anced labeled data. (Rec data set, σ = 2.25, Error rate = 74.73%)

labeled data. With more positive labeled points than the negative ones, the
mean of f will more likely be greater than zero and vice verse. Hence, it
is more likely to assign an unlabeled point to the class with more labeled
points. If we now consider solving a multi-class problem using several binary
classifiers, then a binary classifier with less number of positive labeled points
will be more disadvantaged than others, because the mean of its output F∗

j

will be lower. Thus, the class with less labeled points will be handicapped. The
GRFM algorithms use similar principle for labeling unlabeled data. However,
one of the key differences between GRFM and CM is that the former uses
the weighted hitting times between the point of interest and the rest of the
unlabeled points. These hitting times are weighted and summed together to
compare with outputs from other classifiers. Because the weights applied to
the hitting times are controlled by the labeled points (the Wulfl term), the
effect of unbalanced labeled points will be magnified through the summation
over all the unlabeled points.

In summary, with balanced labeled data and larger σ parameter, the per-
formance of the manifold approaches can be much better than the results
presented in [155] on the rec data set. However, the performance of the al-
gorithm deteriorates as the labeled data become unbalanced. This led to the
introduction of the normalization step proposed in [70, 74] as a novel decision
rule to reduce the effect of unbalanced labeled data.

142 5 Semi-supervised Learning and Applications

5.4 Classifier Output Normalization: A Novel Decision
Rule for Semi-supervised Learning Algorithm

The result presented in the previous section shows that CM can perform much
better if the labeled data is balanced. However, such a condition means that
the algorithm may not utilize all the information (labeled data) available for
a given problem, i.e., some labeled points may be eliminated in order to make
the labeled data balanced. Looking from another perspective, the result also
suggests that it is possible to achieve better performance if the effect of the
unbalanced labeled data can be reduced or eliminated.

−1.5 −1 −0.5 0 0.5 1 1.5
0

50

100

150

200

250

300

350

Value of F

F
re

qu
en

cy

Class 4

Class 3

Class 2

Class 1

Class 1(1 labeled data)
Class 2(2 labeled data)
Class 3(3 labeled data)
Class 4(4 labeled data)

Fig. 5.9. Histogram of output F from CM of different classes with unbalanced
labeled data after normalization. (Rec data set, σ = 2.25, Error rate = 25.86%)

To reduce the effect of unbalanced labeled data, a normalization step is
introduced in [70, 74] for the elements of the column vectors F∗

j bringing them
to the vectors F̂∗

j with a mean = 0, and with a standard deviation = 1 as
given below,

F̂ ∗
ij =

F ∗
ij − F̄ ∗

j

sj
where sj =

√∑n
i=1(Fij − F̄j)2

n
(5.10)

is the standard deviation of Fj .
Only now, after the normalization is performed, the algorithm searches for

the maximal value along the rows of the standardized output matrix F̂∗ and

5.4 Classifier Output Normalization 143

labels the unlabeled i-th data to the class j if F̂ ∗
ij > F̂ ∗

ik, k = 1, . . . c, k �= j.
The philosophy of adding this extra step is to make sure the classifier output
F∗

j from each class is treated equally. The introduction of this normalization
shifts the distribution of all the column vectors of F∗

j closer together, so the
classes with more labeled points will no longer be advantageous. This can be
shown by comparing Fig. 5.9 and Fig. 5.7. The normalization step reduces the
error rate of the CM algorithm significantly from previously 73.19% (in Fig.
5.7) to 25.86% (in Fig. 5.9) in the example where 50 data are randomly labeled,
i.e., the labeled data is (extremely) unbalanced. To test the normalization step
in more general cases, the same simulations are conducted on the normalised
CM and GRFM as in Sect. 5.3 on the rec data set and the results are presented
in Fig. 5.10.

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

Number of labeled points

te
st

 e
rr

or
 in

 %

Norm. models’ error
curves are below

k−NN (k = 1)
GRFM
CM
Norm. GRFM, 10 NN, width 2.25
Norm. GRFM, 10 NN, width 0.3
Norm. CM 2−CLASS method, 10 NN, width 2.25
Norm. CM 2−CLASS method, 10 NN, width 0.3
Norm. CM, 10 NN, width 2.25
Norm. CM, 10 NN, width 0.3

Fig. 5.10. The error rates of text classification with 3970 document vectors in an
8014-dimensional space for rec data sets from version 20-news-18828. At least one
data in each class must be labeled. Thus the smallest number of labeled data here is
4. The normalized version of CM and GRFM algorithms outperforms the algorithms
without normalization. 10 NN indicates that only 10 nearest neighbors are used for
calculations of a matrix W making the computing time feasible.

Several interesting phenomena can be observed in Fig. 5.10. First, the
normalization improves the performance of both methods very significantly.
This can be observed easily by comparing the error rate between the model
with and without normalization. The error rate of CM for four labeled points
drops from 46% to 22%. When 50 points are labeled, the error rate drops
from around 22% to about 13% and similar improvements can be found on
the GRFM.

144 5 Semi-supervised Learning and Applications

The only exception is in the case of the later method when there are only
four labeled points available. In this situation, the error rate of GRFM is al-
ready much lower than the CM’s one, even without the normalization, there-
fore the improvement by the normalization is not as significant as in other
cases. This is a consequence of having balanced labeled data points from each
class (1 in each class) as discussed in the previous section. Without the nor-
malization, GRFM needs approximately forty unbalanced labeled points to
match its very performance when having four balanced labeled points only.
In contrast, the performance of the normalized model with ten unbalanced
labeled data outperforms the result for the four balanced points. With a nor-
malization step, GRFM seems to be slightly better than CM. This is not the
case while working without the normalization as shown in [155]. Also, the
normalized two-class labeling CM performs worse than the normalized origi-
nal (one class labeling) CM (See the classification of the CM labeling in Sect.
5.2.2). By comparing the performances between the two algorithms when 10
labeled points are available, it looks as the normalized CM with original la-
beling, is less sensitive to the unbalanced labeled data and produces better
result. The best model for the text categorization data in our experiments is a
GRFM with width equal to 0.3 which achieves an accuracy of 90% with only
50 labeled points out of 3970 of the total data points. However, it should be
said that it seems as CM has a slightly better numerical properties because
the conditional numbers of the matrices involved are better. For both meth-
ods, with a normalization step of F∗, models with smaller width parameter
of a Gaussian kernels perform slightly better than with the larger widths.

At initial stage of this work, there were some doubts about whether the
normalization step can really improve the performance of the algorithms, or
the improved results are just coincidental due to the fact that the rec data
set has the same number of documents in each class. To investigate these
problems, the original rec data set is used to generate three more different
unbalanced data sets (meaning the number of data in each class being differ-
ent) and the simulation results on these three unbalanced data sets are shown
in Fig. 5.11.

As shown in Fig. 5.11, the normalized models perform better than the
models without the normalization and the overall trend is very similar to Fig.
5.10. The only exception is that the performance gap between the normalized
GRFM and the normalized original CM is slightly larger. It is because the
performance of the normalized GRFM is virtually unchanged between the
balanced and the unbalanced data sets, whereas the normalized CM has a
slight increase in the error rate.

In terms of the computational time, for a 3970 data, the learning run based
on a conjugate gradient algorithm takes only about 25 seconds of CPU time
on a 2GHz laptop machine for 100 random tests runs with width of RBF equal
to 0.3 using the software package SemiL developed in [75] as part of this work.
However, it had been found that the computational time required for GRFM
is more sensitive to the width of the Gaussian kernel and it is usually bigger

5.5 Performance Comparison of Semi-supervised Learning Algorithms 145

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

Number of labeled points

te
st

 e
rr

or
 in

 %

Norm. models’ error curves are green, blue, black and red

Norm. GRFM, class 1 & 4 half data, 20 NN, width w= 0.3
Norm. GRFM, class 1 10% data, 20 NN, w= 0.3
Norm. GRFM, class 4 10% data, 20 NN, w= 0.3
Norm. CM, class 1 & 4 half data, 20 NN, w= 0.3
Norm. CM 2−CLASS method, class 1 & 4 half data, 20 NN, w= 0.3
NO Norm. CM, class 1 & 4 half data, 20 NN, w= 0.3
NO Norm. CM, class 1 & 4 half data, 20 NN, w= 0.15

Fig. 5.11. The error rates of various generated and unbalanced rec data sets. The
first unbalanced data set is generated by removing half of the first class and half of
the fourth class. The rest are generated by removing either 90% of the first class or
90% of the fourth class. The widths of the RBFs equal 0.3 in all experiments but in
one. Twenty nearest neighbors only are used to construct the W matrix.

than the time needed for CM. With a small width, the condition number of
the Laplacian matrix can be quite high, hence more computational time is
required. As a result, for huge data sets, CM may be more efficient (more
details in Sect. 5.6.4).

In order to further test the idea of normalization and the performance
of the two manifold approaches discussed in this work in relation with other
known approaches, extensive simulations are carried out on five additional
benchmarking data sets and the results obtained are presented and compared
with other semi-supervised learning algorithms in the next section.

5.5 Performance Comparison of Semi-supervised
Learning Algorithms

In the previous section, the main focus of a presentation is on the CM and
GRFM which are often referred to as the manifold approaches in the field of
semi-supervised learning. This is because both algorithms tried to explore the
manifold structure of the data set. Recently several other approaches to the
semi-supervised learning were also proposed. This section compares the Low
Density Separation (LDS) algorithm as given in [29], with CM and GRFM
as introduced in the previous sections. Benchmarking LDS is challenged and

146 5 Semi-supervised Learning and Applications

it follows from the fact that Chapelle and Zien have shown its superiority
with respect to five other semi-supervised methods, namely to the SVMs,
manifold (similar to CM and GRFM), Transductive SVM (TSVM), graph
and Gradient Transductive SVM (∇TSVM). The LDS algorithm is an effi-
cient combination of the last two mentioned methods namely, of the graph
approach and ∇TSVM algorithm. In such a combination, one first calculates
the graph based distances that emphasize low density regions between clus-
ters, and then a novel Chapelle-Zien’s ∇TSVM algorithm which places the
decision boundary in the low density regions is applied. In the next section,
the main idea behind the graph-based distance and TSVM will be presented.

5.5.1 Low Density Separation: Integration of Graph-Based
Distances and ∇TSVM

The LDS algorithm is developed on the strong belief that the cluster as-
sumption for the data is necessary for a development of the successful semi-
supervised learning algorithm. The cluster assumption is also present in the
foundation of both the CM and GRFM algorithms, and in this respect all
three methods are similar. The LDS algorithm is a two steps procedure - in
the first step one calculates the graph-based distances that emphasize low
density regions between clusters and, in the second part, by using the gradi-
ent descent, one optimizes the transductive SVM which places the decision
boundary in low density regions. The latter is the property of the algorithm
that gives its name.

The graph-based distance used in the LDS algorithm is based on the con-
nectivity kernel developed in [52] for clustering. The basic idea of this kernel
is to assign higher similarity between the two points if the paths joining these
two points do not cross region with low data density. As shown in Fig. 5.12(a),
a path is likely to go through a low density region if the longest link of the
path is larger. Let Pij denote all paths from xi to xj . In order to make points
which are connected by “bridges” of other points more similar, [52] define for
each path p ∈ Pij the effective similarity dp

ij (in this case will be the Euclidean
distance) between xi and xj connected by p as the maximum weight on this
path, i.e. the longest and weakest link on this path. The total dissimilarity
between xi and xj is then defined as the minimum of all path-specific effective
dissimilarities:

d(i, j) = min
p∈Pij

(max
1≤k≤|p|−1

d′(pk, pk+1)), (5.11)

and the connectivity kernel is given as

k(xi,xj) = c · exp

[
− 1

2σ2

(
min

p∈Pij

(max
1≤k≤|p|−1

d′(pk, pk+1))
)2
]

. (5.12)

Because the kernel value does not depend on the length of a path, it is possible
to have a group of outliers to act as a ‘bridge’ between two separated clusters

5.5 Performance Comparison of Semi-supervised Learning Algorithms 147

(a) Two clusters are separated
by region of low data density.

(b) Two cluster are connected
by bridge of outliers.

Fig. 5.12. The basic idea of a connectivity kernel. (a) Two points A and B from
different clusters are separated by a region of low data density. This region can be
detected by the fact that the longest link d(A, B) in the path pAB is longer than
the longest link d(A, C) in the path connecting A and C. (b) Two clusters are now
connected by a bridge of outliers. This makes d(A, B) having the same length as
d(A, C) as in (a). As a result, point A and B will be considered as in the same class.
However, by taking the path length into account, the path length between A and B
is longer than the one between A and C. Hence, it is possible to tell that A and B
belong to different clusters.

as shown in Fig. 5.12(b). To prevent this problem, [29] soften the ‘max’ in
(5.12) by replacing it with

smaxρ(p) =
1
ρ

ln

⎛
⎝1 +

|p|−1∑
k=1

(
eρd(pk,pk+1) − 1

)⎞⎠ . (5.13)

Thus the ρ-path distance matrix Dρ
ij [29] is given as:

Dρ
ij =

1
ρ2

ln

⎛
⎝1 + min

p∈Pij

|p|−1∑
k=1

(
eρd(pk,pk+1) − 1

)⎞⎠2

. (5.14)

The resulting distance matrix Dρ is in general not positive definite, therefore
[29] applied classical Multidimensional Scaling (MDS) to matrix Dρ in order
to form a new representation of the input vectors xi. More details on this
part of the algorithm can be found in [29]. Once a new representation of xi is
obtained from MDS, it is used as the input to ∇TSVM or TSVM for training.

TSVM was first proposed in [144] and implemented in [79] and [19]. It is an
extension of SVMs to solve semi-supervised learning problem. The main idea

148 5 Semi-supervised Learning and Applications

behind TSVM is to find the hyperplane that separates both labeled and un-
labeled data with maximum margin as demonstrated in Fig. 5.13. Therefore,
TSVM is aimed at minimizing the following functional,

min
1
2
w2 + C

l∑
i=1

ξi + C∗
u∑

j=1

ξ∗j (5.15a)

s.t. yi(w · xi + b) ≤ 1 − ξi 1 ≤ i ≤ l (5.15b)
y∗

j (w · xi + b) ≤ 1 − ξ∗j l + 1 ≤ i ≤ n , 1 ≤ j ≤ u, (5.15c)

where y∗
j ∈ {−1,+1} is the (in the course of an iterative solving) assigned

label of the j-th originally unlabeled data point, ξ∗j is the slack variable for
the unlabeled data and C∗ is the penalty parameter for the slack variable ξ∗.

Fig. 5.13. The solution of TSVM. The separating hyperplane from SVMs (dash line)
is based only on the two labeled points (points with + and -) in the figure, whereas
the solution from TSVM (solid line) is based on all the labeled and the unlabeled
ones (solid points). The TSVM is aimed at finding the separating hyperplane which
gives maximum margin on both labeled and unlabeled data.

The main difference between TSVM and the SVMs presented in the previ-
ous chapters is on the second inequality constraint (5.15c) which is applied to
the unlabeled data. This constraint makes the cost function of TSVM being
non-convex and difficult to solve [79, 31]. This is due to the fact that the label
of the unlabeled data y∗

i is unknown. Thus, to find the globally optimal solu-
tion for TSVM, in theory, one needs to try out all the possible combinations
of y∗

i and find the combination of y∗
i that gives the separating hyperplane

with maximum margin as shown in Fig. 5.13. It is clear that the problem
is NP hard and that it can not be solved when the size of the problem is
too big. Therefore, various optimization algorithms have been developed for
solving a TSVM optimization problem by using different heuristics. In [79] a
version of the TSVM algorithm which first labels the unlabeled points based
on the classification of a SVM designed from all the initially labeled data was

5.5 Performance Comparison of Semi-supervised Learning Algorithms 149

proposed. Then the switching of labels of the initially unlabeled data with
heuristics to reduce the objective function take place and so on. This ap-
proach is implemented in the software SVMlight [78] and it extends the limit
of TSVM to more than 10000 data points. Previously, it was not possible to
achieve this by using a branch-and-bound solver [79]. However, a major draw-
back of Joachims’ algorithm is that the proportion of data that belongs to
the positive and the negative classes needs to be specified for the algorithm in
advance and this is usually an unknown parameter. Although the progressive
TSVM proposed in [31] is aimed to resolve this problem, it is not clear how
the solutions obtained by TSVM algorithms are close to the globally optimal
solution. In summary, the second constraint of TSVM limits the application of
TSVM algorithms to small and medium size problems only and it also makes
the finding of the globally optimal solution intractable.

The ∇TSVM [29] is the latest variant of TSVM algorithm aiming at the
solution of the TSVM optimization problem more effectively. The main idea
is to perform a gradient descent on the cost function (5.15a) and approximate
the non-differentiable part of the cost function (5.15c) with an exponential
function (more details can be found in [29]). The simulation results in [29]
show that the ∇TSVM algorithm outperforms the original TSVM algorithm
proposed in [79] and it also indicates that the solution from ∇TSVM may
be closer to the global solution. By combining the graph-based distance and
∇TSVM together to form the LDS algorithm, [29] shows that their LDS out-
performs five other state of the art semi-supervised learning algorithms in-
cluding a manifold approach which is similar to the two manifold approaches
(CM and GRFM) mentioned in the early part of this chapter. However, the
manifold approach used in [29] did not take into account the normalization
step and also the fact that the connectivity kernel may be better than RBF
kernel used in manifold approaches in some problems. In the next section,
details on how to combine graph-based distance and the manifold approaches
together to form a new class of algorithm will be presented and compared
with the LDS.

5.5.2 Combining Graph-Based Distance with Manifold Approaches

Both manifold approaches are based on the belief that ‘adjacent’ points and/or
the points in the same structure (group, cluster) should have similar labels.
This can be seen as a form of regularization [130] pushing the class boundaries
toward regions of low data density which is similar to LDS. This regularization
is often implemented by associating the vertices of a graph to all the (labeled
and unlabeled) samples, and then formulating the problem on the vertices of
the graph [87]. Both algorithms have similar property of searching the class
boundary in the low density region and in this respect they have similarity
with the ∇TSVM method too. Thus, it is somehow natural to compare the
different algorithms developed around the same principles. This leads to the
use of both the CM and GRFM to the same data sets as in Chapelle-Zien’s

150 5 Semi-supervised Learning and Applications

Algorithm 5.3 Combining Graph and the Manifold methods
1. Build a fully connected graph with edge length Wij = exp(ρd(i, j)) − 1).
2. Use Dijkstra’s algorithm to compute the shortest path lengths dSP (i, j)

for all pairs of points.
3. Form the matrix Dρ of squared ρ-path distances by Dρ

ij = (1
ρ log(1 +

dSP (i, j)))2.
4. Apply Multidimensional scaling on the matrix Dρ (step 4 to 6 of the LDS

algorithm in [29]) to produce a new representation of xi.
5. Treat the new representation of xi as the input to the manifold approaches

(Algorithm 5.1 and 5.2) and predict the labels of the unlabeled data. Note
that the affinity matrix W is still computed by using an RBF function.

paper. Similarly, it was a natural idea to replace the second part of the LDS
(namely the ∇TSVM part) by both the CM and GRFM algorithm. Thus, the
last two algorithms compared in this section (and dubbed here with a prefix
Graph &) are the combinations of the graph-based distances with the CM and
GRFM. (Recall that the LDS algorithm is the combination of the graph-based
distances with the ∇TSVM method). More precisely, both CM and GRFM
are applied to a new representation of xi which is computed by performing
multidimensional scaling to the matrix of squared ρ-path distances Dρ, i.e.,
steps 1 to 6 of the LDS algorithm in Chapelle-Zien’s paper are used and then
followed by CM or GRFM. The algorithm is shown in Algorithm 5.3.

5.5.3 Test Data Sets

In this work, the same five data sets used in [29] are used for comparing
the performances of various semi-supervised learning algorithms. Data are
available at [28]. An overview of the data sets can be found in Table 5.1.

The coil20 data set consists of grey-scale images of 20 different objects
taken from 72 different angles [103]. It is used for evaluation of classifiers that
detect objects in images. g50c is an artificial data set and it is generated from
two standard normal multi-variate Gaussians. The means of the two Gaussians
are located in a 50 dimensional space such that the Bayes error is 5%.

Table 5.1. Summary of Test Data Sets

Data Set Classes Dims Points labeled
coil20 20 1024 1440 40
g50c 2 50 550 50
g10n 2 10 550 50
text 2 7511 1946 50
uspst 10 256 2007 50

5.5 Performance Comparison of Semi-supervised Learning Algorithms 151

In contrast, g10n is a deterministic problem in 10 dimensions where the
cluster assumption does not hold. The text data set is part of the 20-newsgroup
data set and it contains the classes mac and ms windows. It is pre-processed
as in [135]. The uspst data set contains the test data part of the well-known
USPS data on handwritten digit recognition.

Although the same data sets are used, the test setting used in this work
is slightly different than the one implemented in [29]. In order to make the
results statistically more significant, the mean error rates (for the manifold
approaches here) were calculated using 50 random splits of labeled and un-
labeled data. The only exception is for the coil20 data. In this data set, the
four manifold algorithms under the investigation were applied to the same
10 random splits used in [29](the indices of labeled data and unlabeled data
used are made available with the data sets). The reason for such a test setting
is due to the fact that [29] selected 2 labeled data from each class, i.e., the
labeled data is balanced in each class and this may also alter the outcome of
the simulations.

In terms of model’s parameters selections, and in order to reduce the com-
putational time, we fixed some of the parameters in the algorithms and only
considered combinations of values on a finite grid for the rest of the parame-
ters. For the original CM methods, we fixed the α parameter in Sect. 5.2.2 to
0.99 and we only varied the σ parameter which determines the width of the
Gaussian functions used in calculation of the affinity matrix W.

Because the 2σ2 value plays a major role to the performance of the mani-
fold algorithms, we tried to find the optimal value of 2σ2 between 0.005 and
200,000. However, it is important to point out that in some problems, it is
not possible to solve the problem for 2σ2 being a small value such as 0.005,
because the conditional number of the Laplacian and the normalized Lapla-
cian matrices used in the GRFM and the CM algorithms respectively, will
be very high and, consequently there will be problems with their inversions.
In terms of the graph-based distance approach used in the LDS methods, we
only tested the approach with values of ρ equal to 1, 4 and 16.

Also, the Chapelle-Zien’s parameter δ is fixed at 0.1 and a full graph was
used to construct the matrix Dρ of squared ρ path distances in (5.14). For
all data sets, except for the coil20 one, 10 and 100 nearest neighbors are
used for a construction of the affinity matrix W which is needed for CM
and GRFM. In the coil20 data, the use of the 10 nearest neighbors would
not produce a fully connected affinity matrix and only until the number of
the nearest neighbors exceeds 80, a fully connected affinity matrix could have
been generated. The normalized versions of the CM and the GRFM proposed
in Sect. 5.4 [70, 74] have also been used in the simulations. All simulations
in this work (except for the experiments on coil20 where a MATLAB based
code was used) are generated using the software package SemiL [75] which
is a software package designed to solve large scale semi-supervised learning
problems using CM and GRFM. For the simulations that require calculation
of graph-based distances, MATLAB based code from Chapelle and Zien was

152 5 Semi-supervised Learning and Applications

used to generate a new representation of xi. The new representation of xi is
then the input for a SemiL routine. Note that the rec data set is not used for
comparison, because the computational time for the LDS is quite high and
the MATLAB implementation from [28] is not suitable for problem such as
rec data set.

5.5.4 Performance Comparison Between the LDS and the
Manifold Approaches

Table 5.2 shows the lowest error rates achieved by CM and GRFM based
approaches for all the five data sets included in this study. The results for the
LDS methods have been taken directly from [29] with 10 random splits and
they are used as references. Basic observations are as follows. First, both CM
and GRFM preceded by the calculation of the graph-based distances are better
for the multi-class problems than LDS, while the latter one is (slightly) better
for the two-class ones. Second, for the two-class problems, the performance of
GRFM is close to the results of LDS, and taking the stricter testing criterion
used in our experiments (50 random runs compared to 10 ones in Chapelle-
Zien’s paper) they may be even, or there might be some advantages for the
GRFM method as long as the cluster assumption for the data is fulfilled. For
the g10n data set, without the cluster structure, LDS performs much better
than manifold methods as expected.

Table 5.2. Comparisons of the mean test error rates of five semi-supervised algo-
rithms (n stands for normalized).

Data set LDS CM Graph & CM GRFM Graph & GRFM
coil20 4.86 8.9 1.5 9.83n 2.9
g50c 5.62 7.52n 7.38n 6.56n 6.84n

g10n 9.72 22.29n 23.66n 17.93n 20.8n

text 5.13 13.6n 13.09n 7.27n 7.33n

uspst 15.8 9.74n 8.75n 10.69n 9.3n

For the coil20 data set, the lowest error rate of only 1.5% is achieved
by combining the graph-based distances and the CM. The improvement in
performance as a result of using the graph-based distances for CM and GRFM
is quite significant in this case from 8.9% to 1.5% (6 times better) and 9.83%
to 2.9% (3.3 times better) respectively. In this data set, both manifold based
algorithms outperform the LDS approach and this coincides with the fact
that manifold method used in [29] performs better than ∇TSVM which is the
backbone of the LDS method. The normalized model did not perform as well
as the non-normalized model in this case. This can be attributed to the fact
that the 2σ2 value used here is very small (2σ2 = 0.005) as well as to the use
of balanced labeled data

5.5 Performance Comparison of Semi-supervised Learning Algorithms 153

For the g50c data set, the LDS method performs the best. However, the
difference in performance between the manifold methods and the LDS method
is much closer (6.56% vs 5.62%) than the difference (17.3% vs 5.62%) shown in
[29]. Similarly, in the text data set, the performance difference is also reduced
from 11.71% vs 5.13% to 7.33% vs 5.13%. These changes are attributed mostly
to the normalization step that lowered the error rate by significantly reducing
the effect of the unbalanced data. Also, the error of 7.33% was obtained by
the GRFM method that implements Laplacian matrix.

The use of the graph-based distance does not significantly alter the perfor-
mance in all the data sets except for the coil20 data and partly for the uspst
data. The same phenomenon is presented in Chapelle-Zien’s paper too. This
may be due to the fact that the idea of the connectivity kernel is developed
from the image grouping problem [51] and both the coil20 and the uspst data
sets contain the images of different objects.

For the g10n data set, the performance of the LDS is better than the
results of the manifold methods. This particular data set is generated in such
a way that the cluster assumption does not hold. Therefore, it is not surprising
that the manifold methods, relying strictly on the cluster assumption, have
higher error rate. In contrast, LDS which is based on the ∇TSVM performs
much better than the manifold approaches. This may be due to the fact that
∇TSVM is based on the idea of SVMs’ margin maximization which does not
rely on the cluster assumption. Also, the incorporation of the graph-based
distances does not help for the non-clustered data very much.

In the uspst data set, the normalized version of CM with graph-based
distances achieved the lowest error rate of 8.75%. Also, the performances of
all the manifold methods (with or without using the graph-based distances)
are significantly better than the performance of the LDS method. This is again
attributed to two causes; first manifold algorithms perform better for multi-
class problems and second the normalization step helps in the case of the
unbalanced labeled data. In this multi-class problem the use of graph-based
distances also improves the performance of both CM and GRFM methods.

The simulation results in this work suggest that incorporating graph-based
distances to semi-supervised learning methods can bring more or less sub-
stantial performance improvement in the multi-class problems only. These
improvements can be found not just for the ∇TSVM as shown in [29], but
also for the manifold approaches used here.

Another interesting phenomenon is that using the graph-based distance
with the manifold methods works the best when the value of ρ is in the lower
region, meaning either 1 or 4 for all data sets. More investigations are needed
to explain this behavior.

The reason why the manifold approach is better in the multi-class prob-
lems may be due to the fact that the manifold approaches perform global
optimization over all n classifiers, while the ∇TSVM designs separately n
classifiers by maximizing the margin of each classifier. The cost function of
∇TSVM is non-convex [79], and it always finds some suboptimal solutions for

154 5 Semi-supervised Learning and Applications

each particular classifier. In addition to that, it is well known that the sum
of suboptimal solutions can not and does not produce an overall optimum.
Hence, the performance of ∇TSVM will not be as optimal as the manifold
approach in multi-class problems.

5.5.5 Normalizatioin Steps and the Effect of σ

From Table 5.2 it is clear that the normalized models dominated in the most of
the data sets. Thus, it is important to know when and how the normalization
step should be applied to the manifold algorithms. In Sect. 5.4 and 5.3, it is
shown that the effect of the unbalanced labeled data is more significant to the
performance of the CM and the GRFM algorithm on the rec data set. During
the extensive simulations on the five data sets tested in this section, a very
clear relationship between the size of the σ parameters and the performance
of the normalized model is observed across all the data sets. Figure 5.14 shows
the performance of the normalized CM and non-normalized CM with various
σ parameters on a 10 nearest neighbor graph for the uspst data set. The
performances of both models stay relatively constants, as the size of σ gets
larger than a certain value.

However, with a larger σ parameter, the performance of the normalized
model (error rate is 12%) is far more superior to the one of the non-normalized
model (error rate is 30%). In contrast, the performance of the non-normalized
model is better than the one of the normalized model when σ is relatively
small. This means that the effect of the unbalanced data discussed in the
previous sections [74] is more noticeable as the size of σ gets larger. This phe-
nomenon can be explained as follows: when the σ value is large, the influence
of the distance between the data points becomes less important, because in
such a setting even a distant pairs of point will have relatively large similarity
in the affinity matrix W. As a result, this will make the classification of the
unlabeled point dominated by the number of labeled points in each class. The
normalized procedure tries to remove this effect by standardizing the output
of F. This also explains why the non-normalized models perform better than
the normalized ones in the coil20 data sets. This is because the size of 2σ2

used is only 1.7% of the mean value of the non-zero element in the W matrix.
The result shown in this section provides some guidelines as to when the

normalization step can be used in relation with the σ parameter in order to
obtain better performance. It also shows two possible zones where the σ para-
meter is optimal. For a given problem, one needs to compare the performance
of the normalized model with relatively large σ, to the non-normalized model
with relatively small σ and the better model should be used.

5.6 Implementation of the Manifold Approaches

The results presented in this chapter can not be made possible without the
use of software package SemiL which is developed as part of this work [75].

5.6 Implementation of the Manifold Approaches 155

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

Relative size of Sigma

E
rr

or
 r

at
e

in
 %

Normalized Consistency Method
Consistency Method

Fig. 5.14. The effect of a normalization step and the size of σ parameter on the
uspst data set. The relative size of σ is calculated by finding out the ratio between
2σ2 and the mean value of all the non-zero elements in the affinity matrix W.

SemiL is an efficient large-scale implementation of the manifold approaches
discussed in this chapter. In this section, some of the important issues for
implementing the manifold approaches will be discussed.

5.6.1 Variants of the Manifold Approaches Implemented in the
Software Package SemiL

SemiL is capable of applying not only the two basic models presented in
sections 5.2.1 and 5.2.2, but also ten other models [111] which are variants of
the two basic models in real world problems. In this section, a brief overview
of these models will be presented. Formulations that are derived and used in
SemiL in order to accommodate all the models efficiently will also be given.

Tables 5.3 and 5.4 show formulations of all the models implemented in
SemiL. The models are classified by the following attributes:

• Standard or Normalized Laplacian: As mentioned previously, the model
that has the standard Laplacian matrix L = (D − W) uses the hitting
time as a measure of closeness between the labeled and the unlabeled
data. In contrast, the model that has normalized Laplacian L = (I − αS)
uses the normalized commute time as a measure of distance. Note that for
all the models with normalized Laplacian in the Table 5.3 and 5.4 α = 1,
i.e. L = (I − S).

156 5 Semi-supervised Learning and Applications

Table 5.3. Models implemented in SemiL with hard labeling

Model Standard Laplacian Normalized Laplacian

Basic Model
min FT LF* min FTLF

s.t. Fl = Yl s.t. Fl = Yl

Norm Constrained
min FT LF + µFT

u Fu min FTLF + µFT
u Fu

s.t. Fl = Yl s.t. Fl = Yl

Bound Constrained

min FT LF min FTLF

s.t. Fl = Yl s.t. Fl = Yl

−C ≤ Fu ≤ C −C ≤ Fu ≤ C

* Harmonic Gaussian Random Field Model from [160].

Table 5.4. Models implemented in SemiL with soft labeling

Model Standard Laplacian Normalized Laplacian

Basic Model
min FT LF min FTLF

+λ(Fl − Yl)
T (Fl − Yl) +λ(Fl − Yl)

T (Fl − Yl)

Norm Constrained
min FT LF + µFT

u Fu min FTLF + µFT
u Fu

+λ(Fl − Yl)
T (Fl − Yl) +λ(Fl − Yl)

T (Fl − Yl)
*

Bound Constrained

min FT LF min FTLF

+λ(Fl − Yl)
T (Fl − Yl) +λ(Fl − Yl)

T (Fl − Yl)

s.t. −C ≤ F ≤ C s.t. −C ≤ F ≤ C

* Consistency Method from [155].

• Hard Labeling or Soft Labeling approaches: Models with a hard labeling
approach have to fulfill the equality constraint Fl = Yl. This means that
the initial labels of the labeled data must not be changed after the training,
i.e., labels are fixed to either +1 or -1 for the initially labeled data. In
contrast, the soft labeling approach allows the initial labels of the labeled
data to be changed, i.e., in an extreme case, it is possible that the model
produces a label which is different from the initial label of the labeled
data. The size of the penalty parameter λ is used to control how close is
the output of the labeled data Fl to the initial label Yl.

• Norm Constrained Model: The idea behind the norm constrained model is
to make the size of the output F decreasing sharply beyond class bound-
aries [111]. This constraint is applied by adding an extra term ‘µFT F’ to
the cost function and it is controlled by the penalty parameter µ. Cur-
rently, this constraint is applied only to the unlabeled data µFT

u Fu.
• Bound Constrained Model: The bound constrained model enforces box

constraints on the output F, so that F can only be in certain range. It has
been found [111] that using the box constraint may improve the perfor-
mance of the semi-supervised learning algorithms slightly.

To accommodate all the models into SemiL efficiently, the formulations
presented in Table 5.3 and 5.4 are slightly different from their original

5.6 Implementation of the Manifold Approaches 157

formulations. For example, CM in Sect. 5.2.2 has both initially labeled points
and unlabeled points within the fitting constraint (λ(F − Y)T (F − Y)) of
(5.3a). Given that Yu = 0 for the initially unlabeled points, the fitting con-
straint in (5.3a) is also equal to λ(Fl − Yl)T (Fl − Yl))+λFT

u Fu, i.e., this
fitting constraint can be viewed as a fitting constraint on the labeled data
and a norm constraint on the unlabeled data. Instead of solving the linear
system (I − αS)F = Y, the following linear system is solved in SemiL:

∂Q
∂F

∣∣∣∣∣
F=F∗

= F∗ − SF∗ +
[

λ(F∗
l − Yl))
λF∗

u

]
= (I + λI − S)F∗ − λY = 0
⇒ (I + λI − S)F∗ = λY.

(5.16)

The solution of the linear system (5.16) is the same as the solution of equation
(5.5). For the model where λ and µ are different from each other, the following
system is solved,

(I + [λl µu]T I − S)F∗ = λY, (5.17)

where λl is a row vector of length l and µu is a row vector of length u. The
reason for using equation (5.17) in SemiL instead of equation (5.5) is that
the parameter selection on λ and µ can be implemented more efficiently. To
change from one parameter setting to another, one only needs to update the
diagonal of the Laplacian or the normalized Laplacian matrices. As a result,
the diagonal of the Laplacian or normalized Laplacian matrices are stored
separately in SemiL to fully utilize this advantage. In contrast, solving equa-
tion (5.5) with a different α parameter, one needs to update the complete
S matrix. Therefore, solving equation (5.17) makes a huge saving in terms
of computational time and the amount of memory required when perform-
ing model selection. Note, however, that all the results presented previously
are obtained by using two basic models only, namely, the Basic Model with
Standard Laplacian for a GRFM method from Table 5.3 and the Norm Con-
strained Model with Normalized Laplacian for a CM method from Table 5.4
(these models are marked by star in the corresponding tables). The rest of the
10 models are left for the interested readers to explore and study.

5.6.2 Implementation Details of SemiL

As mentioned previously, SemiL can apply all 12 different models listed in
Tables 5.3 and 5.4. A detailed flow chart is shown in Fig. 5.15, which presents
the flow of information and different processes in SemiL. The process of apply-
ing the manifold approaches in both tables (5.3 and 5.4) can be divided into
two steps. The first step is to compute the graph that is needed for the model

158 5 Semi-supervised Learning and Applications

Solve the systme
with sparse CG

Produce output
for the unlabelled

data

Define parameters
associated with the

model

Does the distance
matrix need to be

computed?

No

Load the
precomputed

distance
matrix

Construct the k-
nearest neighbors

sparse graph matrix
(Laplacian or
Normalized
Laplacian)

Is the data
sparse?

No

Yes

Compute distance
(normal, or cosine)
matrix with BLAS

Compute
distance (

Euclidean or
cosine) matrix

with sparse dot
product

Construct the k -nearest
neighbors sparse graph

matrix

Dense
input data

Read the data in
and store it as
dense format
variables in

memor y

Sparse
input data

Read the data in
and store it as
sparse format
variables in

memor y

Save k-nearest
neighbors

distance matrix
into file

Yes

Select the model of
semi-supervised

learning to be used

Fig. 5.15. Flow chart of software package SemiL.

5.6 Implementation of the Manifold Approaches 159

selected by the user. There are two types of graphs implemented in SemiL,
namely, the Laplacian and normalized Laplacian. In the second step, the cor-
responding system of linear equations is solved using a conjugate gradient
(CG) solver.

Because SemiL is aimed to implement manifold approaches for solving
large-scale problems on PCs, it is designed in such a way that the memory
requirement is kept at a minimum, but at the same time the speed of obtaining
a solution is maximized. To achieve this goal, SemiL is optimized to work
on the k -nearest neighbors graph, i.e., when constructing the affinity matrix
W, only the weights Wij of the k closest neighbors of each data point are
included. This means that the full affinity matrix is approximated by the k
closest neighbors graph. This approximation brings very significant amount
of saving in terms of computer memory and the computational time. For
example, the MNIST handwritten recognition problem has 60000 data points,
therefore it will need 28.8 gigabytes of memory to store its complete graph.
In contrast, for a 10 nearest neighbors (or 10 degrees) graph, it will require
only 12 megabytes of memory to store. The use of complete graph required
2400 times more memory than the use of 10 nearest neighbors graph in this
case, hence the amount of memory’s saving is enormous and it allows the
solving of relatively large-scale problems on a PC. To demonstrate how it
works, consider the W matrix in Example 5.2. If only the 2 nearest neighbors
are used, the W matrix is

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.46 0.04 0 0 0 0
0.46 0 0.46 0.04 0 0 0
0.04 0.46 0 0.46 0 0 0
0 0.04 0.46 0 0.04 0 0
0 0 0 0.04 0 0.04 4.0e − 06
0 0 0 0 0.04 0 0.04
0 0 0 0 4.0e − 06 0.04 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.18)

and the nonzero elements of the matrix are stored in a sparse format as [row
index, column index,value] [15]. For a given problem, SemiL will first work
out the k -nearest neighbors for each data points, then in order to keep the
matrix W symmetric, some elements need to be copied from one side of the
diagonal to another. After this step, SemiL will check whether the W matrix
is a connected one or not. A connected graph has the property that any given
vertex (point) can reach any other vertex (point) on the graph. This is a very
crucial condition to check, because using an unconnected graph means that it
is possible to have some parts of the unlabeled data still remaining unlabeled
after the learning. Those unlabeled data are isolated and can not be reached
by other points. In the case of (5.18), the matrix W will produce a connected
graph. If the k -nearest neighbors graph is not connected, then one should
increase the value of k so that the graph is connected.

160 5 Semi-supervised Learning and Applications

Although the use of the k -nearest neighbors graph reduces the memory
requirement significantly, one still has to compute the complete pairwise dis-
tance matrix E (n by n) first in order to construct the k -nearest neighbors
graph. The distance measurement used in the matrix E can be Euclidean
or cosine distances. This step can be very time consuming if the software is
not optimized thoroughly. To overcome this problem, SemiL provides a sparse
and a dense format for inputting data. Inputting data in the sparse format
can save considerable amount of time when computing the pairwise distance
matrix and it is particularly useful in the text classification problem, because
each document vector xi generally has small percentage of nonzero elements.
Therefore, storing the data set in the sparse format may not only reduce the
computational time but also reduces the amount of space to store the doc-
ument vectors. To evaluate pairwise Euclidean distances between two data
points stored in the sparse format, the following identity is used:

‖xi − xj‖2 = xi · xi − 2xi · xj + xj · xj . (5.19)

The first term xi · xi and the last term xj · xj are pre-computed and stored
at the beginning for each input vector, hence only the middle term 2xi · xj

is calculated during each iteration. To improve the efficiency of computing
the middle term, a scatter-and-gather matrix-vector product is used to work
out the middle term between xi and the rest of the data points, i.e., for i=1,
SemiL evaluates XT x1 where X = [x1x2 . . .xj] and XT x1 is equivalent of
evaluating x1 · xj for j = 1 to n. The scatter-and-gathering matrix-vector
product is an efficient way of computing matrix-vector product for sparse
vectors and matrices. The main idea is to first scatter the sparse vector into
a full length vector, then looping through the non-zero element of the sparse
matrix to evaluate the matrix-vector product. This strategy can explore the
pipeline effect of the modern CPU to reduce the number of CPU cycles and
save computational time. Similar strategy is used in evaluating cosine distance
as well.

In terms of computing the pairwise distance matrix E with dense data
format for Euclidean distance, Equation (5.19) is used again and Intel BLAS
routines are used extensively. In order to use level 3 BLAS routines (the
most efficient level of routines in all three levels), the pairwise dot products
are computed in batch using level 3 BLAS routine gemm, which calculates
the matrix-matrix product of two general matrices, with a predefined cache
size c (in megabytes) by the user. The size of the batch nb is determined by
nb = (1048576∗c)/(n∗8) where 1048576 is the number of bytes in a megabyte
and the number 8 is due to the double-precision (each element takes 8 bytes
to be stored). The gemm is used to calculate the matrix-matrix product of
the following equation

5.6 Implementation of the Manifold Approaches 161

XnbX =

⎡
⎢⎣ xk1 · · · xkm

...
...

...
x(k+nb−1)1 · · · x(k+nb−1)m

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x11 · · · · · · x1n

...
...

...
...

...
...

...
...

...
...

...
...

xm1 · · · · · · xmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= B, (5.20)

where Bij is equal to the cross product xk · xj with i = 1 . . . nb, j = 1 . . . n,
k = nb ∗ r + i and r is the current cycle. By dividing the total number of data
n with the batch size nb, SemiL can figure out how many cycles are needed
to complete the calculation. For example, with MNIST problem, if 300 MB
of memory is used as cache, then the batch size will be 655 and the number
of cycles is 92.

This approach can save a lot of time by utilizing the efficiency of the In-
tel BLAS routine and the memory available in a computer. As an example,
to work out the 10 nearest-neighbor graph for the MNIST problem with 300
megabytes of memory takes only about 2100 seconds on a Pentium 4 2.4 Ghz
computer. In contrast, if no cache is used and the pairwise dot products are
calculated with respect to one data point at a time using level 2 BLAS routines
only, it will take about 12000 (approximately 3.33 hours) seconds to finish.
Furthermore, if the BLAS routine was not used, it can take 33333 seconds
(approximately 9.25 hours) to complete. It demonstrates why in the develop-
ment stage of SemiL, a lot of efforts were focused on optimizing this part of the
software, so the cost of using manifold algorithms can be as low as possible.
It also makes the use of manifold algorithms on large-scale semi-supervised
learning problems more feasible and attractive. Similarly, the cosine distance
also benefits from this approach.

The core part of SemiL is an efficient sparse conjugate gradient (CG) solver
which is designed to solve the following linear system of equations with box
constraints.

Af = y (5.21a)
s.t. − C ≤ fi ≤ C, i = 1 . . . n (5.21b)

The matrix A above is either the k -nearest neighbors normalized Laplacian
or Laplacian matrix and it is symmetric and positive definite. The reason
for choosing a CG solver rather than ISDA, also developed in this work, is
because the strength of CG is more distinct when the matrix A is sparse
and the solution of f is dense. In contrast, ISDA developed in this work is
highly optimized for SVMs where the solution f is sparse and the matrix A
is dense. The popular Cholesky factorization for solving the system of linear
equations is also considered during the design of SemiL, but it was found
that the Cholesky factor R of the sparse matrix A can be a few dozen times
denser than the matrix A [111]. This means that extra storage is needed when
using Cholesky factorization and it is against the purpose of using k -nearest

162 5 Semi-supervised Learning and Applications

neighbor graph to reduce the memory footprint of the algorithm. In contrast,
the use of the CG algorithm only needs a storage of matrix A in order to
perform sparse matrix-vector product during each iteration. Therefore, CG
is regarded as the most suitable solver for applying the manifold approaches
discussed in this chapter to large-scale problems.

5.6.3 Conjugate Gradient Method with Box Constraints

The CG solver implemented in SemiL is based on a CG algorithm in [66] for
finding a nonnegative minimum point of the quadratic function given below.

Min Q(f) =
1
2
fT Af − yf + c (5.22a)

s.t. fi ≥ 0 i = 1 . . . n (5.22b)

The matrix A must be a positive definite one in order to have a unique
solution. The solving of (5.21) is similar to (5.22), because the Laplacian and
the normalized Laplacian matrices introduced in Sect. 5.2 are positive definite.
However, the only difference between the solving of (5.21) and (5.22) is the
constraint on fi. To solve (5.21), the algorithm in [66] must be extended to
take upper and lower bound into account. To the best of author’s knowledge,
the extension presented here is original. The CG algorithm that can take box
constraints into account is given in Algorithm 5.4 and the MATLAB code is
given in Appendix D.

To solve the constrained optimization problem (5.21), the optimality con-
ditions of the solution need to be established first. Similarly to the dual prob-
lem in SVMs, the following KKT conditions must be fulfilled at the optimal
solution f b∗ of the constraint optimization problem (5.21):

∂Q
∂fi

∣∣∣∣∣
fi=fb∗

i

≥ 0 for i in Ilo, (5.29a)

∂Q
∂fi

∣∣∣∣∣
fi=fb∗

i

≤ 0 for i in Iup, (5.29b)

∂Q
∂fi

∣∣∣∣∣
fi=fb∗

i

= 0 otherwise, (5.29c)

where Ilo is the set of indices such that f b∗
i = −C, Iup is the set of indices such

that f b∗
i = C. Note that the KKT conditions here need to be multiplied by

-1 to be same as the ones in SVMs, because the task is to find the minimum
of (5.22) not the maximum. These conditions can be illustrated graphically
by considering the problem of minimizing a 1-dimensional quadratic function
Q(x) = ax2 + bx + c (a, b, c > 0) with a box constraint −C ≤ x ≤ C as shown
in Fig. 5.16. In Fig. 5.16, in both case 1 and case 3 the global minimum xo

5.6 Implementation of the Manifold Approaches 163

Algorithm 5.4 Conjugate Gradient Method with Box Constraints.
Consider solving the system of linear equation (5.21a) with the box constraints
(5.21b).

1. Choose a point f (0) that satisfies the box constraints (5.21b), e.g. f (0) = 0. The
residue r(0) is used as the first search direction, i.e. d(0) = −∂Q/∂f = r(0) =
y − Af (0).

2. Let Ilos be the set of all indices i ≤ n such that

f
(0)
i = −C and r

(0)
i ≥ 0. (5.23)

In other words, Ilos contains the indices of f
(0)
i that fulfill the KKT conditions

(5.29a).
3. Let Iups be the set of all indices i ≤ n such that

f
(0)
i = C and r

(0)
i ≤ 0. (5.24)

In other words, Iups contains the indices i of f
(0)
i that fulfill the KKT conditions

(5.29b). If
∣∣∣r(0)

i

∣∣∣ < τ for all indices i that are not in either Iups or Ilos, then f (0)

is the solution of the optimization problem (5.21). The algorithm terminates.
4. Set d(0) = r̄(0), where r̄(0) is the vector having

r̄
(0)
i = 0 for i ∈ (Ilos ∪ Iups), r̄

(0)
i = r

(0)
i otherwise. (5.25)

5. Start with t = 0 and perform a standard CG step by computing the following:

a(t) =
d(t)T r(t)

d(t)T Ad(t)
, f (t+1) = f (t) + a(t)d(t), r(t+1) = r(t) − a(t)Ad(t). (5.26)

6. If f (t+1) is outside the feasible region (i.e. some f
(t+1)
i are either smaller than

−C or larger than C), go to step 7. Otherwise if
∣∣∣r(t+1)

i

∣∣∣ < τ for all i not in

(Ilos ∪ Iups), reset f (0) = f (t+1), r(0) = r(t+1) and go to step 2. Else compute
r̄(t+1) and d(t+1) as follows:

r̄
(t+1)
i = 0 for i ∈ (Ilos ∪ Iups), r̄

(t+1)
i = r

(t+1)
i otherwise, (5.27)

d(t+1) = r(t+1) + β(t)d(t), β(t) =

∣∣∣r̄(t+1)
∣∣∣2

d(t)T r(t)
(5.28)

Replace t by t + 1 and go to step 5.
7. Find η(t) using (5.30). Reset f (0) = f (t) + η(t)d(t) and r(0) = h−Af (0). Redefine

Ilos to be the set of all indices i ≤ n such that f
(0)
i = −C. Redefine Iups to

be the set of all indices i ≤ n such that f
(0)
i = C. If

∣∣∣r(0)
i

∣∣∣ < τ for all i not in

(Ilos ∪ Iups), go to step 2. Else go to step 4.

164 5 Semi-supervised Learning and Applications

of the function Q(x) = ax2 + bx + c (a, b, c > 0) is outside or just on the
boundary of the box constraints. As a result, the solution of the optimization
problem with box constraints is on the boundary of the feasible region, i.e.
x = −C for case 1 and x = C for case 3. The slope dQ

dx of the quadratic
function Q(x) = ax2 + bx + c in case 1 is greater or equal to zero at x = −C
which coincides with the first KKT conditions (5.29a). Similarly, the gradient
of the quadratic function Q(x) = ax2 + bx + c in case 3 of Fig. 5.16 is less
or equal to zero at point x = C (KKT conditions (5.29b)). In the case 2, the
solution is inside the feasible region. As a result, the gradient dQ

dx = 0 is equal
to zero at the optimal solution. This simple example also can be extended to
SVMs, but one needs to multiply the optimality conditions (5.29) by -1.

The active set approach is used here to extend CG for solving QP problems
with box constraints. An active set method solves a sequence of subproblems of
the same form as the original problem, but with some inequality constraints
assumed to be fulfilled with equality. In other words, some fi are assumed
to be equal to C or −C and they are excluded in the subproblem that are
currently optimized by the solver. In Step 2 and 3 of the Algorithm 5.4, the
variables that are on the boundary of the feasible region (either equal to C
or −C) and at the same time also satisfied the KKT conditions (5.29a) or
(5.29c) respectively are selected as the active set (Ilos ∪ Iups). Consequently
in Step 4, all search directions di whose indices i are in the active set are set
to zero, i.e. the algorithm will not move the intermediate solution f (t) in the
directions of f

(t)
i in the active set. As a result, f

(t+1)
i = f

(t)
i in Step 5 of the

Algorithm 5.4 for all indices i that are in the active set Ilos ∪ Iups. The Step
5 of the Algorithm 5.4 is the standard CG step for solving the unconstrained

� �

��
x = Cx = −C x

Q(x) Q(x)
�� ��dQ
dx > 0dQ

dx ≤ 0 dQ
dx < 0 dQ

dx ≥ 0

Case 1 Case 2 Case 3

Fig. 5.16. A 1-D example of KKT conditions. There are three possible cases where
the global minimum point of the function Q(x) is located 1) the point is below or
equal to the lower bound −C, 2) the global minimum point xo is between −C or C
(−C < xo < C), 3) the global minimum point is above or equal to the upper bound
C.

5.6 Implementation of the Manifold Approaches 165

QP problem such as (5.22a). Because the focus of this section is on extending
CG for solving QP with box constraints, the derivations of the equations used
in Step 5 will not be presented here. Interesting readers can refer to [122] for
an excellent introduction on the subject.

During the optimization process of the standard CG algorithm, it is highly
likely that the updating of the intermediate solution f (t) by (5.26) in Step 5 of
Algorithm 5.4 results in another intermediate solution f̄ (t+1) that is outside
the feasible region, i.e. some elements of f̄ (t+1) are either greater than C or
smaller than −C. There are several ways to resolve this problem. The most
common way is to find another intermediate solution f (t) which is on the line
joining f (t) and f̄ (t+1). The solution f (t+1) should be inside the feasible region
and at the same time it should give the greatest improvement on the objective
function. This is often done by working out a ratio η(t) which controls how
much of the solution should move from f (t) towards the intermediate solution
f̄ (t+1) along the search direction d(t), i.e. f (t+1) is calculated as f (t+1) = f (t) +
η(t)d(t) and a(t) in (5.26) is replaced by η(t). The optimal value of η(t) should
bring f (t+1) as close to f̄ (t+1) as possible in order to have largest improvement,
but at the same time f (t+1) should stay within the feasible region. As a result,
the optimal η(t) is calculated as follows:

u = k if
C − f

(t)
u

d
(t)
u

<
C − f

(t)
k

d
(t)
k

(u �= k) u, k ∈ Uv (5.30a)

l = k if
−C − f

(t)
l

d
(t)
l

<
−C − f

(t)
k

d
(t)
k

(l �= k) l, k ∈ Lv (5.30b)

η(t) =
−C − f

(t)
l

d
(t)
l

if
−C − f

(t)
l

d
(t)
l

<
C − f

(t)
k

d
(t)
k

else η(t) =
C − f

(t)
k

d
(t)
k

(5.30c)

where Uv is the set of indices i such that f
(t)
i > C and Lv is the set of indices

i such that f
(t)
i < −C. The procedure above can be visualized by a simple 2D

example in Fig. 5.17. In Fig. 5.17, the intermediate solution f̄ (t+1) violates the
box constraints on both f1 and f2 directions. In f1 direction, f̄ (t+1) exceeds the
upper bound C, whereas in the f2 direction, f̄ (t+1) exceeds the lower bound
−C. It is clear from the figure that the intermediate solution f (t+1) in step
t + 1 should be the one that has f

(t+1)
2 = −C, because it is the closest point

to f̄ (t+1) which is still inside the box constraints. As a result, the optimal η(t)

in Fig. 5.17 is (−C − f
(t)
2)/d

(t)
2 , because it is smaller than (C − f

(t)
1)/d

(t)
1 .

In other words, the solution f̄ (t+1) is clipped to the −C on the f2 direction
along d(t) instead of C in the f1 direction. The procedure above is used in
step 7 of Algorithm 5.4 when f (t+1) is outside the feasible region after the
updating in step 5. Each time only one fi will be clipped to either C or −C,
as a result it has a similar role as the clipping operation (3.9) of the ISDA.
The major difference is that more than one fi are outside the feasible region

166 5 Semi-supervised Learning and Applications

�

�

C−C

C

f1

f2

f t
�

� f̄ t+1

�
f t+1

Feasible Region

C − f t
1

−C − f t
2�

Fig. 5.17. A 2-D example to illustrate the procedure of enforcing the box constraints
in CG.

in CG. This algorithm can also be used for the optimization of SVMs by
changing the lower bound from −C to 0. However, it has the same weakness
as the active set method developed in [149] when the number of bounded SVs
increases. This is because the procedure (5.30) can only clip one variable at a
time and it is inefficient when many variables need to be clipped. In contrast,
the ISDA developed in Chap. 3 is more suitable in such a case, because the
clipping operation (3.9) is much cheaper. Finally, the algorithm terminates
as the KKT conditions (5.29) of all the data points are fulfilled within the
precision τ .

5.6.4 Simulation Results on the MNIST Data Set

In order to test the performance of SemiL and the manifold approaches, simu-
lations are performed on the popular handwritten recognition data set MNIST
used in the previous chapter. Because of the size of the data set, it is not fea-
sible to operate on the complete Laplacian matrix and only the 10 nearest
neighbors are used to approximate the graph. In Fig. 5.18, it is clear that the
normalized models perform better than the models without normalization and
the overall trend is very similar to Fig. 5.10. The normalized models achieve
very high accuracy of 98% with only 0.1% of the data being labeled. This again
shows the remarkable property of the semi-supervised learning algorithm to
be able to utilize the unlabeled points as well as the labeled ones. The LDS
method was not applied on this data set, because the Matlab implementation

5.7 An Overview of Text Classification 167

10 15 20 25 30 35 40 45 50 55 60
1

2

3

4

5

6

7

8

9
Simulation result On the Complete MNIST

Number of labeled data

E
rr

or
 r

at
e

in
 %

Norm. CM 2−CLASS method, width 0.3
CM 2−CLASS method, width 0.3
Norm. CM, width 0.3
CM, width 0.3
Norm. GRFM, width 0.3

Fig. 5.18. Simulation result on the complete MNIST data set. Error rates for CM
algorithm are based on 100 random trials, whereas the ones for GRFM are based
on 50 random trials.

of LDS from [28] is not capable of solving such a large problem on a PC due
to the time complexity and the memory requirement of the algorithm.

In terms of the computational time, the CM algorithm required much less
time than the GRFM algorithm in this data set. This is why only fifty random
experiments are performed on the GRFM. For each random experiment, CM
algorithm requires on average only 17 seconds, whereas the GRFM algorithm
requires on average 123 seconds. This is due to the fact that the condition
number of the normalized Laplacian matrix L is much lower (better) than
the Laplacian matrix L. As a result, it takes less time for the CG solver to
converge for CM than for GRFM. The reason for a better condition number is
partly due to the fact that when applying the norm constraint and the fitting
constraint in CM, the positive parameters λ and µ are added to the diagonal
of the normalized Laplacian matrix. This improves the condition number of
the normalized Laplacian matrix by making the diagonal element larger. The
result in this section suggests that CM algorithm may be more desirable than
GRFM when the size of the problem is large.

5.7 An Overview of Text Classification

In the last decade, there is an increase in interest on classification of docu-
ments into proper classes using computers. It is primarily due to the booming
of documents available in electronic format on the Internet which allows us to

168 5 Semi-supervised Learning and Applications

access millions or even billions of documents at any time and any place. How-
ever, having so much information available on the net also means that finding
the right information can be very difficult and time consuming. Therefore,
the development of an automated system which can label documents with
thematic categories from a predefined set has become a major research area.
In the research community, the dominant approach to this problem is based
on machine learning techniques such as support vector machines, artificial
neural networks and more recently semi-supervised learning algorithms. This
approach has several advantages over the knowledge engineering based ap-
proach which consists of manually building a set of rules for classification
by domain experts. First, the machine learning approach is faster, cheaper
and more reliable, because the computer will produce the classification rule
instead of human experts. Second, once the machine learning system is devel-
oped, it can be applied easily to problems in different domains, whereas the
knowledge engineering based approach will require different domain experts
for developing the classification rules. To use machine learning approaches,
the documents in electronic format need to be pre-processed first before sub-
mitting it into learning systems. Because a lot of the results in this part of the
work is first obtained in text classification problems, the aim of this section
is to explain the pre-processing steps used in this work to the readers who
do not have any background in text classification. The pre-processing steps
used here are the same as the ones in [155] and they are carried out using the
Rainbow package which is developed in [96].

As mentioned previously, machine learning algorithms such as SVMs can
not directly interpret texts, therefore the documents need to be converted into
a compact representation which can be understood by the machine learning
algorithm. This process is normally referred to as the indexing procedure.
Through the indexing procedure, a document dj will normally be represented
as a vector of term weights dj = (v1j , . . . , vT j), where T is the set of terms or
features that occur at least once in at least one document of all the documents
and the set D denotes all the n documents available for pre-processing. The
term weights vkj in each document can be regarded as how much term tk
contributes to the semantics of the document dj . There are many document
representations, and they are different in terms of how a term is defined in
the representation and also how the term weights are computed [50]. In this
work, each term is recognized as a unique word in the complete set of docu-
ments. This type of document representation is often referred to as the bag
of words approach which is a typical choice in this area. The simplest bag of
word approach is to represent each document by a vector of frequency count
of each term in the document. A more sophisticated bag of word approach is
used in this study for pre-processing of the text document and it is impor-
tant to note that using this approach, semantic qualities such as grammatical
structure of sentences and phrases will be neglected. Although this approach
looks very primitive and a lot of important information of the document is
filtered out during the indexing, in a number of experiments, it has been found

5.7 An Overview of Text Classification 169

that having a more complicated representations do not yield significantly bet-
ter performance [50]. In particular, some researchers have used phrases as
indexing terms rather than individual words [50]. Therefore, the following
pre-processing steps are applied to the text data using Rainbow package.

To generate a good representation of the document, all the words occurred
at least once in all the documents are first passed through the Porter stemmer
before counting them. The basic idea of using the Porter stemmer [117] is
to improve the performance of the classifiers by conflating words of similar
meanings into a single term. This may be done by removing the various suffixes
of words. For example, ‘connect’, ‘connected, ‘connecting’, ‘connection’ and
‘connections’ can be conflated into the term ‘connect’ by removing the various
suffixes such as ‘-ed’, ‘-ing’, ‘-ion’ and ‘-ions’ [117]. This step can be regarded
as reducing the dimensionality of the document representation, hence the
complexity of the problem is reduced and the classifier will be less likely to
overfit.

The second steps involved in tossing out any word which is on the stop list
of the SMART retrieval system. The stop list consists of 524 common words,
like ‘the’ and ‘of’ [96]. Because these words appear in all of the documents,
they will not have discriminative power. The headers of all the documents will
be skipped, it is because for a data set such as 20 newsgroup [89], the header of
each document consists of the class information, i.e., the label of the document.
The word that does not occur very frequently in all the documents will also
be removed to reduce the dimensionality of the document representation. The
final stage of the pre-processing step is to normalize each document using
Term Frequency Inverse Document-Frequency metric (TFIDF). The standard
TFIDF function is defined as [50]

TFIDF(tk, dj) = #(tk, dj) · log
n

#D(tk)
, (5.31)

where #(tk, dj) denotes the number of times the term tk occurs in dj , and
#Dr(tk) denotes the document frequency of term tk, that is, the number
of documents in D where tk occurs. This function tries to incorporate the
intuitions that the more often a term occurs in a document, the more it is
representative of its content, and also the more documents a term occurs
in, the less discriminating it is. The term weights from TFIDF function are
normalized into the range [0,1] by the cosine normalization [50], given as

vkj =
TFIDF(tk, dj)√∑T

s=1(TFIDF(ts, dj)2)
. (5.32)

After these steps the documents are ready for the machine learning algorithm
for training. Two paragraphs from two different topics (one related to SVMs
and another related to machine learning from [151]) in Fig. 5.19 are used to
demonstrate the preprocessing steps mentioned in this section.

170 5 Semi-supervised Learning and Applications

Support Vector Machines are the
latest development from statistical
learning theory. SVMs deliver state
of the art performance in real world
applications such as text categoriza-
tion, hand written character recogni-
tion, image classification, biosequen-
cies analysis, etc., and are now estab-
lished as one of the standard tools for
machine learning and data mining.

Machine Learning is an area of
artificial intelligence concerned with
the development of techniques which
allow computers to “learn”. More
specifically, machine learning is a
method for creating computer pro-
grams by the analysis of data sets.

Fig. 5.19. Two paragraphs are used to demonstrate the preprocessing of text data.
The paragraph on the left is related to SVMs and the one on the right is related to
machine learning.

machine 1 learning 2 development 1
analysis 1 data 1 support 1 vector 1
machines 1 latest 1 statistical 1 the-
ory 1 svms 1 deliver 1 state 1 art 1
performance 1 real 1 world 1 applica-
tions 1 text 1 categorization 1 hand
1 written 1 character 1 recognition 1
image 1 classification 1 biosequencies
1 established 1 standard 1 tools 1 min-
ing 1 are 2 the 3 from 1 of 2 such 1
as 2 and 2 in 1 etc 1 now 1 for 1 one
1

machine 2 learning 2 area 1 artifi-
cial 1 intelligence 1 concerned 1 de-
velopment 1 techniques 1 computers 1
learn 1 specifically 1 method 1 creat-
ing 1 computer 1 programs 1 analysis
1 data 1 sets 1 is 2 an 1 of 3 with 1
the 2 which 1 more 1 a 1 for 1 by 1

Fig. 5.20. All the unique terms and their corresponding frequencies of the two
paragraphs in Fig. 5.19. The left text box corresponds to the paragraph related
to SVMs and the one on the right corresponds to the paragraph about machine
learning. Note that the common words are listed in italic and there are 44 unique
terms in the paragraph about SVMs and 28 terms in the one about machine learning.

To visualize how the preprocessing steps are performed, the first step is
to treat the paragraphs as bags of words as shown in Fig. 5.20. After pass-
ing all the terms through the Porter stemmer and removing all the common
words that are in the stop list of SMART system, all the unique terms and
their corresponding frequencies are shown in Fig. 5.21. Note that the terms
“machine” and “machines” in the paragraph about SVMs are conflated into
the term “machin” in Fig. 5.21 by the Porter stemmer, as a result the term
“machin” has a frequency of 2. These two steps reduce the number of unique
terms from 44 to 31 for SVMs’ paragraph and from 28 to 16 for the one related
to machine learning.

The calculations of TFIDF values and the normalized TFIDF (vkj) for
some of the unique terms are listed in Table 5.5. For the term “machin”,
its TFIDF values in both paragraphs are zero, because the term log n

#D(tk)

5.8 Conclusions 171

machin 2 learn 2 develop 1 analysi 1
data 1 support 1 vector 1 latest 1 sta-
tist 1 theori 1 svm 1 deliv 1 state 1
art 1 perform 1 real 1 world 1 applic
1 text 1 categoriz 1 hand 1 written 1
charact 1 recognit 1 imag 1 classif 1
biosequ 1 establish 1 standard 1 tool
1 mine 1

machin 2 learn 3 area 1 artifici 1 in-
tellig 1 concern 1 develop 1 techniqu
1 comput 2 specif 1 method 1 creat 1
program 1 analysi 1 data 1 set 1

Fig. 5.21. All unique terms and their corresponding frequencies after passing all
the terms in 5.20 through the Porter stemmer and then removing all the common
words from the output of the Porter stemmer.

Table 5.5. Calculation of TFIDF values for some of the terms in Fig. 5.21.

terms
tk tk #D(tk) TFIDF TFIDF vkj vkj

(SVMs) (ML)a (SVMs) (ML) (SVMs) (ML)

machin 2 2 2 0 0 0 0

learn 2 3 2 0 0 0 0

area 0 1 1 0 0.30 0 0.27

artifici 0 1 1 0 0.30 0 0.27

intellig 0 1 1 0 0.30 0 0.27

develop 1 1 2 0 0.00 0 0

comput 0 2 1 0 0.60 0 0.53

support 1 0 1 0.30 0 0.45 0

vector 1 0 1 0.30 0 0.45 0

latest 1 0 1 0.30 0 0.45 0

statist 1 0 1 0.30 0 0.45 0

a Machine Learning

of TFIDF is equal to log 2
2 = 0. As a result, this term does not have any

role in the classification and this coincides with the intuition that the more
documents a term occurs in, the less discriminating it is. In contrast, the
term “support” has a vkj value of 0.45 in the SVMs’ paragraph and 0 in ML’s
paragraph, because it appears twice in the SVMs’ one, but not in the one
about machine learning.

5.8 Conclusions

The chapter presents the basic ideas of and the original contributions to the
field of semi-supervised learning, which is an introduction of the normalization
step into the manifold algorithms.

The extensive simulations on seven different data sets have shown that
an introduction of a normalization step as proposed in [70, 74] improves the

172 5 Semi-supervised Learning and Applications

behavior of both manifold approaches (namely, CM and GRFM) very signifi-
cantly in all of the data sets when the σ parameter is relatively large. In both
methods, the normalization of F∗ can improve the performance up to fifty
percents. Furthermore, the normalized models with large σ parameters are
significantly better than the unnormalized models with small σ parameters in
six out of the seven data sets tested. This result provides a strong evidence
to support the use of the normalization in the two manifold approaches dis-
cussed in this chapter. This improvement in performance from normalizing
the column of F∗ is achieved by removing the effects of unbalanced labeled
data. In the situation where the labeled data is unbalanced, the class with
less labeled data will be more disadvantageous: this is due to the fact that
the class with less labeled data will have a lower mean value at its output F∗

j .
The normalization step corrects this problem by standardizing the column of
F∗ to have mean of zero and standard deviation of one, so the output from
each classifier is treated equally.

Although the normalization step can improve the performance signifi-
cantly, it does not mean that it will work in all situations. The σ parameter
plays a crucial role on the effectiveness of the normalization step. During the
extensive simulations on all seven data sets, a very clear relationship between
the size of σ parameters and the performance of the normalized model is found
across all the data sets. With a relatively large value of σ, the performance
of the manifold approaches can be improved significantly. In contrast, when
a relatively small value of σ is more appropriate for a given data set, the nor-
malization procedure does not seem to provide significant improvements [73].
This also means that there are two possible zones where the σ parameter is
optimal (small σ without normalization or large σ with normalization). This
result gives some guidance when performing the model parameters selection
for the manifold approaches.

In terms of comparison with other semi-supervised learning algorithms on
the five benchmarking data sets, the results suggest that the manifold algo-
rithms have much better performance in both multi-class data sets (coil20 and
uspst), whereas the LDS performs slightly better for the two-class data hold-
ing cluster assumption. This may be due to the fact that the cost function of
the manifold approach is convex, whereas the one for ∇TSVM is non-convex.
Thus, the solution of ∇TSVM is not as optimal as the ones from manifold
approaches. For the two-class data set without cluster structure (g10n), the
LDS method performs much better than the manifold algorithms. The result
in this work suggests that the manifold algorithms may be more suitable for
handling multi-class problems than the LDS and ∇TSVM methods. This re-
sult also sheds the new light on the possible strength and weakness of the two
known approaches (manifold approaches and LDS) for future development.

By combining the graph-based distances and the manifold approach, the
performance of the algorithms is greatly improved in multi-class data sets only.
It seems that the use of the graph-based distances does not help the manifold

5.8 Conclusions 173

approaches for the two-class problems. More investigations are still needed to
determine the usefulness of graph-based distances to manifold approaches.

The very first efficient software implementation for large scale problems of
the manifold approaches was also developed as part of this work. The software
package SemiL has been successfully applied to many real world data sets in
this work and it is the backbone for this part of the work. It also demonstrates
that manifold approaches are cost-effective for solving large-scale problems.
The efficiency of SemiL has also made it a popular software for working in this
area at the point of writing (worldwide there are more than 100 downloads
per month of SemiL from its web site). The additional 10 models implemented
in SemiL provide a lot of potentials for future improvement on the manifold
approaches by exploring the impacts of the λ and µ parameters.

6

Unsupervised Learning by Principal
and Independent Component Analysis

Unsupervised learning is a very deep concept that can be approached from
different perspectives, from psychology and cognitive science to engineering
[106]. Very often it is called “learning without a teacher”. This means that a
learning human, animal or man-made system observes its surroundings and,
based on observations adapts its behavior without being told to associate given
observations to given desired responses, as opposed to supervised learning. A
result of unsupervised learning is a new representation or explanation of the
observed data.

Principal component analysis (PCA) and independent component analysis
(ICA) are methods for unsupervised learning. In their simplest forms, they
assume that observed data can be represented by a linear combination of some
unknown hidden factors called sources and causes [91, 76, 35]. The model is
mathematically described as:

X = AS (6.1)

where X ∈�N×T represents observed data matrix obtained by N sensors with
T observations, A ∈�N×M is an unknown mixing matrix and S ∈�M×T is
an unknown source matrix consisted of M sources with T observations. The
mixing matrix A is due to the environment through which source signals prop-
agate prior to being recorded and due to the recording system. In order to
focus on the essence of the problem, we have omitted an additive noise term in
(6.1). This linear model represents a useful description for many applications.
A few examples include brain signals measured by electroencephalographic
(EEG) recording [93], functional Magnetic Resonance Imaging (fMRI) [98],
radio signals received by a multiantenna base station in wireless communi-
cation systems [121], multispectral astronomical and remotely sensed images
[104, 46, 47], multiframe blind deconvolution with non-stationary blurring
process [86], near infrared spectroscopy [30] and nuclear magnetic resonance
spectroscopy [105]. Recovery of the unknown source signals from the data is
often called blind source separation (BSS). PCA and ICA are methods used
to accomplish a BSS task.

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 175–208 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

176 6 Unsupervised Learning by Principal and Independent Component Analysis

It is our intention throughout this chapter to present concepts in a way
that will enable interested readers to understand essence of the PCA and ICA.
Therefore, presented mathematical derivations are not rigorous and very often
reader is referred to references for finding out additional details about some
topics. MATLAB code is provided after presentation of the important topics
in order to enable the reader to easily and quickly reproduce the presented
results, and get a better understanding of the topics. A minimal knowledge of
MATLAB is required. Although some concepts such as entropy and mutual
information, are specific and may not be known to the wider audience, the
material is presented in such a way that a reader with average mathematical
background should be able to follow the derivations and reproduce results.

We shall now illustrate the BSS problem by two examples for which we are
going to need computer-generated data in accordance with the model given
by (6.1). This means that both mixing matrix A and source matrix S will be
provided by us in order to simulate the mixing process. The PCA and ICA
algorithms yet to be described will, however, reconstruct the sources S based
on data X only, i.e., the characteristics of the mixing process contained in the
mixing matrix A will not be known to PCA and ICA algorithms.

In the first example we shall assume that there are two source signals,
namely images shown in Fig. 6.1.

Fig. 6.1. Two source images.

They are mixed with the artificial mixing matrix:

A =
[

2 1
1 1

]
(6.2)

The mixed images represented by the data matrix X are shown in Fig.
6.2.

In order to establish the connection between mixed images shown in Fig.
6.2, the mixing matrix given by (6.2) and the data model given by (6.1) we
shall re-write data model given by (6.1) on the component level basis:

6 Unsupervised Learning by Principal and Independent Component Analysis 177

Fig. 6.2. Two mixed images.

x1(t) = 2s1(t) + s2(t)
x2(t) = s1(t) + s2(t)

where t represents a pixel index running from 1 to T . It is evident that,
although images are two-dimensional signals, they can be represented as one-
dimensional signals. Mapping from two-dimensional to one-dimensional signal
is obtained by the row stacking procedure implemented by the MATLAB
command reshape. Assuming that our sources images S1 and S2 have P × Q
pixels the mapping is implemented through:

sn = reshape(Sn, 1, P ∗ Q) n = 1, 2

In our example, P = 181 and Q = 250 implying T = 181 × 250 = 45250.
Consequently, the size of our data matrix X and source matrix S is 2×45250.
In order to display mixed images, we need to convert one-dimensional signals
x1 and x2 back to two-dimensional format. This is implemented through:

Xn = reshape(xn, P,Q) n = 1, 2

Later on, we shall learn that images belong to the sub-Gaussian class of
stochastic processes, which can be characterized by a formal measure called
kurtosis. Sub-Gaussian processes have negative values of kurtosis. As opposed
to the sub-Gaussian processes, there are also super-Gaussian processes for
which the kurtosis parameter has positive value. Speech and music signals are
super-Gaussian processes.

In order to support and illustrate the algorithms to be described, we shall
need both type of signals. Therefore, we show in Fig. 6.3 three seconds of two
source speech signals, and in Fig. 6.4, two mixed speech signals using again
the matrix given by (6.2). One can imagine that mixed speech signals shown
in Fig. 6.4 were obtained by two-microphones recording when two speakers
were talking simultaneously. Although for audio signals like speech, real mix-
ing process cannot be described with a matrix given by (6.2), it will serve
the purpose of illustrating the BSS problem. Physically relevant description

178 6 Unsupervised Learning by Principal and Independent Component Analysis

of the mixing process in the reverberant in-door acoustic environment is de-
scribed with a mixing matrix whose elements are filters. If we assume that
two speakers talking simultaneously were recorded by two microphones, the
mathematical description of the process on the component equation level is
given with the convolutional model:

x1(t) =
K∑

k=1

a11(k)s1(t − k) +
K∑

k=1

a12(k)s2(t − k)

x2(t) =
K∑

k=1

a21(k)s1(t − k) +
K∑

k=1

a22(k)s2(t − k)

K represents the filter order, which is assumed here to be equal for all the
filters.The corresponding BSS problem is more difficult in such a realistic case.
We refer interested readers to [140, 88], and we proceed with the mixing matrix
of (6.2) for pedagogic purposes. The fundamentally important question here

Fig. 6.3. Two source speech signals.

is how either PCA or ICA algorithms recover the source images shown in Fig.
6.1 from their mixtures shown in Fig. 6.2, or speech signals shown in Fig. 6.3
from their mixtures shown in Fig. 6.4, when only mixed signals are available to
the algorithms? The “blindness” means that the mixing matrix A is unknown.
If it were known, recovery of source signals S = A−1X is straightforward. As
noted in [67] any meaningful data are not really random, but are generated by
physical processes. When the relevant physical processes are independent, the
generated source signals are not related, i.e., they are independent. This is a
fundamental assumption upon which all ICA algorithms are built. PCA also
exploits the assumption that source signals are not related, but it only assumes
that signals are not correlated. In order to derive mathematical equations for
ICA algorithms built upon the independence assumption, cost functions that
measure statistical (in)dependence must be formulated. Source signals are

6 Unsupervised Learning by Principal and Independent Component Analysis 179

Fig. 6.4. Two mixed speech signals.

Fig. 6.5. Blind source separation through unsupervised learning. A cost function
I(W,Y,X) measures statistical (in)dependence between components of Y. De-
mixing matrix W � A−1 is learnt by minimizing I(W,Y,X).

then recovered through the unsupervised learning process by minimizing the
measure of statistical dependence. The process is illustrated in Fig. 6.5 where
I(W,X,Y) denotes cost function.

A mathematical description of the BSS process is given by:

Y = WX (6.3)

where Y ∈�M×T represents reconstructed source signals and W ∈�M×N rep-
resents the unmixing matrix obtained through learning process as:

W = arg minI(W,Y,X) (6.4)

It is obvious from (6.1) and (6.3) that Y will represent the source matrix
S if W � A−1. In order for that to be possible, the number of sensors N
and number of sources M should be the same. When number of sensors is
greater than number of sources, the BSS problem is over-determined. By us-
ing PCA-based dimensionality reduction technique [76], the number of sources

180 6 Unsupervised Learning by Principal and Independent Component Analysis

and number of sensors can be made equal. If the number of sensors is less than
the number of sources the BSS problem is under-determined and very difficult.
It has solutions only in special cases, when some additional a priori informa-
tion about the sources are available, such as sparseness [92]. Throughout this
chapter, we shall assume that number of sensors and number of sources are
equal. In the next section, we discuss PCA and show results from using it.
As noted, PCA can serve for the initial treatment of data, which will later be
treated by ICA.

6.1 Principal Component Analysis

PCA and ICA are two types of methods used to solve the BSS problem.
They exploit the assumption that hidden source signals are not mutually re-
lated. PCA reconstructs the source signals S by decorrelating observed signals
X, while ICA reconstructs the source signals S by making observed signals
X statistically as independent as possible. Both methodologies are related
to the principle of redundancy reduction, which was suggested in [14] as
a coding strategy in neurons, where redundancy meant a level of statisti-
cal (in)dependence between extracted features. The fact that PCA obtains
source signals through decorrelation process suggests that, in the general
case, it is not an optimal transform from the redundancy reduction stand-
point. The exception is the case when source signals are Gaussian, in which
case uncorrelatedness is equivalent to statistical independence. Having said
that, we immediately assert that ICA makes sense only when source signals
are non-Gaussian. Therefore, PCA is quite often included as a first step in
the implementation of the ICA algorithms through its special form known
as whitening or sphering transform [76, 35]. Whitening transform is named
in analogy with the name used for white stochastic processes. The stochas-
tic process zn(t) is said to be white if its autocorrelation function equals
delta function i.e. E [zn(t)zn(t + τ)] = σ2

nδ(τ) where σ2
n represents variance

of zn and δ(τ) is Kronecker delta equal to 1 for τ = 0 and 0 otherwise.When
PCA is applied on multivariate data set it makes it spatially uncorrelated i.e.
E [zn(t)zm(t)] = σ2

nδnm. We say that PCA-transfomed data set Z is spatially
white.

The statistical independence assumption is formally stated as:

p(S) =
N∏

i=1

pi(Si) (6.5)

that is, the joint probability density function p(S) is a product of the marginal
probability density functions pi(Si). From now on we shall assume that source
signals as well as the observation signals have zero mean. If signals do not have
zero mean, it is easy to make them, to have a zero mean by subtracting the

6.1 Principal Component Analysis 181

mean value from them. Under the zero mean assumption, the uncorelatedness
assumption is formally expressed as:

RS = E
[
SST

]
= Λ (6.6)

where RS represents covariance matrix, Λ is some diagonal matrix and E
denotes mathematical expectation. It is shown in Appendix E that (6.5) and
(6.6) are equivalent for Gaussian processes. The PCA transform W is designed
such that the transformed data matrix Z ∈�M×T :

Z = WX (6.7)

has uncorrelated components, i.e., RZ = Λ. Having this in mind, we derive
the PCA transform from:

RZ = E
[
ZZT

]
= WE

[
XXT

]
WT = WRXWT = Λ (6.8)

From (6.8), we can recognize that the PCA transform W is nothing else but
matrix of eigenvectors E obtained through eigen-decomposition of the data
covariance matrix RX, i.e.,

W = ET (6.9)

A special form of the PCA transform is a whitening or sphering transform that
makes transformed signals uncorrelated with unit variance. This is formally
expressed as RZ = I, where I represents identity matrix. This is equivalent
to writing (6.8) as:

RZ = E
[
ZZT

]
= WE

[
XXT

]
WT = Λ−1/2WRXWT Λ−1/2 = I (6.10)

Using (6.10), the whitening transform is obtained as:

W = Λ−1/2E
T

(6.11)

Because W has dimensionality M ×N , we see that Z will have dimensionality
M × T , i.e., by using the PCA transform we can reduce dimensionality of
our original data set X if N > M . The problem is how to estimate the
number of sources M . We use the fact that the covariance matrix RX, which
is nonnegative real symmetric matrix, has real eigenvalues. Ordering of the
first M eigenvectors used to construct PCA transforms given with (6.9) or
(6.11) is done such that the corresponding eigenvalues λ1, λ2, ..., λM , λM+1

satisfy λ1 � λ2 � ... � λM > λM+1, where eigenvalue λM+1 corresponds with
noise. The concept is illustrated in Fig. 6.6. The difficulty in this approach to
dimensionality reduction is that a priori knowledge about the noise level is
required in order to determine which eigenvalue corresponds with the noise.

182 6 Unsupervised Learning by Principal and Independent Component Analysis

This knowledge is not often available and more robust approaches to number
of sources detection must be used in practice. We refer interested readers to
the two very often used approaches, the Akaikes’s information criteria [5] and
the minimum description length criteria [120].

Fig. 6.6. Determination of number of sources by eigenvalue ordering.

We shall now illustrate the application of the PCA to the BSS problem of
the mixed images and speech signals shown in Figs. 6.2 and 6.4, respectively.
As we saw from our previous exposition, in order to derive the PCA transform,
we need to have the data covariance matrix Rx available. In practice, we have
to estimate it from the given number of T data samples according to:

RX = E
[
xxT

]
� 1

T

T∑
t=1

x(t)xT (t) (6.12)

where x(t) is a column vector obtained from the N × T data matrix X for
each particular observation t = 1, ..., T . Equation (6.12) is written on the
component level at the position (i, j) as:

RX(i, j) = E [xixj] �
1
T

T∑
t=1

xi(t)xj(t) (6.13)

i.e. elements of the data covariance matrix are cross-correlations between cor-
responding components of the data vector x(t). We want to recall that in the
first example the number of sensors equals number of sources is N = M = 2
and the number of observations is T = 181×250 = 45250. In the second exam-
ple, that involves speech signals, N = M = 2 and T = 50000. Because speech
signals were digitized with sampling frequency Fs = 16kHz this implies data
record length of slightly more than 3 seconds.

To implement the PCA transform given by (6.9), we need a matrix of
eigenvectors which is obtained by the eigenvalue decomposition of the data

6.1 Principal Component Analysis 183

covariance matrix RX and implemented by MATLAB command [E,D] =
eig(RX). RX is estimated from data matrix X by the MATLAB command
RX = cov(XT). The PCA transform given by (6.7) and (6.9) is implemented
by the following sequence of MATLAB commands:

Rx=cov(X’); % estimate data covariance matrix
[E,D]=eig(Rx); % eigen-decomposition of the data covariance

matrix
Z=E’*X; % PCA transform

In the given MATLAB code symbol ‘%’ is used to denote comments. As we
see only the data matrix X is used to implement the PCA transform. This is
why we say that PCA is an unsupervised method. When the PCA transform
is applied to the mixed images shown in Fig.6.2, the results shown in Fig. 6.7
are obtained:

Fig. 6.7. Source images reconstructed by PCA transform.

The reconstruction process was not fully successful. However, it can be
observed that first reconstructed image is approximation of the flowers source
image and second reconstructed image is approximation of the cameraman
source image. Two PCA de-mixed images shown in Fig. 6.7 were displayed
using the following sequence of MATLAB commands:

Z1=reshape(Z(1,:),P,Q); % transform vector into image
figure(1); imagesc(Z1) % display first PCA image
Z2=reshape(Z(2,:),P,Q); % transform vector into image
figure(2);imagesc(Z2) % display second PCA image

To understand better why PCA was not very successful in solving the BSS
problem, we plot in Figs. 6.8, 6.9 and 6.10 histograms of the source images
shown in Fig. 6.1, mixed images shown in Fig. 6.2 and PCA reconstructed
images shown in Fig. 6.7.

Histograms are graphical representations of the number of times each sig-
nal or image amplitude occurs in a signal. The signal is divided into K bins

184 6 Unsupervised Learning by Principal and Independent Component Analysis

Fig. 6.8. Histograms of two source images shown in Fig. 6.1

.

Fig. 6.9. Histograms of two mixed images shown in Fig. 6.2.

Fig. 6.10. Histograms of two PCA images shown in Fig. 6.7.

6.1 Principal Component Analysis 185

and frequency of occurrence is counted for each bin. If a histogram is scaled
by the overall number of occurrences, an empirical estimate of the probabil-
ity density function (pdf) is obtained. The histograms showed in Figs. 6.8,
6.9 and 6.10 are obtained by the MATLAB command hist. For example, the
histogram of the first source image is obtained by hist(S(1, :)). We see that
histograms of the PCA reconstructed source images are more similar to those
of the mixed images than to histograms of the source images. We can also see
that histograms of the PCA reconstructed images are more like histograms
that would be obtained from normal or Gaussian process than histograms of
the original source images, which are very non-Gaussian. The histograms of
the source images are bimodal, which means that values that occur at each
side of the mean value are more probable than the mean value itself. Processes
with bimodal pdf’s are called sub-Gaussian processes. There are also processes
whose pdf’s are concentrated around the mean value, with probabilities that
rapidly decrease as the distance from the mean value increases. Such processes
are called super-Gaussian processes.

As we already mentioned, there is a measure called kurtosis that is used
for classification of stochastic processes. It can also be used as a measure of
non-Gaussianity. For some real zero mean process x, kurtosis κ(x) is defined
as:

κ(x) =
E[x4]

(E [x2])2
− 3 (6.14)

where E[x4] and E[x2] denote fourth order and second order moments esti-
mated according to:

E[xp] � 1
T

T∑
t=1

xp(t), p ∈ {2, 4} (6.15)

Empirical estimate of the κ(x) can be obtained using the following sequence
of MATLAB commands:

m4=sum(x.*x.*x.*x)/T; % estimate E[x^4]
m2=sum(x.*x)/T; % estimate E[x^2]
kx=m4/(m2*m2)-3; % estimate kurtosis

Kurtosis is negative for sub-Gaussian processes, zero for Gaussian process
and positive for super-Gaussian processes. This is illustrated in Fig. 6.11.

The source images shown in Fig. 6.1 have the values of the kurtosis equal
to κ(s1) = −1.36 and κ(s2) = −0.88. Mixed images have kurtosis value equal
to κ(x1) = −0.93 and κ(x2) = −0.64. As expected, the kurtosis of the mixed
images is closer to zero than the kurtosis of the source images. This is a con-
sequence of the central limit theorem (CLT), which ensures that the pdf of
mixed signals is always more gaussian than the pdf of its constituent source
signals. The PCA reconstructed source images shown in Fig. 6.7 have kurto-
sis equal to κ(z1) = −0.4 and κ(z2) = −0.82. We have already noticed that

186 6 Unsupervised Learning by Principal and Independent Component Analysis

Fig. 6.11. Classification of distributions from stochastic processes by the value of
the kurtosis parameter.

first PCA reconstructed source image shown in Fig. 6.7 actually corresponds
with the second source image shown in Fig. 6.1 (flowers) and the second PCA
reconstructed source image corresponds with the first source image shown in
Fig. 6.1 (cameraman). Keeping that in mind, we verify that the PCA recon-
structed source images are even more gaussian than mixed images. This is
consequence of the fact that PCA forces uncorelatedness among the signals.
This is evidently not optimal for non-Gaussian signals such as images. This
explains why the PCA reconstructed source images do not approximate well
the original source images, which is also evident from comparing the corre-
sponding histograms.

We now present the application of PCA to separate the mixture of speech
signals in the BSS problem shown as the second example in Fig. 6.4. We have
used a whitening transform given by (6.11), which is a special form of PCA
that produces decorrelated signals with unit variance. Again, it is constructed
from eigen-decomposition of the data covariance matrix RX and implemented
by the MATLAB code:

Rx = cov(X’); % estimate data covariance matrix
[E,LAM] = eig(Rx); % eigen-decomposition of Rx
lam = diag(LAM); % extract eigen-values
lam = sqrt(1./lam); % square root of inverse
LAM = diag(lam); % back into matrix form
Z=LAM*E’*X; % the whitening transform

The reconstructed speech signals are shown in Fig. 6.12.
If the extracted source signals are compared with the original speech source

signals shown in Fig. 6.3 we see that the quality of a reconstruction is not good.
This can be observed better if histograms of the source speech signals shown
in Fig. 6.3, mixed speech signals shown in Fig. 6.4 and PCA reconstructed
source signals shown in Fig. 6.12, are compared. The corresponding histograms

6.1 Principal Component Analysis 187

Fig. 6.12. Source speech signals reconstructed by whitening (PCA) transform.

are shown in Figs. 6.13, 6.14 and 6.15. From Fig. 6.13, we see that speech
amplitudes are mainly concentrated around mean value of zero. Estimated
kurtosis values of the corresponding speech source signals were κ(s1) = 9.52
and κ(s2) = 2.42. Estimated kurtosis values of the mixed speech signals were
κ(x1) = 7.18 and κ(x2) = 3.89, while estimated kurtosis values of the PCA
reconstructed speech signals were κ(z1) = 1.86 and κ(z2) = 6.31. Again,
mixed and PCA recovered signals are more Gaussian than source signals. The
reason why PCA failed to recover speech source signals is the same as in the
first example, namely it forces decorrelation among the reconstructed signals,
which is never optimal for non-Gaussian processes.

Fig. 6.13. Histograms of two speech signals shown in Fig. 6.3.

We have to notice that the second reconstructed speech signal shown
in Fig. 6.12 corresponds with first source signal shown in Fig. 6.3 and the
first reconstructed speech signal shown in Fig. 6.12 corresponds with the sec-
ond source signal shown in Fig. 6.3. The same phenomenon occurred during
reconstruction of the mixed image sources. It is a consequence of the scale

188 6 Unsupervised Learning by Principal and Independent Component Analysis

Fig. 6.14. Histograms of two mixed speech signals shown in Fig. 6.4.

Fig. 6.15. Histograms of two PCA recovered speech signals shown in Fig. 6.12.

and permutation ambiguities, which are properties inherent to PCA and ICA
algorithms that recover source signals using only uncorelatedness or statistical
independence assumption, respectively. We easily verify scale ambiguity if we
write a mixed signal defined by (6.1) as:

x(t) =
M∑

m=1

amsm(t) =
M∑

m=1

(
am

1
αm

)
(αmsm(t)) (6.16)

Evidently, because both A and S are unknown, any scalar multiplier in one of
the sources can always be canceled by dividing corresponding column of A by
the same multiplier. The statistical properties of the signals are not changed
by scaling. The permutation ambiguity is verified by writing mixing model in
(6.1) as:

X = AS = AP−1PS (6.17)

Components of the source matrix S and mixing matrix A can be freely ex-
changed such that PS is new source matrix and AP−1 is new mixing matrix.
Matrix P is called permutation matrix having in each column and each row

6.1 Principal Component Analysis 189

only one entry equal to one and all other entries equal to zero. We can also
note that reordering of the source components does not change statistical
(in)dependence among them.

We now want to provide further evidence why PCA is not good enough
to reconstruct non-Gaussian source signals from their linear mixtures, which
becomes the motivation to introduce ICA algorithms. In order to demon-
strate PCA limitations, we generate two uniformly distributed source signals
by using MATLAB command rand. Because the amplitudes are distributed
randomly in the interval [0,1], the signals are made zero mean by subtracting
mean value from each signal. We show in Fig. 6.16 scatter plots of two gener-
ated source signals for 100 samples (left) and 10,000 samples (right). The plot
is obtained using MATLAB command scatter(s1, s2). Equivalent plot would
be obtained if MATLAB command plot(s1, s2,

′ ko′) was used. The scatter plot
shows points of simultaneous occurrence in the amplitude space of the signals
and gives nice visual illustration of the degree of statistical (in)dependence
between the two signals. If two signals are independent, as they are in this
example illustrated by Fig. 6.16, then for any particular value of signal s1,
signal s2 can take any possible value in its domain of support. As we can
see in Fig. 6.16-left, which shows scatter plot diagram for 100 samples, every
time when signal s1 took value 0.4 signal s2 took different value in the interval
[−0.5, 0.5]. This is even more visible in Fig. 6.16-right, which shows scatter
plot diagram for 10,000 samples. If however signals s1and s2 would be statis-
tically dependent, i.e., s2 would be some function of s1 given by s2 = f(s1),
then scatter diagram would be nothing else but plot of the function f . For
example in a case of the linear relation s2 = as1 + b the scatter plot diagram
is a line. The process of plotting the scatter diagrams is implemented by the
following sequence of MATLAB commands:

s1=rand(1,T); % uniformly distributed source signal 1
s2=rand(1,T); % uniformly distributed source signal 2
s1=s1-mean(s1); % make source 1 zero mean
s2=s2-mean(s2); % make source 2 zero mean
scatter(s1,s2); % plot s1 vs. s2

In this example, we have chosen the number of samples to be T = 100 and
T = 10, 000. We have used T = 10, 000 samples to generate mixed signals in
accordance with (6.1) and to apply PCA and ICA algorithms. Consequently,
our source signal matrix S will have dimensions 2 × 10, 000. We observe that
there is no structure present in the scatter plot i.e., no information about one
source signal can be obtained based on information about other source signal.
This means that if we knew the amplitude of the source signal s1 at some
time point, we cannot predict what would be the amplitude of source signal
s2 at the same time point. We can say that there is no redundancy between
the source signals or that they are statistically independent.

190 6 Unsupervised Learning by Principal and Independent Component Analysis

Fig. 6.16. Scatter plot of two uniformly distributed source signals: left-100 samples;
right-10,000 samples.

We now generate mixed signals X according to (6.1) and mixing matrix A
given by (6.2). Our data matrix X has dimensions 2× 10000 and the process
is implemented by the following sequence of MATLAB commands:

S=[s1;s2]; % the matrix of source signals
X=A*S; % the matrix of mixed signals
scatter(X(1,:),X(2,:)) % plot the scatter plot x1 vs. x2

The corresponding scatter plot is shown in Fig. 6.17. Obviously, now there
is a structure or redundancy present between the mixed signals. If we had
knowledge about one mixed signal, we could guess the value of the other mixed
signal with reasonably high probability. Next, we apply the PCA transform
given by (6.7) and (6.9) to the mixed signals. The sequence of the MATLAB
commands that implements PCA and plots the scatter plot is given with:

Rx=cov(X’); % estimate data covariance matrix
[E,D]=eig(Rx); % eigen-decomposition of Rx
Z = E’*X; % PCA transform
scatter(Z(1,:),Z(2,:)) % plot z1 vs. z2

The scatter plot of PCA transformed signals Z is shown in Fig. 6.18.
Evidently, the decorrelation process realized through PCA transform re-

duced significantly the redundancy level between the transformed signals.
However, it is still possible to gain the information about one signal having
information about another, especially if a signal amplitude is at the borders
of the range of values. If we compare scatter plots of source signals and PCA
transformed signals, we can visually observe the similarity in the scatter plots,
and also the fact that further rotation of the scatter plot of PCA de-mixed
signals is necessary. This further rotation step can be implemented by an
orthogonal matrix obtained by the ICA algorithms [76, 35].

6.1 Principal Component Analysis 191

Fig. 6.17. Scatter plot of two mixed signals obtained by linear mixing of two uni-
formly distributed source signals.

Fig. 6.18. Scatter plot of two PCA transformed signals.

The scatter plots in Figs. 6.16, 6.17 and 6.18 provide intuitive illustra-
tion of why the PCA is not good enough to de-mix non-Gaussian sources
and why ICA is necessary. We want to provide an additional and more quan-
titative evidence for that statement based on some measures of statistical
dependence between corresponding source, mixed and reconstructed signals.
For that purpose, we shall use measures for the second order and fourth order
statistical dependence between the signals given in the form of normalized
cross-correlation and normalized fourth-order cross-cumulants, respectively.
The reason why third order statistical dependence is not used is due to the
fact that stochastic processes which are symmetrically distributed around the

192 6 Unsupervised Learning by Principal and Independent Component Analysis

mean value have odd order statistics equal to zero and majority of signals
used in practice (including signals that we use throughout this chapter) are
symmetrically distributed. That is why the first statistics of the order higher
than two that is used to measure statistical dependence is the fourth order
statistics. We present in appendix a more detailed discussion between uncor-
relatedness and independence, as well as definition of cumulants and some of
their properties [126, 22, 97, 100]. The normalized cross-correlation between
two processes xi and xj is defined by:

C11(xi, xj) =
E[xi(t)xj(t)]

(E[x2
i (t)])

1
2
(
E[x2

j (t)]
) 1

2
(6.18)

which implies −1 ≤ C11(xi, xj) ≤ 1. This normalization makes cross-
correlation invariant with respect to the fluctuations of the signal amplitude.
C11(xi, xj) can be estimated using MATLAB function corrcoef(X ′) or the
following MATLAB code may be used as well:

m11=sum(xi.*xj)/T;% estimate E[xi(t)xj(t)]
m2i = sum(xi.*xi)/T;% estimate E[xi(t)^2]
m2j = sum(xj.*xj)/T;% estimate E[xj(t)^2]
c11 = m11/sqrt(m2i)/sqrt(m2j);

In order to measure the fourth order statistical dependence between the
stochastic processes we need to use the fourth order (FO) cross-cumulants
[97, 100]. If we assume that shifts between sequences are equal to zero, then
three FO cross-cumulants between the zero mean random processes xi and xj

are defined as [97, 100]:

C13(xi, xj) = E[xi(t)x3
j (t)] − 3E[xi(t)xj(t)]E[x2

j (t)] (6.19)

C22(xi, xj) = E[x2
i (t)x

2
j (t)] − E[x2

i (t)]E[x2
j (t)] − 2 (E[xi(t)xj(t)])

2 (6.20)

C31(xi, xj) = E[x3
i (t)xj(t)] − 3E[xi(t)xj(t)]E[x2

i (t)] (6.21)

We could proceed with the higher order cross-cumulants, but relations between
them and moments become very complex and therefore computationally very
expensive. In order to prevent fluctuations of the sample estimate of the FO
cross-cumulants due to the fluctuations in the signal amplitude, we normalize
them according to:

Cpr(xi, xj) =
Cpr(xi, xj)

(E[x2
i (t)])

p
2
(
E[x2

j (t)]
) r

2
p, r ∈ {1, 2, 3} and p + r = 4

(6.22)
We use the property satisfied by independent random variables xi and xj and
some integrable functions g(xi) and h(xj):

E [g(xi)h(xj)] = E[g(xi)]E [g(xj)] (6.23)

6.1 Principal Component Analysis 193

This follows from the definition of statistical independence given by (6.5). We
choose g(xi) and h(xj) accordingly. Then it is easy to verify that C11(xi, xj),
C22(xi, xj), C13(xi, xj) and C31(xi, xj) are equal to zero if xi and xj are
statistically independent. Therefore they can be used as a measure of the
second order and fourth order statistical (in)dependence. We provide here a
MATLAB code that can be used to estimate normalized FO cross-cumulant
C22(xi, xj). It is straightforward to write a code for estimation of the other
two FO cross-cumulants C13(xi, xj) and C31(xi, xj).

m22 = sum(xi.*xi.*xj.*xj)/T;% estimate E[xi(t)^2.*xj(t)^2]
m2i = sum(xi.*xi)/T; % estimate E[xi(t)^2]
m2j = sum(xj.*xj)/T;% estimate E[xj(t)^2]
m11 = sum(xi.*xj)/T;% estimate E[xi(t)xj(t)]
c22 = (m22 - m2i*m2j - 2*m11*m11)/m2i/m2j;

Fig. 6.19-left shows the logarithm of the absolute values of the normalized
cross-correlation C11 for two uniformly distributed source signals (with the
scatter plot shown in Fig. 6.16, two mixed signals (with the scatter plot shown
in Fig. 6.17), two PCA de-mixed signals (with scatter plot shown in Fig. 6.18)
and two, yet to be derived, ICA de-mixed signals (with the scatter plot shown
in Fig. 6.25). Fig. 6.19-right shows the logarithms of the absolute value of
the normalized FO cross-cumulant C22 between corresponding signals in the
same order as for the cross-correlation. Fig. 6.20-left and 6.20-right shows
logarithms of the absolute values of the FO cross-cumulants C13 and C31

for the same signals. (Note that low values of log10 imply low level of the
cross-correlation (Fig. 6.19, left) and low level of the fourth order statistical
dependence (Fig. 6.19, right and Fig. 6.20), respectively).

It is evident, that while PCA perfectly decorrelated the mixed signals, it
did not significantly reduce the level of the FO statistical dependence between
transformed signals z1and z2. On the contrary, the minimum mutual informa-
tion ICA algorithm to be described later managed to reduce equally well both
second order and fourth order statistical dependence between transformed
signals y1 and y2. We present values of the estimated cross-correlations and
FO cross-cumulants in Table 6.1.

Sources s1, s2 Mixtures x1, x2 PCA z1, z2 ICA y1, y2

C11 -0.0128 0.9471 1.5e-14 -1.4e-3
C22 -0.0364 -0.6045 -0.4775 -0.0015
C13 0.0016 -1.04 0.2573 0.0061
C31 0.014 -0.6939 -0.2351 0.0072

Table 6.1. Estimated values of the cross-correlations and fourth order cross-
cumulants for source signals, mixed signals, PCA de-mixed signals and ICA de-mixed
signals.

194 6 Unsupervised Learning by Principal and Independent Component Analysis

Fig. 6.19. (left) cross-correlations C11; (right) FO cross-cumulants C22. From left
to right: the source signals, the mixed signals, the PCA de-mixed signals, the ICA
de-mixed signals.

Fig. 6.20. (left) FO cross-cumulants C13; (right) FO cross-cumulants C31. From
left to right: the source signals, the mixed signals, the PCA de-mixed signals, the
ICA de-mixed signals.

We also want to illustrate why the PCA transform is optimal for Gaussian
or normally distributed source signals, and why ICA is not needed for
Gaussian sources. In order to do that we generate two Gaussian source signals
using MATLAB command randn. Such obtained signals have zero mean and
unit variance. We use the following MATLAB code to generate source signals
and plot Fig. 6.19:

s1=randn(1,T); % normally distributed source 1
s2=randn(1,T); % normally distributed source 2
scatter(s1,s2); % plot s1. vs. s2

6.1 Principal Component Analysis 195

As in the previous example, the number of samples was chosen to be T =
10, 000 which implies that source signal matrix S has dimensions 2 × 10, 000.
We show scatter plot of two normally distributed source signals in Fig. 6.21.

Fig. 6.21. Scatter plot of two normally distributed source signals.

No redundancy can be observed in the scatter plot, i.e., having information
about one source signal does not help us to predict the value of another source
signal. This is obviously not the case with the mixed signals X , the scatter
plot which is shown in Fig. 6.22. They are obtained by linear mixing model
(6.1) and mixing matrix A given by (6.2). Dimensions of the data matrix X
are 2×10000. The following MATLAB code is used to generate mixed signals
and plot Fig. 6.22:

S = [s1; s2]; % form source matrix
X = A*S; % generate data matrix
scatter(X(1,:),X(2,:)); % plot x1 vs. x2

When the whitening transform given by (6.11) is applied to mixed signals with
the scatter plot shown in Fig. 6.22 we obtain signals Z, the scatter plot which
is shown in Fig. 6.23. The following MATLAB code is used to implement
whitening transform and plot Fig. 6.23.

Rx = cov(X’); % estimate data covariance matrix
[E,LAM] = eig(Rx); % eigen-decomposition of Rx
lam = diag(LAM); % extract eigen-values
lam = sqrt(1./lam); % square root of inverse
LAM = diag(lam); % back into matrix form
Z=LAM*E’*X; % the whitening transform
scatter(Z(1,:),Z(2,:)) % plot z1 vs. z2

196 6 Unsupervised Learning by Principal and Independent Component Analysis

Fig. 6.22. Scatter plot of two mixed signals obtained by linear mixing of two nor-
mally distributed source signals.

Now, if we compare the scatter plots of the Gaussian source signals, Fig. 6.21,
and signals obtained by PCA (whitening) transform, Fig. 6.23, we see that
they look identical. This confirms that PCA is really optimal transform for
Gaussian sources. This comparison, however, also shows that there is nothing
more to be done by ICA transform if source signals are Gaussian. Thus, when
ICA is required it is understood that unknown source signals are statistically
independent and at most one of them is Gaussian.

Fig. 6.23. Scatter plot of two signals obtained by whitening (PCA) transform.

6.2 Independent Component Analysis 197

6.2 Independent Component Analysis

ICA is a statistical and computational technique for solving BSS problem
through recovery of the hidden factors, or the sources, from the measurements.
In the model, the measured variables may be linear or nonlinear mixtures of
the unknown sources. The mixing system that is active during recording of
data from sources is also unknown. As already mentioned, only linear models
given by (6.1) are treated here. For previously discussed reasons, the source
signals are assumed to be non-Gaussian and statistically independent. The
technique of ICA, although not yet by the name, was introduced in early
1980s in [13, 64, 65] and in a journal paper [80]. The introduced neural net-
work, based on neuromimetic architecture, was able to separate independent
signals. It was shown later on that the Herault-Jutten network only works
when source signals are sub-Gaussian [37]. Cardoso [26] presented an algo-
rithm that minimizes second and fourth order statistical dependence through
joint approximate diagonalization of eigenmatrices, which is known as the
JADE algorithm. A neural network for blind separation of source signals with
the equivariant property (when convergence of the learning process does not
depend on the properties of the unknown mixing matrix) was formulated by
Cichocki, [36]. Common [38] defined the concept of ICA and proposed a cost
function related to approximate minimization of mutual information between
the components of the signal matrix Y, (6.3).

In the following years, several algorithms that perform ICA were proposed.
They included information maximization (Infomax) by Bell and Sejnowski
[17], maximum likelihood (ML) [56, 114], negentropy maximization [57], and
FastICA [77]. As pointed out by several authors, [91, 23, 112, 132] there is
equivalence between Infomax, ML, negentropy maximization and even Fas-
tICA in a sense that all of them minimize either directly or indirectly mutual
information between components of the signal matrix Y. Because of its unify-
ing framework and because it is an exact measure of statistical independence
[41], we shall present a mutual information minimization approach to ICA. Be-
fore that, however, we want to mention that the BSS problem can be solved
using the second order statistics provided that the source signals have col-
ored statistics i.e. that covariances over different time lags are well-defined
[139, 102, 18, 161].

In order to derive the minimum mutual information approach to ICA, we
need to introduce the concept of entropy and the definition of mutual informa-
tion. We shall also present some mathematical results without proofs, which
will be useful in the subsequent derivations. Entropy of a random variable can
be interpreted as the degree of information that the observation of the variable
gives. The entropy of a set of variables is called joint entropy. Scatter plots
shown in Fig. 6.16 to 6.18 and 6.21 to 6.23 represent visualisation of the joint
entropy between the two source signals, mixed signals and separated signals.
It is evident from scatter plots that more information about one signal could
be inferred from the knowledge of another one in a case of mixed signals than

198 6 Unsupervised Learning by Principal and Independent Component Analysis

in a case of separated or source signals. Entropy H is formally defined for a
discrete-valued random variable X as [41]:

H(X) = −
∑

i

P (X = ai) log P (X = ai) (6.24)

where P (X = ai) stands for probability of the random variable X having
realization ai. The definition of entropy for discrete-valued random variable
can be generalized for continuous-valued variables and vectors, in which case
it is called the differential or marginal entropy:

H(x) = −
∫

px(ξ) log px(ξ)dξ (6.25)

The joint entropy for a vector random variable is defined as:

H(x) = −
∫

px(ξ) log px(ξ)dξ (6.26)

The random process with maximum entropy, i.e., maximal randomness among
processes with finite support, is a uniformly distributed random process. The
random process with maximum entropy among random variables of finite
variance and infinite support is the Gaussian or normally distributed random
process [110]. Joint entropy of the random vector process y defined by the
linear model (6.3) can be expressed as [76]:

H(y) = H(x) + log |detW| (6.27)

From (6.27), we see that differential entropy is increased by a linear transfor-
mation. For a square invertible matrix W, the derivative of the determinant
of W with respect to matrix elements wij is [60]:

∂

∂wij
detW = Wij (6.28)

where W ij is a cofactor of W at a position (i,j). (6.28) is written in matrix
form as:

∂

∂W
detW =adj (W)T = detW

(
WT

)−1
(6.29)

where adj (W) stands for adjoint of W. The previous result also implies:

∂ log |detW|
∂wij

=
1

detW
Wij (6.30)

or in matrix form:
∂ log |detW|

∂W
=
(
WT

)−1
(6.31)

We now define mutual information as the measure of the information that
members of a set of random variables have on the other random variables in

6.2 Independent Component Analysis 199

the set. For that purpose we use an interpretation of the mutual information
as a distance, using what is called the Kullback-Leibler divergence [41]:

I(y1, y2, ..., yN) = D

(
p(y) ||

N∏
n=1

pn(yn)

)
=
∫

p(y) log
p(y)∏N

n=1 pn(yn)
dy

(6.32)
The Kullback-Leibler divergence can be considered as a distance between the
two probability densities. It is always non-negative, and zero if and only if the
two distributions are equal [41], which implies:

p(y) =
N∏

n=1

pn(yn) (6.33)

so that components of y are statistically independent (see definition of sta-
tistical independence given by (6.5)). Therefore, mutual information can be
used as a cost function for ICA algorithms. Using definitions for marginal and
joint entropies given by (6.25) and (6.26), mutual information can be written
as:

I(y1, y2, ..., yN) =
N∑

n=1

H(yn) − H(y) (6.34)

Furthermore, using the result for the entropy of the transformation given by
(6.27), the mutual information is written as:

I(y1, y2, ..., yN) =
N∑

n=1

H(yn) − log |detW| − H(x) (6.35)

If we look at the definition for the marginal entropy in (6.25), we see that
it can be interpreted as a weighted mean of the term log px(x). Using the
definition of mathematical expectation, it can alternatively be written as
H(x) = −E [log px(x)] . This allows us to write mutual information as:

I(y1 , y2 , ..., yN
) = −

N∑
n=1

E [log pn(yn)] − log |detW| − H(x) (6.36)

We next derive a gradient descent algorithm that will enable unsupervised
learning of the de-mixing matrix W through minimization of the mutual in-
formation I(y1 , y2 , ..., yN

):

∆wij =
∂I

∂wij
= −

N∑
n=1

E

[
1

pn(yn)
∂pn(yn)

∂yn

∂yn

∂wij

]
− ∂

∂wij
log |detW| − ∂

∂wij
H(x)

(6.37)
In (6.37), entropy of the measured signals H(x) does not depend on w ij . Also
∂yn/∂wij = xjδni where δni is Kronecker delta. Now (6.37) reduces to:

200 6 Unsupervised Learning by Principal and Independent Component Analysis

∆wij =
∂I

∂wij
= −E

[
1

pi(yi)
∂pi(yi)

∂yi
xj

]
− 1

detW
Wij (6.38)

To obtain (6.38), we have also used result given by (6.30). The term:

ϕi(yi) = − 1
pi(yi)

∂pi(yi)
∂yi

(6.39)

is also called score or activation function. Combining (6.39) and (6.38), we
obtain the de-mixing matrix update as:

∆W =E
[
ϕ(y)xT

]
−
(
WT

)−1
(6.40)

The learning rule given by (6.40) involves calculation of the matrix inverse.
This is not a very attractive property especially if unsupervised learning has to
be performed in an adaptive, i.e., on-line manner. Independent discovery of the
natural gradient [9] or relative gradient [25] helped to overcome this difficulty
and obtain computationally scalable learning rules. The key insight behind
the natural gradient was that the space of square non-singular matrices is not
flat, i.e., Euclidean, but curved, i.e., Riemannian. Therefore, the Euclidean
gradient of a scalar function with matrix argument does not point into the
steepest direction of the cost function I(W). Instead, it has to be corrected
by the metric tensor, which was found to be WT W. Applying this correction
to the learning rule given by (6.40) we obtain:

∆WWT W =
(
E
[
ϕ(y)yT

]
− I

)
W (6.41)

The complete learning equation for de-mixing matrix W is given by:

W(k + 1) = W(k) + η
(
I−E

[
ϕ(y)yT

])
W(k) (6.42)

where k is an iteration index and η is customary learning gain. (6.42) rep-
resents a batch or off line learning rule, meaning that the entire set of T
samples is used for learning. At each iteration k, mathematical expectation is
evaluated as:

E [ϕi(yi)yj] �
1
T

T∑
t=1

ϕi(yi(t))yj(t) (6.43)

In some applications, we do not have available the entire data set. Instead,
we have to acquire data on the sample-by-sample basis and update de-mixing
matrix W in the same manner. This is called adaptive or on-line learning
which is obtained from (6.42) by simply dropping the expectation operator:

W(t + 1) = W(t) + η
(
I−ϕ(y(t))y(t)T

)
W(t) (6.44)

The de-mixing matrix learning rules given by (6.42) and (6.44) have the
equivariant property, which means that convergence of the ICA algorithm

6.2 Independent Component Analysis 201

does not depend on the properties of the unknown mixing matrix [25, 36]. In
order to show that, we combine together (6.3), (6.42) or (6.44) and (6.1) and
obtain:

y(t) = W(t)x(t) (6.45)

=
[
W(t − 1) + η

(
I−ϕ(y(t − 1))y(t − 1)T

)
W(t − 1)

]
As(t)

=
[
Q(t − 1) + η

(
I−ϕ(y(t − 1))y(t − 1)T

)
Q(t − 1)

]
s(t)

where Q = WA. Evidently, performance of the ICA algorithm given by (6.42)
or (6.44) does not depend on the mixing matrix A. This property is very
important for solving BSS problems of the ill-conditioned mixtures, i.e., mix-
tures for which mixing matrix A is almost singular. There are two issues
which ought to be briefly discussed at this point: the stopping criterion and
the value of the learning gain η. In an on-line learning given by (6.44) the
stopping criterion does not have to be defined because the learning process
never stops i.e. it is not iterative. In a batch or off-line learning the simplest
form of the stopping criterion is the relative error criterion defined by:

‖W(k + 1) − W(k)‖2 < ε (6.46)

where in (6.46) ‖‖2 represents L2 norm and ε is a small parameter that can
be set through experiments. Computationally more demanding option is to
evaluate mutual information I(y1, y2, ..., yN) at each iteration and to apply
relative error criteria on the mutual information itself. Numerical value of the
learning gain η depends on the amplitude range of signals y(t) but also on
the value of the to be defined Gaussian exponent that is used to define a non-
linearity ϕn(yn) (see (6.47) and (6.48)). It has to be determined experimentally
for each particular scenario.

We see in (6.39) that the score function depends on the knowledge of the
pdf of the source signals, which is not available because the problem is blind.
Despite the fact that exact pdf is not known in general, the ICA works due
to the fact that if the model pdf is an approximation to the source signal pdf,
then the extracted signals will be the source signals [24, 10]. The function used
to approximate super-Gaussian class of distributions is ϕ(y) = tanh(y), and
the function to approximate sub-Gaussian class of distributions is ϕ(y) = y3.
Another commonly used activation function for ICA algorithms is derived
from (6.39) using the generalized Gaussian distribution as a model for pi(yi),
[33, 35]. The generalized Gaussian distribution is given by:

pi(yi, θi) =
θi

2σiΓ (1/θi)
exp

(
− 1

θi

∣∣∣∣ yi

σi

∣∣∣∣θi
)

(6.47)

where θi is called the Gaussian exponent, σθi
i = E

[
|yi|θi

]
is the dispersion

of the distribution and Γ (θ) =
∫∞
0

tθ−1 exp(−t)dt is a gamma function. By

202 6 Unsupervised Learning by Principal and Independent Component Analysis

varying the value of the Gaussian exponent θi, we can control the shape of
distribution. For θi = 1 the Laplace distribution is obtained, for θi = 2, the
Gaussian distribution is obtained and for θi → ∞ a uniform distribution
is obtained. Fig. 6.24 shows distributions obtained from (6.47) for values of
θi equal to 1, 2 and 3 with dispersion parameter σ = 1. If the generalized
Gaussian pdf given by (6.47), is inserted in the score function (6.39), the score
function parameterized with the value of Gaussian exponent is obtained as:

ϕi(yi) = sign(yi) |yi|θi−1 (6.48)

The approximation given by (6.48) is valid for super-Gaussian distributions
when 1 ≤ θi ≤ 2 and for sub-Gaussian distributions when θi > 2, [33, 154].
In a majority of applications, we know in advance whether the source signals
are sub-Gaussian (most of the communication signals and natural images)
or super-Gaussian (speech and music signals). Then, the Guassian exponent
can be set to predefined value. Alternative aproaches are to estimate score
functions from data using multi-layer-perceptron [136] or using some empirical
estimator of the unknown pdf, such as the Gram-Charlier approximation of
the pdf [136] or the Parzen window based pdf estimator with Gaussian kernel
[118]. In Appendix F, we give a derivation of the batch ICA learning rule (6.42)
and adaptive ICA learning rule (6.44) with the score functions (6.39) obtained
from an empirical distribution of the unknown pdf. Estimation of the unknown
pdf is based on Parzen’s window with Gaussian kernel [118]. Corresponding
MATLAB code is also given at the end of Appendix F. The last approach
provides robust ICA algorithms, but has computational complexity of the
order O(T 2N2), where T represents number of samples and N represents
number of sources. Algorithms for estimation of mutual information, score

Fig. 6.24. Plot of generalized Gaussian pdf for various values of Gaussian exponent
θi with σ = 1.

6.2 Independent Component Analysis 203

functions and entropies with smaller computational complexity of the order
O(3NT + N2T) are presented in [113]. Further improvement in terms of the
computational complexity of the order O(NT log T + N2T) is presented in
[124]. We shall not further ellaborate these approaches here.

We now discuss results of the application of the minimum mutual informa-
tion ICA algorithm given by (6.42) on the blind separation of mixed images
and speech source signals, as well as two uniformly distributed source signals.
We discuss results for uniformly distributed sources first. We have illustrated
by the scatter plot shown in Fig. 6.18 that PCA is not good enough to re-
duce redundancy present among the mixed signals. We now apply the batch
ICA algorithm given by (6.42) on signals obtained by the whitening transform
given by (6.11). Because we knew that the source signals are sub-Gaussian,
we have chosen value for the Gaussian exponent in the activation function
(6.48) to be θ1 = θ2 = 3. The learning gain parameter was η = 0.1 and result
was obtained after 400 iterations.

ICA algorithm given by (6.42) is implemented with the following sequence
of MATLAB commands:

it=0;
I=eye(N); % identity matrix
W = I; % initial value for de-mixing matrix
while (it<ITMAX) % iterate until it >ITMAX
it = it+1;
Y = W*Z; % ICA transform (6.3)
for i=1:N
fi(i,:)=sign(Y(i,:)).*power(abs(Y(i,:)),theta(i)-1);% (6.48)
end

F = I - fi*Y’/T;% (6.42)
W = W + gain*F*W; % (6.42)

end

The symbol N stands for the number of sensors which is assumed to be
equal to the number of sources M , and which is equal to 2 in this example,
and symbol T stands for the number of samples. The scatter plot of the
reconstructed source signals is shown in Fig. 6.25. In comparison with the
scatter plot shown in Fig. 6.16, we see that source signals are reconstructed
well, which was not case with the PCA reconstructed signals, the scatter plot
of which is shown in Fig. 6.18. To further support this statement we give
values of the estimated kurtosis parameter for reconstructed source signals
as κ(y1) = −1.194 and κ(y2) = −1.194. Estimated values of the kurtosis of
the source signals were κ(s1) = −1.195 and κ(s2) = −1.194, while estimated
values of the kurtosis of the mixed signals were κ(x1) = −0.798 and κ(x2) =
−0.566. Also, we have provided evidence in Figs. 6.19 and 6.20 as well as
in Table 6.1 that, unlike PCA, the ICA reduced the level of both the second
order and fourth order statistical dependence between the transformed signals
y1 and y2.

204 6 Unsupervised Learning by Principal and Independent Component Analysis

Fig. 6.25. Scatter plot of the signals recovered by the ICA algorithm (6.42).

We now present results of the application of the ICA algorithm given by
(6.42) for reconstruction of images from the mixture shown in Fig. 6.2. The
images reconstructed by PCA transform are shown in Fig. 6.7 . Because source
images have sub-Gaussian statistics, the results obtained by PCA transform
were not good. The ICA reconstructed images are shown in Fig. 6.26. Results
shown in Fig. 6.26 were obtained after 700 iterations with the learning gain
set to η = 4× 10−8 and Gaussian exponent set to θ1 = θ2 = 3. Both parame-
ters, number of iterations and learning gain, were chosen through experiments
based on the visual quality of the separated images. Estimated kurtosis values
of the reconstructed source images were κ(y1) = −1.36 and κ(y2) = −0.86.
(Recall that for the source signals κ(s1) = −1.36 and κ(s2) = −0.88 as well as
that for the reconstructed source images PCA resulted in κ(s1) = −0.82 and
κ(s2) = −0.4). In comparison with the results obtained by PCA transform,
the results obtained by ICA are very good, even though in the background
of both reconstructed images remnants of other source image are still slightly
visible. This is attributed to the inexact matching between the source pdf’s
and approximate pdf’s obtained using the score function (6.48) with Gaussian
exponent θ1 = θ2 = 3.

To further support this statement, we show in Fig. 6.27 results ob-
tained using the JADE algorithm [26], which minimizes only second and
fourth order statistical depenedence between the signals yi. The remnant
of the cameraman image is visible in the reconstructed flowers source im-
age more than in a case of the minimum mutual information ICA algo-
rithm given by (6.42). The MATLAB code for the JADE algorithm can be
downloaded from http://www.tsi.enst.fr/˜cardoso/Algo/Jade/jade.m. Also,
for the purpose of comparison, we show in Fig. 6.28 results obtained by the
FastICA algorithm [77] with cubic nonlinearity, which is suitable for sub-
Gaussian distributions. As in the case of the JADE algorithm, the remnant

6.2 Independent Component Analysis 205

Fig. 6.26. Source images reconstructed by the ICA algorithm (6.42)

.

of the cameraman image is more visible in the reconstructed flowers source
image than in a case of the minimum mutual information ICA algorithm
given by (6.42). The FastICA algorithm is less accurate because of the em-
ployed negentropy approximation, although it makes FastICA algorithm very
fast. MATLAB code for the FastICA algorithm can be downloaded from
http://www.cis.hut.fi/projects/ica/fastica/.

Finally, in Fig. 6.29, we show histograms of the images reconstructed by
the minimum mutual information ICA algorithm (6.42). Comparing them
with the histograms of the source images shown in Fig. 6.8, we see that they
are practically the same. This confirms that the principle of statistical inde-
pendence and the minimization of the mutual information provide a powerful
methodology for the solution of the BSS problems. We summarize performance
comparisons between PCA and ICA in the blind image reconstruction problem
in Table 6.2, where kurtosis values are given for source images, mixed images,
PCA reconstructed images and ICA reconstructed images. When presenting

Fig. 6.27. Source images reconstructed by the JADE ICA algorithm.

206 6 Unsupervised Learning by Principal and Independent Component Analysis

Fig. 6.28. Source images reconstructed by the FastICA algorithm with cubic non-
linearity.

Fig. 6.29. Histograms of the images reconstructed by the ICA algorithm (6.42).

Signal type κ1 κ2

Source images -1.36 -0.88
Mixed images -0.93 -0.64
PCA, (6.9), recovered images -0.82 -0.40
ICA, (6.42), recovered images -1.36 -0.86

Table 6.2. Kurtosis values of the source, mixed, PCA and ICA recovered images.

PCA results we have taken into account the fact that order of the recovered
images was reversed.

We now show in Fig. 6.30 the speech signals reconstructed by the mini-
mum mutual information ICA algorithm. Because speech signals are super-
Gaussian, we have selected values for the Gaussian exponent to be θ1 = θ2 =

6.2 Independent Component Analysis 207

Fig. 6.30. Source speech signals reconstructed by the ICA algorithm (6.42).

1.5. The results shown in Fig. 6.30 were obtained after 400 iterations with the
learning gain η = 0.4. Estimated kurtosis values of the reconstructed speech
signals were κ(y1) = 9.52 and κ(y2) = 2.42. In comparison with the speech sig-
nals reconstructed by PCA, which were shown in Fig. 6.12, ICA was evidently
very successful in the reconstruction of the source speech signals.

In Fig. 6.31, we show histograms of the recovered speech source signals.
In comparison with the histograms of the source speech signals shown in Fig.
6.14, we see that they practically look the same. This again confirms that
the principle of statistical independence and the minimization of the mutual
information can succeed in solving the BSS problems. We summarize the per-
formance comparisons between PCA and ICA in the blind speech reconstruc-
tion problem in Table 6.3, where kurtosis values are given for source speech
signals, mixed speech signals, PCA reconstructed speech signals and ICA re-
constructed speech signals. When presenting PCA results we have taken into
account the fact that order of the recovered signals was reversed.

Fig. 6.31. Histograms of the speech signals recovered by the ICA algorithm (6.42).

208 6 Unsupervised Learning by Principal and Independent Component Analysis

Signal type κ1 κ2

Speech source signals 9.52 2.42
Mixed speech signals 7.18 3.89
PCA recovered speech signals 6.31 1.86
ICA recovered speech signals 9.52 2.42

Table 6.3. Kurtosis values of the source, mixed, PCA and ICA recovered speech
signals.

6.3 Concluding Remarks

ICA and PCA are methods that are used to recover unknown source signals
from their linear mixtures in the unsupervised way, i.e., using the observed
data only. Both ICA and PCA recover unknown source signals by exploiting
the assumption that source signals were generated by independent physical
sources and because of that are statistically independent. While PCA makes
recovered signals uncorrelated ICA makes them approximately independent.
Because of that PCA is optimal transform for Gaussian sources but it is not
good enough for non-Gaussian sources. In the later case PCA is usually used
as a pre-processing step for the ICA algorithms. The ICA algorithms can be
derived in various ways in dependence on the definition of the cost function
that measures the statistical (in)dependence between the transformed signals.
We have derived batch and adaptive ICA algorithms by minimizing the mutual
information between the transformed signals. Mutual information was used for
two reasons. First, it represents an exact measure of statistical (in)dependence.
Second, it also has unifying character in a sense that ICA algorithms derived
from the maximum likelihood standpoint, information maximization stand-
point or negentropy maximization standpoint all minimize either directly or
indirectly mutual information between the transformed signals. Effectiveness
of derived PCA and ICA algorithms is demonstrated on the examples of blind
separation of natural images, which have sub-Gaussian statistics, and speech
signals, which have super-Gaussian statistics.

A

Support Vector Machines

While introducing the soft SVMs by allowing some unavoidable errors and,
at the same time, while trying to minimize the distances of the erroneous
data points to the margin, or to the tube in the regression problems, we have
augmented the cost 0.5wT w by the term

∑n
i=1

(
ξk
i + ξ∗k

i

)
as the measure of

these distances. Obviously, by using k = 2 we are punishing more strongly
the far away points, than by using k = 1. There is a natural question then
- what choice might be better in application. The experimental results [1] as
well as the theoretically oriented papers [16, 131] point to the two interesting
characteristics of the L1 and L2 SVMs. At this point, it is hard to say about
some particular advantages. By far, L1 is more popular and used model. It
seems that this is a consequence of the fact that L1 SVM produces sparser
models (less SVs for a given data). Sparseness is but one of the nice properties
of kernel machines. The other nice property is a performance on a real data
set and a capacity of SVMs to provide good estimation of either unknown
decision functions or the regression ones. In classification, we talk about the
possibility to estimate the conditional probability of the class label. For this
task, it seems that the L2 SVMs may be better. A general facts are that
the L1-SVMs can be expected to produce sparse solutions and that L2-SVMs
will typically not produce sparse solutions, but may be better in estimating
conditional probabilities. Thus, it may be interesting to investigate the rela-
tionship between these two properties. Two nice theoretical papers discussing
the issues of sparseness and its trade-off for a good prediction performance are
mentioned above. We can’t go into these subtleties here. Instead, we provide
to the reader the derivation of the L2 SVMs model, and we hope the models
presented here may help the reader in his/hers own search for better SVMs
model.

Below we present the derivation of the L2 soft NL classifier given by (2.29)
following by the derivation of the L2 soft NL regressor. Both derivations are
performed in the feature space S. Thus the input vector to the SVM is the
Φ(x) vector. All the results are valid for a linear model too (where we work
in the original input space) by replacing Φ(x) by x.

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 209–215 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

210 A Support Vector Machines

A.1 L2 Soft Margin Classifier

Now, we start from the equation (2.24) but instead of a linear distance ξi we
work with a quadratic one ξ2

i . Thus the task is to

1
2
wT w +

C

2

n∑
i=1

ξ2
i , (A.1a)

subject to

yi

[
wT Φ(xi) + b

]
≥ 1 − ξi, i = 1, n, ξi ≥ 0, (A.1b)

i.e., subject to

wT xi + b ≥ +1 − ξi, for yi = +1, ξi ≥ 0, (A.1c)

wT xi + b ≤ −1 + ξi, for yi = −1, ξi ≥ 0, (A.1d)

Now, both the w and the Φ(x) are the s-dimensional vectors. Note that the
dimensionality s can also be infinite and this happens very often (e.g., when
the Gaussian kernels are used). Again, the solution to the quadratic program-
ming problem (A.1) is given by the saddle point of the primal Lagrangian
Lp(w, b, ξ,α) shown below

Lp(w, b, ξ,α) =
1
2
wT w +

C

2
(

n∑
i=1

ξ2
i)−

n∑
i=1

αi{yi[wT xi + b]− 1 + ξi} (A.2)

Note that the Lagrange multiplier β associated with ξ is missing here. It
vanishes by combining (2.26e) and (2.26c) which is now equal to . Again, we
should find an optimal saddle point (wo, bo, ξo,αo) because the Lagrangian
Lp has to be minimized with respect to w, b and ξ, and maximized with
respect to nonnegative αi. And yet again, we consider a solution in a dual
space as given below by using

• standard conditions for an optimum of a constrained function

∂L

∂wo
= 0, i.e.,wo =

n∑
i=1

αiyiΦ(xi) (A.3a)

∂L

∂bo
= 0, i.e.,

n∑
i=1

αiyi = 0 (A.3b)

∂L

∂ξio
= 0, i.e., Cξi − αi = 0, (A.3c)

• and the KKT complementarity conditions below,

A.2 L2 Soft Regressor 211

αio{yi

[
wT Φ(xi) + b

]
− 1 + ξi} = 0

αio{yi

[
n∑

i=1

αjoyjk(xj ,xi) + bo

]
− 1 + ξi} = 0, i = 1, . . . n

(A.4)

A substitution of (A.3a) and (A.3c) into the Lp leads to the search for a
maximum of a dual Lagrangian

Ld(α) =
n∑

i=1

αi − 1
2

n∑
i, j =1

yiyjαiαj

(
k(xi,xj) +

δij

C

)
(A.5a)

subject to

αi ≥ 0, i = 1, n (A.5b)

and under the equality constraints

n∑
i=1

αiyi = 0 (A.5c)

where, δij = 1 for i = j, and it is zero otherwise. There are three tiny dif-
ferences in respect to the most standard L1 SVM. First, in a Hessian matrix,
a term 1/C is added to its diagonal elements which ensures positive definite-
ness of H and stabilizes the solution. Second, there is no upper bound on αi

and the only requirement is αi to be non-negative. Third, there are no longer
complementarity constraints (2.26e), (C − αi)ξi = 0.

A.2 L2 Soft Regressor

An entirely similar procedure leads to the soft L2 SVM regressors. We start
from the reformulated equation (2.44) as given below

Rw, ξ, ξ∗ =
[
1
2
||w||2 + C

(∑n

i=1
ξ2
i +

∑n

i=1
ξ∗2i

)]
(A.6)

and after an introduction of the Lagrange multipliers αi or α∗
i we change to

the unconstrained primal Lagrangian Lp as given below,

Lp(w, b, ξi, ξ∗i , αi, α∗
i) =

1
2
wT w +

C

2

∑n

i=1
(ξ2

i + ξ∗2i)

−
∑n

i=1
αi

[
wTxi + b − yi + ε + ξi

]
−
∑n

i=1
α∗

i

[
yi - wTxi - b + ε + ξ∗i

] (A.7)

212 A Support Vector Machines

Again, the introduction of the dual variables βi and β∗
i associated with ξi and

ξ∗i is not needed for the L2 SVM regression models. At the optimal solution
the partial derivatives of Lp in respect to primal variables vanish. Namely,

∂Lp(wo, bo, ξio, ξ∗io, αi, α∗
i)

∂w
= wo −

∑n

i=1
(αi − α∗

i)Φ(xi) = 0, (A.8a)

∂Lp(wo, bo, ξio, ξ∗io, αi, α∗
i)

∂b
=
∑n

i=1
(αi − α∗

i) = 0, (A.8b)

∂Lp(wo, bo, ξio, ξ∗io, αi, α∗
i)

∂ξi
= Cξi − αi = 0, (A.8c)

∂Lp(wo, bo, ξio, ξ∗io, αi, α∗
i)

∂ξ∗i
= Cξ∗i − α∗

i = 0. (A.8d)

Substituting the KKT above into the primal Lp given in (A.7), we arrive at
the problem of the maximization of a dual variables Lagrangian Ld(α, α∗)
below,

Ld(αi, α
∗
i) = −1

2

n∑
i, j =1

(αi − α∗
i)(αj − α∗

j)
(
ΦT (xi)Φ(xj) +

δij

C

)

− ε

n∑
i=1

(αi + α∗
i) +

n∑
i=1

(αi − α∗
i)yi

= −1
2

n∑
i, j =1

(αi − α∗
i)(αj − α∗

j)
(

k(xi,xj) +
δij

C

)

−
n∑

i=1

(ε − yi)αi −
n∑

i=1

(ε + yi)α∗
i

(A.9)

subject to constraints∑n

i=1
α∗

i =
∑n

i=1
αi or

∑n

i=1
(αi − α∗

i) = 0 (A.10a)

0 ≤ αi i = 1, . . . n (A.10b)
0 ≤ α∗

i i = 1, . . . n (A.10c)
(A.10d)

At the optimal solution the following KKT complementarity conditions must
be fulfilled

αi

(
wTxi + b − yi + ε + ξi

)
= 0 (A.11a)

α∗
i

(
- wTxi - b + yi + ε + ξ∗i

)
= 0 (A.11b)

αiα
∗
i = 0, ξiξ

∗
i = 0 i = 1, n. (A.11c)

Note that for the L2 SVM regression models the complementarity conditions
(2.53c) and (2.53d) are eliminated here. After the calculation of Lagrange

A.3 Geometry and the Margin 213

multipliers αi and α∗
i , and by using (A.8a) we can find an optimal (desired)

weight vector of the L2 regression hyperplane in a feature space as

wo =
∑n

i=1
(αi − α∗

i)Φ(xi) (A.12)

The best L2 regression hyperplane obtained is given by

F (x,w) = wT
o Φ(x) + b =

n∑
i=1

(αi − α∗
i)k(xi,x) + b (A.13)

Same as for the L1 SVM classifiers, there are three tiny differences in respect
to the most standard L1 SVM regressors. First, in a Hessian matrix, a term
1/C is added to its diagonal elements which ensures positive definiteness of
H and stabilizes the solution. Second, there is no upper bound on αi and
the only requirement is αi to be nonnegative. Third, there are no longer
complementarity constraints (2.53c) and (2.53d), namely the conditions (C −
αi)ξi = 0 and (C − α∗

i)ξ
∗
i = 0 are missing in the L2 SVM regressors.

Finally, same as for the L1 SVMs, note that the NL decision functions here
depend neither upon w nor on the true mapping Φ(x). The last remark is same
for all NL SVMs models shown here and it reminds that we neither have to
express, nor to know the weight vector w and the true mapping Φ(x) at all.
The complete data modeling job will be done by finding the dual variables
α

(∗)
i and the kernel values k(xi,xj) only.

A.3 Geometry and the Margin

In order to introduce the new concepts of a margin as given in (2.9) and an
optimal canonical hyperplane, we present some basics of analytical geometry
here. The notion of a distance D between the point and a hyperplane is
both very useful and important. Its definition follows. In �m let there be a
given point P (x1p, x2p, . . . , xmp) and a hyperplane d(x,w, b) = 0 defined by
w1x1+w2x2+. . .+wnxn±b = 0. The distance D from point P to a hyperplane
d is given as

D =
|(wxp) ± b|

||w || =
|w1x1p + w2x2p + · · · + wmxmp ± b|√

w2
1 + w2

2 + · · · + w2
m

(A.14)

Thus, for example, the distance between the point (1, 1, 1, 1) and a hyperplane
x1 + 2x2 + 3x3 + 4x4 − 2 = 0 is | [1 2 3 4] [1 1 1 1]T − 2|/

√
30 = 8/

√
30.

At this point we are equipped enough to present an optimal canonical
hyperplane, i.e., a canonical hyperplane having the maximal margin. Among
all separating canonical hyperplanes there is the unique one having a maximal
margin. The geometry needed for this presentation is shown in Fig. A.1.

214 A Support Vector Machines

Class 1, y = +1

x
1

x
2

Class 2, y = -1
w

x
1

x
2

x
3

w

x
2

0

MD
2 D

1

β

α

x
1

Fig. A.1. Optimal canonical separating hyperplane (OCSH) with the largest mar-
gin intersects halfway between the two classes. The points closest to it (satisfy-
ing yj

∣∣wT xj + b
∣∣ = 1, j = 1, NSV) are support vectors and the OCSH satisfies

yi(w
T xi + b) ≥ 1i = 1, n (where n denotes the number of training data and NSV

stands for the number of SV). Three support vectors (x1 from class 1, and x2 and
x3 from class 2) are training data shown textured by vertical bars. Sketch for the
margin M calculation -framed.

The margin M to be maximized during the training stage is a projection,
onto the separating hyperplane’s normal (weight) vector direction, of a dis-
tance between any two support vectors belonging to different classes. In the
example shown in the framed picture in Fig. A.1 this margin M equals

M = (x1 − x2)w = (x1 − x3)w (A.15)

where the subscript w denotes the projection onto the weight vector w direc-
tion. The margin M can now be found by using support vectors x1 and x2 as
follows

D1 = ‖x1‖ cos(α), D2 = ‖x2‖ cos(β) and M = D1 − D2 (A.16)

where α and β are the angles between w and x1 and between w and x2

respectively as given by,

cos(α) =
xT

1 w
‖x1‖ ‖w‖ , and cos(β) =

xT
2 w

‖x2‖ ‖w‖ (A.17)

Substituting (A.17) into (A.16) results in

M =
xT

1 w − xT
2 w

‖w‖ (A.18)

and by using the fact that x1 and x2 are support vectors satisfying yj

∣∣wT xj + b
∣∣ =

1, j = 1, 2, i.e.,wT x1 + b = 1 and wT x2 + b = −1 we finally obtain equation
(2.9) in the main part of the chapter

A.3 Geometry and the Margin 215

M =
2

‖w‖ . (A.19)

In deriving this important result, we used a geometric approach with the
graphical assistance of the framed sketch in Fig. A.1 Alternatively, we could
have used a shorter, algebraic, approach to show the relationship between
a weight vector norm ‖w‖ and a margin M . We could have simply used
(A.14) to express distance D between any support vector and a canonical
separating plane. Thus, for example, for two-dimensional inputs shown in Fig.
A.1 the distance D between a support vector x2 and a canonical separating
line equals half of the margin M , and from (A.14) it follows that D = M/2 =
|wT x2 + b|/||w || = 1/||w ||. This again gives M = 2/‖w‖ where we used
the fact that x2 is a support vector. In this case the numerator in the above
expression for D equals 1.

With these remarks we left the SVMs models developed and presented in
the chapter to both the mind and the hand of a curious reader. However, we
are aware that the most promising situation would be if the kernel models
reside in the heart of the reader. We wish and hope that this chapter paved,
at least, a part of the way to this veiled place.

B

Matlab Code for ISDA Classification

%**
%
% ISDA Classification with Gaussian RBF kernel
% ISDA_C.m-The main function for ISDA
%
% Input
% n - Number of training data
% x - Inputs of the training data
% Y - Labels for the training data
% s - Sigma parameter of the Gaussian RBF kernel
% k - Constant 1/k added to the kernel matrix
% C - Penalty parameter
% stopping= Stopping criterion of the algorithm
%
% Output
% alpha - Lagrange Multiplier α
% bias - bias term b
%
%**
function [alpha,bias] = ISDA_C(n,x,Y,s,C,k,stopping)
YE=ones(n,1)*-1; %YE= YiEi, n=number of data, s=σ
dim = size(x,2);% Dimensionality of the inputs
max_YE=inf;
q=n; % n is size of training data.
iter=0; iter_pre=0; % Counter for number of iteration
h=1000 % Number of steps before shrinking
set_A=[1:n]; %Set A includes entire data set at beginning
alpha=zeros(n,1); tol=1e-12;
omega=1;% Learning rate
xsquare=sum(x.^2,2);% Precomputing xixi term in (3.52)
Kij=zeros(n,1);%Variables for storing one row of Kernel matrix

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 217–221 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

218 B Matlab Code for ISDA Classification

buf_dealp=zeros(n,1);%Caching changes in α
YEm=YE;%Caching YiEi in the previous iterations.
while (1)
iter = iter +1; alphaold=alpha;
max_i=1; max_YE=0;
if(h==0) % Performing shrinking after h steps
h=1000;
[set_A,max_i]=shrinking(alpha,YE,tol,C,set_A); % shrinking
%Check if the reduced optimization problem (3.45) is solved
if(abs(YE(set_A(max_i)))<stopping)
if(length(find(buf_dealp(sv_ind)~=0))==length(sv_ind))
% Compute YiEi from scratch
[YE]=recompute_gradient(YE,alpha,set_A,n,x,Y,k,dim,s);
YEm=YE; buf_dealp=zeros(n,1);iter_pre=iter;
else
%Updating YiEi uses cached YiEi and ∆α
[YE]=update_grad(YE, YEm,alpha,set_A,n,x,Y,k,dim,s...
,buf_dealp);

YEm=YE; buf_dealp=zeros(n,1);
end
set_A=[1:n]; % Reset A
end%if inn
% Shrinking after updating of YiEi

[set_A,max_i]=shrinking(alpha,YE,tol,C,set_A);
% The algorithm stops if KKT conditions (3.6) is fulfilled with τ.
if(abs(YE(set_A(max_i)))<stopping) break; end%if
end
%Check KKT conditions (3.6) to find KKT violator
ind_vio= find((alpha(set_A)<C)&(YE(set_A)<0));
ind_vio2=find((alpha(set_A)>0)&(YE(set_A)>tol));
to_vio=[ind_vio;ind_vio2];
%Find the worst KKT violator
[max_YE max_i]=max(abs(YE(set_A([ind_vio;ind_vio2]))));
max_i=to_vio(max_i);max_i=set_A(max_i);
xy=x(max_i,:)*x’;
disti=ones(length(set_A),1)*xsquare(max_i)-2*xy(set_A)’...
+xsquare(set_A);
% Work out i-th row of the reduced RBF kernel matrix K_A
Kij(set_A)=exp(-0.5*disti/s^2)+1/k;
alphaold=alpha(max_i);
%Updating α with (3.8)
alpha(max_i) = alpha(max_i) -omega* YE(max_i)/(Kij(max_i));
%Clipping using (3.9)
alpha(max_i) = min(max(alpha(max_i)-tol,0), C);

B Matlab Code for ISDA Classification 219

%Find out change in α
de_alpha = (alpha(max_i)-alphaold)*Y(max_i);
%Updating the cache of ∆α
buf_dealp(max_i)=buf_dealp(max_i)+de_alpha;
%Updating the cache of YiEi with (3.10)
YE(set_A)=YE(set_A)+de_alpha*Y(set_A).*Kij(set_A);
h=h-1;
end% of while
bias= 1/k*alpha’*Y;%Work out the optimal bias term b_o

%**
%
% shrinking.m- Perform Step 7 of Algorithm 3.1
% Input
% alpha - Lagrange multiplier
% YE - KKT conditions
% tol - Precision of the KKT conditions to be fulfilled.
% set_A - Set A in Algorithm 3.1
% C - Penalty parameter
%
% Output
% set_A - New set A after shrinking
% max_i - The index of the worst KKT violator in set A
%
%**

function [set_A,max_i]=shrinking(alpha,YE,tol,C,set_A)
%Find KKT violators
ind_vio= find((alpha(set_A)<C)&(YE(set_A)<tol));
ind_vio2=find((alpha(set_A)>0)&(YE(set_A)>tol));
ind_sv=find(alpha(set_A)>0);
set_A= union(set_A(ind_vio),set_A(ind_vio2));%Shrink set A
set_A= union(set_A(ind_sv),set_A);
ind_vio= find((alpha(set_A)<C)&(YE(set_A)<tol));
ind_vio2=find((alpha(set_A)>0)&(YE(set_A)>tol));
%Find the worst KKT violator
[max_YE max_i]=max(abs(YE(set_A([ind_vio;ind_vio2]))));
to_vio=[ind_vio;ind_vio2]; max_i=to_vio(max_i);%
%Recomputing YiEi that is not in the set A from scratch

%**
%
% recompute_gradient.m- Routine for recomputing the
% KKT conditions from scratch using (3.49).
%

220 B Matlab Code for ISDA Classification

% Input
% YE - KKT conditions
% alpha - Lagrange multiplier
% set_A - Set A in Algorithm 3.1
% n - Number of training data
% x - Input of the training data
% y - Desired Labels of the training data
% k - Constant 1/k added to the kernel matrix
% dim - Dimensionality of the input
% s - Sigma of the Gaussian RBF kernel
%
% Output
% YE - Recomputed KKT conditions
%
%**

function [YE]=recompute_gradient(YE,alpha,set_A,...
n,x,y,k,dim,s)
sv_set=find(alpha>0);
non_set_A=setdiff([1:n],set_A);
sv_size=length(sv_set);
non_q=length(non_set_A);
YE(non_set_A)=0;
xsquare=sum(x.^2,2);
Kij=zeros(n,1);
for(i=1:sv_size)
ind_i=sv_set(i);
xy=x(ind_i,:)*x’;
disti=ones(non_q,1)*xsquare(ind_i)-2*xy(non_set_A)’...
+xsquare(non_set_A);
Kij(non_set_A)=exp(-0.5*disti/s^2)+1/k;
YE(non_set_A)=YE(non_set_A)+y(ind_i)*alpha(ind_i)...
*Kij(non_set_A);
end;
YE(non_set_A)=YE(non_set_A).*y(non_set_A);
YE(non_set_A)=YE(non_set_A)-1;
%Updating YiEi that is not in the set A

%**
%
% update_grad.m - Routine for updating the KKT conditions
% according to (3.51).
% Input
% YE - Most recent KKT conditions in the cache
% YEm - KKT conditions stored in the cache after

B Matlab Code for ISDA Classification 221

% the pervious execution of the recompute_gradient.m.
% alpha - Lagrange multiplier
% set_A - Set A in Algorithm 3.1
% n - Number of training data
% x - Input of the training data
% y - Desired Labels of the training data
% k - Constant 1/k added to the kernel
% dim - Dimensionality of the input
% s - Sigma of the Gaussian RBF kernel
% delalpha - change in alpha after the previous execution
% of recompute_gradient.m.
%
% Output
% YE - Updated KKT conditions.
%
%**

function [YE]=update_grad(YE, YEm,alpha,set_A,n,x,y,k,...
dim,s,delalpha)
set_alp=find(delalpha~=0); non_set_A=setdiff([1:n],set_A);
non_q=length(non_set_A); xsquare=sum(x.^2,2); Kij=zeros(n,1);
for(i=1:length(set_alp))
ind_i=set_alp(i);
xy=x(ind_i,:)*x’;
disti=ones(non_q,1)*xsquare(ind_i)-2*xy(non_set_A)’...
+xsquare(non_set_A);
Kij(non_set_A)=exp(-0.5*disti/s^2)+1/k;
YEm(non_set_A)=YEm(non_set_A)+delalpha(ind_i)*...
y(non_set_A).*Kij(non_set_A);
end
YE(non_set_A)=YEm(non_set_A);

C

Matlab Code for ISDA Regression

%**
%
% ISDA Regression with Gaussian RBF Kernel
%
% ISDA_R.m-main function for ISDA regression
%
% Input
% n - Number of training data
% x - Inputs of the training data
% Y - Desired outputs for the training data
% s - Sigma parameter of the Gaussian RBF kernel
% k - Constant 1/k added to the kernel matrix
% C - Penalty parameter
% ep - Width of the insensitivity zone
% stopping - Stopping criterion of the algorithm
%
% Output
% alpha - (alphaup - alphadown)
% bias - Bias term b
%**
function [alpha, bias] = ISDA_R(n,x,Y,s,C,ep,k,stopping)
dim = size(x,2)
tol = 1e-12
iter = 0;
alphaup = zeros(n,1);
alphadown = zeros(n,1);
Eu=-Y+ep; Eum=Eu;
El=ep+Y; Elm=El;
bufdel_alph=zeros(n,1);
set_A=[1:n];
omega=1;

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 223–228 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

224 C Matlab Code for ISDA Regression

h=100;
xsquare=sum(x.^2,2);
Kij=zeros(n,1);
while(1)
if(h==0)
h=100;
[set_A, max_Eu]=shrinking_reg(alphaup,alphadown,Eu,El...
,tol,C,set_A);
if(max_Eu<stopping)
sv_ind=find((alphaup-alphadown)~=0);
if(length(find(bufdel_alph(sv_ind)~=0))==length(sv_ind))
[Eu, El]=recompute_gradientreg(Eu,El,alphaup,alphadown,...
set_A,n,x,Y,k,dim,s,ep);
Eum=Eu; Elm=El; bufdel_alph=zeros(n,1);
else
[Eu,El]=update_grad_reg(Eu, El, Eum,Elm,set_A,n,x,Y,k,...
dim,s,bufdel_alph);
Eum=Eu;Elm=El;bufdel_alph=zeros(n,1);
end
set_A=[1:n];
end
[set_A, max_Eu]=shrinking_reg(alphaup,alphadown,...
Eu,El,tol,C,set_A);
if(max_Eu<stopping) break; end
end
h=h-1;
u_vio=find((alphaup(set_A)>0)&(Eu(set_A)>tol));
u_vio=union(u_vio,find((alphaup(set_A)<C)&(Eu(set_A)<tol)));
l_vio=find((alphadown(set_A)>0)&(El(set_A)>tol));
l_vio=union(l_vio,find((alphadown(set_A)<C)&(El(set_A)<tol)));
[max_Eu max_iu]=max(abs(Eu(set_A(u_vio))));
[max_El max_il]=max(abs(El(set_A(l_vio))));
if(isempty(max_Eu)) max_Eu=0; end; if(isempty(max_El))...
max_El=0; end;
if(max_El>max_Eu)
max_il=l_vio(max_il); max_il=set_A(max_il);
max_Eu=max_El
xy=x(max_il,:)*x’;
disti=ones(length(set_A),1)*xsquare(max_il)-2*xy(set_A)’...
+xsquare(set_A);
disti=exp(-0.5*disti/s^2);
Kij(set_A)=disti;
alpha_old =alphadown(max_il);
alphadown(max_il)=alphadown(max_il)-omega*El(max_il)...
/(Kij(max_il));

C Matlab Code for ISDA Regression 225

alphadown(max_il) = min(max(alphadown(max_il),0), C);
del_alp=-(alphadown(max_il)-alpha_old);
bufdel_alph(max_il)=bufdel_alph(max_il)+del_alp;
Eu(set_A)=Eu(set_A)+del_alp*Kij(set_A);
El(set_A)=El(set_A)-del_alp*Kij(set_A);
else
max_Eu
max_iu=u_vio(max_iu); max_iu=set_A(max_iu);
xy=x(max_iu,:)*x’;
disti=ones(length(set_A),1)*xsquare(max_iu)-2*xy(set_A)’...
+xsquare(set_A);
disti=exp(-0.5*disti/s^2);
Kij(set_A)=disti;
alpha_old =alphaup(max_iu);
alphaup(max_iu)=alphaup(max_iu)-omega*Eu(max_iu)...
/(Kij(max_iu));
alphaup(max_iu) = min(max(alphaup(max_iu),0), C);
del_alp=(alphaup(max_iu)-alpha_old);
bufdel_alph(max_iu)=bufdel_alph(max_iu)+del_alp;
Eu(set_A)=Eu(set_A)+del_alp*Kij(set_A);
El(set_A)=El(set_A)-del_alp*Kij(set_A);
end
end%while
bias= sum((alphaup-alphadown))*1/k;
%[(alphaup-alphadown) Eu El f’ Y]
Number_of_Iteration_cycles = iter
alpha =[alphaup;alphadown];
%**
%
% recompute_gradientreg.m
% - using (3.54) and (3.55) to recompute the KKT conditions
% from scratch.
%
% Input
% Eu - KKT conditions for alphaup
% El - KKT conditions for alphadown
% alphaup - Lagrange multiplier α
% alphadown - Lagrange multiplier α∗

i

% set_A - Set A in Algorithm 3.2
% n - Number of training data
% x - Inputs of the training data
% y - Desired outputs of the training data
% k - Constant 1/k added to the kernel
% dim - Dimensionality of the input
% s - Sigma of the Gaussian RBF kernel

226 C Matlab Code for ISDA Regression

% ep - Width of the insensitivity zone
%
% Output
% Eu - Recomputed KKT conditions for alphaup
% El - Recomputed KKT conditions for alphadown
%**
function [Eu,El]=recompute_gradientreg(Eu,El,alphaup...
,alphadown,set_A,n,x,y,k,dim,s,ep)
sv_set=find((alphaup-alphadown)~=0);
non_set_A=setdiff([1:n],set_A);
sv_size=length(sv_set);
non_q=length(non_set_A);
Eu(non_set_A)=0;
El(non_set_A)=0;
xsquare=sum(x.^2,2);
Kij=zeros(n,1);
for(i=1:sv_size)
ind_i=sv_set(i);
xy=x(ind_i,:)*x’;
disti=ones(length(non_set_A),1)*xsquare(ind_i)...
-2*xy(non_set_A)’+xsquare(non_set_A);
disti=exp(-0.5*disti/s^2);
Kij(non_set_A)=disti;
Eu(non_set_A)=Eu(non_set_A)+(alphaup(ind_i)...
-alphadown(ind_i))*Kij(non_set_A);
end;
El(non_set_A)=Eu(non_set_A);
for(j=1:non_q)
ind_j=non_set_A(j);
Eu(ind_j)= Eu(ind_j)-y(ind_j)+ep;
El(ind_j)=ep+y(ind_j)-El(ind_j)
end;
%**
%
% update_grad_reg.m
% -Update KKT conditions using (3.57).
%
% Eu - Most recent KKT conditions for alphaup in the cache
% Eum - KKT conditions stored in the cache for alphaup after
% the pervious execution of the recompute_gradientreg.m.
% Elm - KKT conditions for alphadown in the cache
% after the pervious execution of the
% recompute_gradientreg.m.
% El - Most recent KKT conditions for alphadown in the cache
% set_A - Set A in Algorithm 3.2

C Matlab Code for ISDA Regression 227

% n - Number of training data
% x - Input of the training data
% y - Desired Labels of the training data
% k - Constant 1/k added to the kernel
% dim - Dimensionality of the input
% s - Sigma of the Gaussian RBF kernel
% delalpha - change in (alphaup-alphadown) after previous
% execution of recompute_gradientreg.m.
%
% Output
% Eu - Updated KKT conditions for alphaup
% El - Updated KKT conditions for alphadown
%**
function [Eu,El]=update_grad_reg(Eu, El, Eum,Elm,...
set_A,n,x,y,k,dim,s,delalpha)
set_alp=find(delalpha~=0);
non_set_A=setdiff([1:n],set_A);
non_q=length(non_set_A);
xsquare=sum(x.^2,2);
Kij=zeros(n,1);
for(i=1:length(set_alp))
ind_i=set_alp(i);
xy=x(ind_i,:)*x’;
disti=ones(length(non_set_A),1)*xsquare(ind_i)-...
2*xy(non_set_A)’+xsquare(non_set_A);
disti=exp(-0.5*disti/s^2)+1/k;
Kij(non_set_A)=disti;
Eum(non_set_A)=Eum(non_set_A)+delalpha(ind_i)*Kij(non_set_A);
Elm(non_set_A)=Elm(non_set_A)-delalpha(ind_i)*Kij(non_set_A);
end
Eu(non_set_A)=Eum(non_set_A);
El(non_set_A)=Elm(non_set_A);

%**
%
% shrinking_reg.m - perform Step 8 of Algorithm 3.2
%
% Input
% alphaup - Lagrange multiplier α
% alphadown- Lagrange multiplier α∗

i

% Eu - KKT conditions for alphaup
% El - KKT conditions for alphadown
% tol- Precision of the KKT conditions to be fulfilled.
% set_A - set A in Algorithm 3.1
% C - Penalty parameter

228 C Matlab Code for ISDA Regression

% Output
% set_A - New set A after shrinking
% max_Eu - The KKT condition for the worst KKT violator
%
%**

function [set_A, max_Eu]=shrinking_reg(alphaup,alphadown...
,Eu,El,tol,C,set_A)
u_vio=find((alphaup(set_A)>0)&(Eu(set_A)>tol));
u_vio=union(u_vio,find((alphaup(set_A)<C)&(Eu(set_A)<tol)));
l_vio=find((alphadown(set_A)>0)&(El(set_A)>tol));
l_vio=union(l_vio,find((alphadown(set_A)<C)&...
(El(set_A)<tol)));
[max_Eu max_iu]=max(abs(Eu(set_A(u_vio))));
[max_El max_il]=max(abs(El(set_A(l_vio))));
if(isempty(max_Eu)) max_Eu=0; end
if(isempty(max_El)) max_El=0; end
if(max_El>max_Eu) max_Eu=max_El; end
set_A=union(set_A(u_vio),union(set_A(l_vio),set_A(sv_ind)));

D

Matlab Code for Conjugate Gradient Method
with Box Constraints

%**
%
% cggsemi_sup1.m - This program implements Algorithm 5.4
% i.e. solving min 0.5*x’Ax-hx
% s.t. low_b <= x <=up_b
%
% Input
% A - Matrix A
% h - Vector h
% up_b - Upper bound for x
% low_b - Lower bound for x
% stopping - Stopping criterion of the algorithm
% Recommanded value stopping <= 10e-5
% tol - small number to take care of numerical error
% Recommanded value tol = 10e-12.
%
% Output
% x - Vector x, solution of the optimization problem
%**

function [x] = cggsemi_sup1(A,h,up_b,low_b,tol,stopping)
[m,n]=size(A);
x =zeros(m,1);
%r= current rk = next step -*gradient at current direction
rk = h-A*x;
r=rk;
r_dot =rk;
act_i = find(r~=0);
counter =1;
r_dot(act_i) =0;
p=r_dot;

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 229–231 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

230 D Matlab Code for Conjugate Gradient Method with Box Constraints

in_comp=1:m;
in_comp=in_comp’;
iter=0;
%tic;
while (1)
%Step 2 and 3 of the Algorithm 5.4

x_zero= find(abs(up_b-x)<=tol);
% upper bound in semi-learning = 1
x_upbound = find(abs(low_b-x)<=tol);
% lower bound in semi- learning is -1
act_i_temp = find(r(x_zero)>=0);
act_up = find(r(x_upbound)<=0);
act_i = [x_zero(act_i_temp);x_upbound(act_up)];
if(length(act_i)~=0) non_act_i =setdiff(in_comp,act_i);
else
non_act_i = in_comp;
end
if(abs(r(non_act_i))<=stopping) break; end
%Step 4 of the Algorithm 5.4

r_dot =r;
r_dot(act_i)=0;
p=r_dot;
while(1)

%Step 5 of the Algorithm 5.4
s = A*p;
c= p’*r;
d=p’*s;
a=c/d;
xk=x+a*p;
iter=iter+1;
rk = r-a*s;
%checking
x_lower = find(xk-up_b>0);
x_upper = find(low_b-xk>0);
s_out = [x_lower;x_upper];
if(length(s_out)>0)
%Step 6 of the Algorithm 5.4

rato_low = -(x(x_lower)-up_b)./p(x_lower);
rato_up =(low_b-x(x_upper))./p(x_upper);
rato = [rato_low;rato_up];
%Step 7 of the Algorithm 5.4
[minra,I] = min(rato);
xk= x+minra*p;

if abs(low_b-xk(s_out(I)))<tol xk(s_out(I))=low_b;
else xk(s_out(I))= up_b;

D Matlab Code for Conjugate Gradient Method with Box Constraints 231

end
r = r-minra*s;

act_i= [find(abs(xk-up_b)<tol);find(abs(low_b-xk)<tol)];
non_act_i =setdiff(in_comp,act_i);

% upper bound in semi-learning = 1
x_zero= find(abs(up_b-xk)<=tol);
% lower bound in semi- learning is -1

x_upbound = find(abs(low_b-xk)<=tol);
act_i_temp = find(r(x_zero)>=0);
act_up = find(r(x_upbound)<=0);
%x_zero = cat(1,x_zero,x_upbound);
act_i = [x_zero(act_i_temp);x_upbound(act_up)];
if(length(act_i)~=0) non_act_i =setdiff(in_comp,act_i);
else
non_act_i = in_comp;
end

if(abs(r(non_act_i))<=stopping)
x=xk;
break;
end

%Step 4 of the Algorithm 5.4
r_dot =r;
r_dot(act_i)=0;
p=r_dot;
x=xk;

elseif length(find(abs(rk(non_act_i))>=stopping))==0
r=rk;
x=xk;
break;

else
r_dot=rk;
r_dot(act_i) = 0;
b =-(s’*r_dot)/d;
pk = r_dot+b*p;
p=pk;
r=rk;
x=xk;

end
end%while inner

end %while outer
iter;
x;

E

Uncorrelatedness and Independence

We have emphasized several times that ICA assumed that source signals are
statistically independent and also that PCA only decorrelates mixed signals.
We have also said that for normal or Gaussian processes uncorrelatedness
and independence are equivalent statements. In addition, we have said that
for some random process x having statistically independent components the
following applies:

p(x) =
∏
n

pn(xn) (E.1)

Let us assume that xn are normal processes with N(µn, σn) where µn denotes
mean and σn denotes standard deviation. Pdf of each individual process xn

is given by:

pn(xn) =
1

(2π)1/2
σn

exp

(
− (xn − µn)2

2σ2

)
(E.2)

Joint pdf of x is given as:

px(x) =
1

(2π)N/2 (detRx)1/2
exp

(
−1

2
(x − µx)T R−1

x (x − µx)
)

(E.3)

where N represents dimensionality of x, Rx represents data covariance matrix
and µx represents vector of the mean values. Elements of the data covariance
matrix at position (i, j) are correlations among the components of the vector
x given by:

Rx(i, j) = E [xixj] (E.4)

where E denotes mathematical expectation. If processes xn are uncorrelated
then:

Rx(i, j) = δij (E.5)

where symbol δij denotes Kronecker delta equal to one for i = j and zero
otherwise. Under this condition Rx becomes diagonal matrix with variance

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 233–236 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

234 E Uncorrelatedness and Independence

on the main diagonal i.e. Rx(i, i) = σ2
i . It is easy to show that joint pdf px(x)

can be written as:

px(x) =
∏
n

1

(2π)1/2
σn

exp

(
− (xn − µn)2

2σ2

)
=
∏
n

pn(xn) (E.6)

which proves that for Gaussian processes uncorrelatedness implies statistical
independence. This is why PCA is optimal transform for Gaussian processes.
If processes however are non-Gaussian (E.5) will not lead to (E.1) i.e. un-
correlatedness will not imply statistical independence. In order to quantify
statistical independence between the stochastic processes we have to intro-
duce cumulants [22, 97]. Before that we have to introduce first and second
characteristic functions [126, 22]. The first characteristic function of the ran-
dom process x is defined as the Fourier transform of the pdf p(x):

Ψx(ω) = E [exp (jωx)] =
∫ +∞

−∞
exp (jωx) p(x)dx (E.7)

where j in (E.7) represents imaginary unit i.e. j =
√
−1. If term exp (jωx)

is expanded into power series first characteristic function can be written with
the moments as the coefficients in the expansion [126, 22]:

Ψx(ω) = E

[
1 + jωx +

(jω)2

2!
x2 + .. +

(jω)n

n!
xn + ...

]
(E.8)

= 1 + E [x] jω + E
[
x2
] (jω)2

2!
+ ... + E [xn]

(jω)n

n!
+ ...

Second characteristic function Kx(ω) is obtained by applying natural log-
arithm on the first characteristic function:

Kx(ω) = lnΨx(ω) (E.9)

If expanded version of Ψx(ω) given by (E.8) is inserted into (E.9) the power
series version of the second characteristic function is obtained with cumulants
as the coefficients in the expansion:

Kx(ω) = C1(x) (jω) + C2(x)
(jω)2

2!
+ ... + Cn(x)

(jω)n

n!
+ ... (E.10)

Cumulants have several properties that make them very useful in various
computations with stochastic processes. We refer to [22, 100] for details. In the
context of ICA important property of the cumulants is that, unlike moments,
cumulants of the order higher than 2 are equal to zero if random process is
Gaussian [126, 22]. Therefore they are natural measure for non-Gaussianity.

E Uncorrelatedness and Independence 235

It will be shown that kurtosis introduced by (6.14) is actually normalized
fourth order cumulant. Because odd order statistics (cumulants) are zero for
random processes which are symmetrically distributed the first statistics of
the order higher than two which is in use is the fourth order statistics. In
practice cumulants have to be estimated from data and for that purpose it
is useful their relations with moments [97, 100]. Relations between moments
and cumulants are derived from the following identity:

exp {Kx(ω)} = Ψx(ω) (E.11)

For zero mean random process x we give here relation between cumulants
and moments up to the order four:

C2(x) = E[x2]

C3(x) = E[x3]

C4(x) = E[x4] − 3E2[x2] (E.12)

It is easy to verify that kurtosis given by (6.14) follows from definition:

κ(x) =
C4(x)

(C2(x))2
(E.13)

In order to measure statistical independence between stochastic processes
cross-cumulants have to be defined. The cross-cumulant of the order two is
defined with:

C11(xi, xj) = E[xi(t)xj(t + τ)] (E.14)

where τ represents the relative shift between the two sequences. We shall as-
sume here that τ = 0. We observe that C11 is nothing else but cross-correlation
between xi and xj . It measures the second order statistical dependence be-
tween the two processes. In order to make cross-correlation invariant with
respect to the fluctuations of the signal amplitude it is normalized as:

C11(xi, xj) =
E[xi(t)xj(t)]

(E[x2
i (t)])

1
2
(
E[x2

j (t)]
) 1

2
(E.15)

which implies −1 ≤ C11(xi, xj) ≤ 1. In order to measure the fourth order
statistical dependence between the stochastic processes we need to define the
fourth order (FO) cross-cumulant [97, 100]. If we assume that shifts between
sequences are equal to zero then three FO cross-cumulants between zero mean
random processes xi and xj are defined as:

C13(xi, xj) = E[xi(t)x3
j (t)] − 3E[xi(t)xj(t)]E[x2

j (t)] (E.16)

C22(xi, xj) = E[x2
i (t)x

2
j (t)] − E[x2

i (t)]E[x2
j (t)] − 2 (E[xi(t)xj(t)])

2 (E.17)

C31(xi, xj) = E[x3
i (t)xj(t)] − 3E[xi(t)xj(t)]E[x2

i (t)] (E.18)

236 E Uncorrelatedness and Independence

We could proceed with the higher order cross-cumulants but relations between
them and moments become very complex and therefore computationally very
expensive [97]. In order to prevent dependence of the sample estimate of FO
cross-cumulants on the signal amplitude we normalize them according to:

Cpr(xi, xj) =
Cpr(xi, xj)

(E[x2
i (t)])

p
2
(
E[x2

j (t)]
) r

2
(E.19)

F

Independent Component Analysis by Empirical
Estimation of Score Functions i.e., Probability
Density Functions

In Chap. 6 we have derived batch and adaptive ICA learning rules through
the minimization of the mutual information between the output signals y.
Batch form of the learning algorithm was given by (6.42) as:

W(k + 1) = W(k) + η
(
I − E

[
ϕ (y)yT

])
W(k) (F.1)

while adaptive learning algorithm was obtained by dropping mathematical
expectation operator E[o] from (F.1) and replacing iteration index k by “time”
index t:

W(t + 1) = W(t) + η
(
I − ϕ (y(t))y(t)T

)
W(t) (F.2)

Optimal form of the nonlinear vector function ϕ(y), called score or activation
function, was shown in (6.39) to be:

ϕi(yi) = − 1
pi(yi)

∂p(yi)
∂yi

(F.3)

Unknown probability density function pi(yi) was modelled by generalized
Gaussian distribution [33, 35] given by (6.47) as:

pi(yi) =
θi

2σiΓ (1/θi)
exp

(
− 1

θi

∣∣∣∣ yi

σi

∣∣∣∣θi
)

(F.4)

where with the value of the parameter θi, called Gaussian exponent, 1 ≤ θI ≤
2 (F.4) can model sparse or super-Gaussian distributions and with value of
the parameter θI > 2 (F.4) can model bimodal or sub-Gaussian distributions.
In (F.4) Γ (o) represents the gamma function. If (F.4) is inserted in (F.3) the
parametric representation of the score function is obtained as in (6.48):

ϕi(yi) = sign(yi) |yi|θi−1 (F.5)

If it is not possible to know in advance to which statistical class the sig-
nals belong the parameterized score function (F.5) will lead to suboptimal

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 237–240 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

238 F ICA by Empirical Estimation of Score Functions

or even divergent learning algorithms (6.1) and (6.2). In such a case one of
the solutions is to calculate activation function based on the Parzen’s window
based empirical estimate of the unknown probability density function with
the Gaussian kernel such as proposed in [118]:

p̂i(yi(t),yi) =
1
T

T∑
tt=1

G
(
yi(t) − yi(tt), σ2I

)
(F.6)

where yi denotes the whole sample, T denotes sample size and G(o) is
Gaussian probability density function:

G
(
yi(t), σ2I

)
=

1√
2πσ

exp
(
−y2

i (t)
2σ2

)
(F.7)

σ2 represents variance of the empirical estimator which is usually in the in-
terval 0.01 ≤ σ2 ≤ 0.1. From (F.6) and (F.7) an empirical estimator for the
derivative of the probability density function follows as:

dp̂i(yn)
dyi

= − 1
T

T∑
tt=1

yi(t) − yi(tt)
σ2

G
(
yi(t) − yi(tt), σ2I

)
(F.8)

Now using (F.3), (F.6), (F.7) and (F.8) batch and adaptive learning rules
for the de-mixing matrix W could be obtained as in (F.1) and (F.2) respec-
tively, with the nonlinear activation function directly estimated from data.
The potential drawback of this approach could be high computational com-
plexity in comparison with approach based on the parametric model of the
nonlinear activation functions. The computational complexity of the approach
based on empirical estimate of the score functions is O(T 2N2) where N rep-
resents number of sources or classes.

Algorithms for estimation of mutual information, score functions and en-
tropies with smaller computational complexity of the order O(3NT +N2T) are
presented in [113]. Further improvement in terms of the computational com-
plexity of the order O(NT log T + N2T) are presented in [124]. We shall not
further elaborate these approaches here. MATLAB implementation of batch
ICA learning rule (F.1) (also given by (6.42)) with the empirical estimator of
the score functions (given by (F.3), (F.6)-(F.8)) is given below.

%**
%
% Minimum mutual information batch ICA algorithm with
% the score function estimated from data
%
% input arguments:
% X - vector of zero mean measured signals with the
% dimension NSOURCExT.
% gain - learning gain

F ICA by Empirical Estimation of Score Functions 239

% ITMAX - maximal number of iterations in batch
% learning procedure.
% NSOURCE - number of source signals
% T - sample size
%
% output arguments:
% Y - vector of separated signals of dimensions NSOURCExT
%
%**

function [Y]= mut_inf_ica_score_estimate(X,gain,ITMAX,NSOURCE,T)

I = eye(NSOURCE); % initial value for demixing matrix
W = I;
it = 1;

for n=1:NSOURCE
X(n,:) = X(n,:) - mean(X(n,:)); % make data zero mean

end;

while (it < ITMAX)
it = it+1;
FE = zeros(NSOURCE,NSOURCE);
for k=1:T

Y(:,k) = W*X(:,k);
end

[fi,pdfest]= pdf_score_est(Y,0.01); % eq. (F.6)-(F.8)

for k=1:T
FE = FE + fi(:,k)*Y(:,k)’;

end
FE = FE/T;
F = I - FE;
W = W + gain*F*W; % eq. (F.1)

end
%***
% pdf and score function estimator
%
% input arguments:
% Y - signal matrix NxT (N - number of signals,
% T - number of samples)
% sigm - variance of the pdf estimator
%
% output arguments:

240 F ICA by Empirical Estimation of Score Functions

% fi - score function estimate NxT
% pdfest - estimate of the pdf
%***

function [fi,pdfest]= pdf_score_est(Y,sigm)

[N T] = size(Y);
cf = 1/(sqrt(2*pi)*sigm);
sigm2=sigm*sigm;

for t=1:T
for n=1:N

pdfest(n,t)=0;
dpdfest(n,t)=0;
for tt=1:T

gk = cf*exp(-power(Y(n,t)-Y(n,tt),2)/2/sigm/sigm);
pdfest(n,t) = pdfest(n,t) + gk;
dpdfest(n,t) = dpdfest(n,t) - gk*(Y(n,t)-Y(n,tt))...
/sigm2;

end
pdfest(n,t)=pdfest(n,t)/T; % Eq. (F.6)
dpdfest(n,t)=dpdfest(n,t)/T; % Eq. (F.8)
fi(n,t)=-dpdfest(n,t)/pdfest(n,t); % Eq. (F.3)

end
end

G

SemiL User Guide

SemiL (Copyright (C) 2004 Te-Ming Huang and Vojislav Kecman) is efficient
software for solving large-scale semi-supervised learning problem using graph
based approaches that is presented in Chap. 5. It is available at

www.learning-from-data.com

SemiL is designed to solve semi-supervised learning problems using all the
models listed in Tables 5.3 and 5.4. In summary, it implements the approach
listed below:

1. Hard label approach with the maximization of smoothness, and
2. Soft label approach with the maximization of smoothness,

for all three types of models (i.e., Basic model, Norm Constrained Model and
Bound Constrained Model presented in Sect. 5.6) by using either Standard or
Normalized Laplacian, e.g., with option -l 1 -h 1 -mu 0.0101 -lambda 0.0101,
the following formulation is used.

Q(F) =
1
2

⎛
⎝ n∑

i,j=1

Wij

∥∥∥∥∥ 1√
Dii

Fi −
1√
Djj

Fj

∥∥∥∥∥
2

+ λ

n∑
i=1

‖Fi − Yi‖2 + µ

n∑
j=1

‖Fj‖2

⎞
⎠

(G.1)
It is important to note that lambda controls the amount of penalty on the

empirical error of the labeled point and mu controls the norm of the output of
the unlabeled points. It is the same as the consistency method (CM) proposed
in [155] when α in Algorithm 5.2 is equal to 0.99.

G.1 Installation

• For Windows User: Unzip the file semil.zip and it will self-extract itself
into the folder SemiL. The executable file SemiL will be in the folder Win-
dows. Rename the file SemiL to SemiL.exe1 to execute. Once extracted,

1 The windows version of SemiL is developed in Visual C++ 6.0.

T.-M. Huang et al.: Kernel Based Algorithms for Mining Huge Data Sets, Studies in Compu-
tational Intelligence (SCI) 17, 241–245 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

242 G SemiL User Guide

and after running MS-DOS, the working directory in Command Prompt
(MS-DOS) may be c:/SemiL/Windows. That means, once you are in Com-
mand Prompt type in:

cd c:/semil/Windows

• For Linux User: The executable file for Linux (SemiL) will be in
.../SemiL/Linux folder.

Before using please go through the options. By typing

semil

all the SemiL routine’s options will be displayed. They are as follows:

-t Distance type
1 = Euclidean distance
2 = Cosine distance

-d Degree of the graph (this is a design parameter and
for each problem the final model may have different degree)
-m Cachesize : set cache memory size in MB (default 0)

(m is needed when working with dense raw data only,
to speed up the calculations)

-l Standard or normalised Laplacian
0 = standard Laplacian
1 = normalized Laplacian

-h Hard or soft label
0 = hard label
1 = soft label

-k Kernel_type
0 = RBF function exp(-(|u-v|^2)/gamma)\n
1 = Polynomial function (not an option at the moment)

-p Degree of polynomial (at the moment not implemented)
-mu Penalty parameter valid for the
Norm Constrained Model only.
-lambda Penalty parameter for the empirical error, valid for

the Soft Label approach only.
-r Number of random experimental runs for a given setting
-g Gamma value for the RBF kernel
(shape parameter of the n-dimensional Gaussian)
-pl Percentage of the labeled points in the experiment
-stp Precision for the solver (default = 1e-5)
-up_b Upper bound for the bounded constraint (default = inf)
-low_b Lower bound for the bounded constraint (default = -inf)
-nr Normalization of the output i.e., F* matrix

0 = Without a Normalization
1 = With a Normalization

-ocl One class labeling (Default 1)

G.2 Input Data Format 243

0 = Two Class labeling (-1 and +1)
1 = One Class labeling(+1 only)

G.2 Input Data Format

SemiL can take two different types of data as the input. For first time solving
a given problem with SemiL, you need to convert your data set into the raw
data file format as given in the following section.

G.2.1 Raw Data Format:

<label1> <index1>:<value1> <index2>:<value2>. . .
<label2> <index1>:<value1> <index2>:<value2>. . .

<label1> is the desired label of the first data point and <label2> is the
desired label of the second data point. The <index1> is an integer value
starting from one (1) and it tells to the program which dimension <value>
belongs to. SemiL can take raw data in sparse form or in dense form. For data
point i with unknown label, set the value of <labeli> to zero.

Example G.1. we have 7 4-dimensional measurements belonging to three
classes and only one measurement per class is labeled. The data are given
in Table G.1.

Dimension of the input
Label value 1 value 2 value 3 value 4

1 0 1.1 0.3 -1.1
0 -2 0 1.1 0.7
0 1.1 -3.1 0 1.1
2 0 0 0 2
3 5 -0.5 1 2.3
0 2 0 -4.1 0
0 0 1.1 0 3.7
Table G.1. Example input data.

Data in DENSE format are to be given as follows:

1 1:0 2:1.1 3:0.3 4:-1.1
0 1:-2 2:0 3:1.1 4:0.7
0 1:1.1 2:-3.1 3:0 4:1.1
2 1:0 2:0 3:0 4:2
3 1:5 2:-0.5 3:1 4:2.3
0 1:2 2:0 3:-4.1 4:0
0 1:0 2:1.1 3:0 4:3.7

244 G SemiL User Guide

and the data in SPARSE format are to be given as:

1 2:1.1 3:0.3 4:-1.1
0 1:-2 3:1.1 4:0.7
0 1:1.1 2:-3.1 4:1.1
2 4:2
3 1:5 2:-0.5 3:1 4:2.3
0 1:2 3:-4.1
0 2:1.1 4:3.7

After solving the problem for the first time, SemiL will generate a distance
matrix file (you should specify the name at the prompt) and a label file having
the same name augmented by the label extension. You can use these two files
during the design runs playing with various design parameters without an
evaluation of a distance matrix each time. In Windows version of SemiL, Intel
BLAS is incorporated to improve the performance on evaluating the distance
matrix when data is dense. You can specify the amount of cache by defining
an option “-m”. The program can run in the following two modes,

1. Experiment Mode (ExM): ExM tests different types of semi-supervised
learning algorithms by inputting data set with all the data labeled. In
this mode, it will randomly select a fixed number of data points as la-
beled points, and then it will try to predict the label for the rest of the
points. By comparing the predicted labels and the true labels, the user
can examine the performance of different settings for a semi-supervised
learning. The number of data points to be selected is specified by option
“-pl”, which stands for percentage of data point to be labeled from all
data. The user can specified how many experiments should be run by the
option “-r ”. To activate this mode, the user only needs to supply the
routine with ALL the data labeled.

2. Predicting mode (PM): The routine will run in PM as long as there is
at least one label equal to zero. In the predicting mode, the program will
predict the label of ALL the unlabeled data. To activate this mode, the
user simply set the label of unlabeled points equal to 0 in the data file.

G.3 Getting Started

1. Prepare your data in the format readable by the program. If your data
is in Matlab, use the convtosp.m or convtode.m to convert them into the
format readable by SemiL. To use these routines, you need to put the
label of your data points as the first column of your Matlab variable in
Matlab. Convtosp.m will convert your full Matlab variable into the proper
format as a sparse input data. Convtoden.m will convert your full Matlab
variable into a dense input data for the program.

G.3 Getting Started 245

2. Once the data is prepared, you can use the command line to run the
program. Below, we first run the problem 20 News Group Recreation (the
same one used in Sect. 5.4) for which the data are extracted (by using the
Rainbow software [96]) and stored in the file rec.txt (in a sparse format).

3. To perform the run, type in the following line in the directory of the exe
file

Semil -t 2 -d 10 -m 0 -l 0 -h 0 -k 0 -u 0 -g 10 -r 50
-pl 0.003 -lambda 0 -mu 0.5 rec.txt

4. Thus, the user starts with the raw data input to the program which
will compute the distance matrix (used for the RBF model’s only) and
save it separately from the labels. It will produce a file named by us.
Here we named it rec2 10d.dat for the output of the solver which will
be saved as the file. Additionally, two more files will be created, namely
rec2 10d.dat.output and rec2 10d.dat.label. At the same time the error rate
for each run will be recorded in the file error rate.dat.

G.3.1 Design Stage

5. After the distance matrix is calculated and associated with the corre-
sponding labels (which are stored in separate files) a design by changing
various model parameters (settings e.g., l, h, k, g, r, pl lambda, and mu)
can start by typing in the following line.

Semil -l 0 -h4 0 -k 0 -u 0 -g 10 -r 50 -pl 0.003
-lambda 0 -mu 0 rec2_10d.dat rec2_10d.dat.label

Note that the filenames will be different if you name the two files with
different names. The above line will implement GRFM [160]. To use CM
model [155] use the following line.

Semil -l 1 -h 1 -k 0 -u 0 -g 10 -r 50 -pl 0.003
-lambda 0.0101 -mu 0.0101 rec2_10d.dat rec2_10d.dat.label

The two examples above are the original CM and GRFM models given in
Tables 5.3 and 5.4 (These models are marked by star in the corresponding
tables.). We did not test for other ten models given in the Tables 5.3 and
5.4, they are left to the interested readers to explore.
In this setting, the computation of distances will be skipped and the pro-
gram will read the distance matrix from file and use it for the simulation.

6. Same as in the run with raw data the results will be saved in three files:
rec2 10d.dat.output, rec2 10d.dat.label and in error rate.dat. Also, the er-
rors in each run will be printed on the screen.

References

1. S. Abe. Support Vector Machines for Pattern Classification. Springer-Verlag,
London, 2004.

2. J. B. Adams and M. O. Smith. Spectral mixture modeling: a new analy-
sis of rock and soil types at the Viking lander 1 suite. J. Geophysical Res.,
91(B8):8098–8112, 1986.

3. J. B. Adams, M. O. Smith, and A. R. Gillespie. Image spectroscopy: inter-
pretation based on spectral mixture analysis, pages 145–166. Mass: Cambridge
University Press, 1993.

4. M.A. Aizerman, E.M. Braverman, and L.I. Rozonoer. Theoretical foundations
of the potential function method in pattern recognition learning. Automation
and Remote Control, 25:821–837, 1964.

5. H. Akaike. A new look at the statistical model identification. IEEE Trans. on
Automatic Control, 19(12):716–723, 1974.

6. J. M. Aldous and R. J. Wilson. Graphs and applications : an introductory
approach. Springer, London, New York, 2000.

7. A.A. Alizadeh, R. E. Davis, and Lossos MA, C. Distinct types of diffuse large
B-cell lymphoma identified by gene expression profiling. Nature, (403):503–511,
2000.

8. U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J.
Levine. Broad patterns of gene expression revealed by clustering analysis of
tumor and normal colon cancer tissues probed by oligonucleotide arrays. In
Proc. of the Natl. Acad. Sci. USA, pages 6745–6750, USA, 1999.

9. S. Amari. Natural gradient works efficiently in learning. Neural Computation,
10(2):251–276, 1998.

10. S. Amari. Superefficiency in blind source separation. IEEE Transactions on
Signal Processing, 47:936–944, 1999.

11. C. Ambroise and G.J. McLachlan. Selection bias in gene extraction on the
basis of microarray gene-expression data. In Proc. of the Natl. Acad. Sci.
USA, volume 99, pages 6562–6566, 2002.

12. J. K. Anlauf and M. Biehl. The Adatron- An adaptive perceptron algorithm.
Europhysics Letters, 10(7):687–692, 1989.

13. B. Ans, J. Hérault, and C. Jutten. Adaptive neural architectures: detection of
primitives. In Proc. of COGNITIVA’85, pages 593–597, Paris, France, 1985.

248 References

14. H. Barlow. Possible principles underlying the transformation of sensory mes-
sages. Sensory Communication, pages 214–234, 1961.

15. R. Barrett, M. Berry, T.F. Chan, and J. Demmel. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial
and Applied Mathematics, Philadelphia, 1994.

16. P. L. Bartlett and A. Tewari. Sparseness vs estimating conditional probabil-
ities: Some asymptotic results., 2004. submitted for a publication and taken
from the P. L. Bartlett’s site.

17. A. J. Bell and T. J. Sejnowski. An information-maximization approach to
blind separation and blind deconvolution. Neural Computation, 7(6):1129–
1159, 1995.

18. A. Belouchrami, K.A. Meraim, J.F. Cardoso, and E. Moulines. A blind source
separation technique based on second order statistics. Transactions on Signal
Processing, 45(2):434–444, 1997.

19. K. Bennett and A. Demiriz. Semi-supervised support vector machines. In Ad-
vances in Neural Information Processing Systems, volume 19. The MIT Press,
1998.

20. S. Berber and M. Temerinac. Fundamentals of Algorithms and Structures for
DSP. FTN Izdavastvo, Novi Sad, 2004.

21. M. Black. Lecture notes of statistical analysis of gene expression microarray
data, 2004.

22. D. R. Brillinger. Time Series Data Analysis and Theory. McGraw-Hill, 1981.
23. J. F. Cardoso. Infomax and maximum likelihood for blind source. IEEE Signal

Processing Letters, 4:112–114, 1997.
24. J. F. Cardoso. On the stability of source separation algorithms. Journal of

VLSI Signal Processing Systems, 26(1/2):7–14, 2000.
25. J. F. Cardoso and B. Laheld. Equivariant adaptive source separation. IEEE

Trans. Signal Processing, 44(12):3017–3030, 1996.
26. J. F. Cardoso and A. Soulomniac. Blind beamforming for non-gaussian signals.

In Proc. IEE-Part F, volume 140, pages 362–370, 1993.
27. C.C. Chang and C.J. Lin. LIBSVM: A library for support vector machines,

2002.
28. O. Chapelle and A. Zien. Homepage of low density separation, 2005.
29. O. Chapelle and A. Zien. Semi-supervised classification by low density sepa-

ration. In Proc. of the 10th International Workshop on Artificial Intelligence
and Statistics, AI STATS 2005, Barbados, 2005.

30. J. Chen and X. Z. Wang. A new approach to near-infrared spectal data analysis
using independent component analysis. J. Chem. Inf., 41:992–1001, 2001.

31. Y. Chen, G. Want, and S. Dong. Learning with progressive transductive sup-
port vector machines. Pattern Recognition Letters, 24:1845–1855, 2003.

32. V. Cherkassky and F. Mulier. Learning From Data: Concepts, Theory and
Methods. John Wiley & Sons, Inc., New York, 1998.

33. S. Choi, A. Cichocki, and S. Amari. Flexible independent component analysis.
Journal of VLSI Signal Processing, 20:25–38, 2000.

34. F. Chu and L. Wang. Gene expression data analysis using support vector ma-
chines. In C. Donald, editor, Proc. of the 2003 IEEE International Joint Con-
ference on Neural Networks, pages 2268–2271, New York, 2003. IEEE Press.

35. A. Cichocki and S. Amari. Adaptive Blind Signal and Image Processing-
Learning Algorithms and Applications. John Wiley, 2002.

References 249

36. A. Cichocki, R. Unbehaunen, and E. Rummert. Robust learning algorithm for
blind separation of signals. Electronic Letters, 28(21):1986–1987, 1994.

37. M. Cohen and A. Andreou. Current-mode subthreshold MOS implementa-
tion of the Herault-Jutten autoadaptive network. IEEE Journal of Solid-State
Circuits, 27(5):714–727, 1992.

38. P. Common. Independent component analysis- a new concept? Signal Process-
ing, 36(3):287–314, 1994.

39. C. Cortes. Prediction of Generalization Ability in Learning Machines. PhD
thesis, Department of Computer Science, University of Rochester, 1995.

40. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

41. T. M. Cover and J. A. Tomas. Elements of Information Theory. John Wiley,
1991.

42. Nello Cristianini and John Shawe-Taylor. An introduction to support vector ma-
chines and other kernel-based learning methods. Cambridge University Press,
Cambridge, 2000.

43. D. Decoste and B. Schölkopf. Training invariant support vector machines.
Journal of Machine Learning, 46:161–190, 2002.

44. Jian-Xion Dong, A. Krzyzak, and C. Y. Suen. A fast SVM training algorithm.
In Proc. of the International workshop on Pattern Recognition with Support
Vector Machines, 2002.

45. H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support
vector regression machines. In Advances in Neural Information Processing
Systems 9, pages 155–161, Cambridge, MA, 1997. MIT Press.

46. Q. Du, I. Kopriva, and H. Szu. Independent component analysis for classifying
multispectral images with dimensionality limitation. International Journal of
Information Acquisition, 1(3):201–216, 2004.

47. Q. Du, I. Kopriva, and H. Szu. Independent component analysis for hyper-
spectral remote sensing imagery classification. In Optical Engineering, 2005.

48. C. Eisenhart. Roger Joseph Boscovich and the combination of observationes.
In Actes International Symposium on R. J. Boskovic, pages 19–25, Belgrade -
Zagreb - Ljubljana, YU, 1962.

49. T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support
vector machines. Advances in Computational Mathematics, 13:1–50, 2000.

50. Sebastiani Fabrizio. Machine learning in automated text categorization. ACM
Computing Surveys, 34(1):1–47, 2002.

51. B. Fischer and J. M. Buhmann. Path-based clustering for grouping of smooth
curves and texture segmentation. IEEE transactions on pattern analysis and
machine intelligence, 25:513–518, April 2003.

52. B. Fischer, V. Roth, and J. M. Buhmann. Clustering with the connectivity
kernel. In S. Thrun, L. Saul, and B. Schölkopf, editors, Proc. of the Advances
in Neural Information Processing Systems 2004, volume 16. MIT Press, 2004.

53. T. Fries and R. F. Harrison. Linear programming support vectors machines
for pattern classification and regression estimation and the set reduction algo-
rithm. Technical report, University of Sheffield,, Sheffield, UK, 1998.

54. T.-T. Friess, N. Cristianini, and I.C.G. Campbell. The kernel adatron: A fast
and simple learning procedure for support vector machines. In J. Shavlik,
editor, Proc. of the 15th International Conference of Machine Learning, pages
188–196, San Francisco, 1998. Morgan Kaufmann.

250 References

55. B. Gabrys and L. Petrakieva. Combining labelled and unlabelled data in the
design of pattern classification systems. International Journal of Approximate
Reasoning, 35(3):251–273, 2004.

56. M. Gaeta and J.-L. Lacoume. Source separation without prior knowledge: the
maximum likehood solution. In Proc of EUSIPCO, pages 621–624, 1990.

57. M. Girolami and C. Fyfe. Generalised independent component analysis through
unsupervised learning with emergent busgang properties. In Proc. of ICNN,
pages 1788–1891, 1997.

58. F. Girosi. An equivalence between sparse approximation and support vector
machines. Technical report, AI Memo 1606, MIT, 1997.

59. T. Graepel, R. Herbrich, B. Schölkopf, A. Smola, P. Bartlett, K.-R. Müller,
K. Obermayer, and R. Williamson. Classification on proximity data with lp-
machines. In Proc. of the 9th Intl. Conf. on Artificial NN, ICANN 99, Edin-
burgh, Sept 1999.

60. S. I. Grossman. Elementary Linear Algebra. Wadsworth, 1984.
61. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer

classification using support vector machines. Machine Learning, 46:389–422,
2002.

62. I. Hadzic and V. Kecman. Learning from data by linear programming. In NZ
Postgraduate Conference Proceedings, Auckland, Dec. 1999.

63. T. Hastie, R. Tibshirani, B. Narasimhan, and G. Chu. Pamr: Prediction analy-
sis for microarrays in R. Website, 2004.

64. Hérault, J. C. Jutten, and B. Ans. Détection de grandeurs primitives dans un
message composite par une architechure de calcul neuromimétique en apren-
tissage non supervis. In Actes du Xéme colloque GRETSI, pages 1017–1022,
Nice, France, 1985.

65. J. Herault and C. Jutten. Space or time adaptive signal processing by neural
network models. In Neural networks for computing: AIP conference proceedings
151, volume 151, New York, 1986. American Institute for physics.

66. M. R. Hestenes. Conjugate Direction Method in Optimization. Springer-Verlag
New York Inc., New York, 1 edition, 1980.

67. G. Hinton and T. J. Sejnowski. Unsupervised Learning. The MIT Press, 1999.
68. C.W. Hsu and C.J. Lin. A simple decomposition method for support vector

machines. Machine learning, (46):291–314, 2002.
69. T.-M. Huang and V. Kecman. Bias b in SVMs again. In Proc. of the 12th

European Symposium on Artificial Neural Networks, ESANN 2004, pages 441–
448, Bruges, Belgium, 2004.

70. T.-M. Huang and V. Kecman. Semi-supervised learning from unbalanced la-
belled data: An improvement. In M. G. Negoita, R.J. Howlett, and L. C. Jain,
editors, Proc. of the Knowledge-Based Intelligent Information and Engineering
Systems, KES 2004, volume 3 of Lecture Notes in Artificial Intelligence, pages
802–808, Wellington, New Zealand, 2004. Springer.

71. T.-M. Huang and V. Kecman. Gene extraction for cancer diagnosis by support
vector machines. In Duch W., J. Kacprzyk, and E. Oja, editors, Lecture Notes
in Computer Science, volume 3696, pages 617–624. Springer -Verlag, 2005.

72. T.-M. Huang and V. Kecman. Gene extraction for cancer diagnosis using sup-
port vector machines. International Journal of Artificial Intelligent in Medi-
cine -Special Issue on Computational Intelligence Techniques in Bioinformat-
ics, 35:185–194, 2005.

References 251

73. T.-M. Huang and V Kecman. Performance comparisons of semi-supervised
learning algorithms. In Proceedings of the Workshop on Learning with Partially
Classified Training Data, at the 22nd International Conference on Machine
Learning, ICML 2005, pages 45–49, Bonn, Germany, 2005.

74. T.-M. Huang and V. Kecman. Semi-supervised learning from unbalanced la-
beled data: An improvement. International Journal of Knowledge-Based and
Intelligent Engineering Systems, 2005.

75. T.-M. Huang, V. Kecman, and C. K. Park. SemiL: An efficient software for
solving large-scale semi-supervised learning problem using graph based ap-
proaches, 2004.

76. A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis.
John Wiley, 2001.

77. A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent com-
ponent analysis. Neural Computation, 9(7):1483–1492, 1997.

78. T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods- Suppot Vector
Learning. MIT-Press, 1999.

79. T. Joachims. Transductive inference for text classification using support vector
machines. In ICML, pages 200–209, 1999.

80. C. Jutten and J. Herault. Blind separation of sources, Part I: an adaptive algo-
rithm based on neuromimetic architecture. IEEE Trans. on Signal Processing,
24(1):1–10, 1991.

81. V. Kecman. Learning and soft computing : support vector machines, neural
networks, and fuzzy logic models. Complex Adaptive Systems. The MIT Press,
Cambridge, Mass., 2001.

82. V. Kecman, T. Arthanari, and I. Hadzic. LP and QP based learning from
empirical data. In IEEE Proceedings of IJCNN 2001, volume 4, pages 2451–
2455, Washington, DC., 2001.

83. V. Kecman and I. Hadzic. Support vectors selection by linear programming. In
Proceedings of the International Joint Conference on Neural Networks (IJCNN
2000), volume 5, pages 193–198, 2000.

84. V. Kecman, T.-M. Huang, and M. Vogt. Iterative Single Data Algorithm for
Training Kernel Machines From Huge Data Sets: Theory and Performance, vol-
ume 177 of Studies in Fuzziness and Soft Computing, pages 255–274. Springer
Verlag, 2005.

85. V. Kecman, M. Vogt, and T.M. Huang. On the equality of kernel adatron and
sequential minimal optimization in classification and regression tasks and alike
algorithms for kernel machines. In Proc. of the 11th European Symposium on
Artificial Neural Networks, pages 215–222, Bruges, Belgium, 2003.

86. I. Kopriva, Q. Du, H. Szu, and W. Wasylkiwskyj. Independent component
analysis approach to image sharpening in the presence of atmospheric turbu-
lence. Coptics Communications, 233(1-3):7–14, 2004.

87. B. Krishnapuram. Adaptive Classifier Design Using Labeled and Unlabeled
Data. Phd, Duke University, 2004.

88. R. H. Lambert and C. L. Nikias. Blind deconvolution of multipath mixtures,
volume 1, chapter 9. John Wiley, 2000.

89. K. Lang. 20 newsgroup data set, 1995.
90. C. I. Lawson and R. J. Hanson. Solving least squares problems. Prentice-Hall,

Englewood Cliffs, 1974.

252 References

91. T-W. Lee. Independent Component Analysis- Theory and Applications. 1998.
92. Y. Li, A. Cichocki, and S. Amari. Analysis of sparse representation and blind

source separation. Neural Computation, 16(6):1193–1234, 2004.
93. S. Makeig, A. J. Bell, T. Jung, and T. J. Sejnowski. Independent component

analysis of electroencephalographic data. In Advances in Neural Information
Processing Systems 8, pages 145–151, 1996.

94. O. L. Mangasarian. Linear and nonlinear separation of patterns by linear
programming. Operations Research, 13:444–452, 1965.

95. O.L. Mangasarian and D.R Musicant. Successive overrelaxation for support
vector machines. IEEE, Trans. Neural Networks, 11(4):1003–1008, 1999.

96. A. K. McCallum. Bow: A toolkit for statistical language modeling, next re-
trieval, classification and clustering, 1996.

97. P. McCullagh. Tensor Methods in Statistics. Chapman and Hall, 1987.
98. M. Mckeown, S. Makeig, G. Brown, T. P. Jung, S. Kinderman, T.-W. Lee, and

T. J. Sejnowski. Spatially independent activity patterns in functional magnetic
resonance imaging data during the stroop color-naming task. In Proceedings
of the National Academy of Sciences, volume 95, pages 803–810, 1998.

99. G. J. McLachlan, K.-A. Do, and C. Ambrois. Analyzing Microarray Gene
Expression Data. Wiley-Interscience, 2004.

100. J. Mendel. Tutorial on higher-order statistics (spectra) in signal processing
and system theory: Theoretical results and some applications. In Proc. IEEE,
volume 79, pages 278–305, 1991.

101. J. Mercer. Functions of positive and negative type and their connection with
the theory of integral equations. Philos. Trans. Roy. Soc., 209(415), 1909.

102. L. Molgedey and H. G. Schuster. Separation of mixture of independent signals
using time delayed correlations. Physical Review Letters, 72:3634–3636, 1994.

103. S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library (coil-
20). Technical Report CUCS-005-96, Columbia Unversity, 1996.

104. D. Nuzillard and A. Bijaoui. Blind source separation and analysis of multispec-
tral astronomical images. Astronomy and Astrophysics Suppl. Ser., 147:129–
138, 2000.

105. D. Nuzillard, S. Bourg, and J. Nuzillard. Model-free analysis of mixtures by
NMR using blind source separation. Journal of Magn. Reson., 133:358–363,
1998.

106. E. Oja. Blind source separation: neural net principles and applications. In
Proc. of SPIE, volume 5439, pages 1–14, Orlando, FL, April 2004.

107. A. M. Ostrowski. Solutions of Equations and Systems of Equations. Academic
Press, New York, 1966.

108. E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for sup-
port vector machines., 1997.

109. E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and ap-
plications. Ai memo 1602, Massachusetts Institute of Technology, Cambridge,
MA, 1997.

110. A. Papoulis. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, 3 edition, 1991.

111. C. K. Park. Various models of semi-supervised learning, 2004. Personal Com-
munication.

References 253

112. B. Pearlmutter and L. Parra. A context-sensitive generalization of ica. In
Advances in Neural Information processing Systems, volume 9, pages 613–619,
1996.

113. D. T. Pham. Fast algorithm for estimating mutual information, entropies and
score functions. In S. Amari, A. Cichocki, S. Makino, and N. Murata, edi-
tors, Proc. of the Fourth International Conference on Independent Component
Analysis and Blind Signal Separation (ICA’2003), pages 17–22, Nara, Japan,
2003.

114. D.T. Pham. Blind separation of mixtures of independent sources through
a guasimaximum likelihood approach. IEEE Trans. on Signal Processing,
45(7):1712–1725, 1997.

115. J.C. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances In
Kernel Methods- Support Vector Learning. The MIT Press, Cambridge, 1999.

116. T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri. b. Technical
report, Massachusetts Institute of Technology, 2001.

117. M.F. Porter. An algorithm for suffix stripping. Program, 3:130–137, 1980.
118. J. C. Principe, D. Xu, and J. W. Fisher III. Information-Theoretic Learning,

volume 1, chapter 7. John-Wiley, 2000.
119. A. Rakotomamonjy. Variable selection using SVM-based criteria. Journal of

Machine Learning, (3):1357–1370, 2003.
120. J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471,

1978.
121. T. Ristaniemi and J. Joutensalo. Advanced ICA-based recivers for block fading

DS-CDMA channels. Signal Processing, 85:417–431, 2002.
122. J. R. Schewchuk. An introduction to the conjugate gradient method without

the agonizing pain, 1994.
123. Bernhard Schölkopf and Alexander J. Smola. Learning with kernels : Support

vector machines, regularization, optimization, and beyond. Adaptive computa-
tion and machine learning. The MIT Press, Cambridge, Mass., 2002.

124. S. Schwartz, M. Zibulevsky, and Y. Y. Schechner. ICA using kernel entropy
estimation with NlogN complexity. In Lecture Notes in Computer Science,
volume 3195, pages 422–429, 2004.

125. J. J. Settle and N. A. Drake. Linear mixing and estimation of ground cover
proportions. Int. J. Remote Sensing, 14:1159–1177, 1993.

126. K. S. Shamugan and A. M. Breiphol. Random Signals- Detection, Estimation
and Data Analysis. John-Wiley, 1988.

127. R. B. Singer and T. B. McCord. Mars: large scale mixing of bright and dark sur-
face materials and implications for analysis of spectral reflectance. In Proc.10th
Lunar Planet. Sci. Conf., pages 1835–1848, 1979.

128. A. Smola, T.T. Friess, and B. Schölkopf. Semiparametric support vector and
linear programming machines. In Advances in Neural Information Processing
Systems 11, 1998.

129. A. Smola and B. Schölkopf. On a kernel-based method for pattern recog-
nition, regression, approximation and operator inversion. Technical report,
GMD Technical Report, Berlin, 1997.

130. A. J. Smola and R. Kondor. Kernels and regularization on graphs. In COLT/K-
ernel Workshop, 2003.

254 References

131. I. Steinwart. Sparseness of support vector machines. Journal of Machine
Learning Research, 4:1071–1105, 2003.

132. J.V. Stone. Independent Component Analysis-A Tutorial Introduction. The
MIT Press, 2004.

133. Y. Su, T.M. Murali, V. Pavlovic, M. Schaffer, and S. Kasif. Rankgene: A
program to rank genes from expression data, 2002.

134. Johan A. K. Suykens. Least squares support vector machines. World Scientific,
River Edge, NJ, 2002.

135. M. Szummer and T. Jaakkola. Partially labelled classification with markov ran-
dom walks. In Proc. of the Advance in Neural Information Processing Systems,
volume 14, 2001.

136. A. Taleb and C. Jutten. Source separation in post-nonlinear mixtures. IEEE
Transactions on Signal Processing, 47(10):2807–2820, 1999.

137. R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple
cancer types by shrunken centroids of gene expression. In Proc. of the National
Academy of Sciences of the United States of America, volume 99, pages 6567–
6572, USA, 2002.

138. R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Class prediction by
nearest shrunken centroids, with applications to DNA microarrays. Statistical
Science, 18(1):104–117, 2003.

139. L. Tong, R.W. Liu, V.C. Soon, and Y. F. Huang. Indeterminacy and identifia-
bility of blind identification. IEEE Trans. on Circuits and Systems, 38:499–509,
1991.

140. K. Torkkola. Blind Separation of Delayed and convolved sources, chapter 8.
John Wiley, 2000.

141. V. Vapnik. Estimation of Dependences Based on Empirical Data [in Russian].
Nauka, Moscow., 1979. English translation: 1982, Springer Verlag, New York.

142. V. Vapnik, S. Golowich, and A. Smola. Support vector method for function
approximation, regression estimation, and signal processing. In In Advances in
Neural Information Processing Systems 9, Cambridge, MA, 1997. MIT Press.

143. V. N. Vapnik. Statistical Learning Theory. J.Wiley & Sons, Inc., New York,
NY, 1998.

144. V.N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag Inc,
New York, 1995.

145. V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Doklady Akademii Nauk USSR,
181, 1968.

146. V.N. Vapnik and A.Y. Chervonenkis. The necessary and sufficient condititons
for the consistency of the method of empirical minimization [in Russian]. Year-
book of the Academy of Sciences of the USSR on Recognition,Classification, and
Forecasting, 2:217–249, 1989.

147. K. Veropoulos. Machine Learning Approaches to Medical Decision Making.
PhD thesis, The University of Bristol, 2001.

148. M. Vogt. SMO algorithms for support vector machines without bias. Techni-
cal report, Institute of Automatic Control Systems and Process Automation,
Technische Universitat Darmstadt, 2002.

149. M. Vogt and V. Kecman. An active-set algorithm for support vector machines
in nonlinear system identification. In Proc. of the 6th IFAC Symposium on

References 255

Nonlinear Control Systems (NOLCOS 2004),, pages 495–500, Stuttgart, Ger-
many, 2004.

150. M. Vogt and V. Kecman. Active-Set Method for Support Vector Machines, vol-
ume 177 of Studies in Fuzziness and Soft Computing, pages 133–178. Springer-
Verlag, 2005.

151. Wikipedia. Machine learning —- wikipedia, the free encyclopedia, 2005. [On-
line; accessed 4-June-2005].

152. M. E. Winter. N-FINDER: an algorithm for fast autonomous spectral end-
member determination in hyperpsectral data. In Proceeding of SPIE, volume
3753, pages 266–275, 1999.

153. Matt Wright. SVM application list, 1998.
154. L. Zhang, A. Cichocki, and S. Amari. Self-adaptive blind source separation

based on activation function adaptation. IEEE Trans. on Neural Networks,
15:233–244, 2004.

155. D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning
with local and global consistency. In S. Thrun, L. Saul, and B. Schölkopf,
editors, Advances in Neural Information Processing Systems, volume 16, pages
321–328, Cambridge, Mass., 2004. MIT Press.

156. D. Zhou and B. Schölkopf. Learning from labeled and unlabeled data using
random walks. In DAMG’04: Proc. of the 26th Pattern Recognition Symposium,
2004.

157. D. Zhou and B. Schölkopf. A regularization framework for learning from graph
data. In Proc. of the Workshop on Statistical Relational Learning at Interna-
tional Conference on Machine Learning, Banff, Canada, 2004.

158. D. Zhou, J. Weston, and A. Gretton. Ranking on data manifolds. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing
Systems, volume 16, pages 169–176, Cambridge, 2004. MIT press.

159. X. Zhu. Semi-Supervised Learning with Graphs. PhD thesis, Carnegie Mellon
University, 2005.

160. X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using
Gaussian fields and harmonic functions. In Proc. of the 20th International
Conference on Machine Learning (ICML-2003), Washington DC, 2003.

161. A. Ziehe, K.R. Müller, G. Nolte, B.M. Mackert, and G. Curio. TDSEP- an
efficient algorithm for blind separation using time structure. In Proc. of In-
ternational Conference on Artifical Neural Network (ICANN’98), volume 15,
pages 675–680, Skovde, Sweden, 1998.

Index

α, alpha see Lagrange multiplier
β, beta see Lagrange multiplier
ε-epsilon insensitivity zone 14, 48, 49,

55, 57

activation function see score function
adaptive learning 200, 201, 208
approximation error see (training)

error

bag of words 168
batch learning 200, 201, 203, 208
bias (threshold) term 23, 29, 31, 36,

43, 44, 53, 55
bias in ISDA 63–65, 74–76
binary classification 19
BLAS routine 91, 160, 161
blind source separation see BSS
BSS 175, 176, 178–180, 197, 201, 205,

207

caching 80
KKT 89

canonical hyperplane 23, 24, 30, 213
CG 159

with box constraints 162–166
chunking 58
classification 1, 7, 11, 17, 21, 22, 31
CM 126, 130–133

unbalanced labeled data 136–138
conditional number

Laplacian 151
conditionally positive definite kernels

42

confidence interval 14, 19–21, 105–117
Conjugate Gradient method see CG
connectivity kernel 146–147
consistency method see CM
covariance matrix 181, 182, 233
cross-correlation 182, 191, 193, 235
cross-cumulants 191, 193, 235, 236
cumulants 234, 235

data set
coil20 150
colon cancer 104
g10n 151
g50c 150
lymphoma 107
MNIST 159
Rec 137
text 151
USPS 151

decision boundary 15, 23, 24, 33, 77,
79, 119, 146

decision function 22–25, 39, 43–46, 63,
65, 77–79, 101, 209, 213

decomposition method 58
dichotomization 21
differential entropy 198, 199
dimensionality reduction 179
dimensionality reduction by SVMs 97,

101
discriminant function 23, 24
DNA microarray 99

empirical risk see approximation error
entropy 176, 197–199

258 Index

error (function) 13, 49
estimation error 14, 19
training error 14, 51

FastICA 204
feature reduction by SVMs see

dimensionality reduction by SVMs
first characteristic function 234

Gauss-Seidel method 63, 69, 70, 73
Gaussian exponent 201, 202, 204
Gaussian random fields model see

GRFM
Gaussian signals 181, 193, 195, 198,

204, 208, 233, 234
generalization 2
generalization error 17, 30
generalized Gaussian distribution 201,

202
gradient descent 199
GRFM 126, 128–130

histogram 183, 205, 207
hypothesis (function, space) 16, 20, 59

ICA 175, 176, 178, 180, 190, 193, 196,
197, 199–201, 203–208, 233, 234

Independent component analysis see
ICA

indicator function 23–25, 29, 35, 38,
39, 43, 45–47

Infomax see information maximiza-
tion

information maximization 197, 208
ISDA

implementation
caching 89
classification 83
regression 92
shrinking 84
working-set selection 84

with bias 73
with bias in classification 74–77, 79
without bias 66
without bias in classification 65
without bias in regression 67
working-set selection 84

Iterative Single Data Algorithm see
ISDA

JADE 204
joint entropy 197–199

KA see kernel Adatron
Karush-Kuhn-Tucker conditions see

KKT
Kernel AdaTron (KA)

classification 64–65
equality to other methods 69
regression 66–67
with bias 79

kernel trick 41
kernels 38, 40–41, 46, 47, 55
KKT 27, 35, 52, 65, 67, 81, 85

the worst violator 86, 92
violators 65

Kullback-Leibler divergence 199
kurtosis 177, 185, 187, 203, 205, 235

L1 SVM 34
L2 SVM 36, 209, 215
Lagrange multiplier α 26, 29, 34, 43,

51, 65, 67, 68, 74, 211, 213
Lagrange multiplier β 34, 51
Lagrangian

dual
classification 28, 31, 34, 42
regression 52

primal
classification 26
regression 34

LDS 146–149
∇TSVM 149
graph-based distance 146

LIBSVM 80
Low Density Separation see LDS

manifold approaches 126
graph-based distance 149
implementation 159–166
variants 155–157

margin 15, 213–215
marginal entropy see entropy
matrix

Gramm (Grammian) 42, 54
Hessian 7, 28, 31, 36, 43, 46, 48–54
kernel 42, 63, 73, 74, 81

caching 89
computing 91

Index 259

Laplacian 7, 128, 145, 153, 155
normalized Laplacian 131, 155

maximal margin classifier 21
maximum entropy 198
maximum likelihood 197, 208
mutual information 176, 193, 197–199,

201–205, 207, 208

natural gradient 200
nearest shrunken centroid method

112–115
negentropy 205, 208
non-Gaussian signals 180, 197, 208,

234
nonlinear SVMs

classification 36–48
regression 54–57

normalization step 142–145

OCSH 25, 26
off line learning see batch learning
on-line learning see adaptive learning
optimal canonical separating hyperplane

see OCSH

PCA 175, 176, 178, 179, 181, 182, 190,
193, 196, 203–205, 207, 208, 233

penalty parameter C
classification 32–36
regression 56
RFE-SVMs 103–104

performance comparison
ISDA vs SMO 80–82
LDS vs manifold approaches

152–154
RFE-SVMs vs nearest shrunken

centroids 112–120
Porter stemmer 169
positive definite kernels 7, 41, 44, 63,

69, 70, 73
principal component analysis see PCA
probability density function 180, 199

QP 11, 26
hard margin SVMs 31
semi-supervised learning 162
soft margin SVMs 33

quadratic programming see QP

random walks on graph 133–136

recursive feature elimination with
support vector machines see
RFE-SVMs

redundancy reduction 180
relative gradient 200
RFE-SVMs 101, 102

comparison
nearest shrunken centroid 115–120
Rankgene 120–122

gene ranking
colon cancer 106
lymphoma 107

penalty parameter C 103–104
preprocessing procedures 108
results

colon cancer 104–106
lymphoma 107

risk (function) 14, 17, 19, 49

scatter plot 189, 190, 193, 195–197, 203
score function 200–204
second characteristic function 234
selection bias 102–103, 108, 109
semi-supervised learning 125, 127
SemiL 154
sequential minimal optimization see

SMO
shrinking 84
size 58
SLT 11
SMO

original 62
without bias 63

classification 65
regression 67

soft margin 32
sphering transform see whitening
SRM 11, 13, 20, 29
statistical (in)dependence 178, 180,

191, 193, 196, 197, 199, 203–205,
207, 208, 233–235

statistical learning theory 11
structural risk minimization see SRM
sub-Gaussian stochastic process 177,

185, 201–203, 208
super-Gaussian stochastic process

177, 185, 201, 202, 208
supervised learning 1
support vector machines 11

260 Index

support vector machines (SVMs) 14,
15, 21, 57

classification by SVMs 32–48
regression by SVMs 48–57
without bias 4, 7, 43

support vectors (SVs) 24, 26, 27, 29,
33

bounded SVs 36, 53, 82, 84
unbounded or free SVs 35, 53, 61,

74, 85
SVs see support vectors

term frequency inverse document-
frequency metric see TFIDF

text classification 167
TFIDF 169, 170

transductive inference see semi-
supervised learning

TSVM 147–149

uncorrelatedness 180, 192, 233, 234
unsupervised learning 175, 179,

199–201, 208

variance of Gaussian kernel 56
variance of the model see estimation

error
VC dimension 14

whitening transform 180, 181, 195, 203
working-set algorithm 61

	Kernel Based Algorithms for Mining Huge Data Sets
	Preface
	Contents
	1 Introduction
	2 Support Vector Machines in Classification and Regression – An Introduction
	3 Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets: Theory and Performance
	4 Feature Reduction with Support Vector Machines and Application in DNA Microarray Analysis
	5 Semi-supervised Learning and Applications
	6 Unsupervised Learning by Principal and Independent Component Analysis
	A Support Vector Machines
	B Matlab Code for ISDA Classification
	C Matlab Code for ISDA Regression
	D Matlab Code for Conjugate Gradient Method with Box Constraints
	E Uncorrelatedness and Independence
	F Independent Component Analysis by Empirical Estimation of Score Functions i.e., Probability Density Functions
	G SemiL User Guide
	References
	Index

