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Assembling the contents of an academic book
dealing with some new technology or a
sophisticated advancement is the task given
over to the academic researcher who
typically embraces the challenge with
dedication and purpose for it is what makes
us unique among our brethren. Libraries are
filled with esoteric research that is the
product of excellent minds, research that is so
arcane and possibly cryptic that it might
remain on the shelves for potentially
centuries until an application succeeds in
being brought forth by some other, equally
sophisticated and talented, individuals who
have the rare talent of merging new-found
knowledge with practical application.

Such is not the case with this academic text
for it was immediately observed that this
method of data analysis and mining could be
brought to bear in helping to solve some very
complex problems that have plagued the law
enforcement community since the advent of
the database and its concomitant assortment
of management systems. The easy
applications, that is to say, the most trivial
but definitely useful, were quickly subsumed



by the law enforcement community and began
a movement to digitise all past and present
case data for easy access and management;
for the last few decades, their expectation has
usually been met with varying degrees of
success.

However, the databases that were built
over many years, or decades in some cases,
still contained unknown and undiscovered
knowledge, but no one knew of its existence
until a meeting that occurred with an official
of one of the most respected law enforcement
agencies in the work, the London
Metropolitan Police force (also known as
New Scotland Yard), and the principal
researcher of one of the most prestigious
research institutes in Italy, Semeion Research
Center of the Sciences of Communications of
Rome.

It is to Sergeant Geoff Monaghan of New
Scotland Yard that this book is dedicated for
it was he who first taught us about the
complex world of crime analysis. Sergeant
Monaghan inspired us and motivated
Semeion towards the adventure of crime
analytics. It was his vision to “see” that
knowledge was trapped in huge databases
and needed some very sophisticated methods
to extract it and make it understandable to
the “front line” of police. Over the past
3 years, Semeion has worked closely with Sgt
Monaghan, and this book explains, in detail,
the successes and methods used to extract
this unknown knowledge. From here,
extraction of knowledge from other databases
can become commonplace, as long as there



exist other talented visionaries in other
disciplines who are willing to take the risk in
creating knowledge.

—Semeion and its staff





Preface

This book was written specifically for the law enforcement community although
it is applicable to any organisation/institution possessing a database of activity
it seeks to analyse for unknown and undiscovered knowledge. This is typically
called data mining and the purpose is to extract useful knowledge. Generally,
most organisations typically use structured query language (SQL) to query their
database. While this does give information, one must know exactly the questions
to ask in order to gather a response, and any question raised by means of a query
will have an answer if and only if the answer is already present in the database.
This kind of information is called blatant for it is conspicuous as opposed to
hidden. Unfortunately, the knowledge hidden within databases requires some very
sophisticated methods in order to coax it out.

The extraction of only blatant information from a database is too limiting given
the demands for useful information in the complex society of the twenty-first
century. We need to creatively explore a database to extract its hidden information,
that is, the underlying information which produces the structure by which the
evident information becomes obvious and available for query. In short, the hidden
information is responsible for the blatant information making sense. This special
meta-information is hidden and trapped in the blatant information. This hidden
information is the condition of existence for the blatant information in the same way
that the Kantian “noumenon” is the condition for the perception of the phenomenon.
Hidden information is like the sea waves, while the blatant information, explicitly
coded in a database, a similar to the foam of the waves. For most forms of analysis,
hidden information is considered “noise”. But it is within this noise that the genetic
code of process, that from which this noise is derived, is encrypted. Our challenge
is to successfully decrypt the genetic code; such a decryption is explained in this
book.

We name this search for the hidden information trapped in the database intelligent
data mining (IDM), and we think that the most advanced artificial adaptive
algorithms are able to understand which part of the so-called noise is the treble
clef of any database music.

ix
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The sophistication of the criminal element is exceptional. Drug cartels and
terrorist organisations have the financial strength to purchase, or muscle to coerce,
brilliant individuals to work for them, and it is egregious for any law enforcement
organisation to underestimate the cleverness of those groups. It is argued that the
best we can hope to do is minimise the distance between what they do and how
we protect against them. To do so requires us to embrace the maxim scientia est
potentia. This is Latin for “knowledge is power” and is attributed to Sir Francis
Bacon, though it first appeared in the 1658 book, De Homine, by his secretary
Thomas Hobbes. In order to extract knowledge, one must first have information,
and to get information one must have data. There is another word used to describe
the extraction of knowledge from data: semeion. Its origin is from the Greek, and
it means the extraction of a large amount of knowledge from a small amount of
data given a prepared mind and the spirit of discovery. Not only can remarkable
information be gathered from a database, we show in this book how to harness
that information to produce knowledge that can be brought to bear on the criminal
element in our efforts to defeat them.

The motivation for this book came out of a cooperative venture with the London
Metropolitan Police, well known by its metonym Scotland Yard, and the Semeion
Research Center of Rome. In a correspondence from the Assistant Commissioner
Tarique Ghaffur of the London Specialist Crime Directorate to the Italian Minister
of University Education and Research, the basis for successful cooperation is clearly
established:

From the outset, I [Assistant Commissioner Ghaffur] want to emphasise that the Central
Drug Trafficking Database (CDTD) Project is an important element of the Specialist Crime
Directorate’s (SCD) intelligence strategy and I’m delighted to tell you that the project is
going very well. Moreover, the CDTD, which has been designed by Semeion in accordance
with specifications laid down by my officers, is working very well. One of the most exciting
aspects of this project is the idea of using Artificial Adaptive Systems (AAS) to analyse
drug trafficking data. I readily acknowledge that this component is totally dependent on the
founder and Director of Semeion, Professor Massimo Buscema, in view of his extensive
and pioneering work in the field of artificial intelligence. I know my officers hold Professor
Buscema in high regard and I would like to place on record my thanks to him and his
colleagues at Semeion, particularly Dr Stefano Terzi, for helping to make our partnership a
success.

Operationally, Semeion created a database structure that permitted both the use
of traditional SQL queries and analysis using adaptive neural network technology.
The outcomes, from the Metropolitan Police perspective, are detailed in the letter:

By way of background, the CDTD is the first of its kind and has been designed to enable the
SCD to produce reliable and objective data to help the MPS and its partners to: (a) assess
the extent of the problem in London, and (b) devise appropriate responses to tackle the
problem. The information will, in the main, be drawn from 4,500 drug trafficking reports
recorded by the MPS in 2004. The reports will be scrutinised and the information validated
by specially trained Data Entry Operators (DEOs). Where necessary, additional information
will be obtained from the Forensic Science Service, the Police National Computer and a
number of other databases. The refined data will then be entered onto the CDTD and new
records created. Each record comprises around 500 fields. Subsequent analyses will shed
new light on the structure of drug markets in London, how organised criminal networks
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shape and influence these markets, and the effectiveness of police tactics (e.g. stop and
search, test purchases and controlled deliveries). Data gleaned from drug seizures – unit
prices, purity, and chemical profiling – will also be analysed. The project will also highlight
operational successes as well as noting the deficiencies in the recording and investigation
of drug trafficking crimes. In sum, the CDTD will produce high-quality intelligence, which
will be tailored to the varying needs of decision makers in the MPS from the strategic to the
tactical levels.

The last point to address is that of the complementary relationship between
traditional statistics and neural network technology. While statistics definitely plays
an important role in data analysis, there are other methods that provide an entirely
different view of the system under investigation. The London Metropolitan Police
recognised the limitations of traditional statistics and sought to apply artificial
adaptive systems (AAS) to their analysis.

During their research, the Project Team will be using conventional statistical programmes.
But in order to process the vast volumes of data generated and recognising that compre-
hensive analyses cannot be done without highly advanced data processing capabilities,
the team also wants to use AAS. To this end, SCD has contracted Semeion to design the
database management system and to analyse the data using AAS developed by Professor
Buscema and his colleagues. Although AAS have been applied to various areas of research,
we believe that this is the first time that they have been used to analyse drug trafficking
crimes (or indeed any other type of crime) on this scale and in this detail.

The theory, methods and applications described in this book can be utilised
by any police agency or modified to fit the needs of any business or organisation
seeking to extract knowledge from a database. Non-profit organisations will find that
donor/membership databases contain knowledge that could be utilised to enhance
fundraising and membership drives. Military databases are typically huge and
contain hundreds, if not thousands, of variables. A wealth of unknown knowledge
may well be contained within those databases if only these new methods presented
in this book were applied to them. Medical databases will benefit from the
identification of hidden knowledge and could give scientists valuable insights into
novel directions for research. Financial institutions have data on every customer,
loan, stock portfolio, etc., and there is new knowledge to be gleaned from an analysis
using these very sophisticated methods.

Many individuals, beyond the chapter authors, were involved in the production
of this book, and we gratefully acknowledge their contribution:

• Dr Giulia Massini, computer scientist and deputy director of the Semeion
Research Center of Sciences of Communication, Rome, Italy

• Dr Guido Maurelli, Semeion Research Center of Sciences of Communication,
Rome, Italy

• Marco Intraligi, computer data processing expert, Semeion Research Center of
Sciences of Communication, Rome, Italy

• Dr Stefano Terzi, computer scientist, formerly Semeion Research Center, Rome,
Italy

• Dr Leslie A King, consultant, formerly head of the Drugs Intelligence Unit,
Forensic Science Service, London, UK, and former advisor to the Department
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of Health, England, and the European Monitoring Centre for Drugs and Drugs
Addiction, Lisbon, Portugal

• Paul Richards, formerly CDTD project manager and inspector, Drugs Direc-
torate, New Scotland Yard, Metropolitan Police Service, London

• Ms Mandeep Kaur Bajwa, Ms Zoe nee Beard and Mr Adam Stevens, formally
data entry operators, CDTD project, New Scotland Yard, Metropolitan Police
Service, London

• Mr Dean Ames, formerly forensic scientist, Drugs Intelligence Unit, Forensic
Science Service, London, UK

A special acknowledgement to:

• Tarique Ghaffur, CBE, QPM, formerly assistant commissioner, Central Opera-
tions, New Scotland Yard, Metropolitan Police Service, London

• Andy Baker, deputy director of the Serious Organised Crime Agency, London,
UK, and formerly commander, Specialist Crime Directorate, New Scotland Yard,
Metropolitan Police Service, London

• Dr Stanley “Sholmo” Einstein, Jerusalem, Israel
• Professor (Emeritus) John G D Grieve CBE, QPM, John Grieve Centre for

Policing and Community Safety, Faculty of Social Sciences and Humanities,
London Metropolitan University, London, UK, and formerly deputy assistant
commissioner, Specialist Crime Directorate, New Scotland Yard, Metropolitan
Police Service, London

• Paul Hoare, formerly detective superintendent, Drugs Directorate, New Scotland
Yard, Metropolitan Police Service, London
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All images in this book are depicted in black and white and, consequently, the color
detail is lost. The color images can be viewed at http://www.semeion.it or in the
electronic publication of the book on www.springerlink.com.
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Chapter 1
Introduction to Artificial Networks and Law
Enforcement Analytics

William J. Tastle

The word “semeion” is derived from the Greek and defined as a knowledge extraction
process that utilizes a small amount of data to achieve a large quantity of knowledge given
a prepared mind and the spirit of discovery.

“Intelligence, in itself, does not make up part of the specific attributes of crime,
but when it is present, it increases danger immeasurably and causes it to become
organized crime.” This phrase appears in the book both as an affirmation of the
difficulty of the problem as well as a point of departure for finding solutions
because what is intelligent is not causal, and what is not causal is foreseeable. Since
intelligence must be fought with intelligence, the forces of order require a good dose
of “civil intelligence” to fight the “uncivil intelligence” of criminals.

The book is a thorough description and summary of the means currently available
to the law enforcement investigators to utilize artificial intelligence in making
criminal behavior (both individual and collective) foreseeable and for assisting
their investigative capacities. Concretely, there are five cognitive activities carried
out by an investigator: (1) the classification of criminal situations; (2) the spatial
visualization of where the events occurred; (3) a prediction of how the events
developed; (4) the construction of somatic, sociological, and psychological profiles;
and finally (5) hypotheses regarding links between events, persons, and clues. Yet,
all five cognitive activities can be explained (and often in more than one way) by
adaptive artificial systems, furnishing a second opinion regarding the analysis of
criminal events.

The artificial adaptive systems are efficacious for two reasons: in the first place,
they keep in “mind” all the data; the human mind, in contrast, must make a
selection from among the various pieces of data before being able to reason; in the

W.J. Tastle (�)
School of Business, Ithaca College, New York, USA

Semeion Research Center, Rome, Italy
e-mail: tastle@ithaca.edu
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2 W.J. Tastle

second place, they successfully confront complex phenomena in which there are no
relational links and before which the human mind, in its tendency to simplify, finds
itself in difficulty because it tends to reason precisely in terms of such relations.

The work arises from collaboration between the Semeion Research Center and
New Scotland Yard in a joint project and contains the multiple articles typical
of a group effort. It passes from an analysis of the drug-trafficking situation in
London by a Scotland Yard investigator to the description of how a reliable database
was crafted, arriving finally at the practical application of various algorithms upon
criminal events registered in the database. The specialists in artificial intelligence at
Semeion have not only supervised the construction of a database by Scotland Yard,
as well offered their capacity in applying it, but have also created original algorithms
for the precise purpose of making crime predictable.

The results obtained, in width and depth, can be considered the basis for
the construction of an “artificial investigator,” an integrated support system that
functions on the various levels of the police organization: strategic, directive, and
operative. On each level, specific types of software support must be furnished; for
the upper levels, what is needed is the capacity for prediction on a wide scale and
for making a synthesis of all the facts available and, for lower levels, facility and
speed of usage.

The value of the ideas and methods presented in this book goes beyond the area
strictly linked to crime, to which reference is made in order to have a concrete field
of application. A reading of the book can thus be useful, not only for those concerned
with investigation or specialists in the algorithms of artificial intelligence but also
for those who work in the vast field of the social sciences.

1.1 Navigating the Book

One can approach the reading of this book in the traditional way, from front to
back. However, the theoretical chapters are more mathematically demanding than
the application-oriented chapters, so there are some tracts one could use to guide
their reading. The first track is the theoretical chapters tract and consists of Chaps.
2, 3, 4, 7, 8, 9, 11, 13, 15, 17, and 19. For those individuals already adept at neural
network methodologies, these chapters capture the details of the algorithms and
provide the basis for which similar algorithms can be created.

Those individuals who seek only to understand how adaptive neural networks
can be applied to law enforcement problems can focus their attention on Chaps. 5,
6, 10, 12, 14, 16, and 18.

The last two tracks involve a merger of both the theoretical and applied chapters.
To adequately be able to interface with software engineers/programmers who might
be creating specialized programs for use in your facility, the reader can take two
approaches, each of which is a combination of theoretical and applied chapters. First
involves Chaps. 2, 3, 4, 5, 6, 8, 9, 10, and 15, 16, 17, 18, 19 and is a focus on theory
augmented with certain applied chapters that bring life to the theoretical chapters.
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The other track involves Chaps. 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, and 18, 19. These
chapters combine selected theoretical chapters with applied chapters to give one the
tools and understanding needed to customize the algorithms to specific needs.

1.2 The Chapters

To properly prepare you to maximize your understanding of some of the very
complex methods presented, the following chapters are brief summaries to give you
an opportunity to experience the entire flavor of the book and perhaps direct your
attention to some specific areas of interest. The actual usage of these algorithms is
rather complex and would require the services of someone who is knowledgeable
in both mathematics and a skilled programming to develop an interface for use by a
particular police agency. On the other hand, an interested enforcement agency could
simply seek advice from the director and staff of Semeion.

Chapter 2 (“Law Enforcement and Artificial Intelligence”) is a high-level
description of the motivation for the work in enforcement analytics. It establishes a
justification for the use of adaptive neural networks, briefly explains how artificial
learning occurs, and explains why traditional mathematics and methods of analysis
with which we have become comfortable are no longer able to serve our needs as
they did in the past. The criminal element is very smart, and they have the funds to do
smart and innovative things to thwart the efforts of the “traditional” law enforcement
community. When enforcement ceases to be creative, those on the other side profit at
our expense. As enforcement becomes increasingly creative in its war on crime, the
other side must expend increasing resources on higher levels of creativity, and the
cycle will continue until one side surrenders. It is unlikely that those who unlawfully
profit will be the first to capitulate.

Chapter 3 (“The General Philosophy of Artificial Adaptive Systems”) describes
the philosophy of the artificial adaptive system and compares it with our natural
language. Some parallels are striking. The artificial sciences create models of reality,
but how well they approximate the “real world” determines their effectiveness and
usefulness. At the conclusion of this chapter, one will have a clear understanding
of expectations from using this technology, an appreciation for the complexities
involved, and the need to continue forward with a mind open to unexpected and
unknown potential. The word “algorithm” is used almost continuously throughout
the book. It is a very common word and can be interpreted as a simple “set of steps”
used to attain an answer. Each step is very precise and acted upon by a computer
as one line of instructional code. Once the computer has completed the running of
the algorithm, an answer is provided to the user either in the form of screen output
or sometimes as a hard-copy report. Most programs today use the screen as the
mechanism for displaying output.

Chapter 4 (“A Brief Introduction to Evolutionary Algorithms and the Genetic
Doping Algorithm”) is an introduction to evolutionary algorithms, a commonly
used method by which solutions to problems that might otherwise be impossible
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to solve are solved. One such method is that of the genetic algorithm. One of its
strengths is its ability to solve problems in a relatively short time period that would
otherwise not be solvable with the fastest computers working since the beginning
of time. Such problems might be called NP or NP-hard problems, meaning that the
time required for a computer to solve them is very, very long. On the downside, the
answer provided by the genetic algorithm may not be optimal, but it is an “adequate”
answer. To ensure an optimal solution, a computer would have to complete an
examination of every possible solution, then select from the list the single winner.
That solution would be optimal, but what if it took a supercomputer working at
maximum speed a few years to deliver that answer; is it reasonable to expect one
to wait that long a period of time for the exact answer? Or if an answer could be
provided in a relatively short time period of a few hours (or minutes) and is “close”
to optimal be acceptable? These approximate solutions are found to be quite useful
and do provide for confident decision-making.

Sometimes evolutionary algorithms are based on what is called heuristics,
or rules of thumb. They are guidelines for solutions that work; there are no
mathematical proofs of their effectiveness; they just work well. Consequently,
methods incorporating heuristics are deemed to be “weak.” The word is unfortunate
for it conveys a sense of inaccuracy or approximation, but it is, in fact, responsible
for some excellent solutions. These weaker methods use less domain knowledge and
are not oriented toward specific targets. In law enforcement analytics, the existence
of such methods has been shown to be very advantageous. The chapters up through
four are an excellent review of the operations of the genetic algorithm, and these
are well known in the AI field. Chapter 4 presents a new genetic algorithm that
is much more effective, the genetic doping algorithm (GenD). The word “dope”
is unfortunate for it congeries up images of narcotics or a stupid person, but it
actually means information gotten from a particularly reliable source. In this case,
the reliable source is the data, and the effort is to extract maximal information
from it.

GenD analyzes the data as though it were a tribe of individuals in which not
everyone engages in crossover. To anecdotally explain, individuals in the tribe who
are old or weak do not necessarily marry someone from that tribe (crossover does
not occur in all genes); the fitness score (a calculated value that determines the
ordering of the individuals in the tribe) is calculated on the basis of vulnerability and
connectivity, and instead of dealing with the separate genes as individuals, GenD
transforms the dataset into a dynamic structure and attempts to more closely mimic
a genotype. A detailed and easy-to-read explanation of the differences between
traditional genetic algorithms and GenD is given.

Chapter 5 (“Artificial Adaptive Systems in Data Visualization: Proactive Data”)
addresses the issue of the visualization of data modeled by artificial adaptive
systems and one relatively easy visualization if that of the tree structure. A tree
is a graph that contains a root, trunk, and leaves given a suitable imagination.
Essentially, it is a diagram in which each point is connected to another point but
without any circuits or loops anywhere in the graph. Thus, one can move from one
point (called a vertex or node) to another following the lines (called edges or arcs)
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that connect the nodes and never come back over one’s previous track. The structure
is very important to understanding some very complex datasets. One of the ways it
simplifies visualization is in its “dimensionality.”

To see the visual representation of one single variable, we need only to plot
a point on the x-axis of a graph, say a variable with a value of 12. At 12 units
from the origin, we can place a dot to represent that variable. If we expand to two
variables, say variable A has a value of 12 and variable B has a value of 3, then
we can visualize this by placing a point in the XY coordinate plan that is located at
the intersection of X D 12 and Y D 3. Similarly, we can add another variable to the
mix, say variable C D 2, but visualization becomes somewhat more of a challenge
for we must create a three-dimensional diagram on a sheet of paper (or computer
screen). This can be easily done, and now we can see a point in position X D 12,
Y D 3, and Z D 2 where X, Y, and Z are the x-axis, y-axis, and z-axis. So we have
gone from one dimension, a line, to two dimensions, a plane, to three dimensions,
a cube. Suppose we now add a fourth variable, or a fifth, or a 100th variable to the
dataset. Visualization becomes a challenge to “see” the structure of the answer. Tree
structures are one way by which many dimensions can be reduced to representation
in two or three dimensions. While it takes some practice getting used to correctly
reading and interpreting the graphs, the outcome is well worth the effort.

This chapter makes it clear that when one has a mass of data, possibly collected
over years and on which SQL queries have been repeatedly made to the point that
one might not think there is any more information that can be gleaned from further
mining, it is the artificial neural network set of tools that come into play to explain
the interactions and relationships existent among the data. The rules that connect the
various sets of data within the database will very likely be fuzzy and dynamic. As
the data submitted to the ANN are updated, it will adjust its “rules” in accordance,
integrating the old data with the new, permitting us to correctly generalize new, dirty,
incomplete, or future data.

Chapter 6 (“The Metropolitan Police Service Central Drug-Trafficking Database:
Evidence of Need”) discloses the problems inherent in large database systems, the
errors that are entered into it by nontrained or only partially trained data input
operators, the inconsistencies in the data that further thwart efforts to glean useful
information using traditional methods, and the absence of a recognition that correct
DB input, though time consuming, can be an ardent partner in the identification
of relationships and the generation of profiles as a definite source of help and
assistance to the enforcement community. It becomes apparent that the police, local,
national, and international, have at their disposal access to information that could
revolutionize the ways in which their jobs are performed, if only they had the
knowledge, foresight, funding, and incentive to utilize it.

Chapter 7 (“Supervised Artificial Neural Networks: Back Propagation Neural
Networks”) becomes technical with a description of one of the most basic neural
networks, that of the back propagation network. To understand it requires first a
familiarity with the feedforward backpropagation artificial neural network (FF BP
ANN). The first half of this chapter is a relatively low-level introduction to the
theory FF BP, but it does get into some more challenging mathematics in the second
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half. If one has a background in calculus and differential equations, the math will
be easy to follow. If not, one can simply accept that the mathematics are correct
and read “around” the equations. In this manner, one can learn the theory and get
a basic understanding how it works. This is probably the pivotal chapter for all the
remaining algorithms; most everything else builds on this content.

Chapter 8 (“Preprocessing Tools for Nonlinear Datasets”) addresses the most
difficult, and arguably the most important, problem in artificial neural networks, the
training and testing of the network to ensure the best possible outcome. ANNs must
first be “trained” to understand the data and establish the relationships among the
variables, and it is a task that the algorithm must do itself. In the classical sense,
the dataset would simply be randomly partitioned into two or more subsets, and
one subset would be used to train the network, another to test it, and finally one
subset on which to actually run the network. There are problems inherent in this
method, especially when the database is extremely large, as is typically the case
with enforcement DBs, and when the data is “noisy.” Noise is the existence of data
that does not have any strong relationships with other variables. If a network is
overtrained, the noise is incorporated as if it was strongly tied to other variables,
and hence, new evaluated data would consider the noise to be an important part of
the system. This would yield an incorrect interpretation of the data. Noise must be
eliminated so that the network is properly trained. This chapter discusses how best
to perform that action.

One way of eliminating noise, or at least reducing its impact, is addressed
by two new algorithms called the training and testing algorithm (T&T) and the
training and testing reverse algorithm (T&Tr). These are preprocessing systems that
permit procedures to be far more effective in training, testing, and validating ANN
models. This chapter presents the concept and mathematics of the algorithm and
then illustrates their effectiveness with an example.

Chapter 9 (“Metaclassifiers”) describes methods by which data can be classified.
There are many methods which purport to classify data, and each one performs the
classification in a different manner and typically with differing results. The variation
in outcome can be explained by saying that the different mathematics associated
with each method views the data from various different perspectives, assigning data
to classifications that can be, and usually are, different. A metaclassifier, however,
is a method by which the results of these individual classifiers are considered
as input to an ANN that forms the classifications based on the differing views
and perspectives of the individual ANNs. In short, the different perspectives of
the individual ANNs are brought together to produce a single, superior classifi-
cation taking into account the various algorithms that produce certain views of
the data.

Chapter 10 (“Auto-identification of a Drug Seller Utilizing a Specialized Su-
pervised Neural Network”) is a comprehensive illustration of the application of
pattern recognition on a law enforcement database of drug-related data using the
metaclassification algorithm discussed in the previous chapter. This chapter is more
accessible to the nontechnician and gives an exciting, and detailed, description of
how the metaclassifier can be used to identify unknown relationships.
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Chapter 11 (“Visualization and Clustering of Self-organized Maps”) describes
a type of neural network that has been around for some 30 odd years, the self-
organizing map. The main significance of this type of ANN is that it can take
high-dimensional data and produce a diagram (map) that displays it in one or two
dimensions. In short, humans can visualize interactions when displayed in one,
two, or three dimensions, but not four or more dimensions. Data composed of
only one variable can “see” a point on an x-axis diagram; data composed of two
variables can be displayed on an x-y-axis diagram; data composed of three variables
can be displayed on an x-y-z-axis diagram, and the visualization stops here. We
simply cannot visualize diagrams in four or more dimensions, and that is where
the self-organizing map comes into play. It has the ability of analyzing data in an
unsupervised way (without any preconceived indication of the number of patterns
present in the data) and placing the resulting analysis in a one- or two-dimensional
diagram. While some information might be lost in the translation, it is more than
made up with the insights that one can glean from the resulting diagram.

This type of ANN is continued in Chap. 12 (“Self-organized Maps: Identifying
Nonlinear Relationships in Massive Drug Enforcement Databases”) with its use
in the analysis of a massive drug enforcement database collected over time by
the Scotland Yard Metropolitan Police. Throughout this chapter, the theory of the
self-organizing map, as presented in Chap. 12, is explained in substantial detail
ending with many visualizations of the drug industry in London. The results
yield a “profile” that can be used by law enforcement agencies to target their
investigations, monitoring, etc. Since the profile is the result of a mathematical
algorithm, an argument that a particular ethnic group is being targeted can and
should be dismissed, for the data speak for themselves.

Chapter 13 (“Theory of Constraint Satisfaction Neural Networks”) is a descrip-
tion of the constraint satisfaction neural network (CS ANN). Problems typically
have some constraints that limit a decision, and we have this situation regularly
occurring. For example, a search of a database for the owner of a particular car
whose license begins with ABC is a constraint imposed on the solution. A search
for a male whose height is between 50600 and 50800 (167.6 and 172.7 cm) and weight
is 220 lb (100 kg) is a constraint problem. Thus, the constraint satisfaction ANN
involves finding a solution given the imposition of a series of conditions on it.

Chapter 14 (“Application of the Constraint Satisfaction Network”) is an exten-
sion of the previous chapter and describes the application of the CS ANN on a
dataset composed of 144 variables on 1,120 cases involving drug trafficking within
the boroughs of London. The examples show the level of detail that can be derived
from data using this method of analysis, and the results are graphically shown in tree
diagrams for which the interpretation of which is also provided. Law enforcement
officers will get a very good understanding as to the kinds of information, and the
depiction of the results of the analysis, that may be available in databases. There
is a richness of information that very likely has not been mined, and the methods
described here should excite the reader as to possible results.

Chapter 15 (“Auto-contractive Maps, H Function, and the Maximally Regular
Graph: A New Methodology for Data Mining”) describes an original artificial neural
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network called the auto-contractive map (AutoCM). This specialized analytical
method produces a graphical image that displays the overall relationships that exist
among the variables at the most fundamental level of system construction. That
is, a set of variables that constitute some system under investigation possess some
degree of connectivity among all the variables. To draw a graph in which each point
is connected to every other point does, in fact, represent the overall system, though
it also gives absolutely no information as to the structure of the underlying, basic
structure. We seek to understand the structure but at the point when the individual
variables have enough of a relationship with each other to form an initial linkage.
Thus, the AutoCM shows a graph in which each point (called a node or vertex)
is connected to another node but without the creation of any loops or circuits in
the graph. This is called a minimal spanning tree (MST). The benefit of this kind
of graph is that it permits us to see how one variable is related to another from
a hierarchical perspective. For example, if we possess a large number of records
on individuals and we seek to understand how these people are related (in the
mathematical sense) to each other, the MST will give us exactly that information.
It is this ANN that can be used, for example, to determine the structure of a
drug network: who are the pushers, who supplies the pushers, who supplies the
suppliers, etc.

An embellishment of this method is the inclusion of the maximal regular graph,
the linking of individual nodes that show the strongest degree of “relationship,”
which creates circuits in parts of the MST. These circuits typically end up creating
a perfect (or almost perfect) subgraph. An example of the AutoCM is given using
the characters from West Side Story, the Jets, and the Sharks.

Chapter 16 (“Analysis of a Complex Dataset Using the Combined MST and
Auto-contractive Map”) uses the auto-contractive map ANN described in Chap.
15 to analyze the drug activity in London. The main value in this chapter is
the interpretation of the various graphs, taking the visual representation of the
mathematical relationships and putting them into words that can yield some action.
Anyone seeking to use the AutoCM ANN should spend the time necessary to master
this chapter.

Chapter 17 (“Auto-contractive Maps and Minimal Spanning Tree: Organization
of Complex Datasets on Criminal Behavior to Aid in the Deduction of Network
Connectivity”) is a comprehensive example of using adaptive neural networks to
solve interesting and important law enforcement-related problems and should be
read very carefully. Essentially, let us assume that we have a very large database
composed of data on individuals that include gender, age, nationality, where
arrested, number of previous convictions, arrests and offenses, type of drugs seized,
behavior of the individual, and much more. Missing from the database is any
information about associations with others, and that is the item of interest we seek to
discover: Which individuals belong to the same “gang” or are involved in the same
drug-trafficking “circle”? Using the auto-contractive map and minimal spanning tree
methods, this chapter shows how mathematics can answer this question. For law
enforcement personnel seeking to get some handle on gang activity or conspiracy
activity, guidance toward a solution can be found here.
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The illustration of the usage of this ANN technology to solve interesting
problems continues with Chap. 18 (“Data Mining Using Nonlinear Auto-associative
Artificial Neural Networks: The Arrestee Dataset”). Using the drug database, this
chapter explores how to apply nonlinear auto-associative systems (nonsupervised
ANNs) to data analysis. The results of the analysis are presented in various MSTs
and the graphs interpreted. While fascinating and informative graphs are created
and discussed, these structures are the results of the application of mathematical
algorithms to records of data, and it must be emphasized that the analysis depends
directly on the quality of the data entry and that the results should be interpreted as
a point of departure for anyone using these methods for investigative purposes.

The final Chap. 19 (“Artificial Adaptive System for Parallel Querying of Multiple
Databases”) addresses the interesting problem of analyzing multiple databases that
do not possess a similar data structure. An analogy is made with different wineries
in the same community. Each winery produces its own special wines, and each wine
has its own set of characteristics, but they all come from the same geographical area.
Hence, once could want to understand the complex interactions that occur among
the different wineries. Similarly, different police organizations may have their data
stored in databases whose data structures, or the kinds of data placed in the fields
that make up the records, differ across the organizations.

1.3 Collaborative Opportunities

The Semeion Research Center in Rome, Italy, the research facility responsible for
the discovery and development of all the methods described in this book, regularly
works with companies and organizations who seek to implement some of the
methods described here in their own organization but do not have the funding
necessary to create their own systems. Arrangements can be made with Semeion
to utilize their software under a licensing arrangement. Also, it is not uncommon for
organizations to pass their database directly to Semeion where the analysis occurs
and a detailed report is provided. The analysis is completed at Semeion and the
results are explained, in whatever detail is necessary to ensure proper understanding
of the results, to the organizational officials.



Chapter 2
Law Enforcement and Artificial Intelligence

Paolo Massimo Buscema

2.1 Data and Methods

The original purpose of several of the chapters in this book was to acquaint the
Metropolitan Police Service (MPS) of London, England, with the interim findings
arising from the analyses of data drawn from drug trafficking crimes recorded by
the MPS in 2004. Since then, the purpose has evolved into a book that would
provide new and exciting guidance as to the possibilities of numerous nontrivial
neural network applications to the many different fields of law enforcement. Law
enforcement agencies typically collect huge quantities of data and might remain
underutilized for numerous reasons, that is, insufficient time for investigators to
mine the data, insufficient resources to engage in creative and exploratory methods
of analytically gathering useful information from the data, or simply of not being
aware of the various forms by which data can be utilized to create new insights into
how mathematics, computer science, and systems analysis can be brought to bear on
critical problems. These analyses were undertaken by the Semeion Research Center
of Sciences of Communication (hereafter Semeion) using an array of artificial
adaptive systems. As a prerequisite to the testing, training, and analytical phases,
the report also discusses the importance of:

• Collecting, organizing, and validating data
• The necessity of designing and constructing a database “fit for purpose”

The report further points out that having a wealth of well-organized data and a
sophisticated database is of little use unless the analytical tools used are underpinned
by robust mathematics. Without good mathematics, there is a high risk that any
analyses of data will generate contradictory and arbitrary gobbledegook.
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Data are read by tools, and suitable tools are provided by mathematics. The
basic statistics through which often complex database are read are not sufficient
to understand the secrets that data freeze in the form of numbers. Frequency tables,
means, variances, two-variable correlations, etc., are excellent tools for “getting an
idea” of the data that we have before us. But these basic analyses do not reveal
anything about the complex relations concealed in an important database. And the
reason is simple: in any database, any individual datum interacts in parallel with all
the others, and it is only this global “many-to-many” interaction that generates the
meaning of each individual datum (Grossi et al. 2007; Dzeroski and Lavrac 2001).

Even more complex statistics sometimes might miss the subtle associations that
constitute the framework of any database. Every linear multivariate analysis, in fact,
links data through simplified relations. But most natural, biological, and cultural
phenomena do not follow plain “cause-effect” relationships. Any structure that has
feedback, from a thermostat to human brain circuits, often violates in some way
the dynamics of these statistics. This means that in many databases nonsignificant
linear relationships may conceal the keystone of the entire system. To be unaware
of them may mean not to understand at all how that system will actually respond to
our actions.

A database is in fact like a living system frozen in one or more moments of
one’s life. To understand it means reactivating the interactions between each of its
individual data and every other datum. A mathematics that is suitable for activating
this reanimation process must consider each individual datum as an agent whose
aim may consist of either of the following:

1. Negotiating the value of its relationship with all the others, in order to maintain
its own identity, that is, its original numerical value

2. Defining its new identity, in order to maintain its relationships with the others, if
these are binding

To operate on a database in this way means understanding the history that has
produced it and the future on which it is focused.

Analyses of this type cannot be done through statistical tools that review all the
data just once to establish simplified relationships that may entirely miss the mark.
A more complex mathematics is required, able to consider each datum as an agent
that develops its linear and nonlinear relationships with all the others over time and
in parallel. A mathematics operating in a manner similar to that of operation of the
human brain is required, that is, locally, in parallel and through continuous feedback
between basic units.

Artificial adaptive systems are the mathematical tools suitable for these types of
analysis.

These are systems whose:

1. Basic units interact in parallel and locally with one another
2. Units, therefore, negotiate their interactions over time and according to highly

nonlinear logics
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3. Units are connected to one other and the value of these connections is adapted
and modified over time, until the entire system spontaneously reaches its own
stability

4. Interacting units modify the entire system from bottom to top, thus revealing the
global complexity of their relationships

Therefore, artificial adaptive systems are the appropriate tools to generate each
database from within its own specific model, concealed in its data.

A frequent error in the analysis of data is that of entering into the database a
model that is external to it and then wondering how much the model explains the
database. Artificial adaptive systems are, on the contrary, models for generating the
models that are intrinsic to each database.

Their approach to data, therefore, is in a sense “maieutic”; they help the database
to give birth to their hidden relationships.

Artificial neural networks (ANNs) and evolutionary algorithms (EAs) are the
two classes of artificial adaptive systems that we shall use in this report to make
the data “speak.” ANNs are information processing paradigms inspired by the
analytical processes of the human brain. Such systems are able to modify their
internal operating structure and, therefore, the resulting analysis in relation to a
defined goal, question, or function objective. They learn to recognize the complex
patterns existing between the input signals and the corresponding outputs. ANNs
are particularly suited for solving problems of the nonlinear type and to analyze
complex datasets.

Nowadays, this analytical style is known in the scientific world as data mining,
the central activity in the process of knowledge discovery in databases which is
concerned with finding patterns in data.

2.2 Drug Trafficking and Artificial Adaptive Systems

The purpose of this chapter, therefore, is summarized in two points:

1. To show how to construct a significant relational database on drug trafficking in
a city such as London

2. To explain how the artificial adaptive systems may be the best tools for revealing
from these data, information that is hidden from and invisible to other tools
and, at the same time, is important for making strategic and operative decisions
concerning the fight against drug trafficking

However, this dual aim encounters a problem: artificial adaptive systems are
complex mathematical tools, and a person who deals with crime does not normally
have sufficient mathematical training. This difficulty is accentuated by the fact that
many of the artificial systems that will be used in this book are unpublished and
therefore not even known to the experts on artificial neural networks and evolutive
algorithms.
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In other words, we have the very difficult problem of successfully explaining at
least the philosophy of complex mathematics to crime experts and at the same time
being able to explain, in sufficiently adequate mathematical terms, to experts on
artificial adaptive systems the new models that we have created. We must also show
to both of these types of different domain experts how these complex systems can
be used in real situations, deriving a practical and theoretical benefit from them.

In practice, this seems to be an impossible task though we take it on in this book.
However, since the introduction to a book is always written at the conclusion of

the chapters in order to adequately explain the problems that need to be addressed,
the reader will gain an understanding of the philosophical principles that render a
potential solution, the methods used to address it, and the success or lack thereof
to guide others in benefitting from this effort. It is new ground that is traversed
here, very important and fully transferrable to other disciplines to solve other kinds
of problems, though one requires knowledge of the contents of this book and a
motivation to change existing systems in order to make large jumps forward.

This book is divided into three parts:

1. The initial contribution of the first part is an attempt to explain why various
types of artificial adaptive systems can be used as artificial detectives capable
of performing the intelligent analysis of data linked to the world of crime. A real
detective often classifies the various criminal situations; tries to form a visual
map of the events; makes predictions as to how those events could develop;
builds a somatic, sociological, and psychological profile of the criminal players
whom he is pursuing; and, furthermore, imagines links between events, players,
and clues, in order to reconstruct the complex network of a criminal activity.
These five cognitive activities can also be implemented in various artificial
adaptive systems: intelligent classification systems, visual clustering systems,
prediction systems, prototype generation systems, and systems creating network
connections between objects. In this part of the book, we show how artificial
adaptive systems can represent a second look and a second opinion on the
analysis of criminal acts. This part is easy to understand and contains examples
of simplistic applications to the world of crime. The second contribution of this
section describes the scenario within which our research moves, specifically,
to address drug trafficking in London. It is important to understand the kind
of real problems London’s Metropolitan Police Service encounters every day
in the fight against drug trafficking, what laws govern their actions, and the
procedures they implement. But above all, we hope that this section will help
police officers, criminologists, and policy makers to better understand how
artificial intelligent systems could be fundamental in confronting a criminal
network whose complexity ranges from the street pusher to the plethora of
innocuous-appearing bank accounts scattered throughout the world.

2. The second part of the book presents the mathematical models of the artificial
adaptive systems used to analyze the data on drug trafficking. The presentation
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logic that we have followed is a logic guided by the mathematical model: the
first article explains the architecture, mathematics, and the specific algorithms
contained in the model. There then follows a series of articles in which
the presented model is applied to various datasets extracted from the central
database. These articles show how the model in question is able to reveal
information from the data that is relevant but hidden; it is, in fact, information
that other models would be unable to extract. Many of the models contained
in these articles are new to the experts themselves, and therefore, we have taken
care to present them in such a way that their conceptual validity and mathematics
are clear and understandable. However, the applicative contributions should be
comprehensible even to a reader who is not mathematically savvy. Our faith in
logic, however, is such that we believe that the theoretical presentation of the
models should also be comprehensible to a nonspecialist reader; it is sufficient
if one wishes to skip the formulae but carefully reads the examples that are
proposed in the theoretical discourse.

3. The third section of this book is devoted to a more in-depth study. Each reader
may choose which contributions of this section to read and the order in which to
read them. We did, in fact, think it advisable to provide a contribution explaining
what we mean by artificial adaptive systems and how they are placed in relation
to the other artificial intelligence systems existing today. It is only a conceptual
proposal and not a complete theory. A second article in this section is devoted
to a brief introduction to artificial neural networks which alone represents the
majority of the artificial adaptive systems. It is a brief explanatory introduction
that was written with the intent of being intelligible to all and which we deem
as useful to anyone who wishes to have a more detailed and formal explanation.
The third article is along the same lines as the preceding one, but it addresses the
family of evolutive algorithms, headed by an explanation on genetic algorithms.
In this case, too, the aim is to be explanatory and the language intentionally
nontechnical (or at least as much as possible). The fourth article in this section
is devoted to the design and implementation of the relational database on drug
trafficking that we constructed with the assistance of the Metropolitan Police
in London. This chapter is fundamental to understanding how much an intense
collaboration between information technologists and detectives is decisive for
producing a DB whose quality is the result of professional experiences that are
as diverse as they are complementary. Any intelligent analysis is possible from
a good database, even though a good database does not guarantee an intelligent
analysis. The final chapter is devoted to a basic description of the thousands of
datum items collected in the database that have made it possible to generate all
the preceding analyses. This contribution provides a picture of the quantity and
quality of the data that the group of Metropolitan Police Service’s data entry
operators (DEOs) at New Scotland Yard1 have been able to process.

1New Scotland Yard is the headquarters of the MPS.
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2.3 Intelligence and Crime

Individual intelligence is optional for someone to possess in the commission of a
crime, but when it exists, it greatly increases the dangers. For civil society and,
therefore, for the police forces, individual intelligence is, however, a prerequisite for
its very existence. A society without intelligence contained in its members cannot
be civil either.

The final purpose of this book consists of offering civil society one more
intelligence tool against the brutality of uncivilized intelligence, that is, against
organized crime.

The police forces of democratic countries already have in their service men
and women of considerable intelligence and selflessness. However, when criminal
networks exceed a certain level of complexity, their dynamic outstrips the capacity
for calculation and imagination of any human brain, including the one of criminal
individuals who believe that they are the main players in this dynamic.

“Technological intelligence,” the historic precipitate of advanced scientific
research, must be considered as a precursor of human intelligence; a second brain
less complete than the natural one but more specialized in certain activities; a second
brain capable of supplying one hypothesis more than the usual ones; a second brain
capable of shading light in areas where our capabilities see just a dark invisible
corner; and a second brain that was, in short, born of an intangible thought in
our brain.

The mathematics, information technology tools, and their applications presented
in this book have their origin in a single certainty: we are condemned forever
to possess logic. Even behaviors that may seem random, if performed by human
individuals and repeated, will sooner or later assume a form. Whoever understands
it first can try to make the future become the effect of the present. It would be
desirable that civil society imagined our future.
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Chapter 3
The General Philosophy of Artificial
Adaptive Systems

Paolo Massimo Buscema

3.1 Artificial Adaptive Systems

Artificial adaptive systems (AAS) form part of the vast world of natural computation
(NC) which is itself a subset of the artificial sciences (AS). Artificial sciences are
those sciences for which an understanding of natural and/or cultural processes is
achieved by the recreation of those processes through automatic models.

We shall use an analogy to explain the difference between artificial science and
natural language; the computer is to the artificial sciences as writing is to natural
language. That is, the AS consists of a formal algebra used for the generation
of artificial models which are composed of structures and processes, and natural
languages are composed of semantics, syntax, and pragmatics for the generation
of texts. Through each of these very different systems, a level of independence is
created; in natural languages, the utterances of sounds are fully dependent on the
time in which the utterances are made, but by representing those utterances with
writing, they become independent from time, for written documents (in the form
of books, manuscripts, typewritten pages, computer-generated output in the form
of both digital and hardcopy, etc.) exist outside the dimension of time. They exist
in the spatial dimension. Similarly, the computer achieves independence from the
physical system through the creation of a model. Such models are automations
of the original system and permit one to study the natural/physical system at any
time, even if the original system no longer exists. An example of such a system
is the active eruption of a volcano or the tremors of an earthquake. Through
extensive measurements of variables, a model can be constructed that permits
researchers to recreate the original volcanic activity or earthquake in a completely
controlled environment by which variables of choice can be controlled. Using
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Fig. 3.1 The diagram shows how the analysis of natural and/or cultural processes that need to
be understood starts from a theory which, adequately formalized (formal algebra), is able to
generate automatic artificial models of those natural and/or cultural processes. Lastly, the generated
automatic artificial models must be compared with the natural and/or cultural processes of which
they profess to be the model and the explanation

writing as an extension of a natural language permits the creation of cultural
objects that, before onset of writing, were unthinkable. Such cultural objects are
stories, legal texts, manuals, historical records, etc. In a similar manner, the AS
can create models of complexity that, before the construction of computers, were
unthinkable.

Natural languages and artificial sciences, in the absence of writing and the
computer, are therefore limited. But a written document not based on a natural
language, or an automatic model not generated by formal algebra, is little more
than a set of scribbles (Fig. 3.1).

In the artificial sciences, the understanding of any natural and/or cultural process
occurs in a way that is proportional to the capacity of the automatic artificial
model to recreate that process. The more positive the outcome of a comparison
between an original process and the generated model, the more likely it is that
the artificial model has correctly explained the functioning rules of the original
process. However, this comparison cannot be made simple-mindedly. Sophisticated
analytical tools are needed to make a reliable and correct comparison between an
original process and an artificial model. Most of the analytical tools useful for
this comparison consist of comparing the dynamics of the original process and the
dynamics of the artificial model when the respective conditions in the surroundings
are varied.

In sum, it could be argued that:

1. Varying the conditions in the surroundings yields a greater variety of response
dynamics obtained both in the original process and in the resulting artificial
model.
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Fig. 3.2 Taxonomic tree of the disciplines that make up the artificial sciences system

2. The more these dynamics between the original process and resulting artificial
model are homologous, the more probable it is that the artificial model is a good
explanation of the original process.

3. The more probable it is that the artificial model is a good explanation of the
original process.

In Fig. 3.2, we propose a taxonomic tree for characterization of the disciplines
that, through natural computation and classic computation, make up the artificial
sciences system.

Natural computation (NC) refers to that part of the artificial sciences (AS)
responsible for the construction of automatic models of natural and/or cultural
processes through the local interaction of nonisomorphic microprocesses. In NC,
it is therefore assumed that:

1. Every process is, more or less, contingent on the result of more basic processes
that tend to self-organize in time and space.

2. None of the microprocesses are themselves informative concerning the function
that they will assume with respect to others, nor the global process of which it
will be part.
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This computational philosophy, which is very economic for the creation of simple
models, can be used effectively to create any type of process or model that is inspired
by complex processes. NC in fact deals with the construction of artificial models that
do not simulate the complexity of natural and/or cultural processes through rules but,
rather, through commitments that, depending on the space and time through which
the process takes form, autonomously create a set of contingent and approximate
rules. NC does not try to recreate natural and/or cultural processes by analyzing
the rules which make them function, and thus formalizing them into an artificial
model. On the contrary, NC tries to recreate natural and/or cultural processes by
constructing artificial models able to create local rules dynamically and therefore
capable of change in accordance with the process itself.

The links that enable NC models to generate rules dynamically are similar to
the Kantian transcendental rules: these are rules that establish the conditions of
possibility of other rules.

In NC, dynamics such as learning to learn are implicit in the artificial models
themselves, while in classical computation additional rules are required.

Natural computation can be decomposed into the following:

• Descriptive systems (DS) are derived from disciplines that have developed,
whether or not intentionally, a formal algebra that has proved particularly ef-
fective in drawing up appropriate functioning links of artificial models generated
within NC (e.g., the theory of the dynamic systems, the theory of autopoietic
systems, fuzzy logic).

• Generative systems (GS) are theories of NC that have explicitly provided a formal
algebra aimed at generating artificial models of natural and/or cultural processes
through links that create dynamic rules in space and in time.

In turn, generative systems can be broken down into:

• Physical systems (PS): a grouping of those theories of natural computation
whose generative algebra creates artificial models comparable to physical and/or
cultural processes, only when the artificial model reaches given evolutive stages
(limit cycles type). While not necessarily the route through which the links
generate the model, it is itself a model of the original process; in brief, in these
systems the generation time of the model is not necessarily an artificial model of
the evolution of the process time (e.g., fractal geometry).

• Artificial adaptive systems (AAS) are theories of natural computation whose
generative algebra creates artificial models of natural and/or cultural processes,
whose birth process is itself an artificial model comparable to the birth of the
original process. They are therefore theories assuming the emergence time in the
model as a formal model of the process time itself.

In short, for these theories, each phase of artificial generation is a model
comparable to a natural and/or cultural process.
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Fig. 3.3 The diagram shows in more detail the formalization, automation, and comparison
between natural and/or cultural processes and automatic artificial models seen from two points
of view (classical computation and natural computation). Each point of view can be seen as a
cycle that can repeat itself several times. This allows one to deduce that the human scientific
process characterizing both the cycles resembles more the natural computation than the classical
computation one

Artificial adaptive systems in turn comprise:

• Learning systems (artificial neural networks – ANNs): these are algorithms for
processing information that allow for the reconstruction, in a particularly effec-
tive way, the approximate rules relating a set of “explanatory” data concerning
the considered problem (the input), with a set of data (the output) for which it is
requested to make a correct forecast or reproduction in conditions of incomplete
information.

• Evolutionary systems (ES): this means the generation of adaptive systems
changing their architecture and their functions over time in order to adapt to the
environment into which they are integrated or comply with the links and rules that
define their environment and, therefore, the problem to be simulated. Basically,
these are systems that are developed to find data and/or optimum rules within the
statically and dynamically determined links and/or rules.

The development of a genotype from a time ti to a time t(iCn) is a good example
of the development over time of the architecture and functions of an adaptive system
(Figs. 3.3 and 3.4).
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Fig. 3.4 Artificial adaptive systems – general diagram

3.2 A Brief Introduction to Artificial Neural Networks

3.2.1 Architecture

ANNs are a family of methods created to simulate the workings of the human brain.
Currently, ANNs comprise a range of very different models, but they all share

the following characteristics:

• The fundamental elements of each ANN are the nodes, also known as processing
elements (pe), and their connections.

• Each node in an ANN has its own input, through which it receives communica-
tions from the other nodes or from the environment, and its own output, through
which it communicates with other nodes or with the environment. Finally it has
a function, f (�), by which it transforms its global input into output.

• Each connection is characterized by the force with which the pair of nodes
excite or inhibit each other: positive values indicate excitatory connections, and
negative ones indicate inhibitory connections.

• Connections between nodes may change over time. This dynamic triggers a
learning process throughout the entire ANN. The way (the law by which) the
connections change in time is called the “learning equation.”

• The overall dynamic of an ANN is linked to time: in order for the connections
of the ANN to properly change, the environment must act on the ANN several
times.
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• When ANNs are used to process data, these latter are their environment. Thus,
in order to process data, these latter data must be subjected to the ANN several
times.

• The overall dynamic of an ANN depends exclusively on the local interaction of
its nodes. The final state of the ANN must, therefore, evolve “spontaneously”
from the interaction of all of its components (nodes).

• Communications between nodes in every ANN tend to occur in parallel. This
parallelism may be synchronous or asynchronous, and each ANN may emphasize
it in a different way. However, an ANN must present some form of parallelism in
the activity of its nodes.

• From a theoretical viewpoint, this parallelism does not depend on the hardware
on which the ANNs are implemented.

Every ANN must present the following architectural components:

• Type and number of nodes and their corresponding properties
• Type and number of connections and their corresponding location
• Type of signal flow strategy
• Type of learning strategy

3.2.2 The Nodes

There can be three types of ANN nodes, depending on the position they occupy
within the ANN:

• Input nodes: the nodes that (also) receive signals from the environment outside
the ANN.

• Output nodes: the nodes whose signal (also) acts on the environment outside the
ANN.

• Hidden nodes: the nodes that receive signals only from other nodes in the ANN
and send their signal only to other nodes in the ANN.

The number of input nodes depends on the way the ANN is intended to
read the environment. The input nodes are the ANN’s sensors. When the ANN’s
environment consists of data the ANN should process, the input node corresponds
to a sort of data variable. The number of output nodes depends on the way one
wants the ANN to act on the environment. The output nodes are the effectors of the
ANN. When the ANN’s environment consists of data to process, the output nodes
represent the variables sought or the results of the processing that occurs within the
ANN. The number of hidden nodes depends on the complexity of the function one
intends to map between the input nodes and the output nodes. The nodes of each
ANN may be grouped into classes of nodes sharing the same properties. Normally,
these classes are called layers.



24 P.M. Buscema

MonoDirectional

Ni Nj

Wji

BiDirectional

Ni Nj

Wji

Wij

Symmetrical

Ni Nj

Wji = Wij

AntiSymmetrical

Ni Nj

Wji = -Wij

Reflexive

Ni

Wii

Fig. 3.5 Types of possible
connections

Various types can be distinguished:

• MonoLayer ANNs: all nodes of the ANN have the same properties.
• MultiLayer ANNs: the ANN nodes are grouped in functional classes; for

example, nodes that (a) share the same signal transfer functions or (b) receive
the signal only from nodes of other layers and send them only to new layers.

• Nodes sensitive ANNs: each node is specific to the position it occupies within
the ANN; e.g., the nodes closest together communicate more intensely than they
do with those further away.

3.2.3 The Connections

There may be various types of connections: MonoDirectional, BiDirectional,
Symmetrical, AntiSymmetrical, and Reflexive (Fig. 3.5):

The number of connections is proportional to the memory capabilities of the
ANN. Positioning the connections may be useful as methodological preprocessing
for the problem to be solved, but it is not necessary. An ANN in which the
connections between nodes or between layers are not all enabled is called an ANN
with dedicated connections; otherwise it is known as a maximum gradient ANN.

In each ANN, the connections may be:

• Adaptive: they change depending on the learning equation.
• Fixed: they remain at fixed values throughout the learning process.
• Variable: they change deterministically as other connections change.

3.2.4 The Signal Flow

In every ANN, the signal may proceed in a direct fashion (from input to output) or
in a complex fashion.

Thus, we have two types of flow strategy:

• Feed forward ANN: the signal proceeds from the input to the output of the ANN
passing all nodes only once.
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• ANN with feedback: the signal proceeds with specific feedbacks, determined
beforehand, or depending on the presence of particular conditions.

The ANNs with feedback are also known as recurrent ANNs and are the most
plausible from a biological point of view. They are often used to process timing
signals, and they are the most complex to deal with mathematically.

In an industrial context, therefore, they are often used with feedback conditions
determined a priori (in order to ensure stability).

3.3 Learning in the Artificial Neural Network

Every ANN can learn, over some period of time, the properties of the environment
in which it is immersed or the characteristics of the data which it presents. This is
accomplished in basically one of two ways (or mixture of both):

• By reconstructing approximately the probability density function of the data
received from the environment, compared with preset constraints

• By reconstructing approximately the parameters which solve the equation relat-
ing the input data to the output data, compared with preset constraints

The first method is known in the context of ANNs as vector quantization; the
second method is gradient descent. The vector quantization method articulates the
input and output variables in hyperspheres of a defined range. The gradient descent
method articulates the input and output variables in hyperplanes.

The difference between these two methods becomes evident in the case of a
feed forward ANN with at least one hidden unit layer. With vector quantization,
the hidden units encode locally the more relevant traits of the input vector. At the
end of the learning process, each hidden unit will be a prototype representing one or
more relevant traits of the input vector in definitive and exclusive form.

With gradient descent, the hidden units encode in a distributed manner the most
relevant characteristics of the input vector.

At the end of the learning process, each hidden unit will tend to represent the
relevant traits of the input in a fuzzy and nonexclusive fashion.

Summing up, the vector quantization develops a local learning; the gradient
descent develops a distributed or vectorial learning.

Considerable differences exist between the two approaches:

• Distributed learning is computationally more efficient than local learning. It may
also be more biologically plausible (not always or in every case).

• When the function that connects input to output is nonlinear, distributed learning
may “jam” on local minimums due to the use of the gradient descent technique.

• Local learning is often quicker than distributed learning.
• The regionalization of input on output is more sharply defined using vector

quantization than when using gradient descent.
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• When interrogating an ANN trained with vector quantization, the ANN responses
cannot be different from those given during learning; in the case of an ANN
trained with gradient descent, the responses may be different from those obtained
during the learning phase.

• This feature is so important that families of ANNs treating the signal in two steps
have been designed: first with the quantization method and then with the gradient
method.

• Local learning helps the researcher to understand how the ANN has interpreted
and solved the problem; distributed learning makes this task more complicated
(though not impossible).

• Local learning is a competitive type; distributed learning presents aspects of both
competitive and cooperative behavior between the nodes.

3.4 Artificial Neural Network Typology

ANNs may, in general, be used to resolve basically three types of complex problems,
and, consequently, they can be classified into three subfamilies.

3.4.1 Supervised ANNs

The first type of problem with which an ANN can deal is expressed as follows:
given N variables, about which it is easy to gather data, and M variables, which
differ from the first and about which it is difficult and costly to gather data, assess
whether it is “possible to predict” the values of the M variables on the basis of the
N variables.

This family of ANNs is named supervised ANNs (SV) and their prototypical
equation is:

y D f .x; w�/ (3.1)

where y is the vector of the M variables to predict and/or to recognize(target), x is
the vector of N variables working as networks inputs, w is the set of parameters to
approximate, and f () is a nonlinear and composed function to model.

When the M variables occur in time subsequent to the N variables, the problem
is described as a prediction problem; when the M variables depend on some sort of
typology, the problem is described as one of recognition and/or classification (this
is also sometimes referred to as the proscription problem).

Conceptually, it is the same kind of problem: using values for some “known
variables” to predict the values of other “unknown variables”.

To correctly apply an ANN to this type of problem, we need to run a validation
protocol.
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Fig. 3.6 Example of supervised ANN

We must start with a good sample of cases, in each of which the N variables
(known) and the M variables (to be discovered) are both known and reliable.

The sample of complete data is needed in order to:

• Train the ANN
• Assess its predictive performance

The validation protocol uses part of the sample to train the ANN (training set),
while the remaining cases are used to assess the predictive capability of the ANN
(testing set or validation set).

In this way, we are able to test the reliability of the ANN in tackling the problem
before putting it into operation (Fig. 3.6).

3.4.2 Dynamic Associative Memories

The second type of problem that an ANN can be expressed as follows: given
N variables defining a dataset, find out its optimal connections matrix able to
define each variable in terms of the others and consequently to approximate the
hypersurface on which each data-point is located.

This second subfamily of ANNs is named dynamic associative memories (dam).
The specificity of these ANNs is incomplete pattern reconstruction, dynamic

scenario simulation, and possible situations prototyping.
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Fig. 3.7 Example of dynamic associative memory – new recirculation ANN

Their representative equation is:

xŒnC1� D f .xŒn�; w�/ (3.2)

where x[n] is the N variables evolving in the ANNs internal time, w* is the
connection matrix approximating the parameters of the hypersurface representing
the dataset, and f () is some suitable nonlinear and eventually composed function
governing the process.

DAM ANNs after the training phase need to be submitted to a validation protocol
named “Data Reconstruction Blind Test”. In this test, the capability of a DAM ANN
to rebuild complete data from uncompleted ones is evaluated from a quantitative
point of view (Fig. 3.7).

3.4.3 Autopoietic ANNs

The third type of ANNs can be described as follows: given N variables defining M
records in a dataset, evaluate how these variables are distributed and how these
records are naturally clustered in a small projection space K (K < <N) according
to their most important relationships.

These ANNs are named unsupervised or also autopoietic ANNs (US). Their
specificity is the nonlinear extraction of the similarities among records in a database,
using all the variables at the same time. One important feature of these ANNs is also
the possibility that some of them have to visualize in a two- or three-dimensional
map the geographical similarities among records and among variables.

The prototypical equation of the US ANNs is

yŒnC1� D f .yŒn�; x; w�/ (3.3)

where y is the projection result along the time, x is the input vector (independent
variables), and w is the set of parameters (codebooks) to be approximated.
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Fig. 3.8 Example of unsupervised ANN for natural clustering – self-organizing map

In US ANNs, the codebooks (w) after the training phase represent an interesting
case of cognitive abstraction: in each codebook, the ANN tends to develop its
abstract cognitive representation of some of the data which it learned (Fig. 3.8).

3.5 Summary Table

Table 1 Type Dynamic Properties

Nodes Input Type of equation No Layer (each node is distinct
from every other)Output

MultiLayer (each node is the same
as those of its own layer)

Hidden I ! 0

MonoLayer (each node is the same
as the others)

Connections Symmetrical Adaptive Maximum connections
AntiSymmetrical Fixed Dedicated connections
MonoDirectional Variables
BiDirectional
Reflexive

(continued)
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(continued)

Table 2 Flow strategy Learning strategy

Type of ANN Feed forward with parametric or
adaptive Feedback

Approximation of the function:

IntraNode Gradient descent
IntraLayer Vector quantization
Among layers Learning conditions of the function:
Among ANNs Supervised

Dynamic associative memories
Unsupervised or autopoietic

Tables 1 and 2 Semantics and syntax of ANNs
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Chapter 4
A Brief Introduction to Evolutionary Algorithms
and the Genetic Doping Algorithm

Massimo Buscema and Massimiliano Capriotti

4.1 Introduction

Genetic algorithms (GAs) constitute a subset of evolutionary algorithms, a generic
term that indicates a range of systems of problems for which resolution is based
on the use of the computer and seeks solutions using methods that are similar to
evolutionary processes. Apart from genetic algorithms, they include evolutionary
programming, evolutionary strategies, classifying systems, genetic programming,
and genetic doping algorithms.

In general, the algorithms used in the disciplines of artificial intelligence work
on the research of a global minimum or maximum in a finite space on the basis of
bounds on the space of the solutions. From a formal point of view, we can state that,
given an element X belonging to a Cartesian space D (where n is the cardinality of
D and X is a vector), and given a function f W D ! R called objective function,
then the identification of the global optimum is the search for X* that maximizes
this function, that is, X� 2 Dand8X 2 D W f .X/ � f .X�/. Factors such as
the presence of more points of local maximum bounds on the domain D (i.e., the
nonlinearity) can make the research very difficult, and the problem could be not
solvable in an acceptable timeframe. Under these computing conditions, we must
use algorithms of a heuristic type that, even solving the problem with high degrees
of uncertainties and without assuring convergence of the search on a solution,
potentially yields a solution in acceptable time. The solution may not be optimal
but it usually is acceptable, and it can be argued that a suboptimal solution to a
complex problem is better than no solution.

With this in mind, we now consider the distinction between “strong” and “weak”
methods. The former are oriented to the solution of a specific problem, on the basis
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of the knowledge of the particular domain and of the inner representation of the
system under examination. The good solutions obtained are hardly adaptable to
other tasks and provide the researcher with unsatisfying results. The weak methods
use less knowledge of the domain; they are not oriented to a specific target and
solve a wide range of problems. The evolutionary algorithms are algorithms based
on a heuristic research and therefore considered weak methods. However, the new
typology of weak evolutionary methods has recently introduced methods having
initially little knowledge of the domain but that during their evolution acquire a
greater awareness of the problem by implementing some characteristics of the strong
methods (sometimes referred to as “emerging intelligence”).

4.2 Genetic Algorithms

Between the end of the 1950s and the beginning of the 1960s, the researchers in
the field of evolutionary computation began taking interest in the natural systems,
convinced that they could build a model for the new algorithms of optimization. It
was expected that the mechanisms of evolution could be adapted in order to solve
some of the most interesting computational problems, those related to the search
for the solution among a large number of alternatives. For instance, to solve the
problem of protein design with the help of the computer, it is necessary to build
an algorithm that locates a protein with certain characteristics among a very high
number of possible sequences of amino acids. Similarly, we can search a group of
rules or equations that allow us to foresee the behavior of the financial markets.
Algorithms of this type have to be adaptive because they “interact” with a changing
environment.

From this point of view, the organisms can be considered as very good problem
solvers. As they are able to survive in their own environment, they develop behaviors
and skills that are the result of natural evolution. The biologic evolution is similar
to a method of research inside a very large number of solutions, constituted by
the set of all the genetic sequences, whose results, that is, the desired solutions,
are highly adapted organisms with a strong capacity for survival and reproduction
in a changeable environment that will transmit their genetic material to the future
generations. Essentially, the evolution of a species is thus ruled by two fundamental
processes: natural selection and sexual reproduction. The latter determines the
recombination of the genetic material of the parents generating an evolution much
more rapidly than the one that might be obtained if all the descendants contained
simply a copy of genes of one parent, modified randomly by a mutation. It is a
process with a high degree of parallelism: it does not work on a species at the time,
but it tries and changes millions of species in parallel.

In short, a genetic algorithm (GA) is an iterative algorithm that operates on
a population of individuals encoding the possible solutions of a given problem.
The individuals are evaluated through a function that measures the capacity to
solve the problem and identifies the most suitable individuals that can be used
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for reproduction. The new population evolves on the basis of random operators
motivated by sexual reproduction and mutation. The complete cycle is repeated
until, after reaching a given criteria, evolution ceases. The use of these algorithms
is essentially linked to the programming of the artificial intelligence in robotics,
to biocomputation, to the study of the evolution of parallel cell systems, and to
particular problems of management and systems of optimization in engineering.

The GAs thus possess these strong points:

• A distinct possibility of solving complex problems without possessing advanced
knowledge of the precise method of solution

• A capacity of automodification on the basis of the mutation of the problem
• A capacity of simulating some phenomena given a structure and operative

modalities similar to those of the biological evolution

The first attempts of designing instruments of optimization, the evolutionary
strategies of Rechemberg (Rechemberg 1973; Voight et al. 1996) and the evolu-
tionary planning of Fogel et al. (1966), did not produce interesting results such as
the tests of biology of the early 1960s because they only highlighted the operator
on the mutation rather than the reproductive process necessary for the generation of
new genes. In the mid-1960s, John Holland’s proposal marked meaningful progress
with genetic algorithms that underlined, for the first time, the importance of sexual
reproduction.

In some applications, the GAs found acceptable solutions in reasonable time. In
others, they might take days, months, or even years to find an acceptable solution.
But since they worked with populations of independent solutions, it was possible
to distribute the computational load on more computers, producing simultaneously
different hypothesis with the consequent reduction of the calculation time.

4.3 Natural Evolution and Artificial Evolution

4.3.1 Natural Evolution

The modalities of action of the Darwinian principle of the natural selection can be
summarized as follows:

Natural evolution acts on genetic material (the genotype) of an individual and not on his
physical characteristics, the phenotype. Each variation that promotes the adaptation of an
individual emerges from the genetic property, not from what the parents have learned in
their life.

The natural selection favors the reproduction of the individuals that improve
the adaptability to the changing environment and eliminates the individuals with
less reproductive potentials. From the genetic point of view, the natural selection
promotes those particular genetic combinations that give birth to a more efficient
organism, selecting the genotype, not the phenotype.
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The reproduction is the central core of the evolutionary process: the generational
variability of a species is determined by the genetic recombination and by the little
random mutations of the genetic code. The differences between individuals and
parents are established. The variability is an essential condition of evolution. Natural
evolution operates over entire populations through cyclic and generational processes
and is determined exclusively by the environment and by the interactions among
various organisms.

The terminology used draws inspiration directly from the studies on the natural
biological evolution.

The combination of the Darwinian hypothesis with genetics gave birth to
principles that constitute the basis of population genetics, that is, the explanation
of the evolution of populations at a genetic level.

A population is defined as a group of individuals of the same species operating
and propagating in the same geographical region. In biology, the chromosomes are
the filaments of DNA acting on the organism. Each chromosome is composed of
genes, each gene having been encoded with a particular protein that determines a
specific characteristic of the organism, such as the color of the eyes or the length
of a foot. The position of the genes inside the chromosome is called a locus,
and the different configurations of the proteins are defined as alleles. Most of the
organisms have more than a single chromosome; the set of chromosomes is called
the genome. The term genotype is used to mean the set of the genes contained
in the genome. The final result of evolution in the individual is defined as the
phenotype.

The sexual reproduction consists in the recombination (crossover) of the genetic
material of the parents that produces a new complete genetic material for the
progeny mutations on single parts of DNA may occur. The fitness is the suitability
of the individual, the probability that he lives enough to reproduce. The natural
selection promotes the individuals having the most suitable phenotypes as parents –
encoded from particular genotypes – for the next generation. It can be directional,
if it helps the increase of frequency of an extreme form of the character; stabilizing,
if it helps the individuals carrying an intermediate form of a certain character; and
diverging, if the extreme forms of a character are favored at the expense of the
intermediate ones.

The evolution is based on the following mechanisms:

• Mutation of allele: primary source of genetic variability.
• Genetic flux: variation of the frequencies of the alleles due to the migratory

movements of some individuals, with a consequent introduction or removal of
certain genotypes.

• Genetic drift: unpredictable variations in the frequency of the alleles if a
population has a small number of components. Actually, from a probabilistic
point of view, it is common that less probable events can occur in a small
population resulting in bigger effects.
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Fig. 4.1 Illustration of the
identification of a crossover
point and the resulting
recombination of
chromosomes

4.3.2 Artificial Evolution

In the terminology of the genetic algorithms, the chromosome encodes a candidate
solution for a given research problem. In Holland’s (1992) model with a binary
encoding, the chromosome identifies a string of bits, the genes are the bits of the
string, and the alleles, as property of the genes, can be 1 or 0. The crossover is
the recombination of the genetic material of two parents composed by a single
chromosome and the mutation in the random variation of the value of the alleles in
each locus of the chromosome. The phenotype is the meaning of the chromosome
that is the decoding of the candidate solution of the problem. In the common
applications, both the individuals at a single chromosome are used; thus, in terms of
genotype, chromosome and individual are equivalent. The GA randomly calculates
a point in a selected chromosome and takes a portion of it up to that calculated
point and appends it to another section of a different chromosome beginning at the
previously calculated random point. When the coding of the chromosome represents
directly a candidate solution, as in some applications where the chromosome is a
string of real numbers rather than the bits, the terms genotype and phenotype can
coincide, too.

4.3.3 The Holland Model

Stating that the genetic algorithms are adaptively complex procedures created for
a specific purpose in resolving some research activity requiring optimization is
equivalent to saying that they are procedures searching for the maximum point of a
certain function where the field is excessively complex to be rapidly maximized with
analytical techniques and when a procedure randomly exploring the space of the
solutions is inconceivable. The GA selects the best solutions and recombines them
with different modalities so that they evolve toward a maximum point (see Fig. 4.1).
The function to be maximized is called the fitness. The term has many variations: it
may mean “adaptation,” “adaptability,” “biologic success,” “competition,” etc.
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The original model by Holland is based on a population of n strings of bits with
a fixed length l (n, l 2 N), generated randomly. The set of the binary strings with a
length l has 2l elements and represents the space of the solutions of the problems.
Each string (genotype) is the binary coding of a candidate solution (phenotype). In
general, the function of fitness is given in the following form:

F D f .x1; x2; :::; xn/:

Through this function, at each genotype, gi of the initial population P(t D 0) is
associated with a value Fi D F(gi) which represents the capacity of the individual
to solve the given problem. In order to determine the value of adaptability, the
function of fitness receives a genotype in input; it decodes it into the correspondent
phenotype and tests it on the given problem. Once the phase of evaluation of
the individuals belonging to the initial population is concluded, a new population
P(t C 1) of new n candidate solutions, obtained applying the operators of selection,
crossover, mutation, and inversion, is generated.

4.3.3.1 Selection

Within a population, a probability of selection linked to the fitness is associated to
each individual. The selection of an operator generates a random number c 2 [1,0]
to determine which individual will be chosen. The chosen individual is copied in
the so-called mating pool. The mating pool is filled with n copies of the selected
individuals, at the time P(t D 0). The new population P(t C 1) is obtained through
the operator of crossover, mutation, and inversion. The operator of selection,
choosing the individuals that have the possibility of generating descendants with
a higher degree of fitness, plays the role of natural selection for the living organisms
in the context of the genetic algorithm.

4.3.3.2 Crossover

Within the mating pool, two individuals, called parents, and a point of cut called
point of crossover, are randomly chosen. The portions of genotype on the right of
the crossover point are exchanged generating two descendants, as in the picture:

The so-called operator of crossover point is applied n/2 times to obtain n
descendants on the basis of a given probability p. If the crossover is not applied,
the descendants coincide with the parents.

Another technique used is the two points’ crossover: the individuals are not
represented by linear strings, but by circles. A portion of circle of an individual
is substituted with the one of another, selecting two points of crossover.
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The uniform crossover states that for each couple of parents, a binary string of the
same length, called a mask, is generated. The descendant is generated by copying
the bit of the father or of the mother if the corresponding position of the mask is
respectively 0 or 1.

The crossover is a metaphor of the sexual reproduction where the genetic material
of the descendants is a combination of one of the parents.

4.3.3.3 Mutation

This operator is created to satisfy the rare case of variation in the elements of the
living creatures’ genome during the evolution. On the basis of a little probability p,
the value of the bits of each individual is changed (from 0 to 1 and vice versa).

As it happens in nature, the mutation adds a “noise” or randomness to the whole
procedure in order to assure that starting from a population generated randomly
there are no points within the solution space that is not explored.

4.3.3.4 Inversion

On the basis of a fixed probability p, two points in the string are chosen. The string
encodes the individual and inverts the bits between two positions.

In a large initial population, it is difficult to estimate which probability values of
the crossover and mutation will give the best performances. Experience shows that
there is a strong dependence on the type of problem. Generally, the probability of
crossover is between 60 and 80 %, while in the case of mutation it fluctuates between
0.1 and 1.0 %. If the probabilities for selection of an individual are proportional to
its fitness (if f is the value of fitness of a solution and F is the sum of the values
of fitness of all the population, the probability might be f /F), it is probable that,
after the crossover, the best individuals are recombined with the consequent loss of
the best chromosome. In order to avoid this and to speed up the convergence times,
the best individual of a generation may be cloned. Through this technique, called
elitism, which retains a high number of populations, it is possible to clone more
individuals in the next generation, continuing with the others in the classical way.
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4.3.4 Types of Encoding of Artificial Genome

In general, it is possible to encode the solutions of a problem with binary strings.
In other cases, representations of a higher level are used, and operators of crossover
and mutation are defined to be able to operate on such representations. Besides the
binary encoding, it is possible to use another type that is based on real numbers.

The binary encoding is important not only from the historical point of view but
also because the more relevant theoretical results have been obtained with models
based on it. The structure of the data is a vector of bits with a length equal to
l, which possesses a space of 2l possible solutions. We need to define a function
that encodes the genotype, or parts of it, with one or more of the real values. The
most used operator of crossover is, in this case, the crossover n points (n points
of cut).

The encoding based on floating point numbers is the most natural for problems
of optimization of real parameters. The structure of the data is a vector of length
l in which each element is a real number. Each candidate solution is a point in the
research space, and it is not necessary to foresee decoding functions of the genotype.
The operator in crossover can be the classic one point of cut, but for the mutation
operator, the elements of another vector are added in order to alter the genes of the
individuals.

4.4 Other Evolutionary Algorithms

4.4.1 Evolutionary Programming

Evolutionary programming (EP) is a stochastic strategy of optimization similar
to the GAs, based on the definition of population, fitness, and the selection of
the “best.” But while these try mainly to simulate the operators of crossover and
mutation as it happens in nature, evolutionary programming concentrates on the
connection existing between parents and offspring, a modification of the parent.
The basic method consists of three steps: to randomly choose an initial population
(the greater the number of individuals, the faster the convergence to a solution);
each individual in the previous population is copied to a new population and also
permitted to undergo some probability generated mutation, at which time it is
referred to as a son; the degree of fitness of each individual is calculated, and through
a tournament with stochastic selection, a set of N possible solutions are chosen to
be the next population.

In particular, each individual in the population is an FSM (finite state machine)
formed by a series of inner states belonging to a finite alphabet. The FSM receives
as input a series of symbols and returns as output a series of states on the basis of
the current states and input. The objective is the forecast of the next configuration of
the system, not through the operator of crossover (as in the GAs) but entrusting
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exclusively to the mutation: it alters the initial state, modifies the transition, or
changes an inner state. The basic characteristic of this type of algorithm is that the
offspring have behavior similar to that of their parents.

4.4.2 Evolutionary Strategies

Evolutionary strategies are techniques similar to the previous one but developed
originally for problems concerning civil and structural engineering. The principal
difference consists of the selection of individuals in evolutionary programming:
they are selected for mutation with a certain probability that is proportional to the
fitness, as in the case of the GAs, while in this case, the worst individuals are
deterministically rejected. The method of optimization is based on the choice of
a strategy that is then applied to a population. The two main strategies are known
as plus strategy (m C l) and comma strategy (m,l). In the first case, the parents can
participate in the selection of the next generation, while in the second case, it is
only possible to select offspring when the parents die. m represents the number of
individuals in the population, while l is the number of offspring conceived for each
generation. An individual in the population consists of a genotype that represents a
point in the solution space (i.e., the space of all possible solutions). To each point, it
is possible to associate:

• Object variables, xi, on which the operators of crossover and mutation will be
applied until an optimal solution of the problem is reached.

• Strategy variables, Si, that determine the “mutability” of xi. They represent the
standard deviation of a Gaussian distribution (0,Si). With an expectation value
equal to zero, the parents will produce, on average, offspring that are similar
to them. This strategy works because sooner or later the individual, possessing
a good value as determined by the objective function, will be favored, and the
recombination that occurs among them should yield better offspring. The value
of the objective function f (x) represents the phenotype (fitness) that we will take
into consideration in the selection. In the Plus strategy, the better m individuals
over (m C l) will survive and will become parents in the next generation, while
in the Comma strategy, the selection happens only among the offspring.

4.4.3 Classifying Systems

Classifying systems are operators working in an environment from which they
receive input that classify according to rules which permit them to generate
instructional output. The instructions belong to the type if : : : then. For example,
the problem might be the optimization of a productive process done by machinery
controlled by a computer; this machinery receives a series of inputs from its sensors,
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like the temperature of the machinery, the external pressure, or the type of material,
and it acts according to a set of starting rules. Such instructions are not fixed,
however, but if they are encoded in a binary form, they evolve like populations
of GAs and their fitness is the performance of the machinery.

4.4.4 Genetic Programming

The technique of genetic programming is similar to that of genetic algorithms, but
in this case, the population is not constituted by bit strings but rather by programs
that evolve, combine, reproduce, or change when they are executed in order to create
other programs that constitute better solutions of a specific problem. These programs
are encoded with a tree structure where the inner nodes are functions and the leaves
are the terminal symbols of the program. For example, the expression IF (TIME>10)
THEN return 1C2C3 ELSE return 1C2C4 can be rewritten asC(1 2 (IF>TIME
10)3 4) (language LISP) and transferred in a tree as in the figure:

The space of research is constituted by all the programs composed by the terminals
and by the functions defined for a specific problem.

Genetic programming has a degree of complexity greater than that of genetic
algorithms because programming requires the selection of many more parameters,
such as the generation of the initial population, the set of the basic functions and
terminals, the type of selection, the dimension of the population and the maximum
number of generations, and the criteria of termination.

The crossover operator is the dragging force of the algorithm; we randomly
take two subtrees from selected individuals on the basis of their fitness, and we
recombine them giving birth to two offspring trees, with parameters establishing
limits on the maximum dimension of the population’s tree. Other operators, such
as the mutation, permutation, editing, encapsulating, and decimation, are used in
particular cases. In general, the operators determine the syntactic accuracy of the
generated trees, but not the semantic correctness.

To compare the genetic algorithm with genetic programming, the genetic
algorithms optimize a solution defined and parameterized by the user, and thus the
optimization works on the representation of the parameters of a function whose
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structure is known, but genetic programming works at a higher level, as the user
defines the elements of a grammar (operators and terminal symbols) used to generate
functions that are required to evolve. The optimization of the fitness consists not
only in the manipulation of the code of the parameters but, above all, in the
manipulation of the functions.

The extension of the search space (the space of all the functions that satisfy the
grammar defined by the user) and the reduction in the efficiency of the mapping in
the memory of the representation used permit the genetic programming to require
a higher computational load and a high occupation of memory. It results in a lower
usage of genetic algorithms and the necessity to realize a parallel implementation of
these algorithms on environments of a distributed type.

4.4.5 Comparison with Other Techniques

As in the GAs, there are other techniques of general approach that operate from
an initial start by a fitness function that has to be maximized. Some of them are
applicable only to limited domains, such as the dynamic programming, where the
fitness function is the sum of the fitness functions calculated in each phase of the
problem and there is no interaction among the various phases.

In the method of gradient, the information on the gradient of the function is used
to lead the direction of the research. However, the function must be continuous;
otherwise, the derivative cannot be calculated. In general, these methods are called
hill climbing, and in case of functions with only one peak, or less for multimodal
functions, it is not sure that the first hill climbed is the one with the highest peak.
In the following figure, there is an example of the problem; starting from a random
point X, with uphill movements, the maximum B point is a local maximum, but A
and C are not identified.

In the iterative research, the method of the gradient is combined with random
research, where the points of the research space are randomly chosen. Once the
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peak is found, the climb starts again from another point randomly chosen. The
technique has the advantage of being simple and gives good results with functions
that obviously do not have many local maxima. However, since each test is isolated,
a total traverse of the form of the domain is not obtained, and while the random
search continues, the same tests led both in regions where high values of fitness
are not found and in regions with a low value of fitness continue to be allocated. A
genetic algorithm, instead, operates starting from an initial random population and
carries out attempts in regions with a higher fitness. It might be a disadvantage if the
maximum is found in a little region surrounded by regions with a low fitness. But
this type of function is hardly optimized with any method.

The technique of the simulated annealing is a modified version of hill climbing.
From a random point, a random movement is initiated; if this yields a higher point,
it is accepted with a probability p(t), where t is the time. At the beginning, the
value of p(t) is close to 1 but it gradually tends to zero. If at the beginning each
movement is accepted, the probability of accepting a negative movement decreases
with the passage of time. Sometimes, the negative movements are needed to avoid
local maxima, but if there are too many, they may deviate from the maximum. In
general, this technique works only with one candidate solution at a time; it does
not build a total figure of the research space and the information of the previous
movements, used to lead us toward the solution, and is not saved.

4.5 The Genetic Doping Evolutionary Algorithm

In the genetic algorithms (GAs), the principle of reproduction assumes an evolu-
tionary criterion external to the system, that each generation identifies the best and
the worst individuals.

Such criteria are reminiscent of the technique of exams in school, rather than an
evolutionary principle intrinsic to the natural evolution. Similarly, the percentages
of crossover and mutations foreseen in every generation cannot be two fixed
parameters, established externally by the experimentalist; it is preferable to figure
them out as adaptive parameters linked to the health of the whole “population” in
each generation.

Besides, in the traditional GA, the crossovers have fixed rules, typical of
the overpopulated and advanced societies (monogamies, prohibition of incest,
etc.). It would be proper that a population in a phase of “cultural starting” had
more flexible sexual rules and proportioned to its rapid expansion and genetic
differentiation.

Just like the traditional genetic algorithms, GenD is able to find solutions
to problems of optimization, conceiving the possible solutions as individuals of
restricted populations, letting the population evolve generation after generation
on the basis of specific genetic operators and a selection based on fitness, the
more suitable individuals, and to the consequent disappearance of the worst ones.
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After a certain number of generations, the resulting population includes a good
approximation of the solution to the problem of optimization. Unlike the traditional
genetic algorithms, the evolution of GenD is due to its inner instability which
generates a continuous evolution and a natural increase of the biodiversity, thanks
to specific characteristics such as the conceptualization of the population as a
structured organization of individuals (tribes).

4.6 Theory

In order to increase the speed and the quality of the solutions that have to be
optimized, the algorithm GenD makes the evolutionary process of the artificial pop-
ulations more natural and less centered on the culture of the individual liberalism.

In the first phase, the algorithm calculates the fitness score of each individual
on the basis of the function we want to optimize. The value of the average
health of the whole population is not a simple index. In GenD, the average health
constitutes firstly the criteria of vulnerability and lastly those of connectivity of
all the individuals of the population. It results in the basic unit of the algorithm
not being the individual, unlike the classical GAs and many other evolutionary
algorithms.

The reference unit is the species, acting on the evolution of the individuals in
terms of the average health for each generation.

The feedback loop among the individuals and the average health of the pop-
ulation (species) allows the GenD to transform, in evolutionary terms, the whole
population from a sparse set of individuals (like the traditional models) into a
dynamic structure of subjects.

4.7 The Criteria of Vulnerability

All the individuals whose health is less than or equal to the average health of the
population are registered onto a list of vulnerability. They are not eliminated and
may continue participating in the process but are flagged.

The number of vulnerable individuals automatically establishes the maximum
number of crossovers allowed in that generation. Thus, the number of possible
crossovers in each generation is variable and is a function of the average health
of the population. The whole population has this possibility. The maximum number
of random calls to the coupling is calculated so that all the individuals flagged as
vulnerable might, theoretically, be substituted by new individuals. When the type of
crossover operator used generates only a new individual, this number corresponds
to the number of vulnerable individuals; otherwise, it is equal to its half when the
type of the crossover operator used generates two individuals.
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4.8 Criteria of Connectivity

In order to let a coupling generate offspring, at least one of the proposed individuals
must have a fitness whose value is close to the average fitness of the whole
population (average˙ k, where 2k defines the width of the coupling band).

Alternatively, GenD may adopt other criteria of connectivity. Each couple of
individuals may generate offspring if the fitness of at least one of the two is
greater than the average fitness. The individual that satisfies the condition is named
“candidate qualified for the crossover.”

The effects of these two criteria are similar; the normal distribution of the fitness
of each individual with respect of the average fitness operates a band of dynamic
crossover in each generation.

The algorithm GenD, thus, assumes that the individuals “sui generis,” that is to
say, too weak or too healthy, tend not to marry among each other. In practice, the
crossovers are not suitable for the best or the worst. It is the “most normal” subjects
that tend to crossover. Furthermore, there are no restrictions on crossovers. Each
individual may marry whomever he or she chooses.

The offspring of each crossover occupies the places of the subjects marked in the
list of vulnerability. It may happen, therefore, that a weak individual may continue
existing through his own offspring.

4.9 The Criteria of the Last Chance

The number of possible crossovers is a function of the number of subjects marked
as vulnerable; the latter is a function of the average health of the population. The
criteria of coupling, however, urge the system to retain a number of crossovers not
necessarily giving birth to offspring. The difference between possible crossovers and
realized crossovers defines the number of mutations. That is, the subjects present in
the list of vulnerability that were not substituted by the offspring generated by the
realized crossovers are changed. A last chance to reenter the evolutionary game is
granted to this variable number of weak subjects through a mutation.

4.10 The New Crossover

The criteria of coupling allows crossovers only if at least one of the individuals of
the couple is a qualified candidate for the crossover, that is, if the parent enjoys of
level of health close to the average health of the population (first type) or greater
(second type). If we indicate with Fi the health of the ith individual, F the average
health of the population, and �2 the variance of the health of the population, then Fi

is a candidate qualified for marriage of the first type if:

�
F � k

� � Fi � �
F C k

�
:

k D 1 � �2
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He is a candidate of the second type if Fi > F:

However, in GenD, the coupling does not consist in the simple interchange of
genes between husband and wife around a crossover point; that is,

The coupling of genes between parents is carried out in a selective way, in two
manners:

1. A logic crossover: when the repetitions are allowed
2. An opportunistic crossover: when the repetitions are not allowed

4.10.1 The Logic Crossover

The logic crossover comprises four cases:

1. The health of the father and mother is greater than the average health of
the whole population:

�
FF > F

�
and

�
FM > F

�
:

2. The health of both parents is lower than the average health of the whole
population:

�
FF < F

�
and

�
FM < F

�
:

3. and 4. The health of one of the parents is lower than the average, and the health
of the other is greater than the average health of the whole population:

�
FF > F

�
and

�
FM < F

�
or

�
FF < F

�
and

�
FM > F

�
:

In the first case, the generation of two offspring (suppose for simplicity the case
with two offspring and only one crossover point) happens in the traditional way:

�
FF > F

�
and

�
FM > F

� W A0 C A00
B 0 C B 00
„ ƒ‚ …

parents

) A0 C B 00
B 0 C A00
„ ƒ‚ …

children

:
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In the second case, the generation of two offspring happens through the negation
(�) of the parents’ genes:

�
FF < F

�
and

�
FM < F

� W A0 C A00
B 0 C B 00
„ ƒ‚ …

parents

) � A0C � B 00
� B 0C � A00
„ ƒ‚ …

children

:

In the third and fourth case, only the parent whose health is greater than the
average health transmits his own genes, while the genes of the other are denied:

�
FF > F

�
and

�
FM < F

� W A0 C A00
B 0 C B 00
„ ƒ‚ …

parents

) A0C � B 00
� B 0 C A00
„ ƒ‚ …

children

or

�
FF < F

�
and

�
FM > F

� W A0 C A00
B 0 C B 00
„ ƒ‚ …

parents

) � A0 C B 00
B 0C � A00
„ ƒ‚ …

children

The concept of genetic negation in GenD does not correspond to the cancellation
of the weaker parent’s genes and therefore to their random replacement. Rather, it
deals with a genetic substitution carried out using the criteria of a “moving window”
running from right or left.

If, for example, a certain gene shows only two alternatives g[0,1], then the moving
window has the following form:

In the same way, we will proceed with a gene that presents four possible states;
g[A,B,C,D]:
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The negation criterion through the moving window is also applicable when the
various possible states of a gene are not ordered among them. This method, in fact,
is based on the systematic exploration of the phase space and on keeping the same
systematic criteria.

4.10.2 The Opportunistic Crossover

This operator acts when the repetitions are not allowed. The parents are overlapped
with respect to a random crossover point. After selecting the most effective gene
of the parent, the offspring are generated s. This operation is repeated until all the
genes of the offspring are completed.

This rule may be considered as a variant of the Greedy algorithm. In short, the
number of marriages and mutations in GenD are not externally fixed parameters, but
adaptive variables defining themselves internally, starting from the global trends of
the population system.

Differences between traditional GA and GenD

Traditional GAs GenD

Assesses individual health Assesses individual health
Creates a wheel of probabilities Calculates the average

Calculates the variance
Creates a band around the average

Creates a new population based on the wheel
of probabilities criterion

Creates a vulnerability list based on the average
criterion

Undertakes a fixed % of marriages according
to the wheel of probabilities – (the best
marry)

Undertakes a variable % of marriages according
to the vulnerability list (number) and the
average (quality) – (“normal” individuals
marry)

Each marriage has N crossover and
hybridizes parents’ genes (produces
possible improvements)

Each marriage has N crossover and consists of a
search for possible states between parents
and the population (produces possible
improvements and increases biodiversity)

The percentage of mutations is fixed and
serves to produce biodiversity

The percentage of mutations is variable,
depending on marriages not undertaken, and
serves to offer a final opportunity only to
some of the most vulnerable individuals

Biodiversity is provided on the basis of errors
(mutations) and decreases as the average
rises

Biodiversity is generated by marriages and rises
as the average goes up

The system tends toward stability The system becomes more unstable as it
approaches stability

There is no evolution of evolution There is evolution of evolution
Worst and average individuals tend not to

reproduce
Worst and best individuals tend not to reproduce
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Chapter 5
Artificial Adaptive Systems in Data
Visualization: Proactive Data

Massimo Buscema

5.1 Introduction

An artificial neural network (ANN) is a modeling mechanism particularly suited to
solving nonlinear problems and to discovering the approximate rules, which govern
the optimal solution to these problems (Hopfield 1982; Rumelhart and McClelland
1986a, b; McClelland and Rumelhart 1988; Anderson and Rosenfeld 1988; Werbos
1994; Arbib 1995; Buscema 1997, 1998a, 2002).

In technical terms, we can say that a system is not complex when the function
representing it is linear, that is, when these two equations apply:

f .cx/ D cf .x/ and f .x1 C x2/ D f .x1/ C f .x2/:

A nonlinear system violates one or both of these conditions.
ANNs are data processing mechanisms which do not follow specific rules in order

to process data but which use the data they receive to discover the rules governing
them. This makes ANNs particularly useful in solving a problem in which we
possess a dataset but have no information or insight as to how those data are related
to one another (Fig. 5.1) (Chauvin and Rumelhart 1995).

Compared with other analysis techniques, ANNs are useful when one has a
problem with a mass of data but no good theory to explain the interactions and
relationships among the data.

ANNs dynamically discover fuzzy rules which connect various sets of data. This
means that if they receive certain data in one phase, they focus on certain rules;
but if they later receive new and different data, ANNs will adjust their rules in
accordance, integrating the old data with the new, and they do this without any
external instruction.
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Fig. 5.1 Schematically
comparing ANN with other
analysis techniques

The continuous updating of data under their management creates a dynamic
bank whose rules are automatically refined by the ANNs as the problem under
investigation evolves through time.

This passage from an early categorization to a later, finer, and more complex one
is managed by the ANN alone, using new cases as data in order to learn about the
new category.

Once an ANN has been trained with suitable data to find the hidden rules
governing a certain phenomenon, it is then able to correctly generalize new, dirty,
incomplete, or future data (Churchland and Churchland 1990; Churchland and
Sejnowski 1992).

5.2 Classification: Discovering the Hidden Information in the
Search Space

Classifying information into categories and subcategories permits police investi-
gators and analysts to identify the characteristics of criminals, victims, and crime
trends. Classification systems thus help the investigator and analyst to understand
how criminals operate, where they operate, and the steps they take to avoid detec-
tion. Intelligent classification is a fundamental task for police investigations. The
best decisions and the more appropriate actions depend on the quality of some kind
of previous classification: suspect persons are a class of people presenting specific
features (aspect, behavior, etc.) according to precedent professional experiences.

Police investigators involved in the examination of crime scenes or carrying out
risk assessments rely heavily on classification systems for some details of the crime
scene. Using the benefit of previous experiences, anticrime units classify places
and persons with different grades of vulnerability and risk with respect to terrorist
attacks. In short, police effectiveness is a reflection of the dynamic classification
ability of police itself. One might say that investigators investigate in a manner
similar to the way in which they classify. But to correctly classify is a nontrivial task.

A good classifier is a person with a great deal of experience and expertise in a
specific field. Experience is what one has learned from the past; expertise is the way
one has learned to learn from his experience. Using experience and expertise, a good
classifier is able to understand how a new fact is connected with precedent facts.
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But the implicit knowledge and meta-knowledge of a good classifier are limited
by human brain constraints: storage limitations, cognitive expectations, cultural
habits, age, personal problems, computational capability (no more than seven
variables at the time), ideology, emotions, cognitive dissonance (I see only what
I believe), formal education, and the like.

For these reasons alone, it is argued that every police department should construct
an artificial intelligent classifier (AIC), which is a computational device able to
learn from various experiences and capable of properly classifying new facts using
a meta-learning capability that is characteristic of an AIC (Kohonen et al. 1988;
Schalkoff 1992; Pao 1990; Bishop 1995; Ripley 1996; Kuncheva 2004; Duda et al.
2001; Witten and Frank 2005; Buscema et al. 2010). An AIC would work in
coordination with police experts as a second, impartial examiner of events and
provide a second opinion on the interpretation of the facts.

5.2.1 An Example of Intelligent Classification

The following example is used to illustrate that it is possible to build an AIC using
a small dataset. The Glass Identification Database (GIU) comprises 163 records.1

Each record is defined by nine independent variables:

1. RI: refractive index
2. Na: sodium (unit measurement: weight percent in corresponding oxide, as are

attributes 3–9)
3. Mg: magnesium
4. Al: aluminum
5. Si: silicon
6. K: potassium
7. Ca: calcium
8. Ba: barium
9. Fe: iron

1Title: Glass identification database.
Sources:
(a) Creator: B. German, Central Research Establishment, Home Office Forensic Science

Service, Aldermaston, Reading, Berkshire RG7 4PN.
(b) Donor: Vina Spiehler, Ph.D., DABFT, Diagnostic Products Corporation, (213) 776–0180

(ext 3014).
(c) Date: September, 1987. Past Usage: Rule Induction in Forensic Science, Ian W. Evett

and Ernest J. Spiehler, Central Research Establishment, Home Office Forensic Science Service,
Aldermaston, Reading, Berkshire RG7 4PN. Unknown technical note number. General results:
nearest neighbor held its own with respect to the rule-based system. Relevant information: Vina
conducted a comparison test of her rule-based system, Beagle, the nearest-neighbor algorithm, and
discriminant analysis. Beagle is a product available through VRS Consulting, Inc.; 4676 Admiralty
Way, Suite 206; Marina Del Ray, CA 90292 (213) 827–7890 and FAX: 3189.
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Each record is a window glass (building windows and vehicle windows) and can
belong to one or two possible classes:

• Class A: float-processed (87 records)
• Class B: non-float-processed (76 records)

The study of the classification of types of glass was motivated by criminological
investigation. At the scene of the crime, the glass left can be used as evidence, if it
is correctly identified. Below is shown the complete dataset (Table 5.1):

The purpose of the application is to construct an intelligent classifier able to
recognize in a blind way if a glass shard belongs to the float-processed class or
to the non-float-processed class, using only the nine independent variables listed
before.

In this test, we have compared four different classifiers:

(a) A linear discriminant analysis (LDA)
(b) A nearest-neighbor algorithm (NN)
(c) An evolutionary algorithm (Beagle)
(d) An artificial adaptive system (supervised ANNs)2

In order to validate the four classifiers in blind way, two relatively easy classifier
algorithms, the Live One Out protocol and a harder K-fold cross-validation test
(with K D 2), are used.

Here are the results in terms of average accuracy, sensitivity, and specificity
(Table 5.2):

Upon studying the outputs, the usual comment on them is the recognition that not
every linear and nonlinear classifier works in the same way. Performances depend on
the kind of problem, the kind of data in possession, the preprocessing tools available
through which we transform the dataset, and on the quality of the algorithm we
apply to the classification task.

Data classification is fundamental, but intelligent classification is better. These
two qualities are not mutually exclusive.

5.3 Prediction: Theory and Need

Predictive ability is the necessary prerequisite for crime prevention. No crime
prevention is possible without a robust capability to predict what, where, and when
a specific kind of event might happen.

2The results from LDA, NN, and Beagle are taken from literature (see note 1). The Supervised
ANNs is an artificial organism created at Semeion Research Center for Sciences of Communica-
tion, via Sersale 117–119, 00128, Rome, Italy, (see www.semeion.it).

www.semeion.it
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Table 5.1 The glass identification database

Independent
variables

Dependent
variable

1. RI 2. Na 3. Mg 4. Al 5. Si 6. K 7. Ca 8. Ba 9. Fe Float Nonfloat

1.5174 13.27 3.62 1.24 73.08 0.55 8.07 0 0 1 0
1.5174 13.3 3.6 1.14 73.09 0.58 8.17 0 0 1 0
1.5176 13.15 3.61 1.05 73.24 0.57 8.24 0 0 1 0
1.5157 12.72 3.46 1.56 73.2 0.67 8.09 0 0.24 1 0
1.5176 12.8 3.66 1.27 73.01 0.6 8.56 0 0 1 0
1.5159 12.88 3.43 1.4 73.28 0.69 8.05 0 0.24 1 0
1.5175 12.86 3.56 1.27 73.21 0.54 8.38 0 0.17 1 0
1.5176 12.61 3.59 1.31 73.29 0.58 8.5 0 0 1 0
1.5176 12.81 3.54 1.23 73.24 0.58 8.39 0 0 1 0
1.5173 13.02 3.54 1.69 72.73 0.54 8.44 0 0.07 1 0
1.5197 14.77 3.75 0.29 72.02 0.03 9 0 0 1 0
1.5172 13.38 3.5 1.15 72.85 0.5 8.43 0 0 1 0
1.5179 13.21 3.48 1.41 72.64 0.59 8.43 0 0 1 0
1.5178 12.85 3.48 1.23 72.97 0.61 8.56 0.09 0.22 1 0
1.5175 12.57 3.47 1.38 73.39 0.6 8.55 0 0.06 1 0
1.5178 12.69 3.54 1.34 72.95 0.57 8.75 0 0 1 0
1.5191 13.89 3.53 1.32 71.81 0.51 8.78 0.11 0 1 0
1.5221 14.21 3.82 0.47 71.77 0.11 9.57 0 0 1 0
1.5179 12.79 3.5 1.12 73.03 0.64 8.77 0 0 1 0
1.5179 12.73 3.43 1.19 72.95 0.62 8.76 0 0.3 1 0
1.519 13.49 3.48 1.35 71.95 0.55 9 0 0 1 0
1.5267 13.99 3.7 0.71 71.57 0.02 9.82 0 0.1 1 0
1.5193 13.2 3.33 1.28 72.36 0.6 9.14 0 0.11 1 0
1.5184 13.14 2.84 1.28 72.85 0.55 9.07 0 0 1 0
1.5178 13.21 2.81 1.29 72.98 0.51 9.02 0 0.09 1 0
1.5182 12.87 3.48 1.29 72.95 0.6 8.43 0 0 1 0
1.5191 13.6 3.62 1.11 72.64 0.14 8.76 0 0 1 0
1.5223 14.17 3.81 0.78 71.35 0 9.69 0 0 1 0
1.521 13.69 3.59 1.12 71.96 0.09 9.4 0 0 1 0
1.5215 13.05 3.65 0.87 72.22 0.19 9.85 0 0.17 1 0
1.5215 13.05 3.65 0.87 72.32 0.19 9.85 0 0.17 1 0
1.523 13.31 3.58 0.82 71.99 0.12 10.17 0 0.03 1 0
1.516 13.02 3.56 1.54 73.11 0.72 7.9 0 0 0 1
1.5165 13.44 3.61 1.54 72.39 0.66 8.03 0 0 0 1
1.5163 13 3.58 1.54 72.83 0.61 8.04 0 0 0 1
1.5159 12.86 3.52 2.12 72.66 0.69 7.97 0 0 0 1
1.5159 13.25 3.45 1.43 73.17 0.61 7.86 0 0 0 1
1.5165 13.41 3.55 1.25 72.81 0.68 8.1 0 0 0 1
1.5159 13.09 3.52 1.55 72.87 0.68 8.05 0 0.09 0 1
1.5141 14.25 3.09 2.08 72.28 1.1 7.08 0 0 0 1
1.5163 13.36 3.58 1.49 72.72 0.45 8.21 0 0 0 1
1.5164 12.55 3.48 1.87 73.23 0.63 8.08 0 0.09 0 1
1.516 12.9 3.44 1.45 73.06 0.44 8.27 0 0 0 1

(continued)
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Table 5.1 (continued)

Independent
variables

Dependent
variable

1. RI 2. Na 3. Mg 4. Al 5. Si 6. K 7. Ca 8. Ba 9. Fe Float Nonfloat

1.5163 12.71 3.33 1.49 73.28 0.67 8.24 0 0 0 1
1.5184 13.02 3.62 1.06 72.34 0.64 9.13 0 0.15 0 1
1.5182 12.62 2.76 0.83 73.81 0.35 9.42 0 0.2 0 1
1.5273 13.8 3.15 0.66 70.57 0.08 11.64 0 0 0 1
1.5241 13.83 2.9 1.17 71.15 0.08 10.79 0 0 0 1
1.5313 10.73 0 2.1 69.81 0.58 13.3 3.15 0.28 0 1
1.5222 14.43 0 1 72.67 0.1 11.52 0 0.08 0 1
1.5266 11.23 0 0.77 73.21 0 14.68 0 0 0 1
1.5185 13.1 3.97 1.19 72.44 0.6 8.43 0 0 0 1
1.5185 13.41 3.89 1.33 72.38 0.51 8.28 0 0 0 1
1.5171 13.72 3.68 1.81 72.06 0.64 7.88 0 0 0 1
1.5166 12.93 3.54 1.62 72.96 0.64 8.03 0 0.21 0 1
1.5171 13.48 3.48 1.71 72.52 0.62 7.99 0 0 0 1
1.5218 13.2 3.68 1.15 72.75 0.54 8.52 0 0 0 1
1.5208 13.78 2.28 1.43 71.99 0.49 9.85 0 0.17 0 1
1.5218 13.75 1.01 1.36 72.19 0.33 11.14 0 0 0 1
1.518 13.71 3.93 1.54 71.81 0.54 8.21 0 0.15 0 1
1.5179 13.19 3.9 1.3 72.33 0.55 8.44 0 0.28 0 1
1.5181 13 3.8 1.08 73.07 0.56 8.38 0 0.12 0 1
1.5171 12.89 3.62 1.57 72.96 0.61 8.11 0 0 0 1
1.5167 12.87 3.56 1.64 73.14 0.65 7.99 0 0 0 1
1.5169 13.33 3.54 1.61 72.54 0.68 8.11 0 0 0 1
1.5185 13.2 3.63 1.07 72.83 0.57 8.41 0.09 0.17 0 1
1.5166 12.85 3.51 1.44 73.01 0.68 8.23 0.06 0.25 0 1
1.5171 13 3.47 1.79 72.72 0.66 8.18 0 0 0 1
1.5166 12.99 3.18 1.23 72.97 0.58 8.81 0 0.24 0 4
1.5184 12.85 3.67 1.24 72.57 0.62 8.68 0 0.35 0 1
1.5161 13.33 3.53 1.34 72.67 0.56 8.33 0 0 1 0
1.5166 13.14 3.45 1.76 72.48 0.6 8.38 0 0.17 1 0
1.5178 13.64 3.65 0.65 73 0.06 8.93 0 0 1 0
1.5169 12.86 3.58 1.31 72.61 0.61 8.79 0 0 1 0
1.5165 13.04 3.4 1.26 73.01 0.52 8.58 0 0 1 0
1.5165 13.41 3.39 1.28 72.64 0.52 8.65 0 0 1 0
1.5212 14.03 3.76 0.58 71.79 0.11 9.65 0 0 1 0
1.5178 13.53 3.41 1.52 72.04 0.58 8.79 0 0 1 0
1.518 13.5 3.36 1.63 71.94 0.57 8.81 0 0.09 1 0
1.5183 13.33 3.34 1.54 72.14 0.56 8.99 0 0 1 0
1.5193 13.64 3.54 0.75 72.65 0.16 8.89 0.15 0.24 1 0
1.5221 14.19 3.78 0.91 71.36 0.23 9.14 0 0.37 1 0
1.521 13.64 4.49 1.1 71.78 0.06 8.75 0 0 1 0
1.5176 13.89 3.6 1.36 72.73 0.48 7.83 0 0 1 0
1.5162 13.53 3.55 1.54 72.99 0.39 7.78 0 0 1 0
1.5177 13.21 3.69 1.29 72.61 0.57 8.22 0 0 1 0

(continued)
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Table 5.1 (continued)

Independent
variables

Dependent
variable

1. RI 2. Na 3. Mg 4. Al 5. Si 6. K 7. Ca 8. Ba 9. Fe Float Nonfloat

1.516 12.79 3.61 1.62 72.97 0.64 8.07 0 0.26 1 0
1.5192 14.04 3.58 1.37 72.08 0.56 8.3 0 0 1 0
1.5175 13 3.6 1.36 72.99 0.57 8.4 0 0.11 1 0
1.5178 12.68 3.67 1.16 73.11 0.61 8.7 0 0 1 0
1.522 14.36 3.85 0.89 71.36 0.15 9.15 0 0 1 0
1.5191 13.9 3.73 1.18 72.12 0.06 8.89 0 0 1 0
1.5175 12.82 3.55 1.49 72.75 0.54 8.52 0 0.19 1 0
1.5174 12.78 3.62 1.29 72.79 0.59 8.7 0 0 1 0
1.5175 12.81 3.57 1.35 73.02 0.62 8.59 0 0 1 0
1.5176 12.98 3.54 1.21 73 0.65 8.53 0 0 1 0
1.5172 12.87 3.48 1.33 73.01 0.56 8.43 0 0 1 0
1.5177 12.56 3.52 1.43 73.15 0.57 8.54 0 0 1 0
1.5178 13.08 3.49 1.28 72.86 0.6 8.49 0 0 1 0
1.5177 12.65 3.56 1.3 73.08 0.61 8.69 0 0.14 1 0
1.5175 12.84 3.5 1.14 73.27 0.56 8.55 0 0 1 0
1.5157 13.29 3.45 1.21 72.74 0.56 8.57 0 0 1 0
1.518 12.74 3.48 1.35 72.96 0.64 8.68 0 0 1 0
1.5221 14.21 3.82 0.47 71.77 0.11 9.57 0 0 1 0
1.5175 12.71 3.42 1.2 73.2 0.59 8.64 0 0 1 0
1.5178 13.21 3.39 1.33 72.76 0.59 8.59 0 0 1 0
1.5221 13.73 3.84 0.72 71.76 0.17 9.74 0 0 1 0
1.5187 13.19 3.37 1.18 72.72 0.57 8.83 0 0.16 1 0
1.5222 13.21 3.77 0.79 71.99 0.13 10.02 0 0 1 0
1.519 13.58 3.35 1.23 72.08 0.59 8.91 0 0 1 0
1.5232 13.72 3.72 0.51 71.75 0.09 10.06 0 0.16 1 0
1.5181 13.43 2.87 1.19 72.84 0.55 9.03 0 0 1 0
1.5177 12.45 2.71 1.29 73.7 0.56 9.06 0 0.24 1 0
1.5122 12.99 3.47 1.12 72.98 0.62 8.35 0 0.31 1 0
1.5175 13.48 3.74 1.17 72.99 0.59 8.03 0 0 1 0
1.5175 13.39 3.66 1.19 72.79 0.57 8.27 0 0.11 1 0
1.5198 13.81 3.58 1.32 71.72 0.12 8.67 0.69 0 1 0
1.5217 13.51 3.86 0.88 71.79 0.23 9.54 0 0.11 1 0
1.5217 13.48 3.74 0.9 72.01 0.18 9.61 0 0.07 1 0
1.5215 13.12 3.58 0.9 72.2 0.23 9.82 0 0.16 1 0
1.5157 14.86 3.67 1.74 71.87 0.16 7.36 0 0.12 0 1
1.5185 13.64 3.87 1.27 71.96 0.54 8.32 0 0.32 0 1
1.5159 13.09 3.59 1.52 73.1 0.67 7.83 0 0 0 1
1.5163 13.34 3.57 1.57 72.87 0.61 7.89 0 0 0 1
1.5159 13.02 3.58 1.51 73.12 0.69 7.96 0 0 0 1
1.5161 13.92 3.52 1.25 72.88 0.37 7.94 0 0.14 0 1
1.5159 12.82 3.52 1.9 72.86 0.69 7.97 0 0 0 1
1.5157 13.24 3.49 1.47 73.25 0.38 8.03 0 0 0 1
1.5165 13.4 3.49 1.52 72.65 0.67 8.08 0 0.1 0 1

(continued)
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Table 5.1 (continued)

Independent
variables

Dependent
variable

1. RI 2. Na 3. Mg 4. Al 5. Si 6. K 7. Ca 8. Ba 9. Fe Float Nonfloat

1.5162 13.01 3.5 1.48 72.89 0.6 8.12 0 0 0 1
1.5184 12.93 3.74 1.11 72.28 0.64 8.96 0 0.22 0 1
1.5159 13.12 3.41 1.58 73.26 0.07 8.39 0 0.19 0 1
1.5159 13.24 3.34 1.47 73.1 0.39 8.22 0 0 0 1
1.5186 13.36 3.43 1.43 72.26 0.51 8.6 0 0 0 1
1.5174 12.2 3.25 1.16 73.55 0.62 8.9 0 0.24 0 1
1.5169 12.67 2.88 1.71 73.21 0.73 8.54 0 0 0 1
1.5181 12.96 2.96 1.43 72.92 0.6 8.79 0.14 0 0 1
1.5165 12.75 2.85 1.44 73.27 0.57 8.79 0.11 0.22 0 1
1.5173 12.35 2.72 1.63 72.87 0.7 9.23 0 0 0 1
1.5247 11.45 0 1.88 72.19 0.81 13.24 0 0.34 0 1
1.5339 12.3 0 1 70.16 0.12 16.19 0 0.24 0 1
1.5182 13.72 0 0.56 74.45 0 10.99 0 0 0 1
1.5274 11.02 0 0.75 73.08 0 14.96 0 0 0 1
1.5278 12.64 0 0.67 72.02 0.06 14.4 0 0 0 1
1.5189 13.46 3.83 1.26 72.55 0.57 8.21 0 0.14 0 1
1.5183 13.24 3.9 1.41 72.33 0.55 8.31 0 0.1 0 1
1.5167 13.3 3.64 1.53 72.53 0.65 8.03 0 0.29 0 1
1.5165 13.56 3.57 1.47 72.45 0.64 7.96 0 0 0 1
1.5184 13.25 3.76 1.32 72.4 0.58 8.42 0 0 0 1
1.5169 13.23 3.54 1.48 72.84 0.56 8.1 0 0 0 1
1.5187 12.93 3.66 1.56 72.51 0.58 8.55 0 0.12 0 1
1.5167 12.94 3.61 1.26 72.75 0.56 8.6 0 0 0 1
1.5207 13.55 2.09 1.67 72.18 0.53 9.57 0.27 0.17 0 1
1.5202 13.98 1.35 1.63 71.76 0.39 10.56 0 0.18 0 1
1.5261 13.7 0 1.36 71.24 0.19 13.44 0 0.1 0 1
1.5181 13.43 3.98 1.18 72.49 0.58 8.15 0 0 0 1
1.5181 13.33 3.85 1.25 72.78 0.52 8.12 0 0 0 1
1.5167 12.79 3.52 1.54 73.36 0.66 7.9 0 0 0 1
1.5177 13.65 3.66 1.11 72.77 0.11 8.6 0 0 1 0
1.5167 13.24 3.57 1.38 72.7 0.56 8.44 0 0.1 1 0
1.5164 12.16 3.52 1.35 72.89 0.57 8.53 0 0 1 0
1.5213 14.32 3.9 0.83 71.5 0 9.49 0 0 1 0
1.5161 13.42 3.4 1.22 72.69 0.59 8.32 0 0 1 0

RI D refractive index Na D Sodium Mg D Magnesium Al D Aluminum Si D Silicon K D
Potassium Ca D Calcium Ba D Barium Fe D Iron

Prediction is the capability to use the past to anticipate the future. Every effective
police team uses some kind of prediction in an effort to attempt to prevent crime
events from occurring.

Prophecies exist to creatively articulate possible futures based on personal beliefs
and/or personal reputation (the prophet). Expectations could be considered merely
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Table 5.2 Results in terms of average accuracy

Float
processed (%)

Non float
processed (%)

Aritm. mean
accuracy (%)

Pond. mean
accuracy (%)

Beagle 88.51 75.00 81.75 82.21
KNN 86.21 78.95 82.58 82.82
LDA 75.86 71.05 73.46 73.62
SV ANN 92.87 88.32 90.60 90.87

common sense prophecies. Predictions are the result of a scientific processing of
past data in an effort to identify the most probable immediate future for a defined
and specific control setting.

Prediction in crime analytics is possible if criminal activity is not a random
occurrence or, to use the language of mathematics, if criminal activity is not a
random walk. As crime activity produces an economic and/or symbolic and/or
imaginary power to someone, it is not a random walk.

So, predictive activity is a duty of the police forces. In a world where the time
dimension exists, if one does not make good predictions, it means that one is making
wrong predictions.

Consequently, the discipline of law enforcement needs to construct a set of
artificial intelligent predictors (AIP) to be able to apply against new criminal activity
in order to see relationships that might/would go unnoticed. These predictors need
to be continuously trained and retrained with new data and validated in blind
(unbiased) way, each time, according to the prerequisite of probability theory (Mena
2003; Buscema and Benzi 2011).

Prediction and prevention are strictly linked: in a predictive activity, the past is
used to give sense to future events, and in a preventive activity, one acts in the future
to modify actions that have occurred in the past.

5.4 Prediction: Discover the Hidden Information in the Time

In 1996, an Italian public office asked Semeion to apply ANNs to predict the real
income of selected trader categories using the statement of income that traders
annually declare as a description of all their financial activities that have occurred
during the year.

To test the possibility of the prediction of real income, Semeion was given a
dataset of a selected sample of 1,001 bakeries. Each record was defined by 65
variables, considering the different kind of the expenses that a particularly bakery
had occurred along the year and various quantitative representations of each bakery
shop. Obviously, it is not possible to show, with any degree of detail, the particular
set of variables used.

The dependent variable was the total annual income for each bakery.
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ANN Prediction of Bakeries Taxes Declaration
Linear Correlation : 0.9620
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Fig. 5.2 Correlation between ANN estimations and the “real” incomes declared

The Italian office was confident about the reality and the consistency of this
variable because the sample set of bakeries was a selected sample from a joint
commission of bakery representatives and public officers.

The purpose of this research was to evaluate the capability of ANNs to select
among the massive quantity of statements of income a sample of those considered
to be most probable false. Consequently, if an ANN had been able to predict the
real income in a sample of “true” tax declarations, the same ANN would had been
also used as a detector for identifying the “suspect” tax declarations of the whole
population of bakeries.

The Italian population of private workers had been divided by the Italian experts
into categories of different working activities (specifically the various sectors to be
studied), and bakeries were the first category that Semeion was asked to test.

The sample was divided randomly into two subsets: the first subset (703 records)
was used to train the ANN; the second one (301 records) was used as an unbiased
validation set.

The results were very good: the correlation between the ANN estimations and
the “real” incomes declared from the bakeries was around the 96.20 % (Fig. 5.2):

The next graph (Fig. 5.3) shows a comparison between the real incomes and the
predicted ones in 50 of the 301 records used as testing set.

All the different cost functions applied to the testing set to determinate the
dimension of the estimation error were very good (Table 5.3):

The results were astoundingly accurate. In fact, perhaps this exceptionally high
level of accuracy is the reason why this research project was prematurely stopped.
No one in authority was prepared to believe that results this good could possibly be
achieved.
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Fig. 5.3 Comparison between the real and predicted incomes

Table 5.3 Different cost
functions Root mean square error 0.0107

Real error �0.0004
Absolute error 0.0106
Error variance 0.0188
Normalized mean squared error 0.0790

In any case, this is a good example of how the power of predictive tools can
create serious difficulties for delinquent activities.

5.5 Simulation and Profiling: Discover the Abstract
Prototype in the Hidden Data

Simulation is one way of testing the consequences of possible actions without
having to pay for them. Simulations provide law enforcement agencies with strategic
information about the map of possible choices. It means that the ability to simulate
possible actions is a strategic step in decision making.

Obviously, this book proposes a specific concept for simulation:

(a) First, we consider the simulation of a dynamic system, that is, a system whose
dynamic is a sequence of temporal (time-related) and ordered (not randomized)
states.

(b) Second, we consider the simulation to be a nonstationary process, characterized
by nonlinear feedback loops.

(c) Third, of the kind of simulation described here involves a process that evolves
with parallel interaction and modification of the whole set of involved variables.
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In short, simulation in this application is a mathematical engine able to learn
from the past and generate possible future worlds beginning with present input or
possibilities (Buscema 1998b, 2007; Buscema and Diappi 2004).

This kind of artificial intelligent simulator (AIS) is a fundamental device to
test the effectiveness of tactics and the corresponding side effect that occur in law
enforcement anticrime activity and strategy. Note that “anticrime” as used here also
subsumes terrorism, gang activity, rouge state activities, and the like.

From this point of view, simulation for law enforcement essentially means the
placement of one’s head, as it were, into the future, with their feet fixed and saved in
the present, with the ability to report back to the present what was “seen” occurring
in the future.

5.5.1 An Example of Prototype Generation

To illustrate some of the abilities of a dynamic scenario simulation technology with
respect to gang activity, we use a database of individuals inspired by the musical
“West Side Story.” The dataset is composed of 27 records, five variables, and 27
identification names, one for each record (Table 5.4).

Some preprocessing operations are useful to transform this dataset in a more
suitable way in order to be processed by ANNs. Note the presence of states rather
than continuous data; that is, the age of the gang members is represented by the
categories or states of 20s, 30s, or 40s.

The dataset presents five variables, each one composed of a class of options:

• Gang D fJets, Sharksg
• Age D f20s, 30s, 40sg
• Education D fJunior School, High School, Collegeg
• Status D fMarried, Single, Divorcedg
• Profession D fPusher, Bookie, Burglarg

The raw data in Table 5.4 is transformed such that the option associated with
each variable is shown as a single new variable. This new variable will be binary
(1 D presence of the feature, 0 D absence of the feature), and it will be considered
as completely independent from the others.

The auto-associative ANN used to process this database will transform every
option into a neural network node, able to be activated in a continuous fuzzy3 way
from 0 to 1.

3Fuzziness is a new branch of mathematics by which degrees of involvement or belief can be
determined. An example of fuzziness can perhaps best be described by the activities that occur
during jury deliberation. A defendant must be judged guilty or not guilty. There is no ambiguity
in this decision; everyone must come to the same conclusion. Even if someone is only 51 % sure
of the degree of guilt or innocence, that juror must side entirely with either the guilty or not guilty
position. It is the middle ground between guilty and not guilty that fuzzy theory plays its role. One
can make a determination from 0 to 100 % as to their degree of belief.
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Table 5.4 The gang database

Name Gang Age Education Status Profession

ART Jets 40 Junior School Single Pusher
AL Jets 30 Junior School Married Burglar
SAM Jets 20 College Single Bookie
CLYDE Jets 40 Junior School Single Bookie
MIKE Jets 30 Junior School Single Bookie
JIM Jets 20 Junior School Divorced Burglar
GREG Jets 20 High School Married Pusher
JOHN Jets 20 Junior School Married Burglar
DOUG Jets 30 High School Single Bookie
LANCE Jets 20 Junior School Married Burglar
GEORGE Jets 20 Junior School Divorced Burglar
PETE Jets 20 High School Single Bookie
FRED Jets 20 High School Single Pusher
GENE Jets 20 College Single Pusher
RALPH Jets 30 Junior School Single Pusher
PHIL Sharks 30 College Married Pusher
IKE Sharks 30 Junior School Single Bookie
NICK Sharks 30 High School Single Pusher
DON Sharks 30 College Married Burglar
NED Sharks 30 College Married Bookie
KARL Sharks 40 High School Married Bookie
KEN Sharks 20 High School Single Burglar
EARL Sharks 40 High School Married Burglar
RICK Sharks 30 High School Divorced Burglar
OL Sharks 30 College Married Pusher
NEAL Sharks 30 High School Single Bookie
DAVE Sharks 30 High School Divorced Pusher

Consequently, the auto-associative ANN will have 14 nodes [Gang(2) C Age(3)
C Education(3) C Status(3) C Profession(3)].

In Table 5.5, the dataset after the binary transformation is shown:
Note that each state that describes a gang member is shown as column headers.

Thus, a member belongs to one and only one grouping. After the training phase,
officials will be able to ask the ANN three kinds of questions that could not be asked
in any manageable way using the standard structured query language of relational
databases:

5.5.1.1 Prototypical Questions

One can ask the ANN to generate an abstract profile of the people belonging to a
specific class of variables. In this situation, law enforcement wishes to know the
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prototype of a Jets gang member and/or a prototype of a Sharks gang member.
It would be most useful to know the variables that identify a “better” Jet or a
“better” Shark and which of the actual Jets are more or less Jet-like than the others,
considering the prototype of Jets guy (the same for the Sharks). In essence, an
official seeks to understand those qualities of Jet-ness and Shark-ness. These kinds
of problems are quite typical for the human brain to attempt to solve but very
fundamental for law enforcement activity: What kind of people should I focus my
attention on in the street to maximize the probability of stopping the right person?
These kinds of important problems are impossible to solve using the classic theory
of computation.

When we ask a trained ANN (Buscema 1998a) to generate the cognitive
prototype of a Jets member, the ANN in less than a second answers in this way
(Table 5.6):

While this answer sounds good, there is only one Jet gang member that exactly
fits this profile in the dataset (see Table 5.6). This means that the ANN made
a data abstraction, individualizing the “center of gravity” to be a Jet; in other
words, Table 5.6 describes the state of Jet-ness. Furthermore, this profile of a
typical Jet is what the ANN represents at the end of a very complex process that
simulates the interaction among all the variables of the dataset as graphically shown
in Fig. 5.4:

Watching this process, one can begin to gather some understand as to the complex
calculations the ANN develops in order to answer the question. It is in this manner
that the ANN determines a solution to the questions asked.

The ANN is also able to define which individuals (records) are more representa-
tive of the Jets gang in this dataset. These are the ANN final answers (Table 5.7):

According to the ANN, not every Jets member is a Jet in the same way. For
example, Greg and Al are weak Jets. At the same time, some Sharks, such as Ike,
seem more Jet than Shark. Checking these records in the original dataset, we can
see that there is an evidence for this suggestion. It is also important to note that in
this case, the decision process of the ANN is not linear (Fig. 5.5):

If we ask the ANN to define the prototypical features of the Sharks member, we
have this type of profile (Table 5.8):

Table 5.6 Variables profiling
the Jets gang

Jets variables prototype
Field Variable Plausibility

Age 20s 0.99
Education Junior School 1.00
Status Single 1.00
Profession Bookie 1.00



66 M. Buscema

Fig. 5.4 Interaction among all the variables during the recall phase

Table 5.7 Records close to
the Jets prototype

Jets records prototype

Name
Jets membership
of Jets Name

Jets membership
of Sharks

ART 0.91 PHIL 0.00
AL 0.09 IKE 0.91
SAM 1.00 NICK 0.00
CLYDE 1.00 DON 0.00
MIKE 1.00 NED 0.00
JIM 0.91 KARL 0.00
GREG 0.08 KEN 0.09
JOHN 0.91 EARL 0.00
DOUG 0.91 RICK 0.00
LANCE 0.91 OL 0.00
GEORGE 0.91 NEAL 0.08
PETE 1.00 DAVE 0.00
FRED 0.90
GENE 0.91
RALPH 0.91

Similarly, the dynamics of the process are nonlinear (Fig. 5.6):
It is interesting to observe the dynamics of the system decision about the

“Education”: at the beginning, the ANN believes that “High School” could be a
good descriptor of the Sharks type, but in a second step, it changes its mind focusing
on the “College” variable as the best feature.
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Fig. 5.5 Interaction among all the records during the recall phase

Table 5.8 Variables profiling
the Sharks gang

Sharks variables prototype
Field Variable Plausibility

Age 30s 1.00
Education College 1.00
Status Married 1.00
Profession Burglar 1.00

It is also interesting to see the list provided by the ANN concerning which Sharks
are more or less representative of the Sharks prototype (Table 5.9):

The Sharks gang is less compact than the Jets gang, and only one member of
the Jets gang could be confused as being a Shark (Al). This situation appears more
informative when we look at the whole process adopted by the ANN to arrive at this
decision (Fig. 5.7):

5.5.1.2 Impossible Questions

Some important kinds of questions are impossible to answer when it involves
associations of variables not anticipated by the structure of the database. In the
structure of the gang database, for instance, a new member is not allowed to belong
simultaneously to the Jets and to the Sharks. This kind of question is impossible
for classic computation, but they are fundamental for human beings. If one seeks
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Fig. 5.6 Interaction among all variables during the recall phase

to create a pool of Jets and Sharks able to understand each other, one must know
(a) to which variables are the members of a particular gang more similar and (b)
which gang members are more similar among the dataset to be associated with a
hybrid combination of Jet-ness and Shark-ness. An ANN is able to manage this
kind of question. If we ask the ANN to select the hyper-prototype of a person who
is both a Jet and a Shark at the same time, the response given is in terms of variables
(Table 5.10):

And this is the answer in terms of individual membership of each record of the
dataset (Table 5.11):

The ANN establishes a new profile to select new members whose features fuse
the gangs Jets and Sharks together, and it considers two of the existing Jets and one
of the Sharks as the best candidates for this new class.

5.5.1.3 Virtual Questions

There are occasions when one would like to pose a theoretical question for which
it is known that no record in the database actually satisfies the question. Such a
question is called a virtual question.

In the case of the gang database, for example, there is no record presenting
simultaneously the combination of the educational feature “college” and the age
of 40s. This association is obviously allowed and possible, but since there is no
actual record of such a combination, it is a virtual query.
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Table 5.9 Records close to the Sharks prototype

Sharks records prototype

Name
Sharks
membership of Jets Name

Sharks membership
of Sharks

ART 0.00 PHIL 1.00
AL 0.90 IKE 0.09
SAM 0.00 NICK 0.09
CLYDE 0.00 DON 1.00
MIKE 0.00 NED 1.00
JIM 0.00 KARL 0.09
GREG 0.00 KEN 0.08
JOHN 0.08 EARL 0.90
DOUG 0.00 RICK 0.91
LANCE 0.08 OL 1.00
GEORGE 0.00 NEAL 0.09
PETE 0.00 DAVE 0.09
FRED 0.00
GENE 0.00
RALPH 0.00

Fig. 5.7 Interaction among all records during the recall phase
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Table 5.10 Variables shared
by the Jets and the Sharks

Jets and Sharks prototype
Field Variable Plausibility

Age 20s 0.99
Education College 1.00
Status Married 1.00
Profession Burglar 1.00

Table 5.11 Records close to the intersection between Jets and Sharks

Jets and Sharks Records prototype

Name
Jets belonging to the new
Jets and Sharks Class Name

Sharks belonging to the
new Jets and Sharks Class

ART 0.00 PHIL 0.44
AL 0.51 IKE 0.00
SAM 0.49 NICK 0.00
CLYDE 0.00 DON 0.99
MIKE 0.00 NED 0.39
JIM 0.50 KARL 0.01
GREG 0.61 KEN 0.45
JOHN 0.99 EARL 0.45
DOUG 0.00 RICK 0.01
LANCE 0.99 OL 0.44
GEORGE 0.50 NEAL 0.00
PETE 0.01 DAVE 0.00
FRED 0.01
GENE 0.54
RALPH 0.00

Table 5.12 A virtual
question – the variables

College and 40s
Field Variable Plausibility

Gang Sharks 0.99
Age (1) 30s 0.97
Age (2) 40s 0.51
Status Married 1.00
Profession Pusher 0.97

The question that would very likely be raised in the mind of the reader might be,
“What is the point of identifying something that does not exist?” It could be very
useful to know which other variables have to be associated with these two variables
(college and age in the 40s – see Table 5.12), while preserving the fuzzy logic of the
database, and which of the existing records are closer to this virtual combination of
features.

If we ask the ANN the above question, the answer in terms of variables will be
the following:

The ANN is not able to completely satisfy our constraints, and it shows how the
age of 30s is the closest feature to the prototype which we seek. This behavior is
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Table 5.13 A virtual question – the records

College and 40s Records prototype

Name
Jets belonging to the
new class Name

Sharks belonging to
the new class

ART 0.00 PHIL 1.00
AL 0.03 IKE 0.03
SAM 0.00 NICK 0.72
CLYDE 0.00 DON 1.00
MIKE 0.00 NED 1.00
JIM 0.00 KARL 0.26
GREG 0.03 KEN 0.00
JOHN 0.00 EARL 0.26
DOUG 0.00 RICK 0.03
LANCE 0.00 OL 1.00
GEORGE 0.00 NEAL 0.03
PETE 0.00 DAVE 0.72
FRED 0.00
GENE 0.03
RALPH 0.03

important because it clearly shows the capability of the ANN to provide an answer
to our question according to its learning experience while fully taking into account
the original features of the dataset.

The selection of the more suitable individuals contained in the dataset for this
prototype is thus (Table 5.13):

The database has been constructed such that each membership in any particular
category is either 0 or 1. For example, a member belongs to set of ages 20, 30, or 40.
Two of these three categories will contain a 0 and only one will contain a 1. Since
there are only two choices per category (0 or 1), questions raised are referred to as
“binary” questions. The number of binary questions that is possible to ask of this
ANN is in the order of 2N , where N is the number of considered variables in the
dataset. However, as the ANN is also able to process “fuzzy questions,” the number
of questions is theoretical infinitive.

Therefore, through the ANN simulation, law enforcement forces can completely
explore any complex dataset.

5.6 Visualization and Clustering: How to Cluster Analyzed
Data for Understandability

The human eye is a powerful tool and hand-eye coordination is a strategic advantage
in human technological evolution. In law enforcement activities, sight may be
considered the railroad to intelligence, for visualization is often the first step in
understanding.
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Unfortunately, not every situation is easy to visualize. It is common for an
investigation to involve a considerable number of aspects, each aspect having at least
one variable to define it, and collectively the possible interactions can easily result
in the visualization task being a hard task to accomplish. While our sight works well
with two or three dimensions, it is rare, if not impossible, to view higher dimensions.
In these cases, one needs assistance to help bring the pieces together into some
coherent while, and artificial systems are able to very nicely accomplish this task.
An ANN can reduce a dataset of many variables into an intelligent projection of the
same dataset into a space of two or three dimensions (Buscema and Terzi 2006).
This projection has to be “intelligent” because of the following:

(a) During the projection process, the system has to select the more informative
features of the dataset while simultaneously eliminating the noise contained in
the data.

(b) The system has to organize the data into the new smaller space (i.e., from
4, 5, 6, or more dimension space to 2 or 3 dimensions) in order to preserve
the original metric distances and relationships that the data-points had into the
original space.

(c) The system has to rearrange the data-points onto the projection space so that
a human expert can easily cluster them according to his/her own insights,
knowledge, subjective feelings, and overall intelligence.

Consequently, law enforcement forces should possess a powerful artificial
intelligence visualizer (AIV) able to represent complex data relationships in self-
evident bidimensional or three-dimensional maps. These tools can support the law
enforcement task of investigation by transforming the verbal language representa-
tion of complex situations into a more complete geographical understanding of all
the concepts involved in the situations. To use analogy, a grouping of trees can be
either a forest or a set of individuals, but the only way to get an overall understanding
of these trees is to see them as a forest.

5.7 Visualization and Clustering: An Example

The Glass Identification Database that was mentioned earlier is composed of 167
records, 9 continuous independent variables, and 1 dependent variable (recall the
float windows versus non-float windows) for a total of ten variables.

If we scale all the variables between 0 and 1 and then maximize all them with
this equation:

NewVari D 1 � OldVari

we will have 20 variables (the original ten and their complements).
At this point, the new dataset represents 167 records in a tenth dimensional

space (note that the addition of ten new variables does not yield a 20-dimensional
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space because the new ten variables are the complement of the original ones and
are thus not independent). An interesting question could be raised: How can tenth
dimensional space be projected onto a more comfortable two-dimensional space,
preserving the most important relationships among all variables? By having a two-
dimensional diagram, one could view it on a computer screen or as hard copy, share
it with others, and engage in the synergy that comes from the cross fertilization of
ideas and knowledge. This reduction in dimension can be done using a special class
of artificial adaptive systems used for multidimensional scaling and also known as
topographic mapping (see below).

These techniques are powerful tools for data visualization and have the advantage
of improving the capability of humans to understand the relationships between
variables and data in a very complex dataset. To illustrate the effectiveness of these
tools, the PST (Pick and Squash Tracking in Buscema and Terzi 2006) algorithm is
used because it has continuously proved itself to be a more powerful algorithm than
the other algorithms presented in the literature. The objective of PST is to preserve
the characteristics of the “geometrical structure” of data in a representation with
reduced dimensionality.

The concept of “geometrical structure” is connected to the concept of distance.
Therefore, to preserve the geometric structure of the original data, it is necessary
that, after applying the algorithm of mapping, the elements that used to be “close”
in the original space also find themselves to be similarly close in the subspace. It also
means that those distant elements in the original space remain separated in the final
destination space. The important distinction here is that the new space is typically
easily understood by anyone.

PST algorithms obtained a mapping fitness in excess of 90 % to make the
projection of the glass identification database into two dimensions (Fig. 5.8). The
conceptual power of this visualization should be evident:

Now we can see how the quantity of potassium (the minimum and maximum
values of potassium are shown in the ovals) could be critical to distinguishing
between float and non-float windows (shown in the squares). One might also be
able to use sodium, iron, and aluminum to distinguish between float and non-float
windows. At the same time, there are many other variables that seem to be irrelevant
with respect to this distinction (refractive index, barium, magnesium, calcium, etc.).

Another example to illustrate the power of data visualization can come from the
gang database. We already explored this dataset using dynamic associative memory,
but we have no idea about the positions the 14 variables could take when mapped to
a two-dimensional surface (which variable is closest to another particular variable –
see Fig. 5.9). The PST algorithm can help us in visualizing the dataset from the
point of view of its many variables:

We can use the PST algorithm to project and visualize the gang database from
the records point of view. In this way, one can analyze the similarity of each gang
member with respect to the others (see Fig. 5.10). Through this technique, we can
also force the PST algorithm to group all gang members into two clusters. This is



74 M. Buscema

Fig. 5.8 The PST clustering

useful to check if the algorithm is really able to understand the real membership of
each member with its original gang.4

From this map, we can extract many pieces of relevant information:

1. The PST algorithm unbiasedly creates two clusters whose composition is the
same for the two gangs representative of the whole dataset (black color for Jets
and red color for Sharks), except for one.

2. The only error of classification is Doug, who is formally a Jet but was associated
by the algorithm as a Shark. However, in the preceding example, Doug was
shown to be a “strange” Jet and therefore is probably an extreme outlier.

3. We can also observe from this (Fig. 5.10) picture something we have previously
noted with the ANN. From the visual point of view, the Jets gang is more compact
than Sharks gang. This may suggest that it might be easier to infiltrate the Sharks,
or perhaps if a strong bond can be established between an undercover operative
and only well placed Jet, then entry into the “inner circle” might be eased.

4. From this perspective, it is quite evident who is similar to whom, who is more
representative of his gang and who might lie on the hidden boundary between the
two gangs.

Finally, one can conclude that the best place to begin understanding the complex-
ities of a convoluted, ambiguous, and dynamic situation is to view the data in ways
in which it is easy to understand.

4In Fig. 5.9, Lance and George are overlapped; the same happens for Ol and Phil.
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Fig. 5.9 Gang Database: PST projection of 14 dimensions onto 2 dimensions

5.8 Hypothesizing Links: Rebuilding the Net from Scattered
and Single Information

Even a rich database often contains data that are not expressly linked with each
other. For example, it is possible to check a database of persons arrested in the
last four years in London for offenses directly or not directly linked to the drug
trafficking and to know details about each of them (sex, age, ethnicity, nationality,
committed offenses, served sentences, kind of seized drugs, neighborhood where the
arrest took place, residence of the subject, modality of the arrest, etc.). Regardless of
the amount of data collected, it is still possible to be unable to find some information
aimed at how to understand whether an arrested person is connected with the others
in the database; that is to say, how many and which individuals contained in the
database are also members of the criminal nets of London and if they are part of that
net, which of these arrested individuals can be considered a representative sample
of an organized group.
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Fig. 5.10 Gang database: PST projection of 27 dimensions into two dimensions (The Jets are
black and the Sharks are red)

Typically, these links among individuals result from data collected from other
databases, for it is impossible to otherwise identify other connectivity links among
the subjects. However, it can be done from a probabilistic viewpoint, using a
different theoretical framework.

First, we assume that in a dataset, all the attributes and all the relations defining
any record have to be considered in the same way: the record “Mary,” defined as
a “female” (attribute) of “24 years old” (attribute), “friend of Clyde” (relation)
becomes Mary: f“Female”, “24 years old”, “Friend of Clyde”g. Consequently,
“attributes,” “relations,” and others features defining a record are all translated in
a list of variables of the same rank (they are all blatant data).

Second, once all the records are coded as a list of variables (dummy, numerical,
etc.), we assume that the greater the global similarity among the records (i.e., among
their own variables), the more plausible it is that those records are linked or will be
linked (i.e., hidden connections exist). This assumption comes from the biological
sciences: if two very similar molecules meet, it is highly probable they will join
together.
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Table 5.14 Gang dataset

Name Gang Age Education Status Profession

ART Jets 40 Junior School Single Pusher
AL Jets 30 Junior School Married Burglar
SAM Jets 20 College Single Bookie
CLYDE Jets 40 Junior School Single Bookie
MIKE Jets 30 Junior School Single Bookie
JIM Jets 20 Junior School Divorced Burglar
GREG Jets 20 High School Married Pusher
JOHN Jets 20 Junior School Married Burglar
DOUG Jets 30 High School Single Bookie
LANCE Jets 20 Junior School Married Burglar
GEORGE Jets 20 Junior School Divorced Burglar
PETE Jets 20 High School Single Bookie
FRED Jets 20 High School Single Pusher
GENE Jets 20 College Single Pusher
RALPH Jets 30 Junior School Single Pusher
PHIL Sharks 30 College Married Pusher
IKE Sharks 30 Junior School Single Bookie
NICK Sharks 30 High School Single Pusher
DON Sharks 30 College Married Burglar
NED Sharks 30 College Married Bookie
KARL Sharks 40 High School Married Bookie
KEN Sharks 20 High School Single Burglar
EARL Sharks 40 High School Married Burglar
RICK Sharks 30 High School Divorced Burglar
OL Sharks 30 College Married Pusher
NEAL Sharks 30 High School Single Bookie
DAVE Sharks 30 High School Divorced Pusher

In the social world, we can formulate a similar principle: if two persons are
defined in very similar way (richness, style of life, age, habit, preferences, desires,
targets, house address, etc.), their probability of linkage is very high.

A similar analogy can be made in the criminal world. Two or more criminals
group together because in their world, cooperation and aggregation is fundamental
to survival. This tendency is named the “criminal elective affinity.”

5.8.1 An Example of Rebuilding the Net Link

The gang dataset is a small dataset composed of 27 records and 5 variables
(Table 5.14):

Recall the structure of the dataset is:

• Gang D fJets, Sharksg
• Age D f20s, 30s, 40sg
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• Education D fJunior School, High School, Collegeg
• Status D fMarried, Single, Divorcedg
• Profession D fPusher, Bookie, Burglarg

The first step is to transform each variable string into a Boolean value through an
enumeration of all possible states and the assignment of a 0 to denote exclusion and
1 for inclusion (see Table 5.15):

The new dataset is now composed of 14 binary variables (represented by the
columns), most of which are orthogonal.

As we want to use an AutoCM ANN (Buscema 2007; Buscema and Grossi 2008,
2009; Buscema et al. 2008; Buscema and Sacco 2010) to process the records, we
must transpose this matrix so that those labels of interest, that is, the names of the
gang members, are at the top (Table 5.16):

AutoCM ANN will analyze this dataset using the variables as hyperpoints and
the records as coordinates of the hyperpoints.

After about 30 epochs, the AutoCM is completely trained (root mean square
error D 0.00000000), and the weights matrix is ready (Table 5.17):

Then we transform the weights matrix into a distance matrix (done automatically
by the AutoCM program) (Table 5.18):

At this point, we calculate the minimum spanning tree (MST; Kruskal 1956) of
the matrix distance, and the whole dataset is drawn as a tree graph in which every
node is a single person (record) (Fig. 5.11):

Through the Delta H Function Hubness, we know that removing Rick, Mike,
Neal, or Don from the graph makes the complexity of the graph, and consequently
its entropy, increase; while if we remove Al from the global graph, the complexity of
the graph, and consequently its entropy, decreases. These actions are not absolutely
evident if we analyze the same graph comparing the local indexes. From a naı̈ve
point of view, it is possible to think exactly the opposite; since Mike is a big Hub (5
links), if he is removed, one might expect the global network must become simpler.
But from a global perspective, the rearrangement of the networks without some
of its nodes actually works in a completely opposite way to make the graph far
more complex. Hence, one might conclude that by breaking up a known drug ring
might result in the appearance of another ring composed of individuals about whom
the law enforcement community has no knowledge. That is a serious trade-off that
should be discussed by law enforcement officials.

If we remove the vertices within the red circles from Fig. 5.12, the new MST
will show a more complex structure, while if we remove the vertex within the blue
circle, the new MST will be simpler (see Fig. 5.13 and Fig. 5.14).

From this, we may conclude that once the architecture or structure of a network
is known, law enforcement initiatives can choose from being reactive to proactive.
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Fig. 5.11 The MST of the global networks

Fig. 5.12 The MST of the global networks marked

5.8.2 Conclusion

This chapter discusses a novel way of taking currently existing data that is residing
in a law enforcement database, and, through some straightforward restructuring of
the data and the application of the AutoCM neural network, views of the linkages
between elements can be inspected. This process could direct law enforcement
initiatives into certain, heretofore unknown or unexpected, investigative directions.
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Fig. 5.13 New MST without Mike

Fig. 5.14 New MST without AL
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Chapter 6
The Metropolitan Police Service Central
Drug-Trafficking Database: Evidence of Need

Geoffrey Monaghan and Stefano Terzi

6.1 Introduction

Law enforcement agencies are often drowning in data and require their officers
to enter details of their actions into computers that seem to transmit the data into
a black hole. An increasing number are fortunate enough to have systems that
have search capabilities so that some value can be gleaned from the input effort;
however many others use fairly rudimentary systems that produce little more than
generalized statistical reports. This chapter describes the work of the Metropolitan
Police Service (MPS) in London to improve the quality of its data on drug trafficking
offences1 and introduce a more sophisticated database management system. The
description contained is both descriptive and proscriptive for a similar effort can
be made to customize databases to permit other agencies in their efforts to combat
terrorism, white-collar crime, the financial industry, threats to individuals and the
like. There exist in the literature references to business situations in which new
systems failed regardless of the money thrust into the project; this is an account of
a success that can be emulated.

1In this chapter, the terms ‘drug trafficking’ and ‘drug trafficking offence’ are used interchangeably.
‘Drug trafficking offence’ is defined in Section 1 of the Drug Trafficking Act 1994 and includes
the production, supply, offer to supply, possession with intent to supply, importation, exportation,
etc., of controlled drugs.
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Concern about drug trafficking in London is not new. But during the last two
decades, this concern has been heightened by the development of highly visible
street drug markets and a rapid escalation in the level of violence associated
with them. Many murders and other violent offences in London have been attributed
to drug traffickers. In truth, the trafficking of heroin and cocaine, particularly in the
form of crack, presents the MPS and communities in London with many difficulties.
Crack trafficking in particular is posing acute problems and is increasing in severity.
As noted by the Greater London Alcohol and Drug Alliance (GLADA) in its
recent report The GLADA Crack Cocaine Strategy 2005–08 between 1998/1999
and 2002/2003, the number of offences of supplying crack cocaine in London
rose by 151%, and Drug Action Teams (DATs) have reported a proliferation of
‘crack houses’ in the same period. While organized criminal networks (OCNs)
have been documented in London for hundreds of years, government officials, law
enforcement officers and some researchers suggest that OCNs are now posing a
more serious crime problem than in the past. In some parts of London, OCNs are
credited with an alarming share of violent crime, especially murders. While reports
conflict about the extent to which OCNs play in controlling drug trafficking in the
capital, there is little doubt that Turkish OCNs play a leading role in terms of heroin
trafficking while Jamaican OCNs and OCNs comprising black British nationals
dominate the trade in crack. More recently, Vietnamese OCNs involved in the large-
scale production of cannabis have been identified in a number of London boroughs.

Before the MPS can assess its ability and that of its partners to cope with
the problem of drug trafficking, it needs to know much more about OCNs, the
financial networks which support them and the structure of illicit drug markets. It
needs to have a much better understanding of how controlled drugs (e.g. heroin,
cocaine and amphetamine-type stimulants) get from their source to their points
of retail sale, and it needs to know a good deal more about the ploys, tricks and
stratagems traffickers use and the legal loopholes they exploit. However, despite the
considerable amount of data generated by its enforcement efforts and a growing
body of related academic research, the MPS still knows relatively little about these
topics. It knows even less about the effectiveness of the tactics it uses in its efforts
to disrupt and dismantle OCNs and drug markets. Drawing on research from a
number of industrialized countries, Hough and Natarajan (2000) conclude that the
relationship between the trafficking of controlled drugs, the demand for them and
enforcement activities are poorly conceptualized by politicians and policymakers
and are seriously under-researched. In terms of British research, Pearson and Hobbs
(2001) make the point that the evidence base for drug trafficking in general and
‘middle-market distribution’ in particular is considerably underdeveloped, while
Bean and Nimitz (2004) notes that little consideration has been given to the role
foreign nationals play in terms of shaping or fuelling drug markets in Britain. As
King (2004) points out, very little is known about the ways in which enforcement
activity impacts prices and the ways in which prices are linked to demand. More
importantly, he notes the difficulty in linking interdiction and intervention efforts by
law enforcement agencies to fluctuations in the unit price of drugs.

While the so-called dark figure of crime – the mismatch between crime esti-
mates produced by victimization surveys and those recorded by the police – is a
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well-known concept, scant regard has been paid to the accuracy of the published
data on the number of drug-trafficking crimes reported by British police forces. This
is interesting because the author has identified huge discrepancies in the MPS data.

Bean (2004) believes that these discrepancies are linked to two separate matters.
First, there are limitations imposed by the methodology of data collection – that is,
where data on drug traffickers provide only a partial picture. For example, a heroin
trafficker may admit to supplying heroin on a dozen occasions but may only be
prosecuted for two offences – ‘specimen counts’. How best to record and interpret
this? Or how to interpret the data on drug prices or the Forensic Science Service
data on seizures? Bean (2004) notes that the ‘counting rules’ often muddy the
waters. For example, he points out that Home Office statistics do not distinguish
between production of cannabis (a drug-trafficking offence) and cultivation of
cannabis (a non-drug-trafficking offence). There is also inconsistency in how the
Crown Prosecution Service (CPS) and the police service interpret the ‘rules’.
Thus, a person growing a cannabis plant could be prosecuted for producing or
cultivating or possessing cannabis. These limitations occur not as a result of defects
in the data but because the reporting systems are not sufficiently comprehensive or
adhered to.

The second matter relates to the validity and reliability of the data and directly to
the collection of the data. Take, for example, the accuracy of the MPS Performance
Information Bureau (PIB) data on Class A drug trafficking. Analyses of Crime
Report Information System (CRIS)2 data leave no doubt that they are seriously
flawed and present a distorted picture of drug trafficking. In 1999, the author
analyzed a sample of drug-trafficking reports on CRIS on behalf of the Independent
Inquiry into the Misuse of Drugs Act. He found that nearly one third (31%) had
been incorrectly classified. In another study on cannabis, the author found that
a number of ‘possession of cannabis’ offences had been incorrectly classified as
‘production of cannabis’ (a drug-trafficking offence). He also found many instances
where Class A controlled drugs (such as methadone) had been recorded as Class C
controlled drugs, and in a number of cases, ‘accused persons’ had been charged
or cautioned under the Misuse of Drugs Act 1971 with possessing ketamine (a
dissociative anaesthetic), which, at the time, was not a controlled drug. Important
fields in CRIS (e.g. nationality, ethnicity code and drug type and amount) were
often left blank. All too often, even when the nationality field had been completed,
the information was useless because the reporting officer has used terms such as
‘West African’, ‘West Indian’ or ‘Eastern European’. In their study of CRIS records
in 2000, Bean and Nemitz (2004) also found numerous errors, such as where ‘drug-
trafficking offences’ were recorded and classified without any supporting evidence.
The results of their study supported fully those found by the author.

2CRIS has been designed to provide an automated borough crime reporting and information
system. It replaced the old-fashioned paper-based system and allows police officers to enter crime
report data via computer terminals located in their own police stations. The database can be used
for many types of enquiries, including crime analysis information and enquiries about specific or
linked crimes.
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The difficulty is compounded given the shortcomings of other databases. For
example, the inconsistency in forces’ records in getting data onto Phoenix (the
Police National Computer (PNC)), both in terms of timeliness of input and the
quality of information recorded, is well documented.

Given the problems identified, it is not surprising that MPS analysts struggle to
produce quality reports on drug trafficking and OCNs. Obviously, before they can
produce and disseminate quality information in the form of the various strategic and
tactical assessments, they need to be able to access and retrieve reliable data quickly.
Many analysts are well aware of the inherent weaknesses in the current systems. The
following comments by two MPS senior analysts illustrate this point:

A central Met-wide database of drug operations should be maintained to allow easily
obtainable performance data (for use) against drug traffickers. It will then be possible to
[gauge] the impact of anti-drug operations : : : to inform future planning and coordination
of such activity.

Cook, J. (May 2004) Drugs Desk Strategic Submission Specialist Crime Directorate
10(4), MPS, p. 25

We cannot expect to provide an effective response to the drugs problem when we don’t
truly understand the problem. We need to build up knowledge of all levels of street supply,
from localized dealing, up to how : : : importers distribute [drugs] throughout London.

Metters, W. (July 2004) Drugs Strategic Committee: Minutes of meeting held on 14 July
2004 at New Scotland Yard

There is also widespread concern among MPS officers and analysts that they
do not have access to the kind of reasonably complete and accurate data, which
would allow them to determine (a) whether there had been any significant changes in
drug-trafficking trends and (b) whether operational activity has had any discernible
impact on OCNs and drug markets. They also recognize that comprehensive
analyses cannot be done unless they have access to, and are trained to use,
sophisticated data processing programs.

6.2 The MPS Central Drug-Trafficking Database (CDTD)
Project

6.2.1 Evidence of Need

Over the years, researchers and police staff alike have experienced considerable
difficulty in answering some highly complex questions relating to drug trafficking.
The following list will give the readers some idea of the task they face:

• How much heroin was seized as a result of test purchase operations in 2004?
• What is the ‘average street price’ of heroin/crack in London in 2004?
• Based on current knowledge, how much is a gram of heroin likely to cost in

2020?
• How many foreign nationals were arrested for heroin trafficking in 2004?
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• How many offenders charged with heroin trafficking in 2004 were in methadone
programs?

• How much cannabis was produced (cultivated) on a large-scale commercial basis
in 2004?

• How many offenders charged with cannabis trafficking in 2004 have convictions
for theft, robbery or burglary?

• In terms of police tactics: ‘What works? What doesn’t work? What looks
promising?’

To be able to answer these questions requires a considerable investment of time
in terms of research. Even if the MPS analysts had the requisite knowledge,3 and
the relevant skills4 and time, the authors doubt that the answers obtained would
withstand academic scrutiny given the problems over the validity and reliability of
CRIS data.

The coincidence of several recent and forthcoming developments strengthens the
case for timely, accurate and complete recording of drug-trafficking information.
Chief among these is the MPS’s adoption of the National Intelligence Model (NIM).
The NIM was produced by the NCIS on behalf of the ACPO Crime Committee to
‘professionalise [sic] the intelligence discipline within law enforcement’. Briefly,
the model comprises four components:

• Tasking and coordination (takes account of business planning needs in the
context of government and local objectives)

• Four key intelligence products (see below)
• Knowledge products (i.e. rules and protocols for the conduct of business and the

identification and promotion of best practice)
• System products (i.e. data systems, intelligence acquisition and operational

security and effectiveness)

The four key intelligence products are (1) the strategic assessment, (2) the tactical
assessment, (3) the target profile and (4) problem profile.

6.3 Aim of the Central Drug-Trafficking Database

The aim of the CDTD is to enable the MPS to produce reliable and objective data to
help the MPS and its partners to (a) assess the extent of the drug problem in London
and (b) devise appropriate responses to tackle the problem.

In addition to capturing the nominal details of offenders and their criminal
histories, offences and drug seizures, the CDTD has been designed to store and

3For example, in-depth knowledge of OCNs, drugs legislation and drug trends. The authors also
believe that operational experience would be advantageous.
4Knowledge of Artificial Adaptive Systems and Expert Systems, for example.
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process a wealth of additional information relating to police tactics, unit drug prices
and purity and the resolution of investigations. As such, it will provide the MPS
with an effective and efficient information system which will make an important
contribution to its strategic planning and will help to bring some clarity of thinking
to the debate on drug-trafficking trends, the effectiveness of police tactics and
the role organized crime networks (OCNs) play in shaping and influencing drug
markets.

6.4 Objectives of the Central Drug-Trafficking Database

The objectives of the CDTD are to:

• Describe the nature and scale of drug-trafficking activity in London
• Help the MPS to identify drug misuse trends in London
• Help the MPS to identify and describe the structure of OCNs and describe the

role they play in controlling drug markets
• Provide a description of MPS enforcement tactics (e.g. search warrants, test

purchases, controlled deliveries) and evaluate their effectiveness
• Draw out any associations between drug trafficking and other types of offending

(i.e. acquisitive and violent crime) and provide detailed profiles of offenders (e.g.
sex, age, nationality)

• Provide profiles of operational police officers with the intention of monitoring
and evaluating police performance

• Identify the legal lacunae and obstacles and logistical constraints, which frustrate
or impede enforcement activity

• Identify and describe the ploys, stratagems and ruses used by drug traffickers
with a view to introducing counter measures

• Help identify training needs for operational officers and support staff
• Provide reliable and objective data on the price of Class A drugs particularly

heroin and cocaine (including crack) and the factors that may influence prices
such as location, drug purity, trafficker profile, amount purchased and availability

• Determine how foreign nationals help shape and influence drug markets in
London

• Help the MPS to gain a better understanding of drug-trafficking routes from the
point of entry to onward distribution

• Help the MPS to identify those environmental factors associated with successful
drug market locations

• Help the MPS to predict with a greater degree of certainty, drug-trafficking trends
and drug market locations

• Provide the MPS and the Metropolitan Police Authority with the information
they need to devise performance targets based on quantitative and qualitative
data

• Help the MPS to assess the validity of its case disposal policy (e.g. alternatives
to prosecution such as formal warnings, reprimands and cautions)
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• Understand better the processes by which decisions are made by the Crown
Prosecution Service to prosecute drug traffickers

• Assess sentencing practice in both Magistrates’ Courts and the Crown Court
(e.g. whether the judiciary is complying with the provisions of section 110 of
the Powers of Criminal Courts (Sentencing) Act 2000 – minimum sentence of
7 years’ imprisonment for offenders following a third conviction for a drug-
trafficking offence involving a Class A drug)

6.5 The Central Drug-Trafficking Database: Description

The CDTD is in effect a composite database, the information for which is drawn
from six MPS databases and six external databases including the Police National
Computer (PNC). An important part of this process will be the distillation and
refinement of these data.

The primary source of data will be drug-trafficking reports recorded on the MPS
Crime Report Information System in 2004. In all, some 4,500 CRIS records will
need to be reviewed. In turn, this means around 5,000 offenders will be identified.
In order to capture all the important variables, each record will comprise over 400
fields.

As already noted, the limitations of the recording and retrieval systems inhibit
robust performance assessment in several important areas. As Chatterton et al.
(1998) and his colleagues point out, a key problem concerns the availability of
good quality arrest data. They say that the crux of the matter is that the police
make arrests using a range of tactics that are informed by different operational
strategies. Treating these arrests as if they are identical and aggregating them masks
important differences between them. This is unsatisfactory, especially if one is
concerned with examining the impact of changes or the effectiveness of particular
tactical options. It is widely known that certain types of tactics are used – stop
and search, search warrants, strip searches, etc. – but there are others which are
given less prominence in the literature, such as intimate searches, test purchases
and controlled deliveries.5 In order to rectify this, the authors have developed an
interactive model that will help them identify the different arrest tactics used in an
attempt to determine their effectiveness. Briefly, they categorize police tactics as
primary, secondary, tertiary, etc.

Mention has already been made to the fact that the information on the CDTD
will be drawn from a number of internal and external databases. Each of these data

5The term ‘controlled delivery’ is defined in Article 1(g) of the 1988 Convention Against Illicit
Traffic in Narcotic Drugs and Psychotropic Substances. Article 11 of the convention provides ‘for
the use of controlled deliveries at international level and paves the way for “clean” deliveries’. This
technique is frequently employed in drug importation investigations, and indeed this has been the
case for many years.
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sources provides only a partial view of drug-trafficking patterns and police tactics.
However, when combined, they provide a wealth of information. So much so that the
information will allow investigator to make detailed and informed statements about
drug-trafficking trends, drug-trafficking groups and the effectiveness of enforcement
tactics.

The databases used are set out below:
MPS Databases

• Crime Report Information System (CRIS)
• Criminal intelligence (CRIMINT) database
• Custody Package database (This database holds information on arrestees whether

or not they are subsequently prosecuted.)
• Stops database (This database holds information on those suspects stopped

and/or searched by police officers.)
• Covert Drug Purchase database (Designed by the author and funded by Home

Office and piloted by the SCD 10 (4) Drugs Focus Desk. The database has since
been modified by the author (see Appendix 1 to this chapter).)

• Pharmacy database (This database holds information on addicts who are pre-
scribed controlled drugs. This information is gleaned from retail pharmacy
records following routine inspection by SCD 3 (3) Controlled Drug Inspectors.)

External Databases

• Police National Computer (PNC)
• Drugs database (Forensic Science Service (FSS)) (This database holds informa-

tion on drug seizures made by the MPS and other law enforcement agencies.)

6.6 The Relational Database: Architecture

6.6.1 The Database Design

The first step in designing this special type of database is to identify the main
subjects (entities) that characterize and describe drug-trafficking activity and to de-
fine their relationships. The general model of the CDTD (Central Drug-Trafficking
Database) was divided into five sub-models containing information on the five
‘subject areas’ identified during the process of designing the database. This type of
subdivision of the activity has considerable relevance and influence on the activities
described later, both in relation to the process of gathering and storing data and in
the analysis which will subsequently be conducted. There are substantially two main
reasons for this:

1. In order to prevent problems at the data entry stage, the pre-existing structure of
the data to be collected (the format and organization of police reports) and the
other source databases had necessarily to be taken into account.
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2. The analyses required the data to be formulated in such a way that it could be
accessed easily in accordance with the set objectives.

The five subject areas identified during the analysis process are as follows:
tactics, seizures, arrests, persons and locations.

6.6.2 Tactics

In this subject area, all the steps followed by the police and other law enforcement
officers when fighting drug-trafficking crimes have been collected and codified. In
order to allow the data to be processed with the analysis tools, it was necessary to
structure and classify them with a level of detail and indefiniteness sufficient to avoid
unnecessary fragmentation and to provide an intelligible synthesis of the actual
drug-trafficking activities in London. The fundamental entity in this subject area
is tactic, meaning a single action performed by a police officer when confronting a
suspect in order to obtain information on possible illegal activities he or she might
be involved in.

The possible tactics have been divided into six generic categories:

• Search of person – a search of a person (including the clothes he or she is
wearing) aimed at finding something on that person.

• Search of object – a search of an object (e.g. a briefcase, postal packet, container)
aimed at finding an object.

• Search of premises – a search of a dwelling, office or motor vehicle aimed at
finding something in the suspect’s premises.

• Controlled deliveries – Article 11 of the 1988 United Nations Convention
against Illicit Trafficking Narcotic Drugs and Psychotropic Substances endorses
the investigative technique of controlled delivery at the international level. In
Article 1, subparagraph (g), controlled delivery is defined as ‘the technique
of allowing illicit or suspect consignments of narcotic drugs, psychotropic
substances, [precursor chemicals], or substances substituted for them, to pass out
of, through or into the territory of one or more countries, with the knowledge and
under the supervision of their competent authorities, with a view to identifying
persons involved in the commission of offences established in accordance with
Article 3, paragraph 1 of the Convention’. The majority of controlled deliveries
carried out by MPS officers arise from drug seizures linked to postal packet
interceptions such as checking an object (generally a postal package) containing
drugs with the aim of tracing those involved in trafficking. For example, the post
office intercepts a parcel containing drugs sent to some person and alerts the
authorities who will not stop the delivery but, rather, will keep the addressee
under surveillance to verify whether he is the final receiver or whether other
people are involved.

• Covert purchases – an operation during which undercover police officers pur-
chase drugs from trafficker dealers in order to obtain evidence of their illegal
activity.
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Table 6.1 Generic tactic
typology

Generic tactic Detailed tactic

Search of object Other
Not known

Search of person Stop and search
Other search
Search following arrest
Search in police detention
Strip search in police detention
Intimate search in police detention
Search in prison
Strip search in prison
Intimate search in prison
Not known

Search of premises Warrant
Without warrant
Writ of assistance
Other
Not known

Covert purchase Test purchase operation
Undercover buy
Not known

Controlled delivery Controlled delivery
Clean delivery
Not known

Other Other
Not known

• Other – a general category covering all the tactics that do not fall into any of
the above. For example, where the hospital authorities notify the police in a case
where a drug smuggler is hospitalized as a result of having swallowed packages
containing controlled drugs.

Each of these categories is then further divided into detailed tactics, the compo-
sition of which is given in Table 6.1.

Other items of information that distinguish the individual tactic are:

• The type of officer who carried out the tactic; this would be useful to know, for
example, when assessing the relevance of the activities undertaken by particular
officers, such as security guards at nightclubs.

• The type of legislation enforced by the officer in carrying out the tactic, the time,
the date and place it was carried out, details of any objects or properties involved
and also, in the case of a controlled delivery, information on the person acting as
sender, intermediary and receiver.

Further information concerning the tactic is that related to the suspect’s modus
operandi, that is to say, where and how the drugs were taken, the means of transport
used as well as the reaction to the officer on applying the tactic (attempt to run away,
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violent behaviour or attempt to dump or swallow the drugs). Each tactic is linked to
detailed information concerning the officer who carried it out and the individuals on
whom it was performed.

A police action may consist of one or more tactics applied within the same
operation; this series of tactics that are logically linked to each other are gathered
together to form a single entity, known as tactic sequence (TS), which often matches
a police report. In the tactic sequence, information about the event that triggered the
action is collected (such as information obtained by an informer, anonymous phone
calls, chemical companies notifying suspicious transactions involving chemical
substances, police officers on patrol reporting suspicious behaviour), and the
possible link of the TS to an organized and structured activity is established: an
operation.

A final piece of information linked to the TS, but interesting from a management
point of view, is the classification of the report.

Summing up, the basic element of the database is the TS itself, the listing of
a sequence of tactics; all other database components refer then to this element,
inasmuch as each entity defined in the database is part of a TS.

6.6.3 Seizures

One of the results from adopting a tactic is the seizure of drugs, objects, weapons
and money. All the detailed information regarding the ‘goods’ seized during the
execution of a tactic is stored in this subject area. Given the nature of the database
and its objectives, most of the details concern the seizure of drugs. Each seizure is
linked to a tactic and to one or more persons.

The definition of seizure calls for clarification. In order to maintain the flexibility
of the analysis at a very high level, it has been decided to consider ‘seizure’ in its
most elementary unit possible: that is to say, a single type of drug found in the course
of the same tactic in a single place.

To make this definition clearer, we will give a simple example:
A stops B and searches him; during the search, he finds 10 g of cannabis in B’s

right pocket and another 5 g of cannabis and 2 MDMA tablets under his jacket.
Following the arrest, A takes B to the police station, and a further search leads to
the seizure of another 10 g of cannabis and 30 MDMA tablets. This sequence of
two tactics resulted in two seizures of cannabis and one of MDMA during the first
tactic, and one seizure of cannabis and one of MDMA during the second.

The types of seizures taken into account are as follows:

• Drugs – with regard to drugs, the information taken into account relates to
weight, number of units (e.g. tablets, stones or plants), the price paid and its
form (i.e. powder, liquid); with regard to the classification of the drug type, three
distinct periods of time were considered:

– Primary, a classification made by the police officer at the time of seizure
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Table 6.2 Drugs typology Drug type Drug

Class A Cocaine
Crack
Heroin/diamorphine
MDMA
Opium
Methadone
LSD
Other A
Other MDMA-like drug

Class B Amphetamine
Methylamphetamine
Other B

Class C Cannabis
Benzodiazepine
Other C

Non-controlled drug Ketamine
Other non-controlled drug

Other substance Other substance
NA NA

Multiple drug group
Unspecified Unspecified

– Secondary, a classification made by the police officer with the aid of a
diagnostic kit or under supervision

– Tertiary, a classification carried out at a test laboratory

In the case of a substance tested in a laboratory, further information is stored: its
purity and possible links to other drug seizures.

The classification of the type of drug is summarized in Table 6.2.

• Objects – the only information available is the type of object.
• Money – the amount and type of currency.
• Weapons – manufacturer and model.

6.6.4 Arrests

Another of the results from adopting a tactic is the arrest of one or more of the
persons involved. Information on the arrest procedure, type of crime committed, the
officers who carried it out, the judicial outcome and details of the detention is stored
in this subject area.

The basic element of this subject area is the arrest; in addition to the information
concerning place and time of arrest, information on how it was carried out and on
the violent or non-violent behaviour of the arrested person is now available. Detailed
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information on all police officers involved is provided, such as their role, age, sex,
seniority and rank. Details of the detention also include important information about
probation and about the subject’s behaviour at the time.

The legal outcomes resulting from the arrest make up a relevant part of this
subject area and are divided into two big categories: those which are sorted at the
police station and those, on the other hand, which end up in front of a judge. In the
latter case, detailed information is stored, such as type of court, charges, guilty-or-
not-guilty pleas, sentences and penalties imposed.

Each arrest is linked to a tactic and to a person.

6.6.5 Persons

This subject area contains detailed information concerning people involved in drug-
trafficking crimes (both charged and suspects). The recorded information specifies
personal details (age, sex, nationality, ethnic origin) and the criminal record related
to both drug-trafficking crimes (prior to 2004) and other types of offences. The
person’s criminal record is summarized with information such as number of charges
and convictions and the dates of the first and the latest conviction. This information
is then broken down according to type of offence.

Regarding the person, there is also a possibility of storing information concerning
any past drug addiction of the subject.

6.6.6 Locations/Places

In this subject area, the information needed to geographically reference all the enti-
ties having among their features a location can also be stored. Data include different
geographical localization systems, some of a general type such as GPS (Global
Positioning System), while others are specific to London, with its subdivision into
boroughs.

6.7 The Data Entry

Given the diversity of data sources, the data entry process is complex, both in terms
of data storage support (electronic and paper based) and from the point of view
of logical organization of data (the Crime Report Information System, or CRIS, is
event (crime) oriented, whereas the Police National Computer, or PNC, is person
oriented).
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The process has been organized in three fundamental steps:

• Data retrieval and organization
• Understanding and codification of textual data
• Entering the data into the database

In case of doubt, at any of these stages, the operator always had the possibility of
consulting a supervisor, a Scotland Yard officer experienced in drug trafficking, for
help with the current data entry.

6.7.1 The Data Entry Operators Team (DEOs)

Apart from the manual data entry, the importance of the role of the DEOs in
the CDTD project can be summed up in two activities: the interpretation and
codification of the information available from the sources in free-text format and
the verification of the validity and precision of the data by crossmatching, whenever
possible, other sources containing the same information.

For example, when defining and classifying the tactics used by the police to
fight drug trafficking, the interpretation of the descriptions of a given situation
made by the officer who carried out the tactic assumes a particular relevance. This
interpretation is important to attribute it to one of the tactics codified during the
design stage of the database. In this case, the operator may refer to a text describing
the whole police operation, in the description he or she must identify the individual
tactics and recognize them as belonging to one of the categories used in the
database.

To make the process clearer, while emphasizing the difficulties of the automation
(which shows the need of a human interface), we give here as an example an
imaginary report with its codification:

CRIS Report 1234567/04
Fibonacci is walking down the street carrying a briefcase (containing 30 grams of

cocaine) and a newspaper. After reading the paper he throws it to the ground. Police officer
Newton (in uniform) sees this and approaches him with the intention of cautioning against
littering the street. At the sight of the officer Fibonacci panics, drops the briefcase and starts
running. PC Newton becomes suspicious and stops him. Fibonacci refuses to answer any
questions he is asked and this raises the officer’s suspicions even more, who now thinks
the briefcase may be stolen and therefore decides to inspect its contents. The briefcase is
recovered, PC Newton searches it and finds the cocaine. Fibronacci is then arrested and
charged with possession of cocaine with intent to supply.

From the analysis of this report, the operator creates a new sequence of tactics
[TACTICS SEQUENCE] inserting the CRIS 1234567/04 code; during this event,
no operation [OPERATION] is in progress, and the event which triggered the action
[LEADING INFORMATION] is ‘instigated by the police officer on patrol (e.g.
witness to suspicious action (other crime))’. The tactic is identified by the operator
as a ‘search of object’ [GENERIC TACTIC], ‘stop and search’ [DETAILED
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TACTIC], and the Act of law [ACT] authorizing the officer to carry out the tactic is
‘Section 1 of the Police and Criminal Evidence Act 1984’. The tactic is followed by
a seizure of drugs [Drug Seizure], namely, 30 g of cocaine [DRUG], a Class A drug
[DRUG TYPE]. The suspect is arrested [ARREST] for the offence of ‘possession
with intent to supply’ [OFFENCE].

Fibonacci is then searched and the PC finds a British passport in the name of Alice Turing.
However, the photograph has been carefully removed so Fibonacci is then arrested on
suspicion of stealing the passport.

The arrest is followed by another tactic [TACTIC]: ‘search of person’ [GENERIC
TACTIC] and ‘search after arrest’ [DETAILED TACTIC], and the Act of law [ACT]
to be applied is ‘Section 32 (2) (a) (ii) of the Police and Criminal Evidence Act
1984’. A stolen passport [PROPERTY] is seized [PROPERTY SEIZURE]. The
subject is arrested [ARREST] with a theft allegation [OFFENCE].

6.7.2 Textual Data Preprocessing

As already mentioned, when entering data, it is particularly important that the data
entry operators ‘translate’ the free text in the police reports and the test laboratory
reports into structured information that can be used for subsequent data processing.
In view of this, the DEOs were given complete training, ranging from aspects of
law and police techniques allowing them to understand the events described in the
texts and to classify them correctly, to basic knowledge of data processing and
analysis.

The database aspects for which this type of operation has proved to be indispens-
able are practically the whole of the part dealing with police tactics, the codification
of which was devised in the course of the project and which has proved to be efficient
and exhaustive (in fact, in only 6% of the cases has a tactic had to be defined as
‘Other’); in this case, the data source is the CRIS text report, while in the case of
tactic sequences which are part of operations, the data source is the reports of the
operation itself.

The detailed information regarding the results of drug tests carried out by the
Forensic Science Service (FSS) is provided in a free-text format with quantitative
information not systematically distributed within the text, and this does not allow
for an easy identification of useful information.

6.7.3 The Data Quality: Crossing Different Data Sources

Manual data entry has also allowed a control on the quality of the data themselves;
and even in the case of data already present on the sources in a structured form,
the DEOs carried out cross-checks wherever the data were present in more than one
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Table 6.3 Tactic sequence
frequency x year

Year Month Frequency

2003 September 3

2003 October 5

2003 November 18

2003 December 38

2004 January 275

2004 February 284

2004 March 15

2004 April 4

2004 May 8

2004 June 24

2004 July 5

2004 August 34

2004 September 53

2004 October 95

2004 November 407

2004 December 286

2005 January 3

2005 February 1

source, by way of verification. For example, the information on a person’s place of
birth appears both in the CRIS and in the PNC: if they match, this information is
entered directly; otherwise, the custody database is consulted. In the event of two
sources having the same value, this value is entered; in the event of three discordant
sources, the ‘not known’ value is entered.

Although this check slows down the data entry process, it ensures a high quality
of the data entered and, as opposed to the extraction of data from free text, in the
future, it will be possible to automate it.

6.8 The Database Data

6.8.1 Types of Data and Data Frequency

The information on drug trafficking in London relate to the year 2004. The total
number of tactic sequences gathered is 1,558, and their temporary distribution is
shown in Table 6.3.

It is evident from Table 6.3 that the data sampling throughout the year is
not uniform. In particular, a clear concentration during the first 2 and the last
2 months of the year can be noticed, these being the only months for which the data
collection and entry have been completed. This choice, imposed by the project’s
time restrictions which did not allow for a complete entry of all of the data for the
year 2004, was taken for two reasons: on the one hand, it is preferable to complete
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Table 6.4 Frequency of
number of tactics Number of tactics Frequency

1 894

2 293

3 197

4 93

5 48

6 27

7 16

8 4

9 4

10 0

11 0

12 3
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Fig. 6.1 Frequency of number of tactics

4 months out of 12 as opposed to 30% for each month in order to get a complete view
of a given time period; on the other hand, it was difficult to establish an adequate
random sampling strategy. The records distributed throughout the year have been
entered to complete, for example, some logical sequences such as operations and to
collect some particularly interesting tactic types such as the test purchase.

The total number of tactics is 3,061, and they are distributed within the sequences
as shown in Table 6.4 and in Fig. 6.1.

The total number of arrests stored in the database, and therefore involved in the
tactics, is 2,739, covering 1,523 people out of a total of 1,669 people entered in the
database. The seizures of drugs as a result of the activities recorded on the CDTD
are 2,873; the MPS Metropolitan Police officers involved in some form with tactics
and arrests are 2,502.
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Table 6.5 Persons –
summary of missing data

Persons Missing data Percentage Classes

Sex 22 1:32% I
Birthdate 64 3:83% I
Birthplace 18 1:08% I
Trafficking level 1;317 78:91% F
Education 1;628 97:54% I
Nationality 231 13:84% I
Ethnicity 56 3:36% I
Self-ethnicity 87 5:21% I

Table 6.6 Drugs – summary
of missing data

Drug seizures Missing data Percentage Classes

Weight 1;414 49.22% I,C
Price paid 2;815 97.98% E
Number 2;592 90.22% I
Primary analysis 110 3.83% I
Secondary analysis 2;857 99.44% I
Tertiary analysis 847 29.48% I

Table 6.7 Tactics –
summary of missing data

Tactics Missing data Percentage Classes

Sequence number 249 8.13% F
Detailed tactics 7 0.23% F
Acts 29 0.95% I,F
Officers 0 0.00%

6.8.2 Typology and Frequency of Missing Data

Among the particularly relevant data, where missing values are very frequent, the
subject area which stands out the most is the one concerning seizure of drugs where
the information on the price paid is available only in 2% of the cases. In this specific
case, the lack of information is justified by the very nature of the data: in fact, the
price paid can only be known if the purchase is made by a policeman, and therefore
the values must in this case be left out of the equation. Conversely, in the same
subject area, the information on weight, which shows a 50% of missing data, cannot
be justified in the same way. The reason for the lack of data can be divided into
four categories: E – endogenous (due to the same nature of the data, as in the case
of price), I – unavailability (the data were missing at source), C – excessive cost
(data were available, but the cost involving its retrieval in terms of resources was
excessive given the project’s timeframe), and F – lack of clarity (the operator’s
level of inference in retrieving the data is excessive and does not guarantee
credibility).

For a general view on the situation of the missing data on the database, we
provide tables (Tables 6.5, 6.6, 6.7, and 6.8) related to the situations for the most
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Table 6.8 Arrests –
summary of missing data

Arrests Missing data Percentage Classes

Offence 9 0:33% I
Place of offence 12 0:44% I
Committed on from 14 0:51% I
Arrest date 22 0:80% I
Place of arrest 23 0:84% I
Investigating officer 1 171 6:24% I
Arrived at station 87 3:18% I
Violent on arrest 2 0:07% I
Arrest mode 651 23:77% I
Arresting officer 409 14:93% I
Officer I case 1;169 42:68% I

relevant data in the five subject areas in which the database has been divided, adding
a classification of the reasons for missing data and providing, where necessary, a
more exhaustive analysis.

6.9 Automatic Inputting of New Data

For some of the data that were manually entered, being already electronically stored
in a structured form, we can envisage an automatic loading procedure that would
speed up the entering of new records. For this type of improvement, the most reliable
subject area is the one linked to personal information since the main source, if not
the only one, is the PNC (Police National Computer) and the quality of data is such
that it does not require human intervention.

6.9.1 The Database Final Structure

6.9.1.1 Tactic Subject Area

Most of the information that feeds this subject area is from CRIS (Crime Report
Investigation System). CRIS reports store information related to an arrest, with a
description of the action in free text. The DEOs (data entry operators) will translate
(codify) this free text in structured fields (tactics, acts of law, tools used, types of
officers involved, etc.) and type in the CDTD to allow the following analysis. Every
CRIS report about drug-trafficking offences will be translated (codified) as a tactic
sequence in the CDTD, and each of the tactics described in the report is stored in
the tactic table (Fig. 6.2, Table 6.9 and Fig. 6.3).
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Fig. 6.2 The logic graph of the tactics
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Table 6.9 Tactics description

Entity name Description

Acts*1 Laws used by officers to apply the tactic
Agents*1 Type of officer performing the tactic
AgentTypes*1 Officer classes
CrisReferences Reference to another CRIS report linked to this one
DetailedTactics*1 Tactic used
DetailedTactics Acts Agents Many-to-many relationship table N:N:N
DetectionDevices*1 Devices used in tactic
Tactic Premises Many-to-many relationship table N:N
From/To Source and destination of controlled delivery
GenericTactics*1 Tactic classes
LeadingInformations*1 Information that trigger the tactic sequence
Objects*1 Objects searched in tactic
Officers Tactics Many-to-many relationship table N:N (with officers entity in

arrest subject area) – officers involved in tactic
Operations Some tactics are performed during an operation
Premises*1 Premises searched in tactic
Tactics Objects Many-to-many relationship table N:N
Tactics Persons Many-to-many relationship table N:N (with Persons entity in

Person subject area) – Persons involved in tactic
DetectionDevices Tactics Many-to-many relationship table N:N
TacticSequences Sequence of linked tactics

*1 – Tables with closed lists

Legenda

Seizures: each tactic can be followed by one or more seizures.
Persons: each tactic involves one or more persons (targets of the tactic).
Arrests: [Arrests entity] each tactic can be followed by the arrest of offenders –

[Officer entity] each tactic is performed by one or more policemen.
Locations: geographical information about the place where tactic was performed

and source and destination of controlled delivery packets.

6.9.1.2 Seizure Subject Area

Information that feeds this subject area is obtained from the CRIS report and the
laboratory analysis report (see Fig. 6.4 and Table 6.10).

6.9.1.3 Arrest Subject Area

Information that feeds this subject area is from CRIS Report, Custody Database and
from PNC (Fig. 6.5 and Table 6.11).
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Fig. 6.3 Tactics Relationships with other entities
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Fig. 6.4 The logic graph of seizures

6.9.1.4 Person Subject Area

Information that feeds this subject area is from PNC (Fig. 6.6 and Table 6.12).

Appendix

Notices10-06 Item 2 – The Metropolitan Police Service

The Metropolitan Police Service’s (MPS) Covert Drug Purchases Database: Monitoring the
price and purity of heroin, cocaine and other controlled drugs

(CR 216/04/17 and DP7/05/1)
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Table 6.10 Seizures typology

Entity name Description

Cashes Money seized
ChemicalCategories*1 Type of chemicals used to produce drugs
Chemicals*1 Chemicals used to produce drugs
ChemicalSeizures Chemicals seized
ChemicalSources*1 Chemicals producer
ClandestineLaboratories Drug production laboratories discovered
ConcealmentMethods*1 Methods used to hide drug
Currencies*1 Currencies
DrugForms*1 Form of the seized drug (tablets, powder, liquid, etc.)
DrugProfiles Information about drug purity
Drugs*1 Drug types
Drugs Forms Many-to-many relationship table N:N
DrugSeizures Drug seized
DrugTypes*1 Drug classes
EntryPoints*1 Points where the seized drug enters into the UK
Firearms Firearms seized
ForensicScienceLaboratories*1 Laboratory that performed the analysis on the seizure
LinkedProfiles Other laboratory references linked to this
ProducedDrugs*1 Type of drug produced in the laboratory
ProductionMethods*1 Method of drug production
ProductionMethods Drugs Many-to-many relationship table N:N
Properties*1 Properties seized
Seizures Seizure
Seizures Properties Many-to-many relationship table N:N
TransportModes*1 Methods used to transport drugs

*1 – Tables with closed lists

Introduction

The purpose of this Notice is to set out the Specialist Crime Directorate’s (SCD)
criteria and procedure for monitoring the price and purity of heroin (crude diamor-
phine), cocaine (including crack) and other controlled drugs. Analyses of these
data will:

• improve the understanding by MPS of the price and purity of specific drugs
across London

• support Operation Paramount – a national drug price index that is collated by
the National Criminal Intelligence Service and will be incorporated into the
functions of the new Serious and Organised Crime Agency

• help MPS to have a greater understanding of drugs markets
• help the SCD Central Drug Trafficking Database (CDTD) Project team to

monitor and evaluate the effectiveness of the tactic of covert drug purchases as a
means for disrupting those organised crime networks involved in the trafficking
of specific drugs

• assist the courts in determining appropriate sentences
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Fig. 6.5 The logic graph of the arrests



114 G. Monaghan and S. Terzi

Table 6.11 Arrests typology

Entity name Description

ArrestModes*1 How person was arrested
Arrests Details on arrest
Arrests WarningSignals Many-to-many relationship table N:N
CaseDisposals Legal consequences of the arrest
Charges Details on offence charged to the arrested
CourtDisposals Case disposal in front of a court
Courts*1 List of courts
CourtTypes*1 Court types
Detentions Details on detentions
MainClass Classification of the offence committed
NonProsecutionCaseDisposals*1 List of possible case disposals in police station
Offences*1 Offence committed
OfficerDuties*1 Type of officer activity during the arrest
OfficerRanks*1 Officer rank
Officers Details on officers
PoliceDisposals Case disposal in police station
PoliceStations Police station
Sentences Sentence in front of the court
SentenceTypes*1 Sentence types

*1 – Tables with closed lists

Fig. 6.6 The logic graph of the persons
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Table 6.12 Persons typology

Entity name Description

Addictions Drug addiction
AliasNames Known alias
Ethnicities*1 Ethnicity estimated by officer
Nationalities*1 Nationality
Occupations Occupation
PastCaseDisposals Drug offence committed before 2004 and other offences (not drugs)
Persons Personal information
Persons TattooedBodyParts Many-to-many relationship table N:N
Religions*1 Religion
SelfEthnicitiesGroup*1 Self-defined ethnicity
TattooedBodyParts*1 Tattoos
TraffickingLevels*1 Type of drug trafficking (local, international : : : )
Warnings Persons Many-to-many relationship table N:N
WarningSignals*1 Warning signals (addicted, violent, tried to commit suicide, etc.)

*1 – Tables with closed lists

The results of this research will be incorporated into the National Intelligence
Model (NIM) strategic and tactical assessments produced by the CDTD Project
team, and made available to MPS staff. The research findings will also be available
to statutory and non-statutory agencies working with the MPS.

Background

Drug price and purity information provides important intelligence. For intelligence
to have true value, it must come from a reliable source and be as accurate as possible.
As prices and purities vary considerably, the presentation of aggregate data must
use the best statistical techniques available. Research has shown that information
from police test purchase operations is the most reliable and accurate data source
available. A methodology to collate and present this data has been developed after
a pilot project in 2004. The procedure to be followed is outlined below, which has
been agreed with Kevin O’Leary, Detective Chief Inspector of SCD11(10) Covert
Operations.

Recording Price and Purity of Specified Controlled Drugs:
Procedure

Details of all (starting from Sunday 1 January 2006) covert drug purchases will
be recorded on the Covert Drug Purchase (CDP) form. Blank CDP forms can
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be found on the MPS Forms intranet site (form number 196). An example of a
completed CPD form is at Annex 1 of this Notice. The responsibility for completing
the CDP form will rest with the police officer deputed to act as the Exhibits Officer
for the duration of the Test Purchase Operation (TPO) or Undercover Buy Operation
(UBO). The form is designed to be completed on screen so that it can be sent by e-
mail to the Drugs Directorate (SCD3-CDP) for analysis.

One CDP form will be completed for each transaction. So, for example, in the
case where a police officer carries out two test purchases from the same offender,
at the same location in the course of one day, then the CDP form will be completed
twice. In cases where the police officer buys two drugs (say crack and heroin) at
the same time and from the same offender, then only one CDP form will be used,
but the Exhibits Officer must record the details of both drugs on the form. When
completing CDP form, the Exhibits Officer should make every effort to ensure that
information is entered in the fields relating to drug type(s), amount(s), price(s),
police exhibit reference(s) and exhibit bag number(s), weight(s) and purity, and
that the details recorded match those on the laboratory form 1 and the witness
statement provided by the forensic scientist. It is accepted that, in many cases, the
police officers involved in the TPO or UBO will not know the identity of the person
selling the drug. In these cases, the Exhibits Officer will not be able to complete the
fields relating to the offender (for example name, age, date of birth, place of birth,
nationality and CRO/Police National Computer number).

As soon as the result of the forensic analysis is known, the relevant fields on the
CDP form will be completed. The Exhibits Officer will then send the completed
CDP form to the group e-mail address SCD3-CDP using the MPS AWARE system.

The Senior Investigating Officer in charge of the TPO or UBO is responsible for
ensuring that there is no undue delay in the completion of CPD form.

On receipt, the CPD form will be reviewed. If any errors or discrepancies are
found the Exhibits Officer will be contacted by return e-mail.

The information relating to prices, purity, drug type and so on will be scrutinised,
validated and entered onto the SCD Covert Drug Purchase Database. It will be
analysed and the results will be incorporated into the NIM strategic and tactical
assessments produced by the CDTD Project team.

Definitions

Covert Drug Purchase

For the purpose of this Notice, the term ‘covert drug purchase’ means:

• the purchase of any controlled drug
• the purchase of any non-controlled drug (for example ephedrine, caffeine,

aspirin)
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• the purchase of any innocuous substance (for example chalk, soap, plaster)
• by a Test Purchase Officer or an Undercover Officer whilst acting as such.

Controlled Drug

The term ‘controlled drug’ means any drug mentioned in Schedule 2, Part I, II or III
to the Misuse of Drugs Act 1971.

Application

This Notice is of particular relevance to:

• Undercover Officers
• Test Purchase Officers
• Officers designated as Exhibits Officer in operations involving the covert pur-

chasing of controlled drugs
• Senior Officers planning, supervising and managing operations involving the

covert purchases of controlled drugs
• Criminal Justice Unit Managers and their deputies
• Staff in the Drugs Directorate
• Staff in the SCD11 (Covert Policing Unit)

For more information regarding this Notice please contact Paul Richards,
Inspector on extension 64054 or by e-mail.
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Chapter 7
Supervised Artificial Neural Networks:
Backpropagation Neural Networks

Massimo Buscema

7.1 Introduction

Backpropagation (BP) refers to a broad family of artificial neural networks (ANNs),
whose architecture consists of different interconnected layers (Werbos 1974;
Rumelhart et al. 1986; Fahlman 1988; Jacobs 1988; Lapedes and Farber 1987;
Tawel 1989; Minai and Williams 1990; Weigend et al. 1991; Chauvin and Rumelhart
1995). The BP ANNs represent a kind of ANN whose learning algorithm is based
on the deepest-descent technique. If provided with an appropriate number of hidden
units, they will also be able to minimize the error of nonlinear functions of high
complexity. Theoretically, a BP provided with a simple layer of hidden units is
sufficient to map any function y D f (x).

Basically, it is often necessary to provide these ANNs with at least two layers of
hidden units when the function to compute is particularly complex or when the data
chosen to train the BP are not particularly reliable and a level filter is necessary for
the input features.

The BP are networks whose learning function tends to “distribute itself” on the
connections because of the specific correction algorithm of the weights used. In the
case of BP, this means that these units, provided with at least a layer of hidden units,
tend to distribute among themselves the codification of each feature of the input
vector. This makes learning more compact and efficient, but it is more complex to
know the “reasoning” which brings a BP to answer in a certain way in the testing
process. In brief, it is difficult to explicate the implicit knowledge that these ANNs
acquire in the training process.

A second theoretical and operative difficulty that BP poses concerns the minimum
number of hidden units that are necessary in order for these ANNs to compute a
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function. In fact, it is known that if the function is not linear, at least one layer
of hidden units will be necessary. However, at the moment, a method of how to
exactly state the minimum number of hidden units needed to compute a nonlinear
function is unknown. In these situations, the work is based on experience and on
some heuristics.

Experience advises us to use a minimum number of hidden units in a first-
time training of an ANN. If the training succeeds, an analysis of the sensitivity
will normally allow us to understand the singularity number that each input node
determines on the output, and consequently it will be able to deduce the degree of
freedom needed by the ANN to resolve the equation and then to express these as
hidden units.

This procedure is not guaranteed; during the training process, the BP can
become trapped in local minima because of the relation between the morphological
complexity of the hyperparaboloid characterizing the function and the weight values
that are randomly set and placed before the training.

The dilemma of BP is that for a prior, unknown minimum number of hidden
units, what numbers are useful to compute a function. If too many are created, then
during some forms of training, the BP can create a condition of overfitting, causing
a worsening of its generalization capacities in the testing process. If an insufficient
number are created, the BP can have difficulties in learning either because the
function is too complex or because the BP randomly falls into a local minimum.

The BP’s family includes both feedforward ANN and feedback ANN (recurrent
networks). In this section, we are going to examine only feedforward BP ANN, an
understanding of which is essential prior to the study of feedback BP.

7.2 Standard Backpropagation

7.2.1 Theoretical Principles

A system functioning as feedforward backpropagation (from now on, BP) is
theoretically based on the following principles:

(a) Through a series of trials, the system creates the relations between its units with
respect to multiple tasks.

(b) After having learned the type of relations that are appropriate among its
units, the system is able to exhibit through its structure the type of internal
representation it has stabilized for the various tasks that it had to learn in order
to carry out their multiplicity.

(c) The system can “easily” learn other tasks which are similar to the ones it has
already learned, and then it can operate “generally.”

(d) The relations becoming stabilized among the system’s units during the learning
of several tasks are the only memory of the system itself.
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(e) Many of the system’s units are of a discriminant or subconceptual type. They
can belong to three logical types:

• Input units: the sensors through which the system receives the surrounding
area’s stimulation.

• Output units: the units through which the system expresses its behaviors as
an interpretation of the received inputs.

• Hidden units: they are the internal units of the network’s system. They receive
the input either from the other hidden units or from the input units. Their
behavior works as output for other hidden units or for the output units. They
are the units providing the internal representation, through which the system
interprets the received input, with respect to the output that it will produce.

(f) The relations between the system units are uni-oriented; that is, by activating
itself in a certain way, unit A activates unit B with respect to the strength of
their connection, but not vice versa.

This means that in BP, relations are fuzzy rules, for example,
if A activates itself in the manner of X fA’s activation valueg,
then B will activate itself in the manner of X • W fwhere W is the strength of the
connection between A and Bg.

Since A’s activation in an X way is also the outcome of a similar rule, unless A
is an input unit, we can say that a BP is a continuously modifying cascade of fuzzy
rules. Briefly, the power of oriented connection between one unit and another is the
fuzzy rule by which one goes from the first unit to the second one. This strength of
connection among the BP units is called weight, and it is indicated by wij, where i is
the starting unit’s identifier and j is the outcome unit’s identifier:

w
ui uj

The weights among the units of a BP system are continuously modified in
relation to the task that the BP has to carry out. In this sense, it is legitimate to say
that the BP continuously adjusts its rules according to the experiences they carry
out. This modification of weights continues until the BP individuates the weights,
allowing them to handle the tasks it has learned up until that moment in the most
appropriate way.

7.2.2 Functioning and Learning

Given these premises, it is better to thoroughly explain the functioning of a BP.
Let us imagine a very simple BP in which we have two input units (I1, I2), two

hidden units (H1, H2), and two output units (O1, O2). Therefore, it is a BP made up
of three layers (Fig. 7.1).
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Fig. 7.1 The BP topology

Furthermore, each layer level is connected to all units of the following layer
through weights. The input units are connected to the hidden units through the
weights wI,H, practically, w1,1/w1,2/w2,1/w2,2. Similarly, the hidden units are con-
nected to the output units through the weights wH,O, practically, w3,5/w3,6/w4,5/w4,6.

In order to function, a BP needs to follow several steps. The first one consists of
activation conditions:

1. The BP must be subjected to a certain type of input for at least a certain length
of time.

2. It is necessary to imagine that the output units tend toward at least a certain type
of objective, called the target, for the entire time the BP is subjected to a certain
type of input.

3. It is necessary that the BP shows a value, even a random one, at the beginning of
the relationship of connection among all its units, that is, its weights.

In brief, the activation connections suggest that the BP must have in the initial
phase:

(a) At least one input
(b) At least one target to learn with respect to that input
(c) Random weights among its units

We emphasize that the BP is necessary in activation prequalification. We will
express both values of the input units and those of the target units with numbers
ranging between 0 and 1. We will use a similar criterion in order to stabilize the
random weights among the different units (Fig. 7.2).

For example, we have planned a BP system with the following task: “giving an
input of strength 1, determine which weights the system must possess in order to
provide an answer for what should be the input for an output of strength 0,1.”

In order to function and to resolve this task, it is necessary to explain the
functioning conditions of a BP:

1. An algorithm able to calculate the activation value of each unit, except for the
input layer ones, according to the activation value of the units connected to it
and also according to the strength of connection through which these units are
connected to it. We call this algorithm the Forward Algorithm.
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w1,1 : 0.01

w1,2 : 0.00

w2,1  : 0.34

w2,2  : 0.03

w4,5  : 0.54

w4,6  : 0.20

w3,5 : 0.36

w3,6 : 0.22

I1=1

H1

O1 O2

H2

I2=1

Target 1:0 Target 2:1

Fig. 7.2 The BP trained

2. An algorithm able to gradually correct the weights among the different units, ac-
cording to the difference between the output produced by the forward algorithm
and the desired target. We call this algorithm the Back Propagation.

These functioning conditions presume that the BP carries out several trials in
order to achieve an output that is more similar to the desired target. At each trial,
the BP corrects its weights in order to bring the following trial as close as possible
to the aim imposed from the outside.

We refer to an iteration of the Forward Algorithm and the consequent Back
Propagation Algorithm as a cycle. We call the number of cycles needed, so that
ANN will have experienced all couples of input and target at least one time in order
to understand them an epoch.

The epochs constitute the lifetime of the BP. After a certain number of epochs
during which the BP has been subjected to the same input and oriented toward the
same target, it is expected to have selected the most adequate weights to attain this
objective. It is also expected that the value of these last weights and of the hidden
units will provide a good internal representation, at a subconceptual level, of the task
that the BP has learned to carry out. This occurs if the forward and the correction
algorithms are corrected.

Let us then attempt to define the Forward Algorithm.
The basic rule used to calculate the activation value of a unit with respect to

other units connected to it with a strength wji is a function of the weighted sum of
the inputs:

uj D f

 
X

i

ui � wj i

!

D f .Netj / D 1

1 C e�Netj
; (7.1)

where Netj D net input to the j level unit.
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One must add to this equation the threshold of the unit, described as the
inclination of the unit to activate or inhibit itself.

This means that

uj D f .Netj / D 1

1 C e�.
P

.i/wj i �ui C�j /
(7.1a)

where � j is the bias of unit uj, the degree of sensitivity. The unit uj is used as a
response to the perturbation it receives from the net input. The bias is the opposite
of the threshold, and it behaves as a weight generated by a fixed input of unitary
value.

Equation (7.1a) represents the forward algorithm of BPs, assuming the sigmoidal
function as default. It is necessary to calculate the dynamic of the backpropagation
or correction algorithm.

The mathematical basis of this algorithm was already individuated by Rosemblatt
in 1956 through the so-called Delta Rule, a procedure that allows for the correction
of excess or deficit in the weights between the network units, basing itself on the
difference between the actual output and the desired target.

Nevertheless, the delta rule allows adjustments to only those weights connecting
the output units with those belonging to the immediately underlying layer. It does
not allow one to know, in a three-layer network, how the weights connecting the
input units with the hidden units should be modified at each cycle.

We shall in detail examine the delta rule.
The coefficient of error in this procedure is calculated by considering the

difference between the actual output and the desired one (the target value) and
relating this difference to the derivative between the activation state of the actual
output and the net input of that output.

Therefore, if @uj

@Netj
D uj � .1 � uj /, then �outj (i.e., the error coefficient) will be

�outj D .tj � uj / � uj � .1 � uj /; (7.2)

where tj D desired output (target), uj D actual output, and uj • (1–uj) D derivative
between actual output and net input of unit uj.

This is based on the fact that

�wj i D � @Ep

@wj i

I (7.3)

(a) Ep D 1
2

X

k

.tpk � upk/2 D 1
2

X

k

.tpk � fk.Netpk//2

D 1
2

X

k

.tpk � fk.
X

j

wkj � upj C �k//;

where E D error, p D model, tk D target, uk D output.
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And then

(b)
@.Netpk/

@wkj
D
 

@
@wkj

�P
j

wkj � upj C �k

!

D upj I

(c) � @Ep

@wkj
D .tpk � upk/ � f

0

k .Netpk/ � upj :

At this point, one can say that the quantity of value to be added or subtracted
from weight wji will be decided by value outj, with respect to the activation state of
unit ui, namely, the activation with which uj is connected to weight wji and it is in
relation to the coefficient r. This is the correction rate to adopt (when r D 1, then
the value of the adding or subtracting from weight wji is the one calculated by the
whole procedure).

Equation (7.3) can be considered as follows:

�wj i D r � �outj � uj : (7.4)

The value �wji can be both negative and positive. It represents the “quantum
amount” to be added or subtracted from the previous value of weight wji.

Then,

wj i.nC1/ D wj i.n/ C �wj i : (7.5)

Nevertheless, Eq. (7.2) presupposes that each arriving unit of weight has an actual
value which is comparable with an ideal value toward which it should tend (target).
This presupposition, however, is valid only for the weights connecting a unit layer
with the layer of the output units.

Therefore, the correction procedure discussed up to now relates only to BP
provided with two layers (actually one layer if we think that the input unit cannot
be considered as a layer of the network). Then, the Delta Rule represented by Eq.
(7.2) permits the weight correction only for very limited networks. For multilayer
BP, those with one or more layers of hidden units, the Delta Rule is insufficient as it
is, for example:

In Fig. 7.3, it is evident that the correction of weights wik is not possible, although
the weights wji can be adjusted through the Delta Rule because the value the units uj

should assume (tj) is known. This can happen because there does not exist a value
of ideal reference for the units ui. In fact, the value that they are going to assume is
one of the results of BP’s learning work and therefore it cannot be constrained.

Rumelhart et al. (1986) and others solve this problem through a generalization
of the traditional Delta Rule. The generalization of the Delta Rule consists of
modifying Eq. (7.2) in those cases where the weight to modify is not connected
to an output unit. Therefore, instead of computing the difference between the actual
output and the desired one, a report summation will be computed between the error
coefficient outj, previously calculated, and the weights which that coefficient was
referring to:

�hiddeni D ui � .1 � ui / �
X

�outj � wj i (7.3a)
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Fig. 7.3 Multilayer ANNs
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and, therefore,

�wik D r � �hiddeni � uk I (7.4a)

wik.nC1/ D wik.n/ C �wik : (7.5a)

In fact, starting from Eq. (a), we see that

.d/
@Ep

@wkj

D 1
2

X

k

@

@wkj

� .tpk � upk/

D �
X

k

.tpk � upk/ � fk.Netpk/ � wkj � fj .Netpj / � upi

where wpi D hidden-inputs weights and wkj D hidden-outputs weights.
Through the generalized Delta Rule, it is possible to create a backpropagation

algorithm able to correct the weights of any BP’s layer at every cycle.
We can now synthesize the two algorithms through which the BP would be able

to work:

(a) Forward Algorithm

1. Netj D P

i

ui � wj i C �j

2. uj D f .Netj /

(b) Backpropagation Algorithm
(b1) Correction calculation of the weights connected to the output:

1. �outj D .tj � uj / � f 0.uj /

2. �wj i D r � �outj � ui
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(b2) Correction calculation of the weights not connected to the output:

1. �hiddeni D f 0.ui / �P
j

�outj � wj i

2. �wik D r � �hiddeni � uk

(b3) Putting into effect the corrections on the weights:

1. wj i.nC1/ D wj i.n/ C �wj i

2. wik.nC1/ D wik.n/ C �wik

At this point, both the minimum conditions of activation and those of functioning,
or learning for BPs, have been explained.

7.2.3 The Self-Programming Bias

Both conceptually and mathematically, the bias is the unit’s threshold. Nevertheless,
from an arithmetical point of view, it is expressed through a sign value that is
opposite to that of a threshold. For example, if unit ui has a threshold of �2.0,
then its bias will be C2.0. Conceptually, the bias is the inclination of a unit:

Threshold = -2.0
wik = +2.0

ui ui Input k

=

Then,

ui D f .Neti / D f

0

@
NX

j D1

uj � wij C Biasi

1

A ; (7.6)

where Biasi D �thresholdi.
Considered the bias’ structural and functional nature, its dynamic for each

network unit can be considered similar to that of any weight. Therefore, the weights’
matrix is liable to the normal learning algorithm to which it is subjected.

This means that every BP can be provided with dynamic threshold’s units. Each
unit will dynamically learn its threshold in relation to the kind of experiences the
whole ANN is carrying out.

This means that if the updating of the weights through the backpropagation is
given by the following equations:

�outi D .ti � ui / � f 0.ui / (7.7)

wij.nC1/ D wij.n/ C �outi � uj � Rate (7.8)
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for the output units, and

�hiddenj D f 0.uj / �
NX

iD1

�outi � wij (7.9)

wjk.nC1/ D wjk.n/ C �hiddenj � uk � Rate (7.10)

for hidden units, then Eqs. (7.11) and (7.12) will determine the bias update of the
output layer and the one of any hidden layer:

Biasi.nC1/ D Biasi.n/ C �outi � Rate (7.11)

Biasj.nC1/ D Biasj.n/ C �hiddenj � Rate (7.12)

It is correct to consider the bias of a unit as being a dynamic threshold subject to
learning. From an algebraic point of view, it can be formulated as a dynamic weight
generated from a fixed input of value 1 toward the unit.

Therefore, the bias represents the historical and individual sensitivity of each
unit of ANN to the experiences of the whole network.

The self-programming bias has considerably increased the learning rapidity of
BP ANNs, and of course it has decreased the possibility of entrapment of the
network into local minima.

7.2.4 The Momentum

Experience has shown that the more the learning coefficients of Eqs. (7.7) and (7.8)
are reduced, the less likely the probability of the network becoming stuck in local
minima. Simultaneously, the smaller the learning coefficient, the correspondingly
longer time it will take the network to learn. An attempt has been made to
resolve this dilemma through the introduction of a new parameter, the momentum
(McClelland and Rumelhart 1988). The momentum is a parameter through which
the network reinforces the change of each of its connections in the descent’s general
direction of the paraboloid, which has already emerged during its previous updating
process. The reason for this is the eventual deleting contingent upon oscillations
produced by the steepest descent algorithm.

With the introduction of the momentum, Eq. (7.7) becomes

�outi.n/ D .ti � ui / � f 0.ui / (7.7a)

Momentumij.n/ D �wij.n�1/ � k 0 < k 6 1 (7.7b)
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�wij.n/ D Momentumij.n/ C �outi.n/ � uj � Rate; (7.7c)

where ratei is the learning rate of the ith level unit.
The introduction of the momentum also allows the ANN learning to speed up

by using rather small learning coefficients. The experience of many authors recom-
mends a value of k D 0.9, with a learning coefficient, rate D 0.6. Nevertheless, the
major conclusion emerging from this research seems to offer other suggestions:

(a) It is not reasonable to suggest values for the momentum without knowing the
problem’s typology which the ANN must resolve.

(b) In this scientific field, it is good to be suspicious of every equation from which
the researcher expects decisive constants: either they are useful only for certain
experiments or they hide further relations that must be suitably explained.

Inserting arbitrary constants in these models is equivalent in a sense to adding
symbolic rules to subsymbolic procedures. Moreover, the momentum does not
eliminate the theoretical possibility that the ANN runs into local minima.

7.2.5 The Transfer Equations

Until now, the transfer function implicitly used in the previous equations has been
the sigmoidal function.

Nevertheless, Eq. (7.6) was not specific on this matter:

ui D f .Neti / D f

0

@
NX

j D1

uj � wij C Biasi

1

A

:

(7.6)

If we mean that Net is the net input to a unit, and that f ( ) is the equation of the
sigmoid, Eq. (7.6) will be rewritten in the following way:

ui D 1

1 C e�Neti
0 6 ui 6 1; e D 2:718281828459; (7.13)

Through this equation, the activation value of ui varies between 0 and 1 according
to a semilinear function which has its flex point as 0.5. In fact, if Neti D 0, then
ui D 0.5. Therefore, its derivative will be f 0.Neti / D ui � .1 � ui /. This function
is the most diffused in backpropagation ANNs, and some originators have tried to
make it more complete through the introduction of other parameters, for example,

ui D
h
1 C e

�Neti
T

i�1

(7.13a)

where T is a parameter called temperature (see below).
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For T D 0, the function is reduced to an exit degree of 1 or 0, while with the
growing of T, the slope of the sigmoidal increases (for a closer examination, see
below).

A second variation of Eq. (7.13) is the following:

ui D coef

coef C e�Neti
(7.13b)

where for coef > 1, the unit sensitivity to the net input value increases, while for
coef < 1, this sensitivity decreases.

This equation can be useful in order to avoid a problem that sometimes occurs
within the hidden units in that all the units are overloaded with values that tend
toward 0.0 or 1.0; the hidden unit layer is thus unable to codify the differences
among the different input models (for a closer examination, see Buscema 1994)

A second transfer equation which is often used is the hyperbolic tangent:

ui D eNeti � e�Neti

eNeti C e�Neti
� 1 6 ui 6 C1 (7.14)

In this case, the values of ui vary between �1 and C1; therefore, at the moment
of the weights’ correction, the derivative of this function will have to be .1:0 C ui / �
.1:0 � ui /, replacing the derivative of the sigmoidal function ui � .1 � ui /.

The hyperbolic tangent equation is not as soft as the sigmoidal function. This
means it can be less useful in solving problems in which a fuzzy target is expected
or in cases in which input vectors have no determinant differences.

If it is possible not to permit the ANN to fall into a local minima and strong
corrections are desired for values near to the limits of �1 and C1, the hyperbolic
tangent is preferable to the sigmoid for its learning velocity in binary problems
(where the input and target vectors are laces of 0 and 1) is stronger.

A transfer equation exists that presents similar advantages but with less impre-
cision: it is the archtangent equation, and it has been shown to be efficient without
causing any hindrance in the solution of complex problems:

ui D 1

2
C 1

…
� Arctg.Neti / (7.15)

In Eq. (7.15), ui varies between 0 and 1 and presents itself as a gentler sigmoid
function than the traditional sigmoid equation (7.13).

There also exists a transfer equation that requires a different treatment called the
sinusoidal function:

ui D sin.Neti /: (7.16)

First, it is important to note that making use of this function requires modification
of the derivative in the weight equations of correction: the sigmoid ui � .1 � ui /
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becomes cos(Neti) in Eq. (7.16). Its characteristic consists in making clear a discrete
class of couples (x, y), synthesizing the continuous function y D g(x) that considers
an ANN with only one output. In practice, it seems to decompose the principal
components of the function that is described in a discrete way in the input-output
examples.

In many experiments, we noticed that by selecting a half unit with the sigmoid
and a half with the sine for the layer of hidden unit, two split halves of the input
models are self-created. The first one, constituted by the sigmoidal units, tends to
codify the determinant differences of the details among input models, while the
second one, constituted by sinusoidal units, tends to codify the similarity of the
details between the different models. This peculiarity, also noticed by other authors
(NeuralWare 1995), often guarantees a better generalization capacity to the whole
ANN.

Actually, the choice of the transfer functions is just one of the choices deter-
mining the functioning of an ANN. Moreover, this choice should be made while
considering all the other choices: kind of problem, topology of ANN, learning rates,
type of momentum, type of backpropagation, etc. Therefore, it is useless to assert
beforehand which of those equations is more effective, excepting rare cases (e.g.,
the weakness of the linear transfer in hidden units). Further on, we will see that
their effectiveness changes according to the kind of problems and to the global
architecture of ANN.

On the basis of research implemented since 1985 for backpropagation ANNs,
maybe it can be asserted that the sigmoidal function has always shown a good
behavior in very different cases and problems.

7.3 Methodological Developments

7.3.1 The SoftMax

This is a function used in the learning process of BP networks for the classification
of problems.

In order to resolve this kind of problem, the desired output (target) is usually
represented through the code 1 of N classes. Each class is represented by an output
unit; then, in the case of N classes, the target will be constituted by a vector
composed by N output nodes, and it will have the following form:

d
�

D .0; : : : ; 0; 1; 0; : : : ; 0/

where only the unit corresponding to the desired class has a target value different
from 0 (i.e., 1).
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There are two problems with this formula:

1. The codified 1 of N is dependent on the values of the output units. When one
of the units has a value equal to 1, the other units have a value equal to 0.
Nevertheless, there is no assumption of dependence in the error made in a trained
backpropagation network.

2. If there are more classes, the network can find a reasonable solution through a
mapping of the output vector. This will give an RMS of 1p

k
(where k is equal to

the class number).

This solution is a very simple one to find. For example, if we use the sigmoid as
the transfer function and all the weights of the output layer are large and negative,
the outputs of all the output units will be equal to 0. If the class number is not
too large, and a very low learning rate is set, the network will have difficulty
converging on this artificial solution. In order to have a satisfying solution for these
two problems, it has been recommended to use the “SoftMax activation function”
for the layer of output units (Bridle 1989).

The SoftMax function is a refined version of the competitive function 1 of N and
has some convenient mathematical properties:

yk D eIk

Pk
lD1 eIl

Bridle (1989) proposed to use the SoftMax function combining it with the
function that follows that resulted from the relative entropy measure between the
target and the actual output:

J D �
kX

j Di

dj ln.yj /

We can calculate the value that will return from the output unit j in the
following way:

�@J

@Ij

D �
kX

kD1

@J

@yk

� @yk

@Ij

We must begin with the quotient rule:

@yk

@Ij

D yk.@kj � yj /
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Therefore,

�@J

@J
D �

X

k

���dj

yk

�
� yk � �ıkj � yj

�
�

D dj � yj

X

k

dk D dj � yj

where ıkj D
�

1ifk D j

0ifk ¤ j
Thus, the backpropagation’s standard algorithm can be used with the SoftMax

function for the backpropagation of the real error.

7.3.2 The Fast Propagation

In order to speed up the learning of backpropagation ANNs, Tariq Samad (1988)
changed Eq. (7.8) in the following way:

wij.nC1/ D wij.n/ C Rate � �outi � .uj C k � �hiddenj / (7.8a)

The error registered in the previous cycles in proportion k (k > 0; for k D 0, it
is the normal backpropagation of Eq. (7.8)) has to be added to the value of the
rising unit ui of the connection. NeuralWare (1995) implemented this technique by
defining it as “fast propagation” and sustained its advantage in terms of rapidity
(for comparisons, see Buscema 1994; for a closer examination of this technique, see
Samad 1988 and 1989).

7.3.3 Semeion’s Self-Momentum

In 1989, Semeion attempted to resolve the problem concerning the achievement
of the rapid rise in learning in networks. This effort resulted in a similar success
but achieved in a slightly different way (December: Tests at Semeion Institute
in Buscema and Sacco 2000). The hypothesis led to the conclusion that it was
necessary to reinforce the descending direction of the paraboloid as a function of
the error that each node was generating exactly in that moment. In other words, it is
good to spank the child in order to remind him about the good examples when he
does wrong, but it is silly to spank him every time he moves.1

1Old Italian proverb.
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Fig. 7.4 Progress of the self-momentum on the ordinate, value of the weights in the interval [�1.0,
1.0] on the abscissa

More formally, starting from Eq. (7.7a), the self-momentum equation appears in
the following way:

�outi.n/ D .ti � ui / � f 0.ui / (7.7a)

Self � Momentumij D �wij.n�1/ � ˇˇ�outi.n/

ˇ
ˇ � 1

0:5C ˇ̌
wij

ˇ̌ (7.17)

�wij.n/ D Self � Momentumij.n/ C �outi.n/ � uj � Rate (7.18)

where
ˇ
ˇwij

ˇ
ˇ D absolute value of connection wij.

The self-momentum eliminates the arbitrary parameter k of the momentum and
allows ANN to be able to stabilize, in an independent way, the strength with which
the direction of the weights’ correction is reinforced. On a practical level, the self-
momentum equation allows all the problems to be resolved through the momentum
by maintaining the coefficient of unitary learning (rate D 1). Figure 7.4 shows the
progress of the self-momentum formulating �outi.n/ D 1, varying the �wij.n�1/ in
the interval [�0.5, 0.5] and the wij weights in the interval [�1.0, 1.0].

The self-momentum technique has shown its advantages in different applications,
especially in nonlinear regression problems and when the dataset is a temporal series
(Buscema and Sacco 2000).
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Chapter 8
Preprocessing Tools for Nonlinear Datasets

Massimo Buscema, Alessandra Mancini, and Marco Breda

8.1 Introduction

One of the most difficult problems for training an artificial neural network (ANN)
is to establish the size and quality of the training and testing sets. The subset
quality is related to the assessment of its representativeness with respect to the
complete dataset. Classic statistical resampling strategies used in the literature turn
a random distribution of samples into two or more subsamples (i.e., cross validation
and bootstrapping techniques). These procedures are based on the premise that the
subsets extracted from the total dataset are a good approximation of the density
function of the measured variables.

However, when the amount of data is limited or the dataset is particularly
complex (when the data consists of discrete hyperpoints of some unknown nonlinear
function), the application of resampling techniques based on random procedures
requires some caution; one of the limits of random resampling techniques is that
of splitting data into a training and a testing set, though this method does not
take into account the problem of outliers. When treating “noisy data” during the
preprocessing phase, typically outliers are not eliminated from the database because
they could reveal significant information. Nevertheless, when dealing with the
subsets that are going to be used to train the ANN, no particular care is taken
toward the distribution of outlier data. The evaluation of the actual performance
of the ANNs can therefore be associated to the importance of quality analysis based
on the representativeness of the real data and of the training and testing subsets
generated from the global database. Moreover, when evaluating the success of
the ANN, one must consider that, since the learning algorithm for training these
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models is usually based on a random initialization of weights (characterized by the
presence of a random starting rate in the feedforward ANNs), an internal source of
variance is generated which will inevitably influence its performance (Kolen and
Pollack 1990).

To manage these problems, we need to “optimize” the data sampling strategy in
order to be able to improve both the representativeness of the data subsets used in
training and, at the same time, the assessment of the performance accuracy of the
ANN model.

The artificial organisms proposed in this work, which we call T&T (training
and testing) and T&Tr (training and testing reverse), can be considered data
preprocessing systems which permit one to obtain more effective procedures for the
training, testing, and validation of ANN models. These are evolutionary organisms
whose populations are composed of ANNs which carry out the sampling procedure
in an inductive, rather than random, way. The primary objective consists of the
arrangement of the source sample into n subsamples all possessing a similar
probability density function to each other.

Another significant methodological problem related to the application of ANN
to real databases comes to light when these are comprised of a large number
of variables which, apparently, seem to provide the largest possible amount of
information. Under these conditions, the input space, determined by all the possible
combinations of the values of the observed variables, becomes so large that any
research strategy to find the best solutions becomes very cumbersome when specific
problems are tackled, for example, classification tasks.

It is necessary to carry out a preliminary analysis of the variables of the dataset
since these can have a different relevance with respect to the data mining that
one intends to conduct. Some of the attributes may contain redundant information
which is included in other variables, confusing information (noise), or may not
even contain any significant information at all and thus be completely irrelevant.
Therefore, a procedure that will identify and select, from the global set, a subset
consisting of those variables that are most informative toward the representation
of input patterns is necessary when dealing with classification problems solved
with induction algorithms. Moreover, the accuracy of the procedure, learning time,
and the number of examples necessary are all dependent upon the choice of
variables.

Among the methods used to reduce the dimensionality of the data, the feature
selection techniques (also known as subset attribute selection or input selection)
were developed to determine which variables (or attributes) are most relevant in
the representation of an input pattern, derived from a large dataset. When dealing
with a database with a large number of variables, feature selection is used to reduce
the number of variables used in the classification while maintaining an acceptable
level of accuracy in the procedure. By extracting the most relevant attributes, the
dimensions of the input space are reduced; thus, it is easier to find the best solutions,
and if the extracted attributes are actually the most significant, the definition of a
predictive pattern in the global data is effective.
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On the whole, feature selection extracts, from a given dataset D� of N character-
istics, the best subset consisting of K characteristics. The number of possible subsets

of K characteristics is given by
NP

KD0

�
N

K� D 2N , and among these subsets, the best

one is the one that maximizes some cost function F .�/. Research into the attribute
space to determine the pool of characteristics is carried out with a search function
by measuring the discrimination capacity of each of the subsets. This evaluation
is carried out on the possible subsets D0

� using each variable subset as training
samples (D0

�
Œtr�) and testing samples (D0

�
Œts�) for an inductor �D0

�
Œtr�;A;F;Z .�/, using

a fixed induction algorithm A, the configuration parameters F, and the installation
parameters Z.

Excluding the exhaustive search strategy on the global set of characteristics,
which is not applicable to a dataset with a high number of variables, the techniques
that can be used are a blind search (e.g., depth first) or heuristic search (hill
climbing, best first), but in the literature, evolutionary search techniques have also
been proposed (Kudo and Sklansky 2000; Siedlecki and Slansky 1989). Genetic
algorithms have been shown to be very effective as global search strategies when
dealing with nonlinear and large problems.

Feature selection techniques can be developed using two different general ap-
proaches based on whether the selection of the variables is carried out dependently
or independently of the learning algorithm used to build the inductor. The filter
approach attempts to select the best attribute subset by evaluating its relevance
based on the data. The “wrapper” approach, instead, requires that the selection
of the best attribute subset takes place considering as relevant those attributes that
allow the induction algorithm to generate a more accurate performance (John et al.
1994).

Input selection (IS) operates as a specific evolutionary wrapper system that
responds to the need to reduce the dimensionality of the data by extracting the
minimum number of variables necessary to control the “peaking” phenomenon and,
at the same time, conserving the most information available.

8.2 Artificial Organisms: The Models

We now introduce a new concept called the artificial organism (AO). We define
AO as a group of dynamic systems (ANN, evolutionary algorithms, etc.) that
use the same sensors and effectors of a process, working in synergy without
explicit supervision. T&T, T&Tr, and IS systems satisfy these characteristics and
are therefore considered models of AO.
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Fig. 8.1 The T&T algorithm: each individual-network of the population distribute the complete
dataset D� in two subsets, d

Œtr�
� (training) and d

Œts�
� (testing)

8.2.1 The Training and Testing Algorithm

The “training and testing” algorithm (T&T) is based on a population of n artificial
neural networks (ANNs) managed by an evolutionary system. In its simplest form,
this algorithm reproduces several distribution models of the complete dataset D�

(one for every ANN of the population) in two subsets (d�
Œtr�, the training set, and

d�
Œts�, the testing set). During the learning process, each ANN, according to its own

data distribution model, is trained on the subsample d�
Œtr� and blind validated on the

subsample d�
Œts� (see Fig. 8.1).

The performance score reached by each ANN in the testing phase represents
its “fitness” value (i.e., the individual probability of evolution). The genome (the
full content of all information) of each “network individual” thus codifies a data
distribution model with an associated validation strategy. The n data distribution
models are combined according to their fitness criteria using an evolutionary
algorithm. The selection of “network individuals” based on fitness determines the
evolution of the population, that is, the progressive improvement of performance of
each network until the optimal performance is reached, which is equivalent to the
better division of the global dataset into subsets.

The evolutionary algorithm mastering this process, named “genetic doping
algorithm” (GenD for short), was created at Semeion Research Center (Buscema
2004). GenD has similar characteristics to a genetic algorithm, but (1) the criteria of
evolution and the mathematics of the crossover are completely new and different
from classical models; (2) a species-health-aware evolutionary law and genetic
operators are used; and (3) the individuals are organized into a structure (Buscema
2004).

In T&T systems, the solution space of GenD is constituted by all the possible
partitions of records between the training and testing sets.
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Given a dataset D� of N records, the number of samples d� which are comprised
of K possible records is given by

�
N

K

�

Varying K, you have

NX

KD0

�
N

K

�
D 2N .�/

(*) the search space is 2N , but the acceptable space is 2N�2.
However, the possible useful partitions of records between training and testing

sets are limited to

b.1�r/�N cP

KDbr �N c

�
N

K

�
< 2N with r typically having a value between 0.4 and 0.5.

The evolutionary algorithm codes those partitions according to a two-symbol
alphabet:

ˆT&T D f	tr; 	tsg
where

(	tr) represents a record belonging to the training set d
Œtr�
� and

(	ts) represents a record belonging to the testing set d
Œts�
� .

Therefore, a pair of training and testing sets represents, in the solution space, a

possible solution x D
�
D

Œtr�
� ; D

Œts�
�

�
, given by the vector

x D
�
D

Œtr�
� ; D

Œts�
�

�
D Œx1; x2; � � � ; xN � 2 ˆN

T&T xi 2 ˆT&T

The elaboration of T&T is articulated in two phases:

1. Preliminary phase: the parameters of the fitness function that will be used on
the global dataset are evaluated. During this phase, an inductor �

D
Œtr�
� ;A;F;Z

.�/
is configured which consists of an artificial neural network with a standard
algorithm (A) back propagation. For this inductor, the optimal configuration
to reach convergence is stabilized at the end of different training trials on the
global dataset D� ; in this way, the configuration that most “suits” the available
dataset is determined: the number of layers and hidden units and some possible
generalizations of the standard learning law. The parameters thus determined
that define the configuration (F) and the initialization (Z) of the population’s
individual networks will then stay fixed in the following computational phase.
Basically, during this preliminary phase, there is a fine-tuning of the ANN
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that defines the fitness values of the population’s individuals during evolution.
Additionally, a value E0 of epochs is necessary to give an adequate evaluation
of the fitness of the individuals. The selection of the individuals is carried out on
the basis of the fitness value defined according to a cost function that is deemed
useful to the optimal interpolation of the set.

2. Computational phase: the system extracts from the global dataset the best training
and testing sets. During this phase, the individual network of the population is
running, according to the established configuration and the initialization parame-
ters. From the evolution of the population, managed by the GenD algorithm, the
best distribution of the global dataset D� into two subsets is generated, starting

from the initial population of possible solutions x D
�
D

Œtr�
� ; D

Œts�
�

�
. For each

GenD epoch, each individual of the initial population is trained on the training
set D

Œtr�
� for a number of epochs E0 and is tested on the corresponding testing set

D
Œts�
� . For the evolutionary system, the following options are fixed: only one tribe

and the two global genetic operators of crossover and mutation. This allows the
algorithm to converge on the desired evolution in minimum time.

8.2.2 T&Tr (Training and Testing Reverse) Algorithm

The T&T algorithm can be enhanced by introducing a “reverse” procedure in order
to achieve a better measure of the accuracy of the performance on the global dataset,
when the representativeness of the dataset is not completely satisfactory.

In the T&Tr evolutionary system, every individual of the population is composed
of a pair of ANNs. Each pair represents a distribution model of the global dataset
D� in two subsets: d

Œtr�
� (training set) and d

Œts�
� (testing set). For each pair, the first

ANN is trained on subsample d
Œtr�
� , and it is validated blind on the subsample d

Œts�
� .

For the second ANN, completely independent from the first, the subset d
Œts�
� is used

as a training set, and the subset d
Œtr�
� is used as a testing set (see Fig. 8.2).

The average value of the performance reached by the two ANNs during the
testing phase is the fitness of the individual. T&Tr optimizes the procedure that
splits the global set into training and testing subsets where

f1.d
Œtr�
� / Š f2.d

Œts�
� / Š f0.d

Œglobal�
� /

f1(d Œtr�
� ) and f2 (d Œts�

� ) D probability density function of the testing and training subset,

respectively; f0 (d Œglobal�
� ) D probability density function of the global dataset.

The goal of such optimization is to achieve the best performance with a single
ANN trained on one of these subsets and tested on the other. In T&Tr, performance
overestimation is avoided by training the inductor on the testing set D

Œts�
� for E0

epochs and testing it on the corresponding training set D
Œtr�
� (“reverse” procedure),

that is, exchanging the subsets in the training and testing phase of the pair’s second
ANN. For each individual in the population, we obtain a different model of data
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Fig. 8.2 The T&Tr algorithm: every individual of the population is composed of a pair of ANNs,
each representing a distribution model of the global dataset D� in two subsets d

Œtr�

� (training) and

d
Œts�
� (testing). The first network of each pair is trained on subset d

Œtr�
� and it is blind-validated on

the subset d
Œts�
� ; instead, the second network is trained on subset d

Œts�
� and tested on the subset d

Œtr�
�

distribution which, at every generation, is combined by the GenD evolutionary
algorithm according to the fitness criterion. In this way, the best distribution of the
overall dataset into training and testing subsets is reached after a finite number of
generations.

8.2.3 Input Selection

Input selection (IS) is an adaptive system based on the evolutionary algorithm GenD
and able to evaluate the relevance of the different variables of the available dataset
in an intelligent way. Therefore, it can be considered on the same level as a feature
selection technique.

For a pair of training and testing subsets evaluated by the inductor in a classifi-
cation/prediction problem, IS is able to determine which variables are relevant for
the considered problem; the inductor is therefore trained on this pool of variables
using the variation in its performance as feedback. It is possible to assume that,
if the selection of the input variables has some influence on the performance of
the inductor, the goodness of the results obtained in the classification/prediction
problem depends mainly on the relevance of the selected variables.

From a formal point of view, IS is an artificial organism based on the GenD
algorithm and consists of a population of ANNs, in which each ANN carries out a
selection of independent variables from the available database.
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In a specific domino problem, the solution space is determined by
MP

HD0

�
M

H

�
D

2M .�/ possible combinations of H variables which describe the data.
(*) the acceptable solution space is (2M�1).
Given the following two-symbol alphabet,

ˆIS D f	rel; 	irrelg
in which

	rel represents membership of a variable in the set Vrel of relevant variables and
	irrel represents membership of a variable in the set Virrel of irrelevant variables.

Therefore, the vector

x D .Vrel; Virrel/ D Œx1; x2; : : : ; xM � 2 ˆM
IS xi 2 ˆIS

represents a single possible solution x D .Vrel; Virrel/, given a pair of sets of relevant
and irrelevant variables.

The elaboration of IS, as for T&T, is developed in two phases:

1. Preliminary phase: during this phase, an inductor �
D

Œtr�
� ;A;F;Z

.�/ is configured to

evaluate the parameters of the fitness function. This inductor is a standard back-
propagation ANN. The parameters configuration and the initialization of the
ANNs are carried out with particular care to avoid possible overfitting problems
that can surface when the database is characterized by a high number of variables
that describe a low quantity of data. The number of epochs E0 necessary to train
the inductor is determined through preliminary experimental tests.

2. Computational phase: the inductor is active, according to the stabilized con-
figuration and the fixed initialization parameters, to extract the most relevant
variables of the training and testing subsets. Each individual network of the
population is trained on the training set D0

�
Œtr� and tested on the testing set

D0
�

Œts�. The evolution of the individual network of the population is based on
the algorithm GenD and leads to the selection of the best combination of input
variables, that is, the combination that produces the best performance (maximum
accuracy) of the inductor �D0

�
Œtr��;A;F;Z .�/ in the testing phase with the least

number of input variables:

AccX

�
�D0

�
Œtr � ��;A;F;Z .�/

�
D Max

D0
�

Œtr��variables

n
AccX

�
�D0

�
Œtr��;A;F;Z .�/

� o

8.3 Experimental Procedure

8.3.1 Definition of the Baseline

In the experiments conducted, it was possible to compare the performance obtained
in the classification of artificial organisms developed at the Semeion Research
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Fig. 8.3 The T&T algorithm: the dataset distribution schema

Center (see paragraph 2) to a baseline derived from the results of simulations carried
out using a back-propagation network model, complete with an output layer and the
neural transfer function softmax (Sutton and Barto 1998), on subsets extracted with
random procedure, to measure the relative increase in performance.

8.3.2 Software

The artificial organisms T&T and T&Tr and the IS system were carried out with
the Semeion S.W. n. 17© software, developed in the Semeion Research Center.
The back-propagation networks described above were created with the Supervised
6.53© (Semeion Software number 12) software.

8.3.3 Training and Testing

During the first step of the procedure, the T&T system is applied to the total dataset;
in this way, the data are divided into two different subsets: the tuning set with
approximately 50% of the records and the validation set with the other 50%. T&T
is then reapplied to the tuning set only, which, in turn, is divided into two new
subsets (the training set with approximately 50% of the records used for tuning,
equal to 25% of the total records, and the testing set with the other 50%, equivalent
to another 25% of the total amount). In this way, the complete dataset is distributed
into three subsets according to the schema showed in Fig. 8.3.

After splitting, an ANN is trained using only the training and the testing subsets.
This is called a tuning phase and it allows the ANN to modify its weights configu-
ration until the correct interpolation function is reached. Then, in the generalization
phase, the system is validated on the validation set. As mentioned earlier, the
experimental phase is carried out using a standard back-propagation ANN.
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Fig. 8.4 The T&Tr
algorithm: the dataset
distribution schema

8.3.4 Testing and Training Reverse

The experimental procedure requires only one application of the T&Tr system to the
total dataset. In this way, the data is divided into two different subsets: the training
set with approximately the 50% of records and the testing set with the other 50%.
Thus, the dataset is distributed according to the schema showed in Fig. 8.4.

In this case as well, the experimental phase is carried out training a standard
back-propagation ANN on the first subset and testing it on the second subset.

8.3.5 Input Selection

In a preliminary phase, the T&Tr algorithm is used on the global dataset which is
divided into two subsets that will be used to train the back-propagation network
models, and then the IS system is applied. In this way, a subset of variables from
the global dataset is selected and extracted following the procedure previously
described.

8.4 Datasets

To test the T&T, T&Tr, and IS systems’ effectiveness, we used two different
datasets, the first chosen from the UC Irvine Machine Learning Repository (Merz
and Murphy 1998) and the second from the StatLog database (a subset of the
datasets used in the European StatLog project):

1. Wisconsin Breast Cancer dataset (1991): from Dr. W. H. Wolberg at Uni-
versity of Wisconsin Hospitals (for short, Breast Cancer). The donor is Olvi
Mangasarian (Mangasarian and Wolberg 1990; Wolberg and Mangasarian 1990;
Mangasarian et al. 1990; Bennett and Mangasarian 1992).

2. Australian Credit Approval dataset (1992): this database is included in the
StatLog datasets; the source of dataset is confidential. The donor is Ross D.
King, Department of Statistic and Modeling Science, University of Strathclyde,
Glasgow (UK) (Quinlan 1987, 1993).

On these datasets, we compared the results obtained applying the T&T, T&Tr,
and IS systems to those of a standard back-propagation network.
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Table 8.1 Breast cancer
dataset – T&T subsets Subset Number of cases (%)

Training 197 (28%)
Testing 168 (24%)
Validation 334 (48%)

Table 8.2 Breast cancer
dataset – T&Tr subsets Subset Number of cases (%)

A 330 (48%)
B 369 (52%)

8.5 Results of the Experiments with T&T and T&Tr

8.5.1 Breast Cancer Dataset

The records in this dataset are the results of breast cytology tests and represent
a diagnosis of benign or malignant tumor. The format is a data frame with 699
observations on nine independent variables (each variable is measured by an ordinal
scale on ten levels):

1. Clump thickness
2. Uniformity of cell size
3. Uniformity of cell shape
4. Marginal adhesion
5. Single epithelial cell size
6. Bare nuclei
7. Bland chromatin
8. Normal nucleoli
9. Mitoses

Class distribution: 458 cases are benign (65.5%), and 241 cases are malignant
(34.5%).

The application of the T&T system on the global dataset required that the data
be divided into three subsets; the tuning set contains the 52% of the complete data
(28% in the training set and 24% in the testing set) and the remaining 48% of the
data (see Table 8.1) for validation.

A back-propagation ANN with four hidden units was trained and tested on
the first two subsets, and at the end, the same ANN was tested again on the
validation set.

On the other hand, the application of T&Tr splits the dataset into a subset A
with 48% and a subset B with 52% of cases (see Table 8.2); the first subset is
used as training, the other as a testing set, and then reversed on a standard back-
propagation ANN.
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Table 8.3 Breast cancer dataset – re-
sults – *% mean; maximum perfor-
mance D 98.79%; minimum perfor-
mance D 97.56%

Method % Recognition

Back-prop C T&T 99.4
Back-prop C T&Tr 98.17*
Back-prop 95.0

Table 8.4 Australian credit
approval dataset – T&T
subsets

Subset Num of cases (%)

Training 229 (33%)
Testing 111 (16%)
Validation 350 (51%)

Table 8.3 shows our results obtained training the ANNs on the subsets created by
T&T and T&Tr, as percentage of accuracy reached during classification.

The standard back-propagation ANN model trained on subsets extracted from
the global dataset using the T&T and T&Tr systems performed better than other
classifier systems when compared with results obtained on the same dataset.
Therefore, the data preprocessing obtained with the T&T and T&Tr systems was
successful on this illustration.

8.5.2 Australian Credit Approval Dataset

This dataset is composed of credit card application data. All attribute names and
values have been coded to keep the data confidential. The goal is to distinguish
between two classes of applicants for credit (“good risk” and “bad risk”). The
dependent variable represents final judgment about the client’s behavior after they
have received the credit. There are 14 independent variables recorded at time t0, and
they are an interesting mix of attributes: continuous, nominal with a small number
of values, and nominal with larger numbers of values. The sample consists of 690
people or cases: 307 “good risk” clients (44.5%) and 383 “bad risk” clients (55.5%).
T&T divided the entire sample into three subsets; the tuning set contains 49% of the
data (33% in the training set and 16% in the testing set), and the validation set
contains the remaining 51% (see Table 8.4).

T&Tr divided the total dataset in a subset A containing 52% of cases and a
subset B containing the remaining 48% (Table 8.5); a standard back-propagation
ANN model was trained using first the subset A for the training phase and subset
B for the testing phase and then reversed. When training the ANN models on the



8 Preprocessing Tools for Nonlinear Datasets 149

Table 8.5 Australian credit
approval dataset – T&Tr
subsets

Subset Num of cases (%)

A 362 (52%)
B 328 (48%)

Table 8.6 Australian credit approval
dataset – results – *% mean; max-
imum performance D 90.24%; mini-
mum performance D 89.50%

Method % Recognition

Back-prop C T&T 96.00
Back-prop C T&Tr 89.87*
Back-prop 86.66

subsets extracted by T&T and T&Tr, the results obtained are shown in Table 8.6; the
accuracy percentage reached is superior compared to the simple back-propagation
network.

8.6 Results Analysis

An analysis of the effectiveness of the T&T and T&Tr systems as tools for
preprocessing the databases subjected to elaboration with RNA can be carried out
comparing the subsets extracted from the overall sample by the above techniques
and those generated using a criterion of random distribution. This test was carried
out based on the quality of the performance obtained on the databases considered in
our experiments.

The analysis was carried out by comparing, for each of the resampling techniques
(T&T, T&Tr, and random), the two subsets of training and testing in order to verify
the nature of the distribution of the cases within each of them. The test was carried
out between the testing and training subsets based on a criterion of comparison
that calculates an index Si, given by the sum of the squares of the differences of
the linear correlations over every variable with respect to all the others. This index,
which constitutes an indicator of the uniformity of the distribution of the information
between the training and testing sets, is given by

Si D
NX

iD1

NX

J D1; j ¤i;

�
R

.t/
ij � R

.v/
ij

�2

(8.1)

where

N D number of variables
Rij

(t) D linear correlation between two variables of the training subset
Rij

(v) D linear correlation between two variables of the testing subset
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Table 8.7 Breast cancer –
comparison of the S indices
calculated between the
subsets of training and testing
generated by T&T, T&Tr, and
the random distribution

S
Variables T&T T&Tr Random

Var 1 0.0176 0.0190 0.0221
Var 2 0.0809 0.0083 0.0140
Var 3 0.0730 0.0129 0.0134
Var 4 0.1125 0.0438 0.0125
Var 5 0.0327 0.0311 0.0632
Var 6 0.0434 0.0352 0.623
Var 7 0.0617 0.0104 0.0265
Var 8 0.0755 0.0216 0.0297
Var 9 0.0428 0.0214 0.0176
Target 1 0.0729 0.0149 0.0077
Target 2 0.0729 0.0149 0.0077
MeanS 0.0623 0.0212 0.0252

The coefficient of linear correlation is calculated according to the

Rij D

MP

pD1

�
vpj � Nvj

� � �vpi � Nvi

�

s
MP

pD1

�
vpj � Nvj

�2 �
MP

pD1

�
vpj � Nvi

�2
(8.2)

where M D number of cases; vpi D jth variable of the pth case; and NvD mean.
Tables 8.7 and 8.8 show the index Si calculated between the subsets generated

by T&T, T&Tr, and the random distribution in the two databases Breast Cancer and
Australian Credit.

In T&T, the comparison was carried out between the training set of the tuning
phase and the validation set. The tables report the mean value of the indices S,
calculated according to (8.2), which is the estimate of similarity of the two subsets
generated through the three different techniques:

NS.T&T/ D 1

N

NX

iD1

S
.T&T/
i

NS.T&Tr/ D 1

N

NX

iD1

S
.T&Tr/
i

NS.Random/ D 1

N

NX

iD1

S
.Random/
i

(8.3)

A greater similarity between the two subsets of training and testing, in terms of
distribution of information, is obtained as S! 0. In each of the datasets, T&T seems
to generate the subsets of training and testing that are most different from each other,
in conformity with a strategy of assigning the more relevant information present in
the global database to the training subset.

In this way, for a classifier (ANN) trained on data preprocessed with T&T,
the learning phase is optimal, though there is a loss in the sampling carried out
on the complementary testing set. Therefore, the outcome of the variance in the
linear correlations between the variables in the training/testing subset pairs of the
T&T is “emphasized.” The improvement in the performance obtained through the
classifier is just determined by the inclusion of the outlier data, and of complex
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Table 8.8 Australian credit –
comparison of the indices S
calculated between the
training and testing subsets
generated by T&T, T&Tr, and
the random distribution

S
Variables T&T T&Tr Random

Var 1 0.0979 0.0448 0.0788
Var 2 0.0738 0.0539 0.0524
Var 3 0.2127 0.1130 0.0847
Var 4 0.0544 0.1500 0.0843
Var 5 0.5424 0.0627 0.0794
Var 6 0.1960 0.0587 0.0908
Var 7 0.2626 0.0571 0.0634
Var 8 1.0195 0.0629 0.0859
Var 9 0.7258 0.0717 0.0615
Var 10 0.2887 0.1004 0.0831
Var 11 0.0822 0.0724 0.0429
Var 12 0.0909 0.1526 0.0459
Var 13 0.2033 0.0467 0.1483
Var 14 0.2896 0.0976 0.1671
Target 1 0.8241 0.0505 0.0557
Target 2 0.8241 0.0505 0.0557
MeanS 0.3618 0.0779 0.0800

sections of the dataset, during the training phase, which give it the ability to operate
efficiently even on this type of data in the subsequent test. However, this condition is
unfavorable during the validation phase of the classifier; because the most significant
information, including the outlier data, was directed into the training subsets, there is
no guarantee that the testing subsets generated using this strategy are an acceptable
approximation of the function of density of probability of each of the variables
measured in the database.

The value of the index Si when calculated on the training and testing subsets
generated by T&Tr and by the random procedure is very similar in both databases.
This means that the subsets obtained with the application of T&Tr, besides
having a similar distribution of information, appear to be very similar to the ones
obtained through the random subdivision procedure of the global set. Therefore, the
improvement in the performance of networks trained on subsets generated through
this procedure can be explained by a significant difference in the distribution of the
probability density function of the two subsets that is not revealed through the linear
indices calculation.

8.7 Results of the Experiments with IS

8.7.1 Breast Cancer Dataset

Table 8.9 shows the results obtained on the classification task (as a percentage of
accuracy) on training the ANNs on subsets extracted by T&Tr with the pool of
variables selected by IS.
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Table 8.9 Breast cancer dataset – results –
*% mean; max performance D 98.79%; min per-
formance D 97.56%; **% mean; max perfor-
mance D 99.09%; min performance D 96.48%

Method % recognition

Back-prop C T&T 99.7
Back-prop C T&Tr 98.17*
Back-prop C T&Tr C IS 97.78**
Back-prop 95.0

Table 8.10 Breast cancer –
in gray are the correlation
coefficients between the
variables selected by IS and
the target in the T&Tr testing

Variables Target

1. Clump thickness �0.7309
2. Uniformity of cell size �0.8068
3. Uniformity of cell shape �0.7966
4. Marginal adhesion �0.6530
5. Single epithelial cell size �0.5744
6. Bare nuclei �0.8027
7. Bland chromatin �0.7439
8. Normal nucleoli �0.7000
9. Mitoses �0.4277

From the nine variables that constitute the database, IS selects a subset of six
variables; these are:

1. Uniformity of cell size
2. Uniformity of cell shape
3. Single epithelial cell size
4. Bare nuclei
5. Normal nucleoli
6. Mitoses

The correlation coefficients of all variables selected by IS related to the target are
shown in Table 8.10.

8.7.2 Australian Credit Approval Dataset

The accuracy percentage that was obtained training the ANNs on the subsets
extracted with T&Tr within the pool of variables selected with IS is shown in
Table 8.11.

IS selected 12 of the 14 independent variables that comprise the global dataset,
shown below according to their progressive number: 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
and 13.
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Table 8.11 Australian credit approval dataset –
results – *% mean; max performance D 90.24%;
min performance D 89.50%; **% mean; max
performance D 91.77%; min performance D 89.50%

Method % Recognition

Back-prop C T&T 96.00
Back-prop C T&Tr C IS 90.63**
Back-prop C T&Tr 89.87*
Back-prop 86.66

Table 8.12 Australian
credit – in gray are the
correlation coefficients
between the variables
selected by IS and the target
in the T&Tr testing subset

Variables Target

Var 1 �0:0523

Var 2 0:1336

Var 3 0:1677

Var 4 0:2354

Var 5 0:4051

Var 6 0:2580

Var 7 0:3463

Var 8 0:7369

Var 9 0:4863

Var 10 0:4794

Var 11 0:0747

Var 12 0:1311

Var 13 �0:1091

Var 14 0:1869

The correlation coefficients of all the variables selected by IS related to the target
are shown in Table 8.12.

8.8 Discussion

The application of the data preprocessing strategies developed by the T&T, T&Tr,
and IS systems to real databases is shown to be very effective in enhancing the
performance of the standard ANN models for classification/prediction problems.
This result is evident independently from the complexity of the available data
sample; the two databases analyzed in this chapter have very different complexity
levels. While the Breast Cancer database can be adequately represented through
linear functions, the variables measured in the Australian Credit database are
characterized by more complex and highly nonlinear relations. On either of these
databases, the training and testing process of the ANN models, carried out using
the training and testing subsets selected by T&T and T&Tr, reaches a high level
of accuracy, such as to determine a significant improvement in the performance
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of the networks on the classification problem. In our experiments, the choice of a
simple ANN model like the back-propagation, rather than a more complex inductor,
is mainly due to the advantage given by the speed of convergence and the possibility
of being able to treat polarization problems effectively. The use of more complex
inductors could actually lead to the side effect of polarization on the subsets, and as
a consequence, it could negatively influence data processing. Simple inductors have
shown to be less accurate but are able to avoid these side effects.

In general, based on the results obtained, it is possible to state that the probability
of errors occurring in the classification of new inputs in networks, that we can
call ST&T and ST&Tr, trained and tested, respectively, on the subsets selected with
T&T and T&Tr systems is inferior when compared to the probability obtained
applying other methods of resampling. Therefore, these systems offer the possibility
of handling classification problems whose reference dataset size could possibly be
enlarged by adding new cases.

The real behavior of the networks ST&T and ST&Tr when faced with the addition of
a new record, which is not present in training and testing, can produce the following
situations:

1. If the new record is similar to a record present in the training subset, it will
probably be classified correctly by both ST&T and ST&Tr.

2. If it is similar to an outlier present in the training subset, it will again be probably
classified correctly by both networks.

3. If it is similar to an outlier that is only present in the testing subset, it will
probably be correctly recognized by ST&Tr, but it is likely that ST&T will fail.

4. If it is similar to an outlier that is not present in either the training or the testing
sets, it will probably not be recognized by either networks.

The choice criterion in the application of the two systems is determined by the
representativeness of the dataset analyzed. T&T can be conveniently used when
the dataset exhibits a good representativeness of the real universe of data; on the
other hand, if the dataset is not sufficiently representative, through the application
of T&Tr, one can obtain a higher level of accuracy in subsample extraction. Under
the same conditions, T&T has the advantage of a faster execution.

By applying the input selection system to the subsets that were previously
selected with the artificial organisms, T&T and T&Tr obtained an advantage that
has to be interpreted in relation to the lower computational costs brought about
by the reduction in the dimensionality of the data. The profit from the accuracy
of the prediction is actually fairly modest when compared to what can be gained
by optimizing the subsets through T&T and T&Tr, and in addition, with this
system, it is possible to eliminate certain variables that are costly to acquire without
diminishing the informative power of the entire dataset.

Another particularly interesting aspect that arises from our results is that IS has
certain characteristics that make it a valid alternative to the traditional machine
learning methods. In particular, the application of the GenD algorithm to the IS
system is useful because the selection of the optimal set of variables can take
place while also considering those individuals of the ANN population whose fitness
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value is lower or equal to the value obtained for the best individual. These sets can
compose an archive of input selections, which can be used in cases in which it is not
possible or convenient to carry out an optimization because of economic reasons or
other factors. Nonetheless, the selection of fitness higher than a certain threshold of
predictive capability which is considered adequate according to certain criteria, for
example, clinical or industrial, is in itself a great advantage because it provides the
option for a wide range of alternative applications.

IS seems to be a very reliable system when treating databases characterized
by the presence of a large number of irrelevant variables and when dealing with
correlated characteristics, even when these are relevant. IS effectively inherits the
solidity of gradient-based neural networks, like the back propagation, and the
flexibility of evolutionary algorithms in the exploration of the solution space of the
problem in study.
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Chapter 9
Metaclassifiers

Massimo Buscema and Stefano Terzi

9.1 The Problem

A classification system is responsible for creating a set of classes based on some
common relations or affinities that are present in the data. It is obvious to the typical
neural network researcher that there does not currently exist a single algorithm that
can correctly process every set of data regardless of application, and this problem
has led to the development of a vast library of available instruments in a vain attempt
to have available at least some kind of classifier. Each classifier is trained on a
particular set of data to capture the underlying constraints that might be substantially
different from the next set of data even if that data were derived from a similar
application.

Hence, when facing a real problem, the standard process of classification is the
training or the network, with an appropriate validation protocol, based on the many
different typologies of classifiers and selecting one from the set of classifiers that
contains the better characteristics.

If we consider the classification process as a data-mining exercise, we discover
that each classifier can classify the same inputs into different classes. This means
that the quantity and quality of extracted information change from classifier to
classifier; in particular, some typologies of classifiers like neural networks and
decisional trees present a great internal variability, producing sensibly different
models even when applied to the same problem. In the standard process, we briefly
described above, this diversity of models that are typically produced is not exploited;
rather, the aim is to choose a single classifier while excluding all the others.
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This chapter offers a different kind of strategy altogether: to use all of the classifiers
as collaborators to exploit the possible complementarities of information extracted
from each classifier.

Dietterich (2002) suggests three motivations to explain why the fusion of the
single classifiers should produce a more efficient one: one is statistic, one computa-
tional, and the last is representational. From a statistic point of view, the “fusion” of
more classifiers reduces the probability of choosing a single inadequate one, so even
if we have no guarantee that the set of classifiers is better than all the single classi-
fiers, the fusion implies a reduction of the risk of a wrong choice. Conversely, the
strongest classifier might be diluted with the inclusion of a very weak classification.
From a computational point of view, much of the classifiers use heuristic optimiza-
tion algorithms to define the optimum parameters able to stop at a local optimum,
the aggregation of which can lead to solutions closer to a global optimum even when
starting from a local optimum. The last motivation concerns the space of solutions of
the single classifiers that may not contain the optimum solution for the classification
problem; in this case, the set of classifiers can expand this space of solutions
obtaining better results (e.g., a set of linear classifiers cannot singularly reach the
solution of a nonlinearly separable problem, but a combination of them can do so).

The problem central to the construction of a metaclassifier is quite complex:
a schematization of possible alternatives and the definition of a terminology and
a taxonomy can be useful, also taking into account that due to the nature of the
complexity problem, this schematization will likely be subject to various exceptions.

There are four project dimensions in the development of a metaclassifier:

1. The database for the training and the validation
2. The selection of the “significant” variables
3. The choice and training of the single classifiers
4. The definition of combination strategy

Combination level:
Different algorithms of output combination

Classifiers level:
Use of several typologies of classifiers

Variables level:
Choice of different subsets of data

Data level:
Choice of different subsets of data

Z

D1 D2 DL

Dataset

Metaclassifier

......
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The first three levels represent a forward propagation chain of variations that
generate the final classifier:

1. If two classifiers are trained with two different training sets, the two classifiers
will develop different data models.

2. If two classifiers are trained with the same records, but different variables, the
two classifiers will develop different data models.

3. If two classifiers are trained with the same training set, but the mathematics of
the two classifiers is different (topology, learning rule, signal dynamics, or cost
function), the two classifiers will develop different data models.

4. If two classifiers are trained with the same training set and if they have the same
algorithm, but they begin the learning session with initial random weights e/o
parameters, then the two classifiers will develop different data models.

In any case, we shall give the greater attention to level four, the development
of particular strategies of combination of single classifiers. It has been pointed out
that levels three and four are often strictly connected (Kuncheva 2004). The choices
made for the first one have consequences on the possible choices for the other and
vice versa.

The possible choices regarding the combination strategies belong to two wide
classes: fusion and selection. In the first case, each single classifier contributes to the
definition of the label of the class to which each record belongs, and in the second
case, the responsibility of producing the classification for a specific region of entry
space is given to each classifier. Obviously there are metaclassifiers, classification
systems that are composed of classification systems, which belong to both of these
categories. Until now, the majority of development has been dedicated to fusion,
even if selective fusion was to be the most efficient choice.

Another analysis dimension in projecting a metaclassifier concerns the objective
of an optimization process in which two conditions are possible. On one side, the
optimization is concerned with the kinds and parameters of combination strategy
(decision optimization) for a fixed set of classifiers; on the other side, the optimiza-
tion concerns the parameters of classifier data on a given fixed combination strategy.

The classifiers used in metaclassifiers can produce crisp outputs, the label of
predicted class, or fuzzy outputs, a vector with the same dimension of one of the
classes of the problem representing the “plausibility” of a record belonging to each
of the examined classes. One could further distinguish the metaclassifiers depending
on the kind of output of base classifiers used.

Some key distinctions can articulate the metaclassifier world in different logical
categories:

1. Algorithmic category—each metaclassifier can define its characteristics in two
ways:

(a) Statically through a calculation of characteristics and resulting classifiers
executed in a noniterative way. The algorithm does not plan an iterative
analysis of composing characteristics of classifiers to optimally define its
parameters. A static algorithm can be:



160 M. Buscema and S. Terzi

i. Flexible: when a vector of parameters emerges from a calculation
ii. Strict: when only one parameter emerges from a calculation

(b) Dynamically with an iterative calculation made on characteristics and results
of composing classifiers in order to optimize a vector of parameters. A
dynamic algorithm can be:

i. Trainable: when the iterative algorithm tends to define the data entry
continuous function parameters

ii. Optimizable: when the iterative algorithm tends to optimize whatever cost
function

2. Extensional category (scope)—each metaclassifier can define its characteristics
depending on whether or not it is:

(a) Local in which each composing classifier, in an independent way, provides
the metaclassifier with some characteristics.

(b) Global in that characteristics and results of all composing classifiers interact,
thereby globally defining metaclassifier characteristics.

3. Teleological category—each metaclassifier can define its characteristics depend-
ing on these bases:

(a) Supervised in that the relevance of each composing classifier is weighted on
the basis of the right/wrong results it produced.

(b) Autopoietic in that the relevance of each composing classifier is weighted
on the basis of the produced results, without considering its mistakes
or its successes. Autopoietic metaclassifiers, obviously, offer interesting
performances when all composing classifiers have a confusion matrix which
respects the following condition:

Targeti D Erri;i �
NX

j D1;j ¤i

Erri;j < 0I

that is, for each output, the number of errors is lower than the number of the
sum of false attributions.

4. Functional category—each metaclassifier can evaluate each new entry input in
this way:

(a) Feed forward by which the metaclassifier provides only one response for
each new entry input.
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(b) Recursive by which the metaclassifier generates more responses, each
considering the previous ones, until the process optimizes a specific cost
function (providing the same classification response occurs). During the
recall process, this kind of metaclassifiers works as a dynamic system. When
a new input is presented, each one of its components hypothesizes a class for
it, and then all components negotiate their different hypothesis until they
dynamically reach an agreement.

9.1.1 The MetaNet as Metaclassifiers

Between 1994 and 2008, Semeion created a series of metaclassifiers based on some
common traits, and for this reason, they have been named MetaNets (see Buscema
1998; Buscema et al. 2010):

• All MetaNets have a typical neural network architecture, that is to say, which
input nodes are most involved in determining the composing classifiers and
which output nodes are the output classes of classification problems.

• The connections between MetaNet inputs and outputs always consist of a
complete grid structure and are defined by specific algorithms characterizing
MetaNet peculiarities.

• The MetaNet output vector is calculated from a specific probabilistic equation
called softmax (Bridle 1989):

Netj D
PX

k

NX

i

Outk
i � wk

i;j I

MetaOutj D eNetj

NP

z
eNetz

:

i; j 2 f1; 2; :::; N gI
Number of output classes:

k 2 f1; 2; :::; P gI
Number of Classifiers:

• All MetaNets are unsupervised, and each one evaluates its own output without
knowledge of the errors of its composing classifiers but only the statistic of their
responses. Thus, MetaNets are strongly sensitive to the quality of classifiers
to be optimized. This means that each MetaNet, in order to be considered
excellent, should be composed of classifiers whose confusion matrices present
these properties:
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j

Classifier(k) Output 1 Output 2 Output : : : Output N

i Target 1 MC 1,1 MC 1,2 MC 1, : : : MC 1, N
Target 2 MC 2,1 MC 2,2 MC 2, : : : MC 2, N
Target : : : MC : : : ,1 MC : : : ,2 MC : : : , : : : MC : : : , N
Target N MC N,1 MC N,2 MC N, : : : MC N, N

8k; k 2 P W MC k
i;i �

N �1X

j ¤i

MC k
i;j > 0I

i; j 2 f1; 2; :::; N gI
Number of output classes:

k 2 f1; 2; :::; P gI
Number of Classifiers:

However, from the following testing, we will verify this condition that if not
respected, produces a “very smooth” fall of MetaNet capacities according to the
typical characteristics of ANNs.

We can summarize the common features of MetaNet algorithms in this way:

1. To apply a MetaNet algorithm, the dataset must be divided randomly into three
subsamples: training set, testing set, and prediction or validation set; training
and testing set constitute the tuning set, and the prediction or the validation set
represents the sole subsample for MetaNet performances evaluation.

2. The number of input nodes (M) is equal to the number of the original output (N)
times the number of the classifiers working as components of the MetaNet (P):
M D P � N.

3. The number of output nodes is the same of the original classes (N).
4. The connections, C, between input and output are a complete matrix C D M � N.
5. Each connection value represents the degree with which every component

classifier supports every classification node of the MetaNet.
6. The numerical value of each MetaNet connection can belong to the interval

between �inf (lowest degree) and Cinf (highest degree).
7. The plausibility and the implausibility of each connection are functions of the

probability of each MetaNet component during the testing phase.
8. The final classification of a MetaNet algorithm is the probabilistic composition

of the input weighted to each output node (softmax algorithm, see Bridle 1989).

To explain this procedure, we need to start from the analysis of the confusion
matrix of a single classifier:

In this matrix, it is necessary to distinguish four terms for each cell, vk
i;j :

1. The “Rights”: the degree through which the kth classifier considered correct in
the classification of the records in the cell vk

i;j , in relation to the summation of
each row cell:
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j

Classifier(k) O(utput) 1 O(utput) 2 O(utput) : : : O(utput) N

i T(arget) 1 v(1, 1) v(1, 2) v(1, : : : ) v(1, N)
T(arget) 2 v(2, 1) v(2, 2) v(2, : : : ) v(2, N)
T(arget) : : : v( : : : , 1) v( : : : , 2) v( : : : , : : : ) v( : : : , N)
T(arget) N v(N, 1) v(N, 2) v(N, : : : ) v(N, N)

Rk
i;j D vk

i;j

NP

j

vk
i;j

I (9.1)

2. The “Missed”: the degree through which the kth classifier considered as incor-
rectly different. You must explain to me what you mean and classifying the
records in the cell vk

i;j , in relation to the summation of each row cell:

M k
i;j D

NP

j

vk
i;j � vk

i;j

NP

j

vk
i:j

I (9.2)

3. The “Corrects”: the degree through which the kth classifier considers “corrects”
the records classified in the cell vk

i;j , in relation to the summation of each column
cell:

C k
j;iD

vk
i;j

NP

i

vk
i;j

: (9.3)

4. The “False”: the degree through which the kth classifier considers “false” the
records classified in the cell vk

i;j , in relation to the summation of each column
cell:

F k
j;i D

NP

i

vk
i;j � vk

i;j

NP

i

vk
i;j

: (9.4)

The “Rights” and the “Missed” are correlated to the probability that any specific
output depends from a specific target:

pk
j;i D p.Ok

j jT k
i /:
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The “Corrects” and the “False,” instead, are correlated to the probability that any
specific target comes from a specific output:

pk
i;j D p.T k

i jOk
j /:

The strength of the connection between any output of each classifier and
any output of the metaclassifier (MetaNet weights) is given by this simple
equation:

wk
i;j D f

�
Rk

i;j ; C k
i;j ; 1 � Rk

i;j ; 1 � C k
i;j

�

k D any specific classifier:

There are several algorithms that will calculate the value of the weights of
MetaNet, and experience has demonstrated that many of them can be defined into
this paradigm. From simple algorithms of probability that are calculations of co-
occurrence couples of output nodes in composing classifiers, through the continuum
of real ANNs that are globally or locally defining the MetaNet connections, all are
part of complete grid coverage. The closing diagram below illustrates the role of the
existing ANNs as inputs and the resulting ANN that produces a response based on
the best inputs as determined by the individual ANNs. Each ANN possesses its own
algorithm and works on the data in its own way, and it is sometimes in opposition
to the output of other algorithms. These methods take the best from all the other
ANNs and merge them to produce an output that was at least partially driven by
their results. The output has been shown to be better than the individual ANNs.
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Chapter 10
Auto-Identification of a Drug Seller Utilizing
a Specialized Supervised Neural Network

Massimo Buscema and Marco Intraligi

10.1 Database Description

This chapter describes the application of supervised neural networks on a dataset
composed of 139 variables for 1,120 cases1 which represents the arrests for different
kind of drugs carried out in the neighborhoods of London. The testing’s aim is to
train a supervised neural network system to distinguish crack dealer subjects from
all other kinds of subjects which are included in the dataset (other kinds of drug
dealers). In order to accomplish this task, dataset subjects have been divided into
two classes:

• Crack dealer, 252 subjects (22.50%)
• Generic dealer, 868 subjects (77.50%)

The 139 variables, shown in Table 10.1, refer to:

• Sex (male, female, not defined)
• Residence district of the arrested subject (32 districts C 1 not available)
• District where each subject was arrested (32 districts C 1 not available)
• Nationality of the arrested subject
• Somatic stock of the arrested subject
• Age (expressed in classes)
• Number of previous convictions (convictions)
• Number of previous offences (offences)

1This dataset was extracted in June 2006 when the situation of the CDTD database was composed
of 1,590 tactic sequences, 1,667 persons, and 1,190 accused persons (70 incomplete cases).

M. Buscema (�) • M. Intraligi
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Table 10.1 List of the 139 variables of the DB

List of 139 variables

1 Sex Male 48 ConvictionsNumber 95 AR PL Newham
2 Sex Female 49 OffencesNumber 96 AR PL Redbridge
3 Sex notknown 50 Off FirstConvAge 97 AR PL Richmond upon

Thames
4 Barking and

Dagenham
51 Off LastConvAge 98 AR PL Southwark

5 Barnet 52 Off Drug 99 AR PL Sutton
6 Bexley 53 Off TheftKindred 100 AR PL Tower Hamlets
7 Brent 54 Off AgainstPerson 101 AR PL Waltham Forest
8 Bromley 55 Off OffensiveWeapons 102 AR PL Wandsworth
9 Camden 56 Off Sexual 103 AR PL Westminster

10 Croydon 57 Off RelatedToPolice 104 AR PL NA
11 Ealing 58 Off Fraud 105 NumOfDrugSeizures
12 Enfield 59 Off Total 106 NumOfCashSeizures
13 Greenwich 60 Off AgainstProperty 107 Pounds
14 Hackney 61 NumOfArrests 108 NumOfTactics
15 Hammersmith and

Fulham
62 AR OFF Theft and Kindred

Offences
109 Non-Law Enforcement

Agent
16 Haringey 63 AR OFF Offences the Person

Offences
110 Other Law Enforcement

Agent
17 Harrow 64 AR OFF Drug trafficking

Offences
111 Police

18 Havering 65 AR OFF Drug Possession
Offences

112 Search of Object

19 Hillingdon 66 AR OFF Other Drug
Offences

113 Search of Person

20 Hounslow 67 AR OFF Offensive Weapon
Offences

114 Search of Premises

21 Islington 68 AR OFF Firearms Offences 115 Covert Purchase
22 Kensington and

Chelsea
69 AR OFF Kidnapping and

Abduction offences
116 Controlled Delivery

23 Kingston upon
Thames

70 AR OFF Other violent
offences

117 Other Generic Tactic

24 Lambeth 71 AR OFF Other offences 118 NumOfTacticSequences
25 Lewisham 72 AR PL Barking and

Dagenham
119 InOperation

26 Merton 73 AR PL Barnet 120 ViolentOnArrest
27 Newham 74 AR PL Bexley 121 ArrMode NA
28 Redbridge 75 AR PL Brent 122 ArrMode Direct
29 Rich-

mond upon Thames
76 AR PL Bromley 123 ArrMode Result of

Enquiries
30 Southwark 77 AR PL Camden 124 ArrMode Given into

custody
31 Sutton 78 AR PL Croydon 125 ArrMode Other
32 Tower Hamlets 79 AR PL Ealing 126 OnBailAtTimeOfOffence
33 Waltham Forest 80 AR PL Enfield 127 NA
34 Wandsworth 81 AR PL Greenwich 128 AFR

(continued)
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Table 10.1 (continued)

List of 139 variables

35 Westminster 82 AR PL Hackney 129 ASIA
36 (EA1) White European 83 AR PL Hammersmith and Fulham 130 EASTEU
37 (EA2) Dark European 84 AR PL Haringey 131 EU
38 (EA3) Afro-Caribbean 85 AR PL Harrow 132 IRE
39 (EA4) Asia 86 AR PL Havering 133 JAM
40 (EA5) Oriental 87 AR PL Hillingdon 134 ME
41 (EA6) Arab 88 AR PL Hounslow 135 NK
42 Age(<18) 89 AR PL Islington 136 SAME
43 Age(18–21) 90 AR PL Kensington and Chelsea 137 TU-CY
44 Age(21–25) 91 AR PL Kingston upon Thames 138 UK
45 Age(25–35) 92 AR PL Lambeth 139 VTN
46 Age(35–45) 93 AR PL Lewisham
47 Age(>45) 94 AR PL Merton

• Specifications about previous offences
• Number of previous arrests
• Specifications about previous arrests
• Kinds of tactics used by the police
• Aims of police operations
• Behavior of the person when he was arrested (violent or nonviolent)

10.2 Testing Protocol

Our testing allows the application of a protocol developed through different phases
shown to be able to attain excellent results. The protocol we used, in addition to a
random procedure, is based on a specific process of optimization producing results
that are firmly better than the random ones.

10.2.1 Random Procedure

In Fig. 10.1, the random protocol 5 � 2 cross validation (Dietterich 1997) is shown.
It is obtained by dividing five times the global sample into five pairs of subsamples
equally randomly distributed according to the class to which the patients belong
(crack dealer/generic dealer). Each subsample (form sub1a to 5a and from sub1b to
5b – see Fig. 10.1) is used independently by the different models both for the training
phase and for the testing phase. In this way, for each type of neural network, there
will be ten processings and respective results.

The provisional models used in this procedure are the back-propagation neural
network created with feed-forward (FF BP) architecture and the linear discriminant
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DATA BASE
GLOBALE

Random

Sample 1a
Sample 2a

Sample 5a

Sample 1b
Sample 2b
…………
Sample 5b

Training Testing

FF_BP 1AB
FF_BP 2AB

FF_BP 5AB

LDA 1AB
LDA 2AB

LDA 5AB

FF_BP 1BA
FF_BP 2BA

FF_BP 5BA

LDA 1BA
LDA 2BA

LDA 5BA

TrainingTesting

………... …………

……………
FF_BP 5AB

………...
LDA 5AB

…….….. ……...

Selection

Fig. 10.1 Research protocol

Table 10.2 Results obtained from the ten linear discriminant models on random distribution

Random – Results of linear discriminant analysis

LDA
Crack
dealer (%)

Generic
dealer (%) A.Mean Acc (%) W.Mean Acc (%) Errors

LDA1AB 50.79 85.25 68.02 77.50 126
LDA1BA 59.52 78.57 69.05 74.29 144
LDA2AB 46.03 84.56 65.30 75.89 135
LDA2BA 60.32 82.95 71.63 77.86 124
LDA3AB 53.17 82.03 67.60 75.54 137
LDA3BA 57.14 79.95 68.55 74.82 141
LDA4AB 61.11 81.11 71.11 76.61 131
LDA4BA 44.44 84.56 64.50 75.54 137
LDA5AB 55.56 81.11 68.33 75.36 138
LDA5BA 59.52 80.65 70.08 75.89 135
Mean 54.76 82.07 68.42 75.93 135

analysis (LDA), linear statistic model in baseline form. The results obtained from
the two models are shown in Tables 10.2 and 10.3.

The results of Tables 10.2 and 10.3 show the big difficulty for both provisional
models in correctly distinguishing the “crack dealer” class from the “generic dealer”
class. In particular, concerning the “crack dealer” class, the BP model has on average
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Table 10.3 Results obtained from the ten models of back-propagation neural networks on random
distribution

Random – results of back propagation ANN

BP
Crack
dealer (%)

Generic
dealer (%) A.Mean Acc (%) W.Mean Acc (%) Errors

FF Bp1AB 61.11 83.64 72.38 78.57 120
FF Bp1BA 64.29 80.65 72.47 76.96 129
FF Bp2AB 63.49 78.80 71.15 75.36 138
FF Bp2BA 61.11 85.25 73.18 79.82 113
FF Bp3AB 69.05 74.19 71.62 73.04 151
FF Bp3BA 63.49 81.11 72.30 77.14 128
FF Bp4AB 61.90 82.26 72.08 77.68 125
FF Bp4BA 65.87 74.88 70.38 72.86 152
FF Bp5AB 63.49 80.18 71.84 76.43 132
FF Bp5BA 67.46 81.34 74.40 78.21 122
Mean 64.13 80.23 72.18 76.61 131

10 percentage points more than the LDA, while the “generic dealer” class, also on
average in this case, has the LDA at more than two percentage points over the BP.

10.2.2 Twist Optimization Procedure

The Semeion Twist (2007) model permits us to optimize new training and testing
(T&T) samples and to reduce the input variables, thereby obtaining better results
than the ones obtained with the random procedure (see references below for Twist
applications in medical field).

Twist is a model combining the application of two artificial beings, T&T and
input selection (IS) based on the evolutive algorithm GenD created at Semeion
(Buscema 2004). The objective of T&T is to preprocess the dataset such that
the best distribution of data subsets is available for both training and testing.
This is accomplished through iterative procedures by which each subsample has
a probability density function equal to the global sample. A set of ANNs is used
to form T&T by learning on the training set data and being validated on the testing
set. The result obtained by each ANN in the testing phase represents its fitness that
is the level of distribution optimization. In substance, it represents how the ANN
is reliable and how the optimization contributes to the process of generalizing the
results obtained.

Concerning the optimized samples, then, a selection is made by the input
selection algorithm (IS) to identify the most significant variables. As T&T does, IS
can be considered a data preprocessor able to select useful information to optimize
the relations between input and output variables.



172 M. Buscema and M. Intraligi

Also, IS is formed by a population of ANNs, but in this case, each one is based on
a single selection of independent variables. After having been training and validated,
the evolutive process chooses the best combination of input variables. Therefore, the
GenD fitness rule creates the best performance in testing the lower number of input
values associated with each generation (for previous applications in medical field,
see Buscema et al. 2005; Grossi and Buscema 2007; Grossi et al. 2007; Penco et al.
2005; Buscema et al. 2010; and Rotondano et al. 2011).

At the end of this double process in our testing, the Twist system optimizes the
five couples of training and testing samples, thereby reducing the number of input
variables from 139 to 80 (Table 10.4).

The results obtained from the Twist ANNs are shown in the Table 10.5.

Table 10.4 In bold typeset, the 59 variables eliminated by the Twist system, among the 139 ones
of the global dataset, are shown

Twist – list of 80
variables selected
from 139

1 Sex Male 48 ConvictionsNumber 95 AR PL Newham
2 Sex Female 49 OffencesNumber 96 AR PL Redbridge
3 Sex notknown 50 Off FirstConvAge 97 AR PL Richmond upon

Thames
4 Bark-

ing and Dagenham
51 Off LastConvAge 98 AR PL Southwark

5 Barnet 52 Off Drug 99 AR PL Sutton
6 Bexley 53 Off TheftKindred 100 AR PL Tower Hamlets
7 Brent 54 Off AgainstPerson 101 AR PL Waltham Forest
8 Bromley 55 Off OffensiveWeapons 102 AR PL Wandsworth
9 Camden 56 Off Sexual 103 AR PL Westminster

10 Croydon 57 Off RelatedToPolice 104 AR PL NA
11 Ealing 58 Off Fraud 105 NumOfDrugSeizures
12 Enfield 59 Off Total 106 NumOfCashSeizures
13 Greenwich 60 Off AgainstProperty 107 Pounds
14 Hackney 61 NumOfArrests 108 NumOfTactics
15 Hammersmith and

Fulham
62 AR OFF Theft and Kindred

Offences
109 Non-Law Enforcement

Agent
16 Haringey 63 AR OFF Offences the Person

Offences
110 Other Law Enforcement

Agent
17 Harrow 64 AR OFF Drug trafficking

Offences
111 Police

18 Havering 65 AR OFF Drug Possession
Offences

112 Search of Object

19 Hillingdon 66 AR OFF Other Drug
Offences

113 Search of Person

20 Hounslow 67 AR OFF Offensive Weapon
Offences

114 Search of Premises

21 Islington 68 AR OFF Firearms Offences 115 Covert Purchase

(continued)
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Table 10.4 (continued)

Twist – list of 80
variables selected
from ?139

22 Kensington and
Chelsea

69 AR OFF Kidnapping and
Abduction offences

116 Controlled Delivery

23 Kingston upon
Thames

70 AR OFF Other violent
offences

117 Other Generic Tactic

24 Lambeth 71 AR OFF Other offences 118 NumOfTacticSequences
25 Lewisham 72 AR PL Barking and

Dagenham
119 InOperation

26 Merton 73 AR PL Barnet 120 ViolentOnArrest
27 Newham 74 AR PL Bexley 121 ArrMode NA
28 Redbridge 75 AR PL Brent 122 ArrMode Direct
29 Rich-

mond upon Thames
76 AR PL Bromley 123 ArrMode Result of

Enquiries
30 Southwark 77 AR PL Camden 124 ArrMode Given into

custody
31 Sutton 78 AR PL Croydon 125 ArrMode Other
32 Tower Hamlets 79 AR PL Ealing 126 OnBailAtTimeOfOffence
33 Waltham Forest 80 AR PL Enfield 127 NA
34 Wandsworth 81 AR PL Greenwich 128 AFR
35 Westminster 82 AR PL Hackney 129 ASIA
36 (EA1) White

European
83 AR PL Hammersmith and

Fulham
130 EASTEU

37 (EA2) Dark
European

84 AR PL Haringey 131 EU

38 (EA3) Afro-
Caribbean

85 AR PL Harrow 132 IRE

39 (EA4) Asia 86 AR PL Havering 133 JAM
40 (EA5) Oriental 87 AR PL Hillingdon 134 ME
41 (EA6) Arab 88 AR PL Hounslow 135 NK
42 Age(<18) 89 AR PL Islington 136 SAME
43 Age(18–21) 90 AR PL Kensington and

Chelsea
137 TU-CY

44 Age(21–25) 91 AR PL Kingston upon
Thames

138 UK

45 Age(25–35) 92 AR PL Lambeth 139 VTN
46 Age(35–45) 93 AR PL Lewisham
47 Age(>45) 94 AR PL Merton

Finally, a MetaNet is used (see preceding chapter) to take the outputs from the
various ANNs and use them as inputs to the MetaNet (Lahner et al. 2008). Each
ANN analyzes data from its own unique perspective utilizing its own particular
algorithms and displays a view of the underlying relationships. One cannot say that
any one particular view is incorrect, but one can say that each view shows a different
view. By using these various views as input to another ANN, one generalized view
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Table 10.5 Results obtained from the ten models by Twist system

Twist ANNs
Crack
dealer (%)

Generic
dealer (%) A.Mean Acc (%) W.Mean Acc (%) Errors

Twist 1 77.17 76.22 76.69 76.44 131
Twist 2 81.89 65.50 73.70 69.24 171
Twist 3 70.08 86.48 78.28 82.73 96
Twist 4 70.08 86.25 78.16 82.55 97
Twist 5 76.38 77.86 77.12 77.52 125
Twist 6 80.31 72.73 76.52 74.46 142
Twist 7 75.59 75.52 75.56 75.54 136
Twist 8 74.80 77.16 75.98 76.62 130
Twist 9 77.17 79.49 78.33 78.96 117
Twist 10 82.68 72.03 77.35 74.46 142
Twist mean 76.62 76.92 76.77 76.85 128.70

Table 10.6 Results obtained by MetaNet

MetaNets

Crack
dealer (%)

Generic
dealer (%)

A.Mean
Acc (%) W.Mean Acc (%) Errors

Twist ANNs fusion 75.59 86.48 81.04 83.99 89

Table 10.7 Summary of the average results obtained by the different systems and procedures

Summary
Crack
dealer (%)

Generic
dealer (%)

A.Mean
Acc (%)

W.Mean
Acc (%) Errors

LDA (mean of 10) 54.76 82.07 68.42 75.93 135
Back prop (mean of 10) 64.13 80.23 72.18 76.61 131
Twist mean (mean of 10) 75.10 80.72 77.91 79.47 115
MetaNet (fusion of 10) 75.59 86.48 81.04 83.99 89

is produced that is better than any individual view. Thus, using the parameters and
results of every previously trained neural network, performance has been improved
(Table 10.6).

Table 10.7 shows the huge vantages provided by the Twist procedure and by
MetaNet fusion in this pattern recognition problem. In fact, if we consider the
LDA results, we have to conclude that the predictability of the crack dealer is
not good enough to engage the London Metropolitan Police in the creation of an
automatic pattern recognition technology. All the same, we have to arrive, more
or less, at the same conclusion if we analyze the results generated by a classic
artificial neural network (back propagation). But the results we have gotten on the
same data using the Twist ANNs and their fusion (MetaNet) are really interesting
from a technological point of view.
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Chapter 11
Visualization and Clustering
of Self-Organizing Maps

Giulia Massini

11.1 Introduction

The Self-organizing map (SOM) is a neural network developed mainly by Teuvo
Kohonen (Kohonen 1972, 1995b) between 1972 and 1982. It is an unsupervised
type of network which allows for the classification of the input vectors creating
a prototype of the classes and a projection of the prototypes on a two-dimensional
map (but n-dimensional maps are also possible) able to record the relative proximity
(or neighborhood) between the classes. Therefore, the network imposes important
synthetic information on the input:

1. It creates a classification of the input vectors on the basis of their vector similarity
and assigns them to a class.

2. It creates a prototypical model of the classes with the same cardinality (number
of variables) as the input vector.

3. It provides a measurement, expressed as a numerical value, of the distance/
proximity of the various classes.

4. It creates a relational map of the various classes, placing each class on the map
itself.

5. It provides a measurement of the distance/proximity existing between the input
vectors from the class to which they belong and between the input vectors and
other classes.

The relative simplicity of the SOM architecture is also the key to its popularity
in scientific applications.

G. Massini (�)
Semeion Research Center of Sciences of Commuication, via Sersale 117, Rome, Italy
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Fig. 11.1 SOM with n-nodes of input, with (mr �mc) units of Kohonen’s layer. This architecture
allows the inputs to be classified into m2 classes, each being a subclass represented by a codebook

11.2 Architecture

A typical SOM network is made up of two layers of units: a one-dimensional input
(n-cardinality vector) and a two-dimensional output layer (lines (r) � columns (c)),
also known as Kohonen’s map (M matrix of mr � mc dimensions). A matrix of
the weights records the relation between each unit of the output layer and each
unit of the input layer (W matrix of (mr � mc � n) dimensions). The weight vector
connecting each output unit to an input unit is called a “codebook” (vector wrc of
n-cardinality) (see Fig. 11.1). Within the SOM network, each output unit can be
interpreted as a class whose codebook represents the prototype.

11.3 Base Algorithm

The SOM algorithm is based on a competitive algorithm founded on the vector
quantification principle: at each cycle of life in the network, the unit from Kohonen’s
layer whose codebook is most similar to the input wins. This unit is given the name
of winner unit (WU). Consequently, the WU codebook is modified to get it even
closer to the input. The codebooks belonging to the units that are physically near
the WU (which are part of the neighborhood) are also put closer to the input of a
given delta.

The algorithm calculates a first stage during which the parameters of the
neighborhood and corrections of weights are set and the codebook initialization
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is carried out; this stage is followed by the cyclic stage of codebook adjustment. In
this stage, the codebooks are modified for the network to classify the input records.

In short, the SOM algorithm is organized as follows:

Initialization stage

• Layering of the input vectors.
• Definition of the dimensions (rows � columns) of the matrix which, in its turn,

determines the number of classes and therefore of prototypes (codebook).
• Initialization of the codebooks: the value of the vectors of each codebook is

random.
• Definition of the function (Gaussian, Mexican hat, etc.) and of the parameters

regulating the neighborhood of the winner unit and of the weight correction delta.

Cyclic calibration stage

• Presentation of the input vectors (pattern) in a random and cyclic way.
• Calculation of the d-activation of the K units of Kohonen’s layer: the activation

is calculated as vector distance between the input vector X and the weight vector
Wj (mj codebook) which links the K unit to the input nodes.

The classic way to calculate the Euclidean distance between the vectors is:

dj D 	
	X � Wj

	
	 D

vuu
t

NX

iD1

�
xi � wij

�2

• Determination of the winning unit WU: the node of the K layer whose activation
is least:

WU W dw D min
j 2Œ1::M �

8
<

:
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• Correction of the codebook (matrix of the Wij weights) of the winning unit and
the units adjacent to the winning unit in relation to the function set to determine
the level of weight correction according to the input and the proximity to the WU.

• Updating of the factors determining the proximity and layering of the delta
correction of the codebooks.

The distinctive characteristic of the SOM is mainly related to the updating of the
weights, carried out not only on those related to the WU but also, according to the
chosen function, on the weights belonging to the units which are physically close
to it. This characteristic also allows the SOM to show the position occupied by the
class within the matrix in relation to the position occupied by the other classes. This
type of topological mapping, able to organize the classes through spatial relations,
has been given the name of feature mapping.
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11.3.1 Topology of the Neighborhood

The neighborhood of a WU is defined by the degree of physical proximity (v) exist-
ing between the WU and the other K units. Each unit of Kohonen’s layer occupies
a position on the matrix of the coordinates (r, c) for which the neighborhood is
indexed with a scalar degree from 1 to the maximum line and column dimension:

vi D ˙r OR vi D ˙c where max i D max r OR max c

Function h(v) regulates the size of the neighborhood and the extent of the
corrections which need to be made on the codebooks of the units close to the
WU. With the passing of time (cycles during which all the training set models are
viewed), the neighborhood is reduced until it disappears; in this case, the only unit
to which the codebook is corrected is the WU. Since the codebooks are set during
the initialization stage with random values within the layering range, the proximity
of the WU at the beginning of the learning stage is regulated with a maximum
size in order to allow for all the codebooks to be modified and put closer to the
input vectors. The reduced proximity with wide matrices can determine the fact
that some areas of the K matrix remain isolated because the codebooks are too
different from the input vectors. Function h(v) must also allow for the extent of the
correction to be bigger for the units close to the WU and therefore to decrease when
v is larger. The Gaussian function has been shown to meet these needs remarkably
well:

h.v/ D e� v2

�

h.v/ W EXP.�.SQR.v/=�//

where d is the physical proximity of the unit to the WU and � is a parameter which
linearly decreases by a � as time increases, thereby modifying the width of the curve
(bell), thus the extent of the neighborhood. Figures 11.2 and 11.3 show examples of
neighborhood space topologies:

11.3.2 Correction of the Codebooks

The rate of correction a codebook undergoes is determined by various factors:

1. Difference (d) existing between the vector codebook and the input vector
2. Physical distance to the WU (v)
3. Function of the neighborhood h(v) which determines a ��

4. Function of weight layering in relation to the period of life of the network which
determines a �˛
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Fig. 11.2 Topology of the neighborhood space of a winner unit in a square and in a rhomb; in the
illustration, v is the degree of proximity of the K units to the WU

Fig. 11.3 Example of the topology of the neighborhood space with matrix K (8r � 8c) where
the WU is the K55 unit (The first matrix shows a neighborhood in a square while the second a
neighborhood in a rhomb. We can notice from the illustration that, for example, while in the matrix
to the left the v distance of the K66 unit to the WU is 1, in the matrix to the right the v distance of
the K66 unit to the WU is 2)

In a SOM, the codebooks are moved closer to the input vector; therefore, for
each generic codebook W, the distance existing between the corresponding weights
wij and the variables xi of the generic input vector X is calculated:

dj D 	
	X � Wj
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u
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NX
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�
xi � wij

�2
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Fig. 11.4 The illustration shows how, when the parameter � (1, 2, 3) changes, that is, when the
parameter that determines the correction curve of the neighborhood function, the number of units
that are part of the neighborhood and the extent of the correction (�� ) made on the weights also
change

On the basis of the function h(v) of the neighborhood, the �� is therefore
calculated in relation to the value of the parameter � , and the proximity (v) of the
unit K to the WU. �� is the measure which assumes the peak of the bell in the
function h(v), when x D v. In the case in which function h(v) is the Gaussian curve,
then the �� will be calculated in the following way (see Fig. 11.4):

�� D e
�d2

�

The �˛ is calculated as a factor of a linear function decreasing in relation to the
time the network is alive. Therefore, the function of correction of the codebooks is
as follows:

f .w/ D ˛ � e� v2

�

vu
u
t

NX

iD1

.xi � wri /
2

wij D wij C ˛.xi � wij /:
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11.4 Classes and Their Interpretation

The number of classes is determined in advance, when the network architecture is
set and the number of units of Kohonen’s matrix is defined.

Each class is thus characterized by:

• A codebook (model of the input vectors which have been attributed to that class)
• Input vectors which belong to that class
• Numerosity (number of input vectors belonging to that class)
• Position on the matrix
• Vector distance with each of the other codebooks of the other classes
• Variance within its own class (to what extent input vectors belonging to that class

are similar to or different from one another)

The best representation of the classes and the information they provide enables
one to understand the work of classification the SOM makes on a given sample of
data. Let us give an example (which we call A) of a classification worked out by the
SOM on a training sample with 690 input vectors formed by six variables in which
Kohonen’s matrix measures 10 � 10.

To view the numerical values of the classes in which the sample of the input
vectors is distributed on the matrix, we have chosen to use circles of analogue
dimensions to the numerical values (Fig. 11.5).

Fig. 11.5 The illustration shows two representations of the number of the classes on the matrix of
example A. In the matrix to the left, the values correspond to the frequency, while to the right the
values correspond to the percentage of the frequency in comparison to the number of the sample
(Taken from Software of Semeion: SOM ver. 0.5, 2005)
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Fig. 11.6 The illustration (example A) shows the histograms of the values of the codebooks of
a SOM whose Kohonen’s matrix measures 10 � 10 with input vectors of cardinality equal to 6
(Taken from Software of Semeion: SOM ver. 0.5, 2005)

The best visual representation of the codebooks depends on the nature of the
data. When the input vectors, as in this example, are formed by individual variables,
an efficient way to represent them is the histogram (Fig. 11.6).

In Fig. 11.6, one can see how the more similar codebooks are placed close to each
other on the matrix. Each codebook can therefore be compared to the individual
patterns that make up the class (Fig. 11.7).

The SOM neighborhood logic also makes the analysis of how the individual
variables are distributed on the matrix interesting. In relation to each single variable,
the tendency is to group similar values close to each other. The analysis of
how the individual variables are distributed highlights the linear and nonlinear
correlations between the variables, where the linear correlation would generate
similar distributions. In the following illustrations (Figs. 11.8 and 11.9), also taken
from example A, one can see how variables 5 and 6 have between them a relation
of linear tendency: when the values of one increase, the values of the other also
increase, while between the others, nonlinear relations occur.
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Fig. 11.7 The illustration compares the codebook of class 1.1 to the individual vectors of six input
records (which in this example are records 292, 382, 453, 475, 637, and 683) which are part of this
class. The “winner” value to the side of each record shows the vector distance existing between the
record and the codebook. It should be noted that the minimum distance is from record 683 (0.03)
(Taken from SW of the Semeion: SOM ver. 0.5, 2005)

Fig. 11.8 The illustration compares the value distribution of the six variables of example A on the
matrix. The values are represented on the gray scale (the variable with the lowest value corresponds
to white, that with the highest value corresponds to black) (Taken from Software of Semeion: SOM
ver. 0.5, 2005)

When the input models are images, the codebooks offer a synthesis of these
images. We show an example (which we call example B) of a database of XR
mammographs taken from Progetto CALMA (computer-aided library for mam-
mography) of the National Institute of Nuclear Physics. From each mammography,
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Fig. 11.9 The illustration compares the value distribution of the six variables of example A on the
matrix. The values are represented by rhombs of analogue dimensions to the value of the variable
in the individual codebook (Taken from Software of Semeion: SOM ver. 0.5, 2005)

Fig. 11.10 The illustration (left) compares the image of the 25 codebooks of a SOM measuring
5 � 5, which has processed 384 input models, of which (right) the first 30 are shown. The inputs,
measuring 60 � 60 pixels, are portions of images from X-ray mammographs containing micro-
calcifications or healthy tissue. Before being processed by the SOMs, the inputs were processed
with the ACM systems (active connection matrices, Semeion’s patent). The images were taken
from the CALMA database of the National Institute of Nuclear Physics (Taken from Software of
Semeion: SOM ver. 0.5, 2005)

portions of images containing micro-calcifications and images with healthy tissue
were taken, both measuring 60 � 60 pixels. The inputs were then processed with
ACM systems (active connection matrices) of the Semeion before being processed
by the SOMs (Fig. 11.10).
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11.5 Macro-classes and Their Interpretation

When contiguous classes on the matrices are very similar to one another due to
the vector neighborhood between their codebooks, the problem arises of grouping
these classes together in order to reduce the number of classes. To this end, various
procedures have been identified to determine, measure, and view the grouping of
classes.

One possible procedure is to force the data to be processed with SOM matrices
of reduced dimensions and then to compare the two distributions: that is, to verify
which classes of the matrix with the biggest dimensions have clustered with the
matrix with the smallest dimensions.

On the other hand, another procedure consists of widely expanding the matrix
dimensions in relation to the numerosity of the sample in order to see how the
records are distributed on the matrix. We show an example here (which we call
example C), in which the matrix dimensions have been widely expanded (50 � 50)
while keeping the neighborhood dimensions contained and regulated by the alpha
function (Fig. 11.11).

In this example, the population was made up of 18,355 cases of which the
following variables were known:

• Age
• Total bilirubin
• Total cholesterol
• Creatinine (serum)
• AST (SGOT)
• ALT (SGPT)

Fig. 11.11 The illustration shows a 50 � 50 matrix and, inside it, the neighborhood, which in cycle
1 involves 21 � 21 units of the matrix
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Fig. 11.12 The illustration shows a SOM with a 50 � 50 matrix. The sample, made up of 18,355
cases, was placed on the matrix by the SOMs based on three groups (image to the right). The
image to the left shows the vector distances in relation to four codebooks: r1, c1 – r16, c11– r25,
c40 – r36, and c18; the light areas represent short distances, the dark ones long distances. The
positions of the four codebooks are also highlighted on the matrix to the left (Taken from Software
of Semeion: SOM ver. 0.5, 2005)

• HDL cholesterol
• Triglycerides
• Glucose (serum)

The subjects have been distributed by the SOMs in three macro-groups as shown
in Fig. 11.12:

Another procedure consists of globally verifying which of the codebooks are
most similar to one another by measuring their vector distance. In this case,
various types of calculations and representations are also possible according to their
complexity as follows:

• Distance of each codebook from the others (Fig. 11.13): for an n � n matrix, n � n
matrices are rewritten, each representing the distance of each codebook from the
others.

• Local distance: distance of each codebook from its neighborhood formed by a set
of eight codebooks in which the mean value is placed at the center (Fig. 11.14).

• Minimum local distance: minimum distance that separates each codebook from
one of the eight codebooks of its neighborhood (Fig. 11.14). In this case, a
graph is drawn with the matrix units placed at the vertices, and the units of
the codebooks that possess a minimum vector distance with respect to the
neighborhood formed by eight codebooks are linked to each other (Figs. 11.15
and 11.16).
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Fig. 11.13 The illustration shows the visualization of the vector distance between each codebook
and all the others in a SOM measuring 10 � 10. In the matrix to the right, the light areas represent
short distances, while the dark ones long distances; in the matrix to the left, the relation is the
opposite (Taken from Software of Semeion: SOM ver. 0.5, 2005)

Fig. 11.14 The two big figures show the distance between one codebook and the others (with two
different color codes), while the small figures show the absolute value of the same codebook in
comparison with the absolute values of other codebooks (always with two color codes) (Taken
from Software of Semeion: SOM ver. 0.5, 2005)

• Minimum global distance: minimum distance that separates each codebook from
all the others (Figs. 11.15 and 11.16). In this case, a graph is also drawn with the
matrix units placed at the vertices.

• Minimum spanning tree of the vector distances between all the codebooks
(Figs. 11.15 and 11.16).

Following the rule of identifying the minimum distances between the units in
order to link their vertices, the minimum spanning tree graph suggests a spatial
positioning which makes the identification of the macro-classes easier. If, for
example, all the units resting on the same vertex are linked to one another, it is
possible to rewrite Fig. 11.16 as shown in Fig. 11.17.
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Fig. 11.15 The illustration shows the neighborhood of the K33 units formed by the eight units
K22, K23, K24, K32, K34, K42, K43, and K44

Fig. 11.16 The illustration shows an example of classification of a SOM in 5 � 5 (25) classes. At
the top left-hand side, the matrix is shown with the distribution percentages of the sample in the
25 classes. Then the graphs of the links between the 25 classes are given in order to identify any
macro-class according to the “local minimum,” “local maximum,” and “minimum spanning tree”
procedures. Finally, the representation of a possible spatialization of the “minimum spanning tree”
is given
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Fig. 11.17 The illustration shows a processing of Fig. 11.16 in which at the base of the vertices
that possess more than two links, the “A, B, C, D, E, and F” macro-classes are defined. Such
macro-classes have been represented on the matrix of the distribution percentages of the sample
and on the “local minimum,” “local maximum,” and “minimum spanning tree” graphs

More in-depth analyses are possible on the minimum spanning tree principle
where, in order to identify the macro-classes, not only is the position of the vertices
on the graph taken into account but also the actual distances. The procedure can
then be repeated in such a way that in more complex graphs, macro-classes become
vertices.
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Chapter 12
Self-Organizing Maps: Identifying Nonlinear
Relationships in Massive Drug Enforcement
Databases

Giulia Massini

12.1 Introduction

The classification of the seizures affected by Scotland Yard in the fight against drug
dealing is based on a database (DB) consisting of 848 cases of seizure,1 each of
which is broken down into 93 variables (see Appendix A).

A self-organizing map (SOM) (Kohonen 1972, 1982, 1984, 1990, 1995a, b) is
constructed with a matrix of size 10 � 10 capable of supporting 100 classes.

The construction parameters of the SOM are as follows:

Input nodes 93
Pattern 848
Kohonen layer 100
Columns 10
Rows 10
Neighborhood topology Square
View of the patterns Random
ALPHA function Gaussian
ALPHA MAX 1
ALPHA MIN 0
ALPHA INC 0.01
Set W 0–1
ALPHAW function Linear
ALPHAW MAX 1
ALPHAW MIN 0
ALPHAW INC 0.01
Number of epochs 100

1Dataset of seizures was extracted in March 2006 when the situation of the CDTD database was
954 tactic sequences, 1,084 persons, and 888 persons seized (40 incomplete cases).
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Fig. 12.1 Distribution of the 848 records onto the 10 � 10 matrix of an SOM. In the matrix on the
left, (a) the percentages are shown, while the matrix on the right (b) shows the corresponding real
frequencies

where

• Input nodes: number of units comprising the input layer.
• Pattern: number of patterns.
• Kohonen layer, columns, rows: the number of units of the Kohonen layer matrix

is determined by the product of the number of columns and of rows.
• Neighborhood topology: topology of winning unit’s neighborhood, either square

or diamond shaped.
• View of the patterns: for the ordering for the input to the patterns.
• ALPHA function, ALPHA MAX, ALPHA MIN, ALPHA INC: parameters for the

determination of the winning unit’s neighborhood.
• Set W: range of the initialization of the weights.
• ALPHAW function, ALPHAW MAX, ALPHAW MIN, ALPHAW INC: parameters

for the determination of the correction of the weights.
• Number of epochs: determined by the AlphaMax/AphaInc.

At the end of the training phase, the records are distributed by the SOMs onto
the matrix yielding 97 classes out of a possible 100; three classes remained empty
(row 4, column 2; R4C3; R4C5); see the distribution of the records in classes on the
matrix in Fig. 12.1.

12.2 Potential Problems

The first problem to be addressed was the grouping of the 100 classes into broader
macroclasses in order to be able to interpret the classification obtained. To define
the macroclasses, the Euclidean vectorial distance between each codebook vector to
each of the 100 classes and all the others was calculated:
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Fig. 12.2 The figure shows three images of the relationships between the classes of the SOM
network. The circles represent the frequency, while the straight lines represent the nearness
relationships between the classes. (a) Local shows the smaller vectorial distance between the
codebook of a class and the eight ones that are near it; (b) Global shows the smaller vectorial
distance between the codebook of a class and all the codebooks of the matrix; (c) MST shows the
minimum spanning tree calculated on the matrix of the distances between all the codebooks

Fig. 12.3 Shows the
neighborhood of the K33 unit
consisting of the eight units
K22, K23, K24, K32, K34,
K42, K43, and K44
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where xikandxjk are, respectively, the kth value of the codebook i and the kth value
of the codebook j; N is the number of variables.

Then, a distance matrix of dimension 100 � 100 was constructed (symmetrical
with respect to the diagonal); on these values, it was then possible to visualize
some relationships. Figure 12.2a, b, and c shows three procedures of increasing
complexity, which define some macroclasses on the SOM matrix beginning with
the vectorial distance between classes.

In Fig. 12.2a, Local displays a straight line as the smaller vectorial distance
between the codebook of a class and one of the eight adjacent classes constituting
its outline. In this way, the matrix local macroclasses are revealed to be made
up of classes that have physical proximity and are connected with one another
(Fig. 12.3).
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In Fig. 12.2b, Global, just the smaller vectorial distance between the codebook
of one class and all the other 99 classes present on the matrix, is visualized by a
straight line. In this visualization, the adjacent connections remain prevalent on the
matrix, but some macroclasses project their nearness with nonadjacent classes and
therefore reveal a more complex structure.

Lastly, in Fig. 12.2c, minimum spanning tree (MST) (Graham and Hell 1985)
represents not only the smaller vectorial distances between each class and all
the others visualized, but as the graph has the characteristic of being completely
connected and not having circuits, it identifies the minimum structure of the
connections between all the classes of the matrix.

12.3 Visualization of the Data

A spatialized representation of the MST graph (c) is shown in Fig. 12.4 where
generally speaking the vertices represent the individual classes of the SOM matrix,
while in particular, the yellow vertices represent the empty classes of the matrix
(R4C2; R4C3; R4C5).

A study of the MST graph reveals some important characteristics:

1. The strategic nodes that are central in the graph (in white) coincide with the three
empty classes in the SOM matrix.

2. The hubs that have a greater number of connections in the graph coincide with
some of the classes of greater frequency on the matrix.

Based on the projection of the branchings of the MST graph’s hubs, the
macroclasses were identified on the SOM matrix as indicated in Fig. 12.5.

To understand the structure of the SOM macroclasses identified through the MST,
it is necessary to compare it with the way the variables are distributed (the value
that they assume) in the different codebooks. It was noted that the variables that
determine the structure of the macroclasses in a more significant way are shown
in Fig. 12.6.

12.4 Giving Meaning to the Analyses

With regard to the first group of variables, it is then possible to subdivide the MST
graph more thoroughly, identifying subdivisions in the original macrogroups and
then transferring them onto the SOM matrix (Fig. 12.7).

At this level of analysis, it is possible to understand how the strategies of the
seizures relating to the different drugs are structured, namely,

• Cannabis
• Cocaine
• Crack
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Fig. 12.4 Spatialization of the MST graph shown in Fig. 12.2c: the vertices are made up of the
SOM classes, and the arcs are made up of the vectorial nearness relationship between these classes.
The three white nodes are the empty classes (frequency 0.00) on the SOMs

• Heroin/diamorphine
• MDMA
• Other drugs

The seizures of Cannabis on the matrix are subdivided mainly into three
macroclasses defined, respectively, by the variables “Search of Person” and “Search
of Premises.” Two macroclasses are in strategic positions on the MST graph, both
have a hub node relating to a class with high frequency, and the grade is defined
as the number of links with each node: the class R3C3 (a hub with grade 12) for
“Search of Person” and the class R8C1 (grade 9 hub) for “Search of Premises.”
Another hub (grade 7) consists of the node R9C3 that represents the class with
greater frequency in the matrix (5.07% of the cases, i.e., 43 records) (Fig. 12.8).
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Fig. 12.5 The branchings of the hubs on the MST graph have been marked out with different
colors and then transferred onto the SOM matrix. Notice that the black and white color has been
replaced with red and yellow

Fig. 12.6 The distribution of the values of some of the variables present in the DB in the different
codebooks of the SOM matrix and the size of the individual rhombi relate to the value assumed by
the variables that may vary between the value 1 (maximum value) and 0 (minimum value). Each
variable has been standardized between 0.00 and 1.00
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Fig. 12.7 Identification of the variables having a significant impact on the structure of the
macroclasses’ breakdown

Fig. 12.8 Identification of the variable “Cannabis” in the classes of the SOMs and then in the
nodes of the MST graph
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Fig. 12.9 Histogram of the values not equal to 0 of the codebooks R3C3 and R8C8. The
similarities are shown in black and the differences in yellow

In the following figures are the codebooks of the two classes R3C3 and R8C1
in order to compare them. One is urged to remember that each codebook is the
prototype image of the records that constitute the class (Fig. 12.9).

The following figure shows the values assumed by the two codebooks in a
histogram in which only the values different from zero are displayed (Fig. 12.10).

The situation of the Crack seizures is very different: even though on the matrix
they occupy a definite area, on the MST graph, the respective nodes are relegated
to marginal positions and are not connected with one another. The classes displayed
on the graph are mostly connector nodes, i.e., they have only two connections, or
terminal nodes, i.e., they have a single connection (see Fig. 14.11); only the class
R9C7 constitutes a grade 6 hub within the “Search of Premises” area. Furthermore,
the next figure shows how part of this area of the SOM matrix is made up of classes
isolated from one another and from the other areas. In this area (see Figs. 12.10 and
12.12), the variables “Not British” and “Afro Caribbean” are particularly prevalent
(Fig. 12.13).
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Fig. 12.10 This shows the distribution of the classes in whose codebooks, the “Crack” variable is
present. On the matrix, the variable is present in codebooks that, for the most part, are adjacent,
while on the MST graph, the respective classes occupy marginal positions that are very distant
from each other (black circles)

Fig. 12.11 R9C7 codebooks relating to drug Crack, grade 6 hub on the MST

The Heroin seizures both on the matrix and on the MST graph are very much
connected with the Crack seizures occupying close positions (Fig. 12.14).

Next, we show the overall distribution of the different types of drug seizures on
the MST graph which reveals once again how the strategies linked with the seizures
of “Cannabis” are the strategic ones in relation to the other drugs (Fig. 12.15).
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Fig. 12.12 This shows the
mean of the distance between
the codebooks of the
respective neighborhood for
each cell of the matrix. Black:
maximum difference. White:
maximum similarity

Fig. 12.13 This shows the distribution of the variables “British” (the matrix on the left) and “Not
British” (the matrix in the center) and “Afro Caribbean” (the matrix on the right). As it can be
seen, the bottom right area of the center matrix is characterized by the presence of the variables
“Not British,” and in the right matrix, the ethnicity “Afro Caribbean”

The DB of the arrests carried out by Scotland Yard as part of the fight against
drug dealing consists of 269 cases of arrest,2 each of them broken down into 78
variables (see Appendix B).

A SOM network was constructed with a matrix of dimensions 10 � 10, i.e.,
capable of creating 100 classes.

2Dataset of arrest was extracted in January 2006 when the situation of the CDTD database was
338 tactic sequences, 513 persons, 351 accused persons (only 260 of whom were completed for
processing).
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Fig. 12.14 This shows the distribution of the classes in whose codebooks, the “Heroin” variable
is present, in comparison with the “Crack” variable previously analyzed. It can be noted how close
they are, both on the MST graph and on the matrix

The construction parameters of the SOM were as follows (notice the change in
the number of input nodes and patters):

Input nodes 78
Pattern 269
Kohonen layer 100
Columns 10
Rows 10
Neighborhood topology Square
View of the patterns Random
ALPHA function Gaussian
ALPHA MAX 1
ALPHA MIN 0
ALPHA INC 0.01
Set W 0–1
ALPHAW function Linear
ALPHAW MAX 1
ALPHAW MIN 0
ALPHAW INC 0.01
Number of epochs 100
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Fig. 12.15 The distribution of the variables relating to the different drug types on the MST graph

At the end of the training phase, the records were distributed by the SOMs onto
the matrix creating 83 classes out of the 100 possible, since 17 classes remained
empty; see the distribution of the records in the classes on the matrix in Fig. 12.16.

In order to identify the macroclasses, it was necessary to define the vectorial
distance of each codebook among all the others of the matrix. Then the relationships
between these distances were analyzed in accordance with the procedure previously
described using the analysis of the global local nearness and the breakdown of the
latter on the MST graph (minimum spanning tree), as illustrated in Fig. 12.17.

A spatialized representation of the MST (c) graph is shown in the following
figure where, generally speaking, the vertices represent the individual classes of
the SOM matrix, while the yellow vertices represent in detail the empty classes of
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Fig. 12.16 Distribution of the 269 records on the 10 � 10 matrix of a SOM. The matrix on the
left shows the percentages, while the one on the right shows the corresponding real frequencies; X
represents the empty classes

Fig. 12.17 Analysis of the distances between the codebooks of the matrix. The circles represent
the distribution of the records in the different classes of the matrix, while the straight lines represent
the vectorial nearness relationship between the codebooks. The thickness of the straight lines
relates to the nearness degree of the codebooks. The three figures show analyses of increasing
complexity between the nearness relationships between the codebooks

the matrix (Fig. 12.18). A study of the MST graph reveals that the central nodes
in the graph coincide with the empty classes (in white) in the SOM matrix. Going
into the detail in this graph, the empty classes seem to form the “backbone” of the
graph itself, while the proper classes form its “branchings.” This is an experiment
to attempt to reduce the dimensions of the SOM matrix by a sufficient number
of cells equal to the number of empty classes. However, the new classification
tended to keep the number of empty classes constant and unite the records in the
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Fig. 12.18 Spatialization of the MST graph shown in Fig. 12.16c. The vertices are made up of the
SOM classes, and the arcs are made up of the vectorial nearness relationship between these classes.
The white nodes are the empty classes (frequency 0.00) in the SOM
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Fig. 12.19 Identification of the macroclasses on the basis of the MST graph’s hubs through
projection in the SOM matrix of the nodes that form part of the branchings

remaining classes. This has been interpreted as meaning that the distance between
the codebooks belonging to different macroclasses is significant. The empty classes
have codebooks for mediation between the different classes adjacent to them.

Based on the projection of the branchings of the MST graph’s hubs, the
macroclasses on the SOM matrix were identified as indicated in Fig. 12.19.

Figure 12.19 shows the definition of the macroclasses through the identification
of the hub nodes on the graph which in this case coincide with some empty classes
of the SOM, namely, R6C6 (grade 10), R6C2 (grade 7), R9C4 (grade 6), R4C2
(grade 5), R8C3 (grade 5), R10C7 (grade 5), R3C8 (grade 4), and R2C7 (grade 4).
It can be noted that the class R6C6 of grade 10 occupies the central position and
it is the strategic node of the MST graph (the one whose branchings have the most
distant peripheral nodes). This node occupies a central position also on the matrix.
It may also be noted that three of its branchings are articulated, and, therefore, four
areas of the matrix can be identified, as we see in Fig. 12.20.

The areas can then be semanticized by identifying the distribution of the variables
in the codebooks. Figure 12.21 shows the variables that have determined the
structure of the area to the greatest extent.
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Fig. 12.20 Subdivision of the SOM matrix into four areas starting from the strategic hub R6C6
that constitutes the central area and then the other three areas defined on the basis of its three
branchings

Fig. 12.21 Distribution of the variables in the codebooks that have contributed most significantly
to the subdivision of the macroclasses on the matrix. In black are the higher values close to 1, and
in white are the lower values close to 0
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Fig. 12.22 Identification of
four areas on the SOM matrix
and their semanticization on
the basis of the variables
“place of birth” and
“ethnicity”

From an analysis of the variables, it is then possible to identify (see Fig. 12.22), at
the center of the MST graph and of the SOM matrix, a macroclass characterized by
arrests of persons born in the UK of Afro-Caribbean ethnicity; on the left, the arrests
involving persons born in the UK of White European ethnicity; and lastly, on the
right, the arrests of persons born in other states, predominantly of Afro-Caribbean
ethnicity.

12.5 Conclusion

Self-organizing maps in combination with minimal spanning trees created using
an analysis of codebooks used to structure the data can produce interesting and
meaningful visualizations. Even when the outcome of certain datasets is known to
police officials, their graphical representation, as shown in this chapter, can produce
knowledge that can be brought to bear by focusing limited forces in areas known to
produce certain kinds of crime. This chapter explains how certain kinds of illegal
drugs can be identified with specific ethnic groups in certain neighborhoods, in
which certain search methods are found to be more successful than others and even
areas that appear to be absent drug crime still have an involvement.
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Appendix A: Variables of the Seizures

1. Covert Purchase
2. Other (GenTact)
3. Search of Object
4. Search of Person
5. Search of Premises
6. Covert Purchase Test Purchase Operation
7. Other (DetTact)
8. Search of Object other
9. Search of Person Search following arrest (Act)

10. Search of Person Search in police detention (Act)
11. Search of Person Stop & Search
12. Search of Person Strip Search in police detention (Act)
13. Search of Person Other Search
14. Search of Premises other
15. Search of Premises Warrant
16. Search of Premises without warrant (Act)
17. Barking and Dagenham
18. Barnet
19. Bexley
20. Brent
21. Bromley
22. Camden
23. City of London
24. Croydon
25. Ealing
26. Enfield
27. Greenwich
28. Hackney
29. Hammersmith and Fulham
30. Haringey
31. Harrow
32. Havering
33. Hillingdon
34. Hounslow
35. Islington
36. Kensington and Chelsea
37. Lambeth
38. Lewisham
39. Merton
40. Newham
41. Redbridge
42. Richmond upon Thames
43. Southwark
44. Sutton
45. Tower Hamlets
46. Waltham Forest
47. Wandsworth

(continued)
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(continued)

48. Westminster
49. Cannabis
50. Cocaine
51. Crack
52. Heroin/Diamorphine
53. MDMA
54. Other Drugs
55. Other Not Controlled
56. Other Substance
57. First Tactic
58. In Operation
59. Num Of Persons
60. British
61. Not British
62. EA1WhiteEuropean
63. EA2DarkEuropean
64. EA3AfroCaribbean
65. EA4Asia
66. EA5Oriental
67. EA6Arab
68. EA7Unknown
69. W1WhiteBritish
70. W1WhiteIrish
71. W9AnyotherWhitebackground
72. M1WhiteandBlackCaribbean
73. M3WhiteandAsian
74. M9AnyotherMixedbackground
75. A1AsianIndian
76. A2AsianPakistani
77. A3AsianBangladeshi
78. A9AnyotherAsianbackground
79. B1BlackCaribbean
80. B2BlackAfrican
81. B9AnyotherBlackbackground
82. O1Chinese
83. O9AnyOther
84. N4Personsdeclinestodefine
85. Male
86. Female
87. Level1
88. Level2
89. Level3
90. Less25
91. Between25 35
92. Between35 45
93. Over45

(continued)
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Appendix B: Variables of the Arrests

1. Insufficient information available (TL)
2. Level1 OneBorough (TL)
3. Level2a Region (TL)
4. Level2 More Boroughs (TL)
5. Level3 International (TL)
6. Not Applicable (TL)
7. (A1)Asian-Indian (SE)
8. (A2)Asian-Pakistani (SE)
9. (A3)Asian-Bangladeshi (SE)

10. (A9)Any other Asian background (SE)
11. (B1)Black-Caribbean (SE)
12. (B2)Black-African (SE)
13. (B9)Any other Black background (SE)
14. (M1)White and Black Caribbean (SE)
15. (M3)White and Asian (SE)
16. (M9)Any other Mixed background (SE)
17. (N4)Persons declines to define (SE)
18. (NS)Not Stated (SE)
19. (O1)Chinese (SE)
20. (O9)Any Other (SE)
21. (W1)White British (SE)
22. (W2)White Irish (SE)
23. (W9)Any other White background (SE)
24. (EA1)White-European (Ethn)
25. (EA2)Dark-European (Ethn)
26. (EA3)Afro-Caribbean (Ethn)
27. (EA4)Asia (Ethn)
28. (EA5)Oriental (Ethn)
29. (EA6)Arab (Ethn)
30. ALGERIA (Nat)
31. FRANCE (Nat)
32. GAMBIA (Nat)
33. GHANA (Nat)
34. GREECE (Nat)
35. GRENADA (Nat)
36. IRELAND (Nat)
37. ITALY (Nat)
38. JAMAICA (Nat)
39. NIGERIA (Nat)
40. Not Known (Nat)
41. PHILIPPINES (Nat)
42. PORTUGAL (Nat)
43. SOMALIA (Nat)

(continued)
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(continued)

44. SPAIN (Nat)
45. SRI LANKA (Nat)
46. UNITED KINGDOM (Nat)
47. VIETNAM (Nat)
48. UK
49. Not Known (UK)
50. Not UK
51. Female
52. Male
53. Sex Undefined
54. Age
55. Convictions Number
56. Offenses Number
57. Age At First Conviction
58. Theft and kindred offenses
59. Offenses against the person
60. Old Drug offenses
61. Firearms Shotguns Offensive weapons
62. Public disorder and rioting
63. Sexual offenses
64. Offenses against the person2
65. Offenses related to police/courts/prisons
66. New offenses
67. Offenses against property
68. Fraud and kindred offenses
69. Miscellaneous offenses
70. Num Of Arrests
71. Num Of Tactic Sequences
72. Num Of Tactics
73. Num Of Drug Seizures
74. Cannabis
75. Cocaine
76. Crack
77. Heroin Diamorphine
78. Other Drugs
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Chapter 13
Theory of Constraint Satisfaction
Neural Networks

Massimo Buscema

13.1 Introduction

One kind of particularly interesting problem involves finding a solution to a set of
constraints that impose a series of conditions on the solution that the variables must
satisfy. One type of neural network that is used in solving this kind of problem is
called the constraint satisfaction (CS) artificial neural network (ANN). It can be used
to consider and analyze very different and sometimes unconventional problems.
The concepts and theory necessary to understand the operation of this specialized
neural network are explained in this chapter; a detailed example of its use in law
enforcement is provided in a later chapter.

The way a CS ANN addresses a solution to different problems becomes clear by
knowing its structural and functional characteristics. It is a one-layer ANN, and,
therefore, each unit or node is similar to any other, and it is not characterized
by a specific geography. The connections or weights among the different nodes
are symmetric; therefore, wij D wji. Furthermore, their reflexive connections do not
exist: wii D 0.

Each node can have its own Bias. This generally means that a constraint
satisfaction provided with N nodes will have M number of connections (weights
and bias) equal to

M D N � .N � 1/

2„ƒ‚…
wij weights

C N„ƒ‚…
Bias �i

D N � .N C 1/

2
(13.1)
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A constraint satisfaction. Constraint satisfaction is an ANN starting with a
trained weights matrix and updates the values of its own units on the basis of

(a) The external inputs to which it is subjected
(b) The relational constraints imposed by the weights that characterize it

13.2 Learning Through Backpropagation

The values of the weights matrix, W, that characterize a constraint satisfaction
can be generated in different ways. A certain kind of ANN can be charged with
learning the weights matrix that characterizes all patterns specifying the values of
the database about which the constraint satisfaction is questioned. Otherwise, it is
possible to resort to some traditional Bayesian equations about the probabilities
that characterize the positive and/or negative co-occurrence relationship between
each node’s couplet in the constraint satisfaction or, alternatively, to a reformulation
of equations based on Hebb’s (1949; also Hopfield 1982, 1984; Buscema 1995)
hypotheses about the connections among neurons.

The use of a backpropagation ANN in order to learn the constraint satisfaction
weights has shown to be a fairly effective method (see the classic Rumelhart
et al. 1986b and Buscema 1998b, especially for Eq. 13.6). The procedure is
computationally simple.

An auto-associative backpropagation ANN at a maximum gradient of only 2
layers is designed with the main diagonal fixed to zero: One layer is composed of
Input units and the other layer of Output units. “Auto-associative” means that in this
ANN the target vector will be the same with respect to that of every pattern of input.

The number of Input and Output nodes, which are equal, can be defined through
two different strategies:

• Strategy A: Each field of the database (DB) under investigation is a node whose
specific value will vary in the lattice f0,1g according to the variety of the field.

• Strategy B: Each field option is a node that can be active or passive if, in each
record, that option is or is not present. In this case, the ANN will be constituted
exclusively by binary Inputs [0,1].

In this second strategy, the total number of ANN’s Input and Output nodes is
given by the sum of all options of every field expected in the whole DB. Strategy
B is advisable. In fact, this option is more computationally expensive than the first;
it will be an ANN with more nodes and consequently more complex modeling.
Nevertheless, this permits us to clearly consider the dynamic of each DB option
through the constraint satisfaction. The two options are synthesizable as follows:

• Codification a [values f0,1g]: NumInput D NumOutput D
NfP

i

fieldi

• Codification b [values [0,1]]: NumInput D NumOutput D
NopP

j

opj
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where NumOutput D number of outputs, NumInputD number of inputs,
field D vector of DB’s fields, op D vector of all options of each DB’s field, Nf D total
number of the fields, and Nop D total number of the options.

Once designed, the ANN will have, as a learning pattern, all DB records on
which it intends to operate. The learning algorithm will be ANN’s backpropagation
classical algorithm, but it will be provided with some heuristic suggestions deduced
from the experimentations carried out at Semeion’s Research Center.

13.2.1 Forward Algorithm

ui D f .Neti / D f

0

@
NX

j

uj � wij C Biasi

1

A (13.2)

Suggestion 1: It has been verified that in order to generate a useful weights
matrix for the constraint satisfaction network, it is advisable to make the random
initialization of space R at the beginning of the learning process very small. In
practice,

˙R D 1p
NumInput

(13.3)

Furthermore, it is suggested to put all Bias D 0.0 and not to randomize them.

Suggestion 2: It has been further verified that the most effective transfer function f
(Neti) is the classic sigmoid; therefore,

f .Neti / D 1

1 C e�Neti
(13.4)

The function of the sine makes the quantitative relations among the nodes
ambiguous. The function of the Hyperbolic Tangent excessively stresses the weights
matrix. The Arctangent is too soft on the strong differences among records.

13.2.2 Backward Algorithm

�outi.n/ D .ti � ui / � f 0.ui / (13.5)

SelfMomentumij.n/ D �wij.n�1/ � ˇˇ�outi.n/

ˇ
ˇ � 1

0:5 C ˇ
ˇwij

ˇ
ˇ (13.6)
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whereÍwijÍD absolute value of connection wij.

�wij.n/ D SelfMomentumij.n/ C �outi.n/ � uj � Ratei (13.7)

�bi.n/ D Biasi.n�1/ � ˇˇ�outi.n/

ˇ
ˇ � 1

1 C ˇ
ˇBiasi.n/

ˇ
ˇ C �outi.n/ � Ratei (13.8)

Biasi.nC1/ D Biasi.n/ C �bi.n/ (13.9)

wij.nC1/ D wij.n/ C �wij.n/ � uj (13.10)

Suggestion 3: It is useful to initiate the Rate at very low values (Rate < 1). The
learning process will be longer but more precise, and the measure’s weights will be
smaller.

Suggestion 4: It is useful not to allow an ANN to correct the reflexive weights
(i D j); the learning will be longer and more complex, but the generated connections
matrix will be more “refined” and then more efficacious when it is adapted as a
constraint satisfaction weights matrix.

After having concluded the learning step, it is necessary to translate the weights
matrix W of backpropagation ANN into a new matrix, New W, of constraint
satisfaction. So, the bidirectional connections of the backpropagation will be
reduced to symmetric connections by calculating the medium value:

New wij D wij C wj i

2
(13.11)

New wj i D New wij (13.12)

Biasi D Biasi (13.13)

At this point, the weights of the constraint satisfaction are defined.

13.3 Learning Through Symmetric Backpropagation

This learning technique is similar to BP with the previously described �Rule.
The only difference between the two techniques consists in the correction of their
connections values. In classic BP, the correction takes place without considering
the symmetry existing among the weights. In this case, indeed, the new weights
are directly updated in the learning process by considering the error variation with
respect to the couples of symmetric weights (Buscema 1998a):
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�wij D 1

2

�
�outi � uj C �outj � ui

�
(13.14)

�wij D �wj i (13.15)

13.4 The Prior Probability Algorithm (PPA)

A more rapid and sometimes more robust system for generating constraint satis-
faction’s weights matrix consists of using Bayesian’s equations concerned with
the probability of the positive and/or negative co-occurrence of all constraint
satisfaction node couples in all the records (Rumelhart et al. 1986a). The reference
equation for generating the weights matrix is the following:

wij D wj i D �log.n/

p
�
xi D 0 and xj D 1

� � p
�
xi D 1 and xj D 0

�

p
�
xi D 1 and xj D 1

� � p
�
xi D 0 and xj D 0

� (13.16)

where xi and xj are the ith and jth node of constraint satisfaction and p is the co-
occurrence probability of a certain event.

The calculation for Bias is done in the usual way:

Biasi D � log
p.xi D 0/

p.xj D 1/
(13.17)

These equations are utilizable for ANNs whose nodes have been designed
both with Strategy A (nodes number D summation of DB’s record fields) and with
Strategy B (nodes number D summation of all options of every DB’s record field).
In fact, if we indicate the four different co-occurrence probabilities defined in the
weight’s equations in the following way:

• p1 W .xi D 0 and xj D 1/

• p2 W .xi D 1 and xj D 0/

• p3 W .xi D 1 and xj D 1/

• p4 W .xi D 0 and xj D 0/

then the specific probability of each node’s couple could be calculated in the
following way:

p1ij D

MP

mD1

.1 � xmi / � xmj

M
(13.18)

p2ij D

MP

mD1

�
1 � xmj

� � xmi

M
(13.19)
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p3ij D

MP

mD1

xmi � xmj

M
(13.20)

p4ij D

MP

mD1

.1 � xmi / � �1 � xmj

�

M
(13.21)

At this point, the weights matrix W is

wij D wj i D �log.n/

p1ij � p2ij

p3ij � p4ij

if .i D j / then wij D 0: (13.22)

In the same way, the Bias calculation can be carried out:

p5i D

MP

mD1

.1 � xi /

M
(13.23)

p6i D

MP

mD1

xi

M
(13.24)

Biasi D �log.n/

p5i

p6i

(13.25)

(For practical reasons, when a certain co-occurrence probability is 0, it is better
to assume an artificial value of type 0.00001 for purposes of computability.)

Through this procedure, the whole weights matrix and the constraint satisfac-
tion’s bias vector are generated. This is also the case in which the nodes value of
each model is a fuzzy value, closed in the space f0,1g (Buscema 1998a).

13.5 Algorithm of Constraint Satisfaction Network

At each cycle, the updating algorithm of the constraint satisfaction node is very
elementary. Its philosophy is the following: It is assumed that each constraint
satisfaction node is equivalent to a hypothesis. The weights connecting the nodes
are then the solidarity, contradictory, and fuzzy indifference relations between every
possible couple of hypotheses. Consequently, the bias of each node represents the
fuzzy inclination of every hypothesis to contract, generally, solidarity or exclusion
relations with the other hypotheses.
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The constraint satisfaction aims to maximize the activation grade of each of its
hypotheses (node) with respect to the constraints that the relations between each
hypothesis and any other (weights and bias) impose upon them. This means that a
constraint satisfaction provided with three nodes presents:

• Three hypotheses
• Three relations among different hypotheses
• Three thresholds, one for each hypothesis
• 23 combinations of different answers, if each hypothesis could assume only the

values 0 or 1

If each original combination (disposition) of a binary answer (0 or 1) was a cube’s
edge, all the infinite solutions of constraint satisfaction would be included in the
volume of a tridimensional cube (in fact, each node of the constraint satisfaction
can assume values included between 0 and 1, limits included):

000

010

011

001

100

101

111

110

The updating algorithm of the constraint satisfaction units tends to find a closer
solution to the edge “111,” but it considers the weights connecting each node to any
other.

Of course, if the nodes’ number of the constraint satisfaction is 50, the solution
space is equal to a 50th dimension hypercube space with 250 different edges.

A practical use of the constraint satisfaction consists of assuming all its nodes are
units directly externally manipulatable, as is an input unit. This gives an arbitrary
value to one or more hypotheses to the external. This value indicates the consistency
that is intended to give to that hypothesis. This has the aim to consider which other
hypotheses will be able to activate themselves having fixed certain conditions from
the external.

In this case, the updating algorithm of the constraint satisfaction units will always
try to maximize the activation degree of each of its nodes. But this time, its work
would not be simply constrained by the weights connecting the different hypotheses
but from one or more external inputs that arbitrarily were activated and maintained
actively during the work of the constraint satisfaction. This procedure allows for
the testing of how different hypotheses groups are optimized, considering the whole
context where they live. The updating algorithm of the constraint satisfaction units
is composed of four steps:

• Calculation of the NetInput arriving to each unit
• Calculation of the updating Delta of each unit
• Updating of each unit
• Calculation of the reached maximization grade (goodness)
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The NetInput calculation to each unit is calculated in the following way:

Neti D
NX

j

uj � wij C Biasi C InputExti (13.26)

Actually, the most used parameters are included between 0 and 1 in order to
scale the strength, both of the internal and external NetInput. In fact, if we define as
intr the internal NetInput scaling and as estr the external NetInput scaling, then the
previous equation will become

Neti D intr �
0

@
NX

j

uj � wij C Biasi

1

AC estr � .InputExti / (13.26a)

Experience has currently taught us that good values for these two parameters are
given by the two following equations:

intr D 1

N
I estr D 1p

N
(13.27)

where N D number of nodes.
Nevertheless, at the moment, there is a questionable area.
In order to modulate and/or contain the minimum values of the NetInput, other

systems can be used in combination or as alternative to these two parameters. The
most elementary method consists in normalizing the maximum and the minimum of
its values in a linear way within predefined limits.

There is also the possibility to manipulate the NetInput through a semilinear
function. A transfer function of the constraint satisfaction NetInput that was used for
experiments giving satisfactory results is the hyperbolic tangent (Buscema 1998a):

Net0i D eNeti � e�Neti

eNeti C e�Neti
(13.28)

In this case, the values of each NetInput vary in a logistic way between �1 and
C1. Obviously, these function’s results can be normalized with some of the already
considered equations.

The equation for the calculation of each unit’s updating Delta is the following:

if.Neti > 0/ �i D Neti � .1 � ui /

else �i D Neti � ui (13.29)
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At this point, it is possible to update the units:

ui.nC1/ D ui.n/ C �i (13.30)

The double branch of the penultimate equation must not be a “shock.” Practically,
it is necessary so that the units do not exceed the one limit of the lattice [0, 1].

The degree of goodness for a solution the constraint satisfaction method finds at
every cycle is defined Goodness, G(n), where n is the actual cycle:

G.n/ D
X

i

X

j

wij � ui.n/ � uj.n/ C
X

i

Biasi �
X

i

InputExti � ui.n/ (13.31)

The question to consider is how much each node contributes to the maximization
of the constraint satisfaction with respect to the external constraints (InputExt)
established in the simulation.

It is evident that the Goodness values will be a floating point value because the
constraint satisfaction moves within the n-dimensional volume designed by its nodes
(Rumelhart et al. 1986a, b).

13.6 The Hidden Units of the Constraint
Satisfaction Network

In a constraint satisfaction, the hidden units are not directly externally manipulat-
able. That is, though the hidden units cannot directly receive input values from the
investigator, they can easily react to the NetInput produced on them from the other
constraint satisfaction units. For example,

U1 U2

H1

U3

where Ui D input/output units of CS; Hi D hidden units of CS.
The hidden units of the constraint satisfaction have a similar structure but a

different function with respect to the hidden units of a feedforward ANN.
The reference equation for their NetInput calculation is the following:

Neti D
0

@
NX

j

uj � wij C Biasj

1

A � intr (13.32)
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The only difference between these units and the units provided with inputs in
a constraint satisfaction is that the first parameter of the external input cannot be
considered (InputExtD 0).

Often it is useful to construct a constraint satisfaction possessing hidden units in
order to codify the records of a DB. This requires the necessity of assigning a hidden
unit to each record. The problem then consists of the way in which to connect the
hidden units among them and with all the other units of the constraint satisfaction.

It was noticed that the solution of the second point also offers a solution to the
first. There are more procedures for the choice of the weights’ value between each
visible unit of the constraint satisfaction and each hidden unit (Buscema 1998a).
These are two of them:

13.6.1 Procedure 1: The Simple Transposition

In this case, each hidden unit that represents a record is connected with all the visible
units by a weight whose value is similar to the one each visible unit had in the pattern
corresponding to that particular record. For example,

Table R

With such an elementary case, it is possible to proceed in the following
manner:

(a) Construction of an auto-associative feedforward ANN with two layers in order
to define the weights connecting the five options each other. It would be an
ANN provided with five Inputs and five Outputs and charged with learning three
Patterns; the learning process will conclude after generating 20 weights (wij) and
five bias (Biasi).

M F 20 30 40

M F 20 30 40
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(b) Reduce the overall number of weights by

if .i ¤ j / then

�
w0

ij D wij C wj i

2
Iw0

j i D w0
ij



(13.33)

while the bias of the constraint satisfaction remains the same as the feedforward
bias. In this way, the number of real weights of the constraint satisfaction
becomes 10, plus five bias.

(c) Construction of the hidden units through simple transposition.

As there are only three DB records, the hidden units to be added to constraint
satisfaction will also be three. This is defined as a weights matrix WH that connects
each hidden unit with each of the five visible units. The “Table R” becomes the
content of the weights matrix WH with the sole nominal difference that each table
row contains the weights value WH retained through the five visible units of the
constraint satisfaction and each hidden unit represents a specific record. The bias of
the three hidden units either are put equal to zero or can be computed through one
of the previously analyzed co-occurrence equations.

13.6.2 Procedure 2: The Weighted Transposition

In order to activate this procedure, it is necessary to follow the same steps in the
previous procedure. However, at the last step, Table R is not directly identified
with the weights matrix WH . If Table R is identified with a matrix called TR,
then the following equation regulates the values passage from the matrix TR to the
weights WH :

wH
ij D f m

�
T R

ij

�
(13.34)

The function fm rewrites the matrix values TR according to the value of the
weights matrix W, which interconnects the visible units of the constraint satisfaction
among them. Then,

wH
ij D f m

�
T R

ij

�
D Scale � T R

ij C Offset (13.35)

where

Scale D high � low

Max � Min
(13.36)

Offest D Max � low � Min � high

Max � Min
(13.37)
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Parameters “Max” and “Min” indicate the maximum and minimum input values
of function fm, while parameters “high” and “low” indicate the maximum and
minimum Output values of function fm. The problem consists in how to determine
these four parameters.

The problem is already solved for the Input values Min and Max. Each value of
TR can vary between 0 and 1 and then Max D 1.0 and Min D 0.0.

There are at least three options for the values of the parameters high and low:

Maximization of weights W W high D Max
�ˇˇwij

ˇ
ˇ�

low D �high
(13.38)

In this case, the absolute value is chosen as it is higher than the weights matrix
W connecting the visible units and assumed to be the maximum border, while its
inverse is considered to be the minimum border of the new weights WH .

Minimization of weights W W high D Min
�ˇˇwij

ˇ
ˇ� wij ¤ 0:0

low D �high
(13.39)

The procedure is similar to the previous one, the only difference being the exit
borders of function fm which are represented by the weights matrix W that is smaller
and different from zero.

Mean weighting of weights W W high D x

low D �high
(13.40)

where x D
PN

i

PN
i jwij j

N 2 with i ¤ j

In this instance, the mean of the absolute values of the weights matrix W is
calculated leaving the principal diagonal of the matrix W out of this calculation.

Hundreds of experiments were carried out with both of these procedures at Se-
meion. Because of our experiments, we are convinced that the weighed transposition
procedure has been shown to be the best strategy aimed at varying the number of
fields and the number of records for any DB.

The reason for this could be the following: In the simple transposition, the hidden
units function as passive units with respect to the visible nodes corresponding to
properties that do not characterize the record represented by the hidden unit, or they
exercise a moderately excitatory strength over those visible units characterizing the
record they represent.

In contrast with this, the hidden units in the weighted transposition act more or
less inhibitively. This should allow a greater filter capacity on the hidden and visible
units when the constraint satisfaction has to manage particularly complex DBs. This
is of great dimension and contains records presenting very fuzzy diversifications.

It is not necessary to give an opinion about the efficacy of the three proposed
options aimed at making the weighted transposition. From our point of view, they
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represent three real options. Each one can be useful in analyzing the answers that the
constraint satisfaction provides to its hidden units’ different intensities of influence
on the other visible units.

The analysis of these two procedures permits the deduction of different ways
to connect each of the hidden units with their pertinent weights. In choosing the
simple transposition, it is appropriate to conceptualize the hidden units as a unique
units pool that is in competition among them. In this case, the weights matrix WHH

interconnecting them should be filled entirely with values corresponding to the
inverse of the maximum value, each visible node having a possible input. Therefore,

wHH
kp D �1 (13.41)

where wkp D wpk and k ¤ p:

A similar solution was adopted by McClelland and Rumelhart for IAC ANNs.
Otherwise, if a weighted transposition is adopted, four options can be utilized; the
first three are similar to those previously described: maximization, minimization,
and mean weighting of the weights matrix W:

wHH
kp D � �Maxkp

�ˇˇwij

ˇ
ˇ�� fmaximized competitiong (13.42)

wHH
kp D ��Minkp

�ˇˇwij

ˇ
ˇ�� fminimized competitiong (13.43)

wHH
kp D �

 PN
i

PN
j

ˇ
ˇwij

ˇ
ˇ

N 2

!

with i ¤ j fweighted competitiong (13.44)

The fourth option consists of annulling the competition among the hidden units
of the constraint satisfaction:

wHH
kp D 0:0 fNull competitiong (13.45)

These four options are also useful as a filter system through the distribution of
the constraint satisfaction answers to the different questions.

13.7 Final Considerations

The constraint satisfaction are ANNs that try to maximize their node activations
beginning with the entire set of constraints. The first step consists in understanding
which problems represent a suitable fit for being treated with this kind of ANN;
more precisely, it is necessary to understand how any problem must be treated so
that it can be analyzed with a constraint satisfaction.
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It could be asserted that each problem of resource optimization and data profiling
has to be explored with a constraint satisfaction. The effectiveness of the solutions
an ANN is able to produce depends on a series of factors. The first of these factors
is the data representativity in the simulation model; in order to start this process, it
is necessary to atomize the original problem into the smallest component that will
represent the whole of the atomic hypotheses of the problem itself. In addition to
the atomization principle, already known in other contexts, it is also useful to take
into consideration the principle of data variety. The hypotheses that will be part
of the constraint satisfaction must not only be those considered “more incisive”
in defining the problem but also all those hypotheses appearing in the problem
space-time even if they are considered not to be determined. The ANN utilized
to identify the weights of the constraint satisfaction will establish the, more or
less, strong significance of each hypothesis with respect to any other. In sum, the
data representativity consists in predisposing the most complete nodes model of the
atomic variables in the constraint satisfaction able to define the real problem.

The second factor is the effectiveness of constraint satisfaction that is dependent
on the implementation of the weight generation system. In this sense, the learning
that occurs with the weights matrix, like that of Bayesian equations, has been shown
to be simple and robust (Eqs. 13.16, 13.17, 13.18, 13.19, 13.20, 13.21, 13.22, 13.23,
13.24, 13.25).

The third fundamental factor for the functioning of a constraint satisfaction is the
choice of the updating algorithm of the units. Here we have presented a modified
version (Eqs. 13.29, 13.30, 13.31, 13.32, 13.33, 13.34) of the classic algorithm
proposed by Rumelhart and his collaborators.

The fourth factor that is critical in deciding the performance quality of a
constraint satisfaction concerns the weights matrix connecting the constraint satis-
faction hidden units with each other and with the other visible units. In this respect,
the new algorithm has been shown to produce interesting results (Eqs. 13.35, 13.36,
13.37, 13.38, 13.39, 13.40, 13.41, 13.42, 13.43, 13.44, 13.45, 13.46, 13.47, 13.48).
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Chapter 14
Application of the Constraint Satisfaction
Network

Marco Intraligi and Massimo Buscema

14.1 Introduction

The previous chapter described the theoretical underpinnings of the constraint
satisfaction network (Buscema 1998 and Rumelhart et al. 1986). In this chapter,
we describe the application of the constraint satisfaction (CS) network to a dataset
comprising 144 variables for 1,120 cases representing arrests for drug trafficking
offenses in the 32 boroughs of London. This dataset was extracted in June 2006
when the situation of the CDTD (Central Drugs Trafficking Database) was 1,590
tactic sequences, 1,667 individuals, 1,190 accused individuals, and 70 incomplete
cases.

The 144 variables described in Table 14.1 include:

• Sex (male, female, unknown)
• Arrestee’s borough of residence (32 boroughsC 1 not available)
• Borough where each individual was arrested (32 boroughsC 1 not available)
• Nationality of the arrestee
• Ethnic appearance of the arrestee (as determined by the police)
• Self-defined ethnic classification of the arrestee
• Age (expressed in six categories)
• Number of convictions1

1In English law, the word conviction refers to the outcome of a criminal prosecution which
concludes in a judgment or finding that the defendant is guilty of the crime charged. The term
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• Number of offenses2

• Specific details of offenses (e.g., theft, burglary, unlawful possession of a
controlled drug)

• Number of arrests
• Mode of arrest (e.g., direct, as a result of enquiries, given into custody)
• Kinds of generic tactics used by the police (e.g., search of person, search of

premises, covert drug purchase)
• Aims of the police operations
• Behavior of the person at the time of the arrest (e.g., tried to escape, attempted to

discard drugs, resisted arrest)
• Type(s) of drug(s) seized from the arrestee
• Number of drug seizures

14.2 Variables and Analysis

The database was used to generate a connections matrix between all the variables
through the prior probability algorithm (Buscema 1998). Once generated, the
connections matrix was queried through a CS network.

Each query produces an output vector equal to the number of the variables which
can be considered as the prototype resulting from the query formulated. Therefore,
for each query, there will be a certain number of variables activated with values
between 0 and 1.

Overall, 77 different queries were asked:

• One for each borough of residence of the arrestee (32)
• One for each borough where the arrest occurred (32)
• One for each type of drug seized (5)

– Cannabis
– Cocaine
– Crack
– Heroin
– Ecstasy-type drugs (e.g., MDMA, MDA, MDEA)

• One for each type of generic tactic used by the police (6)

– Search of object
– Search of person
– Search of premises
– Covert purchase

summary conviction refers to the consequence of a trial before a court or magistrate, without a
jury, which generally involves a minor offense.
2The word offense is synonymous with the word crime in English law.
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Table 14.2 Variables never
active List of variables never activated in the 77 queries

36 Boroughs NA 53 (EA5) Oriental
37 AFR 54 (EA6) Arab
38 ASIA 55 Age(<18)
40 EU 64 Off LastConvAge
41 IRE 79 AR OFF Other Drug Offenses
43 ME 117 AR PL NA
44 NK 127 Non-Law Enforcement Agent
45 SAME 128 Other-Law Enforcement Agent
48 VTN

– Controlled delivery
– Other generic tactic

• One for each sex (2)

The results obtained are shown in the tables below, one for each interrogation,
where the activated variables having a value greater than 0 are listed.

The 77 answers of the CS were organized into a single dataset and processed
with the AutoCM network (Buscema and Sacco 2010) in order to obtain a distance
matrix and generate a minimum spanning tree (MST) graph (Kruskal 1956). Then,
by applying the evolutionary GenD algorithm (Buscema 2004), the 77 answers were
organized into clusters. Following this process, the MST graph enables us to see
which boroughs have similar characteristics.

Seventeen of the 144 variables in the dataset were never activated following the
77 queries. These are shown in Table 14.2.

Figure 14.1 shows 5 clusters identified by the GenD algorithm among all the
77 answers of the CS network to the same number of queries. It is important to
remember that the MST graph was calculated on the distance matrix obtained from
the weights matrix of an AutoCM network trained on the dataset of the CS network’s
answers. Therefore, it is assumed that when the variables belonging to each cluster
are formulated as an external input for the CS network, they activate more or less
the same variables of the dataset. This datum was highlighted, creating a table for
each cluster that lists all the variables activated with relative value.

Next, we show the tables relating to each cluster with the activated variables and
respective values (Table 14.3) (Fig. 14.2).

14.2.1 Comments on Cluster 1

Cluster 1 consists of 11 queries that overall activate 29 variables (see Table 14.4).
The queries activating the greatest number of variables are AR PL (arrest place)

Greenwich and Barking and Dagenham (14 out of 29) followed by the queries
Bexley, Greenwich, Cannabis, and AR PL Bexley (13 out of 29). The queries
activating the least number of variables are Camden (5) and AR PL Hillingdon (6)
(Table 14.5).
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Fig. 14.2 Detail taken from the global MST graph – cluster 1

Table 14.4 Number and %
of variables activated by each
query

Cluster 1 – queries Variables activ. %

AR PL Greenwich 14 48.3
Barking and Dagenham 14 48.3
Bexley 13 44.8
Greenwich 13 44.8
Cannabis 13 44.8
AR PL Bexley 13 44.8
AR PL Richmond upon Thames 12 41.4
Richmond upon Thames 12 41.4
Hillingdon 12 41.4
AR PL Hillingdon 6 20.7
Camden 5 17.2

The variables, in order of magnitude, which are activated on more than six oc-
casions, are Sex Male, UK, Age (18–21), Search of Premises, EA1-White European,
Cannabis, Bexley, Richmond upon Thames, AR PL Bexley, and AR PL Richmond
upon-Thames. It is possible to consider these variables as the most prototypical of
this cluster.

It is interesting to note that the activated variables following the inclusion of
Cannabis are the same as the activated ones following the inclusion of AR PL Bexley
(see Tables 14.3 and 14.6) (Fig. 14.3).

14.2.2 Comments on Cluster 2

Cluster 2 is formed by 18 queries that overall activate 53 variables (Table 14.7).
In this case, all the queries activate more than 50 % of the variables, except

AR PL Ealing which activates 47 % (25 out of 53). Among others, AR PL Ealing
is the variable-query in this cluster which connects to cluster 1. The query that
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Table 14.5 Number and %
of activations of the 29
variables

Cluster 1 – variables activated Num activ. %

Sex Male 11 100
UK 10 91
Age(18–21) 10 91
Search of Premises 9 82
(EA1) White European 8 73
Cannabis 8 73
Bexley 7 64
Richmond upon Thames 7 64
AR PL Bexley 7 64
AR PL Richmond upon Thames 7 64
AR OFF Theft and Kindred Offenses 5 45
ArrMode NA 5 45
NumOfCashSeizures 4 36
Harrow 3 27
(EA4) Asia 3 27
AR OFF Offensive Weapon Offenses 3 27
AR OFF Other Offenses 3 27
AR PL Harrow 3 27
Hillington 2 18
AR PL Hillingdon 2 18
Search of Person 2 18
Barking and Dagenham 1 9
Camden 1 9
Greenwich 1 9
EASTEU 1 9
Age(25–35) 1 9
AR PL Barking and Dagenham 1 9
AR PL Greenwich 1 9
Pounds 1 9

activates the most variables is Barnet followed by Waltham Forest and Hounslow
(Table 14.8).

There are 14 variables always activated (to the 18 queries). In all, 32 variables
activated over 50 % of the queries.

In contrast to cluster 1, the activated variables relating to convictions and offenses
are important in terms of describing the characteristics of the prototypical arrestee
found in cluster 2.

Harrow is the borough most activated, both as a place of arrest and of residence,
together with Tower Hamlets (mostly as the place of arrest). The interesting datum
is that Harrow is not part of the queries of this cluster; rather, it belongs to cluster
3, and in the MST graph, it is the vertex closest to cluster 2. It can be said that the
prototypical variables of cluster 2 are very similar to those activated by the Harrow
and AR PL Harrow queries (see Tables 14.7 and 14.9).
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Fig. 14.3 Detail taken from the global MST graph – cluster 2

Table 14.7 Number and %
of variables activated by each
query

Cluster 2 – queries Variables activ. %

Barnet 38 72
Waltham Forest 37 70
Hounslow 36 68
AR PL Tower Hamlets 34 64
AR PL Hounslow 34 64
Tower Hamlets 34 64
Cocaine 34 64
AR PL Barnet 34 64
AR PL Waltham Forest 34 64
Search Premise 33 62
Newham 33 62
AR PL Enfield 33 62
Ealing 33 62
AR PL Newham 32 60
Search Person 32 60
AR PL Brent 32 60
AR PL Hammersmith and Fulham 31 58
AR PL Ealing 25 47

The tactics activated are Search of Person, Other Generic, and Search of
Premises. Asian and Afro-Caribbean are the most activated ethnicities, though little.
It is interesting to note that in this cluster the activated variables following the
inclusion of the variable Cocaine are the same as those activated following the
AR PL Barnet input (Table 14.7). This does not mean that the two variables are
directly connected, and in fact, no one of them activates the other. However, this
detail shows that the characteristics of the persons arrested and of the tactics used
in the borough of Barnet are the same emerging when cocaine is seized in the other
boroughs (Fig. 14.4).



246 M. Intraligi and M. Buscema

T
ab

le
14

.8
N

um
be

r
an

d
%

of
ac

tiv
at

io
ns

of
th

e
53

va
ri

ab
le

s

C
lu

st
er

2
–

va
ri

ab
le

s
ac

tiv
at

ed
N

um
ac

tiv
.

%
C

lu
st

er
2

–
va

ri
ab

le
s

ac
tiv

at
ed

N
um

ac
tiv

.
%

Se
x

M
al

e
18

10
0

A
R

O
FF

D
ru

g
tr

af
fic

ki
ng

O
ff

en
se

s
16

89
U

K
18

10
0

A
R

O
FF

D
ru

g
Po

ss
es

si
on

O
ff

en
se

s
15

83
O

ff
D

ru
g

18
10

0
Se

ar
ch

of
Pr

em
is

es
15

83
N

um
O

fA
rr

es
ts

18
10

0
V

io
le

nt
O

nA
rr

es
t

14
78

A
R

O
FF

O
ff

en
si

ve
W

ea
po

n
O

ff
en

se
s

18
10

0
(E

A
4)

A
si

a
11

61
A

R
O

FF
Fi

re
ar

m
s

O
ff

en
se

s
18

10
0

A
ge

(2
1–

25
)

8
44

A
R

O
FF

O
th

er
vi

ol
en

t
O

ff
en

se
s

18
10

0
(E

A
3)

A
fr

o-
C

ar
ib

be
an

7
39

A
R

PL
H

ar
ro

w
18

10
0

A
R

PL
B

re
nt

7
39

N
um

O
fC

as
hS

ei
zu

re
s

18
10

0
To

w
er

H
am

le
ts

5
28

N
um

O
fT

ac
ti

cs
18

10
0

N
um

O
fD

ru
gS

ei
zu

re
s

4
22

Po
li

ce
18

10
0

A
R

O
FF

O
ff

en
se

s
th

e
Pe

rs
on

O
ff

en
se

s
3

17
Se

ar
ch

of
Pe

rs
on

18
10

0
A

R
PL

B
ar

ne
t

3
17

A
rr

M
od

e
D

ir
ec

t
18

10
0

A
R

PL
W

al
th

am
Fo

re
st

3
17

O
nB

ai
lA

tT
im

eO
fO

ff
en

ce
18

10
0

C
an

na
bi

s
3

17
C

on
vi

ct
io

ns
N

um
be

r
17

94
A

R
O

FF
K

id
na

pp
in

g
an

d
A

bd
uc

ti
on

O
ff

en
se

s
2

11
O

ff
en

se
sN

um
be

r
17

94
B

ar
ne

t
1

6
O

ff
T

he
ft

K
in

dr
ed

17
94

E
al

in
g

1
6

O
ff

A
ga

in
st

Pe
rs

on
17

94
H

ou
ns

lo
w

1
6

O
ff

O
ff

en
si

ve
W

ea
po

ns
17

94
N

ew
ha

m
1

6
O

ff
R

el
at

ed
To

Po
li

ce
17

94
W

al
th

am
Fo

re
st

1
6

O
ff

Fr
au

d
17

94
A

R
PL

E
al

in
g

1
6

O
ff

To
ta

l
17

94
A

R
PL

E
nfi

el
d

1
6

O
ff

A
ga

in
st

Pr
op

er
ty

17
94

A
R

PL
H

am
m

er
sm

it
h

an
d

Fu
lh

am
1

6
A

R
PL

To
w

er
H

am
le

ts
17

94
A

R
PL

H
ou

ns
lo

w
1

6
O

th
er

G
en

er
ic

Ta
ct

ic
17

94
A

R
PL

N
ew

ha
m

1
6

A
rr

M
od

e
N

A
17

94
C

oc
ai

ne
1

6
H

ar
ro

w
16

89



14 Application of the Constraint Satisfaction Network 247
T

ab
le

14
.9

Ta
bl

e
w

it
h

th
e

va
ri

ab
le

s
ac

tiv
at

ed
in

th
e

26
qu

er
ie

s
of

cl
us

te
r

3

N
um

C
lu

st
er

3
–

va
ri

ab
le

s
ac

tiv
at

ed
H

ar
ro

w
A

R
PL

H
ar

ro
w

O
th

er
G

en
er

ic
Ta

ct
ic

s
W

es
tm

in
st

er

A
R

PL
R

ed
-

br
id

ge

K
en

si
ng

to
n

an
d

C
he

ls
ea

M
D

M
A

Is
li

ng
to

n

A
R

PL
K

en
s-

in
gt

on
an

d
C

he
ls

ea
C

on
tr

ol
le

d
D

el
iv

er
y

C
ro

yd
on

A
R

PL
B

ro
m

le
y

A
R

PL
Su

tt
on

1
Se

x
M

al
e

1
1

1
1

1
1

1
1

1
1

1
1

1
7

B
re

nt
8

B
ro

m
le

y
9

C
am

de
n

1
1

1
10

C
ro

yd
on

1
15

H
am

m
er

sm
it

h
an

d
Fu

lh
am

17
H

ar
ro

w
1

18
H

av
er

in
g

21
Is

li
ng

to
n

1
22

K
en

si
ng

to
n

an
d

C
he

ls
ea

1
1

1
1

1
1

1
1

1

34
W

an
ds

w
or

th
35

W
es

tm
in

st
er

1
42

JA
M

47
U

K
1

1
1

1
1

1
1

1
1

1
1

1
1

51
(E

A
3)

A
fr

o-
C

ar
ib

be
an

1
1

1
1

1
1

1
1

1
1

1
1

1

59
A

ge
(3

5–
45

)
1

1
1

1
1

1
1

1
1

1
1

1
1

60
A

ge
(>

45
)

61
C

on
vi

ct
io

ns
N

um
be

r
1

1
1

1
1

1
1

1
1

1
1

1
1

62
O

ff
en

se
sN

um
be

r
1

1
1

1
1

1
1

1
1

1
1

1
1

65
O

ff
-D

ru
g

1
1

1
1

1
1

1
1

1
1

1
1

1
66

O
ff

T
he

ft
K

in
dr

ed
1

1
1

1
1

1
1

1
1

1
1

1
1

(c
on

ti
nu

ed
)



248 M. Intraligi and M. Buscema

T
ab

le
14

.9
(c

on
ti

nu
ed

)

N
um

H
am

m
er

-
sm

it
h

an
d

Fu
lh

am

A
R

PL
W

an
ds

-
w

or
th

H
av

er
in

g
A

R
PL

M
er

to
n

B
ro

m
le

y

A
R

PL
H

av
er

-
in

g
Se

ar
ch

O
bj

ec
t

A
R

PL
W

es
t-

m
in

st
er

B
re

nt
A

R
PL

H
ar

in
ge

y
C

ra
ck

A
R

PL
Is

li
ng

-
to

n
W

an
ds

w
or

th

1
1

1
1

1
1

1
1

1
1

1
1

1
1

7
1

8
1

9
1

1
1

1
1

10 15
1

17 18
1

21 22
1

1
1

1
1

1
0.

3
34

1
35 42

1
1

1
1

47
1

1
1

1
1

1
1

1
1

51
1

1
1

1
1

1
1

1
1

1
1

1
1

59
1

1
1

1
1

1
1

1
1

1
1

1
60

1
61

1
1

1
1

1
1

1
1

1
1

1
1

1
62

1
1

1
1

1
1

1
1

1
1

1
1

1
65

1
1

1
1

1
1

1
1

1
1

1
1

1
66

1
1

1
1

1
1

1
1

1
1

1
1

1 (c
on

ti
nu

ed
)



14 Application of the Constraint Satisfaction Network 249
T

ab
le

14
.9

(c
on

ti
nu

ed
)

N
um

C
lu

st
er

3
–

va
ri

ab
le

s
ac

tiv
at

ed
H

ar
ro

w
A

R
PL

H
ar

ro
w

O
th

er
G

en
er

ic
Ta

ct
ic

s
W

es
t-

m
in

st
er

A
R

PL
R

ed
-

br
id

ge

K
en

si
ng

to
n

an
d

C
he

ls
ea

M
D

M
A

Is
li

ng
to

n

A
R

PL
K

en
s-

in
gt

on
an

d
C

he
ls

ea
C

on
tr

ol
le

d
D

el
iv

er
y

C
ro

yd
on

A
R

PL
B

ro
m

le
y

A
R

PL
Su

tt
on

67
O

ff
A

ga
in

st
Pe

rs
on

1
1

1
1

1
1

1
1

1
1

1
1

1
68

O
ff

O
ff

en
si

ve
W

ea
po

ns
1

1
1

1
1

1
1

1
1

1
1

1
69

O
ff

Se
xu

al
1

1
1

1
1

1
1

1
1

1
1

1
1

70
O

ff
R

el
at

ed
To

Po
li

ce
1

1
1

1
1

1
1

1
1

1
1

1
1

71
O

ff
Fr

au
d

1
1

1
1

1
1

1
1

1
1

1
1

1
72

O
ff

To
ta

l
1

1
1

1
1

1
1

1
1

1
1

1
1

73
O

ff
A

ga
in

st
Pr

op
er

ty
1

1
1

1
1

1
1

1
1

1
1

1
1

74
N

um
O

fA
rr

es
ts

1
1

1
1

1
1

1
1

1
1

1
1

1
77

A
R

O
FF

D
ru

g
tr

af
fic

ki
ng

O
ff

en
se

s

1
1

1
1

1
1

1
1

1
1

1
1

1

88
A

R
PL

B
re

nt
1

1
1

1
1

1
1

1
1

1
1

1
1

89
A

R
PL

B
ro

m
le

y
1

1
1

1
1

1
1

1
1

1
1

1
1

90
A

R
PL

C
am

de
n

1
1

1
1

1
1

1
1

1
1

1
1

1
97

A
R

PL
H

ar
in

ge
y

1
1

1
1

1
1

1
1

1
1

1
1

1
98

A
R

PL
H

ar
ro

w
1

1
99

A
R

PL
H

av
er

in
g

10
2

A
R

PL
Is

li
ng

to
n

10
3

A
R

PL
K

en
si

ng
to

n
an

d
C

he
ls

ea
1

1
1

1
1

1
1

1
1

1
1

1
1

10
7

A
R

PL
M

er
to

n
10

9
A

R
PL

R
ed

br
id

ge
1

11
2

A
R

PL
Su

tt
on

1
11

5
A

R
PL

W
an

ds
w

or
th

11
6

A
R

PL
W

es
tm

in
st

er

(c
on

ti
nu

ed
)



250 M. Intraligi and M. Buscema

T
ab

le
14

.9
(c

on
ti

nu
ed

)

N
um

H
am

m
er

-
sm

it
h

an
d

Fu
lh

am

A
R

PL
W

an
ds

-
w

or
th

H
av

er
in

g
A

R
PL

M
er

to
n

B
ro

m
le

y

A
R

PL
H

av
er

-
in

g
Se

ar
ch

O
bj

ec
t

A
R

PL
W

es
t-

m
in

st
er

B
re

nt
A

R
PL

H
ar

in
ge

y
C

ra
ck

A
R

PL
Is

li
ng

-
to

n
W

an
ds

w
or

th

67
1

1
1

1
1

1
1

1
1

1
1

1
1

68
1

1
1

1
1

1
1

1
1

1
1

1
1

69
1

1
1

1
1

1
1

1
1

1
1

1
1

70
1

1
1

1
1

1
1

1
1

1
1

1
1

71
1

1
1

1
1

1
1

1
1

1
1

1
1

72
1

1
1

1
1

1
1

1
1

1
1

1
1

73
1

1
1

1
1

1
1

1
1

1
1

1
1

74
1

1
1

1
1

1
1

1
1

1
1

1
1

77
1

1
1

1
1

1
1

1
1

1
1

1
1

88
1

1
1

1
1

1
1

1
1

1
1

1
1

89
1

1
1

1
1

1
1

1
1

1
1

1
1

90
1

1
1

1
1

1
1

1
97

1
1

1
1

1
1

1
1

1
1

1
1

1
98 99

1
10

2
1

10
3

1
1

1
1

1
1

1
1

1
1

1
1

1
10

7
1

10
9

11
2

11
5

1
11

6
1

(c
on

ti
nu

ed
)



14 Application of the Constraint Satisfaction Network 251

T
ab

le
14

.9
(c

on
ti

nu
ed

)

N
um

C
lu

st
er

3
–

va
ri

ab
le

s
ac

tiv
at

ed
H

ar
ro

w
A

R
PL

H
ar

ro
w

O
th

er
G

en
er

ic
Ta

ct
ic

s
W

es
tm

in
st

er

A
R

PL
R

ed
-

br
id

ge

K
en

si
ng

to
n

an
d

C
he

ls
ea

M
D

M
A

Is
li

ng
to

n

A
R

PL
K

en
s-

in
gt

on
an

d
C

he
ls

ea
C

on
tr

ol
le

d
D

el
iv

er
y

C
ro

yd
on

A
R

PL
B

ro
m

le
y

A
R

PL
Su

tt
on

11
8

N
um

O
fD

ru
gS

ei
zu

re
s

1
1

1
1

1
1

1
1

1
1

1
1

1
12

1
C

ra
ck

1
1

1
1

1
1

1
1

1
1

1
1

1
12

2
H

er
oi

n
D

ia
m

or
ph

in
e

1
1

1
1

1
1

1
1

1
1

1
1

1
12

3
M

D
M

A
1

12
6

N
um

O
fT

ac
ti

cs
1

1
1

1
1

1
1

1
1

1
1

1
1

12
9

Po
li

ce
1

1
1

1
1

1
1

1
1

1
1

1
1

13
0

Se
ar

ch
of

O
bj

ec
t

13
3

C
ov

er
t

Pu
rc

ha
se

1
1

1
1

1
1

1
1

1
1

1
1

1
13

4
C

on
tr

ol
le

d
D

el
iv

er
y

1
13

5
O

th
er

G
en

er
ic

Ta
ct

ic
1

1
1

0.
3

13
6

N
um

O
fT

ac
ti

cS
eq

ue
nc

es
1

1
1

1
1

1
1

1
1

1
1

1
1

13
7

In
O

pe
ra

ti
on

1
1

1
1

1
1

1
1

1
1

1
1

1
13

8
V

io
le

nt
O

nA
rr

es
t

1
13

9
A

rr
M

od
e

N
A

1
1

0.
3

1
14

0
A

rr
M

od
e

D
ir

ec
t

1
1

1
1

1
1

1
1

1
1

1
1

1
14

1
A

rr
M

od
e

R
es

ul
t

of
E

nq
ui

ri
es

1
1

1
1

1
1

1
1

1
1

1
1

1

14
3

A
rr

M
od

e
O

th
er

1
1

1
1

1
1

1
1

1
1

1
1

1

(c
on

ti
nu

ed
)



252 M. Intraligi and M. Buscema

T
ab

le
14

.9
(c

on
ti

nu
ed

)

N
um

H
am

m
er

-
sm

it
h

an
d

Fu
lh

am

A
R

PL
W

an
ds

-
w

or
th

H
av

er
in

g
A

R
PL

M
er

to
n

B
ro

m
le

y

A
R

PL
H

av
er

-
in

g
Se

ar
ch

O
bj

ec
t

A
R

PL
W

es
t-

m
in

st
er

B
re

nt
A

R
PL

H
ar

in
ge

y
C

ra
ck

A
R

PL
Is

li
ng

-
to

n
W

an
ds

w
or

th

11
8

1
1

1
1

1
1

1
1

1
1

1
1

1
12

1
1

1
1

1
1

1
1

1
1

1
1

1
1

12
2

1
1

1
1

1
1

1
1

1
1

1
1

1
12

3
12

6
1

1
1

1
1

1
1

1
1

1
1

1
1

12
9

1
1

1
1

1
1

1
1

1
1

1
1

1
13

0
1

13
3

1
1

1
1

1
1

1
1

1
1

1
1

1
13

4
13

5
1

1
1

1
1

1
1

13
6

1
1

1
1

1
1

1
1

1
1

1
1

1
13

7
1

1
1

1
1

1
1

1
1

1
1

1
1

13
8

0.
5

13
9

14
0

1
1

1
1

1
1

1
1

1
1

1
1

1
14

1
1

1
1

1
1

1
1

1
1

1
1

1
1

14
3

1
1

1
1

1
1

1
1

1
1

1
1

1



14 Application of the Constraint Satisfaction Network 253

Fig. 14.4 Detail taken from the global MST graph – cluster 3

14.2.3 Comments on Cluster 3

Cluster 3 is formed by 26 queries which activated 61 variables (Table 14.10).
In this cluster, all the queries activate more than 50 % of the 61 variables listed.

Harrow, AR PL Harrow, Westminster, and Brent are the queries activating the
majority of variables (38 out of 61) (Table 14.11).

Thirty-one variables are always activated (out of the 26 queries). In all, 35
activated over 50 % of the queries.

As in cluster 2, many variables are activated relating to previous convictions
and offenses by the subjects. A common characteristic among the 26 queries is the
seizure of crack and heroin, even though the latter is not present as a query in the
cluster. The variable, MDMA-type drug, on the other hand, is present in the cluster
and activated only when it is used as a query.

The boroughs most activated are Brent, Bromley, Haringey, Kensington and
Chelsea, and Camden, all representing a place of arrest. Kensington and Chelsea
and Camden as boroughs of residence are activated to a lesser extent.

Afro-Caribbean is the most activated ethnicity, while Covert Purchase is the
tactic most used (Table 14.12) (Fig. 14.5).

14.2.4 Comments on Cluster 4

Cluster 4 consists of 16 queries which resulted in the activation of 53 variables (see
Table 14.13).
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Table 14.10 Number and %
of variables activated by each
query

Cluster 3 – queries Variables activ. %

Harrow 38 62
AR PL Harrow 38 62
Westminster 38 62
Brent 38 62
Other Generic Tactics 37 61
AR PL Redbridge 37 61
Search Object 37 61
AR PL Westminster 37 61
AR PL Islington 37 61
MDMA 36 59
Islington 36 59
Controlled Delivery 36 59
Croydon 36 59
AR PL Sutton 36 59
Hammersmith and Fulham 36 59
AR PL Haringey 36 59
Crack 36 59
Wandsworth 36 59
Kensington and Chelsea 35 57
AR PL Kensington and Chelsea 35 57
AR PL Bromley 35 57
AR PL Wandsworth 35 57
Havering 35 57
AR PL Merton 35 57
Bromley 35 57
AR PL Havering 35 57

In this case, all the queries activate more than 50 % of the variables, except AR
PL Barking and Dagenham which activates 43 % (23 out of 53). A particular point
of interest here is that the variable AR PL Barking and Dagenham is the query that
is at the end of the MST graph.

Among the queries that activate most variables (38 out of 53) are AR PL
Lewisham, AR PL Camden, AR PL Croydon, AR PL Lambeth, Lewisham, Lambeth,
Covert Purchase, and Heroin (Table 14.14).

The number of variables that are always activated in response to the 16 queries
is 17. In all, over 50 % of the queries activated some 37 variables.

As in the two previous clusters, the Convictions and Offenses variables are
activated. In addition, the Crack and Heroin variables are always activated. The
boroughs most activated are Bromley, Haringey, Kensington and Chelsea, Brent,
Camden, and Lewisham, all as places of arrest. Camden and Haringey are somewhat
activated as boroughs of residence, while Jamaican is the nationality most activated.
Once again, Covert Purchase is the tactic most used (Table 14.15) (Fig. 14.6).
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Table 14.11 Number and % of activations of the 61 variables

Cluster 3 – variables
activated Num activ. %

Cluster 3 – variables
activated Num activ. %

Sex Male 26 100 Age(35–45) 25 96

(EA3) Afro-Caribbean 26 100 UK 22 85

ConvictionsNumber 26 100 AR PL Camden 21 81

OffensesNumber 26 100 Kensington and Chelsea 16 62

Off Drug 26 100 Other Generic Tactic 11 42

Off TheftKindred 26 100 Camden 8 31

Off AgainstPerson 26 100 JAM 4 15

Off OffensiveWeapons 26 100 ArrMode NA 4 15

Off Sexual 26 100 AR PL Harrow 2 8

Off RelatedToPolice 26 100 ViolentOnArrest 2 8

Off Fraud 26 100 Brent 1 4

Off Total 26 100 Bromley 1 4

Off AgainstProperty 26 100 Croydon 1 4

NumOfArrests 26 100
Hammersmith and
Fulham 1 4

AR OFF Drug trafficking
Offenses 26 100 Harrow 1 4

AR PL Brent 26 100 Havering 1 4

AR PL Bromley 26 100 Islington 1 4

AR PL Haringey 26 100 Wandsworth 1 4

AR PL Kensington and
Chelsea 26 100 Westminster 1 4

NumOfDrugSeizures 26 100 Age(>45) 1 4

Crack 26 100 AR PL Havering 1 4

Heroin Diamorphine 26 100 AR PL Islington 1 4

NumOfTactics 26 100 AR PL Merton 1 4

Police 26 100 AR PL Redbridge 1 4

Covert Purchase 26 100 AR PL Sutton 1 4

NumOfTacticSequences 26 100 AR PL Wandsworth 1 4

InOperation 26 100 AR PL Westminster 1 4

ArrMode Direct 26 100 MDMA 1 4

ArrMode Result of
Enquiries 26 100 Search of Object 1 4

ArrMode Other 26 100 Controlled Delivery 1 4

OnBailAtTimeOfOffence 26 100

14.2.5 Comments on Cluster 5

Cluster 5 is formed by 6 queries that overall activate 47 variables (Table 14.16).
In this particular cluster, a few queries including Female are present that in all the

other queries were never activated. Merton, Redbridge, and Sutton are the queries
that activate most variables (Table 14.17).
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Fig. 14.5 Detail taken from the global MST graph – cluster 4.

Table 14.13 Number and %
of variables activated by each
query

Cluster 4 – queries Variables activ. %

AR PL Lewisham 38 72
AR PL Camden 38 72
Lewisham 38 72
Lambeth 38 72
Covert Purchase 38 72
Heroin-Diamorphine 38 72
Male 38 72
AR PL Croydon 38 72
AR PL Lambeth 38 72
AR PL Southwark 37 70
Hackney 37 70
AR PL Hackney 37 70
Southwark 37 70
Enfield 36 68
Haringey 35 66
AR PL Barking and Dagenham 23 43

Two variables are always activated in response to the six queries, namely, UK and
EA 1- White European. In all, over 50 % of the queries activated some 27 variables.

In addition, the following two variables are activated: Convictions and Offenses,
but, unlike clusters 2, 3, and 4, the drugs Heroin and Crack are not activated.
The MDMA-type drugs variable is activated in response to the Kingston upon
Thames query, Cannabis to the Redbridge query, and Cocaine to the Female query.
The boroughs most activated are Kingston upon Thames, Sutton, Merton, and
Westminster, as places of arrest and places of residence. White European is the
ethnicity most activated, while Search of Premises and Search of Person are the
tactics most used.

The following tables show the profile of the variables in four typical boroughs
(Barking & Dagenham, Barnet, Camden, and Sutton). It is important to compare
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Table 14.14 Number and % of activations of the 53 variables

Cluster 4 – variables
activated Num activ. %

Cluster 4 – variables
activated Num activ. %

Sex Male 16 100 Off AgainstProperty 15 94

Off Drug 16 100 AR PL Brent 15 94

NumOfArrests 16 100 AR PL Camden 15 94

AR OFF Drug trafficking
Offenses 16 100

ArrMode Result of
Enquiries 15 94

AR PL Bromley 16 100 OnBailAtTimeOfOffence 15 94

AR PL Haringey 16 100 Other Generic Tactic 15 94

AR PL Kensington and
Chelsea 16 100 ViolentOnArrest 14 85

NumOfDrugSeizures 16 100 Off Fraud 11 67

Crack 16 100 AR PL Lewisham 10 62

Heroin Diamorphine 16 100 Age(35–45) 9 56

NumOfTactics 16 100 Age(25–35) 7 41

Police 16 100 Camden 3 18

Covert Purchase 16 100 Haringey 2 13

NumOfTacticSequences 16 100 Enfield 1 6

InOperation 16 100 Hackney 1 6

ArrMode Direct 16 100 Lambeth 1 6

ArrMode Other 16 100 Lewisham 1 6

JAM 15 94 Southwark 1 6

(EA3) Afro-Caribbean 15 94 TU-CY 1 6

ConvictionsNumber 15 94 (EA2) Dark European 1 6

OffensesNumber 15 94

AR PL Barking and
Dagenham 1 6

Off TheftKindred 15 94 AR PL Croydon 1 6

Off AgainstPerson 15 94 AR PL Hackney 1 6

Off OffensiveWeapons 15 94 AR PL Lambeth 1 6

Off Sexual 15 94 AR PL Southwark 1 6

Off RelatedToPolice 15 94 Off FirstConvAge 1 6

Off Total 15 94

how the profile of each borough changes when the boroughs are considered as “place
of residence” of the arrestees or when it is considered as specific place where the
persons are arrested.

14.3 Profiles

14.3.1 Barking and Dagenham

Looking at the results derived from the CS network, some major differences can be
seen between the two prototypes described in Table 14.18.
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Table 14.15 Table with the variables activated in the 6 queries of cluster 5

Num
Cluster 5 – variables
activated Female Redbridge Sutton Merton

Kingston
upon
Thames

AR PL
Kingston
upon Thames

1 Sex Male 1 1 1
2 Sex Female 1
3 Sex notknown 1 1
23 Kingston upon Thames 1 0.1 1 1
26 Merton 1 1 1
28 Redbridge 1
31 Sutton 1 0.9 1 0.4
35 Westminster 1 1
47 UK 1 1 1 1 1 1
49 (EA1) White European 1 1 1 1 1 1
57 Age(21–25) 1
59 Age(35–45) 1 1 1 1
60 Age(>45) 1
61 ConvictionsNumber 1 1 1 1 1
62 OffensesNumber 1 1 1 1 1
65 Off Drug 1 1 1 1 1
66 Off TheftKindred 1 1 1 1 1
67 Off AgainstPerson 1 1 1 1 1
68 Off OffensiveWeapons 1 1 1 1 1
69 Off Sexual 1 1 1 1
70 Off RelatedToPolice 0.9 1 1 1 1
71 Off Fraud 1 1 1 1 1
72 Off Total 1 1 1 1 1
73 Off AgainstProperty 1 1 1 1 1
74 NumOfArrests 0.7 1 1
75 AR OFF Theft and

Kindred Offenses
0.9

78 AR OFF Drug
Possession Offenses

1 1 1 1 1

80 AR OFF Offensive
Weapon Offenses

1 1 1

81 AR OFF Firearms
Offenses

1 1 1 1

104 AR PL Kingston upon
Thames

1 1

107 AR PL Merton 1 1 1
109 AR PL Redbridge 0.3
112 AR PL Sutton 1 1 1 1
116 AR PL Westminster 1 1
118 NumOfDrugSeizures 1
119 Cannabis 0.6
120 Cocaine 1
123 MDMA 1 1

(continued)
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Table 14.15 (continued)

Num
Cluster 5 – variables
activated Female Redbridge Sutton Merton

Kingston
upon
Thames

AR PL
Kingston
upon Thames

124 NumOfCashSeizures 1 1 0.1
126 NumOfTactics
129 Police 0.2
131 Search of Person 1 0.9
132 Search of Premises 1 1 0.2
135 Other Generic Tactic 0.6
139 ArrMode NA 1 1 1 1 1
142 ArrMode Given into

custody
1 1

143 ArrMode Other 0.2

Fig. 14.6 Detail taken from
the global MST graph –
cluster 5

Table 14.16 Number and %
of variables activated by each
query

Cluster 5 – queries Variables activ. %

Merton 30 64
Redbridge 27 57
Sutton 25 53
Kingston upon Thames 23 49
AR PL Kingston upon Thames 23 49
Female 15 32

The first table refers to the borough in which the arrestee resides and describes
the characteristics of the prototypical arrestee as:

• Male.
• Aged between 18 and 21.
• British.
• White (ethnic appearance (EA 1) – White European).
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Table 14.17 Number and % of activations of the 47 variables

Cluster 5 – variables
activated Num activ. %

Cluster 5 – variables
activated Num Activ. %

UK 6 100 AR PL Merton 3 50

(EA1) White European 6 100 NumOfCashSeizures 3 50

ConvictionsNumber 5 83 Search of Premises 3 50

OffensesNumber 5 83 Sex notknown 2 33

Off Drug 5 83 Westminster 2 33

Off TheftKindred 5 83

AR PL Kingston upon
Thames 2 33

Off AgainstPerson 5 83 AR PL Westminster 2 33

Off OffensiveWeapons 5 83 MDMA 2 33

Off RelatedToPolice 5 83 Search of Person 2 33

Off Fraud 5 83

ArrMode Given into
custody 2 33

Off Total 5 83 Sex Female 1 17

Off AgainstProperty 5 83 Redbridge 1 17

AR OFF Drug Possession
Offenses 5 83 Age(21–25) 1 17

ArrMode NA 5 83 Age(>45) 1 17

Kingston upon Thames 4 67

AR OFF Theft and
Kindred Offenses 1 17

Sutton 4 67 AR PL Redbridge 1 17

Age (35–45) 4 67 NumOfDrugSeizures 1 17

Off Sexual 4 67 Cannabis 1 17

AR OFF Firearms Offenses 4 67 Cocaine 1 17

AR PL Sutton 4 67 Police 1 17

Sex Male 3 50 Other Generic Tactic 1 17

Merton 3 50 ArrMode Other 1 17

NumOfArrests 3 50 NumOfTactics 0 0

AR OFF Offensive Weapon
Offenses 3 50

• Cannabis accounts for the majority of seizures that is also confirmed by the
activation of the same boroughs as place of arrest, and the predominant generic
tactic used by the police is Search of Premises.

For those arrested in the boroughs of Barking and Dagenham, their prototypical
characteristics are as follows:

• Male.
• Aged between 25 and 35.
• A resident of Haringey borough.
• Turkish/Cypriot nationals (Jamaican nationals also feature in this category).
• Jamaican (ethnic appearance (EA 2) – Dark European).
• With a criminal record for drug trafficking.
• Crack and heroin account for the majority of drug seizures, while the predomi-

nant generic used by the police is Covert Purchase.
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Table 14.18 Profile of the
variables in Barking and
Dagenham: first table refers
to the borough as “place of
residence”; second table
refers to the borough as
“place of arrest”

Query: Barking & Dagenham

Variables activated Values
1 Sex Male 1
4 Barking and Dagenham 1
17 Harrow 1
29 Richmond upon Thames 1
47 UK 1
49 (EA1) White European 1
56 Age(18–21) 1
85 AR PL Barking and Dagenham 1
98 AR PL Harrow 1
110 AR PL Richmond upon Thames 1
124 NumOfCashSeizures 1
139 ArrMode NA 1
Drugs activated
119 Cannabis 1
Tactics activated
132 Search of Premises 1
Query: Barking & Dagenham
Variables activated Values
1 Sex Male 1
16 Haringey 1
42 JAM 0.02
46 TU-CY 1
50 (EA2) Dark European 1
58 Age(25–35) 1
63 Off FirstConvAge 0.98
65 Off Drug 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
85 AR PL Barking and Dagenham 1
89 AR PL Bromley 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
143 ArrMode Other 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
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14.3.2 Barnet

Turning now to the borough of Barnet, the answers to the queries posed to the CS
network are very similar, and there is little difference between the two prototypes
identified (Table 14.19).

Table 14.19 Profile of the
variables in Barnet: first table
refers to the borough as
“place of residence”; second
table refers to the borough as
“place of arrest”

Query: Barnet

Variables activated Values
1 Sex Male 1
5 Barnet 1
17 Harrow 1
47 UK 1
52 (EA4) Asia 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
88 AR PL Brent 1
98 AR PL Harrow 1
113 AR PL Tower Hamlets 1
118 NumOfDrugSeizures 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Drugs activated
119 Cannabis 0.47
Tactics activated
131 Search of Person 1
132 Search of Premises 1
135 Other Generic Tactic 0.89

(continued)
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Table 14.19 (continued) Query: AR PL Barnet
Variables activated Values
1 Sex Male 1
17 Harrow 1
47 UK 1
52 (EA4) Asia 1
57 Age(21–25) 0.01
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
86 AR PL Barnet 1
88 AR PL Brent 1
98 AR PL Harrow 1
113 AR PL Tower Hamlets 1
118 NumOfDrugSeizures 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Drugs activated
119 Cannabis 0.04
Tactics activated
131 Search of Person 1
132 Search of Premises 1
135 Other Generic Tactic 1

The first table lists the characteristics of the prototypical arrestee as follows:

• Male.
• British.
• His ethnic appearance code is EA 4 – Asian.
• He has a criminal record comprising a wide range of offenses.
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• At the time of arrest, the majority had cannabis in their possession.
• The boroughs of Brent, Harrow, and Tower Hamlets are activated as places of

arrest, and in terms of generating arrests and seizures, the police used three of
the six generic tactics.

The answers pertaining to the second query are practically identical save for the
following: the age of the arrestees (21–25) and the activation value of Cannabis.

14.3.3 Camden

By way of contrast, the answers to the two questions posed in relation to the
borough of Camden have produced very different prototypes. This difference is
readily apparent; in Table 14.20, we see that only five variables were activated when
the borough is “place of residence,” while 38 variables were activated when the
borough is “place of arrest.”

14.3.4 Sutton

Finally, for the borough of Sutton, the prototypical arrestees identified in Table 14.21
are rather different. Those arrestees residing in the borough are described in first
table as:

• Male.
• Aged between 35 and 45.
• British.
• Of White-European stock.
• Very similar to subjects living in Kingston upon Thames and Merton.
• In addition, they have criminal records for a wide range of offenses, and

they were arrested for drug possession, offensive weapon offenses, and firearm
offenses.

• The boroughs of Merton and Sutton are activated as place of arrest.
• No specific drugs or generic tactics are activated by the query.

Prototypical arrestees identified in second table are described as:

• Male.
• Aged between 35 and 45.
• British.
• Of Afro-Caribbean stock.
• Resident in Kensington and Chelsea.
• Their criminal records comprise a wide range of offenses, and they were arrested

for drug trafficking offenses.
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Table 14.20 Profile of the
variables in Camden: first
table refers to the borough as
“place of residence”; second
table refers to the borough as
“place of arrest”

Query: Camden

Variables activated Values
1 Sex Male 1
9 Camden 1
39 EASTEU 1
49 (EA1) White European 1
58 Age(25–35) 0.99
Query: AR PL Camden
Variables activated Values
1 Sex Male 1
9 Camden 0.49
42 JAM 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
106 AR PL Lewisham 0.98
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
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Table 14.21 Profile of the
variables in Sutton: first table
refers to the borough as
“place of residence”; second
table refers to the borough as
“place of arrest”

Query: Sutton

Variables activated Values
1 Sex Male 1
23 Kingston upon Thames 1
26 Merton 1
31 Sutton 1
47 UK 1
49 (EA1) White European 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
107 AR PL Merton 1
112 AR PL Sutton 1
139 ArrMode NA 1
Query: AR PL Sutton
Variables activated Values
1 Sex Male 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1

(continued)
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Table 14.21 (continued) 88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
112 AR PL Sutton 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1

• The boroughs of Brent, Bromley, Camden, Haringey, and Kensington and
Chelsea are activated as place of arrest, while crack and heroin are the most
activated drugs.

• Covert purchase is the predominant generic tactic.

14.4 Conclusion

A complete analysis of the London Metropolitan Police Drug Database comprised
of 144 variables encompassing some 1,120 cases that represented arrests throughout
the 32 boroughs of London for the time ending in June 2006 was undertaken
and analyzed using the constraint satisfaction artificial neural network (CS ANN)
described in the previous chapter. The resulting investigatory tool was the minimal
spanning tree which was thoroughly described and associated with each dataset
used in its analysis. The input database for each analysis was binary and required
a substantial effort to assemble the data in an acceptable format. The analysis also
showed which variables in a given data subset were closest in relationship to each
other. Those associations were used to explain the results of the MSTs.

Using this method, law enforcement agencies can transform their traditional,
SQL-based databases into dynamic resources for which heretofore unknown con-
nections of individuals that associate with certain other individuals can be identified
and accurate profiles can be generated that could greatly aid the police in focusing
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their limited manpower resources onto groups and areas identified as being most
probably for illegal drug activity.

A.1 Appendix

Next, we show the tables relating to each borough when is consider “place of
residence” and “place of arrest” and the activated variables with respective values.

Query: Bexley

Variables activated Values
1 Sex Male 1
6 Bexley 1
29 Richmond upon Thames 1
47 UK 1
49 (EA1) White European 1
56 Age(18–21) 1
75 AR OFF Theft and Kindred Offenses 1
80 AR OFF Offensive Weapon Offenses 1
84 AR OFF Other Offenses 1
87 AR PL Bexley 1
110 AR PL Richmond upon Thames 1
Drugs activated
119 Cannabis 1
Tactics activated
132 Search of Premises 1
Query: AR PL Bexley
Variables activated Values
1 Sex Male 1
6 Bexley 1
17 Harrow 1
47 UK 1
52 (EA4) Asia 1
56 Age (18–21) 1
80 AR OFF Offensive Weapon Offenses 1
87 AR PL Bexley 1
98 AR PL Harrow 1
124 NumOfCashSeizures 1
Drug activated
119 Cannabis 1
Tactics activated
131 Search of Person 1
132 Search of Premises 1

(continued)
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(continued)

Query: Brent

Variables activated Values
1 Sex Male 1
7 Brent 1
22 Kensington and Chelsea 0.32
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 0.51
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: AR PL Brent
Variables activated Values
1 Sex Male 1
17 Harrow 1
47 UK 1
51 (EA3) Afro-Caribbean 1

(continued)
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(continued)

61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
76 AR OFF Offenses the Person Offenses 1
77 AR OFF Drug trafficking Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
88 AR PL Brent 1
98 AR PL Harrow 1
113 AR PL Tower Hamlets 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Tactics activated
131 Search of Person 1
135 Other Generic Tactic 1
Query: Bromley
Variables activated Values
1 Sex Male 1
8 Bromley 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1

(continued)
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(continued)

77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: AR PL Bromley
Variables activated Values
1 Sex Male 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1

(continued)
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(continued)

137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: Croydon
Variables activated Values
1 Sex Male 1
10 Croydon 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1

(continued)
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(continued)

Tactics activated
133 Covert Purchase 1
Query: AR PL Croydon
Variables activated Values
1 Sex Male 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 0.62
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 0.9
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
91 AR PL Croydon 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
106 AR PL Lewisham 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 0.97
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 0.65

(continued)
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(continued)

Query: Ealing
Variables activated Values
1 Sex Male 1
11 Ealing 1
17 Harrow 1
47 UK 1
51 (EA3) Afro-Caribbean 1
57 Age(21–25) 0.01
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 0.83
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
98 AR PL Harrow 1
113 AR PL Tower Hamlets 0.94
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Drug activated
119 Cannabis 0.01
Tactics activated
131 Search of Person 1
132 Search of Premises 0.62
135 Other Generic Tactic 0.99
Query: AR PL Ealing
Variables activated Values
1 Sex Male 1
17 Harrow 1
47 UK 1
52 (EA4) Asia 1
57 Age(21–25) 1

(continued)
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(continued)

65 Off Drug 0.18
68 Off OffensiveWeapons 0.01
74 NumOfArrests 1
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
82 AR OFF Kidnapping and Abduction Offenses 1
83 AR OFF Other violent Offenses 1
86 AR PL Barnet 1
92 AR PL Ealing 1
98 AR PL Harrow 1
113 AR PL Tower Hamlets 0.2
114 AR PL Waltham Forest 0.99
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Drugs activated
119 Cannabis 1
Tactics activated
131 Search of Person 1
132 Search of Premises 1
Query: Enfield
Variables activated Values
1 Sex Male 1
12 Enfield 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
58 Age(25–35) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1

(continued)
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(continued)

129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: AR PL Enfield
Variables activated Values
1 Sex Male 1
17 Harrow 1
47 UK 1
51 (EA3) Afro-Caribbean 1
57 Age(21–25) 0.02
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 0.94
78 AR OFF Drug Possession Offenses 0.95
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
93 AR PL Enfield 1
98 AR PL Harrow 1
113 AR PL Tower Hamlets 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
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Tactics activated
131 Search of Person 1
132 Search of Premises 0.73
135 Other Generic Tactic 0.79
Query: Greenwich
Variables activated Values
1 Sex Male 1
6 Bexley 1
13 Greenwich 1
29 Richmond upon Thames 1
47 UK 1
49 (EA1) White European 1
56 Age(18–21) 1
75 AR OFF Theft and Kindred Offenses 1
84 AR OFF Other Offenses 1
87 AR PL Bexley 1
110 AR PL Richmond upon Thames 1
Drugs activated
119 Cannabis 1
Tactics activated
132 Search of Premises 1
Query: AR PL Greenwich
Variables activated Values
1 Sex Male 1
6 Bexley 1
29 Richmond upon Thames 1
47 UK 1
49 (EA1) White European 1
56 Age(18–21) 1
75 AR OFF Theft and Kindred Offenses 1
84 AR OFF Other Offenses 1
87 AR PL Bexley 1
94 AR PL Greenwich 1
110 AR PL Richmond upon Thames 1
139 ArrMode NA 1
Drugs activated
119 Cannabis 1
Tactics activated
132 Search of Premises 1
Query: Hackney
Variables activated Values
1 Sex Male 1
14 Hackney 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
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61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 0.42
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 0.88
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: AR PL Hackney
Variables activated Values
1 Sex Male 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
58 Age(25–35) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
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71 Off Fraud 0.42
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
95 AR PL Hackney 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: Hammersmith and Fulham
Variables activated Values
1 Sex Male 1
15 Hammersmith and Fulham 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
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88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: AR PL Hammersmith and Fulham
Variables activated Values
1 Sex Male 1
17 Harrow 1
47 UK 1
51 (EA3) Afro-Caribbean 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
76 AR OFF Offenses the Person Offenses 1
77 AR OFF Drug trafficking Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
90 AR PL Camden 0.01
96 AR PL Hammersmith and Fulham 1
98 AR PL Harrow 1
113 AR PL Tower Hamlets 0.01
124 NumOfCashSeizures 0.99
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126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Tactics activated
131 Search of Person 1
135 Other Generic Tactic 1
Query: Haringey
Variables activated Values
1 Sex Male 1
16 Haringey 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
58 Age(25–35) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 0.03
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
106 AR PL Lewisham 0.04
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
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Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: AR PL Haringey
Variables activated Values
1 Sex Male 1
9 Camden 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
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Query: Harrow
Variables activated Values
1 Sex Male 1
17 Harrow 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
98 AR PL Harrow 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: AR PL Harrow
Variables activated Values
1 Sex Male 1
9 Camden 1
47 UK 1
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51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
98 AR PL Harrow 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
139 ArrMode NA 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: Havering
Variables activated Values
1 Sex Male 1
18 Havering 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
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62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: AR PL Havering
Variables activated Values
1 Sex Male 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
60 Age(>45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
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72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
97 AR PL Haringey 1
99 AR PL Havering 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: Hillingdon
Variables activated Values
1 Sex Male 1
19 Hillingdon 1
29 Richmond upon Thames 1
47 UK 1
49 (EA1) White European 1
56 Age(18–21) 1
100 AR PL Hillingdon 1
110 AR PL Richmond upon Thames 1
124 NumOfCashSeizures 1
125 Pounds 1
139 ArrMode NA 1
Tactics activated
132 Search of Premises 1
Query: AR PL Hillingdon
Variables activated Values
1 Sex Male 1
19 Hillingdon 1
47 UK 1
52 (EA4) Asia 1
56 Age (18–21) 1
100 AR PL Hillingdon 1
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Query: Hounslow
Variables activated Values
1 Sex Male 1
17 Harrow 1
20 Hounslow 1
47 UK 1
52 (EA4) Asia 1
57 Age(21–25) 0.06
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
88 AR PL Brent 0.99
98 AR PL Harrow 1
113 AR PL Tower Hamlets 1
118 NumOfDrugSeizures 0.98
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Tactics activated
131 Search of Person 1
132 Search of Premises 1
135 Other Generic Tactic 1
Query: AR PL Hounslow
Variables activated Values
1 Sex Male 1
17 Harrow 0.34
32 Tower Hamlets 1
47 UK 1
52 (EA4) Asia 1
57 Age(21–25) 1
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61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 0.33
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
98 AR PL Harrow 1
101 AR PL Hounslow 1
113 AR PL Tower Hamlets 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Drugs activated
119 Cannabis 0.01
Tactics activated
131 Search of Person 1
132 Search of Premises 1
135 Other Generic Tactic 1
Query: Islington
Variables activated Values
1 Sex Male 1
21 Islington 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
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70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: AR PL Islington
Variables activated Values
1 Sex Male 1
9 Camden 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
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90 AR PL Camden 1
97 AR PL Haringey 1
102 AR PL Islington 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: Kensington & Chelsea
Variables activated Values
1 Sex Male 1
22 Kensington & Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
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129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: AR PL Kensington & Chelsea
Variables activated Values
1 Sex Male 1
22 Kensington & Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
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Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: Kingston upon Thames
Variables activated Values
3 Sex notknown 1
23 Kingston upon Thames 1
35 Westminster 1
47 UK 1
49 (EA1) White European 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
78 AR OFF Drug Possession Offenses 1
104 AR PL Kingston upon Thames 1
116 AR PL Westiminster 1
139 ArrMode NA 1
142 ArrMode Given into custody 1
Drugs activated
123 MDMA 1
Query: AR PL Kingston upon Thames
Variables activated Values
3 Sex notknown 1
23 Kingston upon Thames 1
35 Westminster 1
47 UK 1
49 (EA1) White European 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
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70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
78 AR OFF Drug Possession Offenses 1
104 AR PL Kingston upon Thames 1
116 AR PL Westiminster 1
139 ArrMode NA 1
142 ArrMode Given into custody 1
Drugs activated
123 MDMA 1
Query: Lambeth
Variables activated Values
1 Sex Male 1
24 Lambeth 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
106 AR PL Lewisham 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
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Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: AR PL Lambeth
Variables activated Values
1 Sex Male 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
58 Age(25–35) 0.97
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 0.39
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
105 AR PL Lambeth 1
106 AR PL Lewisham 0.98
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
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Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: Lewisham
Variables activated Values
1 Sex Male 1
25 Lewisham 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
106 AR PL Lewisham 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
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Query: AR PL Lewisham
Variables activated Values
1 Sex Male 1
9 Camden 0.9
42 JAM 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
106 AR PL Lewisham 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 0.94
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: Merton
Variables activated Values
1 Sex Male 1
23 Kingston upon Thames 0.12
26 Merton 1
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31 Sutton 0.36
47 UK 1
49 (EA1) White European 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
107 AR PL Merton 1
112 AR PL Sutton 1
124 NumOfCashSeizures 0.05
126 NumOfTactics 0.03
129 Police 0.23
139 ArrMode NA 1
143 ArrMode Other 0.21
Tactics activated
131 Search of Person 0.93
132 Search of Premises 0.16
Query: AR PL Merton
Variables activated Values
1 Sex Male 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
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74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
107 AR PL Merton 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: Newham
Variables activated Values
1 Sex Male 1
17 Harrow 1
27 Newham 1
47 UK 1
52 (EA4) Asia 1
57 Age(21–25) 0.2
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 0.71
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
98 AR PL Harrow 1
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113 AR PL Tower Hamlets 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Tactics activated
131 Search of Person 1
132 Search of Premises 1
135 Other Generic Tactic 1
Query: AR PL Newham
Variables activated Values
1 Sex Male 1
32 Tower Hamlets 1
47 UK 1
52 (EA4) Asia 1
57 Age(21–25) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
98 AR PL Harrow 1
108 AR PL Newham 1
113 AR PL Tower Hamlets 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Tactics activated
131 Search of Person 1
132 Search of Premises 1
135 Other Generic Tactic 1

(continued)
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(continued)

Query: Redbridge
Variables activated Values
1 Sex Male 1
28 Redbridge 1
31 Sutton 0.9
47 UK 1
49 (EA1) White European 1
60 Age(>45) 0.99
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 0.99
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 0.9
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 0.74
75 AR OFF Theft and Kindred Offenses 0.92
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
109 AR PL Redbridge 0.27
112 AR PL Sutton 1
124 NumOfCashSeizures 0.98
139 ArrMode NA 1
Drugs activated
119 Cannabis 0.6
Tactics activated
132 Search of Premises 1
135 Other Generic Tactic 0.64
Query: AR PL Redbridge
Variables activated Values
1 Sex Male 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1

(continued)
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(continued)

73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
109 AR PL Redbridge 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
139 ArrMode NA 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: Richmond upon Thames
Variables activated Values
1 Sex Male 1
6 Bexley 1
29 Richmond upon Thames 1
47 UK 1
49 (EA1) White European 1
56 Age(18–21) 1
75 AR OFF Theft and Kindred Offenses 1
87 AR PL Bexley 1
110 AR PL Richmond upon Thames 1
139 ArrMode NA 1
Drugs activated
119 Cannabis 1
Tactics activated
132 Search of Premises 1
Query: AR PL Richmond upon Thames
Variables activated Values
1 Sex Male 1
6 Bexley 1
29 Richmond upon Thames 1
47 UK 1
49 (EA1) White European 1

(continued)



304 M. Intraligi and M. Buscema

(continued)

56 Age(18–21) 1
75 AR OFF Theft and Kindred Offenses 1
87 AR PL Bexley 1
110 AR PL Richmond upon Thames 1
139 ArrMode NA 1
Drugs activated
119 Cannabis 1
Tactics activated
132 Search of Premises 1
Query: Southwark
Variables activated Values
1 Sex Male 1
30 Southwark 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
58 Age(25–35) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
106 AR PL Lewisham 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1

(continued)
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(continued)

Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: AR PL Southwark
Variables activated Values
1 Sex Male 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
111 AR PL Southwark 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
138 ViolentOnArrest 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1

(continued)
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(continued)

Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: Tower Hamlets
Variables activated Values
1 Sex Male 1
17 Harrow 1
32 Tower Hamlets 1
47 UK 1
52 (EA4) Asia 1
57 Age(21–25) 0.47
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 0.74
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
98 AR PL Harrow 1
113 AR PL Tower Hamlets 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Tactics activated
131 Search of Person 1
132 Search of Premises 1
135 Other Generic Tactic 1
Query: AR PL Tower Hamlets
Variables activated Values
1 Sex Male 1
17 Harrow 1
32 Tower Hamlets 1
47 UK 1
52 (EA4) Asia 1

(continued)
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(continued)

57 Age(21–25) 0.51
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 0.72
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
98 AR PL Harrow 1
113 AR PL Tower Hamlets 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Tactics activated
131 Search of Person 1
132 Search of Premises 1
135 Other Generic Tactic 1
Query: Waltham Forest
Variables activated Values
1 Sex Male 1
17 Harrow 0.83
33 Waltham Forest 1
47 UK 1
51 (EA3) Afro-Caribbean 1
57 Age(21–25) 0.81
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 0.99
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 0.98

(continued)
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(continued)

71 Off Fraud 0.98
72 Off Total 1
73 Off AgainstProperty 0.99
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 0.83
78 AR OFF Drug Possession Offenses 1
80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
82 AR OFF Kidnapping and Abduction off 1
83 AR OFF Other violent Offenses 1
86 AR PL Barnet 0.01
98 AR PL Harrow 1
113 AR PL Tower Hamlets 0.62
114 AR PL Waltham Forest 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 0.93
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Drugs activated
119 Cannabis 0.47
Tactics activated
131 Search of Person 1
132 Search of Premises 1
135 Other Generic Tactic 0.83
Query: AR PL Waltham Forest
Variables activated Values
1 Sex Male 1
17 Harrow 1
47 UK 1
51 (EA3) Afro-Caribbean 1
57 Age(21–25) 0.03
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 0.99
78 AR OFF Drug Possession Offenses 1

(continued)
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(continued)

80 AR OFF Offensive Weapon Offenses 1
81 AR OFF Firearms Offenses 1
83 AR OFF Other violent Offenses 1
88 AR PL Brent 0.14
98 AR PL Harrow 1
113 AR PL Tower Hamlets 1
114 AR PL Waltham Forest 1
124 NumOfCashSeizures 1
126 NumOfTactics 1
129 Police 1
138 ViolentOnArrest 1
139 ArrMode NA 1
140 ArrMode Direct 1
144 OnBailAtTimeOfOffence 1
Tactics activated
131 Search of Person 1
132 Search of Premises 0.98
135 Other Generic Tactic 1
Query: Wandsworth
Variables activated Values
1 Sex Male 1
34 Wandsworth 1
42 JAM 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1

(continued)
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(continued)

129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
Query: AR PL Wandsworth
Variables activated Values
1 Sex Male 1
22 Kensington and Chelsea 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 0.02
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
115 AR PL Wandsworth 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1

(continued)
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(continued)

Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
Query: Westminster
Variables activated Values
1 Sex Male 1
9 Camden 1
35 Westminster 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
139 ArrMode NA 0.29
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 0.34

(continued)
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(continued)

Query: AR PL Westminster
Variables activated Values
1 Sex Male 1
9 Camden 1
47 UK 1
51 (EA3) Afro-Caribbean 1
59 Age(35–45) 1
61 ConvictionsNumber 1
62 OffensesNumber 1
65 Off Drug 1
66 Off TheftKindred 1
67 Off AgainstPerson 1
68 Off OffensiveWeapons 1
69 Off Sexual 1
70 Off RelatedToPolice 1
71 Off Fraud 1
72 Off Total 1
73 Off AgainstProperty 1
74 NumOfArrests 1
77 AR OFF Drug trafficking Offenses 1
88 AR PL Brent 1
89 AR PL Bromley 1
90 AR PL Camden 1
97 AR PL Haringey 1
103 AR PL Kensington and Chelsea 1
116 AR PL Westminster 1
118 NumOfDrugSeizures 1
126 NumOfTactics 1
129 Police 1
136 NumOfTacticSequences 1
137 InOperation 1
140 ArrMode Direct 1
141 ArrMode Result of Enquiries 1
143 ArrMode Other 1
144 OnBailAtTimeOfOffence 1
Drugs activated
121 Crack 1
122 Heroin Diamorphine 1
Tactics activated
133 Covert Purchase 1
135 Other Generic Tactic 1
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Chapter 15
Auto-Contractive Maps, H Function,
and the Maximally Regular Graph: A New
Methodology for Data Mining

Massimo Buscema

15.1 Learning Equations

The auto-contractive map (AutoCM) consists of a three-layer architecture: an input
layer in which the signal is captured from the environment, a hidden layer where the
signal is modulated inside the CM, and an output layer by which the CM influences
the environment according to the stimuli previously received (Fig. 15.1).

Each layer is composed of N units. Then the whole CM is composed by 3N units.
The connections between the input layer and the hidden layer are monodedicated,
whereas the ones between the hidden layer and the output layer are at maximum
gradient. Therefore, with respect to the number of units, the corresponding number
of the connections Nc is given by Nc D N (N C 1).

All the connections of CM may be initialized both by equal values and by values
at random. The best practice is to initialize all the connections with the same positive
value, close to zero.

The auto-contractive map learning algorithm may be characterized by four
orderly steps (see the AutoCM theory in Buscema and Sacco 2010; Buscema
2007a, b and effective applications in medical field of AutoCM from Buscema
2007a, b; Buscema and Grossi 2008, 2009; Buscema et al. 2008a, b; Licastro et al.
2010a, b; Grossi et al. 2011; Eller-Vainicher et al. 2011):

1. Signal transfer from the input into the hidden layer
2. Adaptation of the connections value between the input layer and the hidden

layer*
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Fig. 15.1 The figure gives an example of an AutoCM with N D 4

3. Signal transfer from the hidden layer into the output layer*
4. Adaptation of the connections value between the hidden layer and the output

layer

(*): steps 2 and 3 may take place in parallel.
We define as m[s] the units of the input layer (sensors), scaled between 0 and 1,

as m[h] the ones of the hidden layer, and as m[t] the ones of the output layer (system
target). We define v as the vector of monodedicated connections, w the matrix of the
connections between the hidden layer and output layer, and n indicates a moment in
discrete time in which the weights in w are calculated, or rather, n is the number of
cycles of elaboration that, beginning at zero, increases one unit at each successive
cycle: n 2 N .

There are signal forward transfer and learning equations:

(a) Signal transfer from the input to the hidden layer:

m
Œh�
i.n/

D m
Œs�
i

�
1 � vi.n/

C

�
(15.1)

where C D positive real number not less than 1, named the contractive factor,
and where the (n) subscript has been omitted from the input layer units for
simplicity given that they are constant at every elaboration cycle.

(b) Adaptation of the connections vi.n/
through the �vi.n/

trapping the energy
difference generated by Eq. (15.1):

�vi.n/
D
�
m

Œs�
i � m

Œh�
i.n/

�
�
�
1 � vi.n/

C

�
I (15.2)

vi.nC1/
D vi.n/

C �vi.n/
: (15.3)
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(c) Signal transfer from the hidden layer to the output layer:

Neti.n/
D

NX

j

m
Œh�
j.n/

�
�
1 � wi;j.n/

C

�
I (15.4)

m
Œt�
i.n/

D m
Œh�
i.n/

�
1 � Neti.n/

C

�
: (15.5)

(d) Adaptation of the connections wi;j.n/
through the �wi;j.n/

trapping the energy
differences generated by Eq. (15.5):

�wi;j.n/
D
�
m

Œh�
i.n/

� m
Œt�
i.n/

�
�
�
1 � wi;j.n/

C

�
� m

Œh�
j.n/

I (15.6)

wi;j.nC1/
D wi;j.n/

C �wi;j.n/
: (15.7)

The value m
Œh�
j.n/

of (15.6) is used for proportioning the change of the connection

wi;j.n/
to the quantity of energy liberated by node m

Œh�
j.n/

in favor of node m
Œt�
i.n/

.
In auto-contractive mapping, the learning process, conceived as an adjustment

in the connections with respect to the minimization of energy, corresponds to the
continuous acceleration and deceleration of velocities of the learning signals (cor-
rections �wi;j.n/

and �vi.n/
) inside the artificial neural network (ANN) connection

matrix.
The initial step is to make the precedent sentence evident by showing the CM

convergence equation:

lim
n!1 vi.n/

D C: (15.8)

In fact, when vi.n/
D C , then �vi.n/

D 0 (Eq. 15.2) and m
Œh�
i.n/

D 0 (Eq. 15.1) and,
consequently, �wi;j.n/

D 0 (Eq. 15.6).
During this mathematic analysis, we will introduce four new variables that we

consider the key points of the AutoCM learning process:

1. "i.n/
is the contractive factor of the first layer of AutoCM weights:

"i.n/
D 1 � vi.n/

C
:

Clearly, the choice of C and the initialization of the connection weights are
done so that this factor is a number always included in the inclusive [0, 1] range
and it decreases at every nth elaboration cycle.

We will observe that it is infinitesimal as n tends to 1.
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2. 
i;j.n/
is the contractive factor of the second layer of AutoCM weights for which

the initializations are nonnegative, negative, and less than 1:


i;j.n/
D 1 � wi;j.n/

C
:

3. 	i.n/
is the difference between the hidden nodes and the input nodes:

	i.n/
D m

Œs�
i � m

Œh�
i .n/

:

This is an n real function, positive for values lower than 1.
4. �i.n/

is the difference between the output nodes and the hidden nodes:

�i.n/
D m

Œh�
i.n/

� m
Œt�
i .n/

:

It, too, is a real function with positive values decreasing with n.

The second step during the CM learning phase is to demonstrate how �vi.n/

increases and decreases according to an always positive parabola arc law.
At this point, we can rewrite Eq. (15.2) as:

�vi.n/
D
�
m

Œs�
i � m

Œs�
i

�
1 � vi.n/

C

��
�
�
1 � vi.n/

C

�
D m

Œs�
i � vi.n/

C

�
1 � vi.n/

C

�
: (15.2a)

According to the "i.n/
definition, we can write

vi.n/

C
D 1 � "i .n/ and then rewrite

the (15.2a) function of "i.n/
:

�vi.n/
D m

Œs�
i

�
1 � "i .n/

�
� �1 � �

1 � "i.n/

�� D m
Œs�
i

�
1 � "i.n/

� � "i.n/
: (15.2b)

Following the "i.n/
definition and having decreased, between 0 and 1, the values

of the input layer units, it can be seen that the �vi.n/
parabola arc described in the

equation will verify the condition:

0 < �vi.n/
< "i.n/

� C � "i.n/
: (15.2c)

Equation (15.2c) means that the increment of �vi.n/
will always be smaller than

the quantity that vi.n/
needs to reach up C.

In fact, vi.nC1/
D vi.n/

C �vi.n/
D C � C � "i.n/

C �vi.n/
, but from (15.2c) it is

known that �vi.n/
� C � "i.n/

� 0.
Or rather, what algebraically sums to C is always a nonpositive quantity whose

absolute value decreases with n increasing. It follows that vi.n/
will never exceed C:

lim
n!1 vi.n/

D C , and from this also:
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lim
n!1 "

i.n/
D 0; lim

n!1 mŒh�

i.n/
D 0; lim

n!1 mŒt�

i.n/
D 0; lim

n!1 	
i.n/

D m
Œs�
i ;

and lim
n!1 �

i.n/
D 0: (15.8)

Further, the contractive factor in Eqs. (15.1) and (15.5) makes this relation
evident:

m
Œt�
i .n/

� m
Œh�
i.n/

� m
Œs�
i : (15.1–15.5)

In fact:

m
Œh�
i .n/

D m
Œs�
i � "i.n/

(15.1a)

and

m
Œt�
i .n/

D m
Œs�
i � "i.n/

�
�

1 � Neti.n/

C

�
(15.5a)

Now it is possible to clarify the relationship between �vi.n/
and�wi;j.n/

.
From Eqs. (15.11, 15.5), we can assume:

m
Œh�
i .n/

D m
Œs�
i � 	i.n/

; (15.1b)

where 'i.n/
is a small positive real number close to 1,

m
Œt�
i.n/

D m
Œh�
i.n/

� �i.n/
; (15.5b)

where �i.n/
is a small positive real number close to 0; it has real positive values

which become close to 0 with increasing n, and

m
Œt�
i.n/

D m
Œs�
i � .	i.n/

C �i.n/
/: (15.5c)

The introduction of the functions defined in key points 1 and 3 transforms (15.2)
in

�vi.n/
D
�
m

Œs�
i � m

Œh�
i.n/

�
�
�
1 � vi.n/

C

�
D 'i.n/

� "i.n/
; (15.2d)

and for key points 2 and 4 and Eq. (15.1a), then (15.6) becomes:

�wi;j.n/
D
�
m

Œh�
i.n/

� m
Œt�
i.n/

�
�
�
1 � wi;j.n/

C

�
� m

Œh�
j.n/

D �i.n/
� 
i;j.n/

� m
Œs�
j � "i.n/

(15.6b)
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and

lim �wi;j.n/
D 0

"!0

: (15.6e)

Now we can consider Eq. (15.7) and rewrite it as:

wi;j.nC1/
D C � �1 � 
i;j.n/

�C �i.n/
� 
i.n/

� m
Œs�
j � "i.n/

: (15.7a)

From (15.7a) and the previously derived Eq. (15.8) results, we have:

lim
n!1 wi;j.n/

D C � �1 � 
i;j.n/

�
: (15.7b)

Thus, at the beginning of the training of the input and hidden layers, their
units will be very similar (Eq. 15.1) and, consequently, �vi.n/

will be very small
(Eq. 15.2d); for the same reason, �i.n/

, from definition 4, will initially be very big
and �wi;j.n/

will be bigger than �vi.n/
(Eqs. 15.2d and 15.6b).

During the training, while vi.n/
rapidly increases according to the increase of n,

m
Œh�
i.n/

decreases, so �i.n/
and "i.n/

and, consequently, �wi;j.n/
monotonically continue

to decrease, while �vi.n/
increases slowly. When �i.n/

becomes close to zero, m
Œh�
i.n/

will only be a bit bigger than m
Œt�
i.n/

(see Eq. 15.5b). At this point, �vi.n/
is on the

global maximum of the equation �vi.n/
D m

Œs�
i

�
1 � "i.n/

� � "i.n/
, so after this critical

point, �vi.n/
will decrease toward zero.

This can be illustrated on a numerical simulation of a toy dataset.
We consider a three-bit dataset:

3 BITS Var 1 Var 2 Var 3

Rec 1 0 0 0
Rec 2 0 0 1
Rec 3 0 1 0
Rec 4 0 1 1
Rec 5 1 0 0
Rec 6 1 0 1
Rec 7 1 1 0
Rec 8 1 1 1

After 48 epochs, the auto-contractive mapping artificial neural network, with
C D 1, completely learns this dataset (RMSE D 0.0000).

If we name v the three weights of the first layer, at the end of the training, we
have this situation:

v(1) 1.00
v(2) 1.00
v(3) 1.00
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The weights of the second layer, instead, will be (with the main diagonal not
trained):

w(1,1) 0.00
w(1,2) 0.89
w(1,3) 0.89
w(2,2) 0.00
w(2,3) 0.89
w(3,3) 0.00

In the next table, we show the dynamics along the training of the weights of first
layer and of only three weights in the second layer, connecting the different nodes
(w(1,2) – w(1,3) – w(2,3)):

3bits v(1) v(2) v(3) w(1,2) w(1,3) w(2,3)

Epoch1 0.000161 0.000161 0.000161 0.370855 0.370856 0.370857
Epoch2 0.000259 0.000259 0.000259 0.533956 0.533957 0.533959
Epoch3 0.000418 0.000418 0.000418 0.627853 0.627855 0.627857
Epoch4 0.000672 0.000672 0.000672 0.689412 0.689414 0.689416
Epoch5 0.001083 0.001083 0.001083 0.733061 0.733064 0.733066
Epoch6 0.001742 0.001742 0.001742 0.765688 0.765692 0.765695
Epoch7 0.002803 0.002803 0.002803 0.791018 0.791022 0.791026
Epoch8 0.004508 0.004508 0.004508 0.811242 0.811248 0.811253
Epoch9 0.007242 0.007242 0.007242 0.827736 0.827743 0.827750
Epoch10 0.011617 0.011617 0.011617 0.841397 0.841407 0.841416
Epoch11 0.018589 0.018589 0.018589 0.852828 0.852841 0.852854
Epoch12 0.029631 0.029631 0.029631 0.862436 0.862454 0.862471
Epoch13 0.046947 0.046947 0.046947 0.870492 0.870515 0.870539
Epoch14 0.073678 0.073678 0.073678 0.877163 0.877195 0.877227
Epoch15 0.113961 0.113961 0.113961 0.882545 0.882589 0.882633
Epoch16 0.172487 0.172487 0.172487 0.886696 0.886753 0.886811
Epoch17 0.253100 0.253100 0.253100 0.889672 0.889746 0.889820
Epoch18 0.356198 0.356198 0.356198 0.891592 0.891682 0.891773
Epoch19 0.475946 0.475946 0.475946 0.892666 0.892770 0.892875
Epoch20 0.599992 0.599992 0.599992 0.893172 0.893285 0.893400
Epoch21 0.713680 0.713680 0.713680 0.893370 0.893487 0.893608
Epoch22 0.806393 0.806393 0.806393 0.893435 0.893554 0.893677
Epoch23 0.874853 0.874853 0.874853 0.893453 0.893573 0.893697
Epoch24 0.921696 0.921696 0.921696 0.893458 0.893578 0.893702
Epoch25 0.952067 0.952067 0.952067 0.893459 0.893579 0.893703
Epoch26 0.971068 0.971068 0.971068 0.893459 0.893579 0.893703
Epoch27 0.982688 0.982688 0.982688 0.893459 0.893579 0.893703
Epoch28 0.989697 0.989697 0.989697 0.893459 0.893579 0.893703
Epoch29 0.993887 0.993887 0.993887 0.893459 0.893579 0.893703
Epoch30 0.996380 0.996380 0.996380 0.893459 0.893579 0.893703
Epoch31 0.997859 0.997859 0.997859 0.893459 0.893579 0.893703

(continued)
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(continued)

3bits v(1) v(2) v(3) w(1,2) w(1,3) w(2,3)

Epoch32 0.998735 0.998735 0.998735 0.893459 0.893579 0.893703
Epoch33 0.999252 0.999252 0.999252 0.893459 0.893579 0.893703
Epoch34 0.999558 0.999558 0.999558 0.893459 0.893579 0.893703
Epoch35 0.999739 0.999739 0.999739 0.893459 0.893579 0.893703
Epoch36 0.999846 0.999846 0.999846 0.893459 0.893579 0.893703
Epoch37 0.999909 0.999909 0.999909 0.893459 0.893579 0.893703
Epoch38 0.999946 0.999946 0.999946 0.893459 0.893579 0.893703
Epoch39 0.999968 0.999968 0.999968 0.893459 0.893579 0.893703
Epoch40 0.999981 0.999981 0.999981 0.893459 0.893579 0.893703
Epoch41 0.999989 0.999989 0.999989 0.893459 0.893579 0.893703
Epoch42 0.999993 0.999993 0.999993 0.893459 0.893579 0.893703
Epoch43 0.999996 0.999996 0.999996 0.893459 0.893579 0.893703
Epoch44 0.999998 0.999998 0.999998 0.893459 0.893579 0.893703
Epoch45 0.999999 0.999999 0.999999 0.893459 0.893579 0.893703
Epoch46 0.999999 0.999999 0.999999 0.893459 0.893579 0.893703
Epoch47 0.999999 0.999999 0.999999 0.893459 0.893579 0.893703
Epoch48 1.000000 1.000000 1.000000 0.893459 0.893579 0.893703

As a further simplification, we show also the graph of the weight v(1,1) and
w(1,2) dynamics:
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We can compare this graph with the graph showing the updating of the same weights
during the training:
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This graph shows in an exemplar way the dynamics described by Eq. (15.7b).
The same phenomenon happens when we show the graph of the dynamics of the

first hidden node and the first output node:
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The second layer of CM connections, then, is the place where the energy liberated
from the nodes, passing from one layer to another, is trapped. The following figure
shows the dynamics of the four contractive factors "; 
; '; and�, which mirror the
weights and the units’ evolution:
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15.2 Experiments with the Auto-Contractive Map

The aim of this section is to evaluate the performance of CM:

(a) How it behaves in facing a group of inputs
(b) How and whether it stabilizes its own output
(c) How its connections stabilize

For this illustration, we have selected nine patterns as input, each one composed
of 121 nodes, which are little more than sketchy pictures of nine human faces with
nine different expressions (Fig. 15.2):

Given the structure of the input, the CM has been shaped in the following way:

• 121 input nodes
• 121 hidden nodes
• 121 output nodes
• 121 connections between inputs and hidden
• 14641 connections between the hidden and output units

All the 14762 connections have been initialized using the same value (0.01).
The signal transfer and the learning equations used here are the ones previously
described [from (15.1), (15.2), (15.3), (15.4), (15.5), (15.6), and (15.7)]. The
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Fig. 15.2 Each face is
pictured inside a matrix X

with value one and zero. It
must be noted that the CM
lacks any knowledge on the
space ordering

Fig. 15.3 Output shared to
all the nine patterns after two
epochs

Fig. 15.4 Union among all
patterns after around ten
epochs

learning has been performed presenting randomly the nine patterns. We have used
the notion of epoch in its traditional meaning: 1 epoch D a complete presentation to
the ANNs of all the training patterns.

The performance of the ANN during training may be divided into five phases:

(a) In the initial training, the output of all the nine patterns tends to assume the
value 1 for all the input nodes belonging to the subset shared by all the patterns
and the value 0 for the remainder of the output nodes. An example of such an
output is the following (Fig. 15.3):

(b) In a second phase, each input vector generates the union of all the patterns as
output. See Fig. 15.4.

(c) In the third phase, each input pattern is reproduced exactly in the output vector.
(d) In the fourth phase, the output vector presents only the differences that each

pattern has with respect to the global intersection of all patterns. See Fig. 15.5.
(e) In the last phase, every input produces a null (zero) output.
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Fig. 15.5 Each pattern
generates in output only its
specific features, after around
100 epochs

But the most noteworthy characteristic can be found out by analyzing the
structure of the 14641 connections stabilized between the hidden and the output
layer of the ANN.

Such connections, really, represent a single-step fractal projection of the N-
dimensional space of the input in an N2-dimensional space represented by the
weights matrix of the CM (Fig. 15.6).

We can easily note some characteristics of this matrix:

(a) The component “faces” draws a “face” which is the union, projected on a square
scale, of all the patterns of training.

(b) The components “faces” are not all equal; that is, there are all the “expressions
of the face” and all the “expressions of the eyes” occurring in the nine patterns
of training.

(c) Each component “face” is not equal to any of the nine patterns of training: if
the “expression of the mouth” is equal to the expression of the mouth of some
patterns of training, then the “expression of the eyes” is the union of all the
expressions of the eyes of the patterns of training. Similarly, if the “expression
of the eyes” is equal to the one of some patterns of training, then the expression
of the mouth is the union of all the expressions of the mouths of its patterns of
training.

(d) Finally, CM is able to find out from a set of patterns the global statistics of their
associations among variables.

Such a performance of the matrix of the hidden-output connections of the CM
has been noted in hundreds of tests made with input classes different from each
other in relation to quantity and orthogonally.

15.3 AutoCM: Theoretical Consideration

Auto-contractive maps do not behave as a regular ANN:

(a) They begin learning with all connections set up with the same value, so they do
not suffer the symmetric connection problem.
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Fig. 15.6 Matrix of the value of the hidden-output connections according to the B operator (for B
operator)

(b) During training, they develop only positive values for each connection. There-
fore, AutoCM does not present inhibitory relations among nodes, but only
different strengths of excitatory connections.

(c) AutoCM can also learn under harsh conditions, that is, when the connections
of the main diagonal of the second connection matrix are removed. When the
learning process is organized in this way, AutoCM seems to find a specific
relationship between each variable and any other. Consequently, from an
experimental point of view, it seems that the ranking of its connection matrix
is equal to the ranking of the joint probability between each variable and the
others.

(d) After the learning process, any input vector belonging to the training set will
generate a null output vector. Thus, the energy minimization of the training
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Fig. 15.7 A two-layer BP with wi;i D 0

vectors is represented by a function through which the trained connections
absorb completely the input training vectors. AutoCM seems to learn to
transform itself in a dark body.

(e) At the end of the training phase (�wi;j D 0), all the components of the weights
vector v attain the same value:

lim
n!1 vi.n/

D C: (15.8)

The matrix w, then, represents the CM knowledge about all the dataset.
It is possible to transform the w matrix also in probabilistic joint association

among the variables m:

pi;j D wi;j
PN

j D1 wi;j

I (15.9)

P
�
m

Œs�
j

�
D

NX

i

pi;j D 1: (15.10)

The new matrix p can be read as the probability of transition from any state
variable to anyone else:

P
�
m

Œt�
i

ˇ
ˇ
ˇmŒs�

j

�
D pi;j : (15.11)

(f) At the same time, the matrix w may be transformed into a non-Euclidean
distance metric (semimetric), when we train the CM with the main diagonal
of the w matrix fixed at value N.
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Now, if we consider N as a limit value for all the weights of the w matrix, we can
write:

di;j D N � wi;j : (15.12)

The new matrix d is also a squared symmetric matrix where the main diagonal
represents the zero distance between each variable from itself.

15.4 The Contractive Factor

There is another way to interpret the squared weights matrix of the AutoCM system.
We have to assume each variable of the dataset as a vector composed of the all its
values. At this point, the dynamic value of each connection between two variables
represents the local velocity of their mutual attraction caused by their mutual vectors
similarity: the greater the similarity of the vectors, the greater their attraction speed.
When two variables are attracted by each other, they proportionally contract the
original Euclidean space between them. The limit case occurs when two variables
are identical; the space contraction should be infinitive and the two variables should
collapse in the same point.

We can extract from each weight of a trained AutoCM this specific contractive
factor:

Fi;j D
�
1 � wi;j

C

��1I 1 � Fi;j � 1: (15.9a)

This equation is interesting for three reasons:

1. It is the inverse of the equation used as the contractive factor during the AutoCM
training.

2. With respect to Eq. (15.3b), each monoconnection vi at the end of the training
will reach the value C. In this case, the contractive factor will be infinitive
because the two variables connected by the weight are really the same variable.

3. Otherwise, in Eq. (15.7b), each weight wi;j at the end of the training will always
be smaller than C. This means that the contractive factor for each weight of the
matrix that we are considering will be always noninfinitive. In fact, in the case
of the weight wi;i , the variable is connected with itself, but the same variable
has also received the influences of the other variables (recall that the matrix w is
a squared matrix where each variable is linked to the other). Consequently, this
variable cannot be exactly the same.

At this point, we are able to calculate the contractive distance between each
variable and the other, modifying the original Euclidean distance with a specific
contractive factor.
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The Euclidean distance among the variables in the dataset is given by the
following equation:

d
ŒEucliden�
i;j D

vu
u
t

RX

k

�
xi;k � xj;k

�2
;

where W
R D thenumberoftherecordsoftheassigneddataset

xi;kandxj;k D thei�thvalueandthej�thvalueoftwovariablesinthek�threcord
(15.10a)

And, consequently, the AutoCM distance matrix among the same variables is:

d
ŒAutoCM�
i;j D d

ŒEuclidean�
i;j

Fi;j

: (15.11a)

15.5 AutoCM and the Minimum Spanning Tree

Equation (15.12) transforms the squared weights matrix of AutoCM into a squared
matrix of distances among nodes. Each distance between a pair of node becomes,
consequently, the weighted edge between these pair of nodes. At this point, the
matrix d may be analyzed through the graph theory.

A graph is a mathematical abstraction that is useful for solving many kinds of
problems. Fundamentally, a graph consists of a set of vertices and a set of edges
where an edge is something that connects two vertices in the graph. More precisely,
a graph is a pair (V,E), where V is a finite set and E is a binary relation on V,
on which it is possible to attribute a scalar value (in this case the weight is the
distance di;j ).

V is called a vertex set whose elements are called vertices. E is a collection of
edges where an edge is a pair (u,v) with u,v in V. In a directed graph, edges are
ordered pairs connecting a source vertex to a target vertex. In an undirected graph,
edges are unordered pairs and connect the two vertices in both directions; hence, in
an undirected graph, (u,v) and (v,u) are two ways of writing the same edge.

It does not say what a vertex or edge represents. They could be cities with
connecting roads, or web pages with hyperlinks. These details are left out of the
definition of a graph for an important reason; they are not a necessary part of the
graph abstraction.
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Table 15.1 Adjacency
matrix of a distance matrix A B C D : : : E

A 0 1 1 1 1 1
B 1 0 1 1 1 1
C 1 1 0 1 1 1
D 1 1 1 0 1 1
: : : 1 1 1 1 0 1
E 1 1 1 1 1 0

An adjacency-matrix representation of a graph is a two-dimensional V � V array,
where rows represent the list of vertices and the columns represent the edges among
the vertices. Each element in the array is stored with a Boolean value saying whether
the edge (u,v) is in the graph.

A distance matrix among V vertices represents an undirected graph, where each
vertex is linked with all other vertices except for itself (Table 15.1).

At this point, it is useful to introduce the concept of minimum spanning tree
(MST).

The minimum spanning tree problem is defined as follows: find an acyclic subset
T of E that connects all of the vertices in the graph and whose total weight is
minimized, where the total weight is given by:

d.T/ D
N �1X

iD0

NX

j DiC1

di;j ; 8di;j : (15.13)

T is called the spanning tree, and MST is the T with the minimum sum of its
edges weighted:

MST D Min fd.Tk/g : (15.14)

Given an undirected graph G, representing a d matrix of distances with V vertices
in which all vertices are completely linked to each other, the total number of edges
(E) is:

E D V � .V � 1/

2
; (15.15)

and the number of possible trees is:

T D V V �2: (15.16)

Kruskal (1956) found an algorithm (Zsuzsanna 2001) able to determine the MST
of any undirected graph in a quadratic number of steps, that being the worst case.
Obviously, the Kruskal algorithm generates one tree of the total number of possible
MSTs. In fact, in a weighted graph, more than one MST is possible.
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From the conceptual perspective, the MST represents the energy minimization
state of a structure. In fact, if we consider the atomic elements of a structure as
vertices of a graph and the strength among them as the weight of each edge linking
a pair of vertices, the MST represents the minimum of energy needed because all
the elements of the structure continue to stay together.

In a closed system, all the components tend to minimize the overall energy. So
the MST, in specific situations, can represent the most probable state to which a
system can tend.

To define the MST of an undirected graph, each edge of the graph has to be
weighted. Equation (15.12) shows a way to weight each edge whose nodes are the
variables of a dataset and whose weights of a trained AutoCM provides the metrics.

Obviously, it is possible to use any kind of auto-associative ANN or any kind
of linear auto-associator to generate a weight matrix among the variables of an
assigned dataset. But it is hard to train a two-layer auto-associative backpropagation
with the weights on the main diagonal fixed (to avoid autocorrelation). In most of
the cases, the root mean square error (RMSE) ceases to decrease after few epochs,
especially when the orthogonality of the records increases. This is usual when it
is necessary to weight the distance among the records of the assigned dataset. In
this case, in fact, it is necessary to train the transposed matrix of the assigned
dataset.

By the way, if a linear auto-associator is used, all the nonlinear associations
among variables will be lost.

So, actually, AutoCM seems to be the best choice to compute a complete and
nonlinear matrix of weights among variables or among records of any assigned
dataset.

15.6 Other Algorithms for MST

Theoretically, as previously stated, it is possible to use any algorithm to weight the
graph edges. It will be useful to provide some of the more commonly used ones.

15.6.1 Linear Correlation

First, it is necessary to calculate the linear correlation between each pair of variables
in the assigned dataset:

Ri;j D
PN

kD1 .xi;k � Nxi / � �xj;k � Nxj

�

qPN
kD1 .xi;k � Nxi /

2 �PN
kD1

�
xj;k � Nxj

�2
I

� 1 � Ri;j � 1I i; j 2 Œ1; 2; :::; M � ; (15.17)
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where W
Ri;j D linear correlation between any couple of variables xi and xj of the

assigned dataset

Nxi D mean value of any variable xi

N D number of records of the assigned dataset

M D number of variables of the assigned dataset

Equation (15.17) will generate a symmetric squared matrix with null diagonal,
defining the linear correlation between each variable and any other.

Equation (15.18) will transform the matrix of correlation into a matrix of linear
distances among the variables:

d
ŒR�
i;j D

q
2 � �1 � Ri;j

�
: (15.18)

At this point, the assigned dataset is transformed in an undirected weighted
graph, where MST is applicable.

15.6.2 Prior Probability

First, it is necessary to calculate the prior probability of co-occurrence between any
couple of variables in the assigned dataset:

Ai;j D � ln
1

N 2 �PN
kD1 xi;k � �1 � xj;k

� �PN
kD1 .1 � xi;k/ � xj;k

1
N 2 �PN

kD1 xi;k � xj;k �PN
kD1 .1 � xi;k/ � �1 � xj;k

� I

� 1 � Ai;j � C1I x 2 Œ0; 1� I i; j 2 Œ1; 2; :::; M � ; (15.19)

where W
Ai;j D association strength between any couple of variables xi andxj of the

assigned dataset

xi D value of any variable scaled between 0 and 1

N D number of records of the assigned dataset

M D number of variables of the assigned dataset
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At this point, it is possible to transform the matrix of the variables’ association
into a nonlinear distance matrix:

d
ŒA�
i;j D Max A � Ai;j ; whereMax A D maximumAmatrixvalue: (15.20)

15.6.3 Euclidean Distance

The Euclidean distance among variables is easy to generate. It is necessary, first, to
scale the value of the variables to between 0 and 1 and then to transpose the matrix
of the assigned dataset:

d
ŒE�
i;j D

vuu
t

MX

kD1

�
xi;k � xj;k

�2I i; j 2 Œ1; 2; : : : N � I x 2 Œ0; 1� ;

where W
d

ŒE�
i;j D Euclidean distance among any couple of variables

xi D value of any record scaled between 0 and 1

N D number of variables of the assigned dataset

M D number of records of the assigned dataset (15.21)

All these algorithms shown above, in any case, have the advantage of being
computationally very fast, but they are limited to defining the distance among
variables or records, grouping all the records or all the variables in isolated couples.
That means that each weight explains the association between two variables or two
records, but it does not take into account the influence of the other variables or the
other records on it.

This situation is quite similar to the case of ten children playing all together in
a swimming pool. It is not realistic to explain their global behavior, making the
statistics of their interaction, by grouping them into all possible pairs.

15.6.4 Auto-Associative BP

A backpropagation without a hidden unit layer and without connections on the main
diagonal can also be used to compute a metric among variables.
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This is an ANN featuring an extremely simple learning algorithm:

Outputi Df

0

@
NX

j

Inputj � Wi;j C Biasi

1

AD 1

1 C e�.
PN

j Inputj �Wi;j CBiasi /
Wi;i D 0:

(15.22)

ıi D .Inputi � Outputi / � f 0 .Outputi /

D .Inputi � Outputi / � Outputi � .1 � Outputi / : (15.23)

�Wi;j D LCoef � ıi � Inputj I LCoef 2 Œ0; 1� : (15.24)

�Biasi D LCoef � ıi : (15.25)

W
ŒnC1�

i;j D W
Œn�

i;j C 1

2
� ��Wi;j C �Wj;i

� I

BiasŒnC1�
i D BiasŒn�

i C �Biasi : (15.26)

AutoBP is an ANN featuring N 2 � N internode connections and N bias inside
every exit node, for a total of N 2 adaptive weights. It is an algorithm that works
similarly to logistic regression and can be used to establish the dependency of every
variable from each other.

The advantage of AutoBP is its learning speed, which is due to the small number
of connections and to the simplicity of its topology and algorithm. Moreover, at
the end of the learning phase, the connections between variables, because they are
direct, have a clear conceptual meaning. Every connection indicates a relationship
of faded excitement, inhibition, or indifference between every pair of variables or
records.

The disadvantage of AutoBP is its limited convergence capacity, due to that same
topological simplicity. That is to say, complex relationships between variables may
be approximated or ignored.

At the end of the training phase, it is necessary to convert each connection in a
nonlinear symmetric distance (semimetric):

Vi;j D Vj;i D 1

2
� �Wi;j C Biasi C Wj;i C Biasj

� I

d
ŒBp�
i;j D Max V � Vi;j I where Max V D Max

˚
Vi;j



: (15.27)
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15.7 Some Qualitative Features of MST

Once we have a distance matrix among nodes, d
Œ:::�
i;j withi; j 2 Œ1; 2; :::; N �, the MST

of the implicit graph is easy to define using Kruskal algorithm. The MST adjacency
matrix, then, must undergo analysis.

For the adjacency matrix, the easiest criterion to study is to rank the number of
links of each node; this algorithm defines the connectivity of each node:

Ci D
NX

j

li;j ;

where W
Ifli;j 2 Mst; thenli;j D 1

Ifli;j … Mst; thenli;j D 0

li;j D possible direct connection between Nod ei and Nod ej (15.28)

(a) Nodes with only one link are named leaves. Leaves define the boundaries of the
MST graph.

(b) Nodes with two links are named connectors.
(c) Nodes with more than two connections are named hubs. Each hub has a

specificity degree of connectivity:

HubDegreei D Ci � 2: (15.29)

A second indicator qualifying a MST graph is the clustering strength of each of
its node.

The clustering strength of each node is proportional to the number of its links
and to the number of links of the nodes directly connected to it:

Si D C 2
iPCi

j D1 Cj

: (15.30)

A third indicator is the degree of protection of each node in any adjacency-
directed graph. This indicator defines the rank of centrality of each node within the
graph, when an iterative pruning algorithm is applied to the graph. This algorithm
was created by Massini at Semeion Research Center in 2006 (software: Massini
2007) and applied to a problem for the first time as a global indicator for a graph
complexity.
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Pruning Algorithm

Rank D 0I
Rank D 0I
f

Rank C CI
Consider All Nodes with The Minimum Number of Links./I
Delete These Links./I
Assign a Rank To All Nodes Without Link .Rank/ I
Update The New Graph./I
Check Number of Links./I

gwhileat least a link is presentI (15.31)

The higher the rank of a node, the greater is the centrality of its position within
the graph. The latest nodes to be pruned are also the kernel nodes of the graph.

Similarly, the pruning algorithm was applied by Massini (software: Massini
2007) to measure the complexity of any tree. Here it is generalized to measure the
global complexity of any kind of graph.

15.8 Graph Complexity: The H Function

The pruning algorithm can also be used to define the quantity of graph complexity
of any graph.

In fact, if we assume � as the mean number of nodes without any link in each
iteration, then during the pruning algorithm, we can write the hubness index, H0, of
a graph with N nodes as:

H0 D � � ' � 1

A
I 0 < H0 < 2; (15.32)

where � D 1 =M
PM

i N di D A =M ;	 D 1 =P
PP

j ST G j ;A D number of links of
the graph (N � 1 for tree graphs), M D number of iterations of pruning algorithm,
P D number of types of pruning, Ndi D number of nodes without link at the jth
iteration, and STG j D series of pruning gradient types.
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Using H0, as global indicator, it is possible to define how much a graph is hub-
oriented.

This simple example can show three possible cases when N D 6 (N D number of
nodes):

Case 1: H0 D 0.2, tree is for 1 =5 hub-oriented:

Case 2: H0 D 1, tree is completely hub-oriented:

Case 3: H0 D 0.4, tree is for 2 =5 hub-oriented:

This simple Eq. (15.32) is also shown to be correct in the limit case of a tree with
only three nodes. In this case, H0 D 1 is correct because this type of tree shows the
limit where a hub collapses into a chain.

This case limit has relevance when the number of nodes x is odd and their
topology is a chain.

In fact,
if:

• S D progressive index for pruning steps
• G D gradient of the erased nodes at step j
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• L D number of link erased at step j
• N* D number of erased nodes at step j

then,
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

S G L N �
1 1 2 2

2 1 2 2
:::

:::
:::

:::
.x�1/

2
1 2 3

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

(15.33)

	ŒC � D 1 �ŒC � D 2x

x � 1

N ŒC � D x

H
ŒC �
0 D �ŒC � � 	ŒC � � 1

N ŒC � � 1
D x C 1

.x � 1/2
D 1

x � 1
� x C 1

x � 1
: (15.34)

In other words,

lim
x!1 H D 0: (15.35)

So, in a case of a “chain tree” composed of an odd number of nodes, the last
pruning interaction has to delete three nodes representing the limit case where “hub
tree” and “chain tree” collapse into each other. In this condition, a “chain tree” will
present a H0 value always a little bigger than 0. Increasing the number of the odd
nodes in the “chain tree,” this value squared decreases asymptotically to zero.

The H index, in any case, finds a structural difference between trees composed of
an even number of nodes and trees composed of an odd number of nodes (Fig. 15.8).

15.9 Graph and MST Complexity

The H indicator (Eq. 15.32) represents the global hubness of a graph. When
H D 0, the tree is a one-dimensional line and its complexity is minimal. When
H D 1, the tree presents only one hub, and its complexity is maximum for a tree.
The complexity of a graph, in fact, is connected to its entropy. The quantity of
information in a graph is linked to the graph diameter and number of vertices
connected: with the same number of vertices, the shorter the diameter of the graph,
the greater is its entropy.

Starting from the classical concept of entropy, we can write:

E D �K �
NX

i

pi � ln .pi / : (15.36)
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Hubness of a chain tree with odd number of vertices

0

0.1
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0.9

1

Fig. 15.8 Evaluation of Eq. (15.34)

If we name E.G/ the topological entropy of a generic tree graph, we can write:

E.G/ D � A

M
�

NX

i

Ci

A
� ln

�
Ci

A

�
I 0 < E.G/ < 1; (15.37)

where A D number of graph arcs (N � 1, when the graph is a tree), N D number
of the graph vertices, M D number of pruning cycles necessary to completely
disconnect the graph, and Ci D degree of connectivity of each vertex.

The equation Ci =A measures the probability that a generic node Cj ; wherej ¤ i

has to be linked directly to node Ci . This means that the entropy of a graph, E.G/,
will increase when the number of vertices with a large number of links increases. In
the same way, the probability of arranging the links of N vertices into a linear chain,
using a random process, is the lowest. Consequently, when the number of pruning
cycles, M, needed for a graph is greatest, its graph entropy is least.

Equation (15.37) shows clearly that a “hub tree” has more entropy than a “chain
tree.” Consequently, as the H index of a tree increases, so does its redundancy
increase. At this point, it is necessary to give some example of the H function and
the relative topological entropy as applied to any generic adjacency-directed graph.
According to the H function, the complexity of any graph is ruled by Eq. (15.32):

0 < H0 < 2:

More specifically, 0 < H0 < 1 =2 for any kind of tree, except for the “star tree”
in which H0 D 1. For a regular graph, the H function has the interval:

1:6 � H0 < 2:
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For any other kind of graph (with the tree graph being the exception), the H
function can take any value of the interval (Eq. 15.32) according to its symmetry:
the greater the symmetry, the greater the H value. It is useful, now, to provide a
practical example: let us show how to compute the H function and the topological
entropy of a generic graph.

First of all, we introduce the concept of a pruning table as useful tool in which
to organize the graph analysis:

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

M G L N

1 g1 l1 n1

::: ::: ::: :::

k gk lk nk

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

Legend: M D jth pruning cycle, G D gradient of jth pruning cycle, L D number of
deleted links at jth pruning cycle, and N D number of deleted nodes at jth pruning
cycle.

Given a generic graph:

its pruning table will be:

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌

M G L N

1 1 2 2

2 1 1 1

3 2 3 3

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌

At this point, by applying Eqs. (15.32) and (15.37), it is possible to compute the
H function and the topological entropy of the graph:

' D 1

P

PX

j

ST G j D 1

2

2X

j

ST G j D 1

2
.1 C 2/ D 3

2
D 1:5I

� D A

M
D 6

3
D 2I

H0 D � � ' � 1

A
D 2 � 1:5 � 1

6
D 1

3
D 0:33:

E.G/ D � A

M
�

NX

i

ci

A
ln
�ci

A

�
D 4:04561706:
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Now, as an example, we present the different H functions and topological entropy
of a different graph with only six nodes:

Chain: H D 0.2 E(G) D 3.5116

Star: H D 1 E(G) D 8.0471

Closed star: H D 1.7 E(G) D 21.5253

Complete graph: H D 1.93 E(G) D 32.9583

R-graph: H D 0.72 E(G) D 9.4213 R-graph: H D 0.5 E(G) D 7.1214 R-tree: H D 0.4
E(G) D 4.5814
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15.10 The Delta H Function

Now, we should consider every graph, and specially the MST, from a dynamical
point of view. When one or more vertices are deleted from a graph, the other vertices
rearrange their links according to their specific metrics and constraints to connect to
each other once again.

We can define an H index for an N number of MST, each one generated from the
original distance matrix, by deleting one vertex at any one calculation:

Hi D �i � 	i � 1

A � 1
I 0 � Hi < 2; (15.38)

where �i D 1 =M
PM

j N dj D N =M ;	 D 1 =P
PP

k ST G k;A D number of links
of the graph (N � 1 for tree graphs),

M D number of iterations of pruning algorithm, P D number of types of pruning,
Ndj D number of nodes without link at the jth iteration, and STG k D series of pruning
gradient types.

Each Hi represents the tree complexity of the same distance matrix when the
i thvertex is deleted. Consequently, the difference between the complexity (i.e., H0)
of the whole MST and the complexity of any MST generated without one of the
graph vertices (Hi ) is the measure of the contribution of each vertex of the graph to
the global complexity:

ıHi D H0 � Hi : (15.39)

This new index states how much each vertex of a graph contributes either to
increase (ıHi < 0) or to decrease (ıHi > 0) the redundancy of the assigned graph.
We have named this function the delta H function, and it can be applied to any kind
of graph.

15.11 AutoCM, MST, and Delta H Function: An Illustration

The Gang dataset (with apologies to the musical West Side Story) is a small dataset
composed of 27 records and 5 variables (Table 15.2):

The structure of the dataset is:

• Gang D fJets, Sharksg
• Age D f20s, 30s, 40sg
• Education D fJunior School, High School, Collegeg
• Status D fMarried, Single, Divorcedg
• Profession D fPusher, Bookie, Burglarg
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Table 15.2 Gang dataset

Name Gang Age Education Status Profession

ART Jets 40 age Junior School Single Pusher
AL Jets 30 age Junior School Married Burglar
SAM Jets 20 age College Single Bookie
CLYDE Jets 40 age Junior School Single Bookie
MIKE Jets 30 age Junior School Single Bookie
JIM Jets 20 age Junior School Divorced Burglar
GREG Jets 20 age High School Married Pusher
JOHN Jets 20 age Junior School Married Burglar
DOUG Jets 30 age High School Single Bookie
LANCE Jets 20 age Junior School Married Burglar
GEORGE Jets 20 age Junior School Divorced Burglar
PETE Jets 20 age High School Single Bookie
FRED Jets 20 age High School Single Pusher
GENE Jets 20 age College Single Pusher
RALPH Jets 30 age Junior School Single Pusher
PHIL Sharks 30 age College Married Pusher
IKE Sharks 30 age Junior School Single Bookie
NICK Sharks 30 age High School Single Pusher
DON Sharks 30 age College Married Burglar
NED Sharks 30 age College Married Bookie
KARL Sharks 40 age High School Married Bookie
KEN Sharks 20 age High School Single Burglar
EARL Sharks 40 age High School Married Burglar
RICK Sharks 30 age High School Divorced Burglar
OL Sharks 30 age College Married Pusher
NEAL Sharks 30 age High School Single Bookie
DAVE Sharks 30 age High School Divorced Pusher

First of all, it is necessary to transform each string variable in a Boolean
expression (Table 15.3):

The new dataset is now composed of 14 binary variables, the most of which
orthogonal.

Because we want to use an AutoCM ANN to process the records, we must
transpose this matrix (Table 15.4):

AutoCM ANN will learn this dataset using the variables as hyperpoints and the
records as the coordinates of the hyperpoints.

After about 30 epochs, the AutoCM, with a contractive factor of 6.19615221,
is completely trained (RMSE D 0.00000000), and the weights matrix is ready
(Table 15.5):

Through Eq. (15.12), we transform the weights matrix into a distance matrix
(Table 15.6):

At this point, the MST of the dataset is the following (Fig. 15.9):
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Fig. 15.9 The MST of the global networks (H0 D 0:10989)

The local indexes for this tree are the following:

Vertex degree Clustering strength Pruning rank
Equation (15.28) Equation (15.30) Equation (15.31)
ART 1 CYLDE 0.2 ART 1
SAM 1 GREG 0.333333 SAM 1
CLYDE 1 JOHN 0.333333 CYLDE 1
GREG 1 PHIL 0.333333 GREG 1
JOHN 1 NED 0.333333 JOHN 1
GEORGE 1 KEN 0.333333 GEORGE 1
PHIL 1 GEORGE 0.5 PHIL 1
NED 1 ART 0.5 NED 1
KARL 1 IKE 0.5 KARL 1
KEN 1 AL 0.5 KEN 1
GENE 2 KARL 0.5 GENE 2
RALPH 2 SAM 0.5 RALPH 2
JIM 2 DOUG 0.571429 JIM 2
IKE 2 DON 0.666667 EARL 2
NICK 2 RALPH 0.666667 OL 2
DON 2 PETE 0.8 DON 3
DOUG 2 NICK 0.8 FRED 3
AL 2 DAVE 0.8 LANCE 3
PETE 2 GENE 1 AL 4
EARL 2 EARL 1 RICK 4
DAVE 2 JIM 1 PETE 4
FRED 3 RICK 1.5 DOUG 5
RICK 3 LANCE 1.8 DAVE 5
OL 3 NEAL 1.8 MIKE 6
NEAL 3 FRED 1.8 NICK 6
LANCE 3 OL 2.25 NEAL 7
MIKE 5 MIKE 2.777778 IKE 7
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The global indexes for global hubness (H0; Hi ) and for the graph entropy
(E0; Ei ) are:

Global hubness Graph entropy
Equations (15.32), (15.33),
(15.34), (15.35), (15.36),
(15.37), and (15.38) Equation (15.37)
H(0)D 0.10989 E(0)D 18.52077
H(AL)D 0.09 E(AL)D 15.52418
H(ART)D 0.108571 E(ART)D 17.50778
H(SAM)D 0.108571 E(JIM)D 17.50778
H(CLYDE)D 0.108571 E(NICK)D 17.50778
H(JIM)D 0.108571 E(KARL)D 17.50778
H(GREG)D 0.108571 E(JOHN)D 17.58254
H(JOHN)D 0.108571 E(LANCE)D 17.58254
H(DOUG)D 0.108571 E(GEORGE)D 17.58254
H(LANCE)D 0.108571 E(PETE)D 17.58254
H(GEORGE)D 0.108571 E(FRED)D 17.58254
H(PETE)D 0.108571 E(GENE)D 17.58254
H(FRED)D 0.108571 E(PHIL)D 17.58254
H(GENE)D 0.108571 E(SAM)D 17.58254
H(RALPH)D 0.108571 E(NED)D 17.58254
H(PHIL)D 0.108571 E(GREG)D 17.58254
H(IKE)D 0.108571 E(KEN)D 17.58254
H(NICK)D 0.108571 E(EARL)D 17.58254
H(NED)D 0.108571 E(OL)D 17.58254
H(KARL)D 0.108571 E(DAVE)D 17.58254
H(KEN)D 0.108571 E(DOUG)D 17.66717
H(EARL)D 0.108571 E(IKE)D 17.66717
H(OL)D 0.108571 E(CLYDE)D 17.66717
H(DAVE)D 0.108571 E(RALPH)D 17.74192
H(RICK)D 0.133333 E(NEAL)D 20.42575
H(MIKE)D 0.133333 E(RICK)D 20.51296
H(NEAL)D 0.133333 E(DON)D 20.51296
H(DON)D 0.133333 E(MIKE)D 20.52449

From both the hubness point of view and the entropy point of view, if we
remove Rick from the graph, or Mike, or Neal, or Don, the complexity of the
graph, and consequently its entropy, increases; on the other hand, if we remove
Al from the global graph, the complexity of the graph, and consequently its entropy,
decreases.

That is not absolutely evident if we analyze the same graph comparing the local
indexes. From a naı̈ve point of view, one could think exactly the opposite: because
Mike is a big hub (five links), if he was to be removed, then the global network must
become simpler. But from a global viewpoint, the rearrangement of the networks
without some of its vertices works in a completely different way (Fig. 15.10):
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Fig. 15.10 The MST of the global networks marked (H0 D 0:10989)

Fig. 15.11 New MST without Mike (H0 D 0:133333)

If we remove the vertices within the red circles from Fig. 15.2, the new MST
will show a more complex structure, while if we remove the vertex within the blue
circle, the new MST will be simpler (Figs. 15.11 and 15.12).
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Fig. 15.12 New MST
without Al (H0 D 0:09)

15.12 AutoCM and Maximally Regular Graph (MRG)

The MST represents the nervous system of any dataset. In fact, the summation of
the strength of the connection among all the variables represents the total energy
of that system. The MST selects only the connections that minimize this energy.
Consequently, all the links shown by the MST are fundamental, but not every
fundamental link of the dataset is shown by MST.

Such a limit is intrinsic to the nature of MST itself: every link able to generate a
cycle within the graph is eliminated, whatever its strength. To avoid this limit and to
better explain the intrinsic complexity of a dataset, it is necessary to add more links
to the graph according to two criteria:

1. The new links must be relevant from a quantitative point of view.
2. The new links must be able to generate new cyclic regular microstructures, from

a qualitative point of view.

Consequently, the MST tree graph is transformed into an undirected graph with
cycles. Because of the cycles, the new graph is a dynamic system, involving the time
dimension in its structure.

This is the reason why this new graph should provide information not only about
the structure but also about the functions of the variables of the dataset.

To build this new graph, we need to proceed in the following way:

1. Assume the MST structure as a starting point of the new graph.
2. Consider the sorted list of the connections skipped during the MST generation.
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3. Estimate the H function of the new graph each time we add a new connection to
the MST structure, to monitor the variation of the complexity of the new graph
at every step.

So, we have assigned the name maximally regular graph (MRG) to a graph
whose H function is the highest, among all the graphs generated by adding the new
connections skipped, to the original MST but prior to the completion of the MST
itself.

Consequently, starting from Eq. (15.32), the MRG is given by the following
equations:

Hi D f
�
G
�
Ap; N

�� I = � Generic Function on a graph with
Ap arcs and N Nodes � =

Hi D �p �'p�1

Ap
I = � Calculation of H Function; where H0

represents MST complexity � =

MRG D Max fHi g: = � Graph with highest H � =

i 2 Œ0; 1; 2; :::; R�I = � Index of H Function � =

p 2 ŒN � 1; N; N C 1; :::; N � 1 C R�: = � index for the number of graph
arcs � =

R 2
h
0; 1; ::;

.N �1/�.N �2/

2

i
I = � Number of the skipped arcs during

the M:S:T: generation � =

(15.40)

The “R” variable is a key variable during the MRG generation. “R,” in fact,
could be null when the generation of MST implies no connections to be skipped.
In this case, there is no MRG for that dataset. Furthermore, the “R” variable makes
sure that the last, and consequently the weakest, connection added to generate
the MRG is always more relevant than the weakest connection of the MST. The
MRG, finally, generates, starting from the MST, the graph representing the highest
number of regular microstructures using the most important connections of the
dataset.

Moreover, the greater the H function selected to generate the MRG, the more
meaningful the microstructures shown in the MRG.

15.12.1 Maximally Regular Graph: An Example

Let us consider again the “Gang” dataset (Table 15.2) to generate the MRG of this
dataset (Fig. 15.13):

In this example, the H function has its peak when the system adds the seventh
connection (start counting from 0) skipped during the MST generation. So the
MRG needs seven new connections to be added to the MST, and, consequently,
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H(0)= 0.1099
H(1)= 0.1130 AL JOHN
H(2)= 0.1250 SAM PETE
H(3)= 0.0897 LANCE GEORGE
H(4)= 0.0758 JIM JOHN
H(5)= 0.1261 JOHN GEORGE
H(6)= 0.0953 DOUG NEAL
H(7)= 0.1538 PHIL DON
H(8)= 0.1493 PHIL NED
H(9)= 0.1450 DON NED
H(10)= 0.1410 ART CLYDE
H(11)= 0.1293 DOUG RALPH
H(12)= 0.1090 ART GENE
H(13)= 0.1128 AL RALPH
H(14)= 0.0907 DOUG FRED
H(15)= 0.0941 IKE NICK
H(16)= 0.1190 ART FRED
H(17)= 0.1163 GREG JOHN
H(18)= 0.1000 GREG LANCE
H(19)= 0.0978 SAM CLYDE
H(20)= 0.0957 NICK KEN
H(21)= 0.1367 GREG PETE
H(22)= 0.1167 RALPH IKE
H(23)= 0.1008 PHIL DAVE
H(24)= 0.1343 OL DAVE
H(25)= 0.1317 KEN EARL
H(26)= 0.1440 NED KARL
H(27)= 0.1212 DOUG NICK

MST

Fig. 15.13 Calculation of MRG hubness of “Gang” dataset

Fig. 15.14 MST of “Gang” dataset

the H function increases beyond 50 % with respect to the original MST H function:
(H(0) D 10.99, H(7) D 15.38). Obviously, the quality of the two graphs must be
quite different (Figs. 15.14 and 15.15):

The MRG increases the information contained in the MST. The boundary
between the Jets and Sharks members is represented by a cycle of four subjects:
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Fig. 15.15 MRG of “Gang” dataset

Neal and Ken are Sharks, while Doug and Mike are Jets. So, looking at the MRG,
the edges between Jets and Sharks seem to be fuzzy and negotiable. In fact, the four
subjects laying on this border are outliers in their respective gangs. Furthermore,
Al, a member of the Jets gang, is placed at the top of an autonomous circuit of links
among four Jets members, as he is the head of a new virtual gang hidden within the
Jets gang.

Examination of the new information in the MRG about the structure of the two
gangs becomes evident: because the number of cycles is greater, the Jets gang shows
itself to be more complex and articulated than the Sharks gang.

Finally, the cycle including Don, Ol, and Phil represents a prototype of the
Sharks member whose features are very different from the other Jets subjects. In the
same way, Jets show two different prototypes. The first is represented by the cycle
including Gene, Sam, Fred, and Pete; the second is outlined by the cycle including
John, George, Lance, and Jim.

According to the MRG, the structural features of each prototype should be the
following:

1. Prototype of gang hybridization:

�
Jets

Sharks

�
C 300 C

�
JuniorSchool

HighSchool

�
C Single C Bookie:

2. Prototype of Sharks member:

300 C College C Married C
�

Pusher

Burglar

�
:
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3. First prototype of Jets member:

200 C
�

College

HighSchool

�
C Single C

�
Bookie

Pusher

�
:

4. Second prototype of Jets member:

200 C JuniorSchool C
�

Married

Divorced

�
C Burglar:

15.13 Conclusions

This chapter presents new theoretical hypotheses, new mathematical algorithms, and
new criteria to measure the complexity of the networks:

1. The math, topology, and algorithm of a new ANN, named the auto-contractive
map (AutoCM), have been presented. The AutoCM system reshapes the dis-
tances among variables or records of any dataset, considering their global
vectorial similarities and consequently defines the specific warped space in which
variables or records can work.

2. A filter known as the MST can be used to cluster a distance matrix, generated
from a dataset, in a very useful way.

3. A new index, named the H function, was shown to size the topological complex-
ity of any kind of graph, and its mathematical consistency and an application has
been shown.

4. This chapter further created, from the H function, a new index to measure
the relevance and contribution of any node within a semantic graph (a graph
generated by a dataset). We have named this new index the delta H function.

5. Finally, a new type of semantic graph has been defined using the H function,
called the maximally regular graph (MRG). From an MST, generated from any
metric, the MRG reshapes the links among the nodes in order to maximize the
fundamental and the most regular structures implicated in any dataset.

A.1 Appendices

A.1.1 Appendix A: AutoCM Convergence

Giovanni Pieri
The first step is to show the CM convergence equation. Convergence means that

in the long term (for growing n), the connections do not vary any more, that is,

�vi.n/
D 0I �wi;j.n/

D 0:
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A sufficient condition for convergence is:

lim
n!1 vi.n/

D C: (15.8)

In fact, when vi.n/
D C , then �vi.n/

D 0 (Eq. 15.2) and m
Œh�
i.n/

D 0 (Eq. 15.1) and,
consequently, �wi;j.n/

D 0 (Eq. 15.6).
The second step is to demonstrate that the sufficient condition holds. At this

point, we can rewrite Eqs. (15.2) and (15.3) in this way:

�vi.n/
D
�
m

Œs�
i.n/

� m
Œs�
i.n/

�
�
1 � vi.n/

C

��
�
�
1 � vi.n/

C

�
D m

Œs�
i.n/

� vi.n/

C
�
�
1 � vi.n/

C

�
I

(15.2a)

vi.nC1/
D vi.n/

C m
Œs�
i.n/

� vi.n/

C
�
�
1 � vi.n/

C

�
: (15.3a)

For the sake of clarity, we pose:

vi.nC1/
D vnC1I

vi.n/

C
D yI

m
Œs�
i.n/

D m:

Obtaining a simplified version of Eq. (15.3a):

vnC1 D Cy C m � y � .1 � y/ D y .C C m/ � my2: (15.3b)

It has to be noted that in Eq. (15.3b), while C is a true constant, remaining
unchanged during training, m is a variable, which is bounded both superiorly and
inferiorly; in fact, the following inequalities hold: 0 � m � 1. This property will be
exploited to demonstrate Eq. (15.8).

A graphical representation of Eq. (15.3b) is helpful to make clear its properties.
The general form of Eq. (15.3b) is parabolic, passing for two fixed points not
dependent on m: the origin where both vnC1 and y are null and the point of
coordinates y D 1; vnC1 D C. Between the two points, the function may have a
maximum. This happens if C < 1 and m is close to 1. The lower C is and the higher
m is, the more pronounced is the maximum. Otherwise (C > 1) the maximum is
outside the interval and it is found for y > 1.

Three cases of Eq. (15.3b) are represented in Figs. A.1, A.2, A.3, which are
obtained respectively for C D 0.8, C D 1, and C D 1.5. In each case, various values
of m give origin to different curves.
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Vn+1=yC

Vn+1=C
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Fig. A.1 Equation (15.3b) in the case of C D 0.8
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Fig. A.2 Equation (15.3b) in the case of C D 1
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0
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V
n
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C=1.5

Vn+1=yC

Vn+1=C

m=0.1

m=0.3

m=0.5

m=0.75

m=1

Fig. A.3 Equation (15.3b) in the case of C D 1.5

To elucidate what the use of the above diagrams is, let us assume for a moment a
constant value for m: the curve corresponding to that value represents all the possible
values for vnC1. If C � 1 and y < 1, the following properties are readily seen:

(a) vnC1 is always less than C.
(b) vnC1 is always larger than vn.
(c) When n grows, even y grows and so does vnC1 indefinitely.

It is also readily seen that these properties hold even for a variable m, that is, m
function of n.

If it is assumed that the property (c) is equivalent to say that for any positive "

exists at least one vn which is:

vn > C � e;

it can be easily demonstrated that the sufficient condition (15.8) for convergence
holds (if the above equation is satisfied, also the definition of limit is satisfied, and
therefore, lim

n!1 vi.n/
D C ).

The equivalence cannot be assumed as unconditionally true, but only as being
a reasonable conjecture, and, therefore, any demonstration based on it must be
considered not completely sound.

The same holds for the condition vi.n/
=C D 1 � " which is in turn another form

of the equivalent of the property (c) discussed above.
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In particular, it is clear that the sufficient condition lim
n!1 vi.n/

D C does not hold

either where the parabolic curve shows a maximum at y <1 and when the initial
value v0 is larger than C.

A.1.2 Appendix B: Operator “B”

Riccardo Petritoli1

Let NW be the space of the square matrices whose elements satisfy these relations:

W 2 NW ; ndim D dim.W /; ndim 2 �xj9 y; z 2 N C; x D y � z
�

:

We define:

(a) The set D of the ordered pairs .nR; nC / with nR; nC 2 N C; nR � nC D ndim

(b) The operator B.nR; nC /: W ! W 0

wi;j D w0
k;l i; j; k; l 2 f1; :::; ndimg

with:

k D Œ.i � 1/ =nR � � nR C 1 C .j � 1/ =nC

l D Œ.i � 1/ mod nR� � nC C 1 C .j � 1/ mod nC

where:
“/” is the division defined in N

“mod” is the modulo operation (also defined in N )

Notes

1. From definition (b) follows that the B operator makes a simple change of element
positions in the matrix (a sort of “block transpose”).

Consider this example:
Let NW be a matrix space with ndim D 12 and the B operator with nR D

3; nC D 4.
The matrix W is:

W D

0

BB
B
@

w1;1 w1;2 � � � w1;12

w2;1 w2;2 � � � w2;12

:::
:::

: : :
:::

w12;1 w12;2 � � � w12;12

1

CC
C
A

:

1The “B” operator was invented and implemented by M Buscema in 1998 at Semeion Research
Center. The “B” operator is presented in this chapter for the first time.
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Using the operator B.3; 4/, the result will be:

W 0 D

0

BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
B
@

1
‚ …„ ƒ
w1;1 w1;2 w1;3 w1;4

w1;5 w1;6 w1;7 w1;8

w1;9 w1;10 w1;11 w1;12

2
‚ …„ ƒ
w2;1 w2;2 w2;3 w2;4

w2;5 w2;6 w2;7 w2;8

w2;9 w2;10 w2;11 w2;12

3
‚ …„ ƒ
w3;1 w3;2 w3;3 w3;4

w3;5 w3;6 w3;7 w3;8

w3;9 w3;10 w3;11 w3;12

4
‚ …„ ƒ
w4;1 w4;2 w4;3 w4;4

w4;5 w4;6 w4;7 w4;8

w4;9 w4;10 w4;11 w4;12

5
‚ …„ ƒ
w5;1 w5;2 w5;3 w5;4

w5;5 w5;6 w5;7 w5;8

w5;9 w5;10 w5;11 w5;12

6
‚ …„ ƒ
w6;1 w6;2 w6;3 w6;4

w6;5 w6;6 w6;7 w6;8

w6;9 w6;10 w6;11 w6;12

7
‚ …„ ƒ
w7;1 w7;2 w7;3 w7;4

w7;5 w7;6 w7;7 w7;8

w7;9 w7;10 w7;11 w7;12

8
‚ …„ ƒ
w8;1 w8;2 w8;3 w8;4

w8;5 w8;6 w8;7 w8;8

w8;9 w8;10 w8;11 w8;12

9
‚ …„ ƒ
w9;1 w9;2 w9;3 w9;4

w9;5 w9;6 w9;7 w9;8

w9;9 w9;10 w9;11 w9;12

10
‚ …„ ƒ
w10;1 w10;2 w10;3 w10;4

w10;5 w10;6 w10;7 w10;8

w10;9 w10;10 w10;11 w10;12

11
‚ …„ ƒ
w1;1 w1;2 w1;3 w1;4

w1;5 w1;6 w1;7 w1;8

w11;9 w11;10 w11;11 w11;12

12
‚ …„ ƒ
w1;1 w1;2 w1;3 w1;4

w1;5 w1;6 w1;7 w1;8

w12;9 w12;10 w12;11 w12;12

1

CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
C
A

:

From the previous example, we can extract a simple algorithm for the B
operator.

Let the starting matrix be divided in 3 � 4 blocks:

W D

0

B
B
@

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

1

C
C
A :

From every ordered set (An; Bn; Cn), we can obtain a 3 � 12 block Dn; the
resulting 4 blocks are going to be the final matrix:

W 0 D

0

B
B
@

D1

D2

D3

D4

1

C
C
A :
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This is the procedure:

Step 1 Consider block A:

A D

0

BB
@

a1;1 a1;2 a1;3 a1;4

a2;1 a2;2 a2;3 a2;4

a3;1 a3;2 a3;3 a3;4

1

CC
A :

Let the block be “vectorized” obtaining VA:

VA D
�

a1;1 a1;2 a1;3 a1;4 a2;1 a2;2 a2;3 a2;4 a3;1 a3;2 a3;3 a3;4

�
:

Step 2 Repeat step 1 for blocks B and C obtaining vectors VB and VC .
Step 3 Put the row vectors VA; VB; VC in a column obtaining D:

D D
0

@
VA

VB

VC

1

A :

The operator B is a bijective function: B.nR; nC /: W $ W 0.
In fact, the inverse operator B�1.nR; nC / exists and is equal to B.nR; nC /:

W
B! W 0 B! W .

(Note that the transpose operator also has this feature.)
2.3. The B operator is linear. In fact, B .a � W 0 C b � W 00/ D a �B .W 0/Cb �B .W 00/.
4. It follows from definition (a) that, for every ndim, the set D always contains at

least two elements:

.1; ndim/ e .ndim; 1/:

In these cases, we have:

B.1; ndim/ 	 I .Identityoperator/

B.ndim; 1/ 	 T .Transposeoperator/

A.1.3 Appendix C: The Concept of Hubness

R. Petritoli and M. Buscema
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A.1.3.1 C.1 Definition of Hubness

Pruning Algorithm
Consider a graph with N nodes and A links. We use the following algorithm

(pruning algorithm):

1. Detect in the graph all the nodes with the minimum gradient, that is, all the nodes
with the smallest number of links.

2. “Set free” all the detected nodes erasing their links.
3. Apply steps 1 and 2 until all the nodes of the graph are free (complete

disconnection of the graph).

We define pruning cycle number as the number of iteration to disconnect
completely the graph; we indicate this value with M.

Example 1 Consider the following graph (N D 8 and A D 11):

Let us apply the pruning algorithm:

1st pruning cycle:
Minimum gradient D 1
Erased links D 1
Released nodes D 1

2nd pruning cycle:
Minimum gradient D 2
Erased links D 4
Released nodes D 2
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3rd pruning cycle:
Minimum gradient D 2
Erased links D 5
Released nodes D 3

4th pruning cycle:
Minimum gradient D 1
Erased links D 1
Released nodes D 2

The resulting number of pruning cycles M is 4.

Pruning Table
In order to take note of evolution of all the variables during the pruning process,

we introduce the pruning table:

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

K G L Nd

1 g1 l1 n1

::: ::: ::: :::

M gM lM nM

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

:

Every row is matched with a single pruning cycle; a row is composed by the
following variables:

• K: progressive number which identify the jth pruning cycle
• G: pruning gradient of the jth cycle
• L: number of links erased in the jth cycle
• Nd : number of nodes released in the jth cycle

Example 2 Considering the graph of the previous example, we have the following
pruning table:

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌

K G L Nd

1 1 1 1

2 2 4 2

3 2 5 3

4 1 1 2

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌

:
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We also define two variables that come from the pruning table: P e STG. To do
that, we need a preliminary operation: the partition of gradients.

We have the sequence of gradients from the pruning:
G D g1, g2, : : : , gM .
Let us split the gradients in classes using the following rules:

• A class contains at least one element of the sequence.
• Two adjoining elements in the sequence with equal values are in the same class.

We name P the number of emerging classes and STG the common value of a class
(i.e., the value of each element belonging to the class).

Example 3 Let us have a sequence of gradients with M D 10:
G D 2, 1, 1, 1, 2, 4, 3, 2, 6, 6.
The partition will be:
C1 D f2g, C2 D f1,1,1g, C3 D f2g, C4 D f4g, C5 D f3g, C6 D f2g, C7 D f6,6g.
The resulting number of classes will be equal to 7; the sequence STG will be 2, 1,

2, 4, 3, 2, 6.

Example 4 Consider the graph of Examples 1 and 2; we have:
G D 1, 2, 2, 1.
The partition will be:
C1 D f1g, C2 D f2,2g, C3 D f1g.
The resulting number of classes will be equal to 3; the sequence STG will be

1, 2, 1.
The � and ® Parameters
We introduce two variables that will be used for the definition of hubness:

� D 1

M

MX

i

N di D N

M
I

	 D 1

P

PX

j

ST G j :

Hubness of a Graph
Definition of hubness:

H0 D � � 	 � 1

A
:

Example 5 Considering the graph of Examples 1 and 2, we have:

� D 1

M

MX

i

N di D N

M
D 8

4
D 2;

	 D 1

P

PX

j

ST G j D 1

3
.1 C 2 C 1/ D 4

3
;
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H0 D � � 	 � 1

A
D 2 � 4

3
� 1

11
D

8�3
3

11
D 5

33
D 0:15:

A.1.3.2 C.2 Remarkable Cases

C.2.1 Case No 1: The Chain

• Case 1.1: Chain with x nodes
If x is even:

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

M G L N

1 1 2 2

2 1 2 2
:::

:::
:::

:::
x
2

1 1 2

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

	ŒC � D 1 �ŒC � D 2

N ŒC � D x

H
ŒC �
0 D �ŒC � � 	ŒC � � 1

N ŒC � � 1
D 2 � 1

x � 1
D 1

x � 1
:

If x is odd:
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

M G L N

1 1 2 2

2 1 2 2
:::

:::
:::

:::
.x�1/

2
1 2 3

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

	ŒC � D 1 �ŒC � D 2x

x � 1

N ŒC � D x

H
ŒC �
0 D �ŒC � � 	ŒC � � 1

N ŒC � � 1
D x C 1

.x � 1/2
D 1

x � 1
� x C 1

x � 1
:

The value of the hubness depends on the level of connectivity of the graph, that is,
the possibility of reaching any node starting from any other node using the shortest
path (the smallest number of links). In that sense, the presence of hubs (nodes with
a high number of links) increases the global connectivity of the graph.



370 M. Buscema

In the case of chain, the connectivity of the graph is very low: to reach one edge
from the other one, we need to use all the links of the chain. The longer is the
chain, the more the compactness of the graph decreases. The consequence is that
the hubness decreases as 1/x when the number of nodes x increases.

C.2.2 Case No 2: The Star

• Case 2.1: Star with x nodes:

ˇ̌
ˇ
ˇ
M G L N

1 1 x � 1 x

ˇ̌
ˇ
ˇ

	ŒS� D 1 �ŒS� D x

N ŒS� D x

H
ŒS�
0 D �ŒS� � 	ŒS� � 1

N ŒS� � 1
D x � 1

x � 1
D 1:

Comparing with the case of the chain, the star is the opposite: each node can
reach any other node with at most 2 links (i.e., crossing only one node). Such level
of connectivity holds steady as the number of nodes of the star increases. So the
hubness is equal to 1 regardless of the number x of nodes.

• Case 2.2: Star with x nodes and 1 tail with x nodes:

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

M G L N

1 1 1 1
:::

:::
:::

:::

x 1 1 1

x C 1 1 x � 1 x

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

	0 D 1 �0 D 2x

x C 1

N 0 D 2x

A0 D 2x � 1

H 0
0 D �0 � 	0 � 1

2x � 1
D x � 1

2x2 C x � 1
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H 0
0.3/ D 3 � 1

18 C 3 � 1
D 1

10

lim
x!1 H 0

0 D lim
x!1

x � 1

2x2 C x � 1
D 0:

The tail may collapse dramatically the compactness of the whole graph; increas-
ing the number of branches of the star and the number of nodes of the chain at the
same time, the hubness goes to 0: the connectivity of the graph is lost.

The following cases show further this feature:

• Case 2.3: Star with x nodes and 2 tails with x nodes:

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

M G L N

1 1 2 2
:::

:::
:::

:::

x 1 2 2

x C 1 1 x � 1 x

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

	00 D 1 �00 D 2x C x

x C 1
D 3x

x C 1

N 00 D 3x

A00 D 3x � 1

H 00
0 D �00 � 	00 � 1

3x � 1
D 2x � 1

3x2 C 2x � 1

H 00
0 .3/ D 6 � 1

27 C 6 � 1
D 5

321

lim
x!1 H 00

0 D lim
x!1

2x � 1

3x2 C 2x � 1
D 0:

• Case 2.4: Star with x nodes and x tails with x nodes:

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

M G L N

1 1 x x
:::

:::
:::

:::

x 1 x x

x C 1 1 x � 1 x

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
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	� D 1 �� D x2 C x

x C 1
D x

N � D x2 C x

A� D x2 C x � 1

H �
0 D �� � 	� � 1

x2 C x � 1
D x � 1

x2 C x � 1

H �
0 .3/ D 3 � 1

9 C 3 � 1
D 2

11

lim
x!1 H �

0 D lim
x!1

x � 1

x2 C x � 1
D 0:

C.2.3 Case No 3: The Tree

• Case 3.1: Tree with x nodes and y pruning steps (x � 2; y � x):

H
ŒA�
0 D �ŒA� � 	ŒA� � 1

N ŒA� � 1
D

x
y

� 1

x � 1
:

If y D 1 (star case):

H
ŒA1�
0 D

x
y

� 1

x � 1
D x � 1

x � 1
D 1:

If y D 2:

H
ŒA2�
0 D

x
y �1

x�1
D x

2 �1

x�1
; therefore, for x D 2, 3, 4, : : : :

H
ŒA2�
0 D 0; 1

4
; 1

3
; 3

8
; � � � ! 1

2
; that is, 8x; H

ŒA2�
0 < 1

2

(note: x D 2 and y D 2 is impossible).
If y D x � 1:

H
ŒA.x�1/�
0 D x

x�1 �1

x�1
D x�xC1

.x�1/2 D 1

.x�1/2 , then with x D 2, 3, 4, : : : :

H
ŒA.x�1/�
0 D 1;

1

4
;

1

9
;

1

16
; � � � ! 0

(note: x D 2 and y D 1 is the case of the star with two tails [case 7]).
If y D x (impossible):

H
ŒAx�
0 D

x
x

� 1

x � 1
D 1 � 1

x � 1
D 0:
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Since for x > 2 and y > 1:

x

y
� 1 � x

2
� 1; that is

x
y

� 1

x � 1
�

x
2

� 1

x � 1

We have for x � 2, 1 < y < x:

H
ŒA�
0 � H

ŒA2�
0 <

1

2
:

This result highlights that the hubness of a tree usually is very small (<½; the
star [H D 1] is an exception). In fact, the lack of close loops decreases the level
of connectivity of the graph: there is only a path between two nodes (there are
no “shortcuts”!). Increasing the number of nodes, the compactness of the graph
decreases and the hubness goes to 0.

C.2.4 Case No 4: The Complete Regular Graph

• Case 4.1: Complete regular graph with x nodes:

ˇ
ˇ̌
ˇ
ˇ
M G L N

1 x � 1 x2�x
2

x

ˇ
ˇ̌
ˇ
ˇ

	ŒGRC� D x � 1 �ŒGRC� D x

N ŒGRC� D x

AŒGRC� D x2 � x

2

H
ŒGRC�
0 D �ŒGRC� � 	ŒGRC� � 1

x2�x
2

D 2 � x � .x � 1/ � 1

x2 � x
D 2 � x2 � x � 1

x2 � x
D 2 � 2

x2 � x
:

In a complete regular graph, each node is directly linked to any other node; the
compactness is the maximum possible and the hubness has a value >1.5, which goes
to 2 as the number of nodes increases. Note that the hubness is an extensive variable,
and therefore, it depends not only by the connectivity but also by the dimensions
(number of nodes): between two complete regular graphs (maximum connectivity)
the one with more nodes will have the highest hubness.
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• Case 4.2: Complete regular graph with x nodes and 1 tail with x nodes:

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

M G L N

1 1 1 1
:::

:::
:::

:::

x 1 1 1

x C 1 x � 1 x2�x
2

x

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

	0 D x

2
�0 D 2x

x C 1

N 0 D 2x

A0 D x2 � x

2
C x D x2 C x

2

H 0
0 D �0 � 	0 � 1

x2Cx
2

D 2

x
� x2 � x C 1

x2 C 2x C 1

lim
x!1 H 0

0 D lim
x!1

2

x
� x2 � x C 1

x2 C 2x C 1
D 0:

Like Case 2.2, the presence of nodes with gradient lower than the maximum one
makes the hubness collapse under the unity. This “hypersensibility” is examined in
the next case.

• Case 4.3: Complete regular graph with x nodes and 2 tails with x nodes:

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

M G L N

1 1 2 2
:::

:::
:::

:::

x 1 2 2

x C 1 x � 1 x2�x
2

x

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

	00 D x

2
�00 D 2x C x

x C 1
D 3x

x C 1

N 00 D 3x

A00 D x2 � x

2
C 2x D x2 C 3x

2
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H 00
0 D �00 � 	00 � 1

x2C3x
2

D 1

x
� 3x2 � 2x � 2

x2 C 4x C 3

lim
x!1 H 00

0 D lim
x!1

1

x
� 3x2 � 2x � 2

x2 C 4x C 3
D 0:

• Case 4.4: Complete regular graph with x nodes and x tails with x nodes:

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

M G L N

1 1 x x
:::

:::
:::

:::

x 1 x x

x C 1 x � 1 x2�x
2

x

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

	� D x

2
�� D x2 C x

x C 1
D x

N � D x2 C x

A� D x2 � x

2
C x2 D 3x2 � x

2

H �
0 D �� � 	� � 1

3x2�x
2

D x2 � 2

3x2 � x

lim
x!1 H �

0 D lim
x!1

x2 � 2

3x2 � x
D 1

3
:

• Case 4.5: Complete regular graph with x nodes and y tails with x nodes
(1 < y � x):

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

M G L N

1 1 y y
:::

:::
:::

:::

x 1 y y

x C 1 x � 1 x2�x
2

x

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

	000 D x

2

�000 D xy C x

x C 1
D x.y C 1/

x C 1
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N 000 D x C xy D x.y C 1/

A000 D x2 � x

2
C xy D x2 C 2xy � x

2

H 000
0 D

x.yC1/

xC1
� x

2
� 1

x2C2xy�x

2

D 1

2
� 1

x C 1

�
x � x3 � 3x2 C 4x C 4

x2 C 2xy � x

�

D 1

2
� x

x C 1

�
1 � x3 � 3x2 C 4x C 4

x3 C 2x2y � x2

�
:

If y ¤ x:

lim
x!1 H 000

0 D lim
x!1

1

2
� x

x C 1

�
1 � x3 � 3x2 C 4x C 4

x3 C 2x2y � x2

�
D 0:

If y D x:

lim
x!1 H 000

0 D lim
x!1

1

2
� x

x C 1

�
1 � x3 � 3x2 C 4x C 4

x3 C 2x2y � x2

�

D lim
x!1

1

2
� x

x C 1

�
1 � x3 � 3x2 C 4x C 4

x3 C 2x3 � x2

�

D lim
x!1

1

2
� x

x C 1

�
1 � x3 � 3x2 C 4x C 4

3x3 � x2

�

D 1

2
�
�

1 � 1

3

�
D 1

2
�
�

2

3

�
D 1

3
:

C.2.5 Case No 5: The Closed Star

• Case 5.1: Closed star with x nodes:

ˇ
ˇ
ˇ̌M G L N

1 3 2x � 2 x

ˇ
ˇ
ˇ̌

	ŒSC� D 3 �ŒSC� D x

N ŒSC� D x
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AŒSC� D 2.x � 1/

H
ŒSC�
0 D �ŒSC� � 	ŒSC� � 1

2.x � 1/
D 3x � 1

2.x � 1/

H
ŒSC�
0 .5/ D 15 � 1

2.5 � 1/
D 7

4

lim
x!1 H

ŒSC�
0 D lim

x!1
3x � 1

2x � 2
D 3

2
:

The closed star represents the case of a not regular graph with hubness greater
than 1. In fact the star, already with a very high connectivity, is upgraded by the
connections between the “spokes” of the wheel, increasing the space of possible
paths (and possible “shortcuts”). This increased compactness explains the above-
mentioned high levels of hubness.

The following cases once more explain how easily the value of hubness decreases
adding low connected nodes.

• Case 5.2: Closed star with x nodes and 1 tail with x nodes:

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

M G L N

1 1 1 1
:::

:::
:::

:::

x 1 1 1

x C 1 3 2x � 2 x

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

	0 D 2 �0 D 2x

x C 1

N 0 D 2x

A0 D 3x � 2

H 0
0 D �0 � 	0 � 1

3x � 2
D 3x � 1

3x2 C x � 2

H 0
0.5/ D 15 � 1

75 C 5 � 2
D 7

39

lim
x!1 H 0

0 D lim
x!1

3x � 1

3x2 C x � 2
D 0:
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• Case 5.3: Closed star with x nodes and 2 tails with x nodes:

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

M G L N

1 1 2 2
:::

:::
:::

:::

x 1 2 2

x C 1 3 2x � 2 x

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

	00 D 2 �00 D 2x C x

x C 1
D 3x

x C 1

N 00 D 3x

A00 D 4x � 2

H 00
0 D �00 � 	00 � 1

2.x � 1/
D 5x � 1

4x2 C 2x � 2

H 00
0 .5/ D 25 � 1

100 C 10 � 2
D 2

9

lim
x!1 H 00

0 D lim
x!1

5x � 1

4x2 C 2x � 2
D 0:

• Case 5.4: Closed star with x nodes and x tails with x nodes:

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

M G L N

1 1 x x
:::

:::
:::

:::

x 1 x x

x C 1 3 2x � 2 x

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

	� D 2 �� D x2 C x

x C 1
D x

N � D x2 C x

A� D x2 C 2x � 2

H �
0 D �� � 	� � 1

x2 C 2x � 2
D 2x � 1

x2 C 2x � 2
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H �
0 .5/ D 10 � 1

25 C 10 � 2
D 3

11

lim
x!1 H �

0 D lim
x!1

2x � 1

x2 C 2x � 2
D 0:

• Case 5.5: Closed star with x nodes and maximum gradient

– Construction procedure of the graph with gradient x � 2 (only with x odd):

• Take a complete regular graph with dimension x � 1.
• Erase one link in each couple of nodes (x � 1 will be even).
• Add a new node and link it to the others.

We have:

�ŒSC� D x

	ŒSC� D x � 2

N ŒSC� D x

AŒSC� D .x � 1/2 � .x � 1/

2
� x � 1

2
C .x � 1/

D .x � 1/2 � 2.x � 1/ C 2.x � 1/

2
D .x � 1/2

2

H
ŒSC�
0 D �ŒSC� � 	ŒSC� � 1

.x�1/2

2

D 2 � x.x � 2/ � 1

.x � 1/2
D 2 � x2 � 2x � 1

.x � 1/2
D 2 � x2 � 2x � 1

x2 � 2x C 1

lim
x!1 H

ŒSC�
0 D lim

x!1 2 � x2 � 2x � 1

x2 � 2x C 1
D 2:

• Construction procedure of the graph with gradient x � 3:

– Take a complete regular graph with dimension x � 1.
– Erase two links in each node (we can do that with x even as well as x odd).
– Add a new node and link it to the others.

We have:

�ŒSC� D x
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	ŒSC� D x � 3

N ŒSC� D x

AŒSC� D .x � 1/2 � .x � 1/

2
� .x � 1/ C .x � 1/

D .x � 1/2 � .x � 1/

2
D .x � 1/.x � 2/

2

H
ŒSC�
0 D �ŒSC� � 	ŒSC� � 1

.x�1/2

2

D 2 � x.x � 3/ � 1

.x � 1/.x � 2/
D 2 � x2 � 3x � 1

x2 � 3x C 2

lim
x!1 H

ŒSC�
0 D lim

x!1 2 � x2 � 3x � 1

x2 � 3x C 2
D 2:
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Chapter 16
Analysis of a Complex Dataset Using
the Combined MST and Auto-Contractive Map

Giovanni Pieri

16.1 Introduction

An auto-contractive map (Auto CM) learns the relationships among data elements
in a database with a new and extremely efficient process in which the output of the
Auto CM is discarded in the final phase of analysis. At this point, all the information
contained in the database as represented by the variables and its instances is
transferred into the Auto CM, including the relationships between variables and
dependences between records. All the information lies in a special structure called
the W matrix; it is this weights matrix that contains the information concerning the
connections of the nodes which are present within the artificial network represented
as the hidden layer and on the output layer (Buscema and Sacco 2010).

Although all the information is actually contained in this matrix, access to it is
nevertheless difficult, since, in general, the W matrix is not easier to read than the
initial database though in some cases in which a graphic representation of the W
matrix can be given, a direct reading is possible though not necessarily easy.

In order to make the information readable to the non-scientist, it is necessary to
understand its elements as ‘distances’. Through a mathematical device, it is possible
to operate on the data such that the diagonal elements of the W matrix are all the
same and equal to a prefixed number d greater than all the other elements of the
matrix, which are positive by definition. The expression

distij D d � wij

is then interpreted as the distance between the variable i and the variable j. The distij
elements cannot be less than zero by definition. Therefore, the W matrix can be
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represented by a non-directional graph whose nodes are the variables and whose
arcs are the distances given by the preceding expression.

The bigger an element of the W matrix, the greater the link between the variables
connected by the element. In other words, the elements of the W matrix represent
the intensity of the connections between the variables. It is easy to note that the
smaller the distances between variables (defined as above), the stronger will be the
link between them and therefore the greater is the importance that must be assigned
to them in the analysis of the results concerning the Auto CM.

The minimum spanning tree (MST) is a mathematical tree diagram that is
extracted from a non-directional graph and has two characteristics (Kruskal
1956):

1. It joins all nodes.
2. The sum of the lengths of all the arcs is minimal.

The MST therefore represents only a part of the graph, i.e. it exposes only the
arcs minimising the total length, and therefore generally speaking they are some of
the shortest of the graph, though not necessarily all the shortest arcs. Therefore, the
MST represents the links between the strongest variables, disregarding the others.
The MST does not remove the other arcs; it just omits showing them, but the
relationships represented by the arcs, which do not form part of the MST (in the
graph each node is connected to all the others), continue to exist and are not
necessarily weak. On the contrary, some of them can have intensity comparable
to those represented.

It is always advisable to take this aspect into account when analysing the results
of an Auto CM. One should take the MST graph from an operative point of view,
that is to say, through a calculation of sensitivity aimed to see how the MST changes
as one of the nodes is removed (which is equivalent to disregarding the variable
in the analysis). Generally speaking, we can say (and we shall see this later) that
sometimes the removal of a node changes little in the MST. It is therefore confirmed
that the links which are not represented in the original MST may still be very strong
and may effectively replace those removed by elimination of one of the nodes. The
interpretations of the relationships between variables that are revealed on the map
are based on the characteristics revealed by the MST, and one should always take
into account that these links between nodes are prevalent relationships, which are
never exclusive.

16.2 Interpretation of the Global Graph

The Global Graph (the MST resulted from the Auto CM that has learned the
database of the drug arrests in London) may be described schematically as consist-
ing of a central trunk interconnecting the drugs seized, onto which fairly complex
side branches are grafted (Fig. 16.1). The node representing Crack is directly con-
nected to the node representing Heroin-Diamorphine, whilst it is connected to the
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one representing MDMA [(3,4-methylenedioxymethamphetamine) is a synthetic,
psychoactive drug that is chemically similar to the stimulant methamphetamine and
the hallucinogen mescaline] through a hub representing the arrests carried out in the
borough of Westminster. MDMA is connected in turn to the hub Cocaine through
the node representing the borough of Lambeth. Leaving aside for the moment the
significance of the direct or indirect connections between substances, we analyse
the significance of the branches.

The branches leaving from the central trunk consist exclusively of nodes repre-
senting borough variables and they all end with leaves having similar structures,
with one exception that we shall discuss later. The simplest branches have two
possible structures formed as follows:

Drug

Drug Residents in the same Borough

Arrests in the same Borough

Arrests in Borough

Residents in Borough

Examples of these structures can be found in the leaves connected to Heroin-
Diamorphine:

Heroin-Diamorphine Enfield AR_PL_Enfield

Heroin-Diamorphine AR_PL_Haringey Haringey

Although similar, both structures do not mean exactly the same thing. In the
first case, the residents of Enfield are more linked to the drug than their place of
residence. This means that they deal in the borough where they live, but they partly
go over its boundaries with the result that they may also be arrested elsewhere.
In the second case, in Haringey the opposite occurs: without any doubt, the residents
deal in Heroin-Diamorphine, but they are not the only ones on their territory.
In other words, the residents of Enfield have a more active part in dealing in Heroin-
Diamorphine than the residents of Haringey.

In each case, the link between the place of residence and the place of arrest is
very strong and this means that the drug distribution system has strongly territorial
characteristics, which are certainly at the level of the individual borough and also at
a wider level, as we shall see. Smaller territorial structures may exist in the different
boroughs, but our analysis tool, by its very nature, does not reveal them. If in the
future there was an interest also in investigating on smaller scales, the database
would have to be segmented into smaller territorial units contained in the boroughs.

This difference enables one to create a hierarchy of the boroughs according to
their degree of activity. For example, among the three boroughs linked to Heroin-
Diamorphine, Enfield has a driving role, and its residents cover the market of their
own territory well and partly spill over into the territory of the other two boroughs
(Haringey, Brent), collaborating moreover with the local residents, who nevertheless
maintain the pre-eminence on their territory. This picture reveals a structure of a
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Fig. 16.2 Map of London with the boroughs coloured according to their connection with the type
of drug

higher level than the one concerning the individual boroughs. It can be identified
with the territory which has a predominant diffusion of a given drug. So, even the
drugs show a certain degree of territoriality, and it can be represented as in Fig. 16.2.
In Fig. 16.2, the boroughs connecting two drugs in the graph are represented with a
split colour.

The territorial structure of dealing can be likened to a feudal structure in which
a feudal vassal of a higher level controls a territory, part of it directly and part of it
through lower-ranking vassals subordinate to him. This may suggest that in Enfield
there is a higher power controlling all the Heroin-Diamorphine trafficking in the
three boroughs (and also elsewhere where this trafficking is not typifying) and the
sources of supply, running the storage and distribution centres in his territory. In this
situation, territorial adjacency counts but is not essential. Even in the Middle Ages,
when the communications were much more difficult than today, one feudal vassal
could control territories not adjacent to one another that had entered his orbit as a
result of historical and political accidents.

The effect of the lack of territorial adjacency can be clearly seen in the case of
MDMA, where the boroughs with a more active profile (represented by a branch
of the first type) are two in number: Harrow and Richmond. The latter is adjacent
to Wandsworth, which has a less active profile and therefore should be considered
dependent on Richmond, with probable joint control of Harrow. The other boroughs
just gravitate on MDMA indirectly through nodes that connect two different drugs:
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the arrests in Lambeth connect MDMA to Cocaine, whilst the arrests in Westminster
connect MDMA to Crack. This situation shows that both Lambeth and Westminster
are frontier territories where different drugs coexist and they were both dealt in by
the residents.

Although the database is not dynamic (it does not contain time variables), the
situation suggests that in the frontier territories a process of substitution is in
progress. This seems even more evident if it is considered that the present territorial
discontinuity may be the result of the penetration of Crack in the domain of
MDMA which was previously continuous from Barnet to Westminster. The process
is probably still in progress in the frontier areas and started some time back, so that
in the separate parts two independent centres of control came into being (in Harrow
and Richmond).

The Cocaine hub is even more complex than the previous ones, and it has the
main centre of power in Sutton: residents predominate in local arrests, though they
are also linked with the arrests in Merton where the residents of Croydon are also
important. This situation permits us to deduce that within the boroughs linked to the
Cocaine hub, there is a hierarchy of the following type:

Sutton
#
Bromley
#
Croydon
#
Merton
#
Hillingdon

There is no physical continuity between the latter two boroughs, but there is
a relationship of dependence where the residents of Merton deal in Cocaine in
Hillingdon together with the residents. It is not possible to say exactly whether the
present discontinuity is the remnant of adjacency in past times, or if it is the result
of an expansive process of the Cocaine area. In each case, given the links between
the two parts of the separate territory, it involves recent events.

The territory of Lambeth as a frontier territory seems to enjoy a degree of
independence, since arrests concern only the residents, and either Cocaine or
MDMA is seized. There is no significant infiltration of residents of other territories
involved in Cocaine or MDMA dealing. In other words, it is a buffer area having
good relationships with both the macro-areas with which it borders.

The territory of Lewisham is an exception, where it is the only territory whose
residents are not linked to the arrests in that territory, but they are directly linked
with Cocaine dealing, whilst the arrests in Lewisham are linked with Crack. This
anomaly can be explained by a recent change from Cocaine to Crack in the territory
of Lewisham that has forced the residents remained linked with Cocaine to go
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and deal elsewhere. The lack of that close correspondence between residents and
dealing, found in all the other territories, makes Lewisham a territory in transition:
in the long term, it should return to equilibrium with the residents abandoning the
link with Cocaine and returning to their own territory dealing in Crack.

By far, the most complex hub is Crack. The borough of Tower Hamlets is the only
one to be connected to the Crack hub through its own residents and not by a node
representing arrests, which makes it the dominant territory around which the other
numerous Crack territories aggregate. That is to say, the mastermind and the supply,
storage and distribution centre should be found there. A precise hierarchy between
the territories is not possible because of the presence of the node AR PL NA (place
of arrest not available) whose meaning is not completely clear and therefore prevents
a precise classification of the numerous territories depending on that hub.

The Crack hub also has other specific characteristics worthwhile discussing
which concerns the relationship with the other three drugs present on the territory:

• The relationship with Cocaine is mediated only by the residents of the territory
of Lewisham which represent a recent acquisition concerning Crack and which
is still awaiting a definitive set-up.

• The relationship with MDMA is mediated by a rather complex hub involving
three boroughs: Westminster, Hammersmith and Barnet. There seems to be a
conflict mainly in the territory of Westminster, involving those people of the other
two boroughs who, however, maintain the control of their territories as well as
the local residents. The aim of the conflict could be to get the Crack on the left
bank of the Thames where there is still significant presence of MDMA.

• On the other hand, the relationship with Heroin-Diamorphine is direct, without
nodes representing bordering territories. This situation suggests that there is a
lack of progress in this direction and that Crack is not trying to extend into the
territory covered by Heroin-Diamorphine. This could be due to a formal or de
facto alliance between the two centres of power of Tower Hamlets and Enfield or
to a commercial type of synergism between the two types of drug.

16.3 Effect of Removing the AR PL NA Node

What is the information content of the variable AR PL NA? The answer depends
entirely on its definition. If it is really lack of the datum as one can literally assume,
it actually does not have any additional content, given the difficulty in imagining the
significance of what is not available.

The alternative is that it involves arrests made outside the circle of the 33 London
boroughs, but it seems very unlikely that data on operations carried out outside the
city will end up in a database of police operations carried out in London. However,
this definition would clearly explain the territoriality of this variable that is very
difficult to explain by a random loss of information.

In any case, it is not a variable on which the researcher can act at will.
For this reason, the removal of the node generates a new graph showing the
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real territorial connections that was partially obscured by the presence of a non-
significant variable.

It is in this way that Fig. 16.3, in our opinion, in actual fact represents the basic
graph in its more direct reality and Fig. 16.4 is its graphic representation. Excluding
the variable AR PL NA, with respect to the map of the Global MST (Fig. 16.2), the
variations are as follows (Fig. 16.3):

• Havering, Barking, Newham, Kingston, Ealing and Hounslow are connected to
Crack.

• Bexley and Greenwich are connected to MDMA.

The conclusions drawn from an examination of the original graph (Fig. 16.2)
remain valid; in fact, they come out of it reinforced:

• Crack’s power centre remains Tower Hamlets, and the hierarchy relationships
with the surrounding territories remain unchanged.

• The relationships with the other drugs remain unchanged: conflict and pen-
etration into the MDMA territories in the bordering boroughs; penetration
occurring in the Lewisham territory, recently grabbed from Cocaine, in equilib-
rium (through alliance or vassalage) with Heroin-Diamorphine.

• The Crack territory is very extensive and includes a band cutting London from
the west to the east, predominantly in the north of the Thames and practically in
contiguous territories (except for the territory of Kingston). The areas occupied
by the other drugs seem fragmented and marginalised.

• The main direction of Crack’s expansion is from the north to the south towards
or across the Thames, and it is concentrated in the central boroughs. A secondary
direction of penetration is from the south to the north, approximately from
Westminster to Barnet.

It is now possible to establish a hierarchy between the various boroughs
belonging to the Crack area, excluding for simplicity the bordering territories:

Hackney Kens. & Chelsea Camdem Southwark Ealing Islington

Waltham Forest

Tower Hamlets

Redbridge

Newham

Havering

Barking

Hounslow

Kingston
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Fig. 16.4 Resultant MST graph after exclusion of the variable AR PL NA

Returning to the feudal model, it is clear that Tower Hamlets’ power centre
controls directly the territory in which it is established, and it is very close,
approaching the territories surrounding it. The extremities of Crack’s domain are
controlled by a chain of vassalage relationships, as it is logical for distant territories.
The chain is longer easterly than westerly. If this is significant, it may be due to
the time factor: the western territories were acquired successively with respect to
the eastern territories, believing that more time would have made it possible to set
up longer chains of command in a safe way. The eastern extremity of the northern
Thames is therefore the relatively quiet hinterland supporting Crack’s expansion
southwards and northwards.

The hierarchy of the Cocaine hub can also be better now, if it is explained as
follows:

Bromley Croydon Merton

Sutton

Hillingdon
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Although the structure of this hub has smaller sizes, it is similar to Crack’s,
lending the possibility to it being similarly considered.

The hierarchical structure of the MDMA hub is less coherent and may be
represented as follows:

Richmond upon Thames Harrow Greenwich

Wandswoth bexley

This situation is showing an apparent territorial discontinuity that can be
interpreted as the remnant of a previously more ordered structure but actually
undone by the attack of Crack.

The structure of Heroin-Diamorphine is ordered, but minimal, as follows:

Haringey Brent

Enfield

This situation may be interpreted as the result of the equilibrium reached with
the stronger Crack.

16.4 Effect of the Removal of Nodes Relating to Drugs

Having exhausted the discussion concerning the removal of AR PL NA, we shall
attempt to give a strategic significance to the removal of other nodes. Removing the
node of a substance from a graph corresponds to the removal of the drug itself from
the market. In practice, it means an opportunity to act directly on the trafficking
of the substance itself, interrupting the sources of supply, seizing the stashes and
intercepting deliveries between the storage and the dealing places.

Naturally, the removal of nodes marked with a red rectangle increases the
complexity of the resultant network, thereby reinforcing it. From this point of
view, the removal of red nodes seems unadvisable, whilst it is advisable to remove
nodes surrounded by a blue ellipse, after which the complexity of the network, and
therefore its robustness, decreases.

According to this interpretation, the only substance that should be removed is
Heroin-Diamorphine: the territory now occupied by this substance will be occupied
by Crack as can be seen in Figs. 16.5 and 16.6. The weakening of the network
should be caused by the sudden excess of territory for Crack which is occupied but
not well controlled.

The result of the removal both of Heroin Diamorphine and of the other variable
marked by a blue ellipse (Waltham Forest) should represent a considerable simplifi-
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Fig. 16.6 Resultant map of London after exclusion of the variable Heroin-Diamorphine

cation of the graph, and therefore it is a substantial weakening of the entire system.
A measurement of this simplification is given by the decrease of the graph’s entropy
measure before and after the removal.

The removal of Waltham Forest corresponds to interrupting the long chain of
command that extends eastward into the area of Crack: even though secondary, the
removal of a power centre weakens the overall structure, and therefore it would be
advisable.

Although removing one of those nodes does not increase or decrease the
network’s complexity in an important way, it may be interesting to see the effect
of excluding Tower Hamlets which should represent the place where Crack’s
maximum power is concentrated.

The effect can be seen in Fig. 16.7.
Even if the graph is shown upside down, the MST graph is practically the same

as the graph of Fig. 16.3. Any other borough takes the place of Tower Hamlets,
because no variable representing the residents of a borough is directly connected to
the drug. This means that the dominant role of Tower Hamlets is not replaced and
that Crack’s area is to all intents and purposes not influenced by the removal. The
connection with Heroin-Diamorphine remains unchanged and likewise is Waltham
Forest’s role in the chain of command. The system continues to function without a
dominant centre. The effect of an attack on Tower Hamlets would be slight, at least
if it is not accompanied by other measures.
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16.5 Conclusion

The power of the auto-connective map and its accompanying MST permits the
extraction of non-linear information and a visual display of those results. Each
database is different as is each subset of data derived from a database, and each
dataset must be interpreted in meaningful ways. Using the dataset derived from a
police database, certain information can be extracted that, using SQL as the means
for analysis, would not ordinarily be available to the investigator. With this in mind,
we now summarise the rules of interpretation we set out when commenting on the
various graphs produced by the police dataset.

1. The leaf structures connecting the arrests in a borough and the residents
belonging to that borough indicate the territoriality of dealing.

2. If (in case 5.1) the residents are connected to the drug, it means that their area of
influence includes their territory, but it also extends elsewhere.

3. If (in case 5.1) the arrests are connected to the drug it means that the area of
influence of the residents is in their territory, but others may also operate there.

4. If a drug is a hub joining different branches relating to boroughs, it also means
that the drug is territorial, and its (super) territory is given by joining of the
boroughs involved in the hub.

5. A hierarchy of dominance between the different boroughs can be drawn up within
the territory of a drug: the one closest to the hub dominates over the others.

6. In case 5.5, when the distance from the hub is the same, the dominating borough
is the one eventually connected to the market of the other.

There are some rules that can be used to formulate hypotheses on the dynamics
of the dealing market. These are only hypotheses, because the database is not
dynamic.

7. The connectors positioned between two drugs involve bordering areas where it
is supposed a drug’s active penetration into the territory of the other.

8. If two drugs are directly connected, it is supposed a situation of equilibrium
without any attempts at reciprocal penetration. It cannot be supposed how stable
the equilibrium will be.

9. If there is an exception to rule 1 (residents in a borough connected to a drug
and arrests in that borough connected to another drug), it is supposed a recent
substitution of the first drug by the second one.
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Chapter 17
Auto-Contractive Maps and Minimal Spanning
Tree: Organization of Complex Datasets
on Criminal Behavior to Aid in the Deduction
of Network Connectivity

Giulia Massini and Massimo Buscema

17.1 Introduction

The aim of this chapter is to show how it is possible to organize a database of
substantial size so as to be able to effectively control the information contained
within it and therefore be able to make valid deductions that identify possible
connections between the subjects.

For example, let us assume we are analyzing a human population and have to
deduce, on the basis of data concerning the individual subjects, which persons in
actual fact associate with one another. The aim of this analysis is similar: having
data on individuals whose criminal history has been archived, but concerning whom
it is not known, or at any rate it is not recorded within this archive, if any relationship
exists between them. In short, one must find some mechanism by which it can be
determined those individuals for whom a relationship does exist. For example, to
determine if they are part of the same “gang” or at any rate whether they are involved
in the same drug trafficking “circle.”

We referred to a database that is part of the Metropolitan Police Service Central
Drug Trafficking Database (CDTD), which has already been analyzed elsewhere in
this book, consisting of 1,120 subjects who had been arrested in connection with
drugs in various boroughs of London each identified by 144 variables.1

For each person, they involve the following profiles:

• Sex (male, female, not known)
• Borough of residence of the subject arrested (32 boroughsC 1 NotAvailable)

1This dataset was extracted in June 2006 when the CDTD Database contained 1,590 tactic
sequences, 1,667 persons and 1,190 accused persons (and also 70 incomplete cases).
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• Borough where each subject was arrested Arrest Place (32 boroughsC 1 No-
tAvailable)

• Nationality of the subject arrested (Africa AFR, Asia ASIA, Eastern Europe
EASTEU, Europe EU, Ireland IRE, Jamaica JAM, ME, NK, SAME, Turkey and
Sylon TU-CY, United Kingdom UK, Vietnam VTN)

• The somatic stock of the subject arrested (White European EA1, Dark European
EA2, Afro-Caribbean EA3, Asian EA4, Oriental EA5, Arab EA6)

• Age (expressed in six classes: <18, 18–21, 21–25, 25–35, 35–45, >45)
• Number of previous convictions
• Number of previous offenses
• Details of the previous offenses (FirstConvAge, LastConvAge, Drug, TheftKin-

dred, AgainstPerson, OffensiveWeapons, Sexual, RelatedToPolice, Fraud, Total,
AgainstProperty)

• Number of previous arrests
• Details of previous arrests (Theft and Kindred offenses, offenses the Person

offenses, Drug Trafficking offenses, Drug Possession offenses, Other Drug of-
fenses, Offensive Weapon offenses, Firearms offenses, Kidnapping and Abduction
offenses, Other Violent offenses, Other offenses)

• Number of drug seizures
• Type of drugs seized from the subject arrested (Cannabis, Cocaine, Crack,

Heroin/Diamorphine, MDMA)
• Amount of money found in their possession at the time of the arrest (NumOf-

CashSeizures, Pounds)
• Number of tactics used by the police (NumOfTactics)
• Type of agent who made the arrest (Police, Non-Law Enforcement Agent, Other

Law Enforcement Agent)
• Types of tactics used by the police to make the arrest (Search of Object, Search

of Person, Search of Premises, Covert Purchase, Controlled Delivery, Other
Generic Tactic)

• Number of tactic sequences
• Arrest made as part of a more widely organized operation (InOperation)
• Aims of the police operations Arrest Mode (Direct, Result of Enquiries, Given

into Custody, Other, not defined NA)
• Behavior of the person at the time of the arrest, whether or not violent
• Whether at the time of the arrest the subject was on bail

Upon close inspection of the above attributes, it can be seen that there is no
explicit information connecting the subjects with one another, but there does exist,
for each subject, a summation of his illicit drug activities. It is with this connection,
that of drug activity, to which each variable is assigned that characterizes the sum
of all the crimes that the subject has committed rather than to an assignment of
individual crimes to an individual. This distinction is subtle, but critical.
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17.2 Method

The procedure used to attain the objective consists of three main steps (Kruskal
1956):

1. Processing of the data by an Auto-Contractive Map network that fixes the
distance between the various records of the DB and each record with all the
others (CS SW, ver.5.0 Semeion© 2001–2006)

2. Identification of the connections between the records, based on the distances
identified by the Auto-Contractive Map, by the minimal spanning tree, MST
(MST Detector SW, ver.3.0 Semeion© 2006)

3. Creation of the graph that visualizes the relationships between the records
identified by the MST (Tree Visualizer SW, ver.1.0 Semeion© 2006)

In the MST “tree” graph, the “leaves” (also called nodes) are the individual
points that represent the 1,120 records contained in the database and can therefore
be associated with an individual physical person, while the relationships between
the records are represented by the “branches” lines (also called edges).

In Fig. 17.1, we show a visualization of the overall graph.

Fig. 17.1 MST graph produced by the “Tree Visualizer SW ver.1.0 Semeion© 2006” from the data
of 1,120 persons arrested in London for drug trafficking processed by “CS SW, ver.5.0 Semeion©
2001–2006”
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From an analysis of the graph, it was possible to establish, as we shall later see,
that the complexity of the information contained in it, given by the high number of
subjects and variables, has been organized effectively for classifying the subjects
and making deductions concerning the possible meanings that can be attributed to
the connections between them.

17.3 Organization of the Subjects of the DB on the MST
with Respect to the Variables

Some variables are used in the system as guidelines for carrying out a complex
classification of the DB, that is, sex (Fig. 17.2), age (Fig. 17.3), nationality
(Fig. 17.4), and ethnicity (Fig. 17.5); with respect to these individual variables, the
subjects have been placed in specific branchings.

The variable sex (male/female/not known) sees female subjects distributed
together with the not known subjects on a branch that starts from an area close
to the central point of the graph (in the graph, the central point is represented in
red and the variable of interest is in green), while the male subjects are distributed
throughout the remainder of the graph.

Also with respect to the variable age (Fig. 17.3), the system was able to combine
the subjects into groups. One can observe that persons aged between 25 and 35
occupy the center of the graph insofar as men are concerned. However, the subjects
belonging to the other age bands are positioned in groups that leave from the center
and are arranged into areas that are more or less peripheral in relation to their
nationality and/or ethnicity. This suggests that the age between 25 and 35 is the
most active phase of the subject’s criminal life in this area and a point at which the
subject opens up new criminal contacts in the drugs network. It should also be noted
that the age between 25 and 35 years is the age that contains the greatest number of

Fig. 17.2 The figure shows the distribution of the 1,120 subjects according to sex
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subjects, as the following histogram shows, where the curve is at a maximum in this
age band.

Histogram of the distribution of criminal subjects based on age
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Histogram of the distribution of criminal subjects based on age
Regarding nationality, a macro-group is identified (Fig. 17.4) positioned cen-

trally and consisting of 723 British subjects (UK). These subjects belong to various
ethnic groups of which the most important at the strategic level for drug trafficking
is, by this analysis, assigned to Afro-Caribbeans having British nationality and aged
between 25 and 35 years (Fig. 17.5). With regard to ethnicity, it is seen that the two
groups opposite in the graph are Afro-Caribbean/White European.

It was possible, therefore, to identify this central group in the MST graph by
querying the system and placing the operator <AND> between the variables sex,
age, nationality, and ethnicity (Fig. 17.6).

17.4 Deductions Concerning the Relationships Between
the Subjects

To verify whether the system had actually connected the subjects of the present DB
in real mode, a comparison was made with other data belonging to the same subjects
but relating to the CRIS archive. The CRIS (Central Drug Trafficking Database) is
the original source archive of the current DB, having more extensive information on
the subjects. Some of this additional information concerns data that establishes the
relationship between subjects. In the CRIS, it was possible to find information on
subjects who had been arrested in the same police operation or who had a degree of
relationship with others, etc.
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Fig. 17.3 The figure shows the distribution of the subjects according to their age band

It was therefore possible to establish that some of the subjects who were
connected in the CRIS were in a position of proximity on the branchings of the
MST graph.

Since the CRIS contains only information that proves the actual relationship
between the subjects, it may be hoped that the MST tree might suggest other
possible relationships between the subjects, even if they have not emerged explicitly
through the information already in the possession of the police.

Next, we show some examples of the information present in the CRIS on the
connection between the subjects and concerning which it was found that in the
MST graph, these subjects were placed in a relationship of proximity in specific
branchings. For each example, the following information is defined:

• Image of the overall graph and identification of the branch where the subjects
who were connected in the CRIS are identified

• Zoom onto the branch selected and identification of the subjects
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Fig. 17.4 The figure shows the distribution of the subjects according to their nationality

• List of the common variables that characterize the subjects in the current DB
• Comments on the information obtained by consulting the CRIS

In this example (Fig. 17.7), we show the positioning on the MST of some subjects
who the CRIS had connected with one another and who in the MST are placed close
to the base of common branchings. The information shared for these subjects is
possession of Cannabis at the time of the arrest. However, other information can be
found in the CRIS that provides a connection between pairs of individuals: 84 and
137, 137 and 463, 463 and 624, 137 and 624.

Subjects 84 and 137 were both in possession of weapons. Subject 137 was also
linked to 463 because both were involved in growing Cannabis. Subject 463 was
in turn also connected in the CRIS to 624 in a strange way in that they were both
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Fig. 17.5 The figure shows the distribution of the subjects according to their ethnicity (somatic
stock)

caught with Cannabis hidden in a bag of dirty laundry. Obviously, this information
on the hiding place was not present in the DB on which the present MST is based.

Subject 137 was also connected to 624, both being found in possession of
Cannabis during “execution of a warrant.”

In this branch (Fig. 17.8), a connection was established between subjects 191
and 196 in that the CRIS had information concerning the fact that both had been
located by CCTV (closed-circuit television) and were arrested in Coldharbour Lane,
Lambeth. This information was also not present in the current DB.
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Fig. 17.6 The figure on the left shows the distribution of the subjects having certain characteristics
(UK/male/25–35 years); the one on the right shows a selection made from the former when a
further characteristic is activated: Afro-Caribbean ethnicity

Fig. 17.7 The figure shows the positioning on the MST graph of subjects focused on in the
comparison with the data from the CRIS
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Fig. 17.8 The figure shows the positioning on the MST graph of subjects focused on in the
comparison with the data from the CRIS

In the CRIS data, connections can be identified between subjects 164, 183, and
557 (Fig. 17.9) in that they were arrested as a result of special police surveillance,
for example, with CCTV (closed-circuit television), which had targeted them
specifically. It also emerged that all these episodes occurred in Camden.

In the CRIS, similarities can be found between subjects 140, 566, and 602: they
were all arrested in Lambeth. The police had “got to them” indirectly as a result of
other investigations, not having identified them previously. One had been identified
as a result of enquiries at the home of a missing girl, the other when executing a
warrant for another case, and lastly offering drugs in plain clothes.

From the CRIS reports for persons 200, 528, 561, 806, 1,292, and 1,438
(Fig. 17.10), it emerged that all shared a common characteristic; that is, of all the
drug seizures it should be noted that none were the result of police action based on
tests but rather the result of the execution of a warrant through a person of trust in a
previous arrest who warned the police. All were found in possession of MDMA.

Furthermore, 50% of them were arrested in nightclubs, although not the same
one, but in clubs in different areas.
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Fig. 17.9 The figure shows the positioning on the MST graph of subjects focused on in the
comparison with the data from the CRIS

In the CRIS report, it is established that persons 779 and 781 are brothers
(Fig. 17.11) who had been arrested together in the same “tactic sequence.”

This information was not present in the DB that enabled the MST graph to be
drawn up.

This example (Fig. 17.12) is very similar to the previous one. In fact, in the CRIS
report, it is established that persons 350 and 352 are brothers. Clearly, in this case
too, appropriate data was not present in the DB that enabled the MST graph to be
drawn up.

In the CRIS reports, it emerges that subjects 475, 476, 477, and 1,317 (Fig. 17.13)
are linked in that they are part of the same Middle Market Drug Project and were
arrested together. Subject 1,312 is also linked in that, although not part of the same
operation, he is nevertheless part of the Middle Market Drug Project. Subject 1,445
is linked to these in that he was arrested with a warrant in a National Crime Squad
operation.

Absolutely none of this information was present in the DB that allowed the MST
graph to be drawn up, yet their relationships are nonetheless defined in the graphs.
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Fig. 17.10 The figure shows the positioning on the MST graph of subjects focused on in the
comparison with the data from the CRIS

Fig. 17.11 The figure shows the positioning on the MST graph of subjects focused on in the
comparison with the data from the CRIS
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Fig. 17.12 The figure shows the positioning on the MST graph of subjects focused on in the
comparison with the data from the CRIS

17.5 Conclusion

We conclude with this very significant example with some observations. The system
that we used was capable of identifying the connections between records, even
though the presence of an explicit connection was not available in the data. This
gives us pause to consider the possibility that other identifiable connections are real
even if they not are known at the moment and are not present in the CRIS archive.
This leads us to a thought to ponder: how does one interpret all the connections
present on the graph?

The conceptual system on which the MST is based is that the Auto CM networks
carry out a global evaluation of the whole of the DB and assign a value to the
connection between each record individually with respect to all the others. By
this operation, the solution space has a dimensionality equal to the number of the
records (in this case 1,120), and each record contracts and/or expands the space that
separates it from the others. The resultant topology is stored on the connections
matrix that links each record with all the others. Thus, at the end, a numerical
value is assigned representing each relationship between pairs of records. This
value is inversely proportional to the strength of relationship between these two
records: smaller if the relationship between the records is very strong, greater if the
relationship is weak. Therefore, the MST acts on all these values and selects one
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Fig. 17.13 The figure shows the positioning on the MST graph of subjects focused on in the
comparison with the data from the CRIS

for each record that shows the strongest relationship contributed to the economy of
the global graph whose length must be the smallest possible. The final graph must,
by definition, be completely connected (i.e., to a single graph) and not have circuits
between the branches.

Thus, the MST has as an obligatory link between each record representing the
single choice made from among all those possible. However, in the graph, it is
apparent that a node can be connected to many others, since several records can
maintain the strongest relationship, that is, a tie, with the same node. It is likely that
this system may be useful for suggesting alternative routes to investigate for a better
understanding of the dynamic existing in drug trafficking.
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Chapter 18
Data Mining Using Nonlinear Auto-Associative
Artificial Neural Networks: The Arrestee
Dataset

Massimo Buscema

18.1 Data Description

From 2004 to 2006, the London Metropolitan Police in partnership with Semeion
Research Center of the Sciences of Communication (Rome, Italy) activated the
Central Drug Trafficking Database (CDTD). The main purpose of this project was
to organize all the data about drug trafficking in London into a relational database
suitable for the application of a new powerful activity of information intelligence,
that of using a new set of artificial intelligence algorithms, patented by Semeion
over the last few years.

The results of this project were included in a special report of March 2006.
The report was evaluated enthusiastically in May 2006 by independent British
academics. Actually, the CDTD project is awaiting management and use from the
new MET Intelligence Bureau (MIB) (Source: MPS Drugs Strategy 2007–2010 and
Delivery Plan, Chaps. 6.1–6.13).

From the relational database of the CDTD, we were able to extract a dataset
of 1,117 persons arrested in the previous 4 months in London during 2006. The
characteristics of the database are described in the following variables and areas:
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Areas Variables

Places Home Boroughs
Borough of Arrest

Anagraphic Data Gender
Nation Group
Ethnic group
Age

Past Criminal Curriculum Convictions Number
Offenses Number
Age at first Conviction
Years From Last Convictioin
Drug Offenses
TheftKindered Offenses
Offenses vs persons
Weapons Offenses
Sexual Offenses
Offenses VS Police
Fraud Offenses
Offenses VS Property
Drug Trafficking
Other Offenses
Total Offenses

Findings of the Arrest Number of Arrests
Number of Drug Seizures
Cash Seizures
Pounds Seizures
Type of Drugs Seizures

Organization and Modalities of the Arrest Tactic
Arrest Mode

We have further articulated each variable into micro-variables:

18.1.1 Places

Home Boroughs:

Micro-variables Cases % Micro-variables Cases %

Barking and dagenham 8 0.72 Hounslow 23 2.06
Barnet 18 1.61 Islington 54 4.83
Bexley 10 0.90 Kensington and Chelsea 37 3.31
Brent 45 4.03 Kingston upon Thames 3 0.27
Bromley 32 2.86 Lambeth 71 6.36
Camden 43 3.85 Lewisham 65 5.82

(continued)
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(continued)

Micro-variables Cases % Micro-variables Cases %

Croydon 40 3.58 Merton 20 1:79

Ealing 40 3.58 Newham 46 4:12

Enfield 27 2.42 Redbridge 13 1:16

Greenwich 18 1.61 Richmond upon Thames 5 0:45

Hackney 50 4.48 Southwark 73 6:54

Hammersmith and Fulham 22 1.97 Sutton 13 1:16

Haringey 40 3.58 Tower Hamlets 39 3:49

Harrow 13 1.16 Waltham Forest 34 3:04

Havering 12 1.07 Wandsworth 20 1:79

Hillingdon 19 1.70 Westminster 22 1:97

Total 975 Borough not available 142 12:71

Borough of Arrest:

Micro-variables Cases % Micro-variables Cases %

Arr Barking and dagenham 8 0.36 Arr Hounslow 43 1.94
Arr Barrnet 44 1.98 Arr Islington 116 5.23
Arr Bexley 23 1.04 Arr kensington and Chelsea 180 8.12
Arr Brent 76 3.43 Arr Kingston upon Thames 10 0.45
Arr Bromley 128 5.77 Arr Lambeth 130 5.86
Arr Camden 168 7.57 Arr Lewisham 120 5.41
Arr Croydon 32 1.44 Arr Merton 39 1.76
Arr Ealing 76 3.43 Arr Newham 65 2.93
Arr enfield 25 1.13 Arr Redbridge 16 0.72
Arr Greenwich 41 1.85 Arr Richmond upon Thames 8 0.36
Arr Hackney 162 7.30 Arr Southwark 130 5.86
Arr Hammersmith and Fulham 24 1.08 Arr Sutton 39 1.76
Arr Haringey 94 4.24 Arr TowerHamlets 56 2.52
Arr Harrow 16 0.72 Arr WalthamForest 40 1.80
Arr Havering 21 0.95 Arr Wandsworth 54 2.43
Arr Hillingdon 29 1.31 Arr Westminster 114 5.14
Totala 2; 127 Borough not available 91 4.10
aSame persons can be arrested more times in the same borough

18.1.2 Graphic Data

Gender:

Micro-variables Cases %

Sex Male 985 88:18

Sex Female 111 9:94

Sex notknown 21 1:88

Total 1;117
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Nation Group:

Micro-variables Code Cases % %

Africans AFR 49 4:39

Asiatic ASIA 10 0:90

People from east of Europe EASTEU 14 1:25

European EU 34 3:04

Irish IRE 7 0:63

Jamaicans JAM 128 11:46

People from Middle-East ME 10 0:90

Non UK citizens NK 91 8:15

People from South America SAME 14 1:25

Turkish and Cypriots TU-CY 16 1:43

Uk citizens UK 721 64:55

People from Vietnam VTN 23 2:06

Total 1;117

Ethnic Group:

Micro-variables Code Cases %

White-European EA1 374 33:48

Dark-European EA2 86 7:70

Afro-Caribbean EA3 531 47:54

Asia EA4 80 7:16

Oriental EA5 32 2:86

Arab EA6 1 1:16

Not available 1 0:09

total 1,117

Age:

Micro-variables Cases %

Age(UpTo18) 17 1:52

Age(18–21) 144 12:89

Age(21–25) 272 24:35

Age(25–35) 355 31:78

Age(35–45) 226 20:23

Age(Over45) 103 9:22

Total 1;117
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18.1.3 Past Criminal Curriculum

Convictions Number:

Micro-variables Cases %

ConvictionsNumber(0) 177 15:85

ConvictionsNumber(1) 271 24:26

ConvictionsNumber(2) 120 10:74

ConvictionsNumber(3) 96 8:59

ConvictionsNumber(4) 78 6:98

ConvictionsNumber(5–10) 215 19:25

ConvictionsNumber(11–20) 107 9:58

ConvictionsNumber(over20) 53 4:74

Total 1;117

Offenses Number:

Micro-variables Cases %

OffensesNumber(0) 175 15:67

OffensesNumber(1) 145 12:98

OffensesNumber(2) 114 10:21

OffensesNumber(3–5) 202 18:08

OffensesNumber(6–10) 184 16:47

OffensesNumber(11–20) 160 14:325

OffensesNumber(20–50) 106 9:49

OffensesNumber(over-50) 31 2:78

Total 1;117

Age of the First Conviction:

Micro-variables Cases %

FirstConvAge(up-to-18) 415 37:15

FirstConvAge(19–21) 221 19:79

FirstConvAge(22–27) 217 19:43

FirstConvAge(28–33) 122 10:92

FirstConvAge(34–39) 75 6:71

FirstConvAge(40–45) 38 3:405

FirstConvAge(46–51) 20 1:79

FirstConvAge(over-51) 9 0:81

Total 1;117
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Years from the Last Conviction:

Micro-variables Cases %

Off LastConvAge(0) 218 19:52

Off LastConvAge(1) 466 41:72

Off LastConvAge(2) 353 31:60

Off LastConvAge(3–5) 45 4:03

Off LastConvAge(6–10) 24 2:15

Off LastConvAge(11–20) 6 0:54

Off LastConvAge(over20) 5 0:45

Total 1;117

18.1.4 Type and Number of Offenses

Drug Offenses:

Micro-variables Cases %

Drug Possession Offenses 194 14:76

AR OFF Other Drug Offenses 38 2:89

Off Drug(0) 250 19:03

Off Drug(1) 277 21:08

Off Drug(2) 189 14:38

Off Drug(3–5) 232 17:66

Off Drug(6–10) 134 10:20

Off Drug(Over-10) 35 2:66

Totala 1;314
aOne person can be present in more items

Theft and Kindred Offenses:

Micro-variables Cases %

Only Theft and Kindred Offenses 86 7:15

Off TheftKindred(0) 659 54:78

Off TheftKindred(1–5) 301 25:02

Off TheftKindred(6–10) 74 6:15

Off TheftKindred(11–20) 48 3:99

Off TheftKindred(over-20) 35 2:91

Totala 1;203
aOne person can be present in more items
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Offenses Against Personnel:

Micro-variables Cases %

OffensesAgainstPerson(only) 9 0:80

Off AgainstPerson(0) 927 82:33

Off AgainstPerson(1) 91 8:08

Off AgainstPerson(2) 54 4:80

Off AgainstPerson(3–5) 37 3:29

Off AgainstPerson(over-5) 8 0:715

Totala 1;126
aone person can be present in more items

Weapons Offenses

Micro-variable Cases %

Offensive Weapon Offenses(Only) 41 3:47

Firearms Offenses 23 1:95

Off OffensiveWeapons(0) 895 75:78

Off OffensiveWeapons(1) 127 10:75

Off OffensiveWeapons(2) 52 4:40

Off OffensiveWeapons(over-2) 43 3:64

Totala 1;181
aOne person can be present in more items

Sexual Offenses:

Micro-variables Cases %

Off Sexual(0) 1;091 96:67

Off Sexual(1) 12 1:07

Off Sexual(2) 5 0:45

Off Sexual(over-2) 9 0:81

Total 1;117

Offenses Against Police:

Micro-variables Cases %

Off RelatedToPolice(0) 812 72:69

Off RelatedToPolice(1) 131 11:73

Off RelatedToPolice(2–5) 128 11:46

Off RelatedToPolice(over-5) 46 4:12

Total 1;117
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Fraud Offenses:

Micro-variables Cases %

Off Fraud(0) 969 86:75

Off Fraud(1) 76 6:80

Off Fraud(2–5) 54 4:835

Off Fraud(over-5) 18 1:615

Total 1;117

Offenses Against Property:

Micro-variables Cases %

Off AgainstProperty(0) 966 86:48

Off AgainstProperty(1) 89 7:97

Off AgainstProperty(2) 28 2:51

Off AgainstProperty(more) 34 3:04

Total 1;117

Drug Trafficking Offenses:

Micro-variables Cases %

Drug trafficking Offenses(0) 211 18:89

Drug trafficking Offenses(1) 725 64:91

Drug trafficking Offenses(2–5) 137 12:265

Drug trafficking Offenses(over-5) 44 3:94

Total 1;117

Other Offenses:

Micro-variables Cases %

AR OFF Kidnapping and Abduction offenses 8 5:84

Other violent offenses 74 54:01

Other offenses 55 40:15

Total 137
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Total Number of Offenses:

Micro-variables Cases %

Off Total(0) 178 15:94

Off Total(1) 148 13:25

Off Total(2) 111 9:94

Off Total(3–5) 199 17:82

Off Total(6–10) 185 16:56

Off Total(11–20) 161 14:41

Off Total(20–50) 104 9:31

Off Total(over-50) 31 2:78

Total 1;117

18.1.5 Findings of the Arrest

Total Number of Arrests:

Micro-variables Cases %

NumOfArrests(1) 600 53:72

NumOfArrests(2) 302 27:04

NumOfArrests(3) 113 10:12

NumOfArrests(over-3) 102 9:13

Total 1;117

Number of Drug Seizures:

Micro-variables Cases %

NumOfDrugSeizures(0) 123 11:01

NumOfDrugSeizures(1) 360 32:23

NumOfDrugSeizures(2) 285 25:51

NumOfDrugSeizures(3–5) 241 21:58

NumOfDrugSeizures(over-5) 108 9:675

Total 1;117
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Number of Cash Seizures:

Micro-variables Cases %

NumOfCashSeizures(0) 807 72:25

NumOfCashSeizures(1) 260 23:28

NumOfCashSeizures(over-1) 50 4:48

Total 1;117

Number of Pounds Seizures:

Micro-variables Cases %

Pounds(0) 840 75:20

Pounds(up100) 58 5:19

Pounds(up500) 118 10:56

Pounds(up1000) 47 4:21

Pounds(up5,000) 39 3:49

Pounds(over-5000) 15 1:34

Total 1;117

Type of Drugs Found:

Micro-variables Cases %

Cannabis 1;019 36:43

Cocaine 471 16:84

Crack 591 21:13

Heroin 588 21:02

MDMA 128 4:58

Total 2;797

18.1.6 Organization and Modalities of the Arrest

Number of Tactics, Type of Tactics, Number of Sequences, Type of Action:
Arrest Mode:
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Micro-variables Cases %

NumOfTactics(1) 409 6:87

NumOfTactics(2) 358 6:01

NumOfTactics(3) 190 3:19

NumOfTactics(over-3) 160 2:69

GenericTactic Search of Object 61 1:02

GenericTactic Search of Person 873 14:66

GenericTactic Search of Premises 973 16:34

GenericTactic Convert Purchase 534 8:97

GenericTactic Controlled Delivery 11 0:18

GenericTactic Other 153 2:57

NumOfTacticsSequences(1) 986 16:55

NumOfTacticsSequences(2) 54 0:91

NumOfTacticsSequences(3–5) 34 0:57

NumOfTacticsSequences(over-5) 43 0:72

InOperation(0) 935 15:70

InOperation(1) 82 1:38

InOperation(2–5) 57 0:96

InOperation(over-5) 43 0:72

Total 5;956

18.2 Explorative Analysis Using Self-Organizing
Maps (SOM)

The “Persons Arrested” dataset seems to be very rich in information. But to explore
this information world, any bivariate analysis is useless, from cross-tabulation to the
chi-squared test.

“Persons Arrested” dataset, in fact, is formed by 1,117 records and 28 variables,
further articulated into 246 micro-variables. Any analysis of this dataset, to provide
useful information, has to consider the interaction of all the 246 atomic variables
together between each record and all the others. Any other reduction in variables,
without a valid motivation, may lead to deep misunderstandings and invalid
outcomes. Thus, we must approach this dataset using multivariate analysis.

We may not process this dataset simply using a linear multivariate technique
because the assumption of linearity in analyzing human activity is completely
arbitrary. The reduction of the number of the variables, for example, according to
the explained variance criterion, is rough. No one can know a priori if marginal
differences between a pair of variables represent noise or key information.

To make a first serious exploration of the “Persons Arrested” dataset, we need
to process these data using a non-highly linear multivariate technique such as a
Self-Organizing Map (SOM) (see Kohonen 1990, 1995a, b).
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Micro-variables Cases %

Non-Law Enforcement Agent 49 0:86

Other-Law Enforcement Agent 25 0:44

ViolentOnArrest(0) 1;068 18:76

ViolentOnArrest(1) 33 0:58

ViolentOnArrest(more-1) 16 0:28

ArrMode NA 6 0:11

ArrMode Direct(0) 304 5:34

ArrMode Direct(1) 517 9:08

ArrMode Direct(2) 187 3:29

ArrMode Direct(3–5) 78 1:37

ArrMode Direct(over-5) 31 0:54

ArrMode Result of Enquiries(0) 1;035 18:18

ArrMode Result of Enquiries(1) 44 0:77

ArrMode Result of Enquiries(2) 19 0:33

ArrMode Result of Enquiries(over-2) 19 0:33

ArrMode Given into custody 27 0:47

ArrMode Other(0) 1;002 17:67

ArrMode Other(1) 83 1:46

ArrMode Other(2) 16 0:28

ArrMode Other(over-2) 16 0:28

OnBailAtTimeOfOffence(0) 1;047 18:39

OnBailAtTimeOfOffence(1) 42 0:74

OnBailAtTimeOfOffence(2) 17 0:30

OnBailAtTimeOfOffence(over-2) 11 0:19

Total 5;692

SOM, in fact, presents many suitable features:

• SOM is not sensitive to the cardinality of the variables.
• SOM processes all the records and all the variables simultaneously.
• SOM is an artificial neural network (ANN) and consequently provides its best

organization of data, processing the same data many times along the time.
This is a fundamental way to consider the nonlinear relationships among data
themselves.

• SOM clusters the whole data according to their global similarities.
• SOM squashes variables and records of the dataset into two dimensions, and

during this multidimensional scaling, it selects only the most important features
of the dataset.

• SOM results are tables and maps very easy to understand.
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In the experiments presented here, we have used two Semeion research software1

products. We have experimented with varying SOM configurations containing
different map formats: 15 � 15, 20 � 20, and 30 � 30.

Because the results demonstrated stability in every experiment, we select the
SOM 30 � 30 map that produces the minimum Topographic Error:

SOM 30 � 30

Date file Codebook file
Topographic
error

Quantization
error

Map
compactness
error

Codebook
error

Persons(246 � 1,117) Persons30 �
30 Sigmoid

0.00% 9.61% 1.12% 0.13%

We have consider Topographic Error as relevant in the evaluation of SOM
performance, only because this cost function, with the Quantization Error, is well
known in the SOM literature. However, we have found that the Codebook Error and
the Map Compactness Error are the more consistent cost functions, very suitable
for defining the SOM codebook after the training phase.

We now define these concepts:

Topographic Error: after the SOM training, the two nearest codebooks for each
record are inspected. If the two codebooks are adjacent, the projection is considered
correct; if the two codebooks do not belong to the same cell neighborhood, a
Topographic Error is counted (in a SOM squared grid, each cell has a neighborhood
composed of the eight nearest cells).

Quantization Error: This index is not really an error but rather the mean of the
variance that the SOM has collected inside each codebook. This index is zero when
the SOM places every record in a different cell. But in this case, the SOM ANN has
not executed its task, that is, to cluster the dataset.

So the quantization error works only as a clustering index of the SOM training.

Codebook Error: This index, developed by M Buscema in 2006 at Semeion, is
very useful in measuring the compactness of each codebook after the SOM training
phase. The Codebook Error traces, for each cell (codebook), the circle of minimal
radius whose center is the codebook itself and includes all the records belonging to
that cell. All the other records included in that circle are considered a compactness
error associated with that codebook.

1M Buscema, MOS: Maps Organizing System, version 2.0, Semeion Software #26, Rome 2002–
2007; G Massini, SOM, Shell for programming Self-Organizing Maps, Version 7.0, Semeion
Software #19, Rome 2000–2007.
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Codebook Error Equations

• Distance between the kth record clustered into the ith cell and the codebook of
the same cell:

di;ik D
s
X

s

�
Cis � Riks

�2
:

• RiMax is the record clustered into the ith cell, whose distance from its codebook
is the highest:

di;iMax D Max
k

fdi;ik g :

• Distance between the kth record, clustered into the jth cell, and the codebook of
the ith cell:

di;jk
D
sX

s

�
Cis � Rjks

�2I

if
�
di;jk

< di;iMax

�
errori;j C CI

Ei D 1

T � Ni

�
CX

j ¤i

errori;j ;

Ni D Total Records in Cell i th;T D Total RecordsI

E� D 1

C
�

CX

i

Ei ; C D Total Number of Cells:
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Map Compactness Error: a more restrictive form of the codebook error. For each
cell, the minimal circle includes all the records clustered in that cell and is centered
each time on every record of the codebook. All the records clustered in other
cells, including being present in another circle, are considered an error of map
compactness.

Map Compactness Error Equations

Rik is kth record clustered into the ith cell.
Distance between the kth record and the zth record, clustered into the same cell:

di;ik;z D
s
X

s

�
Riks

� Rizs

�2
:

Max distance into the ith cell from the kth record:

di;ik;Max D Max
z

˚
di;ik;z



:

Distance between the kth record clustered into ith cell and zth record clustered into
jth cell:

di;jk;z D
s
X

s

�
Riks

� Rjzs

�2
;

if
�
di;jk;z < di;ik;Max

�
errori;j C C;

Ei D 1

Ni � .T � Ni/

CX

j ¤i

errori;j ;

E� D 1

C
�

CX

i

Ei:

Ni D Total records in cell i thI T D total recordsI C D total number of cells:

The SOM trained matrix was composed of 900 codebooks organized in a
topology of 30 � 30 cells (Fig. 18.1).

Each codebook of the trained SOM is an ideal prototype for the similar records
clustered in that cell. Consequently, each codebook is a vector of 246 features,
where every vector component (variable) can be more or less active, according to
the prototype that the SOM selects for that cell: close cells have similar prototypes;
distant cells have different prototypes.
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Fig. 18.1 The 30 � 30 SOM
matrix grid

So, the double task of the SOM during the training phase is:

1. To distribute all the records of the sample in the same cell or in close cells or
distant cells, according to their global similarities

2. Simultaneously, to generate dynamically for each cell its specific codebook
(prototype of the records clustered together)

After 100 epochs of training, the SOM clustering ended.
Figure 18.2 shows that data were clearly clustered into the grid: many cells are

empty and others have attracted many records. This is methodologically relevant:
the number of the available cells is 900, and the number of the records to be
projected onto the grid is 1,117. Consequently, a random distribution of records
onto the cell should have been possible: quite a record for one cell. All the same, the
SOM concentrates similar records in the closer cells and creates a large cell distance
among different records. This is a qualitative feature showing the consistency of the
SOM clustering.

The SOM also generates a different codebook for every cell: each cell of the
trained SOM, in fact, presents a prototype of the all dataset variables in its specific
locations. We must determine the 246 slices of the cube where each slice represents
the distribution of the activation value of each variable in the 30 � 30 grid.

An effective example could be the slices generated by the SOM about the type of
drugs found during the arrest (Fig. 18.3):

Comparing these maps, we can observe:

1. Cannabis distribution is extensive and quite spread out, with two large concen-
trations:

(a) The first one in the center of the map
(b) The second one in the east side of the map
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Fig. 18.2 One example of SOM software after the training phase: the larger the circle, the more
records that are clustered into a cell

Fig. 18.3 Clusters according to the type of drugs

2. Crack and heroin have a similar and specific distribution, but heroin has also two
other small clusters:

(a) The first in the southwest of the map
(b) The second, smaller, in the southeast of the map

3. Cocaine has a complex distribution, clustered into at least four groups:

(a) The biggest, in the east-southeast of the map, close to the main cannabis
distribution group.
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Fig. 18.4 Clusters according to the ethnic group

(b) The second one, in the southwest of the map, overlapped with some cannabis
activity.

(c) The third one, in the northwest of the map, overlapped with the main
distribution of crack and heroin.

(d) The fourth, toward the north of the map, is a free space, not particularly
frequented by the other three drugs.

4. MDMA seems to be similar to that of the distribution of cocaine, with the
exception that MDMA prefers to be distributed with cannabis, but not with heroin
and crack.

The next problem is to identify which ethnic group and/or nation is eventually
associated with this map of these various types of drugs.

The slices representing the ethnic groups’ distribution can provide some answers
to these questions (Fig. 18.4):

The White European group seems to be specialized in cocaine and partially in
cannabis, while the Dark European group seems divided into two groups:

1. One group seems to manage most of the cocaine and MDMA trafficking.
2. The second group suggests activity in heroin and other drugs.

Arabs appear concentrated in cannabis and MDMA, while Orientals have a
strong niche in a small and separate market of cocaine.

The Asiatic group seems to be weekly linked to cannabis, but another group
(in the north of the map) appears to work as a “generic dealer.”

Afro-Caribbean are divided into three big clusters:

1. The first one is completely dedicated to the crack and heroin trafficking (northeast
of the map).

2. The second one in a more generic trafficking activities, working and/or compet-
ing also with Asiatic and Dark European (the east side of the map).

3. The third one, linked to the first group, more dedicated to the cannabis market.

The nation variables are also clustered by SOM in a very informative way
(Fig. 18.5):

The Turkey and Cypriot groups are part of the dark European group who has
built a monolithic niche for heroin. South Americans, instead, seem to be split into
two groups: one specialized in cannabis and the other specialized as most important
in cocaine trafficking.
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Fig. 18.5 Clusters according to nationality

Fig. 18.6 Gender: female

People from Middle East are concentrated in the MDMA group, while the East
Europeans group has not a specific drug profile. The same is true for people from
Asia and for the three groups of Africans.

European people are spread out on the map in many small clusters, while
Jamaicans represent a strong group specialized in crack and heroin, two generic
groups and one group more orientated toward cocaine.

Another novelty is represented by the distribution on the SOM map of the females
arrested (Fig. 18.6):

Female are concentrated in four groups:

1. The first group in the northwest of the map: these females are Jamaican and
specialize in crack (not necessary in heroin).

2. The second group is positioned in the southwest of the map and is fundamentally
cocaine and cannabis oriented and composed of White and Dark Europeans.

3. The third group, in more or less the center of the map, is also specialized in
cannabis but is completely different from the second one, because Arab and
Asiatic women also belong to this group.

4. The fourth group in the southeast of the map seems to be composed only of dark
European women who are completely dedicated to cocaine and MDMA.

Obviously, this analysis could go on in more detailed ways. For this reason, we
prefer to show a series of tables in which each variable is shown with its most
associated variables. The association index is the linear correlation of each variable
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with all the others in any specific codebook trained by the SOM. Naturally, all the
SOM codebooks are generated in a nonlinear manner (see the SOM features above),
and the linear correlation of the codebooks preserves the absolute nonlinearity of
these findings. It is as to say as though we seek to establish a kind of the linear
correlation that exists among a group of nonlinear dynamics.

Here are the SOM prototypes by means of some of the key variables. Note that
the value in the right column is the linear correlation of the row with the table header,
that is, the correlation between Tower Hamlets and Male is 0.28 (Tables 18.1a and
18.1b):

UK citizens and people coming from Africa seem to segment the drug market of
the prototypical male dealer. The prevalent male ethnic groups are Afro-Caribbean
and Asiatic, and Tower Hamlet and Harrow are the boroughs where they work most
of the time and in which they are arrested. Typically, they are young persons with
an intensive criminal curriculum. At the moment of their arrest, they typically have
a lot of cash, and this results in their making immediate bail. There is not a specific
type of drug for the male prototype.

The female prototype is more complex. These females are preferentially Orien-
tals or Dark Europeans. They are usually elderly (more than 51 years of age), very
often are “clean,” and cocaine is their favorite drug. Generally, they are non-UK
people. They usually come from Europe, Vietnam, and South America (Tables 18.2a
and 18.2b).

People coming from African countries are usually associated with one of the
Afro-Caribbean group’s expert for cannabis. People coming from Asia are too few
in number to permit accurate inference, but in any case they seem to be slightly
MDMA oriented (Tables 18.2c and 18.2d).

People coming from East of Europe are a nonspecific drug-oriented group,
probably small and of recent immigration, whose unique common feature is to live
in two boroughs: Ealing and Harrow.

What is named “Europeans” instead is a real group of Dark Europeans, mainly
young females, strongly linked with persons from Turkey and Cyprus and with a
strong inclination toward heroin trafficking (Tables 18.2e and 18.2f).

There are too few Irish people to allow some grounded inference. In any case,
the few Irish individuals arrested present a very compact prototype: experienced
delinquents, expert in different type of crimes, on bail at the time of the offence, and
inclined to deal with MDMA (Tables 18.2g and 18.2h).

People coming from the Middle East, usually Arabs, are few and seem to have
the inclination to hide their sex identity. Usually, they were arrested, because
of cannabis possession, for the first time at a relatively older age (from 34 to
39 years old).
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Table 18.1a

Male

Places Home borough Tower Hamlets 0.28
Ealing 0.24
Islington 0.22

Borough of arrest Arr TowerHamlets 0.33
Arr Harrow 0.28

Anagraphic data Gender
Nation group Uk 0.37

AFR 0.34
Ethnic group (EA3) Afro-Caribbean 0.40

(EA4) Asia 0.28
Age Age(21–25) 0.47

Past criminal
curriculum

Convictions ConvictionsNumber(5–10) 0.44
ConvictionsNumber(4) 0.34

Offenses OffensesNumber(6–10) 0.30
OffensesNumber(11–20) 0.24

Age at the first conviction Off FirstConvAge(19–21) 0.36
Off FirstConvAge(up-to-18) 0.30

Offenses at the last
conviction

Off LastConvAge(1) 0.34
Off LastConvAge(2) 0.31

Types and number of
offenses

Off Drug(3–5) 0.63
Off AgainstPerson(2) 0.52
Off OffensiveWeapons(1) 0.43
Other violent offenses 0.41
Offensive Weapon Offenses 0.40
Off Fraud(1) 0.39
Off RelatedToPolice(1) 0.38
Off OffensiveWeapons(2) 0.35
Off RelatedToPolice(2–5) 0.33
Off Sexual(1) 0.33
Off Total(6–10) 0.30
Off TheftKindred(1–5) 0.30
NumOfArrests(3) 0.28
Off Drug(6–10) 0.27
Off Total(11–20) 0.24
Off AgainstProperty(1) 0.24
Off Fraud(2–5) 0.24
Drug trafficking Offenses(1) 0.23
Firearms Offenses 0.23
OffensesAgainstPerson 0.22

(continued)
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Table 18.1a (continued)

Male

Finding of the
arrest

Types of seizure Pounds(up5,000) 0.32
NumOfCashSeizures(1) 0.32
Pounds(up500) 0.30
Pounds(over-5000) 0.23
Pounds(up1,000) 0.23

Drugs associated
Tactics and

arrest mode
Types of tactics GenericTactic Search of Person 0.53

InOperation(0) 0.22
Arrest mode OnBailAtTimeOfOffence(1) 0.36

OnBailAtTimeOfOffence(2) 0.30
AR OFF Kidnapping and Abduction offenses 0.28
ArrMode Other(1) 0.25

Table 18.1b

Female

Places Home borough Bexley 0.37
Lambeth 0.30
Croydon 0.27

Borough of arrest Arr Bexley 0.39
Arr Kingston upon Thames 0.35

Anagraphic data Gender
Nation group EU 0.51

VTN 0.49
NK 0.44
SAME 0.30

Ethnic group (EA5) Oriental 0.61
(EA2) Dark European 0.46
(EA1) White European 0.25

Age Age(UpTo18) 0.25
Past criminal

curriculum
Convictions ConvictionsNumber(0) 0.47

ConvictionsNumber(1) 0.30
Offenses OffensesNumber(0) 0.48

OffensesNumber(1) 0.28
OffensesNumber(2) 0.27

Age at the first conviction Off FirstConvAge(over-51) 0.60
Off FirstConvAge(34–39) 0.47
Off FirstConvAge(28–33) 0.44
Off FirstConvAge(40–45) 0.41
Off FirstConvAge(46–51) 0.39
Off FirstConvAge(22–27) 0.30

(continued)
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Table 18.1b (continued)

Female

Offenses at the last
conviction

Off LastConvAge(0) 0.47

Types and number of
offenses

Off OffensiveWeapons (0) 0.52
Other offenses 0.51
Off Drug (0) 0.50
Off Drug (1) 0.47
Off RelatedToPolice(0) 0.40
Off AgainstPerson (0) 0.34
Off TheftKindred (0) 0.32
Off Fraud(0) 0.31
Off Total (1) 0.28
Off Total (2) 0.26
Off Drug(1) 0.22

Finding of the
arrest

Types of seizure NumOfCashSeizures(0) 0.25
NumOfDrugSeizures(0) 0.23

Drugs associated Cocaine 0.40
Tactics and

arrest mode
Types of tactics GenericTactic Controlled Delivery 0.28

Non-Law Enforcement Agent 0.26
InOperation(1) 0.25
NumOfTactics(1) 0.21

Arrest mode OnBailAtTimeOfOffence(0) 0.47
ViolentOnArrest(0) 0.33
ArrMode Given into custody 0.26
ArrMode Result of Enquiries(2) 0.23
ArrMode Direct(0) 0.22

Table 18.2a

Africa nation group

Places Home borough Newham 0.39
Redbridge 0.29
Hammersmith and Fulham 0.28
Walrham Forest 0.26

Borough of arrest
Anagraphic data Gender Sex Male 0.34

Nation group NK 0.32
Ethic group (EA3) Afro-Caribbean 0.42
Age

Past criminal curriculum Convictions
Offenses
Age at the first conviction Off LastConvAge(2)
Offenses at the last conviction Off LastConvAge(0) 0.28
Types and number of offenses NumOfDrugSeizures(2) 0.36

Findings of the arrest Types of seizure
Drugs associated Cannabis 0.25

Tactics and arrest mode Type of tactics
Arrest mode ArrMode Other(1) 0.34
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Table 18.2b

Asia nation group

Places Home borough Hammeesmith and Fulham 0.45
Hounslow 0.37

Borough of arrest Arr Hammersmith and Fulham 0.56
Arr Hounslow 0.40

Anagraphic data Gender
Nation group
Ethic group
Age Age(25–35) 0.31

Past criminal curriculum Convictions ConvictionsNumber(1) 0.36
Offenses OffensesNumber(1) 0.45
Age at the first conviction
Offenses at the last conviction
Types and number of offence Off Total(1) 0.45

Off Drug(1) 0.39
Findings of the arrest Types of seizure NumOf CashSeizures(0) 0.25

Drugs associated MDMA 0.14
Tactics and arrest mode Type of tactics

Arrest mode

Table 18.2c

East Europe nation group

Places Home borough Ealing 0.48
Harrow 0.43

Anagraphic data Borough of arrest
Gender
Nation group
Ethic group
Age

Past criminal curriculum Convictions ConvictionsNumber(3) 0.33
Offenses OffensesNumber(3–5) 0.52
Age at the first conviction Off FirstConvAge(19–21) 0.42
Offenses at the last conviction
Types and number of offence NumOfArrests(1) 0.38

Off RelatedToPolice(0) 0.34
Off Total(3–5) 0.52

Findings of the arrest Types of seizure
Drugs associated Heroin 0.01

Tactics and Arrest Mode Type of tactics InOperation(1) 0.37
Arrest mode ArrMode Direct(1) 0.43
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Table 18.2d

Europe nation group

Places Home borough
Anagraphic data Gender Sex Female 0.51

Nation group TU-CY 0.39
Ethic group (EA2) Dark European 0.64
Age Age(UpTo18) 0.44

Past criminal curriculum Convictions
Offenses OffensesNumber(1) 0.43
Age at the first conviction Off FirstConvAge(28–33) 0.43

Off FirstConvAge(34–39) 0.34
Offenses at the last conviction
Types and number of offence Off Drug(1) 0.32

Off Total(1) 0.43
Off OffensiveWeapons(0) 0.41

Findings of the arrest Types of seizure
Drugs associated Heroin 0.26

Tactics and arrest mode Type of tactics
Arrest mode

Table 18.2e

Ireland nation group

Places Home borough
Borough of arrest

Anagraphic Data Gender
Nation group
Ethic group (EA1) White European 0.42
Age

Past criminal curriculum Convictions
Offenses OffensesNumber(20–50) 0.46
Age at the first conviction
Offenses at the last conviction ConvictionNumber(11–20) 0.49
Types and number of offence Off TheftKindred(6–10) 0.59

Off Total(20–50) 0.47
Off RelatedToPolice(2–5) 0.42
Off TheftKindred(11–20) 0.40
Off AgainstProperty(1) 0.42
Off Fraud(1) 0.47

Findings of the arrest Types of seizure
Drugs associated MDMA 0.24

Tactics and arrest mode Type of tactics
Arrest mode OnBailAtTimeOfOffence(1) 0.43
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Table 18.2f

Jamaica nation group

Places Home borough Harigey 0.65
Borough of arrest Arr Hackney 0.68

Anagraphic data Gender
Nation group
Ethic group (EA3) Afro Caribbean 0.58
Age

Past criminal curriculum Convictions
Offenses
Age at the first

conviction
Off FirstConvAge(28–33) 0.63

Offenses at the last
conviction

Types and number
of offence

NumOfArrests(over-3) 0.58

Findings of the arrest Types of seizure
Drugs associated Crack 0.60

Heroin 0.32
Tactics and arrest mode Type of tactics ArrMode Result of Enquiries(0ver-2) 0.60

NumOfTactics(0ver-3) 0.60
NumOfTacticSequences(3–5) 0.57

Arrest mode

Table 18.2g

Middle East nation group

Places Home borough Kingston upon Thames 0.45
Sutton 0.31
Brent 0.32

Borough of arrest
Anagraphic data Gender Sex notknown 0.33

Nation group
Ethic group (EA6) Arab 0.59
Age

Past criminal curriculum Convictions
offenses
Age at the first conviction Off FirstConvAge(34–39) 0.37
Offenses at the last conviction
Types and number of offence Drug Possession Offenses 0.39

NumOfArrests(2) 0.28
Findings of the arrest Types of seizure

Drugs associated Cannabis 0.29
MDMA 0.09

Tactics and arrest mode Type of tactics
Arrest mode ArrMode Direct(2) 0.31
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Table 18.2h

South America nation group

Places Home borough Kensington and Chelses 0.33
Borough of arrest Arr Greenwich 0.44

Arr Bexley 0.43
Arr Kensington and Chelsea 0.39
Arr PL NA 0.33

Anagraphic data Gender
Nation group VTN 0.43
Ethic group
Age

Past criminal curriculum Convictions
Offenses
Age at the first conviction
Offenses at the last conviction
Types and number of offence Off FirstConvAge(40–45) 0.30

Findings of the arrest Types of seizure NumOfDrugSeizures(0ver-5) 0.31
Drugs associated Cannabis 0.53

Heroin 0.27
Tactics and arrest mode Type of tactics InOperation(1) 0.37

Arrest mode

Table 18.2i

Turkey and Cyprus nation group (TU-CY)

Places Home borough
Borough of arrest

Anagraphic data Gender
Nation group EU 0.39

NK 0.38
Ethic group (EA2) Dark European 0.55
Age

Past criminal curriculum Convictions ConvictionsNumber(0) 0.43
Offenses OffensesNumber(0) 0.43
Age at the first conviction Off FirstConvAge(over-51) 0.48

Off FirstConvAge(34–39) 0.43
Offenses at the last conviction Off LastConvAge(0) 0.40
Types and number of offenses Off Drug(0) 0.44

Off Total(0) 0.43
Findings of the arrest Type of seizure

Drugs associated Heroin 0.29
Tactics and arrest mode Type of tactics

Arrest mode
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Table 18.2j

Vietnam nation group (VTN)

Places Home borough Bexley 0.50
Borough of arrest Arr Bexley 0.64

Anagraphic data Gender Sex Female 0.49
Nation group
Ethic group (EA5) Oriental 0.75
Age

Past criminal curriculum Convictions
Offenses
Age at the first conviction Off FirstConvAge(over-51) 0.57

Off FirstConvAge(40–45) 0.53
Off FirstConvAge(46–51) 0.45
Off FirstConvAge(34–39) 0.44

Offenses at the last conviction
Types and number of offenses Other offenses 0.62

Off Drug(0) 0.44
Findings of the arrest Type of seizure

Drugs associated Cocaine 0.29
Tactics and arrest mode Type of tactics

Arrest mode

South Americans are more defined: usually, they live in Kensington but very of-
ten are arrested outside of Kensington. They are very associated with a Vietnamese
group and are specialized in large quantities of cocaine. Also, their first conviction is
usually at an older age (around 40–45 years old). Sometimes, they are also involved
in heroin trafficking (Tables 18.2i and 18.2j).

Aged Turkish and Cypriots seem to be the head of the young European female
group trafficking in heroin. Vietnamese people are a group of aged women working
in cocaine trafficking associated with a group of South American persons (see
above) (Tables 18.3a and 18.3b).

Most of White Europeans arrested live in Sutton and in Barking and Dagenham,
and they are mainly UK citizens with a high number of convictions. Typically, they
have committed one or more property offenses. Their favorite drug is MDMA, and
cocaine may be their second choice.

Dark Europeans are clustered as European females, typically coming from
Turkey and Cyprus, without a criminal background and dedicated to cocaine and
sometimes to heroin and cannabis (Tables 18.3c and 18.3d).

Afro-Caribbean are described as Jamaican and African males, often arrested in
Camden and Hackney. Most are persons with over three arrests, mainly because of
crack but also because of heroin. They are reluctant to deal with cannabis, cocaine,
and MDMA. Police appear to need more than three tactics to catch them, and each
arrest typically happens in direct and violent ways.
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Table 18.3a

White Europeans ethnic group ((EA1) White European)

Places Home borough Sutton 0:46

Barking and Dagenham 0:44

Borough of arrest
Anagraphic data Gender

Nation group UK 0:53

Ethnic group
Age

Past criminal curriculum Convictions Convictions Number (11–20) 0:43

Offenses
Age at the first

conviction
Offenses at the last

conviction
Types and number of

offenses
Off Against Property (1) 0:54

Off Theft Kindred (6–10) 0:46

Off Against Property (2) 0:45

Other offenses 0:45

Finding of the arrest Type of seizure
Drugs associated MDMA 0:27

Cocaine 0:13

Cannabis 0:10

Heroin �0:19

Crack �0:24

Tactics and arrest mode Type of tactics Other Law Enforcement Agent 0:55

Arrest mode

Asian persons are arrested generally in two boroughs, Tower Hamlets and Ealing,
where they also live. The age of their first conviction is when they are between
19 and 21 years old. They usually deal with cannabis. A couple of police tactics
(typically “search a person”) are needed to catch them (Tables 18.3e and 18.3f).

The ethnic group named “Oriental” is composed mainly of old Vietnamese
females, and there is a suggestion of their involvement in cocaine traffic with some
inclination toward cannabis and MDMA. The Arabs arrested have the same profile
of the people coming from Middle East, described above.

It is useful to organize the SOM results from a perspective of the types of drugs.
This view will illustrate the main profile of any drug in terms of:

1. Places where the persons are arrested and/or where they live
2. Basic anagraphic data of the arrested persons
3. Their fundamental criminal record
4. Findings of their arrest
5. Organization and modalities of their arrest
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Table 18.3b

Dark Europeans ethnic group ((EA2) Dark European)

Places Home borough
Borough of arrest

Anagraphic data Gender Sex Female 0:46

Nation group EU 0:64

TU-CY 0:55

Ethnic group
Age

Past criminal curriculum Convictions
Offenses
Age at the first

conviction
Offenses at the last

conviction
Types and number of

offenses
Off Fraud(0) 0:52

Off Against Person(0) 0:51

Off Related To Police (0) 0:46

Off Sexual (0) 0:46

Off Offensive Weapons (0) 0:46

OFF AGAINST PROPERTY(0) 0:46

Finding of the arrest Type of seizure
Drugs associated Cocaine 0:27

Heroin 0:18

Cannabis 0:18

MDMA 0:04

Crack �0:01

Tactics and arrest mode Type of tactics
Arrest mode

The following tables, consequently, should make explicit the prototype of the
persons arrested in London from the type of drug viewpoint.

Persons Arrested Because of Cannabis

Tables 18.4a,18.4b, 18.4c, 18.4d, and 18.4e synthesizes the profile of persons
arrested because of cannabis (but not limited only to cannabis). Many of these
people generally live in Sutton and in Richmond upon Thames and in these boroughs
are usually arrested. Gender is not meaningful, but many of them are people coming
from the Middle East and Africa. From an ethnic point of view, they are often
Asiatic and Arabs. Most of them are young (from 21 to 25 years old) with a robust
curriculum in offenses and convictions, not only linked to drug problems. During the
arrest, more seizures very often are executed, and sometimes, cannabis is associated
with MDMA. The more effective tactics for this arrest is a “generic search of
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Table 18.3c

Afro-Caribbean ethnic group ((EA3) Afro-Caribbean)

Places Home borough
Borough of arrest Arr Camden 0:39

Arr Hackney 0:38

Anagraphic data Gender Sex Male 0:40

Nation group JAM 0:58

AFR 0:42

Ethnic group
Age

Past criminal curriculum Convictions
Offenses
Age at the first conviction
Offenses at the last conviction
Types and number of offenses Num Of Arrests (over-3) 0:40

Finding of the arrest Type of seizure
Drugs associated Crack 0:37

Heroin 0:20

Cannabis �0:19

Cocaine �0:21

MDMA �0:28

Tactics and arrest mode Type of tactics Num Of Tactics (over-3) 0:43

Arrest mode Violent On Arrest (1) 0:45

ArrMode Direcct (3–5) 0:38

premises,” a “generic search of person,” and a “generic controlled delivery.” These
tactics often have to be repeatedly activated as a result of many inquires.

Persons Arrested Because of Cocaine

Tables 18.5a, 18.5b, 18.5c, 18.5d, and 18.5e synthesizes the profile of people
arrested because of, but not limited to, cocaine. Mainly, these persons live in
Bexley, Bromley, Haringey, and Croydon. Most of them are arrested in their home
borough, but there are some exceptions: many people are arrested in Kingston upon
Thames, but many also come from outside the area. There is some specific link
between women and cocaine. The same specific link is present with people coming
from South America, Vietnam, and Jamaica. The main ethnic groups of the people
arrested because of cocaine seem to be constituted of Dark Europeans, Orientals,
and White Europeans. Their age is between 25 and over 45, and their criminal
curriculum tends to be clean. Their first arrest is usually one offence in elderly age
(beyond 40s). Their arrest is correlated to many drug seizures and cash seizures.
Heroin, crack, and MDMA are associated with cocaine seizures. Many tactics and
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Table 18.3d

Asiatic ethnic group ((EA4) Asia)

Places Home borough Ealing 0:52

Tower Hamlets 0:47

Hounslow 0:46

Borough of arrest Arr TowerHamlets 0:46

Arr Ealing 0:40

Anagraphic data Gender
Nation group
Ethnic group
Age

Past criminal curriculum Convictions
Offenses
Age at the first

conviction
Off First Conv Age (19–21) 0:41

Offenses at the last
conviction

Types and number of
offenses

Finding of the arrest Type of seizure
Drugs associated Cannabis 0:18

MDMA 0:03

Cocaine �0:15

Heroin �0:23

Crack �0:28

Tactics and arrest mode Type of tactics Generic Tactic Search of Person 0:41

Num Of Tactics (2) 0:39

Arrest mode ArrMode Result of Enquiries (0) 0:39

tactics sequences are needed to find cocaine, and very often, they are the result of
many inquires. “Controlled delivery” and “covert purchase” are shown to be the
more effective tactics to discovering cocaine.

Persons Arrested Because of Heroin

Table 18.4c synthesizes the profile of people arrested because of, but not limited to,
heroin. There is not a specific borough where they are arrested. Typically are groups
of Jamaican, Turkish, and Cypriots.

These people seem to cluster into two subgroups: the first one is composed of
young people, without relevant past offenses, while the second group is composed
of adult and very expert delinquents with an impressive record in the field that
addresses every kind of crime in robust quantity. In fact, their arrest is always
associated with rich seizures of drugs.
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Table 18.3e

Oriental ethnic group ((EA5) Oriental)

Places Home borough
Borough of arrest

Anagraphic data Gender Sex Female 0:61

Nation group VTN 0:75

Ethnic group
Age

Past criminal curriculum Convictions Convictions Number (0) 0:55

Offenses Offenses Number (0) 0:55

Age at the first conviction Off First Conv Age (over-51) 0:67

Offenses at the last conviction Off Last Conv Age (0) 0:52

Types and number of offenses Other offenses 0:59

Off Drug(0) 0:56

Off Total(0) 0:54

Finding of the arrest Type of seizure
Drugs associated Cocaine 0:24

Cannabis 0:13

MDMA 0:12

Heroin �0:04

Crack �0:21

Tactics and arrest mode Type of tactics
Arrest mode

Table 18.3f

Arab ethnic group ((EA6) Arab)

Places Home borough Kingston upon Thames 0:36

Harrow 0:34

Borough of arrest Arr Richmond upon Thames 0:33

Arr Kingston upon Thames 0:33

Anagraphic data Gender
Nation group ME 0:59

Ethnic group
Age Age (18–21) 0:39

Past criminal curriculum Convictions Convictions Number (3) 0:35

Offenses
Age at the first conviction Off First Conv Age (34–39) 0:33

Offenses at the last conviction
Types and number of offenses

Finding of the arrest Type of seizure
Drugs associated Cannabis 0:17

MDMA 0:10

Cocaine 0:04

Heroin �0:03

Crack �0:07

Tactics and arrest mode Type of tactics Non-Law Enforcement Agent 0:32

Arrest mode
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Table 18.4a

Cannabis

Places Home borough Sutton 0.43
Richmond upon Thames 0.41
Hounslow 0.26
Bexley 0.25
Waltham Forest 0.24
Hammersmith and Fulham 0.22
Barking and Dagenham 0.21
Newham 0.19
Bamet 0.18
Brent 0.18
Havering 0.17
Ealing 0.16
Lewisham 0.14
Harrow 0.11

Borough of arrest Arr Richmond upon Thames 0.43
Arr Sutton 0.33
Arr Place Not Available 0.31
Arr Harrow 0.23
Arr Newham 0.22
Arr Redbridge 0.21
Arr Hammersmith and Fulham 0.18
Arr Bexley 0.15
Arr Kingston upon Thames 0.12
Arr Waltham Forest 0.12
Arr Merton 0.12

Anagraphic data Gender Sex Male 0.01
Sex Female �0.03

Nation group ME 0.29
AFR 0.25
VTN 0.13
NK 0.10

Ethnic group (EA4) Asia 0.18
(EA6) Arab 0.17
(EA5) Oriental 0.13
(EA1) White European 0.10

Age Age (21–25) 0.29
Age (18–21) 0.13

Past criminal curriculum Convictions Convictions Number (3) 0.39
Convictions Number (4) 0.36
Convictions Number (2) 0.13

Offenses Offenses Number (6–10) 0.30
Offenses Number (3–5) 0.25

Age at the first conviction Off First Conv Age (19–21) 0.12
Off First Conv Age (over-51) 0.10

(continued)
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Table 18.4a (continued)

Cannabis

Years from the last
conviction

Off Last Conv Age(6–10) 0.27
Off Last Conv Age(2) 0.21

Types and number
of offenses

AR OFF Other Drug Offenses 0.55
Other offenses 0.48
Drug Possession Offenses 0.36
Offenses Against Person 0.26
Off Total (3–5) 0.25
Drug trafficking Offenses(1) 0.25
Theft and Kindred Offenses 0.24
Off Related To Police(0) 0.24
Firearms Offenses 0.22
Off Drug(2) 0.22
Off Theft Kindred (1–5) 0.20
Offensive Weapon Offenses 0.16
Off Drug(1) 0.14

Findings of the
arrest

Arrests Num Of Arrests (2) 0.34
Number Of Arrests(3) 0.15

Type of seizure Num Of Drug Seizures (2) 0.47
Num Of Cash Seizures (over-1) 0.17
Num Of Drug Seizures (3–5) 0.12

Drugs associated MDMA 0.18
Tactics and arrest

mode
Type of tactics Generic Tactic Search of Premises 0.52

Num Of Tactic Sequences(1) 0.47
Generic Tactic Search of Person 0.35
ArrMode Result of Enquiries(2) 0.29
Generic Tactic Controlled Delivery 0.21
Num Of Tactics (2) 0.21
Num Of Tactics (3) 0.16
ArrMode Result of Enquiries (1) 0.15
Num Of Tactics (1) 0.14

Arrest mode ArrMode Other (1) 0.18
ArrMode Other (2) 0.18
On Bail At Time Of Offence (2) 0.17
AR OFF Kidnapping and Abduction offenses 0.16
Violent On Arrest (more-1) 0.14
ArrMode Direct(2) 0.37

These people associate heroin traffic with crack and also with cocaine. Many
tactics and tactics sequences, as covert purchase, are needed to arrest them, often in
violent mode and at the end of many inquires.

Persons Arrested Because of Crack

Table 18.4d synthesizes the profile of people mainly arrested because of crack. The
crack prototype seems to be much defined: it is an Afro-Caribbean, Jamaican, and
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Table 18.4b

Cocaine

Places Home borough Bexley 0.35
Bromley 0.23
Haringey 0.22
Croydon 0.21
Lambeth 0.18
Kensington and Chelsea 0.16
Borough not available 0.15
Sutton 0.10

Borough of arrest Arr Bexley 0.46
Arr Kingston upon Thames 0.39
Arr Bromley 0.35
Arr Haringey 0.33
Arr Kensington and Chelsea 0.32
Arrest borough not available 0.30
Arr Hammersmith and Fulham 0.27
Arr Islington 0.25
Arr Westminster 0.25
Arr Southwark 0.21
Arr Lambeth 0.19
Arr Sutton 0.18
Arr Greenwich 0.17
Arr Brent 0.17
Arr Barnet 0.14
Arr Waltham Forest 0.13
Arr Hackney 0.12
Arr Lewisham 0.11

Anagraphic data Gender Sex Female 0.40
Sex Male �0.39

Nation group SAME 0.53
VTN 0.29
JAM 0.21
EU 0.19

Ethnic group (EA2) Dark European 0.27
(EA5) Oriental 0.24
(EA1) White European 0.13

Age Age (25–35) 0.24
Age (35–45) 0.20
Age(Over 45) 0.17

Past criminal curriculum Convictions Convictions Number (1) 0.28
No Convictions Number 0.18

Offenses Offenses Number (1) 0.28
No Offenses Number 0.19
Offenses Number (20–50) 0.15

(continued)
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Table 18.4b (continued)

Cocaine

Age at the first
conviction

Off First Conv Age (40–45) 0.39
Off First Conv Age (46–51) 0.34
Off First Conv Age (over-51) 0.30
Off First Conv Age (34–39) 0.25
Off First Conv Age (28–33) 0.19
Off First Conv Age (22–27) 0.17

Years from the last
conviction

No Years From Last Conv Age 0.16

Types and number
of offenses

Drug trafficking Offenses(over-5) 0.33
Num Of Arrests (2) 0.28
Other offenses 0.28
Off Total (1) 0.28
Num Of Arrests (over-3) 0.25
Drug Possession Offenses 0.25
No Offensive Weapons 0.23
Off Drug(over-10) 0.21
Theft and Kindred Offenses 0.19
Off Total(20–50) 0.14
Off Drug(1) 0.13
Off Theft Kindred (11–20) 0.12
Off Fraud(over-5) 0.12
Off Against Property (more) 0.11
Drug trafficking Offenses(2–5) 0.10

Findings of the arrest Type of seizure Num Of Drug Seizures (over-5) 0.44
Num Of Cash Seizures (over-1) 0.14
Pounds (up 1,000) 0.12

Drugs associated Heroin 0.32
Crack 0.25
MDMA 0.20

Tactics and arrest mode Type of tactics Generic Tactic Controlled Delivery 0.36
Num Of Tactic Sequences(over-5) 0.34
In Operation (over-5) 0.34
Generic Tactic Convert Purchase 0.29
In Operation (1) 0.28
Num Of Tactics (over-3) 0.27
ArrMode Result of Enquiries (2) 0.22
ArrMode Result of Enquiries (over-2) 0.15

Arrest mode ArrMode Direct(over-5) 0.33
ArrMode Direct (2) 0.29
ArrMode Other (over-2) 0.24
ArrMode Other (2) 0.19
Violent On Arrest (more-1) 0.12
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Table 18.4c

Heroin

Places Home borough Kensington and Chelsea 0.64
Haringey 0.51
Bromley 0.35
Southwark 0.17
Camden 0.12

Borough of arrest Arr Kensington and Chelsea 0.79
Arr Bromley 0.78
Arr Haringey 0.76
Arr Westminster 0.54
Arr Greenwich 0.52
Arr Lewisham 0.46
Arr Southwark 0.45
Arr Islington 0.40
Arr Barnet 0.38
Arr Hackney 0.33
Arr Camden 0.32
Arr Brent 0.28

Anagraphic data Gender Sex notknown 0.16
Sex Female 0.08
Sex Male �0.13

Nation group JAM 0.32
TU-CY 0.29
SAME 0.27
EU 0.26

Ethnic group (EA3) Afro-Caribbean 0.20
(EA2) Dark European 0.18

Age Age (35–45) 0.27
Age (25–35) 0.13
Age (UpTo 18) 0.13

Past criminal
curriculum

Convictions Convictions Number (0) 0.17
Convictions Number (over-20) 0.17

Offenses Offenses Number (over-50) 0.22
Offenses Number (0) 0.17

Age at the first conviction Off First Conv Age (34–39) 0.29
Off First Conv Age (28–33) 0.23
Off First Conv Age (over-51) 0.15

Offenses at the last conviction No Years From Last Conv Age 0.17
Types and number of offenses Drug trafficking Offenses(over-5) 0.79

Off Drug (over-10) 0.57
Off Drug (6–10) 0.27
Off Offensive Weapons (over-2) 0.24
Off Total (over-50) 0.22
Off Related To Police (over-5) 0.22
Off Against Property (more) 0.21
Drug trafficking Offenses (2–5) 0.21

(continued)
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Table 18.4c (continued)

Heroin

Off Theft Kindred (over-20) 0.19
Off Against Person (1) 0.19
Off Against Person (3–5) 0.16
Off Sexual (over-2) 0.10

Findings of the arrest Type of seizure Num Of Drug Seizures (over-5) 0.81
Num Of Drug Seizures (3–5) 0.14

Drugs associated Crack 0.73
Cocaine 0.32

Tactics and arrest mode Type of tactics In Operation (over-5) 0.79
Num Of Tactic Sequences(over-5) 0.79
Generic Tactic Convert Purchase 0.79
Num Of Arrests (over-3) 0.73
Num Of Tactics (over-3) 0.66
ArrMode Result of Enquiries (over-2) 0.55
In Operation (2–5) 0.32
Num Of Tactic Sequences (3–5) 0.28
Num Of Tactic Sequences (2) 0.24
Generic Tactic Other 0.23

Arrest mode ArrMode Direct(over-5) 0.78
ArrMode Other (over-2) 0.71
On Bail At Time Of Offence (over-2) 0.25
Violent On Arrest (1) 0.18
ArrMode Direct (3–5) 0.13

between 25 and 35 years old (sometimes between 35 and 45 years old). These
people seem divided into two subgroups: the first one whose individuals generally
have collected more than 20 convictions and the second one with persons who have
typically two convictions. The first group should also have committed more than 50
offenses, in every kind of known crime. The average age of their first crime is often
late, between 25 and 33 years old. Most of them were found with more than three
and/or five doses of crack, often associated with heroin and only sometimes with
cocaine. Covert purchase is the most effective tactic used by the police with this
kind of drug crime, and the direct arrest is one of the common ways of capturing
these people, very often in violent mode.

Persons Arrested Because of MDMA

Table 18.4e synthesizes the profile of people mainly arrested because of MDMA.
The majority of these people were arrested in the South of London. They are
White Europeans, composed of a small group of Irish and more generally by UK
citizens with 1 or 2 offenses in their background. These people sometimes are young



454 M. Buscema

Table 18.4d

Crack

Places Home borough Kensington and Chelsea 0:64

Haringey 0:59

Bromley 0:34

Barnet 0:29

Southwark 0:13

Kingston upon Thames 0:10

Borough not available 0:10

Borough of arrest Arr Bromley 0:90

Arr Haringey 0:87

Arr Kensington and Chelsea 0:82

Arr Lewisham 0:77

Arr Hackney 0:73

Arr Barnet 0:64

Arr Islington 0:64

Arr Westminster 0:59

Arr Southwark 0:54

Arr Camden 0:46

Arr Greenwich 0:41

Arr Brent 0:23

Arr Croydon 0:17

Arrest borough not available 0:16

Arr Lambeth 0:11

Anagraphic data Gender Sex notknown 0:16

Sex Female 0:00

Sex Male �0:05

Nation group JAM 0:60

SAME 0:14

Ethnic group (EA3) Afro-Caribbean 0:37

Age Age (25–35) 0:17

Age (35–45) 0:13

Past criminal
curriculum

Convictions Convictions Number (2) 0:13

Convictions Number (over-20) 0:13

Offenses Offenses Number (over-50) 0:17

Age at the first conviction Off First Conv Age (28–33) 0:25

Off First Conv Age (34–39) 0:13

Offenses at the last conviction Off Last Conv Age (1) 0:26

Types and number of offenses Drug trafficking Offenses(over-5) 0:91

Off Drug (over-10) 0:51

Off Drug (6–10) 0:44

Drug trafficking Offenses (2–5) 0:40

Off Against Person (1) 0:22

Off Offensive Weapons (over-2) 0:20

Off Total (over-50) 0:17

Off Related To Police (over-5) 0:17

Off Against Property (more) 0:16

Off Against Person (3–5) 0:14

(continued)



18 Data Mining Using Nonlinear Auto-Associative Artificial Neural . . . 455

Table 18.4d (continued)

Crack

Off Theft Kindred (over-20) 0.14
Off Sexual (over-2) 0.12
Off Total (11–20) 0.11

Findings of the
arrest

Type of seizure Num Of Drug Seizures (over-5) 0.90

Num Of Drug Seizures (3–5) 0.26
Drugs associated Heroin 0.73

Cocaine 0.25
Tactics and

arrest mode
Type of tactics Num Of Arrests (over-3) 0.96

Generic Tactic Convert Purchase 0.96
Num Of Tactics (over-3) 0.91
In Operation (over-5) 0.90
Num Of Tactic Sequences (over-5) 0.90
ArrMode Result of Enquiries (over-2) 0.90
Num Of Tactic Sequences (3–5) 0.57
In Operation (2–5) 0.54
Generic Tactic Other 0.38
Num Of Tactic Sequences (2) 0.28

Arrest mode ArrMode Direct(over-5) 0.91
ArrMode Other (over-2) 0.85
On Bail At Time Of Offence (over-2) 0.39
Violent On Arrest (1) 0.32
ArrMode Direct (3–5) 0.28

(22–27 years old) and sometimes old (46–51 years old) and typically are expert in
drug offenses and theft and kindred offenses. During seizure, a moderate quantity
of cash money is found, generally pounds. Other drugs (cocaine and cannabis) are
only occasionally associated. They are arrested usually in violent and in direct ways
by non-law enforcement agents.

18.3 Explorative Analysis Using Auto-Contractive Maps

The SOM is a very well-known and effective ANN suitable for data mining. But it
is not the only one. Auto-Contractive Map (Auto-CM), for instance, was recently
shown to be a very robust and powerful ANN to discover hidden links within large
dataset (see the Chap. 15 dedicated to Auto-CM theory and its equations in this
book and Buscema 2007a, b; Buscema et al. 2008a, b; Buscema and Grossi 2008;
Licastro et al. 2008).

http://dx.doi.org/10.1007/978-94-007-4914-6_15
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Table 18.4e

MDMA

Places Home borough Sutton 0.45
Bexley 0.38
Brent 0.33
Borough not available 0.32
Hounslow 0.29
Merton 0.24
Croydon 0.16

Borough of arrest Arr Sutton 0.47
Arr Merton 0.44
Arrest borough not available 0.37
Arr Wandsworth 0.33
Arr Bexley 0.29
Arr Kingston upon Thames 0.29
Arr Ealing 0.28
Arr Brent 0.26
Arr Enfield 0.25
Arr Lambeth 0.23
Arr Hounslow 0.18
Arr Waltham Forest 0.17
Arr Hammersmith and Fulham 0.15
Arr Croydon 0.14
Arr Newham 0.11

Anagraphic data Gender Sex notknown 0.30
Sex Female 0.06
Sex Male �0.15

Nation group IRE 0.24
UK 0.15
ASIA 0.14
VTN 0.10

Ethnic group (EA1) White European 0.27
(EA5) Oriental 0.12
(EA6) Arab 0.10

Age Age (25–35) 0.22
Past criminal

curriculum
Convictions Convictions Number (1) 0.34
Offenses Offenses Number (1) 0.27

Offenses Number (2) 0.12
Age at the first conviction Off First Conv Age (22–27) 0.29

Off First Conv Age (46–51) 0.28
Offenses at the last conviction Off Last Conv Age (1) 0.14
Types and number of offenses Drug Possession Offenses 0.58

Theft and Kindred Offenses 0.45
Off Total (1) 0.26
Off Drug (1) 0.23
Offensive Weapon Offenses 0.22
Drug trafficking Offenses(2–5) 0.19
No Offensive Weapons 0.19

(continued)
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Table 18.4e (continued)

MDMA

AR OFF Kidnapping and Abduction offenses 0.16
AR OFF Other Drug Offenses 0.15
No Theft Kindred 0.15
Off Total (2) 0.12
Firearms Offenses 0.12
Other offenses 0.12
No Related To Police 0.12
No Against Person 0.10

Findings of the
arrest

Type of seizure Num Of Drug Seizures (3–5) 0.45
Pounds (up 1000) 0.33
Pounds (up500) 0.29
Num Of Cash Seizures (over-1) 0.24
Num Of Cash Seizures (1) 0.24
Pounds (over-5,000) 0.21
Pounds (up5000) 0.13

Drugs associated Cocaine 0.20
Cannabis 0.18

Tactics and arrest
mode

Type of tactics Num Of Arrest (2) 0.62
Generic Tactic Search of Premises 0.50
Non-Law Enforcement Agent 0.46
Generic Tactic Search of Person 0.36
Num Of Tactics (3) 0.31
Num Of Arrests (3) 0.21
Num Of Tactics (2) 0.18
Generic Tactic Search of Object 0.16
Num Of Tactic Sequences (2) 0.15
No in Operation 0.13

Arrest mode ArrMode Direct (2) 0.63
ArrMode Other(2) 0.36
Violent On Arrest (more-1) 0.27
ArrMode Result of Enquiries (1) 0.17
ArrMode Result of Enquiries (2) 0.15
On Bail At Time Of Offence (2) 0.12
ArrMode Direct (3–5) 0.11
ArrMode Given into custody 0.10

Auto-CM provides a typology of drugs in a format that is slightly different from
SOM. We present the tables with the Auto-CM prototypes of the five drugs with
the same number used above for the SOM analysis. The only difference is in the
number adjacent to each variable: in the SOM table, this number is the value of
linear correlation between the variable with variables in the heading of the table;
in Auto-CM, this adjacent number points out the strength of membership of the
variables over the mean (zero representing average membership). We outline with
boldface the shared associations between Auto-CM and SOM.
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Table 18.5a

Cannabis

Places Home borough NA Borough 0.193
Lewisham 0.176
Havering 0.171
Hounslow 0.147
Lambeth 0.145

Borough of arrest Arr PL NA 0.188
Arr Hounslow 0.055
Arr Havering �0.031

Anagraphic data Gender Sex Male 0.726
Sex Female 0.212

Nation group UK 0.725
NK 0.327
VTN 0.297
AFR 0.044
JAM 0.033

Ethnic group (ea1) White European 0.618
(EA3) Afro-Caribbean 0.525
(EA4) Asia 0.483

Age Age (21–25) 0.622
Age (25–35) 0.475
Age (Over45) 0.456

Past criminal curriculum Convictions Convictions Number (5–10) 0.428
Convictions Number (1) 0.407
Convictions Number (4) 0.404
Convictions Number (11–20) 0.388

Offenses Offenses Number (6–10) 0.537
Offenses Number (3–5) 0.513
Offenses Number (11–20) 0.367
Offenses Number (0) 0.366

Age at the first conviction Off First Conv Age (up-to-18) 0.633
Off First Conv Age (19–21) 0.552
Off First Conv Age (22–27) 0.478
Off First Conv Age (34–39) 0.140

Offenses at the last conviction Off Last Conv Age (1) 0.613
Off Last Conv Age (2) 0.551
Off Last Conv Age (0) 0.474

Types and number of offenses Other offenses 0.770
Off Against Person (0) 0.727
Off Fraud (0) 0.727
Off Sexual (0) 0.726
Off Against Property (0) 0.711

(continued)
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Table 18.5a (continued)

Cannabis

Findings of the arrest Type of seizure Num Of Drug Seizures (3–5) 0.791
Num Of Drug Seizures (over-5) 0.779
Pounds (0) 0.663
Num Of Cash Seizures (0) 0.657
Num Of Drug Seizures (2) 0.621

Drugs associated MDMA �0.105
Tactics and arrest mode Type of tactics Generic Tactic Search of Premises 1.030

Generic Tactic Search of Person 0.825
In Operation (0) 0.779
Num Of Tactic Sequences (1) 0.747
Num Of Tactics (3) 0.632

Arrest mode Violent On Arrest (0) 0.727
On Bail At Time Of Offence (0) 0.723
ArrMode Result of Enquiries(0) 0.715
ArrMode Other (0) 0.710
ArrMode Direct (1) 0.576

Table 18.5b

Cocaine

Places Home borough Sutton 0.077
Lewisham 0.042
Islington �0.078
Bromley �0.106

Borough of arrest Arr Bromley 0.023
Arr Sutton �0.110
Arr Lambeth �0.132

Anagraphic data Gender Sex Female 0.127
Sex Male �0.078

Nation group SAME 0.225
UK �0.068
EU �0.164

Ethnic group (EA2) Dark European 0.272
(EA1) White European 0.012

Age Age (25–35) 0.079
Age (35–45) �0.139

Past criminal curriculum Convictions Convictions Number (0) �0.021
Convictions Number (1) �0.031

Offenses Offenses Number (0) �0.018
Offenses Number (1) �0.092

Age at the first
conviction

Off First Conv Age (22–27) �0.002
Off First Conv Age (28–33) �0.108

Offenses at the last
conviction

Off Last Conv Age (1) 0.033
Off Last Conv Age (0) �0.052

(continued)
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Table 18.5b (continued)

Cocaine

Types and
number of
offenses

Drug trafficking Offenses (2–5) 0.098
Off Related To Police (0) 0.048
Off Theft Kindred (0) 0.032
Off Sexual (0) 0.013
Drug trafficking Offenses (over-5) 0.012

Findings of the arrest Type of seizure Num Of Drug Seizures (over-5) 0.615
Num Of Cash seizures (over-1) 0.003
Pounds (0) �0.020
Num Of Cash Seizures (0) �0.037
Num Of Drug Seizures (3–5) �0.074

Drugs associated
Tactics and arrest mode Type of tactics In Operation (1) 0.352

Generic Tactic Search of Premises 0.173
Generic Tactic Other 0.070
Num Of Tactics (2) 0.015
Num Of Tactics (over 3) 0.012

Arrest mode Arr Mode Direct (over-5) 0.079
On Bail At Time Of Offence (0) 0.019
Violent On Arrest (0) 0.012
ArrMode Direct (2) 0.012
Arr Mode Result of Enquiries (0) 0.006

Table 18.5c

Crack

Places Home borough Haringey 0.261
Kensington and Chelsea 0.191
Southwark 0.189
NA Borough 0.087
Camden 0.032

Borough of arrest Arr Hackney 0.307
Arr Kensington and Chelsea 0.168
Arr Southwark 0.157
Arr Camden 0.046
Arr Lewisham �0.015

Anagraphic data Gender Sex Male 0.271
Sex Female 0.154

Nation group JAM 0.836
UK 0.058

Ethnic group (EA3) Afro-Caribbean 0.510
(EA4) Asia �0.091

Age Age(25–35) 0.297
Age(35–45) 0.191
Age(Over45) 0.022

(continued)
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Table 18.5c (continued)

Crack

Past criminal curriculum Convictions ConvictionsNumber(1) 0.263
ConvictionsNumber(2) 0.162
ConvictionsNumber(5–10) 0.033
ConvictionsNumber(3) 0.011

Offenses OffensesNumber(6–10) 0.241
OffensesNumber(20–50) 0.204
OffensesNumber(11–20) 0.164
OffensesNumber(3–5) 0.108

Age at the first
conviction

Off FirstConvAge(28–33) 0.206
Off FirstConvAge(up-to-18) 0.157
Off FirstConvAge(34–39) 0.125
Off FirstConvAge(22–27) 0.115

Offenses at the last
conviction

Off LastConvAge(1) 0.285
Off LastConvAge(2) 0.276

Types and number
of offenses

Drug trafficking Offenses(over-5) 0.980
NumOfArrests(over-3) 0.956
Off Drug(over-10) 0.601
Off Drug(6–10) 0.449
Drug trafficking Offenses(2–5) 0.389

Findings of the arrest Type of seizure NumOfDrugSeizures(over-5) 0.927
NumOfDrugSeizures(3–5) 0.306
Pounds(0) 0.275
NumOfCashSeizures(0) 0.263
NumOfCashSeizures(1) 0.196

Drugs associated Heroin 0.460
Tactics and arrest mode Type of tactics InOperation(over-5) 0.979

NumOfTacticSequences(over-5) 0.979
GenericTactic Covert Purchase 0.927
NumOfTactics(over-3) 0.835
InOperation(2–5) 0.586

Arrest mode ArrMode Direct(over-5) 0.683
ArrMode Other(over-2) 0.504
OnBailAtTimeOfOffence(0) 0.293
ViolentOnArrest(0) 0.287
ArrMode Other(0) 0.265

18.4 Data Mining Techniques Comparison

It is hard to make a comparison between two or more Autopoietic (non-supervised)
ANN because in this case, a set of dependent variables that we can use as a “gold
standard” are not present. Only the experimental findings can suggest something to
us about their associative power, and even this is not true under every condition.

In any case, to compare the capability of SOM and Auto-CM on the same dataset,
we will use a new validation strategy composed of the following steps:
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Table 18.5d

Heroin

Places Home borough Enfield 0.100
Kensington and Chelsea 0.087
Haringey 0.025
Camden 0.019

Borough of arrest Arr Haringey 0.013
Arr Kensington and Chelsea 0.010
Arr Camden �0.022

Anagraphic data Gender Sex Male 0.122
Nation group TU-CY 0.611

JAM 0.073
UK �0.047

Ethnic group (EA2) Dark European 0.257
(EA3) Afro-Caribbean 0.052
(EA4) Asia �0.014

Age Age(Over45) 0.100
Age(25–35) 0.062
Age(35–45) 0.031

Past criminal
curriculum

Convictions ConvictionsNumber(1) 0.019
ConvictionsNumber(0) �0.004

Offenses OffensesNumber(20–50) 0.147
OffensesNumber(0) �0.005
OffensesNumber(6–10) �0.054
OffensesNumber(11–20) �0.089

Age at the first conviction Off FirstConvAge(over-51) 0.323
Off FirstConvAge(40–45) 0.032
Off FirstConvAge(22–27) �0.026
Off FirstConvAge(up-to-18) �0.042

Offenses at the last conviction Off LastConvAge(0) 0.044
Off LastConvAge(1) 0.014

Types and number of offenses Drug trafficking
Offenses(over-5)

0.578

Off Drug(over-10) 0.476
NumOfArrests(over-3) 0.450
Off Total(20–50) 0.122
Off Sexual(0) 0.115

Findings of the
arrest

Type of seizure NumOfDrugSeizures (over-5) 0.817
Pounds(0) 0.142
NumOfCashSeizures(0) 0.132
NumOfDrugSeizures(3–5) �0.008

Drugs associated Crack 0.460

(continued)
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Table 18.5d (continued)

Heroin

Tactics and arrest mode Type of tactics InOperation (over-5) 0.591
NumOfTacticSequences

(over-5)
0.591

GenericTactic Covert
Purchase

0.537

NumOfTactics(over-3) 0.354
GenericTactic Search of

Premises
0.117

Arrest mode ArrMode Direct(over-5) 0.251
ArrMode Other(over-2) 0.128
ViolentOnArrest(0) 0.113
OnBailAtTimeOfOffence(0) 0.108
ArrMode Result of

Enquiries(0)
0.097

Table 18.5e

MDMA

Places Home borough NA Borough 0.293
Southwark 0.045
Lambeth 0.028

Borough of arrest Arr Wandsworth 0.050
Arr Westminster �0.018

Anagraphic data Gender Sex Male 0.125
Sex notknown 0.075
Sex Female �0.002

Nation group EU 0.312
UK 0.175
ASIA �0.052

Ethnic group (EA1) White European 0.368
(EA2) Dark European 0.180
(EA6) Arab �0.074

Age Age(25–35) 0.182
Age(21–25) 0.121
Age(35–45) �0.015

Past criminal curriculum Convictions ConvictionsNumber(1) 0.236
ConvictionsNumber(11–20) 0.012
ConvictionsNumber(2) �0.007

Offenses OffensesNumber(1) 0.072
OffensesNumber(3–5) �0.036
OffensesNumber(11–20) �0.051
OffensesNumber(6–10) �0.069

Age at the first
conviction

Off FirstConvAge(22–27) 0.193
Off FirstConvAge(up-to-18) 0.010

Offenses at the last
conviction

Off LastConvAge(2) 0.192
Off LastConvAge(1) 0.089

(continued)
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Table 18.5e (continued)

MDMA

Types and number
of offenses

Drug Possession Offenses 0.472
NumOfArrests(3) 0.213
Off RelatedToPolice(0) 0.213
AR OFF Other Drug Offenses 0.197
Off Fraud(0) 0.186

Findings of the arrest Type of seizure NumOfDrugSeizures(3–5) 0.355
NumOfDrugSeizures(over-5) 0.338
NumOfCashSeizures(1) 0.299
Pounds(up100) 0.186

Drugs associated Cannabis �0.105
Tactics and arrest mode Type of tactics Non-Law Enforcement Agent 0.799

GenericTactic Search of Person 0.548
GenericTactic Search of Premises 0.326
NumOfTactics(over-3) 0.230
InOperation(0) 0.229

Arrest mode ArrMode Given into custody 0.281
ViolentOnArrest(0) 0.195
OnBailAtTimeOfOffence(0) 0.187
ArrMode Result of Enquiries(0) 0.179
ArrMode Other(0) 0.171

1. We analyze the dataset with three different, independent, limited, but grounded,
techniques.

(a) The linear correlation is calculated over all the couples of variables of the
dataset (LC algorithm):

Ri;j D

NP

kD1

.xi;k � Nxi / � �xj;k � Nxj

�

s
NP

kD1

.xi;k � Nxi /
2 �
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kD1

�
xj;k � Nxj

�2
;

� 1 � Ri;j � 1I i; j 2 Œ1; 2; :::; M �: (18.1)

(b) Co-occurrence probability among all the couplet of the dataset variables (PP
algorithm):
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(c) Euclidean distance among all the dataset variables (ED algorithm):

d
ŒE�
i;j D

vu
u
t

MX

kD1

�
xi;k � xj;k

�2I i; j 2 Œ1; 2; ::N �I x 2 Œ0; 1�: (18.3)

All three of these techniques are very robust: LC algorithm finds out the
proportionality among the variables; PP algorithm defines their probability
of co-occurrence; the ED algorithm measures their distances in a flat space.
At the same time, all these techniques are very limited: the LC and the PP
algorithms consider only the first-order effects among variables, and the ED
algorithm assumes the Euclidean space as the only metric able to explain the
closeness among variables. So, these three algorithms are three separate tools
used to analyze what in a dataset should be three manifestations of evidence:
the evidence of linearity, the evidence of probability, and the evidence of
distance. But there is not a linear correlation among these three techniques:
each technique can find what is evident to itself but is hidden from the others.
Consequently, LC, PP, and ED algorithms are three robust, independent,
and limited techniques. When a highly nonlinear and multivariate algorithm
(like SOM or Auto-CM) identifies some association supported by at least
one of these three techniques, we can say that this complex algorithm has
discovered something that is trivial, but grounded.

2. We calculate for each linear algorithm (LC, PP, and ED) and for SOM and Auto-
CM, the minimum spanning tree (Kruskal 1956; Cormen et al. 2001; Karger
et al. 1995; Fredman and Willard 1990; Gabow et al. 1986); obviously, to do that
requires some intelligent preprocessing.

3. We compare the agreement of the MST of each algorithm with the MST of the
others; in this way, we can define for each algorithm three different basic indices
and one composed index:

(a) The Intersection Index: how much does the association of any pair of
algorithms agree:

Iindexi;j D
MX

k

.linki D true \ linkj D true/

.linki D true [ linkj D true/
; (18.4)

where
i, j 2 N
k 2 M
N D Number of different MST coming from different algorithms
M D (Num Variables)2.

(b) The Evidence Index: how much of the association associated with each
algorithm is supported by the associations with the others:
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Eindexi D 1

2.N � 1/.M � 1/

MX

zD1

MX

kD1

NX

j D1Ij ¤i

� .linki;z;k D true \ linkj;z;k D true/; (18.5)

where
i, j 2 N
k 2 M
N D Number of different MST coming from different algorithms
M D Number of Variables.

(c) The Singularity Index: how many times the association of each algorithm is
only self-supported:

Sindexi D 1

2.N � 1/.M � 1/

MX

zD1

MX

kD1

linki;z;k

D true \
0

@
NX

j D1Ij ¤i

�
linkj;z;k D false

�
1

A D 0I (18.6)

where
i, j 2 N
k 2 M
N D Number of different MST coming from different algorithms
M D Number of Variables.

(d) The E-S Ratio Index: for each algorithm, this determines the balance between
associations supported by other algorithms and associations self-supported:

Ratioi D � ln

�
Sindexi

Eindexi

�
I �1 � Ratioi � C1: (18.7)

18.4.1 The Intersection Index

The Intersection Index shows the agreement and the disagreement for any pair
of algorithms with respect to their fundamental associations among the dataset
variables.

From a global point of view, the behavior of the five algorithms under consider-
ation is shown in these Tables 18.6 and 18.7:

Table 18.6 points out that more than half of the Auto-CM connections are
supported by linear correlation (LC) and more than one-third of SOM connections
are supported by the Euclidean distance (ED). LC seems to behave as a bridge
between Auto-CM and SOM, while the PP algorithm shows a completely different
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Table 18.6 Algorithms Agreement (%)

CM-LC 52.22
ED-SOM 37.01
ED-LC 34.73
LC-SOM 30.36
ED-CM 27.74
CM-SOM 23.37
LC-PP 14.10
CM-PP 14.06
ED-PP 11.36
PP-SOM 8.62

Table 18.7 Algorithms Mean Agreement (%)

LC 32.85
CM 29.35
ED 27.71
SOM 24.84
PP 12.03

Fig. 18.7 Map of the five
algorithms, according to their
similarity of results in the
“Persons” dataset. The error
of projection is under 4%.
The PP algorithm is located
in an isolated position; the LC
and ED algorithms seem to
work as middle points among
the others, while Auto-CM
and SOM appear to be
specialized in opposite areas.
But Auto-CM collects a
bigger number of supports
than SOM

logic. If we translate the algorithm intersection values into a matrix distance and
project this matrix distance into a three-dimensional space, we obtain the following
map (Fig. 18.7):

We can conclude the analysis of this index with this observation:
Auto-CM is supported by LC as SOM is supported by LC and ED, while PP

seems to be an outlier.
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Table 18.8 Algorithms Support Singularities Variety Ratio

LC 0.7469 0.2531 0.4166 1.0824
CM 0.6816 0.3184 0.4142 0.7613
ED 0.5224 0.4776 0.4188 0.0899
SOM 0.4735 0.5265 0.4139 �0.1062
PP 0.1837 0.8163 0.4281 �1.4917

18.4.2 The Evidence and the Singularity Indexes

The Evidence Index measures the degree of association of each algorithm with the
others. The Singularity Index measures the opposite: for each algorithm, how many
associations are completely not supported by the others.

The Evidence Index is important in order to establish the degree of support for the
connectivity of each algorithm that is shared by the others. The greater the support
and sharing of connections, the greater the reliability.

The Singularity Index is fundamental to understanding the specificity of each
algorithm and is hidden from the view of the others. Obviously, it is not possible to
know a priori if the specificity index is grounded. For this reason, we have proposed
a new index, the ratio between evidence and singularity. According to the Ratio
Index, we can distinguish three classes of algorithms:

1. Conservative algorithms, where Ratio 
 0:

2. Creative algorithms, where Ratio � 0:

3. Moderate algorithms, where Ratio Š 0:

Furthermore, if, for each algorithm, we calculate the variance of the algorithms
that support or lack support for all of its connections, then we can also define the
specificity of the research area of each algorithm.

Table 18.8 shows the behavior of the five algorithms after the analysis of
“Persons” dataset from the point of view of:

1. Evidence Index
2. Singularity Index
3. Ratio Index
4. Variance of Association Support

This table describes the basic profile of each algorithm:

1. The fundamental associations of the LC algorithm agree with most of the other
algorithms, but its capability to discover new associations is limited.

2. The associations of Auto-CM algorithm are also well supported, but the number
of its specific connections is also high.

3. Around 1/2 of the associations of ED algorithm are supported by the other
algorithms, but most of these associations are singular (47.76%).
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4. The basic associations of SOM algorithm are partially supported by the other
algorithms, while its creativity is fairly high (52.65%).

5. The associations of PP algorithm are very creative (81.63%), while the number
of its associations supported by the other algorithms is very low.

18.4.3 The Models Fusion Methodology (MFM)

When we use Autopoietic systems, such as non-supervised ANNs, it is not easy to
establish which algorithm is more consistent than the others. In this kind of situation,
the only “gold standard” is to explore every algorithm hypothesis on the field.
But these algorithms should undergo an organization using some sort of detective
strategy. Therefore, we need to define “a priori” criteria by which we can decide
which of the proposed links are more believable.

Because each one of these presented algorithms follows a different mathematical
foundation, the best way to decide on a ranking is to test them:

1. Each of these algorithms proposes a specific tree of dependencies (the MST)
among the variables contained in the same dataset.

2. The goal is to select one graph, from all the trees, whose links to variables are
the more robust and believable.

3. Thus, we overlap all the individual trees and retain only the connections selected
at least by two different algorithms; in other words, if two different algorithms,
using a different a mathematical basis, outlines the same link between two
variables, then it is more probable that the link between these two variables
is “real.”

Consequently, the generate graph can contain some fascinating features:

1. There may be cycles in the resulting graph.
2. The resulting graph could be disconnected (see Fig. 18.8).

Working in this way, we have discovered a new scenario: the graph generated by
the fusion of the different methods is a disconnected graph divided into at least four
frames:

1. The variables without links: 16 of the analyzed variables belong to this group:

Sexual Offenses (typically one)
Sexual Offenses (typically two)
Offenses against Property (typically one)
Violence on the Arrest (typycally one)
One year from the last Conviction
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Fig. 18.8 The final graph of the associations among variables

Two years from the last Conviction
3–5 years from the last Conviction
11–20 years from the last Conviction
East Europe Nationality
Sex: Female
Fraud Offenses (typycally one)
Fraud Offenses (typycally between 2 and 5)
Residence borough not available
Non UK Nationality
Result of Enquiries (typically two)
On Bail at the time of Offence (typically one)

For this particular set of variables, it is not possible to make any specific
inferences. Perhaps, in some cases, the number of records is too small, or too
different, to be properly compared with each other. In any case, these variables
lack even the minimum of convergence to be considered and are thus dismissed
from further inquiry.

2. The apparent set of twin variables: 28 variables are clustered into 14 couples,
but each couple is completely disconnected from all the other variables of the
dataset; 12 of these couples represent the link between the “borough of the
arrest” and “the borough where the arrested person lives”:
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The remaining two couples point out a specific relationship between national-
ity and behavior, and nationality and ethnic group:

Irish Offenses against persons (typically 2)
Middle East Arab

This clustering signifies that more than one algorithm has found a strong
relationship between the two variables, but this link is the only one.

3. The next frame is formed by groups of three and four or more variables, with spe-
cific links to each other, clustered in small isolated worlds (see Fig. 18.9a–e):

(a) “Other law enforcement agent” is the common point linking “controlled
delivery” and “search of object.”

(b) Persons whose age is between 35 and 45 have their first conviction in that
same interval of age.

(c) Persons living in Kingston upon Thames are arrested in the same borough
(and this seems to be typical), but with these persons, the agents typically
declare they are not able to define their gender.

(d) Persons arrested in Lewisham often live in the same borough but typically
are arrested many times in a non-direct mode.

(e) Persons arrested in Redbridge often live in the same borough, but typically
their arrest mode is not declared by the police.

(f) Persons over 45 received their last conviction 20 years ago and typically
return to commit further offenses.

(g) Persons not arrested in direct mode are obviously arrested in other ways,
often as a result of inquiries.

(h) MDMA is typically found by non-law enforcement agents. They arrest the
people involved taking them in custody. This is typical in the borough of
Wandsworth, the same place in which the persons arrested live.
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Fig. 18.9 a, b, c, d, e



18 Data Mining Using Nonlinear Auto-Associative Artificial Neural . . . 473

(i) There is one graph about Asian world: Asian people, with Asian nationality,
are arrested fundamentally in two boroughs: Tower Hamlets and Hounslow,
where typically these people also live. But Asian people of Hounslow have
interesting features: they have already been arrested more than one time in a
violent mode because the offenses are against other people; this quite often
resulted in them being on bail at the time of the offence.

(j) The last small world is about the direct arrest of violent people, with firearms
and other weapons; the most of these people are older criminals with an
impressive record in drug trafficking and other types of offenses. Typical
places where these persons live and where they are arrested are Waltham
Forest and Ealing.

Of course, the other 146 variables are connected in the one main graph. Each one
of these connections has been established by at least two independent algorithms,
so they should be quite strong and robust. This main graph (see Fig. 18.10) shows
many cycles, and its deep analysis should take many pages. In any case, if we look
only at the positions of the four drugs and their neighbors, we can define a robust
and synthetic prototype of each drug (see Fig. 18.10a, b).

Table 18.9 should be a road map for the antidrug strategy on London: this tells
us into which boroughs police should look and for which type of drug, which kind
of person a particular criminal record, which tactic to use, etc.

18.5 Conclusion

This chapter provides a thorough example of how one should apply nonlinear auto-
associative systems to data analysis. For this reason, we have shown both the data
and the equations in sufficient detail such that a thorough understanding of the
method and its operation could be understood.

Nonlinear auto-associative systems are often known with the generic name of
non-supervised artificial neural networks (ANNs). These systems, indeed, represent
a set of powerful techniques for data mining, and they do not deserve a generic
name. We propose to name this set of ANNs “autopoietic ANNs” (i.e., systems that
self-organize their behaviors).

Autopoietic ANNs constitute a complex domain of differing topologies, learning
rules, signal dynamics, and cost functions. Consequently, their mathematics can be
very different from one another, and their capability to discover hidden connections
from the same dataset can also be very different. This aspect is both the strong point
and the weak point of these algorithms.

All the autopoietic ANNs, in fact, tend toward one goal, that of taking a dataset
and determining how each (independent) variable is associated with each other,
taking into account the nonlinear associations involved in parallel, many-to-many
relationships. But, because of the mathematics specific to each one of these
algorithms, the final outcomes on any particular application taken on the same
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Fig. 18.10 a The three drugs zoomed. b Cannabis zoomed

dataset can be quite different. Consequently, when we apply different autopoietic
ANNs to the same sample of data, we can find from the learning process different
frames of associations existing among the same set of variables. The problem, at
this point, is to determine which of these frames is more grounded? If the dataset
represents a real situation, which one of these frames organizes a productive strategy
of manipulation into the real world?

A weak, but politically correct, answer could simply be that every algorithm
shows some different feature of the same world. It is up to the researcher to know
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Table 18.9

Drugsa First order neighbors Second order neighbors

Crack Jamaican Afro-Caribbean
Age of first Convictions(28–33)

Covert Purchase Arr Kensignton and Chelsea
Drugs Offenses (over 10)
Arrest in Direct Mode (over 5)

Heroin Arr Haringay Home Haringay
Arr Greenwhich

Turkish-Cypriots Dark-European
Arr Baking and Dagenham

NumOfDrugSeizures(over 5) Drug Trafficking Offenses(over 5)
NumOfArrests(over 3)
Cocaine

Cocaine InOperation(1)
SAME (South Americans)
NumOfDrugSeizures(over 5) Drug Trafficking Offenses(over 5)

NumOfArrests(over 3)
Heroin

Cannabis Convictions Number (2) Offenses Number(3–5)
Age(18–21) First Conviction Age(up to 18)
Tactic Search of Persons Tactic Search of Premises

Drug Offenses (3–5)
Drug Possesion Offenses
Num of Drug Seizures (1)
Age(21–25)
Num of Tactics(3)

Tactic Search of Premises Tactic Search of Person
White European
Num of Tactics(3)
Num of Drug Seizures (3–5)
Num of Cash Seazures (over 1)
First Conviction Age(22–27)

MDMA Non-Law Enforcement Agent Arrest Mode : Given into Custody
Arrest: Wandsworth Home: Wandsworth

aPrototypes of the five drugs according to the MFM

which of these features are the more robust and fundamental than the others. In fact,
strategies and actions in the real world are expensive, and one should spend one’s
energy aiming directly at the critical points of a real situation. The main target of
data analysis is exactly this point.

When we use supervised ANNs or other types of supervised classifiers, this kind
of problem dissolves away because our dataset presents dependent variables. We
need to believe that these dependent variables represent the “gold standard,” and
consequently, we can size the effectiveness of our supervised algorithms following
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different and robust validation protocols such as K-fold cross validation, 5 � 2 cross
validation, training–testing-prediction protocol, etc.

Using autopoietic ANNs, we do not have dependent variables, so we lack a “gold
standard.”

Quite frankly, many validation protocols were proposed to analyze the perfor-
mance of autopoietic systems (see Buscema 1998), but all these validation protocols
seek to control the self-consistency and the flexibility (capability to react in similar
ways to unseen inputs, when the last ones are similar to known inputs) of the
autopoietic ANNs.

It is not enough.
The only effective validation protocol for these systems should consist of a field

analysis in which the researcher is able to control the association schemes. This
is the best of the possible worlds, following the right methodology to execute a
validation on the field; but this way has some counter-indications: first, it is a very
expensive method (the number of possible connections among N variables is 2N ,
considering only the limit case where each connection can be present or absent),
and the target of data mining should be known a priori.

For these reasons, we have proposed a new probabilistic way to validate the
performance of autopoietic ANNs when used for data mining. The methodology
is organized in the following steps:

1. Select a representative dataset from a real situation: Here, we have selected a
database of those individuals arrested in London for drug trafficking during a
sequence of 4 months.

2. Select the ANNs: We have chosen two very powerful and very different au-
topoietic ANNs, the Auto-Contractive Maps (Auto-CM) and the Self-Organizing
Maps (SOM) networks. These two algorithms represent completely different
mathematical foundations (topology, learning rule, signal dynamics, and cost
function), but they have the same general goal: to analyze the global similarities
of the records of a dataset according to their variables, including the nonlinear
associations among the variables themselves.

3. Select a filter by which the results can be compared and visualized: We have
chosen the minimum spanning tree (MST) as the filter to synthesize the main
associations among variables that the two autopoietic ANNs have found at the
end of their learning process. The MST has many suitable properties, especially
its capability to put in evidence the fundamental backbone of a structure. In this
case, the “structure” is the matrix of associations among variables generated by
each one of our autopoietic ANNs.

4. Define a criteria by which the ANNs can be assessed as to their success in finding
proper associations between variables: We have selected three simple linear
algorithms, very different from each other and very robust and mathematically
well grounded:

(a) The linear correlations algorithm (LC) is based on the covariance of any pair
of variables.
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(b) The prior probability algorithm (PP) is based on the probabilistic co-
occurrence of any pair of variables.

(c) The Euclidean distance (ED) is based on the assumption that the distance
from any one variable to another is on a flat space of N dimensions.

These three algorithms are orthogonal to one another, but at the same time,
each one of them is able to act very robustly, but they can also sometimes find
trivial relationships among variables. We have used these three algorithms as
“sapiens sauvage,” that is to say, they have not been prepped to discover either
nonlinear relations among variables or complex many-to-many associations, but
they are very expert at discovering evidence in data. Most importantly, each of
these algorithms is oriented to seek out evidence from the data but to do it in
different areas of a data space consisting of all possible associations.

Using these three algorithms as “basic analysts,” we are then able to under-
stand when the associations found by the two complex autopoietic ANNs are:

(a) Evident for one or more of the “basic analysts”
(b) Original and supported by the two ANNs together
(c) Original and supported by only one of the two ANNs
(d) Evident for at least one of the “basic analysts,” but unseen by one or both the

ANNs

5. Compare and conclude: At this point, we have generated the MST of the five
algorithms (the three basic analysts and the two ANNs), and we have made a
point to point comparison among them. The goal of this match is to create a
new graph in which only the associations among variables, supported at least
by two algorithms, are present. Obviously, each connection will have a different
membership of plausibility according to the number of algorithms supporting it.
In the same way, each connection will also have a different grade of originality,
if supported only by the ANNs (if the number of ANNs in our experiment are
more than two, the cutoff of two algorithms to accept the connections will work
all the same).

Using this methodology, which is named the models fusion methodology
(MFM), we can produce a sparse graph (some nodes and/or groups of nodes
disconnected from the others), with many varied and complex cycles. This is
actually quite good. It is now possible to know which variables we can say nothing
(nodes isolated), which ones we can say “something” (group of nodes but still
isolated), and which simple or complex circuits (cliques) are grounded into the
dataset.

Obviously, we might need to utilize more than two ANNs in order to deeply
analyze a dataset. In the experiments presented here, if only one ANN finds a link
between two variables, then there is some risk in removing the link for we have
only used two ANNs. If, however, the artificial biodiversity of autopoietic ANNs is
increased to three or more, then the possibility of arriving close to the “soul” of any
dataset is possible.
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Chapter 19
Artificial Adaptive System for Parallel Querying
of Multiple Databases

Massimo Buscema

19.1 Introduction

Artificial neural networks (ANN) have become a scientific asset acquired for
drawing up complex databases (see Rumelhart et al. (1986) for a general presen-
tation of the field, and Hebb (1961) and Hopfield (1982) for the first nonlinear
auto-associative ANNs). Generally speaking, ANNs are designed to process bi-
dimensional data matrices: a vector of rows, or records, and a vector of columns,
or attributes (variables). Huge difficulties emerge if it is intended to process several
databases through a single ANN consisting of variables and records that are
conceptually different and of varying cardinality.

Such a requirement may seem arbitrary: a dataset that describes the aromatic
characteristics of a sample of various wines does not seem to have anything to
do with a dataset reporting the values of the variables of environmental pollution
in various parts of a city. And yet, if the wines in question are produced by
vineyards located near the city in question, it becomes relevant to understanding
the complex interaction between the two datasets. Therefore, in order to process
different databases through the same artificial system, there must be semantic links
and syntactic links to which the different databases comply.

The main semantic link is that all databases that that are to be processed together
involve data whose origin is in the same space-time region. In other words, they
must be databases that sample the same reality from different points of view.

It is a conceptual link: if the different types of data of the different datasets
are conceptually different samplings of the same reality, then it makes sense to
reproduce in the analysis phase the interaction that these different types of data
have in the same reality. The semantic link provides the necessary conditions which
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Drug trafficking in London
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Fig. 19.1 The three datasets (an example)

permit several databases to be processed through a single artificial system, but this
condition is not sufficient in itself. In order to make it possible, a syntactic link of
this type must be satisfied:

the different datasets must have some variables in common so that, assuming the dataset as
nodes of a graph and the variables in common as arcs of the same graph, the graph that is
obtained is at least a tree graph.

A variable can be considered common to two or more datasets if its format and
its statistical nature are the same in the different dataset. The following example
illustrates this point (Fig. 19.1).

Each of these three datasets has variables and records that are different in quality
and quantity: the first contains the characteristics of people arrested for drugs; the
second contains the characteristics of the different drug seizures in London; the
third characterizes the different actions carried out by the police when combating
drug trafficking in London.

However, all three datasets concern drug trafficking in the same space and time
interval. Therefore, it can be hypothesized that the data contained in the three
datasets come from the same reality, sampled from different perspectives (semantic
link). Furthermore, it is possible to move from any one dataset to any other through
the existence of common variables (syntactic link).

19.2 The ALOC System

We define an ALOC (At Least One Connection) system as an artificial adaptive
system able to process several databases in parallel, when the databases in question
satisfy the semantic and syntactic links defined above.

Having verified the two conditions that define the applicability of the ALOC
system, the following steps must be completed:

(a) Choice of the equations establishing the relationships between each variable and
each other variable in each dataset

(b) Choice of the equations allowing development of all the variables of each
dataset in parallel

(c) Choice of the equations allowing development of each record of each dataset in
parallel
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19.2.1 The Prior Probability Algorithm

The prior probability algorithm (PPA) defines the strength of the link between all
pairs of variables within a dataset, depending on the frequency of their concordances
and discordances (for a first definition of this rule, see Rumelhart et al. (1986); for
a more precise formalization in terms of equation, see Buscema (1995a, b)).

The more two variables are concordant, the more their link will be represented
by a positive number proportional to that concordance. The more two variables
are discordant, the more their link will be represented by a negative number
proportional to their discordance. The greater the similarity between the number
of concordances and discordances in a pair of variables, the more that particular
link will be represented by a number close to zero.

PPA Equation:
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where:

Wi, j D association strength between any couple of variables xi and xj of the assigned
dataset

xi D value of the ith variable in the kth record, scaled between 0 and1
N D number of records of the assigned dataset
M D number of variables of the assigned dataset

The first summation, normalized with 1/N in the numerator, expresses with a
fuzzy truth value (from zero to one) the presence (in the dataset) of discordant values
in mode 1-0 for the variables ith and jth, respectively. The second summation, on the
other hand, expresses a similar truth value for the opposite discordance of type 0–1.
The numerator, obtained as a product of the normalized summations, then expresses
a fuzzy truth value because of the simultaneous presence in the dataset of discordant
variables in both modalities.

Similarly, the denominator expresses a fuzzy truth value because of the si-
multaneous presence in the dataset of concordant variables in the mode 0-0 and
1-1. The relationship between denominator and numerator therefore expresses the
predominance of discordance over concordance with a value greater than one. The
negative of its logarithm transforms nonlinearly the predominance of discordance
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into negative values and the predominance of concordance into positive values.
Having assigned a dataset, the strength of the link between all the pairs of variables
that can be formed by fixing a variable xi with all other xj, can be determined in
terms of quantity of information together with the level of the pairs’ concordance
(xi ,xj) in the mode 0-0 and 1-1, and discordance in the mode 1-0 and 0-1.

In practice, after having normalized all the values of the variables of all the
records of each dataset between 0 and 1, we apply the label similarity that deals
with the values of each variable xi with any other xj the concordance of the values
close to one another.

In each dataset, assuming variable xi as a reference, for each pair (xi , xj) (with
i and j D 1, 2, : : : , M), there is a strength associated with each pair represented
by the link wi, j between them, with all their values assumed in all the M records
contributing to its definition. This strength is quantitatively given by the value wi, j.
It must be determined by the quantity of concordant and discordant information
carried by all the pairs of values of the variables that it is possible to generate with
each reference variable xi and placed in a pair with the xj’s, for j D 1, 2, : : : , M.

This is allowed because the argument of the logarithm shown in Eq. (19.1) can
be interpreted as the ratio between the probability that the variables xi and xj of the
entire dataset are concordant in the mode 0-0 and 0-1 and the probability that these
variables are discordant in the mode 1-0 and 0-1.

In actual fact, the logarithm of each probability can be interpreted as a quantity
of information, and so, these are added up algebraically, determining in this way the
force of their link whose value is assigned to the weight wi, j.

wi;j D � ln
P1�0 � P0�1

P0�0 � P1�1

D ln
1

P1�0

C ln
1

P0�1

� ln
1

P0�0

� ln
1

P1�1

D I1�0 C I0�1 � I0�0 � I1�1;

where

P1-0 is the probability that the pair of variables (xi ,xj) are discordant in the mode
1-0

P0-1 is the probability that the pair of variables (xi ,xj) are discordant in the mode
0-1

P0-0 is the probability that the pair of variables (xi ,xj) are concordant in the mode
0-0

P1-1is the probability that the pair of variables (xi ,xj) are concordant in the mode
1-1

Similar significance for the quantity of information I1-0, I0-1, I0-0, I1-1.

The values of the links between variables as defined by Eq. (19.1) represent the
weights that regulate the activation of each variable in relation to each other in a
specific dataset.

The weights matrix generated by Eq. (19.1) is a square symmetric matrix whose
main diagonal presents the oriented threshold values with which each variable tends
to be excited or inhibited.
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Table 19.1 The first datasets Dataset Name Sex Status

Addicted MALE FEMALE Single Married

ART 1 0 0 1
AL 1 0 0 1
LARA 0 1 1 0
CLYDE 1 0 0 1
MIKE 1 0 0 1
JIM 1 0 0 1
GREG 1 0 0 1
JOHN 1 0 1 0
DOUG 1 0 0 1
NED 1 0 1 0
KARL 1 0 0 1
KEN 1 0 1 0
EARL 1 0 1 0
MARY 0 1 0 0
OL 1 0 0 1
ANNIE 0 1 1 0
DAVE 1 0 1 0
SARAH 0 1 0 1
SAM 1 0 0 1

Table 19.2 The second dataset

Dataset name Gang Education Status

Persons arrested JET SHARKS JH HS Single Married

LANCE 1 0 1 0 0 1
GEORGE 1 0 1 0 0 1
PETE 1 0 0 1 1 0
FRED 1 0 0 1 1 0
GENE 1 0 0 1 1 0
RALPH 1 0 1 0 1 0
PHIL 0 1 0 1 0 1
IKE 0 1 1 0 1 0
NICK 0 1 0 1 1 0
DON 0 1 0 1 0 1

For example, given three datasets (Tables 19.1, 19.2, and 19.3):
Let us suppose that these three datasets describe the same slice of reality in some

specific city.
Furthermore, between the three datasets, there are common variables that allow

the graph being formed by the three datasets to be coherent.
In the model that we are considering, it is not at all necessary that the

commonality of two variables between two datasets has a semantic value of the
father-son type between the records. In fact, the only requirement is that the
two variables in the two datasets assume modalities (values) belonging to the
same set.
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Table 19.3 The third dataset

Dataset name Sex Family

Police team Male Female No children With children

Adam 1 0 1 0
Mandeep 0 1 0 1
Zoe 0 1 0 1
Paul 1 0 1 0
Caroline 0 1 0 1
Geoff 1 0 1 0
Andy 1 0 0 1
Charles 1 0 1 0
Tommy 1 0 1 0

Table 19.4 The first dataset
weights

Addicted MALE FEMALE Single Married

MALE 1:3218 �21:2313 �0:6931 1:7918

FEMALE �21:2313 �1:3218 0:6931 �1:7918

Single �0:6931 0:6931 �0:539 �12:9123

Married 1:7918 �1:7918 �12:9123 0:3185

Table 19.5 The second dataset weights

Persons arrested JET SHARKS JH HS Single Married

JET 0:4055 �21:5987 1:0986 �1:0986 0:6931 �0:6931

SHARKS �21:5987 �0:4055 �1:0986 1:0986 �0:6931 0:6931

Junior School 1:0986 �1:0986 �0:4055 �21:5987 �0:6931 0:6931

High School �1:0986 1:0986 �21:5987 0:405 0:6931 �0:6931

Single 0:6931 �0:6931 �0:6931 0:6931 0:4055 �21:5987

Married �0:6931 0:6931 0:6931 �0:6931 �21:5987 �0:4055

Table 19.6 The third dataset weights

Police team MALE FEMALE No Children With Children

Male 0:6931 �21:5218 12:0238 �12:0238

Female �21:5218 �0:6931 �12:0238 12:0238

No Children 12:0238 �12:0238 0:2231 �21:6271

With Children �12:0238 12:0238 �21:6271 �0:2231

Applying Eq. (19.1) to each of the three datasets, the three weight matrices
regulating in each dataset, the relationship between each variable, and the others
are obtained (Tables 19.4, 19.5, and 19.6):

At this point, it is possible to represent the relationships between all the variables
of each dataset through a single a-directional graph, connected and weighted, where
the weights calculated through Eq. (19.1) ensure passage from one node to any other
(Fig. 19.2):
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Fig. 19.2 The variables of all three datasets form a single-weighted graph connected through the
common variables

At this point, the three datasets chosen as an example form, through their
variables, a single network of ten nodes, weighted by bidirectional connections.

This network can be considered a monolayer neural network with a complete
mesh if a zero value is assigned to all the possible connections but not defined
through the algorithm PPA. This assignment is perfectly correct, as a connection
with zero value indicates a relationship of indifference between the two con-
nected nodes.

Therefore, the ALOC system makes it possible, under precise conditions, to pass
from N datasets, differing in their type of data, to a monolayer network defined by
the non-repetitive aggregation of the variables of each dataset and by symmetric
connections with a complete mesh, weighted by a known interval of values.

19.2.2 The Constraint Satisfaction Networks

A monolayer network with a complete mesh with symmetric connections can be
easily queried with a known maximization algorithm using the following cost
function (Rumelhart et al. 1986; Buscema 1995a):



488 M. Buscema

G.n/ D
N �1X

iD1

NX

j DiC1

wi;j � ui.n/ � uj.n/ C
NX

i

wi;i �
NX

i

Ii � ui.n/; (19.2)

where:

n D activation cycle of the system
w D weights and threshold for each node, defined by the PPA algorithm
u D internal and output state of each node
I D value of the external input to each node
G D function to be maximized
N D number of all the variables of all the datasets

The constraints satisfaction network (CS) is a neural network dedicated to the
maximizing of Eq. (19.2).

The kind of activation equations of the CS nodes permits the maximization of the
value of each node in compliance with the values of the weights that are fixed with
the link function.
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The ALOC system uses the CS networks algorithm to query the network of all the
datasets analyzed. The CS algorithm transforms the network of connections created
through the PPA algorithm into a dynamic system capable of receiving external
input (user requests) and reacting to these inputs by appropriately activating its own
nodes (the variables).

When the system is activated from an external input, all the variables of the
system begin to interact and modify their internal state in accordance with the
value of the previously defined connections (weights). The variables connected by
positive weights tend to have their state values increased by supporting one another,
while receiving inhibitory thrusts from the variables connected to them by negative
weights.

This complex dynamic of interrelationships occurs in parallel, and the entire
system proceeds nonlinearly toward a global state of equilibrium in which the
greatest number of variables is highly active in compliance with the excitatory and
inhibitory values of the weights that link them.
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Technically, the system is considered stable, and therefore closed, when the
following equation is true:

G.nC1/ � G.n/ D " (19.4)

where

" D a positive value close to zero
n D the system’s parallel activation system
G D the system’s cost function defined in Eq. (19.2)

Therefore, the ALOC system acts as a content-addressable memory: if the user
enters an external input of any variable at the maximum value (i.e., Var D 1),
the entire system begins to evolve trying to activate all the variables significantly
connected to the variable in question. The result will be a vector of active variables
that constitute the “prototype” or the “frame” of the variable externally activated. In
other words, it is as if the ALOC system defined the typical frame within which that
variable becomes active.

From this point of view, the ALOC system acts as a structured query language
(SQL) capable of interpreting the user’s requests semantically. A traditional SQL
searches in a database for the words requested and for the logical connections
between those entered. The ALOC system, faced with a similar request, generates
the frame of all the variables connected to those requested through semantic
similarity.

19.2.3 Records Resonance Networks

Each managed variable of ALOC is distributed among the records of the dataset to
which that variable belongs.

The various records may differ from one another in their conceptual nature,
according to the dataset that they depend on: the tactical actions of the police in
pursuing criminal activity are a different conceptual object from “person arrested
for drugs.” However, all these records, even in their diversity, are defined by specific
variables that are connected with one another directly or indirectly. Therefore, each
record, in theory, can be activated by the variables that define it and inhibited by
the variables that do not define it. Furthermore, all the records, irrespective of their
conceptual diversity, can enter into competition with one another, as different words
compete with one another to enter and form part of the same phrase. If in the case
of a phrase the criterion that selects the words in competition to express the sense
of what is intended for expression, then in the case of the records, the selection
criterion is the agreement of the records activated by the active vector in each cycle
of the variables.

Therefore, in the ALOC system, the dynamic of the variables determines
the dynamic of the records, but not vice versa. The algorithm that defines the



490 M. Buscema

development of the records is a competitive algorithm determining the value of each
record on the basis of the variables value impacting on that record and according to
the value of all the other records of its dataset.

In short, during the evolution of the system, the records coming into greater
resonance with the set of all the variables tend to be activated.

The algorithm chosen to develop this evolution through resonance is already
known in the literature as an IAC (interactive activation and competition) network
(Buscema 1995b; Rumelhart and McClelland 1982; McClelland and Rumelhart
1988a, b; Massini 1998). However, the equations that describe IAC have undergone
a specific reworking carried out on behalf of the ALOC system.
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where:

Nk D number of the variables of the kth dataset
Mk D number of the records of the kth dataset
Rk, i, j D original value of the ith record of the kth dataset – Rk, i, j 2[0,1] – in the jth

variable
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Equation (19.11) operates a dynamic ranking proportionate to each cycle to show
the order with which the different records respond to the stimuli of their internal
evaluative dynamic and of the variables defining them.

The power of these equations lies in many factors:

1. The records of each dataset interact as a pull of reciprocally inhibitory units (Eq.
(19.7)). The value of reciprocal inhibition is equal to the mean of their activations
in each cycle. Therefore, in the initial phase (cycle #1), when the activation of
each record is nil, the inhibitory value between records of the same dataset is also
correspondingly nil.

2. The records of different datasets do not interact with one another. In fact, they
represent units that are compatible with one another, as each dataset samples a
different aspect of the same reality.

3. The records of each dataset do not have feedback on the value of the variables.
In fact, they represent meta-units, each of which is composed of other units that
are the variables identifying them. Saying that the records are meta-units means
that these nodes are recognizable only as vectors of variables in which the value
of autonomous entities is recognized at a higher level (meta). Therefore, the
records of each dataset interact with one another through the vectors of variables
representing them.

4. The equations that govern the interaction between variables are different from
the equations that govern the interactions between records. The variables, in fact,
interact globally (all with all), through a maximization algorithm (CS algorithm);
the records, on the other hand, interact locally (they receive input only from
the variables and from the records of their datasets), through a competitive
reinforcement algorithm of similarity and dissimilarity (IAC algorithm).
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19.3 The ALOC System: Observations

The ALOC system represents a new and semantically relevant mode for finding
hidden relationships between many datasets, different in terms of variables and
records, but linked to the same reality.

The ALOC system operates in accordance with the principle common to all
the semantic memories belonging to the biological type: given a detail, the system
reconstructs its context (other variables) and is able to list the typical experiences
(records) that support the validity of that reconstruction.

The ALOC system dynamically creates links between variables from different
datasets according to the stimuli that it receives. These links are modified during the
answering process according to the fuzzy similarity between variables and records,
and to the competition and cooperation between the variables themselves. This
process also allows the ALOC system to propose combinations of variables that
are not present in any record of any datasets processed in that mode. However, these
original combinations describe the best prototype that can be generated from the
initial links (“external input”). Therefore, the ALOC system is able to make basic
abstractions from the data.

The cost function that characterizes the ALOC system allows us to interpret its
answers as a sort of optimum strategy aimed at maximizing the initial conditions
from which the elaborative process started.

With this in mind, let us imagine having three datasets that are concerned
with drug trafficking in London over a specific period of time. The first dataset
concerns the persons arrested for drug trafficking, the second describes the different
police officers involved against drug trafficking and the third addresses the drug
seizures carried out. Let us also imagine that some common variables exist between
these three datasets: for example, the type of drugs seized, what motivated the
arrest, how it was targeted by the police action and the place (borough) in
which the seizure took place, where the person was arrested and from what
point or perspective did the police initiated the action. Lastly, let us imagine
that among the data present in the dataset of the police actions, no action is
present that targeted action against any type of drug, such as cocaine. At this
point, we can force the ALOC system to maximize the value of the variable
“cocaine” (external input), in order to find out what prototype context it will
generate.

At the end of processing, we should have the following information:

1. Which variables characterize the prototypical cocaine pusher?
2. Which variables describe the seizures in which huge quantities of cocaine are

typically found?
3. How must the police actions be explicitly aimed to combat cocaine effectively?
4. Which arrests, seizures, and police officers support an optimal strategy against

cocaine trafficking?



19 Artificial Adaptive System for Parallel Querying of Multiple Databases 493

The ALOC system can therefore be defined as a semantic memory capable of
creating several cognitive maps from different data and coordinating these maps
with one another in order to generate interpretative and abstract hypotheses based
on the original data.

19.4 The Three Datasets About Drug Trafficking in London

From 2004 to 2006, the London Metropolitan Police in partnership with Semeion
Research Centre of the Sciences of Communication (Rome, Italy) activated the
Central Drugs Trafficking Database (CDTD). The main target of this project was
to organize all the data about drug trafficking in London into a relational database to
secure a new powerful method for intelligence gathering using a new set of artificial
intelligence algorithms patented by Semeion over the last several years.

The results of this project were included in a special report dated March 2006.
The report was evaluated enthusiastically in May 2006 by independent British
academics. Actually, the CDTD project is awaiting management and continuance
from the new MET Intelligence Bureau (MIB) (Source: MPS Drugs Strategy2007–
2010 and Delivery Plan, Chapters 6.1–6.13).

In this chapter, we will use ALOC system to investigate three datasets:

(a) The first one is composed of 1,117 records of persons arrested in London due
to drug trafficking. Each person is identified by 28 macro-variables taken from
information gotten from five different sociological fields (see Table 19.7). These

Table 19.7 Sociological
areas and macro-variables of
the persons dataset

Persons

Macro-variables Number of atomic variables

Gender 3

Home residence 33

Arrest place 33

Nation group 12

Ethnicity 6

Age class 6

Convictions number 8

Offenses number 8

Age at the first conviction 8

Age from the last conviction 7

Type and number of offenses 57

Number of arrests 4

Number of drug seizures 5

Types of drug 5

Quantity of money 9

Tactic and modality of the arrest 42

Total variables 246
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Table 19.8 Macro-variables and atomic variables of the seizures
dataset

Seizures

Macro-variables Number of atomic variables

Type of tactics 16

Place of the operation 27

Type of drugs 7

Modality of the arrest 5

Ethnic data of the arrested 19

Number and gender of the arrested 3

Age of the arrested 4

Trafficking level of the arrested 3

Total variables 84

Table 19.9 Macro-variables
and atomic variables of the
officers dataset

Officers

Macro-variables Number of atomic variables

Agent age 4

Agent gender 2

Officer rank 4

Years of service 3

Agent ethnicity 14

Arrested ethnicity 6

Arrested gender 2

Agent tactic 5

Total variables 40

macro-variables have been expanded into 246 atomic variables. We have binned
the numeric variables and have considered each option contained in categorical
variables as independent variables (called the persons dataset for short).

(b) The second dataset is composed of 848 records. Each record organizes the
same data of the first dataset but from the point of view of seizure (see
Table 19.8): we have expanded each seizure into 84 atomic variables, with the
same methodology that we have adopted for the dataset of the arrested persons
(called the seizures dataset).

(c) The third dataset is composed of 467 police tactics describing the police officers
(see Table 19.9) that the police used to arrest the persons of the first dataset and
to secure the seizures of the second dataset. Each police officer involved in one
tactic is characterized by 40 atomic variables (called the officers dataset).

These three datasets have many shared variables, connecting each dataset to the
others:

(a) 39 variables shared between persons dataset and seizures dataset.
(b) 13 variables shared between persons dataset and officers dataset.
(c) 7 variables shared between officers dataset and seizures dataset.
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This structure permits application of the ALOC system.
ALOC works globally with 370 variables and 2,432 records. In other words,

the matrix of the connections of ALOC will be composed of 3,924,201 weights:
68,265 among variables, 2,956,096 among records, and 899,840 between variables
and records.

19.4.1 The ALOC System and the Prototyping Questions

As we have previously stated, an auto-associative ANN, once trained, is able to
dynamically answer many different types of questions that are content oriented (see
previous applications in Diappi et al. 2004a, b; Buscema et al. 2006):

1. Prototypical questions: What is the prototype of a crack dealer or a cocaine dealer
and similar kinds of inquiries?

2. Virtual questions: Give me the prototype of a cocaine dealer without any
precedent convictions; these questions are possible even if this combination of
features is not present at all.

3. Impossible questions: Give me the prototype of an arrested person, young and
old at the same time, even if this combination does not exist in the assigned
dataset. But this question could make sense: we seek the common links, if they
are present, among young and old dealers.

In the ALOC system, these questions take on a special interest because we can
take information coming from a variety of datasets and connect them to form one
prototype. Consider this fact: in the person dataset, the arrests that occurred due
only to cocaine are really few. The reason is that a dealer usually has small quantity
of cocaine combined with a much larger quantity of other drugs. At this point, it
might be useful to ask ALOC to maximize only the cocaine seizures (in the seizures
dataset), disregarding the seizures of the other drugs.

ALOC will design the profile of a dealer specializing in cocaine, including the
places in which he/she can be arrested, where it is possibly that he/she lives, which
police tactics have a greater chance of success, and also the optimal composition of
the police team to find this profiled dealer.

19.4.2 The Cocaine Prototype

The first question to pose to ALOC is to arrange the prototype of cocaine dealer.
The cocaine profile is quite complex for many reasons:

(a) The MPS itself declares that the cocaine network is very hard to understand.
(b) We did not find specific strategies against cocaine trafficking in New Scotland

Yard.
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Table 19.10 The cocaine prototype (in bold the differences with cannabis
prototype)

Cocaine dealer prototype

Persons dataset
Gender Female
Home Redbridge, Greenwich
Nation group Europe, NonUK,Turkey-Cyprious,Veitnam
Etnicity Dark European or Oriental
Age of the persons Over 45
Convitcions number Zero or one conviction
Offenses number Zero or one offence
Age at the first conviction From 28 to over 51
Drug offenses number Zero or one drug offence
Other offenses None
Place of arrest Barking and Dagenham,Bexley, Newham,Redbridge
Other drugs Cannabis
Cash at the arrest No cash
Arrest mode Given into custody
Type of police No-Law Enforcement Agent
Type of tactic Search of premises, controlled delivery
Type of Arrest Direct arrest, no violent
Seizures sataset
Type of tactic Search of premises with warrant
Place of the arrest Newham
Other drugs Cannabis
Nunber of persons arrested one male british
Etnicity Asian, Oriental, Pakistan, India, Bangladesh
Age of arrested person less than 25
Level of trafficking Third Level
Officers dataset
Agent age From 25 to 35
Agent gender Female
Agent service years range Between 5 and 15 years
Agent official rank DC
Agent etnicity White British
Arrested etnicity Dark European or Oriental
Arrested gender Female
Type of tactic Search of premises

(c) The majority of seizures found only small quantities of cocaine, and then it was
always mixed with other drugs.

When we asked ALOC to define the prototype of the cocaine dealer, the
algorithm attained stability after a number of cycles and designed this profile
(Table 19.10):
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Many considerations are possible at this point:

1. The typical cocaine dealer is an aged female (over 45), completely away from
the usual criminal activity (no other offenses and convictions, in general). She is
an unsuspected person.

2. She comes from Europe (not UK), typically a Turkish or Cypriot citizen (so a
Dark European); she can be also an Oriental, from Vietnam, Pakistan India, or
Bangladesh.

3. Typically, these persons live in Redbridge or Greenwich, but usually, they are
arrested in Barking and Dagenham, Bexley, Newham, and Redbridge.

4. When there is a seizure, particularly in Newham, they are arrested also for
cannabis, but in this case, usually they “become” males under 25 years old. This
strange transformation, obviously, has to be explained.

5. In any case, these persons are labeled as criminals belonging to the “third level”
of drug trafficking. That is the most dangerous level of drug trafficking activity
for it represents the international one.

6. Regardless of their relevance for drug trafficking investigations, these persons are
arrested, by chance, first by private agents (no MPS Agents), and then they are
given into the custody of young female agents, with medium experience and low
officer rank.

7. No specific tactics or operations are planned for these persons, other than a
generic search of premises or a controlled delivery.

This is the final frame of the prototypical cocaine dealer. But ALOC system can
be more informative. In fact, the frame shown in Fig. 19.6 is the final attractor of
the algorithm: ALOC reaches this state after 370 cycles of dynamic negotiation
among all the variables. During this many-to-many interaction, two simple types of
dynamic can occur:

1. A variable starts to monotonically increase its value up to its maximum activa-
tion; in this case, it will be active until the algorithm becomes stable. Therefore,
these types of variables will be present in the final prototypical frame. By
watching their dynamics, ALOC allows us to distinguish three fuzzy sets of
variables:

(a) Those more quickly to be activated, that is, those that are more associated
with the prototype (strong associations).

(b) Those more slowly to be activated and thus are weakly associated with the
prototype (weak association).

(c) Those that are activated more lately in the process. They represent side
effects of the dynamics (indirect associations).

2. A variable begins to increase and, after a while, begins to decrease: in this case,
we have discovered a hidden signal within the process but not of sufficient
strength to maintain its activation up to the end. For this kind of variable, we
have either of the two choices:
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Fig. 19.3 Cocaine dealer prototype: ethnic group dynamics

(a) This hidden signal is a flickering noise designated to be absorbed by the
global dynamics.

(b) It is key information about the process, but not strong enough in terms of
frequency, to make itself fully evident.

All these cases are present in the dynamical process leading to the definition of
the cocaine dealer prototype.

In Fig. 19.3, the feature “Dark European” seems to be strongly associated with
the cocaine dealer, while the feature “Oriental” starts later as a side effect of the
activation of other variables.
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Fig. 19.4 Cocaine dealer prototype: types of tactic dynamics

In Fig. 19.4, the tactic “delivery control” has an immediate and strong association
with the cocaine dealer, while the tactic “search of premises” shows a weaker
association with the prototype.

Figure 19.5 shows that the cannabis activation is a classic late side effect of the
global process: because the number of cocaine arrests is small, while the number
of cannabis arrests is huge, and because, many times, cocaine and cannabis are
found together, it is an expected consequence that the cannabis dealer profile tends
to overlap the cocaine dealer profile.
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Fig. 19.5 Cocaine dealer prototype: types of drugs dynamics

Figure 19.6 shows an interesting “hidden signal”: the feature “SAME” (South
American Nation Group), at the beginning, increases its activation very speedily
only to maintain its activation state in a second step, and then at the end it decreases
rapidly, as if the process had changed its initial dynamic. The variable “EASTEU”
(East Europe Nation Group), at a smaller scale, presents the same dynamic.

It is known that South American people are the main actors in the cocaine
trafficking in London. What ALOC allows us to discover is a new fact: South
American people stay in the background of the cocaine traffic and probably use
Dark European females and young Oriental persons as the visible actors of their
hidden activities.

The representation of cocaine seems to be clear: cannabis covers cocaine and
Oriental and Dark European cover the South American group, as well as white-
collar females apparently cover male criminals. The result of the game is the
following: random seizures of cocaine, young and inexperienced female agents with
low officer rank, to contrast one of the more aggressive drugs in the criminal market.
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Fig. 19.6 Cocaine dealer prototype: types of drugs dynamics

19.4.3 The Crack Prototype

The prototypical profile of a crack dealer is shown in Table 19.11.
Crack dealer is the perfect picture of a very experienced delinquent Afro-

Caribbean male having problems with justice for a long time, a UK citizen, with
many offenses and convictions of different types possessing violent and aggressive
behavior.

The police use complex tactics to arrest him utilizing the more experienced and
high-ranking agent. The seizures and the arrests show a strong link between crack
and heroin, and very often the places of the arrest are the same places where this
dealer lives.

In any case, they are classified as local or regional dealers (levels 1 and 2) and do
not work at international trafficking level.
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Table 19.11 The crack prototype

Crack dealer prototype

Persons dataset
Gender Male
Home Camden, Kensington and Chelsea, Westminster
Nation group UK
Ethnicity Afro-Caribbean
Age of the persons 35–45 and over 45
Convictions number From 5 to10 to more than 20
Offenses number From 11 to 20 to more than 50
Age at the first conviction Before 18
Time from the last conviction Less than 1 year
Drug offenses number From 3 to 5 to more than 10
Theft-kindred offenses From 6 to 10 to more than 20
Offenses against person From 1 to more than 5
Offenses with offensive weapons From 1 to more than 2
Sexual offenses More than 2
Offenses against police From 1 to more than 5
Fraud offenses From 1 to more than 5
Offenses against property From 1 to more than 2
Drug trafficking offenses From 2 to more than 5
Other violent offenses Yes
Total offenses From 11 to more than 50
Number of arrests From 3 to more than 3
Number of drug seizures From 3 to more than 5
Place of arrest Camden, Haringey, Kensington and Chelsea,

Southwark, Westminster
Other drugs Heroin
Cash at the arrest No cash
Number of tactics Over 3
Type of tactic Covert purchase
Number of tactics sequences From 2 to more than 5
Arrest in operation From 2 to more than 5
Violent on arrest Yes
Direct arrest From 3 to more than 5
Arrest on result of inquiries More than 2
On bail at the time of the offence From 1 to more than 2
Seizures dataset
Type of tactic Covert purchase test in operation, detailed tactics
Place of the arrest Camden, Haringey, Kensington and Chelsea,

Southwark, Westminster
Other drugs Heroin
Number of persons arrested 1 Male
Ethnicity Not British, Afro-Caribbean, Black-Caribbean

(continued)
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Table 19.11 (continued)

Crack dealer prototype

Age of arrested person Between 25 and 35
Level of trafficking Level 1, level 2
Officers dataset
Agent age 35–45, over 45
Agent gender Male
Agent service years range More than 15 years
Agent official rank DC, PS
Agent ethnicity White British, White and Black African
Arrested ethnicity Afro-Caribbean
Arrested gender Male
Type of tactic Covert purchase
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Fig. 19.7 Crack prototype: nation group dynamics

A more detailed analysis of ALOC dynamics shows another possible profile of
the crack dealer, visible only when watching the hidden signals of the algorithm
evolution:

1. In Fig. 19.7, we can see that the variable “Jamaican” grows rapidly at the
beginning, reaches up the top of its activation, and maintains this state for a
long time. In second position, the variable “UK citizens” is activated, but at this
point the “Jamaican” begins to decrease and suddenly disappears as if these two
variables were linked by a nonlinear inverse association.



504 M. Buscema

Fig. 19.8 Crack prototype: class of age dynamics

2. Figure 19.8 shows the same typical dynamics of the hidden signals about the class
of age: young persons (25–35) are suddenly substituted by more adult persons
(35–45 and over 45).

3. Figure 19.9 presents the same process: this time, the persons with one or no
convictions are substituted by professional delinquents with a record full of
convictions.

This situation opens other scenarios with two prototypes of crack dealer: the
prototype described in Table 19.11 of a professional UK delinquent and a younger
crack pusher coming from Jamaica and without special problems within the UK
justice system. Both are Black-Caribbean, but the Jamaicans are probably the
working class of the more aged and experienced group of criminals.

A confirmation of this interpretation is provided by Fig. 19.10: the agents
involved in crack trafficking are at the beginning the officers with the lowest rank
(DC), but later, they are supported by agents with the highest rank (PS).
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Fig. 19.9 Crack prototype: class of age dynamics

This double crack dealer prototype makes sense especially if we again consider
Table 19.11; the trafficking level of these persons is also doubled: local (level 1) and
regional (level 2). It is easy to infer that the Jamaicans are involved in the streets at
the local level, while the more aged and experienced Black-Caribbean manage the
regional networks.

This job distribution is interesting particularly if we reinspect Fig. 19.7: from
the ALOC point of view, the South Americans are activated in the crack trafficking
area but for a short period of time. The hidden signal of their presence is small but
clear. If this link is true, we must consider differently the relationships of South
Americans with cocaine and crack trafficking: they could be the hidden meta-levels
of the whole drug trafficking network in UK.

19.4.4 The Cannabis Prototype

The Cannabis prototype generated by ALOC is similar to the cocaine prototype. It
seems that cannabis trafficking is an effective way to cover cocaine trafficking. The
differences between the two are few, but they are important:

1. Cocaine dealers usually are not UK citizens (European) while cannabis dealers
are in general persons with a UK passport.

2. Cannabis dealers are very young (18–21) and live sometime in Richmond upon
Thames.
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Fig. 19.10 Crack prototype: police agent rank

3. Cannabis is not associated with cocaine, but cocaine is often associated with
cannabis.

4. Cannabis dealers are usually arrested by MPS agents, while with cocaine dealers,
this is not typical.

5. Groups of males and females are arrested in cannabis seizures, while in cocaine
seizures, only one person at the time is generally arrested.

6. In seizures, the typical age of the arrested for cannabis is between 35 and 45,
while in seizures because of cocaine, the person arrested is very young (under
25) and that seems to be a masking strategy.

7. The ethnic group of people arrested in seizures is completely different: Afro-
Caribbean, Black-Caribbean, White British, and Oriental in cannabis seizures
and people from India, Pakistan, and Bangladesh in the case of cocaine seizures.

8. The persons arrested because of cocaine belong to the international level of
trafficking (third level), while for the people arrested for cannabis, the level of
trafficking is not defined.

However important these differences, the typology of agents used for these tactics
is essentially the same: MPS seems not to see the differences between these two
dealer prototypes (Table 19.12).
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Table 19.12 The cannabis prototype (in bold the differences with cocaine prototype)

Cannabis dealer prototype

Persons dataset
Gender Female
Home Redbridge, Greenwich,Bexley, Richmond upon

Thames
Nation group UK,Turkey-Cyprious,Veitnam
Etnicity Dark European or Oriental
Age of the persons 18–21, Over 45
Convitcions number Zero or One Conviction
Offenses number Zero or One Offence
Age at the first conviction From 34 to over 51
Drug offenses number Zero or one drug offence
Other offenses One
Place of arrest Barking and Dagenham,Bexley,

Newham,Redbridge,Richmond upon Thames
Other drugs None
Cash at the arrest No cash
Arrest mode Given into custody
Type of tactic Search of premises, controlled delivery
Type of arrest Direct arrest, no violent
Seizures dataset
Type of tactic Search of premises with warrant and without warrant
Place of the arrest Newham
Other drugs None
Nunber of persons arrested 2 or more than 2 male and female british
Etnicity White European,Oriental, Afro-Caribbean,

Black-Caribbean, Persons decline to define
Age of arrested person From 35 to over 45
Level of trafficking No define
Officers dataset
Agent age From 25 to 35
Agent gender No define
Agent service years range Between 5 and 15 years
Agent official rank DC
Agent etnicity White British
Arrested etnicity Dark European or Oriental
Arrested gender Female
Type of tactic Search of premises

19.4.5 The Heroin Prototype

Table 19.13 shows the prototype of the heroin dealer. The similarities with the crack
dealer are many, but there are also a number of differences. The heroin dealer is not
as common and an experienced a criminal as the crack dealer. The heroin dealer
is very often a female, from Jamaica and sometimes South America. She/he is a
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Table 19.13 The heroin prototype

Heroin dealer prototype

Persons dataset
Gender Female
Home Haringey, Kensington and Chelsea, Southwark
Nation group Jamaica, South American
Etnicity Afro-Caribbean
Age of the persons 25–35
Convitcions number One or zero
Offenses number None
Age at the first conviction From 22 up to 51
Time from the last conviction Less than 1 year
Drug offenses number None or more than 10
Theft kindred offenses None
Offenses against person None
Offenses with offensive wepons None
Sexual offenses None
Offenses against police None
Fraud offenses None
Offenses against property None
Drug trafficking offenses From 2 to more than 5
Other violent offenses No
Total offenses None
Number of arrests Over 3
Number of drug seizures From 3 to more than 5
Place of arrest Hackey, Haringey, Southwark, Westminster
Other drugs Crack
Cash at the arrest No cash
Number of tactics Over 3
Type of tactic Covert purchase, controlled delivery
Number of tactics sequences From 3 to more than 5
Arrest in operation From 2 to more than 5
Violent on arrest No
Direct arrest None or more than 5
Arrest on result of enquiries More than 2
On bail at the time of the offence None
Seizures dataset
Type of tactic Covert purchase test in operation, detailed tactics
Place of the arrest Hackney, Haringey, Southwark, Westminster
Other drugs Crack
Nunber of persons arrested 1 Male
Etnicity No British, Afro-Caribbean, Black-Caribbean
Age of arrested person Between 25 and 35
Level of trafficking Level 1, level 2

(continued)
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Table 19.13 (continued)

Heroin dealer

Officers dataset
Agent age 35–45, over 45
Agent gender Male
Agent service years range 15 years
Agent official rank DC, DS
Agent etnicity White British
Arrested etnicity Afro-Caribbean
Arrested gender Female
Type of tactic Covert purchase

different kind of Afro-Caribbean. In fact, MPS use a different team of agents to
arrest this type of drug trafficker. There is a contiguity and a similarity of places for
crack and heroin, but ALOC suggests to us that these two drugs are managed by two
different networks: Hackney and Southwark, as example, seem to be two boroughs
specific for heroin trafficking while Kensington and Chelsea is a typical place to
arrest crack dealers.

Also, in the case of heroin and crack, two different populations of dealers work
side by side, the less dangerous covering the more dangerous.

19.5 Conclusions

The ALOC system is a new adaptive system which is able to connect the contents of
different datasets presenting different views of the same reality. This is fundamental
when a problem is represented with different statistical observations and different
variables for any (data) set of observations.

In order for ALOC to work, some variables in the datasets must be shared in
a way such that it is possible to create a tree structure from among the assigned
datasets.

When this prerequisite is satisfied, then the ALOC system can transform the
datasets into a multifocal dynamic memory able to connect each variable and each
record of the assigned datasets to any others using statistical contents.

In short, ALOC transforms all the assigned datasets in a content-addressable
memory, CAM (see Hopfield 1982, 1984).

This transformation is particularly useful in discovering hidden connections and
side effects among the datasets.

The ALOC system is able to perform this action using three components and
one-stop criterion:

1. A group of equations able to approximate the implicit function of each one of the
assigned datasets
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2. A group of equations able to maximize the activation values of the variables of
all the datasets in constraint environments (the constraint environments are the
different weights matrices representing the implicit functions of each dataset and
an external input by which the system is activated by control)

3. A group of equations able to create a resonance among the dynamic activations
of all the variables and the records of the datasets

4. A simple equation to decide when the process has reached a new stable state

The way to exploit this embedded knowledge, in practice, is by means “ques-
tions”: a question in this context means to activate from the outside one or more
variables of one dataset and to give the necessary freedom for ALOC to work
dynamically over all the datasets to reach a stable attractor.

At the end of this process, ALOC will present the best prototype that satisfies the
initial question.

From one perspective, we can define ALOC as a complex device that is content
oriented with an ability to generate prototypes.

But the dynamics of this prototyping process is also meaningful. In fact, during
the ALOC evolution, all the variables and records of the assigned datasets dynam-
ically negotiate its reciprocal activation values, through a game of competition and
cooperation: the activation of some variables will activate other variables which
support and/or inhibit yet other variables, until this complex dynamic machine
reaches a stabilization point.

The analysis of this process provides new key information about all the
datasets:

1. Which variables and records are strongly or weakly associated?
2. Which variables and records are activated as a side effect of the process itself?
3. Which variables and records represent hidden signals of a transient prototype?

This can happen when some variables in a first step increase, and after a while,
they decrease according to a parabolic shape.

Future research about the ALOC system will address the understanding of
the meaning of complex many-to-many dynamics. In other words, how are we
able to automatically capture the complex cause-effect relationship existent among
variables during the ALOC evolutionary process?

We think that a new type of intelligent data mining technique may emerge in
response to this question.
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