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Foreword 1

This book will help the novice user become familiar with data mining. Basically, data
mining is doing data analysis (or statistics) on data sets (often large) that have been
obtained from potentially many sources. As such, the miner may not have control of the
input data, but must rely on sources that have gathered the data. As such, there are pro-
blems that every data miner must be aware of as he or she begins (or completes) a mining
operation. I strongly resonated to the material on “The Top 10 Data Mining Mistakes,”
which give a worthwhile checklist:

• Ensure you have a response variable and predictor variables—and that they are correctly
measured.

• Beware of overfitting. With scads of variables, it is easy with most statistical programs to
fit incredibly complex models, but they cannot be reproduced. It is good to save part of
the sample to use to test the model. Various methods are offered in this book.

• Don’t use only one method. Using only linear regression can be a problem. Try
dichotomizing the response or categorizing it to remove nonlinearities in the response
variable. Often, there are clusters of values at zero, which messes up any normality
assumption. This, of course, loses information, so you may want to categorize a
continuous response variable and use an alternative to regression. Similarly, predictor
variables may need to be treated as factors rather than linear predictors. A classic
example is using marital status or race as a linear predictor when there is no order.

• Asking the wrong question—when looking for a rare phenomenon, it may be helpful
to identify the most common pattern. These may lead to complex analyses, as in item 3,
but they may also be conceptually simple. Again, you may need to take care that you
don’t overfit the data.

• Don’t become enamored with the data. There may be a substantial history from earlier
data or from domain experts that can help with the modeling.

• Be wary of using an outcome variable (or one highly correlated with the outcome
variable) and becoming excited about the result. The predictors should be “proper”
predictors in the sense that (a) they are measured prior to the outcome and (b) are not a
function of the outcome.

• Do not discard outliers without solid justification. Just because an observation is out of
line with others is insufficient reason to ignore it. You must check the circumstances that
led to the value. In any event, it is useful to conduct the analysis with the observation(s)
included and excluded to determine the sensitivity of the results to the outlier.
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• Extrapolating is a fine way to go broke—the best example is the stock market. Stick
within your data, and if you must go outside, put plenty of caveats. Better still, restrain
the impulse to extrapolate. Beware that pictures are often far too simple and we can be
misled. Political campaigns oversimplify complex problems (“My opponent wants to
raise taxes”; “My opponent will take us to war”) when the realities may imply we have
some infrastructure needs that can be handled only with new funding, or we have been
attacked by some bad guys.

Be wary of your data sources. If you are combining several sets of data, they need to
meet a few standards:

• The definitions of variables that are being merged should be identical. Often they are
close but not exact (especially in meta-analysis where clinical studies may have
somewhat different definitions due to different medical institutions or laboratories).

• Be careful about missing values. Often when multiple data sets are merged, missing
values can be induced: one variable isn’t present in another data set, what you thought
was a unique variable name was slightly different in the two sets, so you end up with
two variables that both have a lot of missing values.

• How you handle missing values can be crucial. In one example, I used complete cases
and lost half of my sample—all variables had at least 85% completeness, but when put
together the sample lost half of the data. The residual sum of squares from a stepwise
regression was about 8. When I included more variables using mean replacement, almost
the same set of predictor variables surfaced, but the residual sum of squares was 20.
I then used multiple imputation and found approximately the same set of predictors but
had a residual sum of squares (median of 20 imputations) of 25. I find that mean
replacement is rather optimistic but surely better than relying on only complete cases.
If using stepwise regression, I find it useful to replicate it with a bootstrap or with
multiple imputation. However, with large data sets, this approach may be expensive
computationally.

To conclude, there is a wealth of material in this handbook that will repay study.

Peter A. Lachenbruch, Ph.D.,
Oregon State University

Past President, 2008, American Statistical Society
Professor, Oregon State University

Formerly: FDA and professor at Johns Hopkins University;
UCLA, and University of Iowa, and

University of North Carolina Chapel Hill
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Foreword 2

A November 2008 search on Amazon.com for “data mining” books yielded over 15,000
hits—including 72 to be published in 2009. Most of these books either describe data mining
in very technical and mathematical terms, beyond the reach of most individuals, or
approach data mining at an introductory level without sufficient detail to be useful to the
practitioner. The Handbook of Statistical Analysis and Data Mining Applications is the book that
strikes the right balance between these two treatments of data mining.

This volume is not a theoretical treatment of the subject—the authors themselves recom-
mend other books for this—but rather contains a description of data mining principles and
techniques in a series of “knowledge-transfer” sessions, where examples from real data
mining projects illustrate the main ideas. This aspect of the book makes it most valuable
for practitioners, whether novice or more experienced.

While it would be easier for everyone if data mining were merely a matter of finding and
applying the correct mathematical equation or approach for any given problem, the reality
is that both “art” and “science” are necessary. The “art” in data mining requires experience:
when one has seen and overcome the difficulties in finding solutions from among the many
possible approaches, one can apply newfound wisdom to the next project. However, this
process takes considerable time and, particularly for datamining novices, the iterative process
inevitable in data mining can lead to discouragement when a “textbook” approach doesn’t
yield a good solution.

This book is different; it is organized with the practitioner in mind. The volume is
divided into four parts. Part I provides an overview of analytics from a historical perspec-
tive and frameworks from which to approach data mining, including CRISP-DM and
SEMMA. These chapters will provide a novice analyst an excellent overview by defining
terms and methods to use, and will provide program managers a framework from which
to approach a wide variety of data mining problems. Part II describes algorithms, though
without extensive mathematics. These will appeal to practitioners who are or will be
involved with day-to-day analytics and need to understand the qualitative aspects of the
algorithms. The inclusion of a chapter on text mining is particularly timely, as text mining
has shown tremendous growth in recent years.

Part III provides a series of tutorials that are both domain-specific and software-
specific. Any instructor knows that examples make the abstract concept more concrete, and
these tutorials accomplish exactly that. In addition, each tutorial shows how the solutions
were developed using popular data mining software tools, such as Clementine, Enterprise
Miner, Weka, and STATISTICA. The step-by-step specifics will assist practitioners in learning
not only how to approach a wide variety of problems, but also how to use these software
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products effectively. Part IV presents a look at the future of data mining, including a treat-
ment of model ensembles and “The Top 10 Data Mining Mistakes,” from the popular presen-
tation by Dr. Elder.

However, the book is best read a few chapters at a time while actively doing the data
mining rather than read cover-to-cover (a daunting task for a book this size). Practitioners
will appreciate tutorials that match their business objectives and choose to ignore other
tutorials. They may choose to read sections on a particular algorithm to increase insight into
that algorithm and then decide to add a second algorithm after the first is mastered. For
those new to a particular software tool highlighted in the tutorials section, the step-by-step
approach will operate much like a user’s manual. Many chapters stand well on their own,
such as the excellent “History of Statistics and Data Mining” and “The Top 10 Data Mining
Mistakes” chapters. These are broadly applicable and should be read by even the most
experienced data miners.

The Handbook of Statistical Analysis and Data Mining Applications is an exceptional book
that should be on every data miner’s bookshelf or, better yet, found lying open next to their
computer.

Dean Abbott
President

Abbott Analytics
San Diego, California
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Preface

Data mining scientists in research and academia may look askance at this book because
it does not present algorithm theory in the commonly accepted mathematical form. Most
articles and books on data mining and knowledge discovery are packed with equations
and mathematical symbols that only experts can follow. Granted, there is a good reason
for insistence on this formalism. The underlying complexity of nature and human response
requires teachers and researchers to be extremely clear and unambiguous in their terminol-
ogy and definitions. Otherwise, ambiguities will be communicated to students and readers,
and their understanding will not penetrate to the essential elements of any topic. Academic
areas of study are not called disciplines without reason.

This rigorous approach to data mining and knowledge discovery builds a fine founda-
tion for academic studies and research by experts. Excellent examples of such books are

• The Handbook of Data Mining, 2003, by Nong Ye (Ed.). Mahwah, New Jersey: Lawrence
Erlbaum Associates.

• The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edition, 2009,
by T. Hastie, R. Tibshirani, & J. Friedman. New York: Springer-Verlag.

Books like these were especially necessary in the early days of data mining, when analyti-
cal tools were relatively crude and required much manual configuration to make them work
right. Early users had to understand the tools in depth to be able to use them productively.
These books are still necessary for the college classroom and research centers. Students must
understand the theory behind these tools in the same way that the developers understood it
so that they will be able to build new and improved versions.

Modern data mining tools, like the ones featured in this book, permit ordinary business
analysts to follow a path through the data mining process to create models that are “good
enough.” These less-than-optimal models are far better in their ability to leverage faint
patterns in databases to solve problems than the ways it used to be done. These tools
provide default configurations and automatic operations, which shield the user from the
technical complexity underneath. They provide one part in the crude analogy to the auto-
mobile interface. You don’t have to be a chemical engineer or physicist who understands
moments of force to be able to operate a car. All you have to do is learn to turn the key
in the ignition, step on the gas and the brake at the right times, turn the wheel to change
direction in a safe manner, and voila, you are an expert user of the very complex technology
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under the hood. The other half of the story is the instruction manual and the driver’s educa-
tion course that help you to learn how to drive.

This book provides that instruction manual and a series of tutorials to train you how to
do data mining in many subject areas. We provide both the right tools and the right intui-
tive explanations (rather than formal mathematical definitions) of the data mining process
and algorithms, which will enable even beginner data miners to understand the basic con-
cepts necessary to understand what they are doing. In addition, we provide many tutorials
in many different industries and businesses (using many of the most common data mining
tools) to show how to do it.

OVERALL ORGANIZATION OF THIS BOOK

We have divided the chapters in this book into three parts for the same general reason that
the ancient Romans split Gaul into three pieces—for the ease of management. The fourth part
is a group of tutorials, which serve in principle as Rome served—as the central governing
influence. The central theme of this book is the education and training of beginning data
mining practitioners, not the rigorous academic preparation of algorithm scientists. Hence,
we located the tutorials in the middle of the book in Part III, flanked by topical chapters in
Parts I, II, and IV.

This approach is “a mile wide and an inch deep” by design, but there is a lot packed into
that inch. There is enough here to stimulate you to take deeper dives into theory, and there is
enough here to permit you to construct “smart enough” business operations with a relatively
small amount of the right information. James Taylor developed this concept for automating
operational decision making in the area of Enterprise Decision Management (Taylor, 2007).
Taylor recognized that companies need decision-making systems that are automated enough
to keep up with the volume and time-critical nature of modern business operations. These
decisions should be deliberate, precise, consistent across the enterprise, smart enough to
serve immediate needs appropriately, and agile enough to adapt to new opportunities and
challenges in the company. The same concept can be applied to nonoperational systems for
Customer Relationship Management (CRM) and marketing support. Even though a CRM
model for cross-sell may not be optimal, it may enable several times the response rate in
product sales following a marketing campaign. Models like this are “smart enough” to drive
companies to the next level of sales. When models like this are proliferated throughout the
enterprise to lift all sales to the next level, more refined models can be developed to do even
better. This enterprise-wide “lift” in intelligent operations can drive a company through
evolutionary rather than revolutionary changes to reach long-term goals.

When one of the primary authors of this book was fighting fires for the U.S. Forest Service,
hewas struck by the long-term efficiency of Native American contract fire fighters on his crew
inNorthern California. Theyworkedmore slowly than their young “whipper-snapper” coun-
terparts, but they didn’t stop for breaks; they kept up the same pace throughout the day. By
the end of the day, they completed farmore fire line than the other members of the team. They
leveraged their “good enough” work at the moment to accomplish optimal success overall.
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Companies can leverage “smart enough” decision systems to do likewise in their pursuit of
optimal profitability in their business.

Clearly, use of this book and these tools will not make you experts in data mining. Nor
will the explanations in the book permit you to understand the complexity of the theory
behind the algorithms and methodologies so necessary for the academic student. But we
will conduct you through a relatively thin slice across the wide practice of data mining in
many industries and disciplines. We can show you how to create powerful predictive mod-
els in your own organization in a relatively short period of time. In addition, this book can
function as a springboard to launch you into higher-level studies of the theory behind the
practice of data mining. If we can accomplish those goals, we will have succeeded in taking
a significant step in bringing the practice of data mining into the mainstream of business
analysis.

The three coauthors could not have done this book completely by themselves, and we
wish to thank the following individuals, with the disclaimer that we apologize if, by our
neglect, we have left out of this “thank you list” anyone who contributed.

Foremost, we would like to thank Acquisitions Editor Lauren Schultz of Elsevier’s Boston
office; Lauren was the first to catch the vision and see the need for this book and has worked
tirelessly to see it happen. Also, Leah Ackerson, Marketing Manager for Elsevier, and Tom
Singer, then Elsevier’s Math and Statistics Acquisitions Editor, who were the first to get us
started down this road. Yet, along with Elsevier’s enthusiasm came their desire to have it
completed within two months of their making a final decision. . . . So that really pushed us.
But Lauren and Leah continually encouraged us during this period by, for instance, flying
into the 2008 Knowledge Discovery and Data Mining conference to work out many near-final
details.

Bob Nisbet would like to honor and thank his wife, Jean Nisbet, Ph.D., who blasted him
off in his technical career by retyping his dissertation five times (before word processing),
and assumed much of the family’s burdens during the writing of this book. Bob also thanks
Dr. Daniel B. Botkin, the famous global ecologist, for introducing him to the world of mod-
eling and exposing him to the distinction between viewing the world as machine and view-
ing it as organism. And, thanks are due to Ken Reed, Ph.D., for inducting Bob into the
practice of data mining. Finally, he would like to thank Mike Laracy, a member of his data
mining team at NCR Corporation, who showed him how to create powerful customer
response models using temporal abstractions.

John Elder would like to thank his wife, Elizabeth Hinson Elder, for her support—
keeping five great kids happy and healthy while Dad was stuck on a keyboard—and for
her inspiration to excellence. John would also like to thank his colleagues at Elder Research,
Inc.—who pour their talents, hard work, and character into using data mining for the good of
our clients and community—for their help with research contributions throughout the book.
You all make it a joy to come to work. Dustin Hux synthesized a host of material to illustrate
the interlocking disciplines making up data mining; Antonia de Medinaceli contributed valu-
able and thorough edits; Stein Kretsinger made useful suggestions; and Daniel Lautzenheiser
created the figure showing a non-intuitive type of outlier.

Co-author Gary Miner wishes to thank his wife, Linda A. Winters-Miner, Ph.D., who
has been working with Gary on similar books over the past 10 years and wrote several

xxiPREFACE



of the tutorials included in this book, using real-world data. Gary also wishes to thank the
following people from his office who helped in various ways, from keeping Gary’s com-
puters running properly to taking over some of his job responsibilities when he took days
off to write this book, including Angela Waner, Jon Hillis, Greg Sergeant, Jen Beck, Win
Noren, and Dr. Thomas Hill, who gave permission to use and also edited a group of
the tutorials that had been written over the years by some of the people listed as guest
authors in this book.

Without all the help of the people mentioned here, and maybe many others we failed to
specifically mention, this book would never have been completed. Thanks to you all!

Bob Nisbet (bob2@rnisbet.com)
John Elder (elder@datamininglab.com)
Gary Miner (miner.gary@gmail.com)

October 31, 2008

General inquiries can be addressed to: handbook@datamininglab.com
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Introduction

Often, data miners are asked, “What are statistical analysis and data mining?” In this
book, we will define what data mining is from a procedural standpoint. But most people
have a hard time relating what we tell them to the things they know and understand. Before
moving on into the book, we would like to provide a little background for data mining that
everyone can relate to.

Statistical analysis and data mining are two methods for simulating the unconscious
operations that occur in the human brain to provide a rationale for decision making and
actions. Statistical analysis is a very directed rationale that is based on norms. We all think
and decide on the basis of norms. For example, we consider (unconsciously) what the norm
is for dress in a certain situation. Also, we consider the acceptable range of variation in
dress styles in our culture. Based on these two concepts, the norm and the variation around
that norm, we render judgments like, “That man is inappropriately dressed.” Using similar
concepts of mean and standard deviation, statistical analysis proceeds in a very logical way
to make very similar judgments (in principle). On the other hand, data mining learns case
by case and does not use means or standard deviations. Data mining algorithms build
patterns, clarifying the pattern as each case is submitted for processing. These are two very
different ways of arriving at the same conclusion: a decision. We will introduce some basic
analytical history and theory in Chapters 1 and 2.

The basic process of analytical modeling is presented in Chapter 3. But it may be difficult
for you to relate what is happening in the process without some sort of tie to the real world
that you know and enjoy. In many ways, the decisions served by analytical modeling are
similar to those we make every day. These decisions are based partly on patterns of action
formed by experience and partly by intuition.

PATTERNS OF ACTION

A pattern of action can be viewed in terms of the activities of a hurdler on a race track.
The runner must start successfully and run to the first hurdle. He must decide very quickly
how high to jump to clear the hurdle. He must decide when and in what sequence to move
his legs to clear the hurdle with minimum effort and without knocking it down. Then he
must run a specified distance to the next hurdle, and do it all over again several times, until
he crosses the finish line. Analytical modeling is a lot like that.
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The training of the hurdler’s “model” of action to run the race happens in a series of
operations:

• Run slow at first.
• Practice takeoff from different positions to clear the hurdle.
• Practice different ways to move the legs.
• Determine the best ways to do each activity.
• Practice the best ways for each activity over and over again.

This practice trains the sensory and motor neurons to function together most efficiently.
Individual neurons in the brain are “trained” in practice by adjusting signal strengths

and firing thresholds of the motor nerve cells. The performance of a successful hurdler
follows the “model” of these activities and the process of coordinating them to run the race.
Creation of an analytical “model” of a business process to predict a desired outcome fol-
lows a very similar path to the training regimen of a hurdler. We will explore this subject
further in Chapter 3 and apply it to develop a data mining process that expresses the basic
activities and tasks performed in creating an analytical model.

HUMAN INTUITION

In humans, the right side of the brain is the center for visual and aesthetic sensibilities.
The left side of the brain is the center for quantitative and time-regulated sensibil-
ities. Human intuition is a blend of both sensibilities. This blend is facilitated by the neural
connections between the right side of the brain and the left side. In women, the number of
neural connections between right and left sides of the brain is 20% greater (on average) than
in men. This higher connectivity of women’s brains enables them to exercise intuitive think-
ing to a greater extent than men. Intuition “builds” a model of reality from both quantita-
tive building blocks and visual sensibilities (and memories).

PUTTING IT ALL TOGETHER

Biological taxonomy students claim (in jest) that there are two kinds of people in taxonomy—
thosewho divide things up into two classes (for dichotomous keys) and thosewho don’t. Along
with this joke is a similar recognition that taxonomists are divided into the “lumpers” (who
combine several species into one) and the “splitters” (who divide one species intomany). These
distinctions point to a larger dichotomy in the way people think.

In ecology, there used to be two schools of thought: autoecologists (chemistry, physics,
and mathematics explain all) and the synecologists (organism relationships in their environ-
ment explain all). It wasn’t until the 1970s that these two schools of thought learned that
both perspectives were needed to understand ecosystems (but more about that later). In
business, there are the “big picture” people versus “detail” people. Some people learn by
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following an intuitive pathway from general to specific (inductive). Often, we call them
“big picture” people. Other people learn by following an intuitive pathway from specific
to general (deductive). Often, we call them “detail” people.

This distinction is reflected in many aspects of our society. In Chapter 1, we will explore
this distinction to a greater depth in regard to the development of statistical and data
mining theory through time.

Many of our human activities involve finding patterns in the data input to our sensory
systems. An example is the mental pattern that we develop by sitting in a chair in the mid-
dle of a shopping mall and making some judgment about patterns among its clientele. In
one mall, people of many ages and races may intermingle. You might conclude from this
pattern that this mall is located in an ethnically diverse area. In another mall, you might
see a very different pattern. In one mall in Toronto, a great many of the stores had Chinese
titles and script on the windows. One observer noticed that he was the only non-Asian seen
for a half-hour. This led to the conclusion that the mall catered to the Chinese community
and was owned (probably) by a Chinese company or person.

Statistical methods employed in testing this “hypothesis” would include

• Performing a survey of customers to gain empirical data on race, age, length of time
in the United States, etc.;

• Calculating means (averages) and standard deviations (an expression of the average
variability of all the customers around the mean);

• Using the mean and standard deviation for all observations to calculate a metric (e.g.,
student’s t-value) to compare to standard tables;

If the metric exceeds the standard table value, this attribute (e.g., race) is present in the
data at a higher rate than expected at random.

More advanced statistical techniques can accept data from multiple attributes and pro-
cess them in combination to produce a metric (e.g., average squared error), which reflects
how well a subset of attributes (selected by the processing method) predicts desired out-
come. This process “builds” an analytical equation, using standard statistical methods. This
analytical “model” is based on averages across the range of variation of the input attribute
data. This approach to finding the pattern in the data is basically a deductive, top-down
process (general to specific). The general part is the statistical model employed for the anal-
ysis (i.e., normal parametric model). This approach to model building is very “Aristotelian.”
In Chapter 1, we will explore the distinctions between Aristotelian and Platonic approaches
for understanding truth in the world around us.

Both statistical analysis and data mining algorithms operate on patterns: statistical anal-
ysis uses a predefined pattern (i.e., the Parametric Model) and compares some measure of
the observations to standard metrics of the model. We will discuss this approach in more
detail in Chapter 1. Data mining doesn’t start with a model; it builds a model with the data.
Thus, statistical analysis uses a model to characterize a pattern in the data; data mining uses
the pattern in the data to build a model. This approach uses deductive reasoning, following
an Aristotelian approach to truth. From the “model” accepted in the beginning (based on
the mathematical distributions assumed), outcomes are deduced. On the other hand, data
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mining methods discover patterns in data inductively, rather than deductively, following a
more Platonic approach to truth. We will unpack this distinction to a much greater extent
in Chapter 1.

Which is the best way to do it? The answer is . . . it depends. It depends on the data. Some
data sets can be analyzed better with statistical analysis techniques, and other data sets can
be analyzed better with data mining techniques. How do you know which approach to use
for a given data set? Much ink has been devoted to paper to try to answer that question. We
will not add to that effort. Rather, we will provide a guide to general analytical theory
(Chapter 2) and broad analytical procedures (Chapter 3) that can be used with techniques
for either approach. For the sake of simplicity, we will refer to the joint body of techniques as
analytics.

In Chapters 4 and 5, we introduce basic process and preparation procedures for
analytics.

Chapters 6–9 introduce accessory tools and some basic and advanced analytic algorithms
used commonly for various kinds of analytics projects, followed by the use of specialized
algorithms for the analysis of textual data.

Chapters 10–12 provide general introductions to three common analytics tool packages
and the two most common application areas for those tools (classification and numerical
prediction).

Chapter 13 discusses various methods for evaluating the models you build. We will
discuss

• Training and testing activities
• Resampling methods
• Ensemble methods
• Use of graphical plots
• Use of lift charts and ROC curves

Additional details about these powerful techniques can be found in Chapter 5 and in
Witten and Frank (2006).

Chapters 14–17 guide you through the application of analytics to four common problem
areas: medical informatics, bioinformatics, customer response modeling, and fraud.

One of the guiding principles in the development of this book is the inclusion of many
tutorials in the body of the book and on the DVD. There are tutorials for SAS-Enterprise
Miner, SPSS Clementine, and STATISTICA Data Miner. You can follow through the appro-
priate tutorials with STATISTICA Data Miner. If you download the free trials of the other
tools (as described at the end of the Preface), you can follow the tutorials based on them.
In any event, the overall principle of this book is to provide enough of an introduction to
get you started doing data mining, plus at least one tool for you to use in the beginning
of your work.

Chapters 18–20 discuss the issues in analytics regarding model complexity, parsimony,
and modeling mistakes.

Chapter 18, on how to measure true complexity, is the most complex and “researchy”
chapter of the book, and can be skipped by most readers; but Chapter 20, on classic analytic
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mistakes, should be a big help to anyone who needs to implement real models in the real
world.

Chapter 21 gives you a glimpse of the future of analytics. Where is data mining going in
the future? Much statistical and data mining research during the past 30 years has focused
on designing better algorithms for finding faint patterns in “mountains” of data. Current
directions in data mining are organized around how to link together many processing
instances rather than improving the mathematical algorithms for pattern recognition. We
can see these developments taking shape in at least these major areas:

• RAID (Radio Frequency Identification Technologies)
• Social networks
• Visual data mining: object identification, video and audio, and 3D scanning
• Cloud computing

It is likely that even these global processing strategies are not the end of the line in data
mining development. Chapter 1 ends with the statement that we will discover increasingly
novel and clever ways to mimic the most powerful pattern recognition engine in the uni-
verse: the human brain. Chapter 22 wraps up the whole discussion with a summary.

Much concern in the business world now is organized around the need for effective busi-
ness intelligence (BI) processes. Currently, this term refers just to business reporting, and
there is not much “intelligence” in it. Data mining can bring another level of “intelligence”
to bear on problem solving and pattern recognition. But even the state that data mining
may assume in the near future (with cloud computing and social networking) is only the
first step in developing truly intelligent decision-making engines.

One step further in the future could be to drive the hardware supporting datamining to the
level of nanotechnology. Powerful biological computers the size of pin heads (and smaller)
may be the next wave of technological development to drive data mining advances. Rather
than the sky, the atom is the limit.
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List of Tutorials by
Guest Authors

Tutorials are located in three places:

1. Tutorials A–N are located in Part III of this book.
2. Tutorials O–Z, AA–KK are located on the DVD bound with this book.
3. Additional Tutorials are located on the book’s companion Web site:

http://www.elsevierdirect.com/companions/9780123747655

Tutorials in Part III of the printed book, with accompanying datasets and results
located on the DVD that is bound with this book:

Tutorial A (Field: General)
How to Use Data Miner Recipe STATISTICA Data Miner Only
Gary Miner, Ph.D.

Tutorial B (Field: Engineering)
Data Mining for Aviation Safety Using Data Mining Recipe “Automatized Data Mining”
from STATISTICA
Alan Stolzer, Ph.D.

Tutorial C (Field: Entertainment Business)
Predicting Movie Box-Office Receipts Using SPSS Clementine Data Mining Software
Dursun Delen, Ph.D

Tutorial D (Field: Financial–Business)
Detecting Unstatisfied Customers: A Case Study Using SAS Enterprise Miner Version
5.3 for the Analysis
Chamont Wang, Ph.D.

Tutorial E (Field: Financial)
Credit Scoring Using STATISTICA Data Miner
Sachin Lahoti and Kiron Mathew

Tutorial F (Field: Business)
Churn Analysis using SPSS-Clementine
Robert Nisbet, Ph.D.
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Tutorial G (Field: Customer Satisfaction–Business)
Text Mining: Automobile Brand Review Using STATISTICA Data Miner and
Text Miner
Sachin Lahoti and Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial H (Field: Industry Quality Control)
Predictive Process Control: QC-Data Mining Using STATISTICA Data Miner and
QC-Miner
Sachin Lahoti and Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorials I, J, and K
Three Short Tutorials Showing the Use of Data Mining and Particularly C&RT

to Predict and Display Possible Structural Relationships among Data
edited by Linda A. Miner, Ph.D.

Tutorial I (Field: Business Administration)
Business Administration in a Medical Industry: Determining Possible Predictors for Days
with Hospice Service for Patients with Dementia
Linda A. Miner, Ph.D., James Ross, MD, and Karen James, RN, BSN, CHPN

Tutorial J (Field: Clinical Psychology & Patient Care)
Clinical Psychology: Making Decisions about Best Therapy for a Client: Using Data Mining
to Explore the Structure of a Depression Instrument
David P. Armentrout, Ph.D. and Linda A. Miner, Ph.D.

Tutorial K (Field: Leadership Training–Business)
Education–Leadership Training for Business and Education Using C&RT to Predict
and Display Possible Structural Relationships
Greg S. Robinson, Ph.D., Linda A. Miner, Ph.D., and Mary A. Millikin, Ph.D.

Tutorial L (Field: Dentistry)
Dentistry: Facial Pain Study Based on 84 Predictor Variables (Both Categorical and
Continuous)
Charles G. Widmer, DDS, MS.

Tutorial M (Field: Financial–Banking)
Profit Analysis of the German Credit Data using SAS-EM Version 5.3
Chamont Wang, Ph.D., edited by Gary Miner, Ph.D.

Tutorial N (Field: Medical Informatics)
Predicting Self-Reported Health Status Using Artificial Neural Networks
Nephi Walton, Stacey Knight, MStat, and Mollie R. Poynton, Ph.D., APRN, BC
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Tutorials on the DVD bound with this book including datasets, data mining
projects, and results:

Tutorial O (Field: Demographics)
Regression Trees Using Boston Housing Data Set
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial P (Field: Medical Informatics & Bioinformatics)
Cancer Gene
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial Q (Field: CRM – Customer Relationship Management)
Clustering of Shoppers: Clustering Techniques for Data Mining Modeling
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial R (Field: Financial–Banking)
Credit Risk using Discriminant Analysis in a Data Mining Model
Sachin Lahoti and Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial S (Field: Data Analysis)
Data Preparation and Management
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial T (Field: Deployment of Predictive Models)
Deployment of a Data Mining Model
Kiron Mathew and Sachin Lahoti

Tutorial U (Field: Medical Informatics)
Stratified Random Sampling for Rare Medical Events: A Data Mining Method to
Understand Pattern and Meaning of Infrequent Categories in Data
David Redfearn, Ph.D., edited by Gary Miner, Ph.D.
[This Tutorial is not included on the DVD bound with the book, but instead is on this book’s
companion Web site.]

Tutorial V (Field: Medical Informatics–Bioinformatics)
Heart Disease Utilizing Visual Data Mining Methods
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial W (Field: Medical Informatics–Bioinformatics)
Type II Diabetes Versus Assessing Hemoglobin A1c and LDL, Age, and Sex:
Examination of the Data by Progressively Analyzing from Phase 1 (Traditional Statistics)
through Phase 4 (Advanced Bayesian and Statistical Learning Theory) Data Analysis
Methods, Including Deployment of Model for Predicting Success in New Patients
Dalton Ellis, MD and Ashley Estep, DO, edited by Gary Miner, Ph.D.
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Tutorial X (Field: Separating Competing Signals)
Independent Component Analysis
Thomas Hill, Ph.D, edited by Gary Miner, Ph.D.

Tutorial Y (Fields: Engineering–Air Travel–Text Mining)
NTSB Aircraft Accident Reports
Kiron Mathew, by Thomas Hill, Ph.D., and Gary Miner, Ph.D.

Tutorial Z (Field: Preventive Health Care)
Obesity Control in Children: Medical Tutorial Using STATISTICA Data Miner Recipe—
Childhood Obesity Intervention Attempt
Linda A. Miner, Ph.D., Walter L. Larimore, MD, Cheryl Flynt, RN, and Stephanie Rick

Tutorial AA (Field: Statistics–Data Mining)
Random Forests Classification
Thomas Hill, Ph.D. and Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial BB (Field: Data Mining–Response Optimization)
Response Optimization for Data Mining Models
Kiron Mathew and Thomas Hill, Ph.D., edited by Gary Miner, Ph.D.

Tutorial CC (Field: Industry–Quality Control)
Diagnostic Tooling and Data Mining: Semiconductor Industry
Kiron Mathew and Sachin Lahoti, edited by Gary Miner, Ph.D.

Tutorial DD (Field: Sociology)
Visual Data Mining: Titanic Survivors
Kiron Mathew and Thomas Hill, Ph.D., edited by Gary Miner, Ph.D.

Tutorial EE (Field: Demography–Census)
Census Data Analysis: Basic Statistical Data Description
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial FF (Field: Environment)
Linear and Logistic Regression (Ozone Data)
Jessica Sieck, edited by Gary Miner, Ph.D.

Tutorial GG (Field: Survival Analysis–Medical Informatics)
R-Integration into a Data Miner Workspace Node: R-node Competing Hazards Program
Named cmprsk from the R-Library
Ivan Korsakov and Wayne Kendal, MD., Ph.D., FRCSC, FRPCP, edited by Gary Miner,
Ph.D.
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Tutorial HH (Fields: Social Networks–Sociology & Medical Informatics)
Social Networks among Community Organizations: Tulsa Cornerstone Assistance
Network Partners Survey of Satisfaction Derived From this Social Network by Members
of Cornerstone Partners: Out of 24 Survey Questions, Which are Important in Predicting
Partner Satisfaction?
Enis Sakirgil, MD and Timothy Potter, MD, edited by Gary Miner, Ph.D.

Tutorial II (Field: Social Networks)
Nairobi, Kenya Baboon Project: Social Networking among Baboon Populations in
Kenya on the Laikipia Plateau
Shirley C. Strum, Ph.D., edited by Gary Miner, Ph.D.

Tutorial JJ (Field: Statistics Resampling Methods)
Jackknife and Bootstrap Data Miner Workspace and MACRO for STATISTICA Data
Miner
Gary Miner, Ph.D.

Tutorial KK (Field: Bioinformatics)
Dahlia Mosaic Virus: A DNA Microarray Analysis on 10 Cultivars From a Single
Source: Dahlia Garden in Prague, Czech Republic
Hanu R. Pappu, Ph.D., edited by Gary Miner, Ph.D.

Tutorials that are on the book’s companion Web site:
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P A R T I

HISTORY OF PHASES OF
DATA ANALYSIS, BASIC
THEORY, AND THE DATA

MINING PROCESS

Part I focuses on the historical and theoretical background for statistical analysis and
data mining, and integrates it with the data discovery and data preparation operations nec-
essary to prepare for modeling. Part II presents some basic algorithms and applications
areas where data mining technology is commonly used. Part III is not a set of chapters,
but is rather a group of tutorials you can follow to learn data mining by example. In fact,
you don’t even have to read the chapters in the other parts at first. You can start with a tuto-
rial in an area of your choice (if you have the tool used in that tutorial) and learn how to
create a model successfully in that area. Later, you can return to the text to learn why the
various steps were included in the tutorial and understand what happened behind the
scenes when you performed them. The third group of chapters in Part IV leads you into
some advanced data mining areas, where you will learn how create a “good-enough”
model and avoid the most common (and sometimes devastating) mistakes of data mining
practice.
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PREAMBLE

You must be interested in learning how to practice data mining; otherwise, you would
not be reading this book. We know that there are many books available that will give a
good introduction to the process of data mining. Most books on data mining focus on the
features and functions of various data mining tools or algorithms. Some books do focus
on the challenges of performing data mining tasks. This book is designed to give you an
introduction to the practice of data mining in the real world of business.

One of the first things considered in building a business data mining capability in a
company is the selection of the data mining tool. It is difficult to penetrate the hype erected
around the description of these tools by the vendors. The fact is that even the most medio-
cre of data mining tools can create models that are at least 90% as good as the best tools.
A 90% solution performed with a relatively cheap tool might be more cost effective in your
organization than a more expensive tool. How do you choose your data mining tool?

3Handbook of Statistical Analysis and Data Mining Applications # 2009, Elsevier Inc.



Few reviews are available. The best listing of tools by popularity is maintained and updated
yearly by KDNuggets.com. Some detailed reviews available in the literature go beyond
just a discussion of the features and functions of the tools (see Nisbet, 2006, Parts 1–3).
The interest in an unbiased and detailed comparison is great. We are told the “most down-
loaded document in data mining” is the comprehensive but decade-old tool review by
Elder and Abbott (1998).

The other considerations in building a business’s data mining capability are forming
the data mining team, building the data mining platform, and forming a foundation of good
data mining practice. This book will not discuss the building of the data mining platform.
This subject is discussed in many other books, some in great detail. A good overview of
how to build a data mining platform is presented in Data Mining: Concepts and Techniques
(Han and Kamber, 2006). The primary focus of this book is to present a practical approach
to building cost-effective data mining models aimed at increasing company profitability,
using tutorials and demo versions of common data mining tools.

Just as important as these considerations in practice is the background against which
they must be performed. We must not imagine that the background doesn’t matter . . . it does
matter, whether or not we recognize it initially. The reason it matters is that the capabilities
of statistical and data mining methodology were not developed in a vacuum. Analytical
methodology was developed in the context of prevailing statistical and analytical theory.
But the major driver in this development was a very pressing need to provide a simple
and repeatable analysis methodology in medical science. From this beginning developed
modern statistical analysis and data mining. To understand the strengths and limitations
of this body of methodology and use it effectively, we must understand the strengths and
limitations of the statistical theory from which they developed. This theory was developed
by scientists and mathematicians who “thought” it out. But this thinking was not one
sided or unidirectional; there arose several views on how to solve analytical problems. To
understand how to approach the solving of an analytical problem, we must understand
the different ways different people tend to think. This history of statistical theory behind
the development of various statistical techniques bears strongly on the ability of the
technique to serve the tasks of a data mining project.

A SHORT HISTORY OF STATISTICS
AND DATA MINING

Analysis of patterns in data is not new. The concepts of average and grouping can be dated
back to the 6th century BC inAncient China, following the invention of the bamboo rod abacus
(Goodman, 1968). In Ancient China and Greece, statistics were gathered to help heads of state
govern their countries in fiscal and military matters. (This makes you wonder if the words
statistic and state might have sprung from the same root.) In the sixteenth and seventeenth
centuries, games of chance were popular among the wealthy, prompting many questions
about probability to be addressed to famous mathematicians (Fermat, Leibnitz, etc.). These
questions led to much research in mathematics and statistics during the ensuing years.
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MODERN STATISTICS: A DUALITY?

Two branches of statistical analysis developed in the eighteenth century: Bayesian and
classical statistics. (See Figure 1.1.) To treat both fairly in the context of history, we will con-
sider both in the First Generation of statistical analysis. For the Bayesians, the probability of
an event’s occurrence is equal to the probability of its past occurrence times the likelihood
of its occurrence in the future. Analysis proceeds based on the concept of conditional prob-
ability: the probability of an event occurring given that another event has already occurred.
Bayesian analysis begins with the quantification of the investigator’s existing state of
knowledge, beliefs, and assumptions. These subjective priors are combined with observed
data quantified probabilistically through an objective function of some sort. The classical
statistical approach (that flowed out of mathematical works of Gauss and Laplace) considered
that the joint probability, rather than the conditional probability, was the appropriate basis for
analysis. The joint probability function expresses the probability that simultaneously X takes
the specific values x and Y takes value y, as a function of x and y.

Interest in probability picked up early among biologists following Mendel in the latter
part of the nineteenth century. Sir Francis Galton, founder of the School of Eugenics in
England, and his successor, Karl Pearson, developed the concepts of regression and corre-
lation for analyzing genetic data. Later, Pearson and colleagues extended their work to the
social sciences. Following Pearson, Sir R. A. Fisher in England developed his system for
inference testing in medical studies based on his concept of standard deviation. While the
development of probability theory flowed out of the work of Galton and Pearson, early
predictive methods followed Bayes’s approach. Bayesian approaches to inference testing
could lead to widely different conclusions by different medical investigators because they
used different sets of subjective priors. Fisher’s goal in developing his system of statistical
inference was to provide medical investigators with a common set of tools for use in
comparison studies of effects of different treatments by different investigators. But to make
his system work even with large samples, Fisher had to make a number of assumptions
to define his “Parametric Model.”

FIGURE 1.1 Rev. Thomas Bayes (1702–1761).
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Assumptions of the Parametric Model

1. Data Fits a Known Distribution (e.g., Normal, Logistic, Poisson, etc.)

Fisher’s early work was based on calculation of the parameter standard deviation, which
assumes that data are distributed in a normal distribution. The normal distribution is bell-
shaped, with the mean (average) at the top of the bell, with “tails” falling off evenly at
the sides. Standard deviation is simply the “average” of the absolute deviation of a value
from the mean. In this calculation, however, averaging is accomplished by dividing the
sum of the absolute deviations by the total – 1. This subtraction expresses (to some extent)
the increased uncertainty of the result due to grouping (summing the absolute deviations).
Subsequent developments used modified parameters based on the logistic or Poisson dis-
tributions. The assumption of a particular known distribution is necessary in order to
draw upon the characteristics of the distribution function for making inferences. All of these
parametric methods run the gauntlet of dangers related to force-fitting data from the real
world into a mathematical construct that does not fit.

2. Factor Independency

In parametric predictive systems, the variable to be predicted (Y) is considered as a func-
tion of predictor variables (X’s) that are assumed to have independent effects on Y. That is,
the effect on Y of each X-variable is not dependent on effects on Y of any other X-variable.
This situation could be created in the laboratory by allowing only one factor (e.g., a treat-
ment) to vary, while keeping all other factors constant (e.g., temperature, moisture, light,
etc.). But, in the real world, such laboratory control is absent. As a result, some factors that
do affect other factors are permitted to have a joint effect on Y. This problem is called collin-
earity. When it occurs between more than two factors, it is termed multicollinearity. The
multicollinearity problem led statisticians to use an interaction term in the relationship that
supposedly represented the combined effects. Use of this interaction term functioned as a
magnificent kluge, and the reality of its effects was seldom analyzed. Later development
included a number of interaction terms, one for each interaction the investigator might be
presenting.

3. Linear Additivity

Not only must the X-variables be independent, their effects on Y must be cumulative and
linear. That means the effect of each factor is added to or subtracted from the combined
effects of all X-variables on Y. But what if the relationship between Y and the predictors
(X-variables) is not additive, but multiplicative or divisive? Such functions can be expressed
only by exponential equations that usually generate very nonlinear relationships. Assump-
tion of linear additivity for these relationships may cause large errors in the predicted
outputs. This is often the case with their use in business data systems.

4. Constant Variance (Homoscedasticity)

The variance throughout the range of each variable is assumed to be constant. This
means that if you divided the range of a variable into bins, the variance across all records
for bin #1 is the same as the range for all the other bins in the range of that variable. If
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the variance throughout the range of a variable differs significantly from constancy, it is
said to be heteroscedastic. The error in the predicted value caused by the combined hetero-
scedasticity among all variables can be quite significant.

5. Variables Must Be Numerical and Continuous

The assumption that variables must be numerical and continuous means that data must
be numeric (or it must be transformable to a number before analysis) and the number must
be part of a distribution that is inherently continuous. Integer values in a string are not
continuous; they are discrete. Classical parametric statistical methods are not valid for use
with discrete data, because the probability distributions for continuous and discrete data
are different. But both scientists and business analysts have used them anyway.

In his landmark paper, Fisher (1921; see Figure 1.2) began with the broad definition
of probability as the intrinsic probability of an event’s occurrence divided by the probabil-
ity of occurrence of all competing events (very Bayesian). By the end of his paper, Fisher
modified his definition of probability for use in medical analysis (the goal of his research)
as the intrinsic probability of an event’s occurrence period. He named this quantity like-
lihood. From that foundation, he developed the concepts of standard deviation based on
the normal distribution. Those who followed Fisher began to refer to likelihood as probability.
The concept of likelihood approaches the classical concept of probability only as the sample
size becomes very large and the effects of subjective priors approach zero (von Mises,
1957). In practice, these two conditions may be satisfied sufficiently if the initial distribution
of the data is known and the sample size is relatively large (following the Law of Large
Numbers).

Why did this duality of thought arise in the development of statistics? Perhaps it is
because of the broader duality that pervades all of human thinking. This duality can be
traced all the way back to the ancient debate between Plato and Aristotle.

FIGURE 1.2 Sir Ronald Fisher.
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TWO VIEWS OF REALITY

Whenever we consider solving a problem or answering a question, we start by concep-
tualizing it. That means we do one of two things: (1) try to reduce it to key elements or
(2) try to conceive of it in general terms. We call people who take each of these approaches
“detail people” and “big picture people,” respectively. What we don’t consider is that this
distinction has its roots deep in Greek philosophy in the works of Aristotle and Plato.

Aristotle

Aristotle (Figure 1.3) believed that the true being of things (reality) could be discerned
only by what the eye could see, the hand could touch, etc. He believed that the highest level
of intellectual activity was the detailed study of the tangible world around us. Only in that
way could we understand reality. Based on this approach to truth, Aristotle was led
to believe that you could break down a complex system into pieces, describe the pieces
in detail, put the pieces together and understand the whole. For Aristotle, the “whole”
was equal to the sum of its parts. This nature of the whole was viewed by Aristotle in a
manner that was very machine-like.

Science gravitated toward Aristotle very early. The nature of the world around us was
studied by looking very closely at the physical elements and biological units (species) that
composed it. As our understanding of the natural world matured into the concept of the
ecosystem, it was discovered that many characteristics of ecosystems could not be
explained by traditional (Aristotelian) approaches. For example, in the science of forestry,
we discovered that when a tropical rain forest is cut down on the periphery of its range,
it may take a very long time to regenerate (if it does at all). We learned that the reason
for this is that in areas of relative stress (e.g., peripheral areas), the primary characteristics
necessary for the survival and growth of tropical trees are maintained by the forest itself!
High rainfall leaches nutrients down beyond the reach of the tree roots, so almost all
of the nutrients for tree growth must come from recently fallen leaves and branches.

FIGURE 1.3 Aristotle before the bust of Homer.

8 1. THE BACKGROUND FOR DATA MINING PRACTICE

I. HISTORY OF PHASES OF DATA ANALYSIS, BASIC THEORY, AND THE DATA MINING PROCESS



When you cut down the forest, you remove that source of nutrients. The forest canopy also
maintains favorable conditions of light, moisture, and temperature required by the trees.
Removing the forest removes the very factors necessary for it to exist at all in that location.
These factors emerge only when the system is whole and functioning. Many complex
systems are like that, even business systems. In fact, these emergent properties may be
the major drivers of system stability and predictability.

To understand the failure of Aristotelian philosophy for completely defining the world,
we must return to Ancient Greece and consider Aristotle’s rival, Plato.

Plato

Plato (Figure 1.4) was Aristotle’s teacher for 20 years, and they both agreed to disagree
on the nature of being. While Aristotle focused on describing tangible things in the world
by detailed studies, Plato focused on the world of ideas that lay behind these tangibles.
For Plato, the only thing that had lasting being was an idea. He believed that the most
important things in human existence were beyond what the eye could see and the hand
could touch. Plato believed that the influence of ideas transcended the world of tangible
things that commanded so much of Aristotle’s interest. For Plato, the “whole” of reality
was greater than the sum of its tangible parts.

The concept of the nature of being was developed initially in Western thinking upon a
Platonic foundation. Platonism ruled philosophy for over 2,000 years—up to the Enlighten-
ment. Then the tide of Western thinking turned toward Aristotle. This division of thought
on the nature of reality is reflected in many of our attempts to define the nature of reality
in the world, sometimes unconsciously so. We speak of the difference between “big picture
people” and “detail people”; we contrast “top-down” approaches to organization versus
“bottom-up” approaches; and we compare “left-brained” people with “right-brained”
people. These dichotomies of perception are little more than a rehash of the ancient debate
between Plato and Aristotle.

FIGURE 1.4 Plato.
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THE RISE OF MODERN STATISTICAL ANALYSIS:
THE SECOND GENERATION

In the 1980s, it became obvious to statistical mathematicians that the rigorously Aristote-
lian approach of the past was too restrictive for analyzing highly nonlinear relationships in
large data sets in complex systems of the real world. Mathematical research continued dom-
inantly along Fisherian statistical lines by developing nonlinear versions of parametric
methods. Multiple curvilinear regression was one of the earliest approaches for accounting
for nonlinearity in continuous data distributions. But many nonlinear problems involved
discrete rather than continuous distributions (see Agresti, 1996). These methods included
the following:

• Logit Model (including Logistic Regression): Data is assumed to follow a logistic
distribution and the dependent variable is categorical (e.g., 1:0). In this method, the
dependent variable (Y) is defined as an exponential function of the predictor variables
(X’s). As such, this relationship can account for nonlinearities in the response of the
X-variables to the Y-variable, but not in the interaction between X-variables.

• Probit Model (including Poisson Regression): Like the Logit Model, except data are
assumed to follow a Poisson rather than a Logistic distribution.

• The Generalized Linear Model (GLM): The GLM expands the general estimation
equation used in prediction, Y ¼ f {X}, f is some function and X is a vector of predictor
variables. The left side of the equal sign was named the deterministic component, the
right side of the equation the random component, and the equal sign one of many possible
link functions. Statisticians recognized that the deterministic component could be
expressed as an exponential function (like the Logistic function), the random component
accumulated effects of the X-variables and was still linear, and the link function could
be any logical operator (equal to, greater than, less than, etc.). The equal sign was named
the identity link. Now mathematicians had a framework for defining a function that could
fit data sets with much more nonlinearity. But it would be left to the development of
neural networks (see following text) to express functions with any degree of nonlinearity.

While these developments were happening in the Fisherian world, a stubborn group of
Bayesians continued to push their approach. To the Bayesians, the practical significance
(related to what happened in the past) is more significant than the statistical significance
calculated from joint probability functions. For example, the practical need to correctly
diagnose cancerous tumors (true-positives) is more important than the error of misdiagnos-
ing a tumor as cancerous when it is not (false-positives). To this extent, their focus was
rather Platonic, relating correct diagnosis to the data environment from which any particu-
lar sample was drawn, rather than just to data of the sample alone. To serve this practical
need, they had to ignore the fact that you can consider only the probability of events that
actually happened in the past data environment, not the probability of events that could
have happened but did not (Lee, 1989).

In Fisherian statistics, the observation and the corresponding alpha error determine
whether it is different from what is expected (Newton and Rudestam, 1999). The alpha
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error is the probability of being wrong when you think you are right, while the beta error is
the probability of being right when you think you are wrong. Fisherians set the alpha error
in the beginning of the analysis and referred to significant differences between data popu-
lations in terms of the alpha error that was specified. Fisherians would add a suffix to their
prediction, such as “. . . at the 95% Confidence Level.” The Confidence Level (95% in this
case) is the complement of the alpha error (0.05%). It means that the investigator is willing
be wrong 5% of the time. Fisherians use the beta error to calculate the “power” or “robust-
ness” of an analytical test. Bayesians feel free to twiddle with both the alpha and beta errors
and contend that you cannot arrive at a true decision without considering the alternatives
carefully. They maintain that a calculated probability level of 0.023 for a given event in
the sample data does not imply that the probability of the event within the entire universe
of events is 0.023.

Which approach is right, Fisherian or Bayesian? The answer depends on the nature of
the study, the possibility of considering priors, the relative cost of false-positive errors
and false-negative errors. Before selecting one, we must bear in mind that all statistical tests
have advantages and disadvantages. We must be informed about the strengths and weak-
nesses of both approaches and have a clear understanding of the meaning of the results
produced by either one. Regardless of its problems and its “bad press” among the Fisher-
ians, Bayesian statistics eventually did find its niche in the developing field of data mining
in business in the form of Bayesian Belief Networks and Naı̈ve Bayes Classifiers. In busi-
ness, success in practical applications depends to a great degree upon analysis of all viable
alternatives. Nonviable alternatives aren’t worth considering. One of the tutorials on the
enclosed DVD uses a Naı̈ve Bayes Classifier algorithm.

Data, Data Everywhere . . .

The crushing practical needs of business to extract knowledge from data that could be
leveraged immediately to increase revenues required new analytical techniques that
enabled analysis of highly nonlinear relationships in very large data sets with an unknown
distribution. Development of new techniques followed three paths rather than the two clas-
sical paths described previously. The third path (machine learning) might be viewed as a
blend of the Aristotelian and Platonic approach to truth, but it was not Bayesian.

MACHINE LEARNING METHODS:
THE THIRD GENERATION

The line of thinking known as machine learning arose out of the Artificial Intelligence
community in the quest for the intelligent machine. Initially, these methods followed two
parallel pathways of developments: artificial neural networks and decision trees.

Artificial Neural Networks. The first pathway sought to express a nonlinear function
directly (the “cause”) by means of assigning weights to the input variables, accumulate
their effects, and “react” to produce an output value (the “effect”) following some sort of
decision function. These systems (artificial neural networks) represented simple analogs
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of the way the human brain works by passing neural impulses from neuron to neuron
across synapses. The “resistance” in transmission of an impulse between two neurons
in the human brain is variable. The complex relationship of neurons and their associated
synaptic connections is “trainable” and could “learn” to respond faster as required by the
brain. Computer scientists began to express this sort of system in very crude terms in the
form of an artificial neural network that could be used to learn how to recognize complex
patterns in the input variables of a data set.

Decision Trees. The second pathway of development was concerned with expressing the
effects directly by developing methods to find “rules” that could be evaluated for separating
the input values into one of several “bins” without having to express the functional rela-
tionship directly. These methods focused on expressing the rules explicitly (rule induction)
or on expressing the relationship among the rules (decision tree) that expressed the results.
These methods avoided the strictures of the Parametric Model and were well suited for
analysis of nonlinear events (NLEs), both in terms of combined effects of the X-variables
with the Y-variable and interactions between the independent variables. While decision
trees and neural networks could express NLEs more completely than parametric statistical
methods, they were still intrinsically linear in their aggregation functions.

STATISTICAL LEARNING THEORY:
THE FOURTH GENERATION

Logistic regression techniques can account for the combined effects of interaction among
all predictor variables by virtue of the nonlinear function that defines the dependent
variable (Y). Yet, there are still significant limitations to these linear learning machines
(see Minsky and Papert, 1969). Even neural nets and decision trees suffered from this prob-
lem, to some extent. One way of expressing these limitations is to view them according to
their “hypothesis space.” The hypothesis space is a mathematical construct within which
a solution is sought. But this space of possible solutions may be highly constrained by
the linear functions in classical statistical analysis and machine learning techniques. Com-
plex problems in the real world may require much more expressive hypothesis spaces
than can be provided by linear functions (Cristianini and Shawe-Taylor, 2000). Multilayer
neural nets can account for much more of the nonlinear effects by virtue of the network
architecture and error minimization techniques (e.g., back-propagation).

An alternative approach is to arrange data points into vectors (like rows in a cus-
tomer record). Such vectors are composed of elements (one for each attribute in the
customer record). The vector space of all rows of customers in a database can be character-
ized conceptually and mathematically as a space with the N-dimensions, where N is the
number of customer attributes (predictive variables). When you view data in a customer
record as a vector, you can take advantage of linear algebra concepts, one of which is that
you can express all of the differences between the attributes of two customer records by
calculating the dot product (or the inner product). The dot product of two vectors is the
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sum of all the products between corresponding attributes of the two vectors. Consequently,
we can express our data as a series of dot products composed into an inner product space
with N dimensions. Conversion of our data into inner products is referred to as “mapping”
the data to inner product space.

Even classical statistical algorithms (like linear regression) can be expressed in this way.
In Statistical Learning Theory, various complex functions, or “kernels,” replace the inner
product. When you map data into these complex kernel spaces, the range of possible solu-
tions to your problem increases significantly. The data in these spaces are referred to as
“features” rather than as attributes that characterized the original data.

A number of new learning techniques have taken advantage of the properties of kernel
learning machines. The most common implementation is a Support Vector Machine. When
a neural net is “trained,” rows of customer data are fed into the net, and errors between
predicted and observed values are calculated (an example of supervised learning). The
learning function of the training and the error minimization function (that defines the best
approximate solution) are closely intertwined in neural nets. This is not the case with sup-
port vector machines. Because the learning process is separated from the approximation
process, you can experiment by using different kernel definitions with different learning
theories. Therefore, instead of choosing from among different architectures for a neural
net application, you can experiment with different kernels in a support vector machine
implementation.

Several commercial packages include algorithms based on Statistical Learning Theory,
notably STATISTICA Data Miner and KXEN (Knowledge Extraction Engine). In the future,
we will see more of these powerful algorithms in commercial packages. Eventually, data
mining methods may become organized around the steps that enable these algorithms to
work most efficiently. For example, the KXEN tool incorporates a smart data recoder (to
standardize inputs) and a smart variable derivation routine that uses variable ratios and
recombination to produce powerful new predictors.

Is the Fourth Generation of statistical methods the last? Probably it is not. As we accumu-
late more and more data, we will probably discover increasingly clever ways to simulate
more closely the operation of the most complex learning machine in the universe—the
human brain.

POSTSCRIPT

New strategies are being exploited now to spread the computing efforts among multiple
computers connected like the many neurons in a brain:

• Grid Computing: Utilizing a group of networked computers to divide and conquer
computing problems.

• “Cloud” Computing: Using the Internet to distribute data and computing tasks to many
computers anywhere in the world, but without a centralized hardware infrastructure of
grid computing.
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These strategies for harnessing multiple computers for analysis provide a rich new
milieu for data mining. This approach to analysis with multiple computers is the next
logical step in the development of artificial “brains.” This step might develop into the Fifth
Generation of data mining.
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PREAMBLE

In Chapter 1, we explored the historical background of statistical analysis and data
mining. Statistical analysis is a relatively old discipline (particularly if you consider its ori-
gins in China). But data mining is a relatively new field, which developed during the 1990s
and coalesced into a field of its own during the early years of the twenty-first century. It
represents a confluence of several well-established fields of interest:

• Traditional statistical analysis
• Artificial intelligence
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• Machine learning
• Development of large databases

Traditional statistical analysis follows the deductive method in the search for relation-
ships in data sets. Artificial intelligence (e.g., expert systems) and machine learning
techniques (e.g., neural nets and decision trees) follow the inductive method to find
faint patterns of relationship in data sets. Deduction (or deductive reasoning) is the
Aristotelian process of analyzing detailed data, calculating a number of metrics, and
forming some conclusions based (or deduced) solely on the mathematics of those metrics.
Induction is the more Platonic process of using information in a data set as a “spring-
board” to make general conclusions, which are not wholly contained directly in the input
data. The scientific method follows the inductive approach but has strong Aristotelian
elements in the preliminary steps.

THE SCIENTIFIC METHOD

The scientific method is as follows:

1. Define the problem.
2. Gather existing information about a phenomenon.
3. Form one or more hypotheses.
4. Collect new experimental data.
5. Analyze the information in the new data set.
6. Interpret results.
7. Synthesize conclusions, based on the old data, new data, and intuition.
8. Form new hypotheses for further testing.
9. Do it again (iteration).

Steps 1–5 involve deduction, and steps 6–9 involve induction. Even though the scientific
method is based strongly on deductive reasoning, the final products arise through induc-
tive reasoning. Data mining is a lot like that. In fact, machine learning algorithms used in
data mining are designed to mimic the process that occurs in the mind of the scientist. Data
mining uses mathematics, but the results are not mathematically determined. This state-
ment may sound somewhat contradictory until you view it in terms of the human brain.
You can describe many of the processes in the human conceptual pathway with various
mathematical relationships, but the result of being human goes far beyond the mathematical
descriptions of these processes. Women’s intuition, mother’s wisdom regarding their
offspring, and “gut” level feelings about who should win the next election are all intuitive
models of reality created by the human brain. They are based largely on empirical data,
but the mind extrapolates beyond the data to form the conclusions following a purely
inductive reasoning process.
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WHAT IS DATA MINING?

Data mining can be defined in several ways, which differ primarily in their focus on dif-
ferent aspects of data mining. One of the earliest definitions is

The non-trivial extraction of implicit, previously unknown, and potentially useful information from data
(Frawley et al., 1991).

As data mining developed as a professional activity, it was necessary to distinguish it
from the previous activity of statistical modeling and the broader activity of knowledge dis-
covery. For the purposes of this handbook, we will use the following working definitions:

• Statistical modeling: The use of parametric statistical algorithms to group or predict
an outcome or event, based on predictor variables.

• Data mining: The use of machine learning algorithms to find faint patterns of
relationship between data elements in large, noisy, and messy data sets, which can
lead to actions to increase benefit in some form (diagnosis, profit, detection, etc.).

• Knowledge discovery: The entire process of data access, data exploration, data
preparation, modeling, model deployment, and model monitoring. This broad process
includes data mining activities, as shown in Figure 2.1.

As the practice of data mining developed further, the focus of the definitions shifted to
specific aspects of the information and its sources. In 1996, Fayyad et al. proposed the
following:

Knowledge discovery in databases is the non-trivial process of identifying valid, novel, potential useful, and
ultimately understandable patterns in data.

Data Sourcing

Data Preparation

Data Transformation

Model building

Model Evaluation

Model Visualization

Data
Scoring 

Selection & Sampling
Data Mining

Data Mining & Knowledge Discovery

Knowledge Discovery in Databases

FIGURE 2.1 The relationship be-
tween data mining and knowledge
discovery.
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The second definition focuses on the patterns in the data rather than just information in a
generic sense. These patterns are faint and hard to distinguish, and they can only be sensed
by analysis algorithms that can evaluate nonlinear relationships between predictor vari-
ables and their targets and themselves. This form of the definition of data mining devel-
oped along with the rise of machine learning tools for use in data mining. Tools like
decision trees and neural nets permit the analysis of nonlinear patterns in data easier than
is possible in parametric statistical algorithms. The reason is that machine learning algo-
rithms learn the way humans do—by example, not by calculation of metrics based on
averages and data distributions.

The definition of data mining was confined originally to just the process of model build-
ing. But as the practice matured, data mining tool packages (e.g., SPSS-Clementine)
included other necessary tools to facilitate the building of models and for evaluating and
displaying models. Soon, the definition of data mining expanded to include those opera-
tions in Figure 2.1 (and some include model visualization also).

The modern Knowledge Discovery in Databases (KDD) process combines the mathemat-
ics used to discover interesting patterns in data with the entire process of extracting data
and using resulting models to apply to other data sets to leverage the information for some
purpose. This process blends business systems engineering, elegant statistical methods, and
industrial-strength computing power to find structure (connections, patterns, associations,
and basis functions) rather than statistical parameters (means, weights, thresholds, knots).
In Chapter 3, we will expand this rather linear organization of data mining processes to
describe the iterative, closed-loop system with feedbacks that comprise the modern
approach to the practice of data mining.

A THEORETICAL FRAMEWORK FOR THE
DATA MINING PROCESS

The evolutionary nature of the definition and focus of data mining occurred primarily as
a matter of experience and necessity. A major problem with this development was the lack
of a consistent body of theory, which could encompass all aspects of what information is,
where it comes from, and how is it used. This logical concept is sometimes called a
model-theoretic. Model theory links logic with algebraic expressions of structure to describe
a system or complex process with a body of terms with a consistent syntax and relation-
ships between them (semantics). Most expressions of data mining activities include incon-
sistent terms (e.g., attribute and predictor), which may imply different logical semantic
relations with the data elements employed.

Mannila (2000) summarized a number of criteria that should be satisfied in an approach
to develop a model-theoretic for data mining. These criteria include the ability to

• Model typical data mining tasks (clustering, rule discovery, classification)
• Describe data and the inductive generalizations derived from the data
• Express information from a variety of forms of data (relational data, sequences, text, Web)
• Support interactive and iterative processes
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• Express comprehensible relationships
• Incorporate users in the process
• Incorporate multiple criteria for defining what is an “interesting” discovery

Mannila describes a number of approaches to developing an acceptable model-theoretic
but concludes that none of them satisfy all the above criteria. The closest we can come is to
combine the microeconomic approach with the inductive database approach.

Microeconomic Approach

The starting point of the microeconomic approach is that data mining is concerned with
finding actionable patterns in data that have some utility to form a decision aimed at getting
something done (e.g., employ interdiction strategies to reduce attrition). The goal is to find
the decision that maximizes the total utility across all customers.

Inductive Database Approach

An inductive database includes all the data available in a given structure plus all the
questions (queries) that could be asked about patterns in the data. Both stored and derived
facts are handled in the same way. One of the most important functions of the human brain
is to serve as a pattern recognition engine. Detailed data are submerged in the unconscious
memory, and actions are driven primarily by the stored patterns.

Manilla suggests that the microeconomic approach can express most of the requirements
for a model-theoretic based on stored facts, but the inductive database approach is much
more facile to express derived facts. One attempt to implement this was taken in the devel-
opment of the Predictive Modeling Markup Language (PMML) as a superset of the stan-
dard Extended Markup Language (XML). Most data mining packages available today
store internal information (e.g., arrays) in XML format and can output results (analytical
models) in the form of PMML. This combination of XML and PMML permits expression
of the same data elements and the data mining process either in a physical database envi-
ronment or a Web environment. When you choose your data mining tool, look for these
capabilities.

STRENGTHS OF THE DATA MINING PROCESS

Traditional statistical studies use past information to determine a future state of a system
(often called prediction), whereas data mining studies use past information to construct pat-
terns based not solely on the input data, but also on the logical consequences of those data.
This process is also called prediction, but it contains a vital element missing in statistical
analysis: the ability to provide an orderly expression of what might be in the future, com-
pared to what was in the past (based on the assumptions of the statistical method).

Compared to traditional statistical studies, which are often hindsight, the field of data
mining finds patterns and classifications that look toward and even predict the future. In
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summary, data mining can (1) provide a more complete understanding of data by finding
patterns previously not seen and (2) make models that predict, thus enabling people to
make better decisions, take action, and therefore mold future events.

CUSTOMER-CENTRIC VERSUS ACCOUNT-CENTRIC:
A NEW WAY TO LOOK AT YOUR DATA

Most computer databases in business were designed for the efficient storage and
retrieval of account or product information. Business operations were controlled by
accounting systems; it was natural that the application of computers to business followed
the same data structures. The focus of these data structures was on transactions, and multi-
ple transactions were stored for a given account. Data in early transactional business sys-
tems were held in Indexed Sequential Access Method (ISAM) databases. But as data
volumes increased and the need for flexibility increased, Relational Database Management
Systems (RDBMS) were developed. Relational theory developed by C. J. Codd distributed
data into tables linked by primary and foreign keys, which progressively reduced data
redundancy (like customer names) in (eventually) six “normal forms” of data organization.
Some of the very large relational systems using NCR Teradata technology extend into the
hundreds of terabytes. These systems provide relatively efficient systems for storage and
retrieval of account-centric information.

Account-centric systems were quite efficient for their intended purpose, but they have a
major drawback: it is difficult to manage customers per se as the primary responders, rather
than accounts. One person could have one account or multiple accounts. One account could
be owned by more than one person. As a result, it was very difficult for a company on an
RDBMS to relate its business to specific customers. Also, accounts (per se) don’t buy
products or services; products don’t buy themselves. People buy products and services,
and our businesses operations (and the databases that serve them) should be oriented
around the customer, not around accounts.

When we store data in a customer-centric format, extracts to build the Customer Analyt-
ical Record (CAR) are much easier to create (see later section for more details on the CAR).
And customer-centric databases are much easier to update in relation to the customer.

The Physical Data Mart

One solution to this problem is to organize data structures to hold specific aspects
(dimensions) of customer information. These structures can be represented by tables with
common keys to link them together. This approach was championed by Oracle to hold cus-
tomer-related information apart from the transactional data associated with them. The basic
architecture was organized around a central (fact) table, which stored general information
about a customer. This fact table formed the hub of a structure like a wheel (Figure 2.2).
This structure became known as the star-schema.
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Another name for a star-schema is a multidimensional database. In an online store, the
dimensions can hold data elements for Products, Orders, Back-orders, etc. The transactional
data are often stored in another very different data structure. The customer database system
is refreshed daily with summaries and aggregations from the transactional system. This
smaller database is “dependent” on the larger database to create the summary and aggre-
gated data stored in it. When the larger database is a data warehouse, the smaller depen-
dent database is referred to as a dependent data mart. In Chapter 3, we will see how a
system of dependent data marts can be organized around a relational data warehouse to
form the Corporate Information Factory.

The Virtual Data Mart

As computing power and disk storage capacity increased, it became obvious in the early
1990s that a business could appeal to customers directly by using characteristics and historical
account information, and Customer Relationship Management (CRM) was born. One-to-one
marketing appeals could be supported, and businesses became “smarter” in their ability to con-
vince customers to buy more goods and services. This success of CRM operations changed the
way some companies looked at their data. No longer must companies view their databases in
terms of just accounts and products, but rather they could view their customers directly, in
terms of all accounts, products and demographic data associated with each customer. These
“logical” data marts could even be implemented as “views” in an RDBMS.

Householded Databases

Another way to gain customer-related insights is to associate all accounts to the cus-
tomers who own them and to associate all individual members of the same household. This
process is called householding. The householding process requires some fuzzy matching to
aggregate all accounts to the same customer. The reason is that the customer names may
not be spelled exactly the same way in all records. An analogous situation occurs when
trying to gather all individuals into the same household, because not all addresses are listed
in exactly the same format. This process of fuzzy matching can be performed by a number
of data integration and data quality tools available in the market today (DataFlux, Trillium,
Informatica Data Quality, IBM Quality Stage).

Fact 
Table

Dimension 1 Dimension 2 

Dimension 4 Dimension 3 

FIGURE 2.2 A simple star-schema database
structure.
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The householded data structure could consist of the following tables:

• Accounts
• Individuals
• Households

Historical data could be combined with each of the preceding hierarchical levels of
aggregation. Alternatively, the preceding tables could be restricted to current data, and his-
torical data could be installed in historical versions of the same tables (e.g., Accounts_Hst),
linked together with common keys. This compound structure would optimize speed of
database queries and simplify data extraction for most applications requiring only current
data. Also, the historical data would be available for trending in the historical tables.

THE DATA PARADIGM SHIFT

The organization of data structures suitable for data mining requires a basic shift in
thinking about data in business. Data do not serve the account; data should be organized
to serve the customer who buys goods and services. To directly serve customers, data must
be organized in a customer-centric data structure to permit the following:

• Relationship of all data elements must be relevant to the customer.
• Data structures must make it relatively easy to convert all required data elements into

a form suitable for data mining: the Customer Analytical Record (CAR).

CREATION OF THE CAR

All input datamust be loaded into the CAR (Accenture Global Services, 2006). This process
is similar to preparing for a vacation by automobile. If your camping equipment is stored in
one place in your basement, you can easily access it and load it into the automobile. If it is
spread throughout your house and mixed in with noncamping equipment, access will be
more difficult because you have to separate (extract) it from among other items. Gathering
data for data mining is a lot like that. If your source data is a data warehouse, this process will
denormalize your data. Denormalization is the process of extracting data from normalized
tables in the relational model of a data warehouse. Data from these tables must be associated
with the proper individuals (or households) along the way. Data integration tools (like SAS
DataFlux or Informatica) are required to extract and transform data from the relational data-
base tables to build the CAR. See any one of a number of good books on relational data ware-
housing to understand what this process entails. If your data are already in a dimensional or
householding data structure, you are already halfway there. The CAR includes the following:

1. All data elements are organized into one record per customer.
2. One or more “target” (Y) variables are assigned or derived.
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The CAR is expressed as a textual version of

An equation: Y ¼ X1 þ X2 þ X3 þ. . .Xn

This expression represents a computerized “memory” of the information about a cus-
tomer. These data constructs are analyzed by either statistical or machine learning “algo-
rithms,” following specific methodological operations. Algorithms are mathematical
expressions that describe relationships between the variable predicted (Y or the customer
response) and the predictor variables (X1 þ X2 þ X3 þ. . .Xn ). Basic and advanced data
mining algorithms are discussed in Chapters 7 and 8.

The CAR is analyzed by parametric statistical or machine learning algorithms, within
the broader process of Knowledge Discovery in Databases (KDD), as shown in Figure 2.1.
The data mining aspect of KDD consists of an ordered series of activities aimed at training
and evaluating the best patterns (for machine learning) or equations (for parametric
statistical procedures). These optimum patterns or equations are called models.

MAJOR ACTIVITIES OF DATA MINING

Major data mining activities include the following general operations (Hand et al., 2001):

1. Exploratory Data Analysis: These data exploration activities include interactive and
visual techniques that allow you to “view” a data set in terms of summary statistical
parameters and graphical display to “get a feel” for any patterns or trends that are in
the data set.

2. Descriptive Modeling: This activity forms higher-level “views” of a data set, which can
include the following:

a. Determination of overall probability distributions of the data (sometimes called
density estimations);

b. Models describing the relationship between variables (sometimes called
dependency modeling);

c. Partitioning of the data into groups, either by cluster analysis or segmentation.
Cluster analysis is a little different, as the clustering algorithms try to find “natural
groups” either with many “clusters,” or in one type of cluster analysis, the user
can specify that all the cases “must be” put into x number of clusters (say, for
example, three cluster groups). For segmentation, the goal is to find homogeneous
groups related to the variable to be modeled (e.g., customer segments like
big-spenders).

3. Predictive Modeling: Classification and Regression: The goal here is to build a
model where the value of one variable can be predicted from the values of other
variables. Classification is used for “categorical” variables (e.g., Yes/No variables or
multiple-choice answers for a variable like 1–5 for “like best” to “like least”).
Regression is used for “continuous” variables (e.g., variables where the values can
be any number, with decimals, between one number and another; age of a person
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would be an example, or blood pressure, or number of cases of a product coming off
an assembly line each day).

4. Discovering Patterns and Rules: This activity can involve anything from finding the
combinations of items that occur frequently together in transaction databases (e.g.,
products that are usually purchased together, at the same time, by a customer at a
convenience store, etc.) or things like finding groupings of stars, maybe new stars, in
astronomy, to finding genetic patterns in DNA microarray assays. Analyses like these
can be used to generate association rules; e.g., if a person goes to the store to buy milk, he
will also buy orange juice. Development of association rules is supported by algorithms
in many commercial data mining software products. An advanced association method is
Sequence, Association, and Link (SAL) analysis. SAL analysis develops not only the
associations, but also the sequences of the associated items. From these sequenced
associations, “links” can be calculated, resulting in Web link graphs or rule graphs (see
the NTSB Text Mining Tutorial, included with this book, for nice illustrations of both
rule graphs and SAL graphs).

5. Retrieval by Content: This activity type begins with a known pattern of interest and
follows the goal to find similar patterns in the new data set. This approach to pattern
recognition is most often used with text material (e.g., written documents, brought into
analysis as Word docs, PDFs, or even text content of Web pages) or image data sets.

To those unfamiliar with these data mining activities, their operations might appear
magical or invoke images of the wizard.

Contrary to the image of data miners as magicians, their activities are very simple in
principle. They perform their activities following a very crude analog to the way the human
brain learns. Machine learning algorithms learn case by case, just the way we do. Data input
to our senses are stored in our brains not in the form of individual inputs, but in the form of
patterns. These patterns are composed of a set of neural signal strengths our brains have
associated with known inputs in the past. In addition to their abilities to build and store
patterns, our brains are very sophisticated pattern recognition engines. We may spend a
lifetime building a conceptual pattern of “the good life” event by event and pleasure by
pleasure. When we compare our lives with those in other countries, we unconsciously com-
pare what we know about their lives (data inputs) with the patterns of our good lives. Anal-
ogously, a machine learning algorithm builds the pattern it “senses” in a data set. The
pattern is saved in terms of mathematical weights, constants, or groupings. The mined pat-
tern can be used to compare mathematical patterns in other data sets, to score their quality.
Granted, data miners have to perform many detailed numerical operations required by the
limitations of our tools. But the principles behind these operations are very similar to the
ways our brains work.

Data mining did not arise as a new academic discipline from the studies in universities.
Rather, data mining is the logical next step in a series of developments in business to use
data and computers to do business better in the future. Table 2.1 shows the historical roots
of data mining.

The discussion in Chapter 1 ended with the question of whether the latest data mining
algorithms represent the best we can do. The answer was probably no. The human minds
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of the data mining algorithm developers will continue to generate novel and increasingly
sophisticated methods of emulating the human brain.

MAJOR CHALLENGES OF DATA MINING

Some of the major challenges of data mining projects include

• Use of data in transactional databases for data mining
• Data reduction
• Data transformation
• Data cleaning
• Data sparsity
• Data rarity (rare case pattern recognition and thus “data set balancing”)

Each of these challenges will be discussed in the ensuing chapters.

TABLE 2.1 Historical Development of Data Mining

1960s 1980s 1990s 1995+

Strategic 
Value

Source: Meta Group

Historical Development of 
Data Mining

Developmental

Step Data Collection Data Access

Data Warehousing &

Decision Support Data Mining

Business
Question

"What was my
total revenue
last year?"

"What were sales
in Ohio last
March?

"What were sales in Ohio
last March" – Drill
down to Dayton

"What will be the
sales in Dayton
next month"

Enabling
Technology

Computers
tapes and
disks

Relational
databases & SQL

Data warehouses
Multidimensional
databases

Adv. algorithms
multiprocessors
massive databases

Characteristics Delivery of static
past data
summaries

Delivery of
dynamic past
data at record
level

Delivery of dynamic past
data at multiple levels

Prospective Proactive
Information
delivery
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EXAMPLES OF DATA MINING APPLICATIONS

Data mining technology can be applied anywhere a decision is made, based on some
body of evidence. The diversity of applications in the past included the following:

• Sales Forecasting: One of the earliest applications of data mining technology
• Shelf Management: A logical follow-on to sales forecasting
• Scientific Discovery: A way to identify which among the half-billion stellar objects

are worthy of attention (JPL/Palomar Observatory)
• Gaming: A method of predicting which customers have the highest potential for

spending
• Sports: A method of discovering which players/game situations have the highest

potential for high scoring
• Customer Relationship Management: Retention, cross-sell/up-sell propensity
• Customer Acquisition: A way to identify the prospects most likely to respond to a

membership offer

MAJOR ISSUES IN DATA MINING

Some major issues of data mining include the following (adapted from Han and Kamber,
2006):

1. Mining of different kinds of information in databases: It is necessary to integrate data
from diverse input sources, including data warehouses/data marts, Excel spreadsheets,
text documents, and image data. This integration may be quite complex and time
consuming.

2. Interactive mining of knowledge at multiple levels of abstraction: Account-level
data must be combined with individual-level data and coordinated with data with
different time-grains (daily, monthly, etc.). This issue requires careful transformation of
each type of input data to make them consistent with each other.

3. Incorporation of background information: Some of the most powerful predictor
variables are those gathered from outside the corporate database. These data can
include demographic and firmographic data, historical data, and other third-party data.
Integration of this external data with internal data can be very tricky and imprecise.
Inexact (“fuzzy”) matching is necessary in many cases. This process can be very time
consuming also.

4. Data mining query languages and ad hoc data mining: Data miners must interface
closely with database management systems to access data. Structured Query Language
(SQL) is the most common query tool used to extract data from large databases.
Sometimes, specialized query languages must be used in the place of SQL. This
requirement means that data miners must become proficient (at least to some extent) in
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the programming skills with these languages. This is the most important interface
between data mining and database management operations.

5. Presentation and visualization of data mining results: Presenting highly technical
results to nontechnical managers can be very challenging. Graphics and visualizations
of the result data can be very valuable to communicate properly with managers who are
more graphical rather than numerical in their analytical skills.

6. Handling “noisy” or incomplete data: Many items of data (“fields”) for a given
customer or account (a “record”) are often blank. One of the most challenging tasks in
data mining is filling those blanks with intuitive values. We will discuss some
approaches for filling blank data fields in Chapter 4. In addition to data that is not there,
some data present in a record represent randomness and are analogous to noise in a
signal transmission. Different data mining algorithms have different sensitivities to
missing data and noise. Part of the art of data mining is selecting the algorithm with the
right balance of sensitivity to these “distractions” and also to have a relatively high
potential to recognize the target pattern.

7. Pattern evaluation—the “interestingness” problem: Many patterns may exist in a data
set. The challenge for data mining is to distinguish those patterns that are “interesting”
and useful to solve the data mining problem at hand. Various measures of
interestingness have been proposed for selecting and ranking patterns according to their
potential interest to the user. Applying good measures of interestingness can highlight
those variables likely to contribute significantly to the model and eliminate unnecessary
variables. This activity can save much time and computing “cycles” in the model
building process.

8. Efficiency and scalability of data mining algorithms: Efficiency of a data mining
algorithm can be measured in terms of its predictive power and the time it takes to
produce a model. Scalability issues can arise when an algorithm or model built on a
relatively small data set is applied to a much larger data set. Good data mining
algorithms and models are linearly scalable; that is, time consumed in processing
increases geometrically rather than exponentially with the size of the data set.

9. Parallel, distributed, and incremental mining algorithms: Large data mining problems
can be processed much more efficiently by “dividing and conquering” the problem with
multiple processors in parallel computers. Another strategy for processing large data
sets is to distribute the processing to multiple computers and compose the results from
the combined outputs. Finally, some data mining problems (e.g., power grid controls)
must be solved by using incremental algorithms, or those that work on continuous
streams of data, rather than large “chunks” of data. A good example of such an
algorithm is a Generalized Regression Neural Net (GRNN). Many power grids are
controlled by GRNNs.

10. Handling of relational and complex types of data: Much input data might come from
relational databases (a system of “normalized” tables linked together by common keys).
Other input data might come from complex multidimensional databases (elaborations
of star-schemas). The data mining process must be flexible enough to encompass both.
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11. Mining information from heterogeneous and global information systems: Data
mining tools must have the ability to process data input from very different database
structures. In tools with graphical user interfaces (GUIs), multiple nodes must be
configured to input data from very different data structures.

GENERAL REQUIREMENTS FOR SUCCESS IN
A DATA MINING PROJECT

Following are general requirements for success of a data mining project:

1. Significant gain is expected. Usually, either

a. Results will identify “low-hanging fruit,” as in a customer acquisition model
where analytic techniques haven’t been tried before (and anything rational will
work better).

b. Improved results can be highly leveraged; that is, an incremental improvement in a
vital process will have a strong bottom-line impact. For instance, reducing “charge-
offs” in credit scoring from 10% to 9.8% couldmake a difference of millions of dollars.

2. A team skilled in each required activity. For other than very small projects, it is unlikely
that one person will be sufficiently skilled in all activities. Even if that is so, one
person will not have the time to do it all, including data extraction, data integration,
analytical modeling, and report generation and presentation. But, more importantly, the
analytic and business people must cooperate closely so that analytic expertise can
build on the existing domain and process knowledge.

3. Data vigilance: Capture and maintain the accumulating information stream (e.g., model
results from a series of marketing campaigns).

4. Time: Learning occurs over multiple cycles. The corporate mantra of Dr. Ferdinand
Porsche was “Racing improves the breed.” Today, Porsche is the most profitable
automobile manufacturer in the world.

Likewise, data mining models must be “raced” against reality. The customer acquisition
model used in the first marketing campaign is not very likely to be optimal. Successive
iterations breed successive increases in success.

Each of these types of data mining applications followed a common methodology in
principle. We will expand on the subject of the data mining process in Chapter 3.

EXAMPLE OF A DATA MINING PROJECT:
CLASSIFY A BAT’S SPECIES BY ITS SOUND

Approach:

1. Use time-frequency features of echo-location signals to classify bat species in the field
(no capture is necessary).
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2. University of Illinois biologists gathered 98 signals from 19 bats representing 6 species.
3. Thirty-five data features were calculated from the signals, such as low frequency at the

3 db level; time position of the signal peak; amplitude ratio of the 1st and 2nd harmonics.
4. Multiple data mining algorithms were employed to relate the features to the species.

Figure 2.3 shows a plot of the 98 bat signals.
The groupings of bat signals in Figure 2.3 are depicted in terms of color and shape of the plot-

ted symbols. From these groupings, we can see that it is likely that a modeling algorithm could
distinguish between many of them (as many colored groups cluster), but not all (as there are
multiple clusters for most bat types). The first set of models used decision trees and was 46%
accurate. A second set used a new tree algorithm that looks two steps ahead (see TX2Step on
http://64.78.4.148/PRODUCTS/tabid/56/Default.aspx) and did better at 58%. A third set of
models used neural nets with different configurations of inputs. The best neural net solution
increased the correct prediction rate to 68%, and it was observed that the simplest neural net
architecture (the one with the fewest input variables) did best. The reduced set of inputs for
the neural networks had been suggested by the inputs chosen by the two decision tree algo-
rithms. Further models with nearest neighbors, using this same reduced set of inputs, also
did aswell as the best neural networks. Lastly, an ensemble of the estimates from four different
types of models did better than any of the individual models.

The bat signal modeling example illustrates several key points in the process of creating
data mining models:

1. Multiple algorithms are better than a single algorithm.
2. Multiple configurations of an algorithm permit identification of the best configuration,

which yields the best model.
3. Iteration is important and is the only way to assure that the final model is the right one

for a given application.
4. Data mining can speed up the solution cycle, allowing you to concentrate on higher

aspects of the problem.
5. Data mining can address information gaps in difficult-to-characterize problems.

Sample Projection

FIGURE 2.3 Sample plot of bat signals.
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THE IMPORTANCE OF DOMAIN KNOWLEDGE

One data mining analyst might build a model with a data set and find very low predict-
ability in the results. Another analyst might start with the same data set but create a
model with a much higher predictability. Why the difference? In most cases like this,
the difference is in the data preparation, not the modeling algorithm chosen. Granted,
some algorithms are clearly superior to others for a particular data set. A model is no
better than the predictor variables input to it. The second analyst may know much more
about the business domain from which the data came. This intimate knowledge facili-
tates the derivation of powerful predictor variables from the set of existing variables. In
Chapter 16, we will see that the derivation of time-lagged variables (a.k.a. temporal
abstractions) permitted the creation of a much more powerful model than without them.
There is simply no substitution for domain knowledge. If you don’t have it, get it by either
learning it before building a model, or bring it into the project team in the form of one
who does know it.

POSTSCRIPT

Why Did Data Mining Arise?

Now, we can go on to a final dimension of our subject of analytical theory. Statistical
analysis has been around for a long time. Why did data mining development occur when
it did? Necessity may indeed be the mother of invention. During the past 50 years, business,
industry, and society have accumulated a huge amount of data. It has been estimated that
over 90% of the total knowledge we have now has been learned since 1950. Faced with huge
data sets, analysts could bring computers to their “knees” with the processing of classical
statistical analyses. A new form of learning was needed. A new approach to decision
making based on input data had to be created to work in this environment of huge data
sets. Scientists in artificial intelligence (AI) disciplines proposed that we use an approach
modeled on the human brain rather than on Fisher’s Parametric Model. From early AI
research, neural nets were developed as crude analogs to the human thought process,
and decision trees (hierarchical systems of Yes/No answers to questions) were developed
as a systematic approach to discovering “truth” in the world around us.

Data mining approaches were also applied to relatively small data sets, with predictive
accuracies equal to or better than statistical techniques. Some medical and pharmaceutical
data sets have relatively few cases but many hundreds of thousands of data attributes
(fields). One such data set was used in the 2001 KDD Cup competition, which had only
about 2,000 cases, but each case had over 139,000 attributes! Such data sets are not very trac-
table with parametric statistical techniques. But some data mining algorithms (like MARS)
can handle data sets like this with relative ease.
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Some Caveats with Data Mining Solutions

Hand (2005) summarized some warnings about using data mining tools for pattern
discovery:

1. Data Quality: Poor data quality may not be explicitly revealed by the data mining
methods, and this poor data quality will produce poor models. It is possible that poor
data will support the building of a model with relatively high predictability, but the
model will be a fantasy.

2. Opportunity: Multiple opportunities can transform the seemingly impossible to a
very probable event. Hand refers to this as the problem of multiplicity, or the law of
truly large numbers. For example, the odds of a person winning the lottery in the
United States are extremely small, and the odds of that person winning it twice are
fantastically so. But the odds of someone in the United States winning it twice (in a
given year) are actually better than ever. As another example, you can search the
digits of pi for “prophetic” strings such as your birthday or significant dates in
history and usually find them—given enough digits.

3. Interventions: One unintended result of a data mining model is that some changes will
be made to invalidate it. For example, developing fraud detection models may lead to
some effective short-term preventative measures. But soon thereafter, fraudsters may
evolve in their behavior to avoid these interventions in their operations.

4. Separability: Often, it is difficult to separate the interesting information from the
mundane information in a data set. Many patterns may exist in a data set, but only a few
may be of interest to the data miner for solving a given problem. The definition of the
target variable is one of the most important factors that determine which pattern the
algorithm will find. For one purpose, retention of a customer may be defined very
distinctively by using a variable like Close_date to derive the target. In another case, a
70% decline in customer activity over the last two billing periods might be the best way
to define the target variable. The pattern found by the data mining algorithm for the first
case might be very different from that of the second case.

5. Obviousness: Some patterns discovered in a data set might not be useful at all because
they are quite obvious, even without data mining analysis. For example, you could
find that there is an almost equal number of married men as married women (duh!). Or,
you could learn that ovarian cancer occurs primarily in women and that check fraud
occurs most often for customers with checking accounts.

6. Nonstationarity: Nonstationarity occurs when the process that generates a data set
changes of its own accord. For example, a model of deer browsing propensity on leaves
of certain species will be quite useless when the deer population declines rapidly. Any
historical data on browsing will have little relationship to patterns after the population
crash.

Note: Some of the specific details of the “theory” and methods will be discussed in more
depth in Part II, especially Chapters 7 and 8, and also “classification” and “numerical pre-
diction” algorithms more thoroughly in Chapters 11 and 12; with an additional smattering
of algorithms discussed in Chapters 13, 14, 15, 16, and 17.
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PREAMBLE

Data miners are fond of saying that data mining is as much art as it is science. What they
mean by this statement is that the data mining process is a scientific endeavor overlain with
a significant amount of artistic practice. This chapter will expand on this statement in the
context of the many practical challenges of data mining in real-world databases.

THE SCIENCE OF DATA MINING

A very early definition of data mining was “the nontrivial extraction of implicit, previ-
ously unknown, and potentially useful information from data” (Frawley et al., 1992). A later
definition of data mining expanded on this definition slightly, referring to the application of
various algorithms for finding patterns or relationship in a data set (Fayyad et al., 1996).
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An attendant term, knowledge discovery, referred to the collateral process of data access, data
preprocessing, data post-processing, and interpretation of results. The combined process
was referred to as the KDD process. This is a very useful approach to express all the steps
necessary for finding and exploiting relationships in data; however, it was not followed
for very long in the development of data mining in business during the 1990s.

The concept of data mining to a business data analyst includes not only the finding
of relationships, but also the necessary preprocessing of data, interpretation of results,
and provision of the mined information in a form useful in decision making. In other
words, a business data analyst includes the classical definitions of data mining and
knowledge discovery into one process. While this approach is not very palatable for
the academic, it serves the business analyst quite well. We will adopt this approach
in this chapter, not because it is best, but because it serves well to communicate both
the nature and the scope of the process of leveraging relationship patterns in data to
serve business goals.

THE APPROACH TO UNDERSTANDING
AND PROBLEM SOLVING

Before an investigation can occur, the basic approach must be defined. There are two
basic approaches to discovering truth: the deductive approach and the inductive approach.
The deductive approach starts with a few axioms—simple true statements about how the
world works. The understanding of the phenomenon can be deduced from the nature of
the axioms. This approach works fine in mathematics, but it does not work very well for
describing how the natural world works. During the Renaissance, an alternate approach
to truth was formulated, which turned the deductive method upside down. This new
method approached truth inductively rather than deductively. That is, the definition of simple
truths describing the phenomenon is the goal of the investigation, not the starting point!
Development of the inductive approach to truth in science led to the formation of the
scientific method.

In his classic work on problem solving, George Pólya showed that the mathematical
method and the scientific method are similar in their use of an iterative approach but differ
in steps followed (Pólya, 1957). Table 3.1 compares these two methods.

TABLE 3.1 Comparison of the Steps in the Mathematical and Scientific Methods

Mathematical Method Scientific Method

1. Understanding 1. Characterization from experience and observation
2. Analysis 2. Hypothesis: a proposed explanation
3. Synthesis 3. Deduction: prediction from hypothesis
4. Review/Extend 4. Test and experiment
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The method followed in the data mining process for business is a blend of the mathemat-
ical and scientific methods. The basic data mining process flow follows the mathematical
method, but some steps from the scientific method are included (i.e., characterization,
and test and experiment). This process has been characterized in numerous but similar
formats. The most widespread formats in use are the CRISP-DM format, SEMMA, and
DMAIC. In subsequent chapters of this book, we will refer to the data mining process in
terms of the CRISP-DM format.

CRISP-DM

The CRISP-DM format for expressing the data mining process is the most complete
available. It was created by a consortium of NCR, SPSS, and Daimler-Benz companies.
The process defines a hierarchy consisting of major phases, generic tasks, specialized tasks,
and process instances. The major phases are related in Figure 3.1 as it is applied to fraud
modeling.

Business
Understanding

Data
Understanding

Data
Preparation

Modeling

Data

Evaluation

Deployment

FIGURE 3.1 Phases of the CRISP-DM process (Chapman et al., 2000).
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Each phase of the process consists of a number of second-level generic activities, each
with several specialized operations. A fourth level (Tasks) could be defined in this process,
but these tasks are very domain-specific; that is, they must be defined in terms of the
specific business problem to be solved in the context of the specific data used to solve it.
This organization can be viewed in terms of the following hierarchy:

Data Mining Phase
Activities

Operations
Tasks

The expanded data flow process hierarchy described in the following sections is based
largely on Chapman et al. (2000), but some activities have been added (shown with
asterisks). Each phase in the list is annotated with the degree to which it pertains to art
or science. The art of data mining will be discussed in further detail in the section titled
“The Art of Data Mining.”

BUSINESS UNDERSTANDING (MOSTLY ART)

Before you can begin data mining, you must have a clear understanding of what you
want to do and what success will look like in terms of business processes that will benefit.
Each of the following major tasks that promote understanding of the business problem
should be followed in most cases.

Define the Business Objectives of the Data Mining Model

You should understand the background that spawned the business needs that a data
mining model might serve. For example, a body of unstructured data might exist in your
company, including notes, memos, and reports. Information in these unstructured formats
is not present in a database, so it cannot be queried like normal data. The business objective
is to find a way to capture relevant information in these unstructured formats into a data
format that will support decision making. In this case, a text mining model might be useful
to capture relevant information in these documents (see Chapter 9 for a discussion of text
mining). An important part of formulating the business objectives is to include individuals
from all business units of the company that are affected by the problem and will benefit
from its solution. You must compose a set of success criteria from interactions with these
“stakeholders.” Only in that way will you know from the beginning what a “good” model
will look like, in terms of metrics accepted by the stakeholders. In addition to success cri-
teria, all stakeholders should be fully aware of the benefits of success in the project and
apprised of its cost in terms of resources (human and financial). This approach is a very
important factor in “engineering” success of the data mining project.
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Assess the Business Environment for Data Mining

Building a data mining model is a lot like erecting a building. In addition to knowing
what the building will look like when it is done, we must plan for its construction. The first
thing you must do is to take inventory of your resources. That may mean listing the
data integration, data quality, and analytical tools at your disposal. If an important tool is
missing, you have to acquire it or figure out how to do specific tasks with the tools you
have. A shortfall in tools and materials may increase the risk of schedule slippage (or even
failure). Any other significant risks should be identified (e.g., risk of failure of obtaining the
necessary approvals from management), and contingency plans should be formed.

In addition to assessing the modeling environment, you should assess one or more
deployment environments. Many data mining models have just sat on the shelf because
they were impractical or too costly to implement. Restrictions in the deployment environ-
ment might dictate the form and power of the model. For example, if the model will be
used to guide the Underwriting department to minimize loss-risk, model output might
be required in the form of business rules. In that case, a decision tree model might be the
best choice, and one from which only a few rules must be induced to guide the under-
writers. For deployment of a customer retention model, a prediction produced by a neural
net model might be used to drive an interdiction campaign to retain high-value customers
with relatively high attrition propensities. Agreement from the Marketing department to
conduct such a campaign should be obtained before modeling operations begin.

Finally, results of the business assessment should be fully documented together with
sufficient explanatory material and terminology to serve as a standalone document for later
reference.

Formulate the Data Mining Goals and Objectives

Formulating the data mining goals and objectives may seem moot (in relation to the busi-
ness goal), but it is critical to the success of the data mining project. The primary goal of the
data mining exercise is not to train a good predictive model that per se, but rather to deploy a
good predictive model to meet the business objective! Often, data miners take this for
granted. But, it does not happen automatically. Well-deployed models must be engineered
rather than envisioned. Many models that have been envisioned for their usefulness in a
company have been relegated to the shelf (as it were) because they could not be implemen-
ted efficiently and effectively. In Chapter 21, we will discuss one implementation of a
generalized deployment engine (Zementis ADAPA), which employs the Amazon.com Elas-
tic Cloud for deployment of models over the Internet. This product is one of the few serious
efforts to shift the emphasis from model building to model deployment.

Data mining goals include may include the following:

• Building (or helping to build) a suitable database, from which modeling data sets can be
extracted easily

• Developing and deploying a model, which generates significant business value
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• Building a knowledge base of modeling “learnings,” which can be leveraged later to do
a better job with data mining (easier, faster, cheaper)

Each of these data mining goals is associated with a set of objectives. For example, a good
set of objectives for the goal of developing and deploying a model can include the
following:

• Acquiring a suitable data set for modeling
• Creating a short-list of predictor variables
• Creating a model of acceptable accuracy
• Deploying the model in production operations
• Monitoring for acceptable performance
• Updating the model with current data
• Providing feedback of intelligence gained by application of the model

Each of these objectives will be implemented by a set of tasks. An example of a task list
for the objective of creating a short-list of predictor variables might include these tasks:

• Identification/derivation of the target variable (the variable to be predicted)
• Univariate and bi-variate analysis of candidate predictor variables
• Multivariate analysis of candidate predictor variables
• Correlation analysis of candidate predictor variables
• Preliminary screening of variables with various metrics and screening algorithms

(e.g., Gini scoring, or with some measure of “interestingness”)
• Preliminary modeling of the target variable (e.g., with a decision tree algorithm) to

select variables for the short-list

Each of these tasks will be composed of subtasks or steps followed to accomplish
the task. For example, steps followed in the univariate or bi-variate analysis task could
include

• Generation of various descriptive statistics (e.g., means, standard deviations, etc.)
• Bi-variate scatterplots
• Association and linkage analysis

By now, maybe you can see where we must go next with this body of methodology. Of
course, we must compose all the objectives, tasks, and steps into a project plan and then
manage that plan. We must “plan the work” and then “work the plan.” This plan should
assign start dates and end dates to each objective, task, and step and identify the resources
needed to accomplish it (people, money, and equipment).

Microsoft Project is a good project planning package to use for project plan formation
and tracking. The embedded goal of good project planning is to finish the plan ahead of
schedule and under budget. Much has been written about how to do this, so we won’t go
into this topic any further here. For more information, buy a good book on project planning.
Much good information on project planning is available on the Internet, notably from the
Project Management Institute (PMI). PMI certification as a Project Management Professional
(PMP) is a good adjunct to successful data mining.
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DATA UNDERSTANDING (MOSTLY SCIENCE)

The objectives and tasks in this and subsequent sections will be presented in a rough
outline format.

An expanded outline is available on the DVD, which explains in general terms some
of the operations usually performed for each objective of a database marketing project.
(See database marketing documents on the DVD.) The asterisks next to some of the tasks
indicate those added to the standard CRISP-DM methodology document. Where possible,
the tutorials will refer to the specific data mining objectives and tasks performed and
why they are necessary for the data set and modeling goal in focus.

The CRISP-DM activity for data understanding was specified separately in the diagram,
but in this book, we will treat it together with data preparation in Chapter 4. Following
are some of the common data understanding activities:

1. Data acquisition

a. Data access*
b. Data integration*
c. Initial data collection report

2. Data description

a. Variables*
b. Cases*
c. Descriptive statistics*
d. Data description report

3. Data quality assessment

a. Missing values*
b. Outliers*
c. Data quality report

Data Acquisition

Before you can do anything with your data, you have to acquire it. This statement appears
on the surface to be self-evident. Determining how to find and extract the right data for
modeling, however, is not at all self-evident. First, you have to identify the various data
sources available to you. These data may be nicely gathered together in an enterprise data
warehouse. While this situation is ideal, most situations will be quite different. Data may be
scattered in many business units of the company in various data “silos,” spreadsheets, files,
and hard-copy (paper) lists. Your next challenge is to put all this information together.

Data Integration

Combining data sets is not an easy thing to do. Usually, data are in different formats
or exist in different levels of aggregation or are expressed in different units. A big part of
the integration activity is to build a data map, which expresses how each data element in

* Tasks included to augment those in Chapman et al. (2000).
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each data set must be prepared to express it in a common format and a common record
structure. Data in relational databases must be either “flattened” (gathered together into
one row, or record), or the data map must be traversed to access the data in the databases
directly through in-database access utilities, available in some analytical tools. The advan-
tage of doing in-database mining is that your data do not have to be extracted into an
external file for processing; many data mining tools can operate on the data quite nicely
right where they are. The disadvantage of in-database mining is that all data must be
submitted to the necessary preprocessing activities to make them useful for mining. This
preprocessing takes time! So, one of the advantages of extracting data to an external
file is that processing and modeling can be performed much faster, particularly if your
modeling data set can be contained in main memory.

Data Description

You can make some big mistakes by beginning to prepare data before you adequately
describe those data. Data description tasks are not just fodder for a data “readiness” report.
These tasks must be properly fit to the characteristics of your data. Before you can do that,
you must know your data. For each data element available to you, look through as many
data records as you can to get a general feeling for each variable. Statistical packages and
most data mining tools have some simple descriptive statistical capabilities to help you
characterize your data set. See a more detailed discussion of descriptive data operations
in Chapter 4.

Data Quality Assessment

I have heard the same refrain many times from data warehousing technicians: “Our data
is clean!” But it never is. The reason for this misconception is that analytics require a special
kind of “cleanliness.” Most analytical algorithms cannot accept blanks in any variable used
for prediction. One of the hardest and most important operations in data preparation is fill-
ing blank entries in all variables. This process is called imputation, and it can be accom-
plished by some simple operations and by some rather sophisticated operations. Another
vexing problem in data sets is outliers, or values beyond the normal range of the response
you are modeling. More information about imputing missing values and handling outliers
is presented in Chapter 4.

DATA PREPARATION (A MIXTURE OF ART AND SCIENCE)

Basic data preparation operations access, transform, and condition data to create a data
set in the proper format suitable for analytical modeling. The major problem with data
extracted from databases is that the underlying structure of the data set is not compatible
with most statistical and data mining algorithms. Most data in databases are stored at the
account level, often in a series of time-stamped activities (e.g., sales). One of the greatest
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challenges is rearranging these data to express responses on the basis of the entity to be
modeled. For example, customer sales records must be gathered together in the same row
of a data set for each customer. Additional preparation must be done to condition the data
set to fit the input requirements of the modeling algorithm. There are a number of basic
issues that must be addressed in this process.

Basic issues that must be resolved in data preparation:

• How do I clean up the data?—Data Cleansing
• How do I express data variables?—Data Transformation
• How do I handle missing values?—Data Imputation
• Are all cases treated the same?—Data Weighting and Balancing
• What do I do about outliers and other unwanted data?—Data Filtering
• How do I handle temporal (time-series) data?—Data Abstraction
• Can I reduce the amount of data to use?—Data Reduction

• Records?—Data Sampling
• Variables?—Dimensionality Reduction
• Values?—Data Discretization

• Can I create some new variables?—Data Derivation

A detailed discussion of the activities and operations of data understanding and data
preparation will be presented in Chapter 4.

MODELING (A MIXTURE OF ART AND SCIENCE)

A general discussion of modeling activities is presented in the following sections. You
can take a “deep-dive” into some of these activities in ensuing chapters. For example,
more detailed presentations of the modeling operations are presented in Chapters 5, 11,
12, and 13.

Steps in the Modeling Phase of CRISP-DM

Note that modeling activities with asterisks have been added to the CRISP-DM list of
activities.

1. Select Modeling Techniques.

a. Choose modeling algorithms*: How you prepare your data will depend to some degree
on what modeling algorithm you choose. If you choose a parametric statistical
algorithm (such as multiple linear regression), you may have to transform some
variables to account for significant nonlinearity. If you choose a Support Vector
Machine, you might have to standardize your data to fit its requirements.

b. Choose modeling architecture (single analysis, ensemble, etc.)*: A simple,
straightforward analysis will include submitting your data to the algorithm and
evaluating the models created. Sometimes, that is all you have to do, and
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sometimes it is not. There are many ways to enhance this simplistic approach to
refine your models and improve their performance. Some algorithms like neural
nets permit you to adjust the algorithm architecture to improve performance (add
hidden layers or increase the learning rate). Even these techniques may not be
sufficient to optimize performance. You can create a series of models, using
different algorithms (ensembles), or you can model on different samples of data
and compare or combine results (bootstrap, jackknife resampling, and V-fold cross
validation). Finally, you can build some simple feedback processes in your models
to iteratively improve your model (boosting). Figure 3.2 shows how an ensemble
model works.

c. Specify modeling assumptions: Every modeling algorithm makes assumptions. Your
challenge is to choose an algorithm whose assumptions fit your data and your
modeling goal. For example, you can use a multiple linear regression algorithm
safely if your data set does not violate significantly any of the important
assumptions of the Parametric Model (the body of assumptions behind parametric
statistical theory). You can use a neural net for classification, if your target variable
is categorical. Among neural nets, a Radial Basis Function (RBF) neural net can
handle outliers better than can an ordinary neural net. Many modeling tools
provide both kinds of neural nets. If data outliers are important in your data
environment, an RBF neural net would be a good choice.

2. Create an Experimental Design.

Many analytical projects fail because the experimental design was faulty. It is very
important to include an analysis of the response under normal conditions to
compare results to those under various treatments. For example, an article in
the London Times on April 22, 2007, described a study of cancer clusters around
7 cell phone towers in different parts of the UK. But, there are about 47,000 cell
phone towers in the UK. This means that only about 0.015% of the towers
were included in the study. The researchers could have said just as easily that
cell phone towers prevent cancer 99.985% of the time! In other words, there was
no control. A proper control study would have been to analyze cancer occurrence
near a random sample of the 47,000 towers in the UK and compare the results
with those of the cancer clusters. Maybe the cell phone towers had nothing

List of 
values to
predict
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Combined
Prediction

Decision Tree Model 

Decision Tree Model 

Decision Tree Model 

Decision Tree Model 

Majority

Rules

FIGURE 3.2 How a modeling ensemble works.
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whatsoever to do with causing cancer. A more frightening statistic can be gleaned
from an article in the Journal of the National Cancer Institute (Murray et al., 2008), in
which the authors found that in 75 articles on cancer prevention and control
published in 41 journals, only about half of the studies had a sufficiently rigorous
experimental design to support their conclusions. The next time you read about
a report of a cancer study in the newspaper, take it with a grain of salt. You might
get just as good an insight from flipping a coin.

(Note: In a double-blind experiment, neither the individuals nor the researchers
know who belongs to the control group and the experimental group.)

These warnings should not scare you away from doing studies like these, but
they may inoculate you against these errors and help you to avoid them. When
George Santayana quipped, “Those who cannot remember the past are
condemned to repeat it,” he was referring to the errors of history. We will not
repeat the analytical errors of those in the studies reported by Murray et al. (2008)
if we are aware of the dangers of bad experimental design and take steps to correct
them before we start the data mining process.

3. Build the Model.

Model building is mostly art, and will be discussed in greater detail in the section
“The Art of Data Mining.” Here, we can consider the steps to follow in building
an analytical model. The general steps in modeling are as follows:

a. Set parameters (if the algorithm is not automatic): Many modeling algorithms
(like neural nets) start with various default settings. Study the defaults and the
theory behind these settings. The algorithm settings are programmed into the
function of the model for a reason. Often, the reason is that different data sets
require slightly different model settings. The default settings are a good place to
start. Create other models with different settings and see what happens. You may
(and often do) find that subsequent models are more powerful predictions
compared to the default model.

b. Build various types of models: Using one type of algorithm to model a data set is
good, but using multiple algorithms is far better. One algorithm gives one
“perspective” on the information pattern in your data set, like looking at the world
with one eye. But multiple algorithms will give you multiple perspectives on your
information patterns. Let them “vote” on which predicted value or category is
right for a case. Then, follow some heuristic (decision rule) to decide which
predicted value is to be accepted. You can pick the average of numerical values or
let the majority rule in classification. Such a modeling tactic is called ensemble
modeling (refer to Figure 3.2). Another way to use multiple models is to use
resampling methods to build models on different randomly selected subsets of
data. We will explore these techniques more fully in Chapter 13.

4. Assess the Model (Mostly Science).

How do you tell how good a model is? The best way is to wait until you can verify
the predictions in reality. But you can’t wait until then to evaluate various models.
You must compare your candidate models several times during the course of
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analytical modeling. The most common way to evaluate a model is to compare it
to what you would expect to happen if you did not use the model. There are
some very effective techniques for doing this, using various tables and graphs
(coincidence tables, lift charts, ROI curves, normal probability charts). Also,
there are some statistical measures of error. These model assessment techniques
(and others) will be discussed as a part of the discussion of model enhancement
in Chapter 13.

Model assessment is one of the iterative activities performed in modeling.
Models should be assessed by one or more of the assessment techniques, which
may give some insight on where the model failed. Model parameters can then be
adjusted with the help of this insight, and a new model built. This process
expresses the CRISP-DM data mining cycle in a more concrete form.

This cycle continues until the assessment techniques converge on an optimum
predictive power. Statisticians use the term convergence to express the point in the
diminishing returns of error minimization that reaches some predetermined
expression of the minimum error. For example, a standard error statistic of 0.01
might be set as the stopping point of convergence in a regression algorithm.
Sometimes, a minimum rate of convergence is selected as the stopping point.
Neural nets use analogous stopping functions to end model training.

5. Evaluate the Model (Mostly Science).

After you create the best model you can under the circumstances of time, budget, and
practicality, it is time to evaluate results, review the process as awhole, and determine
the next steps to followwith future modeling efforts. A good approach to accomplish
these tasks is to include them in amodeling report. This report will help to synthesize
conclusions to form general insights about themodeling effort and to point theway to
improving the results during the next modeling effort.

Evaluating results of the model may be easy, or it can be rather difficult. An
example of an easy evaluation is to observe the number of correct predictions
compared to the total number of predictions. If that percentage is relatively high, you
might conclude that the model was a success. There is a weakness in this approach,
however, because on this basis alone you can’t say that this high predictabilitywould
not have happened without the model. Ah, we come back to the importance of the
experimental design. It becomes clearer now that without a good experimental
design, evaluation of the model results is moot. Difficulties of a different kind occur
whenwe try to evaluatewhat themodel did not findbut should have (based on actual
data). These errors are called false-negatives and can occur when your cancer risk
model predicts very low cancer risk. Itmight take years to confirmwhether or not that
prediction was good, and then it might be too late—the patient is dead. A more
insidious error may arise in evaluating results that the model did not find but might
have found if we had used different data. This type of error points to the very heart of
the difference between standard parametric methods and Bayesian methods.
Bayesian analysis can incorporate results from past studies, along with data from a
present study, to predict more globally what might happen in the future.
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Parametric or Bayesian methods, which approach is best? Well, here we have it
again: the answer depends on your experimental design. If you want to make a
good prediction under all types of cases that might occur, then you must create
an experimental design to do that. You may be able to use parametric methods to
do it, if you include data likely to cover all case types and you use the right
sampling methods to select your data set for analysis. On the other hand, it may
be much more efficient to use a Bayesian method (like a Naı̈ve Bayesian belief net)
to incorporate results from past studies, which included case types for which you
have no available data. Digging for nuggets of information in a large data
warehouse is like digging for fossils in the ground. At the very outset, we must
say “Caveat fossor” (let the digger, or the miner, beware).

After you evaluate results, you should evaluate the entire process that
generated them. This part of the evaluation should consider your modeling goals,
your results, and their relationship to the negotiated criteria for success. You
should list what went right with the project and what went wrong. One outcome
of such an evaluation might be that the results could have been better (that is, you
could have built a better model), but the success criteria did meet the goals of
the data mining project. Such a project can be deemed a success in the present,
but it can point also to ways to accomplish higher goals in future projects.

Finally, evaluation of modeling results should include a list of possible
modeling goals for the future and the modeling approaches to accomplish them.
The modeling report should discuss briefly the next steps and how to accomplish
them. These steps should be expressed in terms of what support must be
gained among the stakeholders targeted by these new projects, the processes in
the company that must be put in place to accomplish the new projects, and
the expected benefit to the company for doing so. In other words, the business
case for future studies must be built on the merits of the present study. This
requirement is one of the major differences between the practice of data mining
in business and in academia.

DEPLOYMENT (MOSTLY ART)

1. Plan Model Deployment

a. Create deployment plan

2. Plan Model Monitoring and Maintenance

a. Model monitoring plan*
b. Model maintenance plan*

3. Produce Final Report

a. Produce final written report
b. Produce final modeling presentation

4. Review Project
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CLOSING THE INFORMATION LOOP* (ART)

Asnotedpreviously, dashed arrows could be added in theCRISP-DMdiagram inFigure 3.1
to indicate:

1. Feedback of model deployment results to the database*
2. Feedback of model deployment results to the business understanding phase*

Other data mining process flow hierarchies follow the same basic pattern as CRISP-DM.
For example,

SEMMA (used by SAS):

Sample
Explore
Manipulate
Model
Assess

DMAIC (a Six Sigma approach designed primarily for industrial applications):

Define
Measure
Analyze
Improve
Control

THE ART OF DATA MINING

Creating a model of relationships in a data set is somewhat like sculpting a statue. The
sculptor starts with a block of marble (raw data for the data miner) and a visual concept
in his mind (the “true” model in the data for the data miner). After a few chips here and
there, the sculptor stands back and looks at his work. The data mining modeler does the
same thing after some initial cleaning of the data, imputing missing values, and creating
some derived variables. Then the sculptor takes a few more whacks at the block of marble
and stands back again to view it. The data miner does the same thing with preliminary
modeling using simple algorithms, to identify some of the important variables in the “true”
model. Then the data miner makes some adjustments in model parameters or variables
(e.g., recoding) and “refines” the model (creates another version). The sculptor continues
this iterative process of chipping and viewing, until the finished statue emerges. Likewise,
the data miner continues modifying and tuning the model, until there are no further
improvements in the predictability of the model. This analogy is rather crude, but it does
serve to illustrate the point that a large part of the data mining process is very artistic!
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Artistic Steps in Data Mining

Deriving New Variables

Often, several of the strongest predictors in your model will be those you derive yourself.
These derived variables can be transforms of existing variables. Common transforms
employ

• Log functions
• Power terms (squares, cubes, etc.)
• Trends in existing variables
• Abstractions (collectives, like Asian; temporal, like date-offsets; statistical, like means)

This subject will be discussed in greater detail in Chapter 4.

Selecting Predictor Variables

The objective of selecting predictor variables is probably the most artistic among all of
the data mining objectives. There are many approaches and methods for selecting the sub-
set of variables (the short-list) for use in the model training set. This short-list is an
extremely valuable piece of information for the data miner to obtain before beginning to
train the model. One reason for this importance is that too few variables will generate a
model with a relatively low predictability, and too many variables will just confuse the
model “signal.” This dynamic follows the principle of Occam’s Razor, coined by William
of Occam (a fourteenth century clergyman). This principle is often expressed in Latin as
the lex parsimoniae (“law of parsimony” or “law of succinctness”): entia non sunt multipli-
canda praeter necessitatem, roughly translated as “entities must not be multiplied beyond
necessity”. Data mining algorithms follow this principle in their operation. Various meth-
ods of developing a short-list are presented in Chapter 5.

POSTSCRIPT

Many business people are very closely attuned to the need for policies and well-defined
processes necessary to assure profitability; many analytical people in business are not!
Mathematicians and statisticians are very cognizant of the calculation processes and the
importance of proper experimental design. But for some reason, it is tempting for data
miners to stray from the pathway of the correct process to generate their models. Yielding
to this temptation may lead data miners off the “narrow path” into the “Slough of
Despond” (as it did to Pilgrim in John Bunyan’s The Pilgrim’s Progress). Maybe this procliv-
ity is due to being too focused on the powerful technology. Or perhaps the problem lies
with the academic background of many data miners, which focuses more on theory than
practice in the real world. It is crucial to the successful completion of a data mining project
to follow the well-worn path of accepted process. In Chapter 4, we will see how this process
model is followed in preparing data for data mining.
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PREAMBLE

Once the data mining process is chosen, the next step is to access, extract, integrate,
and prepare the appropriate data set for data mining. Input data must be provided in
the amount, structure, and format suited to the modeling algorithm. In this chapter,
we will describe the general structure in which we must express our data for modeling
and describe the major data cleaning operations that must be performed. In addition, we
will describe how to explore your data prior to modeling and how to clean it up. From a
database standpoint, a body of data can be regarded as very clean. But from a data
mining standpoint, we have to fix many problems like missing data. Having missing
data is not a problem for a database manager: what doesn’t exist doesn’t have to be
stored. But for a data miner, what doesn’t exist in one field of a customer record might
cause the whole record to be omitted from the analysis. The reason is that many data
mining algorithms will delete cases that have no data in one or more of the chosen
predictor variables.
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ACTIVITIES OF DATA UNDERSTANDING
AND PREPARATION

Before a useful model can be trained, input data must be provided in the amount, struc-
ture, and format suited to the modeling algorithm. The CRISP-DM phases of data under-
standing and data preparation are discussed together in this chapter because they are
related. Often, you must cycle back and forth between data understanding and data prepa-
ration activities as you learn more about your data set and perform additional operations
on it. We will discuss various data mining activities in both of these phases, together with
their component operations necessary to prepare data for both numerical and categorical
modeling algorithms. At the end of this chapter, we will organize the activities and opera-
tions to form a data description and preparation “cookbook.” With this data preparation
process in hand, you can begin to prepare your own data sets for modeling in a relatively
short period of time. These data preparation steps will be cross-referenced in each tutorial
to guide you through the process.

Many books have been written on data analysis and preparation for modeling (some are
listed at the end of this chapter). It is not the purpose of this handbook to present a defini-
tive treatise on data preparation (or any of these issues and operations). Rather, we will
introduce you to each of them, dive deeper into each operation to address its associated
issues, and then direct you to other books to get more detail.

Before we can consider the contribution of each data preparation activity to the modeling
effort, we must define some terms. These terms will be used throughout this book to refer to
these entities.

Definitions

• Source data: Information from any source in any format.
• Analytical file: A set of information items from (possibly) multiple sources; that

information is composed into one row of information about some entity (e.g., a customer).
• Record (aka Case): One row in the analytical file.
• Attribute: An item of data that describes the record in some way.
• Variable: An attribute installed into a column (field) of the entity record.
• Target variable: A variable in the entity record to be predicted by the model.
• Predictor variable: A variable in the entity record that is a candidate for inclusion in

the model as a predictor of the target variable.
• Numeric variable: A variable with only numbers in it; it is treated as a number.
• Categorical variable: A variable with any character in it; the character may be a number,

but it is treated as text.
• Dummy variable: A variable created for each member of the list of possible contents of

a categorical variable (e.g., “red,” “green,” “blue”)
• Surrogate variable: A variable that has an effect on the target variable very similar to

that of another variable in the record.
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ISSUES THAT SHOULD BE RESOLVED

The following two lists are a restatement of the basic issues in data understanding and data
preparation. These issues will be expanded below to include some approaches resolving them.

Basic Issues That Must Be Resolved in Data Understanding

Following are some of the basic issues you will encounter in the pursuit of an under-
standing of your data and some activities associated with them:

• How do I find the data I need for modeling?—Data Acquisition
• How do I integrate data I find in multiple disparate data sources?—Data

Integration
• What do the data look like?—Data Description
• How clean is the data set?—Data Assessment

Basic Issues That Must Be Resolved in Data Preparation

• How do I clean up the data?—Data Cleansing
• How do I express data variables?—Data Transformation
• How do I handle missing values?—Data Imputation
• Are all cases treated the same?—Data Weighting and Balancing
• What do I do about outliers and other unwanted data?—Data Filtering
• How do I handle temporal (time-series) data?—Data Abstraction
• Can I reduce the amount of data to use?—Data Reduction

• Records?—Data Sampling
• Variables?—Dimensionality Reduction
• Values? —Data Discretization

• Can I create some new variables?—Data Derivation

DATA UNDERSTANDING

Data Acquisition

Gaining access to data youwant for modeling is not as easy as it might seem.Many compa-
nies have portions of the data you need stored in different data “silos.” The separate data
stores may exist in different departments, spreadsheets, miscellaneous databases, printed
documents, and handwritten notes. The initial challenge is to identify where the data are
and how you can get this information. If your data are all in one place (such as in a data ware-
house), you still must determine the bestway to access that data. If the required data are in one
or more database structures, there are three common modes of access to business data:

• Query-based data extracts from the database to flat files
• High-level query languages for direct access to the database
• Low-level connections for direct access to the database
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Query-Based Data Extracts

The most common method of extracting data from databases is to use query-based data
extracts. The most common tool is SQL-99 (Structured Query Language–1999 version). SQL
(originally named SEQUEL) was developed in the 1970s by IBM. Elaborations of a simple
SQL Select statement can access data in a database in a large variety of forms. These forms
include filtering input and output fields (columns) and records (rows) based on specified
levels in a number of variables, aggregations (group by), sorting (order by), and subselects
(selects within other selects). This method enables the algorithm to access data the fastest
(often in RAM). The problem with this approach is that you have to completely replicate
the data and save those data to a file. This requirement may be awkward or impossible
to fill with very large data sets.

High-Level Query Languages

Elaborations of SQL optimized for data mining include Modeling Query Language
(MQL; Imielinski and Virmani, 1999) and Data Mining Query Language (DMQL; Han
et al., 1996). This method is attractive, but the high-level languages are not in standard
use. Some day, data mining tools may all support this approach, just as they have come
to support XML.

Low-Level and ODBC Database Connections

Many database management systems provide a low-level interface with data stored in
data structures. Some data mining tools have incorporated a number of these low-level
interfaces to permit access directly to data in the data structures. One of the first systems
to do this was NCR Teradata in Warehouse Miner (developed in 1999 as Teraminer Stats).
This tool uses the Teradata Call-Level interface to access data directly and create descriptive
statistical reports and some analytical modeling operations (e.g., Logistic Regression). Some
other data mining tools picked up on that concept to provide in-database access to data via
ODBC or other proprietary low-level interfaces (SAS-Enterprise Miner, SPSS Clementine,
and STATISTICA).

This approach yields several benefits:

• Removes time and space constraints in moving large volumes of data.
• Helps keep management and provisioning of data centralized.
• Reduces unnecessary proliferation of data.
• Facilitates better data governance to satisfy compliance concerns.

In-database mining moves the analytical tasks closer to the data. Closer proximity to the
data can significantly increase runtimes and reduce network bottlenecks in the data flow
pathway.

Recommendation: If your data are not particularly sensitive and data sets are relatively
small, use extracts. If your data are highly confidential or data sets are relatively large,
make the extra effort to access your data through the in-database mining capabilities of
your tool (if provided).
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Data Extraction

Now that you have your data in some form (let’s assume it is in flat-file format), how do
you put all the pieces together? The challenge before you now is to create a combined data
structure suitable for input to the data mining tool. Data mining tools require that all vari-
ables be presented as fields in a record. Consider the following data extracts from a Name &
Address table and a Product table in the data warehouse:

File #1: Name & Address

Name Address City State Zipcode

John Brown 1234 E St. Chicago IL 60610

Jean Blois 300 Day St. Houston TX 77091

Neal Smith 325 Clay St. Portland OR 97201

File #2: Product

Name Address Product Sales Date

John Brown 1234 E. St. Mower 1/3/2007

John Brown 1234 E. St. Rake 4/16/2006

Neal Smith 325 Clay St. Shovel 8/23/2005

Jean Blois 300 Day St. Hoe 9/28/2007

For the data mining tool to analyze names and products in the same analysis, you must
organize data from each file to list all relevant items of information (fields) for a given cus-
tomer on the same line of the output file. Notice that there are two records for John Brown
in the Product table, each one with a different sales date. To integrate these records for data
mining, you can create separate output records for each product sold to John Brown. This
approach will work if you don’t need to use Product as a predictor of the buying behavior
of John Brown. Usually, however, you do want to include fields like Product as predictors
in the model. In this case, you must create separate fields for each record and copy the rele-
vant data into them. The second process is called flattening or denormalizing the database.
The resulting records looks like this:

Name Address City State Zipcode Product1 Product2

John Brown 1234 E. St. Chicago IL 60610 Mower Rake

Neal Smith 325 Clay St. Portland OR 97201 Shovel

Jean Blois 300 Day St. Houston TX 77091 Hoe
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In this case, the sales date was not extracted. All relevant data for each customer are listed
in the same record. Sometimes, this is called the Customer Analytical Record, or CAR. In
other industries (or modeling entities other than customers), this data structure may be
referred to as just the Analytical Record. We will use the term Analytical Record from here on.

To create the Analytical Record, you might have to combine data in different fields in
several different data extract files to form one field in the output file. You might have to
combine data from several different fields into one field. Most data mining tools provide
some data integration capabilities (e.g., merging, lookups, record concatenation, etc.).

A second activity in data integration is the transformation of existing data to meet your mod-
eling needs. For example, youmight want to recode variables or transform themmathematically
to fit a different data distribution (for working with specific statistical algorithms). Most data
mining tools have some capability to do this to prepare data sets for modeling.

Both of these activities are similar to processes followed in building data warehouses.
But there is a third activity followed in building data warehouses, which is missing in data
preparation for data mining: loading the data warehouse. The extract, transform, and load
activities in data warehousing are referred to by the acronym ETL. If your data integration
needs are rather complex, you may decide to use one of the many ETL tools designed for
data warehousing (e.g., Informatica, Abinitio, DataFlux). These tools can process complex
data preparation tasks with relative ease.

Recommendation: ETL tools are very expensive. Unless you plan to use such tools a lot,
they will not be a cost-effective choice. Most data mining tools have some extraction and
transform functions (data integration), but not load functions. It is probable that you can
do most of your data integration with the data mining tool, or by using Excel, and a good
text editor (MS Notepad will work).

Data Description

This activity is composed of the analysis of descriptive statistical metrics for individual
variables (univariate analysis), assessment of relationships between pairs of variables (bi-
variate analysis), and visual/graphical techniques for viewing more complex relationships
between variables. Many books have been written on each of these subjects; they are a bet-
ter source of detailed descriptions and examples of these techniques. In this handbook, we
will provide an overview of these techniques sufficient to permit you to get started with the
process of data preparation for data mining. Basic descriptive statistics include:

• Mean: Shows the average value; shows the central tendency of a data set
• Standard deviation: Shows the distribution of data around the mean
• Minimum: Shows the lowest value
• Maximum: Shows the highest value
• Standard deviation: Shows the distribution of data around the mean
• Frequency tables: Show the frequency distribution of values in variables
• Histograms: Provide graphical technique to show frequency values in a variable

Analysis and evaluation of these descriptive statistical metrics permit you to deter-
mine how to prepare your data for modeling. For example, a variable with relatively low
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mean and a relatively high standard deviation has a relatively low potential for predicting
the target. Analysis of the minimum, maximum, and mean may alert you to the fact that
you have some significant outlier values in the data set. For example, you might include
the following data in a descriptive statistical report.

N Mean Min Max StDev

10000 9.769700 0.00 454.0000 15.10153

The maximum is 454, but the mean is only about 9.7, and the standard deviation is only
about 15. This is a very suspicious situation. The next step is to look at a frequency table or
histogram to see how the data values are distributed between 0 and 454. Figure 4.1 shows a
histogram of this variable.

Histogram of NUM_SP1
CH_10K 75v*10000c

NUM_SP1 = 10000*9.1*normal(x, 11.1865, 15.3251)
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FIGURE 4.1 Histogram of the distribution of NUM_SP1 variable, compared to a normal distribution.
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The maximum value of 454 is certainly an outlier, even in this long-tailed distribution.
You might be justified in deleting it from the data set, if your interest is to use this variable
as a predictor. But this is not all you can learn from this graphic. This distribution is skewed
significantly to the right and forms a negative exponential curve. Distributions like this can-
not be analyzed adequately by standard statistical modeling algorithms (like ordinary lin-
ear regression), which assume a normal distribution (bell-shaped) shown in red on the
histogram. This distribution certainly is not normal. The distribution can be modeled ade-
quately, however, with logistic regression, which assumes a distribution like this. Thus,
you can see that descriptive statistical analysis can provide valuable information to help
you choose your data values and your modeling algorithm.

Recommendation: Acquire a good statistical package that can calculate the statistical
metrics listed in this section. Most data mining packages will have some descriptive sta-
tistical capabilities, but you may want to go beyond those capabilities. For simple
descriptive metrics, the Microsoft Excel Analysis Tool Pack add-on will be sufficient.
To add the Analysis Tool Pack, click on Tools and select Data Analysis. An option for
Data Analysis will be added to the Tools menu. Open your data set in Excel; click on
the Data Analysis option in the Tools menu; and fill in the boxes for input range, output
range, and descriptive statistics. For more robust descriptive tools, look at STATISTICA
and SPSS.

Data Assessment

Before you can fix any problems in the data set, you must find them and decide how
to handle them. Some problems will become evident during data description operations.
Data auditing is similar to auditing in accounting, and includes two operations:
data profiling and the analysis of the impact of poor-quality data. Based on these
two operations, the data miner can decide what the problems are and if they require
fixing.

Data Profiling

You should look at the data distributions of each variable, and note the following:

• The central tendency of data in the variable
• Any potential outliers
• The number of and distribution of blanks across all the cases
• Any suspicious data, like miscodes, training data, system test data, or just plain garbage

Your findings should be presented in the form of a report and listed as a milestone in
the project plan.

Data Cleansing

Data cleansing includes operations that correct bad data, filter some bad data out of the
data set, and filter out data that are too detailed for use in your model.

56 4. DATA UNDERSTANDING AND PREPARATION

I. HISTORY OF PHASES OF DATA ANALYSIS, BASIC THEORY, AND THE DATA MINING PROCESS



Validating Codes Against Lists of Acceptable Values

Human input of data is subject to errors. Also, some codes are not in current use. In
either event, you must check the contents of each variable in all records to make sure that
all of the contents are valid entries for each variable. Many data mining tools provide some
sort of data profiling capabilities. For example, SPSS Clementine provides the Distribution
Node, which outputs a list of possible data values for categorical variables, together with
the percentage occurrences. STATISTICA Data Miner provides the Variable Specs option
in the data spreadsheet, which provides a list of unique values in the variable across all
cases. If you find codes that are wrong or out of date, you can filter the cases with either
of these tools to display those cases with the invalid codes. Most data mining tools offer
some sort of expression language in the tool interface that you can use to search and replace
invalid codes in the data set.

Deleting Particularly “Dirty” Records

Not uncommonly, many variables have values (or blanks) that are inappropriate for the
data set. You should delete these records. Their inclusion in the modeling data set will only
confuse the model “signal” and decrease the predictive power of the model.

Witten and Frank (2005) discuss some automatic data cleansing techniques. Some data
mining tools (like KXEN) have automated routines that clean input data without operator
intervention. Another powerful data cleaning technique is to reduce the variability of
time-series data by applying filters similar to those used in signal processing (see “Time-
Series Filtering” in the section on Aggregation or Selection to Set the Time-Grain of the
Analysis in this chapter).

Data Transformation

Numerical Variables

Many parametric statistical routines (such as Ordinary Least Squares, or OLS, regres-
sion) assume that effects of each variable on the target are linear. This means that as var-
iable-X increases by an amount-a, then the target variable increases by some constant
multiple of the amount-a. This pattern of increase forms a geometric progression. But,
when the multiple is not constant, the pattern of increase forms an exponential pattern.
If you want to use parametric statistical modeling algorithm, you should transform any
variables forming exponential (nonlinear) curves. Otherwise, estimation errors caused
by the violation of the assumption of linearity could invalidate predictions made by
the model.

Some statistical and machine learning algorithms operate best if the numerical values are
standardized. In statistical parlance, standardization means to transform all numerical values
to a common range. One common strategy is to use z-values, based on the mean and stan-
dard deviation. Each value in a variable is replaced by its z-value (or normal deviate),
expressed by

z ¼ value�meanð Þ=standard deviation
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The z-value scale ranges from �infinity to þinfinity, but in a normal distribution, 99.75%
of the values will lie between z ¼ �3 and z ¼ þ3. Most statistical and data mining packages
have utilities to standardize values. Other standardizing algorithms constrain the trans-
formed values to between �1.0 and þ1.0. Many Support Vector Machines (SVMs) require
that data be submitted to them in this format.

Categorical Variables

Categorical variables have their own problems. Some categorical variables having values
consisting of the integers 1�9 will be assumed to be continuous numbers by the parametric
statistical modeling algorithm. Such variables can be used safely, even though values
between the integers (e.g., 1.56) are not defined in the data set. But other variables may
contain textual categories rather than numeric values. For example, entries consisting of
the colors red, blue, yellow, and green might require the definition of “dummy” variables.
A dummy variable is a binary variable (coded as 1 or 0) to reflect the presence or absence
of a particular categorical code in a given variable. For example, a variable like color may
have a number of possible entries: red, blue, yellow, or green. For this variable, four
dummy variables would be created (Color-Red, Color-Blue, Color-Yellow, and Color-
Green), and all cases in the data set would be coded as 1 or 0 for the presence or absence
of this color.

Coding of Dummy Variables for the Variable Color

Case Color Color-Red Color-Blue Color-Yellow Color-Green

1 Red 1 0 0 0

2 Blue 0 1 0 0

3 Yellow 0 0 1 0

4 Green 0 0 0 1

5 Blue 0 1 0 0

Algorithms that depend on calculations of covariance (e.g., regression) or that require
other numerical operations (e.g., most neural nets) must operate on numbers. Dummy vari-
ables transform categorical (discrete) data into numerical data. Adding dummy variables to
the analysis will help to create a better fit of the model, but you pay a price for doing so.
Each raw variable that you represent by using a group of dummies causes you to lose
1 degree of freedom in the analysis. The number of degrees of freedom represents the num-
ber of independent items of information available to estimate another item of information
(the target variable). Therefore, the more tightly you fit your model (the more precise your
model is), the more degrees of freedom you lose. Consequently, you have less information
to work with, and you are left with less ability to apply the model successfully on other data
sets, which may have a slightly different target pattern than the one you fit tightly with
the model. This situation is called reducing the generality of the model. Generality is just as
important as (maybe even more so than) the accuracy of the model.
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The target hits in Figure 4.2 show three different patterns of accuracy and precision:
(1) diagram A shows a pattern that is very precise but not very accurate; (2) diagram B
shows a pattern that is not very precise but is relatively accurate (one hit is near the
bull’s-eye); and (3) diagram C shows the ideal pattern that is very accurate and very
precise. Overfitting a model is likely to form a pattern of accuracy on another data set like
diagram A. A poorly fitted model might exhibit a pattern of accuracy in predicting the
target variable like diagram B. Yes, some of the predictions would be accurate, but most
would not. We will talk more about this concept in Chapter 13.

This problem with dummy variables occurs primarily in parametric statistical algo-
rithms, but it is reflected also in machine learning algorithms (e.g., decision trees and neural
nets) by the greater tendency of dummy variables to cause overfitting. Overfitting is the
result of so tightly fitting the model solution to the training data set that it does not perform
well on other data sets. It is optimized to a specific set of data. It is possible to train an
almost perfect model with a machine learning algorithm, but it will not be very useful for
predicting the outcome (the target variable) for other data sets.

Recommendation: The contents of some variables are expressed in terms of a series of cate-
gories, but they represent an underlying numerical progression. For example, in an analysis
of increasing stress in the workplace, you might include a variable for day of the week. This
variable might be coded Monday, Tuesday, Wednesday, Thursday, or Friday. At first
glance, these entries appear to be categories. But when you relate them to stress building
up during the work week, you can treat them as a numeric variable. Some statistical
packages recode categorical data with a set of sequential numbers automatically and treat
them numerically. Alternatively, you can recode them yourself to facilitate interpretation
of the results of the analysis. Other categorical variables really are categories and do not
reflect any consistent numerical basis. For these categorical variables, you should create
dummy variables for each category and enter them into the model separately.

Data Imputation

When data are missing in a variable of a particular case, it is very important to fill this
variable with some intuitive data, if possible. Adding a reasonable estimate of a suitable
data value for this variable is better than leaving it blank. The operation of deciding what

A B C

C
oo

l.c
lip

s.
co

m

C
oo

l.c
lip

s.
co

m

C
oo

l.c
lip

s.
co

m

FIGURE 4.2 Relationship be-
tween the terms “accuracy” and
“precision.”

59DATA UNDERSTANDING

I. HISTORY OF PHASES OF DATA ANALYSIS, BASIC THEORY, AND THE DATA MINING PROCESS



data to use to fill these blanks is called data imputation. This term means that you assign data
to the blank based on some reasonable heuristic (a rule or set of rules). In deciding what
values to use to fill blanks in the record, you should follow the cardinal rule of data impu-
tation, “Do the least harm” (Allison, 2002).

Selection of the proper technique for handlingmissing values depends onmaking the right
assumption about the pattern of “missingness” in the data set. If there is a strong pattern
among the missing values of a variable (e.g., caused by a broken sensor), the variable should
be eliminated from the model.

Assumption of Missing Completely at Random (MCAR)

The assumption ofMissingCompletely at Random (MCAR) is satisfiedwhen the probability of
missingvalues inonevariable isunrelated to thevalueof thevariable itself, or tovaluesof anyother
variable. If this assumption is satisfied, then values of each variable can be considered to be a ran-
domsample of all values of this variable in the underlyingpopulation fromwhich this data setwas
drawn. This assumption may be unreasonable (may be violated) when older people refuse to list
their agesmore often than younger people. On the other hand, this assumptionmay be reasonable
when some variable is very expensive tomeasure and ismeasured for only a subset of the data set.

Assumption of Missing at Random (MAR)

The assumption of Missing at Random (MAR) is satisfied when the probability of a value’s
being missing in one variable is unrelated to the probability of missing data in another vari-
able, but may be related to the value of the variable itself. Allison (2002) considers this to be
a weaker assumption than MCAR. For example, MAR would be satisfied if the probability
of missing income was related to marital status, but unrelated to income within a marital sta-
tus (Allison, 2002). If MAR is satisfied, the mechanism causing the missing data may be con-
sidered to be “ignorable.” That is, it doesn’t matter why MAR occurred, only that it occurred.

Techniques for Imputing Data

Most statistical and data mining packages have some facility for handling missing
values. Often, this facility is limited to simple recoding (replacing the missing value with
some value). Some statistical tool packages (like SPSS) have more complete missing value
modules that provide some multivariate tools for filling missing values. We will describe
briefly a few of the techniques. Following the discussion of methods, some guidelines will
be presented to help you choose which method to use.

List-wise (or case-wise) deletion. This means that the entire record is deleted from the anal-
ysis. This technique is usually the default method used by many statistical and machine
learning algorithms. This technique has a number of advantages:

• It can be used for any kind of data mining analysis.
• No special statistical methods are needed to accomplish it.
• This is the safest method when data are MCAR.
• It is good for data with variables that are completely independent (the effect of each

variable on the dependent variable is not affected by the effect of any other variable).
• Usually, it is applicable to data sets suitable for linear regression and is even more

appropriate for use with logistic and Poisson regression.
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Regardless of its safety and ease of use, there are some disadvantages to its use:

• You lose the nonmissing information in the record, and the total information content
of your data set will be reduced.

• If data are MAR, list-wise deletion can produce biased estimates (if salary level depends
positively on education level—that is, salary level rises as education level rises—then
list-wise deletion of cases with missing salary level data will bias the analysis toward
lower education levels).

Pair-wise deletion. This means that all the cases with values for a variable will be used to
calculate the covariance of that variable. The advantage of this approach is that a linear
regression can be estimated from only sample means and a covariance matrix (listing co-
variances for each variable). Regression algorithms in some statistical packages use this
method to preserve the inclusion of all cases (e.g., PROC CORR in SAS and napredict in
R). The major advantage of pair-wise deletion is that it generates internally consistent
metrics (e.g., correlation matrices). This approach is justified only if the data are MCAR.
If data are only MAR, this approach can lead to significant bias in the estimators.

Reasonable value imputation. Imputation of missing values with the mean of the nonmiss-
ing cases is referred to often as mean substitution. If you can safely apply some decision rule
to supply a specific value to the missing value, it may be closer to the true value than even
the mean substitution would be. For example, it is more reasonable to replace a missing
value for number of children with zero rather than replace it with the mean or the median
number of children based on all the other records (many couples are childless). For some
variables, filling blanks with means might make sense; in other cases, use of the median
might more appropriate. So, you may have a variety of missing value situations, and you
must have some way to decide which values to use for imputation. In SAS, this approach
is facilitated by the availability of 28 missing value codes, which can be dedicated to differ-
ent reasons for the missing value. Cases (rows) for each of these codes can be imputed with
a different reasonable value.

Maximum Likelihood Imputation

The technique of maximum likelihood imputation assumes that the predictor variables
are independent. It uses a function that describes the probability density map (analogous
to a topographic map) to calculate the likelihood of a given missing value, using cases
where the value is not missing. A second routine maximizes this likelihood, analogous to
finding the highest point on the topographic map.

Multiple Imputation

Rather than just pick a value (like the mean) to fill blanks, a more robust approach is to
let the data decide what value to use. This multiple imputation approach uses multiple
variables to predict what values for missing data are most likely or probable.

Simple Random Imputation. This technique calculates a regression on all the nonmiss-
ing values in all of the variables to estimate the value that is missing. This approach
tends to underestimate standard error estimates. A better approach is to do this multiple
times.
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Multiple Random Imputation. In these techniques, a simple random imputation is repeated
multiple times (n-times). This method is more realistic because it treats regression parameters
(e.g., means) as sample values within a data distribution. An elaboration of this approach is to
perform multiple random imputation m-times with different data samples. The global mean
imputed value is calculated across multiple samples and multiple imputations.

SAS includes a procedure MI to perform multiple imputations. The following is a simple
SAS program for multiple imputation, using PROC MI:

PROC MI data ¼ <your data set>

out ¼ <your output file>

var <your variable list>

Output to the <your output file> are five data sets collated into one data set, each char-
acterized by its own value for a new variable .imputation.

Another SAS PROC MIANALYZE can be used to analyze the output of PROC MI. It pro-
vides an output column titled “Fraction Missing Information,” which shows an estimate of
how much information was lost by imputing the missing values. Allison (2002) provides
much greater detail and gives very practical instructions for how to use these two SAS
PROCs for multiple imputation of missing values.

See Table 4.1 for guidelines to follow for choosing the right imputation techniques for a
given variable.

Recommendations

1. If you have a lot of cases, delete records with missing values.
2. If you are using linear regression as a modeling algorithm and have few missing values,

use pair-wise deletion.
3. If you are using SAS, use PROC MI.
4. If you have any insight as to what the value ought to be, fill missing values with

reasonable values.
5. Otherwise, use mean imputation.

Most data mining and statistical packages provide a facility for imputation with mean
values.

Data Weighting and Balancing

Parametric statistical algorithms measure how far various derived metrics (e.g., means,
standard deviations, etc.) are from critical values defined by the characteristics of the data
distribution. For example, if a value in a data set is beyond 1.96 standard deviation units
from the mean (¼ the z-value), it is beyond the value where it could be a part of the other
data 95% of the time. This limit is called the 95% Confidence Level (or 95% CL). Parametric
statistical algorithms like OLS learn things about the data by using all cases to calculate the
metrics (e.g., mean and standard deviation), and compare all data values in relation to those
metrics and standard tables of probability to decide if a relationship exists between two
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TABLE 4.1 Guidelines for Choosing the Right Data Imputation Technique

Case-Wise Deletion

Pair-Wise

Deletion Substitution ML Imputation

Expectation

Maximization

Simple

Random

Imputation

Multiple Random

Imputation

Simplest and easiest Preserves
cases

Good when
a decision
rule is
known

Relatively unbiased
with large samples

An iterative
process

Tends to
overestimate
correlations

Best for nonlinear
algorithms

Sacrifices cases Consistently estimates
under a wide range of
conditions

Uses all other
variables to
predict
missing
values

Not good for
determining
interaction effects

Acceptable if the number
of cases is large and the
event to be modeled is
not rare

Data should be MAR Data should be
MAR

Must be matched to
the analysis
model

Most valid statistically Best when data is
monotonic

Assumption of
a normal
distribution

Appropriate if data
deleted by case-
wise deletion is
intolerable

Safe for any kind of data
mining analysis

Appropriate if number
of cases deleted by
case-wise deletion is
intolerable

Good for data sets where
the variables are
completely independent
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variables. Sometimes, you may want to weight each data point with data in another
variable to calculate relationships consistent with reality. For example, a data value input
from sensor-A may be twice as accurate as data from sensor-B. In this case, it would be
wise to apply a weight of 2 for all values input by sensor-A and a weight of 1 for values
input from sensor-B.

Machine learning (ML) algorithms learn in a very different way. Instead of going
through all of the cases to calculate summary metrics, machine learning algorithms learn
case by case. For example, neural nets assign random weights to each variable on the first
pass through the data. On subsequent passes through the data (usually about 100 or
more), the weights are adjusted in some process like back-propagation, according to
the effects of variables in each case. Without case weighting, variables in all cases have
the same potential effect on adjusting the weights. Think of the weight applied to a rare
event case as if it were a frequency applied for calculating a weighted mean. If the rare
event is present in 5% of the cases, you could weight the effect of the rare event cases
by a factor ¼ 0.95 and weight all other cases with 0.05 (the reciprocal of the frequency).
Then the back-propagation algorithm would be affected by the patterns in the rare cases
equally as by the common cases. That is the best way for the neural net to distinguish the
rare pattern in the data. This is just what is done by the Balance node in SPSS Clementine.
The Balance node puts out a report showing this weighting factor for each target state.
The Balance node can be generated by the Distribution node, which creates a frequency
table on the target variable. This frequency factor becomes the weighting factor in the
Balance node.

This dynamic of ML tools like neural nets is very different from the operation of para-
metric statistical analysis (sometimes called frequentist methods). Frequentist methods
look at the data only once and make a judgment based on a number of metrics calculated
on the data. ML tools learn incrementally, like we do. Variable weights in the neural net
are like signal strengths between neurons in the human brain. We learn by iteratively
strengthening or weakening signal transmission and timing between neurons in our
brains. Case weights could be picked up by the neural net algorithm to modify the effect
of variables of the rare cases on the solution. STATISTICA Data Miner provides an option
to weight input data cases.

Data Filtering and Smoothing

Data filtering refers to eliminating rows (cases) to remove unnecessary information. This
is done to clarify the signal of the variables you are trying to model. Removing unnecessary
information reduces the noise below the level that can confuse the analysis. Expressed
this way, it sounds as though we are doing signal processing—and that is exactly what
we are doing. However, the signal here is not a radar signal, but a data signal! Both kinds
of signals are just expressions of an underlying informational domain. A radar signal is
an expression of the underlying domain of distance and location. A satellite image signal
is an expression of a visual domain. Analogously, a customer attrition signal in a corporate
database is an expression of a customer retention domain in a company.
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Removal of Outliers

The simplest kind of filtering is removal of outliers. Sometimes, you want to keep the
outliers (abnormal values). In fact, some outliers are of primary interest to the modeling
of credit risk, fraud, and other rare events. For models of normal responses, it might be
a good idea to remove the extreme outliers. The reason for this is that you want to model
the data that help to define the normal response. If you leave the outliers in the data set,
they will just inject noise, which will reduce the predictability of the model. But you might
reason that you should keep all values in the data because you have to score values like this
in production operations of the model. Well, yes, you have to score outliers, but you can
afford to be wrong in your predictions 5% of the time (for example), for the sake of being
very predictive on the other 95% of the data.

Hawkins (1980) defines an outlier as “. . . an observation that deviates so much from
other observations as to arouse suspicion that it was generated by a different mechanism.”
Hawkins discusses four kinds of outlier detection algorithms:

• Those based on critical distance measures
• Those based on density measures
• Those based on projection characteristics
• Those based on data distribution characteristics

Some data mining packages have special routines for identification of outliers. For
example, STATISTICA Data Miner provides a Recipe module, which permits automatic
checking and removal of outliers beyond a given range of value or proportion of the fre-
quency distribution (in this case, 95%). Invoking the distributional outlier option in this
tool will trim off cases in the tails beyond the 95% confidence interval for distance from
the mean value.

More complicated filtering may be necessary when analyzing time-series data. And it is
in the analysis of time-series data that we see the closest analogies to signal processing of
transmission and image signals.

Aggregation or Selection to Set the Time-Grain of the Analysis

Time-Series Filtering. One of the best treatments of filtering of time-series data is
provided by Masters (1995). Masters provides intuitive explanations of what filtering is
and how it can be used effectively to help model time-series data. Signal filters remove
high-frequency signal fluctuations (“jitter”) either at the top of the range, the bottom of
the range, or both.

Low-Pass Filter. A low-pass filter passes data below a specified highest level of acceptabil-
ity. See Masters (1995) for a good example of this filter type.

High-Pass Filter. A high-pass filter does the opposite of a low-pass filter; it removes data
above a specified lower level of acceptability. See Masters (1995) for a good example of this
filter type.

At this point, you might be wondering why we emphasize time-series data processing,
when most data sets we must prepare for modeling are not time-series! The reason is that
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signal processing techniques can be applied very effectively to data sets other than time-
series data. When you view a predictor variable in the context of its contribution in predict-
ing a target variable, you can think of that contribution as a signal of the state or level of the
target variable. Some variables might provide a stronger signal (be more predictive), and
other variables may be less so. There will be a certain amount of noise (confusion in the
target signal) in the values of the predictor variable. You can selectively remove some of
this noise in ways analogous to time-series signal filtering. The basis for these data filtering
operations is well grounded in engineering theory.

A low-pass data filter can be implemented simply by eliminating cases with values
below a certain threshold value. The effect of this operation will be to remove trivial
inputs to the modeling algorithm. On the other hand, a high-pass filter can be used to
remove cases above a threshold (outliers). One of the arts practiced in data mining is pick-
ing the right thresholds for these operations. To do this right, you must know the data
domain very well. For example, data for telephone minutes of use (MOU) each month
show that average call durations are about 3 minutes in length. But the curve tails off to
the right for a long time! Back in the days of analog modems, connect times could be days
long, presumably because modems were left on and forgotten. Retention data sets using
MOU as a predictor variable for attrition (“churn”) should be filtered with a high-pass
filter to remove these outliers. The resulting model will be a much better predictor, just
like a radio signal passed through a digital high-pass filter in a radio set will be much
clearer to the listener.

Data Abstraction

Data preparation for data mining may include some very complex rearrangements of
your data set. For example, you extract into an intermediate data set a year of call records
by month for a group of customers. This data set will have up to 12 records for each
customer, which is really a time-series data set. Analyzing time-series data directly is
complex. But there is an indirect way to do it by performing a reverse pivot on your
intermediate data set.

Consider the telephone usage data in Table 4.2. These records are similar to those that
could be extracted from a telephone company billing system. These records constitute a
time-series of up to 12 monthly billings for each customer. You will notice the first customer
was active for the entire 12 months (hence 12 records). But the second customer has only
9 records because this person left the company. In many industries (including telecommu-
nications), this loss of business is called attrition or churn. One of the authors of this book
led the team that developed one of the first applications of data mining technology to the
telecommunications industry, churn modeling in 1998. This model was based on Analytical
Records created by reverse pivoting the time-series data set extracted from the billing
systems of telephone companies.

This data set could be analyzed by standard statistical or machine learning time-series
tools. Alternatively, you can create Analytical Records from this data set by doing a reverse
pivot. This operation copies data from rows for a given customer and installs them in
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columns of the output record. A normal pivot does just the opposite by copying column
data to separate rows. This output record for the reverse pivot would appear as the follow-
ing record shows for the first 9 months:

Cust_ID MOU1 MOU2 MOU3 MOU4 MOU5 MOU6 MOU7 MOU8 MOU9

1 26 91 43 74 87 99 60 99 68

This record is suitable for analysis by all statistical and machine learning tools. Now that we
have the time-dimensional data flattened out into an Analytical Record, we can re-express the
elements of this record in a manner that will show churn patterns in the data. But in its present
format, various customers could churn in any month. If we submit the current form of the Ana-
lyticalRecord to themodeling algorithm, theremaynot be enough signal to relate churn toMOU
and other variables in a specificmonth.How canwe rearrange our data to intensify the signal of
the churn patterns? We can take a page out of the playbook for analyzing radio signals by
performing an operation analogous to signal amplification. We do this with our data set by
deriving a set of temporal abstractions, in which the values in each variable are related to the
churn month. Instead of analyzing the relationship of churn (in whatever month it occurred)

TABLE 4.2 Telephone Company Billing System Data Extract. (Note: The “churn month”
for customer #2 is 9, or September.)

Cust_ID Month MOU Due $Paid $Balance

1 1 26 $21.19 $21.19 0
1 2 91 $74.17 $37.08 $37.08
1 3 43 $35.05 $17.52 $17.52
1 4 74 $60.31 $60.31 $0.00
1 5 87 $70.91 $35.45 $35.45
1 6 99 $80.69 $40.34 $40.34
1 7 60 $48.90 $24.45 $24.45
1 8 99 $80.69 $40.34 $40.34
1 9 68 $55.42 $55.42 $0.00
1 10 50 $40.75 $20.38 $20.38
1 11 38 $30.97 $15.49 $15.49
1 12 92 $74.98 $37.49 $37.49
2 1 20 $16.30 $8.15 $8.15
2 2 26 $21.19 $21.19 0
2 3 38 $30.97 $15.49 $15.49
2 4 61 $49.72 $24.86 $24.86
2 5 84 $68.46 $68.46 $0.00
2 6 84 $68.46 $34.23 $34.23
2 7 35 $28.53 $14.26 $14.26
2 8 31 $25.27 $12.63 $12.63
2 9 26 $21.19 $10.60 $10.60
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to specific monthly values (e.g., January MOU), we relate the churn month to the MOU
value for the previous month, and the month before the previous month, and so forth. Fig-
ure 4.3 illustrates the power of these temporal abstractions for clarifying the churn signal to
our visual senses, and it will appear more clearly to the data mining algorithm also.

Other Data Abstractions

In the experience of many data miners, some of the most predictive variables are those
you derive yourself. The temporal abstractions discussed in the previous sections are an
example of these derived variables. Other data abstractions can be created also. These
abstractions can be classified into four groups (Lavrac et al., 2000):

• Qualitative abstraction: A numeric expression is mapped to a qualitative expression. For
example, in an analysis of teenage customer demand, compared to that of others,
customers with ages between 13 and 19 could be abstracted as a value of 1 to a variable
“teenager,” while others are abstracted to a value of 0.

• Generalization abstraction: An instance of an occurrence is mapped to its class. For
example, in an analysis of Asian preferences, compared to non-Asian, listings of
“Chinese,” “Japanese,” and “Korean” in the Race variable could be abstracted to 1 in the
Asian variable, while others are abstracted to a value of 0.

• Definitional abstraction: An instance in which one data element from one conceptual
category is mapped to its counterpart in another conceptual category. For example,
when combining data sets from different sources for an analysis of customer demand
among African-Americans, you might want to map “Caucasian” in a demographic data
set and “White Anglo-Saxon Protestant” in a sociological data set to a separate variable
of “Non-black.”

• Temporal abstraction: See the preceding discussion.

Jan  ………..…. Oct

No Pattern + reorganization = Pattern emerges!

Slice across records

Variable = July Month 

Line up by
Churn Month 

Variable = T-1 Month 

= Churn Month

FIGURE 4.3 Demonstration of the power of temporal abstractions for “amplifying” the churn signal to the
analysis system (our eyes and brains).
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Data miners usually refer to the first three types of data abstractions as forms of
recoding. The fourth type, temporal abstraction, is not commonly used. However, the meth-
odologies of several data mining tool vendors do have forms of temporal abstractions
integrated into their design.

Recommendation: If you want to model time-series data but don’t want to use time-series
algorithms (e.g., ARIMA), you can create temporal abstractions and model on them. Some
tools (e.g., KXEN) provide a facility for creating these variables. Sometimes, they are called
lag variables because the response modeled lags behind the causes of the response. The
DVD contains a Perl program you can modify; it will permit you to create temporal
abstractions from your time-series data.

Data Reduction

Data reduction includes three general processes:

• Reduction of dimensionality (number of variables)
• Reduction of cases (records)—Data Sampling
• Discretization of values

Data Sampling

In data mining, data sampling serves four purposes:

1. It can reduce the number of data cases submitted to the modeling algorithm. In many cases, you
can build a relatively predictive model on 10–20% of the data cases. After that, the
addition of more cases has sharply diminishing returns. In some cases, like retail market-
basket analysis, you need all the cases (purchases) available. But usually, only a
relatively small sample of data is necessary.
This kind of sampling is called simple random sampling. The theory underlying this

method is that each sample case selected has an equal chance of being selected as does
any other case.

2. It can help you select only those cases in which the response patterns are relatively homogeneous.
If you want to model telephone calling behavior patterns, for example, you might judge
that calling behaviors are distinctly different in urban and rural areas. Dividing your
data set into urban and rural segments is called partitioning the database. It is a good idea
to build separate models on each partition.
When this partitioning is done, you should randomly select cases within each defined

partition. Such a sampling is called stratified random sampling. The partitions are the
“strata” that are sampled separately.

3. It can help you balance the occurrence of rare events for analysis by machine learning tools.
As mentioned earlier in this chapter, machine learning tools like neural nets and

decision trees are very sensitive to unbalanced data sets. An unbalanced data set is one in
which one category of the target variable is relatively rare compared to the other ones.
Balancing the data set involves sampling the rare categories more than average
(oversampling) or sampling the common categories less often (undersampling).
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4. Finally, simple random sampling can be used to divide the data set into three data sets for
analysis:

a. Training set: These cases are randomly selected for use in training the model.
b. Testing set: These cases are used to assess the predictability of the model, before

refining the model or adding model enhancements.
c. Validation set: These cases are used to test the final performance of the model after

all modeling is done.

Some data miners define the second set as the validation set and the third set as the
testing set. Whatever you prefer in nomenclature, this testing process should proceed in
the manner described. The need for the second testing set is that it is not appropriate to
report model performance on the basis of the second data set, which was used in the pro-
cess of creating the model. That situation would create a logical tautology, or using a thing
to describe itself. The validation data set should be kept completely separate from the iter-
ative modeling process. We describe this iterative process in greater detail in Chapter 6.

Reduction of Dimensionality

Now that we have our Analytical Record (amplified, if necessary, with temporal abstrac-
tions), we can proceed to weed out unnecessary variables. But how do you determine
which variables are unnecessary to the model before you train the model? This is almost
a Catch-22 situation. But fortunately, there are several techniques you can perform to give
you some insights into identifying the proper variables to submit to the algorithm and
which ones to delete from your Analytical Record.

Correlation Coefficients

One of the simplest ways to assess variable relationships is to calculate the simple corre-
lation coefficients between variables. Table 4.3 is a correlation matrix, showing pair-wise
correlation coefficients. These data have been used in many texts and papers as examples
of predictor variables used to predict the target variable, crime rate.

From the correlation matrix in Table 4.3, we can learn two very useful things about our
data set. First, we can see that the correlations of most of the variables with crime rate are

TABLE 4.3 Correlation Coefficients for Some Variables in the Boston Housing Data Set

Correlations of Some Variables in the Boston Housing Data Set. Correlations in Red Are Significant

at the 95% Confidence Level

Crime

Rate

Nonretail Bus

Acres

Charles

River

Dist to Empl

Centers

Property Tax

Rate

Crime Rate 1.000000 0.406583 �0.055892 �0.379670 0.582764
Nonretail Bus Acres 0.406583 1.000000 0.062938 �0.708027 0.720760
Charles River �0.055892 0.062938 1.000000 �0.099176 �0.035587
Dist to Empl

Centers
�0.379670 �0.708027 �0.099176 1.000000 �0.534432

Property Tax Rate 0.582764 0.720760 �0.035587 �0.534432 1.000000
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relatively high and significant, but that for Charles River proximity is relatively low and
insignificant. This means that Charles River may not be a good variable to include in the
model. The other thing we can learn is that none of the correlations of the predictor vari-
ables is greater than 0.90. If a correlation between two variables exceeded 0.90 (a common
rule-of-thumb threshold), their effects would be too collinear to include in the model. Collin-
earity occurs when plots of two variables against the target lie on almost the same line. Too
much collinearity among variables in a model (multicollinearity) will render the solution ill-
behaved, which means that there is no unique optimum solution. Rather, there will be too
much overlap in the effects of the collinear variables, making interpretation of the results
problematic.

Chi-Square Automatic Interaction Detection (CHAID)

The CHAID algorithm is used occasionally as the final modeling algorithm, but it has a
number of disadvantages that limit its effectiveness as a multivariate predictor. It is used
more commonly for variable screening to reduce dimensionality. But even here, there is a
problem of bias toward variables with more levels for splits, which can skew the interpre-
tation of the relative importance of the predictors in explaining responses on the dependent
variable (Breiman et al., 1984).

Despite the possible bias in variable selection, it is used commonly as a variable screen
method in several data mining tools (e.g., STATISTICA Data Miner).

Principal Components Analysis (PCA)

Often, PCA is used to identify some of the strong predictor variables in a data set. PCA is
a technique for revealing the relationships between variables in a data set by identifying
and quantifying a group of principal components. These principal components are composed
of transformations of specific combinations of input variables that relate to a given output
(or target) variable (Jolliffe, 2002). Each principal component accounts for a decreasing
amount of the variations in the raw data set. Consequently, the first few principal compo-
nents express most of the underlying structure in the data set. Principal components have
been used frequently in studies as a means to reduce the number of raw variables in a data
set (Fodor, 2002; Hall and Holmes, 2003). When this is done, the original variables are replaced
by the first several principal components. This approach to the analysis of variable relation-
ships does not specifically relate the input variables to any target variable. Consequently, the
principal components may hide class differences in relation to the target variable (Hand
et al., 2001). In one study of the application of PCA to face recognition, the principal compo-
nents tended to express the wrong characteristics suitable for face recognition (Belhumeur
et al., 1997). Therefore, you may see varying success with the uses of PCA for dimensionality
reduction to create the proper set of variables to submit to a modeling algorithm.

Gini Index

The Gini Index was developed by the Italian statistician Corrado Gini in 1912, for the
purpose of rating countries by income distribution. The maximum Gini Index ¼ 1 would
mean that all the income belongs to one country. The minimum Gini Index ¼ 0 would mean
that the income is evenly distributed among all countries. This index measures the degree
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of unevenness in the spread of values in the range of a variable. The theory is that variables
with a relatively large amount of unevenness in the frequency distribution of values in its
range (a high Gini Index value) have a higher probability to serve as a predictor variable
for another related variable. We will revisit the Gini Index in Chapter 5.

Graphical Methods

You can look at correlation coefficients to gain some insight into relationships between
numeric variables, but what about categorical variables? All is not lost. Some data mining
tools have specialized graphics for helping you to determine strength of relationships
between these categorical variables. For example, SPSS Clementine provides the Web node
that draws lines between categorical variables positioned on the periphery of a circle
(Figure 4.4). The width of the connecting lines represents the strength of the relationship
between the two variables. The following Web diagram shows a strong relationship
between preferences of “No” for Diet Pepsi (located at about 4 p.m. on the periphery of
the diagram) and No for Diet 7UP (located at about 2 p.m. in the diagram). There are no
links between “Yes” for Diet Pepsi and Diet 7UP (5:30 p.m. on the diagram and 2:30 p.m.,
respectively). Therefore, you might expect that there might be a relatively strong relation-
ship between the “No” preferences of these beverages.

Other common techniques used for reduction of dimensionality are

• Multidimensional scaling
• Factor analysis
• Singular value decomposition
• Employing the “Kernel Trick” to map data into higher-dimensional spaces. This

approach is used in Support Vector Machines and other Kernel Learning Machines,
like KXEN. (See Aizerman et al., 1964.)

D_7UP

D_COKE

TAB

SPRITE

SEVENUP

PEPSI

D_PEPSI

COKE

No

Yes

Yes

Yes

Yes Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

FIGURE 4.4 Web diagram from SPSS Clementine.
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Recommendation. You can gain a lot of insight on relationships from simple operations,
like calculating the means, standard deviations, minimum, maximum, and simple correla-
tion coefficients. You can employ the Gini score easily by running your data through one
of the Gini programs on the DVD. Finally, you can get a quick multivariate view of data
relationships by training a simple decision tree and inferring business rules. Then you will
be ready to proceed in preparing your data for modeling.

These techniques are described and included in many statistical and data mining packages.

Data Discretization

Some machine learning techniques can work with only categorical predictor variables,
not continuous numeric variables. You can convert a continuous numeric variable into a
series of categories by assigned subranges of the value range to a group of new variables.
For example, a variable ranging from 1–100 could be discretized (converted into discrete
values) by dividing the range in four subranges: 0–25, 26–50, 51–75, and 76–100. Another
name for these subranges is bins. In the binning process, each value in the range of a vari-
able is replaced by a bin number. Many data mining packages have binning facilities to cre-
ate these subranges automatically. One of the attributes of the binning process is that it
reduces noise in the data. To that extent, binning is a form of data smoothing. Credit scores
are created using bins, in which bin boundaries are tuned and engineered to maximize the
predictive power of the credit scoring model. The Scorecard Module in the Fair Isaac Model
Builder tool is used to produce the FICO credit score. It uses a range engineering approach
in the process of interactive binning to maximize the Information Content (IV) and Weight
of Evidence (WOE) associated with a specific binning design. The IV provides a measure of
the loss of information when bins are combined. The WOE relates the proportion of good
credit scores with bad credit scores in each bin for that variable in the training data set. This
approach to prediction engineers the data to maximize the predictability of a very simple
linear programming modeling algorithm. This focus on data engineering is very different
from the model engineering approach presented in Chapter 6. But both approaches can
yield very predictive models. Even though you may choose the model engineering
approach, you can leverage data engineering concepts to some degree in the data prepara-
tion process by

• Recoding data
• Transforming data
• Binning data
• Smoothing data
• Clustering data

Data Derivation

Assignment or Derivation of the Target Variable

The operation involving assignment or derivation of the target variable defines the mod-
eling goal in terms of available input variables. The modeling goal is to “hit” the target
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variable with the prediction of the model. Often, the target variable can be selected from
among the existing variables in the data set. For example, the target variable for a model
of equipment failure could be the presence or absence of a failure date in the data record.
In other cases, the target variable may be defined in a more complex manner. The target
variable for customer attrition in a model created by one of the authors was defined as
the month in which customer phone usage declined at least 70% over the previous two bill-
ing periods. This variable was derived by comparing the usage of all customers for each
month in the time-series data set with the usage two billing periods in the past. The billing
period of this cellular phone company was every two months, so the usage four months pre-
vious to eachmonth was used as the value of comparison. Most often, the target variable must
be derived following some heuristic (logical rule). The simplest version of an attrition target
variable in that cellular phone company would have been to identify the month in which
the service was discontinued. Insurance companies define attrition in that manner also.

Derivation of New Predictor Variables

New variables can be created from a combination of existing variables. For example, if
you have access to latitude and longitude values for each case (for example, a customer list),
you might create a new variable, Distance to Store, by employing one of the simple
equations for calculating distance on the surface of the earth between two pairs of
latitude-longitude coordinates. One common formula for calculating this distance is based
on the Law of Cosines and expressed here in the form of an Excel cell formula:

¼ ACOS SIN Lat1ð Þ � SIN Lat2ð Þ þ COS Lat1ð Þ � COS Lat2ð Þ�ð
COS Lon2� Lon1ð ÞÞ � 3934:31

The value 3934.31 is the average radius of the earth in miles, and output is the distance in
miles between the two points. The latitude and longitude values must be expressed
in radians so that the trig functions work properly.

Other transformationsmight include calculation of rates. For example, you could divide one
variable (number of purchases) by another variable (time-interval) to yield the purchase rate
over time. The raw values of the number of purchases may show little relationship to attrition
(customers leaving the company), while decline in purchase rates might be very predictive.

Attribute-Oriented Induction of Generalization Variables

Han and Kamber (2006) define the technique of attribute-oriented induction as gener-
alizing from a list of detailed categories in a variable to form a higher-level (more general)
expression of a variable. For example, you might lack information about a customer’s
occupation. You could form a concept generalization, White_Collar_Worker, based on
specific levels in a number of other variables (e.g., Yearly_Salary, Homeowner, and
Number_of_Cars). That induced variable might be very predictive of your target
variable. See Han and Kamber (2006) for more details on concept generalization and
attribute-oriented induction of variables.

You can also induce segmentation variables using this technique. For example, you
might query the database of banking customer prospects against the customer database
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to find indirect relationships with these prospects, considering matching addresses, phone
numbers, or secondary signer information on customer accounts. All matches could be
coded as Y in a new variable, Indirect_Relationship, and all others are coded as N. All
prospects with Y in the Indirect_Relationship variable could be used as targets for a specific
marketing campaign to sell them direct banking services.

POSTSCRIPT

After you are done with data preparation, you are ready to choose your list of variables
to submit to the modeling algorithm. If this list of variables (or features) is determined man-
ually, it may take a long time to complete. But there is help in the wings of most data
mining tools. Most tools have some form of Feature Selection facility to help you select
which features you want to use. Chapter 5 will present some feature selection techniques
available for you to use, depending on your tool of choice.
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PREAMBLE

After your analytical data set is prepared for modeling, you must select those variables
(or features) to use as predictors. This process of feature selection is a very important
strategy to follow in preparing data for data mining. A major problem in data mining in
large data sets with many potential predictor variables is the curse of dimensionality. This
expression was coined by Richard Bellman (1961) to describe the problem that increases
as more variables are added to a model. As additional variables are added to a model,
it may be able to predict a number better in regression models or discriminate better
between classes in a classification model. The problem is that convergence on those solu-
tions during either the error minimization process or the iterative learning process gets
increasingly slow as additional variables are added to the analysis. Feature selection aims
to reduce the number of variables in the model, so it lessens the effect of the curse by
removing irrelevant or redundant variables, or noisy data. It has the following immediate
positive effects for the analysis:

• Speeds up processing of the algorithm
• Enhances data quality
• Increases the predictive power of the algorithm
• Makes the results more understandable
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Therefore, one of the first jobs of the data miner is to develop a short-list of variables. This
abbreviated list will include (one hopes) only those variables that significantly increase the
predictive power and the generalizing ability of the model.

VARIABLES AS FEATURES

Variables are also known as attributes, predictors, or features. But in some areas of machine
learning, a distinction is made between a variable and a feature. Kernel learning machines
(including Support Vector Machines) transform variables with some mathematical function
to relate them to higher-order theoretical spaces. Humans can understand a third-order
space (with three dimensions) and even a fourth-order space, when you consider objects
occupying the same three-dimensional space at different times. Mathematics can define
theoretical spaces with N-dimensions (up to infinity), in which dimensions are defined with
a mathematical function. When this is done, the transformed variables are called features,
not variables. The calculation process of converting these variables to features is called
mapping. Each of the variables is mapped into the higher-dimensional space called a hyper-
space. This space can be mathematically defined so that it is possible to separate clusters
of mapped data points with a plane defined by the dimensions. This hyperplane can be
configured to maximally separate clusters of data in a classification problem. This is
how a Support Vector Machine functions. Even though variables will be mapped into
hyperspaces by some modeling algorithms, we will use the terms features and variables
interchangeably in this book.

TYPES OF FEATURE SELECTIONS

There are two types of feature selection strategies: feature ranking methods and best
subset selection.

FEATURE RANKING METHODS

Simple feature ranking methods include the use of statistical metrics, like the correlation
coefficient (described in Chapter 4). A more complex feature ranking method is the Gini
Index (introduced in Chapter 4).

Gini Index

The Gini Index can be used to quantify the unevenness in variable distributions, as well
as income distributions among countries. The theory behind the Gini Index relies on the
difference between a theoretical equality of some quantity and its actual value over the
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range of a related variable. This concept was introduced by Max O. Lorenz in 1905 to
represent the unequal distribution of income among countries, and can be illustrated by
Figure 5.1.

The theoretical even distribution of income among households is symbolized by the
straight line through the center of the figure. The inequality in incomes among households
is shown by the red line below the line of perfect equality. If the red line remained near the
bottom of the figure until the 80th percentile, for example, it would represent a population
with a few very rich people and a lot of very poor people.

Cerrado Gini incorporated the Lorenz concept in 1912 to quantify the change in relative
frequency of income values along the range of a population of countries. For example,
if you divide the % Households into deciles (every 10%), you can count the number of
households in each decile and express the quantity as a relative frequency. This binning
approach allows you to use a frequency-based calculation method instead of an integration
method to find the area under the Lorenz curve at each point along the % Households axis
(the x-axis). With this approach, you can calculate the relative mean difference (RMD) of all
the binned values (frequency of a bin/mean frequency across all bins), and divide it by
2 � the mean frequency value, expressed for a population of size n, with a sequence of
values yi, i ¼ 1 to n:

RMD ¼ MD

arithmetic mean

where

MD ¼ 1

n2

Xn

i¼1

Xn

j¼1
jyi � yjj

You can use this method as a guide in selecting a short-list of variables to submit to the
modeling algorithm. For example, you might select all variables with a Gini score greater
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FIGURE 5.1 The Lorenz curve relating the distribution of income among households in a population.
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than 0.6 for entry into the model. The disadvantage of using this method is that it combines
effects of data in a given range of one variable that may not reflect the combined effects of
all variables interacting with it. But that is the problem with most feature ranking methods.

A slightly more integrative approach is to use bi-variate methods like the scatterplots
and web diagrams described in Chapter 4.

Bi-variate Methods

Other bi-variate methods like mutual information calculate the distance between the
actual joint distribution of features X and Y and what the joint distribution would be if
X and Y were independent. The joint distribution is the probability distribution of cases
where both events X and Y occur together. Formally, the mutual information of two
discrete random variables X and Y can be defined as

IðX;YÞ ¼
X
y2Y

X
x2X

pðx; yÞ log
pðx; yÞ

p1ðxÞp2ðyÞ
� �

;

where p(x,y) is the joint probability distribution function, and p1(x) and p2(y) are the inde-
pendent probability (or marginal probability) density functions of X and Y, respectively.
If you are a statistician, this likely all makes sense to you, and you can derive this metric
easily. Otherwise, we suggest that you look for some approach that makes more sense to
you intuitively. If this is the case, you might be more comfortable with one of the multivar-
iate methods implemented in many statistical packages. Two of those methods are stepwise
regression and partial least squares regression.

Multivariate Methods

Stepwise Linear Regression

A slightly more sophisticated method is the one used in stepwise regression. This classi-
cal statistics method calculates the F-value for the incremental inclusion of each variable in
the regression. The F-value is equivalent to the square root of the student’s t-value, expres-
sing how different two samples are from each other, where one sample includes the vari-
able and the other sample does not. The t-value is calculated by

t ¼ difference in the sample means=standard deviation of differences

and so

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t-value

p

The F-value is sensitive to the number of variables used to calculate the numerator of this
ratio and for the denominator. Stepwise regression calculates the F-value both with and
without using a particular variable and compares it with a critical F-value to either include
the variable (forward stepwise selection) or to eliminate the variable from the regression
(backward stepwise selection). In this way, the algorithm can select the set of variables that
meets the F-value criterion. It is assumed that these variables account for a sufficient
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amount of the total variance in the target variable to predict it at a given level of confidence
specified for the F-value (usually 95%).

If your variables are numeric (or can be converted to numbers), you can use stepwise
regression to select the variables you use for other data mining algorithms. But there is a
fly in this ointment. Stepwise regression is a parametric procedure and is based on the same
assumptions characterizing other classical statistical methods. Even so, stepwise regression
can be used to give you one perspective on the short-list of variables. You should use other
methods and compare lists. Don’t trust necessarily the list of variables included in the
regression solution because their inclusion assumes linear relationships of variables with
the target variable, which in reality may be quite nonlinear in nature.

Partial Least Squares Regression

A slightly more complex variant of multiple stepwise regression keeps track of the par-
tial sums of squares in the regression calculation. These partial values can be related to the
contribution of each variable to the regression model. STATISTICA provides an output
report from partial least squares regression, which can give another perspective on which
to base feature selection. Table 5.1 shows an example of this output report for an analysis
of manufacturing failures.

It is obvious that variables 1 and 2 (and marginally, variable 3) provide significant
contributions to the predictive power of the model (total R2 ¼ 0.934). On the basis of this
analysis, we might consider eliminating variables 4 through 6 from our variable short-list.

Sensitivity Analysis

Some machine learning algorithms (like neural nets) provide an output report that eval-
uates the final weights assigned to each variable to calculate how sensitive the solution is
to the inclusion of that variable. These sensitivity values are analogous to the F-values
calculated for inclusion of each variable in stepwise regression. Both SPSS Clementine
and STATISTICA Data Miner provide sensitivity reports for their automated neural nets.
These sensitivity values can be used as another reflection of the best set of variables to
include in a model. One strategy that can be followed is to train a neural net with default

TABLE 5.1 Marginal Contributions of Six Predictor
Variables to the Target Variable (Total Defects)

Summary of PLS (fail_tsf.STA) Responses: TOT_DEFS

Options: NO-INTERCEPT AUTOSCALE

Increase - R2 of Y

Variable 1 0.799304
Variable 2 0.094925
Variable 3 0.014726
Variable 4 0.000161
Variable 5 0.000011
Variable 6 0.000000
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characteristics and include in your short-list all variables with greater than a threshold level
of sensitivity. Granted, this approach is less precise than the linear stepwise regression, but
the neural net set of variables may be much more generalizable, by virtue of their ability to
capture nonlinear relationships effectively.

Complex Methods

A piecewise linear network uses a distance measure to assign incoming cases to an
appropriate cluster. The clusters can be defined by any appropriate clustering method. A
separate function called a basis function is defined for each cluster of cases. A pruning algo-
rithm can be applied to eliminate the least important clusters, one at a time, leading to a
more compact network. This approach can be viewed as a nonlinear form of stepwise linear
regression.

Multivariate Adaptive Regression Splines (MARS)

The MARS algorithm was popularized by Friedman (1991) to solve regression and classi-
fication problems with multiple outcomes (target variables). This approach can be viewed as
a form of piecewise linear regression, which adapts a solution to local data regions of similar
linear response. Each of the local regions is expressed by a different basis function. MARS
algorithms can also be viewed as a form of regression tree, in which the hard splits into
separate branches of the tree are replaced by the smooth basis functions. In STATISTICAData
Miner (for example), the MARSplines algorithm includes a pruning routine, which provides
a very powerful tool for feature selection. The MARSplines algorithm will pick up only those
basis functions (and those predictor variables) that provide a sizeable contribution to the
prediction. The output of the MARSplines module will retain only those variables associated
with basis functions that were retained for the final solution of the model and rank them
according to the number of times they are used in different parts of the model.

You can run your data through a procedure like the STATISTICA MARSplines module
to gain some insights for building your variable short-list. Refer to Hastie et al. (2001) for
additional details.

SUBSET SELECTION METHODS

The subset selection approach to feature selection evaluates a subset of features that have
significant effect as a group for predicting a target variable. The most common subset selec-
tion approaches are wrapper-based. Wrappers use a search algorithm to search through the
space of possible features and evaluate each subset by running a model on the subset. Some
wrapper methods perform this evaluation with different randomly selected subsets, using a
cross-validation method. Cross-validation divides the data set into a number of subsets for
each group of features and evaluates a model trained on all but one subset. The subset not
used for the model is used to validate the model for that iteration. During the next iteration,
a different random subset is used for validation.
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The freely available Weka software has wrapper ability. But another way to use wrapper-
based feature selection methods cheaply is to use RapidMiner, a GNU open-source data
mining package. RapidMiner provides four feature selection methods:

• Backward feature selection, using multiple subsets
• Feature weighting using nearest-neighbor
• Wrapper-based feature selection
• Automatic feature selection

RapidMiner provides a wizard to help you create a new analysis process (Figure 5.2).
The wizard guides you through creating a new process. You start by selecting a template
process from a list. This template serves as a kind of skeleton for your process.

You can process your variable list through RapidMiner and submit the variable short-list
to your favorite modeling algorithm or ensemble.

FIGURE 5.2 The RapidMiner Process Creation Wizard is a simple way to create basic process definitions.
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STATISTICA’s Feature Selection tool is very easy to use, especially in the Data Miner
Workspace, and also automatically, behind the scenes without your having to do anything
in the Data Miner Recipe format. STATISTICA has three formats for doing data mining:

1. Interactive module, where Feature Selection is available;
2. Data Miner Workspace, where you have the most control over Feature Selection; and
3. Data Miner Recipe, where Feature Selection is basically automatic.

The Data Miner Workspace (analogous to SPSS Clementine and SAS-EM Workspace)
provides one of the easiest ways for you to manipulate the parameters of feature selection,
and after the process is completed, to easily copy and paste the features (¼ variables of
importance) as the selected variables into any of the other three formats—e.g., (1) data
mining interactive module, (2) Data Miner Workspace for competitive evaluation of several
algorithms, and (3) DMRecipe for allowing you to control the variables selected, instead of
using the default automatic selection that is available in this format.

Use of the Feature Selection node in the STATISTICA Data Miner Workspace is il-
lustrated in the following sequence of figures.

In the Data Miner Workspace (Figure 5.3), the data, a credit scoring set, are embedded
as an icon in the left panel. In the next panel, called Data Preparation, Cleaning, Transfor-
mation, the data set is split into Training and Testing data sets, which would be used for
taking into specific data mining algorithms. In this case we’ll use only the Training data
set to put through the Feature Selection icon, which is in the third red-outlined panel
called Data Analysis, Modeling, Classification, Forecasting. When the Feature Selection
node is run or allowed to compute, the results are put into an icon in the right green-
outlined panel called Reports. When you open this Reports node of Feature Selection
(either by double-clicking the icon or right-clicking to bring up a flying menu from which
you can select View Document), the variables selected as being important are revealed. In
most cases, these important variables are the only ones you need to put as the variable
selections that go into the various algorithms, which can consist of both traditional and

FIGURE 5.3 Statistical Data Miner Workspace.
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statistical learning theory algorithms. The reason is that the variables not selected are
either redundant or not correlated (e.g., predictive) of the dependent (or sometimes called
target) variable.

Let’s look at some of the specific dialogs and results workbooks that come out of this
Feature Selection node. If we right-click this Training Data icon and select the View Data
option, the lists of variables shown in Figure 5.4 appears.

Next, we’ll look at the Feature Selection icons in Figure 5.5 to see what parameters have
been set for this example.

Again, by right-clicking on the Feature Selection and Root Cause Analysis node, and
then selecting Edit Parameters, we bring up the dialog shown in Figure 5.6.

FIGURE 5.4 Variable Selection dialog in STATISTICA.

FIGURE 5.5 Feature Selection icon.
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Next, by double-clicking (or right-clicking and selecting View Document), we can see
what variables have been selected that have a p-value of less than 0.95, based on the
iterative method used for this feature selection (Figure 5.7).

In Figure 5.7, we can see that only nine variables had a p-value of <0.05, and of those,
Balance of Current Account was the most important or most predictive variable to deter-
mine whether a client was worthy of being given credit.

We can also look at the table, giving these variables and p-values, by clicking on the Best
Predictor icon in the tree hierarchy on the left panel to get the view shown in Figure 5.8.

We can also click on the Best Predictor List, the bottom item in the tree hierarchy of this
results workbook, to get a listing of the variable numbers that are important (Figure 5.9).

The list in Figure 5.9 is very useful. For selecting the variables that will be used for the
analyses in the data mining algorithms, the easiest way is to just highlight the longer list
of categorical predictors and copy and paste into the subsequent Variables Selection dialog;
in this case, you can probably remember the two continuous predictors, e.g., the 3 and 6, so
that only one copy/paste operation needs to be done.

These three parameters are
the ones of concern in this
example: (1) we want all
results, (2) variables selected
based on p-values, and
(3) that p-value p < 0.05.

FIGURE 5.6 Edit parameters dialog in STATISTICA where defaults can be changed.
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FIGURE 5.7 Importance plot result from Feature Selection Analysis.

FIGURE 5.8 Best predictor variables ordered top to bottom on basis of highest chi-square to lowest.
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To show how this can be done, we can make another copy of the Training data set, as
shown in Figure 5.10.

Multiple Copies of Data Source copies the Training data set that was used for Feature
Selection (as we don’t want to change the entire set of variables selected that went into
the feature selection process, but we do want to change the variable list to show only the
important variables in this second Training data set, so that only those variables are run
through the Data Miner algorithms). In this case, to demonstrate, a Classification Tree data
mining algorithm is represented by the icon shown in Figure 5.11.

Next, we’ll highlight the categorical variables in the Feature Selection workbook
(Figure 5.12).

Now we’ll copy these variables, remembering the 3 and 6 for the continuous predictors.
Then, opening this copy of the Training data set node, we’ll make the important variable
selections, as shown in Figure 5.13.

FIGURE 5.9 List of best predictors from Feature Selection Analysis.

FIGURE 5.10 Multiple copies of data source.
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FIGURE 5.11 C and RT (classification tree) icon.

FIGURE 5.12 List of best predictors from Feature Selection.

FIGURE 5.13 Variable selection dialog with variables from the “best predictors” list (as seen in Figure 5.12)
selected.
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The Data Miner Workspace that has been added to this duplicate Training data
set and the classification tree algorithm now looks like Figure 5.14 after running this
algorithm.

And the Classification tree results, obtained from this Results icon in the green panel on
the right, and illustrated in Figure 5.15, shows in this simple example that only one variable
could be used to determine if a particular credit transaction was advisable. (Of course, it is
more complicated than this, and on the DVD accompanying this book is a complete Credit
Scoring Tutorial to work through, to see further details, and discover how accurate this one
variable is in making a good judgment about any one applicant for credit.)

However, you can make all kinds of variations with the flexibility and customization
available in this software, so one will be demonstrated in an example using a computer
chip/wafer chip manufacturing data set consisting of 2858 variables and 2062 cases. Natu-
rally, 2858 variables are too many to keep track of for quality control on an assembly line, so
the critical thing needed in this example is to reduce the number of variables being input
into the Quality Control Data Mining algorithms to as few as possible and yet maintain
95–99% quality wafer chips coming off the assembly line.

In the Data Miner Workspace shown in Figure 5.16, a node called Analyze Variable Lists
to Determine Categorical Variables is added. When this node is run, it makes two Wafer
Yields data sets. They will be used to make Scatterplots by Time (Figure 5.17); note that this
is a special Feature Selection icon, with a different name than the one in the previous
example.

In this case, we are asking for the top 25 predictor variables based on the Chi-square
method. Thus, those variables having the 25 highest Chi-square scores will be selected;
the p-values are also given, but the variables are ordered in decreasing value of the
Chi-square, as seen in the results table in Figure 5.18.

FIGURE 5.14 Addition of duplicate training data icon and standard Classification tree icon to this Data Miner
project.
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FIGURE 5.15 Classification tree results; balance of current account acts as a single variable to determine a
“good” or “bad” credit risk.

FIGURE 5.16 Analyze variable lists to determine categorical variables node are highlighted.
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The importance plot is shown in Figure 5.19.
From the plot in Figure 5.19, if we wanted to select the fewest variables for subsequent

predictive modeling, we could either take the top 3 or maybe the top 4. Or we can look for
other inflection points in the curve and maybe select the top 9 or maximally maybe the top
12, because after the top 12 variables, the remainder level off in a plateau effect.

FIGURE 5.17 A specially constructed icon called “Feature Selection and Scatterplots by Time”.

FIGURE 5.18 Top 25 predictor variables ordered by decreasing value of chi-square.
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This special Feature Selection with Scatterplots by Time node produced a large number
of plots, as you can see from the tree hierarchy of the workbook, plots taken at various
time points in the production line/assembly line process of manufacturing wafer chips.

The Other Two Ways of Using Feature Selection in STATISTICA:
Interactive Workspace

With the interactive Feature Selection workspace shown in Figure 5.20, you can use the
more conventional point-and-click procedures to produce a list of variables selected to your
specifications.

STATISTICA DMRecipe Method

The data redundancy methods shown in Figures 5.21 and 5.22 can be applied in the
DMRecipe format to reduce dimensionality, e.g., reduce the variables going into the subsequent

Importance plot
Dependent variable:

LowHiYield
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Equipment NW00/5922
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Equipment NW00/5922
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Equipment NW00/5722

Equipment NW00/5922

Equipment NW00/5722
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Importance (Chi-square)

FIGURE 5.19 Importance plot generated by Feature Selection.
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FIGURE 5.20 Interactive module dialog for Feature Selection.

FIGURE 5.21 Data redundancy selection in DMRecipe format.



data mining statistical learning theory algorithms. These DMRecipe methods of data redun-
dancy use computations differently than those used in the Feature Selection methods of both
the interactive Feature Selection module and the Data Miner Workspace, but they do a
very good job of getting rid of extraneous variables in a model. The DMRecipe fast
approach might be considered a quick-and-dirty method by pure academics, but for
business purposes the results obtained are completely satisfactory for making important
bottom-line business decisions. And one of the coauthors of this book has found that the
accuracy scores obtained from the DMRecipe are essentially as good as the interactive
algorithm, usually within a few percentage points. However, this same coauthor prefers
to use Feature Selection in the Data Miner Workspace to find variables of interest and
then select them by hand using the Select Variables button in the DMRecipe workspace.

But the DMRecipe does have a Feature Selection option, although the computations
don’t work identically to the Feature Selection in the workspace format of STATISTICA. Fig-
ure 5.23 shows where they can be selected, if you wish, rather than just taking the simple
default of hitting Run.

Methods available for reducing redundancy
in a dataset−−a type of Feature Selection
that can be selected to work in this automatic
Data Miner Recipe format.

FIGURE 5.22 DMRecipe data redundancy methods.
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POSTSCRIPT

We hope that the preceding information will provide new users with an understanding
about how to use feature selection to reduce dimensionality in your data, which usually
will provide much more accurate models/predictions. If you are used to using traditional
statistics, especially factor analysis, you may see an analogy in this feature selection process;
the difference, however, is that in factor analysis you can reduce dimensionality, but you
have a much more difficult time defining what these new factors (e.g., the reduced dimen-
sions) really represent; whereas with feature selection, you retain the originally recorded
variable, reducing redundancy (e.g., variables basically recording the same concept) in a
more understandable manner.

Feature selection types that can be selected
in DMRecipe of Statistica.

FIGURE 5.23 DMRecipe Feature Selection options.
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PREAMBLE

Before moving into a discussion of the proper algorithms to use for a data mining project,
we must take a side trip to help you understand that modeling algorithms are just one set of
data mining tools you will use to complete a data mining project. The practice of data mining
includes the use of a number of techniques that have been developed to serve as a set of tools
in the data miner’s toolbox. In the early days of data mining, many of these tools had to be
built (usually in SQL or Perl) and used in an ad hoc fashion for every job. Many of these func-
tions have been included as separate objects in data mining packages or “productized” sepa-
rately. Most jobs will require the data miner to become proficient in even those tools that are
not included in a given data mining package. The following tools can help the data miner:

• Data access tools: SQL and other database query languages.
• Data integration tools: Extract-transform-load (ETL) tools to access, modify, and load

data from different structures and formats into a common output format (e.g., database,
flat file).
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• Data exploration tools: Basic descriptive statistics, particularly frequency tables; slicing,
dicing, and drill-downs.

• Model management tools: Data mining workspace libraries, templates, and projects.
• Modeling analysis tools: Feature selection; model evaluation tools. (Note: This topic will

be expanded in Chapter 13.)
• Miscellaneous tools: In-place data processing (IDP) tools, rapid deployment tools,

model monitoring tools.

Being able to use these tools properly can be very helpful in the identification of signifi-
cant variables, facilitating rapid decision-making necessary to compete successfully in the
global marketplace.

DATA ACCESS TOOLS

Structured Query Language (SQL) Tools

Many SQL tools are available to extract data from databases, including MS SQL Server,
Linux SQL tools, MySQL, Embarcadero, and others. These tools can be used to explore
the nature of data in databases, prior to extraction. They can be used to extract data also,
but other tools (such as ETL tools described later) may serve better. Some data access
and data integration tools (e.g., Business Objects, DataFlux, DataStage) can serve as SQL
generators to access and process data. Some data mining tools offer SQL query capabilities.
For example, STATISTICA Data Miner provides a query generator for extraction of data
from database tables (Figure 6.1).

Most extraction, transformation, and loading of data can be performed in native SQL
programs, but it is most often the case that specialized ETL tools can perform these tasks
more efficiently.

Extract, Transform, and Load (ETL) Capabilities

Most data mining packages provide at least some ETL functions. For the sake of exam-
ple, we will show how one data mining tool package, STATISTICA Data Miner, can be used
to perform ETL tasks.

Extracting Data: Connections can be made with various types of databases, including
process databases (e.g., via the specialized STATISTICA OSI PI Connector). STATISTICA
stores the metadata describing the nature of the tables that are queried, such as control
limits, specification limits, valid data ranges, etc.

Transforming Data: STATISTICA Data Transformation nodes include standard operations
for transposing, sorting, and ranking of data, in addition to standardizing, transforming,
and stacking variables. Data can be aggregated and/or smoothed so that meaningful
subsequent process monitoring methods (e.g., for change-point or trend detection) can be
applied to robust or smoothed estimates of process averages within aggregated time intervals.
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These capabilities in STATISTICA are accessible in two places in the interface, as shown in
Figures 6.2A and 6.2B.

Loading Data: Data loading tools in STATISTICA can automate the process of validating
and aligning multiple diverse data sources into a single source suitable for ad hoc or auto-
mated analyses. In the Enterprise version of STATISTICA, data can be written back to data-
base tables or to STATISTICA spreadsheet data sets. This write-back capability provides
analysts and process engineers a convenient access to real-time performance data, without
the need to perform tedious data preprocessing or cleaning before any actionable informa-
tion can be extracted.

DATA EXPLORATION TOOLS

Basic Descriptive Statistics

Measures of Location

• Mean: The average for all observations in the range of a variable.
• Median: The middle observation in a sorted list of values in the range for a given

variable.
• Mode: The most frequently occurring value.

FIGURE 6.1 STATISTICA Data Miner’s SQL generator.
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FIGURE 6.2B ETL functionality available in the Enterprise menu in STATISTICA Data Miner, both on a
time-based and ID-based format.

FIGURE 6.2A ETL functions available in the File menu in STATISTICA Data Miner.
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Measures of Dispersion

• Variance: A measure of the variability of squared values around the mean.
• Standard Deviation: The square root of the variance.

If the data are tightly clustered around the mean, the variance and standard deviation
are relatively low.

If the data are widely scattered around the mean, the variance and standard deviation
are relatively high.

Range

• Maximum: The highest value in the range of a variable.
• Minimum: The lowest value in the range of a variable.

Together with the mean and standard deviation, the maximum and minimum values can
be useful in identifying outliers (values somuch higher or somuch lower than the vastmajor-
ity of values that they appear to be the result of another process). Outliers may be mistaken
readings, garbage data, or theymay be very rare but valid measurements. Sometimes appar-
ent outliers are the very values that may contain a disproportionately large amount of the
signal of the target variable. The data miner is justified in deleting mistaken readings and
garbage data. Under certain conditions, youmight be justified in deleting even the very rare
by valid measurements, because doing so will reduce the variance in the range of a variable,
making it a stronger predictor of the target. In any event, the data miner should decide how
to handle outliers in the context of the problem and his or her domain knowledge.

Measures of Position

• Quantiles: A portion of the total number of observations. Quantiles are usually names
according to the number of portions into which the range is divided.

• Quartiles: 4 portions
• Quintiles: 5 portions
• Deciles: 10 portions
• Percentiles: 100 portions

There are many types of percentiles, including:

• The PTH percentile: Value where at least p percent of the items are less than or equal to
this value, and (100 – p)% of the items are greater than or equal to this value.

• Median Percentile: 50th percentile
• Q1: 1st quartile ¼ 25th percentile
• Q3: 3rd quartile ¼ 75th percentile

Measures of Shape

• Skewness: The degree to which the distribution of data for a variable is largely to one
side of the mean.

• Kurtosis: The degree to which distribution of the data for a variable is closely arranged
around the mean.
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Robust Measures of Location

• Trimmed mean is calculated by removing a percentage of values from both ends of
the data set. A trimmed mean, therefore, is the arithmetic average after x-percentage
of values has been removed from the highest and lowest ends of the data set.

• Winsorized mean is the mean computed after the x-percentage highest and lowest
values are replaced by the next adjacent value in the distribution. For example, consider
an ordered data set with 100 observations: x1, x2, x3, . . . , x98, x99, x100. If you request
a Winsorized mean with 5%, then the bottom 5% of values (x1, x2, x3, x4, and x5) will be
replaced with the next adjacent value in the distribution (x6). Likewise, the top 5% (x96,
x97, x98, x99, x100) will be replaced with x95.

Frequency Tables

In practically every research project, an initial examination of the data set usually
includes frequency tables. In survey research, for example, frequency tables can show the
number of males and females who participated in the survey, the number of respondents
from particular ethnic and racial backgrounds, and so on. Responses on some labeled atti-
tude measurement scales (e.g., interest in watching football) can also be nicely summarized
via the frequency table. In medical research, you may tabulate the number of patients
displaying specific symptoms; in industrial research, you may tabulate the frequency of dif-
ferent causes leading to catastrophic failure of products during stress tests (e.g., which parts
are actually responsible for the complete malfunction of television sets under extreme tem-
peratures). Customarily, if a data set includes any categorical data, then one of the first
steps in the data analysis is to compute a frequency table for those categorical variables.

Frequency or one-way tables represent the simplest method for analyzing categorical (nomi-
nal) data. They are used often to review how different categories of values are distributed in
the sample. For example, in a survey of spectator interest in different sports, we could summa-
rize the respondents’ interest in watching football in a frequency table, as shown in Table 6.1.

Table 6.1 shows the number, proportion, and cumulative proportion of respondents
who characterized their interest in watching football as (1) Always interested, (2) Usually
interested, (3) Sometimes interested, or (4) Never interested.

TABLE 6.1 Frequency of Respondents’ Interest in Watching Football Games

Category

Frequency Table: Football: “Watching Football”

Count

Cumulative

Count Percent

Cumulative

Percent

Always: Always interested 39 39 39.00000 39.0000
Usually: Usually interested 16 55 16.00000 55.0000
Sometimes: Sometimes

interested
26 81 26.00000 81.0000

Never: Never interested 19 100 19.00000 100.0000
Missing 0 100 0.00000 100.0000

104 6. ACCESSORY TOOLS FOR DOING DATA MINING

I. HISTORY OF PHASES OF DATA ANALYSIS, BASIC THEORY, AND THE DATA MINING PROCESS



Frequency tables can also be tabulated for continuous data. In STATISTICA Data Miner,
the Frequency Table function generates frequency tables and histograms for both continuous
and categorical variables. Users can specify the number of intervals for continuous variables.
STATISTICA will automatically categorize categorical variables by codes if they are speci-
fied; otherwise, all distinct values in the categorical variables will be identified. Users have
control over two additional aspects of frequency tables: (1) Type of categorization, where
users specify the method of categorization for continuous variables (for categorical vari-
ables, either specific codes are used or all integer values are identified); and (2) Number of
intervals, where you can change the number of significant digits that are used when labeling
the category levels in the graph by specifying the desired number of intervals.

Combining Groups (Classes) for Predictive Data Mining

Many data mining programs have tools for combining groups or classes. Sometimes, this
capability is combined with binning tools. Figure 6.3 shows where to find this tool in

FIGURE 6.3 Location of the
Combining Groups tool in
STATISTICA Data Miner.
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STATISTICA Data Miner. The program will automatically find and implement a best recod-
ing scheme for the prediction of a continuous or categorical variable from one or more cat-
egorical predictors with many classes (e.g., such as SIC codes with over 10,000 distinct
values). The program uses an efficient CHAID-like algorithm to determine the best combi-
nations of classes that will yield a strong relationship to the respective outcome variable of
interest. The recoded (aggregated) class variables (now with fewer distinct values) can then
be submitted to subsequent analyses with the various tools for predictive data mining.

Slicing/Dicing and Drilling Down into Data Sets/Results Spreadsheets

Using the STATISTICA Data Miner tool (provided on the DVD), we can show how to use
this capability to take a “deep dive” into details and aspects of a data set (Figure 6.4).

If you select Interactive Drill Down, you can use the interactive interface to access the
General Slicer/Dicer. If you select Build Your Own Project, you will get the Node Browser,
which enables you to put these “data preparation/drill down” nodes into the Data Miner
Workspace. Figure 6.5 shows how to access the General Slicer/Dicer in the Node Browser.

If you select the Interactive Drill Down option, an interactive dialog box will appear
(Figure 6.6), allowing you to specify which variables to analyze.

Slicing, Dicing,
and Drill Down
are selected here.

FIGURE 6.4 The menu pathway in STATISTICA for accessing the Interactive Drill Down tool.
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MODELING MANAGEMENT TOOLS

Data Miner Workspace Templates

As you get used to making data mining projects, you may want to start from a blank
Data Miner Workspace, adding each thing needed as you create the project. But a good
way to start is to use predefined templates. These templates already have DM Nodes placed
in the workspace; thus, you only have to input the data set and any other nodes to use these
templates as a fast method for initial exploration of a data set.

Figures 6.7 and 6.8 show how to access these templates.

MODELING ANALYSIS TOOLS

Feature Selection

Most data mining software packages have some form of tool to help you select the best
features to use in the model. Feature Selection can save a lot of time by reducing the num-
ber of variables (the “dimensionality”) in the data set, which in turn increases the

FIGURE 6.5 Location of the
General Slicer/Dicer in the
STATISTICA Node Browser.
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probability that the model will be more robust (do well against new data sets). This topic
was described in detail in Chapter 5.

Importance Plots of Variables

Importance values were introduced in Chapter 5. We include a more extensive presen-
tation in this chapter, which will show you how to use feature importance values prop-
erly. We will use the Credit Scoring data set, similar to those used by bankers and
credit card companies to determine whether to give credit to an applicant. We can look
at the importance plots from Feature Selection in two ways: by selecting a maximum num-
ber of variables (15 variables here) and also by looking at only those importance values

FIGURE 6.6 The dialog box for the Interactive Drill Down option.
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that are significant according to their p-values. Figure 6.9 shows the importance
values of the top 15 variables. Table 6.2 shows the significance table associated with
Figure 6.9.

Importance values are shown in Figure 6.10 for those variables with a p-value � 0.05;
the associated significance table is shown in Table 6.3.

Importance plots are also generated for some of the data mining algorithms, such as
the importance plot generated with the Classification Trees algorithm (Figure 6.11).

Remember that a data mining algorithm provides only one perspective of patterns in
a data set. Different algorithms may generate different importance values in different
orders of magnitude, depending on how each algorithm “views” data. We can see
some differences in importance values in Figure 6.12, generated by the Boosted Trees
algorithm.

Templates  for Data
Mining Workspaces.

FIGURE 6.7 List of template categories for STATISTICA Data Miner Workspaces.
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Let’s release on Advanced
Comprehensive Classifiers
Project template.

FIGURE 6.8 List of available templates in the General Classifier category.

FIGURE 6.9 Importance values of the top 15 variables of the Credit Scoring data set.
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TABLE 6.2 Importance Values of the Top 15 Variables, Using Chi-Square

Best Predictors for Category

Chi-Square p-Value

Balance of current account 98.79321 0.000000
Duration in months 34.54241 0.000014
Payment of previous credits 29.22978 0.000007
Value of savings or stocks 23.24602 0.000113
Purpose of credit 17.30970 0.044081
Amount of credit in DM 14.62441 0.023388
Most valuable available assets 11.31236 0.010151
Age in years 11.15297 0.132084
Has been employed by current employer for 7.59635 0.107535
Type of apartment 6.24391 0.044071
Foreign worker 3.84149 0.049999
Marital status/sex 3.45523 0.326616
Further running credits 3.23490 0.198404
Living in current household for 2.49301 0.476556
Further debtors/guarantors 2.18696 0.335049

Importance plot
Dependent variable:

Creditability

0 10 20 30 40 50 60 70 80 90 100 110

Importance (Chi-square)

Balance of current account

Payment of previous credits

Duration in months

Value of savings or stocks

Most valuable available assets

Amount of credit in DM

Type of apartment

Purpose of credit

Foreign worker

FIGURE 6.10 Importance values with p-values � 0.05.
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TABLE 6.3 Chi-Square and p-Values for Variables with p-Values � 0.05

Best Predictors for Category

Chi-Square p-Value

Balance of current account 98.79321 0.000000
Payment of previous credits 29.22978 0.000007
Duration in months 34.54241 0.000014
Value of savings or stocks 23.24602 0.000113
Most valuable available assets 11.31236 0.010151
Amount of credit in DM 14.62441 0.023388
Type of apartment 6.24391 0.044071
Purpose of credit 17.30970 0.044081
Foreign worker 3.84149 0.049999

Importance plot
Dependent variable: Creditability
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FIGURE 6.11 The importance plot available in the results from the Classification Tree algorithm.
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Although both of these data mining algorithms, Trees and Boosted Trees, used the same
nine variables, the relative importance of specific variables was different for the two mod-
eling algorithms. Different algorithms can give different “opinions” for variable impor-
tance, and they may generate different predictions of the target variable. You can
combine these opinions with the Ensemble modeling approach, described in greater detail
in Chapters 13 and 18.

IN-PLACE DATA PROCESSING (IDP)

The conventional way to access data in database tables is to extract that information
using an Open Database Connectivity (ODBC) driver. Major problems with this approach
include

• The space required to hold the extracted data in the form of flat files;
• The need to duplicate data on an analytical computing system;

Importance plot
Dependent variable: Creditability
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FIGURE 6.12 Variable importance values generated by the Boosted Trees algorithm for the Credit data set.
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• The need to integrate multiple extracts to form the analytic record for data mining
processing;

• The time required for download, scheduling of downloads;
• The difficulty in working with very large data sets; and
• The need for the ODBC driver software to be available and properly configured for the

two systems participating in the download operation.

Fortunately, there are several approaches available to permit analytical processing of
data without extraction to external flat files. Several data mining tool packages provide a
facility for accessing data directly in tables in a database (SAS-Enterprise Miner, STATIS-
TICA Data Miner). SPSS Clementine provides links to data mining tools for various data-
base management system vendors, which enable Clementine to work in tandem with the
embedded vendor mining tools (e.g., Oracle Data Mining). Some data mining tools operate
completely within the database management system itself (Teradata Warehouse Miner and
Oracle Data Miner). In-place data processing allows direct access to data in tables in multi-
ple databases of differing formats, with subsequent processing and return of results to the
database requiring only one pass through the data.

Example: The IDP Facility of STATISTICA Data Miner

To access the IDP facility, you click on the File menu, choose Get External Data, and then
choose In Place Database Interface. Choose the option to place the analysis in a standalone
window and click OK. You can enter an SQL query string in the Query options or edit an
existing query string saved to disk.

How to Use the SQL

As an example, STATISTICA provides access to most databases (including many large
system databases, such as Oracle, Sybase, etc.) via an automatic query system where all
you have to do is select the database(s), select the variables, and connect or “join” the dif-
ferent spreadsheets via a common variable, and then select SQL Statement to have
the SQL query statement displayed on the screen, as shown in Figure 6.13.

You can view the SQL generated by the configuration in Figure 6.13 by clicking on the
SQL Statement tab shown at the bottom of the screen. This SQL Statement can be edited
or added to as desired. When you run the SQL Statement, the variables of interest will be
pulled into a new data sheet on your computer, and then you can use this new data set
for further analysis of these variables.

RAPID DEPLOYMENT OF PREDICTIVE MODELS

In STATISTICA Data Miner, for example, new cases can be scored rapidly with models
saved in Predictive Modeling Markup Language (PMML) format. You can score new data
in the interactive dialog shown in Figure 6.14.
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FIGURE 6.13 Table linkages in the SQL Query Builder.

FIGURE 6.14 The interac-
tive dialog box for rapid
deployment of models.
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Click on the Load Models button to access models saved in PMML format. You can select
the variables you want to work with manually (by clicking on the Variables button) or let
the PMML file specify the variable list.

The Rapid Deployment tool can be accessed also through the Data Miner Workspace, as
shown in Figure 6.15.

Figure 6.16 shows how to integrate the Rapid Deployment tool into the process flow of
an existing Data Miner Workspace.

Rapid Deployment is an essential tool for industries that must score new data routinely,
such as credit card companies, banks, other financial institutions, and insurance companies,
among others. Some companies will spend months, even years, developing their best
models and then deploy them on new data in many subsequent cycles.

MODEL MONITORS

Some data mining tools permit the periodic assessment of model performance. Most
models will degrade in performance, due to changing economic conditions, business condi-
tions, or cultural conditions. For example, the insurance industry may only need to reassess
its models yearly or every couple of years, but banks and credit card companies may
need to do this twice a year, or more frequently, as we write this during the week of
the “stock market financial crisis,” just one month before the 2008 presidential elections
in the United States.

FIGURE 6.15 Accessing
the Rapid Deployment tool
from the Data Miner
Workspace.
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POSTSCRIPT

In Chapters 7 and 8, we will move into a subject that terrifies many people new to data
mining: mathematics! But this presentation will be very different from most discussions on
algorithms in data mining books. We will not present a lot of equations to express the
nature of these algorithms. Rather, we will provide intuitive explanations of their nature
and operation, which will be tied whenever possible to common things in the world.
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Rapid Deployment node
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scoring of your new data.

Results of deploying
the Rapid Deployment
on new data.

FIGURE 6.16 Integration of the Rapid Deployment tool in a workspace.
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P A R T II

THE ALGORITHMS IN
DATA MINING AND TEXT

MINING, THE
ORGANIZATION OF THE
THREE MOST COMMON
DATA MINING TOOLS,

AND SELECTED
SPECIALIZED AREAS
USING DATA MINING

This part of the book provides a general introduction to some basic and advanced algo-
rithms, some general solution methods for discrete and continuous target variables, and
several common business areas where data mining is used. The list of algorithms is not
intended to be comprehensive. The distinction between basic and advanced algorithms is
related more to the historical sequence of development than to the complexity of



algorithms. The business areas chosen for treatment in this part of the book cover two from
science (medical informatics and bioinformatics) and two that relate to important business
challenges today (customer relationship management and fraud detection). As with the pre-
sentation of the algorithms, this treatment of business areas is representative only, not com-
prehensive. Your business area may not be included, but that does not mean that we think
it is not important! The choice of these four application areas is one of choice by the authors,
based primarily on their experience.

As you read these chapters, the general design motif of this book will become clearer.
We have avoided formal mathematical descriptions of these tools, methods, and applica-
tions in favor of providing intuitive explanations that beginning business data miners can
understand easily. Our purpose is to get you up and running to create good data mining
models in as short a time as possible. All of the authors are (or have been) deeply involved
for many years in data mining educational activities, in colleges, universities, medical
schools, and in private instruction seminars. Our choices of topics, tools, methods, applica-
tions, and presentation style are conditioned as much by our background in educational
instruction as they are formed by our technical experiences and understanding. The
“sweet-meat” of this book, though, is the many tutorials included in Part III and on the
accompanying DVD, which will help you learn by example, not just by the precepts in
the printed pages. These tutorials cover a much broader range of data mining applications
than are introduced in Part II of this book. We hope that you will profit by this didactic
approach and use this book as a springboard to launch you into the exciting practice of data
mining in the twenty-first century.
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PREAMBLE

Armed with your prepared data set and the list of predictors, you are ready to make one
of the most important decisions in the practice of data mining: selecting the right modeling
algorithm to start with. In Chapters 13 and 18, we will make the case that groups of algo-
rithms working in ensembles can create better predictions than one algorithm alone. But
for now, you must make a selection of the algorithm to start with. This chapter will present
the basic algorithms used in data mining and help you to select the right one to use in the
beginning.
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Before we get into a discussion of specific algorithms, let’s look at the names of all of
the algorithms we will be discussing in this chapter and also in Chapter 8.

Data Mining Algorithms and Procedural Analyses

Basic Data Mining Algorithms:

• Association Rules
• Automated Neural Networks
• Generalized Additive Models (e.g., Regression Models)
• General Classification/Regression Tree Models
• General CHAID Models
• Generalized EM and k-Means Cluster Analysis

Advanced Data Mining Algorithms (see Chapter 8 for detailed discussions):

• Interactive Trees (CART or C&RT, CHAID)
• Boosted Tree Classifiers and Regression
• MARSplines (Multivariate Adaptive Regression Splines)
• Random Forests for Regression and Classification
• Machine Learning (Bayesian, Support Vectors, Nearest Neighbor)
• Sequence, Association, and Link Analysis
• Independent Components Analysis

Special-Purpose Algorithms

Text and Document Mining, Web Crawling:

• File, Document, and Web (URL) Retrieval
• Text Mining and Document Retrieval

Quality Control Data Mining and Root Cause Analysis:

• Quality Control Charts
• Quality Control Charts for Variable Lists
• Predictive Quality Control
• Root Cause Analysis
• Response Optimization for Data Mining Models

Before describing individual algorithms you can use in most data mining packages,
we will present two semi-automated approaches to performing all the necessary opera-
tions from accessing data to producing model results. The first example will show how
STATISTICA Data Miner Recipe Interface packages all basic steps of a data mining project
into an easy-to-use interface. The second example is KXEN (Knowledge Extraction
Engine). Both tools select the modeling algorithms, permit you to enter a few settings
(the default selections work very well in both tools), and automatically generate model
results. Use of either tool might be the best way for beginning data miners to build their
first model.
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STATISTICA Data Miner Recipe (DMRecipe)

After you create your first model, you might feel a new sense of empowerment. It is
exciting to see patterns in your data that you couldn’t see before! The process can involve
just a few mouse clicks and is so easy that you could even write these few steps on a sheet
of paper, leave it on your assistant’s desk, asking him to run this analysis the next day,
while you are away on a business trip, or a meeting across town. The DMRecipe process
will be described here briefly. A detailed description of this modeling option is presented
in the DMRecipe tutorial.

The DMRecipe Interface consists of several interactive steps that guide you through the
process to create very powerful models the first time you try it.

1. To select the DMRecipe Interface from the STATISTICA Data Miner toolbar, click on
Data Mining and then Data Miner Recipe.

2. Select New on the Recipe screen.
3. Click on Open/Connect Data File to select the input data set.
4. Click on Apply Data Transformations, if needed.
5. Click on Select Variables to select initial input variables.
6. Click on the downward-pointing triangle (▼) symbol (in the upper right of the screen)

to run the recipe.

When model training is complete, the results screen shown in Figure 7.1 will display.

Boosted Trees (BT)
was selected as the
model to be deployed
on future datasets.

Error rates of the three models
selected for Competitive Evaluation.
Accuracy rate = 100 − error rate.
Thus, BT has a 98% accuracy rate,
C&RT has 97.33% accuracy,
and NN has 95.33%.

FIGURE 7.1 DMRecipe results screen showing that the Boosted Trees model had the lowest prediction error.
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The DMRecipe Interface provides an almost automatic method for building data mining
models. The results screen (Figure 7.1) provides several reports (e.g., lift charts) to help the
modeler evaluate the predictor power of the models. The results displayed in Figure 7.1 show
that the Boosted Trees algorithm had the lowest error rate (Note: accuracy ¼ 100 � error rate).
The DMRecipe Interface selects several modeling algorithms by default (C&RT, Boosted
Trees, Neural Network). As you can see from the results in this figure, Boosted Trees had
the lowest error rate among the algorithms trained, with an accuracy rate of 98%. Since
Boosted Trees had the highest accuracy rate, it was selected as the model to be used for
deployment to score future data sets.

You may find that some data sets do not generate acceptable prediction accuracies with
any model. In these cases, hybrid models can be made, usually called consensus models.
This type of model will be discussed later, primarily in Chapter 13, and will be used in
some of the tutorials.

STATISTICA Data Miner Recipe (DMRecipe) is a semi-automatic method for building
relatively complex analytical models for classification (with categorical target variables) or
numerical prediction (with continuous target variables). The DMRecipe Interface provides
a step-by-step approach to data preparation, variable selection, and dimensionality reduc-
tion, resulting in models trained with different algorithms.

Data Preparation. The first major activity in the data mining process is to prepare the data
set for modeling. Common data cleaning and transformation operations can be performed
to provide data in the format suitable for the modeling algorithms. Also, you can create a
“blind-holdout-sample” for use later in the validation models.

Data Analysis. After the data set is properly prepared, you can conduct descriptive statis-
tical analysis of the variables. You can evaluate each variable on the basis of mean, standard
deviation, skewness, kurtosis, and observed maximum and minimum.

Data Redundancy. Some variables may carry information very similar to that of other vari-
ables, making them redundant. The DMRecipe tool provides measures of this redundancy
for continuous variables. You should let DMRecipe eliminate all but one from a group of
redundant variables. The resulting variable set will generate a much better model.

Dimensionality Reduction. In addition to eliminating redundant variables, you can reduce
the number of variables (dimensionality) even further by eliminating variables highly cor-
related with the target variable. This operation will reduce the multicollinearity of the data
set and increase the likelihood of generating an optimum model. Review Chapter 4 for
more details on the problem of multicollinearity.

Model Building. In this step, multiple models are trained automatically. A large number of
graphic displays are available to help you evaluate results from each model.

Model Deployment. After building your data mining models, you can use your models to
score new data sets. A good model will perform with acceptable accuracy on data that was
not used for training.

KXEN

An analogous series of steps are followed in the semi-automatic Modeling Assistant
interface of KXEN for processing all steps of a simple data mining operation from model
selection to model results.
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1. The introductory screen permits you to select from among a number of data mining
operations:

a. Classification or regression (numerical prediction)
b. Clustering
c. Time-series analysis
d. Data exploration
e. Data manipulation

2. The second screen prompts you for the input data file.
3. The third screen allows you to view the data set or continue to data analysis.
4. The fourth screen provides a metadata report for each variable.
5. The fifth screen provides a facility for variable selection. In KXEN, the variable

selection screen prompts you for a list of variables to exclude rather than include. The
counterintuitive response is puzzling at first, but it makes good sense when viewed in
context with the strengths of KXEN. This tool can accept variables that are redundant or
collinear, and it automatically analyzes them and excludes inappropriate variables from
further analysis. Variable exclusion is performed to permit you to avoid submitting
totally inappropriate variables to the modeling engine (e.g., customer names, sequential
numbering codes, etc.).

6. The final screen provides a model results report (Figure 7.2).

A number of model reports are available in KXEN similar to those in the DMRecipe
tool (e.g., lift charts and coincidence matrices).

Like DMRecipe, KXEN does a lot of things behind the scenes. One of the most powerful
of those hidden features is the operation of the Consistent Coder. This facility does a lot of
data preparation automatically, like binning and recoding. Also, KXEN derives

FIGURE 7.2 Results screen of KXEN.

125PREAMBLE

II. THE ALGORITHMS IN DATA MINING AND TEXT MINING



automatically a number of new variables as combinations and transformations of existing
variables. This automated reduction of unnecessary dimensionality and addition of poten-
tially useful dimensionality (new features) can produce very powerful models without
significant danger of multicollinearity.

KXEN is very efficient for modeling problems in which many (even thousands) of mod-
els must be developed, such as in Retail domains. There, separate sales forecasting models
must be created for each category of sales merchandise in large retail operations (such as
retail supermarkets). KXEN can create huge numbers of models very quickly.

The (almost) automated functions of DMRecipe and KXEN Modeling Assistant provide
a glimpse of one direction in which data mining is developing. These tools provide a close
analogy to the ideal described in the Preface of this book, in which data mining is as easy to
use as the automobile interface.

BASIC DATA MINING ALGORITHMS

Association Rules

The goal of association rules is to detect relationships or associations between specific
values of categorical variables in large data sets. This technique allows analysts and
researchers to uncover hidden patterns in large data sets. The classic example of an early
association analysis found that beer tended to be sold with diapers, pointing to the co-
occurrence of watching Monday night football and caring for family concerns at the same
time. Variants like the a priori algorithm use predefined threshold values for detection of
associations (see Agrawal et al., 1993; Agrawal and Srikant, 1994; Han et al., 2001; see also
Witten and Frank, 2000). This algorithm is provided by SAS Enterprise Miner,
SPSS Clementine, and STATISTICA Data Miner.

How Association Rules Work. Assuming you have a record of each customer transaction at a
large bookstore, you can perform an association analysis to determine which other book pur-
chases are associated with the purchase of a given book. With this information in hand at the
time of purchase, you could recommend to the customer a list of other books the customer
may wish to purchase. Such an application of association analysis is called a recommender
engine. Such recommender engines are used at many online retail sites (like Amazon.com).

Association algorithms can be used to analyze simple categorical variables, dichotomous
variables, and/or multiple target variables. The algorithm will determine association rules
without requiring you to specify the number of distinct categories present in the data or any
prior knowledge regarding the maximum factorial degree or complexity of the important
associations (except in the a priori variant). A form of cross-tabulation table can be con-
structed without the need to specify the number of variables or categories. Hence, this tech-
nique is especially well suited for the analysis of huge data sets.

Table 7.1 shows an example of a tabular representation of results from an association
rules algorithm.

Note that the rules in the results spreadsheet shownwere sorted by the Correlation column.
Graphical representations of association rules are shown in Figures 7.3 and 7.4.
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TABLE 7.1 Word Correlations, with Their Support and Confidence Values. Support Is Expressed by the
Joint Probability of Word 1 and Word 2 Occurring Together; Confidence Is the Conditional Probability of

Word 1 Given Word 2.

Summary of association rules (Scene 1.sta)

Min. support = 5.0%, Min. confidence = 5.0%, Min. correlation = 5.0%

Max. size of body = 10, Max. size of head = 10

Body ==> Head Support(%) Confidence(%) Correlation(%)

154 and, that ==> like 6.94444 83.3333 91.28709

126 like ==> and, that 6.94444 100.0000 91.28709

163 and, PAROLLES ==> will 5.55556 80.0000 73.02967

148 will ==> and, PAROLLES 5.55556 66.6667 73.02967

155 and, you ==> your 5.55556 80.0000 67.61234

122 your ==> and, virginity 5.55556 57.1429 67.61234

164 and, virginity ==> your 5.55556 80.0000 67.61234

121 your ==> and, you 5.55556 57.1429 67.61234

73 that ==> like 6.94444 41.6667 64.54972

75 that ==> and, like 6.94444 41.6667 64.54972

161 and, like ==> that 6.94444 100.0000 64.54972

FIGURE 7.3 Link graph for words
spoken in All’s Well That Ends Well.
The thickness of the line linking words
is a measure of the strength of the asso-
ciation. (Source: StatSoft Inc.)
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In Figure 7.4, the support values for the Body and Head portions of each association
rule are indicated by the sizes and colors of each. The thickness of each line indicates
the confidence value (conditional probability of Head given Body) for the respective associa-
tion rule; the sizes and colors of the circles in the center, above the Implies label, indicate
the joint support (for the co-occurrences) of the respective Body and Head components of
the respective association rules.

Neural Networks

Neural networks used for computation were based on early understandings of the struc-
ture and function of the human brain. They were proposed as a means for mathematical
computation by McCulloch and Pitts (1943). But it was not until the 1980s that the concept
was developed for use with digital computers. The underlying assertion of neural nets
is that all of the operations of a digital computer can be performed with a set of
interconnected McCulloch-Pitts “neurons” (Abu-Mostafa, 1986).

Figure 7.5 shows how the human neurons are structured.
Neuron cells receive electrical impulses from neighboring cells and accumulate them

until a threshold value is exceeded. Then they “fire” an impulse to an adjacent cell. The

FIGURE 7.4 Link graph showing the strength of association by the thickness of the line connecting the Body
and Head words of some association rules. (Source: StatSoft Inc.)
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capacity of the cell to store electrical impulses and the threshold are controlled by biochem-
ical processes, which change over time. This change is under the control of the autonomic
nervous system and is the primary means by which we “learn” to think or activate our
bodies.

Artificial neurons in networks (Figure 7.6) incorporate these two processes and vary
them numerically rather than biochemically. The aggregation process accepts data inputs
by summing them (usually). The activation process is represented by some mathematical
function, usually linear or logistic. Linear activation functions work best for numerical esti-
mation problems (i.e., regression), and the logistic activation function works best for classi-
fication problems. A sharp threshold, as is used in decision trees, is shown in Figure 7.6.

The symbol Xi represents input variables, representing the number of other neurons
connected to a human neuron. Wi represents the numerical weights associated with each
linkage, and they are analogous to the strength of the interconnections. This strength of con-
nection represents the proximity of connections between two neurons in the region called
the synapse (Bishop, 1995).

Artificial neurons are connected together into an architecture or processing structure. This
architecture forms a network in which each input variable (called an input node) is
connected to one or more output nodes. This network is called an artificial neural network
(neural net for short). When the input nodes with summation aggregation function and
a logistic activation function are directly connected to an output node, the mathematical
processing is analogous to a logistic regression with a binary output. This configuration

Axon
Myelin
sheath

Dendrites

Soma

Terminal button

FIGURE 7.5 Structure of the human
neuron [Source: Carlson, Neil R. (1992).
Foundations of Physiological Psychology.
Needham Heights, Massachusetts:
Simon & Schuster. pp. 36].
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FIGURE 7.6 Architecture of a neu-
ron, with a number of inputs (Xi).
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of a neural net is a powerful classifier. It has the ability to handle nonlinear relationships
between the output and the input variables, by virtue of the logistic function shown in
Figure 7.7.

The logistic function fits many binary classification problems and can express much of
the nonlinear effects of the predictors.

The most interesting property of a neural net comes into view when you intercalate a
middle layer of neurons (nodes) between the input and output node, as shown in
Figure 7.8.

FIGURE 7.7 A plot of the logistic
function.

Neural Net Architecture

n

F(Σwj•Fj(Σx1wij))
j = 1

wij H1

H2

H3

Input Layer              Middle Layer            Output

wj

“Feed-Forward” Neural Net

m

I=1

FIGURE 7.8 Architecture of a neural net.
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Weights (Wij) are assigned to each connection between the input nodes and middle
layer nodes, and between the middle layer nodes and the output node(s). These weights
have the capacity to model nonlinear relationships between the input nodes and output
node(s). Herein lies the great value of a neural net for solving data mining problems.
The nodes in the middle layer provide the capacity to model nonlinear relationships
between the input nodes and the output node (the decision). The greater the number
of nodes in the middle layer, the greater the capacity of the neural net to recognize non-
linear patterns in the data set. But, as the number of nodes increases in the middle layer,
the training time increases exponentially, and it increases the probability of overtraining
the model. An overtrained model may fit the training set very well but not perform
very well on another data set. Unfortunately, there are no great rules of thumb to define
the number of middle layer nodes to use. The only guideline is to use more nodes
when you have a lot of training cases and use fewer nodes with fewer cases. If your
classification problem is complex, use more nodes in the middle layer; if it is simple,
use fewer nodes.

The neural net architecture can be constructed to contain only one output node and
be configured to function as a regression (for numerical outputs) or binary classification
(yes/no or 1/0). Alternatively, the net architecture can be constructed to contain multiple
output nodes for estimation or classification, or it can even function as a clustering
algorithm.

The learning process of the human neuron is reflected (crudely) by performing one of
a number of weight adjustment processes, the most common of which is called backpropa-
gation, shown in the diagram of Figure 7.9.

The backpropagation operation adjusts weights of misclassified cases based on the mag-
nitude of the prediction error. This adaptive process iteratively retrains the model and
improves its fit and predictive power.

Neural Net Architecture

Input Layer              Middle Layer        Output

Back-
propagation

H2

H1

H3

wj

wij

n
F(Σwj•Fj(Σx1wij))

j = 1

m

I=1

FIGURE 7.9 A feed-forward neural net
with backpropagation.
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How Does Backpropagation Work?

The processing steps for backpropagation are as follows:

1. Randomly assign weights to each connection.
2. Read the first record and calculate the values at each node as the sum of the inputs times

their weights.
3. Specify a threshold value above which the output is evaluated to 1 and below which it is

evaluated to 0. In the following example, the threshold value is set to 0.01.
4. Calculate the prediction error as

Error ¼ Expected prediction �Actual prediction:

5. Adjust the weights as

Adjustment ¼ Error � output weight:

6. Calculate the new weight as

Old input weightþAdjustment assume as 0:1ð Þ:
7. Do the same for all inputs.
8. Repeat a number of iterations through the data (often 100–200).

Figure 7.10 shows the evaluation of all weights after the first record is processed.
For example, the new weight of input variable X1 connected to the middle layer (or

hidden layer) H1 ¼ �4.9 þ (�1 � 2.2) ¼ �7.1, as shown in Figure 7.11.

How Does Backpropagation Work?
Example: Solve the XOR Case

(Assume a threshold value of 0.01)

Y

H2H1

X2X1
54.6

–4.9

2.2 2.5

–5.1

= 1

Y

H2H1

X2X1
54.6

–4.9

2.2 2.5

–5.1

= 1

1

Value at H1 = –4.9 + 5 = 0.1 
Value at H2 = 4.6 + (–5.1) = –0.5
Value at Y = 2.2 + 2.5 = 4.7
XOR is evaluated as true, but actually

it is false!  

1 0

1

0

1

Random initial 
assignment of

weights

= 1 = 1

FIGURE 7.10 How backpropagation solves the XOR case. (Note that these NN flow from the bottom to the top;
previous models flowed from left to right.)
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Advantages of neural nets include the facts that they

• Are general classifiers. They can handle problems with very many parameters, and
they are able to classify objects well even when the distribution of objects in the
N-dimensional parameter space is very complex.

• Can handle a large amount of nonlinearity in the predictor variables.
• Can be used for numerical prediction problems (like regression).
• Require no underlying assumption about the distribution of data.
• Are very good at finding nonlinear relationships. The hidden layer(s) of the neural net

architecture provides this ability to model highly nonlinear functions efficiently.

Disadvantages of neural nets include

• They may be relatively slow, especially in the training phase but also in the application
phase.

• It is difficult to determine how the net is making its decision. It is for this reason that
neural nets have the reputation of being a “black box.”

• No hypotheses are tested and no p-values are available in the output for comparing
variables.

Modern implementations of neural nets in many data mining tools open up the “black
box” to a significant extent by showing the effect of what it does related to the contribution
of each variable. As a result, many modern neural net implementations are referred to as
“gray boxes.” These effects of the trained neural net are often displayed in the form of a sen-
sitivity analysis. In this context, the term sensitivity has a slightly different meaning than it
does in classical statistical analysis. Classical statistical sensitivity is determined either by
calculation of the statistical model with all but one of the variables, and leaving out a differ-
ent variable in each of a number of iterations (equal to #variables), or by keeping track of
the partial least squares values (as is done in partial least squares regression). In neural
net analysis, sensitivities are calculated from the normalized weights associated with each
variable in the model.

Weights After Backpropagation
for One Record

Y

H2H1

X2X1
2.82.1

–7.1

1.2 1.5

–7.6

= 1  = 1

FIGURE 7.11 Weights after backpropagation for one record.
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Training a Neural Net

Training a neural net is analogous to a ball rolling over a series of hills and valleys.
The size (actually, the mass) of the ball represents its momentum, and the learning rate is
analogous to the slope of the error pathway over which the ball rolls (Figure 7.12).

The low momentum of the search path means that the solution (depicted by the ball)
may get stuck in the local minimum error region of the surface (A) rather than finding
the global minimum (B). This happens when the search algorithm does not have enough
tendency to continue searching (momentum) to climb the hill over to the global minimum.
This problem is compounded when the learning rate is relatively high, analogous to a steep
slope of the decision surface (Figure 7.13).

The configuration of the neural net search path depicted in Figure 7.12 is much more
likely to permit the error minimization routine to find the global minimum. This increased
likelihood is due to the relatively large momentum (shown by the large ball), which may
carry the ball long enough to find the global minimum. In manually configured neural nets,
the best learning rate is often 0.9, and the momentum is often set to 0.1 to 0.3.

Another neural net setting that must be optimized is the learning decay rate. Most imple-
mentations of a neural net start at the preset learning rate and then reduce it incrementally
during subsequent runs. This decay process has the effect of progressively flattening the
search surface. The run with the lowest error rate is selected for the training run.

Modeling with a manual neural net is very much an art. The modeling process usually
includes a number of training runs with different combinations of

• Learning rate
• Learning rate decay
• Momentum
• Number of nodes in the middle layer
• Number of middle layers to add

A B

Error

FIGURE 7.13 The topology of a learning
surface associated with a high momentum
and a low learning rate.

A B

Error

FIGURE 7.12 The topology of a
learning surface associated with a low
momentum and a high learning rate.
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Because of the artistic nature of neural net modeling, it is difficult for novice data
miners to use many implementations of neural nets successfully. But there are some
implementations that are highly automated, permitting even novice data miners to use
them effectively.

The type of neural net described here is sometimes called a Multilayer Percep-
tron (MLP).

Additional Types of Neural Networks

Following are some additional types of neural nets:

• Linear Networks: These networks have two layers: input and output layers. They do
not handle complexities well but can be considered as a “baseline model.”

• Bayesian Networks: Networks that employ Bayesian probability theory which can be
used to control model complexity, and can be used to optimize weight decay rates, and
to automatically find the most important input variables.

• Probabilistic Networks: These networks consist of three to four layers.
• Generalized Regression: These networks train quickly but execute slowly. Probabilistic

(PNN) and Generalized Regression (GRNN) neural networks operate in a manner
similar to that of Nearest-Neighbor algorithms (see Chapter 12), except the PNN operates
only with categorical target variables and the GRNN operates only with numerical target
variables. PNN and GRNN networks have advantages and disadvantages compared to
MLP networks (adapted from http://www.dtreg.com/pnn.htm):

• It is usually much faster to train a PNN/GRNN network than an MLP network.
• PNN/GRNN networks often are more accurate than MLP networks.
• PNN/GRNN networks are relatively insensitive to outliers (wild points).
• PNN networks generate accurate predicted target probability scores.
• PNN networks approach Bayes optimal classification.
• PNN/GRNN networks are slower than MLP networks at classifying new cases.
• PNN/GRNN networks require more memory space to store the model.

• Kohonen: This type of neural network is used for classification. It is sometimes called
a “self-organizing” neural net. It iteratively classifies inputs, until the combined
difference between classes is maximized. This algorithm can be used as a simple way to
cluster data, if the number of cases or categories is not particularly large. For data sets
with a large number of categories, training the network can take a very long time.

MLPs can be used to solve most logical problems, but only those in which the classes are
linearly separable. Figure 7.14 shows a classification problem in which it is possible to sepa-
rate the classes with a straight line in the space defined by their dimensions.

Figure 7.15 shows two classes that cannot be separated with a straight line (i.e., are not
linearly separable).
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Radial Basis Function (RBF) Networks

RBFs are similar to MLPs with three layers (input, middle or “hidden” layer, and output).
Also like MLPs, RBFs can model any nonlinear function easily. The major difference between
the two networks is that an RBF does not use raw input data, but rather passes a distance mea-
sure from the inputs to the hidden layer. This distance is measured from some center value in
the range of the variable (sometimes the mean) to a given input value in terms of a Gaussian
function (Figure 7.16). These distances are transformed into similarities that become the data
features in a succeeding regression step. This nonlinear function can permit the mapping
operation to capture many nonlinear patterns in the input data.

The processing of RBFs (like any neural network) is iterative. The weights associated
with the hidden nodes are adjusted following some strategy (like backpropagation). If a
large enough RBF is run through enough iterations, it can approximate almost any function
almost perfectly; that is, it is theoretically a universal approximator. The problem with RBF
processing (like with the MLP) is the tendency to overtrain the model.

Advantages of RBFs

RBFs can model any nonlinear function using a single hidden layer, which removes some
design decisions about numbers of layers to use for the networks like the MLP. The simple
linear transformation in the output layer can be optimized fully using traditional linear
modeling techniques; these techniques are fast and do not suffer from problems such as
local minima that plague MLP training techniques. RBF networks can therefore be trained
extremely quickly (i.e., orders of magnitude faster than MLPs).

C1

C2

( Patterns are linearly separable)

FIGURE 7.14 Two pattern classes that are linearly separable.

(Patterns are NOT linearly separable)

C1

C2

FIGURE 7.15 Nonseparable classes.
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Disadvantages of RBFs

On the other hand, before linear optimization can be applied to the output layer of
an RBF network, the number of radial units must be decided, and their centers and devia-
tions must be set. Although faster than MLP training, the algorithms to do this are equally
prone to discovering suboptimal combinations. (In compensation, the STATISTICA Neu-
ral Networks Intelligent Problem Solver can perform the inevitable experimental stage
for you.)

RBF’s more eccentric response surface requires a lot more units to adequately model
most functions. Of course, it is always possible to draw shapes that are most easily repre-
sented one way or the other, but the balance in practice does not seem to favor RBFs.
Consequently, an RBF solution will tend to be slower to execute and more space consuming
than the corresponding MLP (although faster to train, which is sometimes more of a
constraint).

RBFs are not good for extrapolating beyond known data; the response drops off rapidly
towards zero if data points far from the training data are used (due to the Gaussian basis
function). Often the RBF output layer optimization will have set a bias level, more or
less equal to the mean output level, so in fact the extrapolated output is the observed

Gaussian Curve
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FIGURE 7.16 Plot of a Gaussian function, similar to the aggregation function in an RBF.
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mean—a reasonable working assumption. In contrast, an MLP becomes more certain in
its response when far-flung data are used. Whether this is an advantage or disadvantage
depends largely on the application, but on the whole the MLP’s uncritical extrapolation is
regarded as a bad point; extrapolation far from training data is usually dangerous and
unjustified. However, both methods, like logistic regression, are far better at extrapolation
than methods like regression or polynomial networks that have no constraints on the
output estimate.

RBFs are also more sensitive to the curse of dimensionality and have greater difficulties if
the number of input units is large.

Automated Neural Nets

Several data mining tools offer neural nets that have “smart” search algorithms to choose
the appropriate starting points for their parameters. But the biggest benefit of these algo-
rithms is that they search over the decision surface with different initial learning rates
(which also decay between iterations), different momentums, and different number of
nodes in the middle layer. Usually, you have to choose the number of middle layers to
use before the algorithm takes over. Both SPSS Clementine and STATISTICA Data Miner
have very powerful automated neural nets.

GENERALIZED ADDITIVE MODELS (GAMs)

As theory of Generalized Linear Models (GLMs) developed in the 1980s, the need for an
increasing number of predictor variables was recognized as a key issue. The problem with
increasing the number of predictor variables is that the variance increases also. The higher
the variance, the harder it is for a prediction algorithm to perform well (perform acceptably
on new data). This is one aspect of the “curse of dimensionality.” To bypass this problem,
Stone (1986) proposed modification of the GLM by replacing the definition of each predictor
variable with an additive approximation term. This approximation is performed with a linear
univariate smoothing function. This approach avoided the curse of dimensionality by
performing a simple fitting of each predictor variable to the dependent variable. The new
approach also expressed the definition of each predictor variable such that it was possible
to relate how the variable affected the dependent variable. Remember, in the standard Multi-
ple Linear Regression (MLR) equation, the estimated coefficients represent effects of differing
scale, as well as differing relationships to the dependent variable. Consequently, you can’t
analyze the MLR coefficients directly to determine relationships. But with the enhancement
by Stone, you can see these relationships directly. Still, the cost of that enhancement was a
decrease in generalization (the ability to perform acceptably on new data).

Hastie and Tibshirani (1990) incorporated Stone’s idea into a formal definition of
Generalized Additive Models (GAMs). A GAM uses a nonlinear link function to map input
data into a solution space, similar to a GLM. This flexible approach to mapping of inputs
can fit the response probability distribution of any member of the exponential family of
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data distributions (Y ¼ Xn). Choice of the appropriate link function depends on the distri-
bution of the data set. For Normal, Poisson, and Gamma distributions, appropriate link
functions include

Identity link [Y ¼ f(x)]
Log link [Y ¼ log(x)]
Inverse link [Y ¼ 1/x]

For binomial distributions, the Logit link is used [Y ¼ log(x/(1 � x)]

Outputs of GAMs

Typical outputs of GAMs include

• Iteration history of model fitting
• Summary statistics, including R2

• Residual tables and plots
• Scatterplots of observed versus predicted values
• Normal probability plots

Interpreting Results of GAMs

Model interpretation is a vital step after model fitting. For example, analysis of residual
values helps to identify outliers; analysis of normal probability plots shows how “normal”
the predictions were across the range of values for the dependent variable. For example,
Figure 7.17 shows a STATISTICA plot of partial residuals (residuals after effects of other
variables have been removed).

This plot allows you to evaluate the nature of the relationship between the predictor
with the residualized (adjusted) dependent variable values. You can see that most of
the adjusted residuals are within the 95% confidence limits of normally expected values,
but some points on the upper left and lower right of the plot appear to be outliers.
Subsequent analysis of these data points might yield some valuable insights for improving
the fit of the model.

CLASSIFICATION AND REGRESSION TREES (CART)

Decision Trees
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Classification and Regression Tree (CART or C&RT) methodology was introduced in
1984 by UC Berkley and Stanford researchers Leo Breiman, Jerome Friedman, Richard
Olshen, and Charles Stone. CART processing is structured as a sequence of simple ques-
tions. The answers to these questions determine what next question, if any, is posed. The
result is a network of questions that forms a tree-like structure. The “ends” of the tree are
terminal “leaf” nodes, beyond which there are no more questions.

The two most popular algorithms are

1. CART: Classification and Regression Tree (with generic versions often denoted C&RT)
2. CHAID: Chi-Square Automatic Interaction Detection (Kass, 1980)

Key elements defining a decision tree algorithm are as follows:

• Rules at a node for splitting the data according to its value on one variable
• A stopping rule for deciding when a subtree is complete
• Assigning each terminal leaf node to a class outcome (prediction)

Trees recursively partition the data, creating at each step more homogenous groups. The
resulting rules are the paths it takes to get from the root node to each leaf.

Consider the tree shown in Figure 7.18, created to classify the Iris data set (a standard
data set used in data mining discussions and benchmarks). Only two variables are needed
to classify Iris type: petal length and petal width.

FIGURE 7.17 A plot of partial residuals created by STATISTICA, with 95% confidence levels (dashed lines).
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When you consider two of the predictor variables, petal length and width, you’ll see how
the CART algorithm processes the first question at node 1. Figure 7.19 shows a categorized
scatterplot of the results of this simple decision tree model.

You can see that the algorithm found a splitting point that perfectly distinguished the
species Setosa from other two species (Versicolor and Virginica). The rule is: When petal
length is less than 2.45 mm, then Setosa is characterized. Subsequent questions will distin-
guish Versicolor from Virginica.

The second split is on petal width. Figure 7.20 shows the tree with the decision rules for
each node.

From Figure 7.20, we can see that Versicolor and Virginica can be distinguished ade-
quately (but not perfectly) by asking the second question, “Is the petal width greater than
or equal to or less than 1.75 mm?”

The final categorized scatterplot is shown in Figure 7.21.
The final tree is shown in Figure 7.22.

Tree 3 graph for IRISTYPE
Num. of non-terminal nodes: 2,  Num. of terminal nodes: 3

SETOSA  

VERSICOL
ID = 2

SETOSA  

VERSICOL VIRGINICA

PETALLEN

<= 2.450000 > 2.450000

PETALWID

<= 1.750000 > 1.750000

SETOSA  

VERSICOL

VIRGINICA

N = 50

ID = 1 N = 150

ID = 4 N = 54

ID = 3 N = 100

ID = 5 N = 46

FIGURE 7.18 A simple decision tree created with the Iris data set (available from the UC-Irvine Machine
Learning Repository: http://archive.ics.uci.edu/ml/).
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FIGURE 7.19 Scatterplot of results of the simple decision tree for the Iris data set.

lD=3 N=100

lD=4 N=54

VERSICOL

VERSICOL
lD=5 N=46

VIRGINICA

PETALWID

<= 1.750000 > 1.750000

FIGURE 7.20 The second split in building the
decision tree for the Iris data set.
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FIGURE 7.21 The categorized scatterplot after two splits of the Iris data set.

SETOSA
VERSICOL
VIRGINICA

Tree 3 graph for IRISTYPE
Num. of non-terminal nodes: 2,  Num. of terminal nodes: 3

SETOSA  

VERSICOL
ID = 2

SETOSA  

VERSICOL VIRGINICA

PETALLEN

<= 2.450000 > 2.450000

PETALWID

<= 1.750000 > 1.750000

N = 50

ID = 1 N = 150

ID = 4 N = 54 N = 46

ID = 3 N = 100

ID = 5

FIGURE 7.22 The final tree to
classify three Iris species.
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Recursive Partitioning

Once a best split is found, CART repeats the search process for each node below (child
nodes), until either further splitting is stopped by a criterion, or splitting is impossible.

Common stopping conditions include

• Minimum number of cases has been reached.
• A certain fraction of the total number of cases is in the node.
• A maximum number of levels of splitting has been achieved.
• The maximum number of nodes has been reached.

Conditions under which further splitting is impossible include when

• Only one case is left in a node.
• All cases are duplicates of each other.
• The node is pure (all target values agree).

Pruning Trees

Rather than focusing on when to stop pruning, CART trees are grown larger than they
need to be and then pruned back to find the best tree. CART determines the best tree by
using the testing data set or by using the process of V-fold cross-validation. The testing
validation is performed by scoring the tree with the data set not used for training the
model. Cross-validation is a form of resampling, which draws a number of samples from
the entire distribution and trains models on all samples. The V-fold cross-validation is
performed by

1. Partitioning the entire data set into a number (V) of parts (folds);
2. Training V models on different combinations of V � 1 folds, with the error estimated

each time using the Vth fold;
3. Using the mean (and sigma) of the V error measurements to estimate tree accuracy on

new data;
4. Choosing the design parameters (e.g., complexity penalty) that minimize the error in

step 3;
5. Refitting the tree, using all the data, using the parameters of step 4.

Figure 7.23 shows a 3-fold cross-validation operation.
The cross-validation process provides a number of independent estimates of the error

associated with the algorithm itself rather than due to the randomness in the data. A model
created with a CART algorithm (or any other algorithm, for that matter) should not be
accepted until the prediction error is partitioned in this manner.

General Comments about CART for Statisticians

1. CART is nonparametric and does not require specification of a data distribution.
2. The final modeling variables are not selected beforehand but selected automatically by

the algorithm.
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3. There is no need to transform data to be consistent with a given mathematical function.
Monotonic transformations will have no effect.

4. Very complex interaction patterns can be analyzed.
5. CART is not significantly affected by outliers in the input space.
6. CART is affected, but only locally, by outliers in the output variable.
7. CART can accept any combination of categorical and continuous variables.
8. CART can adjust for samples stratified on a categorical dependent variable.
9. CART can process cases with missing values; the cases are not deleted.

Advantages of CART over Other Decision Trees

1. You can relax the stopping rules to “overgrow” decision trees and then prune back the
tree to the optimal size. This approach minimizes the probability that important
structure in the data set will be overlooked by stopping too soon.

2. CART incorporates both testing with a test data set and cross-validation to assess the
goodness of fit more accurately.

FIGURE 7.23 How a 3-fold cross-validation design works.
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3. CART can use the same variables more than once in different parts of the tree. This
capability can uncover complex interdependencies between sets of variables.

4. CART can be used in conjunction with other prediction methods to select the input set of
variables.

5. CART can be incorporated into hybrid models, where CART feeds inputs to a neural
network model (which itself cannot select variables).

Uses of CART

1. CART is simple!
2. Data preparation. Classical statistical models require that the analyst has a clear

understanding of the nature of the function inherent in the data to be modeled. CART
requires very little input for the beginning data miner.

3. Variable selection. CART can be used to create the short-list of predictor variables to
submit to the modeling algorithm. There is no guarantee that the variables most useful
for a tree will also prove most useful for a neural network or other function, but in
practice this is a useful technique.

4. The use of predictors multiple times in the tree helps to detect complex interactions in
the data.

5. CART can handle missing values by identifying surrogate (alternate) splitting rules.
During training, after the best split is found for a node, new splits using other variables
are scored according to their similarity in distributing the data to the left and right
child nodes. The best five or so are then stored as backup or surrogate questions to ask
should the main variable not be available.

GENERAL CHAID MODELS

CHAID is an acronym for Chi-Square Automatic Interaction Detector. CHAID differs
from CART in that it allows multiple splits on a variable. For classification problems, it
relies on the Chi-square test to determine the best split at each step. For regression problems
(with a continuous target variable), it uses the F-test.

Key elements of the CHAID process are

1. Preparing the predictor variables: Continuous variables are “binned” to create a set of
categories, where each category is a subrange along the entire range of the variable. This
binning operation permits CHAID to accept both categorical and continuous inputs,
although it internally works only with categorical variables.

2. Merging categories: The categories of each variable are analyzed to determine which ones
can be merged safely to reduce the number of categories.

3. Selecting the best split: The algorithm searches for the split point with the smallest
adjusted p-value (probability value, which can be related to significance).
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Advantages of CHAID

1. It is fast!
2. CHAID builds “wider” decision trees because it is not constrained (like CART) to make

binary splits, making it very popular in market research.
3. CHAID may yield many terminal nodes connected to a single branch, which can be

conveniently summarized in a simple two-way contingency table, with multiple
categories for each variable.

Disadvantages of CHAID

1. Since multiple splits fragment the variable’s range into smaller subranges, the algorithm
requires larger quantities of data to get dependable results.

2. The CHAID tree may be unrealistically short and uninteresting because the multiple
splits are hard to relate to real business conditions.

3. Real variables are forced into categorical bins before analysis, which may not be helpful,
particularly if the order in the values should be preserved. (Categories are inherently
unordered; it is possible for CHAID to group “low” and “high” versus “middle,” which
may not be desired.)

GENERALIZED EM AND k-MEANS CLUSTER
ANALYSIS—AN OVERVIEW

The purpose of clustering techniques is to detect similar subgroups among a large collec-
tion of cases and to assign those observations to the clusters as illustrated in Figure 7.24.
The clusters are assigned a sequential number to identify them in results reports. A good
clustering algorithm will find the number of clusters as well as the members of each. Cases
within a group should be much more similar to each other than to cases in other clusters.

A typical sample application of cluster analysis is a marketing research study in which
a number of variables related to consumer behavior are measured for a large sample
of respondents. The purpose of the study is to detect “market segments,” i.e., groups of
respondents that are somehow more similar to each other than they are to respondents
in other groups (clusters). Just as important as identifying such clusters is the need to
determine how those clusters are different.

k-Means Clustering

The classic k-means algorithm was introduced by Hartigan (1975; see also Hartigan and
Wong, 1978). Its basic operation is simple: given a fixed number (k) of clusters, assign obser-
vations to those clusters so that the means across clusters (for all variables) are as different
from each other as possible. The difference between observations is measured in terms of
one of several distance measures, which commonly include Euclidean, Squared Euclidean,
City-Block, and Chebychev.
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For categorical variables, all distances are binary (0 or 1). The variable is assigned as 0 when
the category of an observation is the same as the one with the highest frequency in a cluster;
otherwise, it is assigned a value of 1. So, with the exception of the Chebychev distance, for
categorical variables, the different distance measures will yield identical results.

EM Cluster Analysis

The goal of the EM clustering method is to find the most likely set of clusters for
the observations (together with prior expectations). The basis for this technique is a body
of statistical theory called finite mixtures. A mixture is a set of probability distributions,
representing k clusters, which govern the attribute values of that cluster. This means that
each of the distributions gives the probability that a particular observation would have
one of a certain set of attribute values, if it were truly a part of that cluster. An observation
belongs to only one cluster, but which one is not known at the start of analysis.
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FIGURE 7.24 Data clusters in a clustering problem.
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Consider two clusters A and B, where each has a normal distribution characterized by
means, standard deviations, and a prior probability (P) of belonging to clusters A and B
adds to 1, such that P(A), the probability of belonging to cluster A ¼ 1 � P(B). The prior
probability represents the expectation, and the calculation of the distribution parameters is
the process of maximization.

Processing Steps of the EM Algorithm

The steps for processing the EM algorithm are as follows:

1. Start with initial guesses of the distributional parameters for each observation.
2. Use the initial guesses to calculate the cluster probabilities for each observation.
3. Use the calculated probabilities to re-estimate the parameters.
4. Go back to step 2 and do it again (until your time budget runs out).

The algorithm converges toward a fixed point but never gets there. But we can calculate
the likelihood that the observation came from the data set, given the values for the pa-
rameters. The overall likelihood across all observations is the “goodness” of the clustering
solution, and it increases during each iteration through the process. This likelihood may
be only a “local” maximum (greater than all values near it), and there may be another
maximum in another part of the probability landscape that is higher. The highest maximum
across the entire probability landscape is the “global” maximum.

V-fold Cross-Validation as Applied to Clustering

The general idea of V-fold cross-validation as it is applied to clustering is to divide the
overall sample into V folds, or randomly drawn (disjoint) subsamples. The same type
of analysis is then successively applied to the observations belonging to the V � 1 folds
(training sample), and the results of the analyses are applied to sample V (the sample or
fold that was not used to estimate the parameters, build the tree, determine the clusters,
etc.; i.e., this is the testing sample) to compute some index of predictive validity. The
results for the V replications are aggregated (averaged) to yield a single measure of
the stability of the respective model, i.e., the validity of the model for predicting new
observations.

Cluster analysis is an unsupervised learning technique, and we cannot observe the
(real) number of clusters in the data. However, it is reasonable to replace the usual notion
(applicable to supervised learning) of “accuracy” with that of “distance”: In general, we
can apply the V-fold cross-validation method to a range of numbers of clusters and
observe the resulting average distance of the observations (in the cross-validation or test-
ing samples) from their cluster centers (for k-means clustering); for EM clustering, an
appropriate equivalent measure would be the average negative log-likelihood computed
for the observations in the testing samples.

Note: The preceding discussion on k-means and EM clustering is based on Witten and
Frank (2005).
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POSTSCRIPT

These basic algorithms will work relatively well for most data sets. But there are some
advanced algorithms available that may do even better. In Chapter 8, we will describe some
advanced algorithms that also incorporate a higher degree of automation than the basic
algorithms implemented in most data mining tools.
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PREAMBLE

You can perform most general data mining tasks with the basic algorithms presented in
Chapter 7. But eventually, you may need to perform some specialized data mining tasks.
This chapter describes some advanced algorithms that can “supercharge” your data mining
jobs. They include the following:

1. Advanced General-Purpose Machine Learning Algorithms

• Interactive Trees (C&RT or CART, CHAID)
• Boosted Tree Classifiers and Regression
• MARSplines (Multivariate Adaptive Regression Splines)
• Random Forests for Regression and Classification (discussed in Chapter 11)
• Machine Learning—Naı̈ve Bayesian Classifier and Nearest Neighbor (discussed in

Chapter 11)
• Statistical Learning Theory—Support Vector Machines
• Sequence, Association, and Link Analysis
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• Independent Components Analysis
• Kohonen Clustering

2. Text Mining Algorithms (discussed in Chapter 9—Text Mining and Natural Language
Processing)

3. Quality Control Data Mining and Root Cause Analysis

• Quality Control Charts
• Quality Control Charts for Variable Lists
• Predictive Quality Control
• Root Cause Analysis
• Response Optimization for Data Mining Models

4. Image and Object Data Mining: Visualization and 3D-Medical and Other Scanning
Imaging

You may wonder why there are so many algorithms available. Research during the past
30 years has generated many kinds and variants of data mining algorithms that are
suited to particular areas in the solution landscape. Figure 8.1 illustrates where specific

Discipline Interlock by Technology

ORR ForecastingForecasting

Statistics

OR

Data Mining

BI

• SQL

•Wavelets

•Fourier Transforms

• Harmonic Analysis• Neural Networks
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• Hierarchical Clustering• Monte Carlo

• Principal Components
• Resampling

• Kernels

• Querying

• OLAP

• Linear, Logistic Regression & GLMs 
• Discriminant Analysis

• Bayesian Networks

• Spectral Density
• Time Series Analysis

• Kohonen Networks 

• Support Vector Machines

• Radial Basis Functions

• Polynomial Networks & GMDH

• Decision Trees

• Association Rules

•Link Analysis

• Optimization

• Simulation

• Simulated Annealing

• Visualization

• Cross-Tabulations

• k-means Clustering 

• Genetic Algorithms

• Graph Theory

FIGURE 8.1 The relationship between specific algorithms and business analytical problem areas (and the
overlap between them).
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data mining algorithms fit into the solution landscape of various business analytical
problem areas: operations research—OR, forecasting, data mining, statistics, and business
intelligence—BI.

Figure 8.1 came from studies by Dustin Hux and John Elder (both of Elder Research, Inc.)
on algorithms used in journal articles in different domains. From Figure 8.1, you can see
which field uses what technique and also what techniques are suited to overlaps between
areas. For example, visualization and cross-tabulations are used in business intelligence,
data mining, and statistics.

Data miners use many analysis techniques from statistics, but often ignore some tech-
niques like factor analysis (not always wisely). In addition, data mining includes a lot of
techniques that are not considered typically in the world of statistics (such as radial basis
function networks, genetic algorithms). Operations research (OR) uses clustering, graph
theory, neural networks, and time series, but also depends very heavily on simulation
and optimization. Forecasting overlaps data mining, statistics, and OR, and adds a few
algorithms like Fourier transforms and wavelets.

In addition to the overlap of algorithms in different areas, some of them are known
by different names. For example, Principal Components Analysis (PCA) is known in electri-
cal engineering as the Karhounen-Loeve transform, and in statistics as the eigenvalue-
eigenvector decomposition.

In our early college years, we take courses in many different disciplines, and it looks as
though techniques are developed in them independently. One of the important byproducts
of higher education (especially graduate school) is that we begin to see the interconnections
between these ideas in different disciplines. The Ph.D. degree is short for Doctor of Philos-
ophy. Doctoral degrees are handed out in many very technical disciplines, and it might
seem strange that “philosophy” is still in the name. What does philosophy have to do with
Recombinant DNA Genetics? The answer is “Everything.” One of the jokes often heard in
graduate schools is “You learn more and more about less and less, until you know every-
thing about nothing.” Well, a very highly constrained subject matter discipline is the end
point (not quite “nothing”), and through the process of getting there, you can see the con-
nections with a great many other disciplines. And this connected view of a broad subject
area (e.g., genetics) provides the necessary philosophical framework for the study of your
specific area. You are not educated properly in a discipline until you can view it in the
context of its relationship with many other disciplines. So it is with the study of analytical
algorithms. This book will take you far along that path (books like the one by Hastie et al.,
2001, do it better), but this introduction will provide enough background to help you
navigate through the plethora of data mining and statistical analysis algorithms available
in most data mining tool packages.

Now, we will turn to the main job at hand in this chapter and look at each of the
advanced algorithms individually. Because these algorithms are implemented in slightly
different ways in each data mining or statistical package, we will cast the explanations in
terms of how they are implemented in STATISTICA Data Miner (for which a free 90-day
copy is available on the enclosed DVD). In addition to the free software, we have
provided numerous tutorials (many of them use STATISTICA Data Miner; several with
other tools, particularly SPSS Clementine and SAS Enterprise Miner). Some of the following
text was adapted from the STATISTICA software online help: StatSoft, Inc. (2008). STATIS-
TICA (data analysis software system), version 8.0. www.statsoft.com. You can experiment
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with these algorithms during the 90-day license period, even if you normally use a different
package in your organization.

ADVANCED DATA MINING ALGORITHMS

Interactive Trees

The STATISTICA Interactive Trees (I-Trees) module builds trees for predicting dependent
variables that are continuous (estimation) or categorical (classification). The program sup-
ports the classic Classification and Regression Tree (CART) algorithm (Breiman et al.; see
also Ripley, 1996) as well as the CHAID algorithm (Chi-Square Automatic Interaction
Detector; Kass, 1980). The module can use algorithms, user-defined rules, criteria specified
via an interactive graphical user interface (brushing tools), or a combination of those meth-
ods. This enables users to try various predictors and splitting criteria in combination with
almost all the functions of automatic tree building.

Figure 8.2 displays the tree results layout in the I-Trees module. The main results screen
is shown in Figure 8.3.

Manually Building the Tree

The I-Trees module doesn’t build trees by default, so when you first display the Trees
Results dialog, no trees have been built. (If you click the Tree Graph button at this point,
a single box will be displayed with a single root node, as in Figure 8.4.)

The Tree Browser

The final tree results are displayed in the workbook tree browser, which clearly identifies
the number of splitting nodes and terminal nodes of the tree (Figure 8.5).

To review the statistics and other information (e.g., splitting rule) associated with each
node, simply highlight it and review the summary graph in the right pane. The split nodes
can be collapsed or expanded in the manner that most users are accustomed to from stan-
dard MS Windows-style tree browser controls. Another useful feature of the workbook tree
browser is the ability to quickly review the effect of consecutive splits on the resulting child
nodes in an animation-like manner.

Advantages of I-Trees

• I-Trees is particularly optimized for very large data sets, and in many cases the raw data
do not have to be stored locally for the analyses.

• It ismore flexible in the handling ofmissing data. Because the Interactive Treesmodule does
not support ANCOVA-like design matrices, it is more flexible in the handling of missing
data; for example, in CHAID analyses, the program will handle predictors one at a time to
determine a best (next) split; in theGeneral CHAID (GCHAID)Modelsmodule, observations
with missing data for any categorical predictor are eliminated from the analysis.

• You can perform “what-if” analyses to gain better insights into your data by interactively
deleting individual branches, growing other branches, and observing various results
statistics for the different trees (tree models).
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FIGURE 8.2 Layout of part of the I-Trees interface in STATISTICA Data Miner.

FIGURE 8.3 The results screen of the I-Trees module.
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FIGURE 8.4 Initial tree graph showing only one
node (no splitting yet).

FIGURE 8.5 Final tree results from I-Trees, using example of Iris data set.
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• You can automatically grow some parts of the tree but manually specify splits for other
branches or nodes.

• You can define specific splits and select alternative important predictors other than those
chosen automatically by the program.

• You can quickly copy trees into new projects to explore alternative splits and methods
for growing branches.

• You can save entire trees (projects) for later use.

Building Trees Interactively

Building trees interactively has proven popular in applied research, and data exploration
is based on experts’ knowledge about the domain or area under investigation, and relies on
interactive choices (for how to grow the tree) by such experts to arrive at “good” (valid)
models for prediction or predictive classification. In other words, instead of building trees
automatically, using sophisticated algorithms for choosing good predictors and splits (for
growing the branches of the tree), a user may want to determine manually which variables
to include in the tree and how to split those variables to create the branches of the tree. This
enables the user to experiment with different variables and scenarios and ideally to derive
a better understanding of the phenomenon under investigation by combining her or
his expertise with the analytic capabilities and options for building the tree (see also the
next section).

Combining Techniques

In practice, it may often be most useful to combine the automatic methods for building
trees with educated guesses and domain-specific expertise. You may want to grow some
portions of the tree using automatic methods and refine and modify the choices made by
the program (for how to grow the branches of the tree) based on your expertise. Another
common situation in which this type of combination is called for is when some variables
that are chosen automatically for some splits are not easily observable because they cannot
be measured reliably or economically (i.e., obtaining such measurements would be too
expensive). For example, suppose the automatic analysis at some point selects a variable
Income as a good predictor for the next split; however, you may not be able to obtain reliable
data on income from the new sample to which you want to apply the results of the current
analysis (e.g., for predicting some behavior of interest, such as whether or not the person
will purchase something from your catalog). In this case, you may want to select a surrogate
variable, i.e., a variable that you can observe easily and that is likely related or similar
to variable Income (with respect to its predictive power; for example, a variable Number of
years of education may be related to Income and have similar predictive power; while most
people are reluctant to reveal their level of income, they are more likely to report their
level of education, and hence, this latter variable is more easily measured).

The I-Trees module provides a large number of options to enable users to interactively
determine all aspects of the tree-building process. You can select the variables to use for
each split (branch) from a list of suggested variables, determine how and where to split a
variable, interactively grow the tree branch by branch or level by level, grow the entire tree
automatically, delete (“prune back”) individual branches of trees, and more. All of these
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options are provided in an efficient graphical user interface in which you can “brush” the
current tree, i.e., select a specific node to grow a branch, delete a branch, etc. As in all mod-
ules for predictive data mining, the decision rules contained in the final tree built for regres-
sion or classification prediction can optionally be saved in a variety of ways for deployment
in data mining projects, including C/Cþþ, STATISTICA Visual Basic, or Predictive Model
Markup Language (PMML). Hence, final trees computed via this module can quickly and
efficiently be turned into solutions for predicting or classifying new observations.

Multivariate Adaptive Regression Splines (MARSplines)

We’ll use the STATISTICA Data Miner software tool to describe the MARSplines algo-
rithm, but the ideas described can be applied to whatever software package you use.

Note: Many of the paragraphs in this section are adapted from the STATISTICA online help,
StatSoft, Inc. (2008).STATISTICA (data analysis software system), version 8.0.www.statsoft.com.

The STATISTICA Multivariate Adaptive Regression Splines (MARSplines) module is a
generalization of techniques (called MARS) popularized by Friedman (1991) for solving
regression- and classification-type problems, with the goal to predict the value of a set of
dependent or outcome variables from a set of independent or predictor variables. MAR-
Splines can handle both categorical and continuous variables (whether response or predic-
tors). With categorical responses, MARSplines will treat the problem as a classification
problem; with continuous dependent variables, as a regression problem. MARSplines will
automatically determine that for you.

MARSplines is a nonparametric procedure that makes no assumption about the underly-
ing functional relationship between the dependent and independent variables. Instead, it
constructs the model from a set of coefficients and basis functions that are entirely “driven”
from the data. In a sense, the method follows decision trees in being based on the “divide
and conquer” strategy, which partitions the input space into regions, each with its own
regression or classification equation. This makes MARSplines particularly suitable for
problems with higher input dimensions (i.e., with more than two variables), where the curse
of dimensionality would likely create problems for other techniques.

The MARSplines technique has become particularly popular in data mining because it
does not assume or impose any particular type or class of relationship (e.g., linear, logistic,
etc.) between the predictor variables and the dependent (outcome) variable of interest.
Instead, useful models (i.e., models that yield accurate predictions) can be derived even
in situations in which the relationships between the predictors and the dependent variables
are non-monotone and difficult to approximate with parametric models. For more informa-
tion about this technique and how it compares to other methods for nonlinear regression
(or regression trees), see Hastie et al. (2001).

In linear regression, the response variable is hypothesized to depend linearly on the
predictor variables. It’s a parametric method, which assumes that the nature of the relation-
ships (but not the specific parameters) between the dependent and independent variables is
known a priori (e.g., is linear). By contrast, nonparametric methods do not make any such
assumption as to how the dependent variables are related to the predictors. Instead, it
allows the model function to be “driven” directly from data.
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Multivariate Adaptive Regression Splines (MARSplines) constructs a model from a set of
coefficients and features or “basis functions” that are determined from the data. You can
think of the general “mechanism” by which the MARSplines algorithm operates as multiple
piecewise linear regression where each breakpoint (estimated from the data) defines the
“region of application” for a particular (very simple) linear equation.

Basis Functions

Specifically, MARSplines uses two-sided truncated functions of the form (as shown in
Figure 8.6) as basis functions for linear or nonlinear expansion, which approximates the
relationships between the response and predictor variables.

Figure 8.6 shows a simple example of two basis functions (t – x)þ and (x – t)þ (adapted
from Hastie et al., 2001, Figure 9.9). Parameter t is the knot of the basis functions (defining
the “pieces” of the piecewise linear regression); these knots (t parameters) are also deter-
mined from the data. The plus (þ) signs next to the terms (t – x) and (x – t) simply denote
that only positive results of the respective equations are considered; otherwise, the respec-
tive functions evaluate to zero. This can also be seen in the illustration.

The MARSplines Model

The basis functions together with the model parameters (estimated via least squares esti-
mation) are combined to produce the predictions given the inputs. The general MARSplines
model equation (see Hastie et al., 2001, equation 9.19) is given as

y ¼ f ðXÞ ¼ bo þ
XM
m¼1

bmhmðXÞ

where the summation is over the M nonconstant terms in the model. To summarize, y is
predicted as a function of the predictor variables X (and their interactions); this function

FIGURE 8.6 MARSplines basis functions
for linear and nonlinear analysis.
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consists of an intercept parameter (bo) and the weighted (by bm) sum of one or more basis
functions hm(X), of the kind illustrated earlier. You can also think of this model as “select-
ing” a weighted sum of basis functions from the set of (a large number of) basis functions
that span all values of each predictor (i.e., that set would consist of one basis function
and parameter t, for each distinct value for each predictor variable). The MARSplines algo-
rithm then searches over the space of all inputs and predictor values (knot locations t) as
well as interactions between variables. During this search, an increasingly larger number
of basis functions is added to the model (selected from the set of possible basis functions),
to maximize an overall least squares goodness-of-fit criterion. As a result of these opera-
tions, MARSplines automatically determines the most important independent variables
as well as the most significant interactions among them. The details of this algorithm are
further described in Hastie et al. (2001).

Categorical Predictors

MARSplines is well suited for tasks involving categorical predictors variables. Different
basis functions are computed for each distinct value for each predictor, and the usual tech-
niques for handling categorical variables are applied. Therefore, categorical variables (with
class codes rather than continuous or ordered data values) can be accommodated by this
algorithm without requiring any further modifications.

Multiple Dependent (Outcome) Variables

The MARSplines algorithm can be applied to multiple dependent (outcome) variables,
whether continuous or categorical. When the dependent variables are continuous, the
algorithm will treat the task as regression; otherwise, as a classification problem. When
the outputs are multiple, the algorithm will determine a common set of basis functions in
the predictors but estimate different coefficients for each dependent variable. This method
of treating multiple outcome variables is not unlike some neural network architectures,
where multiple outcome variables can be predicted from common neurons and hidden
layers; in the case of MARSplines, multiple outcome variables are predicted from common
basis functions, with different coefficients.

MARSplines and Classification Problems

Because MARSplines can handle multiple dependent variables, it is easy to apply the
algorithm to classification problems as well. First, it will code the classes in the categorical
response variable into multiple indicator variables (e.g., 1 ¼ observation belongs to class k,
0 ¼ observation does not belong to class k); then MARSplines will fit a model and compute
predicted (continuous) values or scores; and finally, for prediction, it will assign each case
to the class for which the highest score is predicted (see also Hastie et al., 2001, for a
description of this procedure).
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Model Selection and Pruning

In general, nonparametric models are adaptive and can exhibit a high degree of flexibil-
ity that may ultimately result in overfitting if no measures are taken to counteract it.
Although overfit models can achieve zero error on training data (provided they have a suf-
ficiently large number of parameters), they will almost certainly perform poorly when pre-
sented with new observations or instances (i.e., they do not generalize well to the prediction
of “new” cases). MARSplines tends to overfit the data as well. To combat this problem, it
uses a pruning technique (similar to that in classification trees) to limit the complexity of
the model by reducing the number of its basis functions.

MARSplines as a Predictor (Feature) Selection Method

The selection of and pruning of basis functions in MARSplines makes this method a
very powerful tool for predictor selection. The MARSplines algorithm will pick up only
those basis functions (and those predictor variables) that make a “sizeable” contribution
to the prediction. The Results dialog of the Multivariate Adaptive Regression Splines
(MARSplines) module will clearly identify (highlight) only those variables associated with
basis functions that were retained for the final solution (model).

Applications

MARSplines has become very popular recently for finding predictive models for “diffi-
cult” data mining problems, i.e., when the predictor variables do not exhibit simple and/
or monotone relationships to the dependent variable of interest. Because of the specific
manner in which MARSplines selects predictors (basis functions) for the model, it generally
does well in situations in which regression-tree models are also appropriate, i.e., where
hierarchically organized successive splits on the predictor variables yield accurate pre-
dictions. In fact, this technique is as much a generalization of regression trees as it is of
multiple regression. The “hard” binary splits are replaced by “smooth” basis functions.

A large number of graphs can be computed to evaluate the quality of the fit and to aid with
the interpretation of results. Various code generator options are available for saving estimated
(fully parameterized) models for deployment in C/Cþþ/C#, Visual Basic, or PMML.

The MARSplines Algorithm

Implementing MARSplines involves a two-step procedure that is applied successively
until a desired model is found. In the first step, we build the model (increase its complexity)
by repeatedly adding basis functions until a user-defined maximum level of complexity is
reached. (We start with the simplest—the constant; then we iteratively add the next term,
of all possible, that most reduces training error.) Once we have built a very complex model,
we begin a backward procedure to iteratively remove the least significant basis functions
from the model, i.e., those whose removal leads to the least reduction in the (least-squares)
goodness of fit.
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MARSplines is a local nonparametric method that builds a piecewise linear regression
model; it uses separate regression slopes in distinct intervals of the predictor variable space
(Figure 8.7).

The slope of the piecewise regression line is allowed to change from one interval to
the other as the two “knots” points are crossed; knots mark the end of one region and
beginning of another. Like CART, its structure is found first by overfitting and then
pruning back.

The major advantage of MARSplines is that it automates all those aspects of regression
modeling that are difficult and time consuming to conduct by hand:

• Selecting which predictors to use for building models;
• Transforming variables to account for nonlinear relationships;
• Detecting interactions that are important;
• Self-testing to ensure that the model will work on future data.

The result is a more accurate and more complete model that could be handcrafted—
especially by inexperienced modelers.

Statistical Learning Theory: Support Vector Machines

Support Vector Machines are based on the Statistical Learning Theory concept of decision
planes that define decision boundaries. A decision plane ideally separates objects having
different class memberships, as shown in Figure 8.8. There, the separating line defines a
boundary on the right side of which all objects are GREEN and to the left of which all
objects are RED. Any new object falling to the right is classified as GREEN (or as RED
should it fall to the left of the separating line).

Most classification tasks, however, are not that simple, and often more complex struc-
tures are needed to make an optimal separation, i.e., correctly classify new objects (test
cases) on the basis of the examples that are available (train cases). In Figure 8.9, it is clear
that a full separation of the GREEN and RED objects would require a curve, which is more
complex than a line. Classification tasks based on drawing separating lines to distinguish
between objects of different class memberships are known as hyperplane classifiers. Support
Vector Machines are particularly suited to handle such tasks.

X

knots

Y

FIGURE 8.7 Piecewise regression plot showing locations of the knots.
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Figure 8.10 shows the basic idea behind Support Vector Machines. Here, we see the
original objects (left side of the schematic) mapped, i.e., rearranged, using a set of mathe-
matical functions known as kernels. The process of rearranging the objects is known as
mapping (transformation) to a new space with different dimensions called feature space. Note
that in this new space, the mapped objects (right side of the schematic) are linearly separa-
ble and, thus, instead of constructing the complex curve (left schematic), all we have to do
is find an optimal line that can separate the GREEN and RED objects.

STATISTICA Support Vector Machine (SVM) is a classifier method that performs classi-
fication tasks by constructing hyperplanes in a multidimensional space that separates cases
of different class labels. It supports both regression and classification tasks and can handle
multiple continuous and categorical variables. For categorical variables, a dummy variable

FIGURE 8.8 Linear separation in input data space.

FIGURE 8.9 Nonlinear separation in input data space.
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is created with case values of either 0 or 1. So a categorical dependent variable consisting of
three levels—A, B, C—is represented by a set of three dummy variables:

A: f1 0 0g; B: f0 1 0g; C: f0 0 1g
To construct an optimal hyperplane, SVM employs an iterative training algorithm, mini-

mizing an error function. According to the form of this error function, SVM models can be
classified into four distinct groups:

• Classification SVM Type 1 (also known as C-SVM classification);
• Classification SVM Type 2 (also known as nu-SVM classification);
• Regression SVM Type 1 (also known as epsilon-SVM regression);
• Regression SVM Type 2 (also known as nu-SVM regression).

(See “Support Vector Machines Introduction” in STATISTICA Online help for a complete
description of Type 1 and Type 2 SVM: Install the STATISTICA program on the DVD bound
with this book to access this online help.)

Kernel Functions

Support Vector Machines use kernels that can be linear, polynomial, Radial Basis Function
(RBF), or sigmoid. The RBF is by far the most popular choice of kernel types used, mainly
because of their localized and finite responses across the entire range of the real x-axis.

Sequence, Association, and Link Analyses

Sequence, Association, and Link Analyses compose a group of related techniques for
extracting rules from data sets that can be generally characterized as “marketbaskets”—a
metaphor for a group of items purchased by the customer, either in a single transaction,
or over time in a sequence of transactions. Such products can be goods displayed in a
supermarket, spanning a wide range of items from groceries to electrical appliances, or they
can be insurance packages that customers might be willing to purchase, etc. Customers fill
their basket with only a fraction of what is on display or on offer.

Association Rules

The first step in marketbasket analysis is to infer association rules, which express which
products are frequently purchased together. For example, you might find that purchases of
flashlights also typically coincide with purchases of batteries in the same basket.

Input space Feature space

FIGURE 8.10 Mapping of input data points to feature space, where linear separation is possible.
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Sequence Analysis

Sequence analysis is concerned with the order in which a group of items was purchased.
For instance, buying an extended warranty is more likely to follow (in that specific sequen-
tial order) the purchase of a TV or other expensive electric appliance. Useful sequence
rules, however, are not always obvious, and sequence analysis helps you to extract such
rules no matter how hidden they may be in your transactional data. There is a wide
range of applications for sequence analysis in many areas of industry, including customer
shopping patterns, phone call patterns, insider trading evidence in the stock market,
DNA sequencing, and Web log streams.

Link Analysis

Link analysis provides information on the strength of the association rules or sequence
rules. Once extracted, rules about associations or the sequences of items as they occur in
a transaction database can be extremely useful for numerous applications. Obviously, in
retailing or marketing, knowledge of purchase “patterns” can help with the direct market-
ing of special offers to the “right” or “ready” customers (i.e., those who, according to the
rules, are most likely to purchase specific items given their observed past consumption
patterns). However, transaction databases occur in many areas of business, such as bank-
ing. In fact, the term link analysis is often used when these techniques for extracting sequen-
tial or nonsequential association rules are applied to organize complex “evidence.” It is easy
to see how the “transactions” or “shopping basket” metaphor can be applied to situations
in which individuals engage in certain actions, open accounts, contact other specific indi-
viduals, and so on. Applying the technologies described here to such databases may
quickly extract patterns and associations between individuals and actions and, for example,
reveal the patterns and structure of some clandestine illegal network.

Association Rule Details

An association is an expression of the form

Body --> Head (Support, Confidence)

Following this form, an example of an association rule is

If a customer buys a flashlight, he/she will buy batteries (250, 81%).

More than one dimension can be used to define the Body portion of the association rule.
For example, the rule might be expanded as

If a customer is a plumber and buys a flashlight, he/she will buy batteries (150, 89%).

Figure 8.11 illustrates an example of an association problem.
Support value is computed as the joint probability (relative frequency of co-occurrences)

of the Body and the Head of each association rule. This is expressed by the quantity

Support ¼ #purchases of A

Total Purchases
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Confidence value denotes the conditional probability of the Head of the association rule,
given the Body of the association rule, expressed as

Confidence ¼ #purchases of A then B

Support for A

Lift value measures the confidence of a rule and the expected confidence that the second
product will be purchased depending on the purchase of the first product, expressed as

Lift ¼ #Confidence of A then B

Support for C

The association example shown in Figure 8.11 can be evaluated for each item and
reported in Figure 8.12.

For rule A ) C:

Support ¼ support ({A ) C}) ¼ 50%
Confidence ¼ support ({A ) C})/support ({A}) ¼ 66.6%
Lift ¼ confidence ({A ) C})/support ({C}) ¼ 1.33

This rule has 66.6% confidence (strength) meaning 66.6% of customers who bought
A also bought C. The support value of 50% means that this combination covers 50% of
transactions in the database. The Lift value of 1.33 gives us information about the increase
in probability of the “then” condition, given the “if” condition. It is 33% more likely than
independence suggests, that is, than assuming the purchases are unrelated.

Customer
buys A

Customer
buys B

Customer
buys BOTH

Transaction ID Items Bought

2000

1000

4000

5000

A, B, C

A, C

A, D

B, E, F 

FIGURE 8.11 An association
example.

Transaction ID Items Bought

Frequent Itemset Support
2000
1000
4000
5000

A, B, C
A, C
A, D
B, E, F 

{A}
{B}
{C}
{A, C}

75%
50%
50%
50%

Min. Support 50%

Min. Support 50%
Min. Confidence 50%

FIGURE 8.12 Association re-
sults for an example.
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Sequence Analysis Applications

Temporal order is important in many situations; for instance:

• Time-series databases and sequence databases
• Frequent patterns ) (frequent) sequential patterns
• Applications of sequential pattern mining
• Customer shopping sequences
• Medical treatment
• Natural disasters (e.g., earthquakes)
• Science and engineering processes
• Stocks and markets
• Telephone calling patterns
• Weblog click streams
• DNA sequences
• Gene structures, and many more

Link Analysis—Employing Visualization

In Figure 8.13, the support values for the body and head portions of each association rule
are indicated by the size of each circle. The thickness of each line indicates the relative joint
support of two items, and its color indicates their relative lift. A minimum of two items in
the Item name list view must be selected to produce a web graph.

FIGURE 8.13 Web graph, showing support and lift.
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Independent Components Analysis (ICA)

ICA is designed for signal separation in the process Statistical Signal Processing, which
has a wide range of applications in many areas of technology, ranging from audio and
image processing to biomedical signal processing, telecommunications, and econometrics.
Imagine being in a room with a crowd of people and two speakers giving presentations
at the same time. The crowd is making comments and noises in the background. We are
interested in what the speakers say and not the comments emanating from the crowd.
There are two microphones at different locations, recording the speakers’ voices as well
as the noise coming from the crowd. Our task is to separate the voice of each speaker
while ignoring the background noise (Figure 8.14).

ICA can be used as a method of blind source separation, meaning that it can separate
independent signals from linear mixtures with virtually no prior knowledge of the signals.
An example is decomposition of electro or magneto-encephalographic signals. In computa-
tional neuroscience, ICA has been used for feature extraction, where it seems to mimic
the basic cortical processing of visual and auditory information. New application areas
are being discovered at an increasing pace.

STATISTICA Fast Independent Component Analysis (FICA)

FICA uses state-of-the-art methods for applying the Independent Component Analy-
sis algorithm to virtually any practical problem requiring separation of mixed signals
into their original components. These methods include Simultaneous Extraction and
Deflation techniques. Other features supported in the program include data preproces-
sing and case selection. The program also supports the implementation of the ICA
methods to either new analyses (i.e., model creation) or the deployment of existing
models that have been previously prepared and saved. Thus, while you can use the
ICA module for creating new models, you can also rerun existing models for deploy-
ment and further analysis.

Speaker 1

Speaker 2

Crowd

ICA

Speaker 1
Recovered

Speaker 2
Recovered

FIGURE 8.14 How Independent Component Analysis is used.
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A large number of graphs and spreadsheets can be computed to evaluate the quality
of the FICA models to help interpret results and conclusions. Various code generator
options are available for saving estimated (fully parameterized) models for deployment in
C/Cþþ/C#, Visual Basic, or PMML.

Note: Many of the preceding paragraphs on advanced algorithms were adapted from
the online help of STATISTICA; StatSoft, Inc. (2008). STATISTICA (data analysis software
system), version 8.0. www.statsoft.com.

Kohonen Networks

A form of neural network in which there are no known dependent variables was pro-
posed by Kohonen (1982) for use in unsupervised clustering. The network is trained by
assigning cluster centers to a radial layer by iteratively submitting training patterns to the
network and adjusting the winning (nearest) radial unit center and its neighbors toward
the training pattern (Kohonen, 1982; Fausett, 1994; Haykin, 1994; Patterson, 1996). The
resulting operation causes data points to “self-organize” into clusters. A short-hand acro-
nym for Kohonen networks is a self-organizing feature map (SOFM).

Characteristics of a Kohonen Network

A Kohonen network has the following characteristics:

• Competition. For each input pattern, the neurons compete with one another.
• Cooperation. The winning neuron determines the spatial location of a topological

neighborhood of excited neurons, thereby providing the basis for cooperation among
the neurons.

• Synaptic Adaptation. The excited neurons adjust their synaptic weights to enhance their
responsiveness to a similar input pattern.

In STATISTICA, a Kohonen network—self-organizing feature maps—can be obtained by
selecting the Graphs (Kohonen) tab of the SANN–Results dialog. (Note that for all graph
types, you can include cases in the Train, Test, and/or Validation subsets by selecting the
appropriate check boxes in the Sample group box. For example, to view a histogram of
the outputs for the Validation subset, select Output in the X-axis box, select the Validation
check box in the Sample group, and click the Histograms of X button. Only the predictions
for cases in the validation sample will be plotted.)

Quality Control Data Mining and Root Cause Analysis

Quality control algorithms modified for use in Data Miner Workspaces that are not avail-
able as standalone statistical modules are available in some of the data mining software
available commercially. The Quality Control module of STATISTICA takes full advantage
of the STATISTICA dynamic data transfer/update technology, and this module is precon-
figured to optimally support applications in which the output (charts, tables) needs to
dynamically reflect changes in data streams of practically arbitrary volume. It is also
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designed to work as part of the client/server and distributed processing architectures in the
most demanding manufacturing environments where data streams from multiple channels
need to be processed in real time. It is optimized for online, real-time quality control chart-
ing and processing (e.g., online automated alarms), and other user-defined decision support
(automatic or interactive) operations with dynamic “live” data streams.

IMAGE AND OBJECT DATA MINING: VISUALIZATION AND
3D-MEDICAL AND OTHER SCANNING IMAGING

Image and object data mining is an area of active current research, involving
development of new and modified algorithms that can better deal with the complexities
of three-dimensional object identification. Most searching for a desired image is cur-
rently based on text metadata, such as filename or associated text. But this does not ade-
quately allow identification of objects at accuracy rates of 90% or better, which is what
is really needed in this field. Content-based image retrieval emerged during the 1990s,
focusing on color and texture cues, and although this was easier than text data, it
turned out to be less useful. Visual object analysis offered a better solution, as the last
century drew to a close, because

• Machine learning methods offered greater accuracy in object identification; and
• Large amounts of training data were now available (computer storage space now not

a problem).

We will not discuss this topic thoroughly in this chapter, since this is a developing area,
but we want to make you aware of visualization and the role in our lives it will provide in
the coming decades by providing a list of terms and concepts and also returning to this
topic in Chapter 21, where we list it as a “prospect for future development.”

Following are terms, concepts, places, and names of data mining algorithms associated
with visual object identification:

• CUBIC project at IBM
• Visual imaging projects at UC Santa Barbara, and UC Berkeley
• PROBLEM: “Object Category Recognition”—humans can recognize these, but computers

cannot easily
• Using newer “modified algorithms,” researchers in this field have gone from 16%

recognition in 2004 work to 90% correct “object category recognition” in 2008, with a
selected number of objects, using the following algorithms:

• Nonlinear kernelized SVM (slower but more accurate)
• Boosted trees (works slowly)
• Linear SVM (fast but not accurate)
• Intersection kernels in SVM (gone to 90% correct “object category recognition in

2008”)
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Today, 100 objects can be categorized with the methods listed here, but we need to go to
several levels of magnitude larger for these methods to be fully successful in accurately
recognizing images for such things as national security surveillance and precise medical
identification of conditions when using three-dimensional imaging procedures. But we
believe that shape-based object recognition is the key for the future in this area.

Figure 8.15 offers a schematic of this emerging process.

POSTSCRIPT

By now, you may be very tired of theory and be itching to get your hands on the tools. In
fact, you might do just that by going through one of the tutorials. But you should come back
to this section of the book later to learn more about some common application areas of data
mining. The shape recognition research mentioned earlier is one direction of development
in the general area of pattern recognition. But a more commonly applied form of pattern
recognition is text mining, which we will explore in Chapter 9.
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PREAMBLE

Pattern recognition is the most basic description of what is done in the process of data
mining. Usually, these patterns are stored in structured databases and organized into
records, which are composed of rows and columns of data. The columns are attributes (num-
bers or text strings) associated with a table (entity), accessed by links between attributes
among the tables (relations). This entity-relational structure of data is called a relational data-
base. Large relational databases store huge quantities of data in data warehouses in large com-
panies. Despite the rather large amount of business information that exists in data
warehouses, the vast majority of business data is stored in documents that are virtually
unstructured. According to a study by Merrill Lynch and Gartner, 85–90% of all corporate
data are stored in some sort of unstructured form (i.e., as text) (McKnight, 2005). This is
where text mining fits into the picture: it is the process of discovering new, previously
unknown, potentially useful information from a variety of unstructured data sources includ-
ing business documents, customer comments, web pages, and XML files.
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THE DEVELOPMENT OF TEXT MINING

Text mining (also known as text data mining and knowledge discovery in textual data-
bases) is the process of deriving novel information from a collection of texts (also
known as a corpus). By “novel information,” we mean associations, hypotheses, or
trends that are not explicitly present in the text sources being analyzed. Though rightly
considered a part of the general field of data mining, text mining differs significantly in
many details due to the patterns being extracted from natural language text rather than
from structured databases of facts (Yang and Lee, 2005). Databases are designed for
programs to process automatically; text is written for people to read. We do not have
programs that can “read” and “understand” text (at least not in the manner human
beings do). Furthermore, despite the phenomenal advances achieved in the field of nat-
ural language processing (Manning and Schutze, 1999), we will not have such pro-
grams for the foreseeable future. Many researchers think it will require a full
simulation of how the mind works before we can write programs that read and under-
stand the way people do (Hearst, 2003).

A concise summary of what text mining does was provided by Delen and Crossland
(2008):

So what does text mining do? On the most basic level, it numericalizes an unstructured text document and
then, using data mining tools and techniques, extracts patterns from them. (p. 1707)

Thus, text mining can be applied to many applications in a variety of fields, including

1. Marketing
2. National security and corporate security applications
3. Medical and biomedical
4. Legal—attorneys—law cases
5. Corporate finance—for business intelligence
6. Patent analysis—for the U.S. Patent & Trademark Office
7. Public relations—comparing web pages of comparable businesses, colleges, or

organizations

Current sources of text mining software—both commercial and open source freeware
include

1. SAS-Text Mining
2. SPSS-Text Mining and Text Analysis for Surveys
3. STATISTICA Text Miner
4. GATE—Natural Language Open Source
5. RapidMiner—with its Word Vector Tool plug-in
6. R-Language programming text mining—Open Source
7. Practical text mining with Perl—Open Source
8. ODM—Oracle Data Mining
9. Megaputer’s “TextAnalyst”
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A comprehensive discussion of text mining with Perl just came out in mid-2008 in
the form of a professional book that discusses text mining from a practical, nonmathe-
matical standpoint. It also includes many kinds of sample texts and programs that are
in the public domain; thus, you can download and use them free (Bilisoly, 2008).
The author, Bilisoly, is a professor at Central Connecticut State University, where he
developed and teaches a graduate-level course in text mining for that school’s new
data mining program. He presents text mining in such an easy-to-understand format
that we will paraphrase and emphasize some of the introductory comments in the
book. The only thing that Bilisoly requires of his students is to be willing to learn to
write some very simple programs using Perl, which is a programming language specif-
ically designed to work with text. As Bilisoly points out, there are minimally three
broad themes in text mining:

• “Text mining is built upon counting and text pattern matching;
• Language, although complex, can be studied by considering its simpler properties; and
• Combining computer and human strengths is a powerful way to study language”

(pp. xviii–xix of Preface, Bilisoly, 2008).

Text pattern matching can mean identifying a pattern of letters in a document, or it
may refer to the rejection of words that contain a string of letters of interest but are not
related. The process of counting the number of matches to a text pattern occurs repeat-
edly in text mining, such that you can compare two different documents by counting
how many times different words occur in each document. Additionally, even the lan-
guage (regardless of its complexity) can be checked against large language collections,
called corpora. After the computer has found the examples of usage, analysts can attri-
bute meaning to these discovered patterns. This blend of human and computer discov-
ery constitutes the third theme of text mining referred to in the preceding list.
Specifically, analysts choose the best way to analyze the text further, by either combin-
ing groups of words that appear to mean the same thing or directing the computer to
do it automatically in a second iteration of the process, and then analyze the results. As
Bilisoly points out, “this back and forth process is repeated as many times as neces-
sary.” This is very similar to the Design of Experiment (DOE) process followed for
industrial process control and quality control. Following a given DOE, you may pro-
ceed through several iterations, harvesting preliminary insights from previous itera-
tions of the experiment, then adjusting input parameters and running the experiment
again, until the results show an F-value significant at the 95% level of confidence.
The process followed in text mining is very similar to this sequence of analyses.

A PRACTICAL EXAMPLE: NTSB

Next, we will consider an example concerning the National Transportation Safety Board,
or NTSB, a U.S. governmental agency, as a lead-in to one of the tutorials in the accompany-
ing DVD of this book, called “Tutorial—NTSB Text Mining.”
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We will use the software package STATISTICA Text Miner for this practical example so
that we have something tangible to “sink our learning teeth” into and thus learn the con-
cepts as rapidly as possible. Many of the graphic illustrations presented here and some of
the associated text discussions were originally written by guest author Kiron Mathew, Key-
Bank, Cleveland, Ohio, formerly of StatSoft Data Mining Consulting Group.

Basic STATISTICA Text Miner features include

• Design as a general open-architecture tool for mining unstructured information;
• Options for accessing documents in different formats in many different languages;
• Support for full web-crawling capabilities to extract documents from the Internet at

various link levels defined by the user;
• Ability to process actual text stored in documents, as well as access text though links to

URLs;
• Numerous statistical and data mining analyses that can be applied to the processed

textual information, leading to discovery of new insights, hypotheses, and information.

The options mentioned here are illustrated in Figure 9.1.
The Quick tab shown in Figure 9.1 permits you to load text from a file in a folder saved

on your computer, such as a Word .doc or .pdf file, or from a variable column (where text
has been cut and pasted from the Clipboard). Additionally, the Load Documents button
allows you to load in documents from other sources.

The Advanced tab, shown in Figure 9.2, permits you to set the language and specify the
number of words to include in the string viewed in the text document.

In addition to the list of available languages shown in the figure, there are several more
below Norwegian at the bottom of the list, when you pull down the slider bar on the right.
The Filters tab, shown in Figure 9.3, allows you to make various selections on length of
words, e.g., by minimum and maximum size of word and other parameters.

When you use Text Miner for the first time, it might be wise to allow the default settings
shown in Figure 9.3. After you get some initial results, you can experiment with changing
these parameters to reduce the number of words, for example, in a particular size category
that you do not deem important to your project.

FIGURE 9.1 The entry screen in the
STATISTICA Text Miner interface.
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The Characters tab, shown in Figure 9.4, allows you to set the characters that can (1) be in
a word, (2) begin a word, or (3) end a word.

You can edit the characters on this tab to meet your needs, if necessary. When you exam-
ine these characters, you will notice that the default set shown in Figure 9.4 includes most if
not all of the alphanumeric characters used in English-speaking countries.

The Index tab, shown in Figure 9.5, permits you to make an “inclusion file of words” that
you are interested in and use only those for text mining analysis.

FIGURE 9.2 The Advanced tab of
the entry screen.

FIGURE 9.3 The Filter tab of the entry screen.
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Additionally, you can make a “stop-word file” and set it to exclude these words. Any
words that would not have significant meaning for your task can be added to this list. This
capability can reduce the number of words that the text mining process will look at, making
the results of a lesser number of different words easier to work with in the data mining
analysis and other analyses, like graphical analysis, that follow.

The Synonyms and Phrases tab, shown in Figure 9.6, permits you to combine synonyms
and also to make phrases of “selected multiwords” that are of special interest in your cur-
rent project.

The Delimiters tab, shown in Figure 9.7, allows you to have the Text Miner look only at
words that are between “starting” and “ending” phrases, if this is important to your project.

The Project tab, shown in Figure 9.8, allows you to do the following:

1. Create a new project.
2. Use an existing project.

FIGURE 9.4 The Characters tab of
the entry screen.

FIGURE 9.5 The Index tab of the
entry screen.
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FIGURE 9.6 Synonyms and Phrases
tab of the entry screen.

FIGURE 9.7 The Delimiters tab of
the entry screen.

FIGURE 9.8 The Project tab of the
entry screen.
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3. Select your database file from a specific computer folder/file pathway.
4. With an existing project, (a) update the project with new documents, (b) deploy new

documents, or (c) go to the Results dialog without adding documents and select the
kinds of results that you want to examine.

Finally, the Defaults tab, shown in Figure 9.9, allows you to do the following:

1. Save or retrieve specifications like language, filters, or conditions from a previously
saved file called an .ini file (where a set of previously used specifications is saved)
as a “template” that you can apply to a new set of documents or however you need
this information.

2. Set or reset default specifications.

If you don’t have the text documents needed for your project already saved as Word.doc
files or other files, an alternative method is provided in STATISTICA Text Miner to get text
information and even “crawl” the Web to whatever level of links necessary within web
pages to gather the information needed. This is done through the Web Crawling, Document
Retrieval dialog shown in Figure 9.10.

The File Filter pull-down menu in Figure 9.10 shows Word Document highlighted
by default. Other choices include Web Pages (e.g., .html or .htm); All Document Files
(.txt, .doc, .rtf, .pdf, etc.); Text (.txt); Rich Text Format (.rtf); Mail files; and PDF.

Now, let’s look at other information you can get from the Web Crawling dialog. Note
that the level of depth in Figure 9.11 (in the upper-left corner) has been set to 3. This means
that when you run this dialog, it will “crawl the web” to three levels of links; it will follow a
path directed by a link to a link to a link (three linkage levels).

Additional web page addresses are entered in the list and shown in Figure 9.12.
In the dialog shown in Figure 9.12, you can see that seven different web site URLs were

typed into the Target (URL or Folder) text box, and after each, the Add to Crawl button was
clicked to add the URL to the list.

FIGURE 9.9 The Defaults tab of the
entry screen.
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FIGURE 9.10 The Web Crawling, Document Retrieval dialog.

FIGURE 9.11 Additional information available in the Web Crawling, Document Retrieval dialog.



The next option to set is File Filter, shown in Figure 9.13 as set to PDF files only. Now
you have just one more thing to do, in case you want to select something other than HTML
pages in your search.

The next step is to click on one of the three start buttons, according to your choice of
where to put the results. You can then start the crawling process in several ways:

• Click the Start button to transfer the selected files and subdirectories into the left pane,
which provides some visual feedback as the files are identified, allowing you to stop this
process any time. Next, select the (references to) files or URLs you want to retain, transfer
them (by clicking the >> button) to the right pane, and then click the Create a
Spreadsheet from the Document List button to create the spreadsheet.

• Click the Start and Put the Result Directly to a Spreadsheet button; this option is
recommended to retrieve very large numbers of file or URL references (the scrollable
pane user interface becomes inefficient when several tens of thousands of references are
retrieved!).

FIGURE 9.12 The addition of more web page addresses to the dialog.
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• Click the Start and Put the Result Directly to Local Folder button to transfer the actual
documents or web pages (.htm or .html documents) as well as the respective
subdirectory structure to the location specified in the Folder Option box. This method is
recommended to create a permanent repository of the actual documents, for example, for
later repeated processing with STATISTICA Text Mining and Document Retrieval.

Documents will show in the left panel as the crawl process proceeds; you can select the
ones you want.

Selected folders and documents are displayed as a directory tree in the left pane of the
Web Crawling, Document Retrieval dialog. You can select and transfer them to the Docu-
ment list. You can also add the local file to this list by clicking the Add File button. From
the links and file references in the Document list, you can make a spreadsheet or load their
contents into a local directory structure (as specified in the Content Folder field).

You can transfer items (file references or Web URLs) in the left pane of this dialog by
selecting (highlighting) the desired items and then clicking the >> button to transfer them
to the right pane (the Document list).

FIGURE 9.13 Setting File Filter in the Web Crawling, Document Retrieval dialog.
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(Note: The preceding information was adapted from the STATISTICA Version 8 On-Line
Help documentation.)

To see a more complete description of all the parameter settings that were used for the
NTSB-Aircraft Accident Example, go to the Tutorial titled “NTSB Aircraft Accident” that
is on the DVD that accompanies this book. We have left out many details of this tutorial
in this chapter, but we need to go on to see the overall concept at this point.

Figure 9.14 shows the overall process of text mining with STATISTICA Text Miner.

Goals of Text Mining of NTSB Accident Reports

The goals of text mining include

• Identification of sets of related words in documents (e.g., accident reports of the NTSB);
• Identification of clusters of similar reports;
• Identification of clusters associated with fatal accidents;
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FIGURE 9.14 The text mining process flow.
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• Exploratory analysis using structured (fields in a record) and unstructured data (textual
information) to discover hidden patterns that could provide some useful insights related
to causes of fatal accidents;

• Identification of frequent item sets (clusters of words) related to key words.

Figure 9.15 shows how you can use Principal Component Analysis (PCA) to identify sig-
nificant groups of words associated with fatal accidents.

In Figure 9.15, you can see that PCA creates major axes of variation (components), in
which the first component accounts for the largest amount of variation in the data.
Subsequent components account for decreasing amounts of the variation in the data. This
approach identifies three groups of words (circled in Figure 9.15) that are distinguished
from the large majority of words plotted on the left. You can drill down into the words
of these groupings to gain insights about which factors are associated with fatal accidents.

PCA Plots – Comp 1 X Comp 2 PCA Plots – Comp 1 X Comp 2 

The words appearing close to each other are related.
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FIGURE 9.15 Use of PCA to show relationships between words.
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In the top group, it appears that the words are all related to similar things that may be
important, indicating things like “loss of engine power,” “loss of forward force,” maybe
even “loss of fuel.” In the middle group, the words terrain, result, land, contribute, factor, inad-
equate, and failure (plus others) seem to be related to concepts such as “terrain approach-
ing,” “need to land,” “factors on inadequate terrain contributing to failure to make a
forced landing,” and other similar concepts. In the bottom group, words like runway, con-
trol, maintain, wind, conditions, and others appear to be associated with concepts like “need
to maintain control,” “runway conditions,” and “wind conditions.”

Figure 9.16 illustrates how you can gain some insight into relationships between clusters
by plotting component #1 against component #3.

From the expanded scatterplot shown in Figure 9.17, you can gain additional insight into
aircraft accidents.

A group of words (from the black box recorders and recordings between the pilots of the
aircraft and the control tower) include weather (conditions), low, altitude, clearance, night,

PCA Plots – Comp 1 X Comp 3 PCA Plots – Comp 1 X Comp 3 
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FIGURE 9.16 Scatterplot of component #1 against component #3 for a group of words (circled).
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instrument, meteorological (conditions), dark, ceiling, mountain, adverse (adverse something),
fog, maneuvering, plan (perhaps ability to “follow through on original flight plan”), and tree.

The situation implied by these words sounds ominous. Concepts related to these words
might include fog, bad weather, low altitude, statements of “don’t have clearance to land” or
“don’t have clearance” to get over a mountain, etc., and maybe even “tree(s) looming ahead.”

Another way to look at the word data is to compare frequencies of words as new vari-
ables to analyze. You can create a cross-tabulation of word clusters with the level of injury
in the accidents, as shown in Figure 9.18.

You can use these clustered words to drill down into the messages in which they were
imbedded (see Figure 9.19).

You then can conclude from cluster 3 that some fatal accidents were related to pilot fail-
ure to maintain airspeed, contributing to a stall. You can do the same thing for cluster #14,
as shown in Figure 9.20.

FIGURE 9.17 Expanded scatterplot of a group of words in the PCA plot.
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You can conclude from cluster #14 that some fatal accidents were related to “pilot –
visual flight rules (VFR) – instrument – weather conditions – low ceiling.”

You can drill down even further by analyzing a given word. Figure 9.21 shows some
additional insights gained by analyzing the word instrument.

You can expand this analysis by drawing on the text in the NTSB tutorial by guest author
Kiron Mathew.

Drilling into Words of Interest

You have seen that the word instrument was one of the important words that appeared or
was repeated in most of the accident reports related to cluster #14. By reading the prototype
descriptions (see earlier), and by reviewing the scatterplots of terms in the semantic space
shown earlier, you can clearly see that instrument here is used to describe “instrument mete-
orological conditions,” or, in laymen’s terms, “bad weather” where pilots had to fly in

Crosstab – Clusters X Injury Level Crosstab – Clusters X Injury Level 

Clusters that relate
to “fatal” accidents 
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FIGURE 9.18 Cross-tabulation of word clusters with injury level, showing clusters related to fatal accidents.
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clouds, with low cloud ceilings, poor general visibility, and so on. Flying in those conditions
is a generally more demanding task, requiring special pilot training and certification (the
so-called Instrument Rating).

As a next logical step, you can try to drill into such words of interest to further analyze
and extract useful information.

Means with Error Plots

To analyze the words further, you can use the Means with Error Plots option (available
on the Graphs pull-down menu, found along the top toolbar in STATISTICA) to further
substantiate the fact that the occurrence of word instrument related to injury level (see
Figure 9.22).

In Figure 9.23, you can see another aspect in the relationship between the word instru-
ment and the month of occurrence.

Cluster 3 – Fatal Accidents Cluster 3 – Fatal Accidents 

Extracted top 5 stories from each cluster based on the distance
to the cluster center. We can say by reading the top stories that
cluster 3 relates to “pilots failure – maintain - airspeed –
contributing factor - inadvertent stall”  
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FIGURE 9.19 Phrases in cluster #3 in which embedded words were related to fatal injuries.
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Feature Selection Tool

The Feature Selection and Variable Screening tool is extremely useful for reducing the
dimensionality of analytic problems; in this case, it was used to select the few specific
words (out of the remaining 198 words) that are likely candidates related to the term instru-
ment. This tool is located in the Data Miner pull-down menu in the top toolbar or in the
Data Mining Workspace. In the workspace, you can connect a data input node with the Fea-
ture Selection and Variable Screening (FS) node. You should set the node to output all avail-
able reports by right-clicking on the FS node and selecting All Results.

After the node is run, right-click on the Results icon and select Importance Plot. This plot
will appear as shown in Figure 9.24.

Figure 9.24 displays the top 15 important words that are related to the word instrument
ranked according to their importance. From this histogram, you can tell that when the word
instrument was mentioned, reviewers also used words like meteorological, condition, in-flight,
continue, Visual Flight Rules (VFR), land, collision, etc. Now you can quickly focus on the few

Cluster 14 – Fatal Accidents Cluster 14 – Fatal Accidents 

Cluster 14 relates to “pilot - visual flight rules (VFR) –
instrument – weather conditions – low ceiling”Copyright © 2004
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FIGURE 9.20 Phrases in cluster #14 in which embedded words were related to fatal injuries.
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specific words that are likely to co-occur with the word instrument, which helps you to
further understand the probable causes of instrument-related accidents.

You can gain additional insight into other words related to instrument by right-clicking
on the Results icon and selecting Tree Graph for Instrument (shown in Figure 9.25).

The decision tree in Figure 9.25 displays some rules followed in deciding where to split
each variable’s range to make the tree. You see that weather conditions and meteorological
conditions were of great importance in aircraft accidents, at least in the data set used for
this example.

A Conclusion: Losing Control of the Aircraft in Bad Weather Is Often Fatal

The analyses described up to this point clearly identified one of the main causes of fatal
accidents among general aviation (GA) aircraft: loss of control in bad weather. Interestingly,
the same conclusion is regularly summarized in the annual NALL reports published by the
AOPA Air Safety Foundation (see http://www.aopa.org/asf/publications/).

Drilling into word “Instrument” Drilling into word “Instrument” 
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FIGURE 9.21 Analysis to drill down to the word “instrument.”
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FIGURE 9.22 Mean with error bars for the word instrument related to injury level.

FIGURE 9.23 Relationship between the mean occurrence of the word instrument and the month of occurrence.



FIGURE 9.24 The relative importance of significant predictors output by the Feature Selection and Variable
Screening node.

FIGURE 9.25 A simple decision tree for the most important variables.



However, in the case of the analyses presented here, we arrived at this conclusion
without the benefit of much domain knowledge, utilizing only the analytic tools available
in the software. Hence, this example provides an excellent “proxy” for situations in which
a corpus of text with unknown structure needs to be analyzed to derive meaningful
relations to the dimensions of interest in the respective domain.

Summary

The preceding description is not a comprehensive overview of text mining, but is a fast
overview, showing straightforward ways to make serious progress on an unstructured
problem.

TEXT MINING CONCEPTS USED IN
CONDUCTING TEXT MINING STUDIES

The following concepts in text mining are used in conducting text mining studies, and
some are very useful in analyzing the results obtained from text mining software:

• Preprocessing of text material
• Categorization of text material
• Clustering in text analysis
• Information extraction from text
• Probabilistic models like Hidden Markov
• Hybrid methods for text analysis
• Bootstrapping
• Link analysis—visualization of text material
• Rule structure
• Rule constraints
• Pattern matching
• Concept guards
• Centrality

The preceding concepts are not discussed in this chapter, but you can go to the “Text
Mining Terminology” section of the Glossary to get definitions, and you will also find many
of these terms used in the tutorials, which are located in three places: (1) in Part III of this
book, (2) on the DVD that accompanies this book, and (3) in the new tutorials and “updated
discussions,” which will be periodically put up on this book’s web page at Elsevier.

POSTSCRIPT

In Chapters 1–9, we introduced you to the history and basic theory underlying data
mining and exposed you to the spectrum of methods and techniques used to practice
it. In Chapter 10, we will introduce you to the interfaces of three of the most popular
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data mining tool packages in use today: SAS-Enterprise Miner, SPSS Clementine, and
STATISTICA Data Miner. In Chapters 11–17, we will introduce you to some of the common
application types of data mining and some of the principal areas in which they are
practiced. In these chapters, we will use one or another of the three data mining packages
introduced in Chapter 10 to illustrate the concepts and methods of analysis used commonly
in these application areas.
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PREAMBLE

In this chapter, we will introduce you to the interfaces of three of the common
data mining tools on the market today: SPSS Clementine, SAS-Enterprise Miner, and
STATISTICA Data Miner. The first tool we’ll describe is arguably the most popular
data mining tool package on the market today (and the oldest): SPSS Clementine.

SPSS CLEMENTINE OVERVIEW

SPSS Clementine is the most mature among the major data mining packages on the mar-
ket today. Since 1993, many thousands of data miners have used Clementine to create very
powerful models for business. It was the first data mining package to use the graphical pro-
gramming user interface. It enables you to quickly develop predictive models and deploy
them in business processes to improve decision making.
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Overall Organization of Clementine Components

After purchasing Clementine from Integral Solutions in 1999, SPSS teamed up with
Daimler-Benz and NCR Corporation to produce the Cross Industry Standard Process for
Data Mining (CRISP-DM). One of the authors of this book contributed to that project. The
Clementine package was integrated with CRISP-DM to help guide the modeling process
flow. Today, Clementine can be purchased in standalone client mode or with a number
of modules, including a client/server version. The modules of version 11.1 include the fol-
lowing components:

The Basic Module

• Classification and Regression Tree node (CART or C&RT)
• Quest node for binary classification
• CHAID node for creating decision trees based on the Chi-square statistic
• K-Means node for clustering
• Generalized Rule Induction node for creating rule sets
• Factor/PCA node for data reduction
• Linear Regression node for ordinary linear regression

Classification Module

• Binary Classifier node
• Neural Net node for classification
• C5.0 node for classification
• Decision List node for creating rule sets of a group of segments
• Time-Series node to create Autoregressive Integrated Moving Average (ARIMA)

models
• Feature Selection node for ranking input variables by importance in predicting the target

variable
• Logistic Regression node for creating logit models
• Discriminant Analysis node for creating parametric versions of logistic regression

models
• Generalized Linear Model (GLM) for GLM modeling
• Self-Learning Response Model node for retraining a model on as few as one

new case

Segmentation Module

• Kohonen net for unsupervised clustering using a form of a neural net
• TwoStep node for clustering in two steps in tandem to reduce the number of cases to

subclusters and then clustering the subclusters

Association Module

• Apriori node optimized for categorical rule induction
• CARMA node for unsupervised association of cases
• Sequence node to discover association rules in sequential or time-series data
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The following are optional add-on modules for Clementine:

• Solution Publisher option for export of models for scoring outside the Clementine
environment

• Text Mining option for mining unstructured data
• Web Mining option
• DatabaseModeling andOptimization option for integrationwith other datamining packages

For complete information, see the Clementine home page (http://www.spss.com/
clementine/).

Organization of the Clementine Interface

The Clementine interface employs an intuitive visual programming interface to permit
you to draw logical data flows the way you think of them. This approach to visual pro-
gramming was pioneered by the I-Think analytical tool in the 1980s, which allowed scien-
tists to build a data flow as if on a blackboard. The Clementine data flow is called a stream.

Clementine Interface Overview

Figure 10.1 shows the Clementine stream used in the CRM tutorial in this book.

FIGURE 10.1 The Clementine user interface.
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Stream Canvas

The stream canvas is the largest pane in the interface. You can work on multiple streams
in the same canvas (as shown in Figure 10.1), or multiple stream files, listed in the Streams
tab in the upper-right Managers window.

Palettes

The palettes are groups of processing nodes listed across the bottom of the screen. The
palettes include Favorites, Sources, Record Ops (operations), Field Ops, Graphs, Modeling,
Output, and Export. When you click on one of the palette names, the list of nodes in that
palette is displayed below.

Managers

The upper right window holds three managers: Streams, Outputs, and Models. You can
switch the display of the manager window to show any of these items. The Streams tab will
display the active streams, which you can choose to work on in a given session. The Output
tab will show all graphs and tables output during a session. The Models tab will show all
the trained models you have created in the session.

Toolbars

At the top of the Clementine window, you can see a list of icons, which are shortcuts to
common operations.

Mouse Operations

The Clementine user interface is designed for use with a three-button mouse. If you don’t
have one, you can simulate the third button by holding down the Alt key when clicking the
mouse and dragging items around the canvas. You use the mouse as follows:

• Single-click to show context-sensitive menus for a node.
• Double-click to add nodes to the canvas or edit existing nodes.
• Middle-click to connect nodes with arrows to show the pathway of data flow.

There are two other mouse operations you can perform, which will save you some time
in modifying the stream architecture. The first operation is the delete function. If you want
to delete an arrow connector between two nodes, place the mouse pointer in the line and
right-click. A small box labeled Delete Connection will pop up. Left-click on the pop-up
box, and the arrow will disappear.

The second additional mouse operation adds a node between two other nodes. To add
nodes this way, make sure that the space between the nodes is large enough to fit another
node. (Note: You can just drag one node or the other to increase the space between nodes,
and the arrow will stretch or shrink.) To see how this works, paste a type node onto the
modeling canvas of Figure 10.1 just above the middle of the arrow from the top SuperNode.
Then place your mouse pointer on the middle of the arrow line, and press and hold the
middle mouse button to drag the arrow line to connect the new node. After it is connected,
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you can left-click on the new node and drag it and the connector arrow back into a straight
configuration. Figure 10.2 shows the modeling canvas after the connection of the new node
but before straightening out the arrow line.

Setting the Default Directory

The Clementine system looks for files in the default directory (in the installation folder).
You can save a lot of time if you change the default directory to the one you are working in.
To do this, first click on File and then Set Directory, browse to the appropriate directory,
and then click Set. From then on, Clementine will assume that files you load or save to
are in the directory you chose.

SuperNodes

Clementine includes the option to create SuperNodes, which are groups of nodes indi-
cated by a SuperNode icon (a large blue star). We could have combined the three derive
nodes to create a SuperNode in the training stream and then used that SuperNode in the
testing stream, as shown in Figure 10.3.

FIGURE 10.2 Modeling canvas after adding a type node after the top SuperNode icon.
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Compare Figure 10.1 with Figure 10.3. You can see that the three derived nodes in
Figure 10.1 are replaced by the SuperNode icon in Figure 10.2. In the form of the
stream shown in Figure 10.3, the three derive nodes function exactly as they did in
the stream shown in Figure 10.1.

Execution of Streams

In Clementine, you have a number of options for executing streams:

• Execute the entire stream: Right-click on a source node and select the option Execute
from Here.

• Execute any part of the stream that begins with a source node and ends with an output
node: Right-click on the output node and select Execute.

• Execute from any point in the stream: Right-click and select Execute. This operation
executes all operations from that point to the output nodes.

• Execute a stream from the toolbar: Click a node in a stream and then click on the small
triangle on the toolbar at the top of the modeling canvas.

• Execute a stream from the Tools menu: Click on a node in a stream and choose Execute
from the Tools menu.

For additional help on using the interface or any of the nodes, click on the Help menu.

FIGURE 10.3 Use the SuperNode option in the modeling canvas.
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SAS-ENTERPRISE MINER (SAS-EM) OVERVIEW

Note that much of the following text is abstracted from the SAS-EM version 5.3, “Intro-
duction to SAS Enterprise Miner Software,” Copyright by SAS, Cary, North Carolina, USA.

Overall Organization of SAS-EM Version 5.3 Components

As in SPSS Clementine, the SAS-EM data mining process consists of a process flow
diagram, which is a form of a graphical user interface, where you can add nodes, mod-
ify nodes, connect nodes with arrows for the direction of flow of the computations,
modify nodes, and save the entire workspace as a data mining project. Like in SPSS
Clementine, this workspace is designed for use by business analysts (in business, indus-
try, governmental agencies, etc.) with little statistical expertise but who can navigate
through the data mining methodology fairly easily. However, you probably can’t give
it to your assistant or any person randomly picked off the street and expect that person
to make an “intelligent” model or even to get the model to run. At the same time, the
quantitative statistical or engineering expert can go “behind the nodes” to customize
the analytical processes.

The analytical tools include

• Clustering
• Association and sequence discovery
• Marketbasket analysis
• Path analysis
• Self-organizing maps/Kohonen
• Variable selection (analogous to Feature Selection as termed in STATISTICA Data Miner)
• Decision trees and gradient boosting
• Linear and logistic regression
• Two-stage modeling
• Partial least squares
• Support Vector Machines
• Neural networking

Data preparation tools include

• Outlier detection
• Variable transformations
• Variable clustering
• Interactive binning
• Principal components
• Rule building and induction
• Data imputation
• Random sampling
• Partitioning of data sets (into train, test, and validate data sets)
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Advanced visualization tools can be used to create multidimensional histograms and
graphically compare different algorithm models (via gains or lift charts).

Layout of the SAS-Enterprise Miner Window

The Enterprise Miner window, as shown in Figure 10.4, contains the following interface
components:

• Toolbar and toolbar shortcut buttons: The Enterprise Miner Toolbar is a graphic set of
node icons that are organized by SEMMA categories. Above the toolbar is a collection of
toolbar shortcut buttons that are commonly used to build process flow diagrams in the
diagram workspace. Move the mouse pointer over any node or shortcut button to see the
text name. Drag a node into the diagram workspace to use it. The toolbar icon remains in
place and the node in the diagram workspace is ready to be connected and configured
for use in your process flow diagram. Click on a shortcut button to use it.

FIGURE 10.4 Layout of SAS-EM workspace window.
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• Project panel: Use the Project panel to manage and view data sources, diagrams, model
packages, and project users.

• Properties panel: Use the Properties panel to view and edit the settings of data sources,
diagrams, nodes, and model packages.

• Diagram workspace: Use the diagram workspace to build, edit, run, and save process
flow diagrams. This is the place where you graphically build, order, sequence, and
connect the nodes that you use to mine your data and generate reports.

• Property Help panel: The Property Help panel displays a short description of the
property that you select in the Properties panel. Extended help can be found in the Help
Topics selection from the Help main menu or from the Help button on many windows.

• Status bar: The Status bar is a single pane at the bottom of the window that indicates the
execution status of an SAS-Enterprise Miner task.

Various SAS-EM Menus, Dialogs, and Windows Useful During
the Data Mining Process

Clicking Preferences opens the Preferences window, as shown in Figure 10.5. In this win-
dow, you can use the following options to change the user interface (this process is similar
to setting parameters by right-clicking on Nodes in the STATISTICA Data Miner
Workspace):

• Look and Feel: Allows you to select Cross Platform, which uses a standard appearance
scheme that is the same on all platforms, or System, which uses the appearance scheme
that you have chosen for your platform.

FIGURE 10.5 The Preferences win-
dow, where you can set parameters for
SAS-EM.

205SAS-ENTERPRISE MINER (SAS-EM) OVERVIEW

II. THE ALGORITHMS IN DATA MINING AND TEXT MINING



• Property Sheet Tooltips: Controls whether tooltips are displayed on various property
sheets appearing throughout the user interface.

• Tools Palette Tooltips: Controls how much tooltip information you want displayed for
the tool icons in the toolbar.

• Sample Method: Generates a sample that will be used for graphical displays. You can
specify either Top or Random.

• Fetch Size: Specifies the number of observations to download for graphical displays. You
can choose either Default or Max.

• Random Seed: Specifies the value you want to use to randomly sample observations
from your input data.

• Generate C Score Code: Creates C score code when you create a report. The default is
No.

• Generate Java Score Code: Creates Java score code when you create a report. The default
is No. If you select Yes, you must enter a filename for the score code package in the Java
Score Code Package box.

• Java Score Code Package: Identifies the filename of the Java Score Code Package.
• Grid Processing: Enables you to use grid processing when you are running data mining

flows on grid-enabled servers.

Figure 10.6 shows another parameters dialog in which you can specify a data source.
Figure 10.7 provides a closer look at the Properties dialog.
As you can see in the dialog in Figure 10.7, you can set parameters, such as the number

of bins, shown as 2 in the figure, but you also can change this to any number desired. Some
of the other parameters are categorical, so you either select Yes or No.

After setting the parameters, you then need to build the “Data Miner workflow/Work-
space,” selecting the “nodes” needed from the following lists. Figure 10.8 shows a sample
flow diagram in SAS-EM.

After a model is created, then it is run, following which, results can be opened. Various
kinds of output are illustrated next. A basic stats example is shown in Figure 10.9.

A decision tree analysis example is shown in Figure 10.10.
A lift chart is shown in Figure 10.11.
Figure 10.12 shows how decision tree nodes are expressed.
Figure 10.13 shows one type of profit chart.
A comparison of several DM algorithms is shown in Figure 10.14.
A model comparison of Train and Validate data sets, using several algorithms, is shown

in Figure 10.15.

Software Requirements to Run SAS-EM 5.3 Software

To re-create this example, you must have access to SAS Enterprise Miner 5.3 software,
either as a client/server application, or as a complete client on your local machine.

206 10. THE THREE MOST COMMON DATA MINING SOFTWARE TOOLS

II. THE ALGORITHMS IN DATA MINING AND TEXT MINING



FIGURE 10.6 Another parameters dialog in
SAS-EM where properties and their values can
be user-specified.
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FIGURE 10.7 A closer look at the Properties
dialog of SAS-EM where the parameters of various
statistical functions can be user-specified.
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FIGURE 10.8 Flow of an SAS-EM workspace.

209SAS-ENTERPRISE MINER (SAS-EM) OVERVIEW

II. THE ALGORITHMS IN DATA MINING AND TEXT MINING



FIGURE 10.9 Results output from an SAS-EM data mining analysis.
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FIGURE 10.10 Another results
example from an SAS-EM data mining
analysis.

FIGURE 10.11 Graph example of
results output from SAS-EM data
mining analysis; this is a cumulative lift
chart.
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FIGURE 10.13 Profit type chart
from the SAS-EM data mining results
analysis.

FIGURE 10.12 Decision tree out-
put from SAS-EM data mining
analysis.
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FIGURE 10.14 SAS-EM data min-
ing analysis results windows, showing
several types of graphs and tabulated
data.

FIGURE 10.15 Graphical results
from SAS-EM data mining analysis.



STATISTICA DATA MINER, QC-MINER,
AND TEXT MINER OVERVIEW

Much of the following text is taken directly from STATISTICA Data Miner On-Line
Help; StatSoft, Inc. (2008). STATISTICA (data analysis software system), version 8.0.
www.statsoft.com.

Overall Organization and Use of STATISTICA Data Miner

To use the STATISTICA data mining tools, follow the simple steps outlined in the follow-
ing sections.

1. Select the desired option from the Data Miner menu.

The STATISTICA Data Miner menu contains commands to create a Data Miner Work-
space where you can build and maintain complex models, commands to select predefined
templates of Data Miner Workspaces for simple and complex tasks, and commands to select
STATISTICA analysis modules for particular specialized analyses (see Figure 10.16).

You can choose from the following:

• Data Miner – My Procedures/Data Miner – All Procedures. Select either of these
commands to create a new data mining workspace.

• Data Miner – Data Cleaning and Filtering. Select this command to choose from a large
number of nodes for “cleaning” the data, i.e., for filtering out invalid data values,
missing data replacement, user-defined transformations, ranking, standardization, etc.
The very powerful Feature Selection and Variable Screening node enables you to quickly
process very large lists of continuous and categorical predictors for regression and
classification problems, and to select a subset that is most strongly related to the
dependent (outcome) variables of interest. The algorithm for selecting those variables is
not biased in favor of a single method for subsequent analyses (e.g., pick the highest
correlations for later analyses via linear models), and the resulting variable lists are made
available as mappings into the original data source so that no actual data need to be
copied (e.g., from a remote database). For additional details, see also Feature Selection
and Variable Screening.

• Data Miner – General. Select any of these commands to display predefined sets of data
mining templates for typical types of analysis problems. The General Slicer/Dicer Explorer
with Drill-Down command also provides access to a specialized interactive drill-down tool.

• Neural Networks, Independent Components Analysis, Generalized EM & k-Means
Cluster Analysis, Association Rules, General Classification/Regression Tree Models,
General CHAID Models, Interactive Trees (C&RT, CHAID), Boosted Tree Classifiers
and Regression, Random Forests for Regression and Classification, Generalized
Additive Models, MARSplines (Multivariate Adaptive Regression Splines), Machine
Learning (Bayesian, Support Vectors, Nearest Neighbors). These commands will
display the modules for performing the respective types of analyses interactively, using
the standard STATISTICA user interface.
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• Rapid Deployment of Predictive Models (PMML); Goodness of Fit, Classification,
Prediction; Feature Selection and Variable Filtering; Combining Groups (Classes) for
Predictive Data-Mining. These commands will display the respective specialized
modules; Rapid Deployment of Predictive Models will quickly generate predictions from
one or more previously trained models based on information stored in industry-standard
Predictive Model Markup Language (PMML) deployment code. Goodness of Fit will
compute various goodness-of-fit statistics and graphs for regression and classification
problems. Feature Selection and Variable Filtering is used to select variables (columns)
from very large data sets or external databases, e.g., to select subsets of predictors from
hundreds of thousands of predictors, or even more than one million predictors.
Combining Groups (Classes) for Predictive Data-Mining is used to automatically find
and implement a best recoding scheme for the prediction of a continuous or categorical
variable from one or more categorical predictors with many classes (e.g., such as SIC
codes with more than 10,000 distinct values).

FIGURE 10.16 STATISTICA Data
Miner menu, from the Data Miner
pull-down menu.
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Example: Select Data Miner - All Procedures from the Statistics - Data Mining submenu
to display a standard Data Miner Workspace, as shown in Figure 10.17.

2. Select a new data source.

Next, specify the input data for the data mining project. Click the New Data Source
button on the Data Miner Workspace to display a standard data file selection dialog where
you can select either a STATISTICA data file (STATISTICA spreadsheet designated for
input) or a database connection for in-place processing of data in remote databases by
In-Place Database methods.

Example: Select the Boston2.sta data file from the sample data files of STATISTICA, as
shown in Figure 10.18.

FIGURE 10.17 A blank Data Miner Workspace in STATISTICA.

FIGURE 10.18 The Select Spread-
sheet dialog allows you to select a data
set.
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This sample data file contains the data from the Boston housing study (Harrison & Rubin-
feld, 1978; reported in Lim et al., 1997). Click OK to select the variables for the analyses.

3. Select the variables for the analyses.

Next, select the variables for the analyses. STATISTICA Data Miner distinguishes
between categorical and continuous variables, and dependent and predictor (independent
variables). Categorical variables are those that contain information about some discrete
quantity or characteristic describing the observations in the data file (e.g., Gender: Male
or Female); continuous variables are measured on some continuous scale (e.g., Height,
Weight, Cost). Dependent variables are the ones you want to predict; they are also some-
times called outcome variables; predictor (independent) variables are those that you want
to use for the prediction or classification (of categorical outcomes).

You don’t have to select variables into each list; in fact, some types of analyses expect
only a single list of variables (e.g., cluster analysis). You can also make additional selections,
such as specify certain codes for categorical variables, case selection conditions, or case
weights; or you can specify censoring, a learning/testing variable, etc.

Example: Select the variable Price as the categorical dependent variable that is to be pre-
dicted, select variable Cat1 as a categorical predictor, and select variables ORD1 through
ORD12 as continuous predictors, as shown in Figure 10.19.

Now click OK to add this data source to the data mining workspace.

FIGURE 10.19 Variable selection dialog in STATISTICA Data Miner.
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4. Display the Node Browser and select the desired analyses or data
management operation.

Next, click the Node Browser button on the Data Miner Workspace or display the Node
Browser by selecting that command from the Nodes menu; you can also press CtrlþB on
your keyboard to display the Node Browser (see Figure 10.20).

The Node Browser contains all the procedures available for data mining in the Data
Miner Workspace; you can choose from more than 260 procedures for data filtering and
cleaning and for data analysis. By default, all procedures are organized in folders along
with the types of analyses that they perform. However, the Node Browser is fully configur-
able. You can specify multiple Node Browser configurations, and these customizations
will automatically be saved along with the Data Miner Workspace. Thus, you can greatly
simplify routine analyses by fully customizing the default Node Browser configuration
for your work.

To select analyses (analysis nodes), highlight them in the right pane and click the Insert
into Workspace button on the Node Browser toolbar; you can also simply double-click on
the analysis node of interest to insert it into the workspace. The lower pane of the Node
Browser contains a description of the currently highlighted selection.

FIGURE 10.20 The Node Browser dialog allows you to select any or all of the DM Workspace nodes available
for use in the Data Mining Workspace of STATISTICA.

218 10. THE THREE MOST COMMON DATA MINING SOFTWARE TOOLS

II. THE ALGORITHMS IN DATA MINING AND TEXT MINING



Example: Select the nodes for Descriptive Statistics. Then scroll down in the left pane of
the Node Browser and select the folder labeled Classification and Discrimination, and in the
right pane, select Standard Classification Trees with Deployment (see Figure 10.21).

If a data source in the workspace is currently highlighted, it will be connected automati-
cally to the nodes as they are selected (inserted) into the workspace. You can also use the
Connect toolbar button to connect data sources to nodes. To delete an arrow, click on it
and select Delete from the shortcut menu (displayed by right-clicking your mouse), or press
the Del key on your keyboard. You can temporarily disable an arrow by selecting Disable
from the shortcut menu. Arrows that are disabled will not be updated or recomputed.

5. Run (update) the Data Miner project.

Next, run the Data Miner project. All nodes connected to data sources via (nondisabled)
arrows will be updated, and the respective analyses will be produced.

Let us share a note on data cleaning, filtering, and Exploratory Data Analysis (EDA). The
STATISTICA Data Miner project workspace is fully integrated into the STATISTICA data
analysis environment. At any point, you can click on a data source or results workbook
(spreadsheet, report), either in the Data Acquisition area or in any other area (i.e., data
sources created by analyses), to review the respective document. Also, you can use any of
the interactive analyses available in STATISTICA to further explore those documents—for
example, to run simple descriptive statistics or create descriptive graphs to explore the
respective results. These types of EDA techniques are indispensable for data cleaning and
verification. For example, it is useful to always run simple descriptive statistics, computing
the minima and maxima for variables in the analyses, to ensure that data errors (impossible
values) are corrected before they lead to erroneous conclusions. Also, the various options
on the Data menu of the data spreadsheet toolbar are very useful for cleaning and verifying
the data in interactive analyses before submitting them to further analyses.

FIGURE 10.21 Node Browser and Data Miner Workspace in STATISTICA showing how nodes are either
double-clicked on in the Node Browser or “dragged” into the workspace.
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Example: Click the Run button, select Run All Nodes from the Run menu, or press F5.
Detailed results are created by default for each type of analysis in STATISTICA work-

books; double-click on a workbook to review its contents (see Figure 10.22). You can also
connect all the green arrows to the workbooks into a single workbook to direct all results
to a single container. The complete functionality of STATISTICA workbooks is available
for these results, so you can save these results; drag, drop, and edit individual results
and graphs; mark certain spreadsheets as input data for subsequent analyses; and so on.

6. Customize analyses, edit results, and save results.

The next step is to review the results, edit the analyses, and save the results, as follows:

• In general, click on any icon and then use the shortcut menu to review the various
options available for the object (analysis, data source, output document, result, etc.).

• To review results, double-click on the workbooks or other documents created by the
analyses. Use the options on the Data Miner tab of the Options dialog (accessible from
the Tools menu) to configure STATISTICA Data Miner, for example, to direct output to
reports instead of workbooks.

FIGURE 10.22 Example of a simple Data Miner Workspace “project” and the results that are obtained from
each of the Results icons, located on the right; when these icons are double-clicked, the workbooks show at the
bottom pop-up on your computer screen.
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• To edit analyses (change the parameters for the analyses), double-click on the respective
analysis icons; this will display the Edit Parameters dialog, which contains parameters
and settings specific to the respective node.

• To edit documents created by analyses for downstream analyses, click on the item and
select View Document from the shortcut menu.

• You can delete nodes by highlighting them and pressing the Del key, or selecting Delete
from the shortcut menu, or using the standard Undo methods (pressing CtrlþZ or
clicking the Undo button on the toolbar) to undo your changes to the Data Miner
Workspace.

• To save the workspace, select Save from the File menu; the default filename extension for
the Data Miner Workspace is .sdm. By default, the program will save all input data
sources embedded into the data mining project; this default can be changed by clearing
the Embed Input Files in Data Miner Project Files When Saving check box on the Data
Miner tab of the Options dialog (accessible from the Tools menu).

Example: To compute various graphical summaries, double-click on the Descriptive Sta-
tistics node and set the Detail of Reported Results parameter to All results; then click OK.
Next, double-click on the Standard Classification Trees with Deployment node, select the
V-Fold Cross-Validation tab (see Figure 10.23), and request V-fold cross-validation; this is
a very important safeguard against overlearning.

Next, click on the General tab and set the Minimum n Per Node (of the Final Tree) to 50;
this will cause the tree-growing procedure to terminate when the node size falls below that
number and hence to create less complex trees. Then click OK.

You will see that the two analysis nodes as well as the workbook nodes are now dis-
played with a red frame around them (see Figure 10.24); this denotes that these nodes are
not up to date, or they are dirty. Let us finally move the arrow from Standard Classification
Trees with Deployment to point to the same (first) workbook where the descriptive statis-
tics are displayed. To do this, click on the head of the arrow and drag it over to the first

FIGURE 10.23 The Edit Parameters dialog, in this case allowing the selection of V-fold cross-validation
parameters.
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workbook (release the mouse button as your cursor is hovering over the workbook node);
also delete the now “disconnected” node (unless you would like to keep it for reference).

Next click the Update button or press F5 to see the result shown in Figure 10.25.
The “results workbook” is illustrated, which is embedded in the Workbook 1 result node

that you see in the upper right within the Data Miner Workspace.

FIGURE 10.25 Example of Data Miner Workspace (top illustration) and Tree 2 layout Standard Classification
Tree algorithm model.

FIGURE 10.24 A simple Data Miner Workspace project, with two analysis nodes, with results being sent to
one “results workbook” node.
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Note that V-fold cross-validation is a time-consuming procedure that will validate each
tree in the tree sequence several times; however, a significant benefit is that the program
will now pick for you the best tree, i.e., the one with the best cross-validation cost and node
complexity trade-off.

After all nodes are updated, double-click on the (now single) results node to review all
results in the workbook. Note that both the Descriptive Statistics as well as the results of
the Standard Classification Trees analysis are displayed in the same workbook.

7. Deploy solution (models) for new data.

STATISTICA Data Miner includes a complete deployment engine for Data Miner solu-
tions that comprises various tools. For example,

• You can create Visual Basic or C/Cþþ/C# program code in most interactive analysis
modules that will compute predictions, predicted classifications, and clusters
assignments (such as General Regression Models, Generalized Linear Models, General
Discriminant Function Analysis, General Classification and Regression Trees (GC&RT),
Generalized EM & k-Means Cluster Analysis, etc.).

• You can create XML-syntax-based PMML files with deployment information in most
interactive modules that will compute predictions, predicted classifications, or cluster
assignments (i.e., the same modules mentioned in the preceding paragraph). One or
more PMML files with deployment information based on trained models can be loaded
by the Rapid Deployment of Predictive Models modules to compute predictions or
predicted classifications (and related summary statistics) in a single pass through the
data; hence, this method is extremely fast and efficient for scoring (predicting or
classifying) large numbers of new observations.

• General Classification and Regression Trees and General CHAID modules can be used to
create SQL query code to retrieve observations classified to particular nodes or to assign
observations to a node (i.e., to write the node assignments back into the database).

• Complex neural networks and neural network ensembles (sets of different neural
network architectures producing an average or weighted predicted response or
classification) can also be saved in binary form and later applied to new data.

In addition, STATISTICA Data Miner contains various designated procedures in the
(Node Browser) folders titled Classification and Discrimination, Regression Modeling and
Multivariate Exploration, and General Forecaster and Time Series, to perform complex ana-
lyses with automatic deployment and cooperative and competitive evaluation of models
(see Figure 10.26).

For example, the Classification and Discrimination folder contains nodes for stepwise
and best-subset linear discriminant function analysis, various tree classification methods,
generalized linear models procedures, and different neural network architectures (see
Figure 10.27).

The analysis nodes with automatic deployment are generally named TypeOfAnalysis with
Deployment. Simply connect these nodes to an input data source, update (train) the project,
and you are ready for deployment. To the node, connect a data sourcemarked for deployment
(i.e., select the Data for Deployed Project check box in the dialog specifying the variables for
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the analysis), and the program will automatically apply the most current model (e.g., tree
classifier, neural network architecture) to compute predictions or predicted classifications.

Example: Start a newDataMiner project by selecting a predefined project for classification.
From the Data Mining–Workspaces–Data Miner–General Classifier (Trees and Clusters) sub-
menu, select Advanced Comprehensive Classifiers Project, as shown in Figure 10.28.

Then click the New Data Source button and select the Boston2.sta data file again. Specify
Price as the categorical dependent variable, select variable Cat1 as a categorical predictor,

FIGURE 10.26 Node Browser showing All Procedures and focusing on three folders: (1) Classification and
Discrimination, (2) Regression Modeling and Multivariate Exploration, and (3) General Forecaster and Time Series.

FIGURE 10.27 Here, the Node Browser focuses on the Classification and Discrimination folder, which has
been selected, thus showing the specific nodes available in the right panel.
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and select variables ORD1 through ORD12 as continuous predictors. Click the Connect
button and connect the data icon to the Split Input node, which is the main connection point
for the Advanced Comprehensive Classifiers Project (see Figure 10.29).

Now click the Run button. A number of very advanced and somewhat time-consuming
analyses are then performed:

• The Split Input node in the Data Preparation, Cleaning, Transformation area will
randomly select two samples from the input data: one for training the various models for
classification and the other to evaluate the models; i.e., for the observations in the Testing
sample, the program will automatically compute predicted classification and
misclassification rates so that the Compute Best Prediction from all Models node (the one

FIGURE 10.29 The Advanced Comprehensive Classifiers Project template, selected in Figure 10.28. The only
thing that has been added here is the data set icon, shown in the left most panel.

FIGURE 10.28 The lower part of the Data Miner menu, showing some of the accessory tools available, such as
ready-made templates that can be obtained from the Advanced Comprehensive Classifiers Project, if selected.

225STATISTICA DATA MINER, QC-MINER, AND TEXT MINER OVERVIEW

II. THE ALGORITHMS IN DATA MINING AND TEXT MINING



that initially is not connected to anything in the Data Preparation, Cleaning,
Transformation area) can automatically pick the best classifier or compute a voted best
classification (i.e., apply a meta-learner).

• The program will automatically apply to the Training sample the following classification
methods: linear discriminant analysis, standard classification trees (C&RT) analysis,
CHAID, Exhaustive CHAID, a Radial Basis Function neural network analysis, and a
multilayer perceptron.

• Next, the program will automatically apply the trained models to the “new” data, i.e.,
the testing sample; the observations in that sample have not been used for any
computations so far (estimation of the models), so they provide a good basis for
evaluating the accuracy of the predicted classifications for each model.

A large amount of output will be created, as shown in Figure 10.30.
You can review the results for each model in the respective results nuggets in the Reports

areas; during the initial research stage of your data mining project, you probably would
want to review carefully the models and how well they predict the response of interest.
You can also double-click on each of the analysis nodes to select different types of pa-
rameters for the respective analyses; in that case you can use the Run to Node option (on
the shortcut menu or the Run menu) to update only the selected node.

You can also now connect new data, marked for deployment, to the Compute Best Predic-
tion from All Models node (the one that is not connected to anything at this point in the Data
Preparation, Cleaning, Transformation area). For this example, simply connect the Testing
data (which was created as a random sample from the original input data source); then use
the option Run to Node to compute the predicted classifications for each model (see
Figure 10.31).

FIGURE 10.30 A completed Data Miner project.
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After a few seconds, the results spreadsheet with predictions will be created as another
node in the Data Preparation, Cleaning, Transformation area (see Figure 10.32).

You can review the final predictions by selecting View Document from the shortcut
menu, after clicking on the Final Prediction for PRICE icon (which contains the predicted
classifications for the variable PRICE from all models). For example, you can compute a
multiple histogram for the accuracy for each classifier (also reported in the Final Prediction
for PRICE spreadsheet), as shown in Figure 10.33.

You could also look at the accuracy of classification, broken down by each category, and
so on. In this case, it appears that all algorithms were reasonably accurate. By default, the
Final Prediction spreadsheet will also contain a column with a voted classification from
all classifiers. Experience has shown that predicted classification is often most accurate
when it is based on multiple classification techniques, which are combined by voting (the
predicted class that receives the most votes from participating models is the best predic-
tion). Figure 10.34 shows the categorized histogram of the voted classifications by the
observed classifications.

Clearly, the voted classification produces excellent accuracy in the test sample. Remem-
ber that the test sample was randomly selected from the original data and was not used to
estimate the models (train the networks, etc.).

FIGURE 10.32 A final predictions spreadsheet that was created in the second panel of the Data Miner Work-
space, e.g., the Data Preparation, Cleaning, Transformation area.

FIGURE 10.31 By using the short-
cut menu on a node (accessible by
right-clicking on the node) and then
selecting Run to Node to make the
node work, you can produce the
results, embedded in a results icon,
shown at the right with the green
arrows.
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FIGURE 10.34 A 3D graphical rep-
resentation of the classifications from
the data mining model, using the
Voted Predictions (e.g., a hybrid model
by voting together the individual algo-
rithms to make a consensus model).

FIGURE 10.33 Bar graph results comparing the group of different data mining algorithms that were competi-
tively compared in this data mining project.
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8. Prepare project for final customer deployment (in the field).

Once deployment information is stored after training nodes marked with deployment,
for classification or prediction (regression problems), you can save the entire project and
later retrieve that file to compute predicted values for new observations. For example, a
loan officer may want to predict credit risk based on the information provided on a loan
application. The loan officer (end user or customer) will not have to retrain the models
in the current project again; instead, he or she can simply connect new data to the predic-
tion node (usually labeled Compute Best Prediction from All Models) and proceed to
process the new data. In fact, the data analyst who created the prediction model from train-
ing (learning) data can delete all computational (analysis) nodes from the project and
leave only a single node for computing predicted responses. In a sense, such projects are
“locked”; i.e., there is no risk of losing the deployment information due to accidentally
starting a retraining of the models.

Let’s consider advanced methods for deployment in the field. If you are familiar with
STATISTICA Visual Basic (SVB), you might also consider writing a custom program that
would further customize the user interface for the end user of the deployed solution. If
you review the function available for the STATISTICA Data Miner library in the SVB Object
Browser, you can see that practically all aspects of the STATISTICA Data Miner user inter-
face can be customized programmatically; for example, you could “attach” the automatic
application of a deployed solution to new data to a toolbar button so that a loan officer
would only have to fill out a form with an applicant’s data, click a button, and retrieve
scores for credit risk and fraud probability.

Example: Suppose you want to send a fully trained and deployed solution to a customer
or client, based on the analyses briefly discussed in step 7. You can simply delete all nodes
other than the one labeled Compute Best Prediction from All Models and save the project as
MyDeployedProject.sdm. You may also want to rename the lengthy Compute Best Predic-
tion from All Models to the simple “instruction” Connect New Data Here, as shown in
Figure 10.35.

All deployment information will automatically be saved along with the project file.

FIGURE 10.35 Connect New Data Here, renamed from Compute Best Prediction from All Models, has embed-
ded in it all the training information and thus is a deployable model that you could send to a customer to use on
that customer’s new data.
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Three Formats for Doing Data Mining in STATISTICA

The previous description of how STATISTICA Data Miner works represented only one of
the three methods/formats of doing data mining in STATISTICA: the Data Miner Work-
space format. STATISTICA has these three formats:

• Data Miner Workspace;
• Interactive data mining modules; and
• “Automated data mining” via Data Miner Recipe (DMRecipe).

Examples of each of these two additional formats are illustrated next.

Interactive Data Mining Using the Decision Trees—C&RT Module

Classification trees can be created in an interactiveway by selecting the dialog in Figure 10.36
from the Data Mining pull-down menu and selecting Classification Trees (C&RT). From this
point, you can use this dialog in a point-and-click format, selecting variables, changing any of
the parameters from its default settings, if desired, and clicking OK to run the computations,
with a results dialogpoppingupwhenall computations are complete.At this point, all youhave
to do is click on the buttons of the results dialog, which represent various outputs, all of which
will be put into a workbook. This workbook can be saved for later reference.

Data Miner Recipe (DMRecipe)

Using DMRecipe is the new “automatic” way of doing data mining, where as few as four
to seven clicks are required. You just click Run, go away to have lunch, and return to a

FIGURE 10.36 Interactive decision trees (e.g., Standard C&RT) dialog in STATISTICA.

II. THE ALGORITHMS IN DATA MINING AND TEXT MINING

230 10. THE THREE MOST COMMON DATA MINING SOFTWARE TOOLS



completed program and workbook, with the topmost screen being a comparative evalua-
tion of all algorithms, giving the accuracy scores for each algorithm. If you find one algo-
rithm to be of particular interest, then you can go to the Interactive format of that
algorithm and try to tweak it further, if desired, but usually the DMRecipe output will be
sufficient for most needs. Figure 10.37 shows the DMRecipe dialog, and Figure 10.38 shows
a workbook of results from running DMRecipe.

As you can see in Figure 10.38, the boosted trees algorithm had the lowest error rate, only
0.67%; in other terms, the accuracy rate of boosted trees is 99.33%.

STATISTICA, in addition to a data mining format, also has two additional data mining
tools that integrate fully with the basic data mining algorithms; they are

1. QC-Mining algorithms, for quality control, industrial applications (see Figure 10.39)
As you can see in Figure 10.39, there are five separate selections on the QC-Mining

group, the last one listed above being “Response Optimization for Data Mining Models”
2. Text mining (see Figures 10.40 and 10.41)

FIGURE 10.37 The automatic Data Miner Recipe format in STATISTICA, where data mining can be accom-
plished with as few as four to seven clicks of the mouse.
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FIGURE 10.38 The results of the Data Miner Recipe automatically pop up on the screen at the completion of the
computations.

FIGURE 10.39 The QC-Mining selections available in STATISTICA.



FIGURE 10.40 The main interactive Text Mining dialog in STATISTICA.

FIGURE 10.41 The Document Retrieval/Web Crawling dialog in STATISTICA Text Miner.



POSTSCRIPT

This introduction to the three data mining tools is by no means a comprehensive descrip-
tion of their features and functions. Rather than go further into the capabilities of these
tools, we provide a number of step-by-step tutorials in Part III of this book, with more on
the accompanying DVD. These tutorials cover various subject domains of interest, using
one or another of the three statistical/data mining software packages introduced in this
chapter. For additional details on these packages see

• http://www.SAS.com/products for SAS-Enterprise Miner;
• http://www.SPSS.com/data_mining/index.htm for SPSS Clementine;
• http://www.statsoft.com/datamining/dataminingsolutions.html for STATISTICA Data

Miner.
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PREAMBLE

The first general set of data mining applications predicts to which category of the target
variable each case belongs. This grouping activity is called classification.

WHAT IS CLASSIFICATION?

Classification is the operation of separating various entities into several classes. These
classes can be defined by business rules, class boundaries, or some mathematical function.
The classification operation may be based on a relationship between a known class assign-
ment and characteristics of the entity to be classified. This type of classification is called
supervised. If no known examples of a class are available, the classification is unsupervised.
The most common unsupervised classification approach is clustering. The most common
applications of clustering technology are in retail product affinity analysis (including
marketbasket analysis) and fraud detection. In this chapter, we will confine the discussion
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to supervised classification methods. Unsupervised classification methods will be discussed
in Chapter 17, in relation to the detection and modeling of fraud.

There are two general kinds of supervised classification problems in data mining:
(1) binary classification—only one target variable and (2) multiple classification—more than
one target variable. An example of analyses with only one target variable are models to
identify high-probability responders to direct mail campaigns. An example of analyses with
multiple target variables is a diagnostic model that may have several possible outcomes
(influenza, strep throat, etc.).

INITIAL OPERATIONS IN CLASSIFICATION

Before classification can begin, there are some initial tasks you must perform:

1. Determine what kind of classification problem you have. This means that you have to
determine how many target classes you have and define them, at least in general terms.

2. Define the boundaries of each class in terms of the input variables.
3. Construct a set of decision rules from class boundaries to define each class.
4. Determine the prior-probability of each class, based on the frequency of occurrence of

a class in the entire data set.
5. If appropriate, you should determine the cost of making the wrong choice in assigning

cases to a given class. This task is extremely important in some classification
situations (e.g., medical diagnosis).

MAJOR ISSUES WITH CLASSIFICATION

There are a number of issues that you must face before proceeding with the classification
project. It is important to consider each of these issues, and either resolve the issues before
modeling or set some expectations surrounding them.

What Is the Nature of the Data Set to Be Classified?

The purpose of the classification should be specified, and it should be related to the
expected interpretation of the results. For example, a classification of breast cancer propen-
sity should be accompanied with costs of a wrong diagnosis. You probably would not
worry much about misclassifying response rate in a mailing campaign, but failing to diag-
nose a breast tumor could be fatal.

How Accurate Does the Classification Have to Be?

If you are in a time-crunch, a model with 80% sensitivity to prediction accuracy built in
2 days may be good enough to serve the model’s purpose. In business, time is money!
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How Understandable Do the Classes Have to Be?

One of the strengths of a decision tree model is that it produces results that are easy to
understand in terms of the predictor variables and target variables. Results from a neural
net model may be more predictive, but the understandability of the results in terms of
the predictor variables is less clear. Often, there is a trade-off between accuracy and under-
standability of the results. This trade-off may be related to the choice of modeling algo-
rithm. Some algorithms do better for some data sets than others. The STATISTICA Data
Miner Recipe Interface uses several modeling techniques in the form of a recipe that pro-
vides a basis for choosing the right trade-off combination of accuracy and understandability
of the model results.

ASSUMPTIONS OF CLASSIFICATION PROCEDURES

Classification in general requires that you accept a number of assumptions. The fidelity
of your classes and their predictive ability will depend on how close your data set fits these
assumptions. In Chapter 4, we stressed the importance of describing your data set in terms
of the nature of its variables, their possible interactions with the target variable and with
each other, and their underlying distributional pattern. In classification, you should try to
satisfy these assumptions as much as possible.

Numerical Variables Operate Best

Categorical variables can be used, but they should be decomposed into dummy vari-
ables, if possible (cf. Chapter 4 for an introduction to dummy variables).

No Missing Values

By default, most data mining algorithms (including those for classification) will
eliminate cases with missing values in predictor variables. Imputation of missing
values is one way to fix this problem (see Chapter 4). Another way that some classifi-
cation algorithms (e.g., C&RT) may fill missing values is to use surrogate variables. A
surrogate variable has a similar splitting behavior to the variable with the missing
value, and its value in this case can be used to replace a missing value in predictor
variable.

Variables Are Linear and Independent in Their Effects
on the Target Variable

When we say that variables are linear and independent in their effects on the target
variable, we mean that there is a straight-line (linear) change in the target variable as
each variable is varied over its range and that the effect of one variable is not related to
(is independent of) effects of any other variable. There is not much you can do about
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the independency assumption, if it is false. But you can increase the linearity of the pre-
dictor variables by transforming their scales with common nonlinear functions, like
log10, loge, squares, cubes, and higher-level functions.

According to probability theory, target variables must be independent also. Classifica-
tion targets selected to define categories must be mutually exclusive and categorically
exhaustive (MECE). Categorically exhaustive means that the outcome is at least one cate-
gory. For example, a data set used to classify shades of red balls cannot contain any blue
balls. Mutually exclusive means one and only one target can be assigned to each case. If
one candidate target variable is “Residential dwelling,” another target variable cannot
be “Single-family dwellling.” In this situation, single-family dwellings are a subset of
residential dwellings, and both categories may have an equal probability in the classifica-
tion operation. If MECE is not satisfied, assignment of some cases into categories may be
arbitrary (to some extent), and not related exclusively to the predictor variables.

METHODS FOR CLASSIFICATION

There are many techniques used for classification in statistical analysis and data mining.
For the sake of parsimony, we will limit this discussion to machine learning techniques
available in many data mining packages. The following classification algorithms were intro-
duced and described in Chapters 7 and 8. Some additional information will be presented
here to help you apply them to classification problems.

1. Decision trees
2. CHAID
3. Random forest and boosted trees
4. Logistic regression
5. Neural nets

Other useful classification algorithms include

1. K-nearest neighbor
2. Naı̈ve Bayesian classifier

Any classification method uses a set of features to characterize each object, where
these features should be relevant to the task at hand. We consider here methods
for supervised classification, meaning that a human expert both has determined into what
classes an object may be categorized and also has provided a set of sample objects with
known classes. This set of known objects is called the training set because it is used by
the classification programs to learn how to classify objects. There are two phases to con-
structing a classifier. In the training phase, the training set is used to decide how the fea-
tures ought to be weighted and combined in order to separate the various classes of
objects. In the application phase, the weights determined in the training set are applied
to a set of objects that do not have known classes in order to determine what their classes
are likely to be.
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If a problem has only a few (two or three) important features, then classification is usu-
ally an easy problem. For example, with two parameters you can often simply make a scat-
terplot of the feature values and can determine graphically how to divide the plane into
homogeneous regions where the objects are of the same classes. The classification problem
becomes very hard, though, when there are many parameters to consider. Not only is the
resulting high-dimensional space difficult to visualize, but there are so many different
combinations of parameters that techniques based on exhaustive searches of the parameter
space rapidly become computationally infeasible. Practical methods for classification
always involve a heuristic approach intended to find a “good-enough” solution to the
optimization problem.

Nearest-Neighbor Classifiers

A very simple classifier can be based on a nearest-neighbor approach. In this method,
you simply find in the N-dimensional feature space the closest object from the training
set to an object being classified. Since the neighbor is nearby, it is likely to be similar to
the object being classified and so is likely to be the same class as that object.

Classification by a nearest-neighbor algorithm searches for the closest value. Several
issues, though, are associated with the use of the algorithm: (1) the inclusion of irrelevant
variables lowers the classification accuracy; (2) the algorithm works primarily on numerical
variables; categorical variables can be handled but must be specially treated by the algo-
rithm; and (3) if the scales of variables are not in proportion to their importance, classifica-
tion accuracy will be degraded.

The k-nearest-neighbor algorithm looks for the closest data point in the data set. The
k-parameter specifies how many nearest neighbors to consider (an odd number is usually
chosen to prevent ties). The “closeness” is defined by the difference (“distance”) along
the scale of each variable, which is converted to a similarity measure. This distance is
defined as the Euclidian distance. Alternatively, the Manhattan Distance can be used, which
is defined for a plane with a data point p1 at coordinates (x1, y1) and its nearest neighbor
p2 at coordinates (x2, y2) as

Manhattan Distance ¼ jx1 � x2j þ jy1 � y2j: ðEq: 1Þ

An analogous relationship can be defined in a higher-dimensional space.
Nearest-neighbor methods have the advantage that they are easy to implement. They can

also give quite good results if the features are chosen carefully (and if they are weighted
carefully in the computation of the distance). There are several serious disadvantages of
the nearest-neighbor methods. First, they (like the neural networks) do not simplify the
distribution of objects in parameter space to a comprehensible set of features. Instead,
the training set is retained in its entirety as a description of the object distribution. (There
are some thinning methods that can be used on the training set, but the result still does
not usually constitute a compact description of the object distribution.) The method is
also rather slow if the training set has many examples. The most serious shortcoming of
nearest-neighbor methods is that they are very sensitive to the presence of irrelevant
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parameters. Adding a single parameter that has a random value for all objects (so that it
does not separate the classes) can cause these methods to fail miserably.

The best choice of k depends largely on the data. In general, larger values of k tend to
create larger classes in terms of the range of values included in them. This effect reduces
the noise in the classification but makes the classification more choppy (relatively large dis-
tinctions between classes). A suitable k for a given data set can be estimated by a decision
rule or by using a resampling method (like cross-validation) to assign the mean value
among samples. The accuracy of the k-NN algorithm can be severely degraded by the pres-
ence of noisy or irrelevant features, or if the feature scales are not consistent with their
importance.

Analyzing Imbalanced Data Sets with Machine Learning Programs

Imbalanced Data Sets

Many problems in data mining involve the analysis of rare patterns of occurrence. For
example, responses from a sales campaign can be very rare (typically, about 1%). You can
just adjust the classification threshold to account for imbalanced data sets. Models built
with many neural net and decision tree algorithms are very sensitive to imbalanced data
sets. This imbalance between the rare category (customer response) and the common cate-
gory (no response) can cause significant bias toward the common category in resulting
models.

A neural net learns one case at a time. The error minimization routine (e.g., backpropa-
gation, described in Chapter 7) adjusts the weights one case at a time. This adjustment
process will be dominated by the most frequent class. If the most frequent class is “0”
99% of the time, the learning process will be 99% biased toward recognition of any data
pattern as a “0.” Balancing data sets is necessary to balance the bias in the learning process.
Clementine (for example) provides the ability to change the classification threshold in the
Expert Options, and it provides the ability to balance the learning bias in the Balance node.
If you have Clementine, run the same data set through the net with the threshold set appro-
priately. Then run the data through a Balance node (easily generated by a Distribution
node), using the default threshold. Compare the results.

Another way to accomplish this balance is to weight the input cases appropriately. If
the neural net can accept weights and use them appropriately in the error minimization
process, the results can be comparable to using balanced data sets. STATISTICA does this.
A final way to balance the learning bias is to adjust the prior probabilities of the “0” and “1”
categories. SAS-Enterprise Miner and STATISTICA Data Miner use this approach.

If your data mining tool doesn’t have one of the preceding methods for removing the
learning bias, you may have to physically balance the data by resampling. But resampling
can be done two ways: by increasing the sample rate of the rare category (oversampling) or
reducing the sample rate of the common category (undersampling). Undersampling the
common category eliminates some of the common signal pattern. If the data set is not large,
it is better to oversample the rare category. That approach retains all of the signal pattern of
the common category and just duplicates the signal pattern of the rare category.
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Decision Trees

Interactive trees and boosted trees were introduced in Chapter 7. For purposes of classi-
fication, some general information on decision trees is presented here to help you apply
these algorithms successfully to classification problems.

A decision tree is a hierarchical group of relationships organized into a tree-like structure,
starting with one variable (like the trunk of an oak tree) called the root node. This root node
is split into two to many branches, representing separate classes of the root node (if it is
categorical) or specific ranges along the scale of the node (if it is continuous). At each split,
a question is “asked,” which has an answer in terms of the classes or range of the variable
being split. One question might be, “Is this case a male or a female?” Questions like this
would be used to build a decision tree with binary splits. Decision trees can also be built
with multiple splits. Questions asked at each split are defined in terms of some impurity
measure, reflecting how uniform the resulting cases must be in the splits. Each branch is split
further using the classes or ranges of other variables. At each split, the node that is split is
referred to as the parent node, and the nodes into which it is split are called the child nodes.
This process continues until some stopping rule is satisfied, such as the minimum number
of cases resides in the final node (terminal leaf node) along one splitting pathway. This
process is called recursive partitioning. Figure 11.1 shows an example of a decision tree for
classifying colored balls.

In the trees structure shown in the figure, the root node is the first parent. Child nodes 1a
and 1b are the children of the first split, and they become the parents of children formed by
the second split (e.g., Child 1a-1). Child nodes 1a-1, 1a-2, 1b-1, and 1b-2 are terminal
leaf nodes. For simplicity, the terminal nodes of the other child nodes are not shown. To
understand how this tree was built, we have to consider the questions asked and define
the impurity measure and the stopping rule used.

Root
Node

Child 1b

Child 1b-1Child 1a-2Child 1a-1

Child 1a

Child 1b-2

Q2

Q1

Q3

FIGURE 11.1 A simple binary decision
tree structure.
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The questions here might be

Q1 ¼ What 2 groups would have at least 4 white balls and 4 black balls?
Q2 ¼ What 2 groups would have at least 4 balls, among which 2 are white?
Q3 ¼ What 2 groups would have balls of only two colors?

The impurity measure for this example might be the rule that no more than one ball may
be of a different color. The stopping rule might be that there be a minimum of four balls in a
group. The potential split at Child node 1b-2 would not be permitted due to the stopping
rule. You might be thinking that it is possible to create multiple splits in this example,
and you are right! But the structure of this decision tree is constrained to binary splits.

Decision trees are well suited for classification (particularly binary classification), but are
also useful in difficult estimation problems, where their simple piecewise-constant response
surface and lack of smoothness constraints make them very tolerant of outliers. Also, trees
are also probably the easiest model form to interpret (so long as they are small). The pri-
mary problem with decision trees is that they require a data volume that increases expo-
nentially as the depth of the tree increases. Therefore, large data sets are required to fit
complex patterns in the data. The other major problem involves using multiple splits,
namely that the decision of where to split a continuous variable range is very problematic.
Much research has been done to propose various methods for making multiple splits.

There are many forms of decision tree algorithms included in data mining tool packages,
the most common of which are CHAID and Classification and Regression Trees (C&RT or
CART). These basic algorithms are described in Chapter 7. Newer tree-based algorithms
composed of groups of trees (such as random forests and boosted trees) are described in
greater detail in Chapter 8.

Classification and Regression Trees (C&RT)

For purposes of classification, we should review some of the basic information about
C&RT to understand how to use this algorithm effectively. The C&RT algorithm, popular-
ized by Brieman et al. (1984), grew out of the development of a method for identifying
high-risk patients at the University of California, San Diego Medical Center. For that
purpose, the basic design of C&RT was that of a binary decision tree. The C&RT algo-
rithm is a form of decision tree that can be used for either classification or estimation
problems (like regression). Predictor variables can be nominal (text strings), ordinal
(ordered strings, like first, second), or continuous (like real numbers).

Some initial settings in most C&RT algorithms are common to most classification pro-
cedures. The first setting is the prior probability of the target variables (frequency of the
classes). Often, this is done behind the scenes in a C&RT implementation. Another impor-
tant setting (usually done manually) is to select the measure of the “impurity” to use in
evaluating candidate split points. By default, this setting is the Gini score, but other meth-
ods such as twoing are available in many data mining packages. The Gini score is based
on the relative frequency of subranges in the predictor variables. Twoing divides the cases
into the best two subclasses and calculates the variance of each subclass used to define the
split point. Sometimes, options for case weights and frequency weights are provided by

242 11. CLASSIFICATION

II. THE ALGORITHMS IN DATA MINING AND TEXT MINING



the algorithm. Missing values in one variable are handled commonly by substituting the
value of a surrogate variable, one with similar splitting characteristics as the variable with
the missing value. The algorithm continues making splits along the ranges of the predic-
tor variables, until some stopping function is satisfied, like the variance of a node declin-
ing below a threshold level. When the splitting stops along a given branch, the unsplit
node is termed the terminal node. Terminal nodes are assigned the most frequent class
among the cases in that node.

C&RT trees are pruned most commonly by cross-validation. In this case, cross-validation
selects either the smallest subtree whose error rate is within 1 standard error unit of the tree
with the lowest error rate, or the subtree with that lowest error rate. The quality of the final
tree is determined either as the one with the lowest error rate, when compared to test data,
or the one with a stable error rate for new data sets.

Example

The Adult data set from the UCI data mining data set archive was used to create a C&RT
decision tree for classification (http://archive.ics.uci.edu/ml/). The data set contains the
following:

Target:

• Income <¼ $50,000/yr.; > $50,000/yr. (categorical)

Predictors:

• Age: - continuous
• Workclass: Private, Self-emp-not-inc . . . - categorical
• Final weight: Weights assigned within a State to correct for differences in demographic

structure by age, race, and sex
• Education: Bachelors, Some-college . . . - continuous
• Education-years: - continuous
• Marital-status: Married, Single, Divorced . . . - categorical
• Occupation: Teller, Mechanic. . . - categorical
• Relationship: Wife, Husband . . . - categorical
• Race: White, Black, Other . . . - categorical
• Sex: Female, Male - categorical
• Capital-gain: - continuous
• Capital-loss: - continuous
• Hours-per-week: - continuous
• Native-country: Nationality - categorical

Figure 11.2 shows a decision tree for four of these variables:

• Capital-gain
• Age
• Marital Status
• Educations Yrs.
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From the decision tree shown in Figure 11.2, we can induce general rules to predict who
is likely to have income:

1. Persons with IRS capital gains deductions are likely to have an income > $50,000/yr.
2. Married persons with no capital gains deductions and who have greater than 12 years of

education (college work) are likely to have incomes > $50,000/yr.
3. All other persons are likely to have incomes <¼ $50,000/yr.

We can drill down a little deeper to evaluate how accurate the predictions are by con-
structing a classification matrix (Table 11.1). For the sake of this analysis, the >$50,000/yr
category is considered the “positive” prediction.

According to the model evaluation criteria presented in Chapter 6, the Sensitivity of
the model is 21,929/(21,929 þ 2,791) � 100 ¼ 88.71%, and the Specificity of the model is
3,232/(3,232 þ 4,609) � 100 ¼ 41.22%. Remember, the Sensitivity of the model measures
how well it predicts incomes > $50,000/yr., and the Specificity of the model measures
how well it predicts incomes <¼ $50,000/yr. Ideally, the Specificity value of 41.22% should
be closer to the Sensitivity value of 88.71%. This means that the model predicts high

Tree graph for TARGET
Num. of non-terminal nodes: 6,  Num. of terminal nodes: 9

ID=1 N=32561
<=50K

ID=2 N=29849

<=50K

ID=4 N=11201
<=50K

ID=5 N=13178
<=50K

ID=6 N=5470
<=50K

ID=12 N=5436
<=50K

ID=7 N=5524
<=50K

ID=8 N=5677

<=50K

ID=9 N=5979
<=50K

ID=10 N=3522
<=50K

ID=11 N=3677
>50K

ID=14 N=4518
<=50K

ID=15 N=918
<=50K

ID=13 N=34
<=50K

ID=3 N=2712

>50K

CAPITAL_GAIN

<= 0.000000 > 0.000000

MARITAL_STATUS

 = Never-married, ...  = Married-civ-spouse, ...  = Divorced, ...

AGE     

 = 17, 18, ...  = 26, 27, ...

YRS_EDUCATION

 = 1, 2, ...  = 10, 11, ...  = 13, 14, ...

YRS_EDUCATION

 = 1, 2, ...  = 16

YRS_EDUCATION

 = 1, 2, ...  = 13, 14, ...

<=50K
>50K

FIGURE 11.2 Decision tree structure.
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incomes better than it does low incomes. Nearly half (41.22%) of the incomes predicted as
low were actually high. This model might work well if we wanted only to identify persons
with a particularly high probability of having a high income. This model has only four pre-
dictor variables (Age, Capital Gains, Marital Status, and Years of Education). It appears that
our short-list of variables is too short to do a good job of predicting low incomes. Maybe we
should add more variables.

Table 11.2 shows the classification matrix for all the potential predictor variables in the
data set (except for the Final_Weight variable).

TABLE 11.2 The Classification Matrix for the Prediction of Incomes > $50,000/yr. Using
All Potential Predictor Variables

Classification matrix 1 (adult_train_data.sta) Dependent variable: TARGET Options:

Categorical response, Analysis sample

Observed Predicted <¼50K Predicted >50K Row Total

Number <¼50K 22502 2218 24720
Column Percentage 85.98% 34.72%
Row Percentage 91.03% 8.97%
Total Percentage 69.11% 6.81% 75.92%
Number >50K 3670 4171 7841
Column Percentage 14.02% 65.28%
Row Percentage 46.81% 53.19%
Total Percentage 11.27% 12.81% 24.08%
Count All Groups 26172 6389 32561
Total Percent 80.38% 19.62%

TABLE 11.1 The Classification Matrix for the Prediction of Incomes > $50,000/yr. Using Age,
Marital Status, Capital Gains, and Years of Education

Classification matrix 1 (adult_train_data.sta) Dependent variable: TARGET Options:

Categorical response, Analysis sample

Observed Predicted <¼50K Predicted >50K Row Total

Number <¼50K 21929 2791 24720
Column Percentage 87.15% 37.72%
Row Percentage 88.71% 11.29%
Total Percentage 67.35% 8.57% 75.92%
Number >50K 3232 4609 7841
Column Percentage 12.85% 62.28%
Row Percentage 41.22% 58.78%
Total Percentage 9.93% 14.15% 24.08%
Count All Groups 25161 7400 32561
Total Percent 77.27% 22.73%
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The Sensitivity value for the model with all predictor variable of 85.98% is slightly lower
than the 88.71 figure for the model with four variables, but the Specificity value of 46.81% is
slightly higher. Which model is better? The best rule of thumb to follow in this situation is
Occam’s Razor: the simplest model is the best. Therefore, we might select the model with
four predictor variables.

The lift chart for the simplest model is shown in Figure 11.3.
The values in the cumulative lift chart shown in the figure have been normalized around

the expected value of 1.00 (50:50 probability of high income). This form of the lift chart sug-
gests that the model predicts better than random expectation (50:50) in the first eight deciles
(up to 80% of the values).

CHAID

The acronym CHAID stands for Chi-square Automatic Interaction Detector. It was pro-
posed by Kass (1980). Unlike C&RT, CHAID uses multiway splits instead of binary splits,
where more than two splits can occur from a single parent node. When a categorical
response variable has many categories (like car, truck, classic, motorcycle, etc.), the
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FIGURE 11.3 Lift chart for the simple model of four predictor variables.
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algorithm will build many multiway frequency tables. This property has made CHAID very
popular in research involving market segmentation studies.

Both CHAID and C&RT will construct trees, where each (nonterminal) node identifies
a split condition to predict either a continuous or categorical response variable. Therefore,
both algorithms can be applied to both classification and estimation (regression) problems.

CHAID relies on the Chi-square test to determine the best next split at each step in a
classification problem. In F-regression-type problems, the algorithm uses the F-test in place
of the Chi-square test.

Basic Steps in CHAID Processing

Preparing predictors. The first step is to create categorical predictors out of any continuous
predictors by dividing the respective continuous distributions into a number of classes with
an approximately equal number of observations. Another name for this process is binning.

Merging classes. The next step is to cycle through the predictors to determine for each
predictor the two classes (or bins) that have the least relationship with the dependent
variable. For classification problems, the Chi-square test is used to determine the signifi-
cance of the relationship. For regression problems, the F-test is used. If the respective test
for a given pair of predictor classes is not statistically significant as defined by a predeter-
mined setting, the classes will be merged into a category and continue to analyze the next
two classes. If the test shows significant difference, a new category is erected, and the
next two classes are evaluated. Probability values (p-values) are calculated for each
merged category.

Selecting the split variable. The next step is to choose the category with the smallest
p-value; if it is greater than the predetermined threshold, no further split will be made along
that branch and that category becomes a terminal node. This process is continued until no
further splits can be made along any of the branches.

Exhaustive CHAID

Amodification to the basic CHAID algorithm, called Exhaustive CHAID, does not check the
p-value against a predetermined threshold value but performs a more thorough merging and
testing of predictor variables. Consequently, this technique requires more computing time.
The merging of classes continues (without reference to any threshold value) until only two
categories remain for each predictor. The algorithm then selects from among the predictors
the one that yields the most significant split. For large data sets and with many continuous
predictor variables, Exhaustive CHAID may require significant computing time.

Issues with CHAID

• CHAID trees in regression problems can become very large. With modern computers,
this is not so much a computational problem, but rather it makes the trees less
comprehensible to the user.

• The basic algorithm can accommodate both categorical and continuous predictor
variables (using a different significance test for each). But in practice, both variable types
are combined often for analysis of covariance experimental designs. CHAID cannot
handle experimental designs like that.
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Random Forests and Boosted Trees

The random forests algorithm was proposed formally by Brieman (2001). It combines the
concept of random subspaces and bagging (discussed further in Chapter 13). The random
forests algorithm trains a number of trees on slightly different subsets of data (bootstrap
sample), in which a case is added to each subset containing random selections from the
range of each variable. This group of trees are similar to an ensemble (also discussed
further in Chapter 13). Each decision tree in the ensemble votes for the classification of each
input case.

Following are the steps in tree growth in random forests:

1. A random sample of the number of cases is taken. Subsequent samples for other trees
are done with replacement (no case is left out, even the ones included in building the
previous tree).

2. A subset of variables (the number of which is represented by the term m) is chosen,
being much less than the number of variables, and the best split (based on the Gini
score) is determined on this subset of variables. Increasing the value of m increases the
correlation between trees (bad) and increases the predictive power of the tree (lessens
the error rate), while decreasing the value of m does the opposite for both. There is a
fairly wide “happy medium” in between values of m that are too low and too high. The
m-number is the only setting in the algorithm to which the model is sensitive.

3. About one-third of the cases are used to create the out-of-sample testing data set. This
testing data set is used to compute the prediction error rate. The average error rate is
calculated from all trees built.

4. Variable importance is calculated by running the out-of-sample data set down the tree,
and then the number of votes for the predicted class are counted. Then the values in each
variable are randomly changed and run down the tree independently. The number of
votes for the tree with the changed variable is subtracted from the number of votes for
the unchanged tree to yield a measure of effect. Finally, the average effect is calculated
across all trees to yield the variable importance value.

Advantages of Random Forests

• The random forests algorithm has relatively high accuracy among algorithms for
classification.

• It can handle very large data sets with hundreds (even thousands) of variables.
• It provides an estimate of variables’ importance, like neural nets.
• It has a robust method for handling missing data. The most frequent value for the

variable among all cases in the node is substituted for the missing value.
• It has a built-in method for balancing unbalanced data sets (one class much rarer than

other classes). We will revisit this concept in Chapter 16.
• It runs fast! Hundreds of trees with many thousands of cases with hundreds of variables

can be built in a few minutes on a personal computer.
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Boosted Trees

The boosted trees algorithm is an adaptation of the Stochastic Gradient Boosting
technique of Friedman (1999).

The steps in the process are as follows:

1. In the first iteration, decision trees are built for each class of the categorical dependent
variable.

2. Then a subsample of the training data is drawn at random (without replacement) and
used to build a very simple tree (only one or two splits). This is called the base learner.
The random draw is the stochastic elements of the algorithm.

3. Predicted values of the training set model and the base learner model are transformed
with a Logistic function and used to calculate residuals.

4. A prediction update factor is calculated from the residuals and applied to generate a
final prediction for the second tree.

This process is continued until the sum of the residuals declines below a threshold value.
The effect of the application of the update factor in successive iterations of trees is to gener-
ate an error surface that declines in slope (forms a downward gradient). The overall effect
of the algorithm is to create an adaptive weighted expansion of decision trees, which can
produce an excellent fit of the predicted class values to the observed class values.

As is common in other machine learning techniques, this adaptive weighted expansion
of trees can easily overfit the training data set. An out-of-sample data set can be used to cal-
culate the testing error, which can be used to track the error through iterations of the algo-
rithm. Figure 11.4 shows how one boosted trees algorithm in STATISTICA Data Miner
tracks this testing error through the iterations of the model.

FIGURE 11.4 Error plot of training
set and the testing set in a boosted trees
model.
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Notice that the error of the testing data set flattens out after about 35 trees are built and
then begins to climb after about 65 trees are built. The optimum tree, therefore, is identified
at tree 65.

Logistic Regression

Regressions will be discussed in greater detail in Chapter 12. But logistic regression is
used in classification rather than numerical prediction. Therefore, we will include it here.
The general form of the regression equation generated by the analysis is

Y ¼ aþ b1X1 þ b2X2 þ b3X3 þ . . .þ bnXn ðEq: 2Þ
where a is the Y value, X is equal to 0 (the intercept), b1 is the coefficient for X factor #1 (X1),
b2 is the coefficient for X factor #2 (X2), and so forth through the last X variable (Xn).

Instead of setting Y ¼ the target variable in the data set, logistic regression uses the
Logistic function to express Y as follows:

f ðyÞ ¼ 1

ð1þ e�yÞ ðEq: 3Þ

Figure 11.5 shows a plot of Equation 3.
Figure 11.5 describes the classical growth curve and is a suitable expression of many

exponential relationships in nature. But many business data distributions are the mirror
image of Figure 11.5. The Logistic function can be configured to express that data pattern
also by removing the negative sign in Eq. 3. This transformed logistic data pattern is
sometimes called the inverse logistic curve, as shown in Figure 11.6.

Logistic regression is used to model the nonlinear relationship between Y and the
combined effects of the independent variables. This relationship is used to model the
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FIGURE 11.5 The Logistic curve.
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FIGURE 11.6 The Inverse Logistic function.
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probability of an event’s occurrence (a binary variable, like Yes/No or 1/0), using either cat-
egorical or numerical predictors. This algorithm has seen wide usage in business to predict
customer attrition events, sales events of a specific product or group of products, or any event
that has a binary outcome.

Neural Networks

Artificial neural nets are a crude attempt to mimic the function of human neurons.
Neuron cells receive electrical impulses from neighboring cells and accumulate them until
a threshold value is exceeded. Then they “fire” an impulse to an adjacent cell. The capacity
of the cell to store electrical impulses and the threshold are controlled by biochemical pro-
cesses, which change over time. This change is under the control of the autonomic nervous
system and is the primary means by which we “learn” to think or activate our bodies.

Artificial neurons in artificial nets (Figure 11.7) incorporate these two processes and vary
them numerically, rather than biochemically. The aggregation process accepts data inputs
by summing them (usually). The activation process is represented by some mathematical
function, usually linear or logistic. Linear activation functions work best for numerical esti-
mation problems (i.e., regression), and the Logistic activation function works best for
classification problems.

Artificial neurons are connected together into an architecture or processing operations.
This architecture forms a network in which each input variable (called an input node) is
connected to one or more output nodes. This network is called an artificial neural network
(neural net for short). When the input nodes with summation aggregation function and a
Logistic activation function are directly connected to an output node, the mathematical pro-
cessing is analogous to a logistic regression with a binary output. This configuration of a
neural net is a powerful classifier. It has the ability to handle nonlinear relationships
between the output and the input variables, by virtue of the Logistic function shown in
Figure 11.8.

The Logistic function fits many binary classification problems and can express much of
the nonlinear effects of the predictors.

Aggregation
Function
(Σxiwi)

Activation
Function
(Logistic)
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Output
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FIGURE 11.7 Architecture of a neuron.
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The most interesting property of a neural net comes into view when you intercalate a
middle layer of neurons (nodes) between the input and output node, as shown in
Figure 11.9.

Weights (Wij) are assigned to each connection between the input nodes and middle layer
nodes, and between the middle layer nodes and the output node(s). These weights have the
capacity to model nonlinear relationships between the input nodes and output node(s).
Herein lies the great value of a neural net for solving data mining problems. The nodes
in the middle layer provide the capacity to model nonlinear relationships between the input
nodes and the output node (the decision). The greater the number of nodes in the middle
layer, the greater is the capacity of the neural net to recognize nonlinear patterns in the
data set. But as the number of nodes increases in the middle layer, the training time

FIGURE 11.8 A plot of the Logistic
function.
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FIGURE 11.9 Architecture of a neural net.
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increases exponentially, and it increases the probability of overtraining the model. An over-
trained model may fit the training set very well but not perform very well on another data
set. Unfortunately, there are no hard and fast rules of thumb to define the middle layer
nodes to put into your net. The general guideline to follow is to use more nodes when
you have a lot of cases to use for training and use fewer nodes with fewer cases. If your
classification problem is complex, use more nodes in the middle layer; if it is simple, use
fewer nodes. See Chapter 12 for some additional rules of thumb.

The neural net architecture can be constructed to contain only one output node and be
configured to function as a regression (for numerical outputs) or binary classification
(yes/no or 1/0). Alternatively, the net architecture can be constructed to contain multiple
output nodes and function as a clustering algorithm.

The learning process of the human neuron is reflected (crudely) by performing one of a
number of weight adjustment processes, the most common of which is called backpropaga-
tion, shown in Figure 11.10.

Neural nets can be particularly effective in classification problems using predictor vari-
ables forming nonlinear relationships with the solution. Themost common classification type
is the binary classification. Logically, binary classification is defined as the XOR case, or an
exclusive-OR operation. The XOR logical case permits one outcome or another outcome, but
not both. The outcomes are mutually exclusive, which evaluate to “Yes” or “No,” “1” or “0.”

Naı̈ve Bayesian Classifiers

In the general overview of Bayesian analysis in Chapter 1, the statement was made that
Bayesian prediction follows patterns of human thinking more closely than does classical
statistical analysis. The serious drawback of this fact is that two humans may (and often
do) disagree in the decisions they make as a result of this thinking. Sir R. A. Fisher could
not abide by this diversity in the decision-making process for medical purposes. That is
why he developed the standard practices in statistical analysis in 1921. But there are many
other situations in which the Bayesian approach to truth is much more appropriate and
may even be better.
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FIGURE 11.10 A feed-forward neural net with backpropagation.
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When we are faced with the need to classify some entity in the world around us, we
include two general sources of evidence:

• Its similarity to each other based on some metrics;
• Past decisions on classifications of things like it.

Fisher excluded the second source of evidence from his analyses to calculate his prob-
abilities from the former source only. Bayesians contend that in many cases that second
source of evidence is critical to the proper classification of the entity. They integrate these
sources of evidence by multiplying them to calculate the joint probability. To Fisherians,
classification is a calculation involving simple probabilities; to Bayesians, classification is a
judgment call based on joint probability. In many classification situations involving data
attributes, we know relatively little about the entity we are classifying, and it may be
acceptable to view the classification process as a judgment call. Following this logic, Naı̈ve
Bayesian classification has become accepted as a useful technique in data mining.

To demonstrate the concept of Naı̈ve Bayesian classification, consider a group of objects
classified according to their characteristics, as shown in Figure 11.11.

Given the past classification of the objects in the figure, our task is to classify new cases
as they occur. Our approach is to decide to which class label they belong, based on the
currently existing objects. Based on the fact that there are twice as many GREEN objects
as RED, it is reasonable to believe that any new case is twice as likely to be a part of
the GREEN group rather than the RED. In the Bayesian analysis, this belief is known as the
prior probability. Prior probabilities are based on evidence from previous classifications, in
this case the percentage of GREEN and RED objects, and can be used to predict the
classification of new objects.

These prior probabilities can be expressed as

Prior probability for GREEN objects a (# GREEN objects/# TOTAL objects)
Prior probability for RED objects a (# RED objects/# TOTAL objects)

(Note: The a, or alpha symbol, means “is proportionate to.”)
Since there is a total of 60 objects, 40 of which are GREEN and 20 RED, our prior

probabilities for class membership are

Prior probability for GREEN a (40/60)
Prior probability for RED a (20/60)

FIGURE 11.11 Objects classified in two groups, RED or GREEN, plotted in an analysis space defined by two
axes of similarity (two metrics).
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Now, we can consider the classification of a new object, indicated in Figure 11.12 as a
white ball.

Having formulated our prior probability, we are now ready to classify a new object X
(small WHITE circle). Since the objects are well clustered, it is reasonable to assume that
the more GREEN (or RED) objects in the vicinity of X, the more likely that the new cases
belong to that particular color. To measure this likelihood, we can consider a region around
X (depicted by the larger circle), which encompasses a number (to be chosen a priori) of
points irrespective of their class labels. Then we calculate the number of points in the circle
belonging to each class label. From this, we calculate the likelihood as follows:

Likelihood of X given GREEN a (# GREEN in region/Total # GREEN cases in region)
Likelihood of X given RED a (# RED in region/Total # RED cases in region)

With the preceding information, it is clear that Likelihood of X given GREEN is smaller
than Likelihood of X given RED, since the circle encompasses 1 GREEN object and 3 RED
ones. Thus,

Probability of X given GREEN a (1/40)
Probability of X given RED a (3/20)

Although evidence of the prior probabilities suggests that X may belong to GREEN
(given that there are twice as many GREEN as RED), the evidence from analysis of the
region around it (likelihood) suggests that the class membership of X is RED. In the Bayes-
ian analysis, the final classification is produced by combining both sources of evidence (prior
probability and the likelihood) to form a joint posterior probability following Bayes’ rule (see
Chapter 1).

Posterior probability of X being GREEN a (Prior probability X Likelihood)
¼ (4/6) � (1/40) ¼ 1/60

Likewise,

Posterior probability of X being RED ¼ (4/6) �(3/20) ¼ 1/10

As a result, we classify X as RED since its class membership achieves the largest posterior
probability. This joint posterior probability is also known as the conditional probability.

Despite its simplicity, Naı̈ve Bayesian can often outperform more sophisticated classifi-
cation methods.

FIGURE 11.12 Position in the analysis space of a new object (white ball).
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Naı̈ve Bayesian classifiers assume that the predictor variables are independent in their
effects on the classification. This assumption is rather naı̈ve in the face of reality, hence the
origin of the name. But in spite of this rather too-strong assumption, it performs rather
well with many data sets. This classifier can accept any number of either continuous or
categorical variables. In fact, the Naı̈ve Bayesian classifier technique is particularly suited
when the number of variables (the dimensionality of the inputs) is high. Although the
assumption that the predictor variables are independent is not always accurate, it does
simplify the classification task dramatically, since it allows the class conditional densities
to be calculated separately for each variable; i.e., it reduces a multidimensional task to
a number of one-dimensional ones. Furthermore, the assumption does not seem to greatly
affect the posterior probabilities, especially in regions near decision boundaries, thus
leaving the classification task unaffected. In effect, Naı̈ve Bayesian classifiers reduce
a high-dimensional density estimation task to a one-dimensional kernel density estima-
tion. This kernel function can be modeled in several different ways including normal,
lognormal, gamma, and Poisson density functions.

WHAT IS THE BEST ALGORITHM FOR CLASSIFICATION?

If you have the time to use all the algorithms discussed in the preceding sections to
classify your data sets, you will find that the best algorithm to use to classify one of your
data sets may not work well for other data sets. In other words, different algorithms work
best for different data sets. Using a diversity of algorithms is best. A good example is
provided in the results of a study of performance of 10 data mining algorithms by Kalousis
et al. (2004). They compared algorithm performance on 80 data sets available from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/). Each data set was character-
ized by a number of criteria:

• Error correlation between two classifiers using the data set (EC)

EC ¼ P(i)[Covariance(X1, X2)], summed for target(i) ¼ 1 and target(i) ¼ 0,

EC ¼
Xi¼0

i¼1

PðiÞ½covðerror1; error2Þ�
where P(i) ¼ the prior probability of each target class (proportion ¼ 1 and 0), summed

for cases where target ¼ 1 and target ¼ 0.
All data sets were clustered on their matrices of error correlation and grouped into

two classes: relatively low EC and relatively high EC.

• Log of the total number of cases/number of attributes
• Sum of the logs of the total number of cases/number of cases where target ¼ 0 and

total number of cases/number of cases where target ¼ 1
• Log of the total number of cases/number of cases where target ¼ 1

The data sets with high EC and low EC were further characterized by other variables,
as shown in Table 11.3.
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Ten algorithms were used in the analysis of each group of data sets: C5.0 rules, C5.0
decision tree, C5.0 boosted tree, Clementine automated neural net, Clementine Radial Basis
Function net, Naı̈ve Bayes classifier, Nearest Neighbor, multivariate decision tree, linear
discriminant analysis, and a specialized rule induction engine. Results showed that differ-
ent algorithms performed differently on the two different data set groups. The relative
performance of the algorithms was related to differences among the data sets, in terms of:

• Data availability (number of cases, number of attributes, etc.);
• Class distribution (imbalance between the occurrence of target ¼ 1 and target ¼ 0);
• Information content (uncertainty coefficient of attributes and classes).

The bottom line to keep in mind is that different algorithms perform differently on dif-
ferent data sets. At the beginning of the analysis, you don’t know which algorithms among
those available to you will do the best job on your data set. This is why it is a good idea to
use multiple algorithms to model a single problem and use the predictions of each algo-
rithm as votes, with majority ruling the final classification for a given case. This approach
is called bagging, which we will explore in more detail in Chapter 13.

Now that we have introduced several classification techniques and discussed some of the
challenges related to them, you could continue our journey through the data mining pro-
cess using the Recipe Interface of STATISTICA Data Miner. This new interface conducts
you through the complex task of building a data mining model, similar to the way
Turbo-Tax Interview software option guides a user through building a tax return. This
interview process builds tax return “model” that minimizes income tax to be paid by the
user. In an analogous way, the STATISTICA Data Miner Recipe Interface builds a data
mining model that minimizes prediction error among an ensemble of prediction algorithms.

POSTSCRIPT

In this chapter, we have introduced several classification techniques and discussed some
of the challenges related to them. Now, we can consider another set of data mining appli-
cations, in which the target variable is not a set of categories, but rather is a continuous
number. These numerical methods require very different algorithms to process data.

TABLE 11.3 Comparison of Data Set Groups with Relatively Low and High EC and Other
Data Sets Criteria

Data Set Criteria Low EC High EC

# Target classes High Low
Target class distribution Relatively balanced Relatively unbalanced
Total number of cases High Low
Total number of attributes High Low
Average number per class High Low
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PREAMBLE

Modern humans have always been fascinated with numbers. The Industrial Revolution
was founded on Aristotelian logic and numerical relationships between movements and
actions and the things that cause them. World War II was at the same time the most trau-
matic conflict in the history of the world and the impetus that drove us into the age of high
technology. The single most important influence in modern technology is the exponential
rate at which we have been able to “crunch” numbers with computers.

The personal computer, or PC, is arguably the single most influential technological force
in the world today. The �3 GHz PCs of today are over 600 times faster than the original
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4.77 MHz IBM PC in 1981. These PCs can execute about 100–200 million instructions per
second, and all of them are numeric. The human brain has about a trillion cells, and each
one has many connections with each other. Each one of the brain cells operates with num-
bers also (in terms of nerve impulse strengths). The “thinking processes” of both humans
and computers involve numerical analysis. Thus, it is fair to say that numerical analysis
is the most basic function in both the carbon-based human world and the silicon-based
computer world.

It is not the intention of this book to teach you how to do numerical analysis or even
to understand how modern analytical algorithms formalize it. So far, you have seen
very few equations in this book; that motif will be relaxed slightly in this chapter. The equa-
tions presented provide convenient display objects to refer to in subsequent discussions.
But the presentation of these equations does not constitute a formal definition of the
algorithms discussed. Rather than present algorithms in a formal mathematical format,
we seek to explain how to use these algorithms to solve problems, the most basic of which
involve numerical prediction. Even the classification of things is based on numerical
operations.

In this chapter, we will explore the concepts of linear and nonlinear relationships between
a given response variable (that which is predicted) and those things that control it (predic-
tor variables). Each type of relationship requires different analytical techniques to express
it. For linear relationships, we will review the assumptions of the Parametric Model of real-
ity (introduced in Chapter 1) and relate them to some classical methods of numerical
prediction. It is not our purpose to present an exhaustive treatment of numerical prediction
algorithms, but rather to discuss common examples found in most data mining tool
packages. Also, we will revisit briefly several of the algorithms described for classification
in Chapter 11 (C&RT, boosted trees, and neural nets) because they can be configured for
use also in numerical prediction.

LINEAR RESPONSE ANALYSIS AND THE ASSUMPTIONS
OF THE PARAMETRIC MODEL

The goal in linear analysis is to find a set of predictor variables (X1 to Xn ), in which
changes in each predictor variable cause a change in the response variable (Y) as a multiple
of the change in the predictor variable. This type of change is called a geometric progression.
A geometric progression follows a straight line of increase when plotted on a graph
(Figure 12.1).

The relationship shown in Figure 12.1 follows a simple geometric progression of
increase; Y increases 3 units for each unit of increase in X. The defining elements of this
relationship are the slope (3.0) and the intercept (where the trend line crosses the y-axis;
zero in this case). Linear relationships were assumed by Sir R. A. Fisher in his parametric
methods of analysis.
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PARAMETRIC STATISTICAL ANALYSIS

Parametric statistical analysis was introduced in Chapter 1, in terms of a number of
assumptions that underlie it. It was Sir R. A. Fisher’s purpose in proposing his radical
methods in 1921 (see Chapter 1) to bring some consistency in the analysis of data in medical
studies. He was concerned that different Bayesian medical researchers could come to differ-
ent conclusions from the same experimental data because they each brought a different set
of past experiences and knowledge to the study (and included it). He decided to restrict his
analysis to only those relationships present in the experimental data in a given study.
He reasoned that the two most important aspects of a variable in a data set are its central
tendency and the distribution of data values around this point. He chose the average
(mean) value as the measure of central tendency and the average difference (deviation) of
each data value from the mean for that variable. Of course, he found that even if the data
values were all positive, about half of the deviations were positive (for data values greater
than the mean), and half of the values were negative (for data values less than the mean).
Their arithmetic average was zero! But what he really wanted to express was the deviation
itself, not its sign. So he just squared them (to remove the negative sign), added them up,
and divided by the number of values. Fisher recognized that representing the data values
by the mean eliminated details in the data, so he decided to follow a convention of sub-
tracting 1 from the number of values for each mean calculated in his statistical methods
that ensued. This subtraction increased the average deviation slightly to account for the
increased uncertainty of the mean as a measure of the data values in the data set. The result
was termed the variance. The square root of the variance was calculated to convert the
variance value back to the original scale, which in turn yielded the standard deviation.
The final formula for the standard deviation is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðX � XÞ
N � 1

s 2

ðEq: 1Þ

where X is a data point, N is the total number of data points, X is the mean, and S is the
symbol for summing all of the squared differences from 1 to N.

The rest of Fisher’s statistics (standard error, correlation coefficient, etc.) are just elabora-
tions of these two parameters (mean and standard deviation). Hence, we see the origin of the
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FIGURE 12.1 A typical linear relationship: Y ¼ 3X.
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term parametric statistical analysis. The next step was to derive a standard table of probabil-
ity (the F-distribution) based on his definition of likelihood. The F-statistic was used to
determine the significant difference between two data sets.

The final step for Fisher was to develop a scheme for analyzing the variance in his exper-
imental data set to determine if there was a significant difference between one medical
treatment in his experiment and another treatment (based on his tables of probability). This
analysis of variance (called ANOVA) became the basis for his statistical conclusions about
which treatments were significantly effective for each of several cases of a medical problem
and which treatments were not. This is the basic pattern of analysis for all of Fisher’s para-
metric statistical procedures. Granted, this is a very simplistic explanation of the elements
of Fisher’s landmark paper in 1921. But it serves to set the stage for evaluating how to apply
his methods in other experimental areas.

ASSUMPTIONS OF THE PARAMETRIC MODEL

To achieve this analytical standardization, Fisher had to make a number of assumptions
about the data he used. These assumptions were introduced in Chapter 1, and their rele-
vance to numerical is discussed below.

The Assumption of Independency

Fisher was fortunate to be able to have a medical laboratory at his disposal, in which he
could conduct very controlled experiments. It was necessary for all methodological and envi-
ronmental effects be held constant, varying only the actual treatment of the patient. Other
studies could examine the effects of varying methods or environmental conditions for a
given medical treatment. For example, he could study the effects of room temperature on
the activity of a drug used in a given treatment. To do this, he had to hold all other variables
constant (including the treatment) and vary only the room temperature. Then he could do
likewise for humidity and so forth. This experimental approach assured that the recorded
effects of each variable were independent of each other. This variable independency is
assumed in the mathematics Fisher followed to define standard deviation in Eq. 1.

The Assumption of Normality

An even more basic assumption than that of variable independence is the assumption of
normality. Fisher’s combination of deviations from the right of the mean with those from the
left of the mean assumed that both sides of the distribution were similar. His probability
tables also assumed such a distribution. The distribution this situation describes is called
the normal distribution, shown in Figure 12.2.

The normal curve shown in Figure 12.2 is displayed with units on the x-axis graduated in
terms of standard deviation units. The curve represents the frequency of values for any
point along the x-axis. All of the area between the curve and the x-axis represents 100%
of the values in this distribution. The area under the curve between X ¼ �1 (one standard
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deviation unit below the mean) and X ¼ þ1 (one standard deviation unit above the mean)
represents about 68% of the area under the curve (areas A plus B). The area included by
�2 standard deviations is about 95% (areas AþBþCþD), and the area included by 3 units
is about 99.5% (areas AþBþCþDþEþF). Fisher’s mathematics assumes that the distribution
of values in each variable of the data set follows a normal distribution around the mean
value. If an analyst uses any classical parametric statistical procedure, he or she is making
the assumptions of normality and independency, however unconsciously. Significant
departures from a normal distribution can lead to spurious conclusions inferred from the
application of normal parametric. Significant departures from independence (effects of
some predictor variables are strongly related to each other) are even more problematic.

Fixes for Non-Normality

A common treatment of non-normal distributions is to transform the data with various
utilities in the data mining or statistical tool package. Common transforms include

• Beta distribution
• Gamma distribution
• Binomial distribution

If the distribution of your data set fits a common distribution transform available in your
tool package, you can create (in effect) a normal distribution from a non-normal
distribution.

Normality and the Central Limit Theorem

The Central Limit Theorem states

A group of means of samples drawn from a nonrandom distribution is normally distributed.

Naı̈ve practitioners often misinterpret this theorem. Careless reading of the theorem
leads students to believe that all you have to do to get a normally distributed data set is
to sample a non-normal population of data, and voila, the sample is normally distributed.
That is not the case! The theorem states that the group of means taken from a non-normal

FIGURE 12.2 The standard normal (bell-shaped)
curve. (Source: http://www.tushar-mehta.com/excel/
charts/normal_distribution/)
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distribution is normally distributed. That means if you take 100 samples of a non-normal
distribution and calculate the mean for each of them, the distribution of the 100 mean
values is normally distributed. This attribute of sampling can be applied when you take
multiple samples of a population and submit the data to linear regression analysis. We will
discuss this further in the following paragraphs.

Don’t look for quick ways out of this assumption. If your data set distribution is sig-
nificantly different from normal, it can ruin any analysis based on parametric statistical
methods. And the most painful part of this problem is you may not know when you are
wrong! Testing for a normal distribution is a recommended step and is available in most
statistical and data mining programs. If you don’t verify the normality of your data set,
all the statistical tests may show a strong relationship in your model, but that relationship
may fail miserably when you try to apply it.

We will discuss some fixes for nonindependency in the section titled “Linear
Regression.”

The Assumption of Linearity

The third major assumption inherent in classical parametric procedures is that the
variables have a linear effect on the response variable (the target). This means that a plot
of the relationship of any variable to the response variables is a straight line. Examples of
common statistical procedures that make these three assumptions are ANOVA and linear
regression. Many fixes exist for handling nonlinear variables in these linear analyses.
We will look at them next.

LINEAR REGRESSION

Linear regression was first proposed by Sir Francis Galton (1822–1911). Galton coined the
term regression to describe the observation that the majority of very tall fathers had sons
who were shorter, and most very short fathers had sons taller than them. The trend of this
progression in height was toward the average (or mean) height. This phenomenon was
termed regression to the mean. His analysis of this effect became known simply as regression.

The major objectives of linear regression are to

• Determine if a relationship exists between one variable and another (or a set of others);
• Describe the nature of this relationship, if it exists;
• Quantify the accuracy of this relationship;
• Evaluate the relative contributions of each variable, if multiple variables are used.

Linear regression makes all three assumptions described previously. But you can appeal
to the Central Limit Theorem to correct for non-normality by taking multiple samples and
working on the means rather than the original data. That is, you can generate a group of
data for a given variable by drawing a group of samples for the population, finding the
mean, drawing another group of samples, finding the mean, and so forth until you have
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a group of means representing that variable. That group of means will be normally
distributed. Engineering control charts rely on that property by making many samples of
a process flow and creating this group of means. The control charts are based on the group
of means, not the underlying data from which they were calculated.

The basic process of linear regression of a data set is to estimate parameters (coefficients)
for each candidate predictor variable (X) to represent the effect that variable has on the
response variable (Y). These effects are assumed to be linear and additive (that is, you
add them up to get the total effect). The general form of the regression equation generated
by the analysis is

Y ¼ aþ b1X1 þ b2X2 þ b3X3 þ . . .þ bnXn ðEq: 2Þ
In Eq. 2, the variable a is the Y value where X ¼ 0 (the intercept), b1 is the coefficient for
X factor #1 (X1), b2 is the coefficient for X factor #2 (X2), and so forth through the
last X-variable (Xn). The coefficients reflect effects of two sources of relationship of
the X-variable to the dependent variable (Y): the relative effect of X on Y, and the effect
of differences in scale between X and Y. If variable Y and all of the X-variables have the
same scale, then the coefficients reflect the relative predictability of each X-variable. But
if the scales are different, the coefficients may not reflect much of the relative predictabil-
ities. Usually, the scales of variables are quite different. One technique for overcoming
the effects of scale is standardization. This is a process of transforming all variables to a com-
mon scale. One common standardization method (computing the z-score) is to subtract the
mean from a value and divide by the standard deviation, which creates a scale in terms of
standard deviation units. Another method used to create a common scale from 0 to 1.0 is to
normalize the variable over its range as new_value ¼ (old_value � minimum_value)/
(maximum_value � minimum_value).

Methods for Handling Variable Interactions in Linear Regression

The earliest approach to correct for variable interactions was to use factorial designs
to separate “main” effects from “interaction effects.” The combined interaction effect,
termed as C, was added to the ANOVA analysis equations to “correct” for the interactions.
Application of this approach to linear regression is not strictly appropriate because the cal-
culation of the variable coefficients includes the effect of interactions with other variables.
If an interaction between two variables is obvious, an additional variable can be derived
as the product of the interacting variables. When these multiplicative terms are added to
the regression equation, it may significantly increase the collinearity of the two variables.

Collinearity among Variables in a Linear Regression

When two variables are highly correlated to each other, the plots of these variables lie
on nearly the same line. The total of all the collinearity between variable pairs is called
multicollinearity. You can assess this effect by comparing the square of the sum of the
simple correlation coefficients for all variables with the coefficient of determination (R2).
The R2–value measures the combined effect of all the variables in explaining the variance
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in the dependent (response) variable. The Pearson simple correlation coefficients measure
the degree of correlation between a single variable and the dependent variables. The degree
to which the squared sum of the simple correlation coefficients exceeds the R2–value is a
measure of the amount of collinearity between the variables. Relatively high multicollinear-
ity in a regression analysis will make it difficult if not impossible for the algorithm to find a
single optimum solution. Because the interacting effects vary with the values in the vari-
ables, there may be several “optimum” solutions, depending on the relative frequencies
of values among collinear variables. A good rule of thumb to follow in parametric statistical
analysis is to eliminate one member of any pair of variables that is more than 80% corre-
lated with the other. The other suggestion we can make is to limit the number of interaction
variables to only those that are obvious.

The Concept of the Response Surface

Consider the problem of predicting one variable with two other variables. The plot of
predicted points in a linear regression is a straight line (Figure 12.3).

This straight line is the best the algorithm can do to express the variation in the predicted
values. The straight line shows the response surface of this linear regression. Another way to
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FIGURE 12.3 Plot of a two-factor regression.
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look at the relationships among the variables is to look at a response surface in 3D space.
Figure 12.4 shows the relationship as a plane, when a linear function is used to represent
the data relationships.

Figure 12.5 shows the fit using a quadratic function rather than a linear function.
By fitting even more complicated functions to the three data values, you can conform the

response surface even more closely to the data. The plot of the three-factor response surface
using a negative exponential (an even more nonlinear function) is shown in Figure 12.6.

The departure of a data point from its predicted value is called the residual. One of
the common reports of a multiple regression algorithm is a plot of the residuals versus
the predicted values, as shown in Figure 12.7.

The ideal plot of residuals versus predicted values would be a long cluster parallel with
the x-axis at Y ¼ 0 (residual ¼ 0). In Figure 12.6, you can see that most of the values are near
the ideal. But there are several predictions that differ significantly from the raw data values
(have a large residual). This plot is a visual form of model evaluation.

Another visual reflection of the strength of the model is the normal probability plot,
shown in Figure 12.8.

3D Surface Plot of N3X3_CLU against DSTAR_DE and TOT_DEFS
fail_tsf.STA 45v*10810c
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FIGURE 12.4 Fit of a linear three-factor response surface.
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3D Surface Plot of N3X3_CLU against DSTAR_DE and TOT_DEFS
fail_tsf.STA 45v*10810c
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FIGURE 12.5 Plot of a quadratic fit of three variables.

3D Surface Plot of N3X3_CLU against DSTAR_DE and TOT_DEFS
fail_tsf.STA 45v*10810c

N3X3_CLU = Negative Exponential Smoothing
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FIGURE 12.6 Plot of a negative exponential smoothing function applied to fit three variables.



Predicted vs. Residual Scores
Dependent variable: TOT_DEFS
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FIGURE 12.7 Plot of the residuals versus predicted values.
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The normal probability of a residual is the expected value of the residual based on the
normal distribution, calculated as

Pi ¼ i=ðN þ 1Þ ðEq: 3Þ
where i is a residual value in a list, and N is the number in the list.

The ideal normal probability plot of residuals is a straight line. The red line on Figure 12.7
is the linear fit through the residual data points. This normal probability plot appears
relatively close to normal, except for a few data points at the upper end. This means that
the underlying regression that generated the residuals is likely to be valid.

GENERALIZED LINEAR MODELS (GLMs)

The multiple linear regression models suffered from a number of constraints and
assumptions that could not be varied, lest the inferences from the model become invalid.
Much work in the mathematical and statistical community over the past 20 years has
provided a much more flexible framework for analyzing data in a regression context. This
work has successively expanded and generalized the Multiple Linear Regression (MLR)
model by

1. Permitting the Y-variable to be replaced by a set of values. Therefore, multiple dependent
variables could be analyzed with the same solution techniques as single dependent
variables;

2. Permitting each X-variable to be replaced by a set of values;
3. Providing a method for analyzing the sets of values by matrix algebra rather than

standard arithmetic;
4. Providing for linear transforms of the Y matrix and the X matrix to perform high-order

polynomial regressions;
5. Providing a number of methods for coding categorical predictors to accomplish the same

goal as dummy variables, without increasing the number of variables;
6. Providing a method for overcoming the linear independency assumption of MLR, but

allowing a solution of normal equations with a generalized inverse operation. A normal
matrix inversion is very restrictive (you can do it only one way). But a generalized
inverse operation can be done many ways, leading to many possible solutions;

7. Providing methods for handling redundant predictors.

The combination of these provisions of the GLM approach removes the most significant
limitations of MLR. The matrix architecture of the analysis operations permits full-factorial
designs (N � N variable analyses) to incorporate all interactions between predictor variables
to be evaluated for effects on the dependent variable. These interaction effects can be com-
bined with the main effects (attributable to the independent effects of the predictors).

A wide variety of experimental designs can be accommodated by GLMs. Examples of
these designs include the following:

• Classical ANOVA designs can be used to assess the N � N effects of factorial
experiments.
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• ANCOVA (analysis of covariance) designs with both continuous and categorical
predictors can be evaluated. ANCOVA designs permit the evaluation of the significance
of the interactions in factorial designs.

• Mixed models of ANOVA and ANCOVA can be accommodated.

Many more experimental designs can be evaluated by GLM analysis, making it the most
flexible parametric procedure to use, with the fewest assumptions. If you have a normally
distributed data set, a GLM analysis may be the best way for you to go. Data mining and
machine learning methods (see following sections) may be able to handle more complex
response surfaces, but the techniques for evaluating models are far fewer than those avail-
able for parametric techniques. See Chapter 13 on model evaluation and enhancement for a
discussion of some of these techniques.

METHODS FOR ANALYZING NONLINEAR RELATIONSHIPS

In a nonlinear relationship, the trend line of Y plotted against an X-variable is not a
straight line, but rather it is a curved line, as shown in Figure 12.9.

Figure 12.9 shows the relationship with Y is not a multiple of X (as it was in the geomet-
ric progression), but according to the natural logarithm (Ln) of X. Notice that the slope of
the plotted line is not constant; it can be evaluated only for a given point on the curved line.
Most relationships in nature and in the business world are intrinsically nonlinear rather
than linear in nature.

NONLINEAR REGRESSION AND ESTIMATION

It is possible to fit a nonlinear function simply by replacing some of the variables with
polynomial terms, which include that variable. This approach is called polynomial (or cur-
vilinear) regression. For example, if we replace predictor variable X with X2, or some
higher-order polynomial, the regression equation can account for nonlinear effects in X.
This procedure is usually a trial-and-error process because it is difficult to know ahead of
time which polynomial to use. A GLM model can be configured to do this easily. Contrary
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FIGURE 12.9 A plot of a nonlinear relationship (Y ¼ LnX).
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to what it appears to be, it still uses a linear function to fit the data, and we should not call
this nonlinear regression. Techniques like this are referred to often as intrinsically linear
regression models.

An intrinsically nonlinear regression model uses an arbitrary nonlinear function to
replace one or more of the variables. This nonlinear function has no exact solution, but
rather its parameters must be estimated. Hence, the better name for it is nonlinear estima-
tion. These estimation procedures make a number of passes through the data set and mini-
mize an error function along the way. Any one of a number of techniques can be used to
find the “minimum” error (e.g., Least Squares, Maximum Likelihood, Quasi-Newton
Method). There are a number of common nonlinear estimation techniques, which can be
very useful in data mining applications. These techniques include

• Logistic (or Logit) Regression;
• Probit Regression;
• Poisson Regression;
• Piecewise Linear Regression.

Logit and Probit Regression

Logistic regression was introduced in Chapter 11 because it models binary outcomes that
have only one of two possible values, which is a form of classification. Probit regression
is similar to logit regression in that it too has only two possible outcomes, but there is a
“fuzziness” associated with these outcomes. For example, many surveys use a multipoint
scale to measure responses. A 5-point scale might be defined as follows: 5 ¼ strongly agree;
4 ¼ generally agree; 3 ¼ neither agree nor disagree; 2 ¼ generally disagree; and 1 ¼ strongly
disagree. Actually, this scale reflects a “feeling” about one of two possible outcomes: agree
or disagree. The distribution of these responses can be transformed to reflect the appropri-
ate area under a normal probability curve (assuming a normal distribution, of course), and
they can be analyzed using the probit model in Equation 4:

NPðfeelingÞ ¼ NPðb0 þ b1 � x1 þ b2 � x2 þ . . .Þ ðEq: 4Þ
where NP is the normal probability, or space under the normal curve.

Poisson Regression

Poisson regression uses the Poisson distribution (rather than the normal distribution) to
express data relationships. The Poisson distribution fits count data well, such as attendance
counts on different days or for different events.

Exponential Distributions

The normal and Poisson distributions are types of exponential distributions because they
include an exponential factor (representing a value with an exponent). These distributions
can be classified according to two parameters: a dispersion parameter and an index parameter.
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For a detailed discussion of these parameters and the distributions they express, see J�rgensen
(1987). For our purpose here, we can classify a distribution by its index parameter p:

• p ¼ 0 . . . Normal distribution
• p ¼ 1 . . . Poisson distribution
• p ¼ 2 . . . Gamma distribution
• p ¼ 3 . . . Inverse Gaussian distribution

One of the common problems in data mining is modeling the occurrence of significant
events. The significance of this occurrence is composed of two components: frequency of
the event and severity of the event. Statistical analysis of these significant events requires
the calculation of probabilities. The calculation of the probabilities for frequency follows
the Poisson distribution, and that for severity follows a log of the normal distribution.
You can calculate the probabilities easily enough according to the properties of each expo-
nential distribution. The problem enters when you try to combine them. The calculated
probabilities are not additive! You must find a way to combine inferences from the different
probabilities. The most common application where this must be done is in the modeling of
insurance credit risk.

There are three ways to model problems like insurance risk:

1. Model frequency and severity separately, using different algorithms, and then report on
them separately.

2. Use a distribution, such as the Tweedie distribution (see J�rgensen, 1987), which has a
p value of between 0 and 1. This is a compromise between the normal and Poisson
distributions.

3. Use transform regression, a technique available in one data mining tool (IBM
Intelligent Miner) to analyze a probability defined using elements of the mathematical
expressions of both the normal and Poisson distribution (see Pednault, 2006).

Piecewise Linear Regression

Piecewise linear regression fits a linear regression on a number of portions of a nonlinear
response curve. Piecewise linear regression carves up a nonlinear relationship into a num-
ber of linear ones. Consider the inverse logistic curve introduced in Chapter 11, with three
linear functions fit to it (Figure 12.10).

Conceptually, we can see in Figure 12.10 how piecewise linear regression preprocesses
the data. First, it determines appropriate breakpoints along the line at (a) and (b), and
defines the three straight lines shown in the figure. Next, the algorithm fits an ordinary
linear regression to each of the three lines and presents the results for the combined
relationship. Essentially, this is the approach that C&RT follows to build a regression tree.

There are many other nonlinear estimation techniques available, although they are not
included in this handbook. For more information on other common techniques, refer to
Denison et al. (2003).
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DATA MINING AND MACHINE LEARNING ALGORITHMS
USED IN NUMERICAL PREDICTION

The most common machine learning algorithms used for predicting continuous response
variables are

• C&RT;
• Neural nets;
• Decision trees;
• SVMs and other kernel techniques.

The material in the following sections may repeat some of the discussion in Chapters 6
and 7. We chose to accept this redundancy for the sake of coherency in this presentation.
We hope that this restatement will aid your understanding, not bore you.

Numerical Prediction with C&RT

C&RT can be used for regression problems, as well as classification problems. In predic-
tion, the continuous dependent (or response) variable Y is treated similarly to regression.
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FIGURE 12.10 Piecewise linear segments expressing the nonlinear inverse logistic curve.
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Predicted values are continuous numbers rather than categories. The continuous predictor
variables are “binned”; that is, their ranges are divided into subranges using calculated split
points. Each bin can participate in the formation of a number of if-then logical conditions.
As was shown in Chapter 11, these if-then statements can be combined together to form
a tree structure. The tree is grown along a particular branch using the Gini score as a split
criterion (or some other metric) until the splitting process can’t continue any further along
that path because one of the stopping criteria was met.

The Tree Structure

A tree was built in STATISTICA Data Miner on an industrial failures data set, the first
few nodes of which are shown in Figure 12.11.

The first variable (with the highest ranking) is split to separate those cases with values
less than or equal to 9.86 and those with values greater than 9.86. Node 3 does not split
any further because one of the stopping criteria has been met (the 15 cases in this node were
less than the 1060 case minimum set in the tool). The SQL for the node is as follows:

/* Selecting cases related to Node 3 */

SELECT * FROM <TABLE>

WHERE ( (“RESP_DEF” > 9.86)

);

/* Assigning values related to Node 3 */

UPDATE <TABLE>

SET NODEID ¼ 3, PREDVAL ¼ 2.36, VARIVAL ¼ 3.42)

WHERE ( (“RESP_DEF” > 9.86)

);

<= 9.86 

RESP_DEF

> 9.86 

Node 2 
Node 3 

Node 1

(terminal node) 

FIGURE 12.11 First three nodes of a decision tree, showing one terminal node.
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From this SQL statement, a business rule can be induced: “If the value of the variable
RESP_DEF is > 9.86, then assign the predicted value as 3.42” (compared to the observed
value of 2.36). A similar (but more complex) business rule could be induced from this state-
ment for terminal node 46.

The SQL assignment statement at Node 46 is as follows:

/* Assigning values related to Node 46 */

UPDATE <TABLE>

SET NODEID ¼ 46, PREDVAL ¼ �1.58286355732380e-001, VARIVAL ¼ 1.86424905201287e-
003

WHERE ( (“RESP_DEF” <¼ 9.85776807826836eþ000)

And (DR3 <¼ 9.29624349632859eþ000)

And (“PRE_L_DS1” > �7.37056366674857e-001)

And (“RESP_DEF” <¼ 6.67860053006884e-002)

And (“PRE_L_DS1” > 3.83034634488327e-002)

And (“RESP_DEF” <¼ �4.28291478552872e-002)

And (“PRE_L_DS1” > 3.63470956904821e-001)

And (“RESP_DEF” > �6.63181092458534e-002)

(Note: Values are not rounded in this example.)

Model Results Available in C&RT

Most of the report tables and charts are available from data mining tool packages
providing C&RT. These features are described next.

Variable Importance Tables

The variable importance table will give you overall expression of the importance of
a variable among all the splits in the tree (Table 12.1). The variable with the highest

TABLE 12.1 Variable Importance TableGenerated by C&RT

Predictor importance 1 (fail_tsf.STA) Dependent variable:

TOT_DEFS Options: Continuous response, Tree number 1

Variable – rank Importance

DR3 100 1.000000
PF_DS 93 0.930011
PF_AOL 93 0.928640
RESP_DEF 90 0.899691
PRE_L_DS1 89 0.886784
RESP_AVE 84 0.842368
PF_SR 78 0.783173
DR2 49 0.493977
PF_IC 44 0.438273
PF_PRE 41 0.409875
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importance value (DR3) is not the variable used for the first split. It draws its importance
from its participation in many splits in the tree.

Observed Versus Predicted Plots

Figure 12.12 shows the observed versus the predicted values.

Normal Probability Plots of the Residuals

In Figure 12.13, the normal probability plot of the residuals shows that the large majority
of the residuals are well behaved; that is, they fall near a straight line. Some cases shown on
the lower left and upper right of the plot are anomalous, but in general the plot suggests
that the model is valid.

ADVANTAGES OF CLASSIFICATION AND
REGRESSION TREES (C&RT) METHODS

Following this approach, C&RT can produce accurate predictions based on a number of
if-then conditions, and the results of the model have many advantages over many alterna-
tive techniques.
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FIGURE 12.12 Observed versus predicted values.
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Comprehensibility of the results. The simple architecture of the process permits rapid devel-
opment of predicted values. This approach is much faster than calculating matrices and
performing mathematical operations on all possible combinations of input variables. The
decision tree process used in C&RT (and other decision tree algorithms) follows a winnow-
ing process to separate the important predictors from the unimportant ones. Not only is
the computation simpler, but the models are often simpler as well. But the most powerful
feature of decision trees is the ease of understanding of the models by business people,
particularly management. Models will not be accepted until managers understand them
in terms of their own business concepts. Many data mining models have languished on the
shelf because management did not understand them enough to trust them.

Handling of missing values. Most C&RT methods will handle missing values by suggesting
a surrogate split to use in the case of missing values. This feature is nice in many applica-
tions with missing data.

Decision tree methods do not make parametric statistical assumptions. Predictions can be pre-
sented in a few logical if-then conditions at the terminal nodes. No implicit assumptions
are made of a normal data distribution, or linear relationships among the variables and
the response variable. Decision tree methods are well suited for data mining tasks, where
the analyst does not know ahead of time which variables are important predictors. Thus,
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decision tree methods may uncover relationships and express them in a few decision
rules, which might be masked by other more computationally intensive methods.

General Issues Related to C&RT

Multilevel splits. When there is one obvious split point in the range of a variable, C&RT
does well. But if there are potentially multiple split points, the binary splitting approach
may oversimplify relationships between variables. See Briemann et al. (1984) for more
details and challenges of determining the best binary split point. Also, an excellent discus-
sion of both decision trees and neural nets in general is provided in Ripley (1996).

The danger of overfitting. Theoretically, a decision could keep on splitting until it creates
terminal nodes for every case. In that case, the tree will keep splitting until not only the
signal pattern is modeled, but also the noise in the data is modeled perfectly. The prediction
accuracy would be perfect, but the model would probably fail miserably on other data
sets (the generality is low). The challenge in building a useful tree is determining when
to stop splitting, thus creating a less predictive model that is more general. This issue is
an expression of the general machine learning tendency to overtrain an algorithm.

The easiest way to address this issue is to impose one or more stopping rules on the
training process. Common stopping methods are

• Less than a minimum number of cases is included in the split;
• Maximum number of terminal nodes (leaves) has been reached.

After the tree building has been stopped, many algorithms begin “pruning back” the
tree, by iteratively evaluating the “sensitivity” of the solution of the elimination of var-
iables one at a time. The goal in pruning decision trees is to find the simplest model within
a specified range of the highest accuracy, one that is equally as accurate (or nearly so) in
predicting new cases.

Model testing. Many decision tree algorithms provide an option to split the input data
stream into a training set and a testing set. If this option is enabled (and we strongly suggest
that you do so), the algorithm iterative builds a number of candidate trees with the training
set and tests each tree against the testing data set to measure the generality of the predic-
tion. Then the algorithm can choose which tree has reasonable accuracy and good general-
ity. If this facility is not available in your decision tree algorithm, you should split the trees
outside the tool and test each candidate tree manually.

Resampling. If the form of testing described in the preceding paragraph appears to be a
good idea, then you can understand the value in doing it many times on different random
samples of the data set. The variation in the predictions among trees built on different
resampled data sets is an expression of the model error, or the error that is due not to the
noise in the data but rather is caused by the effect of sampling a particular set of cases.
One random sample of cases may have a significantly different “view” of the response
signal than another sample set. Various resampling methods will be discussed in Chapter 13.

Large trees are problematical. Decision trees built on complex patterns in large data sets can
become quite large (unless controlled by a maximum-size stopping function). With modern
computers, this size is not so much a computation problem as it is a comprehensibility
problem. Complex trees are difficult to present to the “consumers” of the project results.
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APPLICATION TO MIXED MODELS

C&RT is useful for analyzing both categorical and continuous predictor variables. But it
is also quite flexible in analyzing multiple response variables in full-factorial experiments.
Some data mining tool packages provide for coded ANCOVA designs to separate the main
effects from the interaction effects, similar to a GLM algorithm.

NEURAL NETS FOR PREDICTION

The operation of neural nets for classification was introduced in Chapter 11. Operation
of this algorithm for prediction is very similar, except the prediction is not converted to a cat-
egory at the end. Older algorithms require you to set a number of parameters. Usually, the
parameters have default values, but you can modify them. In Chapter 11, we introduced
the parameters of learning rate and momentum. In addition, you can change the network
architecture (the number of middle, or “hidden,” layers and the number of neurons to be
used in each hidden layer). Finally, you may be able to modify the rate at which the learning
rate degrades between iterations of the model, permitting a more thorough search over the
response surface to find the solution with the lowest (global) minimum error. Therefore,
modeling with neural nets is much more of an art than a science. Of course, academics and
researchers will twiddle with these settings to optimize a given behavior of the neural net.
But the business user will be quite happy to use the default settings most of the time.
Why? The reason is that neural nets can produce a model for classification or prediction with
default settings that are among the best models possible, and they can do it rather quickly.

Manual or Automated Operation?

Neural net implementations in several common data mining packages provide an
automatic operation to select the optimum network architecture (e.g., SPSS Clementine,
SAS-EM, and STATISTICA Data Miner). This optimization of network architecture is a huge
benefit to the data mining practitioner. Algorithm implementations of this sort permit the
user to spend less time on configuring the algorithms and spend more time on model
enhancements (see Chapter 13). The STATISTICA Data Miner Recipe interface will train
models using multiple algorithms automatically, permitting the data miner to “view” pat-
terns in the data from several mathematical perspectives. This “synoptic” view of data
patterns is a powerful means to capture all aspects of the response signal in the model results.

Structuring the Network for Manual Operation

In this context, manual operation means that you set the parameters for the algorithm’s
function yourself. Given a learning rate and momentum, the operation of a neural net
is controlled by the number of layers and the number of nodes (processing elements)
in each layer of the network. There is no best architecture for any particular application.
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There are only general rules of thumb developed by practitioners over time that may be
used to guide users.

Rule One: As the complexity increases in the relationship between the predictor variables
and the response variables (Y), the number of the processing elements in the middle layer
should also increase.

Rule Two: If the response pattern being modeled is highly nonlinear, then one or two
middle layers may be necessary to capture the nonlinear relationships. If the response
pattern is not particularly nonlinear, the additional layers lead to overtraining. For example,
phone call duration data conform well to an inverse logistic curve and can be modeled
successfully with a logistic regression or a two-layer neural net with a logistic activation
function (the equivalent of a logistic regression). If you add a middle layer, you have to
be careful not to overtrain the model. Addition of a second middle layer will usually
degrade the performance of the model on the validation data set.

Rule Three: The number of nodes to put in the middle layer(s) should be no more than
1/5 to 1/10 of the number of cases available in the training data set. A factor closer
to 1/5 should be chosen as a maximum for data sets with more complex patterns, and a fac-
tor closer to 1/10 should be selected for data sets with simpler patterns. Too many nodes
in the middle layer will increase the likelihood of overtraining and generate models with
relatively low generality. Too few nodes in the middle layer may not be able to capture
the nonlinear patterns in the data.

Modern Neural Nets Are “Gray Boxes”

It used to be said that neural nets were “black boxes”; that is, they did not provide much
information on how the solution was created. Early neural net algorithms yielded predic-
tions or classifications but no measures of variable importance or error. Modern neural
net algorithms provide a measure of variable importance (see Chapter 11) that opens up
the black box to permit the user to see some reflections of the operational details. Also, data
mining packages can add model evaluation tools to neural net outputs, such as

• Coincidence matrices (for classification only);
• Lift charts;
• Observed versus predicted charts;
• Residual plots;
• Metrics of prediction accuracy (more on this subject in Chapter 13).

Example of Automated Neural Net Results

STATISTICA Data Miner provides a very powerful automated neural net (SANN) algo-
rithm. Try this algorithm (available on the CD-DVD) on any prediction or classification
problem. The results from an SANN run on the Failures data set generated the report
shown in Table 12.2.

The SANN algorithm performs an 80:20 randomized split of the data set, trains on the
80% portion, and tests the models on the 20% portion. Notice that SANN trained five
neural nets, each with 10 predictors, and one output (prediction), and numbers of nodes
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in the middle layer varying from 4 to 11 (see the Net. Name column). The term MLP
stands for multilayer perceptron, another name for a neural net. The five nets also varied
in the activation functions used to pass data through a node. Data accumulate (according
to the accumulation function) and pass to the next node via a “firing” (activation) func-
tion. Different activation functions will generate slightly different solutions to the model
for a given case. The model judged best by the algorithm report is model #1. An alterna-
tive approach would be to define the best model as the one with the highest evaluation of
the ratio between the performance on the testing set (Test perf.) and the lowest testing
error (Test error). If we use the second approach, model #2 has the highest score of
27,651, compared to 26,912 for model #1.

SUPPORT VECTOR MACHINES (SVMs) AND OTHER
KERNEL LEARNING ALGORITHMS

The automated operation of some neural nets is eclipsed by the almost total automa-
tion of an SVM. Early SVM algorithms (e.g., SVM-light) required that inputs be scaled
from –1 to þ1. Modern SVM algorithms include some data preprocessing routines that
standardize the inputs properly for the algorithm. The SVM algorithm in STATISTICA
Data Miner is a good example of this automated operation (see Table 12.3).

The correlation value of 0.96275 is just the Pearson Product-Moment (simple) correlation
coefficient between the observed and predicted values in the testing data set (25% hold-out
sample). The evaluation of the other numbers in Table 12.3 would have meaning only when
comparing two SVM models using different settings. The kernel function for this model
runs as a Radial Basis Function (RBF). Other kernels available are linear, polynomial, and
sigmoid. Some output plots are provided by this SVM. Figure 12.14 shows the plot of
observed versus predicted values for this model.

TABLE 12.2 Summary Report of the Five Best Networks Generated by the SANN Algorithm

Summary of Active Networks (fail_tsf.STA)

Index

Net.

Name

Train

Perf.

Test

Perf.

Training

Error

Test

Error

Training

Algorithm

Error

Function

Hidden

Activation

Output

Activation

1 MLP 10–
10–1

0.978341 0.968836 0.000039 0.000036 BFGS 23 SOS Exponential Exponential

2 MLP 10–
5–1

0.971171 0.967780 0.000056 0.000035 BFGS 20 SOS Tanh Tanh

3 MLP 10–
7–1

0.979169 0.967803 0.000037 0.000036 BFGS 32 SOS Tanh Identity

4 MLP 10–
11–1

0.973139 0.967721 0.000052 0.000035 BFGS 13 SOS Identity Tanh

5 MLP 10–
4–1

0.976285 0.967110 0.000042 0.000036 BFGS 31 SOS Exponential Identity
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TABLE 12.3 Performance and Error Report of the STATISTICA Data Miner SVM

Regression summary (Support Vector Machine), Test sample (fail_tsf.STA) SVM:

Regression type 1 (C=10.000, epsilon=0.100), Kernel: Radial Basis Function

(gamma=0.100) Number of support vectors¼ 25 (7 bounded)

TOT_DEFS

Observed mean �0.00999
Predictions mean 1.01321
Observed S.D. 0.98360
Predictions S.D. 0.77431
Sum of squared error 1.14743
Error mean �1.02320
Error S.D. 0.31708
Abs. error mean 1.04233
S.D. ratio 0.32236
Correlation 0.96275

TOT_DEFS (Observed) vs. TOT_DEFS (Predictions) (fail_tsf.STA)
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FIGURE 12.14 Observed versus predicted values for an SVM.
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Compare the plot in Figure 12.14 with that of Figure 12.12 (generated by C&RT). The
distribution of predicted values on Figure 12.14 falls closer to a straight line (the ideal)
than do the values in Figure 12.12. The correlation coefficient of 0.96þ for the SVM is
slightly better than that of 0.92 for C&RT. Does this prove that the SVM model is better
than the C&RT model? No, the answer is not as simple as that. We must do more work
to determine that.

To evaluate models, we must look at a number of other factors. Neither the C&RT
model nor the SVM model included any assessment of the model error. We can assess
this model error by performing a V-fold cross-validation operation in the models. We will
discuss this method of resampling further in Chapter 13. If we had included the cross-
validation operation in the modeling process, we might have seen different models
selected as the best model for each algorithm. For now, suffice it to say that we can
make no judgment of which model is best among those generated by SANN, C&RT, or
the SVM.

POSTSCRIPT

The introduction to classification problems in Chapter 11 and to numerical prediction
problems in this chapter provides a foundation for designing the appropriate analytical
approach to most prediction problems you might face. Chapter 13 builds on this frame-
work to show you how to evaluate and refine models after they have been trained. We
place this chapter here in the sequence because it pertains to all models you will create
in any of the general application areas discussed afterward. In addition, this information
will help you understand and proceed through the tutorials in Part III of this book.
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PREAMBLE

One of the most common questions asked by beginning data miners is “How do I know
when my model is any good?” This chapter will introduce you to a number of model
metrics that you can use to measure the “goodness” of your model. But this process of
modeling and evaluation is not a linear process; it is iterative. It is very rare that the best
model will be trained initially. Often, the evaluation process will point out some issues that
can be resolved by making some changes in the data preparation or modeling process.
These changes may help to enhance the predictability of the model. Thus, the complete
sequence of operations is

Modeling ! Evaluation ! Enhancement

This process may consist of many iterations; thus, we must view them as a single
integrated operation. That is why the activities of model evaluation and enhancement are
included in the same chapter.
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INTRODUCTION

In this chapter, we will explain ways to tell how well your model is doing and then give
a checklist of actions you can employ to improve its performance. Using a reliable tech-
nique for model assessment is essential. With that, you can search through the vast space
of possible data transformations and model options to find the best model and have confi-
dence in its out-of-sample performance. We’ll explain some useful principles and shortcuts
but emphasize that no method is as valuable as careful resampling (also known as cross-
validation, leave-one-out, bootstrap, and jackknife; see Lachenbruch and Mickey, 1968;
Lachenbruch and Goldstein, 1979; Efron, 1982; Rothpearl, 2008) that assesses the modeling
algorithm over multiple splits of the data.

Before the checklist, we’ll recap clustering and the five most popular algorithms for
prediction and classification: linear regression, linear discriminant analysis, decision trees,
neural networks, and nearest neighbors. These and other algorithms can be split into two
broad groups, defined by what they do with the training data:

• Consensus: The data are used to create a model summarizing its information and
then are thrown away (e.g., regression).

• Contributory: The data (or some of the data) are retained and potentially employed
to evaluate a new case (e.g., nearest neighbors).

A key difference is that contributory methods require severe reduction of the number of
dimensions to keep the input space as densely populated as possible. (In high-dimensional
space, no other point is really nearby.) Consensus methods are muchmore tolerant of large num-
bers of features. However, the contributory methods (overlapping with what are normally
called nonparametric methods) can be more flexible and adaptable to unusual situations,
allowing their complexity to be contained in the retained data, rather than an equation.

Experience with many projects and software tools has revealed that most major tech-
niques have strengths that can contribute to a solution, and that it’s rare for one algorithm
to dominate even one other in all properties. It is best to fit multiple models—especially
ones of different types. Not only can insights be “fused” from multiple diverse models,
but their estimates can be combined to (very often) yield an incremental improvement in
performance, as shown near the end of the chapter.

Lastly, we end with some advice for the survival and success of the engagement of which
the model is a key part—that is, with some practical words about consulting with clients
(internal or external) and for developing your career skills as a data mining analyst.
You can think of this as modeler evaluation and enhancement.

MODEL EVALUATION

How accurate is your model? The first clue is the training performance—how it does on
the cases it is shown during training using the variables available then. If this accuracy is
too low, the model is “underfit,” and you must work hard to find useful relationships.
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But the greatest danger in data mining is the opposite problem—overfit—where you fit the
noise, as well as the signal, of the data. Overfit models look good while training but fall
apart on evaluation when used on new data. Often analysts have brought a model all the
way to implementation, feeling quite proud of their accomplishment, only to have reality
hit at such a late stage that great damage is done. This is why overfit is so dangerous; the
stakes are often high when it is discovered.

Splitting Data

The essential first step in any modeling task is to split off an evaluation set.1 This
should come before any other step (with the exception of examining the data just enough
to stratify the training sample, if the minority cases are rare enough). Often, researchers
don’t do this early enough, so the lessons they learn—about which variables are useful,
what the valid ranges of the data are, what outliers look like, etc.—are all tainted by look-
ing at all the data, and the evaluation results aren’t truly out-of-sample. It is essential that
the data a model is presented on evaluation are completely new to the model (and the
process that generated the model, including your own examinations). Only then is it a
true evaluation.

Training error is obviously not our metric to optimize; if it were most important, a
lookup table would be the ideal algorithm (“Let’s see, case 17, . . . the answer is . . .”). For
a model to be used, going forward, it needs to generalize to new data. Recall learning mate-
rial from a textbook: some problems have answers (output labels) at the back (the training
data) and similar but new problems on the test (evaluation). To do well on the test, a good
learner induces the lessons (relationship between the questions and the answers) from the
specific cases where the label (answer) is known and then can handle questions of the same
type in the future.

But how do you split the data? As for proportion, it is usual to set aside 20–30% for evalua-
tion. There is a trade-off; you want as much data as possible to drive learning, but also
enough to comprehensively test the model. The practical consensus is to put more data
on the training than evaluation side. As for case selection, the default method is to ran-
domly split the data. It is too dangerous to split it by the order in the file, as there may
be some information embedded in how the data was assembled. You may end up training
on the credit applications that first arrived, for instance, and testing on those that last
arrived, to find that they have very different behavior. The exception is if the model itself
is time-based, e.g., as in stock-market investing. Then the best (toughest) metric is to train
on the oldest data and evaluate on the newest. This reflects how the real world will chal-
lenge the model. Otherwise, you might not notice how vulnerable the model is to sudden

1 Some like to call it a “test” set, but, as you often have to name files or variables to keep track of data, it’s

very useful to label the out-of-sample (evaluation) data with a different first letter than the in-sample

(training) data, e.g., Tdata and Edata, etc.
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changes in tax law, inherent market volatility, political regime, etc.2 and side-step a problem
in testing that you wouldn’t be able to do in practice.

In classification, there is often one rare and important class, such as fraud, or cancer, or a
prospect who actually becomes a customer. When you are splitting the data, it is important
to have these influential cases fairly represented in each set—a process called “stratifying
the sample.” If the overall response rate to a mailing is 1%, for example, then separately
split the 1 and 0 response cases (randomly) so that 1% of training and 1% of evaluation
is a responder. Sometimes it can be important to stratify the input variables as well.
For instance, political pollsters can do very well at extrapolating the preferences of about
1000 interviewees to gauge the sentiment of 120 million voters if they pay careful attention
to categorizing whom they’re interviewing (male/female, old/young, Black/White/
Hispanic/Asian, land-line/cell-phone, past/new voter, etc.) and scale up their responses
according to the estimated proportion in the full population. So, when stratifying on
multiple variables, do the following:

1. Divide the data into sets according to the stratification variables. (If one group is too
small, perhaps drop a variable from the stratification set.)

2. Randomly remove cases from each set according to your evaluation proportion.
3. Join the training cases of each group together to form your training sample. All other

cases are your evaluation sample.

Avoiding Overfit Through Complexity Regularization

As you add terms to a model, the training error will go down (or at least stay
flat). But, with more terms, the evaluation error will eventually go up, as shown in
Figure 13.1.

There, the evaluation error tracked training well until a dramatic explosion upward on
the ninth point (an 8th-order polynomial) where the model failed miserably. The data
points and the estimation curves of the models of increasing order and flexibility are shown
in Figure 13.2.

The data points (shown as diamonds in the figure) roughly rise from left to right, and
this is reflected in the simplest model—a line. As you add more and more powers of X to
the candidate input pool, the models get more flexible, until they eventually can exactly
fit all the data points, when the number of coefficients in the model equals the number
of constraints (data points) in the data. The final model is the most excessive in its

2 This chapter is being written (Fall 2008) as the stock market goes through gut-wrenching drops (second

in magnitude only to the Great Depression) with accompanying multiples of previously normal volatility,

and when a change in political administration portends dramatic shifts in tax and spending policy. If a model

can’t weather such a change, it should at least signal “don’t know”—i.e., that it is being asked a question

that it’s not qualified to respond to (hasn’t seen that value or combination of values before in its inputs). See

Mistake 8 in Chapter 20.
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Y = f(x)
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FIGURE 13.2 Training data points and estimates of models of Figure 13.1.
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FIGURE 13.1 Training and evaluation error versus order (highest power) of a polynomial linear regression
model.
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estimates (in fact, its error is off the scale in Figure 13.1) and the second-to-last model is
also unsuitable for prediction—especially extrapolating outside the bounds of the data,
but even interpolating between known points.

Statisticians have long known of this relationship between complexity and accuracy, and
one way to avoid overfit is to regulate the complexity of the model. This is done in four
main ways:

1. Reserving data and stopping when the evaluation performance starts to
worsen;

2. Penalizing complexity according to number of parameters of the model;
3. Penalizing the “roughness” (e.g., integrated second derivative) of the estimation

surface;
4. Penalizing the total magnitude of the estimated parameters, e.g., the sum of the absolute

values of the regression weights.

In methods 2–4 shown here, the analyst minimizes a weighted sum of error and the
penalized quantity to crown the “best” model.

Method 1, reserving data, will get our greatest attention in this chapter and book.
Method 3, penalizing roughness, is rarely used but is more precise in its goals than
Method 2, penalizing number of terms (which is very common), as exemplified by cri-
teria such as Cp (Mallows, 1973), Akaike’s information criterion (AIC; Akaike, 1973),
and Minimum Description Length (MDL; Rissanen, 1978; Barron, 1985; and explained
in Elder and Finn, 1991). These methods essentially boil down to minimizing the
formula

errorþ y�K

given the number of model terms, K, and complexity trade-off parameter, y. The different
criteria provide theoretical values for the latter, but most engineers (like one of the authors
here) tend to experiment with that simple knob.

This approach (complexity penalty) does allow you to use all the data for training
a model and can be used very effectively to protect against overfit. But there are sev-
eral problems with defining complexity as the number of parameters, as is explained in
Chapter 18, which details how to measure true complexity.

Method 4, parameter shrinkage, is exemplified by Ridge Regression (Hoerl and Kennard,
1970), where some “mass” is added to the diagonal values (the ridge) of the matrix to be
inverted for linear regression, causing the overall parameters to be less extreme. This trick
has been discovered also in other contexts, such as “optimal brain surgery” in neural
networks (where weight magnitudes are penalized to keep them lower and under better
control) and in Bayesian methods such as shrinking, where a prior parameter estimate of
zero is combined with the measured parameter values to draw the final values lower.
We are big fans of such Bayesian ideas but find the proper use of reserved data (see
cross-validation in “Cross-Validation to Estimate Error Rate and Its Confidence”) to be
the most useful method of all.
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Error Metric: Estimation

For estimation, the metric almost always used is minimum squared error (MSE). You set
parameters to minimize the sum of the squared difference between the true and estimated
values3 over all cases:

Sðtruth� estimateÞ2

While this is the best metric theoretically when the errors are normally distributed, the
real reason for its use is its extreme mathematical tractability. With linear regression, for
instance, you can near-instantaneously find the ideal joint set of weights for a large number
of inputs in a single fast matrix inversion step. If you used another metric, it would take
vastly longer. For instance, least absolute error

S j truth� estimate j
can be minimized, it can be shown, by a linear program. This is guaranteed to converge to
an optimal value but takes several iterative steps. A more custom metric (such as dollars
saved) requires a global search algorithm, which can take orders of magnitude longer
and is not guaranteed to converge to the best possible value under the constraints of the
parameters and data (unlike with squared error and absolute error).

However, even with its speed, MSE is rarely the preferred metric to employ. Its implicit
normal distribution means that extreme errors are expected to be very unlikely. Thus, when
an outlier occurs, it has a huge influence on the model selected. Also, the errors are nonlin-
ear. A profit loss of $2 is not often four times worse, to the end user, than a loss of $1, but
that’s what MSE “believes.” Even more important, one direction of error (e.g., positive: true
value > estimated) could be a good thing—e.g., reflecting profits made—yet be counted as
just as bad as its opposite. A custom error metric can better reflect the true trade-offs in
a model’s estimates. We have found that it is often worth the effort, on very challenging
problems, to design a custom error metric and employ a global search algorithm (such as
random search or GROPE; Elder, 1993) to minimize that metric over your model. This effort
can often yield the key incremental improvement in performance that makes a model
worthwhile where none was before.4

Error Metric: Classification

Percent correct (PC) is the default performance metric reported for classification but is
rarely the best metric to use. The reason is that errors of one type (e.g., false dismissal)
are often much more costly than errors of the opposite type (false alarm); yet PC counts
them as equal. You must assess the relative costs of different kinds of errors to get the best
balance. If the software tool allows, you can efficiently record this information in a cost

3 Always define error as true – estimate. Satellites, for instance, have spun out of control because two

groups used opposite definitions. It doesn’t matter to calculate MSE, but does when you take corrective

action due to the implemented model.
4 See Mistake 3 in Chapter 20 for an example.
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matrix, as shown in Table 13.1. [A 2�2 matrix is shown, but the same concept works for
K classes, where a K�K matrix would require K*(K – 1) off-diagonal relative misclassifica-
tion costs to be estimated and plugged in.]

In the credit scoring application of Table 13.1, analysts have estimated that a default
is seven times worse than a miss. That is, giving credit to an applicant who will eventually
default swallows the profit made from seven good customers. (In reality, risk is along a
continuum, but to make it a two-class problem, default has to be defined to be something
concrete like “more than 90 days late at least once in a 2-year period.”) The diagonals have
no cost, as that is where the predictions are correct. Note that the costs can be actual
amounts or can be normalized so the smallest cost is 1.0; it is only their relative magnitude
that matters. (Note also, some software tools require negative numbers; some positive.)
Now, the algorithm can find the minimum cost rather than the maximum PC solution. This
will be much more useful.5

The results can also be reported in a matrix, known as a confusion matrix, as shown in
Table 13.2.

There, 10% of the data cases are defaults, but 19% are predicted as defaults. This is the
result of defaults being more costly to miss, so there is a preference for false alarms over false
dismissals. Overall, 15% are errors (3% false dismissals with a relative cost of 7 each, and 12%
false alarms with a cost of 1 each), for a total cost of 0.33%. [Note that the overall cost is just
the dot product of the cost and confusion matrices, and that it is a relative cost here, so only
the relative (to total) population needs to be tracked in the confusion matrix.]

If the cost matrix (for a two-class problem) is hard to estimate and only a range of likely
relative costs is known, you can refer to a Receiver Operating Characteristic (ROC) curve of

TABLE 13.1 Sample Cost Matrix for Credit Scoring Problem

Cost Predicted Default Predicted Good

True Default 0 7
True Good 1 0

5 The model form, especially for a structurally unstable method like decision trees, is often very sensitive to

small changes in the cost matrix. This is due to so many alternative models being explored by the data

mining search method, and is normal, albeit unsettling.

TABLE 13.2 Sample Confusion Matrix for Credit Scoring Problem (Cells Record
% of Total Cases)

Confusion (% Total) Predicted Default Predicted Good True Total

True Default 7 3 10
True Good 12 78 90
Predicted Total 19 81 100
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the classifier. First employed at the dawn of radar, these curves show the trade-offs over the
continuum of cutoff values (relative costs) of the two competing goals; that is, they reveal
how changing cutoffs affect the classifier’s accuracy versus precision, or false alarm versus
false dismissal rate, or Type I versus Type II error, or false positive versus false negative
rate, etc. One receiver (classifier) dominates another in a cost region if it is better by both
criteria. The cost region of interest is that closest to the estimated relative cost. Thus, it is
possible for an ROC curve to reveal that one classifier is better than another without anyone
being able (or willing) to exactly specify the relative costs.

Note that each point along the ROC curve corresponds to a separate confusion matrix.
And choice of a particular confusion matrix as best implies selection of a relative cost
trade-off (e.g., cost matrix). Sometimes an analyst can present alternative solutions to
domain experts in this “backwards” way to discover what underlying cost trade-offs match
their intuition. Intuition is exceedingly powerful—a psychologist friend Dan Elash calls it
“unarticulated lessons from experience”—so uncovering it by eliciting preferences between
alternative solutions can be a very useful technique to know.

If a tool does not allow for cost matrices and only maximizes PC, you can give important
classes the proper weight by manipulating the data. Undersampling is when the majority
class is sampled and its other excess cases are ignored. This is tough for many analysts to
be willing to do, given the great value of data, unless the data are very plentiful. More com-
mon is oversampling, where the rare cases are simply duplicated. In the previous example,
then, six more copies of the default cases would be made so they can have seven times
their original influence on the overall model. Be very careful when sampling either way,
however, as problems can ensue (as explained in Mistake 9 of Chapter 20). Especially
remember to oversample only the cases in the training data, and make sure that none of
their copies appear in the evaluation data.

For estimation problems, you can also duplicate the cases of important classes to increase
their influence on the resulting model.

Error Metric: Ranking

The error metrics described in the preceding sections calculate a global score, over all the
data, but some problems really require a local score. That is, they may need to pay attention
only to cases near a boundary. For example, a model to estimate political leanings might
need to work well only at the boundary between two parties, where one could go either
way, if it is to be used to identify persuadable constituents where time or money spent
reaching out to them might affect their affiliation. (Hence, the influence of “battleground”
states when a winner-takes-all-delegates score function is used, and the ignoring of
“safe/lost” states by both parties.) On the other hand, if you are trying to identify the peaks
of the curve (e.g., who might donate or might volunteer for campaigning), then an extreme
is the most interesting region. Still, in both cases, the exact accuracy of the rest of the
population is not important.

To optimize an estimation problem of this form, you would have to define a custom cost
(or score) function and use a global search algorithm (and a lot of time) to find the best
model parameters (for a given model structure). But if your data mining tool allows
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multiclass cost matrices, you could approximate a complex and flexible cost function
through quantizing the output into multiple classes (along a continuum) and specifying
the misclassification costs in the matrix. Then, to show that a particular kind of mistake
doesn’t matter, use a zero in the cost matrix. Look for natural or sensible breaks in the out-
put when defining the classes. A slight loss will be the inherent ordering of real numbers;
translated into classes, it will not be “remembered” that “medium” comes between “low”
and “high.” A decision tree, for instance, will not hesitate to put opposite extremes together
in a node if the sample populations so dictate.

A simpler (albeit less optimal) way to get a feel for how your model is doing in the
region of interest to you is to use a lift or gains chart, as shown in Figure 13.3.

In the lift chart, the percent of the total responses is the vertical axis, and the percent
of the total population contacted is the horizontal axis. The diagonal line represents the
baseline or random case, where mailing X% of the prospects will get you X% of the dollars.
The line “lifted” above that is the result of using the model to order the cases (estimate the
likelihood of response, Y ¼ 1). The triangular knots on the model are the boundaries of
the different regions. They are few in number because this lift chart was built using a deci-
sion tree, and each knot represents a leaf node. The leaf is heavily populated if the span
between knots is large, and lightly populated if small. All cases within a given leaf node
have the same probability, so ordering within a node is random, and this is represented
by a straight line between knots. Note that the model does fairly well, as the line has lift
(is above the baseline). In particular, the highest-ranked (first) 10% of the population pro-
vides 20% of the return (a lift of 2.0), and this is made up for by the bottom 40% of the
population being needed to provide the same 20% return. (The curve always comes back
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FIGURE 13.3 Sample lift chart
for customer response application:
% Total Responses versus % Popu-
lation Contacted.
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to the corner point in this form of the lift chart.) If you are interested in how the top quarter
of the cases perform, the chart above says they provide over 45% of the return.

To build a lift chart using a decision tree, follow these steps:

1. Build the tree from the training data.
2. Order its leaf nodes by the response rate in training order6(best first).
3. Run the model on the evaluation data, scoring each leaf node.
4. Graph evaluation response % versus solicited % using the training order of the leaf

nodes from step 2.

If all nodes are well ranked, the slope of the line between successive knots (moving left
to right) will decrease slightly. Note that the model represented by Figure 13.3 has
some nodes whose ranking does not hold up on evaluation, as there are “dents” in the lift
curve. A similar chart from a more continuous type of model, such as linear regression, will
likely have many more knots, and it is possible (if the inputs are varied enough) that every
predicted value will be distinct. This will make the lift curve smooth, though it can still
be dented. Smoothness allows for much more variable cutoffs than can easily be had with
the few knots of a tree’s lift curve.

Cross-Validation to Estimate Error Rate and Its Confidence

What if, after splitting the data into training and evaluation, we are concerned that we
just got lucky (or unlucky) in how the model performed? The evaluation result is just one
number. How confident in it can we be? The best way to find out is to split the data multi-
ple times and validate the original number. If we organize our data bookkeeping in such a
way as to split the data V different times so each case is in the evaluation data exactly once,
we have V-fold cross-validation, as described here and shown in Figure 13.4:

1. Separate the data into V subsets of equal size (stratifying if necessary). A rule of thumb
is V ¼ 5 or 10.

2. Train V models, leaving out a different data subset for each.7 The training data have
proportionate size (V – 1)/ V.

3. Test each model on the data held out for it (the gray blocks of Figure 13.4).
4. Accumulate these test results to get a distribution of out-of-sample accuracies.

With cross-validation (CV), an analyst gets a distribution of error results, which is a
better estimate of true accuracy in two ways:

1. The mean is more accurate than a single experiment; and
2. The spread of the distribution provides an idea of the confidence in that mean value.

6 We found a serious error in a widely disseminated tool from a major vendor—which the vendor fixed

immediately upon our telling it privately—where it had instead ordered the nodes of the evaluation tree by

its own ranking, rather than using the ranking set from training. This look-ahead error led all users to think

they had better results than they really did!
7 In the limit where V ¼ N, the number of cases, you get the famous “leave-one-out” estimation method.
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To obtain the final model—since at this point you have V models that disagree on
details—analysts often refit a model on the whole data set and impute the error accuracies
of the CV models to it. Another option is to combine the CV models, which is in the spirit of
the powerful ensemble modeling approach described in “Ensembles of Models: The Single
Greatest Enhancement Technique.”

Note that what you are testing when you perform CV is what you hold constant between
the “plies.” That is, some things change in response to the different data sets, such as the
parameter values (e.g., a, b, c) estimated. But others won’t, such as (in one example) the
form of the model being fit (e.g., Y ¼ a*x þ b*x2 þ c*x3). So you are testing the overall accu-
racy of a model with that form on that data through the CV procedure. At the end, you
know how well such a model performs, but you don’t yet have the model itself; instead,
you have V submodels. So one of these two approaches (refit or combine) can provide
you the final model to use.

Bootstrap

Another powerful way to estimate accuracy with resampling is the bootstrap (largely
legitimized by Efron, 1979; Efron and Gong, 1983). With CV, you have to trade off the size
of the evaluation set and the number of evaluation error points. Use a plentiful set of
errors to make a good distribution, and the sets may be too small to provide an accurate
error estimate on their own. Bootstrapping is a much easier way to get a similarly good
estimate:

1. Repeatedly copy8 cases until you have a replicant data set of the size of the original.9

(Approximately 1/e of the cases in the original data set will be left out.)
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FIGURE 13.4 V-fold cross-validation.

8 Statisticians call this, less concisely, “repeatedly sample with replacement.”
9 Theory shows it really needs to be only half the size of the original.
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2. Do this as many times as you wish (e.g., 50 or 100).
3. Fit a model to each replicant data set and evaluate those models on the original data.
4. Measure the mean and sigma of the resulting distribution of errors, as with CV.

Each replicant data set is like the original, but also weirdly unlike it. Some cases appear
many times; others not at all. If the original were an animal, a replicant would have, say,
one eye and five legs—each would resemble the original animal but over- and underem-
phasize different aspects of it. Together, the results provide a very useful and robust esti-
mate of accuracy.

When should you use cross-validation over bootstrapping? Bootstrapping compared to
CV is easier to program, does not trade off evaluation set size and number of sets, and pro-
duces twice the information (according to theory), for the same effort. For these reasons,
many analysts who are comfortable with the randomness of resampling prefer it over the
“fussy” bookkeeping of CV. But sometimes you need strict control over the cases making
up the sets. The three most important situations in which you should use CV instead are if

1. You want to compare algorithms. (Data quality is usually more influential than
algorithmic power on results. Controlling the data is necessary, though not sufficient,
to make comparisons fair.

2. You want to combine models (See “Ensembles of Models: The Single Greatest
Enhancement Technique”), so they will all be trained on the same subsets.

3. Cases are not independent, or they come in sets. For instance, the rows of a medical
database may represent doctor visits. If you are to examine treatment efficacy, patients
should be assigned to one group or another (training or evaluation), and all their cases
should stay together.

Target Shuffling to Estimate Baseline Performance

What if you are performing discovery rather than fitting a model? How can you protect
yourself against the “vast search effect” where you’re bound to find something because you
look at so many possibilities?

One of us has developed a useful approach, called target shuffling, which is simply to

1. Randomly shuffle the output (target variable) on the training data to break the
relationship between it and the input variables;

2. Search for combinations of variables having a high concentration of interesting outputs
(e.g., diseased patients);

3. Save the “most interesting” result and repeat the process many times;
4. Look at a distribution of these bogus “results” to see how much apparent results can be

extracted from random data;
5. Evaluate where on this distribution your actual results stands;
6. Use this as your “significance” measure.

For example, it may appear, for students in a class, that the scores on the first homework
are positively correlated with age. You could come up with a good reason for this. But look
at enough candidate inputs, and the finite membership of the class will lead to something
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looking correlated. (It is likely that, presented with a result that the darker the hair, the bet-
ter the grade, we would be eager to explain exactly why! We humans love stories and will
look for ways to believe results that appear credible.) So randomly assign grades to the
wrong students and repeat your search. Then you know there is no true relationship, and
you can note the apparent relationship’s strength. One hopes that the best result on the
actual data is much stronger than the average best result on the shuffled data.

This idea of target shuffling was suggested to a vendor of data mining tools, Salford
Systems, a company that improves, maintains, and sells a very useful suite of software pro-
grams (CART, MARS, Random Forests, and TreeNet) whose core code was written by Jerry
Friedman and Leo Breiman—extremely well-respected leaders in our field. Salford’s CART
has a mode where it can run a battery of tests, so they called this idea “Battery Monte Carlo
Test (MCT).” Figure 13.5A shows the procedure’s result for a sample modeling problem
(explained in “Examples: Decision Tree Surface with Noise” in Chapter 18), where Y ¼
f(x1, x2) þ noise, and there are 8 additional (useless, but distracting) random candidate

FIGURE 13.5A Target shuffle test result in Salford Systems’ CART (beta)—20 cases.
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inputs and only 20 cases. The resulting tree with the real output labels (Tree 1) has a relative
error of 0.172 (and two leaf nodes), whereas the best of 50 trees built on the target-shuffled
data has an error of 0.298 (using four leaf nodes). (A perfect fit would be reflected by a rel-
ative error of 0, and the fit of a constant by a relative error of 1.) Thus, the best (of 50) ran-
dom trees was able to achieve almost 6/7ths of the performance of the real tree, bringing
strong doubt into the reliability of the stability of the real tree’s training accuracy estimate.

It is hard to build much of a model with only 20 cases, especially given 10 candidate
inputs. Indeed, if we increase the number of training cases to 50, as shown in
Figure 13.5B, the result is more reliable. There, the relative improvement of the real tree
is 0.069 and that of the best target-shuffled tree is 0.466, so the real tree shows almost twice
the improvement (i.e., movement from 1 to 0).

The metric version in Figures 13.5A and 13.5B is in beta form (using a readily available
chart form not designed for it), so it undoubtedly needs to be made more clear. Still, we
have found the most useful way to use target shuffling is to calculate the distribution of

FIGURE 13.5B Target shuffle test result in Salford Systems’ CART (beta)—50 cases.
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results of the shuffled-Y models (mean and standard deviation) and note, for the real
model’s results, how many standard deviations above the shuffled mean it is. This is a very
good measure of quality.

We recommend learning to use such resampling techniques (cross-validation, leave-one-
out, bootstrap, jackknife) as one of the most important topics in data mining and statistics.
One useful resource to explore is www.statistics.com.

RE-CAP OF THE MOST POPULAR ALGORITHMS

Some aspects of the algorithms summarized next were discussed in previous chapters
(7, 8, 11, and 12). We briefly highlight the distinct ways they work to set the stage for how
to enhance them. With each algorithm, we note if it is a consensus method (summarizing
and tossing the data) or contributory (keeping and using the data), and also whether it can
select variables. It is very rare for a contributory method to be variable-selecting, but most
consensus methods can be.

Linear Methods (Consensus Method, Stepwise Is Variable-Selecting)

Methods traditionally used in statistical analysis often contribute significantly to a data
mining effort, at the very least providing a baseline against which to compare more modern
techniques. Linear regression (LR) predicts a response (dependent) variable by a weighted
sum of predictor (independent) variables. The estimation surface is a plane in the space of
candidate variables, though those variables can be nonlinear functions of the original ones.
The plane is the one minimizing the squared error over the “training” cases. This leads to
elegant mathematics and fast computation, but is rarely the exact scoring function most
appropriate for estimation penalization. Linear discriminant analysis (LDA) predicts a
categorical response variable by creating a discriminating plane separating the groups of
the response variable. A quadratic extension allows for nonlinear boundaries but requires
estimating covariance matrices for each class.

Decision Trees (Consensus Method, Variable-Selecting)

Decision trees (DTs) are the most popular inductive method in current use. DTs are often
built in two stages. When growing, the algorithm finds at each node (subset of data) the best
feature discriminating between the classes and then splits the data into two new nodes
based on that feature. This is applied recursively to the resulting data subsets until a class
assignment can be made for each leaf. The second stage of pruning works by clipping off
(reabsorbing) the least useful branches of the tree to best balance the accuracy on the train-
ing data with the complexity of the model. (A simpler model is generally more robust, i.e.,
more accurate on new data.) The final tree partitions the feature space in a number of
labeled regions—typically in the form of axis-parallel hyper-rectangles.

Independently developed in multiple fields (including statistics, computer science, artifi-
cial intelligence, and psychology), DTs are heavily used in the newer disciplines of machine
learning and data mining. Early psychology researchers believed that such trees were a
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good model of how humans build classifications. The three most important and widely
used decision tree implementations are CART (Breiman et al., 1984), CHAID, and C4.5
(Quinlan, 1991). There are literally dozens of tree algorithms, including one developed by
one of the authors which looks for two-step splits, but expert use of a subset of such tools
is sufficient to explore their utility.*

While trees tend to be the least accurate of the major methods (when used alone), they
have many other strengths, such as effective handling of missing data, and the ability to
work with both numerical and symbolic data. Also, with methods of combining DT models,
their accuracy can be improved to a competitive level.

Neural Networks (Consensus Method)

Artificial neural networks (ANNs) have received much attention for the past two de-
cades, due initially to their hypothetical analogy to neurons in brains. ANNs consist of
layers of nodes, each implementing a linearly weighted sum of its inputs with a bounded
sigmoidal (S-shaped) output transformation (“squashing” function). The outputs of each
node on a layer feed into every node on subsequent layers. With the backpropagation
weight adjustment procedure, cases are fed through the network, and their errors are fed
back to adjust the weights of the node to a degree proportional to their contribution to
the error. Recursively, weights for nodes which feed into that node are similarly adjusted
back to the first layers. Initial weights are usually set randomly.

Though ANNs have been overpromoted and only weakly use their parameters, they are
surprisingly robust in practice. The sigmoidal transfer functions in each node serve to dampen
the problem of overfit from extrapolation (like a logistic transformation). Also, the networks
operate primarily in a linear region unless the training data, represented for many cycles,
push nodes into more flexible nonlinear regions, so the potential for overfit is muted.

ANNs do not naturally select variables, but use, to some degree, all the candidates
provided. So we have found that variable reduction and transformation can strongly impact
ANN performance. Accordingly, we give great attention to variable selection and succes-
sively eliminate raw and derived data features having low influence (as measured by their
linkage weight paths). This is similar to the “backwards elimination” method of variable
selection often done in regression, but only rarely with ANNs.

Nearest Neighbors (Contributory Method)

Nearest neighbor algorithms classify a test example by finding its closest neighbors in a
multidimensional feature space populated by known examples from a reference (training)
data set. The class prediction is estimated to be that of the nearest neighbor, or by a
weighted average of the classes of the k nearest neighbors. The distance between two data
records depends critically on the variables used in the feature space, some on the metric
used to scale numerical variables, and, when applicable, on how distances between

*Texas Two Step: www.datamininglab.com/PRODUCTS/tabid/56/Default.aspx
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symbolic variables are determined. One of the authors has developed a custom method of
searching for combinations of dimensions (data features) for nearest neighbors, leading to
strong predictive performance.*

Clustering (Consensus or Contributory Method)

Cluster analysis divides a heterogeneous group of records into several more homoge-
neous classes, or clusters. These clusters contain records that are similar in their values on
particular variables. Unlike the classification and estimation techniques discussed in the
preceding sections, clustering can be performed on unlabeled cases—that is, where the out-
put value or class is unknown in the training set. Sometimes, clustering is useful even when
labels are available—by illuminating groupings of cases or suggesting data features to be
calculated to help other methods.

Like nearest neighbors, clustering depends on a distance metric, such as Euclidean dis-
tance (root sum squared of distances along each feature) or Manhattan distance (sum of
absolute feature differences). For both algorithms, it is a serious challenge to incorporate
symbolic features alongside numeric ones. As with nearest neighbors and neural networks,
clustering also uses all dimensions provided, making feature reduction essential. Some
clustering algorithms are consensus methods—such as k-means, which summarizes the
clusters as k normal-shaped blobs—and some are contributory, such as single-link (SLINK),
which adds the closest unclustered point to each cluster.

Knowing how each algorithm basically works—consensus or contributory, and variable-
selecting or not—will help guide which enhancement suggestions, listed next, to try.

ENHANCEMENT ACTION CHECKLIST

After training and evaluating your model, you may want or need to improve its results.
Here is a checklist of 10 practical steps that usually help so consider trying:

1. Transform real-valued inputs to be approximately normal in distribution. Regression, for
instance, behaves better if the inputs are Gaussian; extremes have too much influence on
squared-error. For variables that are typically log-normally distributed, like income, this
involves transforming the variable via a logarithm or the more general Box-Cox function.

2. Remove outliers. Note the extremes of each variable and investigate any that are too
many standard deviations from the mean. (This is iterative, as outliers have an undue
effect on the calculation of the deviation itself.) Don’t necessarily assume it is an error
(see Mistake 6 in Chapter 20), but set them aside.

3. Reduce variables.

a. Correlation: Variables are often very similar to others, so those with high (say, 99%)
correlation with others may be redundant. Beware, however, of outliers (again)
which can mask or create correlation. For instance, we once had a data set where

*Nearest Neighbor: www.datamininglab.com/PRODUCTS/tabid/56/Default.aspx
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we discovered (painfully) that missing values were sometimes miscoded with a
large positive number (e.g., 99999). This led to chaos in the correlation checks,
where the value reported depended only on whether or not missing cell values in
two variables were on the same case.

b. Principal components (PC): You may retain the vast majority of the variance in the
input data by replacing the original variable, X, with a smaller subset of PCs.
These are linear transformations of X designed to be mutually orthogonal and
span as much of the input space as possible. For instance, you might be able to
represent 90% of the space covered by cases in 150 variables using only 20 PC
dimensions. Note, however, that PCs don’t consider the output variable when
being discovered, so they may not be the best vocabulary for classification; note
also that they still require measuring all of X to be calculated.

c. Follow the choices of variable-selecting algorithms: Many algorithms, such as neural
networks or nearest neighbors, don’t themselves select variables. But you can first
run different algorithms that do—such as stepwise regression, decision trees, or
polynomial networks (Elder and Brown, 2000)—and follow their lead. Try using
only the superset of variables that they pick up. There is no guarantee this will be
the best set for your algorithm, but the approach often proves useful in practice.

4. Divide and conquer. Many simple models may be more useful than a single complex one.
You can remove from training any simple subset of the problem you can clearly define
and focus modeling energies on the hard part. For instance, if all patients with a
certain symptom are to be recommended for immediate treatment, take that out of the
data as a known situation and train on the rest. Slice the data enough this way and
many aspects of the problem will change, leading to the possibility of a novel discovery
due to the novel perspective of what the problem really is.

5. Combine variables to create higher-order features. Don’t try to “build a critter from pond-
scum”; use higher-order components. For instance, on a trajectory estimation problem,
calculate where the craft will land without any complex effects, such as earth’s
rotation and air resistance, and estimate the shortfall instead of the full distance.

6. Impute missing data. The easiest way to handle missing data on training is to not allow it.
This means deleting either a case or variable for which a cell is empty, so this can
vastly reduce your data. To get the benefit of “holey” cases, try filling in the data with
different alternatives:

a. Mean of known cases for variable
b. Last value (if cases are in order)
c. Estimated value from other known input values (best, but most complex)
d. If categorical, the label “missing”

7. Explode categorical variables to allow use of estimation routines. A categorical variable can’t
be used directly in an estimation algorithm like regression or neural networks. But
you can “explode” a C-category variable into C binary variables where each holds a
1 if the category is its value for that case.

8. Merge categories if there are too many. Each value of a categorical variable is usually
allowed to have its own parameter by an algorithm, so overfit is very likely if there are
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too many values. For instance, State can have over 50 values (given Washington, DC
and Puerto Rico, etc.) but the important (well-populated) states in a database may
be many fewer. Keep the large ones and merge the remaining into “Other” or divide
by regions. Always look for differences among categories and merge them if they aren’t
significant enough.

9. Merge variables with similar behavior. If you have real-valued variables that are strongly
correlated, you can average them to create one candidate variable. For binary variables,
you could examine their expected value conditioned on the output in the training data
set and create a super-variable that is the sum of those which tend toward one of the
classes of the output. For instance, people might have flags (bits) reflecting their interest
(or lack thereof) in NASCAR racing, vegetarian cooking, Field and Stream magazine,
progressive rock, etc. You could find which are correlated with voting patterns for each
party over the training data and create one variable for each party that holds the sum of
these bits. The union of those bits will not be as empty for the super-variable.

10. Spherify data. Many algorithms prefer the variables to be on the same scale and be
independent (for instance, nearest-neighbor distances). But this is rare in practice.
A person’s weight might be in pounds and height in feet. Those are likely correlated.
And a unit step in one variable (height) is much more significant than such a step in the
other (weight). A first step would be to normalize the data by transforming each
variable by Z ¼ (X � m)/s where m and s are the mean and standard deviation of X.
The next step up would be to also take care of the correlation. We recommend using the
Mahalanobis Distance function for this when possible.

ENSEMBLES OF MODELS: THE SINGLE GREATEST
ENHANCEMENT TECHNIQUE

The most useful and powerful result of statistical research over the past decade has come
to be known as ensemble modeling (also known as “bundling,” “model fusion,” or “commit-
tee of experts”).10 The idea is to employ multiple models to do better than a single one—
often even the retrospective best of the individual models. The key requirements of the
models to be joined are that they must each meet some minimum standards of accuracy
and diversity (difference from one another in behavior). It is still not well known how these
qualities interact exactly.

Most researchers and practitioners build multiple versions of models of the same type
(e.g., decision tree), but we have found it most useful to join models of completely different
types (Elder and Lee, 1997). Still, we emphasize that the concept has helped either way.
In particular, we’ve never seen a problem in which a single decision tree beats an ensemble
of decision trees on new data.

10 Our opinion, but also shared by prominent data mining statisticians Jerry Friedman, Trevor Hastie, and

Rob Tibshirani (1998), who wrote “Boosting [a type of ensembling] is one of the most important recent

developments in classification methodology.”
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Bagging

Breiman (1996) created a simple but powerful algorithm he called bagging, for bootstrap
aggregating:

1. Create M bootstrap replicates of the data set (copy cases randomly from the data to build
M other same-size sets).

2. Fit a model to each of the replicates.
3. Average (or vote, for a classification problem) the predictions of the M models.

The final model is a compromise of its component models, and for decision trees, the
resulting surface transitions less suddenly than it does for a single tree (as shown later, in
“Examples: Decision Tree Surface with Noise” in Chapter 18).

Figures 13.6 and 13.7 (from Elder and Ridgeway, 1999) show how the out-of-sample
error for a suite of regression and classification problems, respectively, was reduced on all
of the problems attempted when going from a single tree to a bagged ensemble model.

Boosting

Freund and Schapire (1996) came up with the idea of boosting, in which variety is created
from weighting cases according to which ones were easier or harder to model correctly.
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FIGURE 13.6 Bagged tree better than single tree for all five estimation test problems (Elder and Ridgeway,
1999).
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The harder cases get more weight (influence) in subsequent modeling passes, and the easier
cases, less:

1. Equally weight the observations (cases).
2. For j in 1 to M:

a. Using the case weights, fit a classifier fj(x).
b. Up-weight the poorly predicted cases; e.g., multiply their weight by 1 þ a.
c. Down-weight the well-predicted cases; e.g., divide by 1 þ a.

3. Merge f1(x), . . . fM(x) to form the boosted classifier, giving most weight to the earliest
models and least to the (somewhat obsessed) last models.

This algorithm is very popular because it works well over a wide swath of applications
for a number of different modeling approaches.

Ensembles in General

To build ensembles, you need to construct varied (and accurate enough) models and
combine their estimates. There are five ways to generate variability, by modifying

1. Case weights, as with boosting (real-valued weights) and bagging (integer weights);
2. Case values—adding noise to the input or output variable values;
3. Variable subsets (as with random forests, where each tree being built only considers for

splitting a random subset—say, 10%—of the potential candidate inputs at any one node);
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FIGURE 13.7 Bagged tree better than single tree for all seven classification test problems (Elder and Ridgeway,
1999).
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4. Guiding parameters (such as running an algorithm with different settings);
5. Modeling technique (e.g., tree, regression, MARS, neural network).

There are three ways to combine estimates, by using

1. Estimator weights (perhaps based on estimated or training accuracy);
2. Voting (when the problem is predicting the best class);
3. Partitions of the design space (as with model gating, where different models take control

depending on which input space region we are in).

In our estimate, the most common combination used is cross-validation and averaging,
especially with decision trees. That is, building a model of one type on V different overlap-
ping folds of the data and then averaging the resulting estimates. In our experience this
(and other variations) are much more likely to help, rather than hurt, performance. Further,
as shown in Figure 13.8, for a credit-scoring example, the more (good enough) models are
combined, the lower the median out-of-sample error of the ensemble.

Surprisingly (as shown in Chapter 18), ensembling has also been shown to be simpler (in
behavior, not form) than the use of just a single model.

HOW TO THRIVE AS A DATA MINER

Now that we’ve studied a lot of useful ways to assess and improve a model, let’s step back
and look at how to ensure success for the larger project of which the modeling is a part. The
key is to make whomever hires you more money than you cost! Keep the business problem—
not the (usually more interesting) technical issues—at the forefront of your thoughts.

Big Picture of the Project

Let’s take as a focusing example the problem of fraud detection—one of the data mining
problems akin to finding “needles in a haystack.” (We’ll focus on fraud detection in detail
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FIGURE 13.8 Median error of ensemble reduces as more models are combined.
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in Chapter 19, but for now it’ll serve as a motivating challenge.) You may be required to
scour vast amounts of data yet have only very few known instances of fraud, so they won’t
be well represented as a class in the training phase. There are also typically fraudulent cases
that escaped detection, which adds to the challenge of training a model to distinguish
between fraud and nonfraud, as those are mislabeled as valid cases. Further, while statisti-
cal outliers in the data—which are signs of unusual activity—are good places to search for
fraud, a typical “alert” system built only on these will have far too many false alarms to be
useful in practice.

Before you begin modeling, successful fraud detection requires looking at the entire busi-
ness process and identifying where fraud can originate. Begin the project with a careful
evaluation of the client’s existing business process. Then collect cases of fraud that have
been found by auditors or others through the existing manual processes. From knowledge
of the business process and these known cases, design metrics for measuring fraud and
work with the client to automate their calculation. Finally, develop the detection models.
This process delivers value to clients at each stage.

The return on investment (ROI) in fraud detection data mining can be extremely impres-
sive. Take the time to develop metrics of success and the baseline (“before”) performance so
that you can score your impact (the “after” picture, which should look better). For example,
on a large project led by one of our colleagues, the client had an alert system for its enor-
mous data processing task whose warnings turned out to be fraud only 1% of the time (very
inefficient, though far better than random). With the data mining solution, however, the hit
rate improved to an astonishing 25%. In another fraud detection project, our colleagues
were able to achieve a savings of over $20 million on an engagement that took less than a
staff-year to complete and deliver. Wouldn’t it have been great if, in the business negotia-
tions, the confident and expert team had been able to negotiate a share of the success? Even
5% � (after–before) is serious compensation.

Project Methodology and Deliverables

The authors have found that an investment in teamwork and creative problem solving
early in a project pays off down the road. It is essential to cooperate and communicate
closely (both with team members and the client) throughout a project to successfully imple-
ment the solution on time. You will need client experts to convey business understanding
and requirements throughout the project, so get to know them and treat them with respect.
Join client domain expertise with your expertise in business analysis, systems engineering,
and technical skills in predictive modeling.

We recommend operating in a rapid-prototyping framework, where a baseline solution
is developed quickly, to discover the technical and interface issues the final system will
face. Then strengthen the system by iteratively improving components—often possible in
parallel. This allows the path-critical components to be identified and improved as time
and budget allow, and provides decision makers with better estimates of the trade-offs
involved. Include regular administrative and technical updates and on-site meetings at crit-
ical junctures. A client’s great fear is that it will launch analysts on a project which will
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become open-loop, with researchers chasing down rabbit-holes and not reporting back
when necessary. Frequent (e.g., weekly) detailed meetings and intermediate reports are
painful (from the point of view of a technical person eager to try the next research idea)
but essential for the survival of the project.

At the end (either problem or budget runs out), submit findings in a complete report
(a short paper, headed by an executive summary, with model and methodology details in
appendices) and a presentation, deliver the results in the form of computer code or logical
rules that can be converted to the best format for the client, and work closely with those
responsible for implementation to ensure that the models integrate seamlessly into the
existing systems environment. Always remember to suggest valuable next steps sug-
gested by your findings; you’ll want to make it easy for the client to ask you to continue
your valuable work!

Professional Development

Continual learning is vital. The latest software tools are powerful, able to tremendously
augment the productivity of an analyst—but only one who knows in what direction to
push. That experience is hard to accumulate in faster than real time, but a single trait—
humility—helps greatly. Usually, the data mining expert is the person in the room who
knows the least about the specific problem being faced by a client. No matter how expert
you become in the mining craft, you must be open to learning the business constraints,
metrics, and vocabulary of the client as quickly as possible. Clients have great tolerance
for (in their mind) stupid questions in the first couple of weeks of an engagement, but they
aren’t encouraged if they have to explain things more than once. Fortunately, many
problems that seem completely unrelated become clean data mining problems with the
right level of abstraction. We have used data mining to successfully

• Select profitable stocks;
• Detect fraudulent claims;
• Score an applicant’s credit;
• Discover cross-selling opportunities for products;
• Quantify drug efficacy;
• Forecast new product sales;
• Discover new customers;
• Recognize objects in images;
• Verify identify through biometrics; and
• Anticipate shifts in market sectors for hedge funds.

The data miner, with experience, gains a breadth of perspective that enables him or
her to find creative and effective solutions to a great variety of challenges. It’s this variety,
and the “detective” nature of the work, that can be most satisfying.

Though the data miner has the least domain-specific knowledge, he or she brings an ana-
lytic expertise that is rare and necessary to the team. Statistical thinking is hard—it’s
been shown to be the “least caught” discipline taught at universities—and uncommon.
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Just handling the data right, with validation and true out-of-sample data set aside, can be a
critical contribution. But it’s also the trained analytic mind, seeing the client’s problem for
the first time, that provides a valuable outside perspective. Often, a group has been ad-
dressing a problem in just one way for so long that the group members act as if it’s the only
way, and an outsider committed to understanding the details of their challenge can make
great contributions just by asking intelligent, probing questions.

To increase your effectiveness, seek training. There are excellent short courses on data
mining, which are quicker for many to digest than books. Also look for opportunities to
give presentations. If you are not one of those for whom public speaking is terrifying,11

count yourself lucky; it can be a distinguishing skill.12 Conferences are very eager for
industrial contributions; they are dominated by academics, due to the score function for
academics that requires the writing of papers and self-promotion. It is hard to attract indus-
trial practitioners, who often have to write papers on their own time, and whose manage-
ment is rightly fearful that industrial trade secrets will be revealed. (And it is astonishing
to newcomers how slight a deviation from standard practice is jealously guarded as a valu-
able intellectual property.) But, when a good industrial paper is delivered at a conference,
it is eagerly listened to and appreciated. The real world has distinct advantages over toy
problems in imparting useful lessons. So learn to present and speak; this skill is rare and
thus valuable. Conveying the value of data mining to management will ensure the needed
backing for your analytics. Again, it is only by helping others succeed at their goals that we
get the chance to succeed at ours.

Three Goals

To conclude, we want to share three goals that will contribute to your data mining
successes:

1. Maintain a diversity of projects. Whether a project is military, medical, or monetary, it
hinges on whether you and the client can successfully learn useful patterns from
historical data. A mix of applications will expose you to the collected wisdom of expert
practitioners in each domain, teaching you much. For instance, a data feature similar
to one useful in drug efficacy studies has, for one team, contributed to fraud risk
estimation, and techniques originally applied to high-performance aircraft have
improved investment and credit projects.

11 It is said that a majority of Americans rank their fear of public speaking above even their fear of death!

Perhaps this is due to it being much easier to imagine yourself speaking than dying. Nevertheless, the

willingness and ability to speak well is worth cultivating; it is valued due to its scarcity.
12 We have found Toastmasters to be a useful way for those without practice or comfort speaking in public

to become aware of the components of different kinds of useful talks—from jokes and introductions, to

technical talks and “elevator speeches” (30-second summaries of what you’re working on in case the

big boss asks you in an elevator)—and gain practice and advice on how to improve their presentation

skills.
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2. Employ a diversity of algorithms. Unlike most practitioners, you should not be wedded
to, or limited by, a single data mining technology. Though some of the authors have
spent years of our early careers developing particular competitive algorithms, we have
learned that each problem presents its own spectrum of challenges and requirements
and that a toolbox of powerful techniques is needed.

3. Combine models. Learn and use the breakthrough technique of combining multiple
models to achieve estimates more robust and accurate than possible through any
single model—sometimes even the retrospective best of the individual models. This
simple idea contains subtleties in its execution, yet practice can make it a powerful
tool in your arsenal. Chapter 18 explains new research showing how an ensemble can
even be less complex than any of its components, helping to explain its superior
performance.

POSTSCRIPT

Now, we are ready to apply data mining technology to four major areas: medical infor-
matics (Chapter 14), bioinformatics (Chapter 15), Customer Relationship Management
(Chapter 16), and fraud detection (Chapter 17).
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PREAMBLE

The first general application area we will explore is medical informatics. The reason for
treating it first is that in no other discipline has statistical and data mining applications been
applied for a longer time, and it is an area in which analytical results can have such
profound effects in both positive and negative directions. We will consider what medical
informatics is and how data mining and text mining are related to medical informatics
and 3D medical information. We will also discuss some journals and associations in
medical informatics and look at an example of a medical informatics study.

WHAT IS MEDICAL INFORMATICS?

In a very simple sense, we might think of the new area of medical informatics as opera-
tions in which the computer meets medicine. Medical informatics has at least three areas
specific to medical and health care management, research, and delivery. These three gen-
eral areas may be thought of as (1) things related to a patient/doctor relationship like
prescriptions and records, involving the accumulation of considerable data; (2) the area of
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three-dimensional imaging like PET and MRI scanning and all the image processing data;
and (3) medical literature review and compilation. All three areas involve the accumula-
tion of large amounts of data, and thus the possibility/need of analyzing these data to
learn how to be more efficient and more accurate in management and diagnosis, etc.

We might categorize the patient/doctor type of medical informatics data coming from
the following activities:

• Electronic prescribing
• Personal health records
• Computerized practitioner order entry
• Identity management of patients
• Electronic health records
• Good project management and software selection (for the preceding to be really

successful)

Because of the large number of research papers and amount of data in text format (over
5,000 papers a month between medical informatics and bioinformatics), medical informatics
requires text processing in addition to standard data mining methods. Thus, text mining
algorithms must be added to data mining algorithms in the arsenal of tools needed to make
sense out of all these data.

Additionally, because of the use of many 3D imaging methods in medicine, medical
informatics requires analytical methods for image and structural informatics. Visual (and
even auditory) data mining has not yet reached a plateau in its potential and possibilities;
however, it is increasing in importance for diagnosis and decisions on actions to take in
treatment (see Chapter 21).

The model in Figure 14.1 shows where medical informatics as a discipline fits into the
fields of biological sciences, clinical and health services, and information technology and
analysis.

The field of medical informatics is large, as is bioinformatics (the topic of the next chapter
in this book), and it is not the primary purpose of this book to cover this topic comprehen-
sively. So, only a brief summary of the field will be presented in this chapter; however,
some of the most recent and important volumes written in this field will be provided in
the References section, for any readers wanting to pursue this area in more detail.

HOW DATA MINING AND TEXT MINING
RELATE TO MEDICAL INFORMATICS

Knowledge management, data mining, and text mining have come into the mainstream
of business during the past 10 years, and their full implementation into health care delivery
is crucial to bring the efficiencies in cost and accuracy that are so badly needed. Medical
informatics data are usually structured, factual, numeric, and historical. These data contain
textual data referred to as “unstructured,” in that they do not consist of numbers or codes
that can be contained in a database. But these data are factual and are every bit as important
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as data structured in databases. With the advent of text mining algorithms, this textual
“knowledge” material can be converted into numbers to function just like variables such
as the values of blood pressure, enzyme levels, LDL and HDL lipid levels, etc.

Knowledge gathered from both data mining and text mining methods is needed to, at the
very least, formulate new hypotheses, and at its highest level, provide the foundation for
making decisions and taking action (which may be needed “immediately” in life-and-death
health situations). While standard data mining algorithms can be used to discover patterns
or knowledge that were previously unknown to medical science, text mining is needed to
extract needed information for document classification, document clustering, entity extrac-
tion, information extraction, and summarization.

Biological Sciences

Translation
(Bench to Bedside)

Clinical & Health
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•  Genetics
•  Policy
•  Outcomes

Medical InformaticsInformation Analysis
& Presentation

•  Informatics
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FIGURE 14.1 An informatics-centric view of the intersections and overlap among the biological sciences,
health services research, and information analysis and presentation. It shows that bioinformatics includes a core
of biomedical informatics techniques that can be applied to both biological science and health services research,
together with its own applied computation and statistics techniques. Similarly, “clinical” or “health” informatics
reuses that core, while adding clinical epidemiology, etc. The common core leads naturally to the common infor-
mation foundation needed for rapid translation between bench and bedside. A “networked” or “web-like” orga-
nization structure is needed to provide a critical mass of people to nurture growth in each of the core disciplines
of biomedical informatics, statistics, and computation, while at the same time providing separate concentration
on application to the biological sciences, health services research, and translation between the two. From
http://www.mc.vanderbilt.edu/dbmi/informatics.html (Vanderbilt University Medical Center Department of
Biomedical Informatics).
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Data volumes in medical informatics and bioinformatics are being generated faster
than researchers can handle using traditional methods of the past century. Thus, new meth-
ods, e.g., in data mining and text mining, and in other database searching methods are
needed. In the medical informatics field, three methods of data or information retrieval
stand out:

1. The MedBlast system, making use of BLAST (which will be defined and discussed in
Chapter 15), allows researchers and clinicians to search for articles of interest among the
plethora of research discovered each month.

2. The HelpfulMed system is used in medical informatics to retrieve documents from
different databases, which are then clustered using a self-organizing map algorithm.

3. The NLM’s Visible Human produces three-dimensional representations of the normal
male and female human bodies by obtaining transverse CT, MR, and cryosection images
of representative male and female cadavers. The data provide a good test-bed for
medical imaging and multimedia processing algorithms. The Visible Human project has
been applied to various diagnostic, educational, and research uses.

Data mining has a valuable predictive power to enable clinicians to determine, with some
measure of accuracy, the proper dosage or treatment protocol. Classification is the most
widely used technique in medical data mining, using things like decision trees (see one of
the Medical Informatics Tutorials included on the DVD accompanying this book for exam-
ples, such as Tutorial Z). It is difficult to select in advance which algorithms will be best for
a particular study; thus, the authors of this book always recommend doing a “competitive
evaluation” of data mining algorithms to see which performs best. For example, Dreiseitl
et al. (2001) compare five classification algorithms for the diagnosis of pigmented skin
lesions. Their results show that logistic regression, artificial neural networks, and a Support Vec-
tor Machine performed comparably, while k-nearest neighbors and decision trees performed
worse. But with other situations, other diseases, decision trees can perform quite adequately
(again, see one of the tutorials accompanying this book, on the DVD). Another example is
Acir and Guzelis (2004), who applied a Support Vector Machine algorithm in automatic
spike signal detection in electroencephalograms (EEGs), which can be used in diagnosing
neurological disorders related to epilepsy.

And, finally, a third example is Kandaswamy et al. (2004), who used an artificial neural
network to classify lung sound signals into six different categories to assist diagnosis.

The amount of information in medicine/bioinformatics is so vast that clinicians and
researchers cannot begin to read all the literature but must have methods of seeking what
they need. Google’s Page Rank algorithm can do well in finding popular web sites, but it
just cannot meet the need of these clinicians/researchers to find very specific needed infor-
mation. The following sections describe a couple of examples of document retrieval systems
that medical informatics have been using in recent years.

XplorMed

XplorMed is a system developed by Perez-Iratxeta and colleagues (Perez-Iratxeta et al.,
2001, 2002, 2003) for browsing the MEDLINE literature database. Given a set of MEDLINE
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abstracts, the system computes the words with the strongest relations with a set of
categories, and then extracts keywords and computes their relationship to each other.

ABView: HivResist

ABView: HivResist is another method that focuses on a small set of the MEDLINE
literature. It was originally developed to study HIV drug resistances and their associated
mutations. Using such a focused set of literature reduces the ambiguity of terms.

For the future, nothing can substitute for a full-fledged text mining and data mining
analysis of the medical literature. Such methods are, of course, the main topic of this book.

3D MEDICAL INFORMATICS

What Is 3D Informatics?

Three-dimensional medical informatics is the application of data analysis to images,
volume data, and other dimensional data in addition to text-based metadata associated
with imaging. Medical storage repositories are filling rapidly with this type of informa-
tion, e.g., nonprint data in the form of audio recordings, films of X-rays and 3D imaging,
and video recordings. The tools to index all of these nontext medical information are
somewhat rudimentary today, so more sophisticated/focused systems are needed; no
doubt data and text mining will play an important part here. These types of data may
include more than three dimensions; e.g., 3D informatics may also include things
like position, time, scale, and also multichannel data rather than just one dependent
dimension. Object recognition may be very important to 3D medical informatics; object
recognition is discussed in Chapter 21 as one of the “developing new areas of
data mining.”

Listing of types of scans done in medicine:

• X-rays (two-dimensional)
• CT scans—ray-computed tomography (three-dimensional)
• PET scans (3D)
• Magnetic Resonance Imaging (MRI)

All of these new three-dimensional scanning methods, with an increasing deluge of data,
motivated the development of the following tools:

• An industry of Picture Archiving and Communications Systems (PACS)
• The creation of standards for DIgital COmmunications in Medicine (DICOM)

Three-dimensional methods in medicine are not just in body imaging, as there is a rela-
tively new area of “surgical templates,” e.g., 3D templates, created for each patient, an
example being the screws that need to be put into a patient’s vertebrae in certain kinds of
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back/vertebrae surgery, where there is a need for precise placement to avoid disturbing
nerves or blood vessels. Computer-aided/analysis methods are being used to make
decisions on such types of things.

Future and Challenges of 3D Medical Informatics

• Three-dimensional medical informatics can provide new frontiers in medical education
in anatomy, physiology, molecular biology, and other areas.

• Already, research in 3D techniques has made an impact on computer-assisted surgical
planning and image-guided interventions, and we’d expect that the number of these will
increase in the future.

• Computer-aided diagnosis/early detection may become one of the most used tools in
medicine, provided from data mining analysis of patterns, and thus the discovery of
predictable patterns.

This discussion is short for three reasons:

1. Medical informatics is a relatively new field.
2. There are recent extensive volumes/books on the subject that can serve well. Those who

want to explore medical informatics more thoroughly can order a four-volume set that
was published in September 2008 (at a price tag of about $3,000): Joseph Tan (ed.). (2008).
Medical Informatics: Concepts, Methodologies, Tools, and Applications; published by Medical
Information Science Reference; ISBN-10: 1605660507

3. The focus of this book is practical data mining, and the purpose of this chapter on
medical informatics is just to briefly make you aware of this domain. There are several
medical informatics tutorials included within the printed pages of this book, on the
accompanying DVD, and also on the companion Web site, where additional tutorials will
be added from time to time.

Journals and Associations in the Field of Medical Informatics

• American Medical Informatics Association (http://www.amia.org/)
• Journal of the American Medical Informatics Association (http://www.jamia.org/)

POSTSCRIPT

With this brief introduction to the large field of medical informatics, you are ready to do
some tutorials associated with this chapter. See Diabetes Clinical Management (on the
included CD-DVD) for an example of how data mining can be applied to diagnosis and
managing patient care. You will find several other tutorials on medical informatics on the
CD-DVD. The next chapter follows the initial biological theme to focus on bioinformatics,
which is concerned primarily with DNA microarray processing.
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PREAMBLE

This chapter is designed to give you a very brief exposure to the burgeoning field of
bioinformatics. We will not present a comprehensive exposure to how data mining is
applied in bioinformatics; instead, we will present a simple outline of major operations
in bioinformatics and a short discussion of the direction in which the field is moving in
the future.

Bioinformatics is the application of information technology to the field of molecular biol-
ogy. Bioinformatics entails the creation and advancement of databases, algorithms, compu-
tational and statistical techniques, and theory to solve formal and practical problems arising
from the management and analysis of biological data. Over the past few decades, rapid
developments in genomic and other molecular research technologies combined with devel-
opments in information technologies to produce a tremendous amount of information
related to molecular biology. Bioinformatics, then, is the name given to these mathematical
and computing approaches used to glean understanding of biological processes.

The primary goal of bioinformatics is to increase our understanding of biological pro-
cesses. What sets it apart from other approaches is its focus on developing and applying
computationally intensive techniques (e.g., data mining and machine learning algorithms)
to achieve this goal. Major research efforts in the field include sequence alignment, gene
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finding, genome assembly, protein structure alignment, protein structure prediction, pre-
diction of gene expression and protein-protein interactions, and the modeling of evolution.

The following lists provide an outline of points that a bioinformatics scholar or
researcher will have an understanding of or at least an “acquaintance” with in regards to
the part they play in the overall field. Then we will discuss various aspects of bioinformat-
ics. Bioinformatics is such a large field that to do this topic justice, we’d have to write sev-
eral volumes, each with thousands of pages. But it is not the purpose of this practical book
to give the new user a comprehensive exposure to bioinformatics data mining and text
mining. Our purpose here is to simply give you a simple outline of what is involved in bio-
informatics and a short discussion of where the field is headed in reference to making better
use of data mining and text mining tools in the future.

Areas of study in bioinformatics:

1. Sequence analysis of DNA/RNA structures
2. Evolutionary biology
3. Gene annotation
4. Biodiversity
5. Gene expression
6. Regulation of genes
7. Protein expression and its regulation
8. Predictions of protein structures
9. Biological systems modeling

Fields related to bioinformatics:

1. Biophysics
2. Biocybernetics
3. Biomedical informatics
4. Computational biology
5. Medical informatics
6. Genomics
7. Computational and mathematical biology and biomodeling
8. Proteomics
9. Pharmacogenomics

10. Pharmacogenetics
11. Chemoinformatics
12. Molecular and metabolic networks modeling
13. Artificial intelligence
14. Neuroinformatics
15. Statistics
16. Data mining and information analysis

Figure 15.1 shows where bioinformatics fits into the total picture of biology, medicine
and health care services, and information technology.
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The bioinformatics field was greatly enlarged by the full sequencing of the human
genome in the late 1990s; Figure 15.2 shows a map of the human chromosome, resulting
from the Genome Project.

WHAT IS BIOINFORMATICS?

Bioinformatics is the activity of biologists using computers to find information related to
the way the genetic blueprint in the genes unfolds, makes us who we are, and regulates our
lives. We might say that bioinformatics is the study of the gene and all of its consequences.

Today, bioinformatics involves biologists, molecular geneticists, pharmacologists, pro-
tein chemists, other scientists and mathematicians, statisticians, and, yes, data miners. The
impact of the advances in bioinformatics is felt across an even wider field of professionals
such as lawyers, judges, and congress people who often have to consider DNA evidence in
legal cases and the writing of bills in Congress. Thus, bioinformatics invades our everyday
lives, whether or not we realize it!

Bioinformatics involves (1) analyzing DNA sequences, (2) analyzing RNA sequences,
and (3) analyzing protein sequences. But it involves more than this. It also involves finding
what are called redundant sequences, aligning sequences, aligning multiple sequences,
finding structure, and then finding 3D structure of these molecules. In one sense, we might
say that bioinformatics involves working with the entire genome. Those involved in bioin-
formatics seek to understand what it is by breaking it apart to understand the pieces (and
then putting it back together again, as they come to understand these pieces consisting of
RNA, DNA, and protein sequences). Then they seek to understand what it does by studying
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(Bench to Bedside)

Bio-
Informatics

Clinical & Health
Services Research

•  Policy
•  Outcomes

Information Analysis
& Presentation

•  Informatics
•  Computation
•  Statistics

Biological Sciences
•  Genetics
•  Structural Biology
•  Neuroscience

Health
Informatics

BIOINFORMATICS

FIGURE 15.1 From http://www.
mc.vanderbilt.edu/dbmi/informatics.
html (Vanderbilt University Medical
School Department of Medical Infor-
matics).
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the production of proteins and how these proteins work to make all body structures and all
body processes, including vision, feel, movement, cognition, behavior, and other things, all
of which involve amino acids to proteins to organelles to cells to tissues to organisms.
Finally, they seek to understand how the genome is related to the ability in humans to cre-
ate things and processes far beyond what they were born with, even to build computing
systems and robots that can begin to mimic the abilities of humans.

Some of the terms and concepts you initially need to be aware of in bioinformatics are as
follows:

• A DNA sequence is always defined as a sequence of nucleotides, these nucleotides being
the four biochemical structural components that Watson and Crick discovered in the
1950s: adenine, guanine, cytosine, and thymine.

• Palindrome sequences are nucleotide sequences that read the same way in both directions,
as these play important biological roles.

• RNA molecules are the stranded structure coming from the DNA of the nucleus that goes
out into the cell and does the work, e.g., making proteins that are either structural or
regulate other chemical and structural pathways.

FIGURE 15.2 Map of the
human X chromosome (from
the National Center for Biotech-
nology Information (NCBI)
website; www.ncbi.nlm.nih.gov).
Assembly of the human genome
is one of the greatest achieve-
ments of bioinformatics.
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• Genomics is the study of organism-wide genes, “working with all the genes at the same
time,” e.g., considering the entire “blueprint.”

• PubMed is a listing of the literature published on biology and genetics (from 1965
onward) that allows researchers in the field to find what they need quickly so that they
can see what has already been researched and thus determine what new directions of
research will be of value. See www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB¼pubmed.

• BLAST is a database mining program, used extensively in bioinformatics, to explore
databases of information constructed from what has already been discovered and
cataloged about DNA, RNA, and protein structures. BLAST will take a sequence and
compare it to a database of already-analyzed sequences to see whether there are matches
and thus help in identifying a protein or sequence. See www.ncbi.nlm.nih.gov/blast.

• ClustalW2 is a data analysis program that looks for multiple sequence alignments to see
how a sequence that a researcher has just found fits into what is already known. See
http://www.ebi.ac.uk/Tools/clustalw2/index.html.

• FASTA is another sequence alignment and database scanning program created in 1988,
although ClustalW2, listed previously, is most widely used.

• GenBank is a repository for storing sequences of nucleotides and protein sequences so
that researches can check their newly discovered sequences against ones already known.
See www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼Nucleotide.

• Entrez/Gene is one of the newer gene banks that is more “gene centric”; e.g., it allows
questions/queries about a specific gene; some of these can be found at http://www.ncbi.
nlm.nih.gov/sites/entrez/gene.

• The Ensemble Project has concentrated on the human genome in addition to other
vertebrates. See www.ensembl.org/.

Let’s look at a specific example of how the knowledge gained from bioinformatics is
used in a practical way today. We will do this by looking at a specific technique called
PCR, which stands for Polymerase chain reaction. This technique involves mixing the fol-
lowing in a test tube:

• The DNA template
• Primers, a mixture of nucleotides and other biochemicals
• A heat-resistant enzyme called DNA polymerase

What is the purpose of conducting this DNA polymerase chain reaction? The answer is
to amplify sequences of DNA so that there is enough to work with in other biochemical
tests. How can this procedure be used practically? For example, in forensic science a small
DNA sample—from fingerprints (for example) or a licked stamp—will provide enough of
the DNA to identify the person from whom this DNA came. See the following web site
for more information: http://nature.umesci.maine.edu/forensics/p_intro.htm.

After sequence identification, alignment, 3D structure visualization, and other proce-
dures to generate bioinformatics data, the vast opportunity for structured data mining
analyses comes into play. But before we discuss the possible future of data mining for bio-
informatics, let’s look at a list of the tools and computer software available and in use today
in this field.
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The Internet contains a variety of free resources for doing sequence analysis. Table 15.1
lists some of the more usable sites.

DATA ANALYSIS METHODS IN BIOINFORMATICS

BLAST, which stands for Basic Local Alignment and Search Tool, is the first and most
popular data mining tool for DNA/protein sequences. Prior to the development of this tool,
biologists had to search a database of published sequences, print them out, hang them on
the wall, and look at them for hours to try to distinguish any patterns and make sense out of
them. Also, they had to determine if any new sequence discovered was really new or
existed already in the literature. BLAST does this automatically.

Other computer programs search databases like BLAST, but BLAST has been the most
popular one. Some of the alternatives to BLAST are

• Smith-Waterman (SSEARCH): This is considered more accurate than BLAST but much
slower in operation.

• FASTA: This is more accurate for DNA comparisons but slower than BLAST.
• BLAT: This can locate cDNA rapidly and also find close proteins (e.g., mouse versus

man, as both are mammals).

These additional database search tools can be found at the sites shown in Table 15.2.

ClustalW2: Sequence Alignment

After sequences are found, these sequences have to be aligned, in an attempt to see the
whole picture, to see what is important, and to determine what may just be extraneous or
redundant sequences (there is a lot of, in fact considerable, redundancy in DNA). Several

TABLE 15.1 Free Resources for Doing Protein Amino Acid Sequence Analysis (e.g., Gene
Sequence Analysis)

Name Site URL What It Works With

ExPASy www.expasy.org/tools Proteins
PSSMs www.ncbi.nlm.nih.gov/blast/blastcgihelp.shtml#ps;pssm Domains*
PIR http://pir.georgetown.edu Proteins
CBS www.cbs.dtu.dk/services Proteins
Hits http://hits.isb-sib.ch/ Proteins
InterPro http://www.ebi.ac.uk/Tools/InterProScan/ Domains*

*Domains ¼ a portion of a protein that can “keep its shape” if you remove it from the rest of the protein; it consists
of at least 50 amino acids; in one sense domains are like building blocks of a protein; each of the domains can
function as a single type function and exist separately, but added together into a complete protein, there is a
functioning unit (e.g., like an office; each person in each office cubicle can do a function, and in one sense
exist separately; but when all of the people in all of the cubicles of an office are added together, they produce
a complete product of that office or organization).
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tools can do this, with names like ClustalW2, Tcoffee, and MUSCLE, but ClustalW2 is the
one most often used.

ClustalW2 is a progressive algorithm that uses a little trick to build up an alignment of
sequences: it compares sequences two by two and eventually clusters them into what looks
like a phylogenetic tree or, what statisticians call in traditional cluster analysis, a dendogram.
ClustalW2 is among the most cited references in the entire history of biology. The W
in ClustalW2 stands for weights; every sequence receives a weight proportional to the
amount of new information it contributes to the overall alignment and genome. ClustalW2
can be found at the following site: www.ebi.ac.uk/Tools/clustalw2/index.html.

Once the sequences have been identified and a protein identified, the next thing that
many bioinformatics researchers want to do is to look at the sequence in 3D format.
This can be done by going to another NIH governmental web site: www.ncbi.nlm.nih.
gov/Structure/. We will not go into detail here in this book but provide this site for the
overall sketch of what bioinformatics is all about.

After looking at the 3D structure, a researcher may want to find proteins with similar
shapes; this can be done at another NIH web site, known as VAST service: http://www.
ncbi.nlm.nih.gov/Structure/VAST/vast.shtml.

Searching Databases for RNA Molecules

We will not go into detail on RNA molecules in this book, but we will give you the termi-
nology, the references at the end of this chapter, and the web sites to get you started. There
are several subtypes of RNA; they are listed with corresponding web sites in Table 15.3.

Databases abound in the bioinformatics field and become most useful resources, avoid-
ing reinventing of a research protocol and thus making for efficiencies in this field of
research. Some of the most practical databases are listed in Table 15.4.

WEB SERVICES IN BIOINFORMATICS

SOAP and REST-based interfaces have been developed for a wide variety of bioinformat-
ics applications, allowing an application running on one computer in one part of the world
to use algorithms, data, and computing resources on servers in other parts of the world. The
main advantages lie in the end user’s not having to deal with software and database

TABLE 15.2 Some of the Most Used Genomic Database Search Tools

Region of World Program Name URL

USA FASTA http://Fasta.bioch.Virginia.edu/fasta
Europe SSEARCH www.ch.embnet.org/software/GMFDF_form.html
USA BLAT www.genome.ucsc.edu
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maintenance overhead. Basic bioinformatics services are classified by the European Bio-
informatics Institute (EBI—http://www.ebi.ac.uk/services/) into three categories: Sequence
Search Services (SSS), Multiple Sequence Alignment (MSA), and Biological Sequence Anal-
ysis (BSA). The availability of these service-oriented bioinformatics resources demonstrate
the applicability of web-based bioinformatics solutions and range from a collection of

TABLE 15.3 RNA Web Sites, for RNA Types and Subtypes

Type/Name of RNA URL Description of the RNA Type

Micro RNAs, called
miRNAs

www.ambion.com/techlib/resources/miRNA/
index.html

Definition, visual overview, and
database of miRNAs

Micro RNAs, called
miRNAs

http://microrna.sanger.ac.uk/sequences/ miRNAs at the Sanger Center in
the UK, a very extensive listing

Ribosomal RNA, called
rRNA, the "larger unit"

www.psb.ugent.be/rRNA/1su/ A database on the "larger" of the
two ribosomal units; also has
online software

Ribosomal RNA, called
rRNA, the "smaller
unit"

www.psb.ugent.be/webtools/rRNA/ssu/ A database on the "smaller" of the
two ribosomal units

Noncoding or
nontranslating regions
of genes

www.hsls.pitt.edu/guides/genetics/obrc/rna/
sequences/URL1101850039/info http://
www.ncbi.nlm.ni.gov/pubmed/9399823?
dopt¼Abstract

Small noncoding RNAs; these are
the untranslated regions of
genes

tmRNAs ¼ function as
both transfer and
messenger RNAs

www.indiana.edu/�tmrna/ Fairly recently discovered type of
RNA, the tmRNAs

Generic RNAs ¼ all types
of RNA

www.imb-jena.de/RNA.html "RNA World," a very complete
RNA web site

TABLE 15.4 Important Bioinformatics Databases to Help You Start Your Bioinformatics
Studies or Research

Name of

Database URL Type of Data Found in This Database

GenBank /
DDB / EMBL

www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db¼Nucleotide

Nucleotide sequences of RNA and DNA

PubMed www.ncbi.nlm.nih.gov/entrez/
query.fcgi?DB¼pubmed

Literature references

NR www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db¼Protein

Nonredundant protein sequences (e.g., proteins that are
unique and perform known functions)

OMIM www.ncbi.nlm.nih.gov Genetic diseases
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standalone tools with a common data format under a single, standalone, or web-based
interface, to integrative, distributed, and extensible bioinformatics workflow management
systems.

The field of bioinformatics, with its development of many kinds of freeware, has been
rather chaotic. One explanation for this problem is that bioinformatics is a very large field,
including many different knowledge domains, each with its own practitioners working in
isolation from each other. It is only recently that these diverse areas have been brought
together under the same umbrella of bioinformatics. Later, we will suggest that we are
currently in a stage of “sifting out” what is really needed and that future years will bring
a more or less standard data analysis methodology, involving data mining and text mining.
But for now, Table 15.5 provides a list of some of the software programs that are being
used in the field of bioinformatics. BLAST, which is the major database search tool, and
ClustalW2, which is the major multiple alignment of sequences tool, were discussed
previously so are not included in the table.

HOW DO WE APPLY DATA MINING METHODS
TO BIOINFORMATICS?

There is a multitude of open source and freeware computer software sources on the
Web, which provide programs written by various bioinformatics researchers. Addition-
ally, some have written books explaining how users can write their own programs. One
of these is with the use of Perl, available as an open source code base. Tisdall (2001) wrote
Beginning Perl for Bioinformatics, in which sequences examples are emphasized. Perl is a
relatively easy computer language to learn, and we mentioned it in Chapter 9 on text
mining. Tisdall (2001) shows how to build an interface for the NIH GenBank database,
which is mentioned earlier in this chapter. He also provides an introduction on how to
use Perl to interface with the BLAST sequence alignment tool, mentioned earlier in this
chapter. It allows the user to develop skills in using Perl to parse annotations in GenBank
and BLAST output.

TABLE 15.5 Important Software Programs Used in Bioinformatics*

Category Name URL Function

Prediction GenScan http://genes.mit.edu Prediction of genes, e.g., DNA

Prediction PsiPred http://bioinf.cs.ucl.ac.uk/psipred/ Prediction of protein structure

Prediction Mfold www.bioinfo.rpi.edu/applications/
mfold/

Prediction of RNA structure

Visualization Logos http://weblogo.berkeley.edu MSA (¼Multiple Sequence Alignment)
visualization

Visualization Rasmol www.umass.edu/microbio/rasmol/ Visualization of structure

*BLAST and ClustalW2 are also very important but were discussed earlier in this chapter.
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Some of the other algorithms and concepts that can be found in more technical literature
in the field of bioinformatics are described in the paragraphs to follow.

Gollery (2008) and many other sources describe Hidden Markov Models (HMM)
and related methods, like the HMMER package, Sequence Analysis Method (SAM),
and the PSI-BLAST algorithm. This area has its own set of HMM databases with names
like Pfam, PANTHER, COG, and metaSHARK. We won’t discuss these programs here;
we mention them only to whet your appetite, in case bioinformatics is an area you
would like to study further. Googling any of these terms will provide a plethora of
information.

Shui Qing Ye (2008) describes some additional DNA and genome analysis tools, some for
phylogenetic analysis, SNP analysis, haplotype analysis, and regulation of gene expression.
SAGE is one of the tools described. SNP, pronounced “snip,” stands for Simple Nucleotide
Polymorphism. A polymorphism is a substitution in one base of the code of DNA and is what
makes some people have blue eyes and other people have brown eyes, for example, among
many examples of polymorphisms we could list. One of the co-authors spent his doctoral
candidate years looking for polymorphisms in blood enzymes of mice; this was years
ago, shortly after Watson and Crick discovered the DNA molecule. So, you can see that
basic genetics and polymorphisms, DNA, and RNA sequences are still in active service in
the twenty-first century as we continue to work out the details of bioinformatics. Haplotype
analysis involved looking at the haploid genotype. Complete genetic complements of most
organisms contain two of each type of chromosome. A set of one of each chromosome is
called a haploid, with one haploid contributed by the male and other by the female. The
complements of genes in a haploid are called a haplotype. Haplotypes are inherited as
units; they consist of a combination of alleles at different markers along the same
chromosome.

Serial Analysis of Gene Expression, or SAGE, was developed in the mid-1990s. It pro-
vides an overview of a cell’s complete gene activity. The technique captures RNAs and then
allows a quantitative analysis of the transcripts of information that are made from these
RNAs. It has the potential of developing a catalog of not only the mRNAs present in a cell,
but also their prevalence.

For those who would like to gain a practical understanding of what bioinformatics is all
about, we recommend Shui Qing Ye’s book Bioinformatics: A Practical Approach, as it con-
tains not only some unique biocomputing tools including use of Perl and R languages,
but also useful web sites and database listings. Particularly, we refer you to “Tutorials”
in Ye (2008), like the one on page 352, which takes you step by step through analyzing a
protein sequence, and the one on page 456, which again takes you step by step through
the process of creating a Perl script.

In her book on bioinformatics, Parida (2007) clearly presents the opinion that most bioin-
formatic success stories require algorithmic and statistical ingenuity. As such, she discusses
and develops a considerable number of algorithms for better pattern discovery in the bioin-
formatic field. These include such unique names as

• Prim’s algorithm
• Fitch’s algorithm
• Discovery algorithm
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• Pattern statistics algorithms, such as

• Trees—Counting Binary Trees
• Trees—Enumerating Unrooted Trees (Prufer Sequence)
• Bayes’ theorem with multiple events
• Probability spaces
• Discrete probability distributions (Binomial, Poisson)
• Continuous probability space

• Parikh mapping-based algorithm
• Naı̈ve algorithm
• Uno-Yagiura RC algorithm

Wewon’t discuss these algorithms in detail because this chapter provides only an overview
of bioinformatics. As mentioned before, the field is so large that it is a topic of several volumes
in itself. The purpose here is only to acquaint you with this rapidly developing field and give
an idea of how data mining and text mining will play an increasingly important part in it.

Our final reference is Mitra et al. (2008). In this source, the authors discuss the develop-
ment and application to bioinformatics of such machine learning methods as electron density
map interpretations, bi-clustering, and their application to such practical things as cancer
tumor treatment. Some of the specific machine learning and other statistical methods they
discuss are listed here to illustrate another group of terms that is part of this very large field.
They illustrate that both traditional–frequentist methods and Bayesian and machine learning
methods will be needed to solve all the issues in bioinformatics. These methods include

• Frequentist statistical inference
• Bayesian inference
• Unsupervised Learning methods, such as

• Principal components analysis
• Multidimensional scaling
• Cluster analysis

• Fuzzy Sets (FS)
• Evolutionary Computing (EC)
• Rough Sets (RS)
• Network inference
• Bi-clustering, including

• Multi-object bi-clustering
• Fuzzy possibilistic bi-clustering

• 3D protein image analysis, using

• ARP/WARP
• RESOLVE
• TEXTAL
• ACMI

• Practical tumor classification using Bayesian machine learning methods, using various
types of Support Vector Machines, called

• Reproducing Kernel Hilbert Space (RKHS) based classification
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Using this last approach to cancer tumor classification, Mitra et al. (2008) provide practi-
cal examples of and benchmark comparisons to earlier less-accurate methods of classifica-
tion (see pages 316þ), to such cancers as leukemia and colon tumors.

POSTSCRIPT

Statistical and data mining analysis in bioinformatics is still in somewhat of a chaotic
state of trial and error. Researchers in this field are still debating the value of this or that
method; the field does not yet have a standard methodology of analyzing its very large and
complex databases. As Parida (2007) pointed out in the introductory sentences of her book:

Major scientific discoveries have been made quite by accident: however, a closer look reveals that the scien-
tists were intrigued by a specific PATTERN in the observations; an excellent example is Edward Jenner and
the discovery of how milkmaids in England developed immunity to smallpox, followed by the development
of the smallpox vaccination, and the eventual eradication, a few years ago, of smallpox on planet Earth.
(page 1; paraphrase)

Pattern discovery is the operation that data mining and text mining excel in doing. These
tools are necessary in the study of any complex bioinformatics phenomena. Ideally, in the
future, a data mining/pattern recognition system will have standardized components,
bringing bioinformatics and DNA microarray analysis into a more mature field, and
providing practical ways of making accurate decisions in many areas, including disease
diagnosis with accompanying action plans with a known probability of success.

Tutorial Associated with This Chapter on Bioinformatics

On the accompanying DVD packaged with this book, go to the Tutorial section and select
the “Tutorial—CancerGene,” where a K-nearest neighbors Bayesian model is used to show
a 99% accuracy prediction of breast cancer.

A “Text Mining in Bioinformatics & Medical Informatics” white paper is included on the
DVD; go to the TUTORIAL – PDF_PPT_ETC folder to find this paper; it contains a good
discussion of the issues surrounding text mining in the bioinformatics field.

Books, Associations, and Journals on Bioinformatics, and Other Resources,
Including Online

Associations and Organizations

• Bioinformatics Organization (Bioinformatics.Org): The Open-Access Institute
(http://www.bioinformatics.org/)

• EMBnet (http://www.embnet.org/)
• European Bioinformatics Institute (http://www.ebi.ac.uk/)
• European Molecular Biology Laboratory (http://www.ebi.ac.uk/)
• The International Society for Computational Biology (http://www.iscb.org/)
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• National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/)
• National Institutes of Health home page (http://www.nih.gov/)
• Open Bioinformatics Foundation: umbrella nonprofit organization supporting certain

open source projects in bioinformatics (http://www.open-bio.org/wiki/Main_Page)
• Swiss Institute of Bioinformatics (http://www.isb-sib.ch/)
• Welcome Trust Sanger Institute (http://www.sanger.ac.uk/)

Major Journals

• Algorithms in Molecular Biology (http://www.almob.org/)
• Bioinformatics (http://bioinformatics.oxfordjournals.org/)
• BMC Bioinformatics (http://www.biomedcentral.com/bmcbioinformatics)
• Briefings in Bioinformatics (http://bib.oxfordjournals.org/)
• Evolutionary Bioinformatics (http://www.la-press.com/journal.php?journal_id¼17)
• Genome Research (http://genome.cshlp.org/)
• The International Journal of Biostatistics (http://www.bepress.com/ijb/)
• Journal of Computational Biology (http://www.liebertpub.com/products/product.aspx?

pid¼31)
• Cancer Informatics (http://www.la-press.com/cancer-informatics-journal-j10)
• Journal of the Royal Society Interface (http://publishing.royalsociety.org/index.cfm?

page¼1058)
• Molecular Systems Biology (http://www.nature.com/msb/index.html)
• PLoS Computational Biology (http://www.ploscompbiol.org/home.action)
• Statistical Applications in Genetic and Molecular Biology (http://www.bepress.com/sagmb/)
• Transactions on Computational Biology and Bioinformatics - IEEE/ACM (http://portal.acm.

org/toc.cfm?id¼J954)
• International Journal of Bioinformatics Research and Applications (http://www.inderscience.

com/browse/index.php?journalcode¼ijbra)
• List of bioinformatics journals (http://www.bioinformatics.fr/journals.php)

Other Sites

• Human Genome Project and Bioinformatics (http://www.ornl.gov/sci/techresources/
Human_Genome/research/informatics.shtml) Excellent resource site—Co-Authors.

• List of Bioinformatics Research Groups (http://www.bioinformatics.fr/laboratories.php)
• List of Bioinformatics Research Groups at the Open Directory Project (http://www.

dmoz.org/Science/Biology/Bioinformatics/Research_Groups/)
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PREAMBLE

Most organizations, whether for profit or nonprofit purposes, exist to develop and pro-
mote some things or ideas related to their organization. One of the major activities of these
organizations is to appeal to people outside their organizations to join them, support
them, or purchase their goods or services. Traditional means of doing this included offer-
ing goods and services in storefronts, by advertisements in appropriate venues, and by
contacting a broad spectrum of people by phone or mail. These methods are rather pas-
sive. The philosophy was to build it, show it, advertise or promote it, and customers
would come.

Since the early 1990s, many businesses have taken a more active approach by
using various technological approaches to identify specific prospective customers
and going after their business, rather than waiting for them to respond to the passive
appeals. The key issue in this process is identifying which prospects are most likely to
respond to the appeals. The activity of identifying prospects and quantifying their
likelihood to respond is one of earliest applications of data mining technology to
business.
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EARLY CRM ISSUES IN BUSINESS

One of the early business issues to be addressed with data mining technology in the
mid-1990s was Customer Relationship Management (CRM). CRM systems were built to
manage how a business relates to its customers. Customer-facing systems were built
to manage call centers and to inform marketing and sales efforts. In support of the market-
ing and sales channels, analytical modeling systems were built by pioneers in data mining
technology. NCR built some of the earliest analytical CRM product suites in 1998 in the
form of ChurnSentry (for customer retention modeling) and GrowthAdvisor (for cross-sell
and up-sell modeling). Both of these products included a data discovery tool, a model
manager, numerous canned reports (via Cognos), and a campaign management system.
Soon, other CRM systems were built, notably by Siebel and Vantive, to serve sales force
automation, but later extended to cover call centers and some front-end office operations.

On the analytical side of CRM, the major foci were

• Customer response modeling with predictive analytics for

• Customer acquisition
• Customer retention
• Customer up-sell (selling an enhanced product or service)
• Customer cross-sell (selling a different product or service)

• Customer Lifetime Value (LTV) modeling

The trend in marketing with analytics was to move from a broadcast marketing
operation to a one-to-one marketing operation. Naturally, the key in this activity was pre-
dicting which products or services a particular customer was likely to respond to. The most
common approach used to do this was to model customer actions in the past and use the
model to predict actions in the future. This is a form of human behavioral modeling.

KNOWING HOW CUSTOMERS BEHAVED
BEFORE THEY ACTED

To be competitive in today’s markets, we must capture and leverage information from
historical detail records describing what our customers did in the past. This information
can be very useful in defining patterns in the behavior of customers leading up to the
decision to leave the company. For a given customer, the decision to leave the company
did not happen in a vacuum. Many factors contributed to this decision, such as dissatis-
faction with service, perception of the greater value of competitive goods and services,
and changes in business needs. Some of these factors, such as customer satisfaction, can
be tracked through customer care programs. However, most factors that contribute
directly to attrition cannot be captured and stored in corporate databases. The only way
to reflect these attrition variables is to relate them to customer behavior patterns that
can be tracked from data in the data warehouse. The pattern of historical information of
customers who have left the company can be used to predict which present customers
have a high probability of leaving in the near future. How is this possible?
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Transforming Corporations into Business Ecosystems: The Path
to Customer Fulfillment

Ever since the Industrial Revolution, Western society has tended to view the world as a
machine, composed of components that functioned like cogs, wheels, and springs.

Newton formalized this approach in science. However, it worked only within the range
of Newton’s instruments. Later discoveries by Einstein (relativity) and quantum physicists
caused the Newtonian concept of the world to fall to pieces!

Business also picked up on this metaphor in the Industrial Revolution. The automobile
assembly line of Henry Ford was viewed as the paragon of efficiency.

As long as the product was relatively simple in organization, this metaphor appeared to
work. An efficient business became defined in terms of

• A “well-oiled machine”
• “Having momentum”
• “Gaining steam”
• “Firing on all eight cylinders”

The primary business unit became the corporation. The prevailing attitude was “Us
against Them.” Only the strong competitors survived. For these corporations, the primary
business activity was production. It was expected that revenue would be maximized as pro-
duction was optimized. Generations of operations research practitioners sought to optimize
processes that would maximize business revenue.

With the advent of fast computers, flexible communications, and the Internet, a new busi-
ness paradigm has emerged: the business ecosystem (Inmon et al., 1998). Moore (1996) maintains
that real competition in these business ecosystems is not dead (actually, it is intensifying); it
has just changed its expression. The old expression of competition pitted offers and markets
against each other. The products improved as companies listened to customers and made
the products fit their desires. The problem with this approach is that it ignores the environment
and the system in which those offers and markets are embedded. It also ignores the great
benefit that can come with co-evolution with other “competitors” to satisfy customers more
than if they operated separately. Moore stresses the importance of the environment and
the system in which our businesses are enmeshed. This emphasis points also to the need to
consider systems’ effects in our analyses of customer behavior.

As businesses became more complex, the machine metaphor began to break down. In
both science and business, it became increasingly obvious by the 1980s that we had to begin
to look at the world in a different way. In these increasingly complex systems, there seemed
to be important properties that did not emerge until the system was complete and operating
as a whole. These emergent properties often controlled the major responses of the system.
These influences are causing a profound shft in science and business toward viewing the
world as organism!

Petzinger (1999) remarks that the key characteristic of modern civilization is that of
economizing, and that our genes are programmed for business.

This view of business as “organism” flowed out of the the central concept proposed by
Rothschild (1990):
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There is a parallel between the response of natural systems to rapid environmental change and the response
of business systems to rapid technological change. (p. xiii)

From this principle, it is argued that our view of the world-as-machine greatly hinders us
from economizing very well in this age of rapid technological change. Why? Because the
rules keep changing faster than our machine-like business systems can accommodate. Per-
haps it is time for a “new” science to help us understand life in the midst of rapid change
(Rothschild, 1990).

CRM IN BUSINESS ECOSYSTEMS

In the freewheeling business of today, companies try to build Customer Relationship
Management programs that aim to create the same kinds of relationships with their
customers. To build these relationships, companies must learn to understand their cus-
tomers. To understand their customers sufficiently to build effective customer relationships,
marketers must

• Learn how to identify the right set of customers to do business with (segmentation);
• Learn how to identify valued customers;
• Learn how to recognize danger signals in their data relating to customer behavior that,

if unchecked, might lead to decisions to leave the company;
• Use segments defined by attrition probability algorithms to strengthen and maintain

relationships with valued members of the existing customer base.

The key principle in this approach is that the most powerful predictors of customer
behavior in the future are customer behavior patterns in the past. Other customer character-
istics are important also in defining patterns of customer behavior (i.e., demographic and
firmographic information). However, unless we include in our models of customer behav-
ior the patterns of past customer behavior related to their future actions, they will not be
very powerful predictors of what customers actually do. When these patterns are combined
with the more static customer information gathered by businesses in their day-to-day
operations (e.g., the date a business started business), companies can take a quantum leap
forward in understanding the customer and improving customer loyalty.

Differences Between Static Measures and Evolutionary Measures

The key difference between historical behavior patterns and relatively static characteris-
tics of customers is that historical patterns enable us to track the development of the decision
to leave rather than just the decision itself. These evolving behavior patterns are very
organic in nature and are driven by a number of significant nonlinear events (NLEs). Farrel
(1998) maintains that bursts of customer demand (or “anti-demand” like attrition) are
driven by these NLEs. The evolutionary nature of these NLEs renders them much richer
in predictive value than static characteristics alone because they can capture the mood of
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the customer, preferences, attitudes, and many clues that help you to understand why the
customer did what he did. Some static characteristics are certainly related to the attrition
decision, but they tell only a part of the story. To see the other half of the story, we must
add variables that express this development of the decision to leave the company. This is
a very organic view of customer behavior similar to the way biologists view the comple-
mentary effects of intrinsic (organism-based) and extrinsic (environmental) influences on
organism response. This viewpoint represents a dramatic shift in mindset from the tradi-
tional way that many companies view their data.

How Can Human Nature as Viewed Through Plato Help Us in Modeling
Customer Response?

If human nature is a common basis for human action, then to predict the action of cus-
tomer response, we must model human nature. We must focus on variables available to
us in our databases that reflect some aspect of human nature that leads to the response.
These variables might include

• Historical customer care data
• Historical use of company services
• Historical billing revenue data
• Historical contract data
• Selected demographic data

How Can We Reorganize Our Data to Reflect Motives and Attitudes?

The key to successful customer response modeling is to associate with each customer a
historical time-series of fields (selected from those listed in the preceding section) that in
some way reflect motives and attitudes that caused the customer decision. These motives
and attitudes flowing out of our human nature are the reality behind the “shadows” of
the action. To see the deeper reality of what causes these shadows, we must turn around,
so to speak (like those in Plato’s cave), and look at the data in a different way. We must
abstract information from the time-series of customer response in a form that is related to
the customer action to be modeled. These abstractions are called temporal abstractions.

The use of temporal abstractions has attracted widespread interest in medical and phar-
maceutical informatics for predicting patient responses (Kahn et al., 1991; Haimowitz and
Kohane, 1996; Kattan et al., 1997). Temporal abstractions are one type of data abstraction
used to map data elements to some context environment. Data abstractions can be classified
into four groups (Lavrac et al., 2000):

• Qualitative abstraction: A numeric expression is mapped to a qualitative expression. For
example, in an analysis of teenage customer demand, compared to that of others,
customers with ages between 13 and 19 could be abstracted as a value of 1 to a variable
“teenager,” while others are abstracted to a value of 0.
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• Generalization abstraction: An instance of an occurrence is mapped to its class. For
example, in an analysis of Asian preferences, compared to non-Asian, listings of
“Chinese,” “Japanese,” and “Korean” in the Race variable could be abstracted to 1 in the
Asian variable, while others are abstracted to a value of 0.

• Definitional abstraction: One data element from one conceptual category is mapped to
its counterpart in another conceptual category. For example, when combining data sets
from different sources for an analysis of customer demand among African-Americans,
you might want to map “Caucasian” in a demographic data set and “White Anglo-Saxon
Protestant” in a sociological data set to a separate variable of “Non-Black.”

• Temporal abstraction: A variable in a time domain with one reference is mapped to a
time domain with a different reference.

The first three types of data abstractions are usually referred to by data miners as forms
of recoding. The fourth type, temporal abstraction, is not commonly used. However, the
methodologies of several data mining tool vendors have (or had) forms of temporal abstrac-
tions integrated into their design:

• SAS Enterprise Miner: Ability to define “lag” variables
• Orchestrate–PreludePLUS‘ by Torrent Systems (now owned by IBM)
• ChurnSentry‘ and GrowthAdvisor‘ by NCR
• KXEN‘: Knowledge Extraction Engine

What Is a Temporal Abstraction?

Modeling customer behavior with temporal abstractions involves rearranging all the
modeling variables to more clearly reflect patterns of change in the customer response vari-
able. Then the modeling tool can easily recognize the pattern that exists between the
response variable and various states of predictor variables in the past with respect to the
response variable. These time-series representations of each predictor variable are a form
of temporal abstraction. See Figure 16.1.

Figure 16.1 displays fields in six customer records from a telecommunications company
lined up like beads on an abacus. The data on the left abacus represent information stored
for monthly call duration extracted from multiple records in the database. This arrange-
ment is similar to the format of the data extracted from databases into flat files to be submit-
ted to the modeling tool for analysis. In the default configuration (left abacus), the yellow
beads (a given state in the time-series) are scattered all over the abacus. The diagram on
the right of Figure 16.1 shows the rearranged data. Now, the yellow beads are lined up.
The pattern emerges to the physical senses of our eyes and likewise to the mathematical
senses of the modeling tool.

The same approach can be used to model customer fraud, or propensity-to-buy to serve
cross-selling and up-selling campaigns. In Chapter 1, we showed that we must include both
Aristotelian and Platonic approaches to truth to model a complex system. Customer be-
haviors in the context of the business ecosystems within which they operate can be modeled
successfully using this combined approach. This approach to customer behavior modeling
will permit us to see the “shadows” of customer behavior (following Aristotle) and
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reflections of the causes (the deeper reality) of this behavior (following Plato). Such a com-
bined perspective on the nature of customer behavior can provide much more powerful
models than those based on one perspective alone.

Example

We can see the relative contributions of temporal abstraction and static variables in mod-
eling voluntary attrition (disenrollment) among customers of a large insurance company
(see Nisbet, 2004). These events were modeled separately with each of two variable sets:
one using temporal abstraction variables and one set without them. The temporal abstrac-
tions were created by taking quarterly snapshots of policy records for a given household.
The snapshots represent temporal objects in a temporal database (Jensen et al., 1996). The
temporal abstractions represent keys of this derived temporal database in which the tempo-
ral tuples are the response quarter and a given quarter prior to the response. These snap-
shot temporal abstractions follow Snapshot Dependency Theory as extended by Wijsen
et al. (1993) and formalized by Wijsen (2001), and they represent keys for a sequence of
snapshot relations in the household insurance policy history indexed in reference to the
response quarter.

Sir R. A. Fisher designed his statistical tools for use in the medical world to permit dif-
ferent researchers to analyze the same data and get the same results. Previous (Bayesian)
statistical methods with their subjective “priors” did not lend themselves well to that
end. To make these methods work, scientists had to perform controlled experiments, hold-
ing all variables constant and varying the treatment of one variable at a time. Results were
compared to a “control” group with no treatments. Laboratory conditions of temperature,
light, moisture, etc., often had to be held constant because the physics of variable response
might be affected by the environment. These highly controlled conditions are almost never
found outside a laboratory, but business analysts used these methods anyway.

Jan  ………..…..  Oct

No Pattern + reorganization = Pattern emerges!

Slice across records

Variable = July Variable = T−1

How Temporal Abstractions Work

FIGURE 16.1 Pattern emergence facilitated by a temporal abstraction.

341CRM IN BUSINESS ECOSYSTEMS

II. THE ALGORITHMS IN DATA MINING AND TEXT MINING



Machine learning technology (particularly, neural nets) developed in the AI community
was not based on calculation of “parameters” like standard deviation. Modern neural nets
do not depend on data drawn from a distribution of any particular kind (e.g., normal dis-
tribution). Patterns in data sets can be modeled directly in the form of weights assigned
to each input variable.

The tool chosen for the analysis of the insurance disenrollment event was an automated
backpropagation neural net in a prior version of SPSS Clementine (Version 5.1). Data prep-
aration of the temporal abstraction variables was done with a C-program outside the data
mining tool (at that time, no data mining tool could do that). A Clementine stream was
designed to input data, train the neural net, and score the holdout data set with the trained
model (Figure 16.2).

A second Clementine stream was used to aggregate and decile the scored list, and to cre-
ate the lift curves (Figure 16.3).

FIGURE 16.2 A Clementine visual programming stream used to train a neural net and score a data file.
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Results

The cumulative lift diagram (Figure 16.4) is created by plotting the cumulative response(s)
along with the cumulative response that you would expect from random selection. The ran-
dom number expected for customer response in each decile is 10% of the total. The figure
shows that the random expectation for customer response increases by 10% each decile
(shown by the diagonal red line). The difference between the response line (blue) and the
random expectation line (red) reflects the “lift” that the model gives to the predicted
response rate for a given decile. The total area between the lift curve and the random line
represents the total effect of the model for increasing the total customer response across
all deciles of the scored list.

Comparison of Static and Temporal Effects

The lift curve (Figure 16.4) was calculated with holdout data scored by the model, which
used both static and temporal abstraction variables. Another model was trained using only

FIGURE 16.3 Clementine stream used to create the lift curves.
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the static variables, and the results plotted together with those for the model using all of the
variables. Figure 16.5 shows that only about 60% of the lift (extension of the bar above ran-
dom for a given decile) was due to the static variables. The rest of the lift is provided by the
temporal abstraction variables.

CONCLUSIONS

The biological metaphor appears superior to the machine metaphor in helping us under-
stand the causes of customer behavior in business. Customers are biological entities that
respond in a biological manner. This manner is the result of the complex interaction of
many factors that operate as a system to influence the nature of the response. It seems rea-
sonable to expect that the only way to create highly predictive models of customer behavior
is to express some degree of this complex interaction in the design of the modeling
methodology.
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FIGURE 16.4 Cumulative lift curve for disenrollment.
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From this perspective, it is easy to see why static variables alone will detect only part of the
signal of customer response. Most attempts at modeling customer response are confined
to analyzing historical variables and their transforms as if they are time-independent influ-
ences on customer response. Occasionally, time-series analysis is applied to capture time-
dependencies. However, time-series analyses (like all parametric methods, as represented
in Chapter 1) suffer from many assumptions that are not satisfied in business data (e.g., linear
additivity, variable independence, membership in a specific distribution such as a normal
distribution). Therefore, many analyses of historical data treat the data elements as if they
were static variables with no temporal attributes. For example, call durations for March,
April, and May are part of a time-series of historical data for a given customer, but they
are usually submitted to the modeling tool without regard to their sequence or relationship
to the point in time of the customer response. This relationship constitutes a time-dependency
between the response date and the sequence in the state of each variable prior to that date.

Temporal abstractions permit expression of this time-dependency between an event and
the influences affecting its occurrence. The new variables derived from these temporal
expressions provide a rich source of predictability for customer response. They provide
insights into why the customer acted and represent the “other half” of the story of customer
response that we can see in our databases. Temporal abstractions (and trend variables cal-
culated from them) permit the data mining tool to capture much of the signal of customer
response resident in the time-series of the historical data.

POSTSCRIPT

In the preceding discussion of Customer Relationship Management models, we
restricted our focus to just those issues related to building the business base, from which
increased profitability could ensue. But there are other issues related to profitability that
are not related to building the customer base, but to shrinking it. One such issue is the inci-
dence of fraud. Chapter 17 will explore some of the issues and challenges of modeling the
exceedingly rare (but potentially devastating) effects of fraud.
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PREAMBLE

Fraud can be defined as a criminal activity, involving false representations to gain an unjust
advantage (ConciseOxfordDictionary). Fraudoccurs in awide variety of formsand is ever chang-
ing as new technologies and new economic and social systems provide new opportunities for
fraudulent activity. The total extent of business losses due to fraudulent activities is difficult
to define. One estimate claims that financial losses range from $100–150 billion per year. The
Association of Certified Fraud Examiners estimates that U.S. organizations lose about 7% of
their revenues to fraud. If this were to hold true for all organizations contributing to the Gross
Domestic Product of about $14 trillion for 2007, fraud losses could be as high as $1 trillion.

This discussion of fraud detection is not intended to be inclusive of all types of fraud,
nor is it definitive of even the types discussed in the following sections. The purpose of
this chapter is to introduce you to fraud detection, give you a simple example of how to
build a fraud model, and direct you to additional references to broaden and deepen your
knowledge of the vast scope of fraud detection.
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ISSUES WITH FRAUD DETECTION

Fraud Is Rare

Fraud is usually a rare event and often exceedingly so. Identifying fraud is very difficult
because of its rarity and because its very nature is stealthy. This stealthy action is directed
against an external individual or organization (public or private) for the purposes of some
sort of gain. The vast majority of the records (i.e., 99.9%) may be legitimate. Only 0.1% of the
records may be fraudulent. It may be relatively easy to build a fraud model on these records
that is 99% accurate (overall). For other modeling problems in business, this accuracy would
be exceeding high. But this model would miss 9 out of 10 fraudsters! Much more time
must be spent to identify many more of the 9 fraudsters that would be missed. Often, the
extra accuracy is associated with higher cost, but the cost of not doing so may be much higher.

Fundamentally, fraud is a form of human response that can be modeled in ways very
similar to customer response in business. But because of its rare and stealthy nature, the
fraud signal is very diffuse and must be detected with much more rigorous methods than
the more conventional responses of attrition and cross-sell/up-sell discussed in Chapter
16 on customer response modeling.

Fraud Is Evolving!

Fraudsters may adapt quickly to many fraud detection methods, by devising novel and
increasingly subtle ways to get away with it. Also, fraud detection schemes must evolve
also to try to keep up with (and get ahead of) fraudsters. This process is very much like
the way flu viruses evolve. Flu vaccine designers try to craft new vaccines not just to confer
immunity to strains of flu viruses they know, but to get ahead of the next epidemic. Fraud
detection is a lot like that.

Large Data Sets Are Needed

Large credit card issuers like Capital One may process billions of transactions per year.
Even a very small percentage of fraud among these billions of transactions can result in pro-
portionately large losses. AT&T processed almost 300 million telephone calls each day in
1998 (Cortes and Pregebon, 1998). Phone fraud was one of the major incentives that
prompted AT&T Bell Labs to develop Hancock, a large database computer system capable
of analyzing huge volumes of call detail records. In addition to the fast computer systems,
you must use fast and efficient algorithms to process all these data in time to make action-
able any information related to fraud.

The Fact of Fraud Is Not Always Known During Modeling

Sometimes you can identify fraudsters, and sometimes you can’t. When you can “tag” a
certain group of records as fraudulent, the analyses to model them are called supervised.
The training of the model is supervised by the known identity of the fraudster. If you can’t
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identify the fraudulent records up front, the analyses are called unsupervised. In either event,
Bolton and Hand (2002) suggest that we should view the fraud predictions as suspicion scores.

When the Fraud Happened Is Very Important to Its Detection

The temporal dimension of fraud provides a rich source of information related to fraud.
The occurrence of a fraud event at a given time may be highly related to the pattern of
events that happened in the past. These historical data are the most important source of
attributes needed to sufficiently define the fraud signature in the data set. Many derived
variables can be constructed with various time dimensions (e.g., time since the last transac-
tion). These variables are forms of temporal abstractions we met in Chapter 16. The same
principles that apply to customer behavior in response models also apply to behavior of
fraudsters. We might even expect that many of the most powerful predictor variables in
fraud models are temporal in nature, as is the case in customer response models.

Fraud Is Very Complex

Fraud events involve much complexity. In addition to the data complexity listed in the
preceding sections, the series of events associated with the fraud event may be quite com-
plex. This complexity is partly due to the fraudster’s need for stealth and secrecy, and
partly due to the intentional obfuscation of the trail of evidence indicating fraud.

Fraud Detection May Require the Formulation of Rules Based on General
Principles,“Red Flags,” Alerts, and Profiles

Fraud modeling requires the construction of reference objects based on relationships that
have been drawn in the past between various conditions and the incidence of fraud. Exam-
ples of such rules that suggest fraud include

• General principle: The incidence of fraud is more likely when the opportunity is high
and the potential gains are large.

• A “red flag”: A large number of accidents or claims is made by one individual.
• A “red flag”: The same professional service person is involved with the claim (e.g.,

a doctor).
• An alert: A new product is introduced before fraud management systems are put in

place.

Fraud profiles will be discussed separately later in the chapter.

Fraud Detection Requires Both Internal and External Business Data

Most companies have some sort of internal data describing their business events (selling
things or providing services). But the forms of data gathered for internal purposes most
often are related to billing and account service purposes. Many potentially predictive vari-
ables are not gathered by internal systems (e.g., years in business), but must be gathered
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from external sources. Information can be gathered from various data providers to enhance
the corporate database, including

• Demographic data (available from Axciom, Experion, Equifax, Lexis-Nexis, etc.);
• Firmographic data (e.g., Dun & Bradstreet data and other business data sources);
• Psychographic data (inferences and classifications of people according to various

measures of attitudinal and philosophical views).

Very Few Data Sets and Modeling Details Are Available

There is good reason for the lack of data sets and modeling details. You would not want
potential fraudsters to learn how to defeat your detection strategies. Fraud data sets and
modeling methodologies are tightly kept secrets. A company like Fair Isaac (generator of
the FICO credit scores) has a huge library of predictor variables it won’t share with anyone.
In academia, fraud researchers share their methods in very formal and general terms that
only experts can understand, read “between the lines,” and relate to detailed instructions.
Fraud modelers may be technical experts in a given business and would love to have access
to detailed methodological presentations.

Very few fraud data sets are available in the public domain. Following are the only two
that the authors are aware of:

1. A relatively small data set of Spanish automobile insurance claims (a Research Paper in
Economics, or RePEc, data set. See http://repec.org/ and Artis et al. (1999).

2. The KDD Cup 1999 Network Intrusion Detection data set (http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html). (Note: This data set will be used in the example
described later.)

HOW DO YOU DETECT FRAUD?

The basic approach to fraud detection with an analytical model is to identify possible
predictors of fraud associated with known fraudsters and their actions in the past. The most
powerful fraud models (like the most powerful customer response models) are built on
historical data.

If the fraud response can be identified, it can be used to characterize the behavior of the
fraudster in the specific fraud act and in historical data. The application of the term supervised
is drawn from the broader discipline of classification (see Chapter 11 for an introduction to
the terms supervised and unsupervised). Supervised classifications are based on some measure
of true class membership of a given entity. According to Bolton and Hand (2002), supervised
modeling has the drawback that it requires “absolute certainty” that each event can be accu-
rately classified as fraud or nonfraud. In addition, the authors note that any models of fraud
can be used to detect only types of fraud that have been identified previously.

Unsupervised methods of fraud modeling rely on detecting events that are abnormal.
These abnormal events must be characterized by relating the events to symptoms associated
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with fraudulent events in the past. Statistical classification as fraud by unsupervisedmethods
does not prove that certain events are fraudulent, but only suggests that these events should
be considered as probably fraud suitable for further investigation.

Link analysis is the most common unsupervised method of fraud detection. The process
of performing link analysis is known as link discovery (LD). This discipline has its origin in
discreet mathematics, graph theory, social science, and pattern analysis. The object of LD is
to find hidden links among patterns that appear to be unrelated. The approach is to relate
groups and activities to some behavior, such as fraud. LD is related in a broader context to
the recent emergence of social network analysis.

In traditional data mining, entities modeled are variables, which may be correlated
(linked) to other variables in their effect on a target variable. In LD, entities are not vari-
ables, but rather are relationships between entities. LD evaluates the likelihood that a given
pattern in a data set (expressible in a specific graphic data structure) matches some target
pattern. In this regard, LD is very “Platonic” in its search for truth, compared to the more
Aristotelian approach of supervised methods of fraud detection.

Another common unsupervised method is the application of Benford’s Law to detection
of fraudulent financial reports. Benford’s Law states that in numerical lists involving real-life
processes and events, the leading digit is not distributed in a uniform manner (Benford,
1938). The digit 1 appears about a third of the time, and the digit with the lowest frequency is
9. This principle is attributed to Benford, but it was published earlier by Newcomb (1881). As
Director of the Nautical Almanac Office, Newcomb observed that pages of logarithm books
were unevenly worn. Logarithms were used extensively in the calculation of nautical chart
values. The earlier pages of the logarithm books were more worn than the later pages. This
observation led him to form the general principle that any list of numbers taken from any
set of datawill contain numbers beginningwith the digit 1more frequently than any other num-
ber. Benford’s Law can be applied to check the “normalcy” of street numbers, bill amounts,
stock prices, or expense reports. This principlewas derived from observations in the realworld,
but it remained unproven mathematically until Hill (1996) offered a formal proof. Checks
against the relative frequencies of initial digits presented by Benford (1938) can be used to
flag suspicious numerical lists. If the frequency of initial digits in a list is significantly different
from the frequencies listed by Benford, then the list can be flagged as probable fraud.

Despite thewide range of unsupervisedmethods of frauddetection in use today, in the inter-
est of parsimony, we will consider only supervised methods of fraud detection in this chapter.

SUPERVISED CLASSIFICATION OF FRAUD

Several elements are crucial to the successful production and deployment of any super-
vised fraud model:

• The fraud event and the relationship of that event to specific transactions or responses of
the fraudster must be accurately identified.

• Historical data of past transactions or responses must be available to derive powerfully
predictive variables.
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• Profiles of the past behavior and actions of both the fraudsters and the nonfraudsters
must be built and employed in the modeling methodology.

Fraud can occur in many aspects of business:

• Credit card fraud: Stealing or counterfeiting credit card numbers, or nonpayment of
accounts.

• Charge-back fraud: Transaction reversals after an item is shipped.
• Check fraud: Taking advantage of the “float” in time between writing the check and

payment by the bank. In one form, the fraudster writes a check he knows is bad to delay
payment until the check clears (“kiting”) or withdraws money from an account fed by a
bad check and then abandons the account.

• Application fraud: Untrue statements on a credit application, leading to assignment of
an artificially low credit risk.

• Merchant fraud: Involves the collusion of a merchant with another fraudster. One
scheme is “white plastic fraud,” in which a merchant sends fraudulent sales drafts to a
bank and pockets the sales draft payment by the bank.

• Claim fraud: Submitting inflated or false claims.
• Life insurance: False or “engineered” death claims.
• Health care fraud: False billings by health care providers.
• Automobile: Includes “soft” fraud of filing multiple claims and “hard” fraud of

engineering accidents.
• Property: Includes arson and destruction of unsold property.

HOW DO YOU MODEL FRAUD?

There are three general approaches to modeling fraudulent events depicted in
Figure 17.1.

Early fraud models employed expert systems to detect fraudulent events. An expert sys-
tem is a collection of expert opinions on a number of decision criteria. Instead of sifting out
mathematical patterns in a data set, these systems induced rules from the responses of a
group of experts in the field. These rules can be coordinated into a flow chart leading to
a decision. The problem with expert systems is that they are based on subjective inputs that
may be contradictory. Subsequent fraud detection systems used automated rule induction
engines, based decision tree technology, and fuzzy logic. Some of these fraud detection
systems are still marketed today (iPrevent by Brighterion).

The most comprehensive fraud detection systems were developed by HNC Systems in
the late 1990s (now owned by Fair Isaac & Co.). The Fair Isaac fraud detection systems
Falcon Fraud Manager, eFalcon, and LiquidCredit Fraud Solution are built around a sophis-
ticated system of predictive variables derived from extensive historical customer data.
These predictors have been selected by many years of modeling fraud in many companies.
The variables are submitted to a powerful backpropagation neural net developed by HNC
Systems.
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HOW ARE FRAUD DETECTION SYSTEMS BUILT?

Credit card fraud gets the most press coverage, and investment fraud may cause the big-
gest financial “hits.” But application fraud is viewed by some as the most common type of
fraud. The initial problem with application fraud is that there are probably a large number
of fraudulent applications that are never caught. Application fraud can occur in many situa-
tions in which a customer fills out an application. Credit applications (including credit
cards) are particularly vulnerable to fraudulent information, which can cause the credit risk
associated with the application to be significantly underestimated.

Successful fraud detection requires looking at the entire business process and identifying
where fraud can originate. A successful fraud detection team begins each project with a
careful evaluation of the client’s existing business process. Then the team collects cases of
fraud that have been found by auditors or others within the existing manual processes.
From knowledge of the business process and these known cases, team members design
metrics for measuring fraud and work with the client to automate their calculation. Finally,
they develop the detection models. This process delivers value to clients at each stage.

The return on investment (ROI) in fraud detection data mining can be extremely impres-
sive. On one of the authors’ projects, the client had an alert system for its enormous data
processing task whose warnings turned out to be fraud only 1% of the time (very inefficient,
though better than random). With the data mining solution, however, the hit rate improved
to 25%. In another fraud detection project, the analysts were able to achieve a savings of
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FIGURE 17.1 Types of fraud models.
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over $20 million on an engagement that took less than 12 staff months of effort to complete
and deliver.

The most successful application fraud detection systems are based on extensive customer
historical data. Patterns of both fraudsters (“bads”) and nonfraudsters (“goods”) are created,
based on many variables. These variables include not only the information from the applica-
tion form, but also information from a number of other sources. Some of the most predictive
variables are those derived from combinations of variables based on domain knowledge.

Some of the sources of information include

• Near real-time access to credit bureau data;

Names and addresses;
Employer data;
Banking and credit data.

• Characteristics of the applicant extracted from other external data sources (e.g., ZIP code
lists by city, county, and state). Checks will be made to see whether names and addresses
match among different sources of information for an applicant. Other checks may include

The phone number is in the list for a given ZIP code;
The phone number is valid or invalid;
The SSN is valid or invalid;
SSN was never issued;
Date of birth is valid or suspicious;
Aliases were used in the past.

• Checks will be made for duplicates among specific services and for missing services that
are related to existing services for an applicant.

• Many temporal abstraction variables are based on

Time since a specific action occurred, like a late payment;
Time since last loan charge-off;
Number and balances of charge-offs during the last time period.

The application fraud modeling system may be embedded in a system that incorporates
the checks listed here and may operate on all data gathered during all phases of data check-
ing. There are many fraud management systems based in general on this approach.
Included in these systems are

• The Fair Isaac: Falcon Fraud Manager
• Agilis International: NetMind
• SAS: Fraud Management
• Neural Technologies: Minotaur
• 41st Parameter: Fraud Management Solutions
• SAP: Biometric Fraud Mitigation Solution

Some of these products include a number of optional modules that contain various kinds
of checks, powerful modeling algorithms, and a complex scoring system. Some of these
systems can be put in place to analyze credit card applications with a near real-time
response rate.
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INTRUSION DETECTION MODELING

Business network intrusion is a major problem in our digital age. Sometimes people
hack into business and governmental systems just for the fun of it. Other times, the intru-
sion is malicious, seeking information that can be used for fraudulent purposes in a com-
mercial or military context. This type of fraud has led to the development of sophisticated
countermeasures to assure network security. To this end, the KDD Cup 1999 Network
Intrusion Detector data set was created during the 1998 DARPA Intrusion Detection
Evaluation Program, hosted by MIT Lincoln Labs. A data set was generated by collecting
9 weeks’ worth of raw TCP dump data from a local area network (LAN) simulating a real
LAN in a U.S. Air Force environment. The simulated LAN was hit by many simulated
intrusion attempts. The TCP data consisted of about 5 million connection records in the
main data set intended for model training and about 2 million connection records in
the test data set. Each connection consisted of a number of TCP packets associated with
a start time and end time flowing from a start IP address to a destination IP address.
A packet is a short burst of data sent over a network; it is quality checked at the destina-
tion system with various forms of cyclic redundancy checks (CRCs). If the CRC at the
destination is different from that of the source, the packet is retransmitted. Each data
record (line) in the packet was labeled as a binary attack versus nonattack variable and
as a categorical variable with one of 24 attack types.

The data set contains three sets of predictor variables:

1. Basic features;
2. Content features suggested by domain knowledge;
3. Network traffic features using a 2-second time window (one type of time-based feature).

Stolfo et al. (2000) defined additional time-based traffic features of the connections. These
high-level variables included “same host” features, which were calculated for connections
with the same destination host in the past 2 seconds. Similar “same service” features were
calculated. A similar set of time-based features was built using a “connection” window of
100 connections. These high-level derived variables are likely to be quite predictive of dif-
ferent patterns of intrusions, similar to the temporal abstraction variables used to train
the churn model described in Chapter 16.

COMPARISON OF MODELS WITH AND WITHOUT
TIME-BASED FEATURES

The time-based features presented in the KDD Cup data set and those generated by
Stolfo are forms of temporal abstractions in which the base is the time of the connection
and the abstraction is drawn from data within 2 seconds previous to the connection time.

The importance of temporal abstractions for predicting churn in the insurance industry
was demonstrated in Chapter 16. Similar time-based derived variables are also very impor-
tant predictors of fraud. Analyses of all predictor variables in the KDD Cup 1999 data set
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were submitted to the Variable Selection feature in STATISTICA Data Miner. The most
important predictors of network intrusion (regardless of its type) are shown in Figure 17.2.

Notice that except for the variable Logged_in, all of the predictor variables are time-based.
This result indicates how important time-based variables will be in supporting any model
built on this data set. The data set was constrained to the variables listed in Figure 17.2
and submitted to the Data Mining Recipes module in STATISTICA Data Miner.

The next step is to load the data set and select the target(s) and the set of predictor vari-
ables to use in building the model (Figure 17.3).

Step 2 in the Recipe calculates the variable statistics shown in Figure 17.4.
In Figure 17.4 notice that the Selected Testing Sample box was clicked, and the default

20% sample was chosen, which caused the notation “Selected” to appear on the screen.
Step 3 in the Recipe looks for redundant variables (Figure 17.5). Either the Pearson’s

Product-Moment Correlation Coefficient (simple parametric correlation) or the Spearman’s
Rank correlation coefficient (nonparametric) can be selected as the criterion for judging
whether any two variables are correlated at a sufficient level to be redundant.
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Dst_host_count

Srv_count

Dst host srv diff host rate
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FIGURE 17.2 Importance values for the most powerful predictors of network intrusion.
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FIGURE 17.3 STATISTICA

Recipes step 1: variable selection.

FIGURE 17.4 Descriptive
statistical data.
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Redundancy was found between three pairs of variables, and the recommended vari-
ables to delete were Srv_count, Dst_host_srv_count, and Dst_host_same_srv_rate. The
variable list was amended, and the Recipe construction was continued.

Step 4 in the Recipe builds models for C&RT, boosted trees, and automated neural net
(Figure 17.6).

All models in Figure 17.7 marked as TRUE will be evaluated in Step 5 of the Recipe.
For this data set, the boosted trees model (rightmost lift curve through the first five

deciles) performed the best among the models. The total area between the curve and the
baseline reflects the total predictive power, and is largest for the boosted trees model.

FIGURE 17.5 Selection of the crite-
rion to use for redundancy checking.

FIGURE 17.6 Selection of
the models to train.
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These lift index curves reflect how far down the scored list sorted on prediction probabil-
ity a fraud analyst can go before reaching the point of randomness in the prediction of
attack. Even though the model produces a lift over random selection for only the top half
of the data set, the classification of any record as attack or normal is still much more accu-
rate than random selection.

The preceding models illustrate

1. Many variables collected to assess fraud detection are not related to the fraud action
at all (only one basic variable had enough predictive power to be included in the
model).

2. Most of the final predictor variables were time-based.
3. Time spent in deriving time-based variables can pay off with big returns in model

performance.
4. Models for other kinds of fraud detection can be built similarly.
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FIGURE 17.7 Lift index of the testing data set centered around 1.00 (random performance).
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BUILDING PROFILES

Fair Isaac offers the Merchant Profiles option to its Falcon Fraud Manager. It claims that
this option can add up to 50% more detections of merchant fraud. When implemented, the
Merchant Profiles option provides a score for each merchant to combine with the normal
modeling score from Falcon Fraud Manager. This is a good example of how you can combine
model predictions and profiles to create a more powerful fraud detection system, as depicted
in Figure 17.1. Similar profiles can be built for customers in a commercial or credit context.

Many models can be built following this example. Each model could predict fraud under
slightly different conditions. For example, the target variable in the KDD Cup 1999 data set
included 24 categories of fraud. For the sake of illustration, the occurrence of fraud in any
form was modeled in the earlier example. We could have restricted the model to just one
of the 24 categories of fraud. Each of the models could be used to generate a fraud score
for each type of fraud. These scores, plus the rules of thumb, demographic and firmographic
data, and information from other external sources can be composed into a profile. From your
score data, you could build multiple profiles that pertain to different types of fraud and dif-
ferent conditions of fraud (male, female, age, etc.). Potential predictor variables for a fraud
detection model may come from data elements listed in the earlier section on how fraud
detector systems are built. In addition to those variables, many time-based variables can be
derived, similar to the ones used for the KDD Cup Network Intrusion model. The time spent
on deriving novel variables is the most effective way to increase fraud detection rates.

If you are working on a fraud detection project in which the fraudsters can be identified,
appropriate profiles can be built for various customer segments and combined with model
scores to boost the detection rate. The combination of model scores and profiles constitutes
the primary elements of a powerful fraud detection system.

DEPLOYMENT OF FRAUD PROFILES

These profiles can be loaded into real-time systems, and credit card applicants (for exam-
ple) can be matched relatively quickly to known fraud profiles. Model scores and elements
of profiles can be composed into business rules and programmed into SQL or some other
production system interface. For example, some business rules resulting from this composi-
tion in a credit card environment might include

1. If the ZIP code on the application is not in the known list of the phone number area
code ! Fraud (a “red-flag” fraud indicator)

2. If the fraud model score is > 0.60 and the customer demographic profile matches that
of a group of known fraudsters at the 85% level ! Fraud

These business rules can be generated directly from rule induction engines, indirectly
from decision tree algorithms, or inferred from combinations of neural net predictor
variables with relatively high importance values.
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POSTSCRIPT AND PROLEGOMENON

You might not have come this far in the book before trying one of the tutorials. But if you
resisted that temptation, you are much better prepared to work on the tutorials in Part III.
Tutorials included in the printed pages of Part III include those that the authors judged to
be most pertinent to the interests of the wide audience of our readers. Other tutorials are
included on the enclosed DVD.
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P A R T III

TUTORIALS—STEP-BY-
STEP CASE STUDIES AS A

STARTING POINT TO
LEARN HOW TO DO DATA

MINING ANALYSES

If a picture is worth a thousand words, a good tutorial can be worth this whole book. We
have packaged a number of tutorials in these printed pages, which cover a wide range of
applications, using one the three data mining tools introduced in Chapter 10. Some readers
may charge ahead directly guided by these tutorials; other readers will go through some or
all of the preceding chapters before tackling a tutorial. Whichever approach you took, you
are in now in the “meat” of this book. Parts I and II were designed to lead up to the tutorials
in Part III. As you go through these tutorials, you may remember some factoid about a sub-
ject presented in one of the previous chapters. If so, use the tutorials as a springboard to
jump into your own application area, but also let the tutorials point you back to important
topics presented previously in this handbook.
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Recipe (DMR)? 373

Core Analytic Ingredients 373

The new Data Miner Recipe (DMRecipe) will be presented in this tutorial because it is the
easiest way for you to actually “do” a data mining project, automatically get results, and thus
get an overall feel about what data mining can do with your data if you’re new to data mining.
The process can involve as few as four to six mouse clicks and is so easy that you could even
write these short steps on a sheet of paper, leave it on your assistant’s desk, asking him or her
to run this analysis the next daywhile you are away on a business trip or ameeting across town.
The fastest way to understand this process is to present some illustrations of what you will see
on your PC screen, followed by a full explanation of what DMRecipe can do for you.

The DMRecipe is really the first method that you, whether a new user or experienced
data miner, should use to look at a new data set because it is the most rapid, simplest
way to get a feel for a new data set, and the resulting analysis may be all that is needed,
thus negating further interactive or DMWorkspace analysis, resulting in a real savings of
time and energy.

Before you start working with DMRecipe, if you don’t have a data set already open on
the PC screen, click on the File menu at the top of the STATISTICA screen, and select either
Open or Open Examples. Find a data set of interest, opening it on the PC screen. Then
follow these steps:

1. Click on the Data Mining menu. When the menu drops down, select the first option,
Data Miner Recipes, as illustrated in Figure A.1.
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After a few seconds, this Data Miner Recipe dialog will pop up, as shown in
Figure A.2.

2. Click on the DMRecipe dialog, to bring it to the topmost screen, and then click the New
button.

3. Click the Open/Connect Data File button (see the upper-center part of the dialog
in Figure A.3) and select the variables of interest. (In this example, the famous Irisdat.sta
data set is being used; it contains data on three species of iris, the three species listed as
one variable, the dependent variable in this example, and several independent/predictor
variables that are continuous measures of the flower petal length, width, etc.)

4. Click the Select Variables button on the DMRecipe dialog, where indicated in Figure A.4.
5. Select the variables shown in Figure A.5 and click OK to accept them and place in the

DMRecipe analysis.
6. Click on the down arrow icon in the upper-right corner of the DMRecipe dialog and

release on the Run to Completion selection, as shown in Figure A.6.
Alternatively, you could click on the Next Step button, which is located just to the

left of the down arrow, but then you would have to sit at your PC and click on each step
of the process—although in some cases this may be to your advantage.

Go away and have lunch, take a walk, or go home if you know you have a large data set
that may take hours for the complete data mining computations to take place or before use-
ful results workbooks are shown. When you come back, the results workbook shown in
Figure A.7 will be open on the screen, with the competitive analysis of algorithms as the
topmost screen.

As you can see from the results in Figure A.7, boosted trees had the lowest error rate,
which can be converted into the accuracy rates. The accuracy rate is the primary way of

FIGURE A.1 Data Miner Recipe is found on the Data Mining pull-down menu.
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expressing the “correctness” of data mining algorithms; it is equal to (100 – error rate).
Thus, the accuracy rate for boosted trees is 99.37%, almost a 100% accuracy in predicting
which plant species a particular specimen is, based on the dimensions of the plant’s flower
petals in this example. Since boosted trees had the highest accuracy rate, it was selected for
the deployment model, which can be used on future data sets.

The model developed for Figure A.7 has very high accuracy rates; thus, any of the three
algorithms—e.g., neural networks, C&RT (i.e., decision trees), or boosted trees—could have
been reasonably used as the deployment model.

However, you will run into data sets where there are some differences in accuracy scores
among the models, with maybe none of the algorithms providing the hoped-for “95% or
higher” accuracy. In these cases, hybrid models can be made, usually called consensus models;
these are discussed in Chapter 9 and in some of the other tutorials.

FIGURE A.2 DMRecipe beginning dialog.
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If the DMRecipe workspace you used was an old one or a partially constructed one,
where you had to click on the Open button (instead of the New button) at the beginning
of the process, you may have needed only two or three clicks to run the project.

FIGURE A.3 The Open/Connect data file button used to connect a data file to the DMRecipe.

The following text is taken from the online

help of STATISTICA; this discussion provides

an overview of the basic concepts in the

DNRecipe approach; StatSoft, Inc. (2008).

STATISTICA (data analysis software system),

version 8.0. www.statsoft.com.
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FIGURE A.4 Select variables button; click to open “Select variables” dialog.

FIGURE A.5 Select variables dialog.
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FIGURE A.6 DMRecipe dialog with variables selected and ready to run.

FIGURE A.7 Results workbook presented at the completion of DMRecipe project computations.
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WHAT IS STATISTICA DATA MINER RECIPE (DMR)?

STATISTICA Data Miner Recipe (DMR) provides a systematic method for building
advanced analytic models to relate one or more target (dependent) quantities to a number
of input (independent) predictor variables. The target variables can be continuous or
categorical. Continuous target variables are usually associated with regression tasks,
and categorical variables are used in classification problems. STATISTICA DMR is capable
of handling both types of variables and, thus, capable of building predictive models for
tackling regression and classification problems.

STATISTICA DMR is a complete solution that makes the process of predictive model
building and data mining a systematic and step-by-step process. Model building in DMR
starts with preliminary data analysis, preprocessing the analysis variables, dimensionality
reduction, and elimination of any redundancy that might exist in the data set. Once data
definitions and preparation are complete, DMR can create various predictive models (such
as neural networks, Support Vector Machines, trees, etc.) for modeling the values of the tar-
get data from the input variables. This step is followed by model evaluation and, finally and
most important of all, model deployment in which the predictive models can be used for
making predictions on unseen (new) data (e.g., for “scoring” of databases).

In addition to a recipe-like user interface for building predictive models, STATISTICA
DMR also supports the off-loading of computationally demanding tasks. With DMR, you
also can save projections and reload them in the future for further deployment.

CORE ANALYTIC INGREDIENTS

At the heart of STATISTICA Data Miner Recipe is a step-by-step recipe consisting of
many analytic ingredients, which together create a self-contained tool for creating and
deploying predictive models. The individual analytic methods and steps that need to be
applied in a particular order may be available in various other scientific or academic
domains, but the unique combination of analysis methods and steps in DMR has created
an analytic workflow that can satisfy the needs of beginners and advanced users of data
mining tools. STATISTICA DMR can be run as a nearly single-step data mining process (just
specify variables or fields and then run-to-completion) or can be used by experienced data
mining practitioners to “host” sophisticated and “fine-tuned” data mining models (with
data preprocessing, transformations, etc.) for deployment.

The various ingredients of STATISTICA DMR are implemented in unique and specific
steps, and the results are supported by various spreadsheets and graphs that are designed
to aid us in drawing conclusions and interpreting the results.

1. Data preparation. Essentially, in this first step, you prepare the data for modeling.
Specific data cleaning and transformations procedures can be implemented to eliminate
specific unusual and duplicate cases. In addition, a “blind-holdout-sample” can be
selected to be used later for validating models. Also, the target (dependent) and input

373CORE ANALYTIC INGREDIENTS

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



variables to the process are specified; targets are the variables or outcomes of interest
that are to be predicted using the inputs (independent variables).

For example, suppose the task is to identify an accurate model for predicting two
important outcomes related to credit risk: default probability and direct profit/loss over
the lifetime of the loan. In this case, there would be two target variables (in the training
data, i.e., a sample of individuals who had previously taken out a loan): (1) whether a
respective individual defaulted on the loan and (2) how much profit/loss overall
accumulated over the lifetime of the loan. Typical predictors might be the credit rating of
each person (at the time the loan was originated), average income, etc.

2. Data analysis. In this stage, you can conduct statistical analyses of your variables
including the targets and the inputs. You can review various statistics of the data such as
mean, standard deviation, skewness, kurtosis, and observed minimum and maximum.
You can also review the variable roles (inputs or targets) and their types (continuous or
categorical). For regression analysis, the target variables are invariably continuous. For
classification tasks, only categorical variables are chosen as target variables.

3. Data redundancy. Often, a number of variables can carry, to some degree, the same
information. For example, the height and weight of people might in many circumstances
carry similar information because the two variables are correlated. In other words,
from the height, you can predict the weight with some accuracy. Thus, it may not be
necessary to use both height and weight in the same analysis. Intuitively, the exclusion
of variables that may carry useful information may sound like a bad idea, since the
height and weight can never be related with perfect correlation, but in fact it is a
consequence of the curse of dimensionality. It demonstrates that the benefits gained by
reducing the curse of dimensionality can actually outweigh the loss of some information
that might be incurred as a result.

In this step, a simple correlation test is applied to identify redundant inputs and
remove them from further consideration for modeling. Note that the data redundancy
scheme applies only to continuous inputs.

4. Dimension reduction. One of the important functionalities available in STATISTICA
DMR is the ability to identify a small number of important inputs (for predicting the
target) from a much larger number of available inputs (and is effective in cases when
there are more inputs than cases or observations). Even after the preceding step has been
applied (data redundancy), usually a large number of inputs remain for model building.
While many methods exist—and are typically in use—to “screen” inputs to identify
those that appear to be related in some way to the target variable of interest, a major
analytic challenge is to find the interactions between inputs that predict the target of
interest.

For example, predicting (modeling) the performance of a boiler requires a particular
“configuration” of settings of different multiple inputs; also, the most simple monotone
relationships (the more of X, the more of Y) are usually known already. The accurate
prediction of credit or insurance risk (from inputs beyond commonly known and
obvious risk factors) also usually requires the identification of a specific “configuration”
of demographic and other variables that are related to risk. Interactions between inputs
often cannot be explicitly screened entirely, because even with as few as 100 inputs, there
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can be more than 160,000 interactions between, for example, 3 specific inputs that can be
arranged out of 100 inputs. STATISTICA DMR uses tree-based algorithms for finding
important input predictor variables and interactions among them.

5. Model building. In this step, the actual models for predicting the targets from the inputs
are built. Traditionally, building predictive models often falls under the domain of data
mining or statistics. In STATISTICA DMR, the goal is to largely “automate” the process
of generating good (accurate) predictive models; thus, by default the program will
automatically search a specified number of different predictive models such as various
tree models, Support Vector Machines, and neural networks. For the latter models such
as neural networks, DMR automatically chooses good “candidate models” for further
consideration. These computations can be time consuming and, hence, can be off-loaded
to the server (from the desktop computer), where results can be picked up later or even
the next day. Also, a large number of graphical displays are available to the Model
Builder to review how well the different models predict the targets of interest. However,
model building and selection are mostly automated to empower subject experts in the
domain of interest (e.g., engineers who serve in the Model Builder role) rather than
statisticians or data mining professionals to quickly and effectively build accurate
predictive (e.g., neural networks) models.

6. Model evaluation. By the time you reach this step, you already have built your
predictive models. Like any tool, your predictive models need to be tested on data that
were not presented to the models during their training. This is also very similar to
quality control, which needs to be applied to items coming out of production lines to
ensure they meet certain specifications and standards. To do this, you test your models
with data sets that were unseen before. In this case, the validation data set can help. The
aim here is to see how well your models will perform on future data during the later and
most important stage of deployment. The ability to predict new data is known as
generalization. If your models did not generalize well on the validation data, it is
recommended that you investigate the conditions and settings under which they were
built and try creating more models that meet your needs.

7. Deployment. After building your data mining models using STATISTICA DMR, you can
put your predictive models to “use” for predicting future or “new” data as needed. The
process of using predictive models for predicting data that were not used in training the
model is known as deployment. Deployment is by far the most important state of
predictive modeling, and it is indeed the ultimate goal of the Model Builder. It is also the
stage where your predictive models face the test of the real world. A good predictive
model is one that predicts unseen data with the desired accuracy.

STATISTICA Data Miner Recipe provides a direct interface to WebSTATISTICA Enter-
prise to “attach” fully trained data mining models (data miner recipes) to data configura-
tions for automated scoring of new data (e.g., new credit applications) in a Web-based
solution and predict expected outcomes (e.g., for a continuous manufacturing process,
and to track prediction residuals in standard QC charts).

Obviously, this DMRecipe method should be the first choice of most new users in
looking at a new data set.
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The following tutorial will use the Federal Aviation Administration’s (FAA’s) Service
Difficulty Report (SDR) database to explore factors that lead to undesirable events called
unscheduled landings and determine which data mining (DM) model or models appear to
be the most predictive of that event.

It should be noted from the outset that this is a greatly simplified exemplar study. As will
be described later, the database used is very complex, andmuch of it is in text form. Since this
study is limited to a demonstration of DM tools in a particular application, highlighting the
level of automation available, we will hand-select a small subset of the variables available to
us. Selecting other variablesmay require textmining andmethods to copewith the large num-
ber of categorical responses in some of the variables. While the software package we chose
is capable of both data and text mining, we are using only DM methods for this study.
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To achieve our objectives with this tutorial, we will accomplish the following:

• Briefly discuss airline safety and data mining’s importance in improving safety;
• Introduce and describe the SDR database;
• Prepare the data for our study;
• Describe our DM approach using STATISTICA by StatSoft;
• Determine which DM algorithm appears to produce the most accurate results in

predicting unscheduled landings based on error rate.

AIRLINE SAFETY

Commercial airline travel is statistically one of the safest modes of transportation in the
world, but it wasn’t always that way. In the early decades of air travel, accidents were not
uncommon. The best-fit regression line in Figure B.1 reveals a substantial decline in the
fatal accident rate from 1950 through about 1980, even though the actual number of depar-
tures was increasing just as dramatically.

But that’s only part of the story. Sometime around 1980 there appears to be a leveling off
of the accident rate along with a corresponding reduction in the variability of the data.
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FIGURE B.1 Fatal accident rates per million departures—U.S. air carriers operating under 14 CFR 121—1950
through 2006 (ATA, 2007).
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That dramatic improvement in safety in earlier decades coincided with the change from
the old model of “wait for a crash, fix the problem, then fly again” to more of a proactive,
system safety approach. Many experts believe that the leveling off of the accident rate (our
current state) suggests that we may have gained about as much as we can using these meth-
ods and that we need to employ new, more scientific methods if we want to drive the acci-
dent rate down even further. There are many methods that could be discussed in this
context, but one of particular interest is data mining.

There is a wealth of data being collected in the aviation industry; however, not much
of it is being used very effectively. For instance, extensive data are collected on a type of
report called Service Difficulty Reports (SDRs). An SDR is required to be filed by an
operator following an event with an aircraft, such as a malfunction, defect, failure, or
other occurrence. FAA Form 8070-1 is used to collect the pertinent information about
the event. SDR information is stored in a database and can be used to observe trends
and reveal patterns of failures, design deficiencies, and other anomalies.

Of course, it will not be a casual observation of the data that will reveal these trends and
patterns; rather, it will be a rigorous, methodical, well-structured search using data mining
algorithms that will produce actionable results for the aviation safety professional.

One example of countless studies that might be undertaken with this large, complex
database is to explore the occurrences of “unscheduled landings” at airlines. In the context
of this database, unscheduled landings occur when a commercial flight fails to land at its
intended destination due to a problem with the aircraft; rather, the landing occurs at an air-
port that is not included in the flight plan. These events pose several problems for air car-
riers, including safety and economic considerations.

Air carriers incur significant costs as a result of unscheduled landings. The obvious cost
is the additional fuel necessary for another takeoff and climb, which is the phase of flight
when an airliner consumes the most fuel. If the unscheduled landing becomes necessary
early in the flight, the crew may even have to jettison or dump fuel. Other costs can include
personnel, landing fees, maintenance costs associated with transporting company mainte-
nance personnel and/or contracting services, transporting and housing passengers, and
the costs related to an out-of-service airplane. The sum of these costs makes unscheduled
landings a very unwelcomed event for air carrier management.

But safety is also an issue. Sometimes these unscheduled landings occur at airports
served by the air carrier; sometimes not. While flight crews are trained to handle unusual
situations, the safety margin can certainly decline when a landing is made at an unfamiliar
airport and accomplished in an airplane with a problem significant enough to require an
unscheduled landing to begin with.

SDR DATABASE

The SDR database can be found at http://av-info.faa.gov/dd_sublevel.asp?Folder¼
\SDRS. The data are stored in downloadable files in either fixed width delimited or tab
delimited, and in either a zipped (.zip) or text (.txt) format. The data fields are shown in
Table B.1 as detailed in the file named filelayout.txt on the SDR web site. The files appear
to be updated weekly.
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TABLE B.1 Service Difficulty Report: File Layout

Columnname Columntype Length Description

c5 Char 13 Date and sequence number
c10 VarChar 8 Date on which the report was received
c12 Char 5 Unique sequential number assigned on date
c14 Char 4 Region code
c15 Char 4 Year
c16 Char 2 Month
c17 Char 2 Day
c18 Char 13 Operator control number
c20 Char 1 Segment code 1 ¼ aircraft, 2 ¼ engine, 3 ¼
c25 VarChar 8 Date of occurrence
c35 Char 1 A ¼ Air Carrier; G ¼ General Aviation
c40 Char 4 Air Transport Association (ATA) code
c90 Char 16 Manufacturer’s part number
c100 Char 16 Descriptive name of part
c110 Char 12 Component manufacturer’s name
c120 Char 12 Component manufacturer’s model designation
c130 Char 6 Aircraft manufacturer’s name
c140 Char 6 FAA assigned code to identify aircraft group
c150 Char 12 Aircraft manufacturer’s model number
c152 Char 7 Aircraft make and model sequence number
c160 Char 4 Region responsible for aircraft
c170 Char 6 Engine manufacturer’s name
c180 Char 6 FAA assigned code to identify engine group
c190 Char 12 Engine manufacturer’s model number
c192 Char 5 Engine make and model sequence number
c200 Char 4 Region responsible for engine certification
c210 Char 6 Propeller manufacturer’s name
c220 Char 6 FAA assigned code to identify propeller group
c230 Char 12 Propeller manufacturer’s model number
c240 Char 4 Region responsible for propeller certification
c250 Char 16 Location on aircraft of the defective or m
c260 Char 16 Text reflecting condition of failed part
c270 Char 1 Submitter code
c280 Char 1 Report submitted
c290 Char 1 Alert code
c300 Char 4 Air carrier operator code
c310a Char 1 1st occurrence – Precautionary Procedures
c310b Char 1 2nd occurrence – Precautionary Procedures
c310c Char 1 3rd occurrence – Precautionary Procedures
c310d Char 1 4th occurrence – Precautionary Procedures
c314a Char 24 1st occurrence – Precautionary Procedures
c314b Char 24 2nd occurrence – Precautionary Procedures
c314c Char 24 3rd occurrence – Precautionary Procedures
c314d Char 24 4th occurrence – Precautionary Procedures
c320a Char 1 1st occurrence – Nature condition code (Fo
c320b Char 1 2nd occurrence – Nature condition code (Fo

Continued
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In addition to the data files, there are three files that provide information about the data-
base. As mentioned previously, one is filelayout.txt. A second file is sdrcodes.doc; this file
provides a description of most of the codes included in the database. A third file is not
relevant for this tutorial.

TABLE B.1 Service Difficulty Report: File Layout—Cont’d

Columnname Columntype Length Description

c320c Char 1 3rd occurrence – Nature condition code (Fo
c324a Char 26 1st occurrence – Nature condition text (Fo
c324b Char 26 2nd occurrence – Nature condition text (For
c324c Char 26 3rd occurrence – Nature condition text (Fo
c330 Char 2 Stage of operation code
c332 Char 15 Stage of operation text
c340 Char 1 Report status
c350 Char 2 Microfilm roll number of original report
c360 Char 4 Microfilm frame number of original report
c370 Char 2 Region receiving report
c380 Char 2 District office receiving report
c390 Char 5 Aircraft registration or tail number
c400 VarChar 5 Total time accumulated on part regardless
c410 VarChar 5 Total time accumulated on part since overh
c420 Char 1 Severity factor, the higher the number the
c430 Char 12 Manufacturer’s serial number of component
c440 Char 12 Manufacturer’s serial number of aircraft
c450 Char 12 Manufacturer’s serial number of engine
c460 Char 12 Manufacturer’s serial number of propeller
c490 Char 4 1st Code - Up to 2 three-digit ATA codes
c510a VarChar 120 1st line of remarks (For use in report pri
c510b VarChar 120 2nd line of remarks (For use in report pri
c510c VarChar 120 3rd line of remarks (For use in report pri
c510d VarChar 120 4th line of remarks (For use in report pri
c510e VarChar 120 5th line of remarks (For use in report pri
c510f VarChar 120 6th line of remarks (For use in report pri
c602 Char 1 Aircraft weight class code
c604 Char 1 Aircraft wing type code
c606 Char 1 Aircraft power class code
c608 VarChar 2 Number of engines
c610 Char 2 Design characteristic code for typical engine
c612 Char 1 Engine power class code
c614 Char 1 Engine type code
c616 Char 2 Landing gear code
c620 Char 8 FAA type certificate control number for ai
c640 Char 8 FAA type certificate control number for en
c652 Char 1 Propeller power code
c654 Char 1 Propeller type code
c660 Char 8 FAA type certificate control number for pr
Eof VarChar 1 NULL
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PREPARING THE DATA FOR OUR TUTORIAL

For this study, we will concern ourselves only with air carrier-related events; general avi-
ation events will be omitted. In addition, we will restrict our examination to events that
occurred in the calendar year 2007.

Microsoft Excel will be used to compile the data. On the SDR web site (address provided
previously), download and save the files named sdr2007a.txt and sdr2007g.txt (under “Tab
Delimited Data”).

Select File and then Open, point to the xxxx.txt file you want to open, and select it. That
action automatically opens the Text Import Wizard. Select Delimited (Step 1), click Next,
and then under Delimiters (Step 2), select Tab, click Next, and then Finish. Once the file
has loaded into Excel, sort the data by C25 (column J) in ascending order. Ensure that only
2007-dated events are included in the file. Accomplish this procedure for both files (i.e.,
sdr2007a.txt and sdr2007g.txt) and combine the contents of the two files into a single Excel
file named 2007.xls.

It is worth spending some time examining this file in some detail to familiarize
yourself with the contents and to check for obvious missing, miscoded, or otherwise
erroneous data. Some have estimated that data cleaning and exploration constitutes as
much as 80% of the DM effort (Dasu and Johnson, 2003, p. ix). This tutorial will
not go into detail on this step, but excellent references are widely available on the
subject.

The file named 2007.xls contains 51,711 records, but recall that we are concerned only
about air carrier-related events. Thus, sort by C35, A ¼ Air Carrier, G ¼ General Aviation,
and delete those pertaining to general aviation; this leaves a total of 48,849 records.

When we examine Table B.1, it is clear that the SDR database contains some rather large
text fields. Since this exercise is limited to data mining, eliminate text fields C510a through
C510f, each of which contains text fields of up to 120 characters in length.

Finally, since our objective is to predict unscheduled landings, we need a discriminator.
Therefore, insert a column after c314d, “4th occurrence – Precautionary Procedures Text
(For use in report printout),” and label the field Unsched Lndg. Sort the data by C314a in
descending order; this places UNSCHED LANDING occurrences at the top. There are
3,204 incidences of UNSCHED LANDING in C314a. C314b, C314c, and C314d reflect
second, third, and fourth occurrences of UNSCHED LANDINGs, so these should be
sorted successively to ensure that all occurrences of interest are at the top of our spread-
sheet. All totaled, there are 3,405 incidences of UNSCHED LANDINGs in the 2007.xls data
set. For those records that have UNSCHED LANDING in C314a, C314b, C314c, or C314d,
place a YES in the column that was inserted after C314d. For those that do not have
UNSCHED LANDING in C314a through C314d, place a NO in the column. While this
procedure sounds tedious, it can be accomplished in just a few minutes using copy and
paste functions.

The Excel spreadsheet is now ready to import into our data mining package:
STATISTICA by StatSoft. STATISTICA was selected due to its excellent, industry-leading
automated data mining capability.
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To begin, launch STATISTICA, select File and then Open, select All Files from the drop-
down list under Files of Type, click on 2007.xls, and then select Open. This will load the
Excel datasheet into STATISTICA for the project.

Although STATISTICA can determine on its own what type of data is contained in the
spreadsheet, it is often helpful for the user to specify the type of data. By reviewing the list-
ing in Table B.1, we can see that we would want the software to view all of the data fields as
categorical, except for C400 and C410, “total time accumulated on part regardless of over-
haul” and “total time accumulated on part since overhaul,” respectively. To ensure that
the program treats these variables in the way intended, we would normally (see next para-
graph) double-click in the variables header and then select All Specs . . .; this opens the Var-
iable Specifications Editor dialog. Change the Type and Measurement Type as appropriate;
then click OK.

Given the complexity of this data set, however, we decided to concern ourselves with
only four variables for this study. These variables are C14, “Region code”; C130, “Aircraft
manufacturer’s name”; C160, “Region responsible for aircraft”; and C330, “Stage of opera-
tion code.” There are many more variables in this data set that may be interesting to study,
including some rich text fields, but this would require a much more complex project as well
as text mining that is well beyond the scope of this tutorial. Data mining is often highly
dependent on the subject matter expertise of the analyst, and choices must routinely be
made about the cost versus benefit of including certain data. Use of these four variables will
suffice in demonstrating the kind of study that can be accomplished with readily available
data sets and automated data mining.

DATA MINING APPROACH

While there are many algorithms to choose from, we decided to select a new STATISTICA
feature, still in Beta, called Data Miner Recipes (DMRecipe) to guide us through the explo-
ration of this complex database. According to the STATISTICA Quick Reference (StatSoft,
2008) manual, the STATISTICA Data Miner Recipe (SDMR) approach is intended to pro-
vide an intuitive graphical interface to enable those with limited data mining experience
to follow a recipe-like process to achieve results. SDMR guides the user through all phases
of the data mining project, from querying databases through deployment of a model.
SDMR was selected to demonstrate that extensive data mining experience, while desirable,
is not required to explore complex databases and formulate predictive models. Depending
on the performance of the models tested using SDMR, we could also easily look at other
methods built into STATISTICA.

First, select Data Mining, click on Data Miner Recipes and, under Recipes, select New.
Under the Data Preparation tab, we must first connect our data to the project by selecting
Open/Connect Data File and clicking on our spreadsheet from the drop-down menu (see
Figure B.2). Click on the Select Variables tab and identify 45 – UNSCHED LNDG as the target
categorical variable, and 4, 17, 21, and 52 (C14, C130, C160, C330, respectively) as the input,
categorical variables, as shown in Figure B.3. Then click OK. Select the Advanced tab, select
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FIGURE B.3 Select variables.

FIGURE B.2 Data preparation.

384 B. DATA MINING FOR AVIATION SAFETY

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



Use Sample Data, and click on the Stratified Random Sampling radio button. Click on More
Options, Strata Variables. Then select 45 – UNSCHED LNDG and click OK. Click Next Step.
This action will cause the program to selectively sample from the database using the
UNSCHED LNDG discriminator we included under the data preparation step.

The Data for Analysis dialog appears next. Choose Select Testing Sample, then % of
Cases, opting for the default of 20%, Click OK. Finally, click Next Step.

The Data Redundancy dialog appears next. Since we’re not using any continuous predic-
tor variables, leave the Method as None. Click Next Step.

The Important Variables dialog appears next. This function is where the program
attempts to identify the variables, or features, most important to the project. Since we’ve
selected only four variables for this study, select None and click Next Step.

The Model Building dialog appears next. Since we desire to know which model among
STATISTICA’s many options best predicts unscheduled landings, we selected all methods,
i.e., classification and regression trees, random forest, boosted trees, neural networks, and
support vector machine models. Click on Build Model (see Figure B.4).

FIGURE B.4 Model building.
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DATA MINING ALGORITHM ERROR RATE

The Evaluation dialog appears next. In our case, the boosted trees model performed the
best with a 7.08 error rating, followed closely by neural networks with a 7.10 error rating
(see Figure B.5).

After clicking Next Step, we now arrive at the Deployment tab. Select Data File for
Deployment, and select another file from the FAA’s SDR database for deployment. We
chose sdr2008a.txt. Following the same procedure as before, we can save this file to Excel
for importing into STATISTICA. This time, however, knowing that we are interested in only
four variables, we can eliminate all others from the spreadsheet. Click Next Step. This will
deploy our boosted trees model on a new data set.

STATISTICA Data Miner Recipe produces an array of reports automatically. By clicking
on Summary Report, we can examine reports on data preparation, data cleaning, data
reduction, feature selection, model building, evaluation, and deployment. For example,

FIGURE B.5 Evaluation.
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Figure B.6 shows a summary for the Random Forest model, with a chart indicating misclas-
sification rate of the training and testing data, and partial views of frequency tables.

For our data, we know that the boosted trees model performed the best. We are not sur-
prised by the results, since research on DM algorithms has indicated that for some difficult
estimation and prediction tasks, boosted trees can yield better models than other methods,
including neural networks (StatSoft, 2003). Although neural networks are a close second
and are often a very effective model, they suffer from some drawbacks, including lack of
explicitness. As several researchers have observed, the process neural networks goes
through is largely hidden and left unexplained (Wang, 2003, p. 233). Therefore, we prefer
the boosted trees model for this project.

CONCLUSION

We can conclude a number of things from this simple study. First, the SDR database con-
tains a wealth of information that can be explored through data mining techniques to search
for patterns and trends. Thanks to Data Miner Recipe, in just a few clicks of a mouse, we
trained and tested a subset of the variables using several popular DM algorithms.

FIGURE B.6 Random Forest summary.
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By examining the C&RT results shown in Figure B.7, we can determine that the aircraft
manufacturer’s name is the most important variable from the four selected, and stage of
operation is the least important. For this demonstration study, this conclusion is not pro-
found; for a full-scale study, that information would be very informative and might inspire
other studies to determine the extent of the relationship between who made the airplane
and the incidences of unscheduled landings.

Finally, we determined that both boosted trees and neural networks produced models
with very low error rates (misclassification) for this exemplar tutorial. The models were
built by the software and can be deployed in new data sets to predict when unscheduled
landings might occur.

We hope it is evident through this tutorial that aviation safety has much to gain
through the use of automated data mining tools and existing databases. The ultimate goal
is to use the information DM can yield to drive the airline accident rate even lower than it
is today.

FIGURE B.7 C&RT results.
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INTRODUCTION

Predicting box-office receipts (i.e., financial success) of a particular motion picture is a
difficult and challenging problem. According to some domain experts, the movie industry
is the land of hunches, and the wild guesses due largely to the difficulty associated with
predicting the product demand.

In their highly publicized research, Sharda and Delen (2007) explored the use of a variety
of data mining models in predicting the financial performance of a motion picture at
the box office before its theatrical release. In their system, they converted the forecasting
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problem into a classification problem. That is, rather than forecasting the point estimate of
box-office receipts, they classified a movie based on its box-office receipts in one of
nine categories ranging from “flop” to “blockbuster,” making the problem a multinomial
classification problem.

DATA AND VARIABLE DEFINITIONS

The data were drawn (partially purchased) from ShowBiz Data Inc. The data set contains
2632 movies released between the years 1998 and 2006. The variable of interest in this study
is the box-office gross revenue. The dependent variable, the box-office gross revenue, is
discretized into nine classes (i.e., bins) using the following breakpoints:

Class No. 1 2 3 4 5 6 7 8 9

Range (in
Millions)

<1
(Flop)

>1
<10

>10
<20

>20
<40

>40
<65

>65
<100

>100
<150

>150
<200

>200
(Blockbuster)

A summary of the decision variables along with their specifications is given in Table C.1.
For descriptive details and justification for inclusion of the independent variables, refer to
Sharda and Delen (2007).

Now that the data are briefly defined, in the next section, we will explain a step-by-step
process to develop a number of different classification models. Specifically, this tutorial will
introduce you to the Clementine toolkit for data mining and show you how to develop pre-
diction models for the movie forecasting project. The first part provides a tour of the work-
space of the Clementine toolkit. The second part is a step-by-step guide to data mining in
Clementine using the movie forecasting data set.

TABLE C.1 Summary of Independent Variables

Independent

Variable Name Number of Values Possible Values

MPAA Rating 5 G, PG, PG-13, R, NR
Competition 3 High, Medium, Low
Star value 3 High, Medium, Low
Genre 10 Sci-Fi, Historic Epic Drama, Modern Drama,

Politically Related, Thriller, Horror, Comedy, Cartoon,
Action, Documentary

Special effects 3 High, Medium, Low
Sequel 1 Yes, No
Number of screens 1 Positive integer
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GETTING TO KNOW THE WORKSPACE OF THE
CLEMENTINE DATA MINING TOOLKIT

Clementine uses a visual workspace approach to data mining that provides an intuitive
way to develop data mining applications. This visual workspace approach is also adapted
by other popular data mining toolkits in the market, including SAS-Enterprise Minder,
STATISTICA Data Miner, and RapidMiner. Each process in Clementine is represented by
an icon (or node) that can be connected to each other to form a stream representing the flow
of data through a variety of processes. Although it may take some time to get used to this
paradigm of developing a data mining application, you will soon find it simple, user
friendly, and exceedingly powerful.

When you first start Clementine, the workspace opens in the default view with an empty
stream (see Figure C.1). As shown in Figure C.1, the area in the middle is called the stream
canvas. This is the main area you will use to build your data mining models in Clementine.

FIGURE C.1 The Clementine workspace.
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Most of the data and modeling tools in Clementine reside in palettes, the area below the
stream canvas. Each tab contains groups of nodes that are a graphical representation of data
mining tasks, such as accessing and filtering data, creating graphs, and building models.
To add nodes to the canvas, you can double-click on icons from the node palettes or drag
and drop them onto the canvas. You then connect them to create a stream, representing
the flow of data.

On the top right side of the window are the output and object managers. These tabs are
used to view and manage a variety of Clementine objects. The Streams tab contains all
streams open in the current session. You can save and close streams as well as add them
to a project (Figure C.2A). The Outputs tab contains a variety of files produced by stream
operations in Clementine (Figure C.2B). You can display, rename, and close the tables,
graphs, and reports listed here. The Models tab is a powerful tool that contains all gener-
ated models (models that have been built in Clementine) for a session (Figure C.2C).
Models can be examined closely, added to the stream, exported, or annotated.

On the bottom right side of the window is the projects tool, used to create and manage
data mining projects. There are two ways to view projects you create in Clementine: Classes
view and CRISP-DM view. The CRISP-DM tab provides a way to organize projects
according to the Cross-Industry Standard Process for Data Mining, an industry-proven,
nonproprietary methodology (Figure C.3A). For both experienced and first-time data
miners, using the CRISP-DM tool would help to better organize and communicate the data
mining effort. The Classes tab provides a way to organize the work in Clementine categori-
cally by the types of objects created (Figure C.3B). This view is useful when taking
inventory of data, streams, and models.

FIGURE C.2 Clementine’s output and object manager tabs.
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As an intuitive data mining toolkit, Clementine offers a strategic approach to finding
useful relationships in large data sets. In Clementine, in contrast to more traditional hypoth-
esis-driven statistical methods, you do not necessarily need to know exactly what you
are looking for when you start the data mining application. You can explore your data, fit
different models, and investigate different relationships until you find paths that lead to
useful information.

Clementine provides templates for many of these data mining applications. Clementine
Application Templates, also known as CATs, are available for the following types of
activities:

• Web mining
• Fraud detection
• Analytical CRM
• Telecommunications analytical CRM
• Microarray analysis
• Crime detection and prevention

These templates provide an excellent starting point for a data mining project. With the
flexible and powerful tools of Clementine, you can easily learn how to explore data in the
various phases of a data mining project, including the following:

• Visualization, which helps you gain an overall picture of your data. You can create plots
and charts to explore relationships among the fields in your data set and generate
hypotheses to explore during modeling.

• Manipulation, which lets you clean and prepare the data for modeling. You can sort or
aggregate data, filter out fields, discard or replace missing values, and derive new fields.

FIGURE C.3 Clementine’s project tool tabs.
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• Modeling, which gives you the broadest range of insight into the relationships among
data fields. Models perform a variety of tasks such as predict outcomes, detect
sequences, and group similarities.

The first step is to load the data file using a Variable File node. You can add a Variable
File node from the palettes—either click the Sources tab to find the node or use the Favor-
ites tab, which includes this node by default. Next, double-click the newly placed node to
open its dialog box. Click the button just to the right of the File box marked with ellipses
(. . .). This opens a dialog box for browsing to the directory in which the data set is stored.
Open the data file.

Select Read Field Names from File and notice the fields and values that have just been
loaded into the dialog box. Before clicking OK to close the dialog box, take a moment to
look at the data using the other tabs on the Source node. Click the Data tab to override
and change storage for a field. Note that storage is different than type or usage of the data
field. The Filter tab can be used to remove any fields from the data that is brought into
Clementine. Clicking on a field’s arrow will mark it with a red X and filter it out. For this
tutorial, though, we want to keep all fields. The Types tab helps you learn more about
the type of fields in your data. You can also choose Read Values to view the actual values
for each field based on the selections that you make from the Values column. This process is
known as instantiation. (See Figures C.4A through C.4E.)

Now that you have loaded the data file, you may want to glance at the values for some of
the records. One way to do this is by building a stream that includes a Table node. To place
a Table node in the stream, either double-click the icon in the palette or drag and drop it on
to the canvas. (Hint: Double-clicking a node from the palette will automatically connect it
to the selected node in the stream canvas. However, you cannot connect to terminal nodes
like tables and graphs.) Next, if the nodes are not already connected, you can use your mid-
dle mouse button to connect the Source node to the Table node. To simulate a middle
mouse button, click the Alt key while using the mouse.

RESULTS

Now that you have built a stream, you must execute it in order to view its output. Click
the green arrow button on the toolbar to execute the stream and view an output table
showing all of the records in the data file. (See Figures C.5A through C.5C.)

During data mining, it is often useful to explore the data by creating visual summaries.
Clementine offers several different types of graphs to choose from, depending on the kind
of data that you want to summarize. For example, to find out what proportion of the suc-
cess categories are represented in the data set, you use a Distribution node (see
Figure C.6A). Place a Distribution node in the workspace and connect it to the Source node.
Then double-click the Distribution node to open its dialog box and set the options for
display. Select Class as the target field whose distribution you want to show. Then click
Execute from the dialog box. The distribution graph helps you see the “shape” of the data
distribution. It shows that the highest success categories (7, 8, 9) are less represented than
the lower class categories. (See Figure C.6B.)
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FIGURE C.4 Instantiation.
(Continued)
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FIGURE C.4—Cont’d



In the remainder of this section, we describe and show the model building and testing
steps. First, we split the data on two mutually exclusive sets using the Year variable.
That is, we split and use the movies for the years 1998 to 2005 for mode building and we
use the movies for the year 2006 for model testing. See Figures C.7 through C.10.

Executing a C5.0 modeling node produces a developed model represented by a diamond
type icon. Click the Models tab of the Managers area (upper right) to view the already built
models. To examine the patterns and/or rules generated by the model, right-click over the
gem and choose Browse from the pop-up menu that appears.

In order to execute the model against some test data set (see Figure C.11), just drop it on
the canvas and connect it to the data source, attach an Analysis node to it, and execute it.

FIGURE C.4—Cont’d
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FIGURE C.5 Exploring the data using a Table node.
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FIGURE C.6 A graph-board output for class distribution via the years.
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FIGURE C.7 Splitting the data into training and testing sets.

FIGURE C.8 Exploring the data with a Table node.
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FIGURE C.9 Building prediction models for C5, ANN, C&RT, and SVM.

FIGURE C.10 Model building process.
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It will generate analysis results in tabular as well as graphical formats. In the following
section, some of these analysis results are presented for the current project.

In the test mode, only the movies from the year 2006 are used. These movies are not used
for the model building.

The Analysis window shows the accuracy of the model (Figure C.12). With this data set,
the model is 51.45% accurate; it predicted the correct class of the movies with a rather good
accuracy (considering that there are nine classes in this classification model). You would
use the Analysis node to help you determine if the model is acceptably accurate for your
particular data set. (See Figures C.13 through C.21.)

PUBLISHING AND REUSE OF MODELS AND OTHER OUTPUTS

There are a number of ways to export individual objects in Clementine. For example, you
can export output objects such as graphs or tables in a variety of formats, including JPG,
PNG, and BMP. You can also publish the graph to the SPSS Web Deployment Framework
by selecting Publish to Web from the output window’s File menu.

FIGURE C.11 Executing the developed models against the test data set.
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You can also export model results as Predictive Modeling Markup Language (PMML)
file or C code using the context menu options available from the Model tab of the Managers
window.

Another deployment option is the Clementine Solution Publisher. Solution Publisher
enables you to use streams independent of the standard Clementine environment. There
are two steps to the Clementine Solution Publisher: publishing and executing.

• Publishing occurs in the stream canvas when you attach the Publish node to a stream,
specify options, and execute.

• Executing occurs when someone runs the results that you published, re-creating the
entire stream process built in Clementine without actually having Clementine on his or
her machine.

For example, perhaps modeling in Clementine enabled you to learn the rules for predict-
ing the financial success of a particular motion picture. By publishing the stream, you can
deploy the stream to deliver decision recommendations for Hollywood managers (see
Figure C.22). These decision makers can enter a hypothetical movie’s parameters into an
application or file and execute the published stream to make necessary data manipulations
and run the model to receive a decision recommendation.

FIGURE C.12 The analysis results (confusion matrix) for C5.

405PUBLISHING AND REUSE OF MODELS AND OTHER OUTPUTS

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



FIGURE C.13 A partial representation of the decision tree in indented list format for C5.
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FIGURE C.14 A partial representation of the decision tree in graphical format for C5.
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FIGURE C.15 The analysis results (confusion matrix) for ANN.
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FIGURE C.16 The variable importance chart (based on sensitivity analysis) for ANN.
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FIGURE C.17 The analysis results (confusion matrix) for C&RT.
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FIGURE C.18 A partial representation of the decision tree in indented list format for C&RT.
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FIGURE C.19 A partial representation of the decision tree in graphical format for C&RT.

412 C. PREDICTING MOVIE BOX-OFFICE RECEIPTS

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



FIGURE C.20 The analysis results (confusion matrix) for SVM.
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FIGURE C.21 The analysis summary for SVM.
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FIGURE C.22 Publishing the model from within a modeling canvas.
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INTRODUCTION

In this tutorial, we will use a specific data set to illustrate the application of SAS-EM 5.3
in two different scenarios of Customer Relationship Management (CRM). The tutorial is
organized in the following manner:

• A Primer of SAS-EM Predictive Modeling
• Scoring Process and the Total Profit
• Oversampling and Rare Event Detection
• Decision Matrix and Profit Charts
• Micro-Target the Profitable Customers
• Import Excel File to the SASUSER library

The Data

The data have 19,991 cases with a binary target (satisfied versus unsatisfied customers)
and 24 predictors. The data are commonly known as the Capital-One Data. A detailed
description of the data can be found in the 2001 paper “Predicting Dissatisfied Credit Card
Customers” by Zachary Arens and Dr. Wegman (http://www.galaxy.gmu.edu/stats/
syllabi/inft979/ArensPaper.pdf).

The Objectives of the Study

Scenario 1

The first objective of the study is to provide a special program to detect and retain the
unsatisfied customers for profit. The cost of the program is $15.00 per customer, and
the benefit of retaining an unsatisfied customer is $278.52. The total profit is

P ¼ 278:52�M�D� 15�ðDþ SÞ
where

M ¼ The rate of retention of dissatisfieds exposed to program ¼ 25%;
D ¼ Number dissatisfieds exposed to program (correct classifications);
S ¼ Number satisfieds exposed to program (misclassifications).

The main results of our analysis are summarized in Table D.1 where the best model
doubles the profit as reported in the Arens-Wegman paper.

TABLE D.1 Results

Model

Correct

Classifications Misclassifications Predicted Positive Total Profit Comment

Tree 546 cases 1126 cases 1672 cases $12,937.98
Regression 899 cases 2257 cases 3156 cases $15,257.37
Neural Network 1175 cases 3102 cases 4277 cases $17,660.25 The best
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Scenario 2

A competitor has access to the data and plans to mount a campaign to lure away the
unsatisfied customers. Assume that the profit is $278.52 for each defection and that
the cost is $25.00 for luring away a customer. Further assume that the success rate of
the campaign is 50%. A blanket effort to reach all of the 19,991 customers would result
in the following profit:

Total profit ¼ $278:52�2994�0:5� 25�19991 ¼ �$82; 830:60

Average profit ¼ Total profit=19; 991 ¼ �$4:14339

In other words, without any model, there will be a loss of $82,830.60. On the other
hand, if we target the top 5% of the customers, then the total profit would be $36,313.65
as shown in the subsequent analysis. The difference of model or no-model would be
$119,144.25.

The techniques in Scenario 2 are commonly used in micro-targeting, such as the famous
1998 KDD-Cup competition where a national veterans’ organization seeks to better target
its solicitations for donation (http://www.kdnuggets.com/meetings/kdd98/kdd-cup-98.
html). The techniques should be equally effective in the campaigns for political donations
and direct marketing.

SAS-EM 5.3 Interface

Figure D.1 shows the key components of the SAS-EM 5.3 interface.

• Toolbars: There are three rows of tools that can be activated by clicking or by dragging
to the workspace. Move the cursor to a specific tool, and a small window will pop up
that gives a brief description of the tool’s functionality.

• Project Panel: To manage and view data sources, diagrams, and results.
• Properties Panel: To view and edit the settings of data sources, diagrams, and nodes.
• Diagram Workshop: To graphically build, edit, run, and save process flow diagrams.

FIGURE D.1 SAS-EM version 5.3 interface.
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A PRIMER OF SAS-EM PREDICTIVE MODELING

This section provides information on the construction of the following SAS-EM process
flow, which contains only four nodes, as shown in Figure D.2.

The construction is sufficient for small- or medium-sized data sets. For large data sets, a
sample node can be added with little effort and will be discussed at the end of this section.

1. Creating a Project:

Select File, New, Project from the main menu. Specify the project name, Capital_1, in the
name field of the pop-up window, as shown in Figure D.3.

FIGURE D.2 SAS-EM process flow.

FIGURE D.3 SAS-EM Create New Project window.
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2. Creating a Data Source:

Select File, New, Data Source to open the Data Source Wizard, shown in Figure D.4.
Click on the Next button to browse the folder of the Capital_One data, which resides

in the SASUSER library (see “Appendix” on how to import Capital_One Excel data
to the SASUSER library), as shown in Figures D.5 and D.6.

Click on OK, click on Next four times, and then on Finish to import the data.

3. Creating a Diagram:

Select File, New, Diagram and then type the name, Cap_1, in the name field of the
pop-up window (see Figure D.7) and then click on the OK button:

4. Creating the Process Flow:

From the Project panel (upper-left corner), drag the Capital_One icon right under Data
Source to the Diagram workspace to create the Data Sources node, as shown in
Figure D.8.

5. Editing Variables:

In the workspace, right-click on the Data Source node, and then click on Edit Variables,
as shown in Figure D.9.

In the pop-up window, identify the target variable, SATISF1. Change the model Role
from Input to Target and change the Level from Nominal to Binary, as shown in
Figure D.10. Then click on OK.

6. Data Partition node:

Drag the Data Partition icon (in the third toolbar) to the diagram workspace (see
Figure D.11). Move the cursor to the right edge of the Data Source node until a
pencil appears and then connect the Data Source and the Data Partition nodes.

FIGURE D.4 SAS-EM Data Source Wizard window.
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FIGURE D.6 SAS-EM Select a SAS Table data type dialog.

FIGURE D.5 SAS-EM Select a SAS Table path dialog.
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In SAS-EM 5.3, the default setting is 40% – 30% – 30% for the partition of the original
data into Training, Validation, and Test data sets.

7. Neural Network node:

Click on the Model tab (in the third row of toolbars) to activate the Neural Network
icon . Drag the icon to the workspace and then connect the Data Partition node
and the Neural Network node, as shown in Figure D.12.

Right-click on the Neural Network node and select Run. Click on Yes in the pop-up
window.Wait for the next pop-up window and then click on Results. The next pop-up
window contains a lot of information. This is useful in many other studies. In this case,
we will skip these results and go straight to the Cutoff node for profit calculation.

FIGURE D.7 SAS-EM Create New Diagram naming dialog.

FIGURE D.8 SAS-EM version 5.3 interface with Data Mining Workspace window with the Capital_One data
icon selected.
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FIGURE D.9 Right clicking on Data Source provides flying menu of options.

FIGURE D.10 SAS-EM Variables window for data set.
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8. Cutoff node:

Click on the Assess tab on the third row of the toolbars (right above the workspace) to
activate a new row of tools (see Figure D.13).

Drag the Cutoff icon to the workspace and connect this new node to the Neural

Network node, as shown in Figure D.14.
Right-click on the Cutoff node and then click on Run. Wait for the window to pop up and

then click on Results. In the next window, click on View, Analytical Results, Model
Diagnostics, as shown in Figure D.15.

The next window, shown in Figure D.16, shows the variables that are used in the Profit
formula at the beginning of this tutorial (Correct Classifications ¼ Counts of True
Positives, Misclassifications ¼ Counts of False Positives, and Pred_Pos ¼ Counts of
Predicted Positives):

Note that different cutoff values (a.k.a., threshold, which ranges from 0 to 0.99, increment
by 0.01) give different counts of True Positives, False Positives, and Predicted
Positives. Our next task is to use Excel or SAS codes to find the optimal profit.

FIGURE D.11 Adding Data Partition to SAS-EM workspace.

FIGURE D.12 Connect the Data Partition node and the Neural Network node.
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FIGURE D.13 Clicking on the Assess tab activates a new set of tools in SAS-EM 5.3 workspace.

FIGURE D.14 Cutoff icon put into workspace.

FIGURE D.15 Selecting View!Analytical Results!Model Diagnostics.
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9. Excel or SAS codes for Profit Calculation:

In the Model Diagnostics spreadsheet window, click on File, Save As to save the
spreadsheet in the folder of your choice (in our case, we saved the file in My SAS
Files/9.1, which is the location of the SASUSER folder), and then assign the name,
Cap1_Cutoff, to the file (see Figure D.17):

The following SAS codes can be used to calculate the Total Profit and Average Profit for
different cutoff:

data Cap1_NN (Keep ¼ Cutoff FP_CLASSIFS TP_CLASSIFS Pred_Pos Pred_Neg
Total_Profit Average_Profit DataRole);

Set sasuser.cap1_cutoff;

Total_Profit ¼ 278.52*.25*TP_CLASSIFS-15*Pred_Pos;

If abs(pred_pos) < 0.000001 then Average_Profit ¼ .;

else Average_Profit ¼ Total_Profit/Pred_Pos;

Run;

/* Remark:

FP_CLASSIFS ¼ False Positive

TP_CLASSIFS ¼ True Positive

*/

SAS-EM 5.3 has a Program Editor to run the preceding codes; see Figures D.18 and D.19.
After the codes are run successfully, click on the Explorer button to open the Work

library and then to locate the Cap1_nn data set (see Figure 9.20).
Click on Cap1_nn to view the results. In the pop-up window, click on the DATAROLE

tab to sort the TEST (HOLDOUT) data (see Figure D.21).

FIGURE D.16 Model Diagnostics showing variables used in the profit formula.
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FIGURE D.17 Save window used to save the Model Diagnostics spreadsheet to a folder of one’s choice.

FIGURE D.18 Program Editor used to run SAS codes.

FIGURE D.19 Another view of SAS-EM Program Editor.
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This window shows that at Cutoff ¼ 0.49, the highest average profit of the Test data set is
$11.8747 per customer who is in the program. Sorting the data again on the Cutoff
column reveals that the average profits from the Training and Validation data sets are
substantially higher than that of the Test data (see Figure D.22). This is an indication of
model overfitting.

FIGURE D.20 Explorer button to open Work library and the Cap1_nn data set.

FIGURE D.21 The Work.Cap1_nn data set.

429A PRIMER OF SAS-EM PREDICTIVE MODELING

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



Homework 1

Do the same by using Dmine Regression and Decision Tree as indicated by the process
flow shown in Figure D.23.

The final results, shown in Table D.2, would include the Average Profit for the best cutoff
for each model.

FIGURE D.22 Another view of the data set.

FIGURE D.23 Process flow of SAS-EM.

TABLE D.2 Results

Average Profit Training Validation Test Cutoff

Neural Network $19.36 $18.23 $11.87 0.49
Dmine Regression $26.78 $11.28 $11.67 0.58
Decision Tree (Gini) $06.89 $03.85 $02.95 0.13 to 0.16
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Discussions

a. From Table D.2, neural network appears to be the best model among the three, albeit a
certain extent of overfitting.

b. If the purpose of the study is to apply the model to a new data set, then the criterion of the
model selection should be placed on the performance of the model on the Test (holdout)
data, as shown in the preceding.

c. The Arens-Wegman paper (2001, p. 10), on the other hand, used the entire data set as
the basis for model comparison. The paper did not specify the cutoff value. The
subsequent SAS-EM process flow shows that if you choose a different cutoff, it is
possible to double the profit as reported in the Arens-Wegman paper.

d. In addition, the following process flow is a necessity in the scoring of new data sets.
e. Note that the default tree uses a chi-square criterion in the modeling-building process

and will result in constant probability and hence no result. Click on the Tree node to
activate the related Property Panel; click on the right of the Criterion tab and select
Gini (see Figure D.24) or other Splitting Rule for the tree model.

Homework 2

Add the Sample node as shown in Figure D.25. Click on the Sample node to activate its
Properties Panel. Move the cursor to the box next to Percentage and change 10.0 to 20.0:

The original data have 19,991 cases. The sampled data will have about 4,000 records, a
number good enough to build a decent model.

Homework 3

Use Excel to reconfirm the previous results.
Note: To export the Captial_one_NN data to Excel, right-click on the file and then select

View in Excel, as shown in Figure D.26.
You can then work on the file in the Excel window.

FIGURE D.24 Property panel activated and Gini
Splitting Rule selected.
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SCORING PROCESS AND THE TOTAL PROFIT

This section presents an SAS-EM process flow that can be used to score the new data set
or to calculate decision consequences on an existing population (see Figure D.27).

1. Score node:

Click on the Assess tab (on the third row of the toolbars) to activate a new set of tools
(see Figure D.28).

Drag the Score tab to the workspace as shown in Figure D.29.

FIGURE D.25 Sample node added to workflow.

FIGURE D.26 Right-clicking on data icon opens menu where data can be viewed in Excel.
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2. Scoring data set:

Copy the Capital_One data node and paste it under the Neural Network node. Connect
this input data node to the Score node, as shown in Figure D.30.

Change the role of the second Input Data from Raw to Score, as shown in Figure D.31.
First click on the Input Data node to activate its Property Panel, then click on the right
of the Role tab.

FIGURE D.27 Process flow where Score icon can be used to score new data.

FIGURE D.28 Assess tab activates a new set of tools.

FIGURE D.29 The Score icon has been dragged from the Score button into the Process flow workspace.
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Right-click on the Input Data node and select Edit Variables. In the pop-up window,
double-click on Role to move the Target Variable (SATISF1) to the top, as shown in
Figure D.32. Change the role of SATISF1 from Target to Rejected; then click on OK.

Run the Score node.

3. SAS Code node:

Click on the Utility tab (on the third row of the toolbars; see Figure D.33), drag the
SAS Code node to the workspace, and then connect the SAS Code node with
the Score node.

Click on the SAS Code node to activate its Property Panel. Then click on at the right
of Code Editor, as shown in Figure D.34.

FIGURE D.31 Window to change Input Data from Raw to Score.

FIGURE D.30 Input Data node connected to Score node.
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FIGURE D.32 Edit Variables window.

FIGURE D.33 Click on SAS coded node and drag to workspace.

FIGURE D.34 Clicking on the SAS Code node activates its Property Panel.
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In the pop-up window, paste and run the following SAS macro that is tailored for this
specific problem. The macro can be modified with little effort for similar situations.

Data Cap1_NN_Pr (KEEP ¼ P_SATISF1UNSAT Target);

Set &EM_Import_Score;

If SATISF1 ¼ ‘UNSAT’ then Target ¼ 1; else Target ¼ 0;

Run;

%macro cutoff100;

%do

n ¼ 1% to 100;

Data Cap1_NN_Pred_&n. ;

set Cap1_NN_Pr;

Cutoff ¼ &n/100;

If P_SATISF1UNSAT > Cutoff then D_target¼1; else D_target¼0;

If D_target¼1 and Target¼1 then Tr_Positive¼1;

ELSE Tr_Positive¼0;

If D_target¼1 and Target¼0 then F_Positive¼1; ELSE F_Positive¼0;

run;

proc means data¼Cap1_NN_Pred_&n. noprint;

by cutoff;

var Tr_Positive F_Positive;

output out¼Cap1_NN_Pred_&n._sum(drop¼_type_
_freq_) sum¼Tr_Positive_sum F_Positive_sum;

run;

proc append base¼all data¼Cap1_NN_Pred_&n._sum; run;

%end;

%mend cutoff100;

%cutoff100;

data Cap1_NN_all;

set all;

Pred_Pos ¼ Tr_Positive_sum þ F_Positive_sum;

Total_Profit¼278.52*.25*Tr_Positive_sum-15*Pred_Pos;

Average_Profit ¼ Total_Profit/Pred_Pos;

Run;

Proc print;

After the codes are executed, click on OK and then click on Run, Results, as shown in
Figure D.35, to view the results.

A new window appears with the results shown in Figure D.36.
So the best Total Profit is $17,660.25 when Cutoff ¼ 0.21, while the best Average Profit

is $17.2039 when Cutoff ¼ 0.55, which is consistent with the earlier result in item 9 in
“A Primer of SAS-EM Predictive Modeling.”
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FIGURE D.35 Click on Run and the Results to view results.

FIGURE D.36 Results of the SAS-EM Run.
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Homework 4

a. Build other models as shown in the process flow in Figure D.37. Click on the Control
Point node at the end of the flow, go for a coffee break, and then come back to view the
results.

b. To speed up the process, you can add a Sample node to use, say 20% (n � 4,000 cases),
as discussed in “Homework 2.”

Hint: To find the Control Point icon , click on Utility tab, and the first icon in
Figure D.38 will do.

The results are shown in Table D.3.

FIGURE D.37 Process flow with many additional models added.

FIGURE D.38 Control Point icon location on interface of SAS-EM 5.3.
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Discussions

a. The default neural network (multilayer perceptron) produced the best total profit. The
tree model is the best in terms of average profit for each customer in the retention
program (n ¼ 1,672) but its total profit is about $5,000 less than that of the neural
network model.

b. Auto-Neural and SVM, again, do not perform well.
c. The preceding exercise follows the Arens-Wegman approach to use the entire data set

in the comparison of the models. The approach may be useful in certain applications,
but a caution is that if the so-called best model overfits the data, then the resulting profit
may be misleading.

OVERSAMPLING AND RARE EVENT DETECTION

In this section, we will first explore the distribution of the target variable to motivate the
need of oversampling technique in the detection of rare event. We will then discuss the
profit matrix, which is unique in SAS-EM among the data mining packages we have known.
The process needs the addition of the Sample node to the previous flow, as shown in
Figure D.39. In the first two nodes, we will have to make changes in the settings for rare
event detection.

1. Explore the Target Variable:

Right-click on the Data Source node and then select Edit Variables. In the pop-up
window, click on the Role twice to sort the Target to the top of the column (see
Figure D.40).

Highlight the Target and then click on the Explore button (at the lower-right corner of
the window) as shown in Figure D.40 to view the distribution of the variable. The
result is shown in Figure D.41.

The bar chart indicates that there are about 15% unsatisfied customers.

TABLE D.3 Results

Model Cutoff

True-Positive

Sum

False-Positive

Sum

Predicted

Positive

Total

Profit

Average

Profit

Tree 0.22 546 1126 1672 $12,937.98 $7.7380
Regression 0.23 899 2257 3156 $15,257.37 $4.8344
NN_MLP 0.21 1175 3102 4277 $17,660.25 $4.1291
DM_Reg 0.23 799 1852 2651 $15,869.37 $5.9862
Boosting 0.21 960 2391 3351 $16,579.80 $4.9477
SVM 0.23 1763 7824 9587 $�21,047.31 $�2.195
Auto_Neural 0.24 0 0 0 $0 $0
NN_RBF 0.22 830 2174 3004 $12,732.90 $4.2386
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2. The Sample node:

Click on Sample tab (in the third toolbar), drag the Sample icon to the diagram
workspace, and then connect the Sample node with the Data Source node, as shown
in Figure D.42.

3. Oversampling and the Rare Event Detection:

Click on the Sample node to activate its Property Panel; then edit the settings as shown
in Figure D.43.
• Click on the right of the Criterion tab to activate a drop-down menu and then

select Level Based option.
• Click on the right of the Level Selection tab and then select the Rarest Level.
• Change the Percentage to 100.0 to use all rare cases in the sampled data.

FIGURE D.39 Sample node added to process flow.

FIGURE D.40 Target variable sorted to top of variable list.
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Connect the Sample node to the Data Partition node. Run the Data Partition node
(which, by default, will also run the Sample node) and select Results to verify the
oversampling results (2,943 satisfied and 2,943 unsatisfied customers, etc., as shown in
Figure D.44).

FIGURE D.41 Results showing distribution of the variable.

FIGURE D.42 Connecting Sample node to the Data node.
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Homework 5: The default of Sample Proportion is 50%, which would select equal
cases of satisfied and unsatisfied customers. Move the cursor and change 50% to 75%
and report the difference of the model results.

4. Rare Event Detection and Prior Probability:

Note that the model will be built by using the sampled data that has disproportions
of the satisfied and unsatisfied customers (50%–50%), which does not represent the
original proportion of 86.3%–13.7%. Consequently, you need to specify the prior
probability to use the model in a proper manner when you score on the new data.
To do this, click on the Data Source node to activate the Property Panel, as shown
in Figure D.45.

In the Train subpanel, click on at the right of Decisions; then click on the Build
button in the pop-up window to activate the Prior Probabilities tab, as shown in
Figure D.46.

FIGURE D.43 Editing the settings in the Property node.
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Click on the Prior Probabilities tab, check the Yes radio button, fill in the prior
probabilities of {0.1472, 0.8628} in the Adjusted Prior field, and then click on OK (see
Figure D.47).

In the process flow shown in Figure D.48, click on the Control Point node at the end
of the flow, go for a walk, and then come back to view the results, as shown in
Table D.4. Or you can add the Sample node to the Data Source node (with default
Percentage ¼ 10.0%) to speed up the process.

FIGURE D.44 Results from oversampling to verify frequency counts of Satisfied versus Unsatisfied.
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FIGURE D.45 Decision Processing window over SAS-EM interface.

FIGURE D.46 Decision Processing window.
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FIGURE D.47 Prior Probabilities tab.

FIGURE D.48 Completed model process flow.
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Discussion

a. Table D.4 indicates that Dmine Regression gives the best total profit. Here, Dmine
Regression computes a forward stepwise least-squares regression that includes two-way
interactions of classification variables, binning of interval variables, and the grouping of
classification variables.

b. Auto_Neural and SVM (Support Vector Machine) do not perform well in this example.
c. Oversampling is a necessity when the probability of rare event is about 4–6% or less.

In this case study, the size of the data is 19,991 with 2,943 (14.72%) unsatisfied
customers. The oversampling technique as mentioned in the Arens-Wegman paper
turns out less than optimal in terms of profit.

d. In SAS-EM, oversampling is referred to stratified random sampling. The technique is very
useful when the subpopulations of the good and bad customers are lopsided (say 95%
versus 5%). In literature, some practitioners take a sample of the good customers and
call the techniques downsampling or undersampling, while others may duplicate the
data of bad customers 10 or 20 times and call the technique oversampling. In this study,
what we did was downsampling.

DECISION MATRIX AND THE PROFIT CHARTS

Almost all data mining packages are confused by the subtle difference between a misclas-
sification matrix and a decision matrix. SAS-EM is a rare exception. Note that the first matrix
does not allow nonzero entries on the diagonal line, while the second matrix is able to
accommodate different kinds of cost-profit considerations. The difference may seem small,
but the consequence is enormous.

Note that the techniques in this section do not really fit the original problem statement of
the Capital One study. Hence, we will make up a different scenario that is common in many
business settings. The situation is mathematically equivalent to the famous 1998 KDD-Cup
Competition where a national veterans’ organization seeks to improve its solicitations for
donation (http://www.kdnuggets.com/meetings/kdd98/kdd-cup-98.html).

TABLE D.4 Results

Oversampling

Model Cutoff

True-Positive

Sum

False-Positive

Sum

Predicted

Positive

Total

Profit

Average

Profit

Tree 0.23 966 2755 3721 11447.58 3.07648
Regression 0.21 1132 3257 4389 12986.16 2.9588
NN_MLP 0.23 1006 2869 3875 11922.78 3.0768
DM-Regression 0.24 1008 2692 3700 14687.04 3.9695
Boosting 0.21 1023 2770 3793 14336.49 3.7797
SVM 0.25 1629 7038 8667 �16577.73 �1.91274
Auto_Neural 0.23 0 0 0 0 0
NN_RBF 0.22 966 2659 3625 12887.58 3.5552
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Using the Capital One data, assume that a competitor has access to the data and would
like to mount a campaign to lure away the unsatisfied customers. Assume that the profit is
$278.52 for each defection and that the cost is $25.00 for reaching out to each of the 19,991
customers. Further assume that the success rate of the program would be 50%. A blanket
effort to reach all of the 19,991 customers would render the following results:

Total profit ¼ $278:52�2994�0:5� 25�19991 ¼ �$82; 830:60

Average profit ¼ Total profit=19; 991 ¼ �$4:14

In other words, without any model, there will be a loss of $82,830.60. However, if we tar-
get certain customers, then the total profit would be $24,031.17 or more. The difference
between model and no-model is about $106,862.

The following steps show how to accomplish this with SAS-EM.

1. Data Source node:

Click on the Data Source node to activate its Property Panel. Then click on the right of
Decisions, . On the Decision Process pop-up window, click on Build to activate the
decision menu (see Figure D.49).

Click on Decisions in the menu and select Yes (see Figure D.50).
Click on Decision Weights in the menu and enter weight values for the decision (see

Figure D.51).
The numbers in the matrix are based on the assumptions that the profit is $278.52 for

each defection, the program enjoys a 50% success rate, and that the cost for reaching
out to each customer is $25.00. Hence the decision weight in the first cell of the matrix
is $278.52*0.5 � $25 ¼ $114.26, while the dollar amounts in all other cells are –$25.00.

2. Comparison of the Profit Charts:

Build the process flow shown in Figure D.52 to compare the profits of different models.
To do so, first click on the Model tab to activate a number of predictive modeling
tools.

FIGURE D.49 Clicking on Build to activate Decision menu.
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FIGURE D.50 Decision Processing.

FIGURE D.51 Decision Processing.



Then drag Dmine Regression and Decision Tree icons to the workspace (see Figures D.53
and D.54).

Next, click on the Assess tab to activate a number of new tools that contain a special icon
called Model Comparison (see Figures D.55 and D.56).

FIGURE D.52 Model flow.

FIGURE D.53 Dmine Regression button.

FIGURE D.54 Decision Tree button.
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Run the Model Comparison. In the Results windows, go to the lower-left corner and
click on the arrow of Cumulative Fit for a drop-down window (see Figure D.57).

Select Expected Profit from the new window, as shown in Figure D.58.
Note that in SAS-EM 5.3, the Expected Profit gives the cumulative mean of the profit,

while Total Profit gives the noncumulative profit. In this case, we will first use the
cumulative mean.

FIGURE D.55 Assess button.

FIGURE D.56 Model Comparison button.
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FIGURE D.57 SAS-EM Results screen.

FIGURE D.58 SAS-EM Results screen.
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Enlarge the Expected Profit window and click on the Dmine Regression option at
bottom (see Figure D.59).

The Total Profit of selecting the top 5% of customers would be

0:05�19; 991�$36:33 ¼ $36; 313:65

Move the cursor to any blue box to view Percentile and the Expected Profit of the model
(see Figure D.60). Do the same for Neural Network and Decision Tree.

FIGURE D.59 Expected Profit window.

FIGURE D.60 Percentile and Expected Profit of model.

452 D. DETECTING UNSATISFIED CUSTOMERS: A CASE STUDY

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



The mean profit of Neural Network is substantially lower than that of the Dmine
Regression. The default Trees of chi-square, Gini, and Entropy methods all rendered
a flat line and hence will not be further discussed in this section. A homework prob-
lem is to compute the total profit at different cutoff values (10%, 15%, etc.). Our
calculations indicate that the cutoff at 5% would be the best choice.

Discussions

a. If we use Dmine Regression to select the top 5% of 19,991 customers, then the total profit
would be $36,313.65.

b. It is tempting to add up the mean profits of Training, Validation, and the Test data sets,
and then calculate the total profit. A cautionary note is that this would distort the
predictive power of the model in the event of overfitting.

c. Note that the Test data consist of only 30% of the 19,991 customers. Hence, the total
profit of the top 5% of the customers in the Test data should be

$36; 313:65�30% ¼ $10; 894:10

But if you click on the Total Profit tab, then you will get $4,465.52, as shown in
Figure D.61.

We are still investigating the discrepancy.

MICRO-TARGET THE PROFITABLE CUSTOMERS

This section presents detailed steps on how to identify the customers that would be
most profitable. Recall that neural networks is a competive model; hence, we will focus
on this model. See Figure D.62.

FIGURE D.61 Total Profit window.
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1. The Score node is shown in Figure D.63.
2. The Score Data are shown in Figure D.64.
3. The SAS Code node is shown in Figure D.65.

The code is as follows:

Data Customers;

Set &EM_Import_Score;

Customer_ID ¼ _N_;

Run;

PROC Sort data ¼ Customers;

By descending P_SATISF1UNSAT;

Run;

Data good_customers;

Set Customers;

Obsnum ¼ _N_;

If Obsnum > 0.05*19991 THEN delete;

Run;

PROC Print data ¼ good_customers noobs split ¼ ‘*’;

VAR obsnum Customer_ID P_SATISF1UNSAT;

LABEL P_SATISF1UNSAT ¼ ‘Predicted*Unsatisfied’;

TITLE “Credit Worthy Applicants”;

Run;

Proc print;

The results are shown in Figure D.66.

FIGURE D.62 Focus on NN model to identify customers that would be most profitable.
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APPENDIX

To import Capital_One Excel data to the SASUSER library, follow these steps:

1. Open base SAS. Select File, Import Data, as shown in Figure D.67.
2. Click on Next and then the Browse button to browse the location of the data (see

Figure D.68).

FIGURE D.64 Score data.

FIGURE D.65 SAS code.

FIGURE D.63 Score node.
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FIGURE D.66 Results of Score node.

FIGURE D.67 Base SAS interface window.
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3. Select the SASUSER library, as shown in Figure D.69.
4. Type the name of the file, click on Next, and in the next window, click on Finish to

complete the data import (see Figure D.70).

FIGURE D.68 Window to locate data.

FIGURE D.69 SASUSER library selected.
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FIGURE D.70 Click on Finish to import data.
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INTRODUCTION: WHAT IS CREDIT SCORING?

Over the last half of the twentieth century, lending to consumers exploded. Consumer
credit has had one of the highest growth rates in any sector of the business. Consumers
use credit to obtain goods and services now and then pay for them later. Many credit
applicants are, in fact, good credit risks, but some are not. The risk for financial institu-
tions comes from not knowing how to distinguish the good credit applicants from the
bad credit applicants. One widely adopted technique for solving this problem is called
credit scoring.

Credit scoring is the set of decision models and their underlying techniques that aid
lenders in the granting of consumer credit. These techniques decide who will get credit, how
much credit they should get, and what operational strategies will enhance the profitability of
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the borrowers to the lenders. Further, it helps to assess the risk in lending. Credit scoring is a
dependable assessment of a person’s creditworthiness, since it is based on actual data.

A lender must make two types of decisions: first, whether to grant credit to a new appli-
cant and, second, how to deal with existing applicants, including whether to increase their
credit limits. In both cases, whatever the techniques used, the vital point is that there is a very
large sample of previous customers with their application details and subsequent credit his-
tory available. All the techniques use the sample to identify the connection between the char-
acteristics of the consumers (annual income, age, number of years in employment with their
current employer, etc.) and how “good” or “bad” their subsequent history is.

Typical application areas in the consumer market include credit cards, auto loans,
home mortgages, home equity loans, mail catalog orders, and a wide variety of personal
loan products.

CREDIT SCORING: BUSINESS OBJECTIVES

The application of scoring models has nowadays come to cover a wide range of objec-
tives. The original idea of estimating the risk of defaulting has been augmented by credit
scoring models at other aspects of the credit risk management: at the pre-application stage
(identification of potential applicants), at the application stage (identification of acceptable
applicants), and at the performance stage (identification of possible behavior of current
customers).

Scoring models with different objectives has been developed. They can be generalized
into the following four categories:

1. Marketing aspect:

Purposes:
Identify creditworthy customers most likely to respond to promotional activity to reduce

the cost of customer acquisition and minimize customer dissatisfaction. Predict the
likelihood of losing valuable customers and enable organizations to formulate
effective customer retention strategy.

Examples:
Response scoring: The scoring models that estimate how likely a consumer would

respond to a direct mailing of a new product.
Retention/attrition scoring: The scoring models that predict how likely a consumer

would keep using the product after the introductory offer period is over or change to
another lender.

2. Application aspect:

Purposes:
Decide whether or not to extend credit, and how much credit to extend. Forecast the

future behavior of a new credit applicant by predicting loan-default or poor-
repayment behaviors at the time the credit is granted.

Example:
Applicant scoring: The scoring models that estimate how likely a new applicant of credit

will become default.

460 E. CREDIT SCORING

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



3. Performance aspect:

Purpose:
Predict the future payment behavior of the existing debtors to isolate problem ones,

to which more attention and assistance can be devoted, thereby reducing the
likelihood that these debtors will become a problem.

Example:
Behavior scoring: Scoring models that evaluate the risk levels of existing debtors.

4. Bad debt management:

Purpose:
Select optimal collections policies to minimize the cost of administering collections or

maximizing the amount recovered from the delinquents’ account.
Example:
Scoring models for collection decisions: Scoring models that decide when actions should

be taken on the accounts of delinquents and which of several alternative collection
techniques might be more appropriate and successful.

The overall objective of credit scoring is not only to determine whether or not the appli-
cant is creditworthy but also to attract quality credit applicants who can subsequently be
retained and controlled while maintaining an overall profitable portfolio.

CASE STUDY: CONSUMER CREDIT SCORING

Description

In credit business, banks are interested in information regarding whether or not prospec-
tive consumers will pay back their credit. The aim of credit scoring is to model or predict
the probability that consumers with certain characteristics are to be considered as potential
risks.

The example in this case will illustrate how to build a credit scoring model using
STATISTICA Data Miner to identify inputs or predictors that differentiate risky customers
from others (based on patterns pertaining to previous customers) and then use these inputs
to predict the new risky customers. This is a sample case typical for this domain.

The sample data set used in this case, CreditScoring.sta, has 1,000 cases and 20 variables
or predictors pertaining to past and current customers who borrowed from a German bank
(source: http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit_e.html) for
various reasons. The data set contains various information related to the customers’ finan-
cial standing, reason to loan, employment, demographic information, etc.

For each customer, the binary outcome (dependent) variable “creditability” is available.
This variable contains information about whether each customer’s credit is deemed good
or bad. The data set has a distribution of 70% creditworthy (good) customers and 30%
not creditworthy (bad) customers. Customers who have missed 90 days of payment can
be thought of as bad risk, and the customers who have ideally missed no payment can be
thought of as good risk. Other typical measures for determining good and bad customers
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are the amount over the overdraft limit, current account turnover, number of months of
missed payments, or a function of these and other variables.

Table E.1 provides the complete list of variables used in this data set.
In this example, we will look at howwell the variables listed in Table E.1 (Balance of current

account, Value of savings or stocks, etc.) allow us to discriminate between whether someone has
good or bad credit standing. Ifwe candiscriminate between these two groups,we can then use
the predictive model we built to classify or predict new cases where we have information on
these other variables but do not know the person’s credit standing. This informationwould be
useful, for example, to decide whether or not to qualify a person for a loan.

Data Preparation

It is rather straightforward to apply DM modeling tools to data and judge the value of
resulting models based on their predictive or descriptive value. This does not diminish
the role of careful attention to data preparation efforts. Data are the central items in data
mining; therefore, it should be massaged properly before feeding it to any data mining
tool. Otherwise, it would be a case of Garbage In, Garbage Out (GIGO). Major strategic
decisions are impacted by these results; therefore, any error might cost an organization
in millions of dollars. Therefore, it is important to preprocess the data and try to improve
the accuracy of the decisions made.

The following points were noted during this stage:

• Insight into data: Descriptive statistics were discovered.
• There are no outliers in the data.
• There are no missing values in the data.
• No integration is required.
• No transformations are required.
• Feature selection: Variables were reduced from 20 to 9.

Feature Selection

To reduce the complexity of the problem, we can transform the data set into a data set of
lower dimensions. The Feature Selection tool available in STATISTICA Data Miner automati-
cally found important predictors that clearly discriminate between good and bad customers.

TABLE E.1 Variables

Category Variables

1. Basic Personal Information Age, Sex, Telephone, Foreign worker?
2. Family Information Marital Status, Number of dependents
3. Residential Information Number of years at current address, Type of apartment
4. Employment Status Number of years in current occupation, Occupation
5. Financial Status Most valuable available assets, Further running credits, Balance

of current account, Number of previous credits at this bank
6. Security Information Value of savings or stocks, Guarantors
7. Others Purpose of credit, Amount of credit in DM
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The bar plot and spreadsheet of the predictor importance usually shed some light on the
variables that are largely related to the prediction of the dependent variable of interest. For
example, Figure E.1 is the bar plot of predictor importance for the dependent variable
“Creditability”.

In this case, the variables Balance of current account, Payment of previous credits, and
Duration in months stand out as the most important predictors.

These predictors will be further examined using a wide array of data mining
and machine learning algorithms available in STATISTICA’s Data Miner.

STATISTICA Data Miner: “Workhorses” or Predictive Modeling

The novelty and abundance of available techniques and algorithms involved in the mod-
eling phase make this the most interesting part of the data mining process (Figure E.2). Clas-
sification methods are the most commonly used data mining techniques that are applied in
the domain of credit scoring to predict the risk level of credit takers. Moreover, it is good
practice to experiment with a number of different methods when modeling or mining data.
Different techniques may shed new light on a problem or confirm previous conclusions.

FIGURE E.1 Creditability bar chart.
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STATISTICA Data Miner is a comprehensive and user-friendly set of complete data
mining tools designed to enable you to more easily and quickly analyze your data to
uncover hidden trends, explain known patterns, and predict the future. From querying
databases and drilling down to generating final reports and graphs, this tool offers ease
of use without sacrificing power or comprehensiveness. Moreover, STATISTICA Data
Miner features the largest selection of algorithms on the market for classification, predic-
tion, clustering, and modeling, as well as an intuitive icon-based interface. It offers tech-
niques from simple C&RT and CHAID to more advanced intelligent problem solver,
boosted trees, Support Vector Machines and MARSplines.

Overview: STATISTICA Data Miner Workspace

The Data Miner Workspace depicts the flow of the analyses; all methods of STATISTICA
Data Miner are available as icons via simple drag-and-drop.

Figure E.3 shows how the Data Miner Workspace should look.
Note the following regarding the STATISTICA Data Miner Workspace shown in the

figure:

1. Split the original data set into two subsets; 34% of cases retained for testing and 66%
of cases were used for model building;

2. Used the Stratified Random Sampling method to extract equal numbers of observations
for both good and bad risk customers;

3. Used the Feature Selection tool to rank the best predictor variables for predicting the
dependent variable creditability;

4. Took the best 10 predictors from a total of 20 variables based on feature selection for
model-building purposes;

STATISTICA Data Miner – “Workhorses” 
for Predictive Modeling 

C&RT
CHAID

Automated
Neural

Networks

Boosted
Trees

SVM
MARSplines

Predictive Models 

FIGURE E.2 Techniques and algorithms
involved in the modeling phase.
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5. Used different advanced predictive models (machine learning algorithms) to detect
and understand relationships among words;

6. Used comparative tools such as lift charts, gains charts, cross-tabulation, etc., to find
the best model for prediction purposes;

7. Applied the model to the test set kept aside (hold-out sample) to validate prediction
accuracy.

ANALYSIS AND RESULTS

The following four models were selected from the arsenal of data mining techniques:

• Standard Classification Trees with Deployment (C&RT or CART)
• Standard Classification CHAID with Deployment
• Boosting Classification Trees with Deployment
• Intelligent Problem Solver with Deployment (Classification)

Decision Tree: CHAID

Decision trees are powerful and popular tools for classification and prediction
(Figure E.4). The attractiveness of decision trees is due to the fact that, in contrast to neural
networks, decision trees represent rules (they are easy to interpret).

FIGURE E.3 The Data Miner Workspace.
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The results you see on your screen might vary because of the different training samples
generated each time the data source node is split for training and testing.

Each box in the tree in Figure E.4 represents a node. The top node is called the root node.
A decision tree grows from the root node, so you can think of the tree as growing upside
down, splitting the data at each level to form new nodes. The resulting tree comprises
many nodes connected by branches. Nodes that are at the end of branches are called
leaf nodes and play a special role when the tree is used for prediction.

In Figure E.4 each node contains information about the number of instances at that
node, and about the distribution of dependent variable values (credit risk). The instances
at the root node are all of the instances in the training set. This node contains 411 in-
stances with equal proportion of customers from both the “good” and “bad” categories
obtained using the Stratified Random Sampling feature from STATISTICA Data Miner.
Below the root node (parent) is the first split that, in this case, splits the data into two new
nodes (children) based on the predictor balance of current account.

FIGURE E.4 A decision tree for the credit risk data set (excerpted from simple output generated using
STATISTICA Data Miner).

466 E. CREDIT SCORING

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



The rightmost node resulting from this split contains 167 instances associated with good
credit risk. Because most of the instances have the same value of the dependent variable
(creditability), this node is termed pure and will not be split further. The leftmost node in
the first split contains 244 instances. This node is then further split based on the predictor
value of savings or stock, resulting in two more nodes and so on.

The order of the splits—balance of current account, value of savings or stocks, and then
payment of previous credits—is determined by an induction algorithm

A tree that has only pure leaf nodes is called a pure tree, a condition that is not only
unnecessary but is usually undesirable. Most trees are impure; that is, their leaf nodes
contain cases with more than one outcome to avoid overfitting.

The rules for the leaf nodes in Figure E.4 are generated by following a path down the
branches until a leaf node is encountered. For example,

IF Balance of current account ¼ no running account, no balance
AND Value of Savings or Stocks ¼ no savings, less than 100 DM
AND Payment of previous credits ¼ hesitant payment of previous credits
THEN Creditability ¼ bad

Classification Matrix: CHAID Model

The classification matrix can be computed for old cases as well as new cases. Only the
classification of new cases (testing data set) allows us to assess the predictive validity of
the model; the classification of old cases only provides a useful diagnostic tool to identify
outliers or areas where the model seems to be less adequate.

The program computes the matrix of predicted and observed classification frequencies
for the testing data set, which are displayed in a results spreadsheet, as well as a bivariate
histogram, as shown in Figure E.5.

The classification matrix shows the number of cases that were correctly classified (on the
diagonal of the matrix) and those that were misclassified as the other category.

In this case, the overall model could correctly predict whether the customer’s credit
standing was good or bad with 62.83% accuracy. Our main goal is to reduce the proportion
of bad credits. The percent of correct predictions for the bad category is 66.30%. In other
words, if there are 100 bad customers, our model will correctly classify approximately
66 as bad (which is far better than the law of chance).

COMPARATIVE ASSESSMENT OF THE MODELS
(EVALUATION)

It is good practice to experiment with a number of different methods when modeling or
mining data rather than relying on a single model for final deployment. Different tech-
niques may shed new light on a problem or confirm previous conclusions.

The gains chart provides a visual summary of the usefulness of the information provided
by one or more statistical models for predicting categorical dependent variables.
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Specifically, the chart summarizes the utility that you can expect by using the respective
predictive models, as compared to using baseline information only.

The overlaid gains chart (for multiple predictive models) based on models trained in
STATISTICA Data Miner, shown in Figure E.6, is computed using the Compute Overlaid
Lift Charts from All Models node.

This chart depicts that the Boosting Trees with Deployment model is the best among
the available models for prediction purposes. For this model, if you consider the top two
deciles, you would correctly classify approximately 40% of the all cases in the population
belonging to the bad category. The baseline model serves as a comparison to gauge the
utility of the respective models for classification.

Analogous values can be computed for each percentile of the population (loan applicants
in the data file). You could compute separate gains values for selecting the top 30% of
customers who are predicted to be among bad customers (hence no loan approval), the
top 40%, etc. Hence, the gains values for different percentiles can be connected by a line that
will typically ascend slowly and merge with the baseline if all customers (100%) were
selected.

The lift chart (similar summary chart) shown in Figure E.7 depicts that the Boosting
Trees with Deployment model is the best among the available models for prediction
purposes.

If you consider the top two deciles, you end up with a sample that has almost 1.7 times
the number of bad customers when compared to the baseline model. In other words, the
relative gain or lift value due to using the Boosting Trees with Deployment predictive
model is approximately 1.7.

A B

FIGURE E.5 Histogram and spreadsheet of results.
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Classification Matrix: Boosting Trees with Deployment Model (Best Model)

The classification matrix for testing data set in Figure E.8 shows the number of cases that
were correctly classified (on the diagonal of the matrix) and those that were misclassified as
the other category.

In this case, the overall model could correctly predict whether the customer’s credit
standing was good or bad with 65.65% accuracy. Our main goal is to reduce the proportion
of bad credits. The percent of correct predictions for the bad category is 73.91%.

DEPLOYING THE MODEL FOR PREDICTION

Finally, deploy the Boosting Classification Trees with Deployment model. In particular,
save the PMML deployment code for this model and then use that code via the Rapid
Deployment node in STATISTICA Data Miner to predict (classify) the credit risk of new
loan applicants. If the bank could decide beforehand who would be more likely to default
on a loan, this could save the bank money.

FIGURE E.6 Overlaid gains chart.
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CONCLUSION

The purpose of this example is to show how easily a large number of the most sophisti-
cated methods for predictive data mining can be applied to data and how sophisticated
ways for combining the power of these methods for predicting new observations become
automatically available.

FIGURE E.7 Lift chart.

FIGURE E.8 Classification matrix.
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T U T O R I A L
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Churn Analysis
With SPSS-Clementine

Robert Nisbet, Ph.D.

O U T L I N E

Objectives 471 Steps 472

In this exercise, we will use a generalized approach for creating customer response
models. This tutorial will analyze churn patterns in a real telecommunications data set.
Some fields of the data set have been recoded to preserve anonymity. The Temporal
Abstracts have already been calculated with SQL in the database pivot process (see
Chapter 4 for a discussion of temporal abstracts). The reference date is the date that records
in the training set churned (disconnected service). This pivoting process operates directly
on the database early in the Data Preparation phase of modeling. Your job is to select the
variables that produce a model with a lift index of least a 3.0 in the first decile. There is
an optimum set of variables that can be used, but some of the possible sets of variables
may lead to net solutions with the minimum accuracy. See how much better than 3.0 lift
index you can do!

Review the information on the Clementine interface in Chapter 10 to learn how to enter
nodes onto the modeling canvas and link them together.

OBJECTIVES

1. Learn how to use the Derive node and Sample node.
2. Learn how to use the Distribution node and Generated Balance node.
3. Learn how to use a Type node to set the data type of variables.
4. Learn how to use a neural net to define a pattern of churned records in the database.
5. Learn how to create and use lift charts to evaluate the performance of a model.
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STEPS

1. Paste a Variable File node (from the Sources palette) onto the upper-left region on the
palette.

a. Double-click the node to edit it.
b. Click on the ellipsis at the end of the File box and choose the file named

CH_10k.dat.
c. In the Delimiters pane (lower left), click on the Tab box (to specify a tab-delimited

ASCII file).
d. Click on the Types tab at the bottom of the screen.

i. Also in the Types tab, click on the CR_CLASS (credit class) variable; then scroll
down to the bottom of the field list, hold down the Shift key, and click the
last field. This should highlight all the fields between the two clicks. Click in
the Direction box of one of the highlighted fields and select In. This will
set all those fields as inputs. (Note: You could set the types one at a time, but
this way saves a lot of time for a long field list.)

ii. Scroll down to the bottom of the field list and select CHURN_FL.
iii. Click in the directions box for the CHURN_FL field and select Out. This will

set that field to be the target variable.
iv. Click in the Type box to the right of the field name CHURN_FL and select

Discrete. This will set the data type of the target variable to be a discrete value.
It must be typed as a discrete (categorical) value for the next operation.

e. Click on the Filter tab and rename the field to CHURN by clicking on the right-
hand file name and editing it.

f. Click on the Filter tab.
i. Notice the same list of field names with arrows between them. An arrow can be

marked with an X by clicking on it to delete the variable for further processing.
The following list of variables is described and listed with an X to delete them
in this Filter tab. Note that many variables are listed in sets of three (e.g., DUR1,
DUR2, DUR3). These are temporal abstractions. For example, DUR1 refers to
the duration in minutes of use (MOU) one month before the churn month
(the index month). If the customer did not churn, a random index month is
chosen during the 4-month churn analysis window for this data set.
1. CUST_ID—Customer ID (X)
2. START_DT—Start date of the billing period (X)
3. END_DT—End date of the billing period (X)
4. LATE_ST—Late statement
5. CREDIT_CLASS—Credit class
6. INC_RANGE—Income range
7. GENDER—Gender (M/F)
8. AGE—Age in years
9. INCOME—Income in dollars/mo

10. CUST_TYPE—Customer type

472 F. CHURN ANALYSIS

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



11. INPUT_DT—Input date (X)
12. ACCT_TYPE—Account type (X)
13. AMT_CHARGED1, 2, 3—Amount charged in dollars one month, 2 months

before, and 3 months before the index month
14. CALL_TP1, 2, 3—Calling type for the three temporal abstractions
15. NUM_SP1, 2, 3—Number of special services for the three temporal

abstractions
16. DUR1, 2, 3—Cumulative duration of all calls for the three temporal

abstractions
17. CALLS1, 2, 3—Number of calls for the three temporal abstractions
18. BAN_ST1, 2, 3—Unknown
19. CLOSED1, 2, 3—Closed dates (X)
20. DUE_DT1, 2, 3—Due date (X)
21. CHARGE1, 2, 3—Unknown (X) bad data
22. CH_BEG1, 2, 3—Charge begin date (X)
23. CH_END1, 2, 3—Charge end date (X)
24. BILL_ST1,2, 3—Billing statement (X) sparse date
25. LT_PMT1, 2, 3—Late payments (X) all zeros
26. ADJ1, 2, 3—Adjustments (X) sparse data
27. RECURR1, 2, 3—Recurrent charges
28. ONETIME1. 2. 3—One-time charges
29. P_METH1, 2, 3—Payment method
30. CR_DT1, 2, 3—Credit date (X)
31. PAY_VAL1, 2, 3—Payment
32. DUE_VAL1, 2, 3—Amount due
33. CHURN—Churn flag (1 ¼ churn; 0 ¼ no churn)
34. TEN_RAW—Tenure temporary transform or tenure in years (X)
35. TENURE—Normalized tenure transform

To delete the variables marked with an (X), click on the arrow between
the name lists. Also, you can change a field name simply by editing the
right-hand name in the list.

2. Connect a Sample node (from the Record Ops Palette).

a. Double-click to edit the node.
b. Click on the Annotations tab.
c. Name the node Training Set and click the Settings tab to return.
d. Note that the first radio button in the Mode section selects Include sample.

This means that all records selected in this node will be included in the output.
e. Click on the 1-in-n radio button. The effect of the preceding two steps is to

select every other record and include it in the training set. Later, we will set up
another Sample node to select every other record and discard it from the
second set. Those two sample nodes will function together to divide the data
set into two equal parts.

f. Click OK to exit the node.
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3. Connect a Table node (from the Output palette) directly above or below the Filter
node.

a. Edit the Table node and execute the table by double-clicking on Execute in the
Edit menu. Look at the CHURN field in the table to verify that it is now a set of
numbers (0 and 1). Click on the X in the upper right.

4. Connect a Distribution node (in the Graphs palette) to the Training Set Sample node.

a. Edit the Distribution node.
b. In the Field box, click on the arrow to select the CHURN variable.
c. Execute it.
d. You should see a bar graph with unequal-length blue bars, showing the relative

occurrence of 1 and 0. Neural nets require that there be a nearly equal number
of 1s and 0s to train properly. Therefore, we will clone the 1s until they are
approximately equal to the 0s. We will use the Balance node to do this. And
we can use the Generate option in the Distribution bar chart to do this for us.
(Note: We could balance the record set by deleting the number of 0s to equal
the number of 1s. Balancing by boosting will retain all the information in the
0-records for use in training the model.)

e. Click on the Generate option at the top of the Distribution chart.
f. Choose the Balance Node Boost option.
g. Click on the X in the upper right of the chart.
h. The Generate option creates a Balance Node in the upper left of the palette screen.

Remember, the Balance Node contains the factor by which the number of Churn
records (CHURN ¼ 1) will be increased (“boosted”) to match the number of
nonchurn records (CHURN ¼ 0). This balanced pattern is necessary for proper
pattern matching by the machine learning (neural net or rule induction) tool.

5. Drag the Generated Balance node to a position to the right and below the Training
Set Sample node and connect it to the Generated Balance node.

a. Rename the node to Boost by clicking on the node, selecting Annotations, and
entering the new name.

b. Right-click on the arrow connecting the Distribution node and delete the arrow
link. Reconnect the Distribution node to the Boost node.

c. Execute it.
d. The blue bars should be about the same length now.
e. Click OK to exit.

Your screen should look like Figure F.1 now.

6. Connect three Derive nodes in a series to the right of the Type node. We will define
three new variables with these three nodes.

a. First Derive Node: Name it UNDR_PAY1 in the Field name.
Enter the formula: DUE_VAL1—PAY_VAL1.
Click OK.

b. Second Derive Node: Do likewise for UNDR_PAY2 and its formula.
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c. Third Derive Node: Do likewise for UNDR_PAY3 and its formula.
The Derive node is a very powerful data generator. The built-in CLEM

expression language is rich in functions and operations you can use to derive new
variables to test as predictors.

7. Link a Type node into the stream after the third Derive node. (Note: Data typing was
done in the Variable File node, but Clementine models still require an explicit Type
node from which the algorithms get the target variable. The provision of data typing in
the input node is a recent addition; previous versions did not do that.) The target
variable specification does not pass from the input node for some reason.

a. Scroll down the field list in the node and set the role of the CHURN variable to
Out. That will specify that CHURN is the target variable (the output of the model).
The terminology here is derived from the artificial intelligence world, where a
data input role is an “in” and a data output role is an “out”; most data mining
tools refer to the output variable as the “Target.”

FIGURE F.1 SPSS Clementine 11.1 version interface.
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8. Link a Neural Net node to the stream to the right of the Type node (from the Modeling
palette).

a. The name assigned to the node should be CHURN, picking up on the name of
the Target variable. If this is not the case, check that you nave specified the role
of the CHURN variable as “In.”

b. Execute the Neural Net node.
c. You will see a feedback graph at the top of the screen that shows the current

accuracy of classification during the iterative training of the neural net.
d. When the model is trained, it will appear in the Models tab screen in the upper-

right corner of the palette.

Now, we will build the Testing set data stream. You should evaluate the predictive
power of the model on the testing set rather than on the training set. Actually, this testing
data set will be the third partition of the data set used in this example. Behind the scenes,
the Clementine Neural Net node divided the training data set into two pieces, sized by
settings in the node (50:50 is default). The algorithm trains the model during one pass
(iteration) through the data set and then tests the results. The internal testing results are
used to optimize settings for the number of neurons in the hidden layer, learning rate, and
momentum settings of the final model. The Clementine neural net is a highly automated
adaptive algorithm that is very easy to use to create a very good model, even with its
default settings. You can modify the settings to optimize performance with your data set.

Your screen should look like Figure F.2 now. Notice the trained model icon in the
upper-right box in the interface.

9. Double-click the Training Set Sample node.

a. Select Copy node (or just press Ctrl-C).
b. Press Ctrl-V to paste the node into the modeling palette below the first sample

node (standard Windows keystrokes).
c. Double-click the pasted node, make sure the Settings tab is open, and change the

radio button to Discard Sample. This operation will pass the other half of the
incoming records to become the Testing data set.

d. Click the Annotations tab and change the name to Testing Set.
e. Connect the Testing set node to the variable file input node.

10. Add the derived nodes like you did in the training stream. (Note that you can click on
the first one, hold the Shift key, and click on the third one. All three nodes will be
highlighted. You can copy and paste them as a group.)

11. Copy the Type node (like you did the copy operation before).
Paste the second Type node in the palette and connect it to the Testing Set node.

12. Now drag and drop the trained model icon from the Models tab (upper-right box in the
interface) and connect it to the Type node.

13. Finally, connect an Evaluation node (from theGraphics palette) to the neural netmodel icon.
Your screen should look like Figure F.3.

a. Double-click the Evaluation node and make sure the Plot tab is open.
b. In the middle of the screen, you will see a box labeled Percentiles, with a drop-

down arrow in it. Click on the arrow to view the different kinds of bins (quantiles)
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FIGURE F.3 Completed model.

FIGURE F.2 Partial build of model stream.
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into which the records are assorted. The default value is Percentiles (100 bins).
Other choices are Deciles (10 bins), Vingtiles (20 bins), Quintiles (5 bins), Quartiles
(4 bins), or 1000-tiles (1000 bins). The number of bins selected will govern which
group of records is used for each calculation of the lift value and will set the
number of dots plotted in the “point” mode. The “line” mode is default.

c. Next to Chart Type, click the Lift radio button. This setup will generate a lift chart
with 100 bins (percentiles). Lift compares the percentage of churn records in
each quantile with the overall percentage of churn records in the training data set
¼ (# churns in a quantile/# records in quantile)/(total churn records/total records).

d. Make sure that the Cumulative button is checked.
Figure F.4 shows a cumulative lift chart. It shows the lift index on the vertical

axis, which expresses how much better than the random prediction rate was

FIGURE F.4 Evaluation results showing cumulative lift chart.
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produced by the model. For example, in the first two deciles (up to the 20th
percentile), the model performed about 3.8 times better than random (red line).

e. Now edit the Evaluation node and uncheck the Cumulative button.
f. Re-execute the Evaluation node. The resulting graph, shown in Figure F.5, is an

incremental lift chart.
g. The incremental chart in Figure F.5 shows the lift in each percentile (no

accumulation is done here). Notice that the lift line descends below the random
line (in red) at about the 18th percentile. This means that all of the benefit of the
model (compared to random expectation) is achieved in the first 18% of the
records (note that the lift chart is created from a list sorted on the predicted
probability in descending order). A CRM manager could be guided by this model

FIGURE F.5 Evaluation showing lift in each Percentile.
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to send interdiction offers to only the top 18% of the customers in this sorted
scored list, and expect to contact more than three times the number of high-
probability churners than normal (compare the cumulative lift chart with the
incremental lift chart to see this). The response rate from the retention campaign
would then be driven by the effectiveness of the interdiction offers (incentives
to stay with the company).

This churn model is an example of a customer response model. You can analyze virtually
any customer response this way (cross-sell, up-sell, customer acquisition).
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INTRODUCTION

Data mining has played a promising role in the extraction of implicit, previously
unknown, and potentially useful information from databases (structured data). However,
it is estimated that around 80% of the data in an organization is in unstructured form.
Data trapped in “text form” (unstructured data) also express a vast and rich source of such
information. Text mining is all about analyzing text for extracting information from
unstructured data.
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TEXT MINING

The purpose of this STATISTICA Text Mining and Document Retrieval tutorial is to pro-
vide powerful tools to process unstructured (textual) information, extract meaningful
numeric indices from the text, and, thus, make the information contained in the text acces-
sible to the various data mining (statistical and machine learning) algorithms available in
the STATISTICA system. Information can be extracted to derive summaries for the words
contained in the documents or to compute summaries for the documents based on the
words contained in them. Hence, you can analyze words, clusters of words used in docu-
ments, etc., or you could analyze documents and determine similarities between them or
how they are related to other variables of interest in the data mining project.

STATISTICA Text Mining and Document Retrieval is a text-mining tool for indexing text in
various languages, i.e., for meaningfully representing the number of times that terms occur
in the input documents. The program includes numerous options for stemming words
(terms), for handling synonym lists and phrases, and for summarizing the results of the
indexing using various indices and statistical techniques. Flexible options are available for
finalizing a list of terms that can be “deployed,” to quickly score (“numericize”) new input
texts. Efficient methods for searching indexed documents are also supported.

Input Documents

The software accepts as input documents in a variety of formats, including MS WordW

document files and rich text files (RTF), PDF (Acrobat ReaderW), PS (PostScriptW), htm
and html (Web pages or URL addresses), XML, and text files. You can also specify a
variable in a STATISTICA input spreadsheet containing the actual text itself.

Selecting Input Documents

Input documents can be selected in a variety of ways. File names and directories (refer-
ences to input documents) can be stored in a variable in an input spreadsheet, or you can
“crawl” through directories and subdirectory structures to retrieve files of particular types.
In addition, various methods for accessing Web pages and for “crawling” the Web (retriev-
ing all Web pages linked to a particular document specified as the root; e.g., you could
retrieve all documents referenced or linked to the StatSoft home page at www.statsoft.
com). Web crawling can be performed to a user-defined depth; e.g., you can request to
retrieve all web sites linked to pages that are referenced from a particular root URL, pages
that are referenced in those pages, and so on.

Stop Lists, Synonyms, and Phrases

Various options are available for specifying lists of words (terms) that are to be excluded
from the indexing of the input documents or pairs of terms that are to be treated as synonyms
(i.e., counted as the same word). It can be specified to treat specific phrases (e.g., Eiffel Tower)
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as single terms and entries in the index. These lists can be edited and saved for future and
repetitive use, so the system can be customized to specific terminologies for different
domains.

Stemming and Support for Different Languages

Stemming refers to the reduction of words to their roots so that, for example, different
grammatical forms or declinations of verbs are identified and indexed (counted) as the
same word. For example, stemming will ensure that both travel and traveled will be recog-
nized by the program as the same word. The software includes stemming algorithms for
most European languages including English, French, German, Italian, and Spanish.

Indexing of Input Documents: Scalability of STATISTICA Text Mining
and Document Retrieval

The indexing of the input documents is extremely fast and efficient, and based on rela-
tional database components built into the program. The contents of this database can be
saved for further updating in future sessions, or for “deployment,” i.e., to score input docu-
ments using only previously selected key terms.

Results, Summaries, and Transformations

The Text Mining Results dialog contains numerous options for summarizing the fre-
quency counts of different words and terms. You can also combine terms or phrases (to
count them as a single term or phrase), or clear only some of the terms in the analyses.

Options are available for reviewing word/term frequencies or document frequencies, as
well as transformations of those frequencies better suited for subsequent analyses (e.g.,
inverse document frequencies). The Results dialog also contains options for performing sin-
gular value decomposition on the documents-by-terms frequency matrix (or transforma-
tions of frequencies) to extract dominant “dimensions” into which terms and documents
can be mapped.

The scores and coefficients for the extracted dimensions can also be saved for subsequent
processing of new documents to map those documents into the same space. Because of the
integrated architecture of the STATISTICA system, all results spreadsheets can be used as
input data for subsequent analyses or graphs. Hence, it is easy to apply any of the large num-
ber of analytic algorithms available in the software to the outputs generated by the Text
Mining and Document Retrieval module, for example, to apply cluster analysis methods or
any of themethods for predictive datamining to include textual information in those projects.

Let’s look at some examples to see how interesting information can be extracted from
unstructured data (or text corpus) using the text mining approach. In the process of the fol-
lowing illustrations, the different features available within the STATISTICA Text Mining
and Document Retrieval module will be demonstrated. At the end of this tutorial, you will
also understand how the outputs from the Text Mining module can be integrated into the
Data Mining module to analyze the numerated text data.
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CAR REVIEW EXAMPLE

The sample data file, 4Cars.sta, contains car reviews written by automobile owners. Car
reviews related to four popular brands were extracted from the web sites (www.carreview.
com), and one of the brands was renamed to conceal certain findings. The attributes of this
file are detailed in Table G.1.

Each row (or case or instance) contains opinion (Summary, Strengths, or Weaknesses)
filled by car owners about the car they own, along with other information, the rating for
the car, the overall price they paid, and the car type. The purpose of this analysis is to
see whether we can extract some information from textual corpus via the nascent concept
of text mining. Follow these steps to start:

• Open STATISTICA by choosing Start, Programs, and then STATISTICA.
• Close the Welcome to STATISTICA dialog, the Data Miner workspace, and the

spreadsheet.
• From the Files menu, select Open. Open the 4Cars.sta file from the Examples/Data

sets folder, as shown in Figure G.1. (Note: In most default installations of STATISTICA,
you will find the sample data files in the Examples/Data sets file.)

• Next, select TextMining&Document Retrieval from the Statistics, Text&DocumentMining,
Web Crawling submenu to display the Text Mining startup panel (see Figure G.2).

This dialog contains nine tabs: Quick, Advanced, Filters, Characters, Index, Synonyms &
Phrases, Delimiters, Project, and Defaults. Use the options on this dialog to specify the
documents to be analyzed; the words, terms, and phrases that are to be included or ignored;
and the database (internal, and used only for this module) where the indexed terms are to
be stored. You can also select an existing database and thus “score” new documents using
the terms selected (and saved) in that database. If you would like to learn more about these
options, refer to the STATISTICA electronic manual.

• To start, first extract the word frequencies from the text contents from the first variable,
Summary.

• From the Quick tab, select the From Variable option under the Retrieve Text Contents
section.

• Next, click the Text Variable button to display the Select a Variable Containing Texts
dialog and then select the variable Summary (which is the variable containing the text
body; see Figure G.3).

• Click OK to return to the Quick tab.

TABLE G.1 Attributes of Car Review Example

Unstructured Data Structured Data

1. Summary 4. Overall Rating
2. Strengths 5. Price paid
3. Weaknesses 6. Car type
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• Now click on the Index tab and click on the Edit Stop-Word File button. Drag down to
the bottom of the stop word list and add the word car to the list, as shown in Figure G.4.

• Click the OK [Save] button to add the word car to the existing stop word file (i.e., the
words and terms contained in that stop list will be excluded from the indexing that
occurs during the processing of the documents).

• Next, click the OK button on the Text Mining: 4Cars.sta dialog to begin the processing of
the documents. After a few seconds (or minutes, depending on the speed of your computer
hardware), the TM Results: 4Cars.sta dialog will be displayed, as shown in Figure G.5.

FIGURE G.2 Text Mining Quick tab.

FIGURE G.1 Text Mining data spreadsheet.
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FIGURE G.3 Select Text Variable dialog.

FIGURE G.4 Stop-Word editor dialog.
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The TM Results dialog gives a brief summary (number of documents, selected words
and unselected words) and displays the words extracted by the Text Mining module.

• Click on the Count header to sort the words by frequency. You will see that the word
drive appeared with the highest frequency, followed by great, etc.

The options available in the TM Results dialog are as follows:
Frequency: Select this option button to analyze and report the simple word frequencies.
Binary Frequency: Select this option button to analyze and report binary indicators

instead of word frequencies. Specifically, this option will simply enumerate whether or
not a term is used in a document. The resulting documents-by-words matrix will contain

FIGURE G.5 STATISTICA Text
Miner Results dialog.

487CAR REVIEW EXAMPLE

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



only 1s and 0s, to indicate the presence or absence of the respective word. As the other
transformations of simple word frequencies, this transformation will dampen the effect of
the raw frequency counts on subsequent computations and analyses.

Inverse Document Frequency: Select this option button to analyze and report inverse
document frequencies. One issue that you may want to consider more carefully, and reflect
in the indices used in further analyses, is the relative document frequencies (df) of different
words. For example, a term such as guess may occur frequently in all documents, while
another term such as software may occur in only a few. The reason is that one might make
guesses in various contexts, regardless of the specific topic, while software is a more seman-
tically focused term that is only likely to occur in documents that deal with computer soft-
ware. A common and very useful transformation that reflects both the specificity of words
(document frequencies) as well as the overall frequency of their occurrences (word frequen-
cies) is the so-called inverse document frequency. This option includes both the dampening
of the simple word frequencies via the log function and includes a weighting factor that
evaluates to 0 if the word occurs in all documents and to the maximum value when a word
occurs in only a single document. It can easily be seen how this transformation will create
indices that both reflect the relative frequencies-of-occurrences of words, as well as their
semantic specificities over the documents included in the analysis.

Log Frequency: Select this option button to analyze and report logs of the raw word fre-
quencies. A common transformation of the raw word frequency counts is to “dampen” the
raw frequencies and see how they will affect the results of subsequent computations.

Summary: Click the Summary button to compute the summary of word occurrence in
document (same results as the option by the longer name on the Quick tab). Specifically,
the results spreadsheet will contain a row for each input document and a column for each
word or term. The entries in the cells of the results dialog depend on the option selection in
the Statistic for Occurrence Group box on this dialog. The summary spreadsheet can
quickly be turned into an input spreadsheet for subsequent analyses (use the options on
the Save Results tab to write the respective word statistics to another file or database).

Let’s get back to the example:

• In this case, select the option Inverse Document Frequency (it’s the most efficient and
frequently used option to represent the word counts) from the Statistic for Occurrence
group box. Also, select the SVD tab (see Figure G.6).

At this point, there are different features/techniques available from different tabs (Quick,
Words, SVD, Search, and Save Results) from which the “numericized” words from the TM
results dialog can be saved into a standalone spreadsheet for further analysis. (Refer to the
STATISTICA electronic manual to learn more about the features available within these tabs.)

Let us next perform the “singular value decomposition.”
The SVD tab of the Text Mining Results dialog gives options to perform singular value

decomposition on the document-by-words matrix, based on the selected words only, and
with the word frequencies or transformed word frequencies as currently selected in the Sta-
tistic for Occurrence group box on the Text Miner Results dialog. Note that the results will
be available for only one particular type of matrix (transformation of the word frequencies),
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and once you change your selection on the Text Miner Results dialog, any previously com-
puted results for singular value decomposition will be discarded. In addition, when you
save SVD results for deployment, only the singular value decomposition results for the spe-
cified word frequencies or their transformations will be saved.

Singular value decomposition is an analytic tool for feature extraction that can be used to
determine a few underlying “dimensions” that account for most of the common contents or
“meaning” of the documents and words that were extracted.

FIGURE G.6 STATISTICA Text Miner Results dialog.
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For computational details of the statistics and results available on the SVD tab of the Text
Mining Results dialog, you can use the following options:

Perform SVD (Singular Value Decomposition): Click this button to start computing the
singular value decomposition of the documents-by-words matrix (word occurrences or
their transformations as currently selected on the Text Mining Results dialog). When the
computations are completed, the various options available for reviewing the coefficients
and document scores, and for saving the results for deployment, will become available
(not dimmed).

Scree Plot: Click this button to create a scree plot of the singular values extracted from
the word occurrence matrix. This plot is useful for determining the number of singular
values that are useful and informative, and that should be retained for subsequent analyses.
Usually, the number of “informative” dimensions to retain for subsequent analysis is deter-
mined by locating the “elbow” in this plot, to the right of which you presumably find on the
factorial “scree” due to random noise.

Singular Values: Click this button to display a results spreadsheet with the singular
values.

Word Coefficients: Click this button to display a results spreadsheet with the word co-
efficients. You can use the standard spreadsheet options to turn these results into an input
spreadsheet in order to, for example, create 2D scatterplots for selected dimensions. Such
scatterplots, when they contain labeled points, can be very useful for exploring the meaning
of the dimensions into which the words and documents are mapped, i.e., to understand the
semantic space for the extracted words or terms and documents. See also the section on
latent semantic indexing via singular value decomposition in the Introductory Overview.

Document Scores: Click this button to display a results spreadsheet with the document
scores; like the Word coefficients, these can be plotted in 2D or 3D scatterplots to aid in the
interpretation of the semantic space defined by the extracted words and documents in the
analysis.

Sum of Squares of Word Residuals: Click this button to display the word residuals
from the singular value decomposition. As described in Singular Value Decomposition in
STATISTICA Text Mining and Document Retrieval, these values are related to the extent
to which each word is represented well by the semantic space defined by the dimensions
extracted via singular value decomposition.

Word Importance from SVD Analysis: Click this button to display the word importance
values computed from the singular value decomposition. As described in Singular Value
Decomposition in STATISTICA Text Mining and Document Retrieval, the reported values
(indices) are proportional to and can be interpreted as the extent to which the individual
words are represented or reproduced by the dimensions extracted via singular value
decomposition and, hence, how important the words are for defining the semantic space
extracted by this technique.

Save SVD Results for Deployment: Click this button to save the SVD results for deploy-
ment, i.e., to “score” new documents. Specifically, this option will save the current SVD
results for the currently selected words; this information will be saved in the current data-
base, which can then be used in subsequent analyses to automatically index and score new
documents. Thus, this option is essential for many applications of text mining (as, for
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example, discussed in the Introductory Overview), for example, to implement automatic
mail filters or text routing systems.

• Next, perform the singular value decomposition by clicking on the Perform SVD
(Singular Value Decomposition) button available from the SVD tab. Once this
computation is over, you can see all the other options available within this tab being
enabled.

At this point, you can extract different details of the statistics and results that can be used
for further analysis.

• Click on the Scree Plot button to view the graph shown in Figure G.7.

The plot in this figure is useful for determining the number of singular values that are
useful and informative, and that should be retained for subsequent analyses. It helps to
visually determine the number of components that explains the variance among the inputs.
We can tell by looking at the graph that the first component explains slightly more than
18% of the total variance for 295 words that were used as inputs, followed by the second
component, which explains 7%, etc. So 25% of the variance present within the inputs is
explained by the top two components. Usually, the number of “informative” dimensions
to retain for subsequent analysis is determined by locating the “elbow” in this plot. The
scree test involves finding the place where the smooth decrease of singular values appears
to level off to the right of the plot. To the right of this point, presumably, you find only SVD
scree (scree is the geological term referring to the debris that collects on the lower part of a
rocky slope). Thus, no more than the number of components to the left of this point will
be useful for analysis.

FIGURE G.7 Scree Plot screen of singular values.
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• Now click on the Word coefficient button to view the results spreadsheet holding the
word coefficient based on the results from the SVD (see Figure G.8).

As explained earlier, we can now draw scatterplots to explore the meaning of the dimen-
sions into which the words and documents are mapped, i.e., to understand the semantic
space for the extracted words or terms or documents. Let’s now use the top two compo-
nents to draw a scatterplot to plot the important words picked by the components.

• Right-click on the SVD Word Coefficients spreadsheet header (appearing within the left
pane of the workbook) and select the option Use as Active Input.

• Next select Scatterplots from the menu option Graphs. Click on the Variables button
within the 2D Scatterplot dialog.

• Select Component 1 as the X-variable and Component 2 as the Y-variable (see
Figure G.9).

• Click OK on the Select Variables for Scatterplot dialog and then the 2D Scatterplot dialog
to view the 2D scatterplot graph shown in Figure G.10.

• Next, click on the Brushing toolbar button from the Graphs toolbar (by default
displayed as the third layer of menu options within the STATISTICA application) to
display the Brushing 2D dialog (see Figure G.11).

The Brushing 2D dialog contains tools for identifying points or groups of points on both
2D and 3D graphs to be marked, labeled, or temporarily turned off (i.e., removed from the
graph and from considerations for fit lines applied, etc.) When brushing is activated, the
mouse pointer turns by default into a “gun-sight style” cross-hair .

The pointer can be used to select/highlight either individual points (select the
Simple option button under Selection Brush on the Brushing dialog) or groups of points

FIGURE G.8 SVD Word Coefficients spreadsheet.
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FIGURE G.9 Variable-selection window for SVD Components.

FIGURE G.10 Scatterplot of SVD Word Coefficients.
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(Lasso or Box). Other options such as the Slice X, Y, and Z and the Cube can be used to
define areas on a 2D or 3D plot or volumes on a 3D plot. The areas or volumes defined
by the Lasso, Box, Slice, and Cube options can be animated to move over the extent of
the plot (or a matrix of plots in some cases) to explore the spatial distribution of values.

With the points highlighted, clicking the Update button on the Brushing dialog causes
the action specified (labeling, marking, turning off) to be executed. Actions taken can be

FIGURE G.11 Brushing dialog in STATISTICA.
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reversed by clicking the Reset All button. The Quit button closes the dialog, leaving the
actions already applied intact.

• Next, check the Auto Apply option (displayed below the Reset All button).
• Select the Toggle tab and then select the Toggle Label option and select the Simple option

from the Selection Brush section.

Figure G.12 shows how the Brushing 2D dialog should look.

FIGURE G.12 Brushing 2D dialog.
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• Next, use the “gun-sight style” mouse pointer and click on each point to view the
actual words that are represented by points. As you start clicking on the points, you will
see the words being displayed.

Figure G.13 shows some of the words that were used in the reviews along with the
brands that were picked for this analysis.

You can look at such graphs to visualize the “semantic” (of or related to meaning in
language) spaces of related words. Words appearing close to one another are related to
one another. You can see from the graph in Figure G.13 that the words within the second
ellipse contain positive words (comfort, better, quality, good, great, etc.) when compared
to the first ellipse, which contains negative words (problem, replace, fix, etc.). We can say
that the reviewers used positive words to describe brands BMW, Lexus, and Mercedes,
and more of negative words were used to describe CarZZ. This gives you a clear picture
of how the reviewers described their experience with the brand they were using. You can
also use other pairs of components to draw scatterplots and further understand/drill
down into the other dimensions.

FIGURE G.13 Scatterplot of SVD Word Coefficients with important words selected to print on graph.
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• Next, click on Document Scores option to view the spreadsheet, shown in Figure G.14,
that holds document scores.

You can now use the document score results (displayed as components) within the
spreadsheet to draw scatterplots as illustrated in the previous section. This time you will
see the documents’ IDs instead of the words, and the resulting scatterplot can be used to
visualize the documents that are related (Document IDs falling close are related to each
other). You can also try clustering techniques using the top components (that explains a
good percentage of variance) as inputs to identify clusters or groups of related reviews or
documents. You can then drill down into these cluster results using other tools (such as Fea-
ture Selection, Classification Trees, etc.), to further explore/understand the differentiating
factors of these clusters.

You can also use the other options such as the Sum of Squares of Word Residuals, Word
Importance from the SVD Analysis, etc. to view other results computed from the Singular
Value Decomposition (SVD) analysis.

The following section will illustrate how the results from the Text Mining module can
be written back into a spreadsheet or an input file to make it available for other analytic
techniques/tools.

• Click on the Save Results tab, as shown in Figure G.15, to view the options available
within this tab.

FIGURE G.14 SVD Document Scores.
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Saving Results into Input Spreadsheet

Select the Save Results tab of the Text Mining Results dialog to access options to save
the current results, i.e., the word frequencies or transformed word frequencies (see the doc-
umentation for the Statistic for Occurrence option on the Text Mining Results dialog) for the
documents-by-word matrix as well as the singular values, if singular value decomposition
was performed (see the documentation for the SVD tab). Specifically, with the options avail-
able on this tab, you can write these results back into the input data spreadsheet or database
[see also In-Place Database Processing (IDP)]; you can also use the Save Statistic Values to
Stand-Alone Spreadsheet option (see below) to create a new spreadsheet with these results,

FIGURE G.15 Results of Singular Value Decomposition (SVD) analysis.
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along with selected variables from the input file. Thus, these options are extremely useful
for joining the computed results with other information available in the input spreadsheet
from which they were computed. This is a common requirement and operation in many
applications related to data mining projects, where the input data consist of both structured
information as well as unstructured textual information, both of which are to be included in
the analyses.

• Next, click within the Num of Vars to Add to Input Data field and increase the value
from 1 to 311 (to insert word frequencies of 295 words and 16 components from the SVD
analysis).

• Next, click on the Add Variables to Input Spreadsheet option to create 311 new variables
within the input spreadsheet.

Now you will see 311 new variables created to the right of the existing variables, as
shown in Figure G.16.

• Next click on Save Statistics Values to Input Data on the TM Results: 4Cars.sta dialog
to view the Assign Statistics to Variables, to Save Them to the Input Data dialog, shown
in Figure G.17.

• Select all the words appearing within the Statistics pane and then select new variables
from 7 to 318 (use the Shift key to perform this operation).

• Click on the Assign button to assign the word frequencies and the SVD Scores to the
new variables.

Figure G.18 shows how the Assign Statistics to Variables, to Save Them to Input Data
dialog should look now.

• Next, click OK to write the results extracted from the Text Mining module to the input
spreadsheet.

FIGURE G.16 New Variables created to the right of existing Variables 1–6.
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FIGURE G.17 Assign Statistics to Variables in STATISTICA Text Miner.

FIGURE G.18 Assigned Statistics and Assigned Variables placed in lower window.
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Once you click OK, you will see the extracted word frequencies and the SVD Compo-
nents being inserted into the spreadsheet. The spreadsheet holding the results is displayed
in Figure G.19.

You now have the file ready for trying numerous analytic techniques available within the
STATISTICA toolset. Let’s next see how we can drill down further into specific words of
interest. Recall that the first ellipse in the scatterplot contained negative words, and trans-
mission was one word that appeared within this ellipse. Let us say you need to find the
words that are related to transmission. There are several ways in which we can proceed
(you can use Feature Selection tool, classification trees, correlations matrices, etc.). In this
case, let’s use the Feature Selection tool to identify the Best Predictors for the word
transmission.

• Select Feature Selection and Variable Screening from the Statistics-Data Mining menu.
• Click on the Variables button and select Transmission as Dependent; Continuous: and

all the other extracted words as Predictor; Continuous: as shown in Figure G.20.
• Click OK on the Select Dependent Variables and Predictors dialog and the Feature

Selection and Variable Screening dialog to view the FSL Results dialog, as shown in
Figure G.21.

Let’s look at some options available in the FSL Results dialog.
Display k best predictors: At this point, you can request the best k predictors; for

regression-type problems (for continuous dependent variables), the k predictors with the
largest F values will be chosen; for classification-type problems, the k predictors with
the largest chi-square values will be chosen.

Display best predictors with p<: Select this option button to display the list of best
predictors for which the p value is less than the value specified in the adjacent edit field.
The list of predictors will be sorted in ascending order by p.

FIGURE G.19 Enlarged data spreadsheet following assigning of Variables and Statistics; frequencies of specific
words are placed in Variable columns 7, 8, 9, . . . .
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Display k best predictors sorted by p: Select this option button to be able to select the
k best predictors based on the probability (p) criterion.

• In this case, leave the option to the default setting and click on Histogram of Importance
for Best k Predictors button to view the graph shown in Figure G.22.

This graph displays the top 10 important words that are related to the word transmission.
From this histogram, you can tell that when the word transmission was mentioned,

FIGURE G.21 Results screen for interactive feature selection.

FIGURE G.20 Variable selection screen in interactive feature selection module.
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reviewers also used words like shift, replace, fix, problem, time, etc. The Feature Selection tool
also identified CarZZ as one of the important predictors. We can also use other techniques
such as classification trees to see whether we can extract similar useful information using
the prepared file containing inverse document frequencies.

INTERACTIVE TREES (C&RT, CHAID)

The STATISTICA Interactive Trees (C&RT or CART, CHAID) module builds (“grows”)
classification and regression trees as well as CHAID trees based on automatic (algorithmic)
methods, user-defined rules and criteria specified via a highly interactive graphical user
interface (brushing tools), or combinations of both. The purpose of the module is to provide
a highly interactive environment for building classification or regression trees (via classic
C&RT methods or CHAID) to enable users to try various predictors and split criteria in
combination with almost all functionality for automatic tree building provided in the Gen-
eral Classification and Regression Trees (GC&RT) and General CHAID Models (GCHAID)
modules of STATISTICA. You can select the variables to use for each split (branch) from a
list of suggested variables, determine how and where to split a variable, interactively grow
the tree branch by branch or level by level, grow the entire tree automatically, delete
(“prune back”) individual branches of trees, and more. All of these options are provided
in an efficient graphical user interface, where you can “brush” the current tree, i.e., select
a specific node to grow a branch, delete a branch, etc. We will next use Interactive C&RT

FIGURE G.22 Importance plot.
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to classify the car type and use the extracted words as predictors to see whether the tree will
expose any hidden information useful for this study.

• Select Interactive Trees (C&RT and CHAID) from the Statistics-Data Mining menu.
• Click OK to perform a Classification Analysis using the C&RT model.
• Click on the Variables button within the Quick tab to view the Select Dependent Vars,

Categorical, and Continuous Predictors.

Remember that we are trying to find the words that can classify (discriminate between)
the car type (structured information), and there will be many reviews that mention
about the brand name within the text corpus. Therefore, we need to eliminate the words
that refer to the brands from the predictor list because if these words are included, they will
turn out to be the best classifier/discriminator for the car type. For instance, say we include
words like Mercedes Benz, MZ, BMW, Lexus, CarZZ, ES 300, etc. as predictors to classify
the car types (CarZZ, BMW, Mercedes, and Lexus). It is quite obvious that the tree algo-
rithm will pick these words that will discriminate one car type against the other, which will
not reveal any information that is relevant for our study.

• Select Car Type as Dependent: and all the extracted words from variable 7 to variable 301
as Continuous pred: (as discussed let us exclude the words accord, audi, benz, bmw, carzz,
class, es300, honda, infiniti, lexus, mb, mercedes, series, and slk that directly associate to brand
names; use the Ctrl key for this purpose).

• Click OK on the Select Dependent Vars, Categorical and Continuous Predictors: dialog
and the ITrees C&RT Extended Options: 4Cars.sta dialog to view the ITrees C&RT
Results: 4Cars.sta dialog, as shown in Figure G.23.

You now have several options to extract the tree according to your choice (refer to the
STATISTICA electronic manual to further study the different options available within this
dialog). First, let us grow the tree to its full size and remove one level to resize the tree
for easy visual interpretation.

• Click on the Grow Tree button to build the tree and next click on the Remove 1 Level
button to reduce the tree by one level.

• Click on the Tree Graph button under the Review Tree: section.

You should now see the tree graph shown in Figure G.24 for car type.
The tree solutions are relatively simple and straightforward for interpretation. As you

can see from the graph in Figure G.24, the C&RT algorithm had distinguished eight deci-
sion outcomes (contained in eight terminal nodes highlighted in red) built on seven if-then
conditions to classify the car type. Terminal nodes, or terminal leaves as they are sometimes
called, are points on the tree beyond which no further decisions are made. The tree starts
with the top decision node (also called the root node) with all the 638 cases (reviews in
our case) predominated by the car type CarZZ category. CarZZ had the highest frequency
of reviews among the four car types, as indicated in the histogram. The legend identifying
which bars in the node histograms correspond to the four categories is located in the
top-left corner of the graph.
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Recall that the purpose of this analysis is to learn how you can discriminate between
the different car types based on the extracted inverse document frequency of words that
are used as predictors. The interpretation of this tree is straightforward. The root node
is split on the inverse document frequency of the word top forming two new nodes, one
with car type BMW as the predominant category among 38 cases falling into a terminal
node. This simply means that whenever the importance of the word top is high (> or
higher inverse document frequencies describing the importance of its occurrence),
reviewers were mostly mentioning BMW. Similarly, when the interactions of “word
importance” (represented by inverse document frequencies) for value and sport, price and
use were high, they were referring to BMW. You can also tell by looking at this tree that
when the words value, price, great, transmission, etc., were used, the reviewers were also
mentioning CarZZ. Therefore, we can tell that CarZZ was the brand that had the

FIGURE G.23 Interactive Trees results dialog.
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transmission problem. This gives us further corroborating evidence for results identified
by the Feature Selection tool.

Another possible approach to make use of this rich textual information would be to
recode a new indicator variable for comparative study. For instance, we can create a new
indicator variable derived from the negative connotation words (complaint, disappoint, fix,
noise, problem, repair, replace, etc.) and use crosstabs or interaction plots for comparing which
brand accumulated the most number of negative connotation words. Let’s first create a new
variable named Negative Connotations for this purpose.

• Make the spreadsheet 4Cars.sta active (minimize the Result workbook that is open).
Then select the Add Variables option from Insert menu.

• Type in SVDScore16 within the After: text box. Name the new variable Negative
Connotations.

• Click OK to add a new variable named Negative Connotations to the spreadsheet.

FIGURE G.24 Tree graph for car type.
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Next, we will use the Recode function to create a binary indicator to determine whether
or not the reviews contain any negative connotations (complaint, disappoint, fix, noise, prob-
lem, repair, replace, etc.).

• Select column 320, named Negative Connotation. Then select the Recode option from the
Vars menu list.

• Type the “if” conditions to derive the new variable from the variables holding the
negative connotation word. (i.e., if the inverse document frequency of variables
complaint, disappoint, fix, noise, problem, replace, and repair is greater than 0, then flag the
case or review as 1, else 0). Note that you can enter up to 256 conditions within this
dialog.

Figure G.25 shows how the Recode Values of Variable dialog will look after you enter all
the conditions.

• Click OK to perform the recode operation.
• Save the file 4Cars.sta for future requirements.

You will now see the binary values within the Negative Connotation variable, indicating
whether or not the reviews contained a negative connotation word. Before we perform the
comparative study, we have to make sure that there is an equal number of cases for each car

FIGURE G.25 Recode Values of Variables dialog.
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type so that the study does not bias itself for a particular car type. The first question then
would be to decide the number of cases that has to be extracted for each car type. We will
next find the frequency of the four categories of car types so that we can identify the car
type or brand with the lowest frequency. That number of cases for each car type will then
be extracted.

• Select column 6, Car Type, in your 4Cars.sta spreadsheet. Then select the Basic Statistics/
Tables option from the Statistics menu.

• Select the Frequency Tables option within the Basic Statistics and Tables: dialog and
click OK.

• The car type should be already selected within the Variables: Selection dialog. Next,
click on the Summary button to view the Frequency Table: Car Type, as shown in
Figure G.26.

The results table shows that Lexus had the least number of reviews when compared to
the other car types. Therefore, we will extract 119 cases for each car type for comparative
study.

• Minimize the active workbook holding the frequency table results.
• Select the Subset/Random Sampling option from the Data menu. Click on the Options

tab and then select Calculate Based on Approximate N.
• Next, click on the Stratified Sampling tab. Click on the Strata Variables button and select

the variable Car Type. Click OK to make the selection.
• Next, click on the Codes button. Click on the All button and then click OK. You will now

see all the categories of car types under the Stratification Groups column.
• Enter 119 against each strata under the Approximate N column to extract a sample set

with 119 brands for each category. You should be looking at a dialog like the one shown
in Figure G.27.

• Click OK to view the new stratified sample spreadsheet that holds an equal number of
cases for each car type.

FIGURE G.26 Frequency table.
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If you now check the frequency for the variable Car Types, you will have a balanced
spreadsheet with an equal number of categories. We will use this spreadsheet to draw an
interaction plot to perform a comparative study.

• Select Basic Statistics/Tables from the Statistics menu to open the dialog shown in
Figure G.28.

• Then select the Tables and Banners option from the Basic Statistics and Tables dialog and
click OK.

• Next, click on the Specify Tables (Select Variables) button on the Crosstabulation
Tables dialog.

• Select the variable Car Type in the List1: section and Negative Connotations in the List2:
section, as shown in the Select Up to Six Lists of Grouping Variables: dialog in
Figure G.29.

• Click OK on the Variable Selection and Crosstabulation Tables dialogs to view the
Crosstabulation Tables Results: dialog. Select the Advanced tab to view the options
shown in Figure G.30.

• Click on the Interaction Plots of Frequencies button to view the Interaction Plot: Car Type
X Negative Connotations dialog shown in Figure G.31.

FIGURE G.27 Create Subset–Random Sampling dialog.
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From this graph, we can tell that Mercedes Benz accumulated the greatest number of
reviews containing negative connotations (around 50 or so), followed by CarZZ, BMW,
and Lexus (category 1 representing the reviews having negative connotations). We have
identified by this simple approach that Lexus had the fewest number of negative

FIGURE G.29 Variable Selection in Tables and Banners.

FIGURE G.28 Basic Statistics and Tables module dialog.
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FIGURE G.30 Crosstabulation Tables Results dialog.

FIGURE G.31 Interaction Plot.
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connotation words when compared to the other car types. If we had more information
about the state, city, manufacturing unit for each car/brand, etc., we could have extracted
useful information that could identify the places/units that elicited the greatest number
of complaints.

OTHER APPLICATIONS OF TEXT MINING

Unstructured text is very common and, in fact, may represent the majority of information
available to a particular research or data mining project. The selection of tools or techniques
available with STATISTICA, along with the Text Mining module, can help organizations to
solve a variety of problems. A few to mention are the following:

1. Extracting information reflecting customers/employees/public—opinions, needs, and
interest (e.g., visualizing semantic spaces using 2D, 3D plots);

2. Filtering unwanted documents/emails (using stop list, include lists, etc.);
3. Predicting customer satisfaction levels (e.g., negative connotations);
4. Clustering similar words/documents. (e.g., reviews, research papers, survey data, etc.);
5. Classifying or organizing documents (e.g., electronic documents about general

information can be classified into different subgroups);
6. Predicting/routing new documents, etc. (The rules for clustering or classifying or

predicting can be used to score new documents.)

CONCLUSION

This simple tutorial is intended to help you understand how the STATISTICA Text Miner
module, along with numerous STATISTICA Data Miner tools and techniques, can be used
for finding solutions to problems that require knowledge of language and computing tech-
nology. More importantly, extraction of useful insights or information from unstructured
data could be used as input for decision-making purposes.
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Notes to users:

1. The data set on the DVD that goes with tutorial is titled ProcessControl.sta.
2. The Data Miner Workspace illustrated in this tutorial uses an older NN module icon;

you will need to replace the NN icon with the current NEW SANN–Neural Networks
Icon, obtained from the Node Browser, if you want to re-run the Data Miner Workspace.

PREDICTIVE PROCESS CONTROL USING STATISTICA
AND STATISTICA QC-MINER

In today’s competitive world, remarkable progress has been made in the control of many
different kinds of processes. Predictive Process Control (PPC) is an approach to identify
variations of controllable parameters to stabilize processes within a manufacturing unit to
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maintain/enhance quality. This tutorial will use an example to illustrate how advanced
predictive models can be used to predict malfunctions within processes, in fact even
before such situations occur. The earlier these malfunctions are detected, the less time
and money are wasted processing defective products. Furthermore, because of the high cost
of modern equipment, if a scheme can quickly detect malfunctions, it will result in consid-
erable savings due to higher equipment utilization.

It’s often observed that quality can be improved by reducing the variability in process
and raw materials. Since variability can be described only in statistical terms, statistical
methods play a vital role in quality improvement efforts. The case study explains a com-
plete set of tools and techniques and supporting systems for process control, which would
be an invaluable resource for any technical manager, production engineer, or technician in
any manufacturing enterprise.

CASE STUDY: PREDICTIVE PROCESS CONTROL

This case study will be illustrated using a real-world example to demonstrate the possi-
ble application of predictive data mining in the field of process control. The proposed
analyses workflow used in this case integrates advanced predictive models that will be
trained, tested, and automatically compared to find the best model for deployment. Various
design approaches used in this specific example to tackle the problem will provide you
some useful insight into how predictive models can be used to detect quality problems
ahead of time, thus helping floor engineers to adjust parameter settings even before quality
starts deteriorating.

Understanding Manufacturing Processes

Manufacturing processes are inherently complex; as a result, process development is
often a tedious and experimental task. Process parameters settings, such as temperature,
pressure, speed, etc., are typically chosen by costly trial-and-error prototyping, with the
result that solutions are often suboptimal. Producing high-quality products within such a
suboptimal environment is not easy. It’s often noticed that too little attention is paid to
achieve all dimensions of an optimal process: economy, productivity, and quality.
Every manufacturer should realize that all three aspects could be accomplished by focus-
ing on just one dimension—quality—because quality helps in increasing productivity and
reducing cost.

STATISTICA QC Data Miner is a powerful software solution designed for manu-
facturing enterprises to help achieve an optimum level of quality. A wide array of
advanced analytic tools and techniques helps to monitor processes and not only identi-
fies but also anticipates problems related to quality control, providing improvement
with unmatched sensitivity and effectiveness. It combines the most powerful tools for
QC and SPC with data mining technology. STATISTICA QC Miner integrates the com-
plete functionality of STATISTICA software for quality control and improvement with
STATISTICA Data Miner software for uncovering hidden trends, explaining known
patterns, and predicting the future.
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Data File: ProcessControl.sta

The data file to be used in the example, ProcessControl.sta, consists of data collected
from a soda pop-manufacturing unit. The file contains 37 variables and 2,838 cases. Most
of the variables in this data file hold information about different parameter settings and
readings measured between intervals along the production process. The dependent variable
PC Volume is the final quality measure for a batch/cart of pop.

Variable Information

• Predictors (also called independent variables): VolumeCO2, Pressure_CO2, Temp_CO2,
Filler_Speed, Bowl_Setpoint, Alcohol_Release, etc.

• Outcome or target variable (or variable of interest, also called the dependent variable): PC
Volume (Qualitydecline if PCVolume> 0.15, referred to as “spike” in the following sections)

• New dependent variable (also called a derived dependent variable): High_PC (1 if PC
Volume > 0.15, else 0)

Problem Definition

Based on expert feedback, if the PC Volume measure goes above 0.15, the quality of the
pop starts deteriorating. It’s often noticed that a significant aspect of these problems may be
caused both by controllable and noncontrollable factors. In this case, the analyses will be
focused to find variation in the controllable parameter setting that deteriorates pop quality.

Graphical methods can be used for both data analyses and the presentation of results.
Figure H.1 shows a visual presentation of PC Volume distribution. (PC Volume stands
for Process Control Volume.)

Such simplified quality control charts can be used to visually observe the distribution of
PC Volume falling above and below standard cutoff levels (in this case PC Volume was
categorized as high/low based on a cutoff level of 0.15). The gravity of the problem can
be visually detected by looking at such a graph.

Design Approaches

Three main design approaches were used to tackle this problem, with tasks defined to
predict variation in factors/parameters that adversely affect the quality of soda pop:

1. Static analyses: The most usual approach is Static, i.e., given the data “as is,” build a model
that will learn the patterns of predictors corresponding to the predicted/outcome variable.

2. Dynamic analyses: In the Dynamic approach, we will lag (move one step backward)
the dependent variable and then try to predict, to see how well the model performs on
unseen data. When we lag the dependent variable, each case/row will hold the outcome
observation of the following case, with the task now defined to build a model to predict the
lagged outcome (in our case, predict possible deterioration in quality ahead of time).

3. Transformation of change: In most of the continuous processes, outcome observations
(in our case, observations of PC Volume) follow certain patterns, and these patterns
continue for some time; in short these observations are not random occurrences. Our
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third approach will focus on understanding causes that trigger changes in PC Volume
observations, i.e., pattern of changes from (see Figure H.2)

a. Normal PC_Volume level (PC_Vol < 0.15) to Spike Occurrence (PC_Vol > 0.15)
b. Spike Occurrence (PC_Vol > 0.15) to Spike Continuing (PC_Vol continuing at 0.15)
c. Spike Continuing (PC_Vol at 0.15) to Back to Normal (PC_Vol < 0.15)

FIGURE H.1 Quality control charts.

         PC_Vol > 0.15 

Spike Occur. 

Back to Normal 

Spike Cont. 

Normal Cont. 

FIGURE H.2 Process control charts.
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Next, we will move to data analyses to see how different tools and techniques can be
used to possibly reveal hidden causes of quality problems, which could provide invaluable
insights to engineers.

DATA ANALYSES WITH STATISTICA

The following sections will follow the order in which the analyses were performed, from
data preparation to the final deployment of the model.

First, we will start with the Static approach.

Split Input Data into the Training and Testing Sample

During real-time model building, you often need to keep aside a test set of independent
instances that have played no role in building the predictive model. Once the training is
over, the test set can be used to predict the outcome variable (PC_Volume in our case) using
inputs that went in as predictors and then cross-validate the result with the original out-
come contained in the variable PC_Volume. The Split Input Data into Training and Testing
Sample node available within the Data Miner Workspace will split the data set not marked
for deployment into two input data sets: one marked for deployment (Testing) and the
other one marked not for deployment (Training). In this case, 34% of the cases (out of
2,838 cases) were kept aside for testing.

Stratified Random Sampling

Blindly accepting the proportion of two categories of PC_Volume (1 and 0) to build a
model will produce unlikely predictive results because the model may not capture the pat-
terns present in the small proportion of the category (see Figure H.3).

In Figure H.3, you easily can see that there is a high disproportion between the two
categories of High_PC (1 and 0). Hence, while model building, you need to extract data
sets with equal proportion of outcome categories (PC_Volume > 0.15 denoted by 1 and
PC_Volume < 0.15 denoted by 0) to clearly differentiate the characteristics or patterns
underlying the variation of parameter/measurements. This can be achieved by extracting
an equal number of observations falling above and below the PC_Volume cutoff level of
0.15. The Stratified Random Sampling tool available within the Node Browser will help
you to achieve this task.

Feature Selection and Root Cause Analyses

As an exploratory step, you can use the Feature Selection and Root Cause Analyses tool
to identify the Best Predictors (in this case, different parameter settings/measurements) that
clearly discriminate between High/Low PC_Volume levels (dependent categorical), which
can help to identify factors that cause variance in PC_Volume.
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The Feature Selection tool also helps to short-list standalone predictors, in cases where
there are thousands of predictors that are directly associated with quality. Having such a
tool can help engineers to identify important factors and use them for model-building pur-
poses. These tools also lend themselves to easy interpretation because the results (ranked
order of predictors) are visually depicted on an importance plot.

Let’s now analyze the results from the Feature Selection tool to identify the best predictor
(factors causing variation) for dependent variable High_PC (see Figure H.4).

The Feature Selection tool identified Bowl_Setpoint as the most important predictor for
High_PC, followed by Pressure_H1, Filler_Speed, etc. For cases in which there are many
predictors, you can now select the best predictors for model building based on the impor-
tance they hold to explain the variation of the dependent variable. In this case, we will
use the top 16 predictors out of the 36 variables for model building.

Different Models Used for Prediction

Now that we have the right proportion of observations from both the categories
(PC_Volume < 0.15 and PC_Volume > 0.15) and have selected the right predictors, we will

FIGURE H.3 Histogram for High_PC.
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next build different predictive models and then use comparative tools to automatically
select the one that best predicts the dependent variable (variable of interest). We will try
a few of these predictive models for this example:

1. SANN – STATISTICA Automated Neural
2. Support Vector Machine with Deployment
3. MARSplines for Classification with Deployment
4. Standard Classification CHAID with Deployment
5. Stochastic Gradient Boosting with Deployment

The Data Miner Workspace in Figure H.5 shows the analyses workflow after the preced-
ing models were inserted.

Next, you run these models to see downstream spreadsheets and workbooks that hold
the results. After you have all the models ready, the analyst can easily detect the best mod-
els using different comparative tools available within the Data Miner Workspace, such as
gains chart, lift charts, goodness of fit of multiple inputs, cross-tabulation tables, etc. In this
case, we will use lift charts to find the model that performs the best.

FIGURE H.4 Feature Selection: Importance plot.
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Compute Overlaid Lift Charts from All Models: Static Analyses

This node will search through the entire workspace for deployment information com-
puted for the participating classification models. If more than one model was used to
compute predictions, then overlaid lift or gains charts will be generated for each category
of the dependent variable (see Figures H.6 and H.7).

Specifically, the chart summarizes the utility that you can expect by using the respective
predictive models, as compared to using Model information only. Where you’d like to be in
a lift chart is near the upper-right corner: the place where you have the maximum gain of
predictive accuracy by using all your data. Any model that can fall close to this point will
be your best choice. You can see from the graphs in Figures H.6 and H.7 that at most of
the percentile levels the gain or lift value for the MARSplines model (shaded in green)
has the highest gain in predictive accuracy when compared to the other models. Therefore,
the MARSplines model works the best for this data set.

Let’s try to interpret the graph for category 0 (High_PC < 0.15). If you consider the top
two deciles, you would end up with a sample that had almost 1.325 times the number of
category 0 (High_PC < 0.15) when compared to the baseline model. In other words, the rel-
ative gain or lift value by using MARSplines with the deployment model is approximately
1.325 for predicting category 0. When we take the top two deciles for category 1 (High_PC
> 0.15), we can see that the CHAID model outperformed the MARSplines model with a lift
value of 2.2 when compared to the baseline model. Now deciding the number of top deciles
to target using the best model entirely depends on expertise and heuristics.

FIGURE H.5 The Data Miner Workspace with predictive models.
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Classification Trees: CHAID

Classification trees are used to predict membership of cases or objects into classes of a cat-
egorical dependent variable from their measurements on one or more predictor variables.
Classification tree analysis has traditionally been one of the main techniques used in data
mining. The Classification Trees module in STATISTICA Data Miner is a full-featured imple-
mentation of techniques for computing binary classification trees based on univariate splits
for categorical predictor variables, ordered predictor variables (measured on at least an ordi-
nal scale), or a mix of both types of predictors. It also has options for computing classification
trees based on linear combination splits for interval scale predictor variables.

The flexibility of classification trees makes it a very attractive analysis option, but this is
not to say that its use is recommended to the exclusion of other methods. As an exploratory
technique, classification trees are, in the opinion of many researchers, unsurpassed. Classi-
fication trees readily lend themselves to being displayed graphically, helping to make them
easier to interpret than they would be if only a strict numerical interpretation were possible.

FIGURE H.6 Lift Chart: High_PC: 0.
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Let’s next review the results generated from the CHAID algorithm (see Figure H.8).
Interpreting these trees is quite straightforward. The CHAID algorithm identified param-

eter settings for Pressure_H1, Bowl_Setpoint, MP_Flow, and Flow_CO2 to explain the inter-
actions that led to PC_Volume observations falling above and below the cutoff level of 0.15.

The rules generated by these trees (also available from tree structure table) can help engi-
neers to pinpoint the interaction effect of parameter setting that causes fluctuation in
PC_Volume. As you can see from the graph in Figure H.8, the CHAID algorithm has distin-
guished 11 decision outcomes (contained in 11 terminal nodes highlighted in red) built on
11 if-then conditions to predict the category of PC_Volume (1 if PC_Volume > 0.15 and 0 if
PC_Volume < 0.15). By following the path from the root node (ID ¼ 1) to terminal node
(ID ¼ 15), we can derive a rule for category 1 (PC_Volume > 0.15). We can say by looking
at the classification tree that if Pressure_H1 is greater than 13.40 and Flow_CO2 is greater
than 547.00, then there were 195 observations recorded, out of which most of the observa-
tions fall into the PC_Volume > 0.15 category. Similarly, we can analyze the other branches
and draw further conclusions. The legend that identifies which bars in the node histograms

FIGURE H.7 Lift Chart: High_PC: 1.
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correspond to the two categories of PC_Volume is located in the top-left corner of the
graph.

Similar analysis steps were followed to predict the lagged predicted variable (dynamic
analysis).

Compute Overlaid Lift/Gain Charts from All Models: Dynamic Analyses

The overlaid lift/gain charts in Figures H.9 and H.10 will give you a clear idea about
the model that performed the best for the category of interest (in this case, PC_Volume
> 0.15).

We can clearly say from the these charts that, even for predicting the lagged dependent
variable, MARSplines performed the best as compared to the other models. We may now
want to further drill down to see the percentage of predictive accuracy the model achieved
on the test data.

FIGURE H.8 Tree graph: CHAID algorithm.
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Cross-Tabulation Matrix

After the predicted values for each model are generated using the Compute Best Pre-
dicted Classification from All Models node, we can now run cross-tabs on the predicted
and observed variables to find the accuracy rate of each model. The Cross-Tabulation node
creates summary cross-tabulation tables. If categorical predictors and categorical dependent
variables are selected, then two-way tables for these two lists will automatically be con-
structed. Let’s now try to interpret the results using cross-tabs to find the predictive accu-
racy of MARSplines (see Figure H.11).

The overall hit-ratio (or overall correct prediction percentage) for the cross-validation set
(or test set) using the MARSplines model for dynamic prediction is 77.40% [or (556þ191)/
965]. You can also see that the predictive accuracy for the category of interest (PC > 0.15)is
approximately 64.31%, or the model will be able to predict the spikes (PC > 0.15) ahead of
time with 64.31% of accuracy. Let us next check how the other models performed on the
same data set.

FIGURE H.9 Lift Chart: High_PC_Lagged: PC > 0.15.
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FIGURE H.10 Gains Chart: High_PC_Lagged: PC > 0.15.

FIGURE H.11 Two-way cross-tabulation table: MARSplines.
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Comparative Evaluation of Models: Dynamic Analyses

Note to readers: Lines No. 1 and No. 2 of Table H.1, the neural networks, need to be
redone with the new SANN module. Replace the NN icon in the Data Miner Workspace
with the new SANN, and see what you can do; this will be a good exercise in learning.

Based on the overall accuracy, MARSplines performs the best as compared to the other
models, but you may also notice that Support Vector Machines predicts the correct positives
(category of interest or spikes) with 86.53% accuracy. Which model would you choose? If you
look at the third column for Support Vector Machines, you can see that the number of false
positives (or misclassified PC_Volume < 0.15) is 73.65%. For instance, if an alarm system is
built in the factory, and 73.65% of the time a spike is predicted (or an alarm goes on), it
could be a misclassified category of 0 (PC_Volume < 0.15). This explains why MARSplines
would be the best model that could be deployed in this scenario. Another approach to
reduce the false alarm would be to target only the observations that were predicted with
certain levels of confidence. Table H.2 shows the hit ratio for percentile of cases (predicted
using MARSplines) sorted by the confidence level of prediction.

Gains Analyses by Deciles: Dynamic Analyses

You can infer from Table H.2 that if we target more cases (sorted by confidence level),
then the percentage of correct positives starts to fall, whereas the false positives tends to
rise. Now taking necessary actions based on the predictions of these models totally depends
on expertise and heuristics to decide the percentile of cases that have to be targeted or the
confidence level to be maintained.

Next, we will discuss the third approach, transformation of change, to view from
another angle the possible interactions of parameter settings that trigger changes in
quality patterns.

TABLE H.1 Comparative Evaluation of Models—Dynamic Analyses

Predictive Models

Overall

Accuracy

Correct Positives

PC Vol > 0.15

False Positives

PC Vol > 0.15

1. Multilayer Perceptron 57.20% 51.52% 40.27%
2. Intelligent Problem
Solver

72.53% 63.64% 23.50%

3. Support Vector Machines 44.87% 86.53% 73.65%
4. MARSplines for
classification

77.40% 64.31% 16.77%

5. Standard Classification
CHAID

75.95% 47.81% 11.53%

6. Stochastic Gradient
Boosting

76.68% 68.69% 19.76%
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Transformation of Change

A new variable was derived/calculated for the transformation of change analysis, which
explains patterns in the observations of quality. The following steps explain how the new
variable was derived from the dependent variable High_PC that had two categories (0 if
PC_Volume < 0.15 and 1 if PC_Volume > 0.15):

1. If the PC_Volume is less than 0.15 and the following observation doesn’t show any
change, then that particular observation is categorized as NorCont (normal condition
continuing, or 0 categories were observed after another).

2. Next, if there is a change in the pattern of NorCont or when PC_Volume goes above the
cutoff level of 0.15, the particular observation that showed the spike is categorized as
SpkOccr (spike occurrence or category 1 was observed after a 0 category).

3. If the PC_Volume level of the following observations are still above the cutoff level after
the spike occurs, the cases are categorized as SpkCont (spike continuing or category 1
followed by another 1).

4. Next, if the SpkCont pattern changes and the process goes back to normality
(PC_Volume < 0.15), then those cases/observations that showed this trend are
categorized as Bck2Nor (back to normal or category 0 was observed after category 1).

Now that we have the newly defined variable, different analyses can be run to study the
pattern of parameters that trigger these changes. Let’s next try to understand the factor that
triggers spikes (PC_Volume > 0.15). In this scenario, we first extract equal numbers of cases
using the Stratified Random Sampling feature from both the category NorCont (normal
continuing) and SpkOccr (spike occurrences) and then use the Feature Selection tool to
select the important predictor for model building.

TABLE H.2 Gains Analyses by Deciles—Dynamic Analyses

Percentile Percentile:N Gain:N Correct Positives False Positives

10 96 40 100 10.71
20 192 76 96.05 11.21
30 288 104 86.54 11.96
40 384 131 80.92 11.46
50 480 152 76.32 11.59
60 576 179 72.63 12.09
70 672 203 71.43 12.15
80 768 236 68.64 13.16
90 864 265 66.42 14.36
100 966 297 64.31 16.77
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Feature Selection and Root Cause Analyses

The Feature Selection tool identifies Bowl_Setpoint as the most important predictor for
the derived dependent variable (with two categories NorCont and SpkOccr) followed by
Flow_CO2, Balling, etc. (see Figure H.12). Next, we use Interactive Trees C&RT to under-
stand the interaction effect of the different parameter settings that led to the occurrence
of spikes.

Interactive Trees: C&RT

The C&RT algorithm identifies interactions of parameter settings MP_Flow, Filler_Speed,
Balling, and Filler_O2 to explain the variations in dependent variable TransChng-NorCont-
SpkOccr (see Figure H.13). Rules derived from these trees can help engineers to understand
the causes that trigger changes in pattern from NorCont to SpkOccr. By following the path
from Node ID ¼ 1 to Node ID ¼ 7, we can derive a rule for category SpkOccr. We can say
that if MP_Flow is < 67.55 and if Filler_Speed is < 2003.50 and if Filler O2 is > 0.038, then
77 observations were reported, from which the majority of the observations fall into the
SpkOccr category. Now follow the path from Node ID ¼ 1 to Node ID ¼ 25 to derive a rule

FIGURE H.12 Feature Selection: Importance plot.
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for NorCont. We can say that if the parameter setting for MP_Flow is maintained above
67.55 and the Balling is above 1.57, then we can maintain PC_Volume lower than 0.15. Such
rules provide invaluable insights for engineers to understand the causes that affect quality,
design process flows and determine optimal parameter settings, control the processes by
tuning the parameter settings to maintain quality, etc.

CONCLUSION

Predictive process control, as explained here, involves the capability to monitor and con-
trol a continuous process in real time. This allows the conditions of the process to be
adjusted quickly and responsively, and avoids the delay associated with monitoring only

FIGURE H.13 Interactive Decision Tree: C&RT.
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the final product. The tools and techniques demonstrated in this case should have provided
you with a solid understanding of how data mining tools can be used to control and adjust
parameters to maintain or enhance final quality. Engineers can also analyze these results,
gaining information to take action, e.g., to make key decisions.
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TUTORIALS I, J, AND K

Three Short Tutorials Showing
the Use of Data Mining and
Particularly C&RT to Predict
and Display Possible Structural
Relationships among Data

Linda A. Miner, Ph.D.

The following tutorials show parts of three analyses in which similar data mining tech-
niques were used to discover possible patterns in data:

1. The first example sought reliable predictors for length of stay in a medical facility—e.g.,
administrative concerns.

2. The second example sought to hone a questionnaire and display the relationships of the
variables to each other in a clinical psychology instrument.

3. The third example used data mining to help with the validation of a questionnaire for
assessing leadership training success for both business administrators and educators.
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T U T O R I A L

I

Business Administration in
a Medical Industry:
Determining Possible

Predictors for Days with

Hospice Service for Patients

with Dementia

Linda A. Miner, Ph.D., James Ross, MD, and
Karen James, RN, BSN, CHPN

Medicare has a set of guidelines for hospices for admitting patients with dementias to
their care. The ideal number of days with the service is 6 months or less, but prognostica-
tion is difficult for the noncancer patient. The following example is part of a project that
we did to determine what variables might predict length of stay and particularly which
might predict a stay of � 180 days.

Data were gathered for 6 years from a large hospice on patients with dementia, many of
whom, had Alzheimer’s disease. There were 449 cases in the data set. The following tutorial
provides the steps we used while attempting to find predictors that would accurately sepa-
rate the patients into the 180 days or less or the greater than 180 days group.

First, the 449 cases were separated randomly into two groups—50/50 using a random
selection. We did this by first opening a Data Mining Workspace, inserting the data set
and selecting classification and discrimination under the node browser, and finally, select-
ing the first option, Split Data into Training and Testing Sets (see Figures I.1 and I.2).

533Handbook of Statistical Analysis and Data Mining Applications # 2009, Elsevier Inc.



FIGURE I.1 Select Split Input Data into Training and Testing Sets from the node browser in the Data Miner
Workspace.

FIGURE I.2 Split Input Data node in the Data Preparation, Cleaning, Transformation panel of the Data Miner
Workspace.
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Then we right-clicked on the node to edit the parameters (see Figure I.3).

FIGURE I.3 Edit Parameters dialog.
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The default is a 50/50 random split. We used that. After we clicked OK, the two data sets
were formed, as shown in Figure I.4.

FIGURE I.4 Train and Test data sets formed from the Split Input Data node.
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The first group was called the Training data set and second was the Testing or Holdout
data set. Training data were analyzed in an exploratory manner, seeking the variables that
seemed most predictive. Then these variables were applied to the testing set. This tutorial
involves only the Training data set.

The dependent variable was the length of stay (variables 31 and 32) with the hospice and
was used in two forms: a discrete variable of �180 days versus >180 days with the service
until death, or the actual number of days with the service until death (see Figure I.5).

FIGURE I.5 Data set for the 50 Percent Training.
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The independent variables were gender, BMI, PPS, FAST, Coronary, COPD, Delirium,
Pressure, Aspiration, Pneumonia, UTI, Septicemia, Fever Recurrent, Use of Foley, Location
at Referral, Marital Status, and Age (Variables 7–18, 20–22, and 29). The variable Location at
Referral was not the domiciles of the patients, but rather where they were located at the
time they were referred. For example, someone might have been hospitalized even though
living at home. The Location at Referral would then be listed as hospital. BMI and PPS were
both continuous variables, as was Age. The rest were categorical variables. The variables
included those mandated by Medicare for providing services to Alzheimer’s patients.

Working first with the training data, we did a stepwise multiple regression using the
number of days (variable 31) as the dependent variable (continuous variable) and variables
7–18, 20–22, and 29 as the independent variables (see Figure I.6). We used multiple regres-
sion rather than feature selection because it was a more powerful procedure than feature

FIGURE I.6 Variables selected.
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selection although the latter procedure was used later. Given the relatively small data avail-
able for this tutorial, we still went ahead and used it so we could get a beginning answer as
to which variables might be important for pre-modeling the data. We left the appropriate
variables box unchecked and told the program to continue with the current selection (see
Figure I.7).

FIGURE I.7 Continue with current selection.
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Under the Advanced tab, we selected a forward stepwise model, as shown in Figure I.8,
and then clicked OK.

FIGURE I.8 Forward stepwise regression selected.
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The result in Figure I.9 emerged.

FIGURE I.9 Results dialog from Multiple Regression Analysis.
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The summary is shown in Figure I.10.

FIGURE I.10 Summary spreadsheet from Regression Analysis.
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The variable highlighted in red, Use of Foley, was the one deemed probably most impor-
tant to the model and would most certainly be selected for the further data mining analysis.
Because we mixed continuous and categorical variables, we did a feature selection just to
check this result. We opened a Data Mining Workspace, copied in the data, and selected
the variables of interest. Under the Node Browser, we selected Feature Selection and Root
Cause Analysis. We inserted it into the workspace (see Figure I.11).

FIGURE I.11 Feature Selection and Root Cause Analysis node selected in the node browser of STATISTICA.

543I. BUSINESS ADMINISTRATION IN A MEDICAL INDUSTRY

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



We right-clicked on the node and chose Edit the Parameters, as shown in Figure I.12.

FIGURE I.12 Edit Parameters dialog for the Feature Selection node.
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The only thing we changed in the Edit Parameters dialog shown in Figure I.13 was All
Results rather than Minimal.

FIGURE I.13 All Results selected and other parameters left at default values.
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We then right-clicked and selected Run to Node, as shown in Figure I.14.

FIGURE I.14 Right-clicking on the Run the Node will execute the Feature Selection node.
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To make sure we could open the output later, we also selected Embed Document on
Save, as shown in Figure I.15.

FIGURE I.15 Select Embed Document on Save to keep the results of Feature Selection saved in the Data Miner
Workspace project model file.
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Double-clicking the output showed the list in Figure I.16.

FIGURE I.16 List of Best Predictors obtained from Feature Selection.
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We clicked on the importance plot to see a view of the relative importance of the inde-
pendent variables to the dependent variable, as shown in Figure I.17.

FIGURE I.17 Importance Plot from Feature Selection.

549I. BUSINESS ADMINISTRATION IN A MEDICAL INDUSTRY

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



The top bar was Use of Foley and, once again, seemed to be an important variable from
both techniques of exploring the data—at least for the training data. The listing of variables
and p-values is shown in Figure I.18. However, it is important to note that this procedure is
not a hypothesis test and should not be viewed as such. It is only a pattern-seeking
procedure.

FIGURE I.18 Best Predictors from Feature Selection in descending order of F-value.
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We also did a feature selection using the discrete (�180 days versus >180 days) variable
32. Figure I.19 shows the importance plot from that analysis in which seven of the variables
were identified by the procedure.

We decided to concentrate on the discrete variable as the dependent variable for the
subsequent analyses.

Importance plot
Dependent variable:

180 days

Importance (Chi-square)

0 2 4 6 8 10 12 14

Location at Referral

BMI - 2 digits

Marital Status

Age at Admission

PPS (2 digits)

FAST Rating

Use of Foley

FIGURE I.19 Importance Plot using only variable 32 as the target (e.g. dependent) variable.
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Next, we ran a Data Mining Recipe using 180 days (the discrete variable) as the depen-
dent variable and all the variables (7–18, 20–22, and 29) as above for the independent
variable (see Figure I.20).

FIGURE I.20 Selecting DMRecipe.
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Next, we selected New in the Data Miner Recipes dialog, as shown in Figure I.21.

FIGURE I.21 New button in DMRecipe must be clicked to start a new project.
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Then, when the new screen emerged, we clicked to place a check in the Configure All
Steps checkbox, as shown in Figure I.22.

FIGURE I.22 Selecting Configure All Steps.

554 I. BUSINESS ADMINISTRATION IN A MEDICAL INDUSTRY

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



Next, we connected the data file, as shown in Figure I.23.

FIGURE I.23 Selection of data file to the DMRecipe.
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Then we selected the variables in the Select Variables dialog, as shown in Figure I.24.

FIGURE I.24 Selection of variables.
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After we clicked OK, the variables showed up in a box (see Figure I.25). The target is the
dependent variable.

FIGURE I.25 After selecting variables and clicking OK on variable section dialog, the variables show on the
DMRecipe screen.
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We next clicked on Target Variable (see Figure I.26) and then on 180 Days (see
Figure I.27).

FIGURE I.26 Target Variable selected.
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FIGURE I.27 180 days selected.
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We then clicked on Model Building to select the models we wanted the recipe to
compute (see Figure I.28).

FIGURE I.28 Model Building selected.
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We were mainly interested in C&RT so that we could visualize the relationships, but we
wanted to know if other models could result in predictions that were more accurate. We
chose C&RT, boosted trees, and SVM (see Figure I.29).

FIGURE I.29 C&RT, Boosted Trees, and SVM (Support Vector Machines) selected.
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Finally, we clicked to remove the check mark from Configure All Steps, and then under
the Next Step tab, we chose Run to Completion (see Figure I.30).

FIGURE I.30 Unselection of Configure All Steps.

562 I. BUSINESS ADMINISTRATION IN A MEDICAL INDUSTRY

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



After the program had run, we opened the summary report, as shown in Figure I.31.
The error rates were lowest for the SVM, so it might produce the best model in the end.

However, the C&RT provided decision trees and was the second best prediction model. We
opened it in the Data Miner Recipe (DMR) to reveal the output.

FIGURE I.31 Results workbook of DMRecipe with the Evaluation Report (e.g. Summary Report) selected so
that the summary appears in the right-side window. SVM had the lowest error rate of 8.7%. The Accuracy Rate
of the models is (100 – error rate), thus 91% for SVM.
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The prediction accuracies were displayed in the cross-tabulation. The >180 days was
accurately predicted about 76% of the time and the �180 correctly predicted about 75%
(see Figure I.32).

FIGURE I.32 Prediction accuracies displayed in the cross tabulation.
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Next, we examined the decision trees (see Figure I.33).

FIGURE I.33 Decision trees result from C&RT in STATISTICA Data Miner.
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The decision tree in Figure I.34 shows fewer rows, so it was easier to view.
Again, the use of the Foley and then Age at Admission and some form of functioning

(PPS and FAST) showed up, as well as Marital Status.
Additional analyses were done for these data. Additional C&RT analyses were com-

pleted. After all the training analyses were completed, the most promising variables
were selected, new analyses were run on the training data, and then the same analyses were
completed for the testing data. The outputs were compared.

FIGURE I.34 Close-up view of decision trees.
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T U T O R I A L

J

Clinical Psychology: Making
Decisions about Best Therapy

for a Client:
Using Data Mining to Explore the

Structure of a Depression

Instrument

David P. Armentrout, Ph.D. and
Linda A. Miner, Ph.D.

The original data set for this example had 359 cases. The intent of the instrument was to
measure various components of depression as an aid to practitioners as they organize the
therapy of a client. It was important that the instrument did, in fact, measure depression
and that it did so reliably. There were 164 questions in the original survey.

To determine the structure, we followed these procedures. A factor analysis first
grouped the questions into meaningful groups. We thought that people suffering from
depression would appreciate a smaller survey rather than a longer one. Feature selection
indicated which of the individual questions were most important to each factor grouping.
We reduced the number of questions in the survey by eliminating the questions that con-
tributed the least to each factor. By finding the questions that most associated with their
meaningful groups, we shortened the survey while retaining valuable information. The
resulting data set produced the one that we used for this tutorial, which illustrates part
of our procedures. We wanted to focus on the structure of the relationships of variables,
not predicting the amount of depression. In fact, in predicting who was depressed
and who was not, we found that simply asking the question "Are you depressed, yes
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or no?" was quite good at predicting. Using the entire data set (variable numbers
given below for the training data provided), we selected mean with error plots to view
this relationship. We used four depression instruments—the Zung, the PHQ-9, the Beck
Depression Inventory, and the CES-D (variables 199, 201, 202, and 203 in the training
data)—as the dependent variables and question 161 as the independent variable (see
Figure J.1).

FIGURE J.1 Means with Error Bar Plots from the STATISTICA graphs ! 2D Graphs menu.
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We left the defaults as they were (see Figure J.2).

FIGURE J.2 All defaults accepted on the Means with Error Plots graph dialog.
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We selected the variables, as shown in Figure J.3, and clicked OK.

FIGURE J.3 Variables selected from data set.
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The resulting four graphs showed us the huge differences in scores between the yeses
and the nos (see Figure J.4).

FIGURE J.4 Means with Error Bars Plots.
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We wanted to determine the pathways that might exist in the data among the subscales
of the depression inventory. For this task, we decided to run a series of data mining recipes
on the training data (provided), which would give us C&RT decision trees and the predic-
tion accuracies as well. We also wanted to decide exactly which procedures would be most
informative, and therefore, we once again separated the data into training and testing
groups by using the random split module.

The first data mining recipe set the yes/no question as the dependent variable and vari-
ables 182, emotion total; 190, behavior total; and 196, cognitive total, as the independent
variables (see Figure J.5).

FIGURE J.5 DMRecipe dialog in STATISTICA; select New to begin a new project.
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We selected a new recipe, as shown in Figure J.6.

FIGURE J.6 New DMRecipe window; no variables selected.

573J. CLINICAL PSYCHOLOGY: MAKING DECISIONS ABOUT BEST THERAPY FOR A CLIENT

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



Next, we clicked Configure All Steps, as shown in Figure J.7.

FIGURE J.7 Configure All Steps selected.
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Next, we placed the data set into the recipe, as shown in Figure J.8.

FIGURE J.8 Selecting data set; this window obtained by clicking on the Open/Connect Data Source.
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Next, we selected variables (see Figures J.9 and J.10).

FIGURE J.9 Click Select Variables button.

576 J. CLINICAL PSYCHOLOGY: MAKING DECISIONS ABOUT BEST THERAPY FOR A CLIENT

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



FIGURE J.10 Variables selected.
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We clicked OK. The variables were then displayed (see Figure J.11).

FIGURE J.11 Target Variable “þ” sign clicked to open Tree Outline.
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We clicked on Target Variable, then HC EX-7 (the dependent variable 161), and finally on
Model Building (see Figure J.12).

FIGURE J.12 Next, click on HC EX-7 in outline and then Model Building.
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We unchecked everything except for C&RT, as shown in Figure J.13.

FIGURE J.13 Click Configure All Steps to unselect.
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We removed the check mark from Configure All Steps. and then clicked Run to Comple-
tion (under the Next Step tab), as shown in Figure J.14.

FIGURE J.14 Select Run to Completion from the “down arrow” button.
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Then we let it run its course. Figure J.15 shows the status bar.

FIGURE J.15 DMRecipe processing.
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The first screen of the results let us know there was an error rate of 13.08%.
We enlarged the screen and clicked on Evaluation and Crosstabulation, which then

showed us the accuracies for prediction of the decision trees (see Figure J.16).

FIGURE J.16 DMRecipe results workbook with Crosstabulations selected.
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About 85% of the nos were predicted, and almost 89% of the yeses were correctly
predicted.

We viewed the predictor importance spreadsheet, shown in Figure J.17, to find that the
behavior total seemed to be the most important.

Next, we looked at the decision tree to see how the variables might have been related
(see Figures J.18 and J.19). It is found under Model Building and then 1–C&RT.

We will explain the first three levels. The behavior total was the most important and
formed the trunk of the tree. There were 237 cases in the trunk with a few more nos (in

FIGURE J.17 Predictor Importance spreadsheet.
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red) than yeses (in black). The behavior score was split at 40.75. One hundred twenty-two
cases had behavior scores of 40.75 or less. Of those, most were nos. One hundred fifteen
cases scored more than 40.75, and of them most were yeses.

Looking at those who scored 40.75 or less on behavior, we saw that the next split was on
the cognitive total. For those that scored less than or equal to 40.5, most were nos. For those
that scored above 40.5 on cognitive, all were yeses. But there were only five more captured
this way.

FIGURE J.18 When a superheading, like 1-CR&T is selected, all of the results are shown in the window to the
right. Each result can be shown separately by clicking that selection under the 1-CR&T heading.
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Going to the other side of the behavior scores, greater than 40.75, most of the 118 were
yeses. However, to further differentiate, emotion total was the next most important. A
few nos were predicted if they had an emotion score less than or equal to 30.5. If a person
had a behavior score over 40.75 and an emotion score over 30.5, that person was virtually
guaranteed to be depressed. On the other hand, if a person scored 40.75 or less on the
behavior scale, less than or equal to 40.5 on the cognitive scale, he or she was most likely
not depressed.

FIGURE J.19 Tree Graph for HC EX-7 Present Depression category of the dependant variable.
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T U T O R I A L

K

Education–Leadership Training
for Business and Education
Using C&RT to Predict and

Display Possible Structural

Relationships

Greg S. Robinson, Ph.D., LindaA.Miner, Ph.D.,
and Mary A. Millikin, Ph.D.

The following tutorial was part of our efforts at examining leadership patterns among
business students at a university while exploring relationships between concepts
measured by several instruments. The first instrument, the Collaborative Leader Profile
(Robinson, 2004) measured learning, adaptability and open collaboration, necessary for
differentiated leadership (scales: v126–130; total v131). The second instrument (Millikin
and Miner, 1995) measured risk-taking behavior (v134) and social desirability (v135),
and the third instrument was the State Trait Anxiety Scale (v133) (Spielberger, 1983).
More differentiated people tend to have less anxiety in their interpersonal relation-
ships (Thorberg and Lyvers, 2005), so we would expect to see an inverse relationship
between those scores. It was difficult to know how fear of intimacy might relate to
risk-taking behavior, but we were interested in investigating the relationship. Differen-
tiation was measured by The Differentiation of Self Inventory (DSI; v132) (Skrowron
and Friedlander, 1998).
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The variables comprising the Collaborative Leader were 111–126. To find the reliability
of the questions, we did a Cronbach Alpha. First, we selected Multivariate Exploratory
Techniques from the Statistics menu in STATISTICA and then chose Reliability/Item
Analysis, as shown in Figure K.1.

FIGURE K.1 Reliability Analysis module selection from STATISTICA Statistics pull-down menu.
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We put in the variables and clicked OK on dialog boxes, until the Result Dialog Box
popped up, showing the Cronbach statistic; this is illustrated in the following few figures
(see Figure K.2–K.6).

FIGURE K.2 Variable selection.
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After clicking OK twice, we found the results shown in Figure K.3.

FIGURE K.3 Reliability Results dialog after running the module.
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We found that the Cronbach Alpha was 0.9167 and the standardized alpha was 0.9289.
This was good reliability, although we wondered if it was too high and perhaps indicated
too much colinearity. By clicking the Advanced tab, we could find other options, as you can
see in Figure K.4.

FIGURE K.4 Advanced tab selections in the Reliability Analysis Results windows.
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Clicking Summary, Item-Total statistics gave us the outcome shown in Figure K.5.

FIGURE K.5 Reliability Item Analysis summary spreadsheet.
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The Correlations button let us see how the items were correlated one to another (see
Figure K.6).

FIGURE K.6 Correlation from the Reliability Item Analysis Results dialog.
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We next selected Factor Analysis, as shown in Figure K.7, to see if the clusters were what
was meant as the instrument was written (i.e., variables 127–130):

Emotional Maturity Critical Reflection Systems Thinking Facilitative Leadership Vertical Axis

They were formed from variables 111–125, so these were subjected to the factor analysis.

FIGURE K.7 Factor Analysis module selected.
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We selected our variables, as shown in Figure K.8.

FIGURE K.8 Variables used for Factor Analysis.
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Then we clicked OK twice to reach the window shown in Figure K.9.

FIGURE K.9 Factor Loadings from Factor Analysis; Unrotated format.
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There were two factors identified using the raw data default and unrotated (see
Figure K.10). Choosing varimax rotation made no real difference.

FIGURE K.10 Factor Loadings using Varimax Raw rotation of factors.
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Still there were only two factors. These were not the planned subscales. Numbers do not
always follow theory. However, there were so few cases that it would be hard to know
what the true structure of the instrument was from these numbers. We persevered for the
sake of the tutorial.

We decided to use the individual questions in a DMR, especially looking at the C&RT to
see how those questions might interrelate with the risk survey on the anxiety variable.

First, we opened a new Data Mining Recipe and our data (see Figure K.11).

FIGURE K.11 Select Data Source window from DMRecipe.
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We selected our variables, as shown in Figure K.12.

FIGURE K.12 Variables selected from the DMR analysis.
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We selected Configure All Steps and then clicked on Target Variable so that we would be
able to select our procedures (see Figure K.13).

FIGURE K.13 Configure All Steps selected, then click on Target Variable to open subheadings.
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Then we selected C&RT and Boosted Trees, as shown in Figure K.14.

FIGURE K.14 After highlighting Model Building, C&RT and Boosted Trees are selected as the only two models
to evaluate the data.
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We click to remove the check mark from Configure All Steps and then clicked on Run to
Completion, as shown in Figure K.15.

FIGURE K.15 Deselect Configure All Steps and then click Run to Completion; get Run to Completion by click-
ing the “down arrow”.
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We then let the program run. Figure K.16 shows the work in progress.

FIGURE K.16 DMRecipe processing.
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We found that the boosted trees algorithm would not run because there were not enough
cases (see Figure K.17). That was not surprising because there were only 11 cases and one
had missing data.

FIGURE K.17 Error message stating the Boosted Trees model could not be run because of too few valid cases.
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When we opened the C&RT, there was only one node and nothing was revealed, as you
can see in Figure K.18.

FIGURE K.18 C&RT did run, but there was only one tree node.
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We decided to go a different route. But, again, we have only 11 cases and so could not
expect profound findings.

We opened another DMR. We decided to predict the Total Collaboration score (131)
from Total Differentiation (132), State Trait (133) and the Risk Scale (134), as shown in
Figure K.19.

FIGURE K.19 Variables selected for a second DMRecipe model.
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We checked Configure All Steps and then clicked to remove the check mark from Neural
Networks (see Figure K.20).

FIGURE K.20 The default Neural Networks is deselected so that only C&RT and Boosted Trees would run.
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Then we unchecked Configure All Steps and ran all steps by choosing Run to Comple-
tion, as shown in Figure K.21.

FIGURE K.21 Run to Completion selected to run this second DMRecipe model.
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The boosted trees algorithm would not run once again (see Figure K.22). Unfortunately,
there was not a prediction with this analysis either.

FIGURE K.22 Again, the C&RT would not produce useful trees, and Boosted Trees would not run.
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Undaunted, we decided to try one more approach. This time we predicted risk from the
four subscales of the leadership instrument, as shown in Figure K.23.

FIGURE K.23 Third DMRecipe model predicting Risk from four sub-scale variables.
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We left the defaults, as shown in Figure K.24, and ran the program.

FIGURE K.24 All defaults accepted and Run to Completion selected.
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Boosted trees still would not work. The C&RT had a higher correlation than neural
networks, but neither was significant (see Figure K.25).

C&RT gave us a decision tree to think about, however, as you can see in Figure K.26.

FIGURE K.25 Neural Networks and C&RT ran but both had low scores on Risk Scale; Boosted Trees still
would not work.

FIGURE K.26 C&RT did give a decision tree split in this third DMRecipe model.
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The variable Emotional Maturity separated the group into two groups on the risk scale.
Those with higher scores on Emotional Maturity scored higher on the risk scale.

In one last desperate attempt, we ran a fourth DMR predicting total differentiation (v132)
from all the questions in the Leadership survey (see Figure K.27).

FIGURE K.27 Fourth DMRecipe model using var132 (Total Differentiation) predicted from all the questions in
the Leadership survey.
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We left all the defaults, as shown in Figure K.28.

FIGURE K.28 All defaults used in fourth DMRecipe model.
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Not surprisingly, boosted trees and neural networks would not run. C&RT, however,
indicated that Transparent Decision Making might have been important, as you can see
in Figure K.29.

FIGURE K.29 C&RT ran in fourth DMRecipe model; Boosted Trees and Neural Networks would not run.
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We also tried an interactive C&RT to see if the leadership questions might separate males
and females (see Figure K.30).

FIGURE K.30 Interactive Trees selected.
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Next, we selected the variables, as shown in Figure K.31.

FIGURE K.31 Variables selected for Interactive Trees model.
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Then we reduced the default minimums in an effort to see structure (see Figure K.32).

FIGURE K.32 Stopping parameters defaults were lowered.
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We then selected the option for cross-validation, as shown in Figure K.33, and then
clicked OK.

FIGURE K.33 V-fold Cross-Validation was selected from the Validation tab of the ITrees menu.
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We clicked the Tree Graph (see Figure K.34) to view the decision trees (see Figure K.35).
Again, Transparent Decision Making seemed possibly important in separating the males

and the females. Higher scores on transparency were related to males. Relating to earlier
findings, perhaps these males were more self-differentiated and were transparent leaders.
These were ideas that could lead us to additional hypotheses and encouraged us to con-
tinue gathering data.

We were certain of one thing from all of the above: data mining couldn’t make up for a
lack of data. We proceeded to go after more data if we were going to investigate the struc-
ture of the instruments as they relate to one another.

FIGURE K.34 Tree Graph selected from the ITrees C&RT Results dialog.
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Dentistry: Facial Pain Study
Based on 84 Predictor Variables

(Both Categorical and

Continuous)

Charles G. Widmer, DDS, MS
Edited by Gary Miner, Ph.D.

Charlie Widmer, using DMRecipe for the first time and following the DMRecipe tutorial
earlier in this book, achieved the DMRecipe results shown in Figure L.1 in less than
30 minutes.

Looking at the summary of the spreadsheet (e.g., data) that was used by this automatic
DMRecipe where all defaults were used (see Figure L.2), we see that all predictor variables
no. 1–84 were used against target variable (also called a dependent variable) no. 85. Variable
85 is a facial pain variable, but because it has so many categories, it is considered continuous.

The default DMRecipe uses only three DM algorithms: neural networks, boosted trees,
and CART. When we utilized these, the boosted trees algorithm gave the best model, with
only a 30% error rate, which translates into 70% accuracy rate in predicting facial pain
based on these 84 predictor variables.

This example has a lot of predictor variables for only 120 cases, so in this tutorial we will
try to reduce the number of variables used as predictors and see whether we can get a more
accurate model by tweaking various parameters.

To start, we need to explore our variables and decide which ones may be the most
important by doing a feature selection. For the feature selection, we will use the Data Miner
Workspace because the types of results obtained in the workspace are more useful, in our
example, than the feature selection in an interactive module, or even the feature selection
that happens automatically—behind the scenes in the DMRecipe format. However, after
we decide which of the 84 variables we will use, we will complete most of the rest of this
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FIGURE L.1 Results of a DMRecipe project obtained in 30 minutes by a first time user of DMRecipe.

FIGURE L.2 Summary spreadsheet of 84 predictor variables and 1 target variable produced in the results of
DMRecipe project.
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tutorial using the DMRecipe format (i.e., Data Miner Recipe, where you can do data mining
with just a few clicks of the mouse).

The dependent variable here, Variable 86, consists of several categorical levels of facial
pain following various dental procedures; Variables 1–84 are various measures of dental
procedures done and other measures of the patient, setting, or procedures.

Our overall goal is to use the predictor variables to determine whether we can make a
predictive model as to what will cause facial pain following a dental procedure and thus
find ways to minimize this pain, from our model, rather than just give pain-killing medica-
tions following the procedures.

Figure L.3 shows our Data Miner Workspace, with the dental data set embedded into the
workspace and two feature selection icons put in: one for a chi-square feature selection
(variables ordered on descending value of chi-square, using a chi-square iterative method
of determining which variables are most important) and the other a p-value feature selec-
tion, where the variables will be output to a table showing them in ever increasing p-values
(where the variables at the top of the table will have the lowest p-values, which is what we
want).

Chi-square feature selection, putting all 84 predictor variables into the computations and
asking for the top 25 to be displayed, is shown in the importance plot in Figure L.4.

In Figure L.5, the feature selection setting for the parameters is Select only those with
p-values less than 0.05.

Note that all 84 predictor variables are significant at p < 0.05. However, using all of these
variables probably will reduce the accuracy of any data mining methods we use, so our goal
will be to reduce them in data mining analysis.

Icon
representing
the Data Set

Icon for Chi-Square
Feature Selection

Icon for p-value
Feature Selection ...

Icon for RESULTS of
Chi-Square Feature
Selection ...

Icon for RESULTS
of p-value Feature
Selection ... We’ll
use this for our Data
Mining algorithm
computation, for
reasons listed in the
Tutorial ...

FIGURE L.3 Data Miner Workspace using Feature Selection.
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FIGURE L.4 Importance plot.

FIGURE L.5 Best predictor variables listed in order of ascending p-value.
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We might, in this case, go with the chi-square selection, or we could use a p-value where
there appears to be a break or cutoff in the preceding values.

A cutoff does appear in the p-value feature selection at about

C_RTRANT variable with a p ¼ 0.002290, and
C_LTRINS variable with a p ¼ 0.005050.

There are five variables between these two, so we could probably make the cutoff point
anywhere among these five. For our example, let’s take the cutoff at Variable M_RLPT
(p-value 0.003076), as shown in Figure L.6.

The number of variables from the top down to M_RLPT is 16, as illustrated in Figure L.7.
We note that only the best predictor table was given in the results of the p-value feature

selection; the reason is that we forgot to select all results in the Parameters dialog, which we
can open by right-clicking on the FS icon in the Data Miner Workspace. So we’ll go back
and select All Results, and then rerun the p-value FS, getting the results shown in
Figure L.8.

Note that the order of variables from the top of the graph to the bottom is based on the
p-value, but the level of the variable (e.g., how far the bar extends to the right) is based on
the chi-square. Thus, the chi-squares and the p-values do not run in the same order, causing
the up and down nature of the graph.

FIGURE L.6 Using predictor variable M-RLPT as the cutoff point; e.g., all variables above this in the table
including M-RLPT were used for further statistical analysis.
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16 variables
to select, IF
we use the
top ones,
based on
p-value

FIGURE L.7 Total number of variables from top down M-RLPT is 16.

FIGURE L.8 Importance plot based on p-value. Note that the p-values and chi-square values do not run in the
same order; if they did, the plot would show a continuously descending curve based on chi-square importance.
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We cando two things at this point, in deciding onwhat variables to select for further analysis:

1. We can take the top 16 variables, as seen in the p-value chart in Figure L.8, but we’ll have
to get all of these Var numbers from the results listing and probably select them one by
one because they are in the results listing in order of presentation on the graph. Some are
categorical and some are continuous, and both numeric types are in separate lists. But
this may be the best thing to do.

2. Alternatively, we can take the top 16 variables from the chi-square results with the
thinking that these are approximately the same variables; e.g., there is a lot of overlap
between the chi-square method and the p-value method of feature selection. This
approach is easy because we can just copy and paste the list into the Variables Selection
dialog when selecting variables.

For this tutorial, we will take the p-value top 16, even though it is going to take a little bit
more work to select the variables one by one, while looking at the p-value results listing,
and then selecting each of those variables in the Variable dialog boxes.

Now we need to bring up the Data Miner Recipe dialog by selecting Data Miner Recipes
from the Data Mining menu, as shown in Figure L.9.

Selecting this option brings up the DMRecipe dialog, as shown in Figure L.10. As you
can see, we have placed the p-value results spreadsheet to the right on our screen so that
we can see both at the same time; we’ll need this listing to select the variables in the
DMRecipe dialogs.

After we highlight the name of data file shown in Figure L.10 and then click the New
button, a new DMRecipe dialog will appear, as shown in Figure L.11.

Now click on the Open/Connect Data File button, as shown in Figure L.12.

Select DATA
MINING pull
down and select
DATA MINER
RECIPES.....

FIGURE L.9 DMRecipe
Selection.
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The 16 variables
selected by
p-Value Feature
Selection we want
to select as the
ONLY variables to
be put through
several data
mining algorithms
to find the best
solution ...

The DMRecipe
dialog ... we will
highlight the NAME
of data file, and this
click the NEW
button, to bring this
data set into the
DMRecipe ...

FIGURE L.10 Selecting previously saved DMRecipe data file.

FIGURE L.11 DMRecipe interface before selecting variables and data set.
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Click OK in the Select Data Source dialog, shown in Figure L.13, and the data file will be
connected to the DMRecipe format, as shown in Figure L.14.

Next, click on the Select Variables button, as shown in Figure L.15.
The Select Variables dialog appears, as shown in Figure L.16.
Select the 16 variables, as shown in Figure L.17.
Not all of the input-continuous variables are shown in the dialog in Figure L.17; they are

hidden in the white input box, but here is the entire listing:

Input continuous: 52 58–59 63–64 67–70 74 77 82
Input categorical: 31 37–38 40

Now click OK to select these variables and close the Select Variables dialog. You then
return to the DMRecipes dialog shown in Figure L.18.

Next, click on the plus (þ) sign next to Target Variable in the tree hierarchy pane on the
left of the dialog, as shown in Figure L.19.

The tree expands as shown in Figure L.20.
Now click to place a check in the Configure All Steps checkbox, and the tree will expand

to look like that shown in Figure L.21.
Click on Model Building, as shown in Figure L.22.

FIGURE L.12 Click on Open/Connect Data File to get data set.
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FIGURE L.13 Select Data Source window.

Data Set now
connected to the
DMRecipe ....

FIGURE L.14 Data set connected to DMRecipe.
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Next click on
SELECT
VARIABLES....

FIGURE L.15 Select Variables button.

The 16 Predictor Variables need to be
selected in these 2 boxes, some are
categorical, others are continuous ...

FIGURE L.16 How to select categorical and continuous variables.
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FIGURE L.17 Variables selected are highlighted.

FIGURE L.18 DMRecipe interface shows variables selected for analysis.
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Click the “+” to open this
folder ...

FIGURE L.19 Open left window flow tree by clicking on “þ”.

FIGURE L.20 Left window tree flow fully open.
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Click on
MODEL
BUILDING...

First click on this ...

FIGURE L.21 Steps needed to set parameters of model.

Click on both RANDOM FORESTS and
SVM, to add these 2 algorithms to the
“competitive modeling” . . . then we will
have 5 different algorithms running:
1) CART, 2) NN, 3) BT, 4) SVM, and
5) Random Forests

FIGURE L.22 Random Forests and SVM are not defaults.
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Click to check all the algorithms shown in the Model Building tab on the right, as shown
in Figure L.23. Next, click to remove the check from the Configure All Steps checkbox, thus
turning it off.

Now click on the down arrow in the upper-right corner of the DMRecipe dialog, and
select Run to Completion, as shown in Figure L.24. The entire DMRecipe will run, while
you go off and have lunch or take a walk.

As the DMRecipe is running, you will see status bars like those shown in Figures L.25
through L.27.

In our particular case, the DMRecipe did all the computations in less than 2 minutes. Fig-
ure L.28 shows the summary workbook, with the evaluation report comparing the error
rates of the five algorithms.

Keep in mind that

Accuracy Rates ¼ ð1� Error RateÞ
Thus, the accuracy rates of the SVM is the best, e.g., about 77%. Boosted trees has the next
best accuracy rate, almost the same as SVM, 75%. But when we look at neural networks,

Click this ‘configure all
steps” OFF ...

FIGURE L.23 After model parameters are set, click the Configure All Steps off.
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random forests, and CART (or C&RT), we see that the accuracy rates in these algorithms
has fallen to the 52–60% range. Therefore, we will probably want to concentrate any pre-
dictive models on SVM and maybe even make a hybrid voted model combining SVM and
boosted trees.

However, we may also decide from this analysis that the 77% accuracy rate is not
enough, and we will try other things with our data. Or we may gather more data and/or
some more variables because we may have learned something from this analysis that sug-
gests that important variables are missing from our data set.

However, now we will put these same data through an interactive SVM method,
where we can tweak some of the parameters more thoroughly and also get a V-fold
cross-validation measure to compare with the test sample accuracy rates. So let’s do this
interactive SVM model right now. To start, open the Data Mining menu and select Machine
Learning, as shown in Figure L.29.

Selecting Machine Learning opens the dialog shown in Figure L.30.
Because it defaults to Support Vector Machine, click OK to select this option and open

the dialog box shown in Figure L.31.

Click the “down arrow,” and release on
“run to completion,” and the
DMRecipe will run automatically ...

FIGURE L.24 Click Run to Completion to have the model computed.
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Now click on the Variables button to open the dialog shown in Figure L.32. Here, we’ll
select the variables, copying our predictor variables, as selected for the DMRecipe earlier,
e.g., just the 16 top p-value feature selection variables.

Then click OK to return to the Support Vector Machines dialog, as shown in Figure L.33.
Now let’s click on the Cross-Validation tab to bring it to the front, as shown in

Figure L.34.
Next, we will click to put a check in the Apply V-Fold Cross-Validation checkbox and

leave the default setting of V ¼ 10. This means 10 separate bootstrapping random samples
of the data will be taken, and analysis will be done with each of these, to compare; this is
like doing 10 separate experiments in 10 separate labs around the world to see whether
all labs can reach the same conclusion. We will use this V-fold cross-validation accuracy
score, if needed; e.g., if the training accuracy and testing accuracy scores are not almost

FIGURE L.25 DMRecipe model computing.
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FIGURE L.26 Boosted Trees and Basic Statistics computing.

FIGURE L.27 Final processing of models.
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SVM = Support Vector Machines, and
BOOSTED TREES give the lowest “error
rates,” thus the best ACCURACY
RATES ...High Accuracy Rates in “data
mining” are analogous to low p-values in
“traditional Fisher statistics”...

FIGURE L.28 DMRecipe results workbook.

FIGURE L.29 Selecting interactive SVM module.

FIGURE L.30 SVM selection dialog.
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identical, then we will compare the testing sample accuracy with the V-fold cross-valida-
tion, and if both of these are about the same, then maybe we have a pretty good model.

Next, we will looking at the Kernels tab (see Figure L.35), where we will leave the default
settings.

The RBF kernel setting generally does best with most data sets, in general; however, if we
don’t like the model we get from using it, we can come back and select a Linear,

FIGURE L.31 SVM quick-tab dialog.

FIGURE L.32 Variable selection.
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Polynomial, or a Sigmoid kernel type if we suspect our data have a curve that is more
closely related to the others. The RBF kernel does not need a particular curve type; i.e., it
can work with data accurately regardless of whether data follow a linear or very nonlinear
curve; that is why the RBF usually will work on all or most data sets.

For the SVM tab (see Figure L.36), we can leave the default settings.

FIGURE L.33 When variables are selected, their names appear on the SVM dialog.

FIGURE L.34 Cross-Validation tab.
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If we don’t like the results we get, we can come back to this tab on the dialog and select
Type 2 Classification SVM. To find the difference between Type 2 and Type 1, click the
question (?) mark in the upper-right corner of the dialog shown in Figure L.36. This will
take you to the online help of STATISTICA; from the online help, you can read about Type
1 and Type 2 Classification SVB types, and attempt to determine whether one or the other

FIGURE L.36 SVM type tab.

FIGURE L.35 Kernals tab.
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will be better for your data. For practical purposes, it is faster just to try each and see which
gives you a more accurate model.

Now let’s look at the Sampling tab (see Figure L.37), where we can decide what proportion
of the data we want as the training sample, and thus the remainder will be the testing sample.

We generally like to use about two-thirds as the training sample, so we’ll change this
amount to 66%, as shown in Figure L.38.

FIGURE L.37 Sampling tab.

Changed to 66%...

FIGURE L.38 Sampling tab with defaults changed.
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Then click OK in the Support Vector Machines dialog and let the computations begin.
During this process, you will see a message like the one in Figure L.39, but you’ll have to

watch closely, as this data set took only about 11 seconds to run.
The results are shown in Figure L.40.
We ideally want the Train accuracy, Overall accuracy, and Test accuracy to be almost

identical or very close to one another. As you can see, even though the Train and Overall
are about the same, the Test accuracy is very low, only about 39%. When this happens,
we can look at the V-fold cross-validation to see if it is about the same as the test accuracy;
in the example, it is, e.g., about 48% versus 39%.

If all of our accuracy values were in the same range, say all around 75%, then we could
say that we have a model that will predict new cases accurately 75% of the time. But since
we didn’t get this, we have to say that this interactive model of SVM is not doing the job
we’d really like to see.

We tried all of the other kernel types and classification types, and also reset the training
sample to 75% to get about five additional models. Type 2 classification brought the V-fold
and Test accuracies up closer to 50%, but all of these models, no matter what curve type
(e.g., Kernel type) was used, were about the same. So we have to conclude that we need
to examine these variables more closely.

As the editor of this tutorial, I do not know the meaning of the predictor variables at this
point, so I would have to consult with Dr. Charles Widmer, the professor of Orthodontics,

FIGURE L.39 Training of SVM model In Progress.
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to understand them better. Possibly we could select a better set of predictor variables and
get a good model. However, feature selection is very powerful, and I suspect we did find
the most important variables. But they still may be highly correlated.

We could try one more thing: reduce the number of predictor variables put into the
model and try this with both the SVM interactive approach and also DMRecipe. Let’s take
a quick look.

We’ll just select the top categorical and continuous variables from the chi-square feature
selection, as shown in Figures L.41 and L.42.

Figure L.43 shows the results for the Interactive SVM algorithm method, using 75%
Train, the RFB kernel, and V-fold cross-validation, but you can see that they are not much
better than achieved previously.

Now let’s try the DMRecipe again, using just the six predictor variables shown in
Figure L.44.

About the same
Accuracy Values,
which is “good”,
since Train/overall
different

Problem - these 3
should be ...same...

Train/Overall about the same
ACCURACY. . . but we’d like to see
the TEST value about the same ...

FIGURE L.40 Interactive SVM results.
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Try 2nd
analysis,
selecting ONLY
these 6 variables
as the Predictor
variables ...

FIGURE L.41 Best predictor variables from Feature Selection.

FIGURE L.42 Variables selected.
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Again, we don’t see any improvement with fewer variables, as you can tell in
Figure L.45. We probably could have expected this outcome, as the feature selection impor-
tance plots did not have a distinctive pivot point in the curve they made; instead, there was
just a steady decline in the levels of Variables 1–84.

Many data sets will show a distinct change in direction in this importance plot curve,
and this usually is the place to cut off use of additional variables. Generally, those variables
with the high chi-square values (or low p-values, if using the p-value feature selection) will
give very good models with high accuracy scores.

With this data set, we may need to go back to the drawing board and find the variable or
variables missing that are really critical to this dependant variable of facial pain.

FIGURE L.43 SVM results dialog.
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We see that with 33%
error rate in SVM,
this model did not do
better with the fewer
predictor variables. 
Thus, we need to
examine this data set
very closely. Most
likely we need to
collect more variabes,
ones that are important
to the target variable.

FIGURE L.44 DMRecipe results dialog.

FIGURE L.45 DMRecipe results workbook.
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INTRODUCTION

In this tutorial, we will approach the German credit data from a cost/profit perspective.
Specifically, we assume that a correct decision of the bank would result in 35% of the profit
at the end of a specific period, say 3–5 years. Here, a correct decision means that the bank
predicts that a customer’s credit is in good standing (and hence would obtain the loan),
and the customer indeed has good credit. On the other hand, if the model or the manager
makes a false prediction that the customer’s credit is in good standing, yet the opposite is
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true, then the bank will result in a unit loss. This concludes the first column of the profit
matrix shown in Table M.1.

In the second column of the matrix, the bank predicted that the customer’s credit
is not in good standing and declined the loan. Hence, there is no gain or loss in the
decision.

Note that the data have 70% credit-worthy (good) customers and 30% not-credit-worthy
(bad) customers. A manager who doesn’t have any model and who gives everybody the
loan would result in the following negative profit per customer:

ð700�0:35� 300�1:00Þ=1000 ¼ �55=1000 ¼ �0:055 unit loss

This number (–0.055 unit loss) may seem small. But if the average of the loan is $20,000 for
this population (n ¼ 1000), then the total loss will be

ð�0:055 unit lossÞ � ð$20; 000 per unit per customerÞ � ð1; 000 customersÞ ¼ �$1; 100; 000

a whopping $1,100,000 loss. On the other hand, say a model produces the classification
matrix shown in Table M.2.

In this case, the total profit would be

Profit ¼ True Positive�$20; 000�0:35� False Positive�$20; 000
¼ 608�$20; 000�0:35� 192�$20; 000 ¼ $416; 000

The difference of model versus no-model is

$416; 000� ð�$1; 100; 000Þ ¼ $1; 516; 000;

or about $1.5 million of profit. The goal of this tutorial is to build statistical models to
maximize the profit.

TABLE M.1 Profit Matrix

Good Customer

(predicted)

Bad Customer

(predicted)

Good Customer
(observed)

þ0.35 0

Bad Customer
(observed)

�1.00 0

TABLE M.2 Classification Matrix

Good (predicted) Bad (predicted) Row Total

Good (observed) 608 customers (76%, True_Positive) 46 customers 700 customers
Bad (observed) 192 customers (24%, False_Positive) 154 customers 300 customers
Column total & percentages 800 customers (100%) 200 customers 1,000 customers
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MODELING STRATEGY

Assume that the data are already cleaned. Then the following steps would help
maximize the profit:

1. Try Different Tools: SAS-EM provides a variety of data mining tools, including Decision
Tree, Regression, Neural Network, Stochastic Gradient Boosting, Support Vector
Machine, Ensemble model, and countless variations of these tools. In this tutorial, we
will use mainly the default settings of some of these models.

2. Use Variable Selection: The original data set has 20 predictors. Some of the predictors
may not be as important as others, and the exclusion of these variables may improve
the model performance.

3. Bundle the Variables: Some of the predictors may be correlated to each other. In
SAS-EM, the grouping of these predictors via two different techniques (Variable
Clustering node and Principle Components node) often improves the model
performance.

4. Employ Binning, Filtering, and Variable Transformation
5. Tune Parameters
6. Change Nominal Predictors to Ordinal and Interval Variables: This subsection

discusses a very powerful node is SAS-EM: the Replacement Node. The node can be
very handy and very useful in many studies where input variables are intrinsicially
in Ordinal scale but are coded in Nominal scale. This is exactly what happens with
the German credit data, and this is the reason the Neural Network failed in the
section “A Primer of SAS-EM Predictive Modeling”.

7. Mega Models
8. Use Different Cutoff Values: Given the study population, the model will produce the

probabilities of all customers with regard to their credit standing. If the probability of
a specific customer is above the cutoff (a.k.a. threshold), then the customer will be placed
in the category of good customers; otherwise, the customer loan application will be
denied. By adjusting different cutoff values, we may be able to increase the total profit.
In our experience, this technique is one of the most important in the maximization of
the profit.

9. Incorporate Decision Rules of Complicated Models: Machine learning techniques such
as Neural Network and Gradient Boosting are often criticized for being black-box
models; that is, it is “impossible to figure out how an individual input is affecting the
predicted outcome” (Ayres, 2007, p. 143). This is not true. Given any Neural Network,
you can plot its response surface and calculate its marginal effects (Wang and Liu, 2008).
For Boosted Trees, you can also calculate Interaction Effects (Friedman and Popescu,
2005) and draw Partial Dependence Plots for the understanding and the interpretation
of the model (Friedman, 2002). In SAS-EM, a special technique is to build a Decision
Tree after a Neural Network (or other complicated model) to extract decision rules
that can be very helpful for managers or other decision makers in real-world
applications.
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Due to the allocated space of (and time constraints of writing) this tutorial, we will skip
steps 2, 3, 4, 5, 6 and 8 presented here. Furthermore, in step 6, we will use the default in
SAS-EM, which gives cutoff values at 5% increments. For finer resolution at 1% or 0.5%
increments, you need to write SAS codes to accomplish the task.

SAS-EM 5.3 INTERFACE

The diagram in Figure M.1 shows the key components of the SAS-EM 5.3 interface.

• Toolbars: Three rows of tools can be activated by clicking or can be dragged to the
workspace. Move the cursor to a specific tool, and a small window will pop up giving
a brief description of the tool functionality.

• Project Panel: To manage and view data sources, diagrams, and results.
• Properties Panel: To view and edit the settings of data sources, diagrams, and nodes.
• Diagram Workshop: To graphically build, edit, run, and save process flow diagrams.

A PRIMER OF SAS-EM PREDICTIVE MODELING

This section provides information on the construction of the SAS-EM process.
The construction of the process flow shown in Figure M.2 is sufficient for small

and medium-sized data sets. For large data sets, a Sample node can be added with little
effort.

1. Creating a Project:

Select File ! New ! Project from the main menu. Specify the project name (Profit
Analysis) in the name field of the pop-up window, as shown in Figure M.3.

FIGURE M.1 SAS-EM interface.
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2. Creating a Data Source:

Select File ! New ! Data Source to open the Data Source Wizard, as shown in
Figure M.4.

Click on the Next button to browse the folder of the Credit_scoring data, which resides
in the Sasuser library (see Appendix on how to Credit_scoring import Excel data to
the Sasuser library) (see Figure M.5).

After you locate the data, click on OK, as shown at the bottom of Figure M.6, and then
click on Next four times and then on Finish to import the data.

FIGURE M.2 SAS-EM process flow.

FIGURE M.3 Create New Project dialog.
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3. Creating a Diagram:

Select File ! New ! Diagram. Then type the name, Profit Analysis, in the Name field
of the pop-up window shown in Figure M.7 and then click on OK.

4. Creating the Process Flow:

From the Project Panel (upper-left corner), drag the Profit_Analysis icon directly under
Data Sources to the Diagram Workspace to create the Data Sources node, as shown
in Figure M.8.

5. Editing Variables:

In the Workspace, right-click on the Data Source node and then click on Edit Variables,
as shown in Figure M.9.

In the pop-up window, identify the target variable, Credibility. Change the model Role
from Input to Target, and change the Level from Nominal to Binary, as shown in
Figure M.10. Then click on OK:

6. Replacement Node:

The node can be very handy and very useful in many studies where the predictors are
intrinsically Ordinal variables but are coded in Nominal scale.

A click of the Input Data node would produce the window shown in Figure M.11. This
window shows that most predictors are Nominal variables.

To change the nominal predictors into ordinal variables, click on the Modify tab and
then drag the Replacement node to the Workspace.

Right-click the Replacement node and select Run.

FIGURE M.4 SAS-EM Data Source Wizard.

III. TUTORIALS—STEP-BY-STEP CASE STUDIES

656 M. PROFIT ANALYSIS OF THE GERMAN CREDIT DATA



Click on the Replacement node to activate its Property Panel and then click on the
ellipses button at the right of the Class Variables Replacement Editor (see
Figure M.12).

In the pop-up window, change the Level of the selected Input Variables as shown in
Figure M.13. Once you are done, select OK.

The conversion of Nominal variables to Ordinal scale requires a lot of subject-matter
judgment and sometimes can be controversial. Readers of this tutorial are urged
to examine the conversion and use his/her own numbers when deemed necessary.

FIGURE M.5 Select an SAS Table dialog.
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FIGURE M.6 Selecting a table in SAS library.

FIGURE M.7 Create New Diagram window.
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FIGURE M.8 Profit Analysis in SAS-EM.

FIGURE M.9 Profit Analysis pop-up menu.
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FIGURE M.10 SAS-EM variable listing.

FIGURE M.11 Data Input node selection produces this window showing variables.
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FIGURE M.12 Replacement button.

FIGURE M.13 Replacement Editor in SAS-EM.
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FIGURE M.13—Cont’d
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7. Data Partition Node:

Drag the Data Partition icon (in the third icon under the Sample tab) to the Diagram
Workspace. Connect the Replacement node to the Data Partition node, as shown in
Figure M.14.

In SAS-EM 5.3, the default setting is 40%–30%–30% for the partition of the original data
into Training, Validation, and Test data sets.

8. Regression node:

To use this node, click on the Model tab (in the third row of toolbars) to activate the

Regression icon . Drag the icon to the Workspace and then connect the Data

Partition node and the Neural Network node (Figure M.15).
Right-click on the Regression node and select Run. Click on Yes in the pop-up window.

Wait for the next pop-up window and then click on Results. The next pop-up
window contains a lot of information which is useful in many other studies. In this
case, we will skip these results and go straight to the profit calculation.

Almost all data mining packages are confused by the subtle difference between a
misclassification matrix and a decision matrix. SAS-EM is a rare exception. Note that
the first matrix does not allow non-zero entries on the diagonal line, while the
second matrix is able to accommodate different kinds of cost-profit considerations.
The difference may seem small, but the consequence is enormous. The following
steps show how to accomplish this with SAS-EM.

FIGURE M.14 Data Partition icon in SAS-EM.

FIGURE M.15 Completed process flow model.
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9. Decision weights in Data Source node:

Click on the Data Source node to activate its Property Panel. Then click on the ellipses
button to the right of Decisions. On the Decision Processing pop-up window,
click on Build to activate the Decisions menu (see Figure M.16).

Click on Decisions in the menu and select Yes, as shown in Figure M.17.

FIGURE M.16 Click on Decisions selection.

FIGURE M.17 Decision Processing window in SAS-EM.
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Click on Decision Weights in the menu and enter weight values for the decision, as
shown in Figure M.18.

10. Comparison of the Profits:

Build the process flow to compare the profits of different models. To do so, first click on
the Model tab to activate a number of predictive modeling tools.

Then dragNeural Network andDecision Tree icons to the workspace (see Figure M.19).
Next click on the Assess tab to activate a number of new tools. This tab contains a special

icon calledModel Comparison. Drag aModel Comparison icon to theWorkspace and
connect the Regression, Tree, and Neural Network nodes to it (see Figure M.20).

Run the Model Comparison node and select Results in the popup window.
In the pop-up Results window, go to the lower-left corner and click on the arrow of

Cumulative Lift to open a drop-down window (see Figure M.21).
In the drop-down window, scroll downward to locate the Expected Profit for

Cumulative Profit (the Total Profit gives non-Cumulative Profit and is useful
for other applications) (see Figure M.22).

At the bottom of the Expected Profit window, click on the Neural Network model.
Go to the sub-window with Data Role = TEST. Hold the key at any of the blue
boxes to see the Expected Profit Mean (see Figure M.23):

FIGURE M.18 Decision Processing window.

III. TUTORIALS—STEP-BY-STEP CASE STUDIES

665A PRIMER OF SAS-EM PREDICTIVE MODELING



The 0.34 Expected Profit in the top 10% of the data for the Neural Network curve
corresponds very closely to the number entered into the profit matrix earlier. Thus, the
Neural Network was able to achieve 100% accuracy in the top 10% of the customers.
Table M.3 compares the Total Profit of the Tree and Dmine Regression at different
cutoff values (Total Profit = Mean Profit*Cutoff*Population Size).

FIGURE M.19 Model process flow in SAS-EM.

FIGURE M.20 Model Comparison button.
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FIGURE M.21 Results window.

FIGURE M.22 Selecting Expected Profit.
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The table shows that the Neural Network achieves the best profit at 5% cutoff and
the Regression at the 5% or 10% cutoff. In short, if we use Neural Network to
select the top 5% of the customers, then the model would produce a Total Profit
of 5.25 units for each unit of the investment in the Holdout data (n = 300).

TABLE M.3 Total Profit of the Tree and Dmine Regression at Different Cutoff Values

N¼300 (Holdout Data) 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Reg 0.35 0.341 0.333 0.321 0.303 0.287 0.260 0.217 0.188 0.137Mean Profit
Tree 0.35 0.35 0.303 0.296 0.296 0.296 0.296 0.296 0.296 0.265

Total Profit Reg 5.25 10.23 14.99 19.26 22.73 25.83 27.30 26.04 25.38 20.55
Tree 5.25 10.5 13.64 17.76 22.20 26.64 31.08 35.52 39.96 39.81

FIGURE M.23 Expected Profit results graph for Dmine Regression.
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Discussions

a. Assume that we have a new population of 1,000 customers with an average loan of
$20,000. The Neural Network model would select the top 5% of the customers and result
in a total profit of quite a bit of money indeed.

0:35�0:05�1000�$20; 000 ¼ $350; 000

ADVANCED TECHNIQUES OF PREDICTIVE MODELING

1. Gradient Boosting and Ensemble Models
SAS-EM 5.3 has several advanced techniques for building predictive models for

classification and regression and many of which also incorporate profit based model
selection and assessment. A new technique available in this version is StochasticGradient
Boosting based on published work (Friedman, 2002) which has shown great promise
in many applications. A Support Vector Machine procedure is also available; however,
its status is experimental and should not be used for production model development.

Consequently it would be desirable to compare the performance of Gradient Boosting
with other advanced techniques in this specific study. We will again start with the
Credit Scoring data.

2. This time, we will use another advanced feature of SAS EM 5.3— the Advanced Advisor
in the Datasource Wizard. This selection, as shown in Figure M.24, will execute a

FIGURE M.24 Advanced Advisor feature in the Datasource Wizard.

669ADVANCED TECHNIQUES OF PREDICTIVE MODELING

III. TUTORIALS—STEP-BY-STEP CASE STUDIES



process that will scan the data for variables that should be ordinal, nominal, or interval,
and for variables that should be rejected due to having too many or too few class levels.
The user may control distribution thresholds for these assignments.
Using this method, we find that the variables have been assigned a new set of level and
role attributes. Again, we have set the Creditability variable as the dependent target
variable (see Figure M.25).

3. To complete the analysis, we now click on the Model tab to activate the predictive
modeling tools. Then drag the Gradient Boosting icon to the Workspace.

4. In addition, we will add an Ensemble node to the diagram. Ensembles work by
combining the predictions from multiple models into a single prediction that often
produces superior results to any of the constituent models. In this case, the Ensemble
node will average the probabilities of the input models and will be compared to
the input models (see Figure M.26).

5. We will again highlight the use of the Replacement node. In this case, we want to
replace the values of the BALANCE_OF_CURRENT_ACCOUNT with simple values for
high, none, low, and missing. Cleaning data is a frequent activity for most data miners.
Select the Replacement node on your diagram.

6. Change the default interval replacement method to None.
7. Select the class variables replacement editor and make the changes shown in Figure M.27.
8. Now that we have cleared that task, select the Model Compare node and run the path.

Once the path as completed, we will select a champion model.
9. Open the results of the Model Compare node and select the output listing. In this

case, the Gradient Boosting model has posted the best Test Average Profit value,
followed by the Decision Tree, and has been automatically selected as the champion

FIGURE M.25 Creditability set as dependent target variable.
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model (see Figure M.28). In terms of Average Square Error (ASE), the Ensemble model
is the champion followed by the Gradient Boosting model. Why are these orderings
different? The profit matrix that we entered unevenly weights the distribution of
classification matrix; thus, models that are not monotonically related will produce

FIGURE M.26 Total profit from decision tree.

FIGURE M.27 Replacement Editor.
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different orders in those measures. Alternatively, you may think that these three
models have identified different features within the overall pattern detection.
The ability of Ensembles to outperform their constituent models on classification tasks
(Elder, 2003) is a very interesting effect. If we look at the expected profit curve we find
a different story. In this case, the Neural Network is the champion with a consistent
expected profit of 0.35 in the 5% percentile over the train, validation, and test data sets
(see Figure M.29).

10. We can also look at the more conventional measures such as ROC, shown in
Figure M.30. If we were selecting models based on the tradeoff between specificity and
sensitivity, the Ensemble model is consistently superior with the Neural Network is
a perhaps insignificantly close and second. The Decision Tree and Gradient boosting
models are ranked lower on this measure. In fact, the sharp line shape of the Decision
Tree indicates that a shallow tree was created which produces a harsh distribution of
probabilities.

11. Wemay also examine the lift chartswherewe find theNeuralNetwork is now consistently
the highest ranked model, followed by the Gradient Boosting. The Decision Tree is again
ranked lower due to its highly pruned structure (see Figure M.31).

12. To better understand these results, we can look at the distributions of scores. In the
results of the model compare node, select the menu item View! Assessment ! Score
Distribution Plots. First look at the plot of the Gradient Boosting model and find a good
separation of true and false events (see Figure M.32).
Now, we look at the Ensemble model and the Neural Network models. The Ensemble
model shows a similar distribution with more separation between the two cases
which can be related to its slightly better score on ASE. The Neural model, on the
other hand, shows a very different score distribution that produces more low
probabilities and more overlap between the models (see Figure M.33). Remember that
the Ensemble is a mixture of the constituent models including both the Gradient
Boosting model and the Neural Network model.

13. Now that we have established that the Gradient Boosting model is our champion, we
can look at its results in more detail. Open the results of the Gradient Boosting node

FIGURE M.28
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FIGURE M.30

FIGURE M.29 NN expected profit.
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and examine the Subseries Plot (see Figure M.34). This shows the reduction of error as
the model grows more complex. However, the ASE plot does not show why the model
was selected at iteration 39. Since we entered a profit matrix, Enterprise Miner also
shows the evolution of profit. The Gradient Boosting model was selected to maximize
profit which helps us develop a better campaign.

FIGURE M.31

FIGURE M.32
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FIGURE M.33

FIGURE M.34
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Conclusion

The model selected as champion depends largely on the measurement used to make the
decision. Selection based on Average Profit chooses the Gradient Boosting model, yielding
an average profit per case of 0.069, but an expected profit of 0.35 in the 5% percentile. The
data miner will select and report rank order measures at a population depth that is appro-
priate for the business case. The Neural Network and Ensemble models were very close in
terms of overall performance and each would have been selected if the criteria were differ-
ent. All three models detected the pattern and produced usable models. The selection of
model is often determined by business rules and regulations; however, also producing a
best model from modern techniques is valuable for setting bounds on the expected perfor-
mance of the chosen model.

MICRO-TARGET THE PROFITABLE CUSTOMERS

This sub-section presents detailed steps on how to identify the customers that would be
most profitable. Recall that Decision Tree is the best and hence we will focus on this model.
The red block in Figure M.35 highlights the parts that will be used for micro-targeting.

1. Scoring Data via Input Data node:
Drag the Input Data node to the workspace. Import new data for scoring (see details in
the section “A Primer of SAS-EM Predictive Modeling,” item 2). Click on the Input
Data node to activate its Property Panel. Change the Role from Raw to Score (see
Figure M.36).

2. Score Node:
Add the Score node to the Decision Tree node. Run the Score node (see Figure M.37).

3. SAS Code Node (Figure M.38):

FIGURE M.35
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Data Customers;
Set &EM_Import_Score;
Customer_ID = _N_;

Run;

PROC Sort data = Customers;
By descending P_CreditabilityGood;

Run;

FIGURE M.37

FIGURE M.38

FIGURE M.36
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Data good_customers;
Set Customers;
Obsnum = _N_;
If Obsnum > 0.05*1000 THEN delete;

Run;

PROC Print data = good_customers noobs split = ‘*’;
VAR obsnum Customer_ID P_CreditabilityGood;
LABEL P_CreditabilityGood= ‘Predicted*Good*Credit’;
TITLE “Credit Worthy Applicants”;

Run;

Proc print;

APPENDIX

(Import German Credit Excel data to the SASuser library)

1. Open base SAS. Select File è Import Data.
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2. Click on Next and then Browse the location of the data:

3. Select the SASUSER library.
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4. Type the name of the file, click on Next and then in the next window click on Finish to
complete the data import.
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BACKGROUND

Self-reported health status in the form of the question “How would you say your health
in general is?” has been shown to be an excellent predictor of mortality, health care utili-
zation, and disability (Mossey and Shapiro, 1982; Idler et al., 1992; Idler and Kasl, 1995;
Idler and Benyamini, 1997; Idler et al., 2004; Maciejewski et al., 2005). While the strength
of effect varies, the predictive power of self-reported health status has been found in dif-
ferent countries, racial/ethnic groups, age groups, and patient populations (Mossey and
Shapiro, 1982; Idler and Kasl, 1991; Miilunpalo et al., 1997; Leinonen et al., 1998; Mansson
and Merlo, 2001; Mackenbach et al., 2002; Bath, 2003; Larson et al., 2008). There appears to
be an intrinsic prediction power of self-reported health status on health outcome above
that explained by other factors including gender, age, social and economic resources,
and medical condition (Idler and Kasl, 1991; Burstrom and Fredlund, 2001; Fiscella and
Franks, 2000; Fan et al., 2002; Idler et al., 2004). While the relationship between health
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outcome and self-reported health status has been greatly studied, few studies have
examined factors that might contribute to or predict self-reported health status (Wan,
1976; Manderbacka et al., 1998; Fiscella and Franks, 2000; Mansson and Merlo, 2001;
Mackenbach et al., 2002; Franks et al., 2003; Idler et al., 2004; Jylha et al., 2006). None of
these studies have been comprehensive, with most focusing on specific factors such as
social support, economic resources, biomarkers, or risk factors. Furthermore, all of these
studies have used standard statistical methods (e.g., Cox-regression and logistic re-
gression) for determining association with the factors and health status, and none of
these studies have used data mining techniques designed for the purpose of prediction.

In this tutorial we will use neural networks to derive a model that will accurately pre-
dict self-reported health status. The National Health and Nutrition Examination Survey
(NHANES) 2003–2004 data were used for this tutorial (CDC, 2008). These data encompass
a wide range of factors that span many aspects of health, providing for a more compre-
hensive prediction model. Neural networks allow us to detect complex interactions and
patterns in the data, and increase the classification accuracy. A classification algorithm
for self-reported health status should give health care providers a better understanding
of the underlying factors associated with self-reported health status and in turn provide
better knowledge of factors associated with mortality and morbidity.

DATA

The NHANES 2003–2004 data set of more than 4,000 variables was collected by the
Centers for Disease Control and Prevention (CDC) National Center for Health Statistics
(NCHS). Participants undergo an interview that consists of questions about demo-
graphics, personal health and medical conditions, social support and resources, nutri-
tional and dietary intake, and risk behaviors. A selected number of individuals
receive a physical examination. Specimens collected from the examination are analyzed,
and measures of various biomarkers and toxins are recorded. The class variable of inter-
est is the response to the survey question “How would you say your health in general
is—excellent, very good, good, fair, or poor?” The participants’ answers were categor-
ized into two groups: good as defined by a response of excellent, very good, or good
versus poor as a defined by a response of fair or poor. The variable in our data set for
this question is “Status.” For the modeling, we chose to limit the age range to indivi-
duals over the age of 39 because certain data of interest were not collected on subjects
less than 40 years of age. Subjects were restricted to be those with both a physical exam-
ination and laboratory data because these factors were deemed to be important for the
analysis.
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Preprocessing and Filtering

There are more than 4,000 variables in this data set, so a filtering process was necessary.
The first step was to select factors based on prior literature and domain expert opinion that
could be indicators of self-reported health status. This approach was chosen based on an
understanding of the study question and to eliminate all but the most relevant and interest-
ing variables. Some numeric variables were categorized based on standards found in the lit-
erature, but the majority were left as continuous variables. Variables with >10% missing
data were removed, resulting in a list of 105 variables.

The variables were further filtered using a tier process. First, each variable’s association
with self-reported health status was determined using a chi-square test for nominal or
ordinal variables and logistic regression for continuous variables. Variables with a p-value
less than 0.20 were used in the next stage of filtering. This threshold was set high to allow
for the detection of variables that had an interaction effect, but whose main effects would
only be marginal. Before the next stage of selection, we imputed all of the missing values
in the data set using a model-based algorithm that uses the values of other variables of an
instance to compute the value for the missing variable. This filtering stage resulted in the
selection of 85 variables. This subset of variables is the data set used in this tutorial. We
start the first part of the tutorial by selecting the most important subset of these variables
using Weka.

Note: When doing this tutorial, please take just a small part of the data set and redo with
this smaller set of data; using the entire data set will take the following Weka procedures
several hours (e.g., 4–6 hours or more) to run. To make this process go faster, reduce the
size of the data. Alternatively, read through the Weka part and then take the results part
of the data into the STATISTICA Automated Neural Networks, which should run in just
a few minutes.
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Part 1: Using a Wrapper Approach in Weka to Determine the Most Appropriate
Variables for Your Neural Network Model

1. Open the Weka Explorer, as shown in Figure N.1.

FIGURE N.1 Weka Explorer interface window.
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2. Make sure the Preprocess tab is selected and then click the Open File . . . button (see
Figure N.2).

3. When the Open file dialog appears, select CSV Data Files from the Files of Type drop-
down box.

4. Select and open the file Tutorial_NHANES_Data.csv.

FIGURE N.2 Open data file window.
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5. Once the file has been selected, click on the Select Attributes tab at the top of the
explorer (see Figure N.3). Under Attribute Selection Mode, notice that the default
variable we are predicting is set to Status. Weka defaults this variable to the last variable
in your data set. You could change this variable by clicking on it and selecting another
variable from the pop-up list. Since Status is our target variable, we will not change
it this time.

6. Click on the Choose button under Attribute Evaluator.

FIGURE N.3 Select Attributes tab window in Weka.
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7. Select the WrapperSubsetEval method, as shown in Figure N.4.

FIGURE N.4 WrapperSubsetEval method selected from the Attribute Evaluator menu in Weka.
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8. Double-click WrapperSubsetEval under Attribute Evaluator; this should open up the
dialog box shown in Figure N.5.

9. In the dialog box where it says Classifier, click on the Choose button.

FIGURE N.5 WrapperSubsetEval window; click on Choose button.
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10. This pops up a list of folders and classifiers, as shown in Figure N.6. Open the Functions
folder and select MultiLayerPerceptron.

11. Leave the rest of the values at defaults and click OK
12. Click on the Choose button under Search Method.

FIGURE N.6 Classifiers pop-up window; select MultlayerPerceptron.
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13. Select the GeneticSearch method, as shown in Figure N.7.
14. Under the Attribute Selection Mode in the Explorer, select the Cross-validation radio

button and leave the values at their defaults.
15. Click the Start button to start the process; this may take several hours to run depending

on your CPU speed.
16. Once the wrapper is finished running, it will display a list of selected variables in the

output window. We will use these selected variables in our neural network model. The
results of this method, shown here, could vary slightly with each run.

Resulting Variables from the Weka Wrapper Subset Selection

Age

Education level

Income

Problem with balance

Chest pain ever

Taking antacid

Need dental work

FIGURE N.7 GeneticSearch method selected in search window.
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Part 2: Taking the Results from the Wrapper Approach in Weka into
STATISTICA Data Miner to do Neural Network Analyses

Now following this Wrapper Subset selection in Weka, we will take these variables into
STATISTICA and use the Automatic Neural Networks to do a classification and find amodel.

1. First, we need to open our data file in STATISTICA. We have saved an identical copy of
the CSV file used in Weka as an Excel.xls file for ease of importing into STATISTICA.
Select Open from the File menu of STATISTICA, as shown in Figure N.8.

FIGURE N.8 Selecting Open in STATISTICA to open Excel file.
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2. In the Open dialog, select Excel Files (*.xls) from the Files of Type drop-down box (see
Figure N.9). Now find the file Tutorial_NHANES_data.xls and open it by double-
clicking it or selecting the file and clicking the Open button.

FIGURE N.9 Selecting an Excel File to open in STATISTICA.
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3. Once you open the file, the dialog shown in Figure N.10 will appear. Click on Import All
Sheets to a Workbook. This selection will load all the sheets in the Excel spreadsheet
into STATISTICA. This Excel file has only one sheet in it. You could selectively import
any sheet from an Excel file by clicking on the Import Selected Sheet to a Spreadsheet
button.

4. Another dialog appears with some options for importing your data (see Figure N.11).
Check the box next to Get Variable Names from First Row. This selection will take the
variable names from the first row of the Excel file and use them as names for all your
variables in STATISTICA. Otherwise, each variable would be assigned a number in
sequential order in STATISTICA. Now click OK, and the data file will be opened in
STATISTICA.

FIGURE N.10 Opening an Excel File in STATIS-

TICA; select Import All Sheets to a Workbook.

FIGURE N.11 Our Excel data sheet has vari-
able names listed in the first row; thus, select Get
Variable Names From First Row.
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5. To start Automated Neural Networks, select it from the Data Mining menu, as shown in
Figure N.12.

6. In the resulting dialog, select Classification as the type of neural network because we are
classifying subjects into either poor or good health status (see Figure N.13).

7. Click OK.

FIGURE N.12 Selecting Automated Neural Networks from STATISTICA.

FIGURE N.13 STATISTICA Automated Neural Networks new analysis dialog.
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8. A data selection dialog appears, as shown in Figure N.14. Click on the Variables button,
and a variable selection dialog will appear.

FIGURE N.14 Variable selection dialog in STATISTICA Automated Neural Networks.
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9. On the variable selection dialog, first select the output variable as Status, as shown in
Figure N.15. You can do this by clicking on it from the list or typing in variable number
85 in the box below the list.

10. Now you have to select your input variables. Input variables can have categorical values
such as education level or continuous values such as lab values. Income has been
selected as one of our variables, and this could be continuous or categorical. Since this
study categorized income into groups of income levels, it is categorical in this study. All
the variables selected in Weka happen to be categorical, so we will select those variables
under the categorical inputs heading. Again you can select these by clicking on them or
typing their assigned numbers in the box below the list. To select multiple variables
from the list, click on the first one and then hold down Ctrl while you click on the other
variables you want to include.

FIGURE N.15 Variables selected for analysis are highlighted above.
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11. Now click on the Sampling tab at the top of the dialog box (see Figure N.16). We will
keep the default of using 80% of the data set for training and 20% for testing. You can
change this however you would like.

12. Click OK and you will go to the next dialog.

FIGURE N.16 Sampling tab in STATISTICA Automated Neural Networks (SANN).
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13. On this dialog, shown in Figure N.17, you can select the types of networks to use and
how many networks you want to test and how many to retain. STATISTICA will retain
the best performing networks. For this tutorial, we will uncheck Radial Basis Function
(RBF) networks, since our wrapper was optimized for multilayer perceptron networks.
We will leave the number of networks to test at 20 and leave the number of networks to
retain at 5.

14. Click on Train, and STATISTICA will start testing neural networks. This process may
take several minutes to an hour, depending on your CPU speed.

FIGURE N.17 SANN Automated Network Search dialog with Quick tab selected.
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15. Once the testing is complete, STATISTICA displays the five top performing networks
(see Figure N.18). Results may vary each time this process is run, but you should
achieve accuracies around 70%. You can see in the results the details of each network
and its performance on both the training and testing data set.

FIGURE N.18 Results of SANN search showing the top five NN solutions (models).
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16. To compare ROC curves of the five different networks, click on the Liftcharts tab (see
Figure N.19).

FIGURE N.19 The Lift Charts tab will allow outputs of ROC curves.
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17. Click the ROC curve button to display ROC curves for each of the retained networks
(see Figure N.20).

Samples: Train

Sensitivity
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1.MLP 61-14-2
2.MLP 61-19-2
3.MLP 61-21-2
4.MLP 61-21-2
5.MLP 61-26-2

FIGURE N.20 ROC curves for each of the five retained STATISTICA Automated Neural Networks.
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18. You can also look at the actual output of the network and the confidence for each
prediction. Click on the Predictions (MLP\RBF) tab, as shown in Figure N.21. Then
check the boxes to include Targets, Output, and Confidence. On the right side,
deselect Train and select Test to look at the testing data instead of the training data.
After you have checked the items you want to look at, click on the Predictions button.
A spreadsheet will appear showing all the values you checked off.

FIGURE N.21 Actual output and confidence for each prediction can be obtained from the Prediction tab; select
type of prediction, what output you want, and select either Train or Test Sample. Click OK and a spreadsheet will
appear showing all the values checked.
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P A R T IV

MEASURING TRUE
COMPLEXITY, THE “RIGHT
MODEL FOR THE RIGHT

USE,” TOP MISTAKES, AND
THE FUTURE OF

ANALYTICS

In many ways, the purpose of this book is distilled in the following chapters of Part IV.
The information in the previous chapters and the practical experience provided by the
tutorials are but a prelude to the “symphony” of data mining the authors offer in these
chapters. To a large extent, this book was written backwards from the way it was viewed
initially. Indeed, we could have written only the chapters in Part IV, and we would have
fulfilled our desire to share the combined experience of over 100 years of analytical work.
We hope that you will enjoy these chapters and profit from them in multiple and unantici-
pated ways.
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PREAMBLE

How do you choose the next President of the United States (or any elected official)? Dif-
ferent people and groups of people have different ideas about who would be the best can-
didate to put into office. Totalitarian systems install the strongest person into office (or the
one with the most military power). This system leads almost always to repressive and uni-
lateral governments from the perspective of one person. Demographic systems form more
representative governments by giving all or part of the people a vote for the winner. In
the U.S. system, all eligible people have an equal vote, but the “super-voters” representing
each state in the Electoral College can reverse the popular vote. This foray into civics is an
introduction to the philosophy behind creating models that come as close as possible to
representing the significant “voices” in a data set (aspects of the target signal), and selecting
the best model to reflect them all. No single model can do it. We must let groups of equal
“super-voters” (like the Electoral College) cast their votes and add them up to decide the
“winning” predictions for any given case in the data set. We do this by creating an ensemble
of models, each perhaps using a different mathematical algorithm to predict the outcomes.

707Handbook of Statistical Analysis and Data Mining Applications # 2009, Elsevier Inc.



These algorithms “look” at the data in slightly different ways, just like the different states of
the union view a presidential candidate. And, the surprise of this chapter is that ensembles
are actually less complex in behavior than single models; that is, they are less flexible in
their adjustment to arbitrary changes in the training data, and thus can generalize to new
data more accurately.

Ensemble models—built by methods such as bagging (Breiman, 1996), boosting (Freund
and Shapire, 1996), and Bayesian model averaging—appear dauntingly complex, yet tend to
strongly outperform their component models on new data. This is a statistical paradox, as
the result appears to violate Occam’s Razor—the widespread belief that “the simpler of
competing alternatives is preferred.” We argue, however, that complexity has traditionally
been measured incorrectly. Instead of counting parameters (as with regression) to assess the
complexity of a modeling process (a “black box”), we need to measure the flexibility of the
modeling process—e.g., according to Generalized Degrees of Freedom, GDF (Ye, 1998).
By measuring a model’s function rather than its form, the role of Occam’s Razor is restored.
We’ll demonstrate this on a two-dimensional decision tree problem, where an ensemble of
several trees is shown to actually have less GDF complexity than any of the single trees
contained within it.

MODEL ENSEMBLES

A wide variety of competing methods is available for inducing models, and their
relative strengths are of keen interest. Clearly, results can depend strongly on the details
of the problems addressed, as shown in Figure 18.1 (from Elder and Lee, 1997), which
plots the relative out-of-sample error of five algorithms for six public-domain problems.
Every algorithm scored best or next-to-best on at least two of the six data sets. Michie
et al. (1994) built a decision tree from a larger such study (23 algorithms on 22 data sets)
to forecast the best algorithm to use given a data set’s properties. Though the study was
skewed toward trees—they were nine of the algorithms studied, and several selected data
sets exhibited sharp thresholds—it did reveal some useful lessons for algorithm selection
(Elder, 1996a).

Still, a method for improving accuracy more powerful than tailoring the algorithm has
been discovered: bundling models into ensembles. Figure 18.2 reveals the out-of-sample
accuracy of the models of Figure 18.1 when they are combined four different ways, includ-
ing averaging, voting, and “advisor perceptrons” (Elder and Lee, 1997).

Building an ensemble consists of two steps: (1) constructing varied models and (2) com-
bining their estimates. One may generate component models by varying case weights, data
values, guidance parameters, variable subsets, or partitions of the input space. Combination
can be done by voting, but is primarily accomplished through weights, with gating and advi-
sor perceptrons as special cases. For example, Bayesian model averaging sums estimates of
possible models, weighted by their posterior evidence. Bagging (bootstrap aggregating;
Breiman, 1996) bootstraps the training data set (usually to build varied decision trees) and
takes the majority vote or the average of their estimates. Boosting (Freund and Shapire, 1996)
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and ARCing (Breiman, 1996) iteratively build models by varying case weights (up-
weighting cases with large current errors and down-weighting those accurately estimated)
and employs the weighted sum of the estimates of the sequence of models.

The Group Method of Data Handling (GMDH; Ivakhenko, 1968) and its descendent,
Polynomial Networks (Barron et al., 1984; Elder and Brown, 2000), can be thought of as
early ensemble techniques. They build multiple layers of moderate-order polynomials, fit
by linear regression, where variety arises from different variable sets being employed by
each node. Their combination is nonlinear since the outputs of interior nodes are inputs
to polynomial nodes in subsequent layers. Network construction is stopped by a simple
cross-validation test (GMDH) or a complexity penalty. Another popular method, stacking
(Wolpert, 1992), employs neural networks as components (whose variety can stem from
simply using different guidance parameters, such as initialization weights), combined in a
linear regression trained on leave-one-out estimates from the networks.

Lastly, model fusion (Elder, 1996b) achieves variety by averaging estimates of models
built from very different algorithms (as in Figures 18.1 and 18.2). Their different basis
functions and structures often lead to their fitting the data well in different regions, as
suggested by the two-dimensional surface plots of Figure 18.3 for five different algorithms.

Relative Performance Examples:  5 Algorithms on 6 Data Sets
(John Elder, Elder Research & Stephen Lee, U. Idaho, 1997)
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FIGURE 18.1 Relative out-of-sample error of five algorithms on six public-domain problems (from Elder
and Lee, 1997).
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Figure 18.4 reveals the out-of-sample results of so fusing up to five different types of
models on a credit scoring application. The combinations are ordered by the number
of models involved, and Figure 18.5 highlights the finding that the mean error reduces
with increasing degree of combination. Note that the final model with all five components
does better than the best of the single models.

COMPLEXITY

One criticism of ensembles is that interpretation of the model is now even less possible.
For example, decision trees have properties so attractive that, second to linear regression
(LR), they are the modeling method most widely employed, despite having the worst accu-
racy of the major algorithms. Bundling trees into an ensemble makes them competitive on
this crucial property, though at a serious loss in interpretability. To quantify this loss, note
that an ensemble of trees can itself be represented as a tree, as it produces a piecewise
constant response surface. But the tree equivalent to an ensemble can have vastly more
nodes than the component trees; for example, a bag of M “stumps” (single-split binary
trees) can require up to 2M leaves to be represented by a single tree.

Essentially every Bundling method improves performance
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FIGURE 18.2 Relative out-of-sample error of four ensemble methods on the problems of Figure 18.1 (from
Elder and Lee, 1997).
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FIGURE 18.3 Estimation surfaces of five modeling algorithms. Clockwise from top left: decision tree, nearest
neighbor, polynomial network, kernel; center: Delaunay planes (Elder, 1993).
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Indeed, bumping (Tibshirani and Knight, 1999a) was designed to get some of the benefit
of bagging without requiring multiple models, in order to retain some interpretability. It
builds competing models from bootstrapped data sets and keeps only the one with least
error on the original data. This typically outperforms, on new data, a model built simply
on the original data, likely due to a bumped model being robust enough to do well on
two related but different data sets. But the accuracy increase is less than with ensembles.

Another criticism of ensembles—more serious to those for whom an incremental increase
in accuracy is worth a multiplied decrease in interpretability—is that surely their increased
complexity will lead to overfit and, thus, inaccuracy on new data. In fact, not observing
ensemble overfit in practical applications has helped throw into doubt, for many, the
Occam’s Razor axiom that generalization is hurt by complexity. [This and other critiques
of the axiom are argued in an award-winning paper by Domingues (1998).]

But are ensembles truly complex? They appear so, but do they act so? The key question is
how we should measure complexity. For LR, you can merely count terms, yet this is known
to fail for nonlinear models. It is possible for a single parameter in a nonlinear method to
have the influence of less than a single linear parameter, or greater than several—e.g., three
effective degrees of freedom for each parameter in Multivariate Adaptive Regression Splines
(Friedman, 1991; Owen, 1991). The under-linear case can occur with, say, a neural network
that hasn’t trained long enough to pull all its weights into play. The over-linear case is more
widely known. For example, Friedman and Silverman (1989) note: “[The results of Hastie
and Tibshirani (1985)], together with those of (Hinkley, 1969, 1970) and (Feder, 1975), indi-
cate that the number of degrees of freedom associated with nonlinear least squares regres-
sion can be considerably more than the number of parameters involved in the fit.”

The number of parameters and their degree of optimization is not all that contributes to a
model’s complexity or its potential for overfit. The model form alone doesn’t reveal the
extent of the search for structure. For example, the winning model for the 2001 Knowledge
Discovery and Data Mining (KDD) Cup employed only three variables. But the data had
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FIGURE 18.5 Box plot for Figure 18.4; median (and mean) error decreased as degree of combination increased.
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140,000 candidate variables, constrained by only 2,000 cases. Given a large enough ratio of
unique candidate variables to cases, searches are bound to find some variables that look
explanatory even when there is no true relationship. As Hjorth (1989) warned: “. . . the eval-
uation of a selected model can not be based on that model alone, but requires information
about the class of models and the selection procedure.” We thus need to employ model
selection metrics that include the effect of model selection!

There is a growing realization that complexity should be measured not just for a model,
but for an entire modeling procedure, and that it is closely related to that procedure’s flexibil-
ity. For example, the recent Covariance Inflation Criterion (Tibshirani and Knight, 1999b)
fits a model and saves the estimates, then randomly shuffles the output variable, reruns
the modeling procedure, and measures the covariance between the new and old estimates.
The greater the change (adaptation to randomness, or flexibility), the greater the complexity
penalty needed to restrain the model from overfit. Somewhat more simply, Generalized
Degrees of Freedom, GDF (Ye, 1998), randomly perturbs (adds noise to) the output variable,
reruns the modeling procedure, and measures the changes to the estimates. Again, the more
a modeling procedure adapts to match the added noise, the more flexible (and therefore
more complex) its model is deemed to be.

The key step in both—a randomized loop around a modeling procedure—is reminiscent
of the Regression Analysis Tool (Faraway, 1991), which measured, through resampling, the
robustness of results from multistep automated modeling. Whereas at that time sufficient
resamples of a 2-second procedure took 2 days, increases in computing power have made
such empirical measures much more practical.

GENERALIZED DEGREES OF FREEDOM

For LR, the degrees of freedom, K, equal the number of terms, though this does not
extrapolate to nonlinear regression. But there exists another definition that does:

K ¼ trace Hat Matrixð Þ ¼ S dY hat=dY ð1Þ
where

dY ¼ Ye� Y; and dY hat ¼ Ye hat� Y hat ð2Þ
Y hat ¼ f Y;Xð Þ for model f ðÞ; output Y; and input vectors;X;Ye hat ¼ f Ye;Xð Þ ð3Þ

Ye ¼ YþNð0;seÞ:1 ð4Þ

GDF is thus defined to be the sum of the sensitivity of each fitted value, Y_hati, to pertur-
bations in its corresponding output, Yi. (Similarly, the effective degrees of freedom of a
spline model is estimated by the trace of the projection matrix, S: Y_hat ¼ SY.) Ye (1998)

1 We enjoyed naming the perturbed output, (Y þ error) after GDF’s inventor, Ye.
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suggests generating a table of perturbation sensitivities, then employing a “horizontal”
method of calculating GDF, as diagrammed in Figure 18.6.

Fit an LR to dY_hati versus dYi using the row of data corresponding to case i; then add
together the slopes, mi. (Since Yi and Y_hati are constant, the LR simplifies to be of Ye_hati
versus Yei.) This estimate appears more robust than that obtained by the “vertical” method
of averaging the value obtained for each column of data (i.e., the GDF for each model or
perturbation data set).

EXAMPLES: DECISION TREE SURFACE WITH NOISE

We take as a starting point for our tests the two-dimensional piecewise constant surface
used to introduce GDF (Ye, 1998), shown in Figure 18.7.

It is generated by (and so can be perfectly fit by) a decision tree with five terminal (leaf)
nodes (i.e., four splits), whose smallest structural change is 0.5. Figure 18.8 illustrates the
“surface” after Gaussian noise N(0, 0.5) has been added, and Figure 18.9 shows 100 random
samples of that space. These tree þ noise data are the (X,Y) data set employed for the experi-
ments. For GDF perturbations, we employed 50 replications, where each added to Y Gaussian
noise, N(0, 0.25), having half the standard deviation of the noise already in the training data
(a rule of thumb for perturbation magnitude).

Figure 18.10 shows the GDF versus K (number of parameters) sequence for LR models,
single trees, and ensembles of five trees (and two more sequences described later).
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Confirming theory, note that the GDF for the LR models closely matches the number of
terms, K. For decision trees of different sizes, K (i.e., maximum number of split thresholds),
the GDF grew at about 3.67 times the rate of K. Bagging (bootstrap sampling the data sets
and averaging the outputs) five trees together, the rate of complexity growth is 3.05. Sur-
prisingly, perhaps, the bagged trees of a given size, K, are about a fifth simpler, by GDF,
than each of their components!

Figure 18.11 illustrates two of the surfaces in the sequence of bagged trees. Bagging five
trees limited to four leaf nodes (three splits) each produces the estimation surface of
Figure 18.11a. Allowing eight leaves (seven splits) produces that of Figure 18.11b. The
bag of more complex trees creates a surface with finer detail (most of which here does
not relate to actual structure in the underlying data-generating function, as the tree is more
complex than needed). For both bags, the surface has gentler stairsteps than those of a lone
tree, revealing how bagging trees can especially improve their generalization on smooth
functions.
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Expanding the experiment (after Ye, 1998), we appended eight random candidate input
variables to X, to introduce selection noise, and reran the sequence of individual and bagged
trees. Figures 18.12a and 18.12b illustrate two of the resulting bagged surfaces (projected
onto the space of the two real inputs), again for component trees with three and seven
splits, respectively. The structure in the data is clear enough for the under-complex model
to avoid using the random inputs, but the over-complex model picks some up. The GDF
progression for the individual and bagged trees with 10 candidate inputs is also shown
in Figure 18.10. Note that the complexity slope for the bag (4.15) is again less than that
for its components (4.96). Note also that the complexity for each 10-input experiment is
greater than its corresponding 2-input one. Thus, even though you cannot tell—by looking
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at a final model using only the real inputs X1 and X2—that random variables were consid-
ered, the chance for overfit was greater, and this is appropriately reflected in the GDF mea-
sure of complexity.

SUMMARY AND DISCUSSION

Bundling competing models into ensembles almost always improves generalization—
and using different algorithms is an effective way to obtain the requisite diversity of com-
ponents. Ensembles appear to increase complexity, as they have many more parameters than
their components, so their ability to generalize better seems to violate the preference for
simplicity embodied by Occam’s Razor. Yet, if we employ GDF—an empirical measure of
the flexibility of a modeling process—to measure complexity, we find that ensembles can
be simpler than their components. We argue that when complexity is thereby more prop-
erly measured, Occam’s Razor is restored.

Under GDF, the more a modeling process can match an arbitrary change made to its out-
put, the more complex it is. It agrees with linear theory but can also fairly compare very dif-
ferent, multistage modeling processes. In our tree experiments, GDF increased in the
presence of distracting input variables, and with parameter power (trees versus LR). It is
expected to also increase with search thoroughness, and to decrease with use of model
priors, with parameter shrinkage, and when the structure in the data is more clear relative
to the noise. Additional observations (constraints) may affect GDF either way.

Lastly, case-wise (horizontal) computation of GDF has an interesting byproduct: an iden-
tification of the complexity contribution of each case. Figure 18.13 illustrates these contribu-
tions for two of the single-tree models of Figure 18.10 (having three and seven splits,
respectively). The under-fit tree results of Figure 18.13a reveal only a few observations to
be complex; that is, to lead to changes in the model’s estimates when perturbed by random
noise. (Contrastingly, the complexity is more diffuse for the results of the overfit tree, in
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Figure 18.13b.) A future modeling algorithm could recursively seek such complexity contri-
bution outliers and focus its attention on the local model structure necessary to reduce them,
without increasing model detail in regions that are stable.

POSTSCRIPT

Complex predictive systems arm us with some powerful techniques for building models
that represent the major elements of the target signal dynamics among all cases in the data
set. But we must be careful not to go overboard in our search for complex solutions to what
we expect is a complex problem. Sometimes, we can capture the major dynamics in the tar-
get signalwith a relatively simple program—a solution is said to be ismore elegant.Chapter 19
presents the other half of the story of the search for the elegant solution. Just like models
can be overtrained, complexity can be overapplied. We need a modeling “stopping func-
tion,” like that used to prevent overtraining of a neural net. Chapter 19 provides a philo-
sophical approach to implementing stopping functions in our modeling design.
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PREAMBLE

The problem with seeking solutions to problems in the world is not that the world is just
more complicated than we think, but it is more complicated than we can think. Conse-
quently, our solutions are bound to be less complicated than the problems demand. Most
often, our response is to oversimplify, and one of our strategies is to follow what we think
are common perceptions to simplify our tasks. For example, many critics of early efforts of
man flying in airplanes rationalized that if God had meant man to fly, he would have
given us wings. Today, we understand that our technological capabilities are every bit as
much an enabler to do things as are our bodily appendages. The error of those critics
long ago is not in their understanding that men had never flown in recorded history, but
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in their presumption that man could not fly. Not only is nature more complicated than
we think it is, but our ability to apply human technology to understand it and harness it
is far greater than many can imagine.

The way in which we deal with most problems in the world follows that pathway of
thinking, in one way or another. Often, we are victims of our own narrow perceptions.
And we substitute those narrow perceptions for the much more complicated reality of the
situations. Rather than take the time to study and understand (at least in principle) all
aspects of a situation, we jump to a solution to a problem following a very narrow path
through a decision landscape constrained by our assumptions and presuppositions. Even
if the assumption is valid, we ignore effects of many other influences for the sake of gener-
ating a solution in the required time frame. Generating acceptable solutions in a given time
frame is commendable, but our usual way of doing it is not!

One of the common perceptions in data mining is that more is better. This is expressed in
the belief that

1. More is better.
2. Efficiency or sufficiency must be selected. (This is a false dichotomy, discussed next.)

MORE IS NOT NECESSARILY BETTER: LESSONS FROM
NATURE AND ENGINEERING

Efficiency is usually defined in terms that involve maximizing output and minimizing
input. The best solution is often defined in terms of the most efficient solution: This
idea is often referred to as the Efficiency Paradigm. This paradigm assumes that the goal of
efficiency is to maximize output while minimizing input.

In statistical analysis, the Efficiency Paradigm is expressed to define an efficient solution as
one that has a relatively small variance. One solution (e.g., an estimator) can be considered
more efficient than another if the covariance matrix of the second minus the covariance
matrix of the first is composed largely of positive numbers. When all the elements of the
resultant matrix are positive, it is called a positive semi-definite matrix. The most efficient
solution is one that is closest to a positive semi-definite matrix.

The statistical definition can be useful if the Efficiency Paradigm is correct in the context
of the solution. But what if it isn’t? Many examples in the real world appear to violate this
paradigm. For example, ecological succession occurs on a previously forested area when a
highly efficient grass community (defined in terms of productivity per gram of biomass) is
replaced by a less-efficient shrub community, which in turn is replaced by an even less effi-
cient forest community. The Efficiency Paradigm might still apply to the mature forest if
efficiency is defined in terms of accumulation of biomass over time rather than in terms
of productivity rate. In that case, sufficient productivity occurs to permit crown closure
and shading out of competing species, including highly productive grasses.

This approach to defining efficiency in terms of sufficiency is at the core of the current
debate on the definition of sustainable agriculture (Falvey, 2004). Voices supporting sustain-
able agriculture maintain that we should avoid thinking in terms of the false dichotomy of
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efficiency and sufficiency, and embrace both. Rather than make sufficiency dependent on
efficiency, we should turn the concept around and let efficiency be defined in terms of suf-
ficient solutions, rather than solutions of maximum productivity. In this natural context, we
might call this the Sufficiency Paradigm.

We might even replace the Efficiency Paradigm with the Sufficiency Paradigm in busi-
ness also. This paradigm shift in business should be reflected not only in the business goals
of a company, but also in the business processes followed to achieve them. In the context of
the theme of this book, we can prescribe this paradigm shift in the IT departments as a tech-
nical specific to enable and promote the development of the business organism.

If we follow the Sufficiency Paradigm in analytical data mart design and data mining
solution development, it will change the way we create data mining models. It will lead
us to accept solutions that are good enough (sufficient) to build the synergies and products
of the business organism, which will maximize productivity within the constraints of our
goals to promote long-term stability and growth.

Under the Sufficiency Paradigm, the best data mining solutions will not be defined solely
in terms of maximizing financial productivity. Rather, they will be defined in terms of how
well they work together with other business processes to enhance the cohesive action
throughout the entire profit chain. This cohesive action permits the company to be proac-
tive and adaptive to change, rather than reactive and hampered by it. This set of features
is intrinsically organic rather than mechanical.

EMBRACE CHANGE RATHER THAN FLEE FROM IT

In his book Bionomics: Economy as Ecosystem, Rothschild (1991) maintains that mechanistic
organizations fear change because it happens faster than their rather rigid business
processes can respond to it. Peters (1987) recommends that companies design business pro-
cesses to take advantage of change to evolve new market niches. Peters also recommends
that information should flow freely to encourage (and spread the contagion of) innovation.
This free flow will permit even bad news to travel fast, and even encourage it to do so.
Mistakes become like pain that the whole body feels, not just at the receptor site. Sharing
of this information by a foot in the business organism prevents the other foot from making
the same mistake. The business organism learns from mistakes and can be driven by these
mistakes to evolve into a more successful state.

DECISION MAKING BREEDS TRUE IN THE
BUSINESS ORGANISM

Often, data mining results may drive decision-making activities to design actions in
remote parts of the organization. But these decisions may be difficult or impossible to
implement. For example, it may be very difficult (or impossible under constraints of time
and budget) to re-create the Customer Analytic Record (CAR) in the production database.
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One reason for this is that it may be very difficult to access all data sources used to create
the CAR. Another reason could be that no business processes exist in production operations
to do the necessary data preparation to create the CAR. This disconnect between modeling
and production operations represents a gap in the information flow pathway. This is why
many data mining models just sit on the shelf in IT and are not implemented in production.

The business organism must have a decision flow pathway between analysis and pro-
duction (sites of action) that is properly designed to transmit information quickly and
efficiently. This is the Digital Nervous System (Gates, 1999).

Muscles in the Business Organism

Another very important system in the pathway leading to business action is represented
by the business processes (muscles) that are properly trained to turn the decision informa-
tion into action. These business processes at the site of action must be developed before they
can receive the decision information and act on it. Therefore, the data mining solution must be
reverse-engineered from the point of action. That means you must model the model develop-
ment process from the back end in the business unit, rather than from the front end in IT.
Implementation requirements must be designed for each step in the decision information
pathway, starting with the action site, and proceeding toward model development. Inputs
for each step must be coupled with necessary information transforms to generate the
precise nature of the outputs of that step required as inputs of the next step in the process.

The overall design of the IT network systems and business process for each step along
the way is an expression of building the solution model from the top down (following Plato).
The detailed design of the business and analytical processes at each step is an expression of
building the solution model from the bottom up (following Aristotle). Along the way, compro-
mises and assumptions must be made to jump over problems that would otherwise prevent
information flow. If we try to build the solution model solely from the top down or from the bottom
up, we will reach a point at which we discover that we don’t know enough or understand enough to
link the steps in the process. System engineers quantify these links in simple ways and call
them transfer functions. This is the way complex systems are modeled in the real world.

What Is a Complex System?

A complex system is an organization of interconnected and interacting components, whose
behaviour is not obvious from the properties of the individual parts. We introduced these
systems-level properties in Chapter 1 as emergent properties. These emergent properties are
not obvious and may not even exist in the set of properties of the individual parts. The
example of the rain forest given in Chapter 1 was used to illustrate how these emergent
properties can be among the primary aspects of the complex system that permit it to exist
and function as a system.

The concept of the business organism can be viewed in the context of a complex system.
Like the forest system which changes over time, the business organism can adapt to chang-
ing business conditions. Therefore, to facilitate data mining solutions in such an adaptive

726 19. THE RIGHT MODEL FOR THE RIGHT PURPOSE: WHEN LESS IS GOOD ENOUGH

IV. TRUE COMPLEXITY, THE “RIGHT MODEL,” TOP MISTAKES, AND THE FUTURE



business organism, the entire decision pathway must be designed with such solutions in
mind. This can be done very effectively in an exploration data mart, dependent on an enter-
prise data warehouse. The concept of the business ecosystem as a part of the corporate informa-
tion factory was spawned by Inmon et al. (1998) based on articles in DM-Review by Imhoff
and Sousa (1997). In the first article, Imhoff and Sousa presented the concept of the business
ecosystem driven by a brain, composed partly of memory (the relational data warehouse)
and partly of an analytical system served by information stored in denormalized form—
the analytical data mart (Figure 19.1). This approach to data warehousing support for ana-
lytical modeling was refined by Inmon et al. (1998).

This data mart, along with others designed for other reporting purposes, could be
expressed either in logical format or physical format. A physical data mart is hosted on a
separate system with database schemas designed to serve specialized purposes. The logical
data mart is hosted on the data warehouse system, and is implemented in the form of data-
base views or just composed of a group of denormalized tables containing aggregate data
suitable for creating the CAR.

Often, the easiest place to begin is to build a logical data mart by designing tables, such
as householding tables, with summary data aggregated at the account, individual, and
household levels. Other tables containing demographic data (for example) can be added
to the logical data mart by joining other kinds of data with keys in common with the house-
holding tables. This logical structure is well suited as a data source for data mining.

This design is very
effective in providing data
legibility and access
performance when
business dimensions and
facts are reasonably
stable.   

This design, with two
dimensions denormalized,
will improve performance 
when browsing Dimensions. 
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But a properly designed data source is only one element in the decision chain. The other
elements include the following:

• The IT network structure in a company is the "digital nervous system," through which
data mining results are communicated to the site of business action.

• The business processes (muscles) properly conditioned move the service and product
function of the company (the bones) to generate profit.

• The right actions are produced.
• Results of the actions (e.g., customer responses) generate more or less value for the

company.
• Results are fed back to the business brain and provide a basis for learning how to build

better models (the virtuous cycle of Berry and Linoff, 1997);

This learned response is characteristic of an adaptive organism rather than a static
machine. In the system composing the business organism, the decisions designed in IT
breed true, as they pass through the time-steps in the process from one part of the system
to another. That is, decisions remain unchanged in nature as they pass through various
functions in the business organism through time. The reason they can remain unchanged
is that they are designed right up-front, so they fit the decision-response pathway through
each process from perception in the brain to the site of action.

THE 80:20 RULE IN ACTION

In 1906, an Italian economist Vilfredo Pareto observed that about 20% of the people owned
about 80% of the wealth. This principle was picked up by quality management pioneer
Joseph Juran in the late 1940s, in which he cast his concept of the vital few and the trivial
many (Juran, 1951). Juran generalized this principle in quality management to postulate that
20% of something is always responsible for 80% of the results. He adopted Pareto’s principle
to explain this, and named it Pareto’s Principle, or Pareto’s Law (AKA the “80:20 Rule”).

The creation of sufficient data mining modeling solutions may follow the 80:20 Rule also.
Certainly, the structure of the modeling process follows this rule, in that about 80% of the
modeling project time is spent in data preparation, and only about 20% is spent in training
and testing the model. Based on the 80:20 Rule, we might expect to achieve a sufficient
modeling solution in many cases, with only 20% of the effort we could spend modeling
to create the solution with maximum predictability. There is some support for believing this
in the concept of agile modeling.

AGILE MODELING: AN EXAMPLE OF HOW TO CRAFT
SUFFICIENT SOLUTIONS

One of the most insightful approaches to modeling comes from the environment of
Extreme Programming (XP) software development. The premise of XP is to deliver the soft-
ware the customer needs when it is needed. Niceties, enhancements, and other bells and
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whistles have to take the back seat to utility and timeliness. The approach of XP was
extended by Ambler (2002) to cover the modeling of the entire software development pro-
cess, referred to as agile modeling. One of the most important utility functions in agile mod-
eling is the feedback loop to the stakeholders. Stakeholders are brought into the
development process at key points in the project to validate the current state of the potential
utility in their perception.

Ambler cites six propositions of agile modeling that pertain very closely to the develop-
ment of data mining models.

1. Just barely good enough (JBGE) is actually the most effective policy: JBGE is
analogous to the inflection point on a curved response graph. The JBGE point on
Figure 19.2 is the most reasonable position for effort to end. Assuming that additional
effort could be spent on creating other JBGE models for other purposes, the optimum
benefit across the entire modeling operations would restrict modeling efforts to the
JBGE levels of effort.

2. JBGE does not imply poor quality: The JBGE level of model production may not
produce the highest accuracy, but it is sufficient to get the job done for which the model
was commissioned. The stakeholders of the model are the best judges of the utility of the
model, not the modeler.

3. JBGE depends on the situation: What is good enough for one situation may not be
good enough for another situation. The classic example is discussed in Chapter 17,
where a 90% accurate model, good enough for most situations, is certainly not good
enough for a fraud model.

4. The JBGE model evolves over time: The initial model can be refined and/or updated
over time. As needs and conditions change, the model can change. The characteristics
of the model can adapt to new conditions. In this way, a model is like a biological
species, which can respond to changing environmental conditions by changes in its
very nature.
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5. The point of maximal benefit comes before you think it will: In Figure 19.2, the point
of maximum net benefit occurs at about the 4 level of effort. It may appear
counterintuitive that additional effort is associated with a decline in benefit, but when
additional costs are considered, the 4.0 level of effort is best.

6. The realized value of a model may exceed the perceived value: This statement may
appear counterintuitive at first, but further consideration in the context of the business
environment can clarify it. The traditional concept of value rises with additional effort.
But much potential value can be masked by delays. The realized value of a timely model
(even though it is not the most accurate possible) can far exceed that of an untimely
model. For example, a medical diagnostic model of only moderate accuracy delivered in
time to define a successful treatment may be much more valuable than a more accurate
model delivered later, particularly if the patient dies in the meantime. We can see this
dynamic expressed in Figure 19.3.

The cumulative value shown in Figure 19.3 represents the traditional view of defining
value according to the accuracy of the model and the features included in it. Naturally,
as effort increases throughout the development project, higher accuracy is achieved and
more features are added. But the true utility value of the model may follow the curve of
net benefit rather than the curve of the cumulative value.

POSTSCRIPT

This chapter (and indeed the whole book) is designed to present the case that many
times, less is good enough. In the book as a whole, we present very few equations. Rather,
we present intuitive explanations of the concepts presented which are sufficient to enable
you to understand enough of the theory and mathematics underlying the practice of data
mining to create acceptable models. Naturally, we would like to have models that are as
accurate as possible. The definition of possible, though, must be composed of elements of
time requirements, benefits relative to present methods in a time domain. As in the medical
diagnosis example discussed earlier, it may be better to shoot for a model of lower accuracy
finished sooner than to wait for a more predictive model later. In this context, our greatest
challenge in data mining is not finding ways to analyze data, but deciding when less per-
formance is good enough.
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In the next chapter, we will discuss some caveats in data mining practice, which will help
you to implement your appropriate elegant model designs. Commonly attributed to Robert
Burns, the phrase "The best-laid plans of mice and men often go astray" really does apply to
data mining practice. We can design the very best modeling system, and it may fail miser-
ably when we try to apply it. Chapter 20 presents 11 common mistakes to avoid so that you
are able to prevent this failure.
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PREAMBLE

Mining data to extract useful and enduring patterns remains a skill arguably more art
than science. Pressure enhances the appeal of early apparent results, but it is all too easy
to fool yourself. How can you resist the siren songs of the data and maintain an analysis
discipline that will lead to robust results? It is essential to not lack (proper) data, focus on
training, rely on one technique, ask the wrong question, listen (only) to the data, accept
leaks from the future, discount pesky cases, extrapolate (practically and theoretically),
answer every inquiry, sample casually, or believe the best model.
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INTRODUCTION

It has been said that good judgment comes through experience, but experience seems to
come through bad judgment! In two decades of mining data from diverse fields, we have
made many mistakes, which may yet lead to wisdom. In the following sections, we briefly
describe, and illustrate from examples, what we believe are the “Top 10” mistakes of data
mining, in terms of frequency and seriousness. Most are basic, though a few are subtle.
All have, when undetected, left analysts worse off than if they’d never looked at their data.

After compiling the list, we realized that an even more basic problem—mining without
(proper) data—must be addressed as well. So, numbering like a computer scientist (with
an overflow problem), here are mistakes 0 to 10.1

0. LACK DATA

To really make advances with an analysis, you must have labeled cases, i.e., an output
variable. With input variables only, all you can do is look for subsets with similar character-
istics (cluster) or find the dimensions that best capture the data variation (principal compo-
nents). These unsupervised techniques are much less useful than a good (supervised)
prediction or classification model. Even with an output variable, though, the most inter-
esting class or type of observation is usually the most rare by orders of magnitude. For
instance, roughly 1/10 of “risky” individuals given credit will default within 2 years,
1/100 people mailed a catalog will respond with a purchase, and perhaps 1/10,000 banking
transactions of a certain size require auditing. The less probable the interesting events, the
more data it takes to obtain enough to generalize a model to unseen cases. Some projects
probably should not proceed until enough critical data are gathered to make them
worthwhile.

For example, on a project to discover fraud in government contracting, known fraud
cases were so rare that strenuous effort could initially only reduce the size of the haystack
in which the needles were hiding.2 That is, modeling served to assure that the great major-
ity of contracts were almost surely not fraudulent, which did enable auditors to focus their
effort. But more known fraud cases—good for data miners, but bad for taxpayers—could
have provided the modeling traction needed to automatically flag suspicious new cases
much sooner. This was certainly the situation on another project, which sought to discover
collusion on tax fraud. Unfortunately (for honest taxpayers), there were plenty of training

1 Most examples are from our own and our colleagues’ experiences, but some identifying details are

mercifully withheld.
2 Virtually all known cases were government workers who had, out of guilt, turned themselves in. Most, it

seems, meant to pay back what they had fraudulently obtained (but how?). One audacious fraudster was

discovered, however, after coworkers realized that the clerk had been driving a different sports car to work

every day of the week!
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examples, but their presence did lead to stronger, immediate modeling results, which was
ultimately beneficial to taxpayers.

You can’t mine without data, but not just any data will work. Many data mining projects
have to make do with “found” data, not the results of an experiment designed to illuminate
the question studied. It’s like making a salad out of weeds found in the yard.

One sophisticated credit-issuing company realized this when seeking to determine if
there was a market for its products in the class of applicants previously routinely dismissed
as being too risky. Perhaps a low-limit card would be profitable, and even help a deserving
subset of applicants pull themselves up in their credit rating?3 But the company had no data
on such applicants by which to distinguish the truly risky from those worth a try; its tradi-
tional filters excluded such individuals from even initial consideration. So the company
essentially gave (small amounts of) credit almost randomly to thousands of risky applicants
and monitored their repayments for 2 years. Then it built models to forecast defaulters
(those late on payments by 90þ days) trained only on initial application information. This
large investment in creating relevant data paid off in allowing the company to rationally
expand its customer base.

1. FOCUS ON TRAINING

Only out-of-sample results matter; otherwise, a lookup table would always be the best
model. Researchers at the MD Anderson medical center in Houston a decade ago used neu-
ral networks to detect cancer. Their out-of-sample results were reasonably good, though
worse than training, which is typical. They supposed that longer training of the network
would improve it—after all, that’s the way it works with doctors—and were astonished
to find that running the neural network for a week (rather than a day) led to only slightly
better training results and much worse evaluation results. This was a classic case of overfit,

3 For a decade now, the credit industry has mailed over a billion offers a year to American households; the

high-risk market was one of the few places not saturated a few years ago. Credit profits are nonlinear with

risk, and remind us of the triage system established during the Napoleonic wars, when the levee en masse

swelled the battlefields and, combined with the new technology of cannons, etc., led to an army’s medical

resources being completely overwhelmed. Battlefield wounds were classified into three levels: the most

minor to be passed by and treated later (if at all), more serious to receive immediate attention, but the most

serious were judged not likely to be worth a physician’s time. (We can envision a combatant, aware of

hovering between the latter two classes insisting, like the Black Knight in the Monty Python movie, “What?

The leg gone? It’s just a flesh wound!”) Likewise, credit companies make the most profit on individuals in

the middle category of “woundedness”—those who can’t pay off their balance, but keep trying. But they

lose 5–10 times as much on clients just a little worse off, who eventually give up trying altogether. So, for

models to be profitable at this edge of the return cliff, they have to forecast very fine distinctions. Recent

downturns in the economy have severely punished the stocks of companies that aggressively sought that

customer niche—especially if they did not give obsessive attention to model quality.
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where obsession with getting as much as possible out of training cases focuses the model
too much on the peculiarities of that data to the detriment of inducing general lessons that
will apply to similar, but unseen, data. Early machine learning work often sought, in fact, to
continue “learning” (refining and adding to the model) until achieving exact results on
known data—which, at the least, insufficiently respects the incompleteness of our knowl-
edge of a situation.

The most important way to avoid overfit is to reserve data. But since data—especially
cases of interest—are precious, you must use resampling tools, such as bootstrap, cross-
validation, jackknife, or leave-one-out. Traditional statistical significance tests are a flimsy
defense when the model structure is part of the search process, though the strongest of pen-
alty-based metrics, such as Bayesian Information Criterion or Minimum Description
Length, can be useful in practice.

With resampling, multiple modeling experiments are performed, with different sam-
ples of the data, to illuminate the distribution of results. If you were to split the data into
training and evaluation subsets a single time, the evaluation accuracy result might largely
be due to luck (either good or bad). By splitting it, say, 10 different ways and training on
the 90% sets and evaluating on the out-of-sample 10% sets, you have 10 different accuracy
estimates. The mean of this distribution of evaluation results tends to be more accurate
than a single experiment, and it also provides, in its standard deviation, a confidence
measure.

Note that resampling evaluates whatever is held constant throughout its iterations, or
“folds.” That is, you can set the structure (terms) of a model and search for its parameter
values over multiple data subsets; then the accuracy results would apply to that fixed
model structure. Or you could automate multiple stages of the process—e.g., outlier detec-
tion, input selection, interaction discovery—and put that whole process inside a resampling
loop. Then it’s the accuracy distribution of that full process that is revealed.

In the end, you have multiple overlapping models; which is the model to use? One
approach is to choose a single model (perhaps by its beauty rather than its accuracy).
Another is to rerun the model-building process with all the data and assume that the
resulting model inherits the accuracy properties measured by the cross-validation folds.
A third is to use the variety of models in an ensemble, as discussed on Mistake 10, and
in Chapter 13.

2. RELY ON ONE TECHNIQUE

“To a little boy with a hammer, all the world’s a nail.” All of us have had colleagues (at
least) for whom the best solution for a problem happens to be the type of analysis in which
they are most skilled! For many reasons, most researchers and practitioners focus too nar-
rowly on one type of modeling technique. But, for best results, you need a whole toolkit.
At the very least, be sure to compare any new and promising method against a stodgy con-
ventional one, such as linear regression (LR) or linear discriminant analysis (LDA). In a
study of articles in a neural network journal over a 3-year period (about a decade ago), only
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17% of the articles avoided mistakes 1 and 2. That is, five of six referred articles either looked
only at training data or didn’t compare results against a baseline method, or made both of
those mistakes. We can only assume that conference papers and unpublished experiments,
subject to less scrutiny, are even less rigorous.

Using only one modeling method leads us to credit (or blame) it for the results. Most
often, it is more accurate to blame the data. It is unusual for the particular modeling tech-
nique to make more difference than the expertise of the practitioner or the inherent diffi-
culty of the data—and when the method will matter strongly is hard to predict. It is best
to employ a handful of good tools. Once the data are made useful—which usually eats most
of your time—running another algorithm with which you are familiar and analyzing its
results adds only 5–10% more effort. (But to your client, boss, or research reviewers, it looks
like twice the work!)

The true variety of modeling algorithms is much less than the apparent variety, as many
devolve to variations on a handful of elemental forms. But there are real differences in
how that handful builds surfaces to “connect the dots” of the training data, as illustrated
in Figure 18.3 for five different methods—decision tree, polynomial network, Delaunay triangles
(Elder, 1993), adaptive kernels, and nearest neighbors—on (different) two-dimensional input
data. Surely some surfaces have characteristics more appropriate than others for a given
problem.

Figure 18.1 (after Elder & Lee, 1997) reveals this performance issue graphically. The
relative error of five different methods—neural network, logistic regression, linear vector quan-
tization, projection pursuit regression, and decision tree—is plotted for six different problems
from the Machine Learning Repository.4 Note that “every dog has its day”; that is, that
every method wins or nearly wins on at least one problem.5 On this set of experiments,
neural networks came out best, but how do you predict beforehand which technique will
work best for your problem?6 Best to try several and even use a combination (as covered
in Mistake 10 and Chapter 13).

4 The worst out-of-sample error for each problem is shown as a value near 1 and the best as near 0. The

problems, along the x-axis, are arranged left-to-right by increasing proportion of error variance. So the

methods differed least on the Pima Indians Diabetes data and most on the (toy) Investment data. The

models were built by advocates of the techniques (using S implementations), reducing the “tender loving

care” factor of performance differences. Still, the UCI ML repository data are likely overstudied; there are

likely fewer cases in those data sets than there are papers employing them!
5 When one of us used this colloquialism in a presentation in Santiago, Chile, the excellent translator

employed a quite different Spanish phrase, roughly “Tell the pig Christmas is coming!” We had meant

every method has a situation in which it celebrates; the translation conveyed the concept on the flip-side:

“You think you’re something, eh pig? Well, soon you’ll be dinner!”
6 An excellent comparative study examining nearly two dozen methods (though nine are variations on

decision trees) against as many problems is (Michie et al., 1994) reviewed by (Elder, 1996). Armed with the

matrix of results, the authors even built a decision tree to predict which method would work best on a

problem with given data characteristics.
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3. ASK THE WRONG QUESTION

It is first important to have the right project goal; that is, to aim at the right target. This
was exemplified by a project at Shannon Labs, led by Daryl Pregibon, to detect fraud in
international calls. Rather than use a conventional approach, which would have tried to
build a model to distinguish (rare but expensive) fraud from (vast examples of) nonfraud,
for any given call, the researchers characterized normal calling patterns for each account
(customer) separately. When a call departed from what was the normal pattern for that
account, an extra level of security, such as an operator becoming involved, was initiated.
For instance, if one typically called a few particular countries each week, briefly, during
weekdays, a call to a different region of the world on the weekend would bear scrutiny.
Efficiently reducing historical billing information to its key features, creating a mechanism
for the proper level of adaptation over time, and implementing the models in real time for
vast streams of data provided interesting research challenges. Still, the key to success was
asking the right question of the data. The ongoing “account signature” research won tech-
nical awards (at KDD, for example) but, more importantly, four researchers, part time in a
year, were able to save their company enough money to pay the costs of the entire Shannon
Labs (of 400 people) for the next year7—an impressive example of data mining return on
investment (ROI).

Even with the right project goal, it is essential to also have an appropriate model goal.
You want the computer to “feel” about the problem like you do—to share your multifactor
score function, just as stock grants or options are supposed to give key employees a similar
stake as owners in the fortunes of a company.8 But analysts and tool vendors almost always
use squared error as the criterion, rather than one tailored to the problem. Lured by the
incredible speed and ease of using squared error in algorithms, we are like drunks looking
for lost keys under the lamppost—where the light is better—rather than at the bar where
they were likely dropped.

For instance, imagine that we’re trying to decide whether to invest in our company’s stock
as a pension option, and we build a model using squared error. Say it forecasts that the price
will rise from $10 to $11 in the next quarter, and it goes on to actually rise to $14. We’ve
enjoyed a positive surprise; we expected a 10% gain but got 40%.9 But when we’re entering
in that data for the next go-round, the computer has a different response; it sees an error of
$3, between the truth and the estimate, and squares that to a penalty of 9. It would have more

7 They were rewarded, as we techno-nerds like, with bigger toys. The group got a “Data Wall”—a 100 � 200

computer screen, complete with couch, with which to visualize data. As it was often commandeered by

management for demonstrations, the research group was eventually provided a second one to actually use.
8 Unfortunately, the holder of an option has a different score function from the owner of the stock. The

option is very valuable if the company thrives, but only worthless if it doesn’t. Yet, the owner can be

seriously hurt by a downturn. Thus, a manager’s rational response to having options is to take on increased

risk—to “shoot the moon” for the potential up-side reward. To better align owner and management

interests, it is better to grant stock outright, rather than (cheaper, but more inflammatory) options.
9 Of course, our joy is short-lived, as we kick ourselves for not mortgaging the house and betting even more!

Fear and greed are always at war when dealing with the markets.
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than twice “preferred” it if the price had dropped –$1 to $9; then its squared error would only
have been 4. A criterion that instead punishes negative errors much more than positive errors
would better reflect our preferences.

Though conventional squared error can often put a model into a serviceable region of per-
formance, the function being optimized has a thorough effect on the suitability of the final
model. “Inspect what you expect,” a retired IBM friend often says about managing projects.
Similarly, you won’t produce the best-spelling students if your grading has focused on pen-
manship. When performance is critical, have the computer do not what’s easiest for it (and
thereby, us) but what’s most useful. To best handle custom metrics, analysts need a strong
multidimensional (and preferably, multimodal) optimization algorithm; still, use of even sim-
ple random search with a custom score function is usually better than not customizing.10

4. LISTEN (ONLY) TO THE DATA

Inducing models from data has the virtue of looking at the data afresh, not constrained
by old hypotheses. But, while “letting the data speak,” don’t tune out received wisdom.
Experience has taught these once brash analysts that those familiar with the domain are
usually more vital to the solution of the problem than the technology we bring to bear.

Often, nothing inside the data will protect you from significant, but wrong, conclusions.
Table 20.1 contains two variables about high school, averaged by state: cost and average
SAT score (from about 1994). Our task, say, is to model their relationship to advise the
legislature of the costs of improving our educational standing relative to nearby states.
Figure 20.1 illustrates how the relationship between the two is significant: the LR t-statistic
is over 4, for example, suggesting that such a strong relationship occurs randomly only
1/10,000 times. However, the sign of the relationship is the opposite of what was expected.
That is, to improve our standing (lower our SAT ranking), the graph suggests we need to
reduce school funding!

Observers of this example will often suggest adding further data—perhaps, for example,
local living costs, or percent of the population in urban or rural settings—to help explain
what is happening. But the real problem is one of self-selection. The high-SAT/low-cost
states are clustered mainly in the Midwest, where the test required for state universities
(the best deal for one’s dollar) is not the SAT but the ACT. Only those students aspiring
to attend (presumably more prestigious) out-of-state schools go to the trouble of taking
an extra standardized test, and their resulting average score is certainly higher than the
larger population’s would be. Additional variables in the database, in fact (other than pro-
portion of students taking the SAT), would make the model more complex and might
obscure the fact that information external to the data is vital.

10 (Elder, 1993) introduced a global search algorithm for multimodal surfaces that updates a piecewise

planar model of the score surface as information is gathered. It is very efficient, in terms of function

evaluations, but its required overhead restricts it to a handful of dimensions (simultaneous factors) in

practice. The need remains for efficient, higher-capacity global search methods.
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TABLE 20.1 Spending and Rank of Average SAT Score by State

USA State SAT Rank $ Spent

AK 31 7877
AL 14 3648
AR 17 3334
AZ 25 4231
CA 34 4826
CO 23 4809
CT 35 7914
DC 49 8210
DE 37 6016
FL 40 5154
GA 50 4860
HI 44 5008
IA 1 4839
ID 22 3200
IL 10 5062
IN 47 5051
KS 6 5009
KY 18 4390
LA 16 4012
MA 33 6351
MD 32 6184
ME 41 5894
MI 20 5257
MN 3 5260
MO 13 4415
MS 12 3322
MT 19 5184
NB 8 4381
NC 48 4802
ND 2 3685
NH 28 5504
NJ 39 9159
NM 15 4446
NV 29 4564
NY 42 8500
OH 24 5639
OK 11 3742
OR 26 5291
PA 45 6534
RI 43 6989
SC 51 4327
SD 5 3730
TN 9 3707
TX 46 4238
UT 4 2993
VA 38 5360
VT 36 5740
WA 30 5045
WI 7 5946
WV 27 5046
WY 21 5255
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The preceding example employed typical “opportunistic,” or found, data. But even data
generated by a designed experiment need external information. A DoD project from the early
days of neural networks attempted to distinguish aerial images of forests with and without
tanks in them. Perfect performance was achieved on the training set, and then on an out-
of-sample set of data that had been gathered at the same time but not used for training. This
was celebrated but, wisely, a confirming study was performed. New images were collected
on which the models performed extremely poorly. This drove investigation into the features
driving the models and revealed them to be magnitude readings from specific locations of the
images; i.e., background pixels. It turns out that the day the tanks had been photographed
was sunny, and that for nontanks, cloudy!11 Even resampling the original data wouldn’t
have protected against this error, as the flaw was inherent in the generating experiment.
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FIGURE 20.1 Rank of a state (in average SAT score) versus its spending per student (circa 1994) and the least-
squares regression estimate of their relationship.

11 PBS featured this project in a 1991 documentary series The Machine That Changed the World: Episode IV,

“The Thinking Machine.”
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A second tanks and networks example: A colleague had worked at a San Diego defense
contractor, where researchers sought to distinguish tanks and trucks from any aspect angle.
Radars and mechanized vehicles are bulky and expensive to move around, so they fixed the
radar installation and rotated a tank and a truck on separate large, rectangular platforms.
Signals were beamed at different angles, and the returns were extensively processed—using
polynomial network models of subsets of principal components of Fourier transforms of the
signals—and great accuracy in classification was achieved. However, seeking transparency
(not easy for complex, multistage models), the colleague discovered, much to his chagrin,
that the source of the key distinguishing features determining vehicle type turned out to
be the bushes beside one platform and not another!12 Further, it is suspected that the angle
estimation accuracy came from the signal reflecting from the platform corners—not a fea-
ture you will encounter in the field. Again, no modeling technology alone could correct
for flaws in the data, and it took careful study of how the model worked to discover its
weakness.

5. ACCEPT LEAKS FROM THE FUTURE

One of us often evaluates promising investment systems for possible implementation.
A Ph.D. consultant, with a couple of books under his belt, had prepared a neural network
model for a Chicago bank to forecast interest rate changes. The model was 95% accurate—
astonishing given the importance of such rates for much of the economy. The bank board
was cautiously ecstatic and sought a second opinion. My colleagues found that a version
of the output variable had accidentally been made a candidate input. Thus, the output
could be thought of as only losing 5% of its information as it traversed the network.

One investment system we were called in to examine was 70% accurate in forecasting the
direction a market index would move the next day. Its developers were quite secretive, but
after a great deal of work on behalf of the client considering investing, we eventually dupli-
cated its actions exactly with a simple moving average of 3 days of prices. This simplicity was
disappointing, but much worse was that the 3 days were centered on today. That is, tomor-
row’s price was one of the inputs! (They’d have had 100% accuracy if they had have just
dropped one of the input variables.) Another trading system, developed with monumental
effort over several years and involving the latest research in Genetic Algorithms (GA),
focused on commodities. Eventually, it was 99.9% matched by, essentially, two lines of
code, which made obvious that its use was impractical. That is, the complex GA devolved
to a simple model (the flaws of which then became quite clear), in a manner impossible to
discern by examining the extremely complex modeling machinery. In all these cases, the
model’s author was the chief one deceived.

12 This excellent practice of trying to break your own work is so hard to do even if you are convinced of its

need that managers should perhaps pit teams with opposite reward metrics against one another in order

to proof-test solutions.
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One trick is to look hardest at any input variable that works too well. For instance, on a
cross-sell project—trying to identify clients of an auto club who would be good prospects
for a more profitable insurance product—we found a code that was present about 25%
of the time but was always associated with insurance purchasers. After extended inquiry
(as the meaning of data fields are often lost to the mists of time), we found that the
code was the type of insurance cancellation; that is, that it really represented the fact that
about a quarter of purchasers canceled their insurance each year. Dorian Pyle, author of a
thorough book on Data Preparation for Data Mining, has recounted privately that he’s
encountered problems that required seven such “decapitation” passes, where the best
variable turns out to be a leak from the future.

In general, data warehouses are built to hold the best information known to date on each
customer; they are not naturally able to pull out what was known at the time that you wish
to study. So, when you are storing data for future mining, it’s important to date-stamp
records and to archive the full collection at regular intervals. Otherwise, re-creating realistic
information states will be extremely difficult and will lead to wrong conclusions. For
instance, imagine you wished to study whether dot-com companies were, in aggregate,
really a bad bet. Using a price-quoting service, you pull down all the histories of current
such companies and study their returns. Quite likely, they would have been a great bet,
despite the horrible shakeout in that market sector that started in roughly March 2000.
Why? Were their early gains so great as to absorb later massive losses? Actually, you would
have made a study error—“survivor bias”—by looking back from current companies, which
is all most data services carry. A re-creation of the set of companies that existed at the ear-
lier time, including the doomed ones, would provide a much more realistic (i.e., negative)
result.

6. DISCOUNT PESKY CASES

Outliers and leverage points can greatly affect summary results and cloud general
trends. Yet you must not routinely dismiss them; they could be the result. The statistician
John Aitchison recalled how a spike in radiation levels over the Antarctic was thrown out
for years, as an assumed error in measurement, when in fact it revealed a hole in the ozone
layer that proved to be an impressive finding. To the degree possible, visualize your data to
help decide whether outliers are mistakes to be purged or findings to be explored.

We find the most exciting phrase in research not to be a triumphal (and rare) “Aha!” of
discovery, but the muttering of puzzlement, “That’s odd . . .” To be surprised, though, you
must have expectations. So we urge colleagues to make hypotheses of how results will
turn out from their upcoming experiments. After the fact, virtually everything can and will
be plausibly interpreted. One master’s engineering student at the University of Virginia
was working with medical data (often an extremely tough domain) and presented some
interim findings as a graph on an unlabeled transparency to the nurse and doctor leading
the research. They were happily interpreting the results when he realized, to his horror,
that the foil was upside-face-down, that is, that the relationship between the variables was

7436. DISCOUNT PESKY CASES

IV. TRUE COMPLEXITY, THE “RIGHT MODEL,” TOP MISTAKES, AND THE FUTURE



reversed. He sheepishly set it right and in only seconds the medical experts exclaimed,
“That makes sense too!” and continued interpreting its (new and completely opposite)
nuances.13

Humans are, and likely will remain, the best pattern-recognizers in existence—for the
low dimensions in which we operate. But we are perhaps too good; we tend to see patterns
even when they don’t exist. Two colleagues (and expert data miners, Dustin Hux and Steve
Gawtry) worked at the Virginia State Climatology Office when a citizen sent in a videotape
of purported cloud phenomena: “Could the weather experts explain the astonishing phe-
nomena?” The un-narrated 3-hour tape contained nothing but typical summer (cumulus
humulus) clouds. The citizen had seen “dragons in the clouds,” where there (almost cer-
tainly) weren’t any.

A valuable step early in analysis is to seek to validate your data internally: do the vari-
ables agree with one another? Finding, as we did on one data set, that “95% of the husbands
are male” is useless in itself, but reveals something about the data’s quality, and provides
audit questions and flags observations. Reliable analysis depends so strongly on the quality
of the data that internal inconsistencies can hobble your work, or they can be clues to
problems with the flow of information within the company and reveal a key process obsta-
cle. We worked closely with a direct mail client and dove deeply into the data, looking for
relationships between what was known about a potential customer and resulting orders.
We actually endangered our appearance of competence to the client by persisting in ques-
tioning about unexpectedly low numbers of catalogs being sent to some customers. Eventu-
ally, it was found that the “Merge/Purge house” was treating overseas purchasers the
opposite of how they were instructed, and erroneously deleting from the mailing lists some
of the best prospects. This finding was probably more helpful to the client’s bottom line
than most of our high-tech modeling work.14

7. EXTRAPOLATE

Modeling “connects the dots” between known cases to build up a plausible estimate of
what will happen in related, but unseen, locations in data space. Obviously, models—and
especially nonlinear ones—are very unreliable outside the bounds of any known data.
(Boundary checks are the very minimum protection against “overanswering,” as discussed
in the next section.)

But there are other types of extrapolations that are equally dangerous. We tend to learn
too much from our first few experiences with a technique or problem. The hypotheses we
form—which our brains are desperate to do to simplify our world—are irrationally hard

13 Those who don’t regularly research with computers seem to give more credence to their output, we’ve

noticed. Perhaps like sausage being enjoyed most by those least familiar with how it’s made.
14 The analysis work, though, combined with operational changes such as higher-quality catalog paper, did

result in a doubling of the client’s average sales per catalog within a year.
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to dethrone when conflicting data accumulate. Similarly, it is very difficult to “unlearn”
things we’ve come to believe after an upstream error in our process is discovered. (This
is not a problem for our obedient and blindingly fast assistant: the computer. It blissfully
forgets everything except what it’s presented at the moment.) The only antidote to retaining
outdated stereotypes about our data seems to be regular communication with colleagues
and clients about our work, to uncover and organize the unconscious hypotheses guiding
our explorations.15

Extrapolating also from small dimensions, d, to large is fraught with danger, as intuition
gained on low-d is useless, if not counterproductive, in high-d. (That is, an idea may make
sense on a white board, and not work on a many-columned database.) For instance, take the
intuitive nearest neighbor algorithm, where the output value of the closest known point is
taken as the answer for a new point. In high-d, no point is typically actually close to
another; that is, the distances are all very similar and, by a univariate scale, not small. “If
the space is close, it’s empty; it it’s not empty; it’s not close” is how Scott (1992) describes
this aspect of the “curse of dimensionality.”

Friedman (1994) illustrates four properties of high-d space:

1. Sample sizes yielding the same density increase exponentially with d.
2. Radiuses enclosing a given fraction of data are disproportionately large.
3. Almost every point is closer to an edge of the sample space than to even the nearest

other point.
4. Almost every point is an outlier in its own projection.16

As our most powerful technique—visualization—and our deep intuition about spatial
relationships (in low-d) are rendered powerless in high-d, researchers are forced to employ
much more simplistic tools at the early stages of a problem until the key variables can be
identified and the dimensions thereby reduced.

The last extrapolation is philosophical. Most researchers in data mining, machine
learning, artificial intelligence, etc., hold the theory of evolution as an inspiration, if not
motivating faith. The idea that the awesome complexity observed of life might have self-
organized through randomization and indirect optimization can bolster the belief that
something similar might be accomplished in software (and many orders of magnitude fas-
ter). This deep belief can easily survive evidence to the contrary. We have heard many early
users of neural networks, for instance, justify their belief that their technique will eventually
provide the answer since “that’s how the brain works.”17 Others have such faith in their
mining algorithm that they concentrate only on obtaining all the raw materials that
collectively contain the information about a problem and don’t focus sufficiently on

15 This is so critical that, if you don’t have a colleague, rent one! A tape-recorder or a dog will even be

preferable to keeping all of your dialog internal.
16 That is, each point, when projecting itself onto the distribution of other points, thinks of itself as

weird . . . kind of like junior high.
17 Though research from even a decade ago argues instead that each human neuron (of which there are

billions) is more like a supercomputer than a simple potentiometer.
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creating higher-order features of the raw data. They feed, say, the intensity values of
each pixel of an image into an algorithm, in hopes of classifying the image—which is
almost surely doomed to fail—instead of calculating higher-order features—such as
edges, regions of low variance, or matches to templates—which might give the algo-
rithms a chance.

A better mental model of the power and limitations of data mining is small-scale, rather
than large-scale, evolution. We can observe, for instance, that one can take a population of
mutts and, through selective breeding over several generations, create a specialized breed
such as a greyhound. But it is a bold and unproven hypothesis that one could do so, even
with infinite time, beginning instead with pond scum. Likewise, the features you extract
from raw data strongly impact the success of your model. As a rule, use all the domain
knowledge and creativity your team can muster to generate a rich set of candidate data
features. Data mining algorithms are strong at sifting through alternative building blocks,
but not at coming up with them in the first place.

The March 25, 1996, cover of Time magazine, provocatively asks: “Can Machines Think?
They already do, say scientists. So what (if anything) is special about the human mind?”18

Magazine covers can perhaps be forgiven for hyperbole; they’re crafted to sell copies. But
inside, someone who should know better (an MIT computer science professor) was quoted
as saying, “Of course machines can think. After all, humans are just machines made of
meat.” This is an extreme version of the “high-AI (artificial intelligence)” view (or perhaps,

18 Time magazine was reporting on the previous month’s first chess match between Gary Kasparov (often

called the best chess player in history) and “Deep Blue,” a specialized IBM chess computer. Kasparov lost

the first game—the first time a Grand Master had been beaten by a program—but handily won the full

match. Still, that was to be the high-water mark of human chess achievement. A year later, “Deeper Blue”

won the re-match, and it’s likely humans will never reign again. (IBM enjoyed the publicity and didn’t risk a

requested third match and, of course, computer power has grown by over two orders of magnitude since

then.) Unlike checkers, chess is still nearly infinite enough that computers can’t play it perfectly, but they

can simply march through a decision tree of possibilities as deep as time allows (routinely to a dozen or

more plies, or paired move combinations). Though it seems like a good test of intelligence, the game of chess

actually plays well to the strengths of a finite state machine: the world of possibilities is vast, but bounded,

the pieces have precise properties, and there is close consensus on many of the game trade-offs (i.e., a

bishop is worth about three times as much as an unadvanced pawn). There are also vast libraries of

carefully worked special situations, such as openings, and end-game scenarios, where a computer can play

precisely and not err from the known best path. The automation component with the greatest uncertainty is

the precise trade-off to employ between the multiple objectives—such as attack position (strong forward

center?), defense strength (take time to castle?), and the pursuit of materiel (capture that pawn?)—that vie

for control of the next move. To define this score function by which to sort the leaf nodes of the decision tree,

the Deep Blue team employed supervised learning. They took the best role models available (human Grand

Masters) and trained on the choices made by the GMs over many thousands of recorded games to discover

what parameter values for the move optimizer would best replicate this “gold standard” collection of

choices. Lastly, the designers had the luxury of studying many of Kasparov’s games and purportedly

devised special anti-Kasparov moves. (Incidentally, Kasparov was refused the chance to study prior Deep

Blue games.) Given how “computational” chess is then, it’s a wonder any human does well against a

machine! But our major point is that chess skill is a poor metric for “thinking.”
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the “low-human” view). But anyone who’s worked hard with computers knows that the
analytic strengths of computers and humans are more complementary than alike. Humans
are vastly superior at tasks like image recognition and speech understanding, which require
context and “common sense” or background knowledge to interpret the data, but compu-
ters can operate in vast numbers of dimensions—very simply, but with great precision.
It’s clear to us that the great promise being fulfilled by data mining is to vastly augment
the productivity of—but not to replace—skilled human analysts. To believe otherwise—at
the extreme, in an eventual “singularity event” in time where humans and machines will
merge to create a type of immortal consciousness—is an extrapolation more like faith than
science.

8. ANSWER EVERY INQUIRY

Early in our careers, one of us demonstrated a model estimating rocket thrust
that used engine temperature, T, as an input. A technical gate-keeper for the potential client
suggested we vary some inputs and tell what ensued. “Try T ¼ 98.6 degrees.” Naively, we
complied—making mistake 7, as that was far outside its training bounds. The output (of a
nonlinear polynomial network) was ridiculous, as expected, but no amount of calm techni-
cal explanation around that nonsurprising (to us) result could erase, in the decision-maker’s
mind, the negative impact of the breathtaking result that had briefly flashed by. We
never heard from that company again. Obviously, a model should answer “don’t know”
for situations in which its training has no standing!

But how do we know where the model is valid, that is, has enough data close to the
query by which to make a useful decision? The simplest approach is to note whether
the new point is outside the bounds, on any dimension, of the training data. Yet, espe-
cially in high-d, the volume of the populated space is only a small fraction of the volume
of the rectangle defined by the univariate bounds. With most real data, inputs are very
far from mutually independent, so the occupied fraction of space is very small, even in
low-d. (The data often look like an umbrella packed corner-to-corner diagonally in a
box.) A second approach, more difficult and rare, is to calculate the convex hull of the
sample—essentially, a “shrink wrap” of the data points. Yet even this does not always
work to define the populated space. Figure 20.2 illustrates a 2-d problem similar to one
we encountered in practice (in higher-d) in an aeronautical application. There, funda-
mental constraints on joint values of physical variables (e.g., height, velocity, pitch, and
yaw) caused the data to be far from i.i.d. (independent and identically distributed). We
found that even the sample mean of the data, m, was outside the true region of populated
space.

One approach that has helped the few times we’ve tried it, is to fit a very responsive,
nonlinear model to the data, for instance through a polynomial network (Elder and Brown,
2000). High-order polynomials quickly go toward infinity outside the bounds of the train-
ing data. If the output estimate resulting from an unbounded, nonlinear (and even overfit)
model is beyond the output bounds, then it is very likely the input point is outside the
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training data. If a training data point had been near that input point, it would have better
constrained the model’s estimate.

Just as it is essential to know where a model has standing—i.e., in what regions of input
space its estimates might be valid—it is also useful to know the uncertainty of estimates.
Most techniques provide some measure of spread, such as s, for the overall accuracy result
(e.g., þ/� 3% for a political survey), but it is rare indeed to have a conditional standard
deviation, s(x), to go with the conditional m(x). A great area of research, in our opinion,
would be to develop robust methods of estimating certainty for estimates conditioned on
where in input space you are inquiring.

One estimation algorithm, Delaunay Triangles, which does depend strongly on s(x) was
developed to make optimal use of experimental information for global optimization (Elder,
1993). For experiments where results are expensive to obtain (core samples of soil, for
instance), the challenge is to find, as efficiently as possible, the input location with the best
result. If several samples and their results are known, you can model the score surface (rela-
tionship between input vector and output score) and rapidly ask the model for the best
location to next probe (i.e., experimental settings to employ). If that result isn’t yet good
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FIGURE 20.2 Sample two-dimensional problem for which the data mean (open box symbol) is outside the
bounds of the (crescent-shaped) valid space.
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enough (and budget remains to keep going), its information could be used to update the
model for the next probe location. The overall estimation surface consists of piecewise
planes, as shown in Figure 20.3, where each region’s plane has a quadratic variance “can-
opy” over it, as in Figure 20.4, revealing how the uncertainty of the estimation grows as
you depart from the known points (the corners).19 This approach worked very well,
for low (fewer than about 10) dimensions, and the resulting multimodal search

FIGURE 20.3 Estimation sur-
face of Delaunay Triangle
method (Elder, 1993) is piece-
wise planar. (The underlying
functional surface is represented
here by a mesh.)

19 The modeling technique developed for GROPE was driven by the special requirements of optimizing an

unknown function—especially that the response surface model had to agree exactly with the known

samples. If you assume the least about the response surface—that there is Brownian motion (or a random

walk) between the known points—then the ideal estimator turns out to be a plane. So, m(x) is a piecewise

planar collection of simplices (e.g., triangles when there are two input dimensions). The tiling or tessellation

of the input space is done in such a way as to create the most uniform simplices (those with the greatest

minimum angle), which is performed by Delaunay triangulation (a dual of nearest neighbor mapping). The

key, though, was to pair this with an estimate of the standard deviation of m(x), conditioned on x, s(x).
(The Brownian motion assumption drives this to be the square root of a quadratic function of distance from

the known corners.) Now, with both parts, m(x) and s(x), you can rapidly calculate the location, x, where the

probability of exceeding your result goal is the greatest. So, the model would suggest a probe location, you

would perform the experiment, and the result would update the model, with greater clarity on the mean

estimates (piecewise planes) and reduced variance (piecewise quadratic “bubbles” over each plane) with

each iteration.
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algorithm, GROPE (Global Rd Optimization when Probes are Expensive), took the fewest
probes of all then-existing algorithms to converge close to the answer on a standard
suite of test problems. By having, for every location, x, an estimate of the mean, u(x),
along with its uncertainty, s(x), the algorithm could, with every new result, refine its
estimates and reduce its uncertainty, and thereby zero in on the locations with the great-
est potential.

9. SAMPLE CASUALLY

The interesting cases for many data mining problems are rare, and the analytic challenge
is akin to “finding needles in a haystack.” However, many algorithms don’t perform well in
practice, if the ratio of hay to needles is greater than about 10 to 1. To obtain a near-enough
balance, you must either undersample—removing most common cases—or oversample—
duplicating rare cases. Yet it is a mistake to do either casually.

A direct marketing firm in Maryland had too many (99%) nonresponders (NR) for a deci-
sion tree model to properly predict who would give to a client charity. To better balance the
data, the firm kept all responders and every tenth NR from the data set of over a million
cases until it had exactly 100K cases. The firm’s decision tree model then predicted that
everyone in certain Alaskan cities (such as Ketchikan, Wrangell, and Ward Cove) would
respond. And, it was right, on the training data. What had happened? It turns out the orig-
inal data had been sorted by ZIP code, and since it was over 1M cases, the decimating (sam-
pling every tenth) had stopped (at 100K) before reaching the end. Thus, only responders (all
of whom had been taken at first) were sampled from the bottom of the file, where the high-
est (Alaskan) ZIP codes were.

FIGURE 20.4 Each simplex (e.g., triangle in
two dimensions) of the Delaunay method
(Elder, 1993) pairs a planar estimation of m(x)
with a quadratic estimation of s2(x).
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Clearly, a good strategy is to “shake before baking,” that is, to randomize the order of a
file before sampling. Actually, first record the original case number, so you can reverse the
process, but also because there may be useful information in the original order. One credit
scoring problem we tackled, for instance, had very useful information in the case number.
Perhaps the first cases in the file were the first to respond (most desperate for credit?) or
were the top candidates to be given offers—in any case, the file position was a very signifi-
cant predictor of creditworthiness. Unfortunately, no one could remember how the file was
formed, so we lost the opportunity to use that clue to focus on related features that would
improve the edge of the model.

Since case number is not always random, we recommend appending some truly random
variables to the data to act as “canaries in the mine”20 to indicate when your variable selec-
tion has pushed too far. If the model starts using those variables, you know that overfit is
very likely. (Be sure to label them random1, random2, etc., instead of R1, R2, or someone will
call you months later and ask where he or she might find the R1 values, needed for the
“improved” model!)

It is possible to make mistakes even more readily with up-sampling. Again, on a
credit scoring problem, we had too few known defaulters to properly train several algo-
rithms. (Some work well with case weights and variable misclassification costs, but most
don’t, and we wanted to make sure their training data were exactly equivalent for com-
parison.) We ran several experiments with cross-validation and many modeling cycles.
Oddly, for several experiments, it was much harder than anticipated to obtain overfit;
that is, results tended to improve with model complexity far beyond where we expected.
Eventually, we noticed that when we separated the performance on new data of the rare
cases of default from the common cases of creditworthiness, performance on the former
(rare cases) kept improving with complexity, while the latter curve turned upward
(higher error) as expected. It turns out that we had duplicated the defaults before
splitting the data into cross-validation sets. This meant that copies of each rare case
appeared in most of the data subsets, and thus no rare case was truly ever out-of-
sample. The lesson learned is to split into sets first and then up-sample the rare cases
in training only.

Note that you may need to define the unit of sampling at a higher granularity than the
case. That is, some cases may need to stay bundled together and never be separated across
data subsets. For instance, with medical data, each case often represents a doctor visit. In
predicting outcomes, you must almost certainly keep all the records from one patient
together and not use some for training and some for evaluation.

Lastly, remember that a stratified sample will almost always save you from
trouble. Carefully consider which variables need to be represented in each data subset
and sample them separately; e.g., take 10% of the red and 10% of the blue cases for each
sample, instead of just a simple 10% of the whole. Good stratification is how fairly
accurate political projections, for instance, can be made with very few (�1,000) interviews.

20 Canaries are particularly susceptible to carbon monoxide and methane, so if the caged canary stopped

singing and keeled over, it was time to evacuate quickly!
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10. BELIEVE THE BEST MODEL

As George Box said, “All models are wrong, but some are useful.” Unfortunately, we
seem to have a great need to believe in our models. We want them to reveal deep underly-
ing truth, rather than to just be useful leading indicators.21 However, reading too much into
models may do more harm than good. Usually, too much attention is paid to the particular
variables used by the “best” data mining model—which likely barely won out over
hundreds of others of the millions (to billions) tried, using a score function only approxi-
mating your goals, and on finite data scarcely representing the underlying data-generating
mechanism. It is better to build several models and interpret the resulting distribution of
variables rather than accept the set chosen by the single best model.22

Usually, many very similar variables are available, and the particular structure and vari-
ables selected by the best model can vary chaotically, that is, change greatly due to very
small changes in the input data or algorithm settings. A decision tree, for instance, can
change its root node due to one case value change, and that difference cascades through
the rest of the tree. One polynomial network we built two decades ago changed drastically
in appearance when only 999 of the 1,000 cases sent with it were used to test it. This struc-
tural variability is troubling to most researchers. But that is perhaps due to their reading too
much into the “best” model. In cases we have examined, the functional similarity of com-
peting models—that is, their vector of estimate values—is often much more similar than
their structural form. That is, competing models often look more different than they act,
and it’s the latter we believe that matters.

Lastly, as argued in Chapter 13, the best model is likely to be an ensemble of
competing, distinct, and individually good models. In Chapter 18, Figure 18.1 showed
the relative performance of five algorithms on six test problems. Figure 18.2 went on
to reveal that any of the four different ways of ensembling those models greatly reduced
the error on out-of-sample data compared to the individual models.

Bundling models reduces the clarity of a model’s details; yet, as Leo Breiman argued,
only somewhat tongue-in-cheek:

Interpretability �Accuracy < b Breiman0s constantð Þ
meaning increased interpretability of a model comes, inevitably, at the cost of reduced accu-
racy. Some problems do require strict interpretability. For instance, insurance models have
to be approved by state authorities. Also, credit applicants have to, by law, be able to be
told the top five factors under their influence that hurt their credit score. But for the appli-
cations we’re most familiar with, such as investment prediction or fraud detection, there is

21 The ancient Egyptians believed the dog star/god, Sirius, was responsible for the seasonal flooding of the

Nile, so essential to their survival. While not causal, the star’s rise was a useful leading indicator, accurate

enough for important decision making.
22 In a similar vein, Box also said, “Statisticians are like artists; they fall in love with their models.” To be

great data miners, we need to work as hard to break our models as we did to build them. The real world

will certainly break them if we don’t!
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a huge return to small but significant increases in accuracy, and we are content to worry
about interpretation only after the model has proven it is worthy of the attention.

HOW SHALL WE THEN SUCCEED?

Fancier modern tools and harder analytic challenges mean we can now “shoot ourselves
in the foot” with greater accuracy and power than ever before! Success is improved by
learning, which best comes from experience, which seems to be most memorable due to
mistakes. So go out and make mistakes early in your career!

We’ve found a useful PATH to success to be

• Persistence: Attack a data mining problem repeatedly, from different angles. Automate
the essential steps, especially so you can perform resampling tests. Externally check your
work. A great idea is to hire someone to break your model, since you often won’t have
the heart.

• Attitude: An optimistic, “can-do” attitude can work wonders for results, especially in a
team setting.

• Teamwork: Business and statistical experts must cooperate closely to make the best
progress. Does everyone want the project to succeed? Sometimes, passive-aggressive
partners, such as the purported providers of data, can secretly see only danger in
a project delving into their domain, so be sure that each partner can advance his or
her career through the project’s success.

• Humility: Learning from others requires vulnerability. When we data miners visit a
client, we know the least about the subject at hand. However, we do know a lot about
analysis and the mistakes thereof. Also be humble about the powers of technology. As
shown in this chapter especially, data mining is no “silver bullet.” It still requires a
human expert who can step back, see the big picture, and ask the right questions. We
think of data mining as something of an “Iron Man” suit, tremendously augmenting, for
good or ill, the powers of the wearer.

POSTSCRIPT

So go out and do well, while doing good, with these powerful modern tools!
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PREAMBLE

Like most other areas of technology, data mining exists on a shifting landscape. Not only
is the old part of the landscape being redefined continually, but new areas of interest
always loom ahead. In this chapter, we will describe several of those opportunities for data
mining on the road ahead.

From the perspectives of the coauthors, there are minimally four new or currently
emerging areas in data mining. Some of them have been under development but are diffi-
cult areas just now being refined to a stage of high accuracy (e.g., 90% or better), whereas
others are just emerging These four areas are

1. Radio frequency identification (RFID) technologies
2. Social networks
3. Image and object (or visual) data mining including object identification, 3D medical

scanning, and photo–3D motion analysis
4. “Cloud computing” and the “elastic cloud”: Software as a Service (SaaS)
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RFID

The acronym RFID stands for radio frequency identification. RFID technologies simply
put a radio frequency identification tag on anything from a kidney being transported to a
medical center for a transplant to every box of corn flakes coming off a conveyor belt.
One of the first businesses to make use of RFID in a large way is Wal-Mart. A few years
ago, Wal-Mart mandated that its top 100 suppliers have all items RFID tagged, with the
idea of eventually having all its vendors supplying goods with RFID tags. Why? Wal-Mart
can keep track of where every box of any item is at any one moment—from when it enters
the warehouse to when it leaves the warehouse via a conveyor belt and is routed to this
shipping semi truck or that semi truck. As the items are being shipped, Wal-Mart knows
the whereabouts of all items, whether on a particular interstate highway traveling west,
east, south, or north; to how many boxes of any item were left at any store; to how many
items remain for sale in any particular store.

RFID does not collect a lot of variables but does collect long data files with billions of
cases. What to do with these data? Data miners are now trying to figure out the answer.
These data must be the source of unfound patterns of information, i.e., just awaiting
knowledge discovery that can be used for good purposes.

Following are other examples where RFID technology is being used:

• Security: Examples include access control to a building, a particular laboratory, etc.,
by either a card, like a credit card, that the user has to swipe to gain access, or RFID
tags, like those being put in car ignition keys by some automobile manufacturers as
a deterrent to theft.

• Tracking: Examples include tracking of merchandise, as in the previous Wal-Mart
example, but also tags being used for human tissue transplants. At many marathon
races in the United States, organizers now provide RFID tags, placed in the laces of the
running shoes, that handle the logistics of thousands of runners, recording the start
time as a runner passes the start line and at various mileposts and the finish line. RFID
is also well suited to tagging/tracking cattle and other livestock, especially in this age
of food products possibly carrying disease to humans, such as mad cow disease. Even
pets can be tagged with an injected RFID behind the ear or neck, making it much easier
to get a lost dog or cat back to its owner (the owner’s name and address are part of
the RFID tag). Airline luggage tags now provide a combination of RFID, barcodes, and
printed information about the owner. Watermarks on bank notes and artists’ signatures
on paintings have been used in the past for authenticity, but they can be forged; RFID
tags can provide added authenticity.

• Authenticity: RFID tags are being put in the front cover of U.S. passports issued since
January 2007. These tags have all the information about the passport holders and enables
faster movement through customs. There are even separate lines for those with the
new RFID passports because these people can be processed faster, with greater accuracy
and authenticity.

• Electronic payments: Examples include auto tolls on many U.S. toll roads, where
the RFID tag in the car windshield is “read” as a person drives under the reader,
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automatically debiting the driver’s toll account. Transportation tickets (bus, train,
airplane) provide a greater advantage than paper tickets because they can be read and
validated while in a person’s pocket and even “stamped” as “used.”

• Entertainment: Some toy manufacturers are using RFID tags to make “smart toys” that
will do things or make sound effects or speak, the exact output being dependent on
the environmental circumstances (for example, the Hasbro Star Wars characters). RFID
“ticket tags” are being used by ski resorts, so people can rapidly gain access to chair
lifts multiple times over a predefined period of hours or days, a procedure that is clearly
more efficient than users having to reach in their pockets for either money, a token,
or a pass each time they need the chair lift.

From the preceding examples, you can see that RFID is rapidly becoming an integral part
of our lives.

SOCIAL NETWORKING AND DATA MINING

A Google search on “social networking and data mining,” done in late September 2008,
brought up 1,770,000 sites; the first 10 of these are reproduced as a PC screen shot on the
accompanying DVD (see “Social Networking Web Sites/PDFs” on the DVD). These 10 sites
are as follows:

1. Data Mining in Social Networks (www.cs.purdue.edu/homes/neville/papers/
jensen-neville-nas2002.pdf; see the PDF file on the accompanying DVD)

2. Blog on Social Networks (www.resourceshelf.com/2008/08/25/
collabio-game-explores-social-network-data-mining . . . and-social-psychology/)

3. Data Mining, Text Mining, Visualization, and Social Media (http://datamining.typepad
.com/data_mining/2007/04/twitter_social_.html)

4. Pentagon Sets Its Sights on Social Networking Websites: Data Mining and Homeland
Security (www.newscientist.com/article/mg19025556.200)

5. Social Networking Sites: Data Mining and Investigative Techniques (https://www
.blackhat.com/presentations/bh-usa-07/Patton/Presentation/bh-usa-07-patton.pdf)

6. Social-Network Data Mining: What’s the Most Powerful, Untapped Information
Repository on the Web Today? (research.microsoft.com/displayArticle.aspx?id¼2075)

7. Discovering Social Networks and Communities in Email Flows (www.orgnet.com/
email.html)

8. Social Networks, Data Mining, and Intelligence: Trends (http://rossdawsonblog.com/
weblog/archives/2006/05/social_networks_2.html)

9. The 2nd ACM Workshop on Social Network Mining and Analysis at the KDD–August
2008 Annual Meeting (http://workshops.socialnetworkanalysis.info/SNAKDD2008/)

10. MySpace Has Data-Mining Plans: DMNews (www.dmnews.com/MySpace-has-data-
mining-plans/article/98564/)

From the preceding 10 sites, you can see that social networking analyzed with data
mining technology is invading many areas of our lives. These areas include social networks
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of people; networks of web pages; complex relational databases; and data on interrelated
people, places, things, and events extracted from text documents.

Example 1

An example of a social network is Twitter. Twitter was started a couple of years ago as
a means of friends communicating with fewer than 140 characters in a text-like message.
As a communicator, you did not choose who would receive your message, but other people
chose you, as “followers.” Other people log onto Twitter and select that they want to
“follow” you. Thus, a person could develop quite of network of followers, partly dependent
on the content of a “tweet” (the message sent on Twitter), and also partly dependent on the
“stardom” of the person (e.g., people like to follow movie stars or other celebrities).

During 2008, it was uncertain as to whether Twitter was going to succeed as a major
communication method, or if it was a “flash in the pan.” However, with the US Airbus 320
crash-landing into the Hudson River to the west of Manhattan, New York on January 15,
2009, this all changed. The plane, crashing into the river minutes after taking off from
LaGuardia Airport, an event happened involving Twitter networks that dramatically
illustrated that Twitter was the “news medium of the world.” The first photo of the crash
was taken on an I-Phone by a passenger on a Hudson River ferry; it was uploaded to
“Twit-pix,” and immediately was relayed by others on Twitter.com around the world.
People knew about this US Airways crash while CNN and other news media helicopters
were still searching for the plane on the river and before any tugboats and ferry boats
reached the aircraft.

Photos similar to the one in Figure 21.1 were uploaded to Twitter immediately after
this Airbus crash, circling the world in minutes. All passengers were picked up by
ferry boats and all were in a warm building on the east shore of the Hudson River within
45 minutes of this crash landing. Only afterwards did the regular news media cameras

FIGURE 21.1 Photo of US Airways Flight 1549 after crashing into the Hudson River in New York City, United
States, January 15, 2009. The photo was taken and uploaded to Flicker.com as a Creative Common License, within
minutes of crash landing. Traditional news media did not arrive until about 45 minutes later (http://www.flickr.
com/photos/22608787@N00/3200086900; http://upload.wikimedia.org/wikipedia/commons/c/c8/Plane_crash_
into_Hudson_River_muchcropped.jpg)
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arrive at the scene. For the first time in history, a major world news event had been sent via
pictures and words around the world by Twitter prior to availability of regular traditional
news media methods.

Gary Miner caught the CNN News e-mail alert at about 3:30 p.m. CST on this day and
immediately clicked on the streaming video reports. At this point, CNN was showing the
plane sinking lower into the water with several tugboats and a ferry around the craft, but
no passengers were visible on the plane’s wings and front slides/rafts. CNN reporters
were stating things like “We are not sure if anyone has gotten out, if the passengers are
still in the plane; it appears the plane is drifting with the current down the river;
we have no reports whether anyone has been saved, or what has happened to people
on the aircraft . . . . ”

Twitter had taken over as a major source of news for the world. What is important about
this Twitter image of the jet liner floating in the Hudson River is that without Twitter, this
would have been experienced by the world in an entirely different fashion. Twitter is con-
sidered a “microblog” service. During 2008, Twitter was in use by some people, but most of
the world had not yet heard of it, or if they had, they had not joined the Twitter network.

However, this Hudson River airplane crash landing on January 15, 2009, brought Twitter
into perspective, and shortly after, people signed up for Twitter at astronomical numbers.
As of March, 2009, as this is written, people join the social network at a rate of about
10,000/hour.

This phenomenon with Twitter is important to data mining and knowledge discovery
because it will be one of the next sources of data available with which to submit it to data
analysis in order to gain new knowledge, and thus, make better decisions in the world of
our future. So, Twitter has “come of age” (Ulanoff).

All of which is to say: The world is moving fast, and the predictions we co-authors made
in this book last September are already taking place, including “Cloud Elastic Net Comput-
ing.” Cloud Computing is discussed in this chapter as “something of the future,” when
written in September of 2008, but by November of 2008, companies like Google, IBM,
Amazon.com, Zementis, and Microsoft were developing “Commercial Clouds.”

Example 2

An email social network is shown in Figure 21.2.

Data Mining Email to Discover Social Networks and Emergent Communities

The social email map in Figure 21.2 illustrates the following according to Krebs (2008):

• This social network map shows email flows among a very large project team.
• In one sense, you might think of this map as an “X-ray” of the way the project team

works.
• The nodes are color-coded as follows:

• Team members department: Red, Blue, Green
• Consultants outsourced/hired for the project: Yellow
• External experts consulted: Grey
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Grey links are drawn between two nodes if two persons sent email to each other at a
weekly or higher frequency.

The above diagram shows the project network soon after one deadline was missed. Notice the clustering
around formal departments—blues interacting with blues, greens interacting with greens. Several of the
hubs in this network were under-performing and often came across as bottlenecks. Project managers saw
the need for more direct integration between the departments. One of the solutions was very simple, yet
effective—co-location of more project team members. A surprising solution in the age of the Internet!
(Source : Figure 21.2 and parts of the explanation are abstracted from http://www.orgnet.com/email.html.)

Example 3

Another example of social networking and data mining is the MySpace web site initiat-
ing the Social Network Data Mining Initiative; see http://www.dmnews.com/MySpace-
has-data-mining-plans/article/98564/.

The article mentions these key points:

• MySpace has data mining plans for a “social network solution.”
• MySpace expects this “social network solution” to double its income.

FIGURE 21.2 Email network among a
project team with a deadline to produce
a deliverable product.
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• The plan is to capture personal information from profile pages and then use that
information to target ads.

• Such a process could change the way online advertising in general is conducted.

Example 4

The 2nd ACM Workshop on Social Network Mining and Analysis was held in conjunc-
tion with the 13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD, 2008) in Las Vegas, Nevada, August 23–27, 2008.

“Social Network Mining” topics of interest at this session included the following:

• Community discovery and analysis in large-scale online and offline social networks;
• Personalization for search and for social interaction;
• Recommendations for product purchase, information acquisition, and establishment of

social relations;
• Data protection inside communities;
• Misbehavior detection in communities;
• Web mining algorithms for clickstreams, documents, and search streams;
• Preparing data for web mining;
• Pattern presentation for end users and experts;
• Evolution of patterns in the Web;
• Evolution of communities in the Web;
• Dynamics and evolution patterns of social networks and trend prediction;
• Contextual social network analysis;
• Temporal analysis on social networks topologies;
• Search algorithms on social networks;
• Multiagent-based social network modeling and analysis;
• Application of social network analysis;
• Anomaly detection in social network evolution.

Never before had such a large number of social network papers been presented at KDD
meetings.

From the preceding few selected examples that fall under the domain of social network/
data mining, you can see that this method of understanding how humans interact is
invading almost all areas of life.

IMAGE AND OBJECT DATA MINING

Image and object data mining include visualization, 3D medical scanning and visual–
photo movement analysis for development of better physical therapy procedures, security
threat identifications, and other areas.

As we pointed out in Chapter 8, this is an area of current research involving develop-
ment of new and modified algorithms that can better deal with the complexities of three-
dimensional object identification. What is now called “visual object analysis” offers a better
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solution. Visual object analysis started in the late 1990s but has really developed during the
first few years of the twenty-first century because:

• Machine learning methods offer greater accuracy in object identification; and
• Large amounts of training data are now available (computer storage space is now not a

problem).

The problem in this area of object category recognition is simply: humans can recognize
objects—whether people, animals, rocks, or stars in the sky—better than computers; in fact,
this has been a very difficult problem for computers. But in the past few years, researchers
at several places, notably the University of California–Berkeley, Yahoo!, Google, and Cali-
fornia Institute of Technology, have developed newer modified data mining algorithms that
have gone from 16% recognition of objects in their 2004 work to 90% correct object category
recognition in 2008, with a selected number of objects, using the following algorithms:

• Nonlinear kernelized SVM (slower but more accurate)
• Boosted trees (works slowly)
• Linear SVM (fast but not accurate)
• Intersection kernels in SVM (improved to 90% correct object category recognition in

2008)

Today, 100 objects can be categorized with the methods listed here, but we need to go to
several levels of magnitude larger for these methods to be fully successful in accurately
recognizing images for such things as national security surveillance and precise medical
identification of conditions when using three-dimensional imaging procedures.

Let’s examine several areas and ways of looking at the problem of visualization by com-
puter technology and data mining analysis for fields needing high levels of accuracy by
actually looking at several visual scenarios (Figure 21.3).

OC Training Data OID Training Data

Faces

Cars

Category

Category Models Identifier Models

New
Objects

Learning Category Expertise

FIGURE 21.3 Object categorization (OC) versus objection identification (OID).
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According to Ferencz et al. (2008):

This figure highlights the different learning involved in categorization and identification. The training sets for
object categorization, shown on the left side, typically contain many examples of each category (e.g. faces and
cars), which are then turned into a fixed model for each in a generative system, or a decision boundary in a
discriminative system. A training set for object identification, on the other hand, contains pairs of images from
a known category, with a label of “same” or “different” (denoted by¼ and 6¼ in the figure) for each pair. From
these labeled pairs, the system must learn how to generate an object instance identifier given a single image
of a new object (e.g. Mr. Carter) from the category. For these identifiers to work well, they should highlight
distinctive regions of the object. That is, the identifiers should be different for each object.

The statistical methods used in the study of object categorization versus object identifica-
tion shown in Figure 21.3 used discriminate analysis methods, not the Fast Intersection Sup-
port Vector Machine methods that have been shown in 2008 to be more accurate in object
identification. Nevertheless, the figure shows some of the types of problems involved in
accurately getting computers and software to identify visual objects, including medical
objects both for diagnosis and medical delivery.

Briefly, the four illustrations in Figure 21.4, each a visual object dataset, are defined as
follows:

A. The MINIST dataset is a set of handwritten digits from two populations, one U.S. Census
Bureau employees and the other high school students.

B. The USPS dataset contains handwritten digits collected from mail envelopes in Buffalo,
NY.

C. The CURTeT dataset contains images of 61 real-world textures, like leather, rabbit fur,
sponge, etc.

A

B C

D

FIGURE 21.4 Data sets: (A) MNIST, (B) USPS, (C) CUReT, (D) Caltech-101. (See the DVD bound with this book
for the complete pdf document where these four illustrations, A, B, C, and D are fully explained in the following
source: Figure 2 in http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/nhz-cvpr06.pdf )
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D. The Caltech-101 dataset consists of images from 101 object categories and an additional
“background class” for a total of 102 classes. There are significant differences in color
and lighting which make this dataset quite challenging.

The next illustration for this object identification–visual data mining, shown in
Figure 21.5, comes from work at the University of California–Berkeley and Yahoo! on what
is called a fast intersection kernel Support Vector Machine algorithm. This is an SVM algorithm
that has been modified to give about 90% accuracy in object identification of 100 objects,
obtained during the summer of 2008 (Maji et al., 2008). We won’t go into details here, but
for those interested, this entire paper with further information can be found on the DVD
bound with the book.

The fast interaction SVM program, both as Cþþ and as source code, is available at the
following web site: http://www.cs.berkeley.edu/~smaji/projects/fiksvm/ (on the DVD
that accompanies this book, see the file named berkeley - visual object recognition_fast intersec-
tion kernel svms_source code - illustrations.doc in the folder named pdfs – extra datasets – power-
points etc.).

Visual data mining—including its extension into movement modeling, e.g., slices of
a moving object such as frames of a motion picture, successive slices of a body scan, or
specialized frames/segments of movement in physical therapy—could lead to much
more accurate identification of disease states or security threat detections, or more effective
physical therapy or athletic training regimens, among other domains.

The possibilities to accomplish this will be available with STATISTICA Data Miner
Version 9 combined 32 bit/64 bit software. Version 8 is bound as a DVD with this book;
Version 9 will not be released until after this book is published.

FIGURE 21.5 As reported in Maji et al. (2008): “Top two rows are a sample of errors on the INRIA pedestrian
data set and the bottom two are on the Daimler-Chrysler data set. For each set the first row is a sample of the false
negatives, while the second row is a sample of the false positives.” (Source: Maji et al., 2008.)
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Visual Data Preparation for Data Mining: Taking Photos, Moving Pictures,
and Objects into Spreadsheets Representing the Photos, Moving Pictures,
and Objects

A photo, illustration, graph, or any kind of object can be imported into a data spread-
sheet and subsequently analyzed with any of the algorithms available in either the tradi-
tional statistics arsenal or the data mining algorithm group. Each pixel point in the
photo/object becomes a data point in the spreadsheet. Let’s look at an example to see
how this is accomplished.

The photo we will be using for an example is shown in Figure 21.6.
In STATISTICA, open the File pull-down menu and select Import Picture, as shown in

Figure 21.7.
Then find a diagram, photo, graph, or other object that you’d like to import into a spread-

sheet with each cell in the spreadsheet representing one pixel in the photograph; thus, if you
have a 16-bit photo, you’ll have a 16-columns by 16-cases spreadsheet, and so on.

Now, click on the photo file name in the Open dialog box, and then click Open in the
lower right of the dialog, as shown in Figure 21.8.

FIGURE 21.6 This is the CD cover photograph from co-author Gary Miner’s son, Matt Miner’s GHOSTS
Christmas album, 2008.
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FIGURE 21.7 Importing the picture. Pull down the File menu, and choose Import Picture to open a dialog
which can access picture files.

FIGURE 21.8 Locating the files to open. Notice the two JPEG files named Bob Nisbet and GHOSTS Christmas
Album. We will be opening the GHOSTS Christmas Album to import into a pixel spreadsheet.
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Then the spreadsheet shown in Figure 21.9 appears. It is a 1600-variables by 1200-cases
spreadsheet; i.e., this was a 1600 by 1200 pixel photo.

Then open the Graphs pull-down menu and select 3D Sequential Graphs and then Raw
Data Plots, as shown in Figure 21.10.

On the Advanced tab of the Raw Data Plots dialog, select Contour/Discrete in the Graph
Type box, as shown in Figure 21.11.

FIGURE 21.9 Spreadsheet showing pixel numbers representing the picture of the cover of the GHOSTS
CD Album.

FIGURE 21.10 Opening the Raw Data Plots.
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Then click on the Variables button at the top of the dialog to open the Select Variables
dialog shown in Figure 21.12.

These examples illustrate just the beginning of working with this technology. Here is what
is exciting: you can take things like the following and put each of them into a spreadsheet:

1. Sequential MRI slices or images through the brain or any body part;
2. Movies or individual frames;
3. Any kind of sequential movement.

Then you can analyze these combined spreadsheets to follow, for example, (1) proper
physical therapy movements to rejuvenate an injured limb, (2) security screening, and
(3) all kinds of object identification problems. The main use case would be to take the data
matrices and do something important with them. For example, you might want to take
a graph, reduce it to a more simple size graphically (shrink it perhaps to 300 � 300 or so)
and then perform data reduction on it. In general, you now have a way to turn pictures into
numbers; what you do with those numbers is a different question because almost any kind
of analysis is possible. Perhaps the Kernel SVM algorithm mentioned previously from
the University of California–Berkeley and California Institute of Technology might be one
useful tool for specific applications.

In conclusion for this section on visual object recognition by data mining technology, we
can say that shape-based object recognition is one key for the future in this area. It will not
only involve visual object recognition, but will have to be extended to such things as audio
waves, brain wave mapping, and similar three-dimensional phenomena.

FIGURE 21.11 Selecting
graph type.
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CLOUD COMPUTING

“Cloud computing” is one of the most revolutionary concepts that has begun to turn
into a reality in the past couple of years. In this section, we will look at information that
began popping up during 2008 on the Internet and other sources. We’ll start with the idea
that the scientific method is becoming obsolete.

We might say that cloud computing is the final attempt at beginning to really understand
the universe or get the next step closer to reality. We might also say that the year 2008 was
the real beginning of “the Petabyte Age” because:

• We are now in the arena of “big data;” e.g., more is just not more, but more is different.
• Sixty years ago, digital computers made information readable; we might say that this

information was stored in “paper manila folders.”
• Twenty years ago, the Internet made information reachable; e.g., we stored it in a “file

cabinet.”
• Ten years ago, the first search engine crawlers made information into a “single

database,” e.g., a “library.”
• Today, petabytes of information are stored in a “cloud.”

Various web sites, from the National Science Foundation and other organizations, tell us
about this phenomena of cloud computing that hit academia at the beginning of 2008, and
later during the last few months of 2008, it “hit” the business world, including Google, IBM,
Zementis, Amazon.com, and even Microsoft, as we will explain here.

FIGURE 21.12 Selecting
variables in the plot. Next,
click the Select All button to
select all the variables and click
OK to get a graphical represen-
tation of the photo pixel
spreadsheet.
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The NSF made this announcement in February 2008:

National Science Foundation taps into IBM-Google computer cluster

Cluster created last year to support academic parallel computing initiative

By Brad Reed, Network World, 02/26/2008

The National Science Foundation announced this week that it had reached an agreement with Google and
IBM that would let the academic research community conduct experiments through the companies’ 1,600-
processor computer cluster.

Google, IBM and the NSF’s Computer Science and Engineering Directorate will be launching a joint initia-
tive called the Cluster Exploratory (CluE) that will grant the academic research community access to the
Google-IBM academic cluster. The NSF also says that the cluster will give researchers access to resources
that would otherwise have [. . .] been prohibitively expensive.
(Source: http://www.networkworld.com/news/2008/022608-nsf-ibm-google.html)

The National Science Foundation is making the most out of this new cloud computing
project, giving it public relations exposure in many ways, including the following:

NSF Head: All Hail the Cluster

By Alexis Madrigal March 14, 2008 | 4:00:11 PM
(For more information on this source, see http://blog.wired.com/wiredscience/2008/03/nsf-head-cluste.html.)

Here’s a web story headline, from June 2008:

Google Cloud at Work for NSF, Academia

Google gives academics and students at some of the largest universities around the planet access to massive
resources for academic quest and experiments. In February 2008, Google announced that it was working
with National Science Foundation and IBM on the Cluster Exploratory (CluE) that would enable, “academic
research community to conduct experiments and test new theories and ideas using a large-scale, massively
distributed computing cluster.”
(Source: http://gigaom.com/2008/06/28/how-google-is-taking-clouds-to-college/).

According to this story, the NSF-sponsored 16,000-processor cluster, with terabytes of
memory and many hundreds of terabytes of storage, runs as follows and uses the following
software sources:

� The clusters run an open source implementation of Google’s published computing infrastructure (Map-
Reduce and GFS from Apache’s Hadoop project)

� Open source software designed by IBM to help students develop programs for clusters running Hadoop.
� The software works with Eclipse, an open source development platform.
(Source: http://gigaom.com/2008/06/28/how-google-is-taking-clouds-to-college/).

Academics andGoogle and IBM even refer to people in this field as “cloud people;” an entire
new terminology is developing for this fifth phase of statistical and data mining analysis.

Additional characteristics of this Academic Cloud Computing Initiative of NSF are as
follows:
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• The NSF solicited proposals for research in the spring of 2008.
• Currently available large data collections include

• Sloan Digital Sky Survey;
• The Visible Human;
• The IRIS Seismology Data Base;
• The Protein Data Bank; and
• The Linguistic Data Consortium.

• A term seen frequently with this cloud computing initiative is the Cluster Exploratory (CluE).

As indicated in the National Science Foundation’s solicitation for proposals:

In many fields, it is now possible to pose hypotheses and test them by looking in databases of already
collected information. Further, the possibility of significant discovery by interconnecting different data
sources is extraordinarily appealing. In data-intensive computing, the sheer volume of data is the dominant
performance parameter. Storage and computation are co-located, enabling large-scale parallelism over
terabytes of data. This scale of computing supports applications specified in high-level programming
primitives, where the run-time system manages parallelism and data access. Supporting architectures must
be extremely fault-tolerant and exhibit high degrees of reliability and availability.

The Cluster Exploratory (CluE) program has been designed to provide academic researchers with access to
massively-scaled, highly-distributed computing resources supported by Google and IBM. While the main
focus of the program is the stimulation of research advances in computing, the potential to stimulate simul-
taneous advances in other fields of science and engineering is also recognized and encouraged.
(Source: http://blog.beagrie.com/archives/2008/04/)

A press release in April 2008 included a cartoon alluding to the unique relationship
between Google, IBM, and NSF that allows the academic computing research community
to access large-scale computer clusters.

Here is one way we can look at this cloud computing phenomenon: the scientific method
is built around testable hypotheses. Scientists are trained to recognize that correlation is not
causation, that no conclusions should be drawn simply on the basis of a correlation between
X and Y. Instead, you must understand the underlying mechanisms that connect the two.
Once you have a model, you can connect the data sets with confidence:

• Data without a model is just noise.
• But faced with massive data, this approach to science—hypothesize, model, test—is

becoming obsolete.

So, now there is a better way. Petabytes allow us to say, “Correlation is enough.” We can
stop looking for models. We can analyze the data without hypotheses about what it might
show. We can throw the numbers into the biggest computing clusters the world has ever
seen and let statistical algorithms find patterns where science cannot.

In summary, the Cluster Exploratory (CluE) project, which might be called the “fifth
phase of data analysis,” is a program that funds research designed to run on a large-scale
distributed computing platform developed by Google and IBM in conjunction with six pilot
universities. The cluster will consist of 1,600 processors, several terabytes of memory, and
hundreds of terabytes of storage, along with the software, including IBM’s Tivoli and open
source versions of Google File System and MapReduce.
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Early CluE projects will include simulations of the brain and the nervous system and
other biological research that we might describe as lying somewhere between wetware
and software.

We might say that there is no reason to cling to our old ways; the opportunity is great.
The new availability of huge amounts of data, along with the statistical tools to crunch these
numbers, offers a whole new way of understanding the world. Correlation supersedes
causation, and science can advance even without coherent models, unified theories, or
really without any mechanistic explanation at all. It may be time to ask this question:

What Can Science Learn from Google?

Modest quantities (a few hundred gigabytes) of data can be loaded on the cluster over
the Internet. Some projects may require the mounting of large (terabytes þ) quantities of
data on the cluster. The process for loading data is expected to evolve over the life of the
program and will be worked out with each project team on a case-by-case basis post award.
It is anticipated that a growing number of public data sets will be available on the cluster
for use by awardees. A catalog of these data sets will be accessible via http://www.nsf.
gov/clue. Data created by awardees will be retained on the cluster and become public;
i.e., it will be accessible by other authorized cluster users.

For more information regarding some of the preceding statements/concepts, see these
web sites:

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503270
http://www.nsf.gov/pubs/2008/nsf08560/nsf08560.htm
http://www.nsf.gov/div/index.jsp?div=IIS

But the story doesn’t stop here. In the last few months of 2008, cloud computing invaded
the commercial world as well. We’ll tell this story in the following section.

The Next Generation of Data Mining

Let’s review again the five phases of data analysis, introduced in Chapter 1 of this book:

1. Classical Bayesian Statistics
2. Classical Parametric Statistics
3. Machine Learning

Data Mining with Neural Nets and Decision Trees
4. Statistical Learning Theory

Data Mining with Support Vector Machines and Related Algorithms
5. Distributed Analytical Computing

Grids and Clouds

Analytical modeling began (in large part) with the work of R. A. Fisher in 1921. Fisher
devised the Parametric Model to correct the problem with Bayesian statistics; let’s look at
this topic in outline format:

• Bayesians brought “subjective prior” information to the table of decision making (what
happened in the past).
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• Two Bayesian scientists could start with the same data and come to very different
conclusions, depending on their set of subjective priors.

• Fisher did away with the subjective priors and defined the probability of an event’s
occurrence, using only data from one controlled experiment.

• The focus of statistical analysis was on the complex mathematical operations necessary to
analyze complicated and diverse data sets.

• Machine learning methods were devised to analyze strongly nonlinear problems.

• Fisher’s first methods could be applied well only to linear problems (straight-line
relationships).

• Many relationships in the real world outside Fisher’s laboratories followed very
“curvy” nonlinear lines. (Note: Many parametric methods were created in parallel
for analyzing nonlinear relationships.)

• Statistical learning methods (Vapnik, 1995) enabled analysis of more complex problems
by “mapping” input data points to higher dimensional spaces with “kernels” (complex
mathematical functions used to transform data).

Grid and Cloud Computing

Grid and cloud computing are defined as follows:

• Grid: A dedicated group of networked computers, which divide and conquer very large
and complex data processing tasks.

• Cloud: A nondedicated group of computers connected to the Internet, which can be
drawn upon as needed to process tiny to extremely huge processing tasks.

The Way Data Mining Used to Be

Traditional data mining

• Starts with data;
• Trains a model;
• Publishes the model;
• Hands it off to the systems people for deployment.

The traditional solution landscape is characterized by the following:

• Data miners are focused very largely on the technology of building models.
• Training good models can be very time-consuming and artistic!
• When models are done, data miners just want to hand them off to systems people for

deployment and go back to building other models (see Figure 21.13).

What are the fruits of this traditional style of data mining?

• The de-emphasis of deployment of most data mining tools causes

Design of requirements for analytical data preparation steps that are hard to implement
in deployment;

Unnecessary model complexity, when a simpler “good-enough” model would have
served and permitted much easier deployment (see Taylor and Raden, 2007).
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What we need for the future is an “action orientation.” Data mining is like training some-
one who runs hurdles. It involves

• Painstaking practice of
How many steps to run to the first hurdle;
How high he must jump to clear the hurdle;
How he must move his legs to clear the hurdle;
How many steps he must run to the next hurdle.

• Practice over and over and over. . .
• This is “model” training for the race.

Likewise, businesses need to make decisions and act:

• Business decision making is like the track meet, not the practice field.
The runner must draw upon the training of the “model” for winning the race.
Decision making in the race must be nearly automatic!

• Winning actions are needed at race time, not model refinements.

So, for the future, the authors of this book are saying, “Shift up the gears!” (See
Figure 21.14).

Data mining solutions should be

• Focused on deployment of winning models;
• Designed for ease of deployment;

Data Mining Tools Follow Suit

Adaptive Decision Technology

•    Most data mining tools focus almost 
     exclusively on model training and
     evaluation

Training

Evaluation

PMML

Data Mining Art

Data Mining Science
Deployment

Data Mining
after-thought

FIGURE 21.13 Data mining tools follow suit.
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• Designed for running the race on any “track”;
• Incorporated into enterprise decision systems:

Tool agnostic (any data mining tool that outputs PMML will do);
Business application agnostic (solutions should be vended for easy use by any business
application).

A New Perspective on Data Mining

The Enterprise Decision Management (EDM) tool interface should be focused on deploy-
ment, not model training (see Figure 21.15).

Shifting Up Another Gear…

Adaptive Decision Technology

Data mining solutions
should be like this…

Deployment
Engine

Cross-sell

Retention

Cross-sell

Cross-sell

SAS

Clementine

Statistica

R

PMML

FIGURE 21.14 Shifting up another gear.

New Perspective 

Adaptive Decision Technology

• The new focus of data
 mining should not be
 on the tools, but on
 the implementation
 and deployment of
 the tools (even Open-
 Source tools)

• How can we get
 there?

FIGURE 21.15 Getting a new perspective.
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EDM deployment should be

• Adaptive to any form of analytical model;
• Adaptive to any decision environment;
• Architected around a common model output;
• Linearly scalable to the highest data volumes.

Current data mining tools are expensive! A new generation of open source (free) data
mining tools is being developed:

• R
• Weka
• Orange
• Yale
• RapidMiner (an implementation of Yale)

We Can “Take to the Clouds”

When you implement your models with ADAPA from Zementis (see Figure 21.16),
you can

• Use your existing models and tools;
• Use your existing business rules;
• Seamlessly integrate them; and
• Fly to the clouds (like the Amazon.com Elastic Cloud) and deploy almost infinite scoring.

Adaptive Decision Technology

How ADAPA Does It (1)

ADAPA

Cross-sell

Retention

Cross-sell

Cross-sell

PMML

Rule Set 1

Model 1

Model 1

Model 2

Model 3

Rule Set 2

Amazon
.com

Elastic
Cloud

FIGURE 21.16 How ADAPA does it.
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How ADAPA does it:

• It uses models:

ADAPA can call the PMML from a model as a function within a rule set in PMML.
ADAPA can call the PMML from a rule set as a function within the deployment of a
model.

• Previously, neural nets and rule induction engines (for example) could be combined only
in modeling ensembles.

• A model ensemble permits scoring with multiple models, which “vote” for the final
score.

• ADAPA combines diverse model inputs at a much lower level to create an adaptive
meta-model.

Data Mining Is Maturing

• Electronic spreadsheets (a la Lotus 1-2-3) began as a high-tech application.
• Excel moved them into the business mainstream.
• Now, Excel is a component of larger business operations.

Data Mining as a Utility

• No longer do you have to invest in an expensive software and hardware infrastructure to
deploy models.

• Zementis deploys models seamlessly on the Amazon.com EC2 Elastic Cloud.
• You pay for only the processing time.
• Several cloud-based “utilities” are available now (IBM, Google, Amazon.com).

Benefits of Cloud Computing

Benefits of cloud computing include the following:

1. It has open standards.

• It is based on PMML.
PMML is like the IBM PC disk format standard, which replaced a multitude of
vendor formats in the early 1980s.
Standardization permits companies to focus on the ends rather than the means of
computing.

• It encourages development of open source data mining packages (R, RapidMiner,
Weka).

• Using it allows you to avoid vendor “lock-in.”

2. It provides utility-based computing.

• Electric utilities provide electricity, transmission lines, and billing systems. You pay
only for usage.

• You pay only for the usage of cloud computing resources, not the infrastructure
that provides them.

• Deployment usage happens in minutes!
• Cost scales linearly with the usage.
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3. It provides Software as a Service (SaaS), not as part of your infrastructure.

• Again, you pay only for the usage, not huge software licenses fees.
• You have no long-term commitment to a software vendor.
• You pay operational costs only, not capital expenditures.

4. It provides secured computing instances (https and WS-Security).

• You can keep your company and customer data safe.

5. Again, you pay only for the usage, not huge software licenses fees.

• You have no long-term commitment to a software vendor.
• You pay operational costs only, not capital expenditures.

Additional interesting developments in cloud computing and “elastic clouds” can be
found at the following web sites:

1. Zementis (http://www.zementis.com) markets itself as “the first predictive analytics
cloud computing solution.”

2. Microsoft’s SQL Server Data Mining (http://www.sqlserverdatamining.com/cloud/)
provides cloud computing free. You can access it via theWeb or via a simple Excel add-in.

From the Desktop to the Clouds . . .

Will cloud computing and elastic clouds, like Amazon.com is now doing in collaboration
with Zemantis.com, take over data mining?

No, we don’t think so. The cloud computing and elastic nets will serve a need for certain
industries, businesses, and academic institutions. But there will always be corporations and
organizations that want to keep their data and computing in house and/or outsource it to
data mining consultants. With the needs of this ever-increasing global world, there is plenty
to be done to keep everyone busy.

We are on the cutting edge of a new phase in data analysis. It will be interesting to see
what develops during the next 5 to 10 years.

Note: The DVD that accompanies this book provides some interesting URLs and
PDF files on cloud computing.

POSTSCRIPT

The entire next chapter is the postscript for this book.
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PREAMBLE

How do you summarize a book like this, when the whole book is a summary by design?
One way is to synthesize recommended effects of this design. To begin, we can revisit the
goals laid down in the Preface of this book. These goals were to

• Conduct you through a relatively thin slice across a wide practice of data mining in
many industries and disciplines;
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• Show you how to create powerful predictive models in your own organization in a
relatively short period of time;

• Serve as a springboard to launch you into higher-level studies of the theory and practice
of data mining.

Only you can answer whether or not we reached any of those goals, as you follow the
path to implementing them in any of the many tutorials in this book. Rather than go back
over the major areas of this book, we would like to use this chapter to underscore the major
themes and “take-aways” we want you to absorb from this book:

1. Beware of overtrained models.
2. A diversity of methods and techniques is best.
3. The process is more important than the tool.
4. Mining of unstructured data (e.g., text) is becoming as important as data mining of

structured data in databases.
5. Practice thinking about your organization as organism rather than as machine.
6. Good solutions evolve rather than just appear after initial efforts.
7. What you don’t do is just as important as what you do: avoid common mistakes; they are

the “plague” of data mining.
8. Very intuitive graphical interfaces are replacing procedural programming.
9. Data mining is no longer a boutique operation; it is firmly established in the mainstream

of our society.
10. “Smart” systems are the direction in which data mining technology is going.

BEWARE OF OVERTRAINED MODELS

This theme is listed first because it is the single-most overperformed and underappre-
ciated mistake in the field of data mining. Machine learning algorithms are notoriously
prone to overtraining. The first line of defense against overtraining is to test the model
as a part of the iterative training exercise. Most algorithms in data mining packages pro-
vide facilities to do this. Determine if the implementation of an algorithm in your data
mining package does this automatically; if not, look for an option to set the algorithm to
do it. After the model is trained, do not believe the first model. Test it against another
(validation) data set, which was not used in the training in any way. Otherwise, your
model results may not present an objective reflection of the true systematic error in
your modeling algorithm or the random error in the data used to build it. The second line
of defense against overtraining is to choose an appropriate form of the final solution. For
example, make sure that you select an appropriate minimum number of observations to
define a terminal leaf node of a decision tree. If you let the tree go without constraint,
the algorithm might create a perfect model for that data set but could fail miserably upon
validation with other data sets. Experiment with different stopping functions in decision
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trees and neural networks. See how the generalization ability of the model is affected by
different model configurations. Use data mining algorithms to model a data pattern as an
artist uses different colors of paint to define an image. Data mining is a very artistic
endeavor!

A DIVERSITY OF MODELS AND TECHNIQUES IS BEST

A statistical or data mining algorithm is a mathematical expression of certain aspects of
the patterns they find in data. Different algorithms provide different perspectives (or “col-
ors”) on the complete nature of the pattern. No one algorithm can see it all. It is true that for
a given data set, there exists one algorithm that does it best. But don’t be satisfied with just
the best single view of the pattern. The best perspective among other views nearly as poor is
not sufficient to define the pattern properly. A number of different “weak” perspectives of
the pattern can be combined to create a relatively good definition of the pattern, even if it is
incomplete. Most data mining tool packages have the capability to create ensemble models,
which can “vote” for the best overall prediction (review the use of ensembles in Chapters 13
and 18). This approach can be applied also in the scoring of new data sets, where the target
variable values are not known. Data mining can draw upon the best concepts in a demo-
cratic process to produce the best results.

THE PROCESS IS MORE IMPORTANT THAN THE TOOL

To some degree, data mining tools lead you through the data mining process. SAS-
Enterprise Miner organizes its top toolbar to present groups of operations performed in
each of the major phases of Sample, Explore, Modify, Model, and Assess (SEMMA). This
organization keeps the correct sequence of operations central in the mind of the data miner.
STATISTICA Data Miner divides the modeling screen into four general phases of data
mining: (1) data acquisition; (2) data cleaning, preparation, and transformation; (3) data
analysis, modeling, classification, and forecasting; and (4) reports. This group of activities
expands somewhat on the six phases in the SEMMA process flow. The STATISTICA Data
Miner approach constrains you to do the appropriate group of operations in sequence when
building a model in the visual programming diagram of a workspace. The CRISP-DM pro-
cess presented in Chapter 3 is tool-independent and industry (or discipline)-independent.
You can follow this process with any data mining tool. Whichever approach you take, it
is wise to follow the Marine drill sergeant’s appeal to “Get with the program!”

Many algorithms will perform similarly on the same data set, although one may be best.
Your choice of algorithm will have much less impact on the quality of your model than the
process steps you went through to get it. Focus on following the process correctly, and your
model will be at least acceptable. Refinements can come later.
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TEXT MINING OF UNSTRUCTURED DATA IS
BECOMING VERY IMPORTANT

When your data are contained in data structures like databases, analyzing it with stan-
dard statistical or data mining algorithms is relatively easy (in principle). It is not so easy
when the data consists of a bunch of words in a document, email, or web site. Yet, much
of the information crucially important to proper decision making in a company may be
present only in text form. In an insurance company, underwriter notes contain very valuable
items of information for quantifying the risk of a potential customer. The notes are a distil-
lation of the mental process the underwriter goes through to assign the proper risk category
to the customer, but much of it is not converted to database elements. Text mining of insur-
ance underwriter notes can represent a treasure trove of information for risk modeling. The
Internet is another source of very valuable information for many companies and organiza-
tions. Even generic office tools like Microsoft Excel can be configured to load text from web
sites into a spreadsheet format prior to analysis. Excel macros can be created to automati-
cally load text strings from specific locations in web site displays to monitor the occurrence
of target words through time. Most data mining tool packages provide text mining modules
or add-ons that can be combined with standard statistical and data mining algorithms for
creating models based on textual input data.

PRACTICE THINKING ABOUT YOUR ORGANIZATION AS
ORGANISM RATHER THAN AS MACHINE

This shift in thinking is hard to do, but it is very profound in its effects. One of the bypro-
ducts of the Industrial Revolution was to present a picture of ideal processes in a very
mechanistic way (review Chapter 1). This approach helped to convert the previous ad hoc
and customized approaches to manufacturing to become standardized and much more
efficient. But soon, the complexity of the systems outgrew the machine metaphor. Interac-
tions, feedbacks, and synergy became dominant factors rather than just the directional
workflow (e.g., the assembly line). Businesses became complex systems of suppliers, sub-
contractors, distributors, vendors, and customers, which defied the constraints of the
machine metaphor. A much better metaphor is that of the organism and ecosystem, which
gained prominence in the 1990s. Today, the concept of the business ecosystem has become
firmly established as the best structure in which to organize and manage the complexities
of modern business and management.

Practice thinking of your business as a social ecological system rather than viewing it as
just an economic engine. It is not without reason that two of the authors of this book are for-
mer biologists (an ecologist and a geneticist). The third author was originally an engineer.
All three authors have a great deal of experience in teaching highly technical subjects
to nontechnical audiences. This book is an attempt to merge the analytical perspectives of
biology, engineering, and teaching pedagogy in a business environment to structure sys-
temically (from biology) and optimize (from engineering) various approaches to search
for and teach Truth in the business world. A mentor of the senior author, Dr. Daniel Botkin
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(1990) observes in his book Discordant Harmonies that the true harmony of nature is not
static, but rather dynamic and discordant. It is created from

. . . the simultaneous movements of many tones, the combination of many processes flowing at the same time
along various scales, leading not to a simplemelody but to a symphony at times harsh and at times pleasing. (25)

Dr. Botkin is not the first person to think this way. He cites Plotinus (the famous Neo-
Platonist of third century Greece) for the concept of discordant harmony and H. E. Clements
(an ecologist in the early part of the twentieth century) for the concept of a forest as a
“super-organism.” Botkin’s call for an interdisciplinary study of the environment (from
the perspective of a global ecologist) is also appropriate for businesses in the global econ-
omy of the twenty-first century. His view of discordant harmony is the way the natural
world works, and businesses are embedded in it, whether they recognize it or not. Our
call to you is to recognize it and to start practicing data mining from that perspective.

GOOD SOLUTIONS EVOLVE RATHER THAN JUST
APPEAR AFTER INITIAL EFFORTS

The biological metaphor of business processes as “super-organism” or as “ecosystem”
contains the concept of evolution. Directed change in nature seldom follows a straight
line. There are many dead ends (errors from an evolutionary standpoint). Peters (1987)
promotes the concept of “fast failures” as a recommended tactic in business management.
Managing to “create” failures was a novel idea in business 20 years ago. But he argues that
we must go through failures to identify the true course; otherwise, we will fail anyway and
never find it. This concept is a just a form of the oldest scientific method: trial-and-error. If
we make our failures happen very fast, we can learn from them quickly and evolve the best
solution with minimal cost. The best business structures are shaped by evolution rather
than revolution.

Data mining provides one of the best environments for evolving business solutions.
Many models can be created and validated by experience (like survival of the fittest spe-
cies). If we try to induce the final model by our initial efforts, we will almost surely fail.
A series of “fast failure” models created in a data mining “sandbox” can serve to evolve
the best solution for a given business problem.

WHAT YOU DON’T DO IS JUST AS IMPORTANT
AS WHAT YOU DO

Serious analytical mistakes are the “plague” of data mining. Chapter 20 discusses 11 of
the most serious of these mistakes. Think on them! The old saying that those who ignore
the mistakes of history are bound to repeat them is certainly true in the practice of
data mining. Immerse yourself in the study of the mistakes of others; they are like a road
map of the routes not to take. You may not know exactly where you are going in a data
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mining project, but you can know where not to go. If you avoid the most common (and
serious) mistakes, you have a much higher probability of finding the right solution than
just blundering ahead.

VERY INTUITIVE GRAPHICAL INTERFACES ARE REPLACING
PROCEDURAL PROGRAMMING

The program code of the final solutions will not go away, but the means of generating it
is changing. No longer do data miners have to write long, complicated data mining pro-
grams in a programming language. Many powerful visual graphical programming inter-
faces have been built on top of statistical analysis and data mining algorithms to permit
users to leverage their power without a deep understanding of the underlying technology.
The “automobile interface” for data mining is here in the form of semi-automated data
mining “dashboards,” like those highlighted in the tutorials of this book (STATISTICA
Data Miner, SAS-Enterprise Miner, SPSS Clementine) and others like KXEN.

The combination of these graphical interfaces and the step-by-step tutorials provided in
this book (with more on the CD-DVD) will permit you to navigate through the complexity
of statistical and data mining techniques to create powerful models (and you don’t have to
have a doctorate to do it).

DATA MINING IS NO LONGER A BOUTIQUE OPERATION;
IT IS FIRMLY ESTABLISHED IN THE MAINSTREAM

OF OUR SOCIETY

Fifteen years ago, data mining was the realm of the mathematical “gurus.” Most of the
analysis was performed with statistical analysis algorithms, which were associated with a
lot of potential “pilot error.” To get good results, you had to really know what you were
doing from a mathematical standpoint. Most of the data mining in business was performed
by highly paid consultants. Today, early successes of data mining, combined with the
refinement of data mining tool packages, have thrust data mining into the mainstream of
business. The bar has been raised. Businesses that do not leverage data mining technology
will be outcompeted by those who do. The recognition and fear of this business reality has
led most large- and medium-sized companies to bring data mining in-house. Analytical
groups have been formed, sometimes in a central organization, and sometimes in a
distributed design. The concept of the importance of data in a company has been trumped
by the importance of information. Chief information officers (CIOs) have arisen in many
companies to oversee not only the old Management Information Systems (MIS) processes,
but also guide the transformation of data into information and knowledge useful to drive
intelligent decision making.

Large companies can hire a hoard of doctors of philosophy to pump out the informa-
tion and knowledge from analytical models, but smaller companies must rely on business
data analysts without specialized training in statistical analysis or data mining. It is
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to that resource base that this book is targeted. This book is designed to get these
users up and running with data mining to create acceptable models in a very short period
of time.

“SMART” SYSTEMS ARE THE DIRECTION IN WHICH DATA
MINING TECHNOLOGY IS GOING

These smart systems are composed of the union of many individual techniques designed
to work together to create powerful data mining models. These models are embedded
within many business systems, like the recommender engines used by Amazon.com to sug-
gest additional products that might be of interest to you. This union of solution elements
has expanded beyond the data mining process to the entire data processing flow. Groups
of computers can be networked together in grid computing systems, which can tackle com-
puting problems that were impossible just a few years ago. The Internet can host a “cloud”
of computers available to be linked together upon demand, which can form an almost
unlimited virtual grid system.

Visual data mining is not new. Powerful graphical techniques have been incorporated
into statistical and data mining packages for the past 20 years. Recently, however, resur-
gence in powerful new graphical systems may move data mining away from the traditional
“left-brained” statisticians toward “right-brained” people who comprise the majority of
people in business management. The same thing happened when Microsoft Excel moved
into the mainstream of business practice. Accountants used paper spreadsheets for years
and combined them into vast spreadsheet models such as cash flow plans. Excel provided
business analysts without any accounting background the ability to do very similar things
with their data. Excel is now a standard office tool. Visual data mining technology will per-
mit business managers to do similar things with data mining technology. Soon, managers
will have the capability to do what-if analyses, which draw automatically on their corporate
data and utilize the same technology that has driven their marketing direct mail operations
for many years (for example). Then business managers will be able to guide and direct their
departments (business organisms) and their entire enterprise (business ecosystem) with
true business intelligence rather than just gut-level responses.

POSTSCRIPT

We are heading into a new and exciting age in the twenty-first century. The atom may
be the limit for nanotechnology development of the hardware, but the globe (and even
the universe) is the limit for data mining development. If we follow Dan Botkin’s advice,
we will be able to understand and build optimal business systems, with a dynamic stability
harmonious with sustained profitability, however discordant some of the elements may
appear to be.
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Glossary

TEXT MINING TERMINOLOGY

categorization of text material: Assignment of documents to one or more categories based
on content.

clustering in text analysis: Document clustering and text clustering are closely related in
text mining. It can be an unsupervised clustering, involving trees or other algorithms like
SVM for the organization of either documents or text in documents, sometimes referred
to as filtering.

collocations: Text units that cover more than one word, such as United States of America.

concept mining: A text mining approach based on artificial intelligence and traditional
statistics. Thesauri have been used to look up words to convert them into “concepts,”
and similar computer programs have been developed to do the same, such as Princeton’s
WordNet.

co-occurrence: Occurrence of similar or the same words/concepts in the same area of text—
typically a sentence or fixed window of tokens (words) surrounding the focus token, but
sometimes as large as an abstract—suggesting a relationship between them.

document classification: See categorization of text material.

GATE: General Architecture for Text Engineering (Cunningham, 2002). A system of looking
at the structure of text material.

gene mention: The act of keeping tabs on mention of “genes” in text, for example; this
has been a major focus of biomedical text mining research. For identifying a wider range
of biomedical categories like diseases, drugs, chemicals, and methods of treatment,
a specific tool is the National Library of Medicine’s MetaMap

grammar: The structure of a language; different languages have different “associations” of
word forms, so this can be a very difficult pattern to understand.

Hidden Markov Model (HMM): A process to determine hidden parameters from observ-
able parameters where the system being modeled is assumed to be a “Markov process.”
HMMs were first applied to speech recognition problems in the mid-1970s; and in the
1980s HMMs were applied to biological processes, particularly DNA.

789



hybrid methods for text analysis: Hybrid n-gram/lexical analysis tokenization is one type
of “hybrid text analysis” system; it comprises a lexicon and a hybrid tokenizer that
perform both N-gram tokenization of a text and lexical analysis tokenization of a text.
Another is HybGFS, which is a hybrid method for genome-fingerprint scanning.

information extraction (IE) from text: Automatic extraction of structured information from
unstructured text data in natural language processing; often by rule induction and
generalization.

inverse document frequency: A transformation of raw word frequency counts computed in
text mining. This process is used to express simultaneously the frequencies with which
specific terms or words are used in a collection of documents, as well as the extent to
which particular words are used only in specific documents in the collection. For more
information, see Manning and Schütze (2002); and the online help in the STATISTICA
Data Miner that is on the DVD that comes with this book.

LingPipe: A program composed of a set of modules for biomedical (and general) language
processing tasks, ranging from low-level preprocessing, like sentence segmentation, to
part of speech tagging (http://www.alias-i.com/lingpipe/).

natural language: A language that has evolved naturally, such as English, German,
Russian, Chinese, etc.

noise: Extraneous text that is not relevant to the task at hand, necessitating filtering it out
from important text.

PubMed/MEDLINE: A database of publications in medicine and biomedicine/bioscience
that can be reached and searched online; particularly useful for genomics-related
publications.

relationship extraction: The process of finding relationships between entities in text.

rule-based or knowledge-based system: One of the three approaches to text mining, the
other two being (1) co-occurrence and (2) statistical or machine-learning-based systems.
Rule-based systems make use of some sort of knowledge. This might take the form of
general knowledge about how language is structured, specific knowledge about how a
discipline’s relevant facts are stated in the literature, knowledge about the sets of things
that this discipline talks about and the kinds of relationships that they can have with
one another, and the variant forms by which they might be mentioned in the literature,
or any subset or combination of these.

semantic specificity: See inverse document frequency.

sentence segmentation: Splitting a multisentence input into its individual sentences.
Performance varies widely, with some tools doing as poorly as 40% on this task. High-
performing systems include the rule-based Perl sentence segmenter that is packaged
with the KeX gene name recognizer and the statistical Java sentence segmentation
module that is distributed with LingPipe; both perform in the mid to high 90% range
(Baumgartner et al., in progress).
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sentiment analysis: An examination that aims to determine the attitude of a speaker or
a writer on a given topic, which may be his or her “judgment” or “evaluation” of that
topic and/or “emotional state” connected to that topic.

statistical or machine-learning-based systems: One of the three approaches to text mining,
the other two being 1) co-occurrence and (2) rule-based or knowledge-based system.
Statistical or machine-learning-based systems operate by building classifiers that may
operate on any level, from labeling parts of speech to choosing syntactic parse trees to
classifying full sentences or documents.

text analytics: A set of linguistic, lexical, pattern recognition, extraction, tagging/structur-
ing, visualization, and predictive techniques. Text analytics also describes processes that
apply these techniques to solve business problems from facts, business rules, and
relationships.

text mining: The process of automatically extracting “meaning” from a collection of
documents. A first step might be calculating statistics about the words, terms, and
structure of the documents.

tokenization: The task in text mining of splitting an input into individual words (as well as
other units, such as punctuation marks).

UIMA: Unstructured Information Management Architecture (Ferrucci and Lally, 2004;
Mack et al., 2004).

universal grammar: A theory proposing that all natural languages have certain underlying
rules which constrain the structure of the language. It tries to explain language acquis-
ition in general and proposes rules to explain language acquisition during child
development.

DATA MINING, DATABASE, AND STATISTICAL TERMINOLOGY

algorithm: Sets of steps, operations, or procedures that will produce a particular outcome;
like a recipe.

assessment: The process of determining how well a model estimates data that are not used
during training, usually by using a completely new set of data of the same variables.

association rule: A data mining technique used to describe relationships among items. The
A-priori algorithm (see Witten and Frank, 2000) is a popular and efficient algorithm for
deriving such association rules.

bagging: Bootstrapped aggregating—combining the results from more than one model as
your final model. Bagging can give a more accurate model, especially when data sets
are small; this is done by repeated random sampling of the data set, with replacement
and model fitting, and then averaging or voting the outputs of the separate models
together.
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basis functions: Functions involved in the estimation of Multiple Adaptive Regression
Splines (MARS). These basis functions approximate the relationships between the
response and predictor variables.

Bayes’ theorem: The theorem that uses new information to update the probability (or prior
probability) of a phenomenon or target variable.

Bayesian networks: Neural networks based on Bayes’ theorem.

Bayesian statistics: An approach based on Bayes’ law. The current probability of a factor
is proportional to the prior probability of that factor multiplied by the likelihood of that
factor as reflected in your current data. In other words, as more and more data are
collected, you can refine the probability of a factor until you get closer and closer to
reality about that factor or phenomenon.

binary variable: A variable that contains two discrete values (for example, Sex: male or
female).

bootstrapping: In statistics, a resampling process, of which there is more than one type;
the Jackknife and V-fold cross-validation are names of two bootstrapping methods.

BPMD: Business Process Modeling Notation.

branch: Part of a classification tree that is rooted in one of the initial divisions of a segment
of a tree. For example, if a rule splits a segment into five subsets, then five branches grow
from the parent segment.

C-SVM classification: A support vector machine method for solving multiclassification
prediction problems.

CART: Classification and Regression Tree algorithm developed by Breiman et al. (1984).
Generic versions are often named C&RT.

categorical dependent variable: A variable measured on a nominal scale, identifying class
or group membership (e.g., male and female). For example, a good or bad credit risk
score; see the Credit Scoring Tutorial, or the Credit Risk Tutorial, one in the pages of this
book and the other on the DVD that accompanies this book.

categorical predictor variable: A variable, measured on a nominal scale, whose categories
identify class or group membership, like good or bad credit risk score.

CHAID: A classification trees algorithm developed by Kass (1980) that performs multilevel
splits in classification trees. CHAIDrepresents “Chi-squareAutomatic InteractionDetection.”
The CHAID technique specifies a significance level of a chi-square test to stop tree growth.

champion model: The best predictive model developed from a “competitive evaluation” of
data mining algorithms to which you submit a data set.

classification trees: One of the main “workhorse” techniques in data mining; used to
predict membership of cases in the classes of a categorical dependent variable from
their measurements predictor variables. Classification trees typically split the sample
on simple rules and then resplit the subsamples, etc., until the data can’t sustain further
complexity. The following illustration (from the STATISTICA manual) shows how to
“read” a classification tree diagram:
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clustering: A type of analysis that divides data (cases or variables, depending on how
specified) into groups such that members of each group are as close as possible to each
other, while different groups are as far apart from each other as possible.

CRISP: Cross-Industry Standard Process for data mining; proposed in the mid-1990s by
a European consortium of companies to serve as a nonproprietary standard process
model for data mining. Other models for data mining include DMAIC—the Six Sigma
methodology, involving the steps of Define!Measure!Analyze!Improve!Control.
Another model is SEMMA, proposed by the SAS Institute, involving the steps of
Sample!Explore!Modify!Model!Assess.

CRM: Customer Relationship Management; processes a company uses to handle its contact
with its customers. CRM software is used to maintain records of customer addresses,
quotes, sales, and future needs so that customers can be easily and effectively supported.

cross-validation: The process of assessing the predictive accuracy of a model in a test
sample compared to its predictive accuracy in the learning or training sample that was
used to make the model. Cross-validation is a primary way to assure that over learning
does not take place in the final model, and thus that the model approximates reality as
well as can be obtained from the data available.
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data mining: A process that minimally has four stages: (1) data preparation that may
involve “data cleaning” and even “data transformation,” (2) initial exploration of the
data, (3) model building or pattern identification, and (4) deployment, which means
subjecting new data to the “model” to predict outcomes of cases found in the new data.

epoch in neural networks: A single pass through the entire training data set, followed by
scoring of the verification or “testing” data set.

FACT: A classification tree algorithm developed by Loh and Vanichestakul (1988).

feature extraction: A technique that attempts to combine or transform predictors to make
clear the information contained within them. Feature extraction methods include factor
analysis, principal components analysis, correspondence analysis, multidimensional
scaling, partial least square methods, and singular value decomposition.

feature selection: A method by which to decide on which features (columns) to keep in
the analysis that will be done by the data mining algorithms. One of the first things to
be done in a data mining project; this uncovers the most important variables among
the set of predictor variables. Many of the predictor variables in a data set may not really
be important for making an accurate predictive model, and only dilute/reduce the
accuracy score of the model if included.

gains chart: A summary graph showing which data mining algorithm provides the best
model for predicting a binomial (categorical) outcome variable (dependent variable), as
compared to a baseline level. This gains chart, or its analog the lift chart, is the single
most important output result to examine at the completion of a data mining project.
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The baseline is the straight line from coordinate points 0,0 to 100,100; the algorithm curve
that “bends” the most to the upper left and is consistent in that “bend” is the best model
for your data. In the preceding example, the “classification tree” is the best model.
[Gains chart taken from online help of STATISTICA: StatSoft, Inc. (2008). STATISTICA
(data analysis software system), version 8. www.statsoft.com.]

generalization: The process of creating a model based on specific instances that is an
acceptable predictor of other instances.

genetic algorithm: The type of algorithm that locates optimal binary strings by processing
an initially random population of strings using artificial mutation, crossover, and selec-
tion operators, in an analogy with the process of natural selection (Goldberg, 1989).

Gini Measure of node impurity: A goodness-of-fit measure in classification problems, used
in C&RT and interactive trees in data mining.

GRNN (Generalized Regression Neural Network): A type of neural network using a
kernel-based method to perform regression. One of the Bayesian networks (Speckt,
1991; Bishop, 1995; Patterson, 1996).

hazard rate: The probability per time unit that a case that has survived to the beginning
of an interval will fail in that interval.

hidden layers in neural networks: The layers between the “input” and the “output” in a
neural network model; hidden layers provide the neural network’s nonlinear modeling
capabilities.

hold-out data: The observations removed from the data set and set aside to be used as
test data to benchmark the fit and accuracy of the predictive model produced from the
training data set.

imputation: The process in which methods are used to compute replacement values for
missing values; for example, when case values for certain variables are missing in a data
set, but it is determined important enough to keep these cases, various methods can be
used to compute replacement values for these missing values.

incremental algorithms: Algorithms that derive information from the data to predict new
observations, which require only one or two complete passes through the input data.
Nonincremental learning algorithms are those that need to process all observations in
each iteration of an iterative procedure for refining a final solution. Incremental learning
algorithms are usually much faster.

input variable: A variable that is used to predict the value of one or more target variables.

interval variable: A continuous variable over a range of values; for example, height of
humans with values like 5 feet, 5.5 feet, 6 feet, 6.3 feet, etc.

isotropic deviation assignment: An algorithm in neural networks for assigning radial unit
deviations; it selects a single deviation value using a heuristic calculation based on the
number of units and the volume of pattern space they occupy, with the objective of
ensuring “a reasonable overlap” (Haykin, 1994).

jogging weights: Adding a small random amount to the weights in a neural network, in an
attempt to escape a local minima in error space.
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K-means algorithm: An algorithm used to assign K centers to represent the clustering of N
points (K< N). The points are iteratively adjusted so that each of the N points is assigned
to one of the K clusters, and each of the K clusters is the mean of its assigned points
(Bishop, 1995).

K-nearest algorithm: An algorithm used to assign deviations to radial units. Each deviation
is the mean distance to the K nearest neighbors of the point.

KDD: Originally, Knowledge Discovery in Databases; later, Knowledge Discovery and
Data Mining.

KDM: Knowledge Discovery Metamodel.

kernels: A function with two vectors as input that returns a scalar representing the inner
product of the vectors in some alternate dimension.

knowledge discovery: The process of automatically searching large volumes of data for
patterns that can be described as “knowledge” about the data.

Kohonen networks: Neural networks based on hypothesized topological properties of the
human brain. Also known as self-organizing feature maps (SOFMs) (Kohonen, 1982;
Fausett, 1994; Haykin, 1994; Patterson, 1996).

leaf: In a classification tree diagram, any node that is not further segmented. The final
leaves in a tree are called terminal nodes or leaves.

lift chart: A visual summary of the usefulness of the statistical or data mining models for
predicting a binomial (categorical) outcome variable (dependent variable). For multino-
mial (multiple-category) outputs, the chart shows how useful the predictive models
may be, compared to baseline.
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Lift may also be defined as the calculation equal to the “confidence factor” divided by the
“expected confidence.” The model having the highest value at the left side of the chart
and continuing more or less as highest as the model’s curve goes across to the right side
of the chart is the “best” model for the data.

likelihood: The probability of an event based on current observations.

logistic regression: A form of regression analysis in which the target variable (response var-
iable) is a binary-level or ordinal-level response and the target estimate is bounded at the
extremes.

lookahead: For time series analysis, the number of time steps ahead of the last input
variables that the output variable is to be predicted.

machine learning: A term often used to denote the application of generic model-fitting or
classification algorithms for predictive data mining. This differs from traditional statistical
data analysis, which is usually concerned with the estimation of population parameters
by statistical inference and p-values. The emphasis in data mining machine learning
algorithms is usually on the accuracy of the prediction as opposed to discovering the
relationship and influences of different variables.

market basket analysis: See association rule.

metadata: A description or definition of data or information.

Multilayer Perceptron (MLP): A neural network that has one or more hidden layers, each
of which has a linear combination function and executes a nonlinear activation function
on the input to that layer.

Naı̈ve Bayes: A statistical method based on Bayesian theorem that is primarily used for
classification tasks.

neural networks: Techniques modeled after the (hypothesized) processes of learning in the
cognitive system and the neurological functions of the brain and capable of predicting
new observations (on specific variables) from other observations (on the same or other
variables) after inducing a model from existing data. These techniques are also sometimes
described as flexible nonlinear regression models, discriminant models, data reduction
models, and multilayer nonlinear models.

node: In SAS-EM, SPSS Clementine, and STATISTICA Data Miner, a graphical icon that
represents a data mining task in a process flow diagram. These nodes can perform data
cleaning, transformation, sorting, and other such tasks; or they can represent algorithms
from traditional statistics, machine learning, or statistical learning theory.

noise addition in neural networks: The addition of random noise to input patterns during
training to prevent overfitting during back propagation training (and so “blurring” the
position of the training data).

one-off in neural networks: A single case submitted to the neural network to be estimated
that is not part of a data set and not used in training.

overfitting: The situation that occurs when an algorithm has too many parameters or is run
for too long and fits the noise as well as the signal. Overfit models become too complex
for the problem or the available quantity of data.
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predicted value: The estimate of a dependent variable calculated by running the model on
(or scoring) a set of values of the predictor variables.

Probabilistic Neural Network (PNN): A neural network using kernel-based approximation
to form an estimate of the probability density functions of classes in a classification prob-
lem. One of the Bayesian networks (Speckt, 1990; Bishop, 1995; Patterson, 1996).

profit matrix: A table of expected revenues and expected costs for each level of a target
variable.

QUEST: A classification tree program developed by Loh and Shih (1997).

R programming language: A programming language for statistics and graphics. Originally
created by Ross Ihaka and Robert Gentleman at the University of Auckland, it is now
further kept in development by the R Development Core Team. R developed out of the
S language of Bell Labs. See the R Tutorial and associated white papers on the DVD that
is packaged with this book, for further details, and web sites from which you can down-
load the R-language and a multitude of statistical programs as freeware. (Main web site:
http://www.r-project.org/)

radial basis function neural network: A neural network using a hidden layer of radial
units and an output layer of linear units, and characterized by fast training and compact
networks. Introduced by Broomhead and Lowe (1988) and Moody and Darkin (1989),
they are described in many neural network textbooks (e.g., Bishop, 1995; Haykin, 1994).

regularization in neural networks: A modification to training algorithms that attempts to
prevent over- or underfitting of training data by building in a penalty factor for network
complexity, usually by penalizing large weights, which correspond to networks modeling
functions of high curvature (Bishop, 1995).

RDF: Resource Description Framework.

root node: The beginning of a decision tree; the root node holds the entire data set sub-
mitted to the tree, before any splits are made.

scoring: Computing the values for new cases, based on the model developed from a “train-
ing data set.” This can be rapidly done with PMML code of the saved model by applying
the new data to this code.

self-organizing feature maps (SOFMs): Same as Kohonen networks; an SOFM classifies the
parameter space into multiple clusters, while at the same time organizing the clusters into
a map that is based on the relative distances between clusters. A competitive learning
neural network that is also used for visualization.

statistical significance (p-level type in “traditional”/“frequentist” statistics): An esti-
mated measure of the degree to which a result is “true.” The higher the p-level, the less
we can believe that there is a significant difference in what has been measured compared
to the population as a whole. For example, the p-level of 0.05 indicates that there is a 5%
probability that the relation between the variables found in our sample is a fluke. This
means that there is a 95% chance that our result represents reality, but this also means
that if we did 10 t-tests on the same data, we would get one that was significant at the
p<0.05 level just by chance, and thus would have to doubt that this represented reality.
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In many areas of research, the p-level of 0.05 is treated as a borderline acceptable error
level. In medical diagnoses, for example, we would like our p-level to be <0.001 or
more—e.g., we want a medical Dx to be as accurate as possible.

Support Vector Machine (SVM): A classification method based on the maximum margin
hyperplane.

target variable: The dependent variable for which the data mining independent variables
(or predictor variables) make a model; it is what we want to score for in new cases
of data.

transformation: The application of a function to a variable to adjust its range, variability,
shape, etc.

unsupervised learning in neural networks: The type of learning that occurs when
algorithms adjust the weights in a neural network by reference to a training data set
that includes input variables only. Unsupervised learning algorithms attempt to locate
clusters in the input data.

V-fold cross-validation: The process of drawing repeated random samples (V replicates)
from the data for analysis so that the algorithm is then applied to compute predicted
values, classifications, etc. Instead of one accuracy estimate, you get V, providing a more
accurate estimate of the mean accuracy, as well as its uncertainty (e.g., standard devia-
tion). This method is most often used with small data sets. The stability of the training
and evaluation accuracies points to the quality of the model This method is used in tree
classification and regression methods and is very useful in Support Vector Machines as
an added check on the SVM Training Accuracy, Test Accuracy, and Overall Accuracy;
e.g., in SVM, if the training and test accuracy are almost identical, then we have a good
model; but if the training and text accuracy are a little off, then the V-fold cross-validation
accuracy can be checked, and if it is identical or almost identical to the TEST accuracy,
then we can accept the model on the basis of test accuracy.

validation data: A subset of a data set held out to run through the model produced by the
training and testing (or evaluation) data sets, to see if the model holds up or generalizes.

variable: A column in an SAS, SPSS, or STATISTICA data set.
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of systems, in decision making,

726–728
Computer-aided diagnosis, 318
Computing. See also Cloud

computing
analytical strengths of, 746–747
GDF process of, 299f
grid, 13, 773
humans v, 746–747
new strategies for, 13–14

with PC, 259–260
questions asked in, 738–739
unlearning in, 744–745

Conditional probability, 255
Conferences, 310
Confidence level, 10–11
Confusion matrix, 292, 292t, 404f,

405f, 413f
Consensus methods

algorithms, 286, 300
clustering, 302
decision trees, 300–301
linear, 300
neural networks, 301

Consensus models, DMRecipe
and, 369

Constant variance, 6–7
Consumer credit, increase in, 459
Content, retrieval by, 24
Continuous variables, frequency

tables and, 105
Contributory methods

algorithms, 286, 300
clustering, 302
nearest neighbors, 239–240,

301–302
Convergence, 43, 77–78
Corporate information factory, 727,

727f
Corporations, 337–338
Correlation coefficients, 70–71, 70t
Cost matrix, 291–292, 292t
Credit card

applications for, 735
fraud, 348, 352, 353, 360
issuers, 348, 735

Credit scoring
analysis and results of, 465–467
application aspect of, 460
bad debt management and, 461
business objectives of, 460–461
case number in, 751
case study of, 461–465
CHAID for, 465–467, 466f, 468f
classification matrix for, 467, 469,

470f
creditability in, 461–462, 463, 463f
data preparation in, 462
decision trees for, 465–467, 466f
definition of, 459–460
ease of, 470
feature selection in, 462–463
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gains chart for, 468, 469f
lift chart for, 468, 470f
marketing aspect of, 460
model evaluation for, 467–469
performance aspect of, 460
problem, 291–292, 292t
STATISTICA Data Miner for,

462–463, 463–464, 464–465
up-sampling and, 751
variables in, 461–462, 462t

Creditworthiness, 652, 751
CRISP-DM. See Cross Industry

Standard Process for Data
Mining

CRM. See Customer Relationship
Management

Cronbach Alpha, 588–589, 591
Cross Industry Standard Process for

Data Mining (CRISP-DM),
35–36, 35f, 39, 50, 198

Clementine view of, 394
information loop of, 46
modeling phase of, steps in,

41–45, 42f
process of, 783

Cross-selling campaigns, 340–341,
743

Cross-tabulation matrix, 524–525,
525f

Cross-validation (CV)
averaging and, 307
bootstrapping v, 297
in education-leadership training

prediction, 619
in facial pain study, 639–642,

643f, 646, 647, 649f
V-fold, 149, 295–296, 296f,

639–642, 646, 647
folds, 736
GMDH test, 709
in model evaluation, 295–296
3-fold, 144, 145f

C&RT. See Classification and
regression trees

CUReT, 763f
Curse of dimensionality, 77–78, 138,

745
Customer Analytical Record (CAR),

54, 70
analysis of, 23
creation of, 22–23
ease of, 20

Customer Lifetime Value (CLV),
336

Customer Relationship
Management (CRM), 21, 26.
See also Unsatisfied customers,
predicting

in business ecosystems, 338–344
churn analysis and, 479, 480
history of, 336
profitability and, 345

Customer response modeling
biological metaphor for, 344
customer behavior in, 336–338,

344
customer fulfillment in,

337–338
data reflecting motives and

attitudes in, 339–340
definition of, 335
early issues of, 336
insurance company example of,

340
Plato’s view of human nature in,

339
Customer-centric systems, account-

centric v, 20–22
Customers. See Unsatisfied

customers, predicting
Cutoff values, 627, 627f, 653
CV. See Cross-validation

D
DARPA Intrusion Detection

Evaluation Program, 355
Data. See also Imputation, data;

KDD Cup 1999 Network
Intrusion Detection data set;
Preparation, data;
Transformation, data;
Understanding, data

access tools, 99, 100–101
acquisition, 39, 51–52
analysis methods, 326–327, 772
assessment, 56
for churn analysis, 471
cleaning of, 49
demographic, 350
for depression instrument

structure, 567–568, 575
description, 39, 40, 54–56
in education-leadership training

prediction, 620

exploration tools, 100, 101–106
exploratory analysis of, 23
extraction, 53–54, 100
extracts, 52
firmographic, 350
found, 735, 741
historical, in fraud detection,

295, 349
for hospice service prediction,

533, 537, 538
integration, 39–40
integration tools, 99
internal and external, in

fraud detection, 349–350,
355

internal validation of, 744
known distribution of, 6
lack of, as top mistake, 734–735
large sets, in fraud detection,

348, 350
listening only to, 739–742
loading, 101
motives and attitudes reflected

by, 339–340
movie box-office receipts

predicted with, 392, 393f
nature of, 236
paradigm shift, 22–23
in PPC, 515
profiling, 56
psychographic, 350
quality, 31, 39, 40
redundancy, 374
reserved, overfitting avoided

with, 736
retrieval, in medical informatics,

316
in self-reported health status,

ANNs predicting, 682–702
source, 50
spherified, 304
splitting, 287–288, 517
for unsatisfied customer

prediction, 418, 424f, 456f,
457f, 458f

unstructured, 173, 314–315, 481,
512, 784

warehouses, 743
Data marts

design of, 725, 727f
physical, 20–21, 21f, 727
virtual, 21, 727
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Data miner. See also STATISTICA

Data Miner
big picture and, 307–308
goals of, 310–311
Hospice service, predictors for,

533, 534f, 535f, 536f, 537f,
541

how to thrive as, 307–311
professional development of,

309–310
project methodology,

deliverables and, 308–309
Data Miner Recipe (DMRecipe),

93–95, 94f, 95f, 96f, 123–124,
123f

aviation safety and, 383–385,
386–387

depression instrument structure
and, 572, 572f, 573f, 574f,
575f, 576f, 577f, 578f, 579f,
580f, 581f, 582f, 583f, 584f,
585f, 586f

in facial pain study, 623–625,
624f, 629, 629f, 630f, 631f,
632f, 633f, 634f, 635f, 636f,
637f, 638f, 639f, 640f, 641f,
642f, 643f, 644f, 645f, 646f,
647f, 648f, 649f, 650f

first recipe for education-
leadership training
prediction, 598, 598f, 599f,
600f, 601f, 602f, 603f, 604f,
606

format of, 230, 231f, 232f
in hospice service prediction, 552,

552f, 553f, 554f, 555f, 556f,
557f, 558f, 559f, 560f, 561f,
562f, 563f, 564f, 565f, 566f

in intrusion detection modeling,
356, 357f, 358, 358f, 359f

models built in, 257
second recipe for education-

leadership training
prediction, 606, 606f, 607f,
608f, 609f, 610, 610f, 611f, 612f

status bar of, 582, 582f
synoptic view of, 280
third recipe for education-

leadership training
prediction, 613, 613f, 614f,
615f, 616f, 617f, 618f, 619f,
620f, 621f

Data Miner Recipe (DMRecipe)
tutorial

advantages of, 367
algorithms in, 368–369
consensus models and, 369
core analytic ingredients of,

373–375
data preparation in, 373
explanation of, 373
process of, 367
results of, 368–369, 372f
steps for using, 367–368, 368f,

369f, 370f, 371f, 372f
Data Miner Workspace

in facial pain study, 625, 625f
format of, 230
templates of, 107, 109f, 110f
use of, 84–85, 84f, 90, 90f, 91f
variations with, 90, 91f, 92,

92f, 93f
Data mining. See also Algorithms;

Cross Industry Standard
Process for Data Mining;
Image and object data mining;
Mistakes, in data mining;
SAS-Enterprise Miner; SPSS
Clementine; STATISTICA
Data Miner; Tools, for data
mining

activities of, 23–25, 25t
applications of, 171, 311
art of, 33, 36–38, 46–47, 733
automated, 230–233
for aviation safety, 383–385,

386–387
bat species example of, 28–29,

29f
in bioinformatics, 329–332,

332–333
caveats with solutions of, 31
challenges of, 25, 730
cloud computing and, 769–778
decision making influenced by,

725–726
definition of, 17–18, 33–34
80:20 Rule in, 728
examples of applications of, 26
in fraud detection, 295
future of, 755, 772–778, 787
goals and objectives of, 37–38
history of, 4, 15–16, 25t,

194–195

in-database, 39–40
introduction to practice of, 3–4
issues in, 26–28, 51
as mainstream, 786–787
maturation of, 777
medical informatics related to,

314–317
need for, 11, 30
new perspective on, 775f, 776
in numerical prediction, 274–277
overfit in, 286–287
phases of, 395–396
platform building in, 4
predictive, 105–106, 105f, 316
quality control, 152, 169–170
reverse-engineered solutions

of, 726
for RFID, 756–757
science of, 33–34, 39–40
shifting up gears in, 774–776, 775f
significant events in, 273
smart systems in, 787
social networking and, 757–761
steps of, 47
strengths of, 19–20
success requirements for, 28
Sufficiency Paradigm and, 725
take-aways for, 781–782
theoretical framework for, 18–19
traditional, 773–776
as utility, 777

Data Mining Query Language
(DMQL), 52

Data Preparation for Data Mining

(Pyle), 743
Decapitation passes, 743
Decision making

in business organism, 725–728
complex systems in, 726–728
data mining influencing,

725–726
muscles influencing, 726
transparent, variable, 615, 615f,

620
Decision matrix

misclassification matrix v, 446,
661

in predicting unsatisfied
customers, 446–453, 447f,
448f

in SAS-EM, 661
Decision plane, 162, 163f
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Decision rules, 654
Decision trees. See also Chi-square

automatic interaction
detection; Classification and
regression trees; Interactive
trees

bagging of, 717, 717f, 718–719,
718f

in classification, 241–242, 241f
as consensus method, 300–301
for credit scoring, 465–467, 466f
deployment model boosting,

469
depression instrument structure

and, 584–585, 585f, 586f
for direct marketing, 750
ensembles of, 710
in facial pain study, 623, 637–638
in hospice service prediction, 561,

561f, 563, 565f, 566f
large, 279
lift chart built with, 295
in machine learning methods, 12
for movie box-office prediction,

406f, 407f, 411f, 412f
NTSB, 191, 193f
in numerical prediction, 275–276
parametric statistical

assumptions avoided by,
278–279

in profit analysis, 668, 668t, 669
pruning of, 300
pure, 467
from SAS-EM, 212f
strengths of, 237, 301
surface with noise, 714–719, 715f,

716f, 717f, 718f
Deductive method

history of, 34
in scientific method, 16
in statistical analysis, 16

Deep Blue v. Kasparov chess match,
749f

Definitional abstraction, 68, 340
Degrees of freedom

generalized, 287–288, 299f, 716f,
719–720, 719f, 720f

in linear regression, 287
Delaunay Triangles, 748–750, 749f,

750f
Deliverables, project methodology

and, 308–309

Dementia. See Hospice service,
predictors for

Demographic data, 350
Denormalization, 22–23, 53–54
Density estimations, 23
Dentistry. See Facial pain study
Dependency modeling, 23
Deployment

as art, 45
customer, 229, 229f
DMRecipe and, 39
environments, 37
model, boosting decision trees,

469
rapid, of predictive modeling,

114–116
Depression instrument, structure of

accuracy of, 583, 583f
Beck, 567–568
CART for, 572, 580, 580f
CES-D, 567–568
data for, 567–568, 575
decision trees for, 584–585, 585f,

586f
defaults in, 569f
DMRecipe for, 572, 572f, 573f,

574f, 575f, 576f, 577f, 578f,
579f, 580f, 581f, 582f, 583f,
584f, 585f, 586f

error rate and, 583
factor analysis in, 567–568
feature selection in, 567–568
importance chart for, 584f
model building in, 579, 579f
PHQ-9, 567–568
results of, 571, 571f, 584–585,

586
variables in, 567–568, 568f, 570f,

576, 578, 579
Zung, 567–568

Derivation, in data understanding,
73–75

Descriptive modeling, role of, 23
Descriptive statistics, basic, 101–105
Diagnosis, 316, 318
DICOM. See Digital

Communications in Medicine
Differentiation of Self Inventory

(DSI), 587
Digital Communications in

Medicine (DICOM), 317
Digital nervous system, 726, 728

Dimensionality
curse of, 77–78, 138, 745
graphical methods of, 72–73, 72f
reduction of, 70, 72–73, 72f, 96,

374
Direct mail, 744
Direct marketing, 750
Dirty records, deleting of, 57
Discipline interlock, by technology,

152f
Discordant Harmonies (Botkin),

784–785
Discretization, in data

understanding, 73
Discriminant analysis methods, 763
Dispersion, measures of, 103
Distributed mining algorithms, 27
Diversity, of models and

techniques, 783
DMAIC, 46
Dmine Regression node, 655–661,

661f, 662, 668, 668t
DMQL. See Data Mining Query

Language
DMRecipe. See Data Miner

RecipeData Miner Recipe
tutorial

DNA polymerase, 325
DNA sequence, 324, 326, 326t
Document retrieval, 483
Document scores, 497, 497f
Domain knowledge, 30
Dot product, 12–13
Drilling down, 106, 106f, 108f
DSI. See Differentiation of Self

Inventory
Dummy variable

categorical, 58–59
definition of, 50

Dynamic analyses, 515
comparative evaluation of

models and, 526, 526t
gains analyses by deciles in, 527,

527t
overlaid charts computed in, 523

E
EBI. See European Bioinformatics

Institute
Economizing characteristic, 337
EDM. See Enterprise Decision

Management tool interface
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Education-leadership training,
predicting relationships in

CART for, 598, 601, 604, 605, 609,
612, 612f, 615, 615f, 616, 620,
621f

Collaborative Leader Profile in,
587, 588, 588f

Cronbach Alpha in, 588–589,
591

cross-validation in, 619
data lacking in, 620
DSI in, 587
factor analysis in, 594, 594f
first DMRecipe for, 598, 598f,

599f, 600f, 601f, 602f, 603f,
604f, 606

risk-taking and social desirability
measured in, 587

second DMRecipe for, 606, 606f,
607f, 608f, 609f, 610, 610f,
611f, 612f

State Trait Anxiety Scale in, 587
STATISTICA for, 588, 588f, 589f,

590f, 591f, 592f, 593f, 594f,
595f, 596f

third DMRecipe for, 613, 613f,
614f, 615f, 616f, 617f, 618f,
619f, 620f, 621f

variables in, 588–589, 594, 595,
599, 600, 613, 615, 617

EEG. See Electroencephalogram
Efficiency

of algorithms, 27
more is better belief v, 724
paradigm of, 724
Sufficiency Paradigm and,

724–725
80:20 Rule, 728
Einstein, Albert, 337
Elastic clouds, 776f, 777, 778
Electroencephalogram (EEG), 316
Electronic payments, tags in, 756
Elegant modeling

complexity v, 720
implementation of, 731

EM cluster analysis, 148–149
Email network, 759–760, 760f
Engineering, disproving more is

better belief, 724–725
Enhancement action checklist,

302–304

Ensemble modeling, 42f, 43
accuracy of, 708, 709f, 710f
bagging in, 305, 305f, 306f, 708
Bayesian model averaging in,

708
boosting in, 305–306, 708
bundling in, 708–709, 710f, 752
complexity of, 712–713
criticism of, 710, 712
decision tree ensembles in,

710
decision tree surface with noise

in, 714–719, 715f, 716f, 717f,
718f

as enhancement technique,
304–307

ensembles built in, 306–307,
708–710

GDF in, 287–288
interpretability and, 752
median error in, 307f
methods for building, 708
model complexity and, 707–708,

708–710
out-of-sample errors in, 711f
surface plots in, 709f, 711f

Ensemble Project, 325
Enterprise Decision Management

(EDM) tool interface, 776
Enterprise Miner. See SAS-

Enterprise Miner
Entertainment, tags in, 757
Entrez/Gene, 325
Error

alpha, 10–11
in ensemble modeling, 307f
evaluation, 289f
minimization routine, 240
minimum squared, 291
plots, 189, 192f
squared, 738–739
training, 287, 288, 289f

Error metric
classification, 291–293
estimation, 291
ranking and, 293–295

Error rate
of algorithms, 386–387
cross-validation to estimate,

295–296
on CUReT, 763f

depression instrument structure
and, 583

on MNIST, 763f
on USPS, 763, 763f

ETL tools. See Extract, transform,
and load tools

European Bioinformatics Institute
(EBI), 326–327

Evaluation error, 289f
Evaluation, model. See Model

evaluationModeler evaluation
Evolution

of fraud, 348
of solutions, 785
theory of, 745–746

Evolutionary measures, static v,
338–339

Excel. See Microsoft Excel
Exhaustive CHAID, 247
Expectation maximization, 63t
Expert systems, 352, 353f
Exploratory data analysis, role

of, 23
Exponential distributions, nonlinear

regression and, 272–273
Extended Markup Language

(XML), 19
External data, in fraud detection,

349–350, 355
Extract, transform, and load (ETL)

tools, 54
role of, 99, 100–101
STATISTICA Data Miner and,

51, 102f
Extraction, data, 53–54, 100
Extrapolation, as mistake, 744–747
Extreme Programming (XP),

728–729

F
FAA. See Federal Aviation

Administration
Facial pain study

accuracy rates in, 637–638,
639–642, 646

boosted trees in, 623, 637–638
cross-validation in, 639–642, 643f,

646, 647, 649f
cutoff point in, 627, 627f
Data Miner Workspace in, 625,

625f
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decision trees in, 623, 637–638
DMRecipe in, 623–625, 624f, 629,

629f, 630f, 631f, 632f, 633f,
634f, 635f, 636f, 637f, 638f,
639f, 640f, 641f, 642f, 643f,
644f, 645f, 646f, 647f, 648f,
649f, 650f

feature selection in, 625, 626f
goal of, 625
importance plot for, 625, 626f
model building in, 631, 636f,

637, 637f
predictor variables in, 623, 625,

628f, 639, 642f, 650f
RBF kernel in, 642–643, 644f,

647, 649f
results of, 627, 628f, 637, 641f,

646, 647f
sampling in, 645, 645f
SVM in, 637–638, 643, 644–645,

644f, 647, 649f
Widmer in, 623, 646–647

Factor analysis, 567–568
depression instrument structure

and, 567–568
in education-leadership training

prediction, 594, 594f
Factor independency, 6, 262
Fair Isaac, 350, 352, 354, 360
Falcon Fraud Manager, 360
False negatives, 44
Fast Independent Component

Analysis (FICA), 168–169
Fast intersection kernel SVM

algorithms, 764, 764f, 768
FASTA, 325, 326, 327t
Feature ranking methods

bivariate, 80
complex, 82
Gini Index, 78–80, 79f
multivariate, 80–82

Feature selection. See also Feature
ranking methods; Subset
selection methods; Variables

in credit scoring, 462–463
depression instrument structure

and, 567–568
dimensionality reduced by,

96
in facial pain study, 625,

626f

in hospice service prediction, 543,
543f, 544f, 545f, 546f, 547f,
548f, 549f, 551, 551f

interactive workspace and, 93,
94f

modeling analysis and, 107–113
types of, 78

Feature Selection tool, 462–463
basics of, 91f
formats of, 84–85, 84f, 85f, 86,

86f, 87f, 88, 88f
NTSB text mining example and,

190–191, 193f
in PPC, 517–518, 528
variable list changed in, 88, 89f,

90, 90f, 93
variations with, 90, 91f, 92,

92f, 93f
Federal Aviation Administration

(FAA), 377
FICA. See Fast Independent

Component Analysis
Filtering, 64–66, 683
Firmographic data, 350
Fisher, Sir R. A, 5, 7, 7f, 260,

261–262, 341, 772–773
Fisherian statistics

alpha error in, 10–11
Bayesian v, 10–11
origin of, 5, 7, 7f
parameters in, 261–262

5.3 interface, of SAS-EM, 654–655,
654f

Folds, cross-validation, 736
Ford, Henry, 337
Found data, 735, 741
Fourth generation, of statistical

analysis, 12–13
Fraud

application, 297, 352, 353
automobile, 352
charge-back, 352
check, 352
claim, 352
complexity of, 349
cost of, 347
credit card, 348, 352, 353, 360
definition of, 347
evolution of, 348
government contracting, 734
health care, 352

in international calls, 738
investment, 353
life insurance, 352
merchant, 352
modeling, 297, 348–349, 352, 353f
phone, 348
profiles, 360
profitability and, 345
property, 352
rarity of, 348
supervised classification of,

351–352
tax, 734
temporal abstraction and,

340–341
temporal dimension of, 349
unknown, during modeling,

348–349
Fraud detection, 35f, 307–308.

See also KDD Cup 1999
Network Intrusion Detection
data set

approach to, 350–351
building systems of, 353–354
data mining in, 295
early, 352
historical data in, 295, 349
by HNC Systems, 352
information sources in, 295
internal and external business

data in, 349–350, 355
introduction to, 347
intrusion detection in, 355
issues with, 348–350
large data sets needed in, 348, 350
link analysis, 351
profiling in, 360
rules formulated in, 349
successful, 295, 353
temporal abstractions and,

340–341
Frequency, 487

binary, 487–488
inverse document, 488
log, 488
of words, 505–506

Frequency tables
categorical variable and, 105
continuous variables and, 105
definition of, 54, 104–105, 104t
in STATISTICA Data Miner, 105
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Fulfillment, customer, 337–338
Fusion, model, 709–710
Fuzzy logic systems, 353f
Fuzzy matching, 21, 26

G
GA. See Genetic Algorithms
Gains chart, 468, 469f, 523,

525f
Galton, Sir Francis, 5, 264
GAMs. See Generalized additive

models
GCART. See General Classification

and Regression Trees
GCHAID. See General CHAID

Models
GDF. See Generalized Degrees of

Freedom
GenBank, 325, 328t, 329
General CHAID Models

(GCHAID), 503–504
General Classification and

Regression Trees (GCART),
503–504

General principle rules, 349
Generalization abstraction, 68,

339
Generalization variables, 74–75
Generalized additive models

(GAMs)
development of, 138–139
outputs of, 139
results of, 139, 140f

Generalized Degrees of Freedom
(GDF)

complexity measured by,
719–720, 719f, 720f

computation process of, 299f
in ensemble modeling, 287–288
for LR model, 716f, 720
role of, 287–288

Generalized linear models (GLMs),
10, 270–271

Generalized regression, 27, 135
Generalized Regression Neural Net

(GRNN), 27
Genetic Algorithms (GA), 742
Genome

human, assembly of, 324f
study of, 323–324, 325

Genomics, 325
GenScan, 329t

German credit data. See Profit
analysis, of German credit
data

Gini Index, 71–72, 78–80, 79f
GLMs. See Generalized linear

models
Global Rd Optimization when

Probes are Expensive (GROPE)
algorithm, 748–750

GMDH. See Group Method of Data
Handling

Goals
of bioinformatics, 321–322
in business understanding,

37–38
of data miners, 310–311
of data mining, 37–38
of facial pain study, 625
of linear response analysis, 260
model, 738
project, 738
of text mining, 184–188

Google
in cloud computing, 769f, 771,

772, 775f
social networking search on, 757

Government contracting fraud, 734
Granularity, in sampling, 751
Graphical methods, of reduction

of dimensionality, 72–73, 72f
Graphical user interfaces (GUIs),

28, 786
Gray boxes, neural networks and,

281
Grid computing, 13, 773
GRNN. See Generalized Regression

Neural Net
GROPE algorithm. See Global Rd

Optimization when Probes are
Expensive algorithm

Group Method of Data Handling
(GMDH), 709

GrowthAdvisor, 336, 340
GUIs. See Graphical user interfaces

H
Hancock system, 348
Haplotype analysis, 330
Health care fraud, 352
Health status. See Self-reported

health status, ANNs
predicting

HelpfulMed system, 316
Hidden Markov Models (HMM),

330
High-d space, 745, 747
Higher education, 153
High-level query languages, 52
Histograms

definition of, 54
of NUM_SP1, 55f

History, of data mining and
statistics, 4, 15–16, 25t, 194–195

HIV drug resistance, 317
HMM. See Hidden Markov Models
HNC Systems, fraud detection

by, 352
Homoscedasticity. See Constant

variance
Hospice service, predictors for

accuracy of, 564, 564f
CART in, 561, 561f, 563, 566
data for, 533, 537, 538
Data Miner and, 533, 534f, 535f,

536f, 537f, 541
decision trees in, 561, 561f, 563,

565f, 566f
DMRecipe for, 552, 552f, 553f,

554f, 555f, 556f, 557f, 558f,
559f, 560f, 561f, 562f, 563f,
564f, 565f, 566f

feature selection in, 543, 543f,
544f, 545f, 546f, 547f, 548f,
549f, 551, 551f

importance plot in, 549, 549f,
551f

Medicare guidelines and, 533
model building in, 560, 560f
stepwise multiple regression in,

538–539, 538f, 539f, 540, 540f,
541f, 542f, 543

variables in, 537, 549, 549f, 550,
550f, 551, 552, 556, 557, 558

Householded databases, 21–22
Hudson River. See NY Airways

crash, Twitter and
Humans, computers v, 746–747
Humility, 753
Hyperplane, 78, 162, 163f
Hyperspace, 78
Hypothesis

dethroning of, 744–745
formulation of, 743–744
space, 12
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I
IBM, 771
ICA. See Independent Components

Analysis
IDP. See In-place data processing
Image and object data mining, 152,

170–171
areas of, 761
Caltech-101 in, 763f, 764
CUReT in, 763f
fast intersection kernel SVM

algorithms, 764, 764f, 768
future of, 761–768, 787
MNIST in, 763f
STATISTICA Data Miner for,

764, 765, 766f, 767f,
768f, 769f

USPS in, 763, 763f
visual data preparation in,

765–768
Imbalanced data sets, 240–246
IMDB. See Internet Movie

Database
Importance plots

depression instrument structure
and, 584f

for facial pain study, 625, 626f
in hospice service prediction,

549, 549f, 551f
of variables, 108–113, 110f, 111f,

112f, 113f, 519f, 528f
Imputation, data, 59–62

definition of, 40
maximum likelihood, 61, 63t
multiple, 61–62
multiple random, 62, 63t
simple random, 61, 63t
techniques of, guidelines for

choosing, 63t
Incremental mining algorithms,

27
In-database mining, advantage

and disadvantage of,
39–40

Independency, assumption of,
6, 262

Independent Components Analysis
(ICA), 168–169

Indexed Sequential Access Method
(ISAM) databases, 20

Inductive database approach, 19

Inductive method
artificial intelligence following,

16
history of, 34
in machine learning, 16
in scientific method, 16

Industrial Revolution, 337, 784
Informatics.

See BioinformaticsMedical
informatics

Information analysis and
presentation, 315f, 323f

Information loop, closing of, 46
In-place data processing (IDP),

113–114
Inquiries, answering all, 747–750
Instantiation, 396, 397f, 398f, 399f
Insurance

attrition, 341, 342
automobile, 743
in customer response modeling

example, 340
fraud, 352

Interactive trees (I-Trees)
advantages of, 154–157
for automobile brand review,

503–512, 505f, 506f, 507f,
509f, 510f, 511f

combining techniques and,
157–158

format of, 230, 230f
interactive building of, 157
introductory screen of, 155f
layout of, 155f
manual building of, 154
in PPC, 528–529, 529f
results of, 156f
tree browser and, 154

Intercept, 260
Interest rate changes, 742
Internal data, in fraud detection,

349–350, 355
Internal validation, of data,

744
International calls, fraud in,

738
International Conference on

Knowledge Discovery and
Data Mining, 761

Internet Movie Database (IMDB),
758–759, 758f

Interpretability, ensemble modeling
and, 752

Intrusion detection modeling.
See also KDD Cup 1999
Network Intrusion Detection
data set

DMRecipe in, 356, 357f, 358, 358f,
359f

in fraud detection, 355
modeling, 355
predictors of, 356f

Inverse document frequency, 488
Inverse logistic function, 250, 250f
Investment fraud, 353
Investment systems, evaluation

of, 742
ISAM databases. See Indexed

Sequential Access Method
databases

I-Trees. See Interactive trees

J
Journal of the American Medical

Informatics Association,
318

Journals and associations, in
medical informatics, 318

Judgment, mistakes and, 734
Just barely good enough (JBGE),

729, 729f, 730, 730f

K
Kasparov v. Deep Blue chess match,

749f
KDD (Knowledge Discovery in

Databases), 18, 23, 33–34, 419,
446, 712–713

KDD Cup 1999 Network Intrusion
Detection data set

availability of, 350
creation of, 355
in intrusion detection modeling,

355
predictor variables in, 359
target variable in, 360
time-based features in, 355–359

Kernel learning algorithms,
282–284

K-means clustering, 147–148
Knowledge discovery, 17, 33–34.

See also Text mining
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Knowledge Discovery in Databases.
See KDD

Knowledge Extraction Engine
(KXEN), 13, 124–126, 125f,
340

Kohonen networks, 135, 169
Kurtosis, 103
KXEN. See Knowledge Extraction

Engine

L
Language support, 483
Large-scale evolution, 746
LDA. See Linear discriminant

analysis
Leaf nodes, 466, 467
Leaks, acceptance of, 742–743
Least-squares regression, 741f
Leverage points, 743
Life insurance fraud, 352
Lift chart, 246f

building of, 295
for credit scoring, 468, 470f
cumulative, 343, 344f, 478
index curves in, 358, 359, 359f
in model evaluation, 294–295,

294f
for PPC, 520, 521f, 522f, 523,

524f
static analyses and, 520, 521f
for static plus temporal

abstraction variables,
344f

Linear additivity, in parametric
model assumptions, 6

Linear consensus methods, 300
Linear discriminant analysis (LDA),

300
Linear networks, 135
Linear regression (LR)

collinearity among variables in,
265–266

degrees of freedom in, 287
GDF for, 716f, 720
multicollinearity, 265–266
Multiple, 270
numerical prediction and,

264–270
objectives of, 264
response surface and, 266–270
stepwise, 80–81
variable interactions in, 265

Linear relationship, 260, 261f
Linear response analysis

goal of, 260
numerical prediction and, 260

Linearity, assumption of, 264
Link analysis

in fraud detection, 351
in SAL analysis, 165, 167

Link discovery (LD), 351
Local nonparametric model,

MARSplines as, 158–159, 159f
Location, measures of, 104
Log frequency, 488
Logistic curve, 250, 250f
Logistic regression, 10, 250–251
Logit Model, 10
Logit regression, 272
Logos, 329t
Lorenz curve, 78–79, 79–80, 79f
Low-level database connections, 52
LR. See Linear regression

M
Machine learning

ANNs in, 11–12
decision trees in, 12
numerical prediction and,

274–277
Machine learning (ML), 11–12

advanced algorithms, 151
algorithms, 64, 274–277
in bioinformatics, 331–332
decision rules and, 654
development of, 773
imbalanced data sets analyzed

with, 240–246
inductive method followed by, 16

Machine metaphor, 337, 338, 344,
784–785

Magnetic Resonance Imaging
(MRI), 317

Manufacturing processes, in PPC,
514

Mapping, 78
MAR. See Missing at Random
Market baskets, 164.

See also Sequence, Association,
and Link analysis

MARSplines. See Multivariate
adaptive regression splines

Mathematical method, scientific
method v, 34–35, 34t

Matrices
classification, 467, 468f, 469, 470f,

652, 652t
confusion, 292, 292t, 404f, 405f,

413f
cost, 291–292, 292t
cross-tabulation, 524–525,

525f
decision, 446, 447f, 448f, 661
misclassification, 446, 661
positive semi-definite, 724
profit, 652t

Maximum, 54
Maximum likelihood imputation,

61, 63t
MCAR. See Missing Completely at

Random
MD Anderson researchers,

735–736
Mean

definition of, 54, 101
with error plots, 189, 192f
in k-means algorithms, 147–148
outside valid space, 747, 748f
in RMD, 79–80
substitution, 61
trimmed, 104
types of, 104
winsorized, 104

MECE targets. See Mutually
exclusive and categorically
exhaustive targets

MedBlast system, 316
Medical diagnosis, 316, 318
Medical industry, business

administration in. See Hospice
service, predictors for

Medical informatics
ABView: HivResist in, 317
data mining related to, 314–317
data retrieval methods in,

316
definition of, 313–314
as discipline, 314, 315f, 323f
example of, 318
journals and associations in,

318
patient/doctor, 313–314
text mining related to, 314–317
3D, 317–318
XplorMed in, 316–317

Medicare, 533
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MEDLINE database, 316–317
Mega models, 653
Merchant fraud, 352
Mfold, 329t
Micro RNAs (miRNAs), 328t
Microeconomic approach, 19
Microsoft, cloud computing

provided by, 778
Microsoft Excel

Analysis Tool Pack, 56
in data preparation, 382
as standard tool, 787

Microsoft Project, 38
Minimum, 54
Minimum squared error (MSE),

291
miRNAs. See Micro RNAs
Misclassification matrix

decision matrix v, 446, 661
in SAS-EM, 661

Missing at Random (MAR), 60
Missing Completely at Random

(MCAR), 60
Missing values, 237, 278
Mistakes, in data mining

accepting leaks from future,
742–743

answering every inquiry,
747–750

asking the wrong questions,
738–739

avoiding, 785–786
believing the best model, 752–753
discounting pesky cases,

743–744
extrapolation, 744–747
focus on training, 735–736
judgment and, 734
lack of data, 734–735
learning from, 753
listening only to data, 739–742
relying on one technique,

736–737
sampling casually, 750–751

ML. See Machine learning
MLP. See Multilayer Perceptron
MLR model. See Multiple Linear

Regression model
MNIST, 763f
Mode, 101
Model complexity, 710–713

civics metaphor for, 707–708

elegance v, 720
ensembles and, 707–708, 708–710

Model enhancement, 44, 375
action checklist for, 302–304
ensembles of models as, 304–307
introduction to, 286
as iterative process, 285

Model evaluation, 44, 375
accuracy in, 286–287
bootstrapping in, 296–297
for credit scoring, 467–469
cross-validation in, 295–296
dynamic analyses in, 523, 526,

526t, 527t
error metric, classification and,

291–293
error metric, estimation and, 291
errormetric, ranking and, 293–295
evaluation error in, 289f
introduction to, 286
as iterative process, 285
lift charts in, 294–295, 294f
overfit avoided in, 288–290
splitting data in, 287–288
target shuffling in, 297–300

Modeler evaluation, 286
Modeling. See also Customer

response modeling; Ensemble
modeling; Intrusion detection
modeling

accuracy in, 730
agile, 728–730
algorithms, 41
analysis tools, 100, 107–113
as art and science, 41–45
assessment of, 43
best, believing in, 752–753
building of, 43, 375
combined models in, 311
dependency, 23
of depression instrument

structure, 579, 579f
descriptive, 23
diverse, 783
elegant, 720, 731
ensemble, 42f, 43
experimental design in, 42
in facial pain study, 631, 636f,

637, 637f
fraud, 297, 348–349, 352, 353f
fusion in, 709–710
goals of, 738

in hospice service prediction,
560, 560f

management tools for, 100, 107
mega models in, 653
monitors in, 116
of movie box-office receipts, 415f
overtrained, 782–783
predictive, 23, 114–116, 655–669,

670–678
in profit analysis, of German

credit data, 653–654
reducing generality in, 58
rocket thrust, 747
statistical, 17
steps in, 41–45, 42f
stopping function in, 720
supervised, 348–349, 350,

351
techniques, selection of, 41
testing of, 279
unsupervised, 348–349, 350–351
validation of, 747

Modeling Query Language (MQL),
52

Molecular biology, 321.
See also Bioinformatics

More is better belief
case against, 730–731
efficiency v, 724
nature and engineering lessons

disproving, 724–725
Mouse operations, 200–201
Movie box-office receipts,

predicting
challenges of, 391–392
data and variable definitions in,

392, 393f
decision trees for, 406f, 407f,

411f, 412f
publishing and reusing models

of, 415f
results of, 396–404, 400f, 401f,

402f, 403f, 404f, 405f, 406f,
407f, 408f, 409f, 410f, 411f,
412f, 413f, 414f

with SPSS Clementine, 393–396,
396–404, 400f, 401f, 402f,
403f, 404–414, 404f, 405f,
406f, 407f, 408f, 409f, 410f,
411f, 412f, 413f, 414f

Moving pictures, in visual data
preparation, 765–768
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MQL. See Modeling Query
Language

MRI. See Magnetic Resonance
Imaging

MSA. See Multiple Sequence
Alignment

MSE. See Minimum squared error
Multicollinearity

in linear regression, 265–266
in parametric model

assumptions, 6
Multidimensional database.

See Star-schema database
Multilayer Perceptron (MLP), 135,

136–138, 136f, 281–282
Multilevel splits, 279
Multiple classification, 236
Multiple imputation, 61–62
Multiple Linear Regression (MLR)

model, 270
Multiple random imputation, 62,

63t
Multiple Sequence Alignment

(MSA), 326–327
Multivariate adaptive regression

splines (MARSplines), 82.
See also Support Vector
Machine

as advanced algorithm, 158–162
advantages of, 158
algorithm, 82, 161
applications of, 161
basis functions of, 159, 159f
categorical predictors of, 160
classification problems and, 160
development of, 158
model of, 159–160, 161
multiple outcome variables in,

160
popularity of, 158
PPC and, 520, 524–525
as predictor selection method,

161
problems with, 158, 162f

Multivariate feature ranking
methods, 80–82

Mutually exclusive and
categorically exhaustive
(MECE) targets, 238

MySpace social networking,
760–761

N
Naive Bayesian classifiers,

253–256
National Center for Health Statistics

(NCHS), 682
National Health and National

Examination Survey
(NHANES), 682

National Science Foundation (NSF),
769, 770, 771

National Transportation Safety
Board (NTSB), text mining
example of

accident reports in, 184–188
decision trees and, 191, 193f
drilling into words of interest in,

188–189, 191f, 192f
Feature Selection tool and,

190–191, 193f
loss of control in bad weather

and, 191–194
means with error plots in, 189,

192f
Text Miner used in, 176, 176f,

177f, 178f, 179f, 180f
Nature, disproving more is better

belief, 724–725
NCHS. See National Center for

Health Statistics
Nearest-neighbor

algorithms, 239, 745
classifiers, 239–240, 301–302

Network intrusion. See Intrusion
detection modeling

Neural networks, 128–135.
See also Artificial neural
networks

advantages and disadvantages
of, 133

analysis of, in self-reported
health status, 691–702

architectures of, 129, 129f, 130,
130f, 251f, 252f

automated, 138, 280, 281–282
backpropagation and, 131, 131f,

132–133, 132f, 133f
in classification, 251–253
Clementine node of, 476
as consensus method, 301
in development of, 342
as gray boxes, 281

human structures of, 128, 129f,
131, 131f

logistic function and, 129–130,
130f

manual, 280–281
in numerical prediction, 280–282
in profit analysis, of German

credit data, 674–678, 679
SPSS Clementine training, 342,

342f
training of, 134–135, 134f
types of, 135
wrapper approach and, 684–690

News media, Twitter v, 759
Newton, Isaac, 337
NHANES. See National Health and

National Examination Survey
NLEs. See Nonlinear events
Nominal predictors, changed to

ordinal variables, 653
Nonlinear events (NLEs), 12,

338–339
Nonlinear regression and

estimation
exponential distributions and,

272–273
logit regression and, 272
numerical prediction and,

271–273
piecewise linear regression and,

264–270, 273
Poisson regression and, 272
probit regression and, 272

Nonlinear relationships
analysis of, 271
plot of, 271f

Non-normality, fixes for, 263
Nonstationarity, 31
Normal distribution, 6, 262, 263f
Normal probability plots, of

residuals, 277, 278f
Normality

assumption of, 262–263
Central Limit Theorem and,

263–264
NR database, 328t
NSF. See National Science

Foundation
NTSB. See National Transportation

Safety Board, text mining
example of
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Numeric variable, 237
in data transformation, 57–58
definition of, 50

Numerical prediction
applications of, 284
with CART, 274–276, 277–279
data mining and machine

learning algorithms in,
274–277

decision trees in, 275–276
GLMs and, 270–271
history of, 259–260
kernel learning algorithms in,

282–284
linear regression and, 264–270
linear response analysis and,

260
mixed model applications of,

280
neural nets in, 280–282
nonlinear regression, estimation

and, 271–273
nonlinear relationship analysis

and, 271
parametric model and, 261–262,

262–264
SVMs in, 282–284

NY Airways crash, Twitter and,
759

O
Object categorization (OC), 762,

762f
Object data mining. See Image and

object data mining
Object identification (OID), 762f
Objectives, of data mining, 37–38
Observed v. predicted plots, 277,

277f
Obviousness, 31
OC. See Object categorization
Occam’s Razor, 47, 246, 708, 712
ODBC database connections, 52
OID. See Object identification
OMIM database, 328t
Operations research (OR), 153
Optimization algorithms, 739
OR. See Operations research
Orchestrate - PreludePLUS, 340
Ordinal variables, 653
Organism metaphor, 337–338, 344,

725–728, 784–785

Organizations
for bioinformatics, 332–333
as organism, 784–785
purpose of, 335

Outcome variables, 160
Outliers

contribution, 719–720
importance of, 743
removal of, 65, 302

Output variable, 734
Overanswering, 744
Overfitting

complexity regularization
avoiding, 288–290

danger of, 279, 286–287
by MD Anderson researchers,

735–736
random variables warning of,

751
reserved data avoiding, 736

Oversampling, 293
balance obtained by, 750
in unsatisfied customers

prediction, 440f, 441f, 442f,
443f, 444f, 445f, 446t

Overtrained models, 782–783
Ozone layer, 743

P
PACS. See Picture Archiving and

Communications Systems
Pair-wise deletion, 61, 63t
Palettes, 200
Palindrome sequences, 324
Parallel mining algorithms, 27
Parameter(s), 261–262

shrinkage, 290
tuning of, 290

Parametric model
assumptions of, 6–7, 42, 260,

262–264
Bayesian methods v, 44, 772–773
development of, 772–773
linear response analysis and,

260
numerical prediction and,

261–262, 262–264
Pareto, Vilfredo, 728
Partial least squares regression, 81,

81t
Passports, 756
PATH to success, 753

Patient/doctor medical informatics,
313–314

Patterns
discovery of, 24, 330–331, 332,

340, 341f
evaluation of, 27
recognition of, 173, 175, 744

PC. See Percent correctPersonal
computer; Principal
components

PCA. See Principal components
analysis

PCR. See Polymerase chain reaction
Pearson, Karl, 5
Perceived value, realized value

exceeding, 730, 730f
Percent correct (PC), 291–292
Percentiles, 103
Perl, 174–175, 329
Persistance, 753
Personal computer (PC), 259–260
Pesky cases, discounted, 743–744
PET scans, 317
Petabyte Age, 769
Philosophical extrapolation,

745–746
Phone fraud, 348
Photos, in visual data preparation,

765–768, 765f
PHQ-9 depression instrument,

567–568
Physical data mart, 20–21, 21f, 727
Picture Archiving and

Communications Systems
(PACS), 317

Piecewise regression, 162, 162f, 273,
274f

Platform, building of, 4
Plato

human nature viewed through,
339

reality viewed by, 9
top-down solutions of, 726
truth and, 11, 339, 340–341

Plies, 296
Plotinus, 785
PMI. See Project Management

Institute
PMML. See Predictive Modeling

Markup Language
PMP. See Project Management

Professional
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Poisson regression, 10, 272
Pólya, George, 34
Polymerase chain reaction (PCR),

325
Polymorphism, 330
Polynomial networks, 709, 747–748
Position, measures of, 103
Positive semi-definite matrix, 724
PPC. See Predictive process control
Precision, accuracy v, 59, 59f
Predictive data mining, 105–106,

105f, 316
Predictive modeling

advanced techniques of, 670–678
classification, regression and, 23
rapid deployment of, 114–116
with SAS-EM, 655–669

Predictive Modeling Markup
Language (PMML), 19,
114–116, 115f, 116f, 117f

Predictive process control (PPC)
CART in, 528–529, 529f
case study of, 514–517
CHAID in, 521–523, 523f
cross-tabulation matrix for,

524–525, 525f
data file in, 515
definition of, 513–514, 529–530
design approaches to, 515–517
Feature Selection tool for,

517–518, 528
interactive trees in, 528–529, 529f
lift charts for, 520, 521f, 522f, 523,

524f
manufacturing processes in, 514
MARSplines in, 520, 524–525
models used for, 518–519
problem definition in, 515, 516f
with QC-Miner, 513–514
quality control charts in, 516f
Root Cause Analyses tool for,

517–518
with STATISTICA, 513–514,

517–529
variable information in, 515

Predictor variables, 47
definition of, 50
in facial pain study, 623, 625,

628f, 639, 642f, 650f
in KDD Cup data set, 359
new, 74
nominal, 653

selection of, 161
time-series representations of,

340
Pregibon, Daryl, 738
Preparation, data, 40–41.

See also Understanding, data
activities of, 50
for aviation safety, 382–383
completion of, 75
in credit scoring, 462
in Data Preparation for Data

Mining, 743
in DMRecipe, 373
issues that must be resolved

in, 51
Microsoft Excel in, 382
visual, in image and object data

mining, 765–768
Principal components (PC), 303
Principal components analysis

(PCA), 71, 153, 185, 185f, 186f,
187f

Prior probability, 254
Probabilistic networks, 135
Probability

conditional, 255
Fisher’s definition of, 7
normal plots, of residuals, 277,

278f
prior, 254

Probit Model, 10
Probit regression, 272
Problem solving

approach to, 34–36
complexity and, 723–724

Procedural analysis, algorithms
and, 122

Procedural programming, GUIs
replacing, 786

Process, more important than
tools, 783

Professional development, 309–310
Profiles, fraud, 360
Profiling

in Collaborative Leader Profile,
587, 588, 588f

data, 56
in fraud detection, 360

Profit analysis, of German credit
data

advanced predictive modeling
techniques in, 670–678

classification matrix in, 652, 652t
correct decisions in, 651–652
creditworthiness in, 652
decision tree in, 668, 668t, 669
introduction to, 651–652
modeling strategy in, 653–654
neural network in, 674–678, 679
profit matrix in, 652t
Replacement Node in, 674–678,

674f, 675f
results of, 679
SAS-EM in, 653–654, 654–655,

655–669, 655f, 656f, 657f,
658f, 659f, 660f, 661f, 662f,
663f, 664f, 665f, 666f, 667f,
668f

SVM in, 670–673, 670f, 671f,
672f, 673f, 676, 677f,
678f, 679f

total profit in, 669
Profit matrix, 652t
Project diversity, 310
Project goals, 738
Project Management Institute

(PMI), 38
Project Management Professional

(PMP), 38
Project methodology, deliverables

and, 308–309
Property fraud, 352
PSI-BLAST algorithm, 330
Psychographic data, 350
Psychology. See Depression

instrument, structure of
Public speaking, 310
PubMed, 325, 328t, 329t
Pure trees, 467
Pyle, Dorian, 743

Q
QC-Miner

algorithms, 231, 232f
applications of, 514
overview of, 214–233

Qualitative abstraction, 68, 339
Quality control

charts, 516f
data mining, 152, 169–170

Quantiles, 103
Quantum physics, 337
Query-based data extracts, 52
Questions, wrong, 738–739
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R
Radial Basis Function (RBF)

networks, 136–138, 137f, 164,
282, 698

Radio frequency identification
(RFID)

applications of, 756–757
data mining for, 756–757
definition of, 756

Random forests, in classification,
248–250

Random variables, 751
Range, 103
Ranking, error metric and, 293–295
RapidMiner, 83, 83f
Rapid-prototyping framework,

308–309
Rare event detection, in predicting

unsatisfied customers, 439–446
Rasmol, 329t
RBF kernel, 642–643, 644f, 647, 649f
RBF networks. See Radial Basis

Function networks
RDBMS. See Relational Database

Management Systems
Reality, two views of

Aristotle’s, 8–9
Plato’s, 9

Realized value, exceeding
perceived value, 730, 730f

Receiver Operating Characteristic
(ROC) curve, 292–293, 700,
700f, 701f

Recoding, forms of, 340
Record

Customer Analytical, 20, 22–23
definition of, 50, 173
dirty, 57

Recursive partitioning, 144
Red flag, 349
Reduction, in data understanding,

69
Redundancy

checking, 358, 358f
data, 374
in sequences, 323–324

Regression. See also Classification
and regression trees; Linear
regression; Multivariate
adaptive regression splines;
Nonlinear regression and
estimation

generalized, 27, 135
least-squares, 741f
logistic, 10, 250–251
logit, 272
in MLR model, 270
partial least squares, 81, 81t
piecewise, 162, 162f, 273, 274f
piecewise linear, 273, 274f
Poisson, 10, 272
predictive modeling and, 23
probit, 272
ridge, 290
stepwise linear, 80–81
stepwise multiple, in hospice

service prediction, 538–539,
538f, 539f, 540, 540f, 541f,
542f, 543

Relational Database Management
Systems (RDBMS), 20, 21

Relative mean difference (RMD),
79–80

Replacement Node, 674–678, 674f,
675f

Resampling, 144, 240, 279
bootstrapping and, 296–297
importance of, 286, 300
iterations in, 736

Residuals
definition of, 267
normal probability plots of, 277,

278f
predicted values v, 269f
words, 490

Response surface
concept of, 266–270
negative exponential smoothing

function and, 268f
quadratic fit, 268f
three-factor, 267f, 269f
two-factor, 266f

Return on investment (ROI), 308,
353–354, 738

Ribosomal RNA (rRNA), 328t
Ridge regression, 290
Risk-taking behavior, measurement

of, 587
RMD. See Relative mean difference
RNA molecules

databases searched for, 327, 328t
definition of, 324
SAGE and, 330
types of, 328t

ROC curve. See Receiver Operating
Characteristic curve

Rocket thrust model, 747
ROI. See Return on investment
Root Cause Analyses tool, for PPC,

517–518
Root cause analysis, 152, 169–170
Root node, 241, 241f
rRNA. See Ribosomal RNA

S
SaaS. See Software as a Service
SAGE. See Serial Analysis of Gene

Expression
SAL analysis. See Sequence,

Association, and Link analysis
Salford Systems, 298–299, 298f, 299f
SAM. See Sequence Analysis

Method
Sampling. See also Oversampling;

Resampling
casually, as mistake, 750–751
in data understanding, 69–73
in facial pain study, 645, 645f
granularity in, 751
sample stratifying in, 288
in self-reported health status,

ANNs predicting, 697
stratified random, 446, 517, 751
undersampling, 293
up-sampling, 751

SANN algorithm, 281–282, 284
SAS-EM. See SAS-Enterprise Miner
SAS-Enterprise Miner (SAS-EM)

bug in, 669
Class Variables Replacement

Editor of, 674, 675f
decision tree output from, 212f
diagram workshop of, 655
Dmine Regression node of,

655–661, 661f, 662, 668,
668t

5.3 interface of, 654–655, 654f
interface of, 419
layout of, 204–205, 204f
menus, dialogs, and windows of,

204–205, 204f, 205f, 207f,
208f, 209f, 210f, 211f

misclassification and decision
matrix in, 661

organization of, 203–204
overview of, 203–213
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SAS-Enterprise Miner (SAS-EM)
(Continued)

predictive modeling with,
655–669

primer of, 420–436, 420f, 421f,
422f, 423f, 424f, 425f, 426f,
427f, 428f, 429f, 430f

in profit analysis, of German
credit data, 653–654,
654–655, 655–669, 655f, 656f,
657f, 658f, 659f, 660f, 661f,
662f, 663f, 664f, 665f, 666f,
667f, 668f

profit charts of, 446–453
profit type chart from, 212f
project panel of, 655
properties panel of, 655
Replacement Node of, 674–678,

674f, 675f
results output from, 210f, 211f,

213f
scoring process of, 433f, 434f,

435f, 436, 437f
software requirements to run,

206–213
steps of, 234
SVM in, 670
temporal abstraction in, 340
toolbars of, 654
unsatisfied customers detected

with, 419, 420–436
workspace flow of, 209f

SAT scores, 739, 740t, 741f
Scanning imaging, image and object

data mining and, 170–171
SCANS, in medicine, 317
Science, of data mining, 33–34
Scientific method

cloud computing and, 769, 771
deductive and inductive

reasoning in, 16
mathematical method v, 34–35,

34t
as obsolete, 769
steps of, 16

Scree plot, 490, 491, 491f
SDR. See Service Difficulty Report
Second generation, of modern

statistical analysis, 10–11
Security, tags in, 756
Segmentation, 23
Selection noise, 718–719

Self-organizing feature map
(SOFM), 169

Self-reported health status, ANNs
predicting

background of, 681–682
data in, 682–702
neural network analysis in,

691–702
preprocessing and filtering in,

683
results of, 699, 699f
ROC curves in, 700, 700f, 701f
STATISTICA Data Miner in,

691–702, 691f, 692f, 693f,
694f, 695f, 696f, 697f, 698f,
699f, 700f, 701f, 702f

variables in, 683, 684–690, 696
Weka procedures in, 683,

684–690, 684f
wrapper approach in, 684–690,

684f, 685f, 686f, 687f, 688f,
689f, 690f

Self-selection, 739
SEMMA, 46, 783
Sensitivity analysis, 81–82, 133
Separability, 31
Sequence Analysis Method (SAM),

330
Sequence, Association, and Link

(SAL) analysis, 24
applications of, 167
association rules in, 164, 165–166,

166f
link analysis in, 165, 167
sequence analysis in, 165, 167

Sequence Search Services (SSS),
326–327

Sequences
alignment of, with ClustalW2,

326–327
DNA, 324, 326, 326t
palindrome, 324
redundant, 323–324

Serial Analysis of Gene Expression
(SAGE), 330

Service Difficulty Report (SDR),
377, 379, 387–388

data fields of, 378f, 379
definition of, 379
location of, 379

Shape, measures of, 103
Shui Qing Ye, 330

Simple Nucleotide Polymorphism
(SNP), 330

Simple random imputation, 61, 63t
Singular Value Decomposition

(SVD), 490
Singularity event, 746–747
Skewness, 103
Slicing/dicing, 106, 107f
Slope, 260
Small-scale evolution, 746
Smart systems, 787
Smith-Waterman (SSEARCH), 326,

327t
Smoothing, in data understanding,

64–66
SNP. See Simple Nucleotide

Polymorphism
Social desirability, measurement

of, 587
Social networking

conferences on, 761
data mining and, 757–761
email and, 759–760, 760f
Google search on, 757
IMDB, 758–759, 758f
MySpace, 760–761
Twitter, 757, 758, 759

SOFM. See Self-organizing feature
map

Software as a Service (SaaS), 778
Solutions

bottom-up, 726
caveats with, 31
evolution of, 785
reverse-engineered, 726
STATISTICA Data Miner

deploying, 210f, 223–228,
224f, 225f, 227f, 228f

top-down, 726
Source data, 50
Spanish automobile claims, 350
Special-purpose algorithms, 122
Splitting, data, 287–288
Spread, measure of, 748
SPSS Clementine

Application Templates of, 395
CAT of, 395
churn analysis with, 472–480,

475f
component organization in,

198–199
CRISP-DM view of, 394
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default directory of, 201
executing with, 405
execution of streams in, 202
interface of, 199–201, 199f
lift curves created by, 343f
movie box-office receipts

predicted with, 393–396,
396–404, 400f, 401f, 402f,
403f, 404–414, 404f, 405f,
406f, 407f, 408f, 409f, 410f,
411f, 412f, 413f, 414f

Neural Net node of, 476
overview of, 197–202
publishing with, 405
steps of, 234
SuperNodes of, 201–202, 202f
for training neural net, 342, 342f
workspace of, 393–396, 393f

SQL. See Structured Query
Language

Squared error, 738–739
SSEARCH. See Smith-Waterman
SSS. See Sequence Search Services
Stacking, 709
Standard deviation

definition of, 54, 103
formula for, 261
in parametric model

assumptions, 6
Standardization, 57–58
Star-schema database, 20–21, 21f
State Trait Anxiety Scale, 587
Static analyses

design approach of, 515
lift chart and, 520, 521f

Static measures, evolutionary v,
338–339

STATISTICA Data Miner, 13, 57.
See also Data Miner Recipe;
Data Miner Workspace;
Feature Selection tool; QC-
Miner; Support Vector
Machine; Text Miner

for automobile brand review,
484–503, 485f, 486f, 487f,
489f, 493f, 494f, 495f, 496f,
497f, 498f, 499f, 500f, 501f,
502f, 503f

aviation safety and, 382–383
bar graph results of, 228f
Classification Trees module of,

521

combining groups in, 105–106,
105f

for credit scoring, 462–463,
463–464, 464–465

customer deployment and, 229,
229f

data source selected in, 216–217
for education-leadership training

prediction, 588, 588f, 589f,
590f, 591f, 592f, 593f, 594f,
595f, 596f

ETL functions of, 51, 102f
FICA, 168–169
frequency tables in, 105
in hospice service prediction,

533, 534f, 535f, 536f, 537f, 541
for image and object data mining,

764, 765, 766f, 767f, 768f,
769f

Kohonen networks in, 169
menu of, 215f, 225f
Node Browser of, 218–219, 218f,

219f, 224f
options selected in, 214–216
organization and use of, 214–229
overview of, 214–233
partial least squares regression

and, 81, 81t
PMML and, 114–116, 115f, 116f,

117f
predictions of, 227f, 228f
process of, 783
project run in, 219–220, 220f, 226f
Recipe module of, 65
results reviewed in, 219f,

220–223, 222f
Root Cause Analyses tool of,

517–518
SANN algorithm of, 281–282, 284
Select Spreadsheet dialog of, 216f
in self-reported health status,

ANNs predicting, 691–702,
691f, 692f, 693f, 694f, 695f,
696f, 697f, 698f, 699f, 700f,
701f, 702f

sensitivity reports of, 81–82
slicing/dicing, drilling down

and, 106, 106f, 107f, 108f
software online help for, 153–154
solutions deployed in, 210f,

223–228, 224f, 225f, 227f,
228f

SQL and, 50, 101f, 114, 115f
steps of, 234
SVB, 229
three formats of, 230–233
variables selected in, 217, 217f
Version 9, 764
WebSTATISTICA Enterprise of,

375
workhorses of, 463–464, 464f
workspace of, 464–465, 465f, 519,

520f
STATISTICA Visual Basic (SVB), 229
Statistical analysis.

See also Fisherian statistics
deductive method used in, 16
duality of, 5–7, 5f
Efficiency Paradigm in, 724
fourth generation of, 12–13
history of, 4
second generation of, 10–11
strengths and limitations of, 4
third generation of, 11–12

Statistical Learning Theory, 12–13,
162–164

Statistical modeling, 17
Statisticians, CART and, 144–145
Statistics, basic descriptive, 101–105
Stemming, 483
Stepwise linear regression, 80–81
Stepwise multiple regression, in

hospice service prediction,
538–539, 538f, 539f, 540, 540f,
541f, 542f, 543

Stop lists, synonyms, and phrases,
482–483

Stopping function, 720
Stratified random sampling, 446,

517, 751. See also Oversampling
Stream canvas, 200, 393f
Structured Query Language (SQL),

26
in query-based data extracts, 52
STATISTICA and, 50, 101f, 114,

115f
for tree structure, in numerical

prediction, 275–276
Subjective priors, 5
Subset selection methods, 82, 83
Success, PATH to, 753
Sufficiency Paradigm

agile modeling and, 728–730
efficiency and, 724–725
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SuperNodes, 201–202, 202f
Supervised classification, 235–236,

238, 351–352
Supervised modeling, 348–349, 350,

351
Support Vector Machine (SVM)

analysis summary for, 414f
CART v, 284
confusion matrix for, 413f
EEGs and, 316
in facial pain study, 637–638,

643, 644–645, 644f, 647,
649f

in fast intersection kernel SVM
algorithms, 764, 764f

idea behind, 163, 164f
kernel functions of, 164
in numerical prediction, 282–284
observed v. predicted values for,

278f
in profit analysis, of German

credit data, 670–673, 670f,
671f, 672f, 673f, 676, 677f,
678f, 679f

in SAS-EM, 670
Statistical Learning Theory and,

162–164
Surface plots

of Delaunay Triangle, 749f, 750f
in ensemble modeling, 709f,

711f
Surrogate variable, 50
Survivor bias, 743
SVB. See STATISTICA Visual

Basic
SVD. See Singular Value

Decomposition
SVM. See Support Vector Machine
Synapse, 129

T
Take-aways, 781–782
Tanks studies, 741, 742
Target shuffling, in model

evaluation, 297–300
Target variable

assignment of, 73–74
change in, 237–238
definition of, 50
in KDD Cup data set, 360

Tax fraud, 734
Teamwork, 753

temporal abstraction, in SAS-EM,
340

Temporal abstractions
definition of, 68, 339, 340–344
example of, 340
fraud detection and, 340–341
importance of, 355–356
lift curve for, 344f
power of, 70t
time-dependency in, 345
tools using, 340
types of, 339–340

Terminal node, 243
Text Miner, 176

Advanced tab of, 176, 177f
applications of, 512
Characters tab of, 177, 178f
Defaults tab of, 180, 180f
Delimiters tab of, 178, 179f
Filter tab of, 176, 177f
Index tab of, 177, 178f
main dialog of, 233f
in NTSB example, 176, 176f, 177f,

178f, 179f, 180f
overall process of, 184, 184f,

194
overview of, 214–233
Project tab of, 178–180, 179f
Quick tab of, 176, 176f
results of, 483
results saved in, 498–503, 498f
scalability of, 483
Synonyms and Phrases tab of,

178, 179f
Web Crawling, Document

Retrieval dialog of, 180,
181f, 182, 182f, 183, 183f,
233f

Text mining. See also National
Transportation Safety Board,
text mining example of

algorithms, 152
applications of, 174, 481, 512
in automobile brand review,

482–483
concepts of, 194
definition of, 174
goals of, 184–188
importance of, 784
language support in, 483
medical informatics related to,

314–317

PCA and, 185, 185f, 186f,
187f

Perl and, 174–175
process flow of, 184, 184f
sources of, 174
studies, 194
text pattern matching in, 175

Text processing, 314
Theoretical framework, for data

mining, 18–19
Therapy. See Depression

instrument, structure of
Third generation, of modern

statistical analysis, 11–12
3-fold cross-validation design, 144,

145f
3D informatics

challenges of, 318
definition of, 317–318
future of, 318
medical, 317–318

Time magazine, 746–747, 749f
Time-grain of analysis, 65–66
Time-series analysis

limitations of, 345
predictor variables in, 340

tmRNAs, 328t
Tools, for data mining. See also Basic

Local Alignment and Search
Tool; Extract, transform, and
load tools; Feature Selection
tool

accessory, 99–100
cost of, 776–777
data access, 99, 100–101
data exploration, 100, 101–106
data integration tools, 99
EDM tool interface, 776
focus of, 773, 774f
modeling analysis, 100, 107–113
modeling management, 100, 107
process more important than, 783
Root Cause Analyses, 517–518
selection of, 3–4
temporal abstractions used by,

340
Top-down solutions, 726
Tracking, tags in, 756
Traditional data mining, 773–776
Training

error, 287, 288, 289f
focus on, 735–736

820 INDEX



of neural networks, 134–135, 134f
set, 238
SPSS Clementine, 342, 342f

Transfer functions, 726
Transformation, data, 100–101

categorical variables in, 58–59
in data understanding, 57–59
numeric variables in, 57–58

Transformation of change, 515
Translation, 315f, 323f
Transparent decision making

variable, 615, 615f, 620
Tree browser, 154
Trimmed mean, 104
Tumor classification, 331, 332
Tutorials. See Automobile brand

reviewAviation safety; Churn
analysis; Credit scoring; Data
Miner Recipe tutorial;
Depression instrument,
structure of; Facial pain study;
Hospice service, predictors for;
Movie box-office receipts,
predicting; Profit analysis,
of German credit data;
Self-reported health status,
ANNs predicting;
Unsatisfied customers,
predicting

Twitter
news media v, 759
NY Airways crash and, 759

U
Undersampling, 293, 751
Understanding

data assessment in, 56
data cleansing in, 56–57
data profiling in, 56

Understanding, business
as art, 36–38
business environment assessed

for, 37
business objectives defined in,

36
goals and objectives in, 37–38

Understanding, data, 39–40
abstraction in, 66–69, 67t, 70t
activities of, 50
data acquisition in, 51–52
data description in, 54–56
data extraction in, 53–54

data imputation in, 59–62
data transformation in, 57–59
derivation in, 73–75
discretization in, 73
filtering and smoothing in,

64–66
issues that must be resolved in,

51
reduction in, 69
sampling in, 69–73
weighting and balancing in,

62–64
Universal approximator, 136
Unlabeled cases, 302
Unsatisfied customers, predicting

data for, 418, 424f, 456f, 457f,
458f

decision matrix and, 446–453,
447f, 448f

homework for, 432–435, 436,
438–439

objectives of, 418–419
oversampling in, 439–446, 440f,

441f, 442f, 443f, 444f, 445f,
446t

profit charts and, 446–453,
449f, 450f, 451f, 452f,
453f

profitable customers micro-
targeted in, 453–455,
454f, 455f, 456f

rare event detection in,
439–446

SAS-EM and, 419, 420–436
scoring process for, 433f, 434f,

435f, 436, 437f
total profit and, 436

Unscheduled landings
cost of, 379
definition of, 379
factors leading to, 377

Unstructured data, 173, 314–315,
481, 512, 784

Unsupervised classification,
235–236

Unsupervised modeling, 348–349,
350–351

Up-sampling, 751
Up-selling campaigns, 340–341
USPS, in image and object data

mining, 763, 763f
Utility, data mining as, 777

V
Validation

of codes, 57
of data, 744
of models, 747

Variability, generation of,
306–307

Variables. See also Predictor
variables

attrition, 336
bundled, 653
categorical, 50, 58–59, 303
collinearity among, 265–266
continuous, 105
in credit scoring, 461–462, 462t
definition of, 50
depression instrument structure

and, 567–568, 568f, 570f, 576,
578, 579

deriving new, 47
dummy, 50
for education-leadership training

prediction, 588–589, 594,
595, 599, 600, 613, 615, 617

as features, 78
generalization, 74–75
in hospice service prediction, 537,

549, 549f, 550, 550f, 551, 552,
556, 557, 558

importance plots of, 108–113,
110f, 111f, 112f, 113f, 519f,
528f

importance tables of, 276–277,
276t, 405f

interactions, in linear regression,
265

merging of, 304
in movie box-office predictions,

392, 393f
numeric, 50, 57–58
numerical and continuous, in

parametric model
assumptions, 7

ordinal, 653
outcome, 160
output, 734
random, 751
reduced, 302
selection of, 77–78, 217, 217f, 653
in self-reported health status,

ANNs predicting, 683,
684–690, 696
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Variables (Continued)
static plus temporal abstraction,

344f
surrogate, 50
target, 50, 73–74, 237–238, 360
transformation of, 653

Variable-selecting algorithms, 303
Variance, 6–7, 103, 261.

See also Analysis of covariance;
Analysis of variance

Varimax rotation, 597
VAST service, 327
Version 9, of STATISTICA Data

Miner, 764
V-fold cross-validation, 149,

295–296, 296f, 639–642, 646, 647
Virtual data mart, 21, 727
Virtuous cycle, 728
Visible Human project, applications

of, 316
Visual data mining. See Image and

object data mining
Visual object identification,

170–171, 761–762

Visualization
high-d and, 745
image and object data mining

and, 170–171

W
Wal-Mart, 756
Warehouses, data, 743
WebSTATISTICA Enterprise, 375
Weighting and balancing, in data

understanding, 62–64
Weka procedures, 683, 684–690, 684f
Widmer, Charles, 623, 646–647
Winsorized mean, 104
Word(s)

coefficients, 490
frequency, 505–506
importance, 490
of interest, drilling into, 188–189,

191f, 192f
negative connotation, 506–507
residuals, 490
semantic spaces of, 490–491,

496f

Workhorses, of STATISTICA Data
Miner, 463–464, 464f

Wrapper approach
neural networks and, 684–690
in self-reported health status

prediction, 684–690, 684f,
685f, 686f, 687f, 688f, 689f,
690f

subset selection methods based
on, 82, 83

X
X chromosome, map of, 324f
XML. See Extended Markup

Language
XP. See Extreme Programming
XplorMed, 316–317
X-rays, 317

Z
Zementis, 777, 778
Zung depression instrument,

567–568
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DVD Install Instructions

1. Put the DVD in the CD-DVD read drive of your computer.
2. Open MY COMPUTER [from START ! My Computer; or if you have a MY

COMPUTER ICON placed on your desktop, click on this]
3. Click on the D-DRIVE [or whatever letter you have for your CD-DVD drive] to

open the contents of this CD-DVD
4. There will be 2 primary folders on the HANDBOOK DVD:

a. STATISTICA Data Miner Ver 8 [Note: this is Version 8/SERIES
0608c]

b. TUTORIALS_etc_for CD_ELSEVIER [Note: It was unknown at the time of creating
the DVD if it would be a CD or DVD. When there is a reference to CD, DVD, or
CD-DVD, it means the DVD.]

5. If you want to look at the TUTORIALS, open the “TUTORIALS_etc_for
CD_ELSEVIER folder by clicking on it; from there you can click on the sub-folders
and examine each to see what is available, and pick the folder of interest.

6. If you want to INSTALL and RUN the STATISTICA software: Click on the
“STATISTICA Data Miner Ver 8” folder; there will be several files inside:

a. ENGLISH [a folder]
b. MUILTIMED [a folder; containing videos/statistical learning instructions]
c. Autorun.inf [a setup information text file]
d. CDSTART.exe

7. To START installing STATISTICA software do either of the following:

a. Click on the CDSTART.exe ! a BLUE DIALOG will appear on the screen
OR: to accomplish the same thing:

b. Click on ENGLISH folder and then click on either the “setup.exe” or the “autorun.
exe”, which will also bring up the BLUE INSTALL dialog.

c. Then proceed through the following set of numbered instructions [1 – 14]
immediately below to install STATISTICA Data Mining software and/or
if you prefer “visual instructions”, jump down to Section II, below.

INSTALLING STATISTICA

1. The STATISTICA installation screen will appear. Click on Install STATISTICA.
2. The Welcome screen will appear. Click the Next button.
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3. Read the software license agreement, and then select “I accept the terms of the license
agreement,” and click Next if you agree with the terms and wish to continue the
installation process.

4. Select Typical Setup then click Next. Typical Setup will install STATISTICA with the most
common options; this is the recommended selection. Custom Setup options are not
covered in these instructions. If you have questions about the custom installation, please
contact StatSoft technical support

5. On the Register with StatSoft dialog, enter the requested information in the appropriate
boxes. Note: It is important that you enter a valid email address, otherwise registration
cannot complete. Click Next to continue.

6. A dialog will prompt you to enable your wireless network adaptor. If your computer
has a wireless network adaptor, please enable it until installation is complete in order to
ensure proper licensing of the software. Once it is enabled, click OK.

7. On the following dialog, you will be informed that your license registration is pending
and that a registration email has been sent to you.

8. Open your email application. Go to your Inbox and open the registration email from
license@statsoft.com. The email will ask you to verify your email address in order to
continue the installation of STATISTICA. Click on the hyperlink in the email.
Alternately, you can copy and paste the link, in its entirety, into the address bar of your
web browser.

Note: If you do not receive an email from license@statsoft.com, you may need to look in your
Junk E-mail folder. Due to the hyperlink in the email, your email application may have flagged
the email as spam. Alternately, there may be an issue with your internet connection or firewall.

9. In your web browser, the StatSoft Email Address Confirmation webpage appears. Your
email address has been confirmed.

10. You may now return to the installer and click the Continue button to finish the
installation of STATISTICA. If you have closed the installer, restart it and continue as
normal. A message will state that registration for this license is complete. Your license
has been successfully registered. Click OK. If the registration process fails, a different
dialog will open, indicating the failure. See notes below for additional details of failed
registration.

11. You will be asked if you want to install the Multimedia files to your hard drive.
These are movies that provide overviews of various aspects of the STATISTICA system.
We recommend that you install them if you have sufficient disk space but they can also
be viewed from the CD at any time

12. If you would like to create a Desktop shortcut to STATISTICA, press Yes. If you do not,
press No.

13. STATISTICA is ready to install. Click Install.
14. You should receive a message stating that the installation is complete. You may be

asked if you wish to reboot now or reboot later, depending on the components that were
previously installed on your machine. If you are asked, it will be necessary to reboot
before you run STATISTICA. Click Finish to complete the installation process.
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