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Preface 

As natural phenomena are being probed and mapped in ever-greater detail, 
scientists in genomics and proteomics are facing an exponentially growing vol­
ume of increasingly complex-structured data, information, and knowledge. Ex­
amples include data from microarray gene expression experiments, bead-based 
and microfluidic technologies, and advanced high-throughput mass spectrom­
etry. A fundamental challenge for life scientists is to explore, analyze, and 
interpret this information effectively and efficiently. To address this challenge, 
traditional statistical methods are being complemented by methods from data 
mining, machine learning and artificial intelligence, visualization techniques, 
and emerging technologies such as Web services and grid computing. 

There exists a broad consensus that sophisticated methods and tools from 
statistics and data mining are required to address the growing data analysis 
and interpretation needs in the life sciences. However, there is also a great deal 
of confusion about the arsenal of available techniques and how these should 
be used to solve concrete analysis problems. Partly this confusion is due to 
a lack of mutual understanding caused by the different concepts, languages, 
methodologies, and practices prevailing within the different disciplines. 

A typical scenario from pharmaceutical research should illustrate some of 
the issues. A molecular biologist conducts nearly one hundred experiments 
examining the toxic effect of certain compounds on cultured cells using a 
microarray gene expression platform. The experiments include different com­
pounds and doses and involves nearly 20 000 genes. After the experiments are 
completed, the biologist presents the data to the bioinformatics department 
and briefly explains what kind of questions the data is supposed to answer. 
Two days later the biologist receives the results which describe the output of 
a cluster analysis separating the genes into groups of activity and dose. While 
the groups seem to show interesting relationships, they do not directly address 
the questions the biologist has in mind. Also, the data sheet accompanying 
the results shows the original data but in a different order and somehow trans­
formed. Discussing this with the bioinformatician again it turns out that what 
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the biologist wanted was not clustering {automatic classification or automatic 
class prediction) but supervised classification or supervised class prediction. 

One main reason for this confusion and lack of mutual understanding is 
the absence of a conceptual platform that is common to and shared by the two 
broad disciplines, life science and data analysis. Another reason is that data 
mining in the life sciences is different to that in other typical data mining 
applications (such as finance, retail, and marketing) because many require­
ments are fundamentally different. Some of the more prominent differences 
are highlighted below. 

A common theme in many genomic and proteomic investigations is the 
need for a detailed understanding (descriptive, predictive, explanatory) of 
genome- and proteome-related entities, processes, systems, and mechanisms. 
A vast body of knowledge describing these entities has been accumulated on 
a staggering range of life phenomena. Most conventional data mining appli­
cations do not have the requirement of such a deep understanding and there 
is nothing that compares to the global knowledge base in the hfe sciences. 

A great deal of the data generated in genomics and proteomics is generated 
in order to analyze and interpret them in the context of the questions and hy­
potheses to be answered and tested. In many classical data mining scenarios, 
the data to be analyzed axe generated as a "by-product" of an underlying busi­
ness process (e.g., customer relationship management, financial transactions, 
process control, Web access log, etc.). Hence, in the conventional scenario 
there is no notion of question or hypothesis at the point of data generation. 

Depending on what phenomenon is being studied and the methodology 
and technology used to generate data, genomic and proteomic data struc­
tures and volumes vary considerably. They include temporally and spatially 
resolved data (e.g., from various imaging instruments), data from spectral 
analysis, encodings for the sequential and spatial representation of biologi­
cal macromolecules and smaller chemical and biochemical compounds, graph 
structures, and natural language text, etc. In comparison, data structures 
encountered in typical data mining applications are simple. 

Because of ethical constraints and the costs and time involved to run exper­
iments, most studies in genomics and proteomics create a modest number of 
observation points ranging from several dozen to several hundreds. The num­
ber of observation points in classical data mining applications ranges from 
thousands to millions. On the other hand, modern high-throughput experi­
ments measure several thousand variables per observation, much more than 
encountered in conventional data mining scenarios. 

By definition, research and development in genomics and proteomics is 
subject to constant change - new questions are being asked, new phenomena 
are being probed, and new instruments are being developed. This leads to fre­
quently changing data processing pipelines and workflows. Business processes 
in classical data mining areas are much more stable. Because solutions will 
be in use for a long time, the development of complex, comprehensive, and 
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expensive data mining applications (such as data warehouses) is readily jus­
tified. 

Genomics and proteomics are intrinsically "global" - in the sense that hun­
dreds if not thousands of databases, knowledge bases, computer programs, and 
document libraries are available via the Internet and are used by researchers 
and developers throughout the world as part of their day-to-day work. The in­
formation accessible through these sources form an intrinsic part of the data 
analysis and interpretation process. No comparable infrastructure exists in 
conventional data mining scenarios. 

This volume presents state of the art analytical methods to address key 
analysis tasks that data from genomics and proteomics involve. Most impor­
tantly, the book will put particular emphasis on the common caveats and 
pitfalls of the methods by addressing the following questions: What are the 
requirements for a particular method? How are the methods deployed and 
used? When should a method not be used? What can go wrong? How can the 
results be interpreted? The main objectives of the book include: 

• To be acceptable and accessible to researchers and developers both in life 
science and computer science disciplines - it is therefore necessary to ex­
press the methodology in a language that practitioners in both disciplines 
understand; 

• To incorporate fundamental concepts from both conventional statistics 
as well as the more exploratory, algorithmic and computational methods 
provided by data mining; 

• To take into account the fact that data analysis in genomics and proteomics 
is carried out against the backdrop of a huge body of existing formal 
knowledge about life phenomena and biological systems; 

• To consider recent developments in genomics and proteomics such as the 
need to view biological entities and processes as systems rather than col­
lections of isolated parts; 

• To address the current trend in genomics and proteomics towards increas­
ing computerization, for example, computer-based modeling and simular 
tion of biological systems and the data analysis issues arising from large-
scale simulations; 

• To demonstrate where and how the respective methods have been suc­
cessfully employed and to provide guidelines on how to deploy and use 
them; 

• To discuss the advantages and disadvantages of the presented methods, 
thus allowing the user to make an informed decision in identifying and 
choosing the appropriate method and tool; 

• To demonstrate potential caveats and pitfalls of the methods so as to 
prevent any inappropriate use; 

• To provide a section describing the formal aspects of the discussed method­
ologies and methods; 
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• To provide an exhaustive list of references the reader can follow up to 
obtain detailed information on the approaches presented in the book; 

• To provide a list of freely and commercially available software tools. 

It is hoped that this volume will (i) foster the understanding and use of 
powerful statistical and data mining methods and tools in life science as well 
as computer science and (ii) promote the standardization of data analysis and 
interpretation in genomics and proteomics. 

The approach taken in this book is conceptual and practical in nature. 
This means that the presented dataranalytical methodologies and methods 
are described in a largely non-mathematical way, emphasizing an information-
processing perspective (input, output, parameters, processing, interpretation) 
and conceptual descriptions in terms of mechanisms, components, and prop­
erties. In doing so, the reader is not required to possess detailed knowledge 
of advanced theory and mathematics. Importantly, the merits and limitations 
of the presented methodologies and methods are discussed in the context of 
"real-world" data from genomics and proteomics. Alternative techniques are 
mentioned where appropriate. Detailed guidelines are provided to help practi­
tioners avoid common caveats and pitfalls, e.g., with respect to specific para­
meter settings, sampling strategies for classification tasks, and interpretation 
of results. For completeness reasons, a short section outlining mathematical 
details accompanies a chapter if appropriate. Each chapter provides a rich 
reference list to more exhaustive technical and mathematical literature about 
the respective methods. 

Our goal in developing this book is to address complex issues arising from 
data analysis and interpretation tasks in genomics and proteomics by provid­
ing what is simultaneously a design blueprint, user guide, and research agenda 
for current and future developments in the field. 

As design blueprint, the book is intended for the practicing professional 
(researcher, developer) tasked with the analysis and interpretation of data 
generated by high-throughput technologies in genomics and proteomics, e.g., 
in pharmaceutical and biotech companies, and academic institutes. 

As a user guide, the book seeks to address the requirements of scientists 
and researchers to gain a basic understanding of existing concepts and meth­
ods for analyzing and interpreting high-throughput genomics and proteomics 
data. To assist such users, the key concepts and assumptions of the various 
techniques, their conceptual and computational merits and limitations are ex­
plained, and guidelines for choosing the methods and tools most appropriate 
to the analytical tasks are given. Instead of presenting a complete and in­
tricate mathematical treatment of the presented analysis methodologies, our 
aim is to provide the users with a clear understanding and practical know-how 
of the relevant concepts and methods so that they are able to make informed 
and effective choices for data preparation, parameter setting, output post­
processing, and result interpretation and validation. 
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As a research agenda, this volume is intended for students, teachers, re­
searchers, and research managers who want to understand the state of the 
art of the presented methods and the areas in which gaps in our knowledge 
demand further research and development. To this end, our aim is to maintain 
the readability and accessibility throughout the chapters, rather than compil­
ing a mere reference manual. Therefore, considerable effort is made to ensure 
that the presented material is supplemented by rich literature cross-references 
to more foundational work. 

In a quarter-length course, one lecture can be devoted to two chapters, 
and a project may be assigned based on one of the topics or techniques dis­
cussed in a chapter. In a semester-length course, some topics can be covered in 
greater depth, covering - perhaps with the aid of an in-depth statistics/data 
mining text - more of the formal background of the discussed methodology. 
Throughout the book concrete suggestions for further reading are provided. 

Clearly, we cannot expect to do justice to all three goals in a single book. 
However, we do beheve that this book has the potential to go a long way 
in bridging a considerable gap that currently exists between scientists in the 
field of genomics and proteomics on one the hand and computer scientists 
on the other hand. Thus, we hope, this volume will contribute to increased 
communication and collaboration across the disciplines and will help facilitate 
a consistent approach to analysis and interpretation problems in genomics and 
proteomics in the future. 

This volume comprises 12 chapters, which follow a similar structure in 
terms of the main sections. The centerpiece of each chapter represents a case 
study that demonstrates the use - and misuse - of the presented method or 
approach. The first chapter provides a general introduction to the field of data 
mining in genomics and proteomics. The remaining chapters are intended to 
shed more light on specific methods or approaches. 

The second chapter focuses on study design principles and discusses repli­
cation, blocking, and randomization. While these principles are presented in 
the context of microarray experiments, they are applicable to many types of 
experiments. 

Chapter 3 addresses data pre-processing in cDNA and oligonucleotide mi-
croarrays. The methods discussed include background intensity correction, 
data normalization and transformation, how to make gene expression levels 
comparable across different arrays, and others. 

Chapter 4 is also concerned with pre-processing. However, the focus is 
placed on high-throughput mass spectrometry data. Key topics include base­
line correction, intensity normalization, signal denoising (e.g., via wavelets), 
peak extraction, and spectra alignment. 

Data visualization plays an important role in exploratory data analysis. 
Generally, it is a good idea to look at the distribution of the data prior 
to analysis. Chapter 5 revolves around visualization techniques for high-
dimensional data sets, and puts emphasis on multi-dimensional scaling. This 
technique is illustrated on mass spectrometry data. 
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Chapter 6 presents the state of the art of clustering techniques for discover­
ing groups in high-dimensional data. The methods covered include hierarchical 
and fc-means clustering, self-organizing maps, self-organizing tree algorithms, 
model-based clustering, and cluster validation strategies, such as functional 
interpretation of clustering results in the context of microarray data. 

Chapter 7 addresses the important topics of feature selection, feature 
weighting, and dimension reduction for high-dimensional data sets in genomics 
and proteomics. This chapter also includes statistical tests (parametric or non-
parametric) for assessing the significance of selected features, for example, 
based on random permutation testing. 

Since data sets in genomics and proteomics are usually relatively small 
with respect to the number of samples, predictive models are frequently tested 
based on resampled data subsets. Chapter 8 reviews some common data 
resampling strategies, including n-fold cross-validation, leave-one-out cross-
validation, and repeated hold-out method. 

Chapter 9 discusses support vector machines for classification tasks, and 
illustrates their use in the context of mass spectrometry data. 

Chapter 10 presents graphs and networks in genomics and proteomics, such 
as biological networks, pathways, topologies, interaction patterns, gene-gene 
interactome, and others. 

Chapter 11 concentrates on time series analysis in genomics. A methodol­
ogy for identifying important predictors of time-varying outcomes is presented. 
The methodology is illustrated in a study aimed at finding mutations of the 
human immunodeficiency virus that are important predictors of how well a 
patient responds to a drug regimen containing two different antiretroviral 
drugs. 

Automated extraction of information from biological literature promises 
to play an increasingly important role in text-based knowledge discovery 
processes. This is particularly important for high-throughput approaches such 
as microarrays and high-throughput proteomics. Chapter 12 addresses knowl­
edge extraction via text mining and natural language processing. 

Finally, we would like to acknowledge the excellent contributions of the 
authors and Alice McQuillan for her help in proofreading. 

Coleraine, Northern Ireland, and Weingajten, Germany Werner Dubitzky 
Martin Granzow 

Daniel Berrar 
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The following list shows the symbols or abbreviations for the most com­
monly occurring quantities/terms in the book. In general, uppercase boldfaced 
letters such as X refer to matrices. Vectors are denoted by lowercase boldfaced 
letters, e.g., x, while scalars are denoted by lowercase italic letters, e.g., x. 

List of Abbreviations and Symbols 

ACE Average (test) classification error 
ANOVA Analysis of variance 
ARX) Automatic relevance determination 
AUG Area under the curve (in ROC analysis) 
BACC Balanced accuracy (average of sensitivity and specificity) 
BACC Balanced accuracy 
bp Base pair 
CART Classification and regression tree 
CV Cross-validation 
Da Daltons 
DDWT Decimated discrete wavelet transform 
ESI Electrospray ionization 
EST Expressed sequence tag 
ETA Experimental treatment assignment 
FDR False discovery rate 
FLD Fisher's linear discriminant 
FN False negative 
FP False positive 
FPR False positive rate 
FWER Family-wise error rate 
GEO Gene Expression Omnibus 
GO Gene Ontology 
ICA Independent component analysis 
IE Information extraction 
IQR Interquartile range 
IR Information retrieval 
LOOCV Leave-one-out cross-validation 
MALDI Matrix-assisted laser desorption/ionization 
MDS Multidimensional scaling 
MeSH Medical Subject Headings 
MM Mismatch 
MS Mass spectrometry 
m/z Mass-over-charge 
NLP Natural language processing 
NPV Negative predictive value 
PCA Principal component analysis 
PCR polymerase chain reaction 
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PCR 
PLS 
PM 
PPV 
RLE 
RLR 
RMA 
S2N 
SAGE 
SAM 
SELDI 
SOM 
SOTA 
SSH 
SVD 
SVM 
TIC 
TN 
TOP 
TP 
UDWT 
VSN 

#(•) 
X 

e 
e.632 

Vi 

E 
T 
x' 
D 
d{x,y) 
E{X) 
(k) 
Li 

Ti 
TRij 
Vi, 

Polymerase chain reaction 
Partial least squares 
Perfect match 
Positive predictive value 
Relative log expression 
Regularized logistic regression 
Robust multi-chip analysis 
Signal-to-noise 
Serial analysis of gene expression 
Significance analysis of gene expression 
Surface-enhance laser desorption/ionization 
Self-organizing map 
Self-organizing tree algorithm 
Suppression substractive hybridization 
Singular value decomposition 
Support vector machine 
Total ion current 
True negative 
Time-of-flight 
True positive 
Undecimated discrete wavelet transform 
Variance stabilization normalization 
Counts; the number of instances satisfying the condition in (•) 
The mean of all elements in x 
Chi-square statistic 
Observed error rate 
Estimate for the classification error in the .632 bootstrap 
Predicted value for yi (i.e., predicted class label for case Xj) 
Not y 
Covariance 
True error rate 
Transpose of vector x 
Data set 
Distance between x and y 
Expectation of a random variable X 
Average of k 
i*^ learning set 
Set of real numbers 
i*'* test set 
Training set of the i*'* external and j * ' * internal loop 
Validation set of the i*^ external and j ^ ^ internal loop 
jth ygj-̂ gx in a network 
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1.1 Introduction 

Genomics can be broadly defined as the systematic study of genes, their func­
tions, and their interactions. Analogously, proteomics is the study of proteins, 
protein complexes, their localization, their interactions, and posttranslational 
modifications. Some years ago, genomics and proteomics studies focused on 
one gene or one protein at a time. With the advent of high-throughput tech­
nologies in biology and biotechnology, this has changed dramatically. We are 
currently witnessing a paradigm shift from a traditionally hypothesis-driven 
to a datardriven research. The activity and interaction of thousands of genes 
and proteins can now be measured simultaneously. Technologies for genome-
and proteome-wide investigations have led to new insights into mechanisms 
of living systems. There is a broad consensus that these technologies will rev­
olutionize the study of complex human diseases such as Alzheimer syndrome, 
HIV, and particularly cancer. With its ability to describe the clinical and 
histopathological phenotypes of cancer at the molecular level, gene expression 
profiling based on microaxrays holds the promise of a patient-tailored therapy. 
Recent advances in high-throughput mass spectrometry allow the profiling of 
proteomic patterns in biofiuids such as blood and urine, and complement the 
genomic portray of diseases. 

Despite the undoubted impact that these technologies have made on bio­
medical research, there is still a long way to go from bench to bedside. High-
throughput technologies in genomics and proteomics generate myriads of in­
tricate data, and the analysis of these data presents unprecedented analytical 
and computational challenges. On one hand, because of ethical, cost and time 
constraints involved in running experiments, most life science studies include 
a modest number of cases (i.e., samples), n. Typically, n ranges from several 
dozen to several hundred. This is in stark contrast with conventional data min­
ing applications in finance, retail, manufacturing and engineering, for which 
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data mining was originally developed. Here, n frequently is in the order of 
thousands or millions. On the other hand, modern high-throughput experi­
ments measure several thousand variables per case, which is considerably more 
than in classical data mining scenarios. This problem is known as the curse 
of dimensionality or small-n-large-p problem. In genomic and proteomic data 
sets, the number of variables, p, (e.g., genes or m/z values) can be in the 
order of 10'*, whereas the number of cases, n, (e.g., biological specimens) is 
currently in the order of 10^. 

These challenges have prompted scientists from a wide range of disciplines 
to work together towards the development of novel methods to analyze and 
interpret high-throughput data in genomics and proteomics. While it is true 
that interdisciplinary efforts are needed to tackle the challenges, there has 
also been a realization that cultural and conceptual differences among the 
disciplines and their communities are hampering progress. These difficulties 
are further aggravated by continuous innovation in these areas. A key aim 
of this volume is to address this conceptual heterogeneity by establishing a 
common ontology of important notions. 

Berry and Linoff (1997) define data mining broadly as "i/ie exploration and 
analysis, by automatic or semiautomatic means, of large quantities of data in 
order to discover meaningful patterns and rules.'''' In this introduction we will 
follow this definition and emphasize the two aspects of exploration and analy­
sis. The exploratory approach seeks to gain a basic understanding of the dif­
ferent qualitative and quantitative aspects of a given data set using techniques 
such as data visualization, clustering, data reduction, etc. Exploratory meth­
ods are often used for hypothesis generation purposes. Analytical techniques 
are normally concerned with the investigation of a more precisely formulated 
question or the testing of a hypothesis. This approach is more confirmatory 
in nature. Commonly addressed analytical tasks include data classification, 
correlation and sensitivity analysis, hypothesis testing, etc. A key pillar of the 
analytical approach is traditional statistics, in particular inferential statistics. 
The section on basic concepts of data analysis will therefore pay particular 
attention to statistics in the context of small-sample genomic and proteomic 
data sets. 

This introduction first gives a short overview of current and emerging tech­
nologies in genomics and proteomics, and then defines some basic terms and 
notations. To be more precise, we consider functional genomics, also referred 
to as transcriptomics. The chapter does not discuss the technical details of 
these technologies or the respective wet lab protocols; instead, we consider the 
basic concepts, applications, and challenges. Then, we discuss some fundamen­
tal concepts of data mining, with an emphasis on high-throughput technologies. 
Here, high-throughput refers to the ability to generate large quantities of data 
in a single experiment. We focus on DNA microarrays (transcriptomics) and 
mass spectrometry (proteomics). While this presentation is necessarily incom­
plete, we hope that this chapter will provide a useful framework for studying 
the more detailed and focused contributions in this volume. In a sense, this 
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chapter is intended as a "road map" for the analysis of genomic and proteomic 
data sets and as an overview of key analytical methods for: 

• data pre-processing; 
• data visualization and inspection; 
• class discovery; 
• feature selection and evaluation; 
• predictive modeling; and 
• data post-processing and result interpretation. 

1.2 A Short Overview of Wet Lab Techniques 

A comprehensive overview of genomic and proteomic techniques is beyond the 
scope of this book. However, to provide a flavor of available techniques, this 
section briefly outlines methods that measure gene or protein expression.^ 

1.2.1 Transcriptomics Techniques in a Nutshell 

Polymerase chain reaction (PCR) is a technique for the cyclic, logarithmic am­
plification of specific DNA sequences (Saiki et al., 1988). Each cycle comprises 
three stages: DNA denaturation by temperature, annealing with hybridiza­
tion of primers to single-stranded DNA, and amplification of marked DNA 
sequences by polymerase (Klipp et al., 2005). Using reverse transcriptase, a 
cDNA copy can be obtained from RNA and used for cloning of nucleotide 
sequences (e.g., mRNA). This technique, however, is only semi-quantitative 
due to saturation effects at later PCR cycles, and due to staining with ethid-
ium bromide. Quantitative real-time reverse transcriptase PCR (qRT-PCR) 
uses fluorescent dyes instead to mark specific DNA sequences. The increase of 
fluorescence over time is proportional to the generation of marked sequences 
(amplicons), so that the changes in gene expression can be monitored in real 
time. qRT-PCR is the most sensitive and most flexible quantification method 
and is particularly suitable to measure low-abundance mRNA (Bustin, 2000). 
qRT-PCR has a variety of applications, including viral load quantitation, drug 
efficacy monitoring, and pathogen detection. qRT-PCR allows the simultane­
ous expression profiling for approximately 1000 genes and can distinguish 
even closely related genes that differ in only a few base pairs (Somogyi et al., 
2002). 

The ribonuclease protection assay (RPA) detects specific mRNAs in a mix­
ture of RNAs (Hod, 1992). mRNA probes of interest are targeted by radioac-
tively or biotin-labeled complementary mRNA, which hybridize to double-
stranded molecules. The enzyme ribonuclease digests single-stranded mRNA, 

^ For an exhaustive overview of wet lab protocols for mRNA quantitation, see, for 
instance, Lorkowski and CuUen (2003). 
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so that only probes that found a hybridization partner remain. Using elec­
trophoresis, the sample is then run through a polyacrylamide gel to quantify 
mRNA abundances. RPAs can simultaneously quantify absolute mRNA abun­
dances, but are not suitable for real high-throughput analysis (Somogyi et al., 
2000). 

Southern blotting is a technique for the detection of a particular sequence 
of DNA in a complex mixture (Southern, 1975). Separation of DNA is done 
by electrophoresis on an agarose gel. Thereafter, the DNA is transferred onto 
a membrane to which a labeled probe is added in a solution. This probe bonds 
to the location it corresponds to and can be detected. 

Northern blotting is similar to Southern blotting; however, it is a semi­
quantitative method for detection of mRNA instead of DNA. Separation of 
mRNA is done by electrophoresis on an agarose gel. Thereafter, the mRNA 
is transferred onto a membrane. An oligonucleotide that is labeled with a 
radioactive marker is used as target for an mRNA that is run through a gel. 
This mRNA is located at a specific band in the gel. The amount of measured 
radiation in this band depends on the amount of hybridized target to the 
probe. 

Subtractive hybridization is one of the first techniques to be developed for 
high-throughput expression profiling (Sargent and Dawid, 1983). cDNA mole­
cules from the tester sample are mixed with mRNA in the driver sample, and 
transcripts expressed in both samples hybridize to each other. Single- and 
double-stranded molecules are then chromatographically separated. Single-
stranded cDNAs represent genes that are expressed in the tester sample only. 
Moody (2001) gives an overview of various modifications of the original proto­
col. Diatchenko et al. (1996) developed a protocol for suppression subtractive 
hybridization (SSH), which selectively amplifies differentially expressed tran­
scripts and suppresses the amplification of abundant transcripts. SSH includes 
PCR, so that even small amounts of RNA can be analyzed. SSH, however, 
is only a qualitative technique for comparing relative expression levels in two 
samples (Moody, 2001). 

In contrast to SSH, the differential display technique can detect differen­
tial transcript abundance in more than two samples, but is also unable to 
measure expression quantitatively (Liang and Pardee, 1992). First, mRNA is 
reverse-transcribed to cDNA and amplified by PCR. The PCR clones are then 
labeled, either radioactively or using a fluorescent marker, and electrophoresed 
through a polyacrylamide gel. The bands with different intensities represent 
the transcripts that are differentially expressed in the samples. 

Serial analysis of gene expression (SAGE) is a quantitative and high-
throughput technique for rapid gene expression profiling (Velculescu et al., 
1995). SAGE generates double-stranded cDNA from mRNA and extracts 
short sequences of 10-15 bp (so-called tags) from the cDNA. Multiple sequence 
tags are then concatenated to a double-stranded stretch of DNA, which is then 
ampHfied and sequenced. The expression profile is determined based on the 
abundance of individual tags. 
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A major breakthrough in high-throughput gene expression profiling was 
reached with the development of microarrays (Schena et al., 1995). Arguably, 
spotted cDNA arrays, spotted and in situ synthesized chips currently repre­
sent the most commonly used array platforms for assessing mRNA transcript 
levels. cDNA chips consist of a solid surface (nylon or glass) onto which probes 
of nucleotide sequences are spotted in a grid-like arrangement (Murphy, 2002). 
Each spot represents either a gene sequence or an expressed sequence tag 
(EST). cDNA microarrays can be used to compare the relative mRNA abun­
dance in two different samples. In contrast, in situ synthesized oligonucleotide 
chips such as Affymetrix GeneChips measure absolute transcript abundance 
in one single sample (more details can be found in Chapter 3). 

1.2.2 Proteomics Techniques in a Nutshell 

In Western blotting, protein-antibody complexes are formed on a membrane, 
which is incubated with an antibody of the primary antibody. This secondary 
antibody is linked to an enzyme triggering a chemiluminescence reaction (Bur-
nette, 1981). Western blotting produces bands of protein-antibody-antibody 
complexes and can quantify protein abundance absolutely. 

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separates 
proteins in the first dimension according to charge and in the second dimen­
sion according to molecular mass (O'Farrell, 1975). 2D-PAGE is a quantita­
tive high-throughput technique, allowing a high-resolution separation of over 
10000 proteins (Klose and Kobalz, 1995). A problem with 2D-PAGE is that 
high-abundance proteins can co-migrate and obscure low-abundance proteins 
(Honore et al., 2004). Two-dimensional difference in-gel electrophoresis (2D-
DIGE) is one of the many variations of this technique (Unlu et al., 1997). 
Here, proteins from two samples (e.g., normal vs. diseased) are differentially 
labeled using fluorescent dyes and simultaneously electrophoresed. 

Mass spectrometry (MS) plays a pivotal role in the identification of proteins 
and their post-translational modifications (Glish and Vachet, 2003; Honore 
et al., 2004). Mass spectrometers consist of three key components: (z) An ion 
source, converting proteins into gaseous ions; (ii) a mass analyzer, measuring 
the mass-to-charge ratio (m/z) of the ions, and (m) a detector, counting the 
number of ions for each m/z value. Arguably the two most common types 
of ion sources are electrospray ionization (ESI) (Yamashita and Fenn, 1984) 
and matrix-assisted laser desorption/ionization (MALDI) (Karas et al., 1987). 
Glish and Vachet (2003) give an excellent overview of various mass analyzers 
that can be coupled with these ion sources. The time-of-flight (TOP) instru­
ment is arguably the most commonly used analyzer for MALDI. In short, 
the protein sample is mixed with matrix molecules and then crystallized to 
spots on a metal plate. Pulsed laser shots to the spots irradiate the mixture 
and trigger ionization. Ionized proteins fly through the ion chamber and hit 
the detector. Based on the applied voltage and ion velocity, the m,/z of each 
ion can be determined and displayed in a spectrum. Surface-enhanced laser 
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desorption/ionization time-of-flight (SELDI-TOF) is a relatively new vari­
ant of MALDI-TOF (Issaq et al., 2002; Tang et al., 2004). A key element 
in SELDI-TOF MS is the protein chip with a chemically treated surface to 
capture classes of proteins under specific binding conditions. MALDI- and 
SELDI-TOF MS are very sensitive technologies and inherently suitable for 
high-throughput proteomic profiling. The pulsed laser shots usually gener­
ate singularly protonated ions [M-|-H]+; hence, a sample that contains an 
abundance of a specific protein should produce a spectrum where the m/z 
value corresponding to this protein has high intensity, i.e., stands out as a 
peak. However, mass spectrometry is inherently semi-quantitative, since pro­
tein abundance is not measured directly, but via ion counts. Chapter 4 pro­
vides more details about these technologies. 

2D-PAGE and mass spectrometry are currently the two key technologies 
in proteomic research. Further techniques include: (i) Yeast two-hybrid, an in 
vivo technique for deciphering protein-protein interactions (Fields and Song, 
1989); (a) phage display, a technique to determine peptide- or domain-protein 
interactions (Hoogenboom et al., 1998); and (Hi) peptide and protein chips, 
comprising affinity probes, i.e., reagents such as antibodies, antigens, recom­
binant proteins, arrayed in high density on a solid surface (MacBeath, 2002). 
Similarly to two-color microarray experiments, the probes on the chip inter­
act with their fiuorescently labeled target proteins, so that captured proteins 
can be detected and quantified. Three major problems currently hamper the 
application of protein chips: The production of specific probes, the affixation 
of functionally intact proteins on high-density arrays, and cross-reactions of 
antibody reagents with other cellular proteins. 

1.3 A Few Words on Terminology 

Arguably the most important interface between wet lab experiments in ge­
nomics and proteomics and data mining is data. We could summarize this via 
a logical workflow as follows: Wet lab experiments —> data —> data mining. 
In this section, we briefly outline some important terminology often used in 
genomics and proteomics to capture, structure, and characterize data. 

A model refers to the instantiation of a mathematical representation or 
formalism, and reflects a simplified entity in the real world. For example, a 
particular decision tree classifier that has been constructed using a specific 
decision tree learning algorithm based on a particular data set is a model. 
Hence, identical learning algorithms can lead to different models, provided 
that different data subsets are used. 

The terms probe and target sometimes give rise to confusion. In general, 
probe refers to the substance that interacts in a selective and predetermined 
way with the target substance so as to elicit or measure a specific property or 
quantity. In genomics and proteomics, the term "probe" is nowadays used for 
substances or molecules (e.g., nucleic acids) affixed to an array or chip, and 
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the term "target" designates the substances derived from the studied samples 
that interact with the probe. 

The terms feature, variable, and attribute are also widely used as syn­
onyms. The term target variable (or simply target) is often used in machine 
learning and related areas to designate the class label in a classification sce­
nario. The statistical literature commonly refers to this as the response or 
dependent variable, whereas the features are the predictors, independent vari­
ables, or covariates. 

In genomics and proteomics the terms profile, signature, fingerprint, and 
others are often used for biologically important data aggregates. Below, we 
briefly illustrate some of these aggregates. 

In DNA microarray data analysis, the biological entity of interest is mRNA 
abundance. These abundances are either represented as ratio values (in cDNA 
chips) or absolute abundances (in oligonucleotide chips). In mass spectrome­
try, the biological entity of interest is the abundance of peptides/proteins or 
protein fragments. Provided that the pulsed laser shots generate singularly 
protonated ions, a specific peptide/protein or protein fragment is represented 
by a specific m/z value. The ions corresponding to a specific m/z value are 
counted and used as a measure of protein abundance. 

A gene expression profile is a vector representing gene expression values 
relating to a single gene across multiple cases or conditions. The term gene 
expression signature is commonly used synonymously. A (gene) array profile 
is a vector that describes the gene expression values for multiple genes for a 
single case or under a single condition. 

For mass spectrometry data, a "protein expression profile" is a vector rep­
resenting the intensity (i.e., ion counts) of a single m/z value across multiple 
cases or conditions."* A mass spectrum is a vector that describes the intensity 
of multiple m/z values for a single case or under a single condition. Figure 
1.1 shows the conceptually similar microarray matrix and MS matrix. 

1.4 Study Design 

High-throughput experiments are often of an exploratory nature, and highly 
focused hypotheses may not always be desired or possible. Of critical impor­
tance, however, is that the objectives of the analysis axe precisely specified 
before the data are generated. Clear objectives guide the study design, and 
flaws at this stage cannot be corrected by data mining techniques. "Pattern 
recognition and data mining are often what you do when you don't know what 
your objectives are." (Simon, 2002). Chapter 2 of this volume addresses the 
experimental study design issues. The design principles axe discussed in the 

•* Note that in general, a specific m,/z value cannot be directly mapped to a specific 
protein, because the mass is not sufficient to identify a protein. See the discussion 
on peak detection and pealc identification in Chapter 4, pages 81-82. 
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Fig. 1.1. Microarray matrix and mass spectrometry matrix. In the microarray mar 
trix, Xij is the expression value of the j * ' ' gene of the i*'' array. In the MS matrix, 
Xij refers to the intensity of the j*^ m/z value of the i*** spectrum. 

context of microarray experiments, but also apply to other types of experi­
ments. 

Normally, a study is concerned with one or more scientific questions in 
mind. To answer these questions, a rational study design should identify which 
analytical tasks need to be performed and which analytical methods and tools 
should be used to implement these tasks. This mapping of question —> task -^ 
method is the first hurdle that needs to be overcome in the data mining 
process. 

1.5 Data Mining 

While there is an enormous diversity of data mining methodologies, meth­
ods and tools, there are a considerable number of principle concepts, issues 
and techniques that appear in one form or another in many data mining 
applications. This section and its subsections try to cover some of these no­
tions. Figure 1.2 depicts a typical "analysis pipehne", comprising five essential 
phases after the study design. The following sections describe this pipeline in 
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more details, placing emphasis on class comparison and class discrimination. 
Chapter 6 discusses class discovery in detail. 

(0) study design 
(e.g.,replicatioii, blocking) 

(1) Data pre-processiiig 
(e.g., data transformation, 
missing value handling) 

(2) Visual inspection 
(e.g., histograms, scatter plots) 

(3a) Class discovery 
(e.g., finding clusters) 

(3b) Class comparison 
(e.g., finding discriminatory 

features) 

(3c) Class discrimination 
(e.g., constructing classifiers) 

(4) Evaluation 
(e.g., statistical hypothesis 
testing, cross-validation) 

(5) Interpretation 
(e.g., new hypotheses, 

new knowledge) 

Fig. 1.2. A typical "data mining pipeline" in genomics and proteomics. 

1.5.1 Mapping Scientific Questions to Analytical Tasks 

Frequently asked questions in genomic and proteomic studies include: 

1. Are there any interesting patterns in the data set? 
2. Are the array profiles characteristic for the phenotypes? 
3. Which features (e.g., genes) are most important? 

To formulate the first question more precisely is already a challenge. What 
is meant by a "pattern", and how should one measure "interestingness"? A 
pattern can refer to groups in the data. This question can be translated into a 
clustering task. Informally, clustering is concerned with identifying meaningful 
groups in the data, i.e., a convenient organization and description of the data. 
Clustering is an unsupervised learning method as the process is not guided by 
pre-defined class labels but by similarity and dissimilarity of cases according 
to some measure of similarity. Clustering refers to an exploratory approach 
to reveal relationships that may exist in the data, for instance, hierarchical 
topologies. There exists a huge arsenal of different clustering methods. They 
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have in common that they all ultimately rely on the definition of a measure of 
similarity (or, equivalently, dissimilarity) between objects. Clustering meth­
ods attempt to maximize the similarity between these objects (i.e., cases or 
features) within the same group (or cluster), while minimizing the similarity 
between the different groups. For instance, if one is interested in identifying 
hierarchical structures in the data, then hierarchical clustering methods can 
organize the data into tree-like structures known as dendrogram. Adopting 
this approach, the underlying scientific question is mapped into a clustering 
task, which, in this case, is realized via a hierarchical clustering method. Var­
ious implementations of such methods exist (see Chapter 6 for an overview). 

Many studies are concerned with questions as to whether and how the 
profiles relate to certain phenotypes. The phenotypes may be represented 
by discrete class labels (e.g., cancer classes) or continuous variables (e.g., 
survival time in months). Typical analytical approaches to these tasks are 
classification or regression. In the context of classification, the class labels 
are discrete or symbolic variables. Given n cases, let the set of k pre-defined 
class labels be denoted by C = {ci,C2,.. .Cfe}. This set can be arbitrarily 
relabeled as Y = {1,2,.. .k}. Each case Xj is described by p observations, 
which represent the feature vector, i.e., Xj = {xii,Xi2,... Xip). With each case, 
exactly one class label is associated, i.e., (xj,j/j). The feature vector belongs 
to a feature space X, e.g., the real numbers W. The class label can refer 
to a tumor type, a genetic risk group, or any other phenotype of biological 
relevance. Classification involves a process of learning-from-examples, in which 
the objective is to classify an object into one of the k classes on the basis of 
an observed measurement, i.e., to predict j / , from Xj. 

The task of regression is closely related to the task of classification, but 
differs with respect to the class variables. In regression, these variables are con­
tinuous values, but the learning task is similar to the aforementioned mapping 
function. Such a continuous variable of interest can be the survival outcome of 
cancer patients, for example. Here, the regression task may consist in finding 
the mapping from the feature vector to the survival outcome. 

A plethora of sophisticated classification/regression methods have been 
developed to address these tasks. Each of these methods is characterized by a 
set of idiosyncratic requirements in terms of data pre-processing, parameter 
configuration, and result evaluation and interpretation. 

It should be noted that the second question mentioned in the beginning 
of Section 1.5.1 does not translate into a clustering task, and hence clustering 
methods are inappropriate. Simon (2005) pointed out that one of the most 
common errors in the analysis of microarray data is the use of clustering 
methods for classification tasks. 

The No Free Lunch theorem suggests that no classifier is inherently supe­
rior to any other (Wolpert and Macready, 1997). It is the type of the problem 
and the concrete data set at hand that determines which classifier is most ap­
propriate. In general, however, it is advisable to prefer the simplest model that 
fits the data well. This postulate is also known as Occam's razor. Somorjai 
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et al. (2003) criticized the common practice in classifying microarray data that 
does not respect Occam's razor. Frequently, the most sophisticated models axe 
applied. Currently, support vector machines (SVMs) are considered by many 
as one of the most sophisticated techniques. Empirical evidence has shown 
that SVMs perform remarkably well for high-dimensional data sets involving 
two classes, but in theory, there are no compelling reasons why SVMs should 
have an edge on the curse of dimensionality (Hastie et al., 2002). Compara­
tive studies have demonstrated that simple methods such as nearest-neighbor 
classifiers often perform as well as more sophisticated methods (Dudoit et al., 
2002). 

More important than the choice of the classifier is its correct application. 
To assess whether the array profiles, for instance, are characteristic for the 
phenotypes, it is essential to embed the construction and application of the 
classifier in a solid statistical framework. Section 1.5.5 and Chapter 8 discuss 
this issue in detail. 

With respect to class discrimination, we are interested in those features 
that differ significantly among the different classes. Various methods for fea­
ture weighting and selection exist. Chapter 7 presents the state of the art of 
feature selection techniques in the context of genomics and proteomics. Fea­
ture selection is closely linked to the construction of a classifier, because in 
general, classification performance improves when non-discriminatory features 
are discarded. 

It is important to be clear about the analysis tasks, because they may 
dictate what to do next in the data pre-processing step. For instance, if the 
task is tackled by a hierarchical clustering method, then missing values in 
the data set need to be handled. Some software packages may not be able 
to perform clustering if the data set has missing values. In contrast, if the 
problem is identified as a classification task and addressed by a model that 
is inherently able to cope with missing values (e.g., some types of decision 
trees), then missing values do not necessarily need to be replaced. 

1.5.2 Visual Inspection 

There are many sources causing artifacts in genomics and proteomics data 
sets that may be confused as real measurements. High-throughput genomic 
and proteomic data sets are the result of a complex scientific instrument, 
comprising laboratory protocols, technical equipment and the human element. 
The human eye is an invaluable tool that can help in quality assessment 
of data. Looking at the data distribution prior to analysis is often a highly 
valuable exercise. 

Many parametric methods (e.g., the standard t-test) assume that the data 
follows approximately a normal distribution. Histogram plots like those shown 
in Figure 1.3a can reveal whether the normality assumption is violated. Al­
ternatively, a statistical test for normality (e.g., Anderson-Darling test) may 
be used. To coerce data into a normality distribution the data may need to 
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be transformed prior to applying a method requiring normality. Figure 1.3a 
shows the frequency distribution of a two-color microarray experiment based 
on cDNA chips, which represents expression values as intensity ratios. 
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Fig. 1.3. Frequency distribution of (a) intensity ratios, and (b) log-transformed 
intensity ratios. 

In Figure 1.3a, a large proportion of the values are confined to the lower 
end of the observed scale. This is referred to as positive skewness of the ratio 
data. Here, values indicating underexpression are "squashed" in the interval 
(0,1). A simple log-transformation usually provides for a good approximation 
of the normal distribution (see Figure 1.3b). 

Data integration has become a buzzword in genomics and proteomics. 
However, current research practice is characterized by multiple array plat­
forms and protocols, and even expression data from the same tissue type are 
not directly comparable when they originate from different platforms (Morris 
et al., 2003). This problem is exacerbated when data are pooled across dif­
ferent laboratories. Prior to integrating data, it may be useful to inspect the 
data using multidimensional scaling (MDS) or principal component analysis 
(PCA) (see Chapter 5). 

Figure 1.4 shows a score plot of the first and second principal components 
of two contrived microarray experiments generated by two different laborar 
tories (marked by D and •, respectively). In this example, the largest source 
of variation (reflected by the first principal component) is due to (unknown) 
laboratory peculiarities; hence, the expression values in the two data sets are 
not directly comparable. 

Visual inspection is not only useful prior to data analysis, but should ac­
company the entire analysis process. The visual examination of data analysis 
steps by meaningful visualization techniques supports the discovering of mis­
takes, e.g., when a visualization does not appear the way we expected it to look 
like. Furthermore, visualizing the single analysis steps fosters the confidence 
in the data mining results. 
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First component 

Fig. 1.4. Score plot of the first and second principal component. 

1.5.3 Data Pre-Processing 

Pre-processing encompasses a wide range of methods and approaches that 
make the data amenable to analysis. In the context of microarrays, data pre­
processing includes the acquisition and processing of images, handling of miss­
ing values, data transformation, and filtering. Chapter 3 addresses these issues 
in detail. In data sets based on MALDI/SELDI-TOF MS, pre-processing in­
cludes identification of valid m/z regions, spectra alignment, signal denoising 
or smoothing, baseline correction, peak extraction, and intensity normaliza­
tion (see Chapter 4 for details). Precisely which pre-processing needs to be 
done depends on the analytical task at hand. 

1.5.3.1 Handling of Missing Values 

Genomic and proteomic data sets can exhibit missing values for various rea­
sons. For instance, missing values in microarray matrices can be due to prob­
lems in image resolution, dust and scratches on the array, and systematic ar­
tifacts from robotic printing. Essentially, there exist four different approaches 
for coping with missing values. 

First, if the number of missing values is relatively small, then we might 
discard entire profiles. This would be the most obvious, albeit drastic, solu­
tion. Second, missing values are ignored because the data mining methods 
to be used are intrinsically able to cope with them. Some decision tree al­
gorithms, for instance, are able to cope with missing values automatically. 
Methods that compute pair-wise distances between objects (e.g., clustering 
algorithms) could discard pairs where one partner is missing. For instance, 
suppose that the value Xij depicted in the data matrix in Figure 1.1 is miss­
ing, and the distance between the j * ' * and the [j +1)*'* expression profile is to 
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be computed. Then the distance would be based on all {xkj,Xkj+i) with k ^ i. 
Unfortunately, many software tools do not allow this option. Third, missing 
values may be replaced by imputed substitutes. In the context of microar-
ray matrices of log-transformed expression values, missing values are often 
replaced by zero or by an average over the expression profile. More robust 
approaches take into account the correlation structure, for example, simple 
(Troyanskaya et al., 2001) or weighted nearest-neighbor methods (Johansson 
and Hakkinen, 2006). Fourth, missing values may be explicitly treated as miss­
ing information (i.e., not replaced or ignored). For instance, consider a data 
set that is enriched by clinical or epidemiological data. Here, it might be in­
teresting that some features exhibit consistently missing values in subgroups 
of the population. 

1.5.3.2 D a t a Transformations 

Data transformation includes a wide range of techniques. Transformation 
to normality refers to the adjustment of the data so that they follow ap­
proximately a normal distribution.^ Figure 1.3 showed an example of log-
transformation. 

Ideally, a numerical value in the expression matrix reflects the true level 
of transcript abundance (e.g., in oligonucleotide chips), some abundance ratio 
(e.g., in cDNA chips), or protein abundance (e.g., in mass spectrometry). 
However, due to imperfections of instruments, lab conditions, materials, etc. 
the measurements deviate from the true expression level. Such deviations are 
referred to as measurement errors and can be decomposed into two elements, 
6ms and variance. 

The measurement error due to variance (random error) is often normally 
distributed, meaning that deviations from the true value in either direction are 
equally frequent, and that small deviations are more frequent than large ones. 
A standard way of addressing this class of error is experiment replication. A 
well-designed study is of paramount importance here. Chapter 2 deals with 
this topic in more detail. 

The bias describes the systematic error of the instrument and measurement 
environment. The goal of data normalization is to correct for the systematic 
errors and adjust the data for subsequent analysis. There exist various sources 
of systematic errors, for instance: 

• Experimenter bias: Experiments carried out by the same person can cluster 
together. In microarray data, this has been identified as one of the largest 
sources of bias (Morrison and Hoyle, 2002). 

5 Log-transformation, albeit commonly applied in microarray data analysis, is not 
free from problems. James-Lyons Weiler, for example, argues that this trans­
formation can entail a considerable loss of information in case-control studies 
(http://bioinformatics.upmc.edu/Help/Recommendations.html). 
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• Variability in experimental conditions: Factors such as temperature, date, 
and sequence can have an effect on the experiment. 

• Sample collection and preparation: Probe processing can affect the exper­
iment. 

• Machine parameters: Machine calibration (e.g., scanner settings) can 
change over time and impact the experiment. 

Data re-scaling refers to the experiment-wise transformation of the data in 
such a way that their variances become comparable. For example, the values 
resulting from two hybridizations can have different variances, making their 
comparison more difficult. Particularly, when the values are averaged over 
multiple hybridization replicates, the variances of the individual hybridiza­
tions should be equal, so that each replicate contributes an equal amount 
of information to the average. The z-score transformation rescales a variable 
by subtracting the mean from each value and then dividing by its standard 
deviation. The resulting z-scores are normally distributed with mean 0 and 
standard deviation 1. This z-score transformation can also be applied for per-
feature scaling, so that the mean of each feature over multiple cases equals 0 
and the standard deviation equals 1. The gene-wise re-scaling may be appro­
priate prior to some analytical tasks, e.g., clustering. Hedenfalk et al. (2003), 
for example, pre-processed the expression values by computing the z-scores 
over the samples. 

Which data transformation method should be performed on a concrete 
data set at hand? This question does not have a definite answer. For mi-
croarray data, intricate normalization techniques exist, for example, methods 
that rely on regression techniques (Morrison and Hoyle, 2002). In general, 
it is good to keep the raw data and to maintain an audit trail of the per­
formed data transformations, with the specific parameter settings. Chapter 3 
discusses normalization issues in the context of microarrays. Chapter 4 in the 
context of MALDI/SELDI-TOF MS data. 

1.5.4 The Problem of Dimensionality 

The small-n-large-p problem represents a major challenge in high-throughput 
genomic and proteomic data sets. This problem can be addressed in two dif­
ferent ways: (i) By projecting the data onto a lower-dimensional space, i.e., 
by replacing the original data by surrogate features, and (n) by selecting a 
subset of the original features only. 

1.5.4.1 Mapping to Lower Dimensions 

Principal component analysis (PCA, a.k.a. Karhunen-Loeve transform) based 
on singular value decomposition (SVD) is an unsupervised technique to detect 
and replace linear redundancies in data sets. PCA defines a set of hybrid or 
surrogate features {principal components) that axe composites of the original 
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features. These new features are guaranteed to be linearly independent and 
non-redundant. It is noteworthy, however, that non-linear dependencies may 
still exist. PCA accounts for as much of the variation in the original data by 
as few as possible new features (see Chapter 5). 

An important caveat should be taken into consideration. Suppose that the 
data set comprises only two expression profiles. Assume that the variance of 
one profile is much larger than the variance of the other one, but both are 
equally important for discriminating the classes. In this scenario, the first 
principal component will be dominated by the expression profile of the first 
gene, whereas the profile of the second feature has little influence. If this ef­
fect is not desired, then the original values should be re-scaled to mean 0 and 
variance 1 (^-score transformation). For example, it is generally advisable to 
standardize the expression values of time series data, because we are generally 
more interested in how the expression of a gene varies over time than in its 
steady-state expression level. PCA can also be based on the correlation ma­
trix instead of the covariance matrix. This approach accounts for an unequal 
scaling of the original variables. Computing the principal components based 
on the correlation matrix is equivalent to computing the components based 
on the covariance of the standardized variables. 

In numerous studies PCA has proven to be a useful dimension reduction 
technique for microarray data analysis, for instance. Alter et al. (2000); Ray-
chaudhuri et al. (2000). Independent component analysis (ICA) is a technique 
that extracts statistically independent patterns from the data and, in contrast 
to PCA, does not search for uncorrelated features. 

It should be noted that PCA is an unsupervised method, i.e., it does 
not make use of the class labels. Alternatively, partial least squares (PLS) 
regression is a supervised method that produces surrogate features {latent 
vectors) that explain as much as possible of the covariance between the class 
labels and the data (Hastie et al., 2002). 

The biological interpretation of the hybrid features produced by PCA is 
not trivial. For example, the first eigengene captures the most important 
global pattern in the microarray matrix, but the numerical values cannot 
be interpreted as (ratios of) mRNA abundances any more. In contrast, the 
interpretation of weighted original features is obvious. 

1.5.4.2 Feature Selection and Significance Analysis 

Feature selection aims at selecting the relevant features and eliminating the 
irrelevant ones. This selection can be achieved either explicitly by selecting a 
subset of "good" features, or implicitly by assigning weights to all features, 
where the value of the weight corresponds to the relative importance of the re­
spective feature. Implicit feature selection is also called feature weighting. The 
following four issues are relevant for all explicit feature selection procedures: 

1. How to begin the search? 
Basically, there exist two main strategies: In forward selection, the heuris-
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tic starts with an empty set and iteratively adds relevant features. In 
backward elimination, the heuristic starts with all features and iteratively 
eliminates the irrelevant ones (e.g., Markov blanket filtering). 

2. How to explore the data space? 
Here, the question is which feature should be evaluated next. In the sim­
plest way, the features are evaluated sequentially, i.e., without preference 
in terms of order. 

3. How to evaluate a feature? 
Here, the issue is how the discriminating power is to be measured. 

4. When to stop the search? 
The number of relevant features can be determined by a simple thresh­
olding, e.g., by limiting the number of discriminating features to, say, 20 
per class, or by focusing on all features that are significantly different. 

1.5.4.3 Test Statistics for Discriminatory Features 

There exist various metrics for feature weighting; Chapter 7 gives an overview. 
The two-sample t-statistic (for unpaired data) is one of the most commonly 
used measures to assess the discriminatory power of a feature in a two-class 
scenario. Essentially, this statistic is used to test the hypothesis whether two 
sample means are equal. The two-sample t-statistic for unequal^ variances is 
given in Equation 1.1. 

- ""-SL . (1.1) 
/ 

I ^2. 

where mi is the mean expression value of the feature in class ^1,7712 is the 
mean expression in class # 2 , rii and n2 are the number of cases in class # 1 and 
#2 , respectively; sf and s | are the variances in class # 1 and # 2 , respectively, 
and the degrees of freedom are estimated using the approximation by Welch-
SatterthwaiteJ 

Assuming that the feature values follow approximately a normal distribu­
tion, the t-statistic can be used for testing the null hypothesis that the mean 
expression value of the feature is equal in the two classes. Note that the null 
hypothesis, HQ, of equal mean expression, i.e., HQ : /xi = H2, involves a two-
sided test.® The alternative hypothesis is that either fxi > ^2 or /ii < ^2-
The null hypothesis can be rejected if the statistic exceeds a critical value. 

® Note that in general, equal variances should not be assumed. To test whether 
the variances are equal, Bartlett's test can be applied if the data follow a normal 
distribution (Bartlett, 1937); Levene's test is an alternative for smaller sample 
sizes and does not rely on the normality assumption (Levene, 1960). 

'V = i:^ + ^ ) /(„j(„}_i) + „2(„2_i)) 
* The population mean, /x, and variance, a^, are estimated by the sajnple mean, 

m, and variance, s^, respectively. 
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i.e., if | r | > iiQ^d/- Fo'̂  instance, the critical value for the two-sided test at 
a = 0.05 and d/ = 9 is i « 2.26. Hence, if T > 2.26, then we can say with 95% 
confidence that in class # 1 , the values of the feature are significantly higher 
than in class # 2 (and vice versa, if T < —2.26). 

A quite popular variant of the t-statistic is the signal-to-noise (S2N) ratio, 
introduced by Golub et al. (1999) in the context of microarray data. This 
metric is also known as a Fisher-like score (see Chapter 7, Equation (7.1), page 
151, for Fisher score)^ and expresses the discriminatory power of a feature by 
the difference of the empirical means mi and 7712, divided by the sum of 
their variances. This scoring metric can be easily extended to more than two 
classes using a one-versus-all approach. For instance, in order to compute the 
discriminatory power of a feature with respect to class # 1 , the empirical mean 
of this class is compared to the average of all cases that do not belong to class 
# 1 . However, we note that this approach is not adequate for assessing whether 
the sample means are significantly different. For example, assume that a data 
set contains five classes with ten cases each, and only one feature. Is the feature 
significantly different between the classes? It might be tempting to use a two-
sample i-test for each possible comparison. For n classes, this would result in 
a total of \n{n — 1) pair-wise comparisons. If we specify a = 0.05 for each 
individual test, then the probability of avoiding the Type I error is 95%.^° 
Assume that the individual tests are independent. Then the probability of 
avoiding the Type I error on all tests is (1 — a)" , and the probability of 
committing the Type I error is 1 — (1 — a)" , which is 0.40 in this example.^^ 

The appropriate statistical approach to the problem in this example is the 
one-way analysis of variance (ANOVA), which tests whether the means of 
multiple samples are significantly different. The basic idea of this test is that 
under the null hypothesis (i.e., there exist no difference of means), the variance 
based on within-group variability should be equal to the variance based on 
the between-groups variability. The -F-test assesses whether the ratio of these 
two variance estimates is significantly greater than 1. A significant result, 
however, only indicates that at least two sample means are different. It does 
not tell us which specific pair(s) of means are different. Here, it is necessary 

^ Note that Golub et al. (1999) use a variant of the "true" Fisher score. The differ­
ence is that the numerator in the "true" Fisher score is squared, whereas in the 
Fisher-like score, it is not. 

^° A Type I error (false positive) exists when a test incorrectly indicates that it 
has found a positive (i.e., significant) result where none actually exists. In other 
words, a Type I error can be thought of as an incorrect rejection of the null 
hypothesis, accepting the alternative hypothesis even though the null hypothesis 
is true. 

^^ In fact, this probability is even larger, because the independence assumption is 
violated: If we know the difference between mi and m2 and between mi and ma, 
then we can infer the difference between mi and ma; hence, only two of three dif­
ferences are independent. Consequently, only two of three pair-wise comparisons 
are independent. 
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to apply post-hoc tests (such as Tukey's, Dunnett's, or Duncan's test), which 
take into account that more than two classes were compared with each other. 
The ANOVA F-test can be extended to more than one feature. However, it 
is necessary that the number of features (p) is greater than the number of 
cases (n); a "luxury" hardly met in real-world genomics and proteomics data 
sets. Furthermore, note that the ANOVA F-test assumes that the variances 
of a feature in the different classes are equal. If this is not the case, then the 
results can be seriously biased, particularly when the classes have a different 
number of cases (Chen et al., 2005).^^ However, if the classes do have equal 
variances, then the ANOVA F-test is the statistic of choice for comparing class 
means (Chen et al., 2005). There exist various alternatives to the ANOVA 
F-test, including Brown and Forsythe (Brown and Forsythe, 1974), Welch 
(Welch, 1951), Cochran (Cochran, 1937), and Kruskal-Wallis test statistic 
(Kruslcal and Wallis, 1952). Chen et al. (2005) compared these statistics with 
the ANOVA F-test in the context of multiclass microarray data and observed 
that Brown-Forsythe, Welch, and Cochran statistics are to be preferred over 
the F-statistic for classes of unequal sizes and variances. 

It is straightforward to convert these statistics into p-values, which have a 
more intuitive interpretation. The p-value is the probability of the test statistic 
being at least as extreme as the one observed, given that the null hypothesis 
is true (i.e., that the mean expression is equal between the classes). Figure 
1.5 illustrates the relationship between the test statistic and the p-value for 
Student's i-distribution. 

= 0.025 Fig. 1.5. Probability density function 
for Student's t-distribution and critical 

-2.26 6 2.26 values for T for nine degrees of freedom. 

For each class, the features can be ranked according to their p-values in 
ascending order and the top x% could be selected for further analysis. 

1.5.4.4 Multiple Hypotheses Testing 

The Type I error rate can be interpreted as the probability of rejecting a 
truly null hypothesis, whereas the Type II error rate is the probability of not 
rejecting a false null hypothesis. Feature selection based on feature weighting 
can be regarded as multiple hypotheses testing. For each feature, the null 

^̂  The ANOVA F-test applied in a two-class scenario is equivalent to the two-sample 
f-test assuming equal variances. 
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hypothesis is that there exists no significant difference between the classes 
(for instance, a gene is not differentially expressed). The alternative hypothesis 
is that it is significantly different. Adopting the terminology by Storey and 
Tibshirani (2003), a feature is called truly null if the null hypothesis is in fact 
true, and a feature is called truly alternative if the alternative hypothesis is 
true. 

It is essential to distinguish between two different error rates: The false 
positive rate (FPR) is the rate that truly null hypotheses are rejected. The 
false discovery rate (FDR) is the rate that rejected null hypotheses are truly 
null. For instance, a FPR of n% implies that on average, n% of the truly null 
hypotheses are rejected. In contrast, a FDR of n% implies that among all 
rejected hypotheses, n% can be expected to be truly null. 

Genomic and proteomic data sets involve testing multiple hypotheses, for 
instance, one significance test per feature for selecting marker genes. The Type 
I error rate of each individual test is the comparison-wise error rate, while 
the family-wise error rate (a.k.a. overall Type I error rate), is made up of 
the individual comparisons. Choosing a traditional p-value cut-off of a = 0.01 
or a = 0.05 for each feature would result in an abundance of false positive 
discoveries. For instance, suppose that a data set contains 10 000 features. A 
comparison-wise error rate of 0.01 implies 0.01 x 10000 = 100 Type I errors, 
which means that we can expect 100 false positive discoveries. To avoid non-
reproducible positive results, it is therefore necessary to adjust for multiple 
testing. 

Reducing the Type I error rate comes at the price of an increased Type 
II error rate, which implies a reduced power to detect true positive discov­
eries. Suppose that a data set contains m features (e.g., genes). The family 
then includes m hypotheses. The Bonferroni correction is a classic and con­
servative approach that divides the comparison-wise error rate by the total 
number of comparisons, a/m; hence, the family-wise error rate is guaran­
teed to be smaller than or equal to a. The Bonferroni correction provides a 
stringent criterion for controlling the Type I error rate and is adequate in 
scenarios where the expected number of true discoveries is low, or where even 
a small number of false discoveries cannot be tolerated. On the other hand, 
its conservativeness entails a high Type II error rate if many discoveries are 
expected. 

Various alternatives have been suggested to provide a better trade-oflF be­
tween the number of true and false positive discoveries. Manly et al. (2004) 
provide an excellent review of various tests for multiple comparisons, which 
differ with respect to their degree of conservativeness. The Holm test rejects 
more false null hypotheses than the Bonferroni method, hence has greater 
power (Holm, 1979). The p-values are first ranked in ascending order. The 
smallest p-value is then compared to a/m. If the null hypothesis cannot be 
rejected, then no further comparisons are made. Otherwise, the test proceeds 
with checking the second smallest p-value against a/{m — 1). If the null hy­
pothesis cannot be rejected, then the test stops; otherwise, the third smallest 
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p-value is compared to a/{'m — 2), and so on. Hochberg's test (Hochberg, 
1988) rejects the null hypotheses associated with the k smallest p-values if 
Pk < a/{m — k + 1). This test is slightly more powerful than Holm's test. 
A yet less conservative test has been developed by Benjamini and Hochberg 
(1995). This test rejects the null hypotheses associated with the smallest k 
p-values if m • pk/k < a. Assuming that all hypotheses are truly null, m • pk 
is the expected number of false positive discoveries. However, this number is 
generally overestimated for real data sets where some null hypotheses are in 
fact false (for instance, some genes are truly differentially expressed in the 
classes). 

Ideally, the test by Benjamini and Hochberg would use the number of true 
null hypotheses, mo, instead of m, the total number of hypotheses. However, 
mo is unknown for real-world data sets. Using the empirical distribution of 
the p-values, the procedure by Storey and Tibshirani (2003) replaces m by an 
estimate of the number of truly null hypotheses and provides for a sensible 
trade-off between FPR and FDR. 

Which adjustment is the method of choice? Manly et al. (2003) conclude 
that more liberal approaches are to be preferred in exploratory genomics stud­
ies where many features can be expected to be truly alternative and where 
several false positive discoveries can be tolerated in exchange for more true 
positives. Currently, the test by Storey and Tibshirani is arguably the method 
of choice for such data sets. Ultimately, the choice of the test depends on the 
assumptions made for the data set at hand and, evidently, on further analysis 
of the significant features. For instance, if only very few features (say, three or 
four) can be included in further analysis due to financial or time constraints, 
then more liberal tests are of questionable benefit. 

1.5.4.5 Random Permutation Tests 

Random permutation tests, also known as Monte Carlo permutation proce­
dures, are a special type of randomization tests. These tests use randomly 
generated numbers for statistical inference. Nowadays, permutation tests are 
being increasingly used in many practical applications, because modern stan­
dard PCs are able to cope with the computational complexity that these 
tests involve. Randomization tests are suitable even for very large data sets 
comprising numerous variables. Radmacher et al. (2002) proposed random 
permutation tests as an important component in building classifiers based on 
expression profiles. Many publications report on the application of random­
ization tests in the context of microarray data analysis and for testing the 
significance of selected marker genes, for instance, Ramaswamy et al. (2001). 

To assess the significance of the weight for the i*^ feature, the test involves 
the following steps: 

1. Compute the weight for the i*'* feature on the original data set; 
2. Randomly permute the class labels; 
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3. Re-compute the weight for the i*^ feature; 
4. Repeat steps (2) and (3) n times (e.g., n = 10000 times) to obtain the 

distribution of the weights under the null hypothesis that the feature is 
truly null. 

The distribution under the null hypothesis can be visualized in a histogram 
as shown in Figure 1.6. The p-value of the i*'* weight on the unpermuted data 
set corresponds to the proportion of weights that are smaller than or equal to 
the observed weight. 
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Fig. 1.6. Distribution of the weights for the i*^ feature under the null hypothesis. 

Random permutation tests do not make any assumptions concerning the 
distribution of the data or the correlation structure of the features. For exam­
ple, these tests do not require that the data approximate a normal distribution. 
The only, though important, requirement is that the random permutation ex­
periments are independent. On the other hand, performing thousands of per­
mutations and recomputing the weights can be computationally expensive. 

1.5.5 Predictive Model Construction 

After significantly different features have been selected, the analysis process 
often continues with the construction of a predictive model, e.g., a classifier. 
The basic modeling process consists of a learning phase, a test phase, and 
an application phase. The learning phase consists of the training phase and 
the validation phase. In the test phase, the model's performance in the ana­
lytical task at hand is ultimately assessed. The motivation for this modeling 
process is that one wishes a model with sufficient generalization ability. The 
expected prediction error of a classification model can be decomposed into 
two components, the bias and the variance. These two components are in a 
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trade-off relationship, i.e., the smaller the bias, the larger the variance, and 
vice versa. This problem is known as the bias-variance trade-off in statistics, 
as the problem of overfitting in machine learning, and as capacity control 
in engineering. Essentially, this problem implies that the best generalization 
performance (or the smallest expected prediction error) is achieved for that 
model which attains the "right" balance between the accuracy on a specific 
learning set and the number of free model parameters. Ideally, a model should 
have both low variance (i.e., high precision) and low bias (i.e., high accuracy). 
Relatively flexible models with many free parameters tend to adapt too well 
to the learning data and have a relatively low bias and high variance, whereas 
models with fewer parameters tend to have low variance and high bias. 

(a) (b) (c) 

• • - • - • \ - era J3 • • • _• 
n c r n • 
ED D • • 

Fig. 1.7. The bias-variance trade-off in a classification problem involving two 
classes. Cases on the left side of the hyperplane, represented by •, are classified 
as members of class # 1 , while cases on the right side, represented by D, are clas­
sified as members of class #2. (a) A rigid (fixed) linear separator that misclassifies 
six cases, (b) a flexible hyperplane that misclassifies four cases, and (c) a flexible 
hyperplane with no misclassifications. 

Figure 1.7 illustrates the bias-variance trade-off in a two-class scenario. The 
members of the classes are depicted by • and D, which represent a randomly 
selected learning set. In Figure 1.7a, a straight line separates the classes and 
misclassifies six cases. Assume that this line is fixed, i.e., regardless of the 
specific learning set used, exactly this line will separate the classes. This model 
has a large bias, but its variance is zero, since the model does not depend on 
the actual learning set. At the other end of the spectrum is the model shown 
in Figure 1.7c. This hyperplane has many parameters that allow to separate 
the learning data perfectly. The form of the hyperplane is highly dependent 
on the specific learning set, hence it has a high variance and zero bias. In other 
words, the model in Figure 1.7c is overfitted. Neither the model in Figure 1.7a 
nor the model in Figure 1.7c are able to generalize well. On the other hand, 
the model in Figure 1.7b balances the bias and the variance and is the best 
model in this scenario. 

The higher a model's complexity, the lower its prediction error on the 
learning set, but the higher the error on the test set. In contrast, a model with 
low complexity has a high error on both the learning and the test set. A model 
that balances its bias and variance optimally achieves the lowest error on the 
test set. Essentially, the learning phase aims at finding those parameters that 
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optimize the model's ability to generalize to unseen test cases. It is of crucial 
importance that the model does not adapt itself too much to the learning data 
("learning by rote"), because this would result in overfitting. 

1.5.5.1 Basic Meeisures of Performcince 

The most commonly used quantitative criteria are the classification accuracy 
(i.e., proportion of correctly classified cases), and, alternatively, the error rate 
(i.e., proportion of incorrectly classified cases). Sensitivity and specificity are 
closely related accuracy-based measures. The sensitivity of a classifier for a 
class y is the fraction of the number of cases that the classifier assigns to class 
y and the cases with class label y. The specificity of a classifier for a class 
y is the proportion of the number of cases that the classifier does not assign 
to class y and the cases without the class label y. The positive predictive 
value (PPV) assesses the probability that a case belongs to class y if the 
classifier classifies the case as a member of that class. The negative predictive 
value (NPV) assesses the probability that a case is not a member of y if the 
classifier does not classify the case as a member of y. Table 1.1 provides an 
overview of these measures in a confusion matrix. 

Table 1.1. Accuracy-based measures for assessing classification performance. 

e 
.2 y 

1 

Real class 

y -^y 

a (true positive) b (false positive) 

c (false negative) d (true negative) 

sensitivity= a/(a + c) specificity=d/ (b +d) 

PPV = al(a+b) 

NPV = dl(c+d) 

prevalence = (a+c)/(a+b+c+d) 

Under some circumstances, the lift can be a more informative measure. 
The lift for class y is defined as the positive predictive value divided by the 
prevalence. The balanced accuracy (BACC) is the average of sensitivity and 
specificity and used in Chapter 9 as evaluation criterion. 

In small-sample settings, single performance scores are diflicult to inter­
pret without confidence intervals for the true statistic. For example, it does 
make a difi'erence whether a classifier's correct classification rate of, say, 80% 
is based on 100 or on 10000 test cases. Confidence intervals for the statistic 
of interest are of particular importance in scenarios comprising small data 
sets such as microarray data. Let M denote the number of test cases, and let 
m denote the number of incorrectly classified test cases. The observed error 
rate is e = m/M. A (1 — Q!)-confidence interval for the true error rate T is 
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expected to contain T in approximately (1 — a) x 100% of the experiments, 
P{TI < T < Tu\e) = 1 — a, with a balanced risk on either side of the interval, 
i.e., P{T < Ti\e) = P{T > r„|e) = | a . For deriving confidence intervals in 
a classification scenario, it is commonly assumed that the (integer) number 
of errors obeys a binomial distribution (Martin and Hirschberg, 1996). This 
binomial distribution is usually approximated by assuming a normal distrib­
ution of e with mean r and variance r ( l — T)/M. Under these assumptions, 
an approximate 95%-confidence interval for T can be derived as follows: 

T « g ± ( 0 . 5 / M + z - s ) , (1.2) 

with s = ^y{e{l - e)/M) and z = ^"^(1 - \a), e.g., z = 1.96 for 95% con­
fidence, with <?(•) being the standard normal cumulative distribution func-
tion.-^^ Note that Equation (1.2) involves two approximations. First, we use 
e instead of r for estimating the variance. Second, we approximate the bino­
mial by the normal distribution. As a rule of thumb, these approximations 
are acceptable if Me(l - e) > 5 (Mitchell, 1997). 

1.5.5.2 Training, Validating, and Testing 

It is essential to clearly differentiate between observed and true measures of 
accuracy. For instance, the observed error rate e (a.k.a. sample error) is an 
estimate for a model's true error rate r on the population of interest, for 
instance, the set of cases that are described by an array profile similar to 
the investigated data set (e.g., a "population" of similar microarray studies). 
The true error rate constitutes an inherent property of the model and can be 
interpreted as the probability that the model will misclassify a single randomly 
drawn instance from the distribution of the population (Mitchell, 1997). Prior 
to building a predictive model, an upper bound of the true prediction error, 
Tmaxi should be specified. Further, the maximum number of internal, jmaxi 
and external, imax, (cross-)validation loops need to be initialized. Figure 1.8 
depicts the modeling process. (Figure 8.1 in Chapter 8, page 182, shows this 
process in more detail.) 

From the entire data set that is available for analysis, D, a learning set, Li, 
and a test set, Tj, are sampled. Next, the learning set is split into a training 
set, TRij, and a validation set, Vij. This sampling may or may not be done in 
the same way as before. The model is built (or trained) on the training set, 
i.e., the model parameters are adjusted/fitted using the data in TRij. The 
model is then calibrated using the validation set Vij. This calibration involves 
an assessment of how well the model performs on the validation data and 
is a safeguard against overfitting. This splitting into training and validation 
sets is performed jmax times in the internal loop. Importantly, the model's 
performance on Vij can be fed back into the next training round. For instance. 

^̂  The term 0.5/M is a continuity-correction accounting for the fact that ^(•) is a 
continuous and the binomial a discrete function. 
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Specify: 
max. tolerable error rate, x,^, 

max. number of external, i,^, and internal loops, j,„ 

I 

D 

^ 

I = = i + i L 

r 
sample 

sample 

L, 

T, 
1 

• , -sample 

sample 

^ 

Extern alloop 

Internal loop 

TR, 

n-
train /"^ \ 

^ ^ L 

j -. 

validate] i—. r ^ 
\j- -J™. 

/ I - -1̂  

A 

"* test 

' 
Estimate x based on all E, 

Fig. 1.8. Learning, training, validating, testing, and applying a model. D is the 
data set; Lj and T, are the i*'' learning and test set, respectively; TRij denotes 
the training set of the i*'' external and j ' " * internal loop; Vij is the corresponding 
validation set, and C denotes the classifier. 

if the model's performance on Vij is not satisfactory, then this information may 
be used for TRij+i. After the internal loop has been iterated jmax times, the 
"optimal" parameters are determined, e.g., the number of nearest neighbors in 
a nearest-neighbor classifier. Training and validation are completed for the i*'' 
learning set. The model is then built on the entire learning set Li using these 
parameters and applied to the test cases in Tj. After the external loop has 
been iterated imax times, the model's true error rate r is estimated using the 
error rates ê  observed in the individual external loops. If the true error rate 
is smaller than an arbitrarily chosen maximally tolerable error, Tmaxi then 
the model is built using the entire data set, D. Those parameters are chosen 
that provided for the best performance on the test sets. This final model 
cannot be cross-validated anymore (Simon, 2003). This process is illustrated 
in Figure 1.9. In this example, a fc-nearest neighbor classifier is to be built. 
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with k = 1, k = 3, and k = 5. Both external and internal loop involve a 3-fold 
cross-validation in this example. 

A: 4 errors 
A: 2 errors 
C: 4 errora 

A:6 errors 
Bi 2 errors 
C: 3 errors 

A: 4 errors 
Bi2 errors 
C: 3 errors 

Fig. 1.9. Internal and external cross-validation loops for fc-NN. 

In this example, A refers to fe-NN with k = 1, B refers to fe-NN with fc = 3, 
and C refers to fc-NN with fc = 5. With the exception of the second internal 
loop, B performed best in the internal loops. Therefore, we choose fc = 3 and 
built the model using the entire data set D. We estimate the true prediction 
error of this model using the number of observed errors of B on the test sets 
Tj, i.e., e = M~^(10-|-14-1-9), where M is the total number of test cases. Why-
are the internal loops necessary in this scenario? Wouldn't it be possible to 
compare the 1-NN, 3-NN, and 5-NN classifiers directly using the performance 
on the test sets, Tj? Note that this is equivalent to comparing three distinct 
and fully specified classifiers, whereas the process in Figure 1.9 aims at finding 
the optimal parameter fc for the fc-NN. 

It is essential to note that if feature selection is to be performed, then it 
must be done for each learning and training set separately to avoid a selection 
bias (Ambroise and McLachlan, 2002). (See Figure 9.4, Chapter 9, page 195, 
for examples.) 

1.5.5.3 Data Resampling Strategies 

There exists a variety of data resampling strategies. In random subsampling 
(a.k.a. single hold-out method) the cases in the data set are randomly per­
muted and then split into a learning set (usually, ~ 70% of the cases) and a 
test set (~ 30%). The classifier is constructed using the learning set and its 
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performance is then estimated by applying the acquired classification function 
to the test set. This strategy is known to be suboptimal, because the classifi­
cation result is highly biased by the random partitioning of the original data 
set into a single learning and test set. 

In k-fold random subsampling, the described procedure is repeated k times 
to generate k pairs {Li,Ti), each containing a learning set Li and a test set 
Ti, with i = l,2,...k. The estimated accuracy is determined by averaging 
the accuracies on the individual folds. It is critical that the sets Li and Tj 
are disjoint, but any given two learning sets or two test sets may overlap. In 
stratified random subsampling, the learning and tests sets are generated in 
such a way that the class distribution is approximately the same as in the 
original data set. 

In k-fold cross-validation (a.k.a. leave-k-out cross-validation), the original 
data set is randomly split into k subsets. At each of the k iterations or folds 
of cross-validation process, the classifier is trained on fc — 1 data subsets and 
tested on the remaining subset, which becomes the test set. The difference 
between A;-fold cross-validation and fc-times repeated random subsampling is 
that in cross-validation, the k test sets are disjoint, whereas in the subsampling 
method they are normally not. The learning sets, however, may overlap in 
cross-validation. In repeated A;-fold cross-validation, the described procedure 
is repeated n times to reduce the variance of the cross-vahdation error. Cross-
validation can also involve a stratified sampling. 

In leave-one-out cross-validation (LOOCV), each of the n cases of the data 
set is used in turn as hold-out case and the classifier is induced or trained 
based on the remaining n — 1 cases. The hold-out case is the test case. The 
classification accuracy can be estimated as the number of correctly classified 
hold-out cases divided by n. LOOCV, which is computationally expensive as it 
involves n times a complete model re-calibration (including feature selection) 
for a data set of n cases. The estimate for the prediction error is almost 
unbiased and therefore has been recommended for small-sample microarray 
data (see Chapter 8). LOOCV is one of the most frequently used methods to 
estimate classification performance in microarray studies (Simon, 2003). 

Another approach is bootstrapping. Here, b subsamples are drawn from the 
original data set with replacement, so that b bootstrap data sets are available 
to estimate a statistic. Kohavi (1995) presents examples where LOOCV and 
the .632 bootstrap method (Efron and Tibshirani, 1993) fail to provide reli­
able estimates for classification accuracy and recommends stratified 10-fold 
cross-vafidation. Braga-Neto and Dougherty (2004) reported that they were 
not able to verify a substantial difference in performance between bootstrap 
and various cross-validation approaches for microarray data. Experimental 
evidence shows that repeated stratified 10-fold cross-validation is an appro­
priate method for assessing classification performance (Bouckaert and Prank, 
2004), but its application to microarray data analysis is problematic due to 
the small sample size (Li et al., 2004; Braga-Neto and Dougherty, 2004). 
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Generally, the larger the size of the learning set, the more effective will 
the classifier be in terms of its generalization ability. In contrast, the larger 
the test set, the more reliable is the error estimate obtained from applying 
the classifier to the test set. Chapter 8 discusses resampling strategies in more 
detail. 

1.5.6 Statistical Significance Tests for Comparing Models 

Many studies involve comparisons of models for classification. For instance, if 
a novel classifier is developed, then it is important to benchmark its perfor­
mance against established models. It is common practice to compare model 
performance by referencing published reports on competing models. How­
ever, cross-study comparisons of monolithic accuracy-based measures of per­
formance are difficult to interpret. For example, suppose that a classifier A 
achieved an accuracy rate of x% on a particular data set D, whereas a classifier 
B achieved y% on the same data set. The observed difference, \x% — y%\, in 
accuracy could, for instance, have been caused by different experimental set­
tings (e.g., different sampling strategies), rather than by inherent differences 
in the analytical classification methods. Comparing monolithic accuracy mea­
sures or (overlapping) confidence intervals for error rates is not appropriate to 
compare models. Essentially, the key question is whether the observed differ­
ences in performance provide sufficient evidence to conclude that the models 
perform significantly differently, or whether we cannot exclude the possibility 
(with reasonable confidence) that this difference may be due to chance alone 
or to the random variation introduced by the sampling strategy (Dietterich, 
1998). The following three aspects need to be taken into account when models 
are compared (Berrar et al., 2006): 

1. The learning and test sets should be identical for the classifiers; 
2. The learning phases should include a complete parameter re-calibration 

and external cross-validation; 
3. The difference in performance should be assessed by means of a suitable 

statistical test, which is appropriate for the adopted sampling strategy and 
accounts for both comparison- and family-wise error rates by adjusting for 
multiple testing. 

It is essential that the learning and test sets are identical for the classifiers. 
Otherwise, observed differences in performance could be due to differences in 
the make-up of the sampled data sets. The learning phases should include a 
complete re-calibration of the model's parameters, for instance, the number 
of nearest neighbors in the fc-NN classifier. Finally, the differences in perfor­
mance need to be assessed by means of statistical tests. If a comparative study 
includes more than two classifiers, then it is also necessary to correct for mul­
tiple hypotheses testing. And consequently, it is also advisable to carefully 
select the competing models, because by including too many classifiers, it is 
more difficult to control the family-wise error rate at the desired level. Clearly, 
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different classifiers have different strengths and weaknesses. For instance, it is 
known that support vector machines perform remarkably well in binary clas­
sification tasks. Therefore, it is necessary that novel models are benchmarked 
against the most similar established models (Salzberg, 1997). 

If the performance of two models is compared on one single test set, then 
McNemar's test can be applied (Ripley, 1996). Under the null hypothesis 
that two classifiers A and B perform equally, the respective error rates should 
be the same. McNemar's test is based on a x^ test for goodness-of-fit that 
compares the distribution of errors expected under the null hypothesis of 
equal performance to the observed errors. The test statistic X is distributed 
approximately as x'̂  with 1 degree of freedom and incorporates a continuity 
correction term of —1 in the nominator to account for the fact that the statistic 
is discrete whereas the x^ distribution is continuous. Let TUA be the number of 
test errors made by model A but not by model S , and let mg be the number 
of test errors made by model B but not by A. 

X ^ {\mA-mB\-lf ,^ g. 
ruA + ruB 

If the null hypothesis is correct, then the probability that X is greater than 
3.84 is less than 0.05. However, this test cannot be applied if the sampling 
strategy is LOOCV, because the binary counts of misclassifications are not in­
dependent from each other due to the overlapping learning sets. Furthermore, 
it is common practice to evaluate the performance using multiple test sets. Di-
etterich (1998) recommends deriving a t-statistic based on five replications of 
2-fold cross-validation (5 x 2CV test). Bouckaert and Frank (2004) compared 
various tests and recommended a variance-corrected resampled t-statistic. 

Let pAi be the observed proportion of test cases misclassified by model A 
and let psi be the observed proportion of misclassified test cases by B during 
the «*'' fold. If we assume that the differences pi — PA^ — PBi were drawn 
independently from a normal distribution, then we could apply Student's i-
test. However, the assumptions underlying this test are violated, because in 
cross-validation and repeated random subsampling, the learning sets neces­
sarily overlap. In repeated random subsampling, the test sets usually overlap 
as well. Hence, the individual differences pi are not independent from each 
other. The high Type I error of Student's t-test is due to an underestimation 
of the variance because the samples are not independent. 

Let the number of folds be fc, and let the number of repetitions be r. In 
each fold and in each repetition, the number of learning cases is N and the 
number of test cases is M. The proportion of cases that A misclassifies is 
PAij = 'mAij /M, with ruAij the number of errors on the i*'* test set in the j*'^ 
repetition (analogously for p^.^. and rriB.^.). The difference of proportion of 
misclassified cases in the i*'' fold of the j * ' * repetition is pij = pAi^ ~PBij • The 
average difference is then p = -^ S i = i ^i=i Pij ^^'^ ^^'^ estimated variance 
of the r times k differences is p = ^:^z:i Y^i=i S i = i fej ~P)^- The statistic 
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for the variance-corrected resampled paired t-test for r times repeated fc-fold 
cross-validation is then given by Equation (1.4) (Nadeau and Bengio, 2003). 

(1.4) 

The learning set should be at least five times larger than the test set. The 
statistic follows approximately Student's t-distribution with rk — 1 degrees 
of freedom. Empirical results show that this corrected statistic drastically 
improves on the standard resampled i-test with respect to the Type I error 
(Nadeau and Bengio, 2003; Bouckaert and Prank, 2004). This statistic can 
also be used for repeated random subsampling. 

1.6 Result Post-Processing 

Statistical significance does not necessarily imply biological relevance. It is 
possible that microarray data sets comprise thousands of potential marker 
genes. While we can construct classifiers for such a number of predictors, the 
investigation of the biological relevance of all these markers is nearly impos­
sible due to time, financial, and other constraints. The life scientist faces the 
challenge of selecting a manageable set of predictor variables (e.g., genes) for 
further investigation. However, a simple ranking of the individual predictors 
based on the obtained p-values is generally not what the life scientist is in­
terested in. For instance, those genes that score the smallest p-values for a 
cancer type might not be of interest, because they are either obvious or ir­
relevant. In cancer genomics, for example, a large number of genes found to 
be overexpressed in tumor cells simply reflect the fact that aggressive cancer 
cells tend to be in active cell cycle, and thus express genes that are known to 
be expressed in cycling cells (O'Neill et al., 2003). Consequently, it is possible 
that some genes with a larger p-value are of greater biological relevance. Usu­
ally, the scientist is not primarily interested in the "top-scoring" features, but 
in a set of features that, in addition to being significant, exhibit "interesting" 
characteristics. 

1.6.1 Statistical Validation 

It is essential that the study is conducted within a stringent statistical frame­
work as outlined above; for instance, correction for multiplicity effects is of 
paramount importance. But statistical validation does not necessarily end 
here. It is important to demonstrate that the results are reproducible be­
tween samples, experimenters, laboratories, and dates of experiments (Bag-
gerly et al., 2004; Simon, 2005). Clinical drug trials generally follow the Good 
Clinical Practice guidelines and are prospective with respect to patient se­
lection and primary study endpoints. In contrast, exploratory genomic and 
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proteomic studies are characterized by multiple endpoints and multiple hy­
potheses, which increases the chance that experimental and study-specific 
artifacts are identified as biological phenomena. Consequently, before a clas­
sifier is to be applied in a clinical setting, it is indispensable to demonstrate 
its therapeutic relevance by a prospectively planned validation study (Simon, 
2005). 

1.6.2 Epistemological Validation 

Most techniques that are currently applied in mining high-throughput ge­
nomic and proteomic data mainly focus on statistical and machine learning 
approaches, and fail to incorporate the huge body of formal background knowl­
edge that already exists in the form of scientific articles, databases, and gene 
ontologies. Valuable gold nuggets of information remain to be mined out of 
these resources. Text mining might become the tool for digging out those hid­
den nuggets. For instance, purely number-based approaches are arguably not 
sufficient to uncover insights into those genes that might be causal for the de­
velopment or progression of a phenotype. Here, text mining approaches could 
help identify those genes that share the same functionality, or whose products 
share a similar cellular localization. Chapter 12 discusses text mining in the 
biological context. 

1.6.3 Biological Validation 

Validating the experimental and analytical results by means of other biotech-
nological techniques represents the final step in the analysis process. Findings 
from high-throughput genomics and proteomics studies are still primarily of 
scientific - not therapeutic - interest. An individualized, patient-tailored drug 
dosage based on genomic profiles would constitute an outstanding achieve­
ment. 

1.7 Conclusions 

A frequently asked question to the data analyst is: " Which is the best method 
for ... ?" The answer might be sobering. There is no free lunch for anyone 
- every statistical approach is as good as the assumptions that you impose 
on them. For example, the "best" approach for correction of multiple testing 
depends on how liberal or conservative you decide to be. Resampling strategies 
are indispensable in studies that are characterized by the small-n-large-p-
problem. All resampling strategies and statistical tests for assessing model 
performance in resampled data sets, however, have their intrinsic problems 
(Kohavi, 1996; Mitchell, 1997; Dietterich, 1998). 

Which classifier is the method of choice? This question is arguably ill-
posed, since the success of a specific method ultimately depends on the specific 
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data set at hand. Support vector machines have been successfully employed 
in many genomics and proteomics studies and shown excellent performance in 
comparative studies (Li et al., 2004; Statnikov et al., 2005). Nevertheless, in 
theory, SVMs are not inherently able to overcome the curse of dimensionality 
(Hastie et al., 2002), and often the performance of simpler methods (e.g., 
nearest neighbor classifiers) is comparable to that of SVMs (Dudoit et al., 
2002). Prom an Occam's razor perspective, it is advisable to consider simpler 
classifiers for genomics and proteomics data sets (Simon, 2005). 

Data pre-processing does not mean that the data should be tortured until 
they confess. As a general rule of thumb, the analyst should pre-process the 
data as little as possible and as much as necessary. 

Finally, it is advisable to include a statistician prior to carrying out the 
experiment - ^'To call in the statistician after the experiment is done may be 
no more than asking him to perform a postmortem examination: He may be 
able to say what the experiment died of." (Sir R. Fisher, 1890-1962). 
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2.1 Introduction 

In the past decade, high-throughput measurement of gene expression has 
evolved from a tantalizing possibility to an everyday exercise, thanks to mi­
croarray technology. The initial excitement for microarrays was quickly fol­
lowed, for many scientists, with apprehension about appropriately analyzing 
large amounts of data of sometimes questionable quality. Most scientists have 
now developed an appreciation for the limitations and challenges presented 
by the technology. 

A microarray study should not be conducted without careful thought and 
planning, even if it is exploratory. As with any other type of scientific inves­
tigation, a successful microarray study starts with developing a well-defined 
project with well-defined goals. One must then develop and implement a sound 
experimental design based on these goals. This chapter will begin with a dis­
cussion of some of the basic issues to consider in the earliest stages of planning 
a microarray study. In Section 2.3, I discuss three general principles of star 
tistical design that apply generally to scientific experimentation: Replication, 
blocking, and randomization. We will review each of these concepts in turn, 
and discuss each of them in the context of array experiments. 

2.2 The "Pre-Planning" Stage 

By the time a scientist consults with a statistician about the experimental 
design for a microarray study, she has probably already made some important 
design choices. The scientist has probably already chosen the types of mRNA 
to be studied. That is, she has chosen the organism and tissue type, and 
has decided which treatments to apply or under what conditions the mRNA 
will be collected. These choices are primarily made based on scientific, not 
statistical, considerations, although a technical consideration is whether the 
samples can provide a sufficient amount of mRNA for the assay. 
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At this stage, it is important to recognize whether a study is an exper­
iment or an observational study. Unfortunately, microarray studies all tend 
to be called "experiments," but this can be a misnomer (Potter, 2003). For 
example, consider a study in which tissue samples are compared between pa­
tients with a particular kind of cancer and cancer-free control subjects. The 
investigator does not assign cancer status to the subjects, he is merely mak­
ing measurements on a sample of cases and controls. This is an observational 
study, even though the observations happen to be measurements of gene ex­
pression for thousands of genes. The fact that the investigation is an observar 
tional study has profound implications for the interpretation of the data. For 
example, the investigator would not be automatically justified in attributing 
any observed differences in gene expression between the cases and controls to 
their cancer status because the differences could be due to a confounding fac­
tor. That is, the cases and controls might differ in their distributions of age, 
sex, environmental exposures, or what they ate for breakfast. Unfortunately, 
in many such observational microarray studies, data on potential confounding 
factors are not collected and the possible impact of such factors is ignored. 
Such gross oversight makes an entire study scientifically questionable (Potter, 
2003). 

In the early planning stage, it is important to establish realistic expec­
tations for the array study. Because arrays produce more data than many 
biologists are used to, some biologists make the natural leap that they pro­
duce a vast amount of information. In a sense they do, but the information is 
fax from complete and a successful array study will produce at least as many 
questions as it answers. Thus, it is important to clarify the goals of the array 
experiment. Dudoit et al. (2002) describe three distinct goals of microarray 
experiments: Unsupervised learning (Goal 1), supervised learning (Goal 2), 
and class comparison (Goal 3). I discuss each of these briefly, then focus on 
Goal 3 for the remainder of this chapter. 

2.2.1 Goal 1: Unsupervised Learning 

In very general terms, unsupervised learning attempts to organize data into 
groups of "similar" observations. With microarray data, this might mean us­
ing gene expression data on multiple genes to organize or "cluster" subjects 
into groups with similar gene expression profiles. Alternatively, one could or­
ganize genes into groups within which the expression profiles are similar across 
individuals. Eisen et al. (1998) presented an early and infiuential microarray 
paper that demonstrated the application of a particular flavor of unsuper­
vised learning called hierarchical clustering. Sometimes clustering subjects 
and clustering genes are done simultaneously; this is especially common when 
hierarchical clustering is used. See Chapter 6 of this book for more informa­
tion on unsupervised learning techniques. Note that unsupervised learning is 
also called class discovery and, most often in microarrays, cluster analysis. 
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Sometimes unsupervised learning is used with a specific goal in mind, 
for example, discovering new sub-types of cancer that have previously been 
hypothesized to exist. More commonly, unsupervised learning is used as a 
completely exploratory technique. There is an emerging consensus that unsu­
pervised techniques are overused (Allison et al., 2006), as many studies that 
use these techniques would be better served supervised learning (Section 2.2.2) 
or class comparison (Section 2.2.3) approaches. 

The literature contains little discussion of design issues for studies in which 
unsupervised learning will be used. Dobbin and Simon (2002) may be the only 
paper on the subject. However, the lack of research in this area should not 
be interpreted as an indication that design issues are not important in these 
studies. Section 2.3.3 of this chapter gives an example that illustrates how 
poor design can produce misleading results in cluster analysis. 

2.2.2 Goal 2: Supervised Leeirning 

Supervised learning is also know as supervised classification and discriminant 
analysis. An example application is a study where the goal is to develop an 
algorithm to make an accurate prognosis for cancer patients based on gene ex­
pression measurements on biopsy samples. An accurate prognosis could help 
patients and their doctors decide whether to pursue more aggressive treat­
ment. The data include information on the eventual outcome for the subjects, 
and this information is used to develop (or "train") the algorithm, which is 
why the learning is called "supervised." See Chapter 9 for more information 
on supervised learning techniques. 

Supervised learning is typically done with the possibility of a clinical ap­
plication in mind. As such, the data used in a supervised learning analysis are 
invariably from an observational study, not an experiment. A truly useful clas­
sification algorithm must be able to classify new subjects, not just those in the 
sample. An important factor for facilitating this is to ensure that there are no 
obvious differences between the kinds of samples in study design. For example, 
suppose the biopsy samples for long-term cancer survivors tend to be older, 
whereas the samples for patients who died quickly tend to be fresher. Handling 
and storage differences could affect the array measurements, and these differ­
ences could influence the parameters of the classification algorithm. Thus, an 
algorithm that putatively discriminates between patients with good and poor 
prognoses is actually distinguishing between handling and storage differences 
between the RNA. Because of this design flaw, the algorithm will not perform 
well when tested on new samples from newly-diagnosed patients, all of whom 
provide fresh samples. 

2.2.3 Goal 3: Glass Gotnparison 

Class comparison is probably the most common goal of gene expression studies 
and is the focus of the remainder of this chapter. In a typical class comparison 
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study, an investigator wants to identify genes that are differentiaUy expressed 
between two or more classes of tissue. A class comparison investigation can 
be either an experiment or an observational study. For example, a comparison 
between laboratory mice treated with a certain drug and untreated mice is 
an experiment, as long as the pre-specified number of mice to receive the 
treatment are chosen randomly from all mice in the study. In contrast, a 
study that identified differentially expressed genes between patients with and 
without a particular malignancy is an observational study. 

In class comparison studies it is important to understand that microarrays 
do not remove inherent limitations in determining the "cause and effect" in 
some system. As a measurement tool, microarrays cannot be used to make 
causal inferences unless the study is explicitly designed to make this possible. 
In the observational study comparing malignant tissue with benign controls, 
microarrays cannot distinguish genes whose altered expression caused the mar 
lignancy from genes whose expression is altered as a result of the malignancy. 
In fact, the study can only conclude that altered expression is associated with 
the malignancy, keeping in mind that such an association could be due to a 
confounding factor (Potter, 2003). 

In the microarray experiment with the treated and untreated mice, we 
can justify causal inference about the effect of the drug on gene expression 
because of the initial randomization of the treatment. However, note that the 
causal inference is about the effect of the treatment. This is quite different 
from trying to infer the causal effect of gene expression changes. 

Once these basic issues have been considered, the next step is to plan the 
details of the microarray study itself. We now discuss the three fundamen­
tal principles of design, replication, blocking, and randomization, focusing on 
their application to microarrays and in particular to microarray studies for 
class comparison. 

2.3 Statistical Design Principles, Applied to Microarrays 

2.3.1 Replication 

Replication is probably the most widely-recognized principle of design. Re­
searchers carefully plan the sample size of their studies to ensure adequate 
replication. 

To appreciate the important role of replication, it is useful to review the 
general paradigm of statistics. Scientifically, we are often interested in compar­
ing different groups or classes of individuals: Treated and untreated; diseased 
and non-diseased; genotypes AA, Aa, and aa (see class comparison. Section 
2.2.3). In statistics, such groups are called populations. A population is gen­
erally either very large or infinite, so it is impossible to examine an entire 
population. Instead, we take a sample from the population. We may study 
the sample in excruciating detail, collecting and analyzing data. Ironically, 
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however, our true interest is not in the individuals in the sample. Our interest 
in the sample is as a means to making inference to the population from which 
it was drawn. A statistical inference is something more than a generalization 
or an educated guess. The theory of statistics allows us to make inferences 
with rigor: Using the data on a random sample, we can estimate certain char­
acteristics of a population (for example, the mean expression of gene xyz in 
the population), and we can also quantify our level of certainty in the estimate 
(often, with a confidence interval). However, rigorous statistical inference is 
only possible with replication. In other words, samples of size 1 are not suf­
ficient. Further, an adequate level of precision in inference is achieved only 
with an adequate amount of replication. 

Understanding this fundamental statistical paradigm can help a researcher 
understand the appropriate level on which to replicate. In research with mi-
croarrays, it is common to differentiate between technical replicates and bi­
ological replicates (Yang and Speed, 2002). Technical replicates are typically 
repeated hybridizations of the same RNA to multiple arrays. Replication in 
early array experiments was often limited to technical replication. Technical 
replication allows one to make inference about the particular RNAs being 
studied in light of the technical error (measurement error) of the assay. How­
ever, this is usually not the desired inference. Most often, the desired inference 
is from the sampled individuals to the population(s) they represent. This infer­
ence is only possible with biological replication: Multiple individuals sampled 
from each population of interest. 

Kerr (2003a) examines the relative benefits of biological and technical 
replication. Technical replication can be useful, but is usually unnecessary. It 
is usually best to use available resources to maximize biological replication 
and forego technical variation altogether (Simon et al., 2002; Kerr, 2003a). 

2.3.2 Blocking 

The term "blocking" comes from the agricultural origins of the field of sta­
tistical design. Suppose one wants to conduct a study to compare, say, the 
yields of different varieties of a crop. Suppose further that different blocks 
of land are available to use in the study. Different blocks of land will vary 
in many characteristics that can aifect yield, e.g., the amount of sunlight or 
the soil composition. It would be crucial to recognize this in planning the ex­
periment. The more variation among the blocks of land, the more important 
it is to explicitly address this source of variation in the experimental design. 
If block-to-block variability is large, an effective solution is to balance vari­
eties with respect to blocks. For example, if there are four varieties and each 
block can accommodate four sub-plots, then each block should contain one of 
each variety (Figure 2.1). In statistical design this would be called a "com­
plete block design." "Complete" refers to the fact that every block contains 
an equal number of replicates of each variety. 
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2 1 2 3 1 4 

4 3 1 4 3 2 

Fig. 2.1. An experiment in which the experimental units come in blocks of size 4. 
If there are four groups to compare, the best design is to put one of each variety in 
each block. 

Experimentalists routinely and intuitively use the principle of blocking. 
For example, if an assay is known to be sensitive to humidity, then an ex­
perimentalist may make sure to conduct all assays within a short period of 
time when humidity is constant. Two ocular treatments might be compared 
by applying each of them to one eye of multiple individuals. Each pair of eyes 
is a "block" in such a study design. This design controls for variation be­
tween individuals by enabling the treatments to be compared "within" each 
individual. 

In microarray studies, it can be important and useful to implement block­
ing as with any other kind of experiment. For example, if treatments are to 
be compared on mice from various litters, a litter of mice should be treated 
as a block. Ideally, each treatment could be applied to the same number of 
mice in each litter. 

For two-color microarray platforms, blocking is intrinsic to the technology. 
This is because spot characteristics (size, density, etc.) are variable, which 
means a large signal could result from a high level of gene expression or 
from a particularly large or dense spot. However, if spot characteristics lead 
to a high level of signal, then the signal should be brighter in both channels. 
Therefore, the relative sizes of the red and green signals is used as a measure of 
the relative levels of expression in the red- and green-labeled RNAs. In other 
words, ratios are used because they control for spot-to-spot variation from 
array to array. Taking ratios (or better, log-ratios) "cancels out" uninteresting 
variation that is due to spot heterogeneity. This is actually a textbook example 
of the principle of blocking. 

While the majority of analyses are based on the ratio of the red and green 
signals from each spot, some analytical methods start with the individual 
signal intensities rather than ratios. For example, see Kerr et al. (2000) and 
Wolfinger et al. (2001). Such methods simply handle the blocking structure 
of the data in a different way. In fact, the difference between intensity-based 
methods and ratio-based methods is somewhat more technical than substan­
tive - see (Kerr, 2003b). 

Because of spot heterogeneity, two-color arrays are used to measure rela­
tive gene expression, not absolute gene expression. A two-color array can be 
thought of as a comparison between the co-hybridized RNAs. When there are 
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multiple samples to be compared, this raises the question: Which hybridiza­
tions to perform? That is, what pairs of RNAs should be co-hybridized? Kerr 
and Churchill (2001) addressed this question for experiments that do not con­
tain biological replicates. Dobbin and Simon (2002) and Kerr (2003a) update 
these findings for experiments with biological replicates. 

When there are n replicates from two groups to be compared, an efficient 
and effective strategy is the multiple-dye-swap design, as seen in Figure 2.2(a). 
In this design, the n replicates from the two groups are randomly paired and 
each pair is co-hybridized to a pair of arrays, with a dye-swap to control for 
dye-effects. Another design, similar to those proposed by Rosa et al. (2005), 
is to alternate the dye-labeling between replicates (see Figure 2.2(b)). This 
will allow twice the number of replicates to be used for the same cost of 
arrays, while maintaining dye-balance. Another, popular strategy is to employ 
a "reference" RNA in the design; each RNA of interest is co-hybridized with 
the reference RNA. The reference RNA is not of interest and serves only to 
"connect" the other samples. In Figure 2.2(c), this strategy is employed for 
the two-group comparison problem, employing dye-swap. While the reference 
design is technically less efficient than the multiple-dye swap strategy, its 
efficiency disadvantage is small when biological variation is much larger than 
technical variation (Kerr, 2003a). It is an exceedingly simple and practical 
design choice for many investigations. 

(b) 

A^O 
A^O 

Fig. 2.2. Circles represent biological replicates from some population and triangles 
represent biological replicates from another population. Arrows represent two-color 
microarrays. An axrow between individual 1 and individual 2 indicates a hybridizar 
tion with red-labeled RNA from individual 1 and green-labeled RNA from individ­
ual 2. All designs are appropriate for a two-group comparison study, (a) Multiple 
dye-swap design; (b) Alternating-dye pairwise design; (c) Reference design - the 
rectangle represents the "reference" RNA, which is not of interest. 
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2.3.3 Randomization 

The principle of randomization says that once any blocking structure to a 
design is established, treatments should be applied to experimental units in 
random fashion. If three littermates are to be divided among treatments A, B, 
and C, then the mice should be randomly allocated to each treatment. "Ran­
dom" here does not mean the same thing as "arbitrary." Although tedious, it 
is useful to assign numbers to each mouse and use a random-number generator 
or draw numbers out of a hat to choose the mouse for each treatment. 

While blocking protects against known or anticipated biases in the data, 
randomization protects against unknown or unanticipated biases. For the pre­
vious example, suppose one had an unrecognized tendency to pick-up the 
slowest mouse out of a litter. If one assigned mice to treatments A, B, and 
C in sequence, treatment A mice would tend to be assigned the slowest mice 
and treatment C would tend to be assigned to the quickest mice. If quick mice 
are also healthier, the experiment would obviously be biased. 

Here is a more subtle, fictionalized example from the world of microarrays 
that shows that randomization is important even in observational studies. An 
experimenter is interested in a particular human mutation and recruits 20 
carriers of the mutation. The mutation is rare and non-carriers are easier to 
find, and she is able to recruit 40 non-carriers to serve as controls. She is 
interested in whether the mutation is associated with any gene expression dif­
ferences in humans. The investigator is reasonably confident that there are no 
other variables confounding the comparison between carriers and non-carriers. 
Using a single-color platform, the researcher uses one array to hybridize the 
mRNA for every individual. There is a practical limitation of a maximum of 
20 hybridizations a day, so the experiment is carried out over three days. 

The researcher applies a hierarchical clustering algorithm to explore the 
array data. The results appear as depicted in Figure 2.3(a). To the scientist's 
delight, the 60 samples appear to cluster into three primary groups: The 20 
samples from the carriers of the mutation, and two groups of the remaining 40 
non-carriers. The natural temptation is to conclude that gene expression data 
can discriminate carriers of the mutation from non-carriers, and that non-
carriers can further be divided into two sub-types. However, with a healthy 
respect for scientific skepticism, the experimenter re-examines her data. Upon 
closer scrutiny, she sees that the three clusters correspond exactly to the three 
days of hybridizations, as in Figure 2.3(b). 

In detail, the schedule for the hybridizations was: 

• Dayl: 20 carriers 
• Day 2: 20 non-carriers 
• Day 3: remaining 20 non-carriers 

The fatal flaw in this investigation was the lack of randomization. The day 
of hybridization was ignored as a factor, but it turned out to be an important 
source of variation. Samples should have been hybridized in random order. 
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Fig. 2 .3. Results of clustering samples for the example in Section 2.3.3. (a) Samples 
labeled by mutation status; (b) samples labeled by day of hybridization. 

As is, the gene expression differences between caxriers and non-carriers are 
hopelessly confounded with day-to-day differences in the hybridizations. There 
is no way to "rescue" the experiment - the confounding is complete and there 
is no way to separate the genetic differences of interest from the nuisance 
experimental artifacts. 

Now tha t the day of hybridization is known to be an important factor, 
the researcher should probably "block" on the day of hybridization in future 
experimental plans. Tha t is, for each group she should hybridize the same 
number of samples on each day. 

2.4 Case Study 

A plant geneticist is interested in the effects on gene expression in arabadopsis 
arising from infection by an agrobacterium. He plans a basic class comparison 
microarray study. Prom his initial collection of 20 plants, he randomly divides 
them into t rea tment and control groups of size 10. The t reatment group is 
infected with the agrobacteria. The control group receives "mock" t reatment , 
undergoing each step of infection except the introduction of the bacteria. This 
is to make sure tha t differences between the groups can properly be ascribed 
to infectious agent. One t reated and control sample are produced every day, in 
random order. The RNA is extracted from each, and the t reated and control 
RNA with same-day preparation are co-hybridized to a pair of microarrays 
employing dye-swap. Tha t is, the design in Figure 2.2(a) is used, which is a 
very efficient design for comparing the two groups (Kerr, 2003a). This design 
will naturally handle any day-to-day differences in sample preparation (block­
ing) because day-to-day differences will cancel out in the treatment-control 
comparison due to the balance in the preparat ion schedule. 

2.5 Conclusions 

Replication, blocking, and randomization should all be considered in design­
ing a microarray experiment. It usually works to consider them in the order 
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presented here. First, make sure there is the right kind of replication to allow 
the desired inferences. Replication leads directly to the question of choosing 
a sample size. Sample size calculations are a tricky issue with microarrays 
and the subject of considerable research, beyond the scope of this article. See 
Simon et al. (2002); Lee and Whitmore (2002); Wei et al. (2004); and Tibshi-
rani (2005). Second, for two-color platforms the arrangement of the samples 
onto the arrays must be decided. For many class comparison experiments the 
layouts in Figure 2.2 can be adapted. See Rosa et al. (2005), for other ideas. 
Lastly, consider all opportunities for randomization. For example, arrays can 
be randomly assigned to planned hybridizations and the order of hybridiza­
tions should also be randomized. 

Although microarray studies are typically exploratory, one should still be 
able to clearly articulate a goal for the project. A well-defined goal will inform 
good choices in experimental design. A seriously flawed experimental design 
guarantees a study will be a failure, because it produces data that cannot 
answer the scientific question of interest. A sound experimental design does 
not guarantee a study will be a rousing success, but gives it a fighting chance. 
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3.1 Introduction 

Every microarray experiment produces images. Image analysis software re­
duces these images to raw intensity data. To be useful for a data analyst 
this raw intensity data need to be converted into gene expression measures. 
Pre-processing is used to describe these procedures. Note the terms "pre­
processing", "low-level analysis", and "probe-level analysis" are synonymous 
and will be used interchangeably within this chapter. Some writers use the 
term "normalization" to encompass all the procedures discussed in this chap­
ter, but here normalization will refer only to one stage of the process. 

Unfortunately, many users of microarrays treat low-level analysis as a 
"black box", using whatever software is supplied by their system vendor, with­
out much idea of what is really being done with their data. This chapter will 
highlight the importance of pre-processing, why a data analyst should know 
what is being done by the software and how it can improve subsequent data 
analysis. 

Microarray experiments are usually conducted to answer one or more ques­
tions of biological interest, for instance topics such as: Determining gene func­
tion, discriminating between cases and controls or tumor sub-classes, studying 
the cell cycle and pathway analysis. Typically, low-level analysis methodolo­
gies do not attempt to answer these questions. Instead, the primary goal of a 
low-level analysis of a microarray data experiment is to provide better expres­
sion measures which can be used in higher-level analysis. Ideally, expression 
values should be both precise (low variance) and accurate (low bias). Another 
equally important aspect of low-level analysis is to be able to assess the quality 
of the microarray data. 

Figure 3.1 shows the complete analysis process for a microarray experi­
ment. After starting with a biological question, a sensible experiment is de­
signed and carried out using microarrays. Images are produced as a result 
of the experiment and these are quantified to produce intensity values. The 
topic of this chapter, low-level analysis, is the next process. Consisting of both 
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Fig. 3.1. Workflow for a typical microajray experiment. 

steps to produce expression values and quality assessment it provides the data 
analyst with their first major task. If data from a particular array, or even 
worse the entire data set, is of low quality, then additional microarray exper­
iments may need to be carried out. The expression values which result from 
the pre-processing analysis may then be used in higher-level analysis to try 
to directly answer the biological question of interest. This analysis may either 
lead to further high-level analysis or perhaps raise further biological questions 
that might warrant another microarray experiment. 

Most microarray data is one of two basic flavors: Single channel or two 
channel, with the number of channels referring to the number of labeling 
colors used. On single channel arrays fragmented labeled RNA from a single 
source is hybridized to microarray, with the "rawest" level of data for each 
chip being a single image and the end result of the pre-processing analysis be­
ing an absolute measure of gene expression. Affymetrix GeneChip microarrays 
are a primary example of single channel microarrays. Two-channel microar­
rays have fragmented labeled cDNA from two sources with each source being 
labeled with a different color hybridized to microarray. These two colors are 
typically red and green, sometimes referred to using the dye names Cy5 and 
Cy3 (although other dyes are possible). For two-color microarray systems the 
"rawest" data consists of two images, one for each color channel. The end 
result of the pre-processing analysis is a measure of relative gene expression 
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between the two samples directly compared on the slide. cDNA microarrays 
are a primary examiple of two-color microarrays, but long oligonucleotide ax-
rays such as those commercially produced by Agilent and other companies 
also have two channels. This chapter uses the terminology spotted array and 
two-color array interchangeably. 

While it might seem that these two basic platforms are quite different, 
both require the same basic pre-processing steps. In particular, background 
correction, normalization, summarization (this is applicable only in the case 
of Affymetrix GeneChips) and quality assessment are vital parts of low-level 
analysis for both single and two-channel microarray data. 

This chapter introduces in some depth procedures and algorithms for pre­
processing microarray data. Then two case studies, one using Aflymetrix 
GeneChip data and the other using two-channel microarray data are used 
to illustrate these techniques in practice. The data used is available from the 
GEO data repository (Edgar et al., 2002; Barrett et al., 2005). 

But before examining low-level analysis algorithms and their application 
to microarray data sets, it is important that the data analyst understands a 
little more about the underlying microarray technologies. 

3.1.1 Affymetrix GeneChips 

Affymetrix GeneChip arrays are a popular commercially produced high-
density oligonucleotide array system produced using a photo-lithographic pro­
cedure. First, some sequence information of the target organism must be 
known. However, this does not present a particular difficulty because a number 
of organisms have now been completely sequenced and others are currently 
being sequenced. Given a known sequence, a number of 25-mer sequences 
complementary to the sequence for target genes are chosen. These sequences 
are known as probes. Typically, 11 to 20 probes interrogate a given gene. This 
collection of probes is called a probe set and there are currently anywhere 
between about 12 000 and 55000 probe sets on an array. Affymetrix uses a 
number of procedures to select which 25-mer sequences should be used for 
each gene. In particular, potential probes are examined for specificity, poten­
tial for and predicted binding properties. Cross-hybridization occurs when a 
single-stranded DNA sequence binds to a probe sequence which is not com­
pletely complementary. To match the properties of the sample amplification 
procedure, probes axe 3' biased. This means that probes axe chosen closer to 
the 3' end of the sequence. However, the probes are typically spaced widely 
along the sequence. More details about probe selection are described in Mei 
et al. (2003). Sometimes there is more than one probe set that interrogate the 
same gene, but each uses a different part of the sequence. 

On a GeneChip there are two types of probes. A probe that is exactly 
complementary to the sequence of interest is called a Perfect Match (PM). 
A probe that is complementary to the sequence of interest except at the 
central base, which for 25-mers is the 13*'' base, is known as the Mism,atch 
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(MM). In theory, the MM probes can be used to quantify and remove non­
specific hybridization. A PM and its corresponding MM probe are referred to 
as a probe pair. On modern chips the PM and its corresponding MM probe 
are contiguous on the microarray, but the probe pairs are distributed across 
the microarray. This helps alleviate potential problems from some types of 
spatial defects. Current microarrays have anywhere between 0.5 million and 
2.5 million probes. 

Once probes have been selected the chips are mass produced using a photo­
lithographic procedure. Using a series of masks the 25-mer probes are built in 
parallel base by base. 

Target mRNA source material is prepared in a series of transcribing, frag­
menting, and labeling steps. It is then combined with the microarray in a 
process called hybridization, where using the complementary binding proper­
ties of DNA and RNA, sample material joins with the probes on the microar­
ray. 

After the washing and staining process the array is removed from the 
fluidics station and placed in a scanner. Laser light is shone onto the array 
and excites the fluorescent staining agent. At locations where more cRNA 
hybridized a brighter signal should be emitted. The amount of signal emitted 
is recorded as a value in 16 bits, and by examining the entire chip an image 
is produced. The Affymetrix software stores this image in the DAT file. 

A small portion of the DAT file image is shown in Figure 3.2. 

• • « . . < £ - • 

Fig. 3.2. Small sections of the raw image for an Affymetrix GeneChip as stored in 
a DAT file and the raw image for an Agilent two channel spotted array as stored in 
a TIFF file. 

The checker board pattern and bright spots along the edges correspond 
to control oligo B2 probes. These are used to superimpose and align a grid 
upon the image. The grid is used to define the location of each probe cell. 
Each grid square contains all the pixels for a single probe. Once the gridding 
has taken place, the border pixels are ignored and the internal pixels of each 
grid square are used to compute a probe intensity. The probe intensity value 
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for each probe cell is given by the 75*'' percentile of the intensities for these 
internal pixels. These probe intensity values are written into the CEL file. The 
low-level analysis we discuss in this chapter begins with data contained the 
CEL file. 

3.1.2 Two-Color Microcirrays 

Spotted microarrays have thousands of individual DNA sequences or long 
oligos printed on a glass slide. This may be done using a robotic arrayer in 
the case of cDNA microarrays, Inkjet technology in the case of Agilent mi­
croarrays or otherwise. Spots are typically arranged on the array in regularly 
spaced grids. The multiple grids on each array are typically each printed or 
spotted using a separate print-head. Depending on the slide design there may 
be control spots on the slide. Positive controls are spots which should be ex­
pressed in any sample hybridized to the array. Negative controls should not 
be expressed and are often based on sequences from another organism. 

Two mRNA samples are transcribed to cDNA, labeled using different col­
ored fluorescent dyes, mixed in equal proportions then and hybridized to the 
microarrays. After hybridization the microarray slide is scanned and fluores­
cence measurements made in each color channel producing an image. Unlike 
single channel arrays the hybridization is competitive with a particular spot 
being red, green or yellow corresponding to over-expressed or under-expressed 
in the red labeled sample or equal levels of expression in each sample. The 
ratio of the intensities in the red and green channels for each spot is intended 
to represent the relative abundance of the corresponding material in the two 
samples. 

Image analysis for two-color arrays consists of three distinct stages. The 
first is addressing, or estimating the location of the center of each spot. Next 
a process called segmentation is used to classify pixels as either foreground 
(signal) or background. The final step is to extract spot information like the 
red and green channel foreground and background intensities and spot quality 
metrics. There are a number of different image analysis programs including 
GenePix, Spot, ScanAlyze, UCSF Spot and Imagene. A Web site listing ad­
ditional microarray image analysis programs can be found in the list of tools 
and resources. This chapter is too brief to discuss the specific differences be­
tween these programs and instead the reader should refer to Yang et al. (2001, 
2002a). The pre-processing methods discussed in this chapter begin with the 
output of these image programs. 

3.2 Basic Concepts 

Background correction is required for microarray data because typically there 
is some level of binding producing detectable signal even when that specific bi­
ological material is not in the original sample. Background correction methods 
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typically attempt to perform one or more of the following: Correct for back­
ground noise and processing effects on the slide, adjust for cross-hybridization, 
which is the binding of non-specific DNA (i.e., non-complementary binding) to 
the probes on the array, or adjust expression estimates so that they fall on the 
proper scale (specifically, an even linear relationship between concentration of 
a given mRNA and its estimated expression is desirable). 

Normalization is the process of removing unwanted non-biological varia­
tion that might exist within and between arrays in a microarray experiment. 
It has long been recognized that variability can exist between arrays, some 
of biological interest and other of non-biological interest. These two types of 
variation are classified as either interesting or obscuring by Hartemink et al. 
(2001). It is this obscuring variation that we seek to remove when normalizing 
arrays. Sources of obscuring variation can include scanner setting differences, 
the quantities of mRNA hybridized, dye labeling efficiencies and many other 
factors. Hartemink et al. (2001) discuss some of these possible sources in more 
detail. 

Typically, Affymetrix GeneChip microarrays have hundreds of thousands 
of probes. These probes are grouped together into probe sets. Within a probe 
set each probe interrogates a different part of the sequence for a particular 
gene. Summarization is the process of combining the multiple probe intensities 
for each probe set to produce an expression value estimate. 

Quality assessment is an important part of a low-level analysis involving 
both data inspection and decision making. Microarray data quality assess­
ment can be carried out at several levels. For two-color arrays image analysis 
software often produce measures of individual spot quality and some users 
choose to integrate this into their analysis. A higher level is to consider qual­
ity at the array level, with the primary question being whether or not data 
from a particular microarray should be discarded and possibly repeated on an 
additional array. 

3.2.1 Pre-Processing Affymetrix GeneChip Data 

This section discusses the robust multi-chip analysis (RMA), methodology 
(Irizarry et al., 2003) and its extensions as the recommended procedures for 
probe-level analysis of GeneChip data. Some alternative methods are de­
scribed later in the chapter. RMA uses only the PM probe intensities and 
ignores the MM probe intensities. This is because typically about 30% of MM 
intensities are higher, often significantly higher, than their corresponding PM 
intensity, and this is true across the entire range of probe-intensities. Sim­
ply subtracting the Mismatch intensity from the corresponding Perfect-match 
intensity would lead to negative expression values and an increased level of 
noise in expression values for low-expressing probe sets. 

The background correction procedure for the RMA algorithm is based 
on a convolution model. Mathematically, a convolution model describes the 
distribution of the sum of two independent random variables. In particular. 
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each observed PM probe intensity is assumed to be composed of a signal 
and noise component. By examining smoothed density histograms of inten­
sity values from many GeneChips the suggested model consists of a normal 
distribution noise component and an exponential distribution signal. To avoid 
negative values the normal noise component is assumed to be truncated at 0. 
The background-corrected PM intensity is given by the expected value of the 
signal under the model given the observed PM intensity, a closed form equa­
tion for this expectation is given in Section 3.10. The parameters for each of 
the distributions are estimated on a chip-by-chip basis, so each chip gets an 
individual correction. 

Next, RMA seeks to reduce non-biological variability by normalizing the 
background-corrected PM probe intensities across all the arrays in the data 
set. Because there are many hundreds of thousands of PM probe intensities 
on each array, and a data set may have many arrays, it is important that a 
normalization procedure is fast and scalable. The approach that RMA uses is 
the quantile normalization algorithm. The goal of quantile normalization, as 
discussed in Bolstad et al. (2003), is to give the same empirical distribution 
of intensities to each array. In other words, after quantile normalization the 
histogram of intensities on each array will be identical. The target distribu­
tion is found by averaging the quantiles for each of the arrays in the data set. 
A mathematical description of this transformation is given in Section 3.10. 
Quantile normalization is fast and scales well, with the algorithm consisting 
only of sorting, averaging and unsorting operations. In practice, quantile nor­
malization performs very well at reducing unwanted variation. A thorough 
comparison of quantile normalization with other methods, and its effects on 
variability and bias, can be found in Bolstad et al. (2003). 

As noted, the multiple PM probes on each Affymetrix GeneChip array 
targeting the same gene are known as a probe set. Gene expression summary 
values are found for each probe set by combining these background-corrected 
and normalized PM intensities. The RMA algorithm first log2 transforms the 
perfect match intensities. Then for each probe set a multi-array probe-level 
model (PLM) is fit using the median polish algorithm. An equation for the 
RMA PLM can be found in Section 3.10. The RMA model was suggested 
by examining probe intensity behavior within a probe set across arrays as 
shown in Figures 3.3 and 3.4. In these figures, lines have been used to join the 
intensities for specific probes across arrays. Notice that generally speaking the 
highest intensity probe is always the brightest and the lowest intensity probe 
the dimmest with the other probes falling in pretty much the same order in 
between. Because of this the RMA model includes an array effect and an effect 
for each probe and the transformed, background-corrected and normalized PM 
probe intensities are the response variables. The median polish algorithm is 
used to fit this model robustly. Robustness is needed because sometimes a 
particular probe intensity on a single array seems to behave quite differently 
than the corresponding probe on other arrays in the data set. The estimated 
array effect gives the estimated RMA expression value. 
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Fig. 3.3. Probe behavior for a spike-
in probe set from an AffymetrLx HG-
U133A data set where by design there 
should be changes in expression level. 

Fig. 3.4. Probe behavior for another 
probe set from an Affymetrix HG-
U133A data set where there should be 
no differential expression. 

The RMA framework can be extended to provide useful quality assessment 
criteria for when the computed gene expression measures on a particular array 
in a data set are of lower relative quality than the rest of the data set. The 
main changes are that an alternative model fitting procedure is used to fit the 
PLM. Specifically, the model is fit using robust regression via M-estimation 
(Huber, 1981) and estimates are generated using iteratively re-weighted least 
squares. This works by down-weighting an observation when it has a large 
residual from the fitted model and refitting the model again. This proceeds 
until convergence. As a by-product of the fitting procedure the final weights, 
residuals, standard error estimates for the expression values and the expression 
values themselves may be used to assess the quality of the data on each array in 
the data set. Typically, the weights or residuals are used to create chip pseudo-
images to look for possible spatial artifacts and other differences between 
arrays. These tend to be better for visually detecting problems than images 
of the unprocessed probe-intensities. This is because the large differences in 
magnitude between the lowest and highest probe intensities are accounted for 
by the inclusion of the probe effect term in the model. Because there can 
be extreme differences in within probe set variability between probe sets the 
standard errors are converted into a measure called the normalized unsealed 
standard error, or NUSE for short. For each probe set the standard error 
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estimates are normalized to have median 1 across arrays. An equation for 
doing this can be found in Section 3.10. An array of lesser quality is expected 
to have NUSE values that differ from others in the data set by being higher 
and possibly more variable. A second quantity, the relative log expression 
(RLE), is also used to assess the quality of the expression measures produced 
on a particular chip. This quantity is computed by comparing the expression 
value for a specific probe set on a particular array to the median expression 
value for that probe set across all the arrays in the data set. An equation for 
computing the RLE is given in Section 3.10. Arrays of lesser quality tend to 
have RLE values non-centered around zero or with greater spread. Typically, 
NUSE and RLE values are examined using boxplots, though some prefer to 
use numerical summaries such as the median and interquartile range (IQR) of 
these values for each array. The median provides a measure of center and the 
IQR provides a measure of spread. More details about using these quantities 
for quality assessment can be found in Brettschneider et al. (2006). 

3.2.2 Pre-Processing Two-Color Microcirray Data 

Two-channel microarray data also require background correction, normaliza­
tion and quality assessment. However, it has the additional complication that 
there are now two intensity channels to be dealt with. 

Pre-processing begins with the output from the image analysis software. 
The export format of this data file varies depending on the image software 
used. But it typically includes measures of foreground and background inten­
sity at each spot for each of the red and green channels along with a number 
of spot quality metrics. 

Before pre-processing an initial quality analysis can be carried out. Spatial 
plots of the raw foreground and background intensities for each of the indi­
vidual color channels and for spot statistics from the image analysis programs 
may show potential problems. Based on these it might also be useful to ex­
amine the raw TIFF files. Signal-to-noise (S2N) ratios, typically the log ratio 
of the foreground to background for each channel, should also be examined. 
Any control spots on the slide can also be used for this purpose 

Background correction is the initial step in the pre-processing analysis. 
A first option is to simply subtract, in each channel, the background values 
from foreground values based on the image analysis output. However, this is 
typically problematic because most image analysis software make local esti­
mates of background based on the pixels immediately surrounding the spot 
and these values tend be noisy. This leads to several problems, the first being 
that sometimes a spot will have a higher background value than foreground 
value, and so subtraction leads to a negative value, making log transforms 
impossible and leading to missing data. The second is that this background 
correction tends to inflate the noise in the expression values for low express­
ing genes. Instead, a better approach is to use a more smoothed estimate of 
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background. The recommendations of Yang et al. (2002a) are that a morpho­
logical background such as those produced using Spot and recent versions of 
GenePix should be used instead. Others, such as Ritchie (2004), have explored 
the normal noise exponential signal convolution model and have found it to 
perform satisfactorily. All background corrections tend to increase the noise 
level, even if only slightly, of low expressed genes and because of this some 
users choose not to use any background correction. 

Next, two-channel spotted array data need to be normalized. However, 
unlike single channel array data, normalization is carried out both within and 
between slides. 

Within a slide, of particular interest are systematic differences due to in­
tensity and location dependent dye biases. One way to compare red and green 
channel measurements for each spot on an array is an MA-plot. The M value 
on the vertical axis is the log2 ratio of the red and green channel intensities, 
in other words the log2 fold-change between the two samples. The A value on 
the horizontal axis is the average of the log2 red and green channel intensities. 
Often a loess smoother is added to show general trends in the data. Figure 3.5 
shows a typical MA-plot for a two-channel microarray. A smooth loess curve 
is typically added to show the general trend of the data. Loess is a method of 
local regression due to Cleveland and Devlin (1988) that is used for estimating 
a smooth non-parameteric curve. 
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Fig. 3.5. MA-plots for unnormalized two channel data. The MA-plot on the left 
has a single loess smoother showing global intensity dye biases. The MA-plot on the 
right has the loess smoothers for each of the grids on this particular microarray 
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An MA-plot is more useful for examining the relationship between the two 
channels than other alternatives. For instance, a plot of the red against green 
intensities will be misleading with microarray data because there is typically 
very few bright spots on an microarray and many dim spots meaning many 
points in the lower left hand region of the plot. Additionally, any correlation 
calculated will be high and driven mostly by the few extreme points. A better 
alternative would be to log transform both the red and green intensities and 
then plot them against each other. But, this plot still lives much of the plotting 
region unused and visually the linear relationship between the two channels 
might still appear strong. An MA-plot is essentially a rotation of this log-
transformed plot so that the 45 degree line is now the horizontal axis. 

Assuming that only a few genes are changing in expression or that at 
least about equal numbers of genes should increase and decrease in expression 
between the two samples hybridized to the array then ideally the point cloud 
on the MA-plot will be centered around 0. The loess curve on the MA-plot can 
be used to give an intensity dependent correction. After fitting the loess curve 
to the MA-plot each M value is adjusted vertically up or down by the amount 
required to adjust the loess curve at the corresponding A value so that it falls 
along the M = 0 horizontal axis. This normalization removes global intensity 
dependent dye biases and is called loess normalization method. 

As demonstrated in Figure 3.5, it is also possible that there are spatial 
differences in this intensity dependent dye bias and other effects caused by 
different printing-tips. Multiple loess curves, one for each grid, are fitted. The 
M values in each grid are adjusted in the same manner as before using the 
loess curve specific to that grid. This is known as print-tip loess normalization. 

The loess normalization methods adjust for location, but it is also possible 
that there are regional differences in variability. In other words, the M values 
have differing variability depending upon which grid they lie in. A scale nor­
malization is proposed by Yang et al. (2002a) which standardizes the median 
absolute deviation of M values for each grid. 

Most two-color microarray experiments consist of multiple arrays, and 
because there can be many sources of technical variability, between-slide nor­
malization is also required. Between-slide normalization should be carried out 
after within-slide normalization is completed. The scale normalization pro­
posed for within-array normalization could be used for normalizing the M 
values between arrays. Another option is to normalize the individual red and 
green channel intensity data across arrays. The quantile normalization pro­
cedure used for the Affymetrix GeneChip data can be used for this purpose. 
In particular, the log2 scale red and green channel intensities are normalized 
across all arrays. 

Quality assessment should be integrated at all steps of the pre-processing 
process. Usually, this is done visually. Boxplots of M values before and after 
normalization show removal of some differences. Spatial plots of quantities 
including M values, show possible spatial effects and other artifacts such as 
scratches on the slide. MA-plots are also useful for examining the degree of 
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normalization required. If after applying the different pre-processing proce­
dures the quality assessment methods still indicate problems then data from 
that microarray may need to be discarded. 

3.3 Advantages and Disadvantages 

3.3.1 Affymetrix GeneChip Data 

The RMA methodology and its PLM based extensions have the following 
advantages and disadvantages. 

3.3.1.1 Advantages 

• Fast and scalable to large data sets. 
• Widely accepted and used by many researchers. 
• RMA is available in a number of software packages including Bioconductor, 

GeneSpring, Array Assist, S+ArrayAnalyzer, GeneSifter. 
• Has little noise at low intensities. 
• The quality assessment measurements are directly related to the quality 

of the produced expression values. 
• Improves ability to correctly identify differentially expressed genes and is 

highly reproducible. 
• Robust against outliers when computing expression measure. 

3.3.1.2 Disadvantages 

• RMA has a tendency to attenuate fold-change estimates for low-expressing 
probe sets. 

3.3.2 Two-Color Microcirrays 

The techniques for pre-processing spotted microarray data have the following 
advantages and disadvantages. 

3.3.2.1 Advantages 

• Loess-based normalization deals effectively with non-linearities in the data. 
• Combining quality assessment with normalization allows the analyst to see 

which problems are being accounted for by normalization and those that 
are because of bad quality data. 

• Can deal with some spatial effects. 
• Attempts to deal with both within-sUde and between-sUde technical vari­

ability. 
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3.3.2.2 Disadvantages 

• Not standard across software packages. For instance, many software pro­
grams do not produce MA-plots. 

3.4 Caveats and Pitfalls 

To some degree most standard normalization methods, on both Affymetrix 
and two-color microarrays, depend on at least one of the following assump­
tions: 

1. The number of genes changing between conditions is small relative to the 
number of genes being measured on the microarray. 

2. An approximately equivalent number of genes are increasing in expression 
value as are going down in expression value between conditions. 

If either of these assumptions are violated then there is the possibility that 
small changes in expression might be made undetectable, and larger changes 
made smaller. In the case of the print-tip loess normalization, not only should 
these assumptions be true across the entire array, but also within each grid. 
However, in the vast majority of situations these assumptions hold, if only 
weakly. 

In situations where these assumptions do not hold, one option would be 
to normalize within arrays of the same condition with a stronger method, say 
quantile normalization for instance, and between conditions with a weaker 
method, such as scaling so that the means or medians are equal. It is usually 
preferable to use some level of normalization, than to not normalize at all. 

3.5 Alternatives 

3.5.1 Affymetrix GeneChip Data 

RMA is not the only expression measure possible. A popular modification of 
the algorithm is known as GCRMA (Wu et al., 2004). It uses a different back­
ground correction algorithm that incorporates probe sequence information, 
but uses the same quantile normalization and median polish summarization 
procedure. This has been observed to improve the problems RMA has with 
attenuating expression values, with only a small increase in variability. 

The dChip MBEI (Li and Wong, 2001a,b) also uses a multi-array model; 
however, it differs from the RMA model in that the model is multiplicative 
with additive errors fitted on the natural scale and a different non-linear nor­
malization algorithm is used. This tool also provides a method for visually 
assessing quality by identifying outlier probes. 
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AHymetrix provides the MAS 5.0 expression measure (AHymetrix, 2001) 
and more recently an algorithm called PLIER may also be used to generate 
gene expression values. MAS 5.0 values are typically noisy in the low-intensity 
range and use a simple linear scaling normalization. There are a number of 
standard quality assessment quantities produced by the Affymetrix software 
including the percent present, scale factor, average background and 3'/5' ratios 
for control probe sets. 

There is some contention about which gene expression measure is the best 
to use and there are many alternatives beyond those discussed in this chapter. 
However, it is possible to measure and quantify the effect that these algorithms 
have on data where there is known differential expression. Spike-in data sets 
are used for this purpose. The aifycomp benchmarking tool of Irizarry et al. 
(2006) provides a basis upon which to assess the performance of different 
methods in terms of bias, variance and ability to detect differential expression. 

3.5.2 Two-Color Microarrays 

Some users choose to use control spots on the microarray for normalization 
on the array. This can be potentially problematic if the control spots are not 
typical for other spots on the array. For instance they could all be on average 
brighter than the majority of spots on the array. 

Depending on the slide design it might be possible to combine the loess-
based methods which use all spots with information from the control spots. 
Yang et al. (2002b) suggest using a Microarray Sample Pool (MSP), where 
control spots are created using cDNA for all target genes on the array and 
then spotted in a dilution series. These are then combined with the loess 
normalization method so that dim spots are primarily normalized using the 
loess normalization and higher intensities use progressively greater informa­
tion from the MSP spots. 

Many microarray analysis programs implement basic scaling normalization 
algorithms, where the mean or median value in each color channel are made 
equal by multiplying by a constant. In general these should be avoided in 
preference for methods which can deal with non-linearities. 

Variance stabilization normalization (VSN) provides another alternative 
to the loess based methods. In particular this normalization method seeks to 
make the variance of the data independent from the mean. This is done using 
a generalized log transformation. For further details, see Huber et al. (2002). 

3.6 Case Study 

3.6.1 Pre-Processing an Affymetrix GeneChip Data Set 

In this section a typical pre-processing analysis for an Affymetrix GeneChip 
data set is demonstrated. For illustrative purposes data from 25 HG-U133A 
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microarrays, a subset of a larger data set, is used. This data was down­
loaded from the NCBI Gene Expression Omnibus (GEO, http: / /www.ncbi. 
nlm. n ih . gov/geo/) and is accessible through GEO Series accession number 
GSE2603. The purpose of the study that generated this data was to discover 
a set of genes which mark and mediate breast cancer metastasis to the lungs. 
Further details about this can be found in Minn et al. (2005). 

Unprocessed Intensities Unprocessed Intensities 

assiggs'-----^---'-' '---

0.6 -

0.5 -

^ 0.4 -

a 
P 0 .3-

0.2 -

0.1 -

0.0 -

,'i 
W 
n 

V-

r 

r mxf 

•i ' 

,", 

w! 
HKLi 

6 8 10 12 14 16 isssgggsssssgssssssssss 

log mtensity 

Fig. 3.6. Examining the raw data shows differences between arrays. 

Initially, the raw intensities are examined by array to look for differences. 
Figure 3.6 shows boxplots and density plots of raw log2 PM intensities for all 
25 arrays. It is immediately apparent that there are differences in intensity 
level between the arrays. Two arrays, GSM50108 and GSM50132, are dimmer 
than the others, another (GSM50112) seems to be brighter. 

Rather than look at MA-plots for every pair of arrays, a synthetic reference 
chip is created by taking probe-wise medians and then each array is compared 
to this reference. Figure 3.7 shows MA-plots for four of the arrays with each 
showing significant differences. 

Having established that there are differences in the unprocessed probe-
intensities, they are pre-processed and summarized to RMA gene expression 
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Fig. 3.7. MA plots before normalization. 
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Fig. 3.8. Boxplot of RMA expression values by array show fewer differences than 
raw data. 

values. Figure 3.8 shows boxplots of the RMA expression measures for each ar­
ray with the differences now minimal compared to the raw unprocessed data. 
Figure 3.9 shows the MA-plots for the four arrays considered earlier. Two 
arrays, GSM50126 and GSM50130, show significant improvement after nor-
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Fig. 3.9. MA plots based on computed expression values. 

malization. However, GSM50108 still has a divergent MA-plot with elevated 
IQR, and the median M value for GSM50110 is away from 0, the ideal. 
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Fig. 3.10. Boxplots of NUSE and RLE values. Boxes with different centers or larger 
spreads indicate quality problems. 
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An inspection of the quality assessment measures is the next step in the 
analysis. Figure 3.10 shows boxplots of the NUSE and RLE statistics for each 
array. Arrays GSM50108, GSM50110, GSM50114, GSM50116, GSM50120 and 
GSM50132, have elevated NUSE values indicating potential lower quality 
data. Three samples, GSM50108, GSM50110 and GSM50132 also had prob­
lematic RLE values. Notably, this shows us that the differences observed for 
GSM50108 and GSM50110 using the MA-plots are due to quahty problems 
in the original data, which could not be corrected by the pre-processing. An­
other array, GSM50112, which had elevated raw intensity values, shows no 
such problems, with the normalization procedure having successfully removed 
the differences. 

Fig. 3.11. Chip images using weights from PLM fitting procedure. Darker areas 
have lower weights. GSM50110 has distinct artifacts. There are no distinct artifacts 
for GSM50132, but is uniformly of low weight. 

While the NUSE and RLE statistics can indicate data with potential qual­
ity problems, they do not provide a method of directly diagnosing the cause of 
the defects. Images of each airay created using the weights or residuals from 
the PLM fitting procedure, in place of the probe intensities, serve this pur­
pose. Figure 3.11 shows images of the weights for two of the arrays with qual­
ity assessment problems. One array, GSM50110, has distinct visual artifacts, 
while the other, GSM50132, has uniformly low weights, perhaps indicative of 
a sample preparation or hybridization problem. 

Based on the pre-processing and quality assessment analysis the recom­
mendation would be to remove several of the arrays from further down­
stream analysis. The evidence is particularly strong for removing GSM50108, 
GSM50110 and GSM50132. However, data from the arrays that had elevated 
NUSE values, but more normal RLE values, are also suspect. 
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3.6.2 Pre-Processing a Two-Chcinnel Microarray Data Set 

This section considers a typical pre-processing analysis for a two-color ar­
ray data set. The data set used consists of 15 microarray slides, a subset of 
a much larger study. This data was retrieved from the NCBI Gene Expres­
sion Omnibus (GEO, ht tp: / /www.ncbi .nlm.nih.gov/geo/) and is accessi­
ble through GEO Series accession number GSE1438. The specific slide design 
used, UCSF lOMm Mouse v.2 Oligo Array (GEO GPL1089), has 4 columns 
and 12 rows of grids with a total of 18 240 spots on each array. The purpose 
of the study that generated this data was to identify how effects of IL-13 on 
airway epithelial cells contribute to gene expression changes in Murine asthma 
models. Lung gene expression was analyzed by hybridizing Cy5-labeled cDNA 
from mouse lungs (five mice per group, each hybridized separately) along with 
Cy3-labeled reference lung cDNA pooled from wild-type mice. The study also 
considered RNA from tracheal perfusate samples. Further details can be found 
in Kuperman et al. (2005). The pre-processing analysis in this section con­
siders only data from the lung samples. The data was image analyzed using 
GenePix. 
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Fig. 3.12. Red and green channel Fig. 3.13. MA-plots before and after 
background intensities show a visible local background correction, 
artifact for GSM24216. 

Examining spatial plots (images) of the raw single channel background 
intensities show any spatial artifacts on the slide. Figure 3.12 shows an ar­
tifact in both channels for the slide GSM24216. Artifacts or high uniform 
background signals can indicate potential problems. 

In this section, the pre-processing analysis is carried out without back­
ground correction. The reason for this is demonstrated in Figure 3.13 that 
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shows how the noise is greatly inflated by carrying out local background 
correction. However, the background values can still be used to compute 
signal-to-noise values for each channel. Table 3.1 shows the mean and variance 
of the signal-to-noise ratios for all 15 slides in the data set. Several arrays, 
GSM24219, GSM24231 and GSM24232, have low signal-to-noise ratios in one 
of the channels. Several others such as GSM24220 and GSM24232 have large 
diS'erences in the signal-to-noise ratio between the two channels. 

Table 3.1. Signal-to-noise values for the red and green channels. Higher mean 
values are better. A mean value above 1.0 indicates that the signal is higher than 
the background. 

Slide 
GSM24215 
GSM24216 
GSM24217 
GSM24218 
GSM24219 
GSM24220 
GSM24221 
GSM24224 
GSM24225 
GSM24229 
GSM24230 
GSM24231 
GSM24232 
GSM24233 
GSM24234 

m e a n S 2 N H 
2.61 
1.35 
1.23 
1.58 
1.27 
2.50 
1.89 
2.39 
2.21 
2.06 
1.95 
1.72 
1.03 
1.69 
1.73 

var S 2 N H 

3.33 
2.28 
1.77 
2.15 
2.24 
3.83 
3.00 
2.90 
3.21 
2.82 
3.03 
2.70 
1.56 
2.89 
2.20 

m e a n S 2 N G 
2.42 
1.43 
1.67 
1.78 
0.94 
1.79 
2.21 
2.36 
1.88 
1.72 
1.29 
0.99 
1.48 
1.49 
2.05 

var S 2 N G 

3.23 
2.30 
2.31 
2.41 
1.13 
2.35 
3.54 
3.03 
2.00 
2.06 
1.51 
1.11 
2.05 
2.23 
2.67 

The sample GSM24216 is used to show how the data for a single slide can 
be examined before and after normalization. Figure 3.14 shows the ranks of 
the M and A values computed for each spot on this array and then plotted 
spatially. Non-biological differences show up in uneven spread of ranks. Box-
plots of the M values by grid position, as shown in Figure 3.15, also shows 
that the raw fold-change values have spatial dependence. 

To correct for these technical diS'erences, print-tip loess normalization is 
used. Figure 3.16 shows the individual loess curves, one for each of the 48 
grids, used to normalize the data on the slide GSM24216. Differences between 
the loess lines are apparent. This demonstrates the need to use one for each 
grid. 

Figure 3.17 shows the M values after print-tip loess normalization, both as 
a spatial plot of ranked M values and boxplots of the M values by grid. Many 
of the technical differences observed in the raw data due to spatial differences 
and dye-biases have been reduced. 

The print-tip loess normalization method is designed to remove non-
biological diS'erences within slide. However, it also serves to reduce some of 
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Fig. 3.14. Spatial plots of ranked M Fig. 3.15. Boxplots of M values by grid 
and ranked A values for GSM24216. for GSM24216. 
Artifacts are visible. 

the variability across arrays. Figure 3.18 shows boxplots of the M values across 
arrays before, and Figure 3.19 after normalizing within each slide using the 
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Fig. 3.16. Normalization using print-tip loess. Separate loess curves are fit for each 
grid. 
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Fig. 3.17. A spatial plot of ranked M values and boxplot of M values by grid for 
GSM24216 after print-tip loess normalization. Many of the spatial differences have 
been removed although one artifact remains. 
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Fig. 3.18. Boxplot of M values by slide Fig. 3.19. After within-shde print-tip 
before any normalization show differ- loess normalization the differences be-
ences. tween arrays axe much smaller. 

print-tip loess normalization method. The M values look more similar across 
arrays after the within-slide normalization. Notice that the slides GSM24219, 
GSM24220, GSM24225, GSM24230 and GSM24231 have larger IQR values. 
These may indicate potentially lower quality data with several of these corre­
sponding to slides with signal-to-noise ratio problems. 

Although we saw that the M values seemed to be much less variable across 
arrays after within-slide normalization, there are still differences in the data 
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Fig. 3.20. Density plots of (left) red and green channel intensities before normal­
ization, (middle) after within-slide print-tip loess normalization and (right) after 
between-slide single channel quantile normalization 

that can be removed across arrays. Figure 3.20 shows density plots of the 
red and green channel intensities. The first plot shows the raw data with 
differences visible both between arrays and between channels. The second plot 
shows the situation after within-slide normalization. The differences between 
the red and green channels on each array have been reduced, but there are still 
some differences between arrays. The third plot shows the result after between-
slide single channel quantile normalization applied following the within-slide 
normalization. In this case, the differences have been completely removed. 

3.7 Lessons Learned 

The two case studies both highlight how the pre-processing methodologies 
discussed in this chapter can be applied to real microarray data to remove 
technical biases and variability. Additionally, the case studies demonstrate 
that data set examination is an essential part of the process. Data analysts 
should use the plotting tools discussed in this chapter to visualize their data 
and treat it as equally important to just applying algorithms. 

As we saw, in both the Affymetrix GeneChip and two-color case studies, 
pre-processing can not and should not be expected to correct for all possible 
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problems. Instead, the quality analysis techniques described here can be used 
to decide when to remove an array from further downstream analysis. 

3.8 List of Tools and Resources 

• h t t p : //www. bioconductor. org: Open source software for the analysis of 
genomic data sets based upon the R statistical analysis platform. The 
analysis conducted in this chapter used these tools. 

• http://ih.ome.cuhk.edu.hk/~b400559/arraysoft_image.html: Listing 
of image analysis programs for microarrays. 

• http:/ /rmaexpress.bmbolstad.com: An alternative Windows GUI ap­
plication for generating RMA expression values and some quality images. 

• http:/ /plmimagegallery.bmbolstad.com: A gallery of quality assess­
ment images for a number of Affymetrix GeneChip data sets. 

• h t t p : //www. dchip. org: An program for generating an alternative expres­
sion measure for AHymetrix GeneChip data. 

• h t t p : //www. affymetrix. com: Web site of manufacturer provides infor­
mation about each of the arrays and additional information about the 
technology. 

• ht tp: / /Eiffycomp.biostat . jhsph.edu: Benchmarking tool for compar­
ing the performance of alternative expression measures for GeneChip data. 

• h t t p : / /bmbolstad. com/FDMGP: Supplemental material for this chapter in­
cluding complete data analysis code and additional plots. 

3.9 Conclusions 

Pre-processing is a very important step in the examination of a microarray 
data set. The low-level analysis techniques discussed in this chapter help re­
move differences due to technical, rather than biological, differences. Gene 
expression estimates generated using sensible pre-processing will be more use­
ful for higher-level analysis. While pre-processing can improve the quality of 
some data, the quality assessment techniques discussed in this chapter provide 
methods for deciding when to remove arrays from further analysis. 

3.10 Mathematical Details 

3.10.1 R M A Background Correct ion Equat ion 

Assume that the observed PM intensity for any probe on an array consists 
of a signal and noise component. Specifically, the observed PM intensity Y 
is the sum of signal S and noise N, i.e., Y = S + N. Assume that S follows 
an exponential distribution with parameter a, and N is distributed normally 
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(truncated at 0 to avoid negatives) with mean /x and variance a^. Then the 
background-corrected value is 

E(s\Y = y) = a + b ,Y^—,} „ \ ' , (3.1) 

where a = y — fi — a^a and b = a. Note that (f) and 0 are the standard 
normal distribution density and distribution functions, respectively. In prac­
tice, the second term on the numerator is essentially 0 and the second term 
on the denominator is essentially 1, allowing the formula to be simplified. 

3.10.2 Quantile Normalization 

The goal of the quantile normalization algorithm is to give the same distri­
bution of intensities to each array. An intensity is transformed in quantile 
normalization in the following manner: 

x*^=F-'{Gjixij)) , (3.2) 

where xy is measurement i on array j , Gj is the distribution function for 
array j , and F~^ is the inverse of the distribution function to be normalized 
to. The normalized intensity is given by x*j. In practice, Gj is estimated using 
the empirical distribution function and F is the average distribution across 
all arrays in the data set. An implementation of the algorithm is described in 
Bolstad et al. (2003). 

3.10.3 R M A Model 

The RMA expression measure is based upon fitting the following model 

Vkij = Pkj + OLki + ^kij (3.3) 

on a probe set by probe set basis. The indices k, j and i refer to probe set, 
array and probe, respectively. The response terms ykij are log2 transformed 
background-corrected and normalized PM intensities. The parameters ^kj ^'nd 
aki represent the chip effect and probe effect, respectively. The error term is 
Ckij. To make the model identifiable it is fit with the constraint Y^i^i cxki = 0. 
The estimates $kj provide the log2 scale RMA expression values. 

3.10.4 Quality Assessment Statistics 

The NUSE quality assessment statistic is calculated for each probe set on each 
array using: 

SE(pkj) 
NUSE (0kj) = ^ .: X (3.4) 

^ ^ med.SE (/3fej j 
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The RLE quality assessment statistic is calculated for each probe set on 
each array using: 

RLE (^3kj) = 0k3 - medjl3kj (3.5) 

3.10.5 Computation of M and A Values for Two-Channel 
Microarray Data 

Suppose that Ri and Gj are respectively red and green channel intensities for 
spot i on a specific array. Then the M and A values for each spot are given 
by: 

Mi = log2 f ^ j = log2 Ri - log2 Gi (3.6) 

Ai = ^ log2 (Ri •Gi) = ^ (log2 (Ri) + log2 (Gi)) (3.7) 

3.10.6 Print-Tip Loess Normalization 

If Mi represent the unnormalized M values on a slide, Ai the corresponding 
A values and there are k — 1,...K grids of spots on the array. Then the 
normalized log-ratios are given by 

M*=Mi- Cfe {Ai) = log2 (^\ - Ck {Ai), (3.8) 

where Ck {A) is the loess curve estimated using the M and A values corre­
sponding to spots in grid k. 
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4.1 Introduction 

Mass spectrometry is being applied to discover disease-related proteomic pat­
terns in complex mixtures of proteins derived from tissue samples or from 
easily obtained biological fluids such as serum, urine, or nipple aspirate fluid 
(Paweletz et al., 2001; Wellmann et al., 2002; Petricoin et al., 2002; Adam 
et ai., 2002, 2003; Zhukov et al., 2003; Schaub et al., 2004). Potentially, we 
can use these proteomic patterns for early diagnosis, to predict prognosis, 
to monitor disease progression or response to treatment, or even to identify 
which patients are most likely to benefit from particular treatments. 

The mass spectrometry instruments most commonly used to address these 
clinical and biological problems use a matrix-assisted laser desorption and 
ionization (MALDI) ion source and a time-of-flight (TOF) detection system. 
Briefly, to run an experiment on a MALDI-TOF instrument, the biological 
sample is flrst mixed with an energy absorbing matrix (EAM) such as sinapinic 
acid or a-cyano-4-hydroxycinnamic acid. This mixture is crystallized onto a 
metal plate. (The commonly used method of surface-enhanced laser desorption 
and ionization (SELDI) is a variant of MALDI that incorporates additional 
chemistry on the surface of the metal plate to bind specific classes of proteins 
(Merchant and Weinberger, 2000; Tang et al., 2004).) The plate is inserted 
into a vacuum chamber, and the matrix crystals are struck with pulses from 
a nitrogen laser. The matrix molecules absorb energy from the laser, transfer 
it to the proteins causing them to desorb and ionize, and produce a plume of 
ions in the gas phase. This process takes place in the presence of an electric 
field, which accelerates the ions into a flight tube where they drift until they 
strike a detector that records the time of flight (Figure 4.1). 

In theory, the spectral data produced by a single laser shot in a mass spec­
trometer consists of a vector of counts. Each count represents the number of 
ions hitting the detector during a small, fixed interval of time. We refer to 
this interval of time as the time resolution of the instrument; the time reso­
lution is typically on the order of 1-4 nanoseconds. A complete spectrum is 
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Fig. 4.1. (Top) Simplified schematic of a MALDI-TOF instrument with time-lag 
focusing. Samples are inserted on a metal plate into a vacuum chamber where they 
are ionized by a laser. Electric fields between the sample plate and two charged grids 
accelerate the ions into a drift tube, where they continue until they strike a detector. 
(Bottom) Voltage potentials along the instrument. The sample plate and grid start 
at the same potential, but the potential is raised after a brief delay. 

acquired within tens of milliseconds, so a typical spectrum is a vector contain­
ing between 10 000 and 100 000 entries. In practice, most mass spectrometers 
produce spectra by averaging the counts over many (often a few hundred) indi­
vidual laser shots. Thus, the raw data produced by running a sample through 
a mass spectrometer can best be thought of as a time series (see Chapter 11) 
vector containing tens of thousands of real numbers. Unless an entry in the 
vector is known to represent an actual count of the number of ions, it is usu­
ally just called an intensity and is assumed to be measured in continuous 
arbitrary units. Peaks in a plot of the intensity as a function of time represent 
the proteins or peptides that are present in the sample (Figure 4.2, top). 

It is important to realize that the natural scale on which to view a mass 
spectrum is the time axis along which the data was originally collected. Appli­
cations of mass spectrometry are, however, based on the mass of the particles. 
Ions of different mass are separated in the flight tube. In general, lighter ions 
fly faster and thus reach the detector before heavier ions. More precisely, the 
velocity achieved by an ion is proportional to its mass-to-charge ratio (m/z). 
A quadratic transformation is used to compute m/z from the observed flight 
time. The coefficients of this quadratic transformation must be determined 
experimentally. Researchers prepare a sample containing a small number (typ­
ically between 3 and 7) of molecules of known masses and use it to generate a 
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spectrum. They then determine the times at which the peaks corresponding 
to the known masses occur in that spectrum, and use least squares and this 
set of {time, mass) pairs to determine the coefficients of the quadratic trans­
formation. The process of mapping the observed time of flight to the m,/z 
values is called calibration. 
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Fig. 4.2. A sample spectrum displayed on two scales. (Top) Intensity data as 
a function of the actual time-of-flight. (Bottom) Intensity as a function of the 
calibrated mass-to-charge ratio. Mass is measured in Daltons; charge is measured in 
multiples of the charge of one electron. 

A typical data set arising in a clinical application of mass spectrometry 
contains tens or hundreds of spectra; each spectrum contains many thousands 
of intensity measurements representing an unknown number of protein peaks. 
Any attempt to make sense of this volume of data requires extensive low-level 
processing in order to identify the locations of peaks and to quantify their 
sizes accurately. Inadequate or incorrect pre-processing methods, however, 
can result in data sets that exhibit substantial biases and make it difficult 
to reach meaningful biological conclusions (Baggerly et al., 2003; Sorace and 
Zhan, 2003; Baggerly et al., 2004b,a). The low-level processing of mass spectra 
involves a number of complicated steps that interact in complex ways. Typical 
processing steps are as follows. 
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• Calibration maps the observed time of flight to the inferred mass-to-charge 
ratio. 

• Filtering or denoising removes random noise, typically electronic or chem­
ical in origin. 

• Baseline subtraction removes systematic artifacts, usually attributed to 
clusters of ionized matrix molecules hitting the detector during early por­
tions of the experiment, or to detector overload. 

• Normalization corrects for systematic differences in the total amount of 
protein desorbed and ionized from the sample plate. 

• Peak detection is the process of identifying locations on the time or m/z 
scale that correspond to specific proteins or peptides striking the detector. 

• Peak quantification is the primary goal of low-level processing; it typically 
involves an assessment of the signal-to-noise (S2N) ratio and may involve 
heights or areas. 

• Peak matching across samples is required because neither calibration nor 
peak detection is perfect. Thus, the analyst must decide which peaks in 
different samples correspond to the same biological molecule. 

In the realm of mass spectrometry, there is a clear distinction between peak 
detection and peak identification. The peaks seen by a mass spectrometer are 
anonymous. The only thing we know about them is their mass, which is never 
enough to completely characterize the protein or peptide that made the peak. 
The term peak identification refers to the process of determining the exact 
species of protein molecule that caused a peak to be detected. This process 
typically involves additional experimentation (often by shunting molecules of 
a target mass into another instrument where they are physically fragmented 
along amino acid boundaries and sent through a second mass spectrometer to 
determine the sizes of the fragments) and database searches to compare the 
results with the fragmentation patterns of known proteins. 

The potential importance of the clinical applications of mass spectrometry 
has drawn the attention of increasing numbers of analysts. As a result, the 
development of better methods for processing and analyzing the data has 
become an active area of research (Rai et al., 2002; Baggerly et al., 2003; 
Coombes et al., 2003; Hawkins et al., 2003; Lee et al., 2003; Liggett et al., 
2003; Wagner et al., 2003; Yasui et al., 2003a,b; Zhu et a l , 2003; Coombes 
et al., 2005b; Morris et al., 2005). One should note that not all methods use 
all of the processing steps listed above, nor do they necessarily perform them 
in the same order. 

4.2 Beisic Concepts 

Statistically, the low-level processing of mass spectra reduces to decomposing 
the observed signal into three components: True signal, baseline, and noise. 
One might try to decompose a spectrum using a model represented schemat­
ically by the equation 
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f{t)=B{t)+N-S{t) + eit) (4.1) 

where f{i) is the observed signal, B{i) is the baseline, S{t) is the true signal, 
AT is a normalization factor, and e(i) is the noise. At present, this model is 
of limited utility, since we do not have an effective characterization of the in­
dividual components. The true signal can, in principle, be modeled as a sum 
of independent, possibly overlapping, peaks, each corresponding to a single 
protein. Approximate shapes of the peaks might be estimated empirically by 
simulating the physical process by which a time-of-fiight (TOF) mass spec­
trometer collects data (Coombes et al., 2005a; Morris et al., 2005). White 
noise is a plausible model for the final term in the model, based on the notion 
that it arises primarily from electronic noise in the detector. One might also 
argue that at least some components of the noise have additional structure 
that is time dependent or even periodic (Baggerly et al., 2003). A fundamental 
limitation of the model in Equation 4.1, however, is that we do not have a 
good theoretical model for the baseline, aside from the vague intuition that 
it consists of a very low frequency component of the observed signal. This 
intuition is difficult to use without making it more precise, because the shape 
of the true peaks changes within a spectrum, becoming significantly lower and 
broader at later times and higher masses. 

Our current procedure for processing sets of mass spectra is founded on 
two principles. First, the raw data is the ultimate arbiter; processing should 
be kept to a minimum in order to avoid introducing additional variance or 
additional bias into the measurements that will be used in later statistical 
analyses. Second, we should borrow strength across samples whenever possi­
ble. 

1. Align the spectra on the time scale by choosing a linear change of variables 
for each spectrum in order to maximize the correlation between spectra. 

2. Compute the mean of the aligned raw spectra. 
3. Denoise the mean spectrum using the undecimated discrete wavelet trans­

form (UDWT). 
4. Locate intervals containing peaks by finding local maxima and minima in 

the denoised mean spectrum. 
5. Quantify peaks in individual raw spectra by recording the difference be­

tween the maximum height and minimum height in each interval that 
should contain a peak. 

6. Calibrate all spectra using the mean of the full set of available calibration 
experiments. 

4.3 Advantages and Disadvantages 

The chief advantage of performing peak finding by locating intervals in the 
mean spectrum that contain peaks is that it avoids the extremely messy and 
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error-prone problem of matching peaks across spectra. The corresponding dis­
advantage is that this will only work if the spectra have been aligned properly 
before computing the mean (Figure 4.3). A small amount of misalignment is 
safe; it merely broadens the peaks in the mean spectrum. Severe misalignment, 
however, can make the data unusable. 

4200 4300 4400 

Mass (Daltonfi)/Charge 

Fig. 4.3. Mean spectrum on improperly aligned data. The same sample was 
processed in multiple laboratories for several weeks. The two sets of gray curves 
axe spectra from different laboratory-weeks. The heavy black curve is the mean 
spectrum over all laboratories and weeks. The sharp peaks that are present in the 
individual spectra have been diluted in the mean spectrum by a failure to align the 
spectra properly. 

There are two advantages that follow from performing alignment on the 
time scale rather than first calibrating and then aligning on the mass scale. 
First, it is simpler, since it only requires a linear change of variables instead of 
a quadratic. Second, it is more reproducible, since it does not incorporate any 
additional errors that might be introduced in the calibration step. This factor 
is particularly important in many of the applications of mass spectrometry to 
protein profiling of complex mixtures. In many studies, the instrument is only 
calibrated in a fairly narrow range, but data is collected over a much wider 
range. For example, Ciphergen has a low mass standard mixture that con­
tains five proteins with masses between 1084.2 and 7033.6 Daltons; their high 
mass standard mixture contains proteins with masses between 12.2 and 116.4 
kiloDaltons. Both calibrant mixtures have been used while acquiring spectra 
from 1000 to 50 000 Daltons or higher. When the calibration is extrapolated 
in this way, the errors can be substantial. Our final calibration step, which 
averages the results of multiple calibration experiments, should perform more 
accurately, even when extrapolated, than using a single calibration experi­
ment. 

The peak quantification step in our procedure implicitly performs local 
baseline correction without fitting an explicit curve. The local minimum in 
the interval containing the peak is taken to be the local definition of base-
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line. Without a coherent model that explicitly describes the shape baseline 
takes, preferably one motivated by the physical processes that affect the de­
tector in a mass spectrometer (Malyarenko et al., 2005), fitting baseline can be 
problematic. Using the local minimum as an estimate of baseline has several 
advantages. First, it is simple to compute. Second, it does not require fitting 
either a parametric or nonparametric model that may simply not be appro­
priate in some circumstances. For example, the spectrum in Figure 4.2 has a 
baseline that might be modeled by an exponential decay starting at a high 
point near 12 ms. The baseline before 12 ms, however, clearly has a different 
shape. We have also seen spectra with two large bumps instead of one, which 
makes it difficult to specify a model that will work in full generality. 

Another advantage of quantifying the peak height as the difference be­
tween local maximum and local minimum on a nonempty interval is that it 
avoids assigning a quantification of zero. Nonexistent peaks in a sample will be 
assigned a value that is proportional to the noise in the spectrum. By biasing 
the estimates slightly high in this manner, it is easier to work with trans­
formations of the peak height in later statistical analyses of the data. When 
using alternative methods that assign a value of 0, analysts who want to use 
a log-transformation typically make an arbitrary choice to truncate the data 
before transformation. In essence, our method accepts additional bias in order 
to reduce some of the variance and avoid depending on arbitrary thresholds. 

A critical disadvantage, however, is that the height of overlapping peaks 
can be biased significantly low (Figure 4.4). If a peak overlaps with other 
peaks on both sides, then the local minima will not come all the way down 
to the true baseline. In many cases, such overlapping peaks often represent 
related molecules that will be highly correlated in expression. There are a 
number of phenomena that give rise to such related molecules. For example, 
some proteins can carry along one or more matrix molecules (or adducts). 
The acids used in the matrix typically have a mass between 100 and 200 
Daltons. A collection of regularly spaced peaks with mass difference in this 
range often represents the same protein or peptide carrying different numbers 
of matrix adducts. Proteins can also pick up sodium ions (changing mass by 
22 Daltons) or lose a water molecule (with a mass of 18 Daltons). So, peaks 
whose mass difference is 18 or 22 Daltons also often represent the same protein 
or peptide. At a finer scale, isotopes of carbon (^^C vs. ^^C), nitrogen (^''N vs. 
•"̂ ^N), oxygen (^^O vs. ^^O) or other common elements can be incorporated 
into proteins in different numbers, leading to chemically identical proteins that 
differ in mass by 1 or 2 Daltons. Most mass spectrometers can be focused, at 
least at low mass levels, to be able to resolve differences smaller than a single 
Dalton, which occur when ionized proteins acquire multiple charges. 

The mass spectrometry community appears to be converging on the use 
of wavelets for denoising. Because the intrinsic shape of a peak changes with 
the mass (becoming broader and lower at higher mass), the adaptive, multi-
scale nature of wavelets makes them a natural choice for denoising mass spec­
tra, since these properties allow them to efficiently capture peaks of different 
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Fig. 4.4. Closeup of a raw spectrum. The two peaks indicated by arrows overlap 
with the peaks on either side, so the local minima closest to these peaks do not go 
all the way down to baseline. 

widths. The wavelet approach for denoising involves three steps. The first is 
to compute the wavelet coefficients from the data, which involves choosing 
a basic wavelet basis function, then applying a series of linear filters derived 
from this function in a pyramid-based algorithm, called the discrete wavelet 
transform (Mallat, 1989). Applying this transform to a set of spectra results 
in a vector of wavelet coefiicients summarizing signals at diflFerent frequen­
cies and locations within the spectra. Second, set small wavelet coefficients 
to zero {thresholding), and third, compute the inverse wavelet transform to 
recover the denoised spectrum. The larger coefiicients not set to zero can ei­
ther be shrunken towards zero {soft thresholding) or left as they are {hard 
thresholding). In our experience, hard thresholding seems to perform better 
in denoising applications, since it results in less bias in the reconstructed 
denoised signal. Researchers still have a number of choices to make when 
using wavelets, however. They must select a basic wavelet basis function on 
which to base the transform (we usually use a Daubechies wavelet of degree 
8, (Daubechies, 1992), the kind of transform (we use the UDWT (Lang et al., 
1995, 1996; Gyaourova et al., 2002)), and the thresholding procedure (we use 
hard thresholding, with the threshold determined manually). The UDWT is 
superior to the more common decimated discrete wavelet transform (DDWT) 
when it comes to denoising. Its primary advantage is that, by construction, 
the UDWT is shift-invariant. The DDWT, by contrast, can produce different 
results if the start of the signal is shifted by a few time points. As a conse­
quence, denoising with the DDWT can introduce significant artifacts into the 
signal near either end of the spectrum. 
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4.4 Caveats and Pitfalls 

We have already mentioned some of the major difficulties that can arise us­
ing this procedure. First, the spectra must be properly aligned on the time 
scale. If this step is not performed correctly, then the peaks can be completely 
"out of phase" in some regions of the spectra, causing them to disappear from 
the mean spectrum. One also has a choice of trying to compute all pairwise 
alignments or just selecting a "standard" spectrum and aligning all other 
spectra with the standard. Using all pairwise alignments can lead to com­
putationally challenging optimization problems. By contrast, the alignments 
can potentially vary if one standard spectrum is replaced with another. Our 
own practice is to use the "most typical" spectrum as a standard to which 
all others are aligned. In order to select the most typical spectrum, we first 
compute the mean spectrum without any alignment, and compute the Pear­
son correlation between this unaligned mean and each spectrum. The most 
typical spectrum is defined to be the one that maximizes the correlation with 
the mean. 

One concern is that protein peaks that are present in only a few spectra will 
not be detectable in the mean. In an extensive simulation study, we compared 
peak finding using the mean spectrum to peak finding in individual spectra 
followed by matching peaks across spectra (Morris et al., 2005). Large peaks, 
even if rare, can still be found in the mean. Peaks that are small and rare are 
harder to find, but our simulations indicate, as a reasonable rule of thumb, 
that any peak that is present in at least •\/N spectra, where N is the number 
of spectra in the study, is as likely to be detected in the mean as it is in 
individual spectra. If you believe that it is important to find small peaks 
that are present in fewer than ^/N spectra, than you will have to supplement 
the mean spectrum approach with the study of individual spectra. In the 
situation where there are natural biological groups of spectra (for example, 
cancer patients vs. healthy controls), one may be able to restrict peak finding 
to the group mean spectra and the overall mean. In this approach, the peaks 
in the overall mean would be used to match most of the peaks found in the 
group means, and rare peaks that are present in only one group could still be 
located. 

Our preliminary studies using the UDWT suggest that the degree of the 
Daubechies wavelet does not affect the results very much, so it is probably safe 
to use the one of degree 8 (Coombes et al., 2005b). Using hard thresholding 
also appears to do a better job than soft thresholding of preserving the actual 
shape of peaks. The only problematic part of wavelet denoising is selecting the 
threshold at which to truncate the wavelet coefficients. We use a variant of a 
SiZer plot (Chaudhuri and Marron, 1999) to select a threshold interactively. 
Our SiZer routine computes the denoised spectra over a user-specified range of 
thresholds, including one extreme value that provides a "super-smooth" curve. 
The differences between the super-smooth curve and the various denoised 
spectra are displayed in a heatmap, with time along the horizontal axis and 
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Fig. 4.5. SiZer plot of the effect of different wavelet thresholds (vertical axis) on 
the deviations of denoised spectra from a highly smoothed version (white curve). 

thresholds along the vertical axis. The raw spectrum and the super-smooth 
curve are overlaid on top of the heatmap. In the example in Figure 4.5, most 
of the noise has been removed by the time the threshold reaches 4 or 5. The 
rightmost of the set of three peaks centered around 15 800 clock ticks appears 
to fade by the time the threshold reaches about 10 or 12. For this spectrum, 
a threshold between 6 and 10 looks appropriate. By focusing the SiZer plot 
on different regions of the spectrum, the analyst can refine this estimate and 
select a threshold that retains most of the visible peaks without following 
all the zigs and zags in the noise. It would, of course, be extremely useful if 
the selection of the threshold could be automated, preferably by defining a 
reasonable objective function of the threshold that could be optimized. 

We have also described the biases that can occur in the heights of peaks 
that overlap their neighbors. One can, of course, insert any preferred baseline 
correction method between Steps 4 and 5 of the procedure described above. 
One would then have a choice of quantification methods available, including 
the maximum peak height or the area under the curve. Regardless of which 
method is used, however, a critical issue affecting downstream analysis of the 
resulting peak quantification matrix is the high level of correlation between 
peaks. Many successful analyses of mRNA expression microarray data have 
been conducted that either explicitly or implicitly assume that genes are inde­
pendent. We suspect that the success of these methods has depended, at least 
in part, on the fact that the correlation matrix for gene expression is relatively 
sparse. The correlation matrix for protein peaks, by contrast, appears to be 
much denser. In addition to matrix adducts, sodium adducts, and isotope dis-
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tributions that give rise locally to correlated peaks, there can also be distant 
correlation arising from the same protein present in the mixture in different 
charge states. (Keep in mind that we can only infer the mass-to-charge ratio 
from the time-of-flight, and cannot isolate the mass.) In some cases, there 
can be significant negative correlation between peaks that is both biologically 
and statistically significant. For example, phosphorylating a protein adds an 
80-Dalton phosphate group to the unmodified protein, producing two peaks 
separated by 80 Daltons. Biologically, phosphorylation typically activates a 
protein, changing its behavior within the cell. It is certainly conceivable that 
one important difference between cancer cells and their healthy counterparts 
may lie not in the amount of a particular protein that is present but on the 
extent to which that protein is activated. If this is the case, then it could 
give rise to a pair of negatively correlated peaks separated in mass by 80 
Daltons. In general, analysts dealing with peak quantification data from mass 
spectrometry experiments should be prepared to incorporate the correlation 
structure into their models. 

The method described here does not perform normalization as a routine 
part of pre-processing. Analysts can still perform normalization later using the 
quantified peak heights. Such normalization can borrow techniques from the 
world of mRNA microarrays. For example, global normalization by dividing by 
the median peak height is likely to be robust and reasonably effective. One can 
also use linear mixed models in the spirit of Kerr et al. (2000) or Wolfinger 
et al. (2001) to incorporate peak-based normalization into the analysis of 
differential expression. Other alternatives for normalization are described in 
the next section. 

4.5 Alternatives 

Most alternative methods normalize by dividing by the total ion current 
(TIC), which is just the sum of the intensities under all or a substantial 
portion of the curve. Methods for computing TIC vary widely; it can be com­
puted on raw data, basehne corrected data, or smoothed data. It can also 
be computed on the time scale or on the m/z scale. One must be careful on 
the m/z scale because some computations fail to account for the fact that 
the observations are no longer equally spaced. The total area under a curve 
estimated at a few thousand time points can be quite large; consequently, 
the normalized values are often multiplied by a large (arbitrary) constant to 
put the intensity units on a scale that doesn't require quite so many decimal 
points to display. 

A basic suite of methods for processing SELDI data is implemented in 
the ProteinChip software from Ciphergen (Fung and Enderwick, 2002); these 
methods are comparable to those that have traditionally been used in the 
mass spectrometry community. Their default analysis is close to the order 
in our initial description of processing steps. They process one spectrum at a 
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time, beginning with calibration to map the time-of-flight data to m/z values. 
They then perform baseline correction by fitting a vaxying-width segmented 
convex hull to the spectrum. Optionally, one can first smooth the spectrum by 
computing a moving average in a fixed width window before fitting the convex 
hull. Our own experience with Ciphergen's baseline correction suggests that 
it has a tendency to slice through the bottoms of peaks in areas of rapidly 
changing baseline (such as the region from 10 to 20 ms in Figure 4.2). They 
next denoise the spectrum either using a moving average or a Savitzky-Golay 
filter. The window size for the moving average can be constant on either 
the time scale or the m/z scale, or can vary over segments of the spectrum 
to account for the differences in the expected width of peaks. Their peak 
detection algorithm attempts to identify regions that rise above local valleys 
by a user-specified multiple of the noise. Peaks can be filtered based on the 
signal-to-noise ratio (S2N), whether the width of the peak at half-height is a 
specified multiple of the expected peak width, or by requiring the peak to have 
some minimum area. Normalization is performed by dividing by TIC or by the 
height or area of a specified control peak. Because the Ciphergen algorithm 
finds peaks in individual spectra, they must make a second pass to decide 
which peaks "match", or represent the same protein, in different spectra. 
They typically match peaks if their relative mass differs by a fixed percentage; 
this algorithm is based on the idea that the instrument has a nominal mass 
accuracy typically on the order of 0.1% - 0.3% across the entire range. In 
practice, such accuracies are probably achievable in the calibrated region, but 
the errors can be much larger when the calibrations are extrapolated to a 
wider range. 

Yasui and colleagues (2003b) have described a method that does not at­
tempt to quantify peaks; instead, they compute a binary indicator for the 
presence or absence of a peak. They define a point on the graph of the spec­
trum to be a peak if it satisfies two properties. First, it must be a local maxi­
mum in a fixed width window. (They use a window that extends 20 clock ticks 
on either side.) Second, it must have an intensity value higher than the aver­
age intensity in a broad neighborhood, where this average is computed using 
the super-smoother method in a window containing 5% of the data points. 
Because their downstream analysis only depends on presence or absence of 
peaks, they do not need to concern themselves with baseline correction, and 
denoising is implicitly accounted for by the super-smoother. They must still 
find an appropriate way to match peaks across spectra. 

Our own pre-processing methods have evolved over time. Initially, we used 
a series of steps closely related to the Ciphergen routines (Baggerly et al., 
2003). This method worked on calibrated spectra one at a time. We started 
by performing baseline subtraction using a "semi-monotonic" local baseline. 
We began by computing the local minimum in a fixed sized window (200 time 
steps). We next imposed a monotonicity requirement. (Note that this method 
would only make sense for the spectrum in Figure 4.2 by discarding the portion 
to the left of about 12 ms.) Since the combination of monotonicity with local 



4 Pre-Processing Mass Spectrometry Data 91 

minima would tend to be biased low as we moved to the right (and thus had 
a greater opportunity to see extremely low values of the noise), we added a 
"fuzz" parameter and computed the baseline as the smaller of the "monotone 
minimum + fuzz" and the "local minimum". We then normalized to TIC. 
The spectrum was then divided into windows whose width increased smoothly 
(along a quartic polynomial) across the spectrum. We quantified peaks as the 
maximum value in the baseline corrected spectrum in each window. 

Our second method also worked on calibrated spectra one at a time 
(Coombes et al., 2003). This method performed peak-finding on the raw spec­
tra, without baseline correction or denoising. Using first differences, a large list 
of candidate peaks was generated from all local maxima in the raw spectrum. 
The median absolute value of the first difi'erences was used as an estimate 
of noise, and any local maximum that did not rise above the nearest local 
minimum by more than the noise was eliminated. Next, local maxima that 
were separated by fewer than T = 3 time steps of M = 0.05% relative mass 
units were combined into a single maximum. Then any peak where the slope 
from the maximum down to the nearby local minima was less than half the 
noise was eliminated. After this preliminary peak list was generated, the in­
tervals containing the peaks were removed from the spectrum and replaced by 
linear interpolations. The baseline was estimated from the peak-free spectra 
by taking the local minimum in a fixed width window. The process of peak-
finding and removal for baseline estimation was iterated to produce a stable 
baseline-corrected spectrum with an associated peak list. Peaks were matched 
across spectra if they differed in time by T time steps or in relative mass by 
M units. 

Our third method initially worked one spectrum at a time on calibrated 
spectra, but introduced the UDWT for wavelet denoising (Coombes et al., 
2005b). Denoising was performed as the first step of processing, using hard 
thresholding as described above. Baseline correction used a monotone local 
minimum; normalization was performed by dividing by TIC. Peak finding was 
performed on the denoised, baseline-corrected, normalized spectrum. After 
wavelet denoising, every local maximum is a candidate peak. Since the wavelet 
transform also gives local estimates of the noise, the only filtering performed 
on the peaks was to remove candidate peaks with S2N below a threshold. 
Peaks were quantified by the height of the local maximum in the processed 
spectrum. Peaks were matched across spectra if they differed in location by 
at most T = 7 time steps or in relative mass by at most M = 0.3%. 

The next step in the evolution of our pre-processing routines was to in­
troduce the idea of using the mean spectrum for preprocessing (Morris et al., 
2005). In this approach, we first aligned the spectra and computed the mean. 
We then denoised the spectrum using the UDWT, baseline corrected with a 
monotone minimum, and found peaks in the mean spectrum by keeping all 
local maxima with S2N > 5. In order to quantify these peaks in the individual 
spectra, the spectra were also wavelet denoised, basehne-corrected using the 
monotone minimum, and normalized to TIC. The size of a peak in an Individ-
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ual spectrum was taken to be the maximum value of the processed spectrum 
in the interval defining the peak. 

All of these methods experience some difficulty with overlapping peaks, 
since the quantification for one peak will also contain possibly contaminating 
information from overlapping peaks. One approach for dealing with this prob­
lem is to model the spectra as a sum of peaks, with the peaks represented by 
some parametric form, and perform deconvolution. Ideally, this modeling and 
deconvolution should appropriately partition each intensity among all over­
lapping peaks. One example of this approach is given by (Clyde et al., 2006), 
in which the authors represent the peaks using a sum of Levy processes. While 
potentially improving the quantifications, deconvolution also has the potential 
to introduce errors and extra variability to the process. There is a need for 
careful studies comparing methods involving deconvolution with those that 
do not. 

Almost all methods in existing literature for analyzing mass spectrometry 
data involve first performing peak detection and quantification, then ana­
lyzing the peaks. An alternative approach is to model the mass spectra as 
functions, for example using functional mixed models (Morris et al., 2006). 
This approach has the potential to identify differentially expressed regions of 
the spectra that might be missed by peak detection algorithms, and also can 
automatically adjust for systematic effects due to nuisance factors, e.g., block 
effects, affecting both the intensities (y-axis) and locations (x-axis) of the 
peaks. Further study is necessary to compare the functional and peak-based 
approaches to determine the advantages and disadvantages of each. 

4.6 Case Study: Experimental and Simulated Data Sets 
for Comparing Pre-Processing Methods 

As you can tell from the previous section, a wide variety of methods have been 
proposed for pre-processing mass spectra. Not surprisingly, it can be difficult 
to determine which methods are better than others. The evolution of our own 
thought on the matter (described in painful detail above) has been guided 
by two kinds of data sets: Actual experimental data consisting of replicate 
spectra from the same sample, and a large set of simulated data. 

Our collaborators have been willing to produce data sets containing nu­
merous replicate spectra, obtained by processing aliquots of the same sample 
on different days and different chips. Specifically, samples of nipple aspirate 
fluid (NAF) were collected from women with unilateral breast cancer and from 
healthy women using methods that we have described elsewhere (Kuerer et al., 
2004; Pawlik et al., 2005). Small amounts of the samples from all women in 
the study were pooled to produce a single quality control (QC) sample. The 
QC sample was divided into aliquots and stored at —80°C. In an initial exper­
iment, the QC sample was processed on two spots of each of three different 
eight-spot ProteinChip arrays (Ciphergen Biosystems, Inc., Fremont, CA). 
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This procedure was repeated for four successive days, producing a total of 
24 spectra from the same sample. In all subsequent experiments with biolog­
ical samples of interest, two spots of each eight-spot ProteinChip axray were 
used for the QC sample. Since 36 additional arrays were used, this produced 
72 more replicate spectra from the same QC sample, collected over several 
months. This data set allows us to compare pre-processing methods by ex­
amining the extent to which they produce reproducible results on replicate 
spectra (Coombes et al., 2005b). Details on how these samples were used for 
QC have been described elsewhere (Coombes et al., 2003). 

We analyzed the initial set of 24 QC samples using several different al­
gorithms (Coombes et al., 2005b). Because all the samples were the same, 
our main concern was whether the processing methods could reproducibly 
find the same peaks. First, we applied our wavelet-denoising algorithm with 
a threshold of 10 to individual spectra, using the "monotone minimum" to 
correct baseline. This method detected, on average, about 211 local maxima 
per spectrum in the region above 950 Daltons/charge. Of these local maxima, 
about 158 per spectrum had S2N > 2 and about 96 had S2N > 10. 

Next, we analyzed the same spectra using the algorithm in the Ciphergen 
ProteinChip software. With the default parameter settings, the Ciphergen 
algorithm found only 9 peaks per spectrum. When we increased the "peak 
sensitivity" setting to maximum, making no other changes, then the Ciphergen 
algorithm found only 41 peaks per spectrum. Thus, the wavelet denoising 
method consistently found more peaks than the Ciphergen algorithm. 

One possible explanation of the difference between the algorithms is that 
the Ciphergen algorithm is more conservative than the wavelet-based algo­
rithm, and thus only finds the tallest, most reliable peaks. If this were the 
case, then we would expect the Ciphergen algorithm to be more reproducible 
across spectra. In order to test this possibility, we matched peaks across spec­
tra if they difi'ered in time by fewer than 7 time steps or in relative mass 
by less than 0.3%. With these matching criteria, the wavelet-based method 
found a total of 174 distinct peaks and the Ciphergen algorithm (at maxi­
mum sensitivity) found a total of 149 distinct peaks. We plotted a histogram 
counting the number of times, in 24 samples, that the same peak was identi­
fied as present (Figure 4.6). We found that with the wavelet-based algorithm, 
47 peaks were present in all 24 spectra, 83 peaks were found in at least 20 
spectra, and 130 peaks were found in at least 10 spectra. With the Ciphergen 
algorithm, by contrast, only 6 peaks were present in all 24 spectra, and 47 of 
the 149 distinct peaks were present in only 1 spectrum. On this data set, the 
wavelet-based methods not only identified more total peaks, but it identified 
them more reproducibly. 

We also analyzed the same spectra using the method described by Yasui 
and colleagues (2003b). We applied their method with a grid of parameter val­
ues, letting the window parameter range take on the value 10, 20, . . . , 100 and 
the smoothing parameter take on the values 0.01, 0.02, 0.05, 0.07, 0.10, 0.15, 
and 0.20. For each combination of parameters, we computed the mean and 
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Pe£ik Distribution Using Our Algorithm 
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Fig. 4.6. Histograms showing the number of peaks found in repHcate spectra. (Top) 
Our wavelet-based algorithm found 174 distinct peaks, and 47 of those peaks were 
found in all 24 spectra. (Bottom) The Ciphergen algorithm found 149 distinct 
peaks, but 47 of the peaks were identified in only one spectrum and only 6 peaks 
were identified in all 24 replicate spectra. 

standard deviation of the number of peaks found in the 24 replicate spectra. 
The standard deviation was about the same (mean 64.26, range 60.36 — 70.43) 
for all choices of the parameters. The mean number of peaks appeared rela­
tively insensitive to the smoothing parameter, but decreased significantly as a 
function of the width parameter. Figure 4.7 shows a single spectrum in three 
different mass ranges. The overlaid curve is a super-smooth using 5% of the 
data points; circles indicate peaks found by Yasui's method using a window 
width of 80. With these parameters, their method detected an average of 267 
"peaks" per spectrum. In the higher mass range (above 20 000 Da), these peaks 
do not appear to differ significantly from the surrounding noise. At lower mass 
ranges (between 2 000 and 3000 Da), however, the window width prevented 
several clearly visible peaks from being detected. In the middle mass range, 
we also saw clear peaks (e.g, around 14500 and 14800 Daltons) that went 
undetected because they fell below the level of the super-smooth curve. If we 
decreased the window width or the super-smooth parameter in order to de­
tect the obvious peaks in the low and middle mass ranges, we obtained vastly 
larger numbers of spurious peaks in the high mass region. The reproducibility 
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across spectra of the peaks found by Yasui's method was comparable to those 
found by the Ciphergen algorithm (data not shown). 

24000 26000 

m/z 

28000 30000 

Fig. 4.7. Results of the peaJi-finding method proposed by Yasui and colleagues. 
The gray curve is the raw spectrum; the black curve is a super-smooth using 5% 
of the data. Circles mark local maxima that exceed the super-smooth level, which 
should correspond to peaks. 

Reproducibility, by itself, is not enough to determine which method works 
better. One can potentially get more reproducible results by being very con­
servative about which features in a spectrum are called peaks. The largest 
peaks may be found very reproducibly, but the cost of a highly conservative 
approach is that a large number of smaller peaks may become "false nega­
tives" — true peaks that cannot be used in later analyses because they were 
never found to begin with. Another potential problem is that the measure of 
reproducibility depends on matching peaks across spectra, using an algorithm 
that itself is not error-free. The matching step is required because even after 
calibration and alignment, peaks will not be perfectly aligned across replicates. 
Our matching algorithm joins peaks into "bins" if the difference in mass is less 
than 0.3%. Shght errors in alignment can combine with an occasional spurious 
peak to lump distinct peaks into a common bin (Figure 4.8). 
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g -

Fig. 4.8. Difficulties in peak matching. Circles indicate the presence or absence of 
peaks in the 24 replicate NAF spectra. Vertical lines mark the bins that separate 
distinct "matched" peaks. The overlaid curve is the mean spectrum. 

Without knowing the true biochemical composition of the samples used in 
the experiments, it is hard to develop additional criteria by which to evaluate 
processing methods. To deal with this problem, we developed a simulation en­
gine in S-Plus (Insightful Corp., Seattle, WA) that allowed us to simulate mass 
spectra from instruments with different properties (Coombes et al., 2005a). 
The simulation engine was based on a mathematical model of a physical mass 
spectrometry instrument. We initially used the model to explore some of the 
low-level characteristics of mass spectrometry data, including the limits on 
mass resolution and mass calibration, the role of isotope distributions, and 
the implications for methods of normalization and quantification. We then 
used the simulation engine to compare peak finding based on individual spec­
tra to peak finding using the mean spectrum (Morris et al., 2005). We referred 
to the algorithm that matched peaks that were found by the wavelet-based 
algorithm on separate or single spectra as SUDWT. The algorithm that used 
the same denoising and baseline correction procedures but found peaks in the 
mean spectrum was called MUDWT. 

For the simulation, we began with a virtual population, which is a dis­
tribution that describes the peaks that might be found in a virtual sample 
drawn from this population. An individual peak was characterized by four 
parameters: Its mass X, its mean M intensity on the log scale, its standard 
deviation S on the log scale, and its prevalence P, which is the probability 
that it is present in any given sample. We modeled the prevalence with a 
beta distribution and modeled the triple {log{X),M,S) with a multivariate 
normal distribution; the hyperparameters describing these distributions were 
estimated from real data. We simulated virtual populations containing 150 
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Table 4.1. Overall results from the simulation study. The top element in each box 
is the mean quantity over the 100 virtual experiments, and the bottom interval 
is the range. The comparison proportion p measures the proportion of the virtual 
experiments for which the MUDWT had higher sensitivity than the SUDWT plus 
one-half the proportion for which the methods tied. 

Settings 

n=100 

n=100 
o-=22 

n=100 
(7=200 

n=33 
o-=66 

n=200 
(T=66 

Method 
SUDWT 

MUDWT 

Comparison 

SUDWT 

MUDWT 

Comparison 

SUDWT 

MUDWT 

Comparison 

SUDWT 

MUDWT 

Comparison 

SUDWT 

MUDWT 

Comparison 

Sensitivity 
0.75 

(0.60, 0.85) 
0.83 

(0.75, 0.92) 
0.97 

0.58 
(0.43, 0.69) 

0.74 
(0.61, 0.84) 

1.00 

0.70 
(0.61, 0.80) 

0.78 
(0.69, 0.87) 

0.97 

0.73 
(0.63, 0.84) 

0.80 
(0.74, 0.86) 

0.99 

0.75 
(0.58, 0.87) 

0.85 
(0.75, 0.91) 

1.00 

FDR 
0.09 

(0.02, 0.26) 
0.06 

(0.00, 0.41) 
0.80 

0.25 
(0.11, 0.41) 

0.23 
(0.10, 0.52) 

0.63 

0.08 
(0.00, 0.17) 

0.05 
(0.00, 0.45) 

0.86 

0.09 
(0.01, 0.20) 

0.06 
(0.00, 0.36) 

0.85 

0.12 
(0.02, 0.46) 

0.11 
(0.00, 0.31) 

0.69 

peaks. In order to simulate a virtual experiment, we drew N samples from 
the population, processed them through our virtual mass spectrometer, and 
added Gaussian white noise with mean zero and standard deviation a. For 
each combination of N and o", we stimulated 100 different experiments. In 
each experiment, we applied both SUDWT and MUDWT to detect peaks. 
Performance of the algorithms was measured by the sensitivity (the propor­
tion of true peaks matching at least one found peak) and the false discovery 
rate (FDR; the proportion of found peaks that matched no true peak). We 
found that, at comparable FDR levels, MUDWT had higher sensitivity overall 
than SUDWT (Table 4.1). SUDWT did have a slight advantage when detect­
ing peaks at low abundance and low prevalence; see Morris et al. (2005) for 
details. 
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4.7 Lessons Learned 

Prom our case study, we see that different pre-processing methods can lead 
to very different numbers of detected peaks. Thus, it is of crucial importance 
to identify approaches for comparing different methods and identifying which 
are most effective. We discussed two here. First, an experimental data set 
containing many replicate spectra from the same sample allows us to compare 
methods based on how reproducibly they detect peaks. Second, simulated 
spectra are useful for determining conditions under which different methods 
more accurately find and quantify peaks. We discussed a MALDI-TOF sim­
ulation engine that can be used to generate virtual spectra for which the 
true proteins and quantifications are known, and thus can be used to validate 
different methods. We focused on validating the peak detection step here, 
but it could be used equally well for comparing different denoising, baseline 
correction, and quantification methods, and could also be used to evaluate 
methods for identifying differentially expressed peaks and/or building classi­
fication models based on subsets of peaks. 

4.8 List of Tools and Resources 

Increased activity in the development of analytical tools to process mass spec­
tra have produced a number of software packages. 

1. A software package (Cromwell) implementing our methods in MATLAB 
(The Math Works, Natick, MA) is available on our Web site at h t t p : / / 
b ioinformatics .mdanderson.org/sof tware .html. The replicates in the 
NAF data set and the simulated data sets are also available by following 
the link to "Public Data Sets". 

2. Bioconductor (h t tp : //www. bioconductor. org/) , which began as a project 
to develop analysis tools in the statistical programming language R, has 
recently added a package called PROcess for the low-level processing of 
mass spectra. 

3. The Cancer Bioinformatics Grid (caBig) is an effort by the United States 
National Cancer Institute to develop reusable software tools, standards, 
ontologies, and shared data. Progress of the caBig proteomics working 
group can be followed at the Web site 
ht tps: / /cabig.nci .nih.gov/workspaces/ICR/Meetings/SIGs/Proteomics/ . 

4. Under the auspices of caBig, Duke University has been developing a suite 
of R programs to process mass spectra, called RProteomics 
(h t t p : / / g fo rge .nc i . n ih .gov /p ro j ects / rproteomics) . 

5. The wavelet-based methods described in Coombes et al. (2005b); Morris 
et al. (2005) and the methods described in Yasui et al. (2003a,b) have 
been implemented as a commercial add-on, Proteome 1.0, to S-PLUS (In­
sightful, Seattle, WA). 
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6. Incogen (Williamsburg, VA), in cooperation with proteomics researchers 
at William and Mary College and the Eastern Virginia Medical School, 
has included support for the processing and analysis of mass spectra in 
its Visual Integrated Bioinformatics Environment (VIBE) software. 

Naturally, manufacturers of mass spectrometers supply software with their 
instruments that does some form of basic pre-processing. When shifting away 
from the manufacturer's software to an alternative package, one has to worry 
about file formats. Ciphergen, for example, saves spectra in a proprietary bi­
nary format but also allows you to export them as commarseparated-values 
with two columns {m/z and intensity) or in a simple XML format. The XML 
file format is usually preferable, since it retains information about the pro­
tocol and the condition of the instrument when the spectrum was acquired. 
Two different efforts are underway to develop standard XML formats for mass 
spectrometry data. The de facto standard appears to be mzXML (described 
in detail at http://tools.proteomecenter.org/mzXMLschema.plip), which 
is supported by conversion tools that accept the native format from several 
different MALDI-TOF instruments and was adopted by caBig. An alterna­
tive XML format, mzData (h. t tp: / /psidev.sourceforge.net /ms) is being 
developed by the Proteomics Standards Institute. 

4.9 Conclusions 

Numerous methods have now been suggested for pre-processing mass spectra, 
and both free and commercial software packages implementing these meth­
ods have become available. Because the methods can produce very different 
results, researchers interested in performing downstream analysis on the peak 
lists must make sure that the processing applied at the early stages is appro­
priate for their data. Ideas for quantifying which processing methods produce 
better results have started to be proposed, and data sets (both experimental 
and simulated) are available to start evaluating the performance of different 
methods. For most applications, it appears that peak detection using the mean 
spectrum is superior to methods that work with individual spectra and then 
match or bin peaks across spectra. Nevertheless, the development of better 
pre-processing methods remains an active area of research. 
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5.1 Introduction 

In the age of high-throughput biological technology, experimental data have 
grown exponentially. Searching for data structures and succinctly presenting 
them is challenging but all the more essential. Genomic and proteomic data 
are by nature multi-dimensional. Different approaches and tools axe needed for 
visualization to aid the exploration as well as quality assessment of the exper­
imental data. The bon mot "A picture is worth a thousand words" expresses 
the importance of visualization in conveyance of information. Visualization 
tools not only help us to communicate but also help us to think, organize 
knowledge and discover new patterns. The indispensability of visualization 
is best attested by its extensive day-to-day use in presentations, papers and 
books. Recent discussion about ideas and tools pertaining to genomic and 
proteomic data can be found in (Gentleman et al., 2005; Hahne et al., 2006). 

Data can be presented in various ways, as raw data, after some summa­
rization or after analysis, each for different purposes. Snapshot-like images 
of an experimental plate, for example, false color image of 96 wells, or an 
Affymetrix chip, may be shown for a visual assessment of data quality. Wells 
are displayed in the actual physical locations and intensity values of wells may 
be represented either by consecutive gray levels or by certain color continuum. 
There may be patterns that are related to the positions of the wells rather 
than the underlying biological traits. One example is local image contami­
nation, which human eyes are apt to detect. As another example, wells on 
the edges of chips or plates may have consistently higher or lower intensities 
than the wells in the middle because of different humidity, temperature or the 
sample amount. Inspection of array images can guide us in devising strategies 
for both analysis and experimental design. If edge effects are present, we may 
want to include array edges in a statistical model; or we may not want to use 
wells along array edges at all in future experiments. If a spatial pattern is 
present, we may want to use a Latin Square layout for placement of samples. 
A random or pseudo-random layout of samples is generally advised. 
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Ultimately, we are interested in relationships among variables, relation­
ships among samples and relationships between variables and samples. Ge­
nomic or proteomic data, after necessary steps of pre-processing entailed by 
the specific technology used to generate the data, e.g., baseline subtraction and 
normalization for SELDI-TOF (surface-enhanced laser desorption/ionization 
time-of-flight) mass spectrometry data, are put in a p x n matrix where p 
is the number of genes or mass over charge ratios and n is the number of 
subjects or samples under various conditions. Note that the formulation of 
this matrix representation of objects is different from the conventional matrix 
representation of objects where rows are observations or records and columns 
are variables. In genomic or proteomic data the norm is p 3> n, the number of 
variables overwhelms the number of samples. This poses new methodological 
and computational challenges because classic statistical tools and theory deal 
with the opposite situation oip <n. The advancement of science and technol­
ogy calls for new tools. An agglomeration of ideas and tools for visualization 
and analysis of genomic and proteomic data are presented in Gentleman et al. 
(2005). Various aspects of data can be graphically displayed for exploration. 
For example, if discovery and description of unknown subtypes of a disease 
is of interest, heatmaps (Eisen et al., 1998), now routinely used in bioinfor-
matics, may help in visualizing patterns or structure in data from microarray 
or proteomic experiments. Typically, genes or proteins are arranged in rows 
and samples or patients are arranged in columns. Dendrograms of genes and 
samples may be added to the row or column margins to help organize the 
heatmap. Heatmaps, together with the dendrograms in the margins, are of­
ten useful as a data exploratory tool to see if results of clustering of samples 
coincide with clinical information, and if so what gene or protein/peptide pat­
terns are associated with clusters of samples. Results of clustering of samples 
may also suggest new subtypes of disease and association between patterns of 
certain genes, proteins or pathways and potential new subtypes of disease. 

More in-depth visualization can be done on genes in a particular chro­
mosome for amplification or deletion. For example, the successive cumulative 
sums of gene expressions ordered by their physical locations on a chromosome 
can be displayed against the physical locations. By using such a visualizing 
technique it is hoped that if amplification in a single gene is too subtle, the 
successive aggregated signal of the whole region may be large enough to be vis­
ible. A nice example showing samples with trisomy 21 versus diploid samples 
can be found in chapter 10 of Gentleman et al. (2005). 

Interested readers may want to peruse Gentleman et al. (2005) and Hahne 
et al. (2006) for general ideas about visualization and ideas pertaining to 
particular technologies. These ideas and approaches are either available di­
rectly from R, a language and environment for statistical computing and 
graphics (Ihaka and Gentleman, 1996), or from R-based software packages, 
which can be conveniently downloaded from the Bioconductor Web site, 
ht tp: / /www.bioconductor.org/ . 
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Other aspects of the experimental data, for example, pathways or networks 
can be represented as graphs (see Chapter 10). Models can be built and various 
statistics can be computed. We refer readers to Chapter 9, Gentleman et al. 
(2005) and Hahne et al. (2006) for detailed discussions. 

In this chapter, we focus on one particular visualization technique, multidi­
mensional scaling (MDS). Multidimensional scaling originated in psychomet-
rics, and is also known as perceptual mapping. It is a method of visualizing the 
similarity of a set of objects, where each object is characterized by a collection 
of traits. MDS transforms similarities into distances in the familiar Euclidean 
space. 

In the context of this chapter, a typical object is a numeric vector in a 
multidimensional space W. Often we want to explore the relationships among 
the objects. For example, a numeric vector can be the gene expression data 
of a patient sample using certain microarray technology, or a mass spectrum 
obtained from a serum sample of a patient using SELDI-TOF MS. The di­
mensionality of p in those circumstances is either the number of genes or the 
number of mass over charge ratios. Each vector of gene expressions from a 
microarray experiment, or relative abundance of peptides from a proteomic 
experiment can be represented by a point in W. Since p in general is very large 
and can be in the order of thousands, MDS may be used to achieve dimension 
reduction and to display the objects in a lower dimensional space ^ , d<^p. 
Typically, d = 2 or 3 and object relationships can be easily visualized. 

5.2 Basic Concepts 

To explore the similarity among objects, we need firstly to define a measure of 
similarity, or alternatively, dissimilarity. Denote the dissimilarity between the 
i*'* and the j * ^ objects as Sij. We will consider dissimilarity in the following 
sense, 

1. The dissimilarity of an object with itself is zero, Su = 0; 
2. The dissimilarity between two objects is non-negative, 6ij > 0; 
3. The dissimilarity between two objects is symmetric, that is, 6ij = Sji. 

If dissimilarity Sij further satisfies the following properties: 

4. 6ij = 0 if and only ii i= j ; 
5. The triangle inequality holds, 6ij < 6ik + 6kj, 

then the dissimilarity measure is called a metric (Mardia et al., 1979). 
There are many dissimilarity measures to choose from to gauge the "un-

likeness" between a pair of objects, or points. The most obvious measure of 
"unlikeness" in W is the Euclidean distance (which is also a metric). Although 
some dissimilarity measures are metrics, within the context of this chapter, it 
is sufficient to consider dissimilarity measures that satisfy conditions 1-3. 
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Similarities between objects are given explicitly or are computed from a 
data matrix. For example, we may compute the Pearson correlation coeffi­
cients between pairs of patient samples to explore whether a gene or protein 
profile suggests a grouping of patients. The Pearson correlation coefficient is 
a similarity measure. We normally require that similarity s satisfies (a) sym­
metry, that is, Sij = Sji] and (b) su > Sji, an object is most similar to itself. 
Common transformations from a similarity measure to a dissimilarity measure 
are, Sij = c — Sy for some constant c > maxj^j Sij, or {su — 2sij + SjjY^"^. The 
latter transforms similarity Sjj to the Euclidean distance (therefore, a metric) 
if the matrix formed by Sij is positive semi-definite (Mardia et al., 1979). A 
popular choice of dissimilarity in genomic or proteomic studies is one minus 
the Pearson correlation coefficient (which is not a metric although its square 
root is). 

In summary, pair-wise dissimilarities, if not directly given, are computed 
from a multivariate data matrix, resulting in a matrix of dissimilarities. Since 
a matrix of similarity is symmetric, there are | n ( n — 1) possibly distinct 
dissimilarities. The steps of an MDS analysis can be described in the diagram 
in Figure 5.1. 

Data Matrix 

1 
Similarity 

i 
Dissimilarity 

'^f 

Specify dimension d 

'" 
MDS 

>r 
Scatterplot of coordinates 

Fig. 5.1. Workflow of an MDS analysis. 

Different forms of MDS exist that optimize different types of loss functions 
(or stress functions) and fall into categories of metric and nonmetric MDS. 
A loss function measures how close pairwise dissimilarities are preserved by a 
lower-dimensional approximation of the data. The distinction between metric 
and nonmetric MDS is whether the absolute values of dissimilarities or the 
order of dissimilarities are "matched" in some sense by distances (commonly 
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Euclidean) in a lower dimension ^ . Detailed discussions of loss functions and 
metric and nonmetric MDS can be found in Cox and Cox (2001). 

Note that an MDS solution Z^xn, is not unique in the sense that for any 
dx d orthogonal matrix A and an arbitrary vector b in K'', AZ + b is also a 
solution (Mardia et al., 1979). It can be easily verified that the Euclidean dis­
tances between the columns of A Z + b are the same as the Euclidean distances 
between the columns of Z. In other words, a low dimensional configuration 
produced by an MDS method is indeterminate with respect to translation, 
rotation, and reflection. This agrees with the intuition that the relationships 
between the data should be invariant to rigid motions of shifting, rotating and 
reflecting of the whole data cloud. 

5.2.1 Metric Scaling 

Metric MDS operates on a given matrix of dissimilarities D = {Sij} or trans­
formed dissimilarities, / ( % ) , where / is a continuous monotonic function, 
to find coordinates of a set of points in a lower dimensional space such that 
the distances are approximately preserved. In general, a perfect reproduction 
of dissimilarities, transformed or not, may not serve the purpose of dimen­
sion reduction and visualization. Even when distances can be reproduced, the 
number of dimensions may still be too large to be of any practical use. Hence 
loss functions that measure the "match" between original dissimilarities and 
distances in a lower dimensional ^ are introduced and optimized. 

Classical scaling is the original version of metric MDS, where the ma­
trix of dissimilarities D is treated as Euclidean distances. Classical scaling 
minimizes the loss function of sum of differences of squared dissimilarities 
in the original space and squared distances in the reduced space df^, that 
is, (f) = ^27=1 Y^l=ii^ij ~ ^fj) (Mardia et al., 1979), where dij are Euclidean 
distances between objects in ^ . 

Let Xj = ( x i j , . . . , Xpj)', i = 1 , . . . , n be n points in W and let the dis­
similarity measure be the Euclidean distance. The squared Euclidean distance 
between the i*'^ and j * ' ' points is 6^^ = (xj — Xj)'(xj — Xj). Starting from 6^^, 
classical scaling finds the inner product matrix B = [hij] with hij = x^x^ and 
from B the lower dimension coordinates. 

Given a matrix of Euclidean distances D, an algorithm of classical scaling 
is as follows: 

1. Le tA=[ - i j 2 . ] . 
2. Find the inner product matrix B by doubly centering A, B = HAH, 

where centering matrix H = I — n~^aa', where I is the identity matrix 
and the n-dimensional vector a = ( l , l , . . . l ) ' . H on the left centers the 
columns and H on the right centers the rows. 

3. Find the eigenvalues of B, Ai > A2 > . . . > A„ and corresponding nor­
malized eigenvectors V = ( v i , . . . , v „ ) with v^Vj = 1, i = 1,... ,n. 
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4. For a pre-specified d, the coordinates of the n points in ^ axe the rows 
of (v^vi, . . . ,-v/A^Vd). 

For detailed derivations, please see Cox and Cox (2001). Matrix B is not 
full rank due to centering and thus has at least one zero eigenvalue. Therefore 
in the above algorithm only n— 1 eigenvalues need to be sought. When D is 
Euclidean, or, equivalently, when B is positive semi-definite, all the eigenvalues 
are non-negative. In practice, we choose the configuration in Jf̂ , often with 
d<3, whose coordinates correspond to the first d eigenvectors of B. 

It is well known that classical scaling, when the dissimilarities are Euclid­
ean distances, is equivalent to principal component analysis using the sample 
covariance matrix (Cox and Cox, 2001). The connection can be sketched as 
follows. Without loss of generality, assume a data matrix Xpxn is row-centered 
since any matrix can be row-centered by multiplying the centering matrix H 
on its right. The inner product matrix can be written as B = X ' X = V ^ V ' (via 
spectral decomposition), where A — diag{\\,..., A„) and the columns of V 
are the corresponding normalized eigenvectors. The classical MDS solution in 
ISa^ is V i ^ i ' , where Vi is the first d columns of V, and A\ = diag{Xi,..., A^). 
On the other hand, the covariance matrix from the same data matrix is 
S = (n — 1)~^XX'. It can be shown that X 'X and X X ' have the same set of 
non-zero eigenvalues. Let ^j be the eigenvector corresponding to a non-zero Aj, 
XX'^j = Aj^j, with ^[^i = 1. Since X'Xvj = AjVj, left-multiplying both sides 
by X gives XX'Xvj = AjXvj and thus ^j = CjXvj, where Cj is a constant. 
Since 1 = ^^6 = cfv^X'Xvi = cfA^v^Vi = cfA ,̂ we have a = \T^'^. The first 
d principal component scores are 

X ' [^ i , . . . ,^d] = X ' [c iXvi , . . . ,CdXvd] (5.1) 

= [ciX'Xvi,. . . ,CdX'Xvd] (5.2) 

= [ c iA iVi , . . . , CrfAdVd] (5.3) 

= [N/A^VI, . . . , V^Vd] , (5.4) 

which is the classical MDS solution as stated in 4*'' step in the above 
algorithm. 

The algorithm can be applied to a more general dissimilarity matrix D 
where D is not necessarily Euchdean. If some eigenvalues are negative, we 
ignore them and choose the first d positive eigenvalues and their corresponding 
eigenvectors. For details of optimality in this case, see Cox and Cox (2001). 

It is generally accepted that large dissimilarities dictate the final MDS 
picture. Another algorithm developed by Sammon (Cox and Cox, 2001) min­
imizes a weighted loss function, known as weighted stress, 

t<3 •" i<3 
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Weighted loss up-scales the small dissimilarities so that they have more influ­
ence on the final MDS configuration. 

5.2.2 Nonmet r ic Scaling 

Nonmetric MDS methods were developed to treat ordinal data, in which only 
the ranks of dissimilarities are meaningful, not the actual values. The trans­
formation of dissimilarities / now only needs to satisfy the monotonicity con­
straint. Ranks are invariant under strict monotone increasing transformation. 
Nonmetric MDS methods attempt to preserve rank orders of dissimilarities 
by optimizing various forms of loss functions. 

Although nonmetric MDS methods were developed for ordinal or qualita­
tive data, they can be applied to quantitative data as well, for example, data 
vectors in W of samples from microarray experiments. In the final pictorial 
representation, it is the order of the dissimilarities of data vectors that are 
approximated, not the actual values of dissimilarities. 

One such algorithm was developed by Shepard and Kruskal in the 1960s 
(Shepard, 1962a,b; Kruskal, 1964a,b) to minimize a loss function, termed 
squared stress, 

i<j i<j 

which measures the disagreement of the resulting distances and the trans­
formed dissimilarities. 

There are many other algorithms of metric and nonmetric MDS, based 
on various transformations, loss functions and weighting. We refer readers to 
Cox and Cox (2001) for a thorough exposition. Although the global minimum 
is desired when the loss function is being minimized, in general most of the 
MDS algorithms suffer from the local minima problem. That is, an MDS 
algorithm stops at a local minimum (rather than the global minimum) of 
the loss function and thus results in a sub-optimal configuration. The only 
exception is classical scaling where a unique solution exists up to rotations, 
reflections and translations. For discussion on diagnosis of local minima, see 
Buja and Swayne (2002). 

5.3 Advantages and Disadvantages 

MDS is useful as an unsupervised machine learning tool. Given a dissimilarity 
matrix, MDS can produce a pictorial representation of objects under investi­
gation. Often MDS results are displayed in ^•^ or 3? .̂ In dt^ more than two 
principal coordinates can be explored by simple pairwise plots of the first few 
principal coordinates. If shown in d^, data representation can be manipulated 
through rotations, which allow a data analyst to examine object relationships 
from different directions to understand the entirety of the data. In the con­
text of genomic and proteomic studies, MDS is used both in exploring sample 
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relationships and gene or biomaxker relationships. If latter, MDS is merely 
used as a graphical representation of biomaxker relationships and is applied 
to a relatively homogenous group of samples. For example, Choe et al. (2003) 
used MDS plot to display gene correlations and conjectured how they may 
interact in terms of pathways. 

Note that the input to an MDS analysis is a dissimilarity matrix, and the 
output are n points in a space of d dimensions. If starting with an n x p 
multivariate data matrix, one needs to decide on a dissimilarity measure and 
compute a matrix of dissimilarities. Although data reduction may be achieved, 
there are in general no meaningful interpretations of coordinates in the low 
dimensional representation of the objects. The lack of intuition of the low 
dimensional space where the objects are visualized is a drawback for this type 
of projection-based methods. Even in the case of classical scaling, it is the 
distances that are perfectly reproduced, not the original multivariate data 
matrix. The orientations of the axes from the MDS analysis are arbitrary 
and can be rotated in any direction. In fact, distances remain the same sub­
ject to translations, rotations and reflections. Quantitative comparisons of the 
spatial relationships across different scalings do not make sense because they 
are associated with different functions that transform dissimilarities. MDS is 
rarely used as a statistical tool that allows explicit modeling of the data for 
inference, but is used in practice as an exploratory data analysis tool. What 
we should look for are clusters of points or particular patterns in the resulting 
pictorial representation of the data. 

In addition to the local minima problem mentioned earlier, MDS algo­
rithms except the classical MDS are iterative, computationally intensive and 
may diverge. Starting from a classical solution may be a good strategy in some 
cases (Ripley, 1996). 

Although principal component analysis and classical MDS yield the same 
results, the computation of the former is more intensive than the latter in the 
context of genomic and proteomic studies. When p 3> n, the computation of 
the principal component analysis is quadratic in p, while the computation of 
the classical MDS is linear in p. Some implementation of principal component 
analysis algorithm may require n>p and therefore will not work for the case 
of p » n. 

Lastly, both metric and nonmetric MDS require / , the transformation 
function of dissimilarities, to be monotonic (order preserving). However, if 
there exists some non-linear structure in the data, for example, data points 
exist in a low-dimensional manifold rather than a low-dimensional sub-space, 
MDS may not be able to retrieve such structures. 

5.4 Caveats and Pitfalls 

The pictorial representation of an MDS analysis in 3f̂  or K^ may not reveal 
any structure in the data if a large proportion of variation in the data is not 
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explained by the first two or three dimensions. Objects may appear to be close 
but can in fact be very far apart in the original space because of the remaining 
variation of the data in other dimensions. For example, if two points of ^ 
have the same x and y but different z values, the projection of them on the x-y 
plane {^•^) results in the same point, indistinguishable because of the lack of 
the information about the third dimension. Data analysts should be cautious 
in the interpretation of MDS plots because of this. Viewing a solution from 
different angles helps in general. The simple graphics function p a i r s in R can 
be used to generate 2-D marginal views of MDS results. Its application will 
be illustrated in the case study in Section 5.6. 

The decision about the number of dimensions to be used in visualiza­
tion is arbitrary, however, a plot showing a goodness-of-fit measure against 
the number of dimensions may be helpful. In classical scaling, two possible 
goodness-of-fit measures are 

d n 

i i 

o^2,a = J2^VJ2>^l (5.6) 
i i 

These two measures quantify the proportion of a dissimilarity matrix ex­
plained by the (i-dimensional classical scaling solution (Mardia et al., 1979). 
Goodness-of-fit in general means how well a model fits a set of observations. 
Measures of goodness-of-fit typically summarize the discrepancy between ob­
served values and the values expected under the model in question. In our con­
text, the model is that data can be represented in a low-dimensional space, 
^ . The dimension d should be chosen as small as possible as long as the 
goodness-of-it is not seriously impacted. For example, the point where the 
goodness-of-fit curve starts to flatten can be chosen as d, the dimension for 
the MDS solution. 

As mentioned earlier, large dissimilarities have much more influence on an 
MDS result than small dissimilarities. Consequently, if objects appear close 
in an MDS picture, it does not necessarily imply that they are similar, but 
it rather means that there exists a large set of objects from which they are 
approximately equally dissimilar (Buja and Swayne, 2002). As discussed in 
Section 5.2, Sammon mapping is an attempt to explore structure contained in 
small dissimilarities. Another approach, "within-groups MDS", was proposed 
by Buja and Swayne (2002) to explore further structures after disjoint groups 
are discovered in the whole data set. They proposed to use MDS for the objects 
in the same group. This is equivalent to minimizing the stress function with 
only those dissimilarities of objects that belong to the same group. 

The most frequently used dissimilarity measure is the Euchdean distance. 
However, Aggarwal et al. (2001) show both theoretically and empirically that 
the notion of proximity in high dimensions is better represented with the 



112 Xiaochun Li and Jaroslaw HarezlaJc 

use of lower values of k in the Lk metrics. Thus, for instance the Li-metric 
(Manhattan distance) is preferable to the L2-nietric (Euclidean distance). 
They also introduce distance measure Lk with 0 < fc < 1 and show empirically 
improvements in clustering algorithms and similarity searches. 

Clustering of objects suggested by MDS might not be stable in the presence 
of noise and thus the robustness of clusters may be of interest. Krzanowski 
(2006) discusses the stability of the solutions obtained via MDS. He advocates 
the use of leave-one-out cross-validation in the sensitivity analysis of the clas­
sical scaling. The procedure involves performing n + 1 separate analyses, one 
for the full dissimilarity matrix and n for an omission of each combination 
of i*'* row and i*^ column (i £ { 1 , . . . ,n}). The coordinates of the points for 
each analysis are obtained via a spectral decompositions of the n + 1 dissimi­
larity matrices. Assessment of stability is performed by plotting around each 
point the smallest hyper-sphere containing a percentage (e.g., 95%) of the 
n + 1 points obtained from the cross-validation procedure. Points with non-
overlapping hyper-spheres indicate their membership in different clusters. If 
feature selection is carried out before MDS, it should be incorporated into the 
cross-validation procedure in the assessment of the robustness of the MDS 
result. 

5.5 Alternatives 

In genomic or proteomic studies, there are thousands of features (genes or 
proteins/peptides). Both biologically differentiating or non-differentiating fea­
tures contribute to dissimilarity calculation. Non-differentiating features are 
just white noise, which may overwhelm the few differentiating features and 
cause the problem of indifferentiation (Buja and Swayne, 2002). Consequently 
we may not be able to see any clustering of objects in the low dimensional 
representation of the data. Filtering data before application of MDS may help 
enhance signal and reduce noise. A collection of filters can be found in the R 
package genef l i t e r from the Bioconductor Weh site. 

Non-specific filters that do not use sample class labels can be used. For 
example, coefficients of variation (cv) of features can be computed; and only 
those features with cv above a certain threshold are included in an MDS 
analysis. Specific filters, such as t-test to select features that axe different be­
tween biological groups, can also be used. However, the MDS results obtained 
by using only the subset of differentiating features should be interpreted with 
caution. It is expected that we see in the picture that there are distinct groups, 
since the features are chosen to be the most differentiating between groups. 
We present here a possible way of resolving this circular reasoning. A data set 
can be randomly split into training and test sets. Features are selected in the 
training set and then used as input variables to an MDS analysis in the test 
set. The MDS result of the test set is then compared to that of the training 
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set to see if the same pattern is present in the test set. This process can be 
carried out multiple times for different random splits of the data. 

Other methods, including projection pursuit methods, clustering algo­
rithms and self-organizing maps (see Chapter 6, Section 6.2.2.3), can also 
be used for visualization of clusters. We would like to refer to Ripley (1996), 
Hahne et al. (2006) and Venables and Ripley (2002) for technical details and 
discussion of applications. 

Finally, non-linearity in the data structure has been addressed in the re­
cent development in MDS research, e.g., isometric mapping of data manifolds 
Isomap (Tenenbaum et al., 2000) and a concurrent paper on locally linear em­
bedding LLE (Roweis and Saul, 2000). The complex data sets that motivated 
the research included images of human faces and handwriting, which are repre­
sented by vectors of pixel intensities in high dimensions. Because of the inher­
ent structures in the images, there exist strong correlations between images. 
This generates data points that lie on or close to a smooth low-dimensional 
manifold. The approach of Tenenbaum et al. (2000) preserves the geodesic 
distance (the shortest distance along the manifold) instead of transformed 
Euclidean distance. Alternatively, the approach of Roweis and Saul (2000) 
also employs the knowledge of the manifold structure of the data. Given that 
the manifold is well sampled, each data point and its neighbors lie approxi­
mately on a plane. LLE constructs a neighborhood preserving mapping. Both 
approaches share a general principle of manifold learning that the aggregate of 
overlapping local neighborhoods, if analyzed collectively, provides information 
of global geometry. 

5.6 Case Study: MDS on Mass Spectrometry Data 

For our case study, we will use a spike-in data set that was obtained from 
patients' samples to which five known proteins were added in combinations of 
planned different concentrations. Spike-in experiments are a means to assess 
accuracy and precision of a biological analytical technique. In this exercise 
we will use MDS to project the spectra of this data set to 3fî  or 3?̂  to see 
whether distinct clusters of samples can be visualized and if so, whether the 
clusters correspond to the true group labels (the combinations of proteins and 
concentrations added). The knowledge of the true membership of samples will 
serve the illustrative purpose of visualization tools used. 

The data set of the spike-in experiment is gathered from anonymous 
prostate cancer patients (Park et al., 2005). According to the paper of Park 
et al. (2005), plasma samples from 91 prostate cancer patients were divided 
into seven age matched groups, each with 13 patients. The groups were la­
beled A-G. Groups B-F were spiked with five proteins at 1, 2, 5, and 10 times 
the respective minimal concentrations using a design depicted in Table 5.1. 
As shown in Table 5.1, one of the proteins was left out and the remaining four 
were added at the different concentrations in each of the groups resulting in 
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no identical groups. The minimal concentration of each of the spiked proteins 
allowing for a detectable peak in plasma had been experimentally determined 
and is labeled as 1. Group A was not spiked and Group G contained all five 
proteins at maximal (10) concentrations. Since the patients were selected to 
be similar in terms of disease and were matched by age across groups, the 
only difference among the groups is the addition of different combinations of 
the five proteins at certain concentrations. 

Table 5.1. Design and the protein concentration, proteins 1 = Ubiquitin 
(1 fmol/uL), Cytochrome/Lysozyme/Myoglobin (10 fmol/uL), Trypsinogen(100 
fmol/uL) 

Group Cytochrome c 
A 0 
B 0 
C 1 
D 2 
E 5 
F 10 
G 10 

Ubiquitin 
0 
1 
2 
5 
10 
0 
10 

Lysozyme Myoglobin 
0 
2 
5 
10 
0 
1 

10 

0 
5 
10 
0 
1 
2 
10 

Trypsinogen 
0 
10 
0 
1 
2 
5 
10 

Following the addition of proteins, 20 fiL of each plasma sample was di­
luted with 30 /iL 9 M urea and incubated at 4°C for 30 minutes in order to 
denature proteins. The samples were further diluted with 150 /xL 1 M urea 
and subsequently stored at —80°C until analyzed by surface-enhanced laser 
desorption/ioniziation time-of-fiight (SELDI-TOF) mass spectrometer, using 
a Biomek 2000 (Beckman Coulter, FuUerton, CA), CMIO ProteinChip Ar­
rays (Ciphergen Biosystems, Preemont, CA). The samples were analyzed on 
a PBSIIc SELDI-TOF mass spectrometer (Ciphergen) according to the man­
ufacturer's instructions at a laser setting of 190, detector setting of 7, and a 
digitizer rate of 1000. 

For the purpose of illustration, we will use three groups of A, D and G. 
Raw spectra were baseline-corrected and normalized using the Bioconductor 
R package PRDcess (Li et al., 2005). The distance matrix was computed from 
the data matrix of processed spectra, Xpxnj where p = 119400 and n = 39. 
Classical MDS was then applied. 

To visualize the results, interactive tools exist, for example, ggobi, that 
enables a data analyst to examine the data cloud in K^ from all possible 
angles. For static presentation of the MDS results of the case study, we chose 
to use two R tools, p a i r s plot and the R package sca t te rp lo tSd. The R 
function p a i r s can be used to provide 2-D marginal views of MDS results 
for d > 3. Although human eyes axe able to perceive depth, at any given 
angle they get a 2-D snapshot of an object. If it is a foreign object we have 
no experience with, we may need to "go around it" and take a series of such 
"snapshots" to arrive at a whole view of it. A collection of 2-D marginal views 
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of the first few principal coordinates may be more informative than the 2-D 
rendering of the MDS results in understanding relationships between objects, 
especially when the first two directions do not explain the majority of the 
variation in the data. The same can be said about the 3-D rendering of an 
MDS result and its associated 3-D marginal views. 

The R function sca t t e rp lo tSd allows the viewer to rotate the data cloud 
in 5R̂  around the 2;-axis. By using its angle option, a data analyst is able to 
explore the data cloud from a set of consecutive angles for potential patterns. 
With minimal programming effort, one can easily rotate the data cloud around 
either x- or y-axis, if so desired, by passing the coordinates corresponding to 
X- or 2/-axis as the last column of the coordinates matrix. 

Figure 5.2 presents the set of 2-D marginal views of the first four principal 
coordinates resulting from the classical MDS scaling applied to the 39 spectra. 
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Fig. 5.2. Classical MDS scaling results of 39 spectra from groups A, D and G. 
Circles represent group A, squares group D and triangles group G. Each group has 
13 spectra. 

The first plot in Figure 5.2 is actually the 2-D MDS representation of 
the 39 spectra, in which we see two distinct groups, A alone, and D and G 
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together. There are four points that appear to be outUers. Among all marginal 
plots, the plot of the second and the third principal coordinates shows the best 
separation of the three groups. However other than the outlier of group A, 
the other three outliers are not so obvious in this marginal view. In a 2-D 
representation, objects may appear to be very close but can be very far apart 
in the original space because the "depth" is not reflected. 

Figure 5.3 shows the same classical MDS scaling results of 39 spectra in 
^ . We see three clusters and four spectra that are far from their own clusters. 

400 
200 1 ^ 

-400 -200 0 200 400 600 800 1000 
first coordinate 

Fig. 5.3. Classical MDS scaling results of 39 spectra from groups A, D and G. 
Circles represent group A, squaxes group D and triangles group G. Eax;h group has 
13 spectra. 

It is of interest to determine how each of them differs from its own group 
members. Spectra of each group are biological replicates (in the sense that 
they are obtained from samples of difiFerent individuals but yet under the same 
experimental treatment). Ideally, if one spectrum is plotted against another 
from the same group, we would expect a tight data cloud around the 45° 
line. The outlier spectrum of group A is plotted against three other spectra of 
group A in Figure 5.4. The upper right off-diagonal panels show the spectra 
against each other and the lower left off-diagonal panels show the Pearson 
correlation coefficients between pairs of spectra, with the sizes of the numbers 
proportional to the magnitudes of the correlation coefficients. 

We observe that the outlier has unusually high intensities where the other 
spectra have intensities close to zero. As a result it has poor correlation with 
the rest of the spectra, while correlations between the other spectra are rather 
good. We suspect that it is due to the chemical and electronic noise at small 
mass-over-charge {m/z) values (Fung and Enderwick, 2002; Baggerly et al., 
2004). If we use an arbitrary cutoff point of 1000 and plot the portion of 
spectra with m/z values above 1000 against each other, we see in Figure 5.5 
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Fig. 5.4. The outlier in group A and three other spectra from the same group 
are plotted against each other. The lower left panels show the Peaxson correlation 
coefficients of pairs of spectra. 
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Fig. 5.5. The outlier in group A and three other spectra from the same group are 
plotted against each other, after ignoring the portion with m/z below 1000. The 
lower left panels show the Pearson correlation of pairs of spectra. 

that the data cloud is more or less around the 45° line, and the correlations 
between the outlier and the other spectra are greatly improved. 

We repeat the same exercise for the other three outliers. We find that 
removing the lower m/z portion of spectra helps to reduce noise in the data 
in the sense that truncated outlier spectra resemble the members of their 
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Fig. 5.6. Classical MDS scaling results of 39 spectra from groups A, D and G, 
ignoring the portion of spectra with m/z below 1000. Circles represent group A, 
squares group D and triangles group G. Solid symbols represent the outliers detected 
eaxlier. Each group has 13 spectra. 

respective groups. Ultimately, we are interested in reduction of noise and 
enhancement of signal. Does removal of the lower m/z portion of spectra help 
to define object relationship better? We apply classical MDS scaling to the 
spectrum matrix with the lower m/z portion of spectra clipped off. Figure 5.6 
shows that the clusters are much tighter, with outliers closer to their respective 
groups. 

A p a i r s plot of the above MDS results shows that a 2-D MDS plot (Fig­
ure 5.7) is now sufHcient in portraying the three distinct groups. A formal 
selection of a cutoff is possible when technical replicates are available. By 
technical replicates we mean spectra obtained from samples from the same 
individual and under the same experimental treatment. Li et al. (2005) pro­
posed a cutoff selection approach by examining average standard deviations 
for various cutoffs. MDS can be used together with this process to examine 
the effects of eliminating various noise regions. 

We applied two other methods, Sammon's and Kruskal and Shepard's 
algorithms, implemented as sammon and isoMDS of the MASS library, to this 
case study and obtained similar results. 

5.7 Lessons Learned 

From the case study we see that MDS, coupled with some basic graphical tools, 
can be employed to assess data quality and explore object relationships in high 
dimensions. Particularly, it can be used to examine the effect of removing 
certain portions of spectra. It is known that mass spectra are not reliable 



5 Visualization in Genomics and Proteomics 119 

zuu 

150-

100-

5 0 -

0 -

- 5 0 -

100-

150-

o 
o 

° o 

9) 

1 

• 

1 

D 

1 1 

D § 

D 

• 

1 

D D 
D 
D 

• 

A 

A 
A 

A A 

1 1 
-100 0 

first coordinate 

Fig. 5.7. Classical MDS scaling results of 39 spectra from groups A, D and G, 
ignoring the portion of spectra with tn/z below 1000. Circles represent group A, 
squares group D and triangles group G. Solid symbols represent the outliers detected 
earlier. Each group has 13 spectra. 

throughout the whole m/z range for two reasons. First, when a time-of-flight 
(TOF) analyzer is used, the m/z values are obtained from an equation that 
has been established using a set of proteins or peptides (calibrants). The m/z 
values well outside the range of the m,/z values of calibrants are extrapolations 
from the equation and may have large errors. This is evidenced by negative 
m/z values of spectra from some experiments. Secondly, chemical noise and 
ion overload cause the baseline of a spectrum to elevate. The chemical and 
electronic noise has a much larger effect on small mass-over-charge {m/z^ 
values (Fung and Enderwick, 2002; Baggerly et al., 2004). As illustrated in 
our case study, it is important to identify and remove such regions so that 
interesting data relationships rather than artifacts can emerge through data 
exploration. 

5.8 List of Tools and Resources 

This section provides pointers to resources and tools related to the discussed 
and to the alternative methods. It also points to our Web site for color plots 
included in this chapter. 

The visualization tool ggobi or Rggobi is an open source, interactive 
program for exploring high-dimensional data. It is available from h t t p : 
//www. ggobi. org. Interested readers may want to peruse the paper of Buja 
and Swayne (2002), for discussions of issues relating to MDS algorithms, in-
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terpretation of MDS results, local minima, indifferentiation, diagnostics of 
configuration and use of the software. 

Our case study was conducted using R (Ihaka and Gentleman, 1996), a lan­
guage and environment for statistical computing and graphics, which is avail­
able as free software under the terms of the Free Software Foundation's GNU 
General Public License in source code form from http://www. r - p r o j e c t . 
org. R can be considered as a dialect of S; most code written for S runs 
unaltered under R. 

The R function cmdscale from the s t a t s package performs classical scal­
ing, and sammon and isoMDS of the R package MASS perform Sammon and 
Shepard and Kruskal scaling, respectively. The R plotting function p a i r s is 
also from the s t a t s package. R package sca t t e rp lo tSd generates scatter 
plot in 3?̂  and data points can be rotated through the angle option. Both 
p a i r s and sca t t e rp lo tSd can be used to visualize an MDS analysis result. R 
and the aforementioned R packages are available for download from the above 
link. Examples for the use of the MDS functions can be found in Venables 
and Ripley (2002). 

R based packages for handling, processing, analysis, and annotation of 
genomic and proteomic data are available from Bioconductor, http://www. 
bioconductor.org. Bioconductor is an open source and open development 
of software project for data from genomic and proteomic experiments. The 
packages genef i l t e r and geneplo t te r are available from the Bioconductor 
Web site. 

Although the plots in this book are produced in black and white, we rec­
ommend the use of colors in actual data analysis for better presentation and 
interpretation. The colored versions of the plots in this chapter can be found 
at ht tp: / /biowww.dfci .harvard.edu/~xiaochun. 

5.9 Conclusions 

MDS is introduced and applied to a SELDI-TOF MS data set. In the case 
study, we found that MDS is useful for quality assessment of data, and pre­
sentation of object relationships. MDS can be used iteratively to assess the 
effects of pre-processing of spectra, in particular, cutoff selection. The low-
dimensional representation of MDS results is helpful in exploration of object 
relationships. If the first two or three principal coordinates are insufficient 
in representing the data, other visualization tools need to be employed. We 
found p a i r s plot helpful in examining the data to a certain extent, because 
it gives marginal views of MDS results in three and higher dimensions. 

Class discovery is indeed interesting, however, features, such as genes and 
peptides, which dictate object class membership, are of ultimate interest to 
biologists. Marker genes or peptides may shed light on disease genesis and 
evolution, serve as biomarkers for diagnosis and provide clues to targeted 
medicine. Although MDS is mostly used as an unsupervised data exploration 
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tool, recent effort has been undertaken to incorporate feature selection into 
MDS. Simila and Tikka (2005) combined feature selection using least angle 
regression (LARS) and visualization via MDS. Their algorithm, MRSR, iter­
ates between minimizing Sammon's fit criterion and sequential additions to 
the feature space. The resulting solution includes a small percentage of the 
original variables from a data space contributing to a projection into a two-
dimensional representation of the data. Other feature selection strategies, for 
example cross-validation, should also be viable, to avoid overfitting. 
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6.1 Introduction 

Prom a historical perspective we can distinguish an initial period in the DNA 
microarray technology in which almost all publications were related to re­
producibility and sensitivity issues. Thus, many classical microarray papers 
dating from the late nineties were simple proof-of-principle experiments (Eisen 
at al., 1998; Perou et al., 1999), in which only cluster analysis was applied in 
order to check whether differences at gene expression level could reproduce 
macroscopic observations. Later, specificity became a main concern as a nat­
ural reaction against quite liberal interpretations of microarray experiments 
made by some researchers, such as the fold change criterion to select differen­
tially expressed genes. It soon became obvious that genome-scale experiments 
need to be carefully analyzed, because many apparent associations happened 
merely by chance when large amounts of data were studied (Ge et al., 2003). 
In this context, different methods for the adjustment of p-values, which are 
considered standard today, started to be extensively used (Benjamini and 
Yekutieli, 2001; Storey and Tibshirani, 2003). More recently, the use of mi-
croarrays for building predictive models of clinical outcomes (van't Veer et al., 
2002), albeit not being free of criticisms (Simon, 2005), fueled the use of the 
technology because of its practical implications. There are still some con­
cerns with the cross-platform coherence of results, but it seems clear that 
intra-platform reproducibility is high (Moreau et al., 2003), and, although the 
overlap between the lists of genes diflFerentially expressed among platforms 
was low, the enrichment in biologically relevant labels emerging from these 
lists was consistent (Bammler et al., 2005). This fact clearly points to the 
importance of the interpretation of experiments in terms of their biological 
implications instead of restricting them to a mere comparison of lists of gene 
identifiers (Al-Shahrour and Dopazo, 2005; Al-Shahrour et al., 2005b). 

Despite the fact that clustering is one of the most popular methodolo­
gies and the first one in being used in the field of microarray data analysis 
(Quackenbush, 2001; Slonim, 2002), it has often been improperly used (Simon 
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et al., 2003). The literature on DNA microarrays provides numerous examples 
for the inadequate use of clustering for tackling problems of class compari­
son. Although cluster analysis is appropriate for class discovery, it tends to 
be inefficient for class comparison or class prediction. An important caveat 
when analyzing DNA microarray experiments is that, although these are not 
based on gene-specific mechanistic hypotheses, they must be designed with 
clear objectives. Three typical types of objectives are class comparison, class 
prediction and class discovery (Golub et al., 1999). Clustering, also known 
as unsupervised analysis, belongs to this last category because no previous 
information about the class structure of the data set is used in the study. 
Cluster analysis makes reference to an extensive set of methods for partition­
ing samples into groups on the basis of their respective differences, referred to 
as distances (D'Haeseleer, 2005). Usually, the distance measures are computed 
with regard to the complete set of genes represented on the array. Cluster­
ing can be done on the experiments (based on all the genes) or on the genes 
(across all the experiments). Although the methods used can be exactly the 
same, a note of caution must be introduced here because it is not uncommon 
that a given class of experiments (disease, molecular subtype, etc.) is distin­
guished by a relatively small number of genes, whose effect may end up being 
diluted by the irrelevant genes. To circumvent this problem, there exists a 
family of clustering methods, generically known as biclustering, in which the 
aim is to find groups of genes with coordinated expression only across a subset 
of experimental conditions (Cheng and Church, 2000; Lazzeroni and Owen, 
2002; Tanay et al., 2002; Sheng et al., 2003). 

There are other types of data that deserve particular attention: Time series 
or dose-response data. In this case, clustering of experiments is meaningless 
because there are sequential data and one is typically interested in clustering 
genes across all the time (or dosage) points. Recently, time series are gaining 
importance because the experimental methods for synchronizing cell cultures 
are becoming more accurate, constituting nowadays a 30% of the total number 
of DNA microarray experiments published (Simon et al., 2005). While typ­
ical microarray assays are designed to study static experimental conditions, 
in time series a temporal process is measured. Time series offer the possibil­
ity of identifying the dynamics of gene activation, which might allow to infer 
causal relationships. An important difference between these two types of ex­
periments is that, while static data from a sample population (e.g., diseased 
cases, healthy controls, etc.) are assumed to be independent, time series data 
are characterized by displaying a strong autocorrelation between successive 
points (Bar-Joseph, 2004). Initially, time series were analyzed using methods 
originally developed for independent data points (Spellman et al., 1998; Zhu 
et al., 2000). More recently, algorithms were developed to specifically address 
this type of data. Different clustering methods specially designed for time se­
ries data have been recently proposed. Among these, clustering based on the 
dynamics of the expression patterns (Ramoni et al., 2002), clustering using a 
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Hidden Markov model (Schliep et al., 2003), and clustering specifically devised 
for short time series (Ernst et al., 2005) can be cited. 

Once the clustering has been performed the following questions arise: Is 
the partition obtained relevant? Is there a "better" partition involving more 
or less clusters or a different distribution of the items within the clusters? 
Since most of the clustering algorithms do not include any type of measure of 
the reliability of the clusters obtained, these questions have to be addressed a 
posteriori. There are different criteria to estimate the quality of the clustering 
obtained (Kerr and Churchill, 2001; Azuaje, 2002; Dudoit and Pridlyand, 2003; 
Handl et al., 2005) and some programs (e.g., the CAAT in GEPAS (Montaner 
et al., 2006)) offer the possibility of obtaining cluster quality indexes. Given 
that some methods require that the number of clusters is predefined, (e.g., 
A;-means or self-organizing maps), the exact determination of the number of 
clusters in the context of microarray data is a major concern, which has been 
specifically addressed by different authors (Horimoto and Toh, 2001; Dudoit 
and Fridlyand, 2002; Bolshakova and Azuaje, 2006). 

But, why should we expect to find groups of co-expressed genes or a class 
structure in our experiments? Genes do not operate alone in the cell, but in a 
sophisticated network of interactions that we only recently start to decipher 
(Rual et al., 2005; Stelzl et al., 2005; Hallikas et al., 2006). It has been a long 
recognized fact that co-expressed genes tend to play some common roles in 
the cell (Stuart et al., 2003; Lee et al., 2004). Ultimately, it is this common 
functionality that we aim to understand when we face a clustering problem. 
Thus, an important and non-negligible last step of any clustering analysis 
(and, in general, of any DNA microarray experiment) is the functional in­
terpretation (Al-Shahrour and Dopazo, 2005). There are a number of tools 
specially designed to search for significant enrichment of biological terms -
usually gene ontology terms (Ashburner et al., 2000), but others can be used 
- in sets of genes (Khatri and Draghici, 2005). Typically, one set of genes is 
tested against the rest of genes in the array. This set of genes can be, more 
precisely, a cluster of co-expressed genes (Al-Shahrour et al., 2004), and the 
result produced accounts for the functional roles played by the genes in the 
cluster. There are different tools that allow to easily link results of clustering 
methods to algorithms for functional annotation, such as the GEPAS (Herrero 
et al., 2003, 2004; Vaquerizas et al., 2005; Montaner et al., 2006). 

Recently, biological annotations (e.g., GO, KEGG pathways, etc.) have 
been used for cluster validation (Bolshakova et al., 2005) and, even more im­
portantly, biological information (Huang and Pan, 2006; Pan, 2006) or phe-
notypic information (Jia and Xu, 2005) have been used as a constitutive part 
of clustering algorithms. 

Clusters can be obtained in numerous different ways. There are many dis­
tinct algorithms for measuring distances among genes and many procedures 
for partitioning the data. In addition, most of the clustering methods do not 
provide any measurement of the reliability of the results obtained. This ap­
parent diversity of ways for approaching the same problem, together with the 
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lack of information on the reliability of the results obtained has attracted over 
the clustering an undeserved reputation of subjective analysis strategy. Un­
derstanding the basis of the distance metrics and the paxtitioning procedures 
and being aware of their limitations will provide the fundaments for a proper 
and reasonable class discovery analysis. 

6.2 Basic Concepts 

Despite the large number of clustering methods and the new methods pro­
posed in the field of DNA microarray data analysis (Heyer et al., 1999; Hastie 
et al., 2000; Yeung et al., 2001a; de Smet et al., 2002), only a subset of them 
have been used with some regularity in this context. Among other merits, the 
reason for the popularity of many methods of microarray data analysis, and 
clustering is not an exception, resides in its availability in standard software 
packages. Among the most commonly used methods we can cite hierarchical 
clustering (Eisenet al., 1998), A;-means (McQueen, 1967), self-organizing maps 
(SOMs) (Kohonen, 1997) or self-organizing tree algorithm (SOTA) (Herrero 
et al., 2001). Implicitly or explicitly, clustering methods depend on distances 
between objects. Different ways of computing distances account for different 
biological properties of the data. In this section I will review different distance 
metrics, distinct clustering algorithms, different ways of estimating cluster 
quality and algorithms for the functional annotation of clustering results. 

6.2.1 Distance Metrics 

In a widely accepted standard representation, microarray experiments are two-
dimensional matrices of gene expression values in which columns correspond 
to genes and rows to experiments. Thus, the identification of genes with coor­
dinated expression across the experiments or, alternatively, the identification 
of groups of experiments with similar expression values for all the genes is 
achieved through the comparison of the column or row vectors, respectively, 
by means of a distance function. The choice of such distance function depends 
on the biological property that the researcher considers. There are two types of 
distances extensively used in the comparison of expression profiles: Euclidean 
distance and Pearson coefficient of correlation. 

Euclidean distance is obtained as the square root of the summation of the 
squares of the differences between all pairs of corresponding gene expression 
values (rows or columns). Euclidean distance computes the geometric distance 
between two points in an n-dimensional space (n being the size of the vec­
tors - row or column - involved in the comparison). Thus, pairs of genes (or 
experiments) whose components display similar magnitude of expression are 
considered similar by this distance. 

Although this property may be useful in some cases, it seems more rel­
evant, from a biological point of view, to seaxch for genes (or experiments). 
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whose expression profiles display a similar overall trend, irrespective of their 
absolute values. The Pearson correlation coeHicient (r) measures this property. 
It provides values between —1 (negative correlation) and 1 (positive correlar 
tion). The more the two expression profiles display the same trend, the closer 
to 1 is the r-value. This measure of similarity in the shapes of two profiles, 
while not taking the magnitude of the profiles into account, suits well the 
biological intuition of coexpression (Eisen et al., 1998). Euclidean distance 
can be used for obtaining correlations if the data are properly transformed 
(standardized, that is, subtracting the mean and dividing by the variance). 
Then the Euclidean distance between two points x and y relates to correlation 
as (a; - y)^ = 2(1 - \r\) (Alon et al., 1999). 

Most of the distances found in the microarray-related literature are derived 
from the Euclidean distance or from the correlation coefficient. Also some 
non-parametrical distances have been applied, such as the Spearman rank 
correlation (Kotlyar et al., 2002) or jackknifed correlation coefficient (Heyer 
et al., 1999). (More distance metrics can be found in Chapter 7, Table 7.2, 
page 157). 

However, there are other different scenarios beyond the simple coexpres­
sion whose exploration is of much interest from a biological point of view. A 
very interesting property of the correlation coefficient is that it can be used 
to detect negatively correlated expression profiles. The study of such negative 
correlations can be very useful for identifying control processes that antago­
nistically regulate downstream pathways. 

6.2.2 Clustering Methods 

According to the final representation of the results, data can be clustered in 
two different ways: In a hierarchical or in a non-hierarchical manner. Hierarchi­
cal clustering allows detecting higher-order relationships between clusters of 
profiles whereas most of the non-hierarchical classification techniques allocate 
profiles into a predefined number of clusters, without any assumption on the 
inter-cluster relationships (see Figure 6.1a). Many authors prefer hierarchical 
clustering because it allows to explore the entire hierarchy of relationships at 
different levels. There are distinct clustering methods based on different ways 
of aggregating data, which use (implicitly or explicitly) different distance func­
tions. Without the aim of producing an exhaustive enumeration of them, here 
I will briefly review some of the most commonly used and most relevant clus­
tering methods. In a quick review of 1157 papers found in Pubmed using 
"cluster and microarray" as keywords, I have found that 74% used hierarchi­
cal clustering, 15% used fc-means, 6% used SOM, 2% used SOTA, another 
2% used model-based clustering, and in the remaining cases other alterna­
tive methods were used. Although these figures can change depending on the 
keywords used for finding the papers, they give an approximate idea on the 
relative actual usage of each procedure. 
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Fig. 6.1. Different clustering methods applied to cluster genes, a) Aggregative hi­
erarchical clustering, and b) SOTA with default parameters. 

6.2.2.1 Aggregative Hierarchical Clustering 

Aggregative hierarchical clustering (Eisen et al., 1998) is one of the preferred 
choices for the analysis of patterns of gene expression (Quackenbush, 2001; 
D'Haeseleer, 2005). Standard aggregative hierarchical clustering produces a 
representation of the data with the topology of a binary tree, in which the 
most similar patterns axe clustered in a hierarchy of nested subsets (Sneath 
and Sokal, 1973). Figure 6.1a shows a typical output of produced by the 
method. In aggregative hierarchical clustering, each vector (gene or experi-
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Fig. 6.2. Different clustering methods applied to cluster genes, a) fc-means with 
fc = 6, and (b) SOM with a 4 x 4 output map with hexagonal neighborhood. 

ment) is initially assigned to a single cluster; at each step, the distance be­
tween every pair of clusters is calculated and the pair of clusters with the 
smallest distance is merged; the procedure is iteratively carried on until all 
the data are grouped into a single cluster. Depending on the way in which 
vectors are merged into a cluster and the distance of the new cluster to the 
rest of items (also known as linkage distance) is calculated, different variants 
of the method can be distinguished. This linkage distance can be calculated 
as the shortest distance of any of the two joined members (single linkage), the 
largest distance {complete linkage) or either weighted or unweighted averages 
{average linkage). 

After the full tree is obtained, the determination of the final partition is 
achieved by "cutting" the tree at a certain level or height, which is equivalent 
to putting a threshold on the pairwise distance between clusters. Note that 
the decision of the final partition is thus rather arbitrary. 

6.2.2.2 fe-Means 

The fc-means algorithm (McQueen, 1967) requires the specification of the 
number of clusters, fc, into which the objects are going to be partitioned. 
Then the mean vector for each of the fc clusters, the seed, is initialized either 
by direct assignment (e.g., from the input) or by random generation (random 
initial seeds). Then, the algorithm proceeds through an iterative procedure, 
consisting of the following two steps: (1) Using the given mean vectors, the 
algorithm assigns each gene (or experiment) to the cluster with the closest 
mean vector. (2) The algorithm recalculates the mean vectors (which are the 
sample means) for all the clusters. The iterative procedure ends when all the 
mean vectors of the clusters remain constant or do not change significantly. 
Figure 6.2a shows the output of the algorithm in a data set using fc = 6. 
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6.2.2.3 Self-Organizing Maps 

Self-organizing maps (SOM) (Kohonen, 1997) are a technique to visualize 
the high-dimensional input data (in our case, the gene expression data) onto 
an (usually two-dimensional) output map of prototype vectors (also called 
neurons) by a process known as self-organization. Similarly to fc-means, the 
dimension of the output map needs to be specified by the user. After initial­
izing the prototype vectors, the algorithm iteratively performs the following 
steps. (1) Every input vector is associated with the closest prototype vector 
of the output map, (2) the components of the prototype vector (and with less 
intensity the prototype vectors in the neighborhood) are updated according 
to a weighted sum of all the input vectors that are assigned to it. This process 
is repeated until the prototype vectors of the output node converged to a 
constant value. During the clustering process the prototype vectors are pulled 
towards the regions of the space that are more densely populated by the input 
vectors. Figure 6.2b shows a typical output of SOM using an output map of 
4 x 4 with an hexagonal neighborhood. 

6.2.2.4 Self-Organizing Tree Algorithm 

The self-organizing tree algorithm (SOTA) (Dopazo and Carazo, 1997; Her-
rero et al., 2001) is a different type of self-organizing neural network based 
on the SOM, but implementing a binary tree topology, instead of the clas­
sical two-dimensional grid, and a different strategy of training. The iterative 
procedure, with the application of the self-organization principle to the proto­
type vectors, is similar to the case of SOM. The difiFerences reside in the fact 
that the unique prototype vectors directly updated are the leaves of the tree 
structure. The neighborhood is defined through the tree topology. After con­
vergence of the network, the prototype vector containing the most variable 
population of expression profiles (variation is defined here by the maximal 
distance between two profiles that are associated with the same prototype 
vector) is split into two sister vectors (causing the binary tree to grow), here­
after the entire process is restarted. The algorithm stops (i.e., the tree stops 
growing) when a threshold of variability is reached for each prototype vector. 
Hence, the number of clusters does not need to be specified in advance. The 
determination of the threshold of vaxiability involves the actual construction 
of a randomized data set. In contrast to hierarchical clustering, which is an 
aggregative method, the SOTA is divisive. Figure 6.1b shows an example of 
clustering of genes obtained with SOTA. 

6.2.2.5 Model-Based Clustering 

Although model-based clustering has already been used in the past in other 
fields, its application to microarray data is relatively recent (Yeung et al., 
2001a; Ghosh and Chinnaiyan, 2002; McLachlan et al., 2002). In contrast 
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to the clustering methods described so far, model-based methods provide a 
consistent statistical framework for obtaining data partitions. The basic as­
sumption in model-based clustering is that the data are generated by a mix­
ture of a finite number of underlying probability distributions, where each 
distribution represents one cluster. Model-based clustering methods face the 
problem of associating every gene (or experiment) with the best underlying 
distribution in the mixture, and at the same time, finding out the parameters 
for each of these distributions. Different approximations can be used to infer 
these parameters. Gaussian mixture models have been applied with success 
to microarray data clustering (Yeung et al., 2001a). On the other hand, prob­
lems such as the estimation of the number of clusters can be solved in a more 
efficient way using a Bayesian framework (Vogl et al., 2005). 

6.2.3 Biclustering 

As previously mentioned, biclustering methods search for genes with coor­
dinated expression across a subset of experiments. While in the beginning 
clustering algorithms were applied to both genes and experiments of the mi­
croarray matrix to reorganize data and thus visualize patterns common to 
genes and experiments (Alon et al., 1999; Getz et al., 2000), soon algorithms 
specifically designed for biclustering, such as the Samba, methods based on 
graph theory (Tanay et al., 2002), the iterative signature algorithm (ISA) (Ih-
mels et al., 2002) or mixtures of normal distributions (Lazzeroni and Owen, 
2002) were proposed. Recently, model-based algorithms providing a more rig­
orous statistical framework have been proposed (Barash and Friedman, 2002; 
Sheng et al., 2003). 

6.2.4 Validation Methods 

As previously mentioned, validation of the relevance of the cluster results is 
of paramount importance given that most clustering methods do not provide 
any clue on reliability. Validation can be based on either external or internal 
criteria. In the first case some gold standard is chosen and its agreement with 
the partition obtained by the clustering method is taken as a support for such 
a partition. Usually, biological information (gene ontology, pathways, etc.) 
is used for this purpose (Tavazoie et al., 1999; Toronen, 2004; Al-Shahrour 
and Dopazo, 2005). Internal criteria for statistical cluster validation imply 
the assessment of cluster coherence using different measures that compare 
inter- to intra-cluster variability, such as silhouette coefficient (Rousseeuw, 
1987), Dunn-like indices (Azuaje, 2002), connectedness or separation measures 
(Handl et al., 2005). Another internal criterion consists of testing the stability 
or the robustness of a cluster result when noise is deliberately added to the 
data (Kerr and Churchill, 2001; Dudoit and Pridlyand, 2002). 
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6.2.5 Functional Annotation 

Clustering of microarray data produces a collection of objects (genes or ex­
periments) based on the comparison of their expression profiles but gives no 
information on the functional basis for this grouping. While not much effort 
has been developed on the way of understanding the molecular functional basis 
of clustering of experiments, there are however numerous papers dealing with 
the issue in the case of clustering of genes. Ending up with a mere list of genes 
of interest is only half-way to the result of a microarray experiment. Apart 
from the utility that functional annotation can have as an external criterion 
for cluster quality, it constitutes itself an unavoidable final step of any mi­
croarray analysis. The proper interpretation of cluster analysis of microarray 
experiments is usually performed in two steps: In a first step, clusters of genes 
of interest are selected, and then the enrichment of any type of biologically 
relevant annotation for these genes is compared to the corresponding distrib­
ution of this annotation in the background (typically, the rest of genes). It is 
important to note that this comparison to the background is essential because 
sometimes apparent high enrichment in a given annotation is nothing but a 
reflect of a high proportion of this particular term in the whole genome and, 
consequently, has nothing to do with the set of genes of interest. There are 
different available tools, such as FatiGO (Al-Shahrour et al., 2004) and others 
(Khatri and Draghici, 2005), that estimate significant enrichment in different 
functionally relevant annotation terms such as GO (Ashburner et al., 2000), 
KEGG pathways (Kanehisa et al., 2004), etc. 

6.3 Advantages and Disadvantages 

The methods and algorithms previously described have been developed for 
situations and under assumptions that are not always fulfilled by DNA mi­
croarray data. In this section I will comment some of the positive and negative 
features of the methods in the light of some of the most common problems in 
clustering. 

• Finding the proper number of clusters. In general, clustering meth­
ods do not define the proper number of clusters by themselves, fc-means 
and SOM need the pre-specification of the number of clusters. Different 
strategies are used to circumvent this problem, but commonly different 
runs of the program with different values of k (in A;-means) need to be 
evaluated with a quality cluster index to decide about the optimal number 
of clusters. Nevertheless, this strategy is finally computationally expensive. 
A similar problem afi'ects some model-based procedures. In this case the 
algorithm has to compare multiple log maximum likelihood values to opti­
mize the complexity of the model (Yeung et al., 2001a), or resampling the 
data set (Yeung et al., 2001b). Both strategies are very time-consuming. 
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On the other hand, model-based methods based on a Bayesian approach 
can estimate the partition with the proper number of clusters (although 
also at the expense of high run times). Besides, the SOTA method (Her-
rero et al., 2001) implements a quick permutation-based strategy that pro­
duces the partition at which the clusters contain elements with significant 
intra-cluster distances (that is, distances that cannot be found in random 
clusters). 
Reliability of the clusters obtained. As mentioned above, the reliar 
bility of clustering methods can be checked in different ways, based on 
external information or on internal properties of the partition obtained. 
There are several benchmarking studies that compare the relative efficien­
cies of different clustering methods in defining partitions in both artifi­
cial data sets and in well-known real data sets (Gibbons and Roth, 2002; 
Datta and Datta, 2003; D'Haeseleer, 2005; Handl et al., 2005). As gen­
eral conclusion, hierarchical clustering with single linkage would not be a 
good choice, because of its poor performance (Gibbons and Roth, 2002; 
D'Haeseleer, 2005). Depending on the study, hierarchical clustering with 
complete or average linkage results in different performances: Sometimes 
one of the linkage strategies seems to work better than the alternative and 
sometimes not. In general, fc-means, SOM and SOTA seem to exhibit a 
better performance than hierarchical clustering (Gibbons and Roth, 2002; 
D'Haeseleer, 2005; Handl et al., 2005) according to different indexes such 
as silhouette, Dunn, etc. It is important to note here that the performances 
reported for fc-means and SOM refer to an unrealistic situation in which 
the number of clusters is provided to the method. This information is cur­
rently unknown in real scenarios. Unfortunately, there are no benchmark­
ing studies that include model-based clustering methods to date, and only 
a few performance comparisons are available. Thus, for example, model-
based Bayesian methods seem to perform better than fc-means, even in 
situations in which the number of clusters (fc) was provided to the method 
(Vogl et al., 2005). 

Reliability of biclustering. An interesting, although not exhaustive, 
comparative study has recently been published (Prelic et al., 2006). Here, 
the Samba (Tanay et al., 2002) and ISA (Ihmels et al., 2002) methods seem 
to work reasonably well in the absence of noise, and a method proposed 
by the authors, Bimax, seems to outperform them in noisy situations. 
Run times. Despite the advantages of model-based clustering methods 
(they can estimate the reliability of the partition and some versions can es­
timate the number of clusters and impute missing values), their extremely 
long run times (hours to days) and usually its requirement of powerful 
computers for running, represent a limitation to its application to real sit­
uations. As a general rule, methods that use pair-wise distance matrices 
(e.g., hierarchical clustering or fc-means) have run times that are, at least, 
quadratic on the number of items, while methods based on the distances of 
the items to a number of clusters (e.g., SOM or SOTA) have almost linear 



134 Joaquin Dopazo 

run times. Nevertheless, a data set with a number of features ranging from 
20 000 to 40 000 and a number of experiments ranging from 20 to 100 can 
be a matter of seconds for SOM and SOTA, a few minutes for hierarchical 
clustering and no more than 15 minutes for A;-means. 

• Interpretation of the results. As mentioned above, the functional an­
notation of the partition obtained can be used as an external criterion to 
check the quality of the clustering obtained, but, at the same time it is cru­
cial for obtaining a proper annotation of the results obtained. Functional 
annotation of clusters implies searching for enrichment of some functional 
terms (typically GO, KEGG pathways, etc.) in them. One important con­
sideration in this step is the correction for multiple testing. For example, 
there are around 14 000 GO terms; the possibility of finding apparent en­
richments in a few GO terms just by chance is high. To avoid obtaining 
a considerable number of false positive enrichments different methods for 
multiple testing adjustments can be used. Beyond the classical Bonferroni 
or Holm's corrections, which are extremely conservative, one of the most 
popular choices are the false discovery rate (FDR), which in addition ac­
counts for dependencies between the data (Benjamini and Hochberg, 1995; 
Benjamini and Yekutieli, 2001). One of the first programs to incorporate 
this correction was FatiGO (Al-Shahrour et al., 2004), although now it 
is included in a number of systems (Onto-Express, GOStat, GOToolBox, 
Gosurfer, etc.) Despite the importance of applying such corrections, there 
are still programs, such as GoMiner, DAVID, eGOn, GOTM or CLENCH 
that do not include it yet (Khatri and Draghici, 2005). 

6.4 Caveats and Pitfalls 

It is worth noting that many clustering methods produce partitions even with 
random data. This is commonly known as the "garbage-in-garbage-out" ef­
fect in programming and points to the necessity of having some criteria in the 
application of these methods. There are two potential weak points in any clus­
tering analysis: The distance function used and the algorithm for producing 
the partition. The combined effect of both choices (sometimes restricted by 
the clustering method) and the properties of the particular data set at hand 
will make one of the methods more efiicient compared to the alternatives. 
Benchmarking studies, albeit not perfect, give an idea of the relative perfor­
mance of the different methods under different conditions, especially when 
some of the conclusions are consistent across different, independent studies. 
In the previous section some considerations have been made on the different 
methods and a common conclusion was the poor performance of hierarchical 
clustering when single linkage was used. While hierarchical clustering with av­
erage or complete linkage seems to work well, SOM, SOTA and A;-means seem 
to be superior according to internal indexes (Silhouette, Dunn, and other) 
or external criteria (enrichment of functional terms). Model-based methods 
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(in particular Bayesian approaches) seem to show a superior performance, al­
though run times are still excessive as to be considered feasible alternatives 
on many computers. Beyond the advantages and disadvantages commented in 
the previous section some considerations follow that deserve to be made. 

6.4.1 On Distances 

Usually, the distance metrics are computed with regard to the complete set 
of genes represented on the array. Clustering can be done on the experiments 
(based on all the genes) or on the genes (across all the experiments). It is not 
uncommon that a given class of experiments (diseases, molecular subtypes, 
etc.) is distinguished by a relatively low number of genes, whose effect may 
end up diluted among the contributions of the rest of genes. This can lead 
to the construction of groups based on irrelevant features unrelated to the 
aim of the study. And this effect represents an even greater problem when 
working with systems that cannot be under a strict experimental control, i.e., 
patients or samples directly collected from nature. In a classical paper, only 
two types of diffuse large B-cell lymphoma could clearly be defined while some 
subtypes were merged together in clusters not reflecting the clinical subtype 
composition of the disease (Alizadeh et al., 2000). The only way described so 
far to overcome this problem is via a biclustering approach. Similarly, typical 
distances used in microarray assume that all the vector components used in 
the computation are independent and this assumption clearly does not hold 
in the case of time series, where all the experiments are autocorrelated. In 
this case clustering methods specifically designed for time series should be 
used (Ramoni et al., 2002; Schliep et al., 2003). Moreover, microarray time 
series are short in comparison with typical time series in other disciplines 
(about 80% of microarray time series experiments involve only three to eight 
time points (Ernst and Bar-Joseph, 2006)), so clustering methods specifically 
developed for this purpose should be used (Ernst et al., 2005). 

6.4.2 On Clustering Methods 

A significant problem associated with fc-means or SOM algorithms is the arbi­
trary choice of the number of clusters, since this information is commonly not 
available in a real class-discovery problem. In practice, this makes it necessary 
to use a trial-and-error approach where a comparison and validation of several 
runs of the algorithm with different parameter settings are necessary. A similar 
problem affects some versions of model-based methods, such as Gaussian mix­
ture models (Yeung et al., 2001a), but the strategies for finding the number 
of clusters here (Yeung et al., 2001a,b) are enormously time-consuming. 

Another parameter that will influence the result of A;-means clustering is 
the choice of the seeds. The algorithm is hampered by the problem of local 
minima. This means that with different seeds, the algorithm can yield different 
result. This problem also applies to SOM although to a lesser extent. 
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Another inherent problem in SOM is that the training of the network 
(and, consequently, the definition of clusters) depends on the number of items 
assigned to each cluster. If irrelevant data (e.g., invariant, "flat" profiles) or 
some particular type of profile is over-represented in the data, SOM will pro­
duce an output in which this type of data will populate the vast majority of 
clusters. As a consequence, the most interesting profiles may appear in a few 
clusters and the resolution obtained for them is poorer. 

In contrast to SOM, the number of nodes does not need to be initialized in 
SOTA. The partition obtained with SOTA is proportional to the heterogeneity 
of the data, but not to the number of items in each cluster. Thus, SOTA is 
quite insensitive to perturbing effects of big clusters on the global cluster 
structure and can simultaneously resolve small and big clusters. Since SOTA 
is a divisive method, a test can easily be coupled to the growing tree process 
to decide at which point the growing of the tree should be stopped because 
all the significant clusters have been found (Herrero et al., 2001). 

6.5 Alternatives 

Clustering has been extensively used over many years for different purposes 
and consequently many clustering methods are available (Sneath and Sokal, 
1973), so an exhaustive description of alternatives falls beyond the scope of 
this chapter. In this chapter the clustering methods most commonly used 
in the field of microarray data analysis have been described. Nevertheless, 
other proposals have been made that, despite their potential, have not been 
extensively used yet. 

Early from an historical perspective in microarray data analysis, the QT-
Clust method was introduced (Heyer et al., 1999). This method considers each 
expression profile in the data and determines how many of them are within the 
distance specified as quality guarantee. The candidate cluster with the largest 
number of expression profiles is selected as the output of the algorithm. Then, 
the expression profiles of the selected cluster are removed, and the whole 
procedure starts again to find the next cluster. The algorithm stops when the 
number of profiles in the largest remaining cluster falls below a pre-specified 
threshold. 

Adaptive quality-based clustering (de Smet et al., 2002) uses a heuristic 
two-step approach to find one cluster at a time. In the first step, a quality-
based approach is performed to locate a cluster center in the area where the 
density (i.e., the number) of gene expression profiles has a local maximum. 
In the second step, the algorithm re-estimates the quality (i.e., the radius) 
of the cluster so that the genes belonging to the cluster are, in a statistical 
sense, significantly co-expressed. The cluster found is subsequently removed 
from the data and the whole procedure is restarted. Only clusters whose size 
exceeds a predefined number are reported in the output. 
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Contrarily to aggregative hierarchical clustering, the divisive version of 
this method provides a picture of the tree from lower to higher resolution, 
as the construction of the tree proceeds. Apart from SOTA (Herrero et al., 
2001), other divisive hierarchical methods, e.g., based on the maximum en­
tropy principle (Alon et al., 1999), have been proposed. The algorithm tries 
to find the most likely partition of data into sets and subsets, creating in this 
way a binary tree structure. 

Fuzzy versions of some clustering methods have also been applied to mi-
croarray data analysis (Dembele and Kastner, 2003). The rationale behind 
the proposal of the use of fuzzy methods is the difficulty of defining cluster 
boundaries (Spellman et al., 1998). Fuzzy membership of genes should then 
be considered more an operative procedure than a reality. Difficulties in the 
placement of a gene in a cluster are due to noise and multi-functionality and 
can be best addressed through biclustering methods. 

Furthermore, other types of distances can be mentioned. There are dis­
tances that can deal with data sets containing large numbers of measures 
that have a high degree of internal correlations. Correlations between exper­
iments or genes tend to produce elliptical clusters, which cause problems to 
methods whose optimal performance occurs with compact, spherical clusters, 
such as A;-means. Distances that take into account covariance between exper­
iments, like the Mahalanobis distance (Mahalanobis, 1936), may be useful for 
data sets with high internal correlation. The problems that originate from the 
complex joint distribution of gene expression values, particularly their struc­
ture of internal correlations and non-normality, have been addressed by other 
researchers (Hunter et al., 2001), who argue that simple similarity metrics such 
as Euclidean distance or correlation similarity are suboptimal in microarray 
data sets and propose the use of Bayesian approaches. 

6.6 Case Study 

Understanding the molecular roles played by potentially relevant genes in 
a given experiment is still one of the most interesting objectives in many 
microarray experiments. One of the most popular hypotheses in microarray 
data analysis is that coexpression of genes across a series of experiments is 
most probably explained through some common functional role (Eisen et al., 
1998). Actually, this causal relationship has been used to predict gene function 
from patterns of co-expression (Stuart et al., 2003; Lee et al., 2004). 

In this case study I use data from a genome-wide study to search for the fac­
tors responsible for the transcription of the cluster of co-ordinately expressed 
ribosomal proteins of Saccharomyces cerevisiae (Rudra et al., 2005). This 
data set is publicly available at h t t p : / / g e p a s . b i o i n f o . c i p f . e s / c g i - b i n / 
da ta se t s . There is a step that must be taken prior to any sort of microarray 
data analysis: Normalization of the data. This step is beyond the scope of this 
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Fig. 6.3. Clustering of gene expression profiles obtained with the SOTA method 
(setting the variability threshold to 80%) and represented using the CAAT tool 
(Montaner et al., 2006). The summarized description of the tree is obtained with the 
CAAT tool, with the representation of the gene expression profiles (individual gene 
profiles in grey and average profile in black) assigned to clusters and sub-clusters. 
The upper branch is developed until no more partitions are produced by the SOTA 
algorithm. Note how the confidence intervals for the average gene expression profile 
become narrower as we move towards the terminal nodes. The arrow marks the level 
at which the enrichment in the biological terms studied has a maximum significance. 

chapter and aims to remove all the variability due to experimental manipu­
lation and unrelated to the actual experiment. (See Chapter 3 for details on 
normalizing microarray data.) It can be carried out by using standard pro­
grams such as the DNMAD (Vaquerizas et al., 2004), SNOMAD (Colantuoni 
et al., 2002) or other programs. With the goal of finding groups of genes that 
co-express across the experiments, gene expression patterns were clustered us­
ing the SOTA algorithm (Herrero et al., 2001) as implemented in the GEPAS 
(http://www.gepas.org) suite of Web tools (Herrero et al., 2003, 2004; Va­
querizas et al., 2004; Montaner et al., 2006). Figure 6.3 shows a general view of 
the SOTA hierarchical tree obtained, where the top branch is shown in detail, 
and the terminal nodes (clusters as defined by SOTA) are at the right end. 
The CAAT tool allows selecting clusters and automatically submitting them 
to the FatiGOplus tool (Al-Shahrour et al., 2004, 2006) for functional analysis. 
When the upper terminal node is chosen, we found the GO terms "Protein 
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biosynthesis" (FDR-adjusted p = 0.0054) and "Structural constituent of the 
ribosome" (FDR-adjusted p = 0.0038) significantly over-represented in the 
group of co-expressing genes contained in the cluster, when compared to the 
rest of the tree. This operation can be repeated for all the nodes of the tree 
and most of them will display significant over-representation of GO terms. 
And, what is even more interesting, we can examine internal nodes. If the 
internal nodes are sequentially analyzed along the branch of a tree for the 
enrichment in biologically relevant terms it is possible to find a level in the 
tree in which this enrichment is maximum (and significant). In Figure 6.3, this 
level in the tree that maximizes the proportion of genes annotated as "protein 
biosynthesis" and "structural constituent of the ribosome" is marked by an 
arrow. Actually, it is the parent of the level at which SOTA decides to stop 
growing. As we move from higher levels to lower levels of the hierarchy we find 
clusters with tighter co-expression, which are more likely involved in a com­
mon function. At this point, clustering based on the distance measure has a 
natural, functional meaning. Beyond this point, new partitions will not reflect 
a functional (biologically relevant) co-expression (see the two last clusters in 
which the p-value increases or, in some cases is non significant). Functional 
annotation can be considered an external cluster quality measure. 

6.7 Lessons Learned 

The first and most important lesson is that clustering is for class discovery 
(unsupervised analysis), but not for class discrimination or class prediction 
(supervised analysis). Although this may sound obvious, there is still an ex­
tensive misuse of these techniques (Simon et al., 2003). Clustering of genes 
and experiments can be carried out using exactly the same methods (applied 
to columns or to rows, respectively). The final partition obtained is based on 
equal contributions of each experiment (when clustering genes) or each gene 
(when clustering experiments). It is worth remembering that many genes will 
only introduce noise (because they represent physiological conditions or any 
particularity of the sample, unrelated to the biological trait we have in mind) 
and consequently, the partition obtained could be irrelevant from a biological 
point of view. Not all the experiments are equivalent in terms of their analy­
sis. In addition to the inherent noise there are situations, such as time series 
or dose-response experiments, in which the data display a high internal cor­
relation. These cases should be clustered with methods specifically designed 
for them (Bar-Joseph, 2004). Finding a partition requires the correct estima­
tion of the number of clusters and its reliability. Only a few methods include 
these features . Among them I can cite SOTA (Herrero et al., 2001) or recent 
versions of model-based clustering (Vogl et al., 2005), although the latter is 
too demanding in computational resources to constitute an alternative. Most 
clustering methods require external strategies to find the optimal number of 
clusters and their reliability. This is nothing that should prevent one from 
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using a particular clustering method but must be taken into account. Just 
trying with several k values for fc-means and choosing the partition which 
"looks nicer" can be a interesting exploratory exercise, but is definitively not 
a proper way of obtaining a partition. Contrarily, irrespective of the final deci­
sion on the clustering method, SOTA, given its reliability (according internal 
indexes and external criteria, see Handl et al. (2005)) and speed, constitutes 
a good choice for a first exploration of the data. With respect to the per­
formance of the different methods, recent comparative studies (Gibbons and 
Roth, 2002; Datta and Datta, 2003; D'Haeseleer, 2005; Handl et al., 2005) 
suggest that hierarchical clustering (with complete or average linkage), SOM 
and fc-means (if the number of clusters is known) and SOTA tend to produce 
accurate partitions according to several cluster quality indexes. And last but 
not least, clusters of co-expressing genes represent biological processed coop­
eratively carried out by the genes. A proper understanding of these processes 
require of the application of methods that examine the biological roles jointly 
carried out by the genes, that is, the functional annotation of the experiment 
(Al-Shahrour and Dopazo, 2005; Khatri and Draghici, 2005). 

6.8 List of Tools and Resources 

There are different tools available and several repositories containing tools 
for the analysis of microarray data. The list below does not intend to be 
an exhaustive catalogue of these resources but contains some of the most 
complete and stable ones. 

6.8.1 General Resources 

• h t tp : / /www.ns l i j -gene t i cs .o rg /mic roar ray / sof t .h tml . 
• h t tp: / / ihome.cul ik .edu.hk/ . 
• h t t p : / / b i o i n f o r m a t i c s . u b c . c a / r e s o u r c e s / . 

6.8.1.1 Mult ip le Pu rpose Tools (Including Cluster ing) 

• GEPAS: A Web-based resource for microarray gene expression data analy­
sis (Herrero et al., 2003, 2004; Vaquerizas et al., 2005; Montaner et al., 
2006), which beyond clustering offers many more tools (normalization, 
gene selection, predictors, functional annotation, Array-CGH, etc.). 
http:/ /www.gepas.org. 

• INCLUSive: A Web portal for clustering and regulatory sequence analysis 
(Coessens et al., 2002). h t tp : / /www.esa t .kuleuven.ac .be / inc lus ive . 

• Expression Profiler is a Web-based platform for microarray data analysis 
developed at the EBI (Kapushesky et al., 2004). h t tp : / /www.ebi .ac .uk/ 
express ionprof i le r . 
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6.8.2 Clustering Tools 

• h t tp : / /homes .esat .kuleuven .be /~th i j s/Work/Clustering.html: Adap­
tive Quality-Based Clustering (de Smet et al., 2002). 

• h t tp : / /www. i i .u ib .no /~b ja r t ed / j express / index .h tml : J-EXPRESS: 
University of Bergen, Norway. 

• h t t p : / / r a n a . I b l . gov/EisenSof tware. htm: CLUSTER, TREEVIEW: 
Eisen's lab at Lawrence Berkeley National Laboratory. 

• h t t p : //www. genome. wi .mit . edu/MPR/sof tware.html: GENE-CLUSTER: 
Whitehead Institute. 

• h t t p : / /gepas .bioinf o. cipf. e s / cg i -b in / so t a r r ay : SOTA (Herrero et al., 
2001): CIPF, Spain. Also included in GEPAS. 

6.8.3 Biclustering Tools 

There are not many biclustering tools available yet. The coupled two-way 
analysis (Getz et al., 2000) is a simple method available at h t t p : / / c t w c . 
weizmann.ac. i l / . Also, GEMS (Wu and Kasif, 2005) is a nice example of 
a Web-based tool for biclustering (available at h t tp : / /genomicslO.bu.edu/ 
terrence/gems/) . 

6.8.4 Time Series 

Time series (and dose-response) experiments are characterized by displaying 
a strong autocorrelation between successive points (Bar-Joseph, 2004) and 
must, consequently, be analyzed with algorithms that specifically take into 
account this fact. The algorithm STEM has been, in addition, designed for 
short time series and can be found at ht tp: / /www.cs .cmu.edu/~jernst / 
stem. 

6.8.5 Public-Domain Statistical Packages and Other Tools 

Probably, the most popular resource for microarray data analysis is Biocon-
ductor (Gentleman et al., 2004). It is written in the popular R statistical pro­
gramming language and offers many modules for the analysis of microarray 
data. It is available at http:/ /www.bioconductor.org. The BRB tools, de­
veloped by the Richard Simon and Amy Peng Lam group, offer a variety of use­
ful algorithms. Available at: h t tp : / / l inus .nc i .n ih .gov/BRB-ArrayTools . 
html. Additionally, there are packages in Java, which are very popular, as 
is the case of MEV (ht tp: / /www.t igr .org/sof tware/microarray.shtml) 
(Saeed et al., 2003). Java packages provide an interactive and convenient in­
terface and can run on multiple platforms, constituting an interesting alterna­
tive to Web-based tools, which cannot offer the same degree of interactivity. 
The only limitation comes from the characteristics of the local computer in 
which the program is installed (which can be an obstacle in a non-negligible 
number of cases). 
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6.8.6 Functional Analysis Tools 

• Babelomics (Al-Shahrour et al., 2005b, 2006) is a suite of Web tools for the 
functional annotation and analysis of groups of genes in high throughput 
experiments. Tools include: FatiGO (Al-Shahrour et al., 2004), FatiGO-
plus, Fatiscan (Al-Shahrour et al., 2005a), Gene Set Enrichment Analysis 
(GSEA) (Subramanian et al., 2005), Marmite, and the Tissues Mining 
Tool (TMT). http://www.babelomics.org. 

• go Cluster simultaneously implements annotation information, clustering 
algorithms and visualization tools for microarray data analysis (Wrobel 
et al., 2005). Available at: http://www.bioconductor.org; littp://www. 
b ioz .un ibas .ch /goc lus te r . 

6.9 Conclusions 

Clustering is essential for finding either (functionally related) co-expressed 
genes or subtypes of experiments based on their gene expression profiles. Al­
though clustering of genes and experiments can be carried out using exactly 
the same methods, the final result obtained is based on equal contributions 
of each data component. Thus, it is worth noting that in the case of clus­
tering of experiments many genes will only introduce noise and consequently 
the resulting partition can be meaningless from a biological point of view. In 
addition to noise, some experiments are conceptually different. Time series or 
dose-response experiments, for example, are characterized by the existence of a 
high internal correlation between consecutive experiments. These experiments 
must be clustered with methods specifically designed for them (Bar-Joseph, 
2004). Regarding the comparative performances of the methods, hierarchical 
clustering (except in the case of single linkage), SOM and A;-means (provided 
the number of clusters is known) and SOTA seem to produce reliable parti­
tions (Gibbons and Roth, 2002; Datta and Datta, 2003; D'Haeseleer, 2005; 
Handl et al., 2005). Finally, methods that examine the enrichment in biolog­
ically relevant terms (Al-Shahrour and Dopazo, 2005; Khatri and Draghici, 
2005) are necessary for a proper understanding of the biological processes 
cooperatively carried out by the genes present in co-expression clusters . 
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7.1 Introduction 

As technology improves, the amount of information we collect about the world 
increases. Sensor networks collect traffic or weather information in real-time, 
documents and news articles are distributed and searched on-line, information 
in medical records is collected and stored in electronic form. All of this infor­
mation can be mined so that the relations among components of the underly­
ing systems are better understood and their models can be built. Microarray 
and mass spectrometry (MS) technologies are producing large quantities of 
genomic and proteomic data relevant for our understanding of the behavior 
and function of an organism, or characteristics of disease and its dynamics. 
Thousands of genes are measured in a typical microarray assay; tens of thou­
sands of measurements comprise a mass spectrometry proteomic profile. The 
high-dimensional nature of the data demands the development of special data 
analysis procedures that are able to adequately handle such data. The central 
question of this process becomes the identification of those features (measure­
ments, attributes) that are most relevant for characterizing the system and its 
behavior. We study this problem in the context of classification tasks where 
our goal is to find features that discriminate well among classes of samples, 
such as samples from people with and without a certain disease. 

Feature selection is a process that aims to identify a small subset of features 
from a lajge number of features collected in the data set. Two closely-related 
objectives may drive the feature selection process: (1) Building a reliable clas­
sification model which discriminates disease from control samples with high 
accuracy. The model is then applied to early detection and diagnosis of the 
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disease. (2) Biomarker discovery task where a small set of features (genes in 
DNA microaxrays, or peaks in proteomic spectra) that discriminate well be­
tween disease and control groups is identified so that the responsible features 
can be subjected to further laboratory exploration. 

In principle, building a good classification model does not require feature 
selection. However, when the sample size is small in comparison to the number 
of features, feature selection may be necessary before a classification model 
can be reliably learned. With a small sample size, the estimates of parameters 
of the model may become unreliable and may cause overfitting, a phenomenon 
in which each datum is fit so rigidly that the model lacks flexibility for future 
data. To avoid overfitting, feature selection is applied to balance the number 
of features in proportion to the sample size. On the other hand, identifica­
tion of a small panel of features for biomarker discovery purposes requires a 
classification model so that the discriminative behavior of the panel can be 
assessed. 

The dimensionality of typical genomic and proteomic data sets one has 
to analyze surpasses the number of samples collected in typical studies by a 
large margin. For example, a typical microarray study can consist of up to 
a hundred samples with thousands of gene-expression measurements. Mass 
spectrometry (MS) proteomic profiling is less expensive and as a result one 
can often see data sets with two to three hundred profiles. MS profiles consist 
of thousands of measurements. Typically, "peaks" are selected among those 
measurements, and number in the hundreds. In either case, feature selection 
becomes important for both the biomarker discovery and interpretive analysis 
tasks; one has to seek a robust combination of feature selection methods and 
classification models to assure their reliability and success. Finally, feature 
selection may be a one-shot process, but typically, it is a search problem where 
more than one feature subset is evaluated and compared. Since the number of 
possible feature subsets is exponential in the number of constituent features, 
eflScient feature selection methods are typically sought. 

Feature selection methods are typically divided into three main groups: 
Filter, wrapper and embedded methods. Filter methods rank each feature ac­
cording to some univariate metric, and only the highest ranking features are 
used; the remaining features are eliminated. Wrapper algorithms (Kohavi and 
John, 1998) search for the best subset of features. To assess the quality of a 
feature set, these methods rely on and interact with a classification algorithm 
and its ability to discriminate among the classes. The wrapper algorithm 
treats a classification algorithm as a black box, so any classification method 
can be combined with the wrapper. Standard optimization techniques (hill 
climbing, simulated annealing or genetic algorithms) can be used. Embed­
ded methods search among different feature subsets, but unlike wrappers, the 
process is tied closely to a certain classification model and takes advantage of 
its characteristics and structure. In addition to feature selection approaches, 
in which a subset of original features is searched, the dimensionality problem 
can be often resolved via feature construction. The process of feature construe-
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tion builds a new set of features by combining multiple existing features with 
the expectation that their combination improves our chance to discriminate 
among the classes as compared to the original feature space. 

In this chapter, we first introduce the main ideas of four different methods 
for feature selection and dimensionality reduction and describe some of their 
representatives in greater depth. Later, we apply the methods to the analysis 
of one MS proteomic cancer data set. We analyze each method with respect 
to the quality of features selected and stress differences among the methods. 
Since our measuring criterion for feature effectiveness is how well it allows 
us to classify our samples, we compare the methods and their classification 
accuracy by combining them with a fixed classification method — a linear 
support vector machine (Vapnik, 1995). In closing, we analyze the results and 
give recommendations on the methods. 

7.2 Basic Concepts 

7.2.1 Filter Methods 

Filter methods perform feature selection in two steps. In the first step, the 
filter method assesses each feature individually for its potential in discrimi­
nating among classes in the data. In the second step, features falling beyond 
some thresholding criterion are eliminated, and the smaller set of remaining 
features is used. This score-and-filter approach has been used in many recent 
publications, due to its relative simplicity. Scoring methods generally focus 
on measuring the differences between distributions of features. The resulting 
score is intended to reflect the quality of each feature in terms of its discrim­
inative power. Many scoring criteria exist. For example, in the Fisher score 
(Pavlidis et al., 2001), 

vn) = (^(+)(;)-\)(;y (7.1) 

the quality of each feature is expressed in terms of the difference among the 
empirical means of two distributions, normalized by the sum of their vari­
ances. Table 7.1 displays examples of scoring criteria used in bioinformatics 
literature. Note that some of the scores can be applied directly to continuous 
quantities, while others require discretization. Scores can be limited to two 
classes, like the Fisher score, while others, such as the mutual information 
score, can be used in the presence of three or more classes. For the remainder 
of this chapter, we will assume our scoring metrics deal with binary decisions, 
where the data either belong to a positive (+) or negative (—) group. 

7.2.1.1 Criteria Based on Hypothesis Testing 

Some of the scoring criteria axe related to statistical hypothesis testing and 
significance of their results. For example, the t-statistic is related to the null 
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Table 7.1. Examples of univariate scoring criteria for filter methods. See section 
Mathematical Details for definitions of these scores. 

Criterion References 

Fisher score (Golub et al, 1999; Furey et al., 2000; PavUdis et al., 2001) 

SAM scoring criterion (Tusher et al, 2001; Storey and Tibshirani, 2003) 

t-test (Baldi and Long, 2001; Gosser, 1908) 

Mutual information (Tzannes and Noonan, 1973) 

X̂  (Chi square) (ChernofT and Lehmann, 1954; Liu and Setiono, 1995) 

AUG (Hanley and McNeil, 1982) 

J5 score (Patel and Lyons-Weiler, 2004) 

hypothesis HQ under which the two class-conditional distributions p{x\y = 
(+)) and p{x\y = (—)) have the identical mean, that is /i(+) = A*(-)- The 
degree of violation of Ho is captured by the p-value of the i-statistic with 
respect to the Student distribution. As a result, features can be ranked using 
the inverse of their p-value. Similarly, one can rank the features according to 
the inverse of the p-value of the Wilcoxon rank-sum test (Wilcoxon, 1945), a 
nonparametric method, testing the null hypothesis that the class-conditional 
densities of individual features are equal. 

7.2.1.2 Permutation Tests 

Any differential scoring metric (statistic) can be incorporated into and evalu­
ated within the hypothesis testing framework via permutation tests. Permu­
tation (or randomization) tests define a class of non-parametric techniques 
developed in the statistics literature (Kendall, 1945; Good, 1994), that are 
used to estimate the probability distribution of a statistic under the null (ran­
dom) hypothesis from the available data. The estimate of the probability 
distribution of a scoring metric (Fisher score, J-measure, t-score, etc.) under 
the null condition allows us to estimate the p-value of the score observed in 
the data, similarly to the i-test or Wilcoxon rank-sum test. Prom the view­
point of feature selection, the null hypothesis assumes that the conditional 
probability distributions for the two classes {y = {+) or (—)) are identical 
under a feature x, that is, p{x\y = {+)) = p{x\y = (—)); or equivalently, that 
the data and the labels are independent, p{x,y) = p{x)p{y). The distribution 
of data under the null hypothesis is generated through random permutations 
(of labels) in the data. The permutation test algorithm is shown below. The 
main cycle of the algorithm either scans through all possible permutations of 
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labels, or, if this set is too large, a large number B of permutations is gen­
erated randomly. With sufEcient cycles, the distribution of the test statistic 
under the null hypothesis can be estimated reliably. 

permutation_test 
{ 

Compute the test statistic T for the original data; 
For 6 = 1 to B do 

{Permute randomly the group labels in the data; 
Compute the test statistic Tt for the modified data; 

} 
Calculate the p-value of T with respect to the distribution defined by 

permutations b as: p = NT^>T/B; where NT^>T is the number of 
permutations for which the test statistic Tt is better than T; 

Return p; 
} 

7.2.1.3 Choosing Features Based on the Score 

Differential scores or their associated p-value scores allow us to rank all feature 
candidates. However, it is still not clear how many features should be filtered 
out. The task is easy if we always seek a fixed set of k features. In such a 
case, the top k features are selected with respect to the ordering imposed 
by ranking features by their score. However, the quality of these features may 
vary widely, so selecting the features based solely on the order may cause some 
poor features to be included in the set. An alternative method is to choose 
features by introducing a threshold on the value of the score. Unfortunately, 
not every scoring criterion has an interpretable meaning, so it is unclear how 
to select an appropriate threshold. The statistic typically used for this purpose 
is the p-value associated with the hypothesis test. For example, if the p-value 
threshold is 0.05 then there is a 5% chance the feature is not differentially 
expressed at the threshold value. Such a setting allows us to control the chance 
of false positive selections. These are features which appear discriminative by 
chance. 

7.2.1.4 Feature Set Selection and Controlling False Positives 

The high-dimensional nature of biological data sources necessitates that many 
features (genes or MS-profile peaks) be tested and evaluated simultaneously. 
Unfortunately, this increases the chance that false positives are selected. To 
illustrate this, assume we measure the expression of 10 000 independent genes 
and none of them are differentially expressed. Despite the fact that there is 
no differential expression, we might expect 100 features to have their p-value 
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smaller than 0.01. An individual feature with p-value 0.01 may appear good in 
isolation, but may become a suspect if it is selected from thousands of tested 
features. In such a case, the p-value of the combined set of the top 100 features 
selected out of 10000 is quite different. Thus, adjustment of thep-value when 
performing multiple tests in parallel is necessary. 

The Bonferroni correction adjusts the p-value for each individual test by 
dividing the target p-value for all findings by the number of findings. This as­
sures that the probability of falsely rejecting any null hypotheses is less than 
or equal to the target p. The limitation of the Bonferroni correction is that it 
operates under the assumption of independence and as a result it is too con­
servative if features are correlated. Two alternatives to the Bonferroni correc­
tion are offered by: (1) the family-wise error rate method (FWER, (Westfall 
and Young, 1993)) and (2) methods for controlling the false discovery rate 
(FDR, (Benjamini and Hochberg, 1995; Tusher et al., 2001). FWER takes 
into account the dependence structure among features, which often translates 
to higher power. Benjamini and Hochberg (1995) suggest to control FDR in­
stead of the p-value. The FDR is defined as the mean of the number of false 
rejections divided by the total number of rejections. The significance analy­
sis of microarrays (SAM) method (Storey and Tibshirani, 2003) is used as 
an estimate of the FDR. Depending on the chosen threshold value for the 
test statistic T, it estimates the expected proportion of false positives on the 
feature list using a permutation scheme. 

7.2.1.5 Correlation Filtering 

To keep the feature set small, the objective is to diversify the features as 
much as possible. The selected features should be discriminative as well as 
independent from each other as much as possible. The rationale is that two or 
more independent features will be able to discriminate the two classes better 
than any of them individually. Each feature may differentiate different sets of 
data well, and independence between the features tends to reduce the overlap 
of the sets. Similarly, highly dependent features tend to favor the same data 
and thus are less likely to help when both are included in the panel. The 
extreme case is when the two features axe exact duplicates, in which case one 
feature can be eliminated. 

Correlation filters (Ross et al., 2000; Hauskrecht et al., 2005) try to remove 
highly correlated features since these are less likely to add new discrimina­
tive information (Guyon and Elisseeff, 2003). Various elimination schemes are 
used within these filters to reduce the chance of selected features being highly 
correlated. Typically, correlation filters are used in combination with other 
differential scoring methods. For example, features can be selected incremen­
tally according to their p-value; the feature to be added next is checked for 
correlation with previously selected features. If the new feature exceeds some 
correlation threshold, it is eliminated (Hauskrecht et al., 2005). 
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7.2.2 Wrapper Methods 

Wrapper methods (Kohavi and John, 1998) search for the best feature subset 
in combination with a fixed classification method. The goodness of a fea­
ture subset is determined using internal-vahdation methods, such as, fc-fold 
or leave-one-out cross-validation (Krus and Fuller, 1982). Since the number of 
all combinations is exponential in the number of features, the efficiency of the 
search methods is often critical for its practical acceptance. DiflFerent heuris­
tic optimization frameworks have been applied to search for the best subset. 
These include: Forward selection, backward elimination (Blum and Langley, 
1997), hill climbing, beam search (Russel and Norvig, 1995), and randomized 
algorithms such as genetic algorithms (Koza, 1995) or simulated annealing 
(Kirkpatrick et al., 1983). In general, these methods explore the search space 
(subsets of all features) starting with no features, all features, or a random 
selection of features. For example, the forward selection approach builds a 
feature set by starting from an empty feature set and incrementally adding 
the feature that improves the current feature set the most. The procedure 
stops when no improvement in the feature set quality is possible. 

7.2.3 Embedded Methods 

Embedded methods incorporate variable selection as part of the model building 
process. A classic example of an embedded method is CART (Classification 
and Regression Trees, (Breiman et al., 1984)). 

CART searches the range of each individual feature to find the split that 
optimally divides the observed data into a more homogeneous groups (with re­
spect to the outcome variable). Beginning with the subsets of the variable that 
produces the most homogeneous split, each variable is again searched across 
its range to find the next optimal split. This process is continued within each 
new subset until all data are perfectly fit by the resulting tree, or the termi­
nal nodes have a small sample size. The group constituting the majority of 
data points in each node determines the classification accuracy of the derived 
terminal nodes. Misclassification error from internal cross-validation can be 
used to backprune the decision tree and optimize its projected generalization 
performance on additional independent test examples. 

7.2.3.1 Regulcirization/Shrinkage Methods 

Regularization or shrinkage methods (Hastie et al., 2001; Xing et al., 2001) 
oflFer an alternative way to learn classifications for data sets with large number 
of features but small sample size. These methods trim the space of features 
directly during classification. In other words, regularization "eflFectively" shuts 
down (or zeros the influence of) unnecessary features. 

Regularization can be incorporated either into the error criterion or di­
rectly into the model. Let w be a set of parameters defining a classification 
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model (e.g., the weights of a logistic regression model), and let Error(w,D) 
be an error function reflecting the fit of the model to data (e.g., least-squares 
as likelihood-based error). A regularized error function is then defined as: 

Error Regivf,!^) = Error{w,-D) + A||w||, (7.2) 

where A > 0 is a regularization constant, and || • || is either the Li or 
L2 norm. Intuitively, the regularization term penalizes the model for nonzero 
weights so the optimization of the new error function drives all unnecessary 
parameters to 0. Automatic relevance determination (ARD) (MacKay, 1992; 
Neal, 1998) achieves regularization effects in a slightly different way. The rel­
evance of an individual feature is represented explicitly via model parameters 
and the values of these parameters are learned through Bayesian methods. 
In both cases, the output of the learning is a feature-restricted classification 
model, so features are selected in parallel with model learning. 

7.2.3.2 Support Vector Machines 

Regularization effects are at work also in one of the most popular classifi­
cation frameworks these days: The support vector machine (SVM) (Burges, 
1998; Scholkopf and Smola, 2002). The SVM defines a linear decision boundary 
(hyperplane) that separates case and control examples. The boundary max­
imizes the distance (also called margin) in between the two sample groups. 
The effects of margin optimization are twofold: Only a small set of data points 
(support vectors) are critical for the separation; the dimensions unnecessary 
for separation are penalized. Both of these processes help to fight the problem 
of model overfit. As a result, the SVM offers a robust classification framework 
that works very well for situations with a moderately large number of features 
and relatively small sample sizes. 

7.2.4 Feature Construction 

Better discriminatory performance can be often achieved using features con­
structed from the original input features. Building a new feature is an oppor­
tunity to incorporate domain specific knowledge into the process and hence 
to improve the quality of features. Nevertheless, a number of generic feature 
construction methods exist: Clustering; linear (affine) projections of the orig­
inal feature space; as well as more sophisticated space transformations such 
as wavelet or kernel transforms. In the following, we briefiy review three basic 
feature construction approaches: Clustering, PCA and linear discriminative 
projections. 

7.2.4.1 Clustering 

Clustering groups data components (data points or features) according to 
their similarity. Every data component is assigned to one of the groups (clus­
ters); components falling into the same cluster are assigned the same value in 
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the new (reduced) representation. Clustering is typically used to identify dis­
tinguished sample groups in data (Ben-Dor et al., 2000; Slonim et al., 2000). 
In contrast to supervised learning techniques that rely heavily on class label 
information, clustering is unsupervised and the information about the target 
groups (classes) is not used. Prom the dimensionality reduction perspective, a 
data point is assigned a cluster label which is then used as its representation. 

Clustering methods rely on the similarity matrix - a matrix of distances 
between data components. The similarity matrix can be built using one of the 
standard distance metrics such as Euclidean, Mahalanobis, Minkowski, etc., 
but more complex distances based on, for example, functional similarity of 
genes (Speer et al., 2005), are possible. Table 7.2 gives a list of some standard 
distance metrics one may use in clustering. 

Table 7.2. Examples of distance metrics for clustering. 

Metric Formula 

d{r, s) = f 

d{r, s) = 

- 1 

' [2^3=1 \^rj XSJI j 

M ^r-x', \ 

V \/K^T^^',^a) J 

(xr-Xr-)(xs-Xs) ' 

Euclidean distance d{r, s) = ^(x^ — Xs)(xr — x^)' 

Standardized Euclidean distance d{r,s) = ^{'x.r — x.s)D~^{xr — Xs)' 

Mahalanobis distance d{r, s) = •^(xr — Xs)£'-i(xr — Xs)' 

City Block (or Manhattan) metric d{r, s) = ^"=1 |xrj — Xsj | 

Minkowski metric 

Cosine distance 

Correlation distance d(r, s) = 1 (.x^-x^nx^-x^r 
y ( X r - X r ) ( x , . - X r ) ' y ( X s - X s ) ( X s - X s ) ' 

Hamming distance d(r, s) = ^^'^^i^'^"'' 

Jaccard distance d(r,.) = ^ ' ^ ^ ^ ^ I g ^ S C ^ S r " " " ' 

X and x' denote a column vector and its transpose, respectively. 
Xr and Xs indicate the r*** and s"̂  samples in the data set, respectively. 
Xrj indicates the j * ' ' feature of the r*^ sample in the data set. 
Xr indicates the mean of all features in the r*'' sample in the data set. 
D is the diagonal matrix with diagonal elements given by vf, which denotes the 
variance of i*'' variable. 
E is the sample covariance matrix. 
The symbol # denotes counts; the number of instances satisfying the associated 
property. 
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7.2.4.2 Clustering Algorithms 

The goal of clustering is to optimize intrar and inter-cluster distances among 
the components. Two basic clustering algorithms are: k-means clustering (Mc­
Queen, 1967; Ball and Hall, 1967), and hierarchical agglomerative clustering 
(Cormack, 1971; Eisen et al., 1998). 

Briefly, the fc-means algorithm clusters data into groups by iteratively op­
timizing positions of cluster centers (means) so that the sum of within-cluster 
distances (the distances between data points and their cluster centers) is min­
imized. Initial positions for cluster centers are generated randomly or by using 
heuristics. The algorithm is not guaranteed to converge to the optimal solu­
tion. On the other hand, hierarchical agglomerative methods work by com­
bining pairs of data entities (features) or clusters into a hierarchical structure 
(called a dendrogram). The algorithm starts from unit clusters and merges 
them greedily (i.e., choosing the merge which most improves the fit of the 
clusters to the data) into larger clusters using an a priori selected similarity 
measure. 

7.2.4.3 Probabilistic (Soft) Clustering 

The fe-means and agglomerative clustering methods assign every data point 
into a single cluster. However, sometimes it may be hard to decide what 
cluster the point belongs to. In probabilistic (soft) clustering methods, a data 
point belongs to all clusters, but the strength (weight) of its association with 
clusters differs by how well it fits cluster descriptions. Typically, the weight 
has probabilistic meaning and defines a probability with which a data point 
belongs to a cluster. 

To calculate the probability, an underlying probabilistic model must be 
first fit to the data. Briefiy, data are assumed to be generated from k different 
classes that correspond to clusters. Each class has its own distribution for 
generating data points. The parameters of these distributions as well as class 
(cluster) priors are fit (learned) using Expectation-Maximization techniques 
(Dempster et al., 1977). Once the model parameters axe known, the proba-
bifistic weights relating a data point and clusters are posterior probabilities 
of the point belonging to classes. A classic example of a probabilistic model 
often used in clustering is the Mixture of Gaussians model (McLachlan et al., 
1997), where k clusters are modeled using k Gaussian distributions. 

7.2.4.4 Clustering Features 

Clustering methods can be applied to group either data points or features in 
the data. When clustering features, the dimensionality reduction is achieved 
by selecting a representative feature (typically the feature that is closest to 
the cluster center (Guyon and Elisseeff, 2003)), or by aggregating all fear 
tures within the cluster via averaging to build a new (mean) feature. If we 
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assume k different feature clusters, the original feature space is reduced to 
a new k-dimensional space. An example method of feature clustering is to 
cluster features based on intra-correlation, and use the cluster center as a rep­
resentative. Closely correlated features axe not likely to help when separated, 
so grouping them away from more unrelated features will help diversify the 
resulting features. 

7.2.4.5 Principal Component Analysis 

Principal component analysis (PCA) (Jolliffe, 1986) is a widely used method 
for reducing the dimensionality of data. PCA finds projections of high-
dimensional data into a lower dimensional subspace such that the variance 
retained in the projected data is maximized. Equivalently, PCA gives uncor-
related linear projections of data while minimizing their least square recon­
struction error. Additionally, PCA works fully unsupervised; class labels are 
ignored. PCA can be extended to nonlinear projections using kernel methods 
(Bach and Jordan, 2001). Dimensionality reduction methods similar to PCA 
that let us project high dimensional features into a lower dimensional space 
include multidimensional scaling (MDS) (Cox and Cox, 1994) used often for 
data visualization purposes or independent component analysis (ICA) (Jutten 
and Herault, 1991). 

7.2.4.6 Discriminative Projections 

Principal component analysis identifies afHne (linear) projections of data that 
maximize the variance observed in data. The method operates in a fully un­
supervised manner; no knowledge of class labels is used to find the principal 
projections. The question is whether there is a way to identify linear pro­
jections of features such that they optimize the discriminability among the 
two classes. Techniques which try to achieve this goal include Fisher's linear 
discriminant (FLD) (Duda et al., 2000), linear discriminant analysis (Hastie 
et al., 2001) and more complex methods like partial least squares (PLS) (Den-
ham, 1994; Dijkstra, 1983). 

Take, for example, the linear discriminant analysis model. The model as­
sumes that cases and controls are generated from two Gaussian distributions 
with means A*(-), A*(+) -̂iid the same covariance matrix E. The parameters 
of the two distributions are estimated from data using the maximum likeli­
hood methods. The decision boundary that is defined by data points that give 
the same probability for both distributions is a line. The linear projection is 
defined as: 

w = i:-i(/X(+)-/i(_)), (7.3) 

where /Z(_), /i(+) are the means of the two groups and S is the covariance for 
both groups, where p{x\y) ~ N{^i, E). 
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7.3 Advantages and Disadvantages 

Each of the aforementioned methods comes with advantages and disadvan­
tages. The following text briefly summarizes them. 

Filter methods: 

• Advantages: Univariate scores are very easy to calculate and thus, filter 
methods have a short running time. If our goal is a prediction, they often 
perform well in combinations with more robust classification methods such 
as the SVM. 

• Disadvantages: Many differential scoring methods exist, it is unclear which 
one is best for the data set at hand. The features are analyzed independent 
of each other. This is a problem if our goal is to identify a small panel of 
discriminative features (biomarkers). Multivariate relations/dependencies 
must be incorporated through additional criteria, e.g., correlation filters. 

Wrapper methods: 

• Advantages: More comprehensive search of the feature set space. The fea­
ture set with the best discriminative potential on a fixed classification 
method is selected. 

• Disadvantages: Running time is much longer than filter methods; many 
feature sets need to be analyzed and assessed. In addition, scoring of fear 
ture sets is based on internal cross-validation methods, which lengthens 
their running time. The reliability of the estimate of the internal cross-
validation error needs to be considered. Low reliability of the internal 
validation error in combination with a large number of subsets examined 
can be lethal especially in various greedy search schemes. 

Embedded methods: 

• Advantages: Features and their selection are tuned to a specific model. 
Learning methods which incorporate aspects of regularization, like the 
SVM or regularized logistic regression, can learn very good predictive mod­
els even in the presence of high-dimensional data. We recommend trying 
SVM as a first step if the goal is only to build a predictive model. 

• Disadvantages: Identification of a small set of features may be problematic. 
Backward feature elimination routines (Guyon and Elisseeff, 2003) can be 
used to reduce the feature panel to a more reasonable size. 

Feature construction methods: 

• Advantages: May incorporate the domain knowledge which may translate 
to improved feature sets. 

• Disadvantages: If features are constructed using one of the out-of-box 
methods (e.g., PGA) the new features may be hard to interpret biolog­
ically. In addition, many feature construction techniques (e.g., clustering, 
PGA, IGA) work in an unsupervised mode, so high-quality features for 
discriminatory purposes are not guaranteed. 
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7.4 Case Study: Pancreatic Cancer 

To illustrate some of the advantages and disadvantages of feature selection 
methods, we use a data set of MS proteomic profiles for pancreatic cancer 
collected at the University of Pittsburgh Cancer Institute (UPCI). Since full 
feature selection comparison is very hard to do without a full predictive model 
that combines both the feature selection and the classification stages we test 
feature selection methods in combination with one classification method -
the linear support vector machine (SVM) (Vapnik, 1995). All classification 
results presented in the following text were obtained by using the repeated 
random subsampling strategy with 40 different train/test data splits using 
70/30 train/test split ratio. The optimization criterion for the SVM method 
was a zero-one loss function, which focuses on improving classification er­
ror instead of sensitivity or specificity. The statistics reported are: Average 
test classification error (ACE), sensitivity (SN) and specificity (SP) and their 
standard deviations. 

7.4.1 Data and Pre-Processing 

The data set consists of 116 MS profiles, with 57 cancer cases (+ group) and 
59 controls, matched according to their smoking history, age, and gender (— 
group). The data were generated using Ciphergen Biosystems Inc. SELDI-
TOF (surface-enhanced laser desorption/ionization time-of-fiight) mass spec­
trometry. Compounds such as proteins, peptides and nucleic acids for masses 
of up to 200000 Daltons are recorded using this technology. Before apply­
ing feature selection techniques the data set was pre-processed using the 
Proteomic Data Analysis Package (PDAP) (Hauskrecht et al., 2005). The 
following pre-processing steps were applied: (1) Cuberoot variance stabiliza­
tion, (2) local min-window baseline correction, (3) Gaussian kernel smooth­
ing, (4) range-restricted intensity normalization, and (5) peak-based profile 
alignment. The quality of all profiles were tested beforehand on raw MS pro­
file readings using total ion current (TIC). None of the profiles differed by 
more than two standard deviations from the mean TIC, which is our current 
quality-assurance/quality-control threshold for sample exclusion. After basic 
pre-processing, peaks in the range of 1500 — 1650 Daltons were identified and 
their corresponding intensities were extracted.'* This gave us a data set of 116 
samples with 602 peak features. 

•* The region below 1500 Daltons is unsuitable for analysis because of known signal 
reproducibility problems. The region is often referred to as the junk region. On the 
other hand, signals for higher mass-to-charge-ratios are of lower intensity which 
makes them hard to separate from the noise. An a priori upper limit is typically 
set to restrict the search for signal. 
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7.4.2 Filter Methods 

7.4.2.1 Basic Filter Methods 

Many univariate scoring metrics that assess the individual quality of features 
were proposed in the literature. An important question is how the rankings and 
subsequent feature selection induced by these metrics vary. Table 7.3 shows 
the number of overlapping features for the top 20 features selected according 
to four frequently used scoring criteria: Correlation, Fisher, t-statistic and 
Wilcoxon's p-value measures. 

Table 7.3. Overlap of top 20 features for four different metrics. 

Correlation 
Fisher 
t-statistics 
Wilcoxon 

Correlation 
-
18 
12 
18 

Fisher 
18 
-
11 
16 

t-statistics 
12 
11 
-
11 

Wilcoxon 
18 
16 
11 
-

The table shows that different scoring metrics may induce rather different 
feature orders and as a result, different feature panels. It is very hard to 
argue that any one of them is the best. The quality depends strongly on 
the classification technique used in the next step, but even there the story 
is often unclear, and the best method tends to vary among the data sets. 
Table 7.4 illustrates the results obtained using top 20 choices of four scoring 
methods from Table 7.3 after we combine them with the linear SVM model. 
Standard deviations of performance statistics are also given. We see that the 
best classification error was obtained using the features selected based on the 
^-statistic score. While our experience is that the t-statistic score performs well 
on many proteomic data sets, other scoring metrics may often outperform it. 

Table 7.4. Results for classifiers based on different feature filtering methods and 
the linear SVM. Standard deviations are given in parentheses. 

Correlation Fisher t-statistics Wilcoxon 
ACE 0.2500 (0.1178) 0.2188 (0.1075) 0.1743 (0.0684) 0.2611 (0.1091) 

SN 0.8022(0.0945) 0.8102(0.1210) 0.8259(0.0997) 0.7956(0.1200) 
SP 0.7142 (0.1249) 0.7628 (0.1423) 0.8327 (0.0852) 0.6961 (0.1607) 

7.4.2.2 Controlling False Positive Selections 

A problem with high-dimensional data is that some features may appear as 
good discriminators simply by chance. The problem of false positive identifi­
cations of features is critical for the biomarker discovery task. Clearly, a more 
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comprehensive analysis and validation of the feature in the lab may incur a 
significant monetary cost. While positive feature selections may influence also 
the generalizations of the predictive model and its classification accuracy, the 
classification methods are often more robust to handle them and the prob­
lem of false positive features is less pressing than for the biomarker discovery 
applications. 

The false positive selection rate can be controlled via p-value on individual 
features, Bonferroni corrected p-value for the panel of features, or through false 
discovery rate. Table 7.5 shows the number of features out of 602 original 
features selected by each of these methods. 

Table 7.5. P-value for f-statistics. 
original number of features p < 0.05 Bonferroni p < 0.05 FDR 0.2 

602 l3 0 5 

Assuming that all features are independent and random, we expect to 
see about 30 false positive features under the simple p-value of 0.05 for each 
feature. Using this estimate and the fact that we see only 13 features for the 
p-value of 0.05 would lead us to the conclusion that all of these are likely 
obtained by chance. The caveat is that when features are dependent and 
correlated the expected numbers are very different. Indeed, features in this 
and other proteomic data sets exhibit a large amount of correlation among 
the features; so the result in the table is indicative of such a dependency. The 
Bonferroni correction typically leads to a very conservative bound that may 
be very hard to satisfy. For example, none of the features in our cancer data 
passed Bonferroni-corrected p-value of 0.05. FWER and FDR methods and 
their thresholds give better estimates of false positive selections and their rates 
for the real-world data and should be preferred over simple and Bonferroni-
corrected p-value thresholding. 

When selecting features, our objective is to strike the right balance be­
tween the number of features, the flexibility they may offer when building 
multivariate discriminators, and the risk of inclusion of false positive features. 
The FWER and FDR methods give better control over risks of false positives. 
However, choosing the optimal thresholds for these techniques is a matter 
of personal preference. For example, two different approaches can be taken. 
If the selected features are meant only for use with an automated classifica­
tion routine, it may be more acceptable to risk selecting false positives, and 
thusly the threshold can be less stringent. On the other hand, if the selected 
features are to be investigated more thoroughly (e.g., to analyze them using 
wet lab techniques), it would be far less acceptable to suggest that false pos­
itives are informative features. In this case, the threshold should be set more 
aggressively. 
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7.4.2.3 Correlation Filters 

Biological (genomic and proteomic) data sets often exhibit a relatively high 
number of correlations. The correlations can be introduced by the technol­
ogy producing the data or they reflect true underlying dependencies among 
measured species. For example, a peak in a proteomic profile is formed by a 
collection of correlated measurements, triple or double charged ions cause the 
same signal to be replicated at different parts of the profiles, and finally some 
peaks are correlated because they share a common regulatory (or interaction) 
pathway. 

Selecting two features that are near duplicates, even if they are highly 
discriminative, does not help the classification model and its accuracy. Corre­
lation filtering alleviates the problem by removing features highly correlated 
with existing features in the panel. Table 7.6 illustrates the number of fea­
tures one obtains by filtering out correlated features at different maximum 
allowed absolute correlation (MAC) thresholds from the original 602 features. 
We note that the amounts of correlates filtered out at higher thresholds are 
statistically significantly different (at p = 0.01) from what one would obtain 
for independent feature sets. 

Table 7.6. Effect of correlation filtering. 

Threshold 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 
Number of Features 602 460 247 119 52 22 12 9 

0.2 
6 

0.1 
3 

0 
1 

Figure 7.1 illustrates the effect of correlation filtering when it is combined 
with the univariate feature scoring based on the t-statistic. We see that test 
errors for smaller feature sets (size 5) are improved if feature panels are decor-
related. However, for larger feature panels the effect of feature decorrelation 
may vanish since some good features that add some discriminative value to 
the panel are filtered out. For example, for 20 features in Figure 7.1 the effect 
of correlation filtering has disappeared and the SVM classifier based on the 
unrestricted i-statistic score performs better than classifiers with correlation 
thresholds of 0.75 and 0.5. This illustrates one of the problems of the method, 
identification of an appropriate MAC threshold. We must note that the effect 
as seen in Figure 7.1 may be less pronounced on other classification methods 
or on other data sets, while in some cases correlation thresholds may lead to 
superior performance. These diflfering outcomes are the results of tradeoffs of 
feature quality and overfit processes. 

The plain correlation threshold filtering method suffers from a couple of 
problems. First, an identification of an appropriate correlation threshold in 
advance is hard. Moreover, for different feature sizes there appears to be a 
different threshold that works best so switching of thresholds may be appro­
priate. One solution to this problem is the parallel correlation filtering method 
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(Hauskrecht et al., 2005) that works at multiple correlation threshold levels in 
parallel and uses internal cross-validation methods to decide on what feature 
(correlation level) to select next. The performance of the method is compared 
to the unrestricted t-statistic filter and two correlation filtering methods based 
on simple MAC thresholds in Figure 7.1. 
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Fig. 7.1. Effect of correlation filtering on classification errors. Results of correlation 
filtering on the i-statistic score and SVM are shown. 

7.4.3 Wrapper Methods 

Wrapper methods search for the best subset of features by trying them in 
combination with a fixed classification method. However, there is a natural 
tradeoff between the quality of the feature set found, and the time taken to 
search for it. Table 7.7 displays performance statistics for two search methods: 
Greedy forward selection and simulated annealing. 

The forward selection approach, also called the greedy approach, adds 
the feature which improves the set the most. The panel begins empty and 
is built incrementally, stopping when no improvement in the feature set is 
possible. Simulated annealing is a randomized algorithm and if it is left to 
search long enough all possible combinations may be reached and evaluated. 
Thus, simulated annealing may arrive at a better solution than the greedy 
method when given enough time. This quality/time tradeoff is captured in 
the table. The model based on the greedy forward selection method leads to 
average errors of 0.1750 while simulated annealing approaches 0.1660. To reach 
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Table 7.7. Wrapper methods with two search algorithms: Forward selection and 
simulated annealing. Standard deviations are given in parentheses. 

Greedy Simulated Annealing 
ACE 0.1750 (0.0668) 0.1660 (0.0603) 

SN 0.8239 (0.1123) 0.8149 (0.1097) 
SP 0.8261 (0.1100) 0.8614 (0.0784) 

# steps 7037.4 10000 

the result, 7037.4 feature sets were evaluated on average by forward selection, 
while simulated annealing was run for 10 000 steps on every train/test split. 

Evaluating a new feature set in any wrapper method is done by internal 
validation methods, such as fc-fold cross-validation or leave-one-out validation. 
The overhead incurred by the evaluation step contributes to the running time 
of the algorithm. In general, using more internal splits improves the estimate 
of the error for each feature set. The price paid for it is an additional increase 
in the running time. Despite the downfalls, the results obtained from wrapper 
methods powered by various search heuristics are often quite good, especially 
when computational time is not an issue. 

7.4.4 Embedded Methods 

Table 7.8 shows the results of three classification methods with embedded 
feature selection: CART (Breiman et al., 1984), regularized logistic regression 
(RLR) (Hastie et al., 2001) and support vector machines (SVMs) (Burges, 
1998). Each of these methods handles features differently, and consequently 
leads to different classification accuracies. We see that two of the methods, 
RLR and SVM, achieved results comparable or better than filter and wrapper 
methods. While this is not the rule, the linear SVM appears to be a very 
stable method across a large range of features so we always recommend to try 
it on the full feature set. 

Table 7.8. Performance statistics for embedded methods. Standard deviations are 
given in parentheses. 

CART Regularized LR SVM 
ACE 0.3681 (0.0897) 0.1382 (0.0584) 0.1382 (0.0623) 

SN 0.6321 (0.1888) 0.8619 (0.1026) 0.8536 (0.0913) 
SP 0.6361 (0.2088) 0.8624 (0.0942) 0.8769 (0.0881) 

Embedded methods may not be optimal, if we want to use them for bio-
marker discovery, that is, if our objective is to find a small set of original 
features with a good discriminatory performance. The embedded methods 
may rely on too many features so a follow-up selection of a smaller subset 
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is necessary. Wrapper methods based on the backward feature elimination 
(Guyon and Elisseeff, 2003) achieve this by gradually eliminating the features 
that affect the performance the least. 

7.4.5 Feature Construction Methods 

To illustrate feature construction methods we use three unsupervised methods: 
sample clustering, feature clustering and PCA projections, all aimed to reduce 
the dimensionality of data. The results of these methods in combination with 
the linear SVM are in table 7.9. 

Table 7.9. Construction methods: Sajnple clustering using squared Euclidean dis­
tance, feature clustering using correlation coefficient, and PCA. Standard deviations 
are given in parentheses. 

Sample Clustering Feature Clustering PCA Projections 
ACE 0.4525 (0.0810) 0.2104 (0.0652) 0.1681 (0.0594) 

SN 0.4721 (0.1604) 0.7932 (0.1426) 0.8223 (0.0984) 
SP 0.6444(0.1633) 0.7968(0.0920) 0.8492(0.0842) 

The first entry in the table (sample clustering with Euclidean distance) 
illustrates the major weakness of clustering methods: The clustering does not 
give reasoning as to why the data components group together, other that their 
distance is close, which obviously depends on the choice of the metric. Thus, 
one has to assure that the distance selected is not arbitrary and makes sense for 
the data and the prediction task. The result for clustering of features based 
on the correlation metric also supports this point. There are many feature 
correlates in the proteomic data set, so grouping the features based on their 
mutual correlation and replacing the features in each cluster with a feature 
corresponding to the cluster center tends to eliminate high correlates in the 
new (reduced) data. This is very similar in spirit to the correlation filtering 
method. The difference is that the correlation filtering is closely combined with 
and benefits from the univariate score filtering, while correlation clustering 
works fully unsupervised. 

PCA constructs features using linear projections of complete data. Since 
PCA arranges projections along uncorrelated axes, it helps to relieve us from 
identifying feature correlates. As a result, we see an improvement in classi­
fication error over some other construction and filtering methods. Note that 
PCA can be a good "one shot" technique, avoiding necessities like the choice 
of the number of clusters, fc, in fc-means clustering, or scoring metric in fil­
tering methods. The effort saved by not choosing parameters is in exchange 
for knowledge about a targetable panel of biomarkers, but PCA can still be 
convenient if the only interest is constructing a predictive model. 



168 Milos Hauskrecht, Richard Pelikan, Michal Valko, and James Lyons-Weiler 

7.4.6 Summary of Analysis Results and Recommendations 

There are multiple feature selection/dimensionality reduction methods one 
may apply to reduce the feature size of the data and make it "comparable" 
to its sample size. Unfortunately, there is no perfect recipe for what method 
to choose but here are some guidelines. 

• Having prior information about how features can be related to the predic­
tion task will always help feature selection and its subsequent application. 
So whenever possible try to use this information. For example, when the 
biological relevance of features can be ascertained, the potentially irrele­
vant or obvious features can also be eliminated. 

• In the presence of no prior information, more generic information can be 
used for steering feature selection in the right direction. The effect of a 
feature on the target class and the presence of multivariate dependencies 
(e.g., correlations) among feature candidates appear to be the most impor­
tant ones. The importance of a feature is captured by a univariate scoring 
metric. Dealing with highly correlated features, either by grouping them 
or eliminating redundancies, can help the selection process by narrowing 
the choice of features. 

• Feature selection coupled with more robust classification methods, like 
SVM, can perform extremely well on all features. Backward feature elimi­
nation methods can be applied if we would like to identify a smaller panel 
of informative features. 

• The feature selection method applied to data does not have to match a sin­
gle method. A combination of feature selection methods may be beneficial 
and may work much better (Xing et al., 2001). For example, it may help 
to exclude some features outright with a basic filtering method by remov­
ing the lowest-scoring features and apply other methods (e.g., wrapper or 
PCA methods) only on the remaining features. 

Since there are many feature selection methods, one may be tempted to 
try many of them in combination with a specific classifier and pick the one 
that gives the best test set result post hoc. Note that in such a case the error is 
biased and does not objectively report on the generalizability of the approach. 
Model selection methods based, for example, on an internal cross-validation 
loop should be applied whenever a choice out of many candidates is allowed. 

In closing, it is important to note that the selection of the feature selection 
technique should first be driven by prior knowledge about the data, and then 
by the primary goal you wish to accomplish by analyzing the data: Obtain 
a small, easy to interpret, feature panel or build a good classification model. 
Feature selection techniques vary in their complexity and interpretability, and 
the issues discussed above must be taken into careful consideration. 
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7.5 Conclusions 

In this chapter, we have presented four basic approaches to feature selection 
and dimensionality reduction. Filter, wrapper, and embedded methods work 
with the available features and choose those which appear important. In slight 
contrast, feature construction methods build new features which can be more 
powerful than previous ones. To discuss the entire gamut of feature selection 
methods would be exhaustive, as researchers must constantly meet their needs 
of analyzing high-dimensional data. The techniques covered here are among 
the most effective for analyzing genomic and proteomic data, in terms of 
building predictive models and developing biologically relevant information. 

7.6 Mathematical Details 

Table 7.10. Formulae for popular filter scores. 

Filter Name Formula 

Fisher score score{i) = ^''^i^^^^^^l^^^ 

SAM score score{i) = I'^+W-M-WI 

n_|_ "*" n _ 

Mutual Inf. score(i) = E { . a E,6{+,-} Pi^i = x,, F = y) • log J^^^^^^ 

X' (Chi-square) score{i) = E , . , } E„e{+,-} '"''''='''•^(^1'^:$''''='"'' 

AUG scoTe{i) = Area under the ROC curve for feature i 

Jb score scoreM = i '„ . 7•̂  /-M 

where /x(i) and s^(i) denote the sample mean and sample variance of the 
i*'' feature, respectively. The signs + and — denote positive and negative 
examples, respectively. 

The SAM technique is meant to be used in a permutation setting, how­
ever, the employed statistics can still be used for feature filtering. The terms 
ssAM{i) and SSAM,O are computed as follows: 
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SSAM,0 = 1-
In the case of the mutual information and Chi-square scores, Xi refers to 

a random variable representing the i*^ feature, and can take on any of the 
values in the set {xj}. 
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8.1 Introduction 

The advent of DNA microarrays and proteomics technology has stimulated 
the development and use of classification algorithms for biomedical studies. In 
oncology, for example, a common application is predicting response to treat­
ment based on expression profiling of tumor tissue. Such a classifier could be 
used as an aid in treatment selection for future patients based on the expres­
sion profiles of their tumors. In developing such a classifier, it is important to 
estimate the predictive accuracy that can be expected for future application 
of the classifier. 

There axe, in fact, many considerations that may influence the accuracy of 
predictions made using a classifier developed on a set of data. These include 
considerations such as assay drift, inter-laboratory variability in assay pro­
cedures, tissue handling and preparation, and systematic differences of new 
cases with regard to unmeasured or unaccounted for prognostic features. The 
only fully satisfactory way of assessing predictive accuracy of a classifier for 
independent cases is to classify a set of independent new cases in a manner 
that refiects all sources of variability to be experienced in broad application 
of the classifier. Before expending the extensive time and resources necessary 
for such an "external validation", one needs a more easily obtained estimate 
of predictive accuracy that can be obtained from the data set used to develop 
the classifier. 

In this chapter, I will discuss the use of resampling methods to obtain "in­
ternal estimates" of predictive accuracy of classification models in applications 
when the number of candidate predictors (e.g., genes) is much greater than 
the number of cases (e.g., tumor specimens). Much of the conventional wis­
dom and many of the published claims about resampling methods are invalid 
for such settings. For clarity, I will focus on binary classifiers, but the consid­
erations described here apply also to classifiers with more than two classes, 
and, with some technical modifications, to predicting risk groups using time-
to-event data. 
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Key concepts of this chapter include classifier, true error rate, resubsti-
tution estimate, resampling estimate, bias, and variance. The classifier is the 
rule for specifying a predicted class as a function of the values of genomic or 
proteomic measurements. The classifier to be used for subsequent application 
generally is the one based on the complete set of data in the developmen­
tal study. The true error rate is the error rate expected when that classifier 
is applied to independent data. The re-substitution estimate is the observed 
error rate when the classifier is applied to the same data set used for its devel­
opment. The re-substitution estimate is called a biased estimate of the true 
error rate because the average value of the difference of the two quantities is 
not zero. A biased underestimate of the true error rate tends to be too small; 
positive bias means that the estimate tends to be too large. An estimate may 
be unbiased but have a large variance. That means that, on average, the es­
timate is not too large or too small, but for any particular set of data the 
difference between the estimate and the true error rate may be quite large. 

8.2 Basic Concepts 

8.2.1 Resubstitution Estimate of Prediction Error 

Traditionally, statisticians have often used the re-substitution estimate as a 
measure of predictive accuracy. With the re-substitution estimate, one uses 
all the data to develop the classifier, and then measures the accuracy of clas­
sification on the same set of data used to develop the classifier. The data 
available for developing the classifier is a set of cases i = 1,2, ...n, with each 
case i consisting of a vector of predictor variables Xj and a binary 0 or 1 class 
label yi. Let D denote the set of data for all n cases, and let C{^,D) = yi 
denote the class predicted for a case with vector of variables Xj when the set 
of data D was used to develop the classifier. Then the re-substitution estimate 
of error is the proportion of the n cases for which j/j "^ yi-

The re-substitution estimate tends to underestimate the true error rate 
because the same data is used for developing the classifier and for measuring 
prediction accuracy (Simon et al., 2003). When a model and its parameters 
are selected to maximize the fit to a set of data, the degree of fit is not a proper 
estimate of the degree of discrepancy to be expected with independent data. 
To measure "prediction", you must separate the data used for developing the 
classifier from the data used for evaluating performance. 

The re-substitution estimate has been frequently used in statistics because 
the bias is not too great if the number of cases n is large relative to the 
number of variables p which are measured on the cases and are candidates for 
inclusion in the classifier. For microaxray and proteomic applications, however, 
the number of candidate variables aie generally orders of magnitude greater 
than the number of cases. In these circumstances, the resubstitution estimate 
is so biased as to be worthless and completely misleading. 
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8.2.2 Split-Sample Estimate of Prediction Error 

An improved estimate of the true error rate can often be obtained by splitting 
the data set D into a learning set L and a test set T. For example, the learning 
set may contain half of the cases and the test set the other half. This is called 
the split-sample method. 

A single fully specified classifier is developed on the learning set L. The 
learning set is not just used to fit the parameters of the classification model, 
it is used to determine which variables are included in the model and to 
determine what form of classifier should be used. For example, should the 
classifier be a linear discriminant, or a neural network with two nodes in a 
hidden layer, or should it be a nearest neighbor classifier? The learning set 
is also used to determine all parameters necessary to specify the completely 
determined binary classifier to be applied to the cases in the test set. I will 
denote the single fully specified classifier by C(x, L) to emphasize that only 
the data in the learning set L can be used in any way for developing the 
classifier. 

Once a single fully specified classifier is developed on the learning set, it 
is used to classify the cases in the test set. The classifier is not adjusted or 
calibrated in any way on the test set; it is simply used to classify the cases in 
the test set and the proportion of cases in the test set incorrectly classified is 
the estimate of classification error, CspHt-sampie- Let TIT denote the number of 
test cases. C{x4,L) = yi is the predicted class for the i*'' test case, Xj, made 
by classifier developed using the learning set. Then 

^-J2^i, (8.1) ^split—sample 
1 = 1 

with Jj = 1 if j/j ^ yi and 5i — Q\iyi— yi. 
There are no well established guidelines for what proportion of the data 

to use for the learning set and what proportion for the test set, or whether 
the split should be made randomly or in some systematic manner. Often 
half to two-thirds of the cases are used for the learning set. The split is often 
made randomly although in multi-center studies a closer emulation of external 
validation is obtained if one uses samples from some centers for learning and 
samples from other centers for testing. 

What classifier would be used in an external validation study or for clas­
sifying future samples? It would probably be the classifier developed using 
all the data, i.e., C{-,D) rather than the classifier C{-,L) developed on the 
learning set. The split-sample process is used to provide an estimate of the 
classifier C{-,D), although the estimate is based on a classifier developed on 
less data. If the data set D is large, then the classifier based on the full data 
set may be about as accurate as that based on the learning set. For small 
data sets, however, the classifier based only on the learning set may be sub­
stantially inferior to that based on the full data and the estimate (8.1) of 
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prediction error may tend to be too large (i.e., positively biased). Molinaro 
et al. (2005) evaluated the split-sample method with 50% or 67% of the data 
used for the learning set and found that for small data sets the split-sample 
estimate can be seriously positively biased. 

Attempting to avoid the positive bias resulting from having too small a 
learning set may, however, leave such a small test set that the estimate will 
have a very large variance. Using the split sample method, the number of test 
set errors will have a binomial distribution and so the variance of the test set 
error rate is approximately proportional to the reciprocal of the sample size 
of the test set (Snedecor and Cochran, 1989). 

8.3 Resampling Methods 

The difficult tradeoffs between the size of the learning set and test set can 
be somewhat ameliorated by using a large proportion of the samples for the 
learning set, but repeating the estimate for various learning-testing partitions 
and averaging the resulting error estimates. Let (Li,Ti), (^2)^2), •••(-^m,^m) 
denote a set of learning-testing partitions of the data D. For each learn­
ing set Li, develop a classifier from scratch. That means that all aspects 
of classifier development must be repeated for each learning set, includ­
ing determination of which features are included in the classifier. The full 
data set cannot be used for any aspect of the development of the classifiers 
C{-,Li),C{-,Li), ...C(-,Z/„i). Each of these classifiers is applied to the cases 
not used in its learning set. Let UTJ denote the number of cases in the test set 
Tj. Then the error estimates are computed as follows: 

= - ^ ^ ^ . (8.2) 
""^^ i=i 

with Si = 1 a yi ^ yi and Si = 0 ii yi = yi. These error estimates are then 
averaged as follows: 

^ m 

^resampling ^ / ^ ^j (."-"J 

The resampling estimate is an estimate of the prediction error for the 
classifier C(-, D) developed on the full data set. It is based on averaging error 
estimates for a set of different classifiers, one for each learning set generated 
by the resampling. Resampling methods can only be used when a completely 
defined algorithm is used for all aspects of the classifier development process. 
This is because it is not valid to use information from analysis of the full 
data set in building a classifier from any learning set, and it is not valid to use 
information from building a classifier in one learning set for building a classifier 
in a different learning set. This is a serious limitation for large projects where 
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multiple individuals axe involved in the classifier development process and 
extensive analysis, including biological interpretation, is used in the classifier 
development process. Consequently, the split-sample method remains a useful 
approach for many studies. 

8.3.1 Leave-One-Out Cross-Validation 

A wide variety of different methods have been proposed for constructing 
the set of partitions {Li,Ti),{L2,T2), •••{Lm,Tm) and leave-one-out cross-
validation (LOOCV) is one of the most commonly used methods. With 
LOOCV, the number of partitions m equals the number of cases, n. Each test 
set consists of a different singleton set; i.e., Tj = (xj, yi), and each learning set 
consists of all n — 1 cases not in the corresponding test set; i.e., Li = D\Ti. 
Since each learning set contains only one fewer cases than the full data set, 
the positive bias of the split-sample method is almost eliminated. The high 
variance of the estimate of prediction error for any single test set is reduced 
by averaging over all of the n learning-testing partitions. Since any two learn­
ing sets have n — 2 cases in common, there is a high correlation among the 
models developed on the different learning sets and a high correlation among 
the error estimates. Although the n estimates of prediction error for the n test 
sets are almost completely unbiased, they are positively correlated and this 
correlation serves to increase the variance of the error estimate (Ambroise and 
McLachlan, 2002). Molinaro et al. (2005) found that for very small samples 
(e.g., 40 or fewer cases), the large bias of other methods such as the split sam­
ple method is more serious than the increased variance of LOOCV. For larger 
sample sizes, the bias of the split-sample method decreases, and the compu­
tational effort of LOOCV also increases. There are some other alternatives, 
however, that are discussed below. 

Although any two learning sets contain n — 2 cases in common, it is still 
essential to repeat the classifier building process from scratch for each learn­
ing set. The studies of Ambroise and McLachlan (2002) and of Simon and 
Lam (2005) showed that failure to re-select the features independently for 
each learning set results in hugely biased error estimates. Simon et al. (2003) 
performed a simulation, for example, in which the distribution of expression 
levels for all genes were completely unrelated to the class indicators. Since the 
classes were equally represented, any models developed from the data should 
have a prediction error of about 0.50. The simulations involved 6 000 genes 
and 14 cases (7 from each class). They used a linear classifier based on the 
ten genes that seemed most differentially expressed between the classes. They 
found that if they used all the data to select the ten most differentially ex­
pressed genes, to fit the linear model, and then to measure prediction error, the 
resulting re-substitution estimate was 0 in over 95% of the simulations. This 
was not so surprising as the re-substitution estimate was known to be biased. 
It did emphasize, however, just how biased the re-substitution estimate was 
for settings where the number of candidate variables was much larger than 
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the number of cases. Simon et al. also evaluated what they called "partial 
cross-validation". That is, they used all 14 cases to select the ten genes that 
seemed most differentially expressed between the classes. They then performed 
LOOCV, re-fitting the linear classifier to each training set, but always using 
the same ten genes. What they found was that the partial cross-validation er­
ror estimate was zero in over 90% of the simulations. So the partial LOOCV 
estimate is very misleading, almost as biased as the re-substitution estimate. 

Leave-one-out cross-validation is sometimes termed the "jackknife" method. 
The term "jackknife", however, has traditionally referred to estimates of bias 
or variance based on leave-one-out sub-sampling (Efron and Tibshirani, 1993). 

8.3.2 fe-fold Cross-val idat ion 

The fc-fold cross-validation is a popular alternative to LOOCV. Ten-fold cross 
validation is a special case of fc-fold cross validation. With this approach the 
cases are randomly partitioned into ten disjoint sets of approximately equal 
size, denoted Ti,T2, ...TIQ. As indicated by the notation, each set forms a 
test set to be used with the corresponding learning set Li = D\Ti consisting 
of the remaining 90% of cases not included in the test set Tj. The classifier 
development process is repeated ten times, and the resulting classifiers are 
used to classify the cases in their respective test set to produce error estimates 
ei,e2,...eio, which are then averaged as in Equation (8.3). Ten-fold cross-
validation requires much less computing than LOOCV when the number of 
cases is large. It is only slightly more positively biased than LOOCV, since 
the classifiers are developed on 90% of the full data, and it generally provides 
error estimates with less variance. Consequently, it is quite popular when 
there are more than 20 cases. The A;-fold cross-validation error estimate can 
be repeated for different random A;-fold partitions and the results averaged. 
Molinaro et al. (2005), however, found that such averaging had a very limited 
effect on reducing the variance of the estimate. It can sometimes be useful, 
however, to design the fc-fold partition to be used in a manner that is balanced 
with regard to a variable correlated with class label. 

8.3.3 Mon te Cjirlo Cross-Validation 

Monte Carlo cross-validation, also known as repeated random subsampling, is 
a generalization of the split-sample method. It repeats the process of splitting 
the data into a learning set and a test set, with the model developed on the 
learning set and the error rate evaluated on the test set. With Monte Carlo 
cross-validation, the test set estimates are averaged over the learning-testing 
random splits. For each learning-testing partition, each case appears in either 
the learning set or the test set, but not in both. Because the learning-testing 
splits are random, the cases appear in the test sets a variable number of 
times. That is, one case may appear in m learning sets and in no test set, 
whereas another case may appear in all test sets, but in none of the learning 
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sets. With a large number of repetitions, m, however, such extreme differences 
would be unusual. In A;-fold cross-validation, the test sets are disjoint, whereas 
in Monte Carlo cross-validation, the test sets usually overlap. Molinaro et al. 
(2005) found that Monte Carlo cross-validation does not reduce the bias of the 
split-sample method, but it can substantially reduce the variance of the split-
sample error estimate. They also reported that ten random learning-testing 
splits were sufficient to realize most of the achievable reduction in variance. 

8.3.4 Bootstrap Resampling 

Several versions of the bootstrap have been proposed for estimation of the 
true prediction error. Each bootstrap learning set is composed of n cases 
selected with replacement from the full set of n cases. Consequently, cases 
may appear in a learning set multiple times. The bootstrap learning set differs 
from the learning sets constructed by the other methods in that it contains 
n cases, albeit not n distinct cases. If Li denotes the i^^ bootstrap learning 
set, the corresponding test set is the set of cases not included in Li, that is, 
Ti = £)\Lj.With the leave-one-out bootstrap, the prediction error is estimated 
as the average of the error rates of the classifiers C{-,Li) evaluated on the 
test sets (Efron and Tibshirani, 1993). Although the learning sets contain n 
cases, since they are not all distinct cases, the leave-one-out bootstrap tends 
to over-estimate the true error rate. 

8.3.4.1 The .632 Bootstrap 

To attempt to correct for the positive bias of the leave-one-out bootstrap, 
Efron and Tibshirani (1993) developed two alternative bootstrap methods. 
These methods were based on weighted averages of the estimate of the leave-
one-out bootstrap and the re-substitution estimate. For the .632 bootstrap, 
the weight of the leave-one-out bootstrap estimate is 0.632 and the weight for 
the learning set is 0.368 (Efron and Tibshirani, 1993). 

A bootstrapped learning set is generated by randomly sampling n cases 
uniformly with replacement. Each case has a probability oip= l—n~^ of not 
being selected. If the data set is sampled n times, then the probability that a 
case is not selected for the bootstrap sample is p = (1 — n~^)" « e~^ = 0.368 
(for large n). Hence, the expected number of distinct cases in the bootstrap 
learning set is 0.632 x n. The error estimate on the test set will be pessimistic, 
since the model is trained on 63.2% of the data only. Therefore, the error 
estimate on the learning set is combined with the error estimate test set with 
different weights. If b bootstrapped data sets are generated, then the estimate 
for the classification error is €.632: 
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e.632 = .632eioobs + (1 - 0.632)ere™6 (8.4) 

IE'T. (8-5) ^loobs 

^resub 

^ . = 1 

IE'L.^ (8-6) 
\ = i 

where ey. is the observed error rate on the i^^ test set and er. is the 
observed error rate on the corresponding i*^ learning set 

The .632 bootstrap estimate can be very downward biased, however, for 
high-dimensional data (Molinaro et al., 2005). For example, consider the sit­
uation where the expression data is uninformative for predicting the class 
variable. In that case the true prediction error is 0.5 for equally represented 
classes, and the leave-one-out bootstrap is unbiased. The leave-one-out boot­
strap is unbiased because there is really no penalty for developing classifiers 
based on a reduced number of distinct cases in the learning set, since no clas­
sifier that performs better than the fiip of a coin is possible. Even in this 
situation, however, the re substitution estimate can be close to zero as shown 
by (Simon et al., 2003). Since the .632 bootstrap estimate is a weighted aver­
age of the leave-one-out bootstrap estimate and the re-substitution estimate, 
the result is also downward biased. 

8.3.4.2 The .632-|- Bootstrap 

Efron and Tibshirani (1997) developed the .632-1- bootstrap to attempt to 
improve on the bias of the .632 bootstrap. With the .632-1- bootstrap, the 
weight for the leave-one-out bootstrap is not a fixed value but adjusted based 
on an estimate of the degree to which the data is overfit. 

e.632+ = W • eioobs + (1 - w)eresub (8.7) 

p ^loobs ^resub /Q Q\ 

^random ^resub 

The quantity R is supposed to provide an estimate of the degree of over-
fitting. Crandom IS an estimate of the expected error when the class labels 
are independent of all prediction variables. Molinaro et al. (2005) found that 
the .632-1- bootstrap performed well except for high-dimensional data in cases 
where the classes were well separated. In those cases, the .632-1- estimate could 
be much greater than the true value. 
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8.4 Resampling for Model Selection and Optimizing 
Tuning Parameters 

Many classification algorithms contain one or more tuning parameters that 
must be specified before a completely specified binary classifier is obtained. 
For example, linear support vector machine classifiers with inner product ker­
nels contain two parameters that must be determined. One is equivalent to 
a ridge regression shrinkage parameter and the other represents the relative 
cost of misclassification of cases in the two classes. The shrunken centroid 
classification algorithm of Tibshirani et al. (2002) contains a parameter which 
determines the amount of shrinkage, and ultimately the number of variables 
used for classification. We might represent these classifiers by C(x, Aj, D) in­
dicating that one has a set of classifiers, indexed by the values of the tuning 
parameters Aj. Often resamphng methods, such as those described above, are 
used to obtain estimates of the prediction error for a set of such classifiers. 
Let us denote the true prediction error for the classifier C(x, A, D) by T(AJ, D) 
and the resampling estimator by e(Ai, D). It is reasonable to select a vector of 
tuning parameters to be used for future classification as that which minimizes 
the estimated error rate; that is: 

A* = arg min{e(Ai, D)} (8.10) 

It is important to recognize, however, that the resampling estimate of 
prediction error at A* is not an unbiased estimate of the prediction error 
that can be expected for the selected classifier C(x, A*,£)). That is, e{X*,D) 
is not an unbiased estimator of T{X*,D). A bias is created in the process 
of minimizing over the set of tuning parameters. Varma and Simon (2006) 
have studied this bias and indicated that its size depends on the number of 
classifiers minimized over and the variability of the resampling estimates. The 
process of optimizing over values of the tuning parameters, however, should 
be viewed as an integral part of the algorithm for determining a completely 
specified classifier. As emphasized above for the case of selecting genes, it is the 
entire algorithm for determining a completely specified classifier which needs 
to be embedded in the resampling algorithm. In order to obtain a proper 
estimate of r(A*,£>), one should re-select the "optimal" tuning parameter 
vector for each resampled learning set. Since the selection of an optimal tuning 
parameter involves the use of a resampling estimator, one needs to implement 
a two-fold nested resampling in order to accomplish this. The outer loop of 
resampling is for the purpose of estimating the prediction error of a completely 
specified classifier. The inner loop of resampling is for the purpose of defining 
a completely specified classifier by optimizing the tuning parameters (Varma 
and Simon, 2006). In the inner loop, the learning set is split into a training 
set and a validation set, as illustrated in Figure 8.1. 

The resampling produces multiple classifiers, constructed on multiple 
training sets and tested on their associated validation sets. This process is. 
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however, just a statistical procedure to estimate the prediction accuracy of 
the model fitted to the full data set. Data analysts axe sometimes tempted 
to use the similarities and differences among the classifiers developed on the 
resampled training sets for purposes of model selection. This happens par­
ticularly often with regard to feature selection. That is, a defined feature 
selection is used for classifier development in each training set. The analyst 
is often surprised at how much the sets of selected features differ among the 
training sets and they are tempted to use for the final classifier only those 
features that were consistently selected in most training sets. That, however, 
represents a completely new algorithm for classifier development. When one 
is using resampling for estimating the true error rate of a classifier, then all 
aspects of the algorithm used for developing the classifier must be repeated 
in each resampled learning set. If part of the algorithm involves determining 
which variables to select based on their frequency of selection in resampling 
the data, then the resampling process must be performed for variable selection 
for each learning set of the resampling loop used for error estimations. 

8.4.1 Estimating Statistical Significance of Classification Error 
Rates 

In addition to providing a fair estimate of prediction accuracy for a classifier, 
it is usually important to test the null hypothesis that the prediction accu­
racy is no better than one could have obtained by chance. One can address 
this question by obtaining the distribution of resampled error estimates for 
data sets in which there is no relationship between the candidate prediction 
variables and the class labels. Such data sets can be generated by randomly 
permuting the assignment of class labels to cases, keeping fixed the number 
of cases for each class. For each permutation £)*, the resampling procedure 
is completely repeated resulting in a new classifier C(x, £)*) and a new error 
estimate eresampiing{D*). This is done for either all possible permutations or 
for a large number of random permutations, and the area in the left tail of 
this distribution corresponding to error rates no greater than that obtained 
with the un-permuted labels eresampiing{D) represents the significance level 
of the test of the null hypothesis. This approach was first described by Rad-
macher et al. (2002). Michiels et al. (2005) proposed an alternative test based 
on whether a prediction interval for the resampled prediction error estimate 
excluded 0.5, but it is less powerful because its inefficient use of the data in 
training-validation splits. 

8.4.2 Comparison to Classifiers Based on Standard Prognostic 
Variables 

Another question that often arises is whether the genomic or proteomic data 
enables better predictions than were already possible using standard clinical 
or histopathological variables. Some investigators attempt to address this by 



184 Richard Simon 

using resampling to obtain a class prediction for each case, and using these 
predictions in a classification model that involves the predictions and the other 
variables. For example, let yi denote the predicted class for case i based on 
a classifier developed using a learning set not containing case i. One might 
then study a logistic regression model containing these genomic or proteomic 
predictions as well as other variables. The problem is, however, that although 
the predictions were based on learning sets not containing the cases predicted, 
the predictions are generally not statistically independent and so the resulting 
logistic inference is not valid. These problems have been noted by Tibshirani 
and Efron (2002). 

Kattan (2003, 2004) points out that prognostic models should be judged 
based on their ability to predict, not based on issues of the significance of 
regression coefficients for some variables after adjustment for other variables. 

8.5 Comparison of Resampling Strategies 

Molinaro et al. (2005) conducted a detailed study of different resampling 
methods for estimating prediction error in the context of high-dimensional 
data where the number of candidate predictors is much larger than the num­
ber of cases. They evaluated the methods with several different classification 
methods including diagonal linear discriminant analysis, linear discriminant 
analysis, nearest neighbor classification, and CART classification trees. They 
examined the resampling methods and classification algorithms in the context 
of data sets of different sizes, different numbers of informative features and 
different signal strengths (class separation relative to noise). For small data 
sets (e.g., 40 cases), they found that the split sample methods with one-half 
to two thirds of cases used for training produced very biased over-estimates 
of prediction error. Monte Carlo repeats of the split samples had no effect on 
the strong bias. For such data sets they found that LOOCV, 10-fold cross-
validation and the .632-1- bootstrap generally had the least bias and smallest 
mean-square error. The .632-|- bootstrap was more biased than LOOCV and 
10-fold cross-validation, however, in small data sets with strong signals. The 
differences among resampling methods decreased as the sample size increased. 

8.6 Tools and Resources 

Investigators and data analysts need to exercise caution in use of packaged 
software because much of it is does not use complete resampling methods 
essential for high-dimensional data. BRB-ArrayTools software incorporates 
all of the resampling methods described in this chapter for a wide variety 
of classifier types. The software is available without cost for non-commercial 
applications (Simon and Lam, 2005). 
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8.7 Conclusions 

Resampling-based estimates of prediction error are not substitutes for fully 
independent validation studies, but are essential for helping to identify when 
independent validation studies are warranted. 

The re-substitution estimate commonly employed is highly biased for ge­
nomics and proteomics applications and should not be used. The split-sample 
method is useful for large studies in which many analyses and many individ­
uals are involved in model development. The test data should not be used in 
any way until a single, completely specified classifier is developed and agreed 
to by the collaborators. At that time the classifier should be applied to classify 
the cases in the test set, with no calibration or adjustment of the model. The 
prediction accuracy of the classifier is scored on the test cases. 

For smaller projects the split-sample approach represents an inefficient use 
of the data compared to resampling methods. Resampling methods, however, 
require that the classifier development process be algorithmic and repeatable 
in its entirety on multiple learning sets. 

Feature selection is an integral part of classifier development and must be 
repeated from scratch for each learning set when resampling is used. 

If resampling is used to optimize tuning parameters of a classifier, then 
that resampling should be viewed as an integral part of classifier development 
and the entire algorithm should be embedded in an outer resampling loop 
used to estimate the prediction accuracy of the resulting classifier. 

Resampling methods provide an estimate of the prediction error that can 
be expected for future use of the classifier fit to the entire data set. It is the 
classifier developed on the full data set that is taken forward. The resampling 
produces multiple classifiers, constructed on the multiple training sets and 
tested on their associated validation sets. This process is, however, just a 
statistical method to estimate the prediction accuracy of the model fitted to 
the full data set, the intermediate models should not be used in the definition 
of the classifier to be taken forward. 

For small data sets, leave-one-out cross-validation or 10-fold cross valida­
tion provide almost unbiased estimates of prediction error for a variety of clas­
sifiers and a wide variety of signal strengths. The mean-square error of these 
methods compares favorably to those of sample-splitting based methods that 
provide too few cases in the training set and thereby result in over-estimates of 
prediction accuracy. For larger data sets, 10-fold cross-validation is preferable 
to LOOCV with regard to computational effort and variance. The standard 
leave-one-out bootstrap and .632 bootstrap can be quite biased for small data 
sets. The .632+ bootstrap is generally competitive with LOOCV and 10-fold 
cross-validation for small data sets except those with very strong signals. 
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9.1 Introduction 

Supervised learning methods are used when one wants to construct a classifier. 
To use such a method, one has to know the correct classification of at least 
some samples, which are used to train the classifier. Once a classifier has been 
trained it can be used to predict the class of unknown samples. Supervised 
learning methods have been used numerous times in genomic applications and 
we will only provide some examples here. Different subtypes of cancers such as 
leukemia (Golub et al., 1999) and small round blue cell tumors (Khan et al., 
2001) have been predicted based on their gene expression profiles obtained 
with microarrays. Microarray data has also been used in the construction of 
classifiers for the prediction of outcome of patients, such as whether a breast 
tumor is hkely to give rise to a distant metastasis (van't Veer et al., 2002) 
or whether a meduUoblastoma patient is likely to have a favorable clinical 
outcome (Pomeroy et al., 2002). Proteomic patterns in serum have been used 
to identify ovarian cancer (Petricoin et al., 2002a) and prostate cancer (Adam 
et al., 2002; Petricoin et al., 2002b). 

In this chapter, we will give an example of how supervised learning meth­
ods can be applied to high-dimensional genomic and proteomic data. As a case 
study, we will use support vector machines (SVMs) as classifiers to identify 
prostate cancer based on mass spectral serum profiles. 

9.2 Basic Concepts 

In supervised learning the aim is often to construct a rule to classify samples in 
pre-defined classes. The rule is constructed by learning from learning samples. 
The correct class assignments are known for the learning data and used in 
the construction of the rule. The number of samples needed to construct 
a classification rule is data set and classification method dependent. In our 
experience at least ten samples in each class are needed for classification of 
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genomic and proteomic data. Once the rule is constructed it can be applied 
to classify unknown samples. Each sample typically is a vector of real values 
and each value often corresponds to a measurement of one feature of the 
sample. Classification rules can be either explicit or implicit. An example of 
a classification method with an implicit rule is the nearest neighbor classifier: 
A test sample is classified to belong to the same class as the learning sample 
to which it is most similar. Decision trees are a classification method that use 
explicit rules, for example, if the value of a specific feature of the sample is 
positive, the sample is predicted to belong to one class, if not, it is predicted 
to belong to another class. In the case of classifying tumor samples based on 
genomic or proteomic data, each sample could, for example, be a vector of gene 
expression levels from a microarray experiment, volumes from spots on a 2-
dimensional gel, or intensities for different mass-over-charge {m/z) values from 
a mass spectrum. Classes could, for example, be cancer patients and healthy 
individuals, respectively. In these cases, data sets have very many features 
and it is often beneficial to separate construction of the classifier in two parts: 
Feature selection and classifier rule construction. Moreover, once a classifier is 
constructed its predictive performance needs to be evaluated. In this section, 
we will discuss a supervised learning method: SVM, how feature selection can 
be combined with SVMs, and a methodology for obtaining estimates of the 
predictive performance of the classifier. 

9.2.1 Support Vector Machines 

Suppose we have a set of samples where each sample belongs to one of two 
pre-defined classes, and we have measured two values for each sample, for 
example, the expression levels of two proteins (Figure 9.1). Two classes of 
two-dimensional samples are considered linearly separable if a line can be 
constructed such that all samples of one class lie on one side of the line and 
all samples of the other class lie on the other side. This line serves as a deci­
sion boundary between the two classes. For higher-dimensional data, a linear 
decision boundary is a hyperplane that separates the classes. If classes are 
separable by a hyperplane, there are most likely many possible hyperplanes 
that separate the classes (Figure 9.1a). SVMs are based on this concept of de­
cision boundaries. SVMs are designed to find the hyperplane with the largest 
distance to the closest points from the two classes, the maximal margin hyper­
plane (Figure 9.1c). Once this hyperplane has been found for a set of learning 
samples, the class of additional test samples can be predicted based on which 
side of the hyperplane they appear. 

For many classification problems the classes cannot be separated by a hy­
perplane; they are not linearly separable and a non-linear decision surface 
may be useful. Classifiers that use a non-linear decision surface are called 
non-linear classifiers. SVMs address such classification problems by mapping 
the data from the original input space into a feature space in which a linear 
separator can be found. This mapping does not need to be explicitly sped-
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Fig. 9.1. Finding the separating hyperplane with the maximal margin for the hn-
early separable case. A data set consisting of 10 samples with 2 features each is 
classified. Each sample belongs to one of two different classes (denoted by + and •, 
respectively). A linear decision boundary is a hyperplane separating the two classes. 
In the case of two features such a hyperplane is a line. Many hyperplanes exist that 
perfectly separate the samples from the two classes (a). Suppose we draw circles with 
the same diameter around each sample and that the separating hyperplanes are not 
allowed to intersect the circles. It is then obvious that with an increasing diameter 
of the circles, the number of allowed hyperplanes decreases (b). The diameter is 
increased until only one hyperplane exist (c). This hyperplane is completely defined 
by the points encircled by solid circles and these points are called support vectors. 
Intuitively, this final hyperplane seems more appropriate as a decision boundary be­
cause it maximizes the margin between the two classes. SVMs are designed to find 
this maximal margin hyperplane. 

fied. Instead a user of SVMs needs to select a so-called kernel function, which 
can be viewed as a distance between samples in feature space (Figure 9.2). 
The linear decision surface in feature space may correspond to a non-linear 
separator in the original input space. To avoid over-fitting to data, avoid sen­
sitivity to outlier samples, or handle problems that are not linearly separable 
in feature space, SVMs with soft-margins can be used. For such SVMs the 
strict constraint to have perfect separation between the classes is softened. 
A parameter denoted C is introduced to tolerate errors. The larger C is, the 
harder errors are penalized. The limit of C being infinity corresponds to the 
maximal margin case for which no errors are tolerated. 

For microarray and proteomic data, for which the number of features is 
much larger than the number of samples, it is typically possible to find a linear 
classifier that perfectly separates the samples. It is our experience for high-
dimensional data that SVMs with a linear kernel and the C parameter set to 
infinity results in classifiers with better predictive performance than SVMs for 
which one tries to optimize kernel selection and C parameter value. An SVM 
with this choice of parameters is called a linear maximal margin classifier. 
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Fig. 9.2. Mapping the XOR problem into a feature space in which it is lineaxly 
separable. A data set consisting of 20 samples with two features each and belonging 
to two different classes (denoted by + and •, respectively) is shown, (a) The two 
classes axe not linearly separable in the original input space (a;i,a;2). (b) The input 
space can be mapped to the feature space (xi + X2, X1X2), where the two classes are 
linearly separable. The kernel for this mapping is K{a,h) = (ai + a2)(fei + 62) + 
01026162. 

9.2.2 Feature Selection 

The amount of information contained in a mass spectrum, or the number of 
genes measured on a microarray, results in very many features for each sample. 
When the number of features is much larger than the number of samples, it 
represents a challenge for many supervised learning methods. This problem 
is often referred to as the "curse of dimensionality". To address this problem, 
feature selection techniques are used to reduce the dimensionality of the data 
to improve subsequent classification. Feature selection methods can be divided 
into two broad categories: Wrapper methods and filter methods. 

Wrapper methods evaluate feature relevance within the context of the 
classification rule. For example, by first constructing a classification rule using 
all features, and then analyzing the classification rule to identify the features 
most important for the rule, followed by constructing a new classification rule 
using only these important features. A wrapper method used with SVMs is 
recursive feature elimination (Guyon et al., 2002). 

Filter methods select features based on a separation criterion unrelated to 
the classification rule. For example, the standard two-sample t-test could be 
used as a filter criterion for two class classification problems to identify and 
rank features that discriminate between the two classes. Another commonly 
used filter selection criteria used to rank features is the signal-to-noise ratio 
(S2N ratio) (Golub et al., 1999). Here each feature is ranked based on S2N = 
|/i+—/i_|/(cr+—CT-), where /i± and a± are the average and standard deviation, 
respectively, of the values for the feature in the two classes -|- and — (see 
Equation(7.1), Chapter 7). A classification rule is then constructed using only 
the features that have the largest S2N. 
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Filter methods have been shown to provide classification performances 
that are comparable to or outperform other selection methods for both mi-
croarray and mass spectrometry data (Wessels et al., 2005; Levner, 2005). In 
our experience i-test and S2N perform similarly and the choice of the filter 
criterion is not crucial. 

9.2.3 Evaluating Predictive Performance 

To evaluate the predictive performance of a classifier, one needs a test set 
that is independent of all aspects of classifier construction. If the number of 
samples investigated is relatively small, one often resorts to cross-validation. 
In n-fold cross-validation, the samples are randomly split into n groups of 
which one is set aside as a test set and the remaining groups are a learning set 
used to calibrate a classifier. The procedure is then repeated with each of the 
n groups used as a test set. Finally, the samples can again be randomly split 
into n groups and the whole procedure repeated many times. These test sets 
would provide a reliable estimate of the true predictive performance, if there 
were no choices in classifier construction. An example of such a case is if one, 
prior to any data analysis, decides to use an SVM with linear kernel, C set 
to infinity, and all features (no feature selection). However, suppose one only 
wants to use the features that provide the best prediction results, then the test 
set is no longer independent because it has been used to optimize the number 
of features to use in the classification rule. To circumvent this use of the test 
set, the learning samples can be used to optimize the prediction performance 
of the classifier in an internal procedure of cross-validation. This internal n-
fold cross-validation is identical to the cross-validation used for generating test 
sets, except that one group of samples is used to optimize the performance 
of the classifier (validation set) and the remaining samples axe used to train 
the classifier (training set). Hence, these cross-validation samples will provide 
an overly optimistic estimate of the predictive performance (Ambroise and 
McLachlan, 2002). Once all the choices required to construct a classifier has 
been made in the internal cross-validation, the performance can be evaluated 
on the samples set aside in the external cross-validation loop. A schematic 
picture of this procedure is given in Figure 9.3. The number of folds used 
in the external and internal cross-validations can be different. To assess if a 
predictive performance achieved by SVMs is significant random permutation 
tests can be used. In these tests the predictive performance is compared to 
results for SVMs applied to the same data but with the class labels randomly 
permuted (Pavey et al., 2004). 
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Fig. 9.3. One fold in an (a) external and (b) internal 3-fold cross-validation proce­
dure. In total, the data set comprises nine samples, each represented by a number. 
The external cross-validation is used to estimate the predictive performance of the 
classifier and the internal cross-validation is used to optimize the choices made when 
constructing the classifier. The samples belong to two classes, gray and white. For 
both the internal and external cross-validation, the folds axe stratified to approxi­
mate the same class distributions in each fold as in the complete data set. 

9.3 Advantages and Disadvantages 

9.3.1 Advantages 

• SVMs perform non-linear classification by mapping data into a space where 
linear methods can be applied. In this way, non-linear classification prob­
lems can be solved relatively fast computationally. 

9.3.2 Disadvantages 

• SVMs may be too sophisticated for many genomic and proteomic classi­
fication problems (Somorjai et al., 2003). Occam's razor principle tells us 
to prefer the simplest method and often linear SVMs give the best classifi­
cation performance, in which case alternative linear classification methods 
may be more easily applied. 

9.4 Caveats and Pitfalls 

The two most important aspects of classification of genomic and proteomic 
data are not directly related to the choice of classification method. First, 
high-quality data needs to be obtained, in which biologically relevant features 
are not confounded by experimental flaws. Second, a proper methodology 
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to evaluate the classification performance needs to be implemented to avoid 
overly optimistic estimates of predictive performances, or more importantly, 
to avoid finding a classification signal when there is none (Simon et al., 2003). 
When estimating the true predictive performance using a test data set, it is 
crucial to use a procedure, in which the test data is not used to select features, 
to construct the classification rule, or even to select the number of features to 
use in the classifier. In the case study, we will see how the violation of these 
requirements influences classification results. 

9.5 Alternatives 

Nearest centroid classifiers provide an alternative to SVMs that are simple 
to implement and have been used successfully for many genomic applications 
(van't Veer et al., 2002; Tibshirani et al., 2002; Wessels et al., 2005). For 
this type of classifiers there exists available software tailored for genomic and 
proteomic data. Therefore, we describe how a simple version is implemented. 
First, the arithmetic mean for each feature is calculated using only samples 
within each class. In this way a prototype pattern for each class called a 
centroid is obtained. Second, one defines a distance measure between samples 
and centroids, and the classes of additional test samples are predicted by 
calculating to which centroid they are nearest. 

There are many supervised learning methods that can be applied to ge­
nomic and proteomic data, including linear discriminant analysis, classifica­
tion trees, and nearest neighbor classifiers (Dudoit et al., 2002), as well as 
artificial neural networks (Khan et al., 2001). 

9.6 Case Study: Classification of Mass Spectral Serum 
Profiles Using Support Vector Machines 

As a case study, we applied SVMs to a public data set of mass spectral serum 
profiles from prostate cancer patients and healthy individuals (Petricoin et al., 
2002b) to see how well the disease status of these individuals could be pre­
dicted. 

9.6.1 Data Set 

The data set consists of 322 samples: 63 samples from individuals with no 
evidence of disease, 190 samples from individuals with benign prostate hy­
perplasia, 26 samples from individuals with prostate cancer and PSA levels 4 
through 10, and 43 samples from individuals with prostate cancer and PSA 
levels above 10. For our case study, we followed previous analysis (Levner, 
2005) and combined the two first groups into a healthy class containing 253 
samples, and the latter two groups into a disease class containing 69 samples. 
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For each individual, a mass spectral profile of a serum sample has been 
generated using surface-enhanced laser desorption ionization time-of-flight 
(SELDI-TOF) mass spectrometry (Hutchens and Yip, 1993; Issaq et al., 2002). 
In this method, a serum sample taken from a patient is applied to the sur­
face of a protein-binding chip. The chip binds a subset of the proteins in the 
serum. A laser is used to irradiate the chip resulting in the proteins being 
released as charged ions. The time-of-fiights of the charged ions are measured 
providing an m/z value for each ion. Each sample will in this way give rise 
to a spectrum of intensity as a function of m/z; a proteomic signature of the 
serum sample. The data set used in our case study consists of spectra with 
intensities for 15154 m/z values. Hence, the number of features (15154) is 
much larger than the number of samples (322). 

9.6.2 Analysis Strategies 

We used linear SVMs with C set to infinity (linear maximal margin classi­
fiers). The predictive performance was evaluated using 5 times repeated 3-fold 
external cross-validation, which resulted in a total of 15 test sets, each with 
one-third of 322 samples. The cross-validation was stratified to approximate 
the same class distributions in each fold as in the complete data set. We used 
S2N to rank features and classifiers using different numbers of top-ranked 
features (n/) were evaluated. A set of classifiers was constructed, in which 
each classifier was trained using 1.5 x n / more top-ranked features than the 
previous classifier; the first classifier used the top-ranked feature (n/ = 1) 
and the final classifier used all features. The performance of classifiers was 
evaluated using the balanced accuracy (BACC). Given two classes, 1 and 2 
with N\ and N2 samples, respectively, we denote samples known to belong to 
class 1 as true positives (TP) if they are predicted to belong to class 1, and 
false negatives (FN) if they are predicted to belong to class 2. Correspond­
ingly, samples known to belong to class 2 are true negatives (TN) if they are 
predicted to belong to class 2 and false negative (FN) otherwise. BACC is the 
average of the sensitivity and the specificity, in other words, it is the average 
of the fractions of correctly classified samples for each of the two classes: 

r , A n n _ ^ ( ^ P TN \ 1 (TV T N \ 
^ ^ ^ ^ " 2 U P + F N + TN + FPyl - 2 \ j h ^ l h ) ^ ' 

An advantage of BACC is that a simple majority classifier that predicts all 
samples into the most abundant class will obtain a BACC of 50% even though 
it is expected to obtain overall classification accuracies, (TP-|-TN)/(iVi +N2), 
higher than 50%. 

We used four different strategies to construct SVMs : Two strategies in 
which the test sets were independent of all aspects of SVM construction, and 
two strategies exemplifying how overly optimistic estimates of the predictive 
power can be obtained (Figure 9.4). 
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F i g . 9 . 4 . T h e four s trategies used t o const ruct SVMs. In s trategies A and B the tes t 
samples are not used for t ra in ing SVMs, for feature selection, or for opt imizing the 
number of features t o use. Hence, a good es t imate of t h e t rue predictive performance 
may be obta ined using strategies A or B . In s t ra tegy C t h e tes t samples are used to 
select t he number of features t o use. In s t ra tegy D the tes t samples are used b o t h 
t o select features and to optimize t he number of features t o use. Hence, an overly 
opt imist ic es t imate of t h e t r u e predict ive performance is obta ined using strategies 
C o r D . 
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g.6.2.1 strategy A: SVM without Feature Selection 

An SVM is trained using all the learning samples and all features (Figure 9.4a). 

9.6.2.2 Strategy B: SVM with Feature Selection 

Internal 3-fold cross-validation is used to optimize the number of features, 
Ĵ opt; to use for the learning set. In the internal cross-validation, the learning 
samples are split into a group of training samples and a group of validation 
samples. SVMs are trained using the training samples and nj top features 
ranked based only on these samples. The internal cross-validation is performed 
one round (a total of three validation sets) such that each learning sample is 
validated once. The performance in terms of BACC for the validation data is 
used to select an optimal n / . Finally, an SVM is trained using all learning sam­
ples and the nopt top-ranked features based on these learning samples. This 
final SVM is used to predict the classes of the test data samples (Figure 9.4b). 

9.6.2.3 Strategy C: SVM Optimized Using Test Samples 
Performance 

SVMs are trained using the learning samples and Uf top features ranked based 
only on these samples. The performance in terms of BACC for the test data 
is used to evaluate the number of features to use. The predictions for the 
test data samples by the SVM with the optimal performance is used. Here 
the test performance is an overly optimistic estimate of the true predictive 
performance since the test data is used to find riopt (Figure 9.4c). 

9.6.2.4 Strategy D: SVM with Feature Selection Using Test 
Samples 

SVMs are trained using the learning samples and n / top features ranked 
based on all samples. The performance in terms of BACC for the test data 
is used to evaluate the number of features to use. The predictions for the 
test data samples by the SVM with the optimal performance is used. Here 
the test performance is an overly optimistic estimate of the true predictive 
performance since the test data is used both to find riopt and to rank features 
(Figure 9.4d). 

9.6.3 Results 

The results in terms of BACC for the four different strategies are summarized 
in Table 9.1. 
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Table 9.1. Predictive performance of SVMs 

Strategy" BACC(%f 
Mean Std 

A: SVM without feature selection 88.7 3.6 
B: SVM with feature selection 91.1 3.3 
C: SVM optimized using test sample performance 94.6 2.6 
D: SVM with feature selection using test samples 94.9 1.8 

*See Analysis Strategies in Section 9.6. 

9.7 Lessons Leeirned 

We have shown an example of how SVMs axe capable of predicting with 
high accuracy whether mass spectral serum profiles belong to a healthy or 
a prostate cancer class. High balanced accuracy (88.7%) was obtained with­
out any feature selection, yet a simple filter selection method improved the 
predictive performance and a BACC of 91.1% was obtained. This BACC is 
competitive with the best performance obtained for this data set in a study 
of different feature selection methods (Levner, 2005). In the context of cross-
validation it is difficult to evaluate if a method is significantly better than 
another method because different test sets have samples in common (Berrar 
et al., 2006). 

There are many pitfalls when evaluating the predictive performance of 
classifiers. By using the test data simply to select the number of features to 
use by the classification rule, the BACC increased to 94.6%. This performance 
is an overly optimistic estimate of the true predictive performance not likely 
to be achieved for independent test data. Similarly, overly optimistic results 
were obtained when the test data was used to rank features prior to feature 
selection. It is important to realize that overly optimistic evaluations may lead 
to incorrect conclusions for classes which cannot be classified (Ambroise and 
McLachlan, 2002; Simon et al., 2003). 

9.8 List of Tools and Resources 

There are several publicly available implementations of SVMs and a compre­
hensive list is available at h t t p : //www. kernel-machines. org/sof tware. html. 
For example, there is an implementation in C called SVMLight 
(h t tp : / / svml igh t . j oachims. org/) and an implementation called LIBSVM 
with interfaces to it for many programming languages 
(h t tp : / /www.cs ie .n tu .edu. tw/~cj l in / l ibsvm). In the case of microarray 
data analysis, SVMs are available as a part of the TM4 microarray software 
suit (http://www.tm4.org/). 

Publicly available implementations of nearest centroid classifiers include 
ClaNC (Dabney, 2006); 
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h t tp : / / s tudents .washington .edu/adabney/c lanc / ) and PAM (Tibshirani 
et al., 2002); ht tp: / /www-stat .s tanford.edu/~tibs/PAM/), both imple­
mented for the R package (ht tp : / /www.r-project .org) . 

9.9 Conclusions 

SVMs can be used to classify high-dimensional data such as microarray or pro-
teomic data. Often the simplest SVMs called maximal margin linear SVMs 
are able to obtain high accuracy predictions. For many applications it is im­
portant to evaluate classifiers based on their predictive performance on test 
data. In this evaluation, it is important to implement test procedures that 
do not lead to overly optimistic results. We have used mass spectral serum 
profiles of prostate cancer patients and healthy individuals as a case study to 
exemplify how the predictive performance of a classifier can be estimated. We 
conclude that SVMs predict the samples in our case study with high balanced 
accuracy. 

9.10 Mathemat ical Details 

We will consider the simplest version of a support vector machine, the so-
called linear maximal margin classifier for classification of data points in two 
classes. This classifier only works for data points which are linearly separable. 
Two classes of two-dimensional samples are considered linearly separable if a 
line can be constructed such that all cases of one class lie on one side of the 
line and all cases of the other class lie on the other side. For a more detailed 
description of SVMs, there are many books available for the interested reader 
(Vapnik, 1995; Burges, 1998; Cristianini and Shawe-Taylor, 2001). Consider a 
linearly separable data set {(xj, yt)}, where Xj are the input values for the ^*'' 
data point and j/j is the corresponding class {—1,1}. The assumption, that 
the data set is linearly separable, means that there exists a hyperplane that 
separates the data points of the two classes without intersecting the classes. 
This hyperplane serves as a decision surface, and we can write: 

w'xj + b>Oi:yi = +l 

w'xj + b <Oi:yi = -I , 

where the hyperplane is defined by w and b, and w 'x+6 is the output function. 
The distance from the hyperplane to the closest point is called the margin 
(denoted by 7). The underlying idea of the maximal margin classifier is that, 
in order to have a good classifier, we want the margin to be maximized. We 
notice there is a free choice of scaling: Rescaling (w, b) to (Aw, Xb) does not 
change the classification given by the output function. The scale is to set such 
that 
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w'x+ + 6 = +1 

w ' x " + 6 = - 1 , (9.2) 

where x"*" (x~) is the closest data point on the positive (negative) side of the 
hyperplane. Now it is straightforward to compute the margin 

1 / w ' x + + 6 w'x~ +b 
7 = 2 \ ||w|| ||w|| / ||w|| 

Hence, when the scale is set such that Equation (9.2) is fulfilled then max­
imizing the margin is equivalent to minimizing the norm of the weight vector, 
||w||. This can be formulated as a quadratic (w'w) problem with inequality 
constraints (yj(w'xj + b) > 1): 

min: - w ' w subject to: t/j(w'xj + 6) > 1 for all y .̂ 

The Lagrangian for this quadratic problem is 

M 

TW'TV — 

2 

1 ^ 
L{w, b, a) = 2 w'w - ^ Q!i[yi(w'xi + b)-l] , (9.3) 

i = l 

where aj > 0 are the Lagrange multipliers and M is the number of data points. 
Differentiating with respect to w and h and setting the partial derivatives to 
zero give 

dL 
dvf 

0 ^ w = ^ aiViX^i (9.4) 

M 

0 = ^ ^ 2 / i a i = 0 , (9.5) 
db 

and putting this into Equation (9.3) gives the Wolfe dual 

M M M 

<9(a) = 9 X ) "'2/iX- X ajVjyij - ^ «» 
2=1 j = l i = l 

M 

M 

y-, 'i ^otjyj^j^i + b] - 1 
u = l 

= --a'Ha + J2(^i' (9-6) 
j = i 

where the elements of the matrix H are given by Hij = yiyjx'^Xj .The original 
problem is transformed into a dual problem. Finding the dual vector, a, that 
maximizes Q and fulfills the constraint in Equation (9.5) is equivalent to 
solving the original problem (Kuhn and Tucker, 1951). 

The output of the classifier for a data point x can be expressed in terms 
of the dual vector 
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M 

o(x) = w'x + 6 = ^ atyix'iX + b , (9.7) 
4 = 1 

and we note that the weight vector is never needed expUcitly. The variable 
b is set such that the conditions in Equation (9.2) are fulfilled. The binary 
classification of a data point x is sign(o(x)). 

The hyperplane that separates the data points is completely defined by 
a subset of the data points and these data points are called support vectors 
(Figure 9.1). Each a^ corresponds to a learning data point x, and ai is zero for 
all data points except the support vectors. Hence the sum in Equation (9.7) 
only gets contributions from the support vectors. 

In summary, there are three steps to build and use a maximal margin 
classifier. First, the class labels of the learning data points should be set to 
+1 or —1. Second, the quadratic function in Equation (9.6) is minimized 
subject to the constraint in Equation (9.5) and all a^ > 0. Because the matrix 
H in Equation (9.6) is positive definite there are no local minima and there is 
a unique solution to the minimization problem. Finally, this solution is used 
to classify data points in a validation/test set using Equation (9.7). 

We conclude by briefly outlining how to extend this linear classifier to non­
linear SVMs. The basic idea underlying non-linear SVMs is to map data points 
into a feature space in which an optimal hyperplane can be found as outlined 
for the maximal margin classifier. This hyperplane may then correspond to a 
non-linear separator in the original space of data points. A key observation 
is that in our construction of the maximal margin classifier we only use the 
scalar product between data points, x^Xj. If we have a non-linear mapping, 
x I—> ip{x), of data points into feature space, the scalar product between two 
vectors in feature space, called a kernel function, is 

ii:(Xi,Xj) = V?(Xi)V(Xj) = '^ipi{K4)'Pl{^j) • 
I 

In SVMs, the scalar product between data points used to calculate both H 
and o(x) is replaced by the kernel K. Hence, to build and use an SVM, the 
mapping into feature space itself can be ignored and only a kernel function 
needs to be defined. 
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10.1 Introduction 

Both natural and artificial systems can be understood as the interaction of 
a given set of elements. Interactions lead to global behavior often beyond 
the simple sum of the properties of each element. Interactions create most 
behaviors around us: A meeting between two people, file transfers among 
computers, predator-prey dynamics, cell responses, complex protein formation 
or DNA-protein binding. Prom these interactions large-scale systems emerge 
as a mesh of relations: Society, Internet, food webs, organisms, tissues or cells. 
Such organizations cannot be reduced to individual properties and a global 
view is required. 

Network (or graph) theory tackles the study of large-scale systems con­
sidering the relations among elements as an abstraction (a graph) where the 
elements are nodes and the relations are links (edges). This approach has 
been used for the analysis of natural (Milgram, 1967; Ferrer and Sole, 2001; 
Sole and Montoya, 2001) and artificial networks (Albert et al., 1999; Vazquez 
et al., 2002). Real networks are sparse and they are likely to exhibit scale-
freeness, small-world pattern and modularity. As Figure 10.1 shows, networks 
exhibit different patterns of organization depending on the properties that 
they have. Understanding and measuring these difi'erences is at the heart of 
complex networks theory. 

The view of molecular biology has been modified due to the necessity of 
managing the massive data acquired by means of high-throughput techniques. 
Such an approach reveals that genes, proteins and metabolites are interact­
ing in a network. This perception can be tackled suitably in the context of 
graph theory. As we will see in this chapter, this theory provides visualization 
algorithms and topological measures to analyze networks at different levels; 
from the small groups of elements to the whole graph. Moreover, it gives an 
integrative framework to acquire a global perspective beyond the traditional 
reductionistic views of molecular biology. 
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Fig. 10.1. DiflFerent examples of network organization, (a) Random Erdos-Renyi 
graph; (b) random modular graph; (c) scale-free; (d) hierarchical, modular scale-
free network (Barabasi and Oltvai, 2004). 

The main aim of this chapter is to present to the molecular biologist and 
bioinformatician those relevant concepts of graph theory for the analysis of 
cellular networks. 

Cellular network is the term commonly used to refer to the current inter­
acting molecular sets within cells (Albert, 2005; Barabasi and Oltvai, 2004). 
It includes mainly protein-protein interaction, metabolism, gene expression 
and signal transduction pathways. All of them are different subsets of a single 
large-scale cellular network, since they are eventually cross-linked. 

10.1.1 Protein Networks 

Proteomes, interactomes and protein maps refer to networks of proteins in­
teracting by physical contact. Proteins are the nodes and physical interaction 
among them are the links in the graph. Large-scale studies have explored 
the proteome structure in viruses (McCraith et al., 2000), yeast (Uetz et al., 
2000; Ito et al., 2001; Ptacek et al., 2005), the worm Caenorhabditis elegans 
(Walhout et al., 2000; Li et a l , 2004), Helicobacter pylori (Rain et a l , 2001), 
Drosophila melanogaster (Giot et al., 2003) and more recently in humans 
(Rual et al., 2005; Stelzl et al., 2005). Protein map elucidation is obtained 
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mainly by two large-scale experimental approaches, namely, the yeast two-
hybrid (Y2H) (Uetz and Hughes, 2000) and the tandem affinity purification 
(TAP) followed by mass spectroscopy (Gavin et al., 2002). Such informar 
tion is collected in annotated databases. MIPS (h t t p : / /m lps .g s f . de / ) , DIP 
(h t tp : / /d ip .doe-mbi .uc la . edu / ) and BIND (http:/ /www.bind.ca/ 
Action) are the main commonly used for the acquisition of current protein 
maps. 

10.1.2 Metabolic Networks 

Metabolism is the best described cellular network so far. However, a global 
topological view of metabolism was not available until recently (Jeong et al., 
2000; Ouzounis and Karp, 2000). Since two types of elements participate in 
metabolism (metabolites and reactions), it allows building networks in differ­
ent ways. One way is considering the substrate graph, where each metabolite is 
a node that will be linked with those metabolites participating in the same re­
action (Wagner and Fell, 2001; Tanaka, 2005). Alternatively, a reaction graph 
(Tanaka, 2005) is made by considering reactions as nodes and metabolites as 
links. The information required to build these graphs is also collected in data­
bases. A compilation of metabolic pathways can be found in KEGG database 
(http://www.genome.j p/kegg/). 

As it occurs with protein maps, it has been observed that very few nodes 
have many links, whereas most nodes have only a few. The highly connected 
nodes are referred to as hubs, which in metabolic networks correspond to 
acetyl-CoA and pyruvate, among others (Ravasz et al., 2002). 

10.1.3 Transcriptional Regulation Maps 

The transcriptional network provides the map of regulatory relations among 
genes through transcription factors (TFs). TFs are gene products regulating 
the expression of genes by the interaction with their promoter regions (Shen-
Orr et al., 2002). Transcriptional graphs are commonly depicted indicating the 
arrow of the interaction and the resulting graphs are known as directed graphs. 
Most gene targets for transcription factors are not involved in gene regulation 
and only receive links, e.g., metabolic enzymes, or structural components of 
the cell. By contrast, transcription factor genes are also regulated, so they are 
both sources and sinks of links. 

Gene regulatory networks are built from genome-wide expression analysis 
designed to reverse-engineer the architecture (Wyrick and Young, 2002; Lee 
et al., 2002). Additionally, genome-wide location analysis is used to know the 
transcription factors bound to a given promoter region (Lee et al., 2002). 
Examples include E. coli (Shen-Orr et al., 2002; Salgado et al., 2004) and the 
yeast regulatory network (Guelzim et al., 2002; Lee et al., 2002). 
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10.1.4 Signal Transduction Pathways 

These networks depict those processes allowing cells integrating responses to 
external stimuli. They are a combination of metabolic reactions and protein 
interactions that trigger specific changes in gene expression. Protein modifi­
cations such as phosphorylation, acetylation and ubiquitination, among oth­
ers, lead to conformational changes allowing ligand-protein recognition and 
functional protein complexes assembling. Kinases and phosphatases are at 
the basis of the best described pathways. Bibliographic sources provide the 
current information to reconstruct these kind of networks (Ma'ayan et al., 
2005). Additionally, several databases compile this information such as the 
Kinbase (h t tp : / / k i n a s e . com/) or the commercial database Protein lounge 
(http://www.proteinlounge.com/). 

10.2 Basic Concepts 

We will present a basic theoretical framework oriented to describe and analyze 
cellular networks. We will start with providing those descriptors to define, in 
a topological way, an element within a network. Second, we will provide global 
descriptors to define a network and finally we will present some more accurate 
algorithms to uncover the web structure. As we will see for the case study, 
these methods can be used for the analysis in two ways, i) identifying elements 
that might play a relevant biological function and ii) understanding - from 
an evolutionary point of view - what processes might be important in shaping 
network organization. 

10.2.1 Graph Definition 

A graph (or network) G is defined by a set of N vertices (or nodes) V ={vi, 
V2,---,VN} and a set of L edges (or links), E ={ei, 62, ...,ej:,}, linking the 
nodes. Two nodes are linked when they satisfy a given condition, such as two 
metabolites participating in the same reaction in a metabolic network. The 
graph definition does not imply that all nodes must be connected in a single 
component. A connected component in a graph is formed by a set of elements 
so that there is at least one path connecting any two of them. 

Graphs are undirected when the interaction between nodes is mutual and 
equal, as in the protein maps. Otherwise, the web is directed, as for gene 
regulatory networks (Shen-Orr et al., 2002) and signal transduction pathways 
(Ma'ayan et al., 2005). Additionally, graphs can also be weighted when links 
have values according to a certain property. This is the case for gene regulatory 
networks, where weights indicate the strength and direction of regulatory 
interactions. 

Although graphs are usually represented as a plot of nodes and connecting 
edges, they can also be defined by means of the so-called adjacency matrix, 
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i.e., an array A oi N x N elements aij, where Ojj = 1 if t;j links to Vj and 
zero otherwise. A is symmetric for undirected graphs, but not for the directed 
ones. For weighted nets a matrix W can be introduced, where Wij indicates 
the strength and type of the link. The network can also be described using 
a list of pairs of connected nodes (edge-list), which has some computational 
advantages. Figure 10.2 summarizes the different ways of representing a graph. 

Network theory makes use of a very simple class of networks, so-called 
Erdos-Renyi (ER) graphs (Erdos and Renyi, 1960), to which real networks 
are compared with. An ER network is defined as a set of nodes linking to each 
other with a certain probability P. In other words, P defines for each ay in 
the adjacency matrix the probability of finding ay = 1. In ER models it is 
possible to relate P and different network descriptors (see below). 

10.2.2 Node Attributes 

Here we summarize those measures required to describe individual nodes of a 
network. They allow to identify elements by their topological properties. 

The degree (fcj) of a node Vi is defined as the number of edges of this 
node. The degree is also termed as connectivity. Prom the adjacency matrix, 
we have ki = ^j=i o,ij. For directed graphs, we distinguish between incoming 
and outgoing links. Thus, we specify the degree of a node in its indegree kin 
and outdegree kgut- See examples of k values in Figure 10.2. 

(A) = 

r. 0 1 
1 0 

[0 1 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

V 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
1 1 1 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 1 0 0 0 
0 0 1 0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

1 - 2 
2 - 1 
2 - 3 
3 - 2 
3 - 4 
3 - 5 
3 - 6 
3 - 8 
4 - 3 
5 - 3 

6 - 3 
6 - 7 
7 - 6 
8 - 3 
8 - 9 
8 - 1 0 
9 - 8 
9 - 1 0 
1 0 - 8 
1 0 - 9 

Fig. 10.2. Different ways of graph representation. Left: Adjacency matrix. Center: 
Drawn graph. Right: List of pairs (edge list). The triangle motif (in bold) is indicated 
for the three representations. A pathway among vi and vs is depicted by dashed links. 
Some examples of k, C and h values: for 1)3, fca = 5, C3 = 0, 63 = 0.69; vs, k% = 3, 
Cs, = 0.33, bg = 0.36; vw, kw = 2, Cio = 1, 610 = 0. 

The clibstering coefficient d is a local measure quantifying the likelihood 
that neighboring nodes of Vi are connected with each other. It is calculated 
by dividing the number of neighbors of Vi that are actually connected among 
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them, n, with all possible combinations excluding self-links, i.e., ki{ki — 1). 
Formally, we have: 

See examples of C values in Figure 10.2. 
The betweenness centrality bm for a node Vm is the fraction of shortest 

pathways F for each pair of nodes {vi, Vj) also containing Vm, that is 

The ratio r{i,m,j)/r{i,j) indicates how crucial Vm is in relating v, and 
Vj. We introduce the term pathway (or simply path) as the string of nodes 
relating Vi and Vj (see graph and values for b in Figure 10.2). This concept is 
similar to the metabolic pathway describing a set of coupled reactions from 
one metabolite to another. The shortest path connecting Vi and Vj is the one 
where the lowest number of nodes are involved to connect them. 

Such topological descriptors are useful to identify particular nodes in the 
network. Under this viewpoint, such particularities can be mapped into rele­
vant topological properties. For instance, high fcj for a node might relate to 
a relevant role, since many other nodes interact with it. Alternatively, high 
bi can also indicate a relevant role since it tells us that many nodes are ef­
ficiently connected through it. It is noteworthy that, 6, usually scales with 
degree, although this is not always true (see Figure 10.3). 

4 4 
4 4 4 

Fig. 10.3. Relation between degree and betweenness. The two-stax graph shows 
a case where the two hubs support a high level of shortest pathways, however the 
central node Vm shows the highest b of the graph keeping a low degree. The shortest 
path connecting Vi and Vj through Vm, is indicated by solid lines. 

10.2.3 Graph Attributes 

For a network of size N, several useful global measures can be defined, each one 
providing very different, but complementary, sources of information. Average 
degree, defined as (fc) = 2L/N, indicates how sparse a graph is. For ER graphs, 
{k) = PN. Most real networks are sparse, i.e., (k) ^ N. 
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Average clustering (d) = (l/A^) X̂ ^ Cj provides a measure of local orga­
nization. High (Cj) indicates that neighbors of a node are likely to be linked 
between them. It actually gives the probability of finding triangles. For ER 
graphs, id) = {k)/N. 

Average path length {£) indicates the average length of the shortest path­
ways separating each node pair. If dmin is the length of the shortest path 
connecting nodes Vi and Vj, then £ is defined as: 

^dmin{Vi,Vj) (10.3) 

For ER graphs £ follows the expression £ER — logN/log{k). When a net­
work Gn fulfills the conditions £n ~ £ER but {C)n » {C)BR then it is said 
that GQ exhibits a small-world (SW) pattern. Figure 10.4 shows a graph with 
a SW pattern (also called small-world graph) between two extreme networks: 
An ordered lattice (a) and a pure random network (c). The SW graph (b) 
retains the high clustering displayed by the lattice web (a), but it also has 
very small £, as expected from ER in (c). It is obtained by rewiring a small 
number of links (Watts and Strogatz, 1998). These networks keep their local 
order (high C) but also allow a very efficient communication (low £). 

Fig. 10.4. Randomization process from regular lattice (a) to a pure random network 
(c); (b) represents a small-world graph where local relations are still conserved (as 
in (a)) but the average path length i is close to the one in (c). 

Another measure is the degree distribution pk- It indicates the probability 
of a node having k links and thus 5Zj.Pfc = 1. It illustrates one of the most 
striking differences seen in real networks as compared to ER ones. As defined, 
ER networks follow a binomial distribution, which for large N can be approxi­
mated by a Poisson distribution, indicating that the majority of the nodes are 
close to the average degree. Most real networks exhibit a degree distribution 
following a power-law decay, pk ~ k~'^. Here, 7 is a positive parameter that 
for real networks is usually in the range 2 < 7 < 3 (Albert and Barabasi, 
2002). Networks fulfilling this property are known as scale-free. 

Scale-free graphs have a pk with a maximum at fc = 1 (thus most elements 
have a single link) and rapidly decay at higher k values. However, the tail of the 
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distribution is very long and thus nodes with a very high degree are possible. In 
contrast, ER graphs predict that very high k is exceedingly rare and unlikely 
to be observed at all. SF distributions have no humps and have extremely 
large standard deviations, which means that no confidence can be placed in 
a prediction of the number of links of any node sampled at random (Albert 
and Barabasi, 2002). Typically, real networks exhibit a mixed distribution, 
that is, a power-law with a sharp exponential cut-off determined by kc in the 

k 

expression p^ '^ {k)~''e~T^ indicating that arbitrarily high degrees are not 
allowed (Amaral et al., 2000). 

Clustering distribution {Cu) represents d against k. ER and pure scale-
free webs (graphs (a) and (c) in Figure 10.1, respectively) do not exhibit any 
dependency between Cj and k. By contrast, in so-called hierarchical networks 
(see graph (d) in Figure 10.1), Cfe decays as the inverse of the degree (Cfe ~ 
k~^) (Barabasi and Oltvai, 2004). This type of network exhibits modularity 
(nodes are preferentially linked inside clusters or modules). A module can be 
defined as a set of nodes in a connected component which tend to be more 
connected among them than with the rest of the network. 

The betweenness distribution (bk) is defined in a similar way, i.e., it repre­
sents hi against k. It has been shown that real networks, such as the Internet 
(Vazquez et al., 2002), follow a power-law bk-

Assortative mixing (r) is a measure that weights the correlation among 
degrees in a graph, giving information about the likelihood to find linked nodes 
of a certain degree. This measure compares the correlation among degrees in 
the studied network (noted as Gn) with its uncorrelated counterpart. The 
expression for r is derived in the section Mathematical Details. The value 
of r is normalized to range between —1 and 1. Here, r = 0 indicates no 
correlations among degrees, as it occurs for example in ER graphs. Otherwise, 
most complex networks have been found to be disassortative, i.e., r < 0, where 
higher degree nodes tend to be connected with lower degree ones rather than 
nodes with the same k (see Figure 10.5a). These networks display hubs that are 
not directly connected among them. It has been suggested that this situation 
confers network robustness (Maslov and Sneppen, 2002). When r > 0, nodes 
with the same degree tend to be linked among them (see Figure 10.5b) and 
the graph is called assortative. 

Correlation profiles (Maslov and Sneppen, 2002) are related to r, but de­
fined for each pair of degree, i.e., {kQ,ki). The studied network Gn is compared 
with a set of random graphs with the same degree distribution pk, known as 
randomized graphs Gr- They are obtained through a rewiring process where, 
taking two edges without any vertices in common, we exchange their start­
ing vertices. By iterating this process at least twice the number of edges, 
a reasonably randomized graph Gr preserving pk is produced. Denoting by 
Pn{ko, ki) the actual probability in Gn of finding an edge linking two nodes 
with degree ko and fci and by Priko, ki) its randomized counterpart, we define 
the correlation profile Z as Z{ko,ki) = {Pn{ko,ki) — Pr{ko,ki))/ar{ko,ki). 
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(b) 

Fig. 10.5. Illustration of assortativenness. (a) A star graph, showing a correlation 
among highly connected nodes with poorly connected ones (r < 0). (b) A lattice 
where all nodes have A; = 4. It is the extreme case where nodes with the same degree 
tend to be linked among them (r > 0). 

It measures the difference between the correlations of GQ and Gr, normalized 
by the standard deviation of Pr{ko, ki), indicated by ^^(fco, fei). 

The Z values are calculated for each pair (fco, fci). If Z = 0, there is no 
difference among Gn and Gr', Z > 0 corresponds to an over-representation of 
connections in Gn among (fco,A;i) pairs compared with Gr- Whereas under-
representation is given by Z < 0. Z is depicted as a 2D array of (fccfci) pairs. 

Topological overlap analysis is one of the possible algorithms used for de­
tecting modularity. The method arranges nodes depending on the neighbors 
they share, in other words, two nodes will be closer in the arrangement depend­
ing on how many common neighbors they have. Afterwards, they are drawn 
in a 2D symmetric array where the strength of the relation between each pair 
is displayed using a color gradient (Ravasz et al., 2002). This algorithm allows 
building a dendrogram that captures hierarchical relations between nodes. 
Figure 10.6 shows an example for a simple modular graph. 

The k-scaffold graph analysis (Rodriguez-Caso et al., 2005) allows us to 
obtain a well-defined subgraph containing all hubs, and their interaction part­
ners. One pair of connected nodes is conserved, in the so-called k-scaffold 
graph, if the degree of at least one of them is larger than a predefined cut-off 
kc- It is noteworthy that the fc-scaffold not only reveals hubs but also their 
immediate neighbors. This allows to keep the connections among two hubs 
through intermediary nodes. 

Network motifs are small and repeated patterns of connections among 
a few nodes. Motifs usually do not exceed 4-5 nodes. We evaluate all the 
combinations of connections that can be implemented using these small sets. 
Network motif analysis is based on the dissection of a network into small 
subgraphs of three to five interacting nodes (Milo et al., 2002). Real networks 
exhibit an overabundance of certain motifs compared to the randomized ones. 
Although such deviations have been suggested to relate with functional traits 
(Milo et al., 2002) they might actually reflect the rules of duplication and 
divergence driving genome evolution (Sole and Valverde, 2006). 



212 Carlos Rodriguez-Caso and Ricard V. Sole 

(a) , . ( b ) ^ ^ 3 ^ 

Fig. 10.6. Topological overlap analysis for a simple graph with three modules. 
Topological overlap matrix (b) depicts the arranged nodes by their overlapping de­
fined by the graph (a). A grey gradient shows the relationship for each pair of nodes, 
where darker shades indicate the highest overlapping. 

10.3 Caveats and Pitfalls 

Here, we summarize what a topological perspective can offer as well as its 
limitations to the study of large-scale networks 

• Graph theory is an adequate approach for large-scale systems. It can pro­
vide a comprehensive representation of the overall pattern of molecular 
interactions obtained from experimental approaches. 

• Graph theory gives a suitable framework to model large-scale systems. 
Evolutionary models of proteome evolution based on gene duplication 
and deletion has been proposed suggesting that these processes give simi­
lar topological properties to the observed proteins maps (Pastor-Satorras 
et al., 2003). 

• Network analysis can be used to identify candidates with potential biolog­
ical relevance by observing their topological features. This is the case for 
the degree as it is shown in the Case Study section. 

• The network definition (in its topological form) is an abstraction requiring 
a great simplification and thus a loss of information. For example, a protein 
complex formation in protein maps can depend on a sequential assembling 
that is not considered in current protein map definitions. 

• Current information about different molecular networks is far from being 
complete. For instance, it has been shown that protein maps coverage are 
not sufficient to obtain significant information about the degree distribu­
tion for the entire proteome (Han et al., 2005). 

• Distinct molecular networks are partly embedded inside a very large, mul-
tilayered network, involving metabolism, protein interactions and gene reg­
ulation. In general, such networks, are studied separately, but the cross-
linking among them is somewhat ignored. 
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10.4 Case Study: Topological Analysis of the Human 
Transcription Factor Interaction Network 

Transcription factors (TFs) are an essential subset of interacting proteins, 
since they are responsible for the control of gene expression. They interact 
with DNA regions and tend to form transcriptional regulatory complexes. 
The final effect of one of these complexes will be determined by its transcrip­
tion factor composition. The number of transcription factors varies among 
organisms, but it appears to be linked to their complexity, and the control 
of gene regulation (Riechmann et al., 2000; Levine and Tjian, 2003). Phy-
logenetic studies have shown that the amplification and shuffling of protein 
domains have been determinant for the growth of certain transcription factor 
families (Laudet, 1997; Sharrocks, 2001; Ledent et al., 2002; Amoutzias et al., 
2004) and different domains of a protein are often associated with different 
functions. (Baron et al., 1991; Sonnhammer and Kahn, 1994). 

When dealing with transcription factor networks, several relevant ques­
tions arise, among them: How are these factors distributed and related through 
the network structure? How important are protein domains in shaping the net­
work? An analysis of global patterns of network organization is required to 
answer these questions. 

To this goal, here we explore the human transcription factor network 
(HTFN) obtained from the protein-protein interaction information from the 
TRANSFAC database (Wingender et al., 2001), using network analysis. We 
will show that this approximation allows us to obtain evolutionary footprints 
of the mechanisms shaping network architecture. 

Data compilation from the TRANSFAC database provided 1370 hu­
man entries. HTFN was built using a specific transcription factor datar 
base (TRANSFAC 8.2 professional database (Wingender et al., 2001)). We 
restricted our search to Homo sapiens using the database OS (organism) 
field. Information concerning physical interactions, derived from bibliograph­
ical sources, was extracted from the IN (interacting factor) database field. 
TRANSFAC contains, as entries, not only single transcription factors but also 
some entries for well-described transcription complexes. To avoid identifying 
a protein complex as a single protein, which could cause false or redundant 
interactions, we eliminated those complexes by selecting only entries with SQ 
field (protein sequence), which is only present in single transcription factors. 

After filtering, a graph oi N = 230 interacting human transcription factors 
was obtained (Figure 10.7a). The remaining transcription factors contained 
in the database did not form subgraphs and appeared isolated. The relatively 
small size of the connected graph compared with all the entries in the data­
base might be due - at least in part - to the current degree of knowledge of 
this transcriptional regulatory network, with only sparse data for many of its 
components. Although a number of possible sources of bias are present, it is 
worth noting that the topological pattern of organization reported from differ­
ent sources of protein-protein interactions seems consistent (Wagner, 2003). 
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Fig. 10.7. Network representations of HTFN. (a) Entire HTFN obtained from 
TRANSFAC database. Numbers indicate hubs: 1, TATA binding protein (TBP); 2, 
p53; 3, p300; 4, retinoid X receptor a (RXRQ); 5, retinoblastoma protein (pRB); 6, 
Nuclear factor NFKB p65 subunit (RelA); 7, c-jun; 8, c-myc; 9, c-fos. (b) fe-scaffold 
of HTFN for a fcc = 11. Central box shows the symbols used for node representation 
accordingly the groups (A to G) defined by the topological overlap analysis (see 
Figure 10.9 and Table 10.2). 

The topological analysis of HTFN is summarized in Table 10.1 revealing 
that HTFN is a sparse, small-world graph. The degree distribution (Figure 
10.8a) and clustering (Figure 10.8b) exhibit a heterogeneous, skewed shape re­
minding us of a power-law behavior, thus indicating that most TFs are linked 
to only a few others whereas a handful of them (the hubs of HTFN) have many 
connections. The average betweenness centrality shows a well-defined power-
law scaling (Figure 10.8c). Additionally, the network also displays well-defined 
correlations among proteins depending on their degree. As it occurs with other 
complex networks, we found that the HTFN is disassortative: Highly con­
nected proteins attach to low connected ones (Newman, 2002a) and nodes 
with similar degree do not tend to be linked among them. 

Figure 10.9a,b shows the obtained correlation profiles. They are similar 
to a protein interaction network of the yeast proteome (Maslov and Sneppen, 
2002). The profile for HTFN (see Figure 10.9a), shows a dark region at the 
upper-left and bottom-right corners (positive Z value). This indicates that 
highly connected nodes associated with poorly-connected ones are much more 
abundant than predicted by the set of randomized networks. On the other 
hand, negative Z values in the domain representing relations between highly 
connected nodes (light regions in Figure 10.9a and b) indicate that they tend 
to be under-represented. 



(a) 
^.6 

2 

/*̂  C»tl.5 
e 
M 1 

0.5 

n 

• • * 

» 
• 

• 
0.5 1 

log* 

(b) 
5r 

4 

^̂  
-O 2 

^ 1 

0 

1 -

10 Networks in Cell Biology 215 

(c) 

..jj|«1.*»* 

l!l!i!" 
t • 

0.5 r 

0 

-0.5 

-1 u 
bo 

^ -1 .5 f 

1.5 0.5 1 

log* 
1.5 

-2^ 

-2.5 
0.5 1 

log* 
1.5 

Fig. 10.8. Distributions for (a) degree, (b) betweenness centrality and (c) clustering. 
The power law fittings are shown in the insets. Linear regression coefficient: r^ = 0.96 
(a); betweenness centrality, r^ = 0.94 (for b, inset); clustering coefficient r^ = 0.74 
(for c, inset). 

Table 10.1. Topological paxameters of some real networks: Human transcription 
factor network (HTFN); Erdos-Renyi (ER) null model network with N identical to 
that of the present study, proteome network from yeast (Jeong et al., 2001) and 
Internet (year 1999) (Vazquez et al , 2002; Newman, 2002b). For the ER model, 
we have used (C) = k/N and £ = log{N)/log{k) (Newman, 2002a). Note that real 
networks are disassortative and exhibit a small-world pattern 

N 
L 
(fc) 
{C) 

e 
r 

H T F N 
230 
851 
3.70 
0.17 
4.50 
-0.18 

E R mode l 
230 
851 
3.70 

0.015 
4.15 

-0.005 

Yeast p r o t e o m e 
1,870 
4,488 
2.40 
0.07 
6.81 
-0.15 

I n t e r n e t 
10,100 
38,380 

3.80 
0.24 
3.70 
-0.19 

N: Total number of nodes; L: Total number of links; (fc): Average degree; {C): Average clustering; 
i: Average pa th length; r : Assortat ive mixing. 

Scale-free networks exhibit a high degree of error tolerance, in other words, 
they are robust against random node deletions. They are, however, "vulnera­
ble" to hub elimination (Albert et al., 2000). It seems that the effect of selective 
elimination has been attenuated in biomolecular networks by avoiding direct 
links between hubs (Maslov and Sneppen, 2002). This kind of pattern is asso­
ciated with modularity: Groups of proteins can be identified as differentiated 
parts of the web, allowing functional diversity. Modularity can be properly 
detected and measured using the so-called topological overlap matrix (Ravasz 
et al., 2002). Figure 10.9c shows this overlap matrix for the HTFN. The ar­
ray shows a nested, hierarchical structure, with small modules as dark boxes 
across the diagonal, which have a large overlap. However, there are some weak 
connections between modules, as shown by the tiny lines in the topological 
overlap matrix. 
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It is noteworthy that the presence of a high level of self-interactions is 
a prominent feature of this transcription factor web. In fact, 17.8% of pro­
teins have self-interactions. Here, a self-interaction has to be understood as 
the interaction between proteins of the same type, i.e., homo-oligomerization, 
regardless of the number of monomers involved in such an interaction. To eval­
uate their importance, we compared correlation profiles with and without self-
interactions (Figure 10.9a and b, respectively). Changes in the whole profile 
are evident, suggesting that nodes with self-interactions are distributed along 
the whole range of degree values. It is especially remarkable that the intense 
signal around degree values of 2 — 3 in the profile with self-interactions (Figure 
10.9a) is attenuated in the corresponding profile following their deletion (Fig­
ure 10.9b). Such striking differences can be explained by an over-abundance 
of proteins able to form either homo- or hetero-oligomers by means of con­
nections with one or two more proteins (as it is the case of jun/jun, jun/fos, 
or myc/max/mad complexes (Hartl et al., 2003; Pelengaris and Khan, 2003)). 
These small clusters correspond to highly integrated modules depicted as small 
black regions in topological overlap matrix (Figure 10.9c). A simple explana­
tion for these observations can be given based on biological constraints derived 
from the phylogeny of transcription factors, as will be discussed in the next 
section. 

(a) 
31.6 
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(b) 31.6 

10.0 

3.2 , 10.0 31.6 
k 

bHLH/bZip 
domains 

Fig. 10.9. Topological analysis of the HTFN. Here, the correlation profile is shown 
by using the Z-score taJsing into account self-interactions (a) and avoiding them (b). 
In (c), we display the topological overlap matrix and dendrogram. A to G indicate 
the topological groups defined by tracing a dashed line through the dendrogram. 
See Table 10.3 for biological and functional features of each group. 
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In order to clarify the relation between biological function and topology 
of HTFN, we identified in the network those factors that have the highest 
number of interactions (i.e., hubs). In a biological context, hubs can have 
important roles. Table 10.2 summarizes the most highly-connected factors in 
HTFN and their related diseases. They are also highlighted in the HTFN 
graph (Figure 10.7a). It should be stressed that the TATA binding protein 
(TBP) has the highest degree. TBP is considered a key factor for transcription 
initiation (Davidson, 2003). Other hubs, such as p53 (the second in degree) 
and retinoblastoma protein (pRB) are tumor suppressor proteins. Actually, 
most of these highly connected factors are related to cancer. 

Table 10.2. Description and functionality of transcriptions factor hubs. Transcrip­
tion factor (TF), degree (fc), betweenness centrality (6). 

T F 
TBP 

p53 

plOO 

R X R Q 

pRB 

RelA 

c-jun 

c-myc 

c-fos 

Description 
Basal transcription machinery 
initiator 
Tumor suppressor protein 

Coactivator. Histone acetyl-
transferase 
Retinoid X-a receptor 

Retinoblastoma suppressor pro­
tein. Tumor suppressor protein 

N F - K B pathway 

AP-1 complex (activator). 
Proto-oncogen 
Activator. Proto-oncogen 

AP-1 complex (activator). 
Proto-oncogen 

Associated disease 
Spinocerebellar ataxia (Koide 
et al., 1999) 
proliferative disease (Vousden 
and Prives, 2005) 
May play a role in epithelial 
cancer (Gayther et al., 2000) 
Hepatocellular carcinoma 
(Okuno et al., 2004) 
Proliferative disease. Bladder 
cancer. Osteosarcoma (Liu 
et al., 2004) 
Hepatocyte apoptosis and fetal 
death (Joyce et al., 2001) 
Proliferative disease (Hartl 
et al., 2003) 
Proliferative disease (Pelen-
garis and Khan, 2003) 
Proliferative disease (Sunters 
et al., 2004) 

k 
27 

23 

18 

18 

15 

14 

14 

13 

12 

bx 10^ 
17.3 

18.5 

20.2 

8 

27.1 

6.6 

4.1 

10.5 

2 

In order to reveal the mechanisms that shape the structure of HTFN, we 
studied its topological modularity in relation to the function and structure 
of transcription factors from available information. From a structural point 
of view, the over-abundance of self-interactions is associated with a majority 
group of 55% of basic helix-loop-helix (bHLH) and leucine zippers (bZip), 
a 17.5% of Zn fingers, and a 22.5% corresponding to a more heterogeneous 
group, the beta-scaffold factor with minor groove contact (according to the 
TRANSFAC classification) superclass, which includes Rel homology regions, 
MADS factors and others. Actually, such structures can be understood as 
protein domains, which can be found alone or combined to give rise to TFs. 
These domains are responsible for relevant properties, such as TF-DNA or 
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TF-TF binding. In this context, self-interactions can be explained by the 
presence of domains able to bind among them, as is the case of bHLH, bZip and 
the dimerizing regions in Zn finger nuclear receptor superfamily. They follow 
a general mechanism to interact with DNA based on protein dimerization 
(Brandon and Tooze, 1999). According to this, the high clustering of the 
HTFN (see Figure 10.7) could be explained as a byproduct of the abundance 
of self-interacting domains. 

We next wondered whether the HTFN modular architecture (Figure 10.9c) 
might include both functionality and structural similarity. In order to simplify 
the study of modularity, we traced an arbitrary line in the dendrogram of the 
topological overlap matrix, identifying seven putative protein groups (dashed 
line in Figure 10.9c). Nodes of each group have been identified by different 
symbols in the HTFN graph (see Figure 10.7a) where we can visualize the 
modules defined by the topological overlap algorithm. We must note that a 
consequence of the hierarchical component of HTFN is that not all factors in 
each group have the same level of relation. 

Unlike a simple modular network, the combination of hierarchy and modu­
larity cannot give purely homogeneous groups. Figure 10.7b shows the HTFN 
core graph, highlighting its modularity, the under-representation of connec­
tions between hubs and the overabundance of highly-connected nodes linked 
to poorly-connected ones (both observed in the correlation profile). The cen­
tral role of the hubs in topological groups defined in Figure 10.7a should be 
stressed; these hubs are described in Table 10.2. An analysis of the topological 
modules of Figure 10.7 (labeled from A to G) shows that they include struc­
tural and/or functional features. Table 10.3 summarizes the main structural 
and functional features of these groups. 

The methods concerning network analysis have been explained in the basic 
concepts section. We summarize here the ones concerning protein network 
acquisition. 

10.5 Lessons Learned 

The topological approach reveals that the HTFN exhibits a non-trivial organi­
zation where modularity and hierarchy play a fundamental role. Proteins with 
relevant biological roles occupy important positions in the network as hubs, 
thus indicating that node attributes (such as degree) can help elucidating the 
functional relevance of key elements in real networks. 

Finally, we have shown that modularity is shaped by both structural and 
functional constrains and local rules of network growth based on tinkering 
largely determine global organization. These results allow defining possible 
evolutionary paths of network evolution. 
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Table 10.3. Structural and functional features of the groups obtained from topo­
logical overlap matrix. 

Group Functional features Functional features 
&: # T F s 
A (22) 77% bHLH domains. Muscle and neural tissue specific, sex deter­

mination. Includes E proteins family related 
to lymphocyte differentiation. (Quong et al., 
2002; Morgenstern and Atchley, 1999). In­
cludes E-box type A TF. 

B (19) 47% bHLH-bZip do- c-myc related factors (59%). Includes E-box 
mains. type B TF. Related to cell proliferation (Mor­

genstern and Atchley, 1999). 
C (30) 36% rel homology region TF involved in NF/c B pathway, API complex 

40% bZip domains. and others 
D (38) 24% fork head domains. E2F/pRB pathway, histone deacetylases 

(HDAC) (Dimova and Dyson, 2005; Thiel 
et al., 2004). PRB and p53 isoforms... 

E (45) 22% histone folding. Mâ  Basal transcriptional machinery for promot-
jor part of specific inter- ers type I, II, III, PTF/SNAP complex and 
acting regions TBP related factors (Davidson, 2003; Lee and 

Young, 1998; Gangloff et al., 2001). 
F (57) 42% Zn finger domains. It contains the 90% of the members of nu­

clear receptor superfamily (they are Zn fin­
gers also) of the HTFN. 

G (19) 31% MAD domains. SMAD family proteins and ;8-catenin and 
APC related factors. 

10.6 List of Tools and Resources 

We have presented some of the methods used in the analysis of complex net­
works. However, we can find other useful measures in the technical literature 
(Dorogovtsev and Mendes, 2003). In particular, alternatives have been sug­
gested to quantify the network modularity. In this chapter, we have presented 
a method based on the clustering property, but modularity can also be mea­
sured by means of betweenness (Palla et al., 2005; Radicchi et al., 2004). 

The fc-scaffold graph analysis is an alternative to the so-called k-core (Sei-
dman, 1983), which allows to retain only those nodes with at least n edges; 
edges connecting these nodes are not displayed. 

For graph visualization, the most popular visualization software is Pa-
jek (h t tp : / /v lado . fmf .u i i i - l j . s i /pub /ne tworks /pa jek / ) , which is free 
for Windows operating systems. Pajek provides a graphic interface and a 
set of algorithms for graph analysis. In our study, we used the Graphviz pack­
age (http://www.grapliviz.org/). Recently, path visualization tools are be­
ing incorporated in biological databases offering molecule information in the 
context of the interactions with other molecules. This is the case for commer­
cial databases such as Protein lounge (www.proteinlounge.com/), Transfac 
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(http:/ /www.biobase.de/) . In this context, we can also mention Cytoscape 
(http:/ /www.cytoscape.org/) , a bioinformatics software platform for visu­
alizing molecular interaction networks and integrating them with gene ex­
pression profiles and other data. This system allows to integrate interacting 
databases and extract gene functional annotation databases from gene ontol­
ogy. 

10.7 Conclusions 

The study of large-scale cellular networks based on graph theory has revealed 
that proteins and metabolites are connected in a non-trivial way. The net­
work approach reveals that, although biological functions originate from the 
interaction among specific elements, global organization exhibits universal 
topological properties. Real networks are often sparse, scale-free, hierarchical 
and exhibit a small-world pattern. Experimental systemic approaches, such 
as high-throughput methods could benefit from this type of integrative views 
in order to gain a better understanding of massive biological data. The case 
study presented here is an example of such an application. The HTFN analysis 
shows that this network shares topological properties with other real graphs. 
We have shown that the highly connected nodes are related to essential func­
tions and that topological features, such as modularity, capture information 
concerning the functionality and phylogeny of its components. 

10.8 Mathemat ical Details 

Assortative mixing (r) . Given the degree distribution pk of the studied 
graph Gn, the expected probability of two arbitrary nodes of degrees ko = m 
and fci = n to be linked in the uncorrelated network counterpart (with the 
same pk as Gn) is the product of their degree abundance, that is, q^ x Qn-
The probability that a link connects two nodes with degrees m and n in Gn 
is denoted as pmn- It is calculated dividing the number of times that two 
nodes with m and n degrees are connected in Gn by the total number of 
possibilities {N x N). Then, we define a global correlation function weighting 
the degree for each correlation Qm^n and Pmn, as C{m, n) = {mn) — {'m){n) = 

To compare different networks we show the expression for the normalized 
correlation function (Fernandez and Sole, 2005). Normalization is achieved by 
using the variance of the degree distribution Ug of GQ, ^ J . k^qk — [^k ^Qk]'^! 
Hence the normalized correlation function is expressed as 

r- = - 2 X ] '^'^(Pmn - qruQu) (10.4) 
^ mn 

To calculate r, this expression is formulated as follows: (Newman, 2002b) 
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where ji, ki are the degrees of the vertices at the ends of the i*'' edge, with 
i = l,...L. 
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11.1 Introduction 

Many applications in modern biology measure a large number of genomic or 
proteomic covariates and are interested in assessing the impact of each of 
these covariates on a particular outcome of interest. In a study which follows 
a cohort of HIV-positive patients over time, for example, a researcher may 
genotype the virus infecting each patient to ascertain the presence or absence 
of a large number of mutations, in the hope of identifying mutations that 
affect how a patient's plasma HIV RNA level (viral load) responds to a new 
drug regimen. Along with an estimate of the impact of each mutation on 
the time course of viral load, the researcher would generally like to have a 
measure of the statistical significance of these estimates in order to identify 
those mutations that are most likely to be genuinely related to the outcome. 
Such information could then be used to inform the decision of which drugs 
should be included in the regimen of a patient with a particular pattern of 
mutations. 

To tackle this problem, we first need to define precisely what we mean by 
"the impact of a mutation on the time course of viral load". For this purpose, 
let us denote the collection of candidate mutations hy A= {A\,..., Ap), with 
Aj = 1 if a specific amino acid substitution is present at the given position and 
Aj = 0 otherwise. Let Y{t) denote a patient's viral load measured at time t. 
Suppose we also measure a number of clinical covariates C = {C\,..., Cq) at 
baseline that tend to be associated with the occurrence of particular mutations 
and that independently affect a patient's virologic response. 

The simplest way of assessing the impact of a particular mutation Aj on 
Y{t) would now be to compare the virologic response among patients with 
Aj = 1 to that among patients with Aj = 0. If we find that patients in 
the first group respond much more poorly to a particular drug regimen, a 
clinician might be inclined not to give this regimen to a new patient entering 
his office who has this mutation. Patients in the first group are, however, also 
quite likely to differ from those in the second group in terms of the remaining 
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mutations and the clinical covaxiates C. The mutation Aj may, for example, 
be very common among patients who have previously failed several similar 
drug regimens, making them far more likely to also fail the current one, but 
very rare among other patients. If the clinician's new patient comes from a 
population that differs from our original study population in that the mutation 
is not associated with having previously failed similar drug regimens, we might 
be wrong to conclude that the regimen under consideration would be a poor 
choice in this situation. Since the impact of Aj on Y{t) is confounded by the 
clinical baseline covariates C, our results do not generalize to a new population 
in which Aj and C are related to each other in a different way. 

We might thus be interested in estimating the impact of Aj on Y{t) that is 
not due to associations oiAj with any of the baseline covariates C. Specifically, 
we might ask: What difference in virologic response would we observe if we 
could somehow give every patient in our study population the mutation Aj, 
holding their clinical covariates C fixed at their current values, as opposed 
to the scenario in which we give none of the patients this mutation, holding 
again C fixed? Any observed difference could then not be due to differences 
of the two populations with regard to C and would thus be more likely to 
generalize to a new population in which Aj and C may be related to each 
other differently. 

To appreciate the difference between the estimates obtained in this way 
and those described earlier, consider the ideal experiment that would corre­
spond to these earlier estimates. If we simply compare patients with Aj = 1 to 
those with Aj = 0 , we would be asking: What difference in virologic response 
would we observe if we gave every patient in our study population the mu­
tation Aj, allowing their clinical covariates to take on values that are typical 
for patients with Aj = 1, as opposed to the scenario in which we give none of 
the patients this mutation, again allowing C to take on typical values? If we 
now encounter a patient from a new population, the typical values of C for 
patients with Aj = 1 that we observed in our original study population may 
not correspond to typical values of C for such patients in this new population. 

In the hypothetical experiment in which we control for C by holding it 
fixed at its observed values, any other covariates that are not included in C 
are implicitly allowed to take on values typical for the value of Aj we are 
considering. In particular, some of the remaining mutations may be strongly 
correlated with Aj so that they would be likely to change their values if we 
assigned every patient Aj = 1 or Aj — 0. If these other mutations are now 
themselves independently related to Y{t), our estimates for the impact of Aj 
on Y{t) may not translate well to a new population in which the mutations 
tend to occur in somewhat different patterns. Only if we adjust for all con-
founders of the relationship between Aj and Y{t), i.e., all covariates that are 
associated with Aj and that are functionally related to Y{t), can we be sure 
that our estimates will be applicable to a new population of patients. If we 
do so, we are in fact estimating the causal impact of Aj on Y{t), rather than 
a mere association between Aj and Y{t). 
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We note, however, that estimates of the impact of Aj on Y{t) may be 
interesting and meaningful even if we are not in the ideal situation of being 
able to adjust for all relevant confounders. We can still identify mutations 
that are strongly associated with Y{t) and that may thus allow us to predict 
a new patient's virologic response to a particular drug regimen, assuming that 
this patient comes from a population in which the unmeasured confounders 
are associated with Aj in a manner that is not too dissimilar from that ob­
served in our study population. Depending on the nature of the unmeasured 
confounders, this assumption may not be at all unreasonable. 

In this chapter, we describe an approach that allows us to estimate such 
measures of variable importance for any set of baseline covariates we may wish 
to adjust for. Mathematically speaking, these methods allow us to estimate 
the parameter 

^j(t) = E [E[Y{t) \Aj = l, Wj] - E[Y{t) I AJ = 0, W,]] (11.1) 

for each j and each t, where Wj = {Wj,..., Wp) is the desired set of ad­
justment variables. The estimates we obtain rely on a minimum number of 
assumptions and in some cases are as precise as possible. Furthermore, the 
approach provides an honest measure of the statistical significance of each 
estimate. For a more rigorous treatment, the interested reader is referred to 
the article by (van der Laan, 2006b). 

11.2 Basic Concepts 

In this section, we describe how the variable importance parameter ^j{t) is 
estimated in practice. The central step consists of transforming the recorded 
data for each observation into a quantity whose expectation equals ^j{t). Con­
ceptually, these quantities can be thought of as giving a measure of the impact 
of Aj on Y{t) as derived from a single observation. We can then estimate the 
entire function ^j{t) relating variable importance to time by fitting a statis­
tical model for how the expectation of the transformed quantities depends on 
time, i.e., by regressing them on time. 

We will describe three different transformations of the observed data that 
are suitable for our purposes. These transformations themselves involve pa­
rameters that are generally not known by the researcher and hence must be 
estimated from the observed data. Since these parameters axe not of interest 
in themselves, we refer to them as nuisance parameters. The first of these 
nuisance parameters is the so-called treatment mechanism. The variable Aj 
whose effect on Y{t) we would like to estimate is often referred to as the 
treatment variable. The treatment mechanism gj now gives the probability of 
observing a given treatment Aj = a for a subject with a particular covariate 
profile Wj-. 

gjia,Wj)^P{Aj=a\Wj) (11.2) 
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The second nuisance parameter consists of a regression of Y{t) on Aj and Wji 

Qj{a,t,Wj) = E[Y{t) I Aj = a, Wj] (11.3) 

To estimate gj and Qj we ideally do not want to rely on the assumption of a 
particular functional form. For example, we would like to avoid an assumption 
such as that the expectation of Y{t) given Aj and Wj can be written as 

E[Y{t) I Aj,Wj] = f3jo + (3jiAj + Hj^t + l3j^WJ + ... + /3,(„+2)W7 (11.4) 

for some coefficient vector /3j = (/3jo, • • • ,/3j(m+2))- On the basis of biological 
knowledge alone it is very difficult to arrive at an appropriate functional form, 
and poorly specified functional forms can lead to severely biased estimates of 
variable importance. Thus, the functional form of the nuisance parameter 
models should be chosen based on the information that is contained in the 
data set, i.e., data-adaptively. One popular approach to this model selection 
problem is the D/S/A algorithm (Sinisi and van der Laan, 2004) that relies on 
deletion, substitution, and addition moves to search through a large space of 
possible functional forms. Another well-known model selection technique that 
searches through a much smaller space of candidate functional forms and thus 
requires somewhat less computing time has been introduced by Kooperberg 
et al. (1997). 

In modeling Q, we have to bear in mind that repeated viral load mea­
surements on the same patient will be correlated. The usual generalized fin-
ear models were formulated for outcomes that are independent of each other 
(McCuUagh and Nelder, 1989). In the presence of correlated outcomes, these 
models provide estimates that, while still reliable, are no longer as precise as 
possible. Furthermore, the p-values they provide for testing whether or not 
certain regression coefficients axe equal to zero cannot be trusted since they 
tend to be too small. 

Generalized estimating equations address both of these issues and have 
thus been a popular tool for modeling correlated outcomes (Liang and Zeger, 
1986; Zeger and Liang, 1986). Unlike generalized estimating equations, the 
D/S/A algorithm for data-adaptive model selection does not explicitly take 
into account the correlation between outcomes Y{t) measured on the same 
subject. Although the model fits obtained by this algorithm are not as precise 
as possible, the estimates are still reliable and useful for the purpose of model 
selection. Furthermore, the regression of Y{t) on Aj and Wj is only a nuisance 
parameter, needed to estimate the variable importance of Aj, but is not of 
primary interest in itself. Thus, we are not interested in testing whether some 
coefficients in the selected model might be equal to zero or not. The only 
adjustment that is necessary when using the D/S/A algorithm in this situation 
is to supply an ID variable that can be used to identify the independent 
experimental units. This allows the algorithm to carry out an honest cross-
validation procedure by assigning measurements from the same subject to 
the same validation sample. The approach by Kooperberg et al. (1997) can 
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be used for modeling the treatment mechanism, but cannot be extended in a 
straightforward way for model selection in the context of correlated outcomes. 

Given estimates gj^n and Qj^n of the nuisance parameters gj and Qj, we 
can now generate three different types of transformations of the observed 
data. Let Ti^k denote the time at which the A;*'' measurement of the outcome 
Y was obtained for subject i. For each outcome measurement î ,fe(Tj,fe) for 
subject i, we will obtain one transformed observation D^f.. The regression-
based transformation only makes use of the nuisance parameter Qj and is 
given by 

Dik(Ti,k) = Qi.nCl, Ti,k, Wj,i) - Qj,n{0, Ti,k, Wj,i) (11.5) 

The inverse-probability-of-treatment-weighted (IPTW) transformation only 
makes use of the nuisance parameter gj and is given by 

where /(•) is the indicator function that equals one if the condition in paren­

theses is true and zero otherwise. The double robust transformation, finally, 

makes use of both nuisance parameters and is given by 

Dik{Ti,k) = Qj,n{l,Ti,k,Wj,i) - Qj>(0,Ti,fe, Wj-i) + 

(f^^y^Hfnfcm.fe) - Q.>(i,Ti,fe, WjA -
1 ^ ^ (ra(Ta) - Q.n(o, T,„ ^,,)) } (ii.7) 

Since both the regression-based and IPTW transformation of the data only 
rely on one of the two estimated nuisance parameters, variable importance 
estimates based on these transformations will only be reliable if the rele­
vant nuisance parameter is estimated well. The double robust transformation, 
however, relies on both nuisance parameters and has the remarkable property 
that it yields correct estimates of variable importance if either one of these 
two nuisance parameters is estimated well. 

We now obtain three different estimates of the variable importance para­
meter (fj (i) by regressing each of these transformed observations on time t. 
As above, the use of data-adaptive model selection approaches such as the 
D/S/A algorithm for fitting these regressions can help to minimize the re­
liance on assumptions about how variable importance varies as a function of 
time. The same approach can be used to obtain estimates of the variable im­
portance of a covariate Aj conditional on some subset V of the adjustment 
covariates Wj. For example, a researcher may be interested in the impact of a 
given mutation on the time course of viral load conditional on the viral load 
at baseline. Mathematically speaking, this corresponds to the parameter 
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Wj{t, v) = E\E[Y{t) I Aj = 1, Wj] - E[Y{t) \ Aj = 0, Wj] V = v\ (11.8) 

Such parameters are straightforward to estimate once we have created the 
transformed observations described above by simply regressing them on both 
t and V rather than on t alone. 

Plots of the estimated variable importance ^j,n{t) as a function of time 
can now be used to explore how the impact of Aj on Y{t) changes over time. 
Such plots can furthermore be used as inputs for a clustering algorithm to 
identify treatment variables Aj whose impact on Y{t) develops according to a 
similar dynamic over time. Alternatively, we may be interested in testing the 
hypotheses that the importance of treatment variable Aj is zero at some set 
of time points ti,... ,tci, with the goal of identifying treatment variables Aj 
and time points t* for which we have strong evidence against such hypotheses. 
For this purpose, we use the following bootstrap approach to first obtain separ 
rate p-values pj^i,... ,pj^d for the respective hypotheses that !Pj(ii) , . . . , ^j{td) 
equal zero. We draw a large number of samples of size n with replacement 
from the pool of n subjects in our data set to obtain bootstrap data sets that 
contain all outcome measurements Y{t) for the selected subjects. For each 
of these bootstrap samples we now repeat the entire estimation process as 
outlined above to arrive at bootstrap estimates !f'^„(<i),... ,!^jj„(td) of the 
desired variable importance measures. If we have used a computationally in­
volved model selection technique like the D/S/A algorithm to regress Aj on 
Wj, Y{t) on Aj and Wj, or D{t) on t, we may avoid the model selection step 
as part of this bootstrap process and simply refit the regressions according 
to the selected functional form. This approach saves a significant amount of 
time and generally leads to p-values that are only slightly optimistic. 

We can now take the variance of these bootstrap estimates as an estimate 
of the variance of ^j^n{tk) under the null hypothesis that ^j{tk) = 0 and form 
i-statistics by dividing !?'j,n(tfe) by the square root of this estimated variance. 
Under the null hypotheses, these test statistics will be closely approximated 
by a standard normal distribution once we have a reasonable sample size. The 
desired p-value can thus be obtained as the probability that the absolute value 
of a standard normal variate exceeds the absolute value of the observed test 
statistic. Each of these p-values gives an estimate of the proportion of times 
we would reject a true null hypothesis if the experiment and corresponding 
hypothesis test were to be performed over and over again. The p-values are 
formulated for individual hypothesis tests and thus do not take into account 
that we are testing several hypotheses simultaneously. 

A large number of methods exist for obtaining p-values that are in-
terpretable in this context of multiple testing (Westfall and Young, 1993; 
Lehmann and Romano, 2005; Dudoit and van der Laan, 2006). Among the 
most straightforward methods are those that simply transform the raw p-
values obtained from the individual hypothesis tests into a set of adjusted 
p-values. The well-known Bonferroni adjustment, for example, simply multi­
plies each p-value by the number of comparisons that are made (Bland and 
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Altman, 1995). The adjusted p-values obtained in this manner estimate the 
proportion of times we would falsely reject at least one true null hypothesis if 
we repeatedly carried out a test according to which we reject all hypotheses 
with adjusted p-values smaller than some cut-off. Another popular method 
by Benjamini and Hochberg instead produces adjusted p-values that estimate 
the false discovery rate, i.e., the expected proportion of true null hypotheses 
among all hypotheses that are rejected (Benjamini and Hochberg, 1995). 

11.3 Advantages and Disadvantages 

11.3.1 Advantages 

• The methodology described in this chapter starts with a clear definition 
of what is meant by the impact of a treatment variable Aj on the outcome 
process Y{t). With this definition in hand, the corresponding parameter 
can then be estimated separately and directly for each candidate treatment 
variable. In contrast to other approaches, we do not have to derive these 
variable importance estimates from a regression of Y{t) on the complete 
set of treatment variables A\,...,Ap and potential confounders that was 
fitted with the goal of accurately predicting Y{t) rather than with the goal 
of estimating the importance of a particular Aj. 

• The definition of variable importance described here is quite flexible since 
the user can decide which variables are to be included in the adjustment 
covariates Wj. On one extreme, we can estimate unadjusted variable im­
portance by leaving Wj empty. This would allow us to identify variables 
that are useful for predicting Y{t) in our study population, but not neces­
sarily in a new population of subjects. On the other extreme, we may be 
able to adjust for all relevant confounders of the relationship between Aj 
and Y{t), in which case we will obtain estimates of the catisaZ effect oiAj on 
Y{t). In addition, the treatment variables whose impact on Y{t) we would 
like to estimate can be any extractions of the available baseline covariates. 
In particular, they can consist of continuous rather than binary variables 
as in the mutation example considered here. A slightly more complicated 
example of an interesting extraction is given by cross-product terms like 
Ai X A2 or linear combinations of baseline covariates. Furthermore, we 
may be interested in the importance of a multivariate treatment variable 
Aj = {Aj\,Aj2), which would allow us, for example, to study the impact 
of the simultaneous presence of two mutations on virologic response. 

• The targeted estimation of the impact of Aj on Y{t) allows us in a straight­
forward manner to obtain measures of statistical significance such as confi­
dence intervals or p-values. Other methods generally do not provide these 
and thus do not allow us to distinguish between variables whose impor­
tance is genuinely different from zero and those whose importance is in 
fact zero but is estimated to be non-zero due to sampling variation. 
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• The methodology described here aims to be as robust as possible, i.e., it 
aims to rely on as few assumptions as possible. In particular, it avoids the 
assumption of knowing the functional form of the nuisance parameters g 
and Q a priori. Methods that rely on this assumption can yield severely 
biased estimates of variable importance if the functional form is guessed in­
correctly. This is particularly important in the context of modern genomics 
and proteomics applications in which the number of variables that might 
be included in these models is very large, making it virtually impossible 
to guess the correct model. 

• We have described three different transformations of the observed data 
that each give a different estimate of variable importance. This is valu­
able since these three transformations differ in how they rely on the two 
nuisance parameters g and Q so that they can be expected to succeed 
in different situations. In the setting of a clinical trial, for example, the 
treatment mechanism g is generally known or straightforward to estimate 
so that variable importance estimates based on the IPTW transformation 
can be expected to be very reliable. 

• Under certain assumptions the variable importance estimates based on 
the double robust transformation are as precise as possible, meaning, for 
example, that it would be impossible to obtain more narrow confidence 
intervals. Specifically, this is the case if both nuisance parameters are es­
timated reliably and at a fast enough rate (van der Laan, 2006b). 

11.3.2 Disadvantages 

• Data-adaptive model selection techniques such as the D/S/A algorithm 
that search through a large space of candidate functional forms are com­
putationally intensive and do not scale well with a growing number of 
candidate variables to choose from. Hence, it may be necessary to first re­
duce the number of these candidate variables by, for example, eliminating 
those that are not associated with Y{t) in univariate regression models. 
Such variables are unlikely to confound the relationship between the treat­
ment variables and Y{t) and also would add little to the precision with 
which we could estimate variable importance measures. Alternatively, we 
may resort to a less exhaustive model selection algorithm such as the one 
introduced by Kooperberg et al. (1997), at least for the estimation of g 
where repeated-measures regression is not needed. 

• The computational burden of the D/S/A algorithms often makes it difficult 
to carry out a completely honest bootstrap simulation to estimate the 
variance of our point estimates. This would require that we repeat the data-
adaptive model selection procedure for each bootstrap sample. Due to time 
constraints, however, we are often forced to treat the selected functional 
forms for g and Q as given for the purposes of the bootstrap by simply 
refitting the selected models for each bootstrap sample. This approach 
ignores the extra variability of our estimates that is introduced by the 
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model selection procedure and thus tends to underestimate their variance 
somewhat. The p-values obtained in this way are still useful, however, 
for the purpose of ranking the treatment variables in order of statistical 
significance. In practice, the variance estimates obtained by ignoring the 
data-adaptive model selection process are also often not too different from 
those obtained from a completely honest bootstrap. 
The methodology described here is relatively new and thus has not yet 
been implemented in the form of a publicly available software package. 
As described in more detail below, however, the individual steps that are 
required are fairly straightforward to carry out in a modern statistical 
computing environment like R (R Development Core Team, 2005). 

11.4 Caveats and Pitfalls 

The IPTW transformation of the observed data relies crucially on an estimate 
of the probability that a given subject would have received his or her observed 
treatment. It weights each observation by the inverse of this probability, thus 
downweighting observations that were likely to have received their observed 
treatment and upweighting those that were instead unlikely to have been 
observed with the treatment we recorded for them. This essentially creates 
a new sample in which treatment assignment is independent of the baseline 
covariates, making it straightforward to estimate the impact of treatment Aj 
on the outcome, controlling for Wj, by simply comparing the two groups with 
Aj = 0 and Aj = 1. This approach breaks down if for certain values of Wj we 
never observe one of the two treatment values Aj = 0 or Aj = 1. In that case 
we cannot use weighting to create a new sample in which Aj is independent of 
Wj since the new sample will still not contain any observations with that value 
of Wj and the missing value of Aj. Variable importance estimates based on the 
IPTW transformation thus also rely on the so-called experimental treatment 
assignment (ETA) assumption which states that there are no values of Wj for 
which treatment is assigned in a deterministic fashion. In fact, IPTW-based 
estimates also perform poorly if the ETA assumption is practically violated, 
i.e., if for some values of Wj, treatment is assigned in a nearly deterministic 
fashion (Neugebauer and van der Laan, 2005). 

We can examine the extent to which the ETA assumption is violated in 
a number of ad hoc ways. We may, for example, look at the proportion of 
observations for which the probability of having received their observed treat­
ment is very close to zero or one, say less than 0.05 or greater than 0.95. 
Such observations would hint at values of Wj for which there is very little 
experimentation with respect to treatment assignment. To look more closely 
at the relationship between Wj and these fitted probabilities we may also plot 
the probabilities against the linear combination of Wj that was chosen for 
the treatment model, or examine observed counts of assigned treatments Aj 
within deciles of that linear combination. 
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Current research in this area is investigating variable importance measures 
that are based on slightly different ideal experiments than those described 
above (van der Laan, 2006a). Instead of considering hypothetical scenarios in 
which each member of the population is assigned a particular treatment like 
Aj = 1, these efforts focus on so-called dynamic treatment rules that assign 
Aj = 1 to those members for which this assignment is sensible but Aj = 0 
to the remaining ones. If for certain treatment histories, for example, it is 
impossible or very unlikely to observe a particular mutation in the virus of a 
patient, such rules would never assign such a patient to have this mutation. 
Treatment rules that are realistic in this sense then no longer rely on the ETA 
assumption. 

The double robust and regression-based transformations rely on an es­
timate of the regression E[Y{t) \ Aj,Wj]. As mentioned above, we would 
like to avoid the assumption that the functional form for the dependence of 
Y{t) on Aj and Wj is known a priori by using data-adaptive model selection 
techniques. The models selected in this way, however, often contain neither 
the treatment variable Aj nor any interaction terms between Aj and time, 
especially in genomics or proteomics applications with a large number of can­
didate explanatory variables to choose from. Such models are unsatisfactory 
since they do not allow us to examine the impact of Aj on Y{t) and the change 
of this impact over time. If we use the regression-based transformation, such 
models will in fact directly translate into an estimate of zero variable impor­
tance for Aj. 

To explicitly acknowledge that we are interested in estimating the effect of 
Aj on Y{t) over time, we might hence fit two separate data-adaptive regression 
models, one among subjects with Aj = 0 and one among subjects with Aj = 1. 
This is problematic, however, for the following reason. Suppose the adjustment 
variables Wj contain an important confounder that is very strongly correlated 
with Aj and that has an independent effect on Y{t). Then clearly this variable 
should be included in a model predicting Y{t) from Aj and Wj to adequately 
control for confounding by Wj. Within groups defined by Aj, this vaxiable 
will show very little variation, however, and thus will contribute little to the 
accurate prediction of Y{t). Model selection procedures are thus unlikely to 
include this variable in the chosen regression model. 

We therefore recommend the following two-step approach: First, fit a datar 
adaptive regression model for the expectation of Y{t) given Wj alone, exclud­
ing Aj from the set of candidate explanatory variables. Then fit a second 
data-adaptive regression model that is forced to contain all the terms of the 
first model along with the terms Aj and Aj x t. The first step guarantees that 
no important confounders are omitted due to strong correlations with Aj. 
The second step then allows the model selection algorithm to add interaction 
terms between Aj, Aj x t, and the baseline covariates selected for the first 
model. 

In our description of the data structure we have assumed that all subjects 
are followed up for the entire duration of the study. This assumption is often 
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not met, with subjects dropping out of the study for various reasons such as 
moving away or being switched to a new drug regimen due to poor response to 
the current regimen. The methodology we have described so far will still give 
reliable estimates of variable importance if such loss to follow-up is not related 
to what a subject's future outcomes would have been in the two hypothetical 
scenarios in which each subject is either given the treatment or not. This 
is, for example, reasonable in the case of subjects moving away since the 
decision to move away is probably not influenced by what the future outcomes 
Y{t) might have been. If patients are switched to different drugs due to poor 
response, however, we will systematically be missing patients that would have 
had a poor outcome, had it been observed. In the presence of such informative 
censoring, the estimation procedure described above provides estimates of 
the importance of Aj among the non-representative subgroup for whom the 
outcome was measured, which generally differs from its importance in the 
entire study population. 

This problem can be addressed by weighting each observation by the in­
verse of the probability that the subject was not censored by the time the 
measurement was made. Such inverse-probability-of-censoring weights work 
analogously to those used as part of the IPTW transformation in that they 
artificially create a sample in which censoring is independent of any con-
founders we would like to adjust for. In practice the needed probabilities can 
be estimated by modeling the probability of being censored at each time point 
t given Aj and Wj, using, for example, a Cox proportional hazards model if 
we treat time as a continuous variable or a pooled logistic regression model if 
outcome measurements were made at pre-determined intervals for each sub­
ject. 

An analogous approach can also be taken if the treatment variable Aj or 
some of the outcome measurements Y{t) are missing for some of the subjects. 
This could, for example, be the case if some patients never had their genotype 
measured. As before, we need to address this type of missingness if it is related 
to what a subject's future outcomes would have been in the two hypothetical 
scenarios in which each subject is either given the treatment or not. In this 
case we would use a logistic regression model to estimate the probability that 
the variable of interest is recorded for a particular subject given what we have 
observed so far on this person. The observations with available measurements 
are then weighted by the inverse of these estimated probabilities. 

11.5 Alternatives 

Many applications in statistics and biology have been concerned with estimat­
ing the impact of a number of treatment variables Aj on an outcome process 
Y{t). Several methods are commonly used for this purpose. Researchers who 
wish to estimate unadjusted variable importance frequently use generalized 
estimating equations to regress Y{t) on Aj according to simple models such 
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as 
E[Y{t) I Aj] = /3o + 0iAj + /32i + /SsAj x t (11.9) 

The null hypothesis of Aj having no impact on Y{t) is then equivalent to the 
hypothesis that both /3i and Ps are equal to zero, which is straightforward to 
evaluate using the standard error estimates provided by generalized estimating 
equations. Conclusions drawn in this way, however, rely on the assumption 
that the expectation of Y{t) given Aj can in fact be written according to such 
a simple functional form. If this is not the case, variable importance estimates 
may be severely biased. This problem becomes even more pressing once we 
wish to adjust for a number of baseline covariates Wj. If the number of such 
baseline covariates is large and we include each of them as a simple main-effects 
term in the model, we will be virtually guaranteed to have mis-specified the 
functional form according to which the expectation of Y{t) depends on Aj 
and Wj. 

The bias incurred due to such model mis-specification has motivated the 
use of data-adaptive model selection techniques like the D/S/A algorithm 
or classification and regression trees (Breiman et al., 1984). In general, re­
searchers include all treatment variables of interest along with the set of po­
tential confounders in the pool of candidate explanatory variables from which 
the model selection algorithm is then allowed to select a subset of variables for 
inclusion in the final regression model. In spite of considering a large number 
of quite complex candidate models, such data-adaptive algorithms frequently 
end up selecting a model that contains only a relatively small number of co­
variates. Such models are disappointing for the purpose of estimating variable 
importance since they do not give us an explicit estimate of the importance of 
those covariates that are not selected by the algorithm. We can only conclude 
that these covariates have no impact on Y{t) at all. 

This issue is commonly addressed through a resampling-based technique 
known as bootstrap-aggregating or bagging (Breiman, 1996) that is based 
on re-fitting the data-adaptive regression models on a large number of boot­
strap samples drawn from the original data set and then averaging out the 
coefficient estimates for each variable across all these regression fits. Since 
different bootstrap samples typically result in the selection of a different set 
of variables, this approach allows us to obtain non-zero variable importance 
estimates for a much larger number of variables. 

Neither variable importance estimates based on a single data-adaptive re­
gression fit nor those based on bagging lend themselves to an assessment of 
their statistical significance. This major drawback can be ascribed to the fact 
that these methods are not designed for the specific purpose of estimating 
the impact of a number of treatment variables Aj on Y{t) but rather for the 
purpose of accurately predicting Y{t). Measures of variable importance are 
only obtained in a secondary step, as a derivative of the estimated regression 
fit. This is in stark contrast to the methods described in this chapter that 
are targeted directly at estimating the importance of each separate treatment 
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variable Aj. It is precisely this targeted nature of the variable importance 
estimates described here that allows us to assess their statistical significance 
in such a straightforward way. This observation underscores the need to sep­
arate the statistical problem of accurately predicting the outcome Y{t) from 
that of assessing the importance of each of the treatment variables Aj. In 
many instances we will be interested in the first problem, in which case data-
adaptive regression fits obtained, for example, by classification and regression 
trees represent some of the most powerful tools currently available. If we are 
interested in estimating variable importance, however, the targeted methods 
described in this chapter offer many advantages that make them the approach 
of choice. 

11.6 Case Study: HIV Drug Resistance Mutations 

In this section we apply the methodology described above to the task of iden­
tifying HIV mutations that modulate how well the virus can replicate in the 
presence of a particular combination of antiretroviral drugs, and thus how 
well a patient responds to that drug regimen. A considerable number of such 
drugs are available for treating patients infected with HIV, with the main 
mechanistic classes consisting of protease inhibitors (Pis), nucleotide and nu­
cleoside reverse transcriptase inhibitors (NRTIs), and nonnucleoside reverse 
transcriptase inhibitors (NNRTIs). While a patient is being treated with a 
particular combination of these drugs, the virus frequently acquires a number 
of mutations that reduce its susceptibility to that drug regimen, requiring the 
patient to be switched to a new regimen that the virus remains sensitive to. 
When faced with this situation, clinicians frequently genotype the virus to 
ascertain the presence or absence of a large number of mutations that are 
thought to contribute to the resistance to various drugs (Shafer, 2002). This 
practice motivates us here to identify in a systematic way mutations that have 
a strong impact on a patient's virologic response to a new drug treatment and 
that could thus guide a clinician in designing a salvage therapy regimen on 
the basis of genotypic test results. 

The effect of viral mutations on virologic response to therapy can be seri­
ously confounded by a patient's treatment history. Past treatment regimens 
exert a strong selection pressure on viral evolution, thus afi'ecting the prob­
ability that a given mutation is observed. In addition, treatment history can 
have an independent impact on virologic response by resulting in archived, or 
latent, virus carrying unobserved mutations that affect response to subsequent 
treatment regimens. As a result, an unadjusted association observed between 
a given mutation and treatment response may in fact be due to the pres­
ence of other mutations, both observed and unobserved. Treatment strategies 
vary across populations and evolve over time, potentially resulting in distinct 
mutation distributions. Thus, control of confounding due to treatment his­
tory is needed to ensure that the estimated importance of a given mutation 
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can be more readily generalized to populations other than the original study 
population. 

In order to estimate the causal effect of a given mutation of interest, we 
would ideally also adjust for the presence of additional mutations. As with 
treatment history, this would help to ensure that the association we observe 
between a given mutation and the outcome is indeed causal, rather than due 
to the effect of other mutations that occur frequently with the mutation of 
interest. Estimation of such a causal effect is desirable not only from the point 
of view of mechanistic understanding, but also because it is not dependent on 
population characteristics such as past treatment patterns that would limit 
the extent to which it might translate to other HIV-infected populations. 

Mutations conferring resistance to drugs of a class different from that tar­
geted by the mutation of interest, thus affecting a distinct viral enzyme, can 
indeed be controlled for by simply including them in Wj. However, mutations 
conferring resistance to the same drug class, thus affecting the same viral en­
zyme, are often correlated to the extent that it is not possible to distinguish 
which mutation is causally responsible for a given effect. This is due to the 
fact that, while correlation between mutations affecting distinct viral enzymes 
occurs primarily as a result of past treatment patterns, correlation between 
mutations in the same enzyme often occurs as part of an evolutionary pathway 
towards resistance to drugs targeting that enzyme. Hence, certain mutations 
are essentially never observed in the absence of another mutation, malcing 
it next to impossible to disentangle the individual impacts of these two mu­
tations on virologic response. The statistical consequence of this correlation 
or coUinearity between individual mutations lies in considerable instability of 
the variable importance estimates we might obtain if we included the other 
mutations in the same viral enzyme in the group of adjustment variables Wj. 
Attempting to do so would also cause a severe violation of the ETA assump­
tion since the presence of one mutation might virtually guarantee the presence 
of the mutation whose importance we are trying to estimate. These consid­
erations suggest that we should not adjust our variable importance estimates 
for the other mutations in the same viral enzyme. 

The data set we use is derived from the Stanford HIV drug resistance data­
base, a patient sample drawn from 16 Kaiser Permanente Northern California 
clinics for which longitudinal data on HIV reverse transcriptase and protease 
sequences, antiretroviral treatment, and viral load were recorded. Prom this 
database, we identified episodes during which a patient who has failed a previ­
ous drug regimen is followed under a new regimen in which at least one of the 
drugs has been changed. We require that the patient has a baseline viral load 
measurement available that was taken no more than 24 weeks before initiation 
of the new treatment. Por such records we obtained all viral load measure­
ments that were taJjen in the 24 weeks following the treatment change. After 
about 24 weeks, clinicians may switch patients to yet another drug regimen 
if they do not appear to be responding well to the current salvage therapy 
regimen. By restricting ourselves to viral load measurements taken before this 
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time point, we avoid having to adjust for the bias introduced into our variable 
importance estimates by this informative loss to follow-up. 

We would like to identify mutations that modulate virologic response to 
drug regimens that contain the two NRTI drugs lamivudine and stavudine and 
thus limit ourselves to patients whose salvage therapy regimen contains these 
drugs. To isolate mutations specific to these two drugs, we exclude patients 
who are also taking other NRTI drugs. Since mutations thought to confer 
resistance to NRTI drugs are unlikely to affect susceptibility to PI or NNRTI 
drugs, we make no requirements as to which drugs of these two classes might 
be included in the patient's regimen. However, we do control for these covari-
ates in our analyses, as the presence of an NRTI mutation can be associated 
with the potency of the non-NRTI drugs in the regimen, which in turn can 
independently affect virologic response. We exclude patients that have never 
taken an NRTI drug before since they are virtually guaranteed not to have 
any of the mutations thought to confer resistance to NRTI drugs. Including 
this group of patients in our analysis would thus cause a severe violation of 
the ETA assumption. Based on these inclusion criteria, our data set contains 
855 viral load measurements from 288 individual treatment change episodes. 
These measurements were made on 278 individual patients, with a small num­
ber of them contributing more than one treatment change episode. 

We are interested in assessing the impact on virologic response to lamivu­
dine and stavudine for any mutation in the HIV reverse transcriptase gene 
that has previously been linked to resistance to NRTI drugs. Mutations are 
coded as Aj = 1 if any of a number of amino acid substitutions potentially 
related to drug resistance is detected at the given position of the viral enzyme. 
The mutation 44AD, for example, is considered to be present if either alanine 
or aspaxtic acid are found at position 44 of the reverse transcriptase enzyme. 
For the sake of statistical precision, we only consider mutations that occur at 
least 15 times among the treatment change episodes we have identified, giving 
us a total of 14 mutations, whose impact on virologic response we would like 
to estimate. 

We would like to define the outcome Y{t) as the change in log viral load at 
time t as compared to the baseline measurement made before the treatment 
change. In our data set, viral loads below lO^'^ are not detectable so that 
viral loads below this threshold are simply recorded as below the limit of 
detection. Since patients whose viral load becomes undetectable during the 
course of treatment are considered to respond as well as possible to the new 
drug regimen, we impute the change in log viral load for such patients by 
the maximal change in log viral load observed across the entire data set, 
—4.2. We note that this outcome would not be suitable if our goal was to 
estimate or predict the true change in log viral load resulting from a mutation. 
However, here, our goal is to estimate the clinical importance of each mutation 
considered. The outcome definition used thus incorporates the two types of 
viral response considered a clinical success: 1) A large decrease in viral load, 
or 2) a final undetectable viral load. 
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The following variables are used to capture a patient's treatment history: 
Duration of antiretroviral therapy; number of past regimens; history of past 
PI, NRTI, and NNRTI drug use; number of PI, NRTI, and NNRTI drugs failed 
in the past; and history of mono/dual therapy. We characterize the current 
drug regimen through the total number of drugs as well as the number of PI 
and NNRTI drugs included in that regimen. Furthermore, we have available 
information about the duration between baseline viral load measurement, se­
quencing of the virus, and initiation of the salvage therapy regimen. While 
we do not adjust each of our variable importance estimates for the presence 
or absence of the 13 other mutations thought to confer resistance to NRTI 
drugs, we do adjust them for the presence or absence of a number of muta­
tions that have been linked to resistance to PI and NNRTI drugs. Lastly, we 
also include Stanford susceptibility scores to the drugs in these two classes 
that are calculated on the basis of these mutations. This leaves us with a to­
tal of 80 baseline covariates that we consider as potential confounders of the 
relationship between mutations and change in viral load. To reduce the com­
putational burden on the D/S/A algorithm, we reduce the number of baseline 
covariates to include in Wj by univariate repeated-measures regression oiY{t) 
on each candidate confounder, only keeping those covariates with adjusted p-
values smaller than 0.05. After this initial dimension reduction, the remaining 
16 variables considered include the following: The number of past regimens; 
the number of PI drugs failed in the past; the total number of drugs as well 
as the number of NNRTI drugs in the new regimen; susceptibility scores for 
the two NNRTI drugs delavirdine and efavirenz as well as the two PI drugs 
amprenavir and lopinavir; and four mutations each related to resistance to PI 
and NNRTI drugs. 

We model the treatment mechanisms using the D/S/A algorithm, allowing 
the algorithm to search through models of up to ten terms, possibly including 
products comprised of two candidate confounders. The variables most fre­
quently selected for these treatment models include the number of PI drugs 
failed in the past, the two mutations 90M and lOFIRV that are related to 
resistance to PI drugs, as well as susceptibility scores for efavirenz and am­
prenavir. Judging by the percentage of fitted probabilities smaller than 0.05 
or greater than 0.95, the majority of mutations appear to satisfy the ETA as­
sumption, with most of these percentages being no greater than 5%. The three 
notable exceptions to this trend are given by the mutations 75AIMTS, 74IV, 
and 44AD for which 73%, 48%, and 38%, respectively, of all fitted treatment 
probabilities are smaller than 0.05 or greater than 0.95. The IPTW-based vari­
able importance estimates for these three mutations may thus be unreliable. 

To estimate the expectation of Y{t) given Wj and Aj, we first let the 
D/S/A algorithm choose an appropriate functional form for predicting Y{t) 
from Wj. The selected fit includes time t; the susceptibility score for lopinavir; 
the number of PI drugs failed in the past; the total number of drugs as well 
as the number of NNRTI drugs in the current regimen; and the mutations 
lOFIRV, 84AV, and 90M. As described above, we would now like to fit a 
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second data-adaptive regression model that is forced to contain all of these 
terms along with Aj and Aj x t. In this case, however, we can in fact omit the 
term Aj based on the following consideration: For 50% of all subjects, baseline 
viral load was measured within five days, and for 80% of all subjects, it was 
measured within four weeks of initiation of the new regimen, suggesting that 
Y{0), the change in log viral load between treatment change and the baseline 
measurements, is close to zero for the majority of patients. This in turn implies 
that all variable importance measures should be close to zero at t = 0, which 
makes the term Aj unnecessary. 

We described above how we can obtain estimates of the variable impor­
tance of each Aj at a chosen set of time points t i , . . . , i^. This will result in the 
simultaneous test oi p x d hypotheses of the form ^j{tk) = 0, where p is the 
number of treatment variables we are considering. In a first analysis aimed at 
identifying important explanatory variables for Y{t) rather than examining 
how their impact on Y{t) changes over time, however, it is often useful to ob­
tain a single summary measure for the variable importance of each treatment 
variable. This reduces the number of simultaneous hypothesis tests that have 
to be performed and thus increases the chance of obtaining statistically sig­
nificant results. In the present case, we can again make use of the assumption 
that variable importance measures at time t = 0 should be close to zero by 
regressing the transformed observations Dl j . on time according to the simple 
model 

E[D^{T)]=l3jT (11.10) 

that does not include an intercept term. This functional form is likely to be 
too simplistic to fit the actual time course of variable importance very well, 
but we view it more as a means to obtain an interesting summary measure 
of this time course rather than as an accurate estimate of the time course 
itself. In particular, we can expect to find a positive coefficient /3j for those 
mutations that all in all lead to an increase in viral load and a corresponding 
negative coefficient for those mutations that all in all lead to a decrease in 
viral load. 

As described above, we obtain unadjusted p-values for the hypotheses 
/3j = 0 based on a bootstrap estimate of the variance of the estimated coeffi­
cient Pj. These p-values are adjusted using the Benjamini-Hochberg method 
for controlling the false discovery rate. Table 11.1 summarizes the estimated 
variable importance of each mutation 24 weeks after treatment change corre­
sponding to the estimate obtained for (3j, along with adjusted p-values for the 
hypothesis that this variable importance is equal to zero. We present estimates 
based on each of the three different transformations of the data. The muta­
tions are ranked in order of statistical significance according to the estimates 
based on the double robust transformation. 

All three estimators identify the mutation 184IV as having the most signifi­
cant impact on virologic response to treatment with lamivudine and stavudine. 
This mutation has in fact been shown to be responsible for high-level resis-
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Table 11.1. Variable importance estimates based on the double robust (DR), 
inverse-probability-of-treatment-weighted (IPTW), and regression-based transfor­
mation. Estimates give the impact of a mutation on the change in log viral load 
after 24 weeks. Mutations marked with * show a significant violation of the ETA 
assumption. 

Mutation 
184IV 
75AIMTS* 
41L 
62V 
1181 
215FY 
67EGN 
69DN 
74IV* 
70RGE 
210W 
219ENQR 
44AD* 
215CDEIVS 

DR 
0.8307 
0.5604 
0.3362 
0.6135 
0.3050 
0.2421 
0.1895 
0.1811 
0.2295 
0.0931 
0.0800 

- 0.0732 
0.0417 

- 0.0041 

p-value 
0.0025 
0.2611 
0.4187 
0.4187 
0.4658 
0.5864 
0.6566 
0.8015 
0.8015 
0.8783 
0.8783 
0.8783 
0.9351 
0.9920 

IPTW 
0.7200 
0.5772 
0.4821 
0.9594 
0.4605 
0.3877 
0.2617 
0.3349 
0.1466 
0.1800 
0.0929 

- 0.2537 
0.4866 
0.2437 

p-value 
0.0364 
0.4638 
0.1587 
0.1587 
0.2173 
0.2426 
0.4638 
0.5810 
0.6682 
0.6221 
0.6781 
0.5810 
0.1587 
0.5810 

Regression 
0.6739 
0.6255 
0.3017 
0.5534 
0.2631 
0.2151 
0.2378 
0.1692 
0.3208 
0.1910 
0.2114 

- 0.0066 
0.1502 
0.1950 

p-value 
0.0004 
0.0917 
0.1111 
0.3367 
0.3367 
0.3367 
0.3367 
0.6081 
0.4507 
0.4932 
0.3367 
0.9766 
0.6416 
0.6967 

tance to lamivudine based on extensive laboratory and clinical data (Boucher 
et al., 1993; Tisdale et al., 1993; Schurman et al., 1995). Analyses linking HIV 
mutations directly to in vitro drug susceptibility have furthermore identified 
this mutation as by far the most important mutation conferring resistance to 
lamivudine (Rhee et al., 2006). 

The second most important mutation identified by the double robust and 
regression-based estimates is given by 75AIMTS. This mutation is ranked 
much lower based on the IPTW transformation, which as mentioned above, 
however, can be expected to give unreliable estimates in this case due to a vi­
olation of the ETA assumption. 75AIMTS has been shown to confer moderate 
resistance to the second drug in the regimen we consider, stavudine (Lacey 
and Larder, 1994). The analyses by Rhee et al. furthermore suggest that this 
mutation may also be related to drug resistance to lamivudine. The variable 
importance estimates for the remaining mutations do not approach statistical 
significance. 

Rhee et al. identify 184IV, 69ins, 65R, and 75T as the most important mu­
tations conferring resistance to lamivudine and 69ins, 151M, 77L, 65R, and 
75MT as the most important mutations conferring resistance to stavudine. 
With the exception of 184IV and 75MT, these mutations are not part of our 
analysis since they are present in fewer than 15 treatment change episodes. 
Our results that identify 184IV and 75AIMTS as the only important drug re­
sistance mutations for this combination of drugs are hence in excellent agree­
ment with these analyses based on in vitro susceptibility tests. 
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Once important explanatory variables for Y{t) have been identified, it may 
be of interest to examine in more detail how their impact on Y{t) changes over 
time. For this purpose, we can estimate the dependence of variable importance 
on time using data-adaptive or smoothing methods that are better suited to 
give accurate estimates of this time course than the simple model given in 
Equation 11.10. Figure 11.1 shows estimates of the time course for 184IV and 
75AIMTS based on the loess smoothing technique (Cleveland, 1979). These 
plots show that 184IV has a sizeable impact on virologic response within a few 
weeks of treatment initiation, with the effect stabilizing after about ten weeks. 
The impact of 75AIMTS on virologic response develops somewhat more slowly 
over time. 

184IV 75AIMTS 

Weeks Weeks 

Fig. 11.1. Loess estimates of variable importance over time for the mutations 184IV 
and 75AIMTS with 95% pointwise confidence intervals. 

11.7 Lessons Le£trned 

This data analysis illustrates the importance of choosing an appropriate set of 
confounders Wj to adjust for when estimating the importance of each treat­
ment variable Aj. In order for estimates to be more likely to translate to 
populations other than the one the sample was drawn from, one will generally 
want to adjust for as many of the known confounders of the relationship be­
tween Aj and Y{t) as possible. If some of these confounders are coUinear with 
Aj, this will cause the variable importance measures to become very hard to 
estimate from the data at hand, in which case we may be well-advised not to 
adjust for these coUinear confounders. 

The analysis further demonstrates that it is often preferable to obtain low-
dimensional summary measures of variable importance time courses for the 
initial purpose of identifying important explanatory variables for Y{t). At this 
stage, efforts to estimate variable importance measures at a chosen set of time 
points, for example, may unnecessarily increase the number of simultaneous 
hypothesis tests we have to perform and thus lower the chance of obtaining 



246 Oliver Bembom, Maya L. Petersen, and Mark J. van der Laan 

significant results. Once a subset of important explanatory variables has been 
identified, we may then investigate in more detail how their impact on Y{t) 
changes over time by using dataradaptive or smoothing methods that make 
fewer assumptions about the structure of this relationship. 

The results obtained here also illustrate the importance of assessing the 
validity of the ETA assumption if estimates of variable importance are based 
on the IPTW transformation of the data. Seventy-three percent of all fitted 
treatment probabilities for the mutation 75AIMTS, for example, are either 
smaller than 0.05 or greater than 0.95, showing that for a majority of val­
ues of Wj it is essentially pre-determined whether a patient will have this 
mutation or not. In the absence of sufficient variability in the assignment of 
treatment for all values of Wj, variable importance estimates based on the 
IPTW transformation become very unreliable. In this case, the IPTW esti­
mates rank 75AIMTS as only the seventh most important mutation conferring 
resistance to lamivudine and stavudine, while estimates based on the double 
robust and regression-based transformation identify it as the second most im­
portant drug resistance mutation, a ranking more likely to be correct given 
the current state of knowledge. 

11.8 List of Tools and Resources 

While the methodology described in this chapter has not yet been imple­
mented in the form of a publicly available software package, the individual 
steps required as part of the analysis are fairly straightforward to carry out 
in a modern statistical computing environment like R (R Development Core 
Team, 2005). Within this environment, repeated-measures regression models 
based on generalized estimating equations can be fit using the geeO function 
found in the gee package. A function call of the form 

gee(Y~X,id=ID,corstr='exchangeable') 

is used to regress outcome measurements Y, made on individual subjects iden­
tified by the ID variable, on a covariate X, assuming an exchangeable cor­
relation structure among the measured outcomes. The D/S/A algorithm is 
implemented in the DSA package. The function call 

DSA(X,Y,binind=l,IDlearn=ID,maxsize=10,maxorderint=2, 
maxsumofpow=2) 

can be used to data-adaptively regress the binary outcome measurements Y, 
made on individual subjects identified by the ID variable, on a collection of 
candidate explanatory variables contained in the matrix X. The algorithm will 
search through models that contain up to 10 terms, including second-order 
interactions. The sum of powers of the variables contained in any one term can­
not exceed two. The po lsp l ine package implements the approach by Kooper-
berg et al. (1997), and offers the po lyc la s sO and polymarsO functions for 
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data-adaptive regression of categorical and continuous outcomes, respectively, 
on a collection of candidate explanatory variables. A simple function call of 
the form 

polyclass(Y,X) 

is used to regress a categorical outcome Y on a collection of candidate ex­
planatory variables contained in the matrix X. Note that these two functions 
are not suitable for modeling correlated outcomes so that they should only 
be used for fitting the treatment mechanism. The mul t tes t package offers 
tools for obtaining valid p-values and confidence intervals in the context of 
simultaneous hypothesis tests. The Benjamini-Hochberg method for control 
of the false discovery rate can be carried out by a function call like 

mt.rawp2adjp(rawp,proc=("BH")) 

where the vector rawp contains the unadjusted p-values. 
The packages gee, po lsp l ine , and mul t tes t are available on the R Web 

site h t tp : / /www.r -pro jec t .o rg . The DSA package will soon be posted on 
that Web site as well and can be accessed in the meantime at 
h t tp : / /www.Sta t .berkeley .edu/^ laan/Sof tware/ . 

11.9 Conclusions 

Given a list of 14 mutations thought to confer resistance to various NRTI 
drugs, the data analysis we describe here successfully identifies the muta­
tion 184IV as most useful for predicting virologic response to lamivudine and 
stavudine. Extensive laboratory and clinical data have previously established 
184IV as the most important mutation conferring resistance to lamivudine. 
The other mutation identified here, 75AIMTS, has been linked to moderate 
resistance to both lamivudine and stavudine. These results are also in excel­
lent agreement with recent analyses of in vitro susceptibility tests and thus 
illustrate the potential for the variable importance methodology described in 
this chapter to identify important explanatory variables for a time-varying 
outcome like viral load. 
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12.1 Introduction 

With the genome era, biological research has moved from the study of indi­
vidual genes or proteins to entire biological systems. New high-throughput 
technologies in biology and medicine (DeRisi et al., 1997; Lander et al., 2001; 
Phizicky et al., 2003) have led to an explosion in the amount of data and a 
paradigm shift in biological investigation, such that the bottleneck in research 
is shifting from data generation to data analysis (Sherlock, 2000). Microarrays 
and high-throughput protein interaction screens, for instance, often come up 
with a considerable number of genes whose relevance, both in general and in 
the studied context, has to be confirmed through manual analysis by experts. 
These genome-scale experiments confront experimenters with genes or gene 
products that they might never have heard of. 

To make sense of this overwhelming amount of novel data, biologists de­
pend on quick access to previously gathered information on genes, proteins 
and their interactions in the scientific literature. The sheer number of bio­
medical publications, however, reaches dimensions that make it difficult to 
cope with in practice. Every year, half a million new biomedical articles are 
published, more than thousand a day (NLM, 2006). All in all, results, insights 
and hypotheses of the past 50 years can be found dispersed over about 15 
million scientific papers. Thus, it is impossible for biologists to keep up-to-
date - even on a specific subject. In practice this means that the analysis of 
large-scale data involves jumping back and forth between experimental data 
and free text searches in PubMed. With these needs arising, methods for min­
ing the biomedical literature are gaining importance in the every day work of 
biologists. 

12.1.1 Text Mining 

Text mining refers generally to the computerized process of extracting rele­
vant and non-trivial information and knowledge from free text. The methods 
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Fig. 12.1. Text mining in genomics and proteomics. Biomedical text is tagged with 
bio-entities (e.g., genes, MeSH and GO terms) in a high-throughput fashion and 
appHed to the analysis of genome-wide experimental data, (a) Look-up of individual 
proteins and their relationships in the literature (iHOP (Hoffmann and Valencia, 
2005)); (b) Functional coherence analysis of gene groups (Raychaudhuri et al., 2003); 
(c) Integration of literature derived networks with experimental data (PubGene 
(Jensen et al., 2006), STRING (von Mering et al., 2005)). 

used in text mining are based on information retrieval, data mining, machine 
learning, statistics and computational linguistics. In biology, information re­
trieval tools, like the PubMed online repository for biomedical articles, have 
long been used on a daily basis. The application of automatic information 
extraction methods to biology is, however, a rather recent development, mo­
tivated by the growing interest in systems biology. The experience of the past 
decade shows that automatic fact extraction is more challenging in molecular 
biology than in other domains, like economy or newswire. Only very recently, 
automatic extraction methods are achieving sufficient accuracy to prove use­
ful in biology (Jensen et al., 2006). Important advances have been made in 
the detection of biomedical entities within scientific text (Fukuda et al., 1998; 
Proux et al., 1998; Collier et al., 2000; Krauthammer et al., 2000; Friedman 
et al., 2001; Marcotte et al., 2001; Pranzen et al., 2002; Hirschman et al., 
2002; Yu et al., 2002; Hanisch et al., 2003; Morgan et al., 2003; Tsuruoka and 
Tsujii, 2003; Mika and Rost, 2004) and novel ideas for the analysis of large 
scale experiments have been introduced (Tanabe et al., 1999; Blaschke et al., 
2001; Blaschke and Valencia, 2001; Friedman et al., 2001; Masys et al., 2001; 
Park et al., 2001; Raychaudhuri et al., 2003; Glenisson et al., 2004). 
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12.1.2 Interactive Literature Exploration 

Some of the major difficulties of biomedical literature mining are related to en­
tity recognition and the complexity of sentences in the biomedical domain. For 
instance, short names and acronyms, which are identical to gene and protein 
synonyms, but have other meanings (e.g., diseases, methods or therapies) are 
very common in the biomedical literature. Obviously, if a gene is erroneously 
identified in the first place, all subsequently extracted facts will be irrelevant 
or misleading. This is extremely important for the practical relevance of text 
mining tools, since even small errors can be frustrating, and biologists lose 
their confidence in automatic extraction methods. 

Since many of the important problems have not been solved yet, but de­
mand from the biological domain is steadily increasing, many recent text 
mining systems step back from the goal of purely automatic information ex­
traction and include the expert user interactively in the analysis (Jenssen 
et al., 2001; Hoffmann and Valencia, 2004; Glenisson et al., 2004). The iHOP 
server (Information Hyperlinked over Proteins), for example, provides genes 
and proteins as hyperlinks between sentences and abstracts (Hoffmann and 
Valencia, 2004) and thus converts the information in PubMed into one navigar 
ble network. This way, researchers can move between sentences taken directly 
from their source abstracts and thus retain control over the reliability of the 
information they obtain (see Figure 12.1). 

In this chapter, I will introduce the basic concepts, caveats and possibilities 
of current text mining approaches in biology and medicine. I will explore 
how state of the art text mining methods are used to facilitate the analysis 
of large scale experimental data. I will discuss complementary methods to 
analyze expression clusters and the annotation of protein interaction networks. 
Finally, I will focus on the potential of hyperlinked and navigable text clusters 
for information retrieval, using the genome-wide study of human chromosome 
aberrations as a test case. 

12.2 Basic Concepts 

Many efforts in text mining are related to the fundamental problem of au­
tomatically understanding natural language and biology serves merely as a 
demanding challenge for novel methods. Here, I will introduce the basic con­
cepts and terminology of text mining, but with an eye on their relevance to 
biological problems. 

12.2.1 Information Retrieval 

Genome-scale experiments, like microarrays, confront experimenters with nu­
merous genes that they might not have heard of previously. One of the first 
steps in analyzing microarray date involves therefore exhaustive searches in 
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the literature for information on sets of genes. Information retrieval (IR) 
systems are designed to facilitate this process and to identify the textual in­
formation (i.e., documents, abstracts or sentences) relevant to a specific topic 
or query. PubMed, for instance, is a well-known example of an IR system in 
biology, which provides Boolean queries and document similarity measures to 
retrieve abstracts upon user request. Boolean queries are the most widespread 
query type and axe also employed by common Internet search engines, like 
Google, and support the retrieval of documents that include specific combinar 
tions of terms and logical operators (e.g., TGF/3 AND pathway). To efficiently 
identify and return relevant documents, all IR systems depend on some kind 
of previously generated indices that define which terms occur in which docu­
ments (Witten et al., 1999). In biology, the iHOP system provides one of the 
most extensive indices of documents for specific proteins and their interactions 
(Hoffmann and Valencia, 2004, 2005). 

12.2.2 Entity Recognition 

In molecular biology the detection and identification of entities (e.g., genes and 
proteins) is the first important step in most text mining approaches. This task, 
however, has shown to be anything but trivial (Tamames and Valencia, 2006; 
Hirschman et al., 2002). Biomedical literature is rife with synonyms and short 
equivocal acronyms for genes, chemical compounds, disorders, methods and 
therapies. An extreme case is fruit fly research, where collisions with common 
English words are very frequent (e.g., white and I'm not dead yet proteins). 
Moreover, proteins are continuously discovered and described by independent 
research groups and different symbols and synonyms exist therefore for iden­
tical proteins. Finally, the namespace for gene symbols, consisting typically of 
two to three letters and digits, is fimited and collisions between genes with the 
same synonym are frequent. Regl for example is used as a synonym for four 
different genes; two in yeast, one in mouse and another in fruit fly. In spite 
of these difficulties, ongoing research is coming up with increasingly efficient 
approaches to identify gene or protein synonyms in natural text. Methods 
are based on dictionaries, rules, and machine learning (Pukuda et al., 1998; 
Krauthammer et al., 2000; Collier et al., 2000; Jenssen et al., 2001; Morgan 
et al., 2003; Tsuruoka and Tsujii, 2003; Mika and Rost, 2004; Hoffmann and 
Valencia, 2005). Systems that use dictionaries for the identification of genes 
and proteins are most common in practice, because they achieve high precision 
and make it possible to cross-link identified entities with external databases. 

12.2.3 Information Extraction 

Information extraction (IE) aims to extract facts of predefined characteris­
tics, like specific relationships between biological entities (e.g., protein inter­
actions, metabolic reactions, phosphorylation events). Naturally, the correct 
identification of entities (e.g., genes or proteins) is essential for the success of 
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IE approaches. Problems specific to IE methods include the correct identifica­
tion of relationships between entities. Currently, there are two complementary 
approaches available to extract relationships from biomedical texts: Natural 
language processing and statistical co-occurrence analysis. 

The underlying assumption of co-occurrence analysis is that genes that 
exhibit a similar pattern of presence and absence over a number of documents 
or sentences might also function together in a pathway or structural complex. 
In spite of its simplicity, this method has been successfully applied to a number 
of biologically relevant problems (Jenssen et al., 2001; Donaldson et al., 2003; 
Cooper and Kershenbaum, 2005), although subsequent statistical analysis is 
essential to exclude random or meaningless concurrences. 

Co-occurrence, however, is unable to identify the exact entity relationships 
in complex sentences, which often contain more than two entities and multiple 
interactions. Moreover, co-occurrence is also not adequate for the extraction 
of directional relationships. To detect whether the protein MAPKAPK2 phos-
phorylates LSPl or vice versa, one has to recur to natural language processing 
methods (NLP). NLP is a subfield of artificial intelligence and linguistics that 
studies the automated generation and understanding of natural human lan­
guages (Hausser, 2001). 

12.2.4 Biomedical Text Resources 

Over the past decades, Medline has been the most important resource for 
scientific abstracts from biomedical and other life science journals in electronic 
format. Medline contains abstracts from more than 4800 journals covering 
the fields of medicine, nursing, dentistry, veterinary medicine, health, and the 
preclinical sciences. Currently, the database contains over 12 million citations 
dating back to 1966 (NLM, 2006). 

In 1997, the US National Library of Medicine (NLM) has taken the lead in 
preserving and maintaining unrestricted access to the electronic literature and 
started to provide online access to bibliographic information over the PubMed 
Web portal that includes Medline and OLD-Medline (citations from 1950 
through 1965 without abstracts). Moreover, the NLM puts enormous effort 
into indexing all PubMed citations with MeSH terms (MeSH is the thesaurus 
of the NLM), publication types, protein accession numbers, and other indexing 
data. These activities by the NLM have been a major contribution to the 
development of life sciences and are essential for most text mining efforts in 
biology. 

In recent years most publishing houses started to provide online versions 
of their journals. Thus, full text in machine-readable form is theoretically 
becoming available to text mining. However, due to copyright issues, most 
journals are currently not freely available. This situation is likely to change 
as the trend towards open access journals is gaining momentum. PubMed 
Central, for instance, is a novel digital archive that provides standardized and 
unrestricted access to the available open access literature. 
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Besides scientific journals, patent databases are a rich source of biomed­
ical information and make their textual information accessible in electronic 
format. The European Bioinformatics Institute, for example, provides access 
to biotechnology related abstracts of patent applications (see Resources in 
Section 12.7). 

12.2.5 Assessment and Comparison of Text Mining Methods 

The comparison of text mining methods is generally difficult, especially when 
different text corpora or gold standards are used for training or evaluation. 
Efforts to evaluate and compare methods systematically are thus crucial for 
progress of the field. Various efforts have been made by the community to 
assess and compare different approaches (see Resources Section 12.7). BioCre-
ative, for instance, is an open evaluation of systems on a number of biologically 
relevant text mining tasks, like the manual curation process behind model 
organism databases (Hirschman et al., 2005; Blaschke et al., 2005). An im­
portant indirect contribution of these assessments is the manual annotation 
of biological text corpora for training and evaluation. Articles are read by hu­
man experts, which highlight relevant biological entities within the text. Such 
corpora are extremely expensive in their creation and only a few are available 
(Kim et al., 2003). 

12.3 Caveats and Pitfalls 

12.3.1 Entity Recognition 

Text mining techniques depend on the correct identification of entities such as 
protein and gene names, chemical compounds, and diseases. This basic step, 
however, has turned out to be extremely difficult, because of the high seman­
tic overloading of abbreviations and synonyms. The detection of biological 
entities is hindered by two properties of language well known in the field of 
text processing: Synonymy and polysemy. Synonymy refers to the existence of 
more than one name for the same object, and polysemy indicates that a given 
term can have multiple meanings. For the retrieval of relevant documents 
about a specific protein this means that synonymy causes reduced recall (rel­
evant documents are missed). Polysemy again affects precision negatively, due 
to the retrieval of documents that are not related to the query protein (e.g., 
documents about a disease or method with the same name). These problems 
in entity identification have been found to be much harder in biology than 
the identification of names in areas such as economics or newswire services 
and standardization of nomenclatures are being demanded from many sides 
(White et al., 1997). However, despite all efforts to establish nomenclature 
standards and to assemble dictionaries, official gene names still do not pro­
vide a solution to the problem of name detection. In 1994, only 36% of the 
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human genes are mentioned by their official names according to the Human 
Genome Organization (HUGO) nomenclature, and by 2004 this percentage 
increases only to about 43% (Tamames and Valencia, 2006). It seems that 
the dynamics of synonym creation and usage are as vigorous as the evolution 
of genes and proteins (Hoffmann and Valencia, 2003) and that static nomen­
clatures and dictionaries will always lag behind. Thus, community efforts to 
establish a standard vocabulary will probably not succeed unless publishers 
decide to enforce it, as they have done with the standard deposition of se­
quences, structures, and expression profiles. 

12.3.2 Full Text 

A more fundamental limitation is that full text access to the biomedical liter­
ature is hampered by copyright restrictions. Most publicly available systems 
provide therefore mainly information from titles and abstracts. Studies in­
dicate that although abstracts contain the best ratio of keywords per total 
of words, other sections of the article may be a better source of biologi­
cally relevant data (Shah et al., 2003; Liu et al., 2004). When going from 
abstracts to full text annotation, however, there are a number of issues to 
be addressed (Schuemie et al., 2004). For instance, full text documents con­
tain cross-references (i.e., anaphoric relationships) between paragraphs and 
processing full text requires of course more resources. However, addressing 
full text will be a worthwhile enterprise for next generation systems, even if 
anaphoric relationships and complex sentences are avoided in an initial phase. 
Focusing on the extraction of simple relationships (e.g., protein-verb-protein 
pattern) will maintain a high accuracy, while still increasing the total amount 
of information in the larger text corpus. 

12.3.3 Distribution of Information 

With increasing demand for the integration of literature information in the 
analysis of genome-scale experiments, novel text mining systems have been 
developed (Jenssen et al., 2001; Raychaudhuri et al., 2002; Hoffmann and 
Valencia, 2005; Kuffner et al., 2005). However, most of these approaches face 
the inevitable problem that for a substantial number of genes there is simply 
no literature information available. This problem is related to the unequal 
distribution of what is known about individual genes. A few genes are most 
frequently quoted and attract most attention from the scientific community, 
while for the rest comparably little has been published. It has been shown 
that this biased distribution reflects to a large extend the priorities within our 
society, as is suggested by the most frequently quoted proteins CD4 and p53, 
which axe involved in HIV infection and tumor development (HoflFmann and 
Valencia, 2003). This bias has important negative effects on the performance 
of many text mining systems, most importantly on those that rely merely on 
statistics, e.g., protein co-occurrences in abstracts. 



258 Robert Hoffmann 

12.3.4 The Impossible 

Many problems in biological text mining have been successfully tackled over 
the past decade, and others, like entity identification, will continuously im­
prove in the near future. There are issues, however, for which no solution is yet 
in sight. For instance, computational linguists have not yet developed meth­
ods that could analyze more than 30% of sentences from PubMed abstracts 
correctly and transfer the information into structured formal representations 
(Briscoe and Carroll, 2002). Thus, no computational workflow or data min­
ing strategy should be designed today with dependency on perfect syntactical 
analysis of extracted sentences. It is however possible to extract information 
from parts of sentences, which describe for example protein interactions (Ono 
et al., 2001; Marcotte et al., 2001; Blaschke and Valencia, 2001; Cooper and 
Kershenbaum, 2005). 

12.3.5 Overall Performance 

Different methods, training sets and gold standards make it often difficult 
to choose the appropriate method or Web-based system for a specific prob­
lem or the design of bioinformatic workflows. The performance of text min­
ing methods is typically measured by comparison to gold standard data 
or manual assessment by experts, leading to the estimation of correct re­
trievals/extractions (true positives, TP), Type I errors (false positives, FP) 
and Type II errors (false negatives, FN). Precision of a method is then calcu­
lated as TP/{TP + FP) and recall or sensitivity as TP/{TP + FN). Within 
the literature mining community, precision and recall are often combined into 
a single F-measure: 

2 X precision x recall 
F = :—; —— (12.1) 

precision + recall 

According to the recent BioCreative assessment, state of the art systems de­
tect about 80% of protein or gene names in biomedical text (recall) with an 
accuracy of about 80% (precision) (Hirschman et al., 2005; Blaschke et al., 
2005). These results are unsatisfactory, although similar levels of accuracy 
are in the range of manual curation when assessing the annotation between 
different curators (Mi et al., 2003). Certainly, limitations of current text min­
ing approaches become apparent in tasks where knowledge extrapolation and 
interpretation are required (Hirschman et al., 2005). In the next section I 
will describe how many of these fundamental problems can be circumvented 
by involving the user interactively in the discovery process (Hoffmann and 
Valencia, 2004), or by combining text mining information with data from in­
dependent sources (e.g., sequence information) (Hoffmann and Valencia, 2004; 
von Mering et al., 2005). 
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12.4 Alternatives 

Recent advances in high-throughput methods such as microarrays (DeRisi 
et al., 1997) and protein interaction screens (Phizicky et al., 2003) allow the 
systematic exploration of functional gene groups, but present a formidable 
challenge to data analysis. In the absence of structured, computer-readable 
information about the genes involved, the interpretation of the biological basis 
of similar gene expression patterns is generally left to the observer. Moreover, 
the sheer volume of different genes on microarrays and the complexity of 
all possible ways in which genes might be related physically or functionally 
complicate the analysis. In practice, the analysis of gene groups derived from 
genome-scale experiments usually involves switching back and forth between 
data and literature searches. 

At the moment, there are three important complementary approaches in 
biological text mining that try to make use of literature information to facili­
tate the interpretation of large scale experimental data (see Figure 12.1). This 
is, they mimic or support the user in the attempt to read all the documents 
published about genes in a given cluster and to find properties common to all 
of them that moreover make sense in the specific context of the experiment. 

12.4.1 Functional Coherence Analysis of Gene Groups 

First-generation clustering methods have focused on numerical analysis, like 
unsupervised clustering, and did not incorporate background knowledge about 
the genes involved. Raychaudhuri et al. (2002, 2003) developed a method 
called neighborhood divergence to quantify the functional coherence of exper­
imentally derived gene groups based on the similarity of documents which 
mention these genes. This method involves two steps: First, applying hierar­
chical clustering to a given gene expression data set. Then, resolving hierar­
chical cluster boundaries to optimize the functional coherence of all clusters. 
By including literature information in the analysis of gene expression data 
in this way, Raychaudhuri et al. (2002) make use of functional information 
when defining expression clusters. For cases where a gene has not been inves­
tigated and thus lacks primary literature, articles about well-studied homolo­
gous genes can be used. 

This strategy has been shown to be successful in identifying biologically 
coherent gene groups without manual intervention, but has the slight draw­
back that it does not give direct information on the actual function of a given 
cluster. A number of similar approaches with varying emphases on the in-
terpretability of term profiles are described in the literature (Shatkay et al., 
2000; Masys et al., 2001; Blaschke et al., 2001; Chaussabel and Sher, 2002; 
Glenisson et al., 2004; Kuffner et al., 2005). 
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12.4.2 Co-Occurrence Networks 

Jenssen et al. (2001) developed a pioneering online system to link co-expression 
information from a given microarray with a co-citation network constructed 
from the literature. They employed a straightforward approach to scan ten 
million biomedical abstracts for gene names and symbols. The existence of 
co-occurrences of gene symbols in the same abstract was used to build a 
network of relationships among genes. This approach is based on the assump­
tion that if two entities are repeatedly mentioned together, it is likely that 
they are somehow functionally related, although the exact kind of relation­
ship remains unknown. Jenssen et al. (2001) chose this simplistic method over 
detecting particular types of gene-gene relationships to prioritize perspective 
over detail. This approach is the first to successfully use automated linkages 
to the literature in assisting the interpretation of array data and represents 
an important achievement as such. However, the simplicity of the employed 
text mining method comes at a high price in the analysis of the results. For 
instance, it is very difficult to verify the importance of specific edges in the co­
occurrence network, as the concurring entities might be mentioned in different 
sentences or in indirect relationships. 

This is a general problem of approaches in which natural language is 
translated into logical or graphical representations. These representations 
can have manipulative effects on the user's learning process, because they 
require a specificity that is not achieved by the algorithms employed, e.g., 
co-occurrences, frames (Blaschke and Valencia, 2001) or regular expressions, 
etc. Moreover, the graphical representation of large literature networks is in 
practice rather inappropriate for the analysis and communication of infor­
mation. The sheer volume of information simply overtaxes most users, and 
more importantly, the accuracy of the extracted information varies signifi­
cantly across the network (or any other abstract representation). In practice, 
this means that the user is forced to check many connections manually, which 
involves changing back and forth between the text source and the graphical 
representation. Thus, the creative process of gathering new information and 
the generation of hypothesis becomes far from intuitive and often frustrating. 

12.4.3 Superimposition of Experimental Data to the Literature 
Network 

The iHOP Web site (Hoffmann and Valencia, 2004, 2005) attempts to com­
bine the literature network of concurring genes and proteins with genome-wide 
experiments in a conceptually similar approach to Jenssen et al. (2001), but 
without ever leaving the textual representation. In iHOP, every gene has one 
Web page that contains all the sentences associating it with other genes. Other 
gene synonyms within sentences serve as hyperlinks to their corresponding 
Web pages. Thus, each step through the network produces the information 
pertaining to only a single gene and its associations. In this way, researchers 
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can move between sentences taken directly from their source abstracts and 
thus retain control over the reliability of the information they obtain. As a 
byproduct of this novel approach, major difficulties in information retrieval 
can be mitigated: Ambiguity of synonyms and erroneously identified entities 
(Hirschman et al., 2002). Most importantly, the underlying gene network re­
mains intact in spite of its representation as hyper linked text, and it is thus 
possible to superimpose the iHOP net with network data from other sources. 
Thereby, a simultaneous exploration of novel and existing knowledge becomes 
possible. Technically, this is achieved by highlighting sentences in the iHOP 
network that mention protein associations for which external experimental 
evidence exists (e.g., from protein interaction screens). Furthermore, this ap­
proach is not limited to protein networks, since many biological data sets can 
be represented as networks. Microarray expression data, for instance, can be 
transformed into networks, where edges would correspond to gene pairs that 
exhibit highly correlated expression profiles (Stuaxt et al., 2003). 

12.4.4 Gene Ontologies 

A complementary approach that avoids direct queries to the biomedical lit­
erature makes use of manually curated and standardized classifications of 
genes. The Gene Ontology (GO) (Ashburner et al., 2000), for example, allows 
for simple statistical analysis to check whether co-regulated genes found in 
a microarray experiment also cluster in the same branches of a classification 
scheme (gene ontology enrichment analysis (Al-Shahrour et al., 2004; Zeeberg 
et al., 2005)). This approach, however, depends on complete prior characteri­
zation; complete in terms of different genes and the individual functions and 
roles an individual gene might have during the lifespan of a cell. Although 
it seems feasible that at some point all genes will be manually classified ac­
cording to an ontology like GO, it is still a long way until all genes will be 
described exhaustively. Moreover, one has to keep in mind, that classifications 
are human attempts to simplify the world, forcing observations into a static 
perspective. The biomedical literature is much less restricted in this aspect, 
since it is a collection of mainly independent observations. The disadvantages 
are obvious: Literature is much more difficult to handle and interpret and often 
contradicting. However, in contrast to a more rigid classification it contains 
all described angles on proteins and has thus a higher potential to support 
novel (previously unclassified and undescribed) functional properties of genes 
in a given microarray cluster, for instance. 

12.5 Case Study 

In the following I will discuss three different text mining approaches of in­
creasing complexity. First, I will discuss how to create a simple script-based 
approach from scratch, which can be used to detect overrepresented terms in 
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PubMed abstracts. Then I will axgue for the use of existing solutions to avoid 
reinventing the wheel. Finally, I will describe a full-scale text mining solution 
for extracting comprehensive information on human chromosome aberrations. 

Besides the well-known online interface for queries to PubMed, the NCBI 
also provides a set of programs that provide a stable interface for the Entrez 
retrieval system. These E-Utilities use a fixed URL syntax that translates 
a standard set of input parameters into values necessary for various NCBI 
software components to search and retrieve data from about 20 databases, 
including abstracts from PubMed. With this, it is possible to develop a sim­
ple program that retrieves biomedical abstracts (i.e., in XML) and detects 
statistically significant terms compared to a background text corpus. The 
pseudo-code below summarizes the main steps. The same approach can be 
used to analyze significant genes in any text corpus, although this would in­
volve the lookup of terms in a gene synonym dictionary (e.g., HUGO (White 
et al., 1997)) or the use of an existing service dedicated to identify biological 
entities (e.g., genes or diseases) in a given text piece. 

calculateTermPrequencies(pubmedQuery) 
{ 

Use E-Utilities to fetch relevant PMIDs for pubmedQuery; 
Use E-Utilities to download abstracts (XML or plain text); 
Split resulting text around blanks; 
Loop through individual terms 

{Homogenize terms, e.g., capitalize; 
(Optional for genes: lookup in gene-synonym dictionary, e.g., from HUGO; 
skip term if not a gene); 
Count occurrence of ea^h term; 

} 
Return term frequencies as hashmap (key=term, value=frequency). 

} 

main(pubmedQuery) 
{ 

termPreqBackground = calculateTermPrequencies ("gene", "protein"); 
termPreqQuery = calculateTermFrequencies (pubmedQuery); 
Loop through keys (terms) in termPreqQuery as termX 

{Get value for termX (frequency); 
Get frequency for termX from termPreqBackground; 
Compare frequencies for significance (see Mathematical Details); 
Output significant terms. 

} 
} 

Real-world text mining solutions in biology are typically of much higher 
complexity and expensive on resources. For instance, the detection of biomed-
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ical entities (e.g., genes and chemical compounds) within natural text is a 
computationally very expensive task. The reasons for this are the large num­
ber of different genes and gene synonyms, which have to be kept in random 
access memory to make lookup of terms as time efficient as possible. The 
iHOP annotation pipeline for example was designed to screen about 12 mil­
lion abstracts for five million different gene synonyms in a day and runs on 
a 40 node server cluster (queue system) (Hoffmann and Valencia, 2005). At 
an average abstract length of 150 words, the total number of examined terms 
reaches about 1.5 billion, of which each could be one of the five million gene 
synonyms in the dictionary. 

Fortunately, for many basic problems, e.g., tagging or entity recognition, 
there are ready-made applications available. Many of these systems are avail­
able as Web-based systems (see Resources in Section 12.7). Thus, computa­
tional biologists should be encouraged to make use of these resources and 
develop their ideas on top of established services. 

The iHOP server, for instance, can be used to retrieve information for 
specific genes or to retrieve sentences describing a specific protein-protein 
relationship. Connecting to the iHOP system works similar to the NCBI E-
utilities and is URL based, hence the query URL has to encode the protein(s) 
of interest and the kind of information to be retrieved. Currently, all major 
database accession numbers are recognized by the iHOP system (e.g., NCBI 
Gene, UniProt, etc.). Thus, iHOP can be used to provide users of mass spec 
software or microarray clustering tools with literature information on specific 
proteins or protein interactions. 

In the following I will discuss a full-scale case study aimed at extracting 
comprehensive information on human chromosome aberrations from biomed­
ical abstracts. In model systems (e.g., mouse or fiy) identifying and generating 
mutations is the usual genetic approach to understanding the role of individual 
genes. In human populations, natural mutations, such as chromosome aber­
rations, are a comparable resource for genetic research, since DNA breakage 
and reciprocal recombination often lead to the fusion or dysregulation of spe­
cific genes (Rabbitts, 1994; Heim and Mitelman, 1995; Vogelstein and Kinzler, 
2002). Indeed, most human cancers display recurrent chromosome abnormali­
ties. Motivated by this wealth of information, Mitelman et al. (1997) manually 
collected clinical and morphological data on cancer related chromosome aber­
rations from the literature. Although the Mitelman database constitutes an 
important source of detailed clinical information, it depends entirely on ex­
pensive manual curation, and contains relatively little molecular information. 
Here, I describe a text mining approach to generate comprehensive informa­
tion on all human breakpoints and their relationships to human pathologies. 
The statistical analysis of this textual information and its combination with 
genomic data can identify genes directly involved in DNA rearrangements. 
This case study is well suited to demonstrate the potential of text mining in 
biology, since it mimics the manual curation process and can thus be directly 
compared. 
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Fig . 12.2. Identification of breakpoint genes in human cells. Abstracts were re­
trieved from PubMed and clustered by breakpoints (e.g., 7pl5). The genes found in 
a given cluster are not necessarily the actual breakpoint genes; however, the more 
often a gene is mentioned together with a breakpoint the more likely it is involved 
in an aberration (literature evidence). False positive associations are eliminated by 
cross-checking a gene's localization with genomic data (genomic evidence). The fi­
nal decision on the relevance of a gene is facilitated through a Web-based interface 
(Hoffmann et al., 2005). 

In a first step, PubMed abstracts were screened for references to transloca­
tions, insertions and inversions using regular expressions (Priedl, 2002). This 
identification can be done fully automatically, since aberrat ion codes, for in­
stance t(9;22)(q34;qll .2) are so complex, tha t they can be easily identified 
with a negligible error. However, since the online query interface of PubMed 
does not provide the search for regular expressions, it was necessary to down­
load all relevant abstracts (i.e., abstracts containing the keyword "transloca­
tion") and to screen the local copy. 

Abstracts were then clustered according to the breakpoint to which they 
refer. However, each breakage event involves typically two chromosome break­
points, and it is therefore often unclear to which of the breakpoints a given 
abstract should be assigned. This is a good example for when entity recog­
nition and information retrieval come to a theoretical limit and only deeper 
syntactical analysis might be able to uncover the detailed relationships. How­
ever, since in many cases not even the author will have the knowledge to select 
the relevant breakpoint, a computationally expensive syntactical analysis was 
avoided and weight was put on the subsequent statistical analysis: All abstract 
clusters were analyzed for the occurrence and frequency of MeSH terms (Kim 
et al., 2001), associative verbs and genes. The frequencies of these concepts 
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were then compaxed to their frequencies in a background corpus (consisting 
of all abstracts referencing chromosome aberrations) to calculate their signif­
icance (see Mathematical Details and Figure 12.2). 

The premise in the subsequent statistical analysis of this text-mined data 
is that genes directly affected by recurrent breakage events will be quoted 
more often in abstracts about the corresponding breakpoint, even if a direct 
proof for this association has not been described yet. Based on the literature 
data alone, however, this would result in many false positive gene-breakpoint 
relationships. It is therefore necessary to integrate the text-mined informa­
tion with an independently derived source of information. Here, independent 
evidence is the genomic location of each gene, which can be roughly mapped 
to specific breakpoints and thus helps to eliminate false positives (see Figure 
12.2). 

With this approach 343 of 861 literature associated genes were found to 
localize to recurrent breakpoints. Indeed, for a third of these there is already 
clear experimental evidence that they are involved in fusion events (Hoffmann 
et al., 2005). 

For the final output through a Web-based application, statistically sig­
nificant genes and biomedical terms (e.g., disease names) were mapped back 
onto their source sentences, where they serve as hyperlinks between different 
parts of each breakpoint cluster. Diseases and associative verbs are also high­
lighted and hyperlinked within the text to further facilitate the perception of 
associations with human pathologies (Hoffmann et al., 2005). 

12.6 Lessons Legtrned 

Since one aim of this case study is to partially reproduce the manually gen­
erated Mitelman database (Mitelman et al., 1997) it is intriguing to directly 
compare the text mining strategy with the manual approach. As can be ex­
pected, the text mining approach outperforms the manually maintained datar 
base, both in terms of screened papers and detected genes (Hoffmann et al., 
2005). However, the degree of details found in the manually curated database 
is unrivaled by the automatic approach and not only because of the limited 
access to full texts. The Mitelman database provides detailed facts on clinical 
cases, including sex and age of patients, tissue types and morphologies. To 
extract all these bits of information and most importantly the correct relar 
tionships between them is a task for which no out-of-the-box solution exists 
and which stresses the limits of current NLP methods (Briscoe and Carroll, 
2002; Jensen et al., 2006). The lower degree of details can be compensated, 
however, by the larger amount of processed documents and the subsequent 
statistical analysis. For example, the smaller amount of data in the manually 
curated database did not allow for detecting which gene was actually involved 
in the aberration at a given breakpoint. 
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Moreover, a large number of genes and diseases that can be found in ab­
stracts about chromosome aberrations were filtered or ignored by the human 
curators. Thus, whereas manual curation often depends on the opinion of hu­
man experts, text mining approaches are quite objective. Most importantly, it 
is very difficult to recover the exact literature evidence that underlies manual 
curation. Automatic text mining systems, on the contrary, transform free text 
information into a structured representation, which can be easily linked to the 
original source texts and moreover allows for integrating other structured in­
formation, like information from external databases, such as UniProt, Gene 
and OMIM. 

Although this case study involved an exhaustive screen of about 12 million 
PubMed abstracts for thousands of gene synonyms and MeSH terms, it is 
in principle only a "blow-up" of the pseudo-code example above. For the 
computationally most expensive step in this study (i.e., entity detection) I 
used the iHOP annotation pipeline (Hoffmann and Valencia, 2005). However, 
this step could also be implemented with varying complexity as described in 
Jenssen et al. (Jenssen et al., 2001) or by making use of one of the other 
existing entity recognition tools (see Resources in Section 12.7). Hence, text 
mining methods are becoming ready to deliver and straightforward to use or 
implement in the design of novel analysis tools and workflows. 

12.7 List of Tools and Resources 

Text mining in biology is a very young and dynamic field and the following 
list of services, tools and methods can only provide a static view. However 
it gives an useful overview about what is possible today and what kind of 
biological questions are being addressed (see Tables 12.1, 12.2, 12.3). 

12.8 Conclusion 

With the expected improvement of experimental high-throughput technolo­
gies, amount and quality of genome-wide data will increase continuously in the 
near future. Instead of single microarray experiments, for instance, multiple 
experiments will become common practice as well as systematic comparisons 
with standardized data resources. For the final interpretation, however, human 
expertise will continue being essential to integrate background knowledge and 
to formalize novel hypotheses. This task is extremely demanding in itself, and 
even more so since much of the necessary background information is scattered 
across the literature. This is the operational area of text mining in biology in 
the 21st century. 

Therefore, any text mining method in biology should be assessed according 
to its contribution to this endeavor. Here I have discussed exciting and com­
plementary text mining approaches that are becoming useful in the analysis 
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Table 12 .1 . Text mining tools and resources in biology - information retrieval. 

Source Descr ip t ion a n d U R L 

PubMed 

NCBI E-utilities 

E-BioSci 

iHOP 

EBI Literature DBs 

Google Scholar 

GoPubMed 

MedMiner 

EBIMed 

XplorMed 

Textpresso 

CrossRef 

PubMed Central 

High Wire Press 

The National Library of Medicine's search service, 
http://www.pubmed.org 
Access to Entrez data outside of the regular Web 
query interface. 
h t tp : / /www.ncbi .n lm.nih .gov/entrez/query/ 
s t a t i c / e u t i l s J h e l p . h t m l 
The European platform for axicess and retrieval of 
full text and factual information in the Life Sciences, 
h t tp : / /www.e-b iosc i .o rg 
Retrieves relevant sentences for protein interactions 
and protein function. Provides the network of concur­
ring proteins for navigating the biomedical literature, 
h t tp : / /www.ihop-net .org / 
Biotechnology related abstracts of patent applications 
from the European Patent Office, ht tp: / /www.ebi . 
ac .uk /Da tabases / l i t e r a tu re .h tml 
Google search and ranking of scholarly literature in 
full text format and citation information, 
h t tp : / / scho la r .google .com 
Classifies and highlights PubMed query results accord­
ing to the Gene Ontology, http://www.gopubmed.org 
Filters and organizes sentences in the literature based 
on a gene, gene-gene or gene-drug query, 
h t t p : / / d i s cove r . nc i . n ih .gov / t ex tmin ing 
Web application that combines Information Retrieval 
and Information Extraction from Medline, 
ht tp: / /www.ebi.ac.uk/Rebholz-srv/ebimed 
Organizes PubMed queries according to the MeSH on­
tology and summarizes content, 
h t tp : / /www.ogic .ca/proj ects/xplormed 
Information retrieval and extraction system for biolog­
ical literature of C. elegans. 
h t tp : / /www.textpresso .org 
Full text search. 

h t tp : / /www.crossref .org /c ross refsearch .h tml 
Digital archive of biomedical and life sciences journal 
literature in full text, 
http://www.pubmedcentral.org 
Repository of free, full-text, peer-reviewed content. 
h t tp : / /h ighwi re . s t emiord .edu 



268 Robert Hoffmann 

Table 12.2. Text mining tools and resources in biology - information extraction. 

Source Description and URL 

BioIE 

JournalMine 

iProLINK 

PubGene 

KAT 

Data in tegra t ion 

TxtGate 

STRING 

En t i t y recogni t ion 

ABNER 

GAPSCORE 

NLProt 

Protein interactions 
Chilibot 
PreBIND 
Knowledge discovery 
Arrowsmith 

BITOLA 

Rule-based system that extracts informative sentences 
from PubMed query results. 
h t tp : / /umber .sbs .man.ac .uk/dbbrowser /b io ie / 
Queries the biomedical literature for specific en­
tity relationships, h t tp : / / tex tmine .cu-genome.org / 
gr idsphere /gr idsphere 
Protein annotation and tagging, 
h t t p : / / p i r . geo rge town .edu / lp ro l ink 
Gene-to-gene co-citation network that can be used for 
microarray analysis, http://www.pubgene.org 
Annotate proteins from scientific references, h t t p : / / 
www.bork.embl-heidelberg.de/kat/index.html 

Summarization and analysis of groups of genes 
based on text, h t t p : / / t omca t . e sa t . ku l euven .be : 
8080/txtgate/home.j sp 
Integration of protein interaction extracted from 
the literature with information from complementary 
methods, h t t p : / / s t r i n g . e m b l . d e 

"bsettles/abner 

HCAD 

G2D 

Entity detection. 
h t t p : //www. OS. wise, edu/'' 
Protein gene name tagger. 
h t tp : / /b ion lp .S tanford .edu /gapscore 
Protein/gene name tagger. 
h t t p : / / ro s t l ab .org / s erv i ce s /n lpro t / 

Relationship extraction tool, 
h t tp : / /www.ch i l ibo t .ne t / 
Data mining tool that helps researchers locate bio-
molecular interaction information in the scientific lit­
erature, h t t p : / / p r e b i n d . b i n d . c a 

A tool for identifying links between two sets of 
PubMed articles, h t t p : / /arrowsmith. psych. u i c . edu 
Aims to facilitate the discovery of potentially new re­
lations between biomedical concepts. 
h t t p : / / w w w . m f . u n i - l j . s i / b i t o l a 
Provides comprehensive information on human chro­
mosomal aberrations, including genes and disease rela,-
tionships. h t t p : //www. ihop-ne t . org/UniPub/HCAD/ 
Finds literature links between OMIM entries and genes 
from a specific chromosomal location. 
h t tp : / /www.ogic .ca/proj ects/g2d-2 
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Table 12.3. Text mining tools and resources in biology - annotated text corpora. 

Source Descr ip t ion a n d U R L 

BioCreative corpus Corpus of protein annotation relevant text. 
http://www.pdg.cnb.uam.es/BioLINK/ 

FetchProt h t t p : / / f e tchpro t . s i c s . se 
GENETAG f t p : / / f t p . ncb i . nlm. n ih . gov/pub/tanabe 
GENIA Annotated corpus related to human blood transcrij)-

tion factors. 
ht tp: / /www-tsuj i i . i s . s .u - tokyo .ac . jp /GENIA 

PennBioIE h t t p : / / b i o i e . Idc . upenn. edu 
Yapex ht tp : / /www.sics .se /humle/proj e c t s / p r o t h a l t 
Assessments 
BioCreative Challenge Text mining of protein names and annotations. 

http://www.pdg.cnb.uam.es/BioLINK/ 
BioCreat ive.eval .html 

KDD challenge Information extraction of Drosophila gene expression 
information. 
h t tp : / /www.bios ta t .wise . edu/~craven/kddcup/ 
tasks .h tml 

TREC Genomics track IR, document classification and question answering. 
h t t p : / / i r . ohsu . edu /genomics / 

Par t -of-speech t agger s Marking up the words in a text with their correspond­
ing parts of speech (e.g., verbs, nouns). 

Brill h t t p : //www. c s . jhu . e d u / ~ b r i l l 
TNT h t t p : //www. c o l i . u n i - saar land. d e / ~ t h o r s t e n / t n t 
TreeTagger h t t p : //www. ims. u n i - s tu t tge i r t . de/~schmid 
N a t . Lzinguage P a r s e r s Derive the grammatical structure of sentences, e.g., 

which groups of words are units (phrases) and which 
words are the subject or object of a verb. 

CASS h t tp : / /www.vinar tus .ne t / spa 
Collins Parser h t t p : / / peop l e . c s a i l .mit . edu/mcollins 
Stanford Parser h t t p : / / n lp . s t an fo rd . edu / so f twa re 

of genome-wide data: Methods to asses the coherence of gene groups (Ray-
chaudhuri et al., 2003), to integrate experimental da ta with li terature net­
works (Jenssen et al., 2001; HofTmann and Valencia, 2005; von Mering et al., 
2005) and ways to make a simultaneous analysis of l i terature and experimen­
tal da ta possible (Hoffmann and Valencia, 2004). Many of these methods have 
led to the development of tools and Web sites ready to use. Other promising 
methods are still in an experimental phase, but will soon reach production-
state. Hence, developers of novel analysis software and workflows are able to 
choose from a variety of stable text mining solutions. The recent development 
in science towards open and freely accessible full text-resources will further 
catalyze this progress. 

However, I have also discussed some of the important difficulties and 
caveats tha t text mining methods are still facing in biology: The vast number 
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of ambiguous acronyms and symbols and the complexity of scientific language. 
Addressing these problems at a pragmatic level is important, but it cannot 
be an aim on its own. Not in the light of gigabytes of data to be expected 
from large-scale experiments in the near future. Text mining in biology has to 
focus on biology-driven problems to maintain the momentum gained over the 
past decade. Thus, some problems that are due to the complexity of natural 
language might be neglected, but these deficits will be more than compen­
sated by the integration with independently derived sources of information 
(e.g., large scale experimental data and in silico predictions), as pioneered 
in recent years by a number of groups (Jenssen et al., 2001; Hoffmann and 
Valencia, 2004; von Mering et al., 2005). Following this direction, text mining 
in biology will live up to its full potential and will become an integral element 
of all future approaches to analyze and interpret novel data. 

12.9 Mathemat ical Details 

To assess the content of a given document cluster, one can compare the fre­
quencies of scientific terms within the cluster to their frequencies in a reference 
cluster (e.g., all documents). The probability (PT) of finding a term (T) the 
observed number of times (fc) in a document cluster (C) is then calculated 
from the Poisson distribution, given the known reference frequency (p) and 
the total number of terms in the cluster (n). This approximation is valid when 
the total number of terms in the reference cluster is much greater than n and 
p is small. 

P^(k\n,p)=e-^^^ (12.2) 

where n e. N, the number of terms assigned to a document cluster (C), 
k = 1,2, ...n, the number of occurrences of term (T) within the cluster (C), 
p is the relative frequency of term (T) in the reference cluster. In practice the 
log probability can be calculated to avoid floating point errors and n\ can be 
estimated using Stirling's approximation for large n: 

lnPT{k\n,p) = -np + kln{np) + k-kln{k) (12.3) 
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X , see Chi square 
2D-DIGE, see two-dimensional 

difference in-gel electrophoresis 
2D-PAGE, see two-dimensional 

polyaxirylamide gel electrophoresis 

accuracy, 24 
balanced, 24, 194 

adjacency matrix, 206-207 
affycomp, 64 
Affymetrix, 5, 52-53, 64 
Agilent, 53-55 
amplicon, 3 
ANOVA, see one-way analysis of 

variance 
arabadopsis, 47 
ARD, see automatic relevance 

determination 
area under the curve, 152, 169 
ArrayAssist, 62 
assortative mixing, 210, 220 
assortativenness, 211 
AUG, see area under the curve 
automatic relevance determination, 156 

BACG, see accuracy, balanced 
background correction, 55 
backward elimination, 17, 155 
bagging, see bootstrap aggregation 
baseline subtraction, 82 
beam search, 155 
betweenness 

centrality, 208 
distribution, 210 

bias, 22 
experimenter, 14 
selection, 27, 177, 196 

bias-variance traxie-off, 23 
biclustering, 124, 131, 135 
Bioconductor, 62, 74, 98, 104, 112, 120 
blocking, 43, 47 

complete block design, 43 
blotting 

Northern, 4 
Southern, 4 
Western, 5 

Bonferroni, 20, 134, 154, 232 
bootstrap, 28, 179 

.632 bootstrap, 28, 179 

.632+ bootstrap, 180, 184 
aggegration, 238 

BRB-ArrayTools, 184 

GAAT, 138 
caBig, 98 
calibrant, 84, 119 
calibration, 81, 82 
capaxiity control, 23 
GART, see classification and regression 

trees 
centroid, 193 
Ghi square, 152, 169 
Giphergen, 84, 93, 161 
GlaNC, 197 
class comparison, 41, 124 
class discovery, 40, 124 
class prediction, 124 
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classification, 10 
classification and regression trees, 155, 

166 
classifier 

lineax majdmal margin, 189 
non-linear, 188 

CLENCH, 134 
cluster analysis, 40 
clustering, 10, 124, 156, 158 

average, 209 
biclustering, 131 
coefficient, 207 
distribution, 210 
fuzzy, 137 
hierarchical, 46, 126, 128 

average linkage, 129 
complete linkage, 129 
single linkage, 129 

k-means, 126, 129, 158 
model-based, 130 
probabilistic, 158 
self-organizing maps, 130 
self-organizing tree algorithm, 130 
soft, 158 

confidence interval, 24 
confounding, 40, 47 
connectedness, 131 
connectivity, see node, degree 
correlation 

filtering, 154 
jackknifed correlation coefficient, 127 
Pearson, 117, 126 
profile, 210 
Spearman rank, 127 

covariate, 7 
cross-hybridization, 53 
cross-validation, 27, 191 

10-fold, 184 
5x2CV, 30 
external, 27, 181 
internal, 27, 181 
k-fold, 28, 178 
leave-k-out, 28 
leave-one-out, 28, 177, 184 

curse of dimensionality, 2 
Cy3, 52 
Cy5, 52 

D/S/A algorithm, 230 

data mining, 2, 8 
data re-scaling, 15 
data transformation, 14 
Daubechies wavelet, 87 
DAVID, 134 
dChip MBEI, 63 
DDWT, see decimated discrete wavelet 

trajisform 
decimated discrete wavelet transform, 

86 
deconvolution, 92 
dendrogram, 10, 104 
detector, 5 
differential display, 4 
discrete wavelet transform, 86 
discriminant analysis, 41 
distance metric, 135, 157 

City Block, see distance metric, 
Manhattan 

correlation, 157 
Cosine, 157 
Euclidean, 105, 126, 157 

standardized, 157 
Hamming, 157 
Jax;card, 157 
Mahalanobis, 137, 157 
Manhattan, 112, 157 
Minkowski, 157 

Dunn-like indices, 131 
dye-swap, 45, 47 

EAM, see energy absorbing matrix 
eGOn, 134 
eigengene, 16 
electrophoresis, 4 
electrospray ionization, 5 
embedded methods, 150, 155, 160 
energy absorbing matrix, 79 
entity recognition, 254 
ER graph, see graph, Erdos-Renyi 
error 

of prediction, 25 
rate, 24 

family-wise, 20 
comparison-wise, 20 
observed, 24-25, 181, 183 
true, 24-25, 181 

resubstitution estimate, 174 
selection, 177 
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split-sample estimate, 175 
Type I, 18, 258 
Type II, 19, 258 

ESI, see electrospray ionization 
EST, see expressed sequence tag 
ETA, see experimental treatment 

assignment 
experimental treatment assignment 

assumption, 235 
expressed sequence tag, 5 

F-measure, 258 
false discovery rate, 20, 97, 134, 154, 

233 
false positive rate, 20 
FatiGO, 134 
FatiGOplus, 138 
FDR, see false discovery rate 
feature, 7, 14-9 

construction, 151 
selection, 149-169, 190 

recursive feature elimination, 190 
filter, 150, 160, 169, 190 
fingerprint, 7 
Fisher score, 151, 152, 169 
Fisher-like score, 18 
FLD, see linear discriminant, Fisher 
forward selection, 16, 155 
FPR, see false positive rate 
FWER, see error rate, fajnily-wise 

Gaussian mixture, 158 
GCRMA, 63 
Gene Expression Omnibus, 53, 65, 69 
Gene Ontology, 261 
GeneChip, 5, 52 
GenePix, 55, 60, 69 
GeneSifter, 62 
GeneSpring, 62 
genetic algorithm, 150, 155 
genomics, 1 

functional, 2 
GEO, see Gene Expression Omnibus 
GO, see Gene Ontology 
GoMiner, 134 
goodness-of-fit, 30, 111 
GOStat, 134 
Gosurfer, 134 
GOTM, 134 

GOToolBox, 134 
graph, 203, 206 

directed, 205 
Erdos-Renyi, 204, 207 
k-scaffold, 211 
random, 209 
random modular graph, 204 
scale-free, 204, 209 
undirected, 206 
weighted, 206 

Graphviz, 219 

heatmap, 104 
Hidden Markov model, 125 
high-throughput, 2 
hill climbing, 150, 155 
hyperplane, 200 

maximal margin, 188 
hyperplanes, 188 

ICA, see independent component 
analysis 

IE, see information extraction 
iHOP, 252, 254, 260 
Imagene, 55 
Incogen, 99 
independent component analysis, 16, 

159 
inference, 43 
information 

extraction, 254, 268 
retrieval, 253, 267 

interquartile range, 59 
inverse-probability-of-treatment-

weighted transformation, 231 
ion source, 5 
IPTW, see inverse-probability-of-

treatment-weighted transformer 
tion 

IQR, see interquartile range 
IR, see information retrieval 
iterative signature algorithm, 131 

J5-score, 152, 169 
ja,ckknife, 178 

k-nearest neighbor, 26 
k-NN, see k-nearest neighbor 
Karhunen-Loeve transform, see 

principal component analysis 
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kernel function, 189, 200 

Ll-metric, see distance metric, 
Manhattan 

L2-metric, see distance metric, 
Euclidean 

Lagrangian, 199 
latent vectors, 16 
learning 

supervised, 40-41 
unsupervised, 9, 40 

learning by rote, 24 
LIBSVM, 197 
lift, 24 
linear discriminant 

Fisher, 159 
loess, 60, 245 

print-tip, 61 
LOOCV, see cross-validation, 

leave-one-out28 

m/z, see mass-to-charge ratio 
MA-plot, 60-61, 76 
MAC, see maximum allowed absolute 

correlation 
MALDI, see matrix-assisted laser 

desorption/ionization 
margin, 198 
Markov blanket filtering, 17 
MAS 5.0, 64 
mass analyzer, 5 
mass spectrometry, 5, 79-99, 180 
mass-to-chaxge ratio, 5, 80 
MATLAB, 98 
matrix-assisted laser desorption and 

ionization, 79 
matrix-assisted laser desorp­

tion/ionization, 5 
maximum allowed absolute correlation, 

164 
MDS, see multidimensional scaling 
Medical Subject Headings, 252 
Medline, 255 
MeSH, see Medical Subject Headings 
microarray, 5, 39, 51-76 

cDNA, 53, 55 
single-channel, 52 
spotted cDNA array, 5 
two-channel, 52, 59 

microarray sample pool, 64 
mismatch, 54 
missing value handling, 13 
MM, see mismatch 
model, 6 

assessment, 173, 191 
construction, 182 
selection, 173, 181, 182 

modifications 
posttranslational, 1, 5 

modularity, 203 
Monte Carlo cross-validation, see 

sampling, repeated random 
subsampling 

Monte Carlo permutation, 21 
MS, see mass spectrometry 
MSP, see microarray sample pool 
MUDWT, 96, 97 
multi-array probe-level model, 57 
multidimensional scaling, 12, 105, 159 
multiple hypotheses testing, 19 
mutual information, 152, 169 
mzXML, 99 

natural language processing, 255 
negative predictive value, 24 
neighborhood divergence, 259 
network, 203 

cellular, 204 
hierarchical, 210 
ii, 206 
motif, 211 

NLP, see natural language processing 
No Free Lunch theorem, 10 
node, 207 

average degree, 208 
degree, 207 
indegree, 207 
outdegree, 207 

normalization, 51, 56 
between-slide, 61 
loess, 61 
of mass spectra, 82 
print-tip loess, 61, 76 
quantile, 57, 61, 63, 75 
variance stabilization, 64 
within-slide, 61 

NPV, see negative predictive value 
nuisance parameter, 229 
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NUSE, see standard error, normalized 
unsealed 

Occam's razor, 10 
one-versus-all, 18 
one-way analysis of variance, 18 
Onto-Express, 134 
overfitting, 23-25, 150 

Pajek, 219 
partial least squares, 16, 159 
path, 209 

average length, 209 
PGA, see principal component analysis 
FOR, see polymerase chain reaction 
pealc 

detection, 82 
matching, 82 
quantification, 82 

peptide/protein chips, 6 
perceptual mapping, see multidimen­

sional scaling 
perfect match, 53 
phage display, 6 
phase 

application, 22 
learning, 22 
test, 22 
training, 22 
validation, 22 

PLIER, 64 
PLM, see multi-array probe-level model 
PLS, see prtial least squaresl6 
PM, see perfect match 
polymerase chain reaction, 3 
polysemy, 256 
population, 42 
positive predictive value, 24 
PPV, see positive predictive value 
pre-processing, 13 
precision, 258 
predictor, 7 
prevalence, 24, 97 
principal component analysis, 12, 15, 

108, 159 
probe, 6 
probe set, 53 

spike-in probe set, 58 
probes, 53 

PROcess, 98, 114 
profile, 7 

axray, 7 
gene expression, 7 
protein expression, 7 

projection pursuit, 113 
ProteinChip, 89, 93, 114 
proteomics, 1 
PubMed, 252 

qRT-PCR, 3, see quantitative real-time 
reverse transcriptase PCR 

QT-Clust, 136 
quantitative real-time reverse transcrip­

tase PCR, 3 

randomization, 46 
recall, 258 
receiver operating characteristic, 169 
reference design, 45 
reference RNA, 45 
regression, 10 

least angle, 121 
regularized logistic, 166 

regularization, 155 
relative log expression, 59, 76 
replicate 

biological, 43 
technical, 43 

replication, 42 
reverse transcriptase, 3 
ribonuclease, 3 
ribonuclease protection assay, 3 
RLE, see relative log expression 
RLR, see regression, regularized logistic 
RMA, see robust multi-chip analysis 
robust multi-chip analysis, 56-57, 62, 

ROC, see receiver operating charax;ter-
istic 

RPA, see ribonuclease protection assay 
RProteomics, 98 

S-|-ArrayAnalyzer, 62 
S2N, see signal-to-noise 
SAGE, see serial analysis of gene 

expression 
SAM, see significance analysis of 

microarrays 
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SAM scoring criterion, 152, 169 
SAMBA, 131 
Sammon mapping, 111 
sample, 1, 42 
sampling, 173-185, 196 

bootstrapping, see bootstrap 
k-fold random subsampling, 28 
random subsampling, 27 
repeated random subsampling, 178 
single hold-out method, 27 
split-sample, 175 
two-fold nested resampling, 181 

Savitzky-Golay, 90 
scale-freeness, 203 
scaling 

metric, 107 
nonmetric, 109 

ScanAlyze, 55 
segmentation, 55 
SELDI-TOF, see surface-enhanced 

laser desorption/ionization 
time-of-fiight 

self-organizing maps, 113, 126, 130 
self-organizing tree algorithm, 126, 128, 

130 
sensitivity, 24, 97 
serial analysis of gene expression, 4 
set 

learning, 25, 176 
test, 25, 176 
training, 191 
validation, 25, 181, 191 

shrunken centroid classifier, 181 
signal-to-noise, 18, 59, 82, 90, 190 
significance analysis of microarrays, 154 
silhouette coefiicient, 131 
simulated annealing, 150, 155 
singular value decomposition, 15 
SiZer plot, 88 
small-n-large-p problem, 2 
small-world pattern, 203, 209 
SOMs, see self-organizing map 
SOTA, see self-organizing tree algorithm 
specificity, 24 
spectrum, 7 
Spot, 55 
SSH, see suppression subtraxitive 

hybridization 
standard error 

normalized unsealed, 58, 75 
stress 

function, 106 
squaxed, 109 
weighted, 108 

study 
experimental, 40 
observational, 40 

subtractive hybridization, 4 
SUDWT, 96-97 
summarization, 53 
support vector machine, 11, 156, 

187-200 
suppression subtractive hybridization, 4 
surface-enhanced laser desorp­

tion/ionization time-of-fiight, 6, 
79, 104, 161, 194 

SVD, see singular value decomposition 
SVM, see support vector machine 
SVMLight, 197 
SW pattern, see small-world pattern 
synonymy, 256 

t-statistic, 17, 169 
tag, 4 
taxget, 6 
test 

Anderson-Darling, 11 
ANOVA, 18 
Bartlett, 17 
Benjamin! and Hochberg, 21, 233 
Brown and Forsythe, 19 
Cochran, 19 
Duncan, 19 
Dunnett, 19 
F-test, 18 
Hochberg, 21 
Holm, 20, 134 
Kruskal-WalUs, 19 
Levene, 17 
McNemar, 30 
post-hoc, 19 
random permutation, 21, 152, 153, 

183 
Storey and Tibshirani, 21 
Student, 19 
t-test, 17, 152, 169 
Tukey, 19 
variance-corrected resampled, 30-31 
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Welch, 19 
Wilcoxon rank-sum, 152 

testing, 25, 182 
text mining, 32, 251-270 

full text mining, 257 
TIC, see total ion current 
time resolution, 79 
time series analysis, 227-247 
time-of-flight, 5, 79 
TOF, see time-of-flight 
topological overlap analysis, 211 
total ion current, 89 
training, 25, 182 
transcriptomics, 2 
truly alternative, 20 
truly null, 20 
two-dimensional difference in-gel 

electrophoresis, 5 
two-dimensional polyacrylamide gel 

electrophoresis, 5 

UCSF Spot, 55 
UDWT, see undecimated discrete 

wavelet transform 
undecimated discrete wavelet transform, 

83 

validating, 25 
validation, 182 
variance, 22 
VSN, see normalization, variance 

stabilization 

Welch-Satterthwaite, 17 
Wolfe dual, 199 
wrapper, 150, 155, 160, 190 

yeast two-hybrid, 6 

z-score transformation, 15 
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