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Preface

This volume is a collection of expanded versions of selected papers originally
presented at the second workshop on Foundations and New Directions of Data
Mining (2003), and represents the state-of-the-art for much of the current
research in data mining. The annual workshop, which started in 2002, is held in
conjunction with the IEEE International Conference on Data Mining (ICDM).
The goal is to enable individuals interested in the foundational aspects of data
mining to exchange ideas with each other, as well as with more application-
oriented researchers. Following the success of the previous edition, we have
combined some of the best papers presented at the second workshop in this
book. Each paper has been carefully peer-reviewed again to ensure journal
quality. The following is a brief summary of this volume’s contents.

The six papers in Part I present theoretical foundations of data mining.
The paper Commonsense Causal Modeling in the Data Mining Context by
L. Mazlack explores the commonsense representation of causality in large
data sets. The author discusses the relationship between data mining and
causal reasoning and addresses the fundamental issue of recognizing causality
from data by data mining techniques. In the paper Definability of Associa-
tion Rules in Predicate Calculus by J. Rauch, the possibility of expressing
association rules by means of classical predicate calculus is investigated. The
author proves a criterion of classical definability of association rules. In the
paper A Measurement-Theoretic Foundation of Rule Interestingness Evalua-
tion, Y. Yao, Y. Chen, and X. Yang propose a framework for evaluating the
interestingness (or usefulness) of discovered rules that takes user preferences
or judgements into consideration. In their framework, measurement theory is
used to establish a solid foundation for rule evaluation, fundamental issues
are discussed based on the user preference of rules, and conditions on a user
preference relation are given so that one can obtain a quantitative measure
that reflects the user-preferred ordering of rules. The paper Statistical Inde-
pendence as Linear Dependence in a Contingency Table by S. Tsumoto ex-
amines contingency tables from the viewpoint of granular computing. It finds
that the degree of independence, i.e., rank, plays a very important role in
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extracting a probabilistic model from a given contingency table. In the paper
Foundations of Classification by J.T. Yao, Y. Yao, and Y. Zhao, a granular
computing model is suggested for learning two basic issues: concept formation
and concept relationship identification. A classification rule induction method
is proposed to search for a suitable covering of a given universe, instead of a
suitable partition. The paper Data Mining as Generalization: A Formal Model
by E. Menasalvas and A. Wasilewska presents a model that formalizes data
mining as the process of information generalization. It is shown that only three
generalization operators, namely, classification operator, clustering operator,
and association operator are needed to express all Data Mining algorithms for
classification, clustering, and association, respectively.

The nine papers in Part II are devoted to novel approaches to data mining.
The paper SVM-OD: SVM Method to Detect Outliers by J. Wang et al. pro-
poses a new SVM method to detect outliers, SVM-OD, which can avoid the
parameter that caused difficulty in previous v-SVM methods based on statisti-
cal learning theory (SLT). Theoretical analysis based on SLT as well as exper-
iments verify the effectiveness of the proposed method. The paper Extracting
Rules from Incomplete Decision Systems: System ERID by A. Dardzinska and
Z.W. Ras presents a new bottom-up strategy for extracting rules from par-
tially incomplete information systems. System is partially incomplete if a set
of weighted attribute values can be used as a value of any of its attributes.
Generation of rules in ERID is guided by two threshold values (minimum sup-
port, minimum confidence). The algorithm was tested on a publicly available
data-set “Adult” using fixed cross-validation, stratified cross-validation, and
bootstrap. The paper Mining for Patterns Based on Contingency Tables by
KL-Miner — First Experience by J. Rauch, M. Simtnek, and V. Lin presents a
new data mining procedure called KL-Miner. The procedure mines for various
patterns based on evaluation of two—dimensional contingency tables, includ-
ing patterns of a statistical or an information theoretic nature. The paper
Knowledge Discovery in Fuzzy Databases Using Attribute-Oriented Induction
by R.A. Angryk and F.E. Petry analyzes an attribute-oriented data induction
technique for discovery of generalized knowledge from large data repositories.
The authors propose three ways in which the attribute-oriented induction
methodology can be successfully implemented in the environment of fuzzy
databases. The paper Rough Set Strategies to Data with Missing Attribute
Values by J.W. Grzymala-Busse deals with incompletely specified decision
tables in which some attribute values are missing. The tables are described by
their characteristic relations, and it is shown how to compute characteristic
relations using the idea of a block of attribute-value pairs used in some rule
induction algorithms, such as LEM2. The paper Privacy-Preserving Collab-
orative Data Mining by J. Zhan, L. Chang and S. Matwin presents a secure
framework that allows multiple parties to conduct privacy-preserving asso-
ciation rule mining. In the framework, multiple parties, each of which has a
private data set, can jointly conduct association rule mining without disclosing
their private data to other parties. The paper Impact of Purity Measures on
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Knowledge Extraction in Decision Trees by M. Leni¢, P. Povalej, and P. Kokol
studies purity measures used to identify relevant knowledge in data. The paper
presents a novel approach for combining purity measures and thereby alters
background knowledge of the extraction method. The paper Multidimensional
On-line Mining by C.Y. Wang, T.P. Hong, and S.S. Tseng extends incremen-
tal mining to online decision support under multidimensional context consid-
erations. A multidimensional pattern relation is proposed that structurally
and systematically retains additional context information, and an algorithm
based on the relation is developed to correctly and efficiently fulfill diverse
on-line mining requests. The paper Quotient Space Based Cluster Analysis by
L. Zhang and B. Zhang investigates clustering under the concept of granular
computing. From the granular computing point of view, several categories of
clustering methods can be represented by a hierarchical structure in quotient
spaces. From the hierarchical structures, several new characteristics of clus-
tering are obtained. This provides another method for further investigation of
clustering.

The five papers in Part III deal with issues related to practical applications
of data mining. The paper Research Issues in Web Structural Delta Mining by
Q. Zhao, S.S. Bhowmick, and S. Madria is concerned with the application of
data mining to the extraction of useful, interesting, and novel web structures
and knowledge based on their historical, dynamic, and temporal properties.
The authors propose a novel class of web structure mining called web struc-
tural delta mining. The mined object is a sequence of historical changes of
web structures. Three major issues of web structural delta mining are pro-
posed, and potential applications of such mining are presented. The paper
Workflow Reduction for Reachable-path Rediscovery in Workflow Mining by
K.H. Kim and C.A. Ellis presents an application of data mining to workflow
design and analysis for redesigning and re-engineering workflows and business
processes. The authors define a workflow reduction mechanism that formally
and automatically reduces an original workflow process to a minimal-workflow
model. The model is used with the decision tree induction technique to mine
and discover a reachable-path of workcases from workflow logs. The paper A
Principal Component-based Anomaly Detection Scheme by M.L. Shyu et al.
presents a novel anomaly detection scheme that uses a robust principal com-
ponent classifier (PCC) to handle computer network security problems. Using
this scheme, an intrusion predictive model is constructed from the major and
minor principal components of the normal instances, where the difference of an
anomaly from the normal instance is the distance in the principal component
space. The experimental results demonstrated that the proposed PCC method
is superior to the k-nearest neighbor (KNN) method, the density-based local
outliers (LOF) approach, and the outlier detection algorithm based on the
Canberra metric. The paper Making Better Sense of the Demographic Data
Value in the Data Mining Procedure by K.M. Shelfer and X. Hu is concerned
with issues caused by the application of personal demographic data mining
to the anti-terrorism war. The authors show that existing data values rarely
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represent an individual’s multi-dimensional existence in a form that can be
mined. An abductive approach to data mining is used to improve data input.
Working from the ”decision-in,” the authors identify and address challenges
associated with demographic data collection and suggest ways to improve
the quality of the data available for data mining. The paper An Effective
Approach for Mining Time-Series Gene Expression Profile by V.S.M. Tseng
and Y.L. Chen presents a bio-informatics application of data mining. The
authors propose an effective approach for mining time-series data and apply
it to time-series gene expression profile analysis. The proposed method uti-
lizes a dynamic programming technique and correlation coefficient measure
to find the best alignment between the time-series expressions under the al-
lowed number of noises. It is shown that the method effectively resolves the
problems of scale transformation, offset transformation, time delay and noise.

We would like to thank the referees for reviewing the papers and providing
valuable comments and suggestions to the authors. We are also grateful to
all the contributors for their excellent works. We hope that this book will
be valuable and fruitful for data mining researchers, no matter whether they
would like to discover the fundamental principles behind data mining, or apply
the theories to practical application problems.

San Jose, Tokyo, Taipei, and Philadelphia T.Y. Lin
April, 2005 S. Ohsuga
C.J. Liau
X. Hu
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Commonsense Causal Modeling in the Data
Mining Context

Lawrence J. Mazlack

Applied Artificial Intelligence Laboratory
University of Cincinnati

Cincinnati, OH 45221-0030
mazlack@uc.edu

Abstract. Commonsense causal reasoning is important to human reasoning. Cau-
sality itself as well as human understanding of causality is imprecise, sometimes
necessarily so. Causal reasoning plays an essential role in commonsense human
decision-making. A difficulty is striking a good balance between precise formalism
and commonsense imprecise reality. Today, data mining holds the promise of ex-
tracting unsuspected information from very large databases. The most common
methods build rules. In many ways, the interest in rules is that they offer the prom-
ise (or illusion) of causal, or at least, predictive relationships. However, the most
common rule form (association rules) only calculates a joint occurrence frequencys;
they do not express a causal relationship. Without understanding the underlying
causality in rules, a naive use of association rules can lead to undesirable actions.
This paper explores the commonsense representation of causality in large data sets.

1. Introduction

Commonsense causal reasoning occupies a central position in human
reasoning. It plays an essential role in human decision-making. Consid-
erable effort has been spent examining causation. Philosophers, mathe-
maticians, computer scientists, cognitive scientists, psychologists, and oth-
ers have formally explored questions of causation beginning at least three
thousand years ago with the Greeks.

Whether causality can be recognized at all has long been a theoretical
speculation of scientists and philosophers. At the same time, in our daily
lives, we operate on the commonsense belief that causality exists.
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Causal relationships exist in the commonsense world. If an automgbile
fails to stop at a red light and there is an accident, it can be said that the
failure to stop was the accident’s cause. However, conversely, failing to
stop at a red light is not a certain cause of a fatal accident; sometimes no
accident of any kind occurs. So, it can be said that knowledge of some
causal effects is imprecise. Perhaps, complete knowledge of all possible
factors might lead to a crisp description of whether a causal effect will oc-
cur. However, in our commonsense world, it is unlikely that all possible
factors can be known. What is needed is a method to model imprecise
causal models.

Another way to think of causal relationships is counterfactually. For ex-
ample, if a driver dies in an accident, it might be said that had the accident
not occurred; they would still be alive.

Our common sense understanding of the world tells us that we have to
deal with imprecision, uncertainty and imperfect knowledge. This is also
the case of our scientific knowledge of the world. Clearly, we need an al-
gorithmic way of handling imprecision if we are to computationally handle
causality. Models are needed to algorithmically consider causes. These
models may be symbolic or graphic. A difficulty is striking a good balance
between precise formalism and commonsense imprecise reality

1.1 Data mining, introduction

Data mining is an advanced tool for managing large masses of data. It
analyzes data previously collected. It is secondary analysis. Secondary
analysis precludes the possibility of experimentally varying the data to
identify causal relationships.

There are several different data mining products. The most common are
conditional rules or association rules. Conditional rules are most often
drawn from induced trees while association rules are most often learned
from tabular data. Of these, the most common data mining product is asso-
ciation rules; for example:

e Conditional rule: * Association rule:
IF Age < 20 Customers who buy beer and sausage
THEN Income < 810,000  also tend to buy mustard
with {belief = 0.8} with {confidence = 0.8}

in {support = 0.15}

At first glance, these structures seem to imply a causal or cause-effect
relationship. That is: A customer’s purchase of both sausage and beer
causes the customer to also buy mustard. In fact, when typically devel-
oped, association rules do not necessarily describe causality. Also, the
strength of causal dependency may be very different from a respective as-
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sociation value. All that can be said is that associations describe the
strength of joint co-occurrences. Sometimes, the relationship might be
causal; for example, if someone eats salty peanuts and then drinks beer,
there is probably a causal relationship. On the other hand, if a crowing
rooster probably does not cause the sun to rise.

1.2 Naive association rules can lead to bad decisions

One of the reasons why association rules are used is to aid in making re-
tail decisions. However, simple association rules may lead to errors.

For example, it is common for a store to put one item on sale and then to
raise the price of another item whose purchase is assumed to be associated.
This may work if the items are truly associated; but it is problematic if as-
sociation rules are blindly followed [Silverstein, 1998].

Example: At a particular store, a customer buys:
* hamburger without hot dogs 33% of the time
*hot dogs without hamburger 33% of the time
*both hamburger and hot dogs 33% of the time
ssauerkraut only if hot dogs are also purchased!

This would produce the transaction matrix:

‘ hot
hamburger dog sauerkraut
t, 1 1 1
t, 1 0 0
t, 0 1 1

This would lead to the associations:
* (hamburger, hot dog) = 0.5
¢ (hamburger, sauerkraut) = 0.5
*(hot dog, sauerkraut) = 1.0

If the merchant:

*Reduced price of hamburger (as a sale item)

*Raised price of sauerkraut to compensate (as the rule hamburger =
sauerkraut has a high confidence.

*The offset pricing compensation would not work as the sales of sau-
erkraut would not increase with the sales of hamburger. Most likely,

U Sauerkraut is a form of pickled cabbage. It is often eaten with cooked sausage of various
kinds. It is rarely eaten with hamburger.
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the sales of hot dogs (and consequently, sauerkraut) would likely de-
crease as buyers would substitute hamburger for hot dogs.

1.3 False causality

Complicating causal recognition are the many cases of false causal rec-
ognition. For example, a coach may win a game when wearing a particular
pair of socks, then always wear the same socks to games. More interesting,
is the occasional false causality between music and motion. For example,
Lillian Schwartz developed a series of computer generated images, se-
quenced them, and attached a sound track (usually Mozart). While there
were some connections between one image and the next, the music was not
scored to the images. However, on viewing them, the music appeared to be
connected. All of the connections were observer supplied.

An example of non-computer illusionary causality is the choreography
of Merce Cunningham. To him, his work is non-representational and with-
out intellectual meaning?>. He often worked with John Cage, a randomist
composer. Cunningham would rehearse his dancers, Cage would create the
music; only at the time of the performance would music and motion come
together. However, the audience usually conceived of a causal connection
between music and motion and saw structure in both.

1.4 Recognizing causality basics

A common approach to recognizing causal relationships is by manipulat-
ing variables by experimentation. How to accomplish causal discouvery in
purely observational data is not solved. (Observational data is the most
likely to be available for data mining analysis.) Algorithms for discouvery
in observational data often use correlation and probabilistic independence.
If two variables are statistically independent, it can be asserted that they
are not causally related. The reverse is not necessarily true.

Real world events are often affected by a large number of potential fac-
tors. For example, with plant growth, many factors such as temperature,
chemicals in the soil, types of creatures present, etc., can all affect plant
growth. What is unknown is what causal factors will or will not be present
in the data; and, how many of the underlying causal relationships can be
discouvered among observational data.

2 “Dancing form me is movement in time and space. Its possibilities are bound only by our

imaginations and our two legs. As far back as I can remember, I’ve always had an appe-
tite for movement. I don’t see why it has to represent something. It seems to me it is what
it is ... its a necessity ... it goes on. Many people do it. You don’t have to have a reason to
do it. You can just do it.” --- http://www.merce.org:80/dancers
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Some define cause-effect relationships as: When « occurs, S always oc-
curs. This is inconsistent with our commonsense understanding of causal-
ity. A simple environment example: When a hammer hits a bottle, the bot-
tle usually breaks. A more complex environment example: When a plant
receives water, it usually grows.

An important part of data mining is understanding, whether there is a re-
lationship between data items. Sometimes, data items may occur in pairs
but may not have a deterministic relationship; for example, a grocery store
shopper may buy both bread and milk at the same time. Most of the time,
the milk purchase is not caused by the bread purchase; nor is the bread
purchase caused by the milk purchase.

Alternatively, if someone buys strawberries, this may causally affect the
purchase of whipped cream. Some people who buy strawberries want
whipped cream with them; of these, the desire for the whipped cream var-
ies. So, we have a conditional primary effect (whipped cream purchase)
modified by a secondary effect (desire). How to represent all of this is
open.

A largely unexplored aspect of mined rules is how to determine when
one event causes another. Given that « and /£ are variables and there ap-
pears to be a statistical covariability between « and f, is this covariability
a causal relation? More generally, when is any pair relationship causal?
Differentiation between covariability and causality is difficult.

Some problems with discouvering causality include:

* Adequately defining a causal relation

*Representing possible causal relations

*Computing causal strengths

* Missing attributes that have a causal effect

* Distinguishing between association and causal values
*Inferring causes and effects from the representation.

Beyond data mining, causality is a fundamentally interesting area for
workers in intelligent machine based systems. It is an area where interest
waxes and wanes, in part because of definitional and complexity difficul-
ties. The decline in computational interest in cognitive science also plays a
part. Activities in both philosophy and psychology [Glymour, 1995, 1996]
overlap and illuminate computationally focused work. Often, the work in
psychology is more interested in how people perceive causality as opposed
to whether causality actually exists. Work in psychology and linguistics
[Lakoff, 1990] [Mazlack, 1987] show that categories are often linked to
causal descriptions. For the most part, work in intelligent computer sys-
tems has been relatively uninterested in grounding based on human per-
ceptions of categories and causality. This paper is concerned with develop-
ing commonsense representations that are compatible in several domains.
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2. Causality

Centuries ago, in their quest to unravel the future, mystics aspired to deci-
pher the cries of birds, the patterns of the stars and the garbled utterances
of oracles. Kings and generals would offer precious rewards for the infor-
mation soothsayers furnished. Today, though predictive methods are dif-
ferent from those of the ancient world, the knowledge that dependency
recognition attempts to provide is highly valued. From weather reports to
stock market prediction, and from medical prognoses to social forecasting,
superior insights about the shape of things to come are prized [Halpern,
2000].

Democritus, the Greek philosopher, once said: “Everything existing in
the universe is the fruit of chance and necessity.” This seems self-evident.
Both randomness and causation are in the world. Democritus used a poppy
example. Whether the poppy seed lands on fertile soil or on a barren rock
is chance. If it takes root, however, it will grow into a poppy, not a gera-
nium or a Siberian Husky [Lederman, 1993].

Beyond computational complexity and holistic knowledge issues, there
appear to be inherent limits on whether causality can be determined.
Among them are:

* Quantum Physics: In particular, Heisenberg’s uncertainty principle

* Observer Interference: Knowledge of the world might never be complete
because we, as observers, are integral parts of what we observe

*Godel’s Theorem: Which showed in any logical formulation of arithmetic
that there would always be statements whose validity was indeterminate.
This strongly suggests that there will always be inherently unpredictable
aspects of the future.

* Turing Halting Problem: Turning (as well as Church) showed that any
problem solvable by a step-by-step procedure could be solved using a
Turing machine. However, there are many routines where you cannot as-
certain if the program will take a finite, or an infinite number of steps.
Thus, there is a curtain between what can and cannot be known mathe-
matically.

* Chaos Theory: Chaotic systems appear to be deterministic; but are com-
putationally irreducible. If nature is chaotic at its core, it might be fully
deterministic, yet wholly unpredictable [Halpern 2000, page 139].

*Space-Time: The malleability of Einstein’s space time that has the effect
that what is “now” and “later” is local to a particular observer; another
observer may have contradictory views.

* Arithmetic Indeterminism: Arithmetic itself has random aspects that intro-
duce uncertainty as to whether equations may be solvable. Chatin [1987,
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1990] discovered that Diophantine equations may or may not have solu-
tions, depending on the parameters chosen to form them. Whether a pa-
rameter leads to a solvable equation appears to be random. (Diophantine
equations represent well-defined problems, emblematic of simple arith-
metic procedures.)

Given determinism’s potential uncertainty and imprecision, we might
throw up out hands in despair. It may well be that a precise and complete
knowledge of causal events is uncertain. On the other hand, we have a
commonsense belief that causal effects exist in the real world. If we can
develop models tolerant of imprecision, it would be useful. Perhaps, the
tools that can be found in soft computing may be useful.

2.1 Nature of causal relationships

The term causality is used here in the every day, informal sense. There
are several strict definitions that are not wholly compatible with each
other. The formal definition used in this paper is that if one thing (event)
occurs because of another thing (event), we say that there is a dependent or

causal relationship.

Fig. 1. Diagram indicating that f s causally dependent on ¢.

Some questions about causal relationships that would be desirable to an-
swer are:

*To what degree does « cause f? Is the value for fsensitive to a small
change in the value of o?

*Does the relationship always hold in time and in every situation? If it
does not hold, can the particular situation when it does hold be discou-
vered?

*How should we describe the relationship between items that are causally
related: probability, possibility? Can we say that there is a causal strength
between two items; causal strength representing the degree of causal in-
fluence that items have over each other?

Sa, 8

Sﬂ’a

Fig. 2. Mutual dependency.

*[s it possible that there might be mutual dependencies; i.e., @ — S as well
as f — a? Is it possible that they do so with different strengths? They can
be described as shown in Fig. 2. where S;; represents the strength of the
causal relationship from 7 to j . Often, it would seem that the strengths
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would be best represented by an approximate belief function. There
would appear to be two variations:

* Different causal strengths for the same activity, occurring at the
same time:

For example, « could be short men and S could be tall women. If
S, meant the strength of desire for a social meeting that was
caused in short men by the sight of fall women, it might be that
Sa,ﬂ> Sﬁ’a .

On the other hand, some would argue that causality should be
completely asymmetric and if it appears that items have mutual in-
fluences it is because there is another cause that causes both. A
problem with this idea is that it can lead to eventual regression to a
first cause; whether this is true or not, it is not useful for common-
sense representation.

* Different causal strengths for symmetric activities, occurring at dif-
ferent times:

It would seem that if there were causal relationships in market bas-
ket data, there would often be imbalanced dependencies. For ex-
ample, if a customer first buys strawberries, there may be a rea-
sonably good chance that she will then buy whipped cream. Con-
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versely, if she first buys whipped cream, the subsequent purchase
of strawberries may be less likely. This situation could also be rep-
resented by Fig 2. However, the issue of time sequence would be
poorly represented. A graph representation could be used that im-
plies a time relationship. Nodes in a sequence closer to a root
could be considered to be earlier in time than those more distant
from the root. Redundant nodes would have to be inserted to cap-
ture every alternate sequence. For example, one set of nodes for
when strawberries are bought before whipped cream and another
set when whipped cream is bought before strawberries. However,
this representation is less elegant and not satisfactory when a time
differential is not a necessary part of causality. It also introduces
multiple nodes for the same object (e.g., strawberries, whipped
cream); which at a minimum introduces housekeeping difficulties.

Fig. 3. Alternative time sequences for two symmetric causal event se-
quences where representing differing event times necessary for rep-
resenting causality. Nodes closer to the root occur before nodes
more distant from the root. Causal strengths may be different de-
pending on sequence.

It is potentially interesting to discouver the absence of a causal relation-
ship; for example, discouvering the lack of a causal relationship in drug
treatment’s of disease. If some potential cause can be eliminated, then at-
tention can become more focused on other potentials.

Prediction is not the same as causality. Recognizing whether a causal re-
lationship existed in the past is not the same as predicting that in the future
one thing will occur because of another thing. For example, knowing that
a was a causal (or deterministic) factor for g is different from saying
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whenever there is «, £ will deterministically occur (or even probalistically
occur to a degree A). There may be other necessary factors.

Causal necessity is not the same thing as causal sufficiency; for exam-
ple, in order for event o to occur, events «,f,¢ need to occur. We can say
that a, by itself, is necessary, but not sufficient.

Part of the difficulty of recognizing causality comes from identifying
relevant data. Some data might be redundant; some irrelevant; some are
more important than others. Data can have a high dimensionality with only
a relatively few utilitarian dimensions; i.e., data may have a higher dimen-
sionality than necessary to fully describe a situation. In a large collection
of data, complexity may be unknown. Dimensionality reduction is an im-
portant issue in learning from data.

A causal discovery method cannot transcend the prejudices of analysts.
Often, the choice of what data points to include and which to leave out,
which type of curve to fit (linear, exponential, periodic, etc.), what time in-
crements to use (years, decades, centuries, etc.) and other model aspects
depend on the instincts and preferences of researchers.

It may be possible to determine whether a collection of data is random
or deterministic using attractor sets from Chaos theory [Packard, 1980]. A
low dimensional attractor set would indicate regular, periodic behavior and
would indicate determinate behavior. On the other hand, high dimensional
results would indicate random behavior.

2.2 Types of causality

There are at least three ways that things may be said to be related:

* Coincidental: Two things describe the same object and have no determi-
native relationship between them.

* Functional: There is a generative relationship.

* Causal: One thing causes another thing to happen. There are at least four
types of causality:

*Chaining: In this case, there is a temporal chain of events, 4;4,,...,
A,, which terminates on 4,. To what degree, if any, does 4; (i=1,...,
n-1) cause 4,? A special case of this is a backup mechanism or a
preempted alternative. Suppose there is a chain of casual depend-
ence, A, causing A,; suppose that if 4; does not occur, A4, still oc-
curs, now caused by the alternative cause B; (which only occurs if 4;
does not).

*Conjunction (Confluence): In this case, there is a confluence of
events, 4,,..., 4,, and a resultant event, B. To what degree, if any, did
or does A; cause B? A special case of this is redundant causation.
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Say that either 4; or 4, can cause B; and, both 4; and A4, occur si-
multaneously. What can be said to have caused B?

*Network: A network of events.

*Preventive: One thing prevents another; e.g., She prevented the ca-
tastrophe.

Recognizing and defining causality is difficult. Causal claims have both
a direct and a subjunctive complexity [Spirtes, 2000] - they are associated
with claims about what did happen, or what did not happen, or has not
happened yet, or what would have happened if some other circumstance
had been otherwise. The following show some of the difficulties:

* Example 1: Simultaneous Plant Death: My rose bushes and my neigh-
bor’s rose bushes both die. Did the death of one cause the other to die?
(Probably not, although the deaths are associated.)

* Example 2: Drought: There has been a drought. My rose bushes and my
neighbor’s rose bushes both die. Did the drought cause both rose bushes
to die? (Most likely.)

* Example 3: Traffic: My friend calls me up on the telephone and asks me
to drive over and visit her. While driving over, I ignore a stop sign and
drive through an intersection. Another driver hits me. I die. Who caused
my death? -- Me? -- The other driver? -- My friend? -- The traffic engi-
neer who designed the intersection? -- Fate? (Based on an example sug-
gested by Zadeh [2000].)

* Example 4: Umbrellas: A store owner doubles her advertising for um-
brellas. Her sales increase by 20% What caused the increase? -- Advertis-
ing? -- Weather? -- Fashion? -- Chance?

* Example 5: Poison: (Chance increase without causation) Fred and Ted
both want Jack dead. Fred poisons Jack’s soup; and, Ted poisons his cof-
fee. Each act increases Jack’s chance of dying. Jack eats the soup but
(feeling rather unwell) leaves the coffee, and dies later. Ted’s act raised
the chance of Jack’s death but was not a cause of it.

Exactly what makes a causal relationship is open to varying definition.
However, causal asymmetries often play a part [Hausman 1998]. Some
claimed asymmetries are:

* Time order: Effects do not come before effects (at least as locally ob-
served)

* Probabilistic independence: Causes of an event are probabilistically inde-
pendent of another, while effects of a cause are probabilistically depend-
ent on one another.
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* Counterfactual dependency: Effects counterfactually depend on their
causes, while causes do not counterfactually depend on their effects and
effects of a common cause do not counterfactually depend on each other.

*Over determination: Effects over determine their causes, while causes
rarely over determine their effects.

* Fixity: Causes are “fixed” no later than their effects

*Connection dependency: If one were to break the connection between
cause and effect; only the effect might be affected.

2.3 Classical statistical dependence

Statistical independence:

Statistical dependence is interesting in this context because it is often
confused with causality. Such reasoning is not correct. Two events £;, E,
may be statistical dependent because both have a common cause E,. But
this does not mean that £ is the cause of E>.

For example, lack of rain (£)) may cause my rose bush to die (£;) as
well as that of my neighbor (£5). This does not mean that the dying of my
rose has caused the dying of my neighbor’s rose, or conversely. However,
the two events £, E, are statistically dependent.

The general definition of statistical dependence is:

Let 4, B be two random variables that can take on values in the
domains {aj,a;,...,a;} and {by,b,,...,b;} respectively. Then 4 is said to
be statistically independent of B iff

prob (aj|bj) = prob(a;) for all b; and for all a;.

The formula

prob(aj|b;j) = prob(a;) prob(b;)

describes the joint probability of a; AND b; when 4 and B are independ-

ent random variables. Then follows the law of compound probabilities
prob(a;,b;) = prob(a;) prob(bj|a;)

In the absence of causality, this is a symmetric measure. Namely,
prob(aj,b;) = prob(b;,a;)

Causality vs. statistical dependence:

A causal relationship between two events £; and E, will always give
rise to a certain degree of statistical dependence between them. The con-
verse is not true. A statistical dependence between two events may; but
need not, indicate a causal relationship between them. We can tell if there
is a positive correlation if

prob(ai,by) > prob(a;) prob(b;)
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However, all this tells us that it is an interesting relationship. It does not
tell us if there is a causal relationship.

Following this reasoning, it is reasonable to suggest that association
rules developed as the result of link analysis might be considered causal; if
only because of a time sequence is involved. In some applications, such as
communication fault analysis [Hatonen 1996], causality is assumed. In
other potential applications, such as market basket analysis®, the strength
of time sequence causality is less apparent. For example, if someone buys
milk on day, and dish soap on day,, is there a causal relationship? Perhaps,
some strength of implication function could be developed.

Some forms of experimental marketing might be appropriate. However,
how widely it might be applied is unclear. For example, a food store could
carry milk (E; ,-;) one month and not carry dish soap. The second month
the store could carry dish soap (£ ,,-») and not milk. On the third month, it
could carry both milk and dish soap (£} ,,-3) (E2.,-3). That would determine
both the independent and joint probabilities (setting aside seasonality is-
sues). Then, if

Prob(£} =3) prob(£2 =3) > prob(E£;,,-1) prob(£ ,-2)

there would be some evidence that there might be a causal relationship

as greater sales would occur when both bread and soap were present.

2.4 Probabilistic Causation

Probabilistic Causation designates a group of philosophical theories
that aim to characterize the relationship between cause and effect using the
tools of probability theory. A primary motivation is the desire for a theory
of causation that does not presuppose physical determinism.

The success of quantum mechanics, and to a lesser extent, other theories
using probability, brought some to question determinism. Some philoso-
phers became interested in developing causation theories that do not pre-
suppose determinism.

One notable feature has been a commitment to indeterminism, or rather,
a commitment to the view that an adequate analysis of causation must ap-
ply equally to deterministic and indeterministic worlds. Mellor [1995] ar-
gues that indeterministic causation is consistent with the connotations of
causation. Hausman [1998], on the other hand, defends the view that in in-
deterministic settings there is, strictly speaking, no indeterministic causa-
tion, but rather deterministic causation of probabilities.

Following Suppes [1970] and Lewis [Lewis 1996], the approach has
been to replace the thought that causes are sufficient for, or determine,

3 Time sequence link analysis can be applied to market basket analysis when the customers
can be recognized; for example through the use of supermarket customer “loyalty” cards
or “cookies” in e-commerce.



16  Lawrence J. Mazlack

their effects with the thought that a cause need only raise the probability of
its effect. This shift of attention raises the issue of what kind of probability
analysis, if any, is up to the job of underpinning indeterministic causation.

3. Representation

The representation constrains and supports the methods that can be used.
Several representations have been proposed. Fully representing impreci-
sion remains undone.

3.1 First order logic

Hobbs [2001] uses first-order logic to represent causal relationships. One
difficulty with this approach is that the representation does not allow for
any gray areas. For example, if an event occurred when the wind was
blowing east, how could a wind blowing east-northeast be accounted for?
The causality inferred may be incorrect due to the representation’s rigidity.

Nor can first order logic deal with dependencies that are only sometimes
true. For example, sometimes when the wind blows hard, a tree falls. This
kind of sometimes event description can possibly be statistically described.
Alternatively, a qualitative fuzzy measure might be applied.

Another problem is recognizing differing effect strengths. For example,
if some events in the causal complex are more strongly tied to the effect?
Also, it is not clear how a relationship such as the following would be rep-
resented: o causes S some of the time; S causes « some of the time; other
times there is no causal relationship.

3.2 Probability and decision trees

Various forms of root initiated, tree-like graphs have been suggested
[Shafer 1996]. A tree is a digraph starting from one vertice, the root. The
vertices represent situations. Each edge represents a particular variable
with a corresponding probability (branching). Among them are:

*Probability trees: Have a probability for every event in every situation,
and hence a probability distribution and expected value for every variable
in every situation. A probability tree is shown in Fig 4. Probability trees
with zero probabilities can be used to represent deterministic events; an
example of this can be seen in Fig. 5.
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doesn't

0.6

jumps
0.4

dies  dies

Fig. 4. Probability tree, dependent. (Based on: Shafer [1996], p71.)

Fig. 5. Determinism in a probability tree. (Based on: Shafer [1996], p72.)

*Decision trees: Trees in which branching probabilities are supplied for
some, while others are unknown. An example of a decision tree is pro-
vided in Fig 6. An often useful variant is Martingale trees.

Time ordering of the variables is represented via the levels in the tree.
The higher a variable is in the tree, the earlier it is in time. This can be-
come ambiguous for networked representations; i.e., when a node can have
more than two parents and thus two competing paths (and their imbedded
time sequences). By evaluating the expectation and probability changes
among the nodes in the tree, one can decide whether the two variables are
causally related.

There are various difficulties with this kind of tree. One of them is com-
putational complexity. Another is the assumptions that need to be made
about independence, such as the Markoff condition. In the context of large
databases, learning the trees is computationally intractable.
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Fig. 6. Decision tree (based on: Shafer [1996], p 249).

Another significant difficulty is incomplete data. Data may be incom-
plete for two reasons. Data may be known to be necessary, but missing.
Data also may be hidden. A dependency distinction may be made. Missing
data is dependent on the actual state of the variables. For example, a miss-
ing data point in a drug study may indicate that a patient became too sick
to continue the study (perhaps because of the drug). In contrast, if a vari-
able is hidden, the absence of this data is independent of state. Both of
these situations have approaches that may help. The reader is directed to
Spirtes [2000] for a discussion.

3.3 Directed graphs

Some authors have suggested that sometimes it is possible to recognize
causal relations through the use of directed graphs (digraphs) [Pearl 1991]
[Spirtes 2000].

In a digraph, the vertices correspond to the variables and each directed
edge corresponds to a causal influence. Diagraphs are not cyclic; the same
node in the graph cannot be visited twice. An example is shown in Fig. 7.
Pearl [2000] and Spirtes [2001] use a form of digraphs called DAGs for
representing causal relationships.
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Fig. 7. (a) An example digraph (DAG) (b) Example instantiating (a).

Sometimes, cycles exist. For example, a person’s family medical history
influences both whether they are depressive and whether they will have
some diseases. Drinking alcohol combined with the genetic predisposition
to certain disease influences whether the person has a particular disease;
that then influence depression; that in turn may influence the person’s
drinking habits. Fig. § shows an example of a cyclic digraph.

drinking alcohol
\ family history

disease

depression

Fig. 8. Cyclic causal relationships.

Developing directed acyclic graphs from data is computationally expen-
sive. The amount of work increases geometrically with the number of at-
tributes. For constraint based methods, the reader is directed to Pearl
[2000], Spirtes [2000], Silverstein [1998], and Cooper [1997]. For Bayes-
ian discouvery, the reader is directed to Heckerman [1997] and Geiger
[1995].

Quantitatively describing relationships between the nodes can be com-
plex. One possibility is an extension of the random Markoff model; shown
in Fig. 9. The state value is 1/0 as an event either happens or does not.

>
p—¢ M b—%

Fig. 9. Random Markoff model: ¢ = P(D), m = the probability that when
D is present, the causal mechanism brings about E, b = the prob-
agility that some other (unspecified) causal mechanism brings
about E.
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b
Fig. 10. Markoff model applied to a “bird” example [Rehder, 2002]

4. Epilogue

Causality occupies a central position in human commonsense reasoning. In
particular, it plays an essential role in common sense human decision-
making by providing a basis for choosing an action that is likely to lead to
a desired result. In our daily lives, we make the commonsense observation
that causality exists. Carrying this commonsense observation further, the
concern is how to computationally recognize a causal relationship.

Data mining holds the promise of extracting unsuspected information
from very large databases. Methods have been developed to build rules. In
many ways, the interest in rules is that they offer the promise (or illusion)
of causal, or at least, predictive relationships. However, the most common
form of rules (association) only calculate a joint occurrence frequency; not
causality. A fundamental question is determining whether or not recog-
nizing an association can lead to recognizing a causal relationship.

An interesting question how to determine when causality can be said to
be stronger or weaker. Either in the case where the causal strength may be
different in two independent relationships; or, where in the case where two
items each have a causal relationship on the other.

Causality is a central concept in many branches of science and philoso-
phy. In a way, the term “causality” is like “truth” -- a word with many
meanings and facets. Some of the definitions are extremely precise. Some
of them involve a style of reasoning best be supported by fuzzy logic.

Defining and representing causal and potentially causal relationships is
necessary to applying algorithmic methods. A graph consisting of a col-
lection of simple directed edges will most likely not offer a sufficiently
rich representation. Representations that embrace some aspects of impreci-
sion are necessary.

A deep question is when anything can be said to cause anything else.
And if it does, what is the nature of the causality? There is a strong moti-
vation to attempt causality discouvery in association rules. The research
concern is how to best approach the recognition of causality or non-
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causality in association rules. Or, if there is to recognize causality as long
as association rules are the result of secondary analysis?
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Summary. Observational calculi are special logical calculi in which statements con-
cerning observed data can be formulated. Their special case is predicate observa-
tional calculus. It can be obtained by modifications of classical predicate calculus
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1 Introduction

The goal of this chapter is to contribute to the theoretical foundations of data
mining. We are interested in association rules of the form ¢ ~ i where ¢
and v are derived Boolean attributes. Meaning of association rule ¢ ~ 1) is
that Boolean attributes ¢ and v are associated in a way corresponding to
the symbol ~ that is called 4ft-quantifier. The 4ft-quantifier makes possible
to express various types of associations e.g. several types of implication or
equivalency and also associations corresponding to statistical hypothesis tests.

Association rules of this form are introduced in [2]. Some more examples
are e.g. in [7, 8]. To keep this chapter self-contained we will overview basic
related notions in the next section.

Logical calculi formulae of which correspond to such association rules were
defined and studied e.g. in [2, 4, 5, 6, 7]. It was shown that there are practically
important theoretical properties of these calculi. Deduction rules of the form
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j:ﬁ, where ¢ ~ 1 and ¢’ ~ 1’ are association rules are examples of such
results [7].

Logical calculus of association rules can be understood as a special case of
the monadic observational predicate calculus [2]. It can be obtained by modi-
fications of classical predicate calculus such that only finite models are allowed
and 4ft quantifiers are added. We call this calculus observational calculus of
assoctation rules.

Observational calculus is a language formulae of which are statements
concerning observed data. Various types of observational calculi are defined
and studied [2]. The observational calculi are introduced in Sect. 3. Association
rules as formulas of observational calculus are defined in Sect. 4.

The natural question is what association rules are classically definable.
We say that the association rule is classically definable if it can be expressed
by means of classical predicate calculus (i.e. predicates, variables, classical
quantifiers V, 3, Boolean connectives and the predicate of equality). The for-
mal definition is in Sect. 5. The problem of definability in general monadic
observational predicate calculi is solved by the Tharp’s theorem, see Sect. 5.

Tharp’s theorem is but too general from the point of view of association
rules. We show, that there is a more intuitive criterion of classical definability
of association rules. This criterion concerns 4ft-quantifiers. We need some the-
oretical results achieved in [2], see Sect. 6. The criterion of classical definability
of association rules is proved in Sect. 7.

2 Association Rules

The association rule is an expression ¢ ~ 1 where ¢ and i are Boolean
attributes. The association rule ¢ ~ ¥ means that the Boolean attributes ¢
and v are associated in the way given by the symbol ~. The symbol ~ is
called /ft-quantifier. Boolean attributes ¢ and v are derived from columns
of an analysed data matrix M. An example of the association rule is the
expression

A(a) AD(6) ~ B(B) NC(v) -

The expression A(«) is a basic Boolean attribute The symbol « denotes a
subset of all possible values of the attribute A (i.e. column of the data matrix
M). The basic Boolean attribute A(«) is true in row o of M if it is a € «
where a is the value of the attribute A in row o. Boolean attributes ¢ and
are derived from basic Boolean attributes using propositional connectives V,
A and — in the usual way.

The association rule ¢ ~ 1 can be true or false in the analysed data matrix
M. Tt is verified on the basis of the four-fold contingency table of ¢ and v in
M, see Table 1. This table is denoted 4ft(y, ¥, M).

Here a is the number of the objects (i.e. the rows of M) satisfying both ¢
and 1, b is the number of the objects satisfying ¢ and not satisfying 1, c is
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Table 1. 4ft table 4ft(p, ¥, M) of ¢ and 1 in data matrix M

A
el a b
| ¢ d

the number of objects not satisfying ¢ and satisfying ¢ and d is the number
of objects satisfying neither ¢ nor ¢ . We write 4ft(¢, ¥, M) = (a, b, ¢, d). We
use the abbreviation ”4ft” instead of ”four-fold table”. The notion 4ft table
is used for all possible tables 4ft(p, ¥, M).

Definition 1. 4ft table is a quadruple (a,b,c,d) of the integer non-negative
numbers a,b, c,d such that a +b+c+d > 0.

A condition concerning all 4ft tables is associated to each 4ft-quantifier.
The association rule ¢ ~ 1 is true in the analysed data matrix M if the
condition associated to the 4ft-quantifier ~ is satisfied for the 4ft table 4 f¢(¢p,
¥, M) of ¢ and ¥ in M. If this condition is not satisfied then the association
rule ¢ ~ 1) is false in the analysed data matrix M.

This condition defines a {0,1} - function Asf. that is called associated
function of the 4ft-quantifier ~, see [2]. This function is defined for all 4ft
tables such that

Asfo = 1 if the condition associated to ~ is satisfied
~ 10 otherwise.

Here are several examples of 4ft quantifiers.

The 4ft-quantifier =, Base of founded implication for 0 < p < 1 and
Base > 0 [2] is defined by the condition aL-s-b > pAa > Base . The association
rule ¢ =, Base ¥ means that at least 100p per cent of objects satisfying ¢
satisfy also ¢ and that there are at least Base objects of M satisfying both
v and .

The 4ft-quantifier :>;’a, Base

0 < a < 0.5 and Base > 0 [2] is defined by the condition Zfi: (“jb)pi(l -
p)“*’b_i < a Aa > Base . This corresponds to the statistical test (on the
level ) of the null hypothesis Hy : P(9)|¢) < p against the alternative one
Hy : P(]p) > p. Here P(v)|¢p) is the conditional probability of the validity of
1 under the condition .

The 4ft-quantifier <, pgse of founded double implication for 0 < p <1
and Base > 0 [3] is defined by the condition ﬁ > pAa > Base . This
means that at least 100p per cent of objects satisfying ¢ or v satisfy both ¢
and ¥ and that there are at least Base objects of M satisfying both ¢ and

(4

of lower critical implication for 0 < p < 1,

The 4ft-quantifier =, pese of founded equivalence for 0 < p < 1 and

Base > 0 [3] is defined by the condition % > pAa > Base. The

association rule ¢ =, pqse ¥ means that ¢ and ¢ have the same value (either
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true or false) for at least 100p per cent of all objects of M and that there are
at least Base objects satisfying both ¢ and .

The 4ft-quantifier N;_,Base of above average dependence for 0 < p and
Base > 0 [7] is defined by the condition 4 > (1 + p) 45— Aa > Base .

This means that among the objects satisfying ¢ is at least 100p per cent more
objects satisfying ¢ than among all objects and that there are at least Base
objects satisfying both ¢ and .

Further various 4ft-quantifiers are defined e.g. in [2, 3, 7, §].

3 Observational Calculi

A mathematical theory related to the question ” Can computers formulate and
Justify scientific hypotheses?’ is developed in [2]. GUHA method as a tool for
mechanising hypothesis formation is defined in relation to this theory. The
procedure 4ft-Miner described in [8] is a GUHA procedure in the sense of [2].

Observational calculi are defined and studied in [2] as a language in which
statements concerning observed data are formulated. We will use monadic
observational predicate calculi to solve the question what predicate association
rules can be logically equivalent expressed using classical quantifiers V and 3
and by the predicate of equality.

We will use the following notions introduced in [2].

Definition 2. Observational semantic system and observational V-structures
are defined as follows:

1. Semantic system S= (Sent, M, V, Val) is given by a non—empty set Sent
of sentences, a non—empty set M of models, non—empty set V of abstract
values and by an evaluation function Val : (Sent x M) — V. If it is
© € Sent and M € M then Val(p,M) is the value of ¢ in M.

2. Semantic system S= (Sent, M, V, Val) is an observational semantic
system if Sent, M and V are recursive sets and Val is a partially recursive

function.
3. A type is a finite sequence (t1,...,t,) of positive natural numbers. We
write < 1™ > instead of (1,1,...,1).
——

n—times

4. A V-structure of the type t = (t1,...,t,) is a n+1-tuple

M= <M7f17~-~afn>;

where M is a non-empty set and each f; (i=1,...,n)is a mapping from
M? into V. The set M is called the domain of M.

5. If My = (M, f1,..., fn), M2 = (M2,g1,...,9n) are the V-structures of
the type t = (t1,...,t,) then the one-one mapping ¢ of My onto My is
an isomorphism of My, My if it preserves the structure, i.e. for each i
and o1, ...,0;, € My we have f;(01,...,0t,) = gi(C(01),...,¢(0r,)) -
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6. Denote by MY the set of all V-structures M of the type t such that the

domain of M is a finite set of natural numbers. If V' is a recursive set
then the elements of M} are called observational V-structures.

Various observational semantic systems are defined in [2]. Observational

predicate calculus (OPC for short) is one of them. It is defined by modifica-
tions of (classical) predicate calculus such that

only finite models are admitted

more quantifiers than V and 3 are used

assumptions are made such that the closed formulae, models and the eval-
uation function form an observational semantic system

see definitions 3, 4 and 5.

Definition 3. A predicate language L of type t = (t1,...,t,) is defined in
the following way.

(qi

Symbols of the language are:

predicates Pi,..., P, of arity t1,...,t, respectively

an infinite sequence xg,x1, T2,... of variables

junctors 0, 1 (nullary), = (unary) and A,V,—, (binary), called false-
hood, truth, negation, conjunction, disjunction, implication and equiva-
lence.

quantifiers qg, q1, g2, ... of types s, s1, S2, ... respectively. The sequence
of quantifiers is either infinite or finite (non-empty). The type of quantifier
gi is a sequence (1%). If there are infinitely many quantifiers then the
function associating the type s; with each i is recursive.

A predicate language with equality contains an additional binary
predicate = (the equality predicate) distinct from Py, ..., B,.

Formulae are defined inductively as usual:

Each expression P;(u1,...,uy,) whereuy, ..., u, are variables is an atomic
formula (and uq = ug is an atomic formula).

Atomic formula is a formula, 0 and 1 are formulae. If ¢ and ¢ are for-
mulae, then —p, p A, oV, ¢ — Y and p « ¥ are formulae.

If q; is a quantifier of the type (1%%), if u is a variable and 1, ..., ps, are
formulae then (q;u)(p1,...,ps;) is a formula.

Free and bound variables are defined as usual. The induction step for

w)(p1,...,9s) is as follows:

A wariable is free in (qu)(e1,-..,9s) iff it is free in one of the formulae
P1,---,ps and it is distinct from u.

A wariable is bound in (giu)(p1,...,ps) iff it is bound in one of the for-
mulae @1,...,ps or it is u.

Definition 4. Observational predicate calculus OPC of the type t =

(th, ...

,tn) is given by
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Predicate language L of the type t.
Associated function Asf,, for each quantifier q; of the language L. Asf,,
maps the set Mi?’l} of all models (i.e. V-structures) of the type s; whose
domain is a finite subset of the set of natural numbers into {0,1} such that
the following is satisfied:
— FEach Asf,, is invariant under isomorphism, i.e. if My, My € Ms{io’l}
are isomorphic, then Asf, (M1) = Asf,, (Ma).
Asf, (M) is a recursive function of two variables q;, M.

Definition 5. (Values of formulae ) Let P be an OPC, let M = (M, f1,
.oy fn) be a model and let ¢ be a formula; write FV (p) for the set of free
variables of ¢. An M-sequence for ¢ is a mapping € of FV(p) into M. If
the domain of € is {u1,...un} and if e(u;) = m; then we write € = H
We define inductively ||¢||mle] - the M-value of ¢ for .

o [P u) ] = fim, o)
o lur =wo)llmlg] =1 iff ma = ma

o [0m[@ =0, [[L[r[0] = 1,

o lvlmle] =1 —Illllmlel

o IfFV(p) C domain(e) then write €/ instead of restriction of € to FV ().

Let v be one of N\, V, —, < and let Asf, be its associated function given by

the usual truth table. Then |0 v ¥l|lmle] = Asf,([lellmle/ el ¥l ale/]) -
o If domain(e) 2 FV(p) — {x} and = &€ domain(e) then letting x vary over
M we obtain an unary function ||¢||5, on M such that for m € M it is:

lellaatm) = lellmle U =)/el -

(lellam can be viewed as a k-ary function, k being the number of free vari-
ables of p. Now all variables except x are fized according to €; x varies over

M). We define: |[(gix) (1, - pr) | mle] = Asfy (M, leallg - llerlli))-

The following theorem is proved in [2].

Theorem 1. Let P be an OPC of type t and let S be the semantic sys-
tem whose sentences are closed formulas of P, whose models are elements

of Mgo’l} and whose evaluation function is defined by:

Val(p, M) = [[elm[0] -

Then S is an observational semantic system.

Remark 1. Let P be an OPC of type t and let ¢ be its closed formula. Then
we write only ||| am instead of ||| a[0].

We will also use the following notions defined in [2].
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Definition 6. An OPC is monadic if all its predicates are unary, i.e. if its
type is t = (1,...,1). We write MOPC MOPC for "monadic observational
predicate calculus”. A MOPC whose only quantifiers are the classical quan-
tifiers ¥, 3 is called a classical MOPC or CMOPC. Similarly for MOPC
with equality, in particular a CMOPC with equality.

4 Association Rules in Observational Calculi

Let P4 be a MOPC of the type (1,1, 1,1) with unary predicates Py, P, Ps, Py
and with the quantifier =, pgse of the type (1,1). Let x be the variable of
P4. Then the closed formula,

(:>p,Ba567 x)(Pl (1‘) A\ P4(.23), PQ(J:) A Pg(l‘))
of MOPC P4 can be understood as the association rule
Pl/\P4 :>p,Base PQ/\P?)

if we consider the associated function Asf=  ,,.. of the quantifier = pase as
the function mapping the set Mg)j)} of all models M = (M, f1, fa) (see Fig.
1) of the type (1, 1) into {0, 1} such that

1 if =%~ >pAa> Base
A — a+b — -
$f=p.pase { 0 otherwise.

We suppose that a is the number of 0 € M such that both f1(0) = 1, f2(0) =1
and that b is the number of o € M such that fi(0o) =1 and f3(0) = 0. These
considerations lead to definition 7.

element of M | f fo

01 1 1
02 0 1
On, 0 0

Fig. 1. An example of the model M = (M, f1, fa)

Definition 7. Let P be a MOPC' (with or without equality) with unary pred-
icates Py, ....,P,, n > 2. Fach formula

(~ 2)(p(x), 9 (2))

of P where ~ is a quantifier of the type (1,1), = is a variable and @(x),
Y(x) are open formulas built from the unary predicates, junctors and from
the variable x is an association rule. We can write the association rule

(~ z)(p(x),¥(x)) also in the form ¢ ~ 1.



30 Jan Rauch

Definition 8. Let M = (M; f, g) be an observational {0,1}-structure of the

type (1,1) (i.e. M € Mg}ll)} see definition 2). Then the the 4ft table

Tr = (am, bat, eams daq)

of M is defined such that apq is the number of o € M for which f(o) = g(o) =
1, baq is the number of o € M for which f(o) =1 and g(0) = 0 cam is the
number of o € M for which f(0o) =0 and g(o) =1 and daq is the number of
0 € M for which f(o) = g(o) =0.

Let N = (M;f,g,h) be an observational {0,1}-structure of the type
(1,1,2) Then the 4ft table Ty of N is defined as the 4ft table Taq of
M= (M;f,g).

Remark 2. The associated function Asf. is invariant under isomorphism of
observational structures (see definition 4). It means that if M = (M; f,g) is
an observational {0, 1}-structure of the type (1,1) then the value Asf. (M) =
Asf ((M; f,g)) is fully determined by the 4ft table Taq = (a1, b, ca, d)-
Thus we can write Asf(ar, bat, e, daq) instead of Asf((M; £, g)).

Remark 3. Let P be a MOPC as in definition 7. Let ¢ ~ 1) be an associational
rule, let M be a model of P and let M be a domain of M. Then it is

llo ~ pllae = [1(~ 2) (), (@) aa[0] = AsE((M, 1ol 1011 04)) -

Let us remember that both [¢[%, and [¢|%, are unary functions defined
on M, see the last point of definition 5. We denote the {0,1}-structure
(M, loll% [1911%)) by Mg,y It means that

o ~P)lm = Asto(am, s orm, My s dM,.,) -

We are interested in the question of what association rules are classically
definable (i.e. they can be expressed by predicates, variables, classical quanti-
fiers V, 3, Boolean connectives and by the predicate of equality). We defined
association rules of the form such as

A(ar,a7) AN D(d2,ds) =p Base B(b2)

see Sect. 2. Informally speaking this association rule is equivalent to the as-
sociation rule

(A(a1) V A(ar)) A (D(d2)V D(d3)) =p,Base B(b2)

with Boolean attributes A(aq), A(ar), D(dz2), D(ds) and B(bz).
Thus we can concentrate on the question of what association rules - i.e.
closed formulas (~ x)(¢,%) of the MOPC are classically definable.
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5 Classical Definability and Tharp’s Theorem

We use the following two definitions and lemma from [2].

Definition 9. Let P be an OPC. Suppose that ¢ and v are formulas such
that FV () = FV(¢) (p and ¢ have the same free variables). Then ¢ and )
are said to be logically equivalent if |p||m = ||¥]|am for each model M.

Remark that the equality ||¢|lm = ||¥||m in the previous definition is
generally the equality of functions. We will use it for the closed formulas. In
this case it is the equality of two values.

Definition 10. Let P be a MOPC (including MOPC with equality) of the type
(1™) and let q be a quantifier of type (1¥), k < n. Then q is definable in P
if there is a sentence @ of P not containing q such that the sentence

(qz)(P1(x), ..., Pa())
1s logically equivalent to ®.

Lemma 1. Let P and q be as in definition 10. Then q is definable in P iff
each sentence of P is logically equivalent to a sentence not containing the
quantifier q.

The following theorem concerns the problem of definability of quantifiers,
see [2] (and [10] cited in [2]).

Theorem 2. (Tharp) Let P= be a CMOPC with equality and unary predi-
cates Py, ..., P, and let P’ be its extension by adding a quantifier q of type
(1%) (k < n). Then q is definable in P’ iff there is a natural number m such
that the following holds for ¢ € {0,1} and each model M of type (1¥):

Asfo(M) = ¢ iff (Mo C M)(Mo has < m elements
and (YMy)(Mo C My C M implies Asfy(M) =€

We formalise the notion of classically definable association rules in the
following definition.

Definition 11. Let P~ be a CMOPC with equality and unary predicates
Py,...,P, (n>2), let P~ be its extension by adding a quantifier ~ of type
(1,1). Then the association rule ¢ ~ 1 is classically definable if the quan-
tifier ~ is definable in P~ .

The following lemma is an immediate consequence of lemma 1.

Lemma 2. Let P~ and ¢ ~ ) be as in definition 11. Then the association
rule @ ~ 1 is classically definable iff it is logically equivalent to a sentence of
P~ that contains only predicates, variables, classical quantifiersV, 3, Boolean
connectives and the predicate of equality.
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We search for another criterion of classical definability of association rules
@ ~ 1 than Tharp’s theorem 2. Namely we are interested in a criterion closely
related to the associated function Asf. of the 4ft-quantifier ~.

Such criterion is presented in Sect. 7. It is based on the normal form
theorem, see the next section.

6 Normal Form Theorem

We need the following notions and lemma from [2].
Definition 12.

1. An n-ary card is a sequence (u;;1 < i < n) of n zeros and ones. Let
P be a MOPC with predicates Py,...,Py. If M = (M,p1,...,pn) is a
model of P and if o € M then the M-card of o is the tuple Caq(0) =
(p1(0),...,pn(0)); it is evidently an n-ary card.

2. For each natural number k > 0, 3% is a quantifier of the type (1) whose
associated function is defined as follows: For each finite model M = (M, f)
it is Asfax (M) = 1 iff there are at least k elements o € M such that
flo)=1.

Lemma 3. Let k be a natural number and let P * be the extension of CMOPC
with equality P= by adding 3*. Then 3* is definable by the formula

¢: @y, a) (N wmAuA N\ Pil)

i#5,1<4,j<k 1<i<k
Definition 13.

1. Let w = (uq,...,u,) be an n-card. Then the elementary conjunction
given by wu is the conjunction

where fori=1,...,n it holds:
o )\ is Pi(x) ifu; =1
o )\ is = Pi(x) if u; = 0.
2. Each formula of the form (3*z)k, where u is a card is called a canonical
sentence for CMOPC’s with equality.

The further results concerning classical definability of association rules are
based on the following normal form theorem proved in [2].

Theorem 3. Let P~ be a CMOPC with equality and let P* be the extension
of P= by adding the quantifiers 3* (k is a natural number). Let & be a sentence
from P=. Then there is a sentence ®* from P* logically equivalent to @ ( in
P*) and such that ®* is a Boolean combination of canonical sentences. (In
particular, @* contains neither the equality predicate nor any variable distinct
from the canonical variable).
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7 Classical Definability of Association Rules

Tharp’s theorem (see theorem 2) proved in [2] can be used as a criterion of

classical definability of association rules. The main result of this section is the-

orem b that can be used as an alternative criterion of definability. This theorem

shows that there is a relatively simple condition concerning the 4ft-quantifier

that is equivalent to classical definability of corresponding association rules.
First we prove several lemmas and introduce some notions.

Lemma 4. Let Py be MOPC of the type (1,1) with predicates Py, Pa. Let Py,
be MOPC of the type (1™} with predicates Py, ..., P,. Let ~ be a quantifier of
the type (1,1), let ”P/Q be extension of Py by adding ~ and let ”P;L be extension
of, P by adding ~. Then ~ is definable in 73/2 if and only if it is definable in
P,

Proof. (1) If ~ is definable in Py then there is a sentence & of Py (i.e. a
sentence of Py not containing ~) such that the sentence (~ x)(Py(x), Py(z))
1s logically equivalent to @, see definition 10. The sentence @ is but also the
sentence of P, and thus the sentence of P;l not containing ~. It means that
~ is definable in P,

(2) Let ~ is definable in P,. It means that there is the sentence ®
of P, (i.e. a sentence of P, not containing ~) such that the sentence
(~ x)(Pi(x), P2(x)) is logically equivalent to ®. Let us construct a sentence
@* from Psuch that we replace all occurrences of the atomic formulas P;(x)
for i > 3 by the atomic formula Py(x). The sentence ®* is the sentence of
the calculus Po (i.e. the sentence of 73’2 not containing ~) that is logically
equivalent to (~ x)(Py(z), Py(x)). Thus ~ is definable in Py.

Definition 14. Let P= be CMOPC of the type (1,1) with predicates Py and
Py and with equality. Let P* be the extension of P~ by adding all quantifiers
3% (k is a natural number). Then we denote:

® Kg =P1(a:)/\P2(J:)
o kp=Pi(x)NPs(x)
° I{c:—‘Pl(x)/\Pg({E)

kg = Pi(z) N Py (x)

Lemma 5. Let P= be CMOPC of the type (1,1) with predicates P, and P
and with equality. Let P* be the extension of P~ by adding all quantifiers 3 (
k is a natural number). Let @ be a Boolean combination of canonical sentences
of the calculus P*. Then @ is logically equivalent to the formula

K
\ 0 Al Ao A QY
=1

where K > 0 and @Ef) is in one of the following formulas for eachi=1,..., K:
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(F*x) Kk, where k is natural number

ﬂ(ﬂkx)ﬁsa where k is natural number

(F*2)kq A =(F'2)Ka where 0 < k < | are natural numbers.
1,

similarly for cpgi), gpcl), cp&) Let us remark that the value of an empty disjunc-

tion s 0.

Proof. @ is a Boolean combination of canonical sentences of the calculus P*
thus we can write it in the form

K' L;
AR

i=1j=1

where K’ > 0 and each v; ; is the canonical sentence of the calculus P* or a

. . L;
negation of such a canonical sentence. We create from each formula /\j;1 Vi j
(i=1,...,K') a new formula

RN SN QN

in the required form.
We can suppose without loss of generality that

L A B c D
/\ Vi = /\ Pa,j A /\ Ypj N /\ Ye,j A /\ Y j
i=1 i=1 j=1 j=1 j=1

where each formula 1, ; (7 =1,...,A) is equal to 3k, or to =(F*k,) where

k is a natural number, analogously for by j, Ve and g ;.

If A = 0 then we define gog) =1and <pa) is logically equivalent to /\j 1 %aj

because the value of empty conjunctwn is 1.
IfA =1 then we define gpa = g1 and gp is again logically equivalent

/\j:l ’(/}a,j :
If A > 2 then we can suppose without loss of generality that

A1 A2
Ve = /\(Eikja:)ma A /\ (T 2) kg .
/ i

T

If A1 > 0 then we define k = max{k;|j =1,..., A1} and thus /\ NELFITH
is logically equivalent to (3°x)k,.

If Ay > 0 then we definel = min{k;|j =1,..., Ao} and thus /\;‘:21 =(FFix)k,
is logically equivalent to —(3'x)k,

In the case A > 2 we define the formula @Ef) this way:

o if Ay =0 then <p((1i) = -(F2)k,
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o if Ay =0 then <p((f) = (FF2)k,
. ifA1>O/\A2>O/\k<lthencpa (F*
° zfA1>O/\A2>O/\k>lthen<p =0.

We defined the formula gpa for all the possible cases (i.e. A=0, A=1
and A > 2) and in all cases is /\;‘:1 Ya,j logically equivalent to gogi) that is in
the required form.

We analogously create gal()), gpcl) and cp((;) thus they are equivalent to

/\;3:1 Wb j,s /\JC:1 Ye,; and /\j:1 a; respectwvely (1 = 1,...,K'). Thus also

the formulas
Li . . .
Awiy  and o8 Nt Aot N\ o
j=1

are logically equivalent. It means that also the formulas

)k A (3')ka

K’

\/ /\wm and \/w DA Al Al
1=17=1
are logically equivalent. Furthermore, all the cp((f), gol(f), /\gogi) and @fii) are in

the required form or equal to 0.

Finally we omit all conjunctions <pg) A gp(z) ?) A <p£li)

member equal to 0 and we arrive at the required formula

with at least one

K
Ve ney) ned nel)
i=1
Definition 15. Let N be the set of all natural numbers. Then we define:

e The interval in N* is the set
Izll XIQ XIg XI4

such that it is for i = 1,2,3,4 I; = (k,l) or I; = (k,00) where 0 < k <[
are natural numbers. The empty set () is also the interval in N

o LetT = (a,b,c,d) be a4ft table (see definition 1) and let I = I; x Iy x I3 x Iy
be the interval in N'* . Then

Tel iff ael; Nbel, Ncelzs Nde

Theorem 4. Let P= be CMOPC of the type (1,1) with equality and let & be
a sentence of P=. Then there are K intervals I1,...,Ix in N* where K >0
such that for each model M of the calculus P= it is

K
lollm =1 iff TmelJL
j=1
where T (apr,ba, cams, daq) is the 4ft table of the model M. (It is

0 =0,
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Proof. Let P* be the extension of the calculus P~ by adding the quantifiers 3*
(k > 0). Then according to theorem & there is a sentence ®* of the calculus
P* such that ®* is the Boolean combination of the canonical sentences and
d* is equivalent to P.

Furthermore, according to lemma 5 the formula ®* is equivalent to the
formula

K
Ve e Apd nel?

where K > 0 and cpt(f) is in one of the following forms for eachi=1,...,K:

(F* )k, where k is natural number

=(3*x)k, where k is natural number

(F*2)ko A =(F'w)K, where 0 < k < | are natural numbers.
1,

similarly for ¢, @) sacl); 90()

IfK=0 then [|2]|am = 0 because the value of empty disjunction is 0. If
K =0 then also U?:l I; =0 and thus T ¢ Ujil I;. It means that for K =0
itis [|0]pm =1 iff TmelUL,

If K > 0 then we create interval I; for each j =1,..., K in the following
steps:

. Ifgp = (F*2)kqy then we define 19 = (k, 00).

o Ifpll = —(3*2)k, then we define 19 = 0, k).

o If ga(j) (F*2)ko A ~(F'2) K, then we define 19 = (k,1).
o If gat(l) =1 then we deﬁne 19 = (0, 00).

e We analogously define Iéj), Iéj) and I((ij) using goéj), gogj) and @Ezj) respec-
tively.

o We finally define Iszgj) X Iéj) X Ic(j) X I(gj)

Let us emphaszze that the interval I is deﬁned such that zf||gpa [lm=1

then apm € I ) and if ||<,0(J)||M =0 then apm & Ia ), similarly for <pl(f), gp((;)

and <p(J).
We prove that for each model M of the calculus P~ it is
K
@l =1 iff Tme|JL .
j=1

We use the fact that the formula @ is equivalent to \/fil <p((f) /\gpéi) /\gogi) /\<p£li)
and we suppose that Tar = (anm, b, cam, dam)-

Let ||P||m = 1. Thus there is j € {1,...,K} such that ||%(1j) A wéj) A

go( 2N <,0(J)||M =1 and it means that also ||<,0(J)||M = 1. The interval I is
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constructed such that the fact ||<pz(zj)||M = 1 implies an € 1. Analogously
we get by € Iéj), cMm € Ic(j) and dy € I(gj). It means that Ty € I; and also
VRS U

Let ||®||m = 0. Then it is for each j = 1,..., K ||<p¢(1j) A cpgj) A go&j) A
‘P,(jj)HM = 0. It means that also for each such j it is ||<,0¢(zj)||/\/t =0 or
et 1m = 0 or [0 [ae = 0 or [|F[lsg = 0. IF 6| a1 = 0 then it
must be arg & 19 thus Tm & 1.

Analogously we get Tag & I for ||g0l()j)||M =0, || = 0 and

||ga£ij)||M =0. Thus Tapm ¢ Uszl I;. This finishes the proof.

Lemma 6. Let (a,b,c,d) be a 4ft table. Then there is an observational struc-
ture M = (M, f,g) of the type (1,1) such that it is

Trm = (am,bm,cam,dam) = (a,b,c,d)
where Ty is the 4ft table of M see definition 8.

Proof. We construct M = (M, f, g) such that M has a+b+c+d elements and
the functions f,g are defined according to Fig. 2.

element of M | f g
01,...,0q 1 1
Oa+17~~~70a+b 1 0
Oaq+b+1y -y O0atbtc 0 1
Oa+btctls---s0atbtetrd| O 0

Fig. 2. Structure M for which Th = (a,b, ¢, d)

Theorem 5. Let P~ be a CMOPC with equality of the type (1™), let ~ be a
quantifier of the type (1,1) and let P’ be the extension of P~ by adding the
quantifier ~. Then ~ is definable in P’ if and only if there are K intervals
Ii,...,Ix in N*, K >0 such that it is for each 4ft table {(a,b,c,d)

K

Asf (a,b,c,d) =1 iff (a,b,c,d) € U I .
j=1

Proof. According to lemma 4 we can restrict ourselves to the case when P~ is
of the type (1,1).

First, let ~ is definable in P’. Then there is a sentence @ of the calculus
P= that is logically equivalent to the sentence (~ x)(Pi(z), P2(x)). It means
that

12lm = [[(~ @) (Pr(x), Pa ()] ¢
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for each model M of P'. Let us remark that

[[(~ 2)(Pr1(x), Pa(x))[|m = Asfo(an, bats ca, da)

where Tag = (am, b, cam, da) is the 4ft table of the model M, see definition
8.

According to the theorem 4 there are K intervals I, ..., Ix in N* where
K > 0 such that for each model M of the calculus P~ it is

K
@l =1 iff TmelJ1 .
j=1

We show that for each 4ft table {a,b,c,d) it is
K
Asf (a,b,c,d) =1 iff {a,b,c,d) € U I .
j=1

Let {a, b, c,d) be a 4ft table. There is according to lemma 6 model My such
that Tam, = {(a,b,c,d).
Let Asf_(a,b,c,d) = 1. It means that

||@||Mo = ||q(x)(P1(x),P2(x))||M0 = Asfw(a,b, ) d) =1

and thus (a,b,c,d) = T, € Ufil I;.
Let Asf. (a,b,c,d) = 0. It means that

19l a0 = [[(~ 2)(Pr(2), Po(2))lm, = Asf(a,b,¢,d) =0

and thus {(a,b,c,d) = Ty, ¢ Ujil I;.

We have proved the first part - if ~ is definable in P’ then there are K
intervals Ir,. .., Ix in N*, K >0 such that it is for each 4ft table (a,b,c,d)
Asf. (a,b,c,d) =1 iff (a,b,c,d) € Ujil I; .

Secondly, let us suppose that there are K intervals I, ..., Ix in N*,
K > 0 such that

>

Asf (a,b,c,d) =1 iff (a,b,c,d) € I .

j=1

We must prove that ~ is definable P’.

Let K = 0 then U?:l I; = 0. It means that Asf_(a,b,c,d) = 0 for each
table {(a,b,c,d). Thus for each model M it is ||(~ z)(P1(z), P2(x))|lm = 0
and it means that ~ is definable (e.g. by the formula (3z)(x # x)).

Let K > 0 then we denote P* the extension of P~ by adding all the
quantifiers 3% for k > 0. We create for each j = 1,..., K the formula

v = oD NP NP AP

in the following way (see also lemma 5 and theorem 4). We suppose that
I =1, x I x I, x 1.
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o IfI,=1{(0,00) then we define cpgj) =1
o IfI, = (k,00) then we define <pf(1]) = (F*2)kq,.
o IfI,=(0,k) then we define ng) = —=(F2)Kq.

o IfI, = (k1) then we define gpgj) = (F2) ko A =(F'2)kq.

o We analogously define cpgj), gag) and cpg) using Iy, I. and Iy respectively.
The formula 1); is created such that for each model M of the calculus P*

it is ||1j]|m = 1 if and only if Taq € I;. Let us define

K
o = \/1v.
j=1

We show that the formula (~ x)(Py(x), P2(x)) is logically equivalent to @ in
the calculus P*.

Let||(~ z)(Py(z), Pa(z))||m = 1. It means that Asf.,(Tr) = 1, we suppose
Asf_(a,b,c,d) = 1 4ff (a,b,c,d) € Ujil I; and thus it is Ty € UK:1 I It
implies that there isp € {1, ..., K} such that Thy € I, and therefore |‘j¢p||M =
1 and also ||®||am = 1.

Let ||®||pm = 1. Thus there is p € {1,..., K} such that ||p||m = 1 that
implies Taq € I, and also Thy € UK:1 1;. According to the supposition it
means Asf(Tym) =1 and thus ||(~ z)(Pi(x), P2(z))||lm = 1.

The quantifier 3* is for each k > 0 definable in the extension of P~ by
adding 3¢ (see lemma 3). It means that there is a formula * of the calculus
P= that is logically equivalent to the formula ®. It also means that ®* is
logically equivalent to the formula (~ x)(P1(x), Pa(x)).

It finishes the proof.

Remark 4. The theorem just proved concerns quantifiers of the type (1,1). Let

us remark that it can be generalised for quantifiers of general type (1*). The
. . . . . ok . . . 4

generalised criterion uses intervals in N instead of intervals in N4

Remark 5. The theorem 5 can be used to prove that the 4ft-quantifier =, pgse
of founded implication is not classically definable. The detailed proof does not
fall with the scope of this chapter. It is done in details in [4]. It is also proved
in [4] that most of 4ft-quantifiers implemented in the 4ft-Miner procedure [§]
are not classically definable. We can suppose that the same is true for all the
4ft-quantifiers implemented in the 4ft-Miner procedure.
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Summary. Many measures have been proposed and studied extensively in data
mining for evaluating the interestingness (or usefulness) of discovered rules. They are
usually defined based on structural characteristics or statistical information about
the rules. The meaningfulness of each measure was interpreted based either on in-
tuitive arguments or mathematical properties. There does not exist a framework in
which one is able to represent the user judgment explicitly, precisely, and formally.
Since the usefulness of discovered rules must be eventually judged by users, a frame-
work that takes user preference or judgment into consideration will be very valuable.
The objective of this paper is to propose such a framework based on the notion of
user preference. The results are useful in establishing a measurement-theoretic foun-
dation of rule interestingness evaluation.

Key words: KDD, Rule Interestingness, Evaluation, Measurement Theory,
User Preference

1 Introduction

With rapidly increasing capabilities of accessing, collecting, and storing data,
knowledge discovery in databases (KDD) has emerged as a new area of re-
search in computer science. The objective of KDD systems is to extract im-
plicitly hidden, previously unknown, and potentially useful information and
knowledge from databases [7, 10]. A core task of the KDD field, called data
mining, is the application of specific machine learning algorithms, knowledge
representations, statistical methods, and other data analysis techniques for
knowledge extraction and abstraction. The discovered knowledge is often ex-
pressed in terms of a set of rules. They represent relationships, such as cor-
relation, association, and causation, among concepts [48]. For example, the
well-known association rules deal with relationships among sale items [1, 3].
Some fundamental tasks of data mining process in KDD are the discovery,
interpretation, and evaluation of those relationships.
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There are many types of rules embedded in a large database [46]. Further-
more, the number of rules is typically huge and only a small portion of rules
is actually useful [36]. An important problem in data mining is the evaluation
of the interestingness of the mined rules and filtering out useless rules [36].
Many measures have been proposed and studied to quantify the interesting-
ness (or usefulness) of rules [11, 15, 35, 36, 48]. The results lead to an in-depth
understanding of different aspects of rules. It is recognized that each measure
reflects a certain characteristic of rules. In addition, many studies investigate
and compare rule interestingness measures based on intuitive arguments or
some mathematical properties. There is a lack of a well-accepted framework
for examining the issues of rule interestingness in a systematic and unified
manner.

We argue that measurement theory can be used to establish a solid foun-
dation for rule interestingness evaluation. The theory provides necessary con-
cepts and methodologies for the representation, classification, characteriza-
tion, and interpretation of user judgment of the usefulness of rules. A measure
of rule interestingness is viewed as a quantitative representation of user judg-
ment. The meaningfulness of a measure is determined by the users’ perception
of the usefulness of rules.

Existing studies of rule interestingness evaluation can be viewed as measure-
centered approaches. Measures are used as primitive notions to quantify the
interestingness of rules. In contrast, our method is a user-centered approach.
User judgment, expressed by a user preference relation on a set of rules, is used
as a primitive notion to model rule interestingness. Measures are treated as a
derived notion that provides a quantitative representation of user judgment.

The rest of this chapter is organized as follows. In the next section, we
introduce the basic notion of evaluation and related issues. A critical review
of existing measures of rules interestingness is presented, which reveals some
limitations with existing studies. The third section provides motivations to
the current study. The fourth section presents an overview of measurement
theory. The fifth section applies measurement theory to build a framework
of rule interestingness evaluation. Finally, the conclusion in the sixth section
gives the summary of this chapter and discusses the future research.

2 Introduction of Evaluation

The discussion of the basic notion of evaluation is aimed at improving our
understanding to the rule interestingness evaluation methodologies.

2.1 What is the Evaluation?

Many approaches define the term of evaluation based on specific views [13,
32], such as qualitative assessments and detailed statistical analysis. Suchman
analyzes various definitions of evaluation with regard to the conceptual and
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operational approaches [38]. Simply speaking, the evaluation can be defined
as the determination of the results, which are attained by some activity for
accomplishing valued goals or objectives. The practice of evaluation can in
fact be applied to many processes and research areas, such as the systematic
collection of information of programs, personnel and products for reducing
uncertainties, improving effectiveness, and making decisions [28].

Three basic components of an evaluation are summarized by Geisler [13].
The first component is the subjects for evaluation, which is what or whom
needs to be evaluated. For the discovered rules, the subjects for evaluation
are the properties or characteristics of each rule such as the association rela-
tionship between sale items and a type of business profit. The formulation of
the subjects is always done in the first step of the evaluation procedure. The
more the subjects are distinguished precisely, the better the framework and
measurement can be produced.

The users who are interested in and willing to perform the evaluation
are considered as the second component of an evaluation. Knowing who will
participate in judging or who will benefit from the evaluation will help to
clarify why the evaluation is performed and which measures or methods of
evaluation should be used. Since the qualities of objects or events must be
eventually judged by users, an evaluation needs to consider the user judgment.
The users can be humans, organizations, or even systems. Different types of
participants may have different purposes of conducting an evaluation and lead
to different results of an evaluation.

The processes for evaluation and concrete measures are the evaluation’s
third component. Clarification of the criteria for the measures and design-
ing the implementation for the evaluation are the key points in this compo-
nent. One must consider the first two components, the subjects and the users,
and then develop the processes and measurements of an evaluation. As Such-
man points out, an evaluation can be constructed for different purposes, by
different methods, with different criteria with respect to different users and
subjects [38].

2.2 How to Do the Evaluation?

According to the definition of evaluation, the procedure of evaluation can be
simply and generally described as follows [13, 38]:

Identification of the subjects to be evaluated.

Collection of data for the evaluation.

Users analyze and measure those data to summarize their judgments based
on the criteria and conduct the process of the evaluation for decision mak-
ing.

The real procedures of an evaluation can be very complicated and might be
iterative [38]. Furthermore, identifying and accurately measuring or quantify-
ing the properties of subjects is very difficult to achieve. More often than not,
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an approximate approach can be accepted by general users. In the processes
of an evaluation, it is very important that users determine an appropriate
evaluation as the means of measuring.

2.3 Measurement of Evaluation

During the procedure of an evaluation, the measurement always plays a cru-
cial role and the measurement theory provides the necessary concepts and
methodologies for the evaluation. The subjects of measurement in measure-
ment theory are about estimating the attributes or properties of empirical
objects or events, such as weight, color, or intelligence [29]. The measurement
can be performed by assigning numbers to the objects or events in order that
the properties or attributes can be represented as numerical properties [17].
In other words, the properties of the quantity are able to faithfully reflect the
properties of objects or events to be evaluated.

2.4 Subjectivity of Evaluation

From the discussion of the definition and procedure of evaluation, it is rec-
ognized that evaluation is an inherently subjective process [38]. The steps,
methods, and measures used in an evaluation depend on the users who par-
ticipate in the evaluation. The selection of the criteria and measures reflects
the principles and underlying beliefs of the users [13].

Mackie argues that subjective values are commonly used when one evalu-
ates objects, actions, or events [24]. Objectivity is only related to the objective
measures and implementation of the measurement. People always judge the
subjects with their subjective interests. Different people have different judg-
ments on the same object, action, or event because they always stand on their
own interests or standards of evaluations. In other words, the objective mea-
surement is relative to personal standards of evaluations. In this regard, there
are no absolutely objective evaluations, only relatively objective evaluations
for human beings.

Nevertheless, these standards of evaluations can be derived from human
being’s subjective interests. In fact, the user preference is indeed realized as a
very important issue for an evaluation to occur [13]. It can be described as the
user’s discrimination on two different objects rationally [23]. The users can
simply describe their preference as “they act upon their interests and desires
they have” [6]. In measurement and decision theories, user preferences are
used to present the user judgments or user interests and can be viewed as the
standards of an evaluation [12, 23, 29, 33]. The user preference or judgment
should be considered in the process of an evaluation.
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3 Rule Evaluation

As an active research area in data mining, rule evaluation has been considered
by many authors from different perspectives. We present a critical review of
the studies on rule evaluation in order to observe their difficulties. This leads
to a new direction for future research.

3.1 A Model of Data Mining based on Granular Computing

In an information table, objects can be described by the conjunctions of
attribute-value pairs [49]. The rows of the table represent the objects, the
columns denote a set of attributes, and each cell is the value of an object
on an attribute. In the model of granular computing, the objects in an in-
formation table are viewed as the universe and the information table can be
expressed by a quadruple [45, 49)]:

T = (U, At {V, | a € At},{I, | a € At}), (1)

where U is a finite nonempty set of objects, At is a finite nonempty set of
attributes, V, is nonempty set of values for a € At, and I, is a function to
map from U to V,, that is, I, : U — V.

With respect to the notion of tables, we define a decision logic lan-
guage [31]. In this language, an atomic formula is a pair (a,v), where a € At
and v € V,,. If ¢ and ¢ are formulas, then —¢, ¢ AWV, ¢V, ¢ — ¢, and ¢ =¥
are also formulas. The set of objects that satisfy a formula ¢ are denoted by
m($). Thus, given an atomic formula (a,v), the corresponding set of objects
can be m(a,v) = {x € U | I,(z) = v}. The following properties hold:

(1) m(=¢) = ~m(¢),

(2) m(¢ Ay) =m(p) Nm(y),

(3) m(¢ V) =m(p)Um(y),

4) m(¢ — ) = —-m(¢) Um(y),

(5) m(¢ =) = (m(¢) Nm(y)) U (~m(¢) N —m(1))).

The formula ¢ can be viewed as the description of the set of objects m(¢).

In formal concept analysis, every concept consists of the intention and
the extension [41, 42]. A set of objects is referred to as the extension, and
the corresponding set of attributes as the intention of a concept. Therefore,
a formula ¢ can represent the intention of a concept and a subset of objects
m(¢) can be the extension of the concept. The pair (¢, m(¢)) is denoted as a
concept.

One of the important functions of data mining of KDD is to find the strong
relationships between concepts [48]. A rule can be represented as ¢ = 1), where
¢ and 1 are intensions of two concepts [45]. The symbol = in the rules are
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interpreted based on the types of knowledge and rules can be classified ac-
cording to the interpretations of =-. In other words, different kinds of rules
represent different types of knowledge extracted from a large database. Fur-
thermore, based on the extensions m(¢), m(v), and m(¢ A1), various quanti-
tative measures can be used for the rules evaluation. A systematic analysis of
quantitative measures associated with rules is given by Yao and Zhong [48].

3.2 A Critical Review of Existing Studies

Studies related to rule evaluation can be divided into two classes. One class,
the majority of studies, deals with the applications of quantitative measures
to reduce the size of search space of rules in the mining process, to filter out
mined but non-useful rules, or to evaluate the effectiveness of a data mining
system. The other class, only a small portion of studies, is devoted solely
to the investigations of rule evaluation on its own. We summarize the main
results from the following different points of views.

The roles of rule evaluation

It is generally accepted that KDD is an interactive and iterative process con-
sisting of many phases [7, 14, 22, 26, 37, 53]. Fayyad et al. presented a KDD
process consisting of the following steps: developing and understanding of the
application domain, creating a target data set, data cleaning and preprocess-
ing, data reduction and projection, choosing the data mining task, choosing
the data mining algorithm(s), data mining, interpreting mined patterns, and
consolidating, and acting on, the discovered knowledge [7, 8]. Rule evaluation
plays different roles in different phases of the KDD process.

From the existing studies, one can observe that rule evaluation plays at
least three different types of roles. In the data mining phase, quantitative
measures can be used to reduce the size of search space. An example is the
use of the well known support measure, which reduces the number of item
sets need to be examined [1]. In the phase of interpreting mined patterns, rule
evaluation plays a role in selecting the useful or interesting rules from the set of
discovered rules [35, 36]. For example, the confidence measure of association
rules is used to select only strongly associated item sets [1]. In fact, many
measures associated with rules are used for such a purpose [48]. Finally, in
the phase of consolidating and acting on discovered knowledge, rule evaluation
can be used to quantify the usefulness and effectiveness of discovered rules.
Many measures such as cost, classification error, and classification accuracy
play such a role [11]. Rule evaluation in this regard is related to the evaluation
of a data mining system.

The process-based approach captures the procedural aspects of KDD. Re-
cently, Yao proposed a conceptual formulation of KDD in a three-layered
framework [46]. They are the philosophy level, technique level, and applica-
tion level. The philosophy level focuses on formal characterization, description,
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representation, and classification of knowledge embedded in a database with-
out reference to mining algorithms. It provides answers to the question: What
is the knowledge embedded in a database? The technique level concentrates on
data mining algorithms without reference to specific applications. It provides
answers to the question: How to discover knowledge embedded in a database?
The application level focuses on the use of discovered knowledge with respect
to particular domains. It provides answers to the question: How to apply the
discovered knowledge?

With respect to the three-layered framework, rule evaluation plays the
similar roles. In the philosophy level, quantitative measures can be used to
characterize and classify different types of rules. In the technique level, mea-
sures can be used to reduce search space. In the application level, measures
can be used to quantify the utility, profit, effectiveness, or actionability of
discovered rules.

Subjective vs. objective measures

Silberschatz and Tuzhilin suggested that measures can be classified into two
categories consisting of objective measures and subjective measures [35]. Ob-
jective measures depend only on the structure of rules and the underlying
data used in the discovery process. Subjective measures also depend on the
user who examines the rules [35]. In comparison, there are limited studies on
subjective measures. For example, Silberschatz and Tuzhilin proposed a sub-
jective measure of rule interestingness based on the notion of unexpectedness
and in terms of a user belief system [35, 36].

Statistical, structural vs. semantic measures

Many measures, such as support, confidence, independence, classification er-
ror, etc., are defined based on statistical characteristics of rules. A systematic
analysis of such measures can be performed by using a 2 x 2 contingency table
induced by a rule [48, 50].

The structural characteristics of rules have been considered in many mea-
sures. For example, information, such as the size of disjunct (rule), attribute
interestingness, the asymmetry of classification rules, etc., can be used [11].
These measures reflect the simplicity, easiness of understanding, or applica-
bility of rules.

Although statistical and structural information provides an effective indi-
cator of the potential effectiveness of a rule, its usefulness is limited. One needs
to consider the semantic aspect of rules or explanations of rules [52]. Seman-
tics centered approaches are application and user dependent. In addition to
statistical information, one incorporates other domain specific knowledge such
as user interest, utility, value, profit, actionability, and so on. Two examples
of semantic-based approaches are discussed below.
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Profit-based or utility-based mining is one example of a special kind of
constraint-based mining, taking into account both statistical significance and
profit significance [18, 39, 40]. Doyle discusses the importance and usefulness
of the basic notions of economic rationality, such as utility functions, and sug-
gests that economic rationality should play as large a role as logical rationality
in rule reasoning [4]. For instance, one would not be interested in a frequent
association that does not generate enough profit. The profit-based measures
allow the user to prune the rules with high statistical significance, but low
profit or high risk. For example, Barber and Hamilton propose the notion of
share measure which considers the contribution, in terms of profit, of an item
in an item set [2].

Actionable rule mining is another example of dealing with profit-driven
actions required by business decision making [19, 20, 21]. A rule is referred
to as actionable if the user can do something about it. For example, a user
may be able to change the non-desirable/non-profitable patterns to desir-
able/profitable patterns.

Measures defined by statistical and structural information may be viewed
as objective measures. They are user, application and domain independent.
For example, a pattern is deemed interesting if it has certain statistical prop-
erties. These measures may be useful in the philosophical level of the three-
layered framework. Different classes of rules can be identified based on statisti-
cal characteristics, such as peculiarity rules (low support and high confidence),
exception rules (low support and high confidence, but complement to other
high support and high confidence rules), and outlier patterns (far away from
the statistical mean) [51].

Semantic-based measures involve the user interpretation of domain specific
notions such as profit and actionability. They may be viewed as subjective
measures. Such measures are useful in the application level of the three-layered
framework. The usefulness of rules are measured and interpreted based on
domain specific notions.

Single rule vs. multiple rules

Rule evaluation can also be divided into measures for a single rule and mea-
sures for a set of rules. Furthermore, a measure for a set of rules can be
obtained from measures for single rules. For example, conditional probability
can be used as a measure for a single classification rule, conditional entropy
can be used as a measure for a set of classification rules [47]. The latter is
defined in terms of the former.

Measures for multiple rules concentrate on properties of a set of rules. They
are normally expressed as some kind of average. Hilderman and Hamilton
examined many measures for multiple rules known as the summarization of a

database [15].
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Axiomatic approaches

Instead of focusing on rules, the axiomatic approaches study the required
properties of quantitative measures.

Suppose that the discovered knowledge is represented in terms of rules of
the form, £ = H, and is paraphrased as “if F then H”. Piatetsky-Shapiro [30]
suggests that a quantitative measure of rule £ = H may be computed as a
function of support(E), support(H), support(E A H), rule complexity, and
possibly other parameters such as the mutual distribution of E and H or the
size of E and H. For the evaluation of rules, Piatetsky-Shapiro [30] introduces
three axioms. Major and Mangano [25] add the fourth axioms. Klésgen [16]
studies a special class of measures that are characterized by two quantities,
confidence(E = H) and support(E). The support(H A E) is obtained by
confidence(E = H)support(E). Suppose support(E, H) is a measure associ-
ated with rule E = H. The version of the four axioms given by Klosgen [16]
is:

(i). Q(E,H)=01if E and H are statistically independent,

(ii). Q(E, H) monotonically increases in confidence(E = H) for a fixed
support(E),

(iii). Q(E, H) monotonically decreases in support(E) for a fixed support(E A
1),

(iv). Q(F, H) monotonically increases in support(E) for a fixed
confidence(E = H) > support(H).

The axiomatic approach is widely used in many other disciplines.
An axiomatic study of measures for multiple rules has been given by Hil-
derman and Hamilton [15].

3.3 A Direction for Future Research

From the previous discussions, one can make several useful observations. Stud-
ies on rule evaluations can be classified in several ways. Each of them provides
a different view. Most studies on rule evaluation concentrate on specific mea-
sures and each measure reflects certain aspects of rules. Quantitative measures
are typically interpreted by using intuitively defined notions, such as novelty,
usefulness, and non-trivialness, unexpectedness, and so on. Therefore, there
is a need for a unified framework that enables us to define, interpret, and
compare different measures.

A very interesting research direction for rule evaluation is the study of
its foundations. Several issues should be considered. One needs to link the
meaningfulness of a measure to its usage. In theory, it may not be meaningful
to argue which measure is better without reference to its roles and usage.
It is also necessary to build a framework in which various notions of rule
evaluation can be formally and precisely defined and interpreted. The study
of rule evaluation needs to be connected to the study of foundations of data
mining.
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4 Overview of Measurement Theory

For completeness, we give a brief review of the basic notions of measurement
theory that are pertinent to our discussion. The contents of this section draw
heavily from Krantz et al. [17], Roberts [33] and French [12].

When measuring an attribute of a class of objects or events, we may as-
sociate numbers with the individual objects so that the properties of the at-
tribute are faithfully represented as numerical properties [17, 29]. The prop-
erties are usually described by certain qualitative relations and operations.
Consider an example discussed by Krantz et al. [17]. Suppose we are measur-
ing the lengths of a set U of straight, rigid rods. One important property of
length can be described by a qualitative relation “longer than”. Such a rela-
tion can be obtained by first placing two rods, say a and b, side by side and
adjusting them so that they coincide at one end, and then observing whether
a extends beyond b at the other end. We say that a is longer than b, denoted
by a = b, if a extends beyond b. In this case, we would like to assign num-
bers f(a) and f(b) with f(a) > f(b) to reflect the results of the comparison.
That is, we require the numbers assigned to the individual rods satisfy the
condition: for all a,b € U,

a>b< f(a) > f(b). (2)

In other words, the qualitative relation “longer than”, >, in the empirical
system is faithfully reflected by the quantitative relation “greater than”, >, in
the numerical system. Another property of length is that we can concatenate
two or more rods by putting them end to end in a straight line, and compare
the length of this set with that of another set. The concatenation of a and b can
be written as a o b. In order to reflect such a property, we require the numbers
assigned to the individual rods be additive with respect to concatenation.
That is, in addition to condition (2), the numbers assigned must also satisfy
the following condition: for all a,b € U,

flaob) = f(a)+ f(b). 3)

Thus, concatenation o in the empirical system is preserved by addition +
in the numerical system. Many other properties of length comparison and
of concatenation of rods can be similarly formulated. For instance, > should
be transitive, and o should be commutative and associative. The numbers
assigned must reflect these properties as well. This simple example clearly
illustrates the basic ideas of measurement theory, which is primarily concerned
with choosing consistent quantitative representations of qualitative systems.

Based on the description of the basic notions of measurement theory in
the above example, some basic concepts and notations are introduced and the
formal definitions and formulations of the theory are reviewed.
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4.1 Relational Systems

Suppose U is a set. The Cartesian product of U with U, denoted U x U, is a
set of all ordered pairs (a,b) so that a,b € U. A binary relation R on a set U,
simply denote (U, R), is a subset of the Cartesian product U x U. For a,b € U,
if a is related to b under R, we write aRb or (a,b) € R. For example, consider
the binary relation “less than” (<) relation on real numbers. An ordered pair
(a,b) is in the binary relation if and only if a < b. Similarly, “greater than”
and “equals” also can be defined as the binary relations on real numbers.

With the set U, a function f : U — U can in fact also be thought of
as a binary relation (U, R). A function f : U™ — U can be an (n+1)-ary
relation (U, R). The functions from U into U is called binary operations, or
just operations for short. For example, for addition (+), given a pair of real
numbers a and b, there exists a third real number ¢ so that a + b = c.

A relational system (structure) is a set of one or more relations (operations)
on an arbitrary set. That is, a relational system is an ordered (p + g + 1)-
tuple A = (U, Ry,...,Rp,01,...,04), where U is a set, Ry,..., R, are (not
necessarily binary) relations on U, and oq,...,0, are binary operations on
U. If the binary operations are considered as a special type of relations, a
relational system can be simply denoted as a (p+1)-tuple A = (U, Ry, ..., R,).
For convenience, we separate the operations from other relations.

If U is the set (or a subset) of real numbers, such a relational system is
called as a numerical relational systems. As illustrated by the example of rigid
rods, for measuring the property of length, we can start with an observed or
empirical system A and seek a mapping into a numerical relational system
B which preserves or faithfully reflects all the properties of the relations and
operations in A.

4.2 Axioms of the Empirical System

Based on the definitions of the relations and operations in the relation sys-
tems, we should describe the valid use or properties of these relations and
operations in order to find the appropriate corresponding numerical systems.
Many properties are common to well-defined relations. The consistency prop-
erties to be preserved are known as axioms. For example, if U is a set of real
numbers and R is the relation of “equality” on U, R is reflexive, symmetric,
and transitive. However, if U is the set of people in the real world and R is
the relation “father of” on U, R is irreflexive, asymmetric, and nontransitive.

The set of axioms characterizing the relations in an empirical system
should be complete so that every consistency property for the relations that
is required is either in the list or deducible from those in the list [12, 17, 33].

4.3 Homomorphism of Relational Systems

Consider two relational systems, an empirical (a qualitative) system A =
(U, Ry,..., Ry,01,...,9,),and a numerical system B = (V, Ry, ..., R}, 01, ...,
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oy). A function f: U — V' is called a homomorphism from A to B if, for all
a1y .. ar, €A,

Ri(a17"'va7"i) — Rg(f(al),“'vf(am))v 1=1,...,p,

and for all a,b € A,
flao;b)=f(a)o} f(b), j=1,....q

The empirical system for the earlier example is denoted by (U, >, o), where
U is the set of rigid rods and their finite concatenations, > is the binary
relation “longer than” and o is the concatenation operation. The numerical
relation system is (R, >, +), where R is the set of real numbers, > is the usual
“greater than” relation and + is the arithmetic operation of addition. The
numerical assignment f(-) is a homomorphism which maps U into &, > into
>, and o into + in such a way that > preserves the properties of >, and +
preserves the properties of o as stated by conditions (2) and (3).

In general, a measurement has been performed if a homomorphism can be
assigned from an empirical (observed) relational system A to a numerical rela-
tional system B. The homomorphism is said to give a representation, and the
triple (A, B, f) of the empirical relational system .4, the numerical relational
system B, and the function f is called a scale or measure. Sometimes, a ho-
momorphism from an empirical relational system into the set of real numbers
is referred alone as a scale (measure).

With given numerical scales (measures), new scales or measures defined
in terms of the old ones are called derived scales or derived measures. For
example, density d can be defined in terms of mass m and volume v as d =
m/v. The density d is the derived scale (measure), and the mass m and volume
v are called as primitive scales (measures).

4.4 Procedure of Measurement

Generally, there are three fundamental steps in measurement theory [12, 17,
33]. Suppose we are seeking a quantitative representation of an empirical
system. The first step, naturally, is to define the relations and operations
to be represented. The axioms of the empirical system are determined. The
next step is to choose a numerical system. The final step is to construct
an appropriate homomorphism. A representation theorem asserts that if a
given empirical system satisfies certain axioms, then a homomorphism into
the chosen numerical system can be constructed.

The next question concerns the uniqueness of the scale. A uniqueness the-
orem is generally obtained by identifying a set of admissible transformations.
If f(-) is a scale representing an empirical system and if A(-) is an admissible
transformation, then A(f()) is also a scale representing the same empirical
system.
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If the truth (falsity) of a numerical statement involving a scale or mea-
sure remains unchanged under all admissible transformations, we say that it
is quantitatively meaningful. A numerical statement may be quantitatively
meaningful, but qualitatively meaningless. In order for a quantitative state-
ment to be qualitatively meaningful, it must reflect or model a meaningful
statement in the empirical system.

Examples of the discussed view of measurement theory include the axioma-
tization of probability and expected utility theory [27, 34], the axiomatization
of possibility functions [5] and the axiomatization of belief functions [43].

5 Application of Measurement Theory to Rule
Evaluation

Given a database, in theory, there exists a set of rules embedded in it, in-
dependent of whether one has an algorithm to mine them. For a particular
application, the user may only be interested in a certain type of rules. There-
fore, the key issue of rules evaluation is in fact the measurement of rules’
usefulness or interestingness expressed by a user preference relation. Accord-
ing to the procedure of measurement, for rule evaluation, we follow the three
steps to seek a quantitative representation of an empirical system.

5.1 User Preference Relations

In the measurement theory, the user judgment or user preference can be mod-
eled as a kind of binary relation, called user preference relation [33]. If the user
prefers a rule to another rule, then we can say that one rule is more useful or
interesting than the other rule.

Assume we are given a set of discovered rules. Let R be the set of rules.
Since the usefulness or interestingness of rules should be finally judged by
users, we focus on user preference relation as a binary relation on the set of
discovered rules. Given two rules v/, r” € R, if a user judges ' to be more
useful than 7, we say that the user prefers v’ to v’/ and denote it by r’ = 7.
That is,

r’ = 1" & the user prefers ' to r”. (4)

In the absence of strict preference, i.e., if both =(r' > ") and —(r' > )
hold, we say that 7' and r” are indifferent. An indifference relation ~ on R
can be defined as follows:

v~ s (=0 =) S = ). (5)
The empirical relational system can be defined as following:

Definition 1. Given a set of discovered rules R and user preference >, the
pair (R, =) is called the (empirical) relational system of the set of discovered
rules.
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The user judgment on rules can be formally described by a user preference
relation > on R. In our formulation, we treat the user preference relation > as
a primitive notion. At this stage, we will not attempt to define and interpret
a user preference relation using other notions.

5.2 Axioms of User Preference Relations

The next issue is to identify the desired properties of a preference relation so
that it can be measured quantitatively. Such consistency properties are known
as axioms. We consider the following two axioms:

e Asymmetry:
=" = a0 =),
e Negative transitivity:
(_‘(,r/ >_ ,r//)’_‘<,r// >_ 7,,///)) = _‘(7,,/ >_ 7,,//1)-

The first axiom requires that a user cannot prefer r’ to v’/ and at the same
time prefers 7 to r’. In other words, the result of a user preference on two
different discovered rules is not contradictive. In fact, this axiom ensures the
user preference or user judgment is rational. The second is the negative tran-
sitivity axiom, which means that if a user does not prefer v’ to r”, nor 7 to
r"’ . the user should not prefer r’ to r'”.

If a preference relation is a weak order, it is transitive, i.e., v’ > r” and
r” = " imply ' = r'". It seems reasonable that a user preference relation
should satisfy these two axioms.

A few additional properties of a weak order are summarized in the following
lemma [33].

Lemma 1. Suppose a preference relation > on a finite set of rules R is a
weak order. Then,

the relation ~ is an equivalence relation,

exactly one of v’ = 1", r" = 1" and v’ ~ " holds for every r',r" € R.

the relation =" on R/~ defined by X ~' Y < I, "(+' = 1", v € X,
" €Y), is a linear order, where X andY are elements of R/~.

A linear order is a weak order in which any two different elements are
comparable. This lemma implies that if > is a weak order, the indifference
relation ~ divides the set of rules into disjoint subsets.

5.3 Homomorphism based on Real-valued Function

In the measurement-theoretic terminology, the requirement of a weak order
indeed suggests the use of an ordinal scale (homomorphism) for the measure-
ment of user preference of rules, as shown by the following representation
theorem [33]. That is, we can find a real-valued function u as a measure.
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Theorem 1. Suppose R is a finite non-empty set of rules and > is a relation
on R. There exists a real-valued function u : R — R satisfying the condition,

=" s u(r’) > ulr”) (6)

if and only if = is a weak order. Moreover, u is defined up to a strictly mono-
tonic increasing transformation.

The numbers u(r’), u(r”), ... as ordered by > reflect the order of v/, 7, . ..
under >. The function w is referred to as an order-preserving utility function.
It quantifies a user preference relation and provides a measurement of user
judgments. According to Theorem 1, the axioms of a weak order are the con-
ditions which allow the measurement. Thus, to see if we can measure a user’s
preference to the extent of producing an ordinal utility function, we just check
if this preference satisfies the conditions of asymmetry and negative transi-
tivity. A rational user’s judgment must allow the measurement in terms of a
quantitative utility function. On the other hand, another interpretation treats
the axioms as testable conditions. Whether can measure the user judgments
depends on whether the user preference relation is a weak order [44].

5.4 Ordinal Measurement of Rules Interestingness

In the above discussion, only the asymmetry and negative transitivity axioms
must be satisfied. This implies that the ordinal scale is used for the measure-
ment of user preference. For the ordinal scale, it is meaningful to examine or
compare the order induced by the utility function.

The main ideas can be illustrated by a simple example. Suppose a user
preference relation > on a set of rules R = {ry,r2,73,74} is specified by the
following weak order:

r3s ="y, T4 >T1, T3 >=T2, T4 >T9, T4 >T3.

This relation > satisfies the asymmetry and negative transitivity conditions
(axioms). We can find three equivalence classes {r4}, {rs}, and {r1,r2}. In
turn, they can be arranged as three levels:

{ra} =" {rs} =" {ri,r2}.
Obviously, we can defined the utility function u; as follows:
ur(r1) =0, ui(re) =0, wui(rs) =1, wui(ry) =2.
Another utility function us also may also be used:
us(r1) =5, wua(re) =5, wua(rs) =6, ua(ry) ="7.

The two utility functions preserve the same order for any pair of rules, al-
though they use different values.
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Based on the formal model of measurement on rules interestingness, we can
study different types of user preference relations. In order to do so, we need
to impose more axioms on the user preference relation. The axioms on user
preference relations can be easily interpreted and related to domain specific
notions.

Luce and Suppes discuss the user preference and the closely related areas
of utility and subjective probability from the mathematical psychology point
of view [23]. The utility is defined as a type of property of any object, whereby
it tends to produce benefit, advantage, pleasure, good, and happiness, or to
prevent the happening of mischief, pain, evil, or unhappiness. In other words,
utility is a type of subjective measure, not objective measure. The utility of
an item depends on the user preference and differs among the individuals. In
the theory of decision making, utility is viewed as essential elements of a user
preference on a set of decision choices or candidates [9, 12].

6 Conclusion

A critical review of rule evaluation suggests that we can study the topic from
different points of views. Each view leads to different perspectives and different
issues. It is recognized that there is a need for a unified framework for rule
evaluation, in which various notions can be defined and interpreted formally
and precisely.

Measurement theory is used to establish a solid foundation for rule evalu-
ation. Fundamental issues are discussed based on the user preference of rules.
Conditions on a user preference relation are discussed so that one can obtain
a quantitative measure that reflects the user-preferred ordering of rules.

The proposed framework provides a solid basis for future research. We will
investigate additional qualitative properties on the user preference relation.
Furthermore, we will identify the qualitative properties on user preference
relations that justify the use of many existing measures.
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