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PREFACE

WHAT IS DATA MINING?

According to the Gartner Group,

Data mining is the process of discovering meaningful new correlations, patterns and
trends by sifting through large amounts of data stored in repositories, using pattern
recognition technologies as well as statistical and mathematical techniques.

Today, there are a variety of terms used to describe this process, including analyt-
ics, predictive analytics, big data, machine learning, and knowledge discovery in
databases. But these terms all share in common the objective of mining actionable
nuggets of knowledge from large data sets. We shall therefore use the term data
mining to represent this process throughout this text.

WHY IS THIS BOOK NEEDED?

Humans are inundated with data in most fields. Unfortunately, these valuable data,
which cost firms millions to collect and collate, are languishing in warehouses and
repositories. The problem is that there are not enough trained human analysts avail-
able who are skilled at translating all of these data into knowledge, and thence up
the taxonomy tree into wisdom. This is why this book is needed.

The McKinsey Global Institute reports:1

There will be a shortage of talent necessary for organizations to take advantage of big
data. A significant constraint on realizing value from big data will be a shortage of talent,
particularly of people with deep expertise in statistics and machine learning, and the
managers and analysts who know how to operate companies by using insights from big
data . . . . We project that demand for deep analytical positions in a big data world could
exceed the supply being produced on current trends by 140,000 to 190,000 positions.
. . . In addition, we project a need for 1.5 million additional managers and analysts in
the United States who can ask the right questions and consume the results of the analysis
of big data effectively.

This book is an attempt to help alleviate this critical shortage of data analysts.
Discovering Knowledge in Data: An Introduction to Data Mining provides readers
with:

� The models and techniques to uncover hidden nuggets of information,

1Big data: The next frontier for innovation, competition, and productivity, by James Manyika et al.,
Mckinsey Global Institute, www.mckinsey.com, May, 2011. Last accessed March 16, 2014.

xi
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� The insight into how the data mining algorithms really work, and
� The experience of actually performing data mining on large data sets.

Datamining is becomingmore widespread everyday, because it empowers companies
to uncover profitable patterns and trends from their existing databases. Companies
and institutions have spent millions of dollars to collect megabytes and terabytes of
data, but are not taking advantage of the valuable and actionable information hidden
deep within their data repositories. However, as the practice of data mining becomes
more widespread, companies which do not apply these techniques are in danger of
falling behind, and losing market share, because their competitors are applying data
mining, and thereby gaining the competitive edge.

In Discovering Knowledge in Data, the step-by-step, hands-on solutions of
real-world business problems, using widely available data mining techniques applied
to real-world data sets, will appeal to managers, CIOs, CEOs, CFOs, and others who
need to keep abreast of the latest methods for enhancing return-on-investment.

WHAT’S NEW FOR THE SECOND EDITION?

The second edition of Discovery Knowledge in Data is enhanced with an abundance
of new material and useful features, including:

� Nearly 100 pages of new material.
� Three new chapters:

� Chapter 5:Multivariate Statistical Analysis covers the hypothesis tests used
for verifying whether data partitions are valid, along with analysis of vari-
ance, multiple regression, and other topics.

� Chapter 6: Preparing to Model the Data introduces a new formula for bal-
ancing the training data set, and examines the importance of establishing
baseline performance, among other topics.

� Chapter 13: Imputation of Missing Data addresses one of the most over-
looked issues in data analysis, and shows how to impute missing values for
continuous variables and for categorical variables, as well as how to handle
patterns in missingness.

� The R Zone. In most chapters of this book, the reader will find The R Zone,
which provides the actual R code needed to obtain the results shown in the
chapter, along with screen shots of some of the output, using R Studio.

� A host of new topics not covered in the first edition. Here is a sample of these
new topics, chapter by chapter:
� Chapter 2:Data Preprocessing. Decimal scaling; Transformations to achieve
normality; Flag variables; Transforming categorical variables into numerical
variables; Binning numerical variables; Reclassifying categorical variables;
Adding an index field; Removal of duplicate records.
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� Chapter 3: Exploratory Data Analysis. Binning based on predictive value;
Deriving new variables: Flag variables; Deriving new variables: Numerical
variables; Using EDA to investigate correlated predictor variables.

� Chapter 4: Univariate Statistical Analysis. How to reduce the margin of
error; Confidence interval estimation of the proportion; Hypothesis testing
for the mean; Assessing the strength of evidence against the null hypothesis;
Using confidence intervals to perform hypothesis tests; Hypothesis testing
for the proportion.

� Chapter 5:Multivariate Statistics. Two-sample test for difference in means;
Two-sample test for difference in proportions; Test for homogeneity of pro-
portions; Chi-square test for goodness of fit of multinomial data; Analysis
of variance; Hypothesis testing in regression; Measuring the quality of a
regression model.

� Chapter 6: Preparing to Model the Data. Balancing the training data set;
Establishing baseline performance.

� Chapter 7: k-Nearest Neighbor Algorithm. Application of k-nearest neighbor
algorithm using IBM/SPSS Modeler.

� Chapter 10: Hierarchical and k-Means Clustering. Behavior of MSB, MSE,
and pseudo-F as the k-means algorithm proceeds.

� Chapter 12: Association Rules. How can we measure the usefulness of asso-
ciation rules?

� Chapter 13: Imputation of Missing Data. Need for imputation of missing
data; Imputation of missing data for continuous variables; Imputation of
missing data for categorical variables; Handling patterns in missingness.

� Chapter 14: Model Evaluation Techniques. Sensitivity and Specificity.
� An Appendix onData Summarization and Visualization. Readers whomay be a
bit rusty on introductory statistics may find this new feature helpful. Definitions
and illustrative examples of introductory statistical concepts are provided here,
along with many graphs and tables, as follows:
� Part 1: Summarization 1: Building Blocks of Data Analysis
� Part 2: Visualization: Graphs and Tables for Summarizing and Organizing
Data

� Part 3: Summarization 2: Measures of Center, Variability, and Position
� Part 4: Summarization and Visualization of Bivariate Relationships

� New Exercises. There are over 100 new chapter exercises in the second edition.

DANGER! DATA MINING IS EASY TO DO BADLY

The plethora of new off-the-shelf software platforms for performing data mining has
kindled a new kind of danger. The ease with which these graphical user interface
(GUI)-based applications can manipulate data, combined with the power of the
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formidable data mining algorithms embedded in the black box software currently
available, makes their misuse proportionally more hazardous.

Just as with any new information technology, data mining is easy to do badly. A
little knowledge is especially dangerous when it comes to applying powerful models
based on large data sets. For example, analyses carried out on unpreprocessed data
can lead to erroneous conclusions, or inappropriate analysis may be applied to data
sets that call for a completely different approach, or models may be derived that are
built upon wholly specious assumptions. These errors in analysis can lead to very
expensive failures, if deployed.

“WHITE BOX” APPROACH: UNDERSTANDING
THE UNDERLYING ALGORITHMIC AND MODEL
STRUCTURES

The best way to avoid these costly errors, which stem from a blind black-box approach
to data mining, is to instead apply a “white-box” methodology, which emphasizes
an understanding of the algorithmic and statistical model structures underlying the
software.

Discovering Knowledge in Data applies this white-box approach by:

� Walking the reader through the various algorithms;
� Providing examples of the operation of the algorithm on actual large data sets;
� Testing the reader’s level of understanding of the concepts and algorithms;
� Providing an opportunity for the reader to do some real data mining on large
data sets; and

� Supplying the reader with the actual R code used to achieve these data mining
results, in The R Zone.

AlgorithmWalk-Throughs

Discovering Knowledge in Datawalks the reader through the operations and nuances
of the various algorithms, using small sample data sets, so that the reader gets a true
appreciation of what is really going on inside the algorithm. For example, in Chapter
10, Hierarchical and K-Means Clustering, we see the updated cluster centers being
updated, moving toward the center of their respective clusters. Also, in Chapter
11, Kohonen Networks, we see just which kind of network weights will result in a
particular network node “winning” a particular record.

Applications of the Algorithms to Large Data Sets

Discovering Knowledge in Data provides examples of the application of the various
algorithms on actual large data sets. For example, in Chapter 9, Neural Networks,
a classification problem is attacked using a neural network model on a real-world
data set. The resulting neural network topology is examined, along with the network
connection weights, as reported by the software. These data sets are included on the
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data disk, so that the reader may follow the analytical steps on their own, using data
mining software of their choice.

Chapter Exercises: Check Your Understanding

Discovering Knowledge in Data includes over 260 chapter exercises, which allow
readers to assess their depth of understanding of the material, as well as have a little
fun playing with numbers and data. These include conceptual exercises, which help
to clarify some of the more challenging concepts in data mining, and “Tiny data set”
exercises, which challenge the reader to apply the particular data mining algorithm
to a small data set, and, step-by-step, to arrive at a computationally sound solution.
For example, in Chapter 8, Decision Trees, readers are provided with a small data
set and asked to construct—by hand, using the methods shown in the chapter—a
C4.5 decision tree model, as well as a classification and regression tree model, and
to compare the benefits and drawbacks of each.

Hands-On Analysis: Learn Data Mining by Doing Data Mining

Most chapters provide hands-on analysis problems, representing an opportunity for
the reader to apply newly-acquired data mining expertise to solving real problems
using large data sets. Many people learn by doing. This book provides a framework
where the reader can learn data mining by doing data mining.

The intention is to mirror the real-world data mining scenario. In the real world,
dirty data sets need to be cleaned; raw data needs to be normalized; outliers need to
be checked. So it is with Discovering Knowledge in Data, where about 100 hands-on
analysis problems are provided. The reader can “ramp up” quickly, and be “up and
running” data mining analyses in a short time.

For example, in Chapter 12, Association Rules, readers are challenged to
uncover high confidence, high support rules for predicting which customer will be
leaving the company’s service. In Chapter 14,Model Evaluation Techniques, readers
are asked to produce lift charts and gains charts for a set of classification models
using a large data set, so that the best model may be identified.

The R Zone

R is a powerful, open-source language for exploring and analyzing data sets (www.r-
project.org). Analysts using R can take advantage of many freely available packages,
routines, and GUIs, to tackle most data analysis problems. In most chapters of this
book, the reader will find The R Zone, which provides the actual R code needed to
obtain the results shown in the chapter, along with screen shots of some of the output.
The R Zone is written by Chantal D. Larose (Ph.D. candidate in Statistics, University
of Connecticut, Storrs), daughter of the author, and R expert, who uses R extensively
in her research, including research on multiple imputation of missing data, with her
dissertation advisors, Dr. Dipak Dey and Dr. Ofer Harel.
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DATA MINING AS A PROCESS

One of the fallacies associated with data mining implementations is that data mining
somehow represents an isolated set of tools, to be applied by an aloof analysis
department, and marginally related to the mainstream business or research endeavor.
Organizations which attempt to implement data mining in this way will see their
chances of success much reduced. Data mining should be viewed as a process.

Discovering Knowledge in Data presents data mining as a well-structured
standard process, intimately connected with managers, decision makers, and those
involved in deploying the results. Thus, this book is not only for analysts, but for
managers as well, who need to communicate in the language of data mining.

The standard process used is the CRISP-DM framework: the Cross-Industry
Standard Process for Data Mining. CRISP-DM demands that data mining be seen as
an entire process, from communication of the business problem, through data col-
lection and management, data preprocessing, model building, model evaluation, and,
finally, model deployment. Therefore, this book is not only for analysts andmanagers,
but also for data management professionals, database analysts, and decision makers.

GRAPHICAL APPROACH, EMPHASIZING EXPLORATORY
DATA ANALYSIS

Discovering Knowledge in Data emphasizes a graphical approach to data analysis.
There are more than 170 screen shots of computer output throughout the text, and 40
other figures. Exploratory data analysis (EDA) represents an interesting and fun way
to “feel your way” through large data sets. Using graphical and numerical summaries,
the analyst gradually sheds light on the complex relationships hidden within the data.
Discovering Knowledge in Data emphasizes an EDA approach to data mining, which
goes hand-in-hand with the overall graphical approach.

HOW THE BOOK IS STRUCTURED

Discovering Knowledge in Data: An Introduction to Data Mining provides a compre-
hensive introduction to the field. Commonmyths about datamining are debunked, and
common pitfalls are flagged, so that new dataminers do not have to learn these lessons
themselves. The first three chapters introduce and follow the CRISP-DM standard
process, especially the data preparation phase and data understanding phase. The next
nine chapters represent the heart of the book, and are associated with the CRISP-DM
modeling phase. Each chapter presents data mining methods and techniques for a
specific data mining task.

� Chapters 4 and 5 examine univariate and multivariate statistical analyses,
respectively, and exemplify the estimation and prediction tasks, for example,
using multiple regression.
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� Chapters 7–9 relate to the classification task, examining k-nearest neighbor
(Chapter 7), decision trees (Chapter 8), and neural network (Chapter 9) algo-
rithms.

� Chapters 10 and 11 investigate the clustering task, with hierarchical and k-
means clustering (Chapter 10) and Kohonen networks (Chapter 11) algorithms.

� Chapter 12 handles the association task, examining association rules through
the a priori and GRI algorithms.

� Finally, Chapter 14 considers model evaluation techniques, which belong to
the CRISP-DM evaluation phase.

Discovering Knowledge in Data as a Textbook

Discovering Knowledge in Data: An Introduction to Data Mining naturally fits the
role of textbook for an introductory course in datamining. Instructorsmay appreciate:

� The presentation of data mining as a process
� The “White-box” approach, emphasizing an understanding of the underlying
algorithmic structures
� Algorithm walk-throughs
� Application of the algorithms to large data sets
� Chapter exercises
� Hands-on analysis, and
� The R Zone

� The graphical approach, emphasizing exploratory data analysis, and
� The logical presentation, flowing naturally from the CRISP-DM standard pro-
cess and the set of data mining tasks.

Discovering Knowledge in Data is appropriate for advanced undergraduate or
graduate-level courses. Except for one section in the neural networks chapter, no
calculus is required. An introductory statistics course would be nice, but is not
required. No computer programming or database expertise is required.
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1.1 WHAT IS DATA MINING?

TheMcKinseyGlobal Institute (MGI) reports [1] that most American companies with
more than 1000 employees had an average of at least 200 terabytes of stored data.MGI
projects that the amount of data generated worldwide will increase by 40% annually,
creating profitable opportunities for companies to leverage their data to reduce costs
and increase their bottom line. For example, retailers harnessing this “big data” to best
advantage could expect to realize an increase in their operating margin of more than
60%, according to the MGI report. And healthcare providers and health maintenance
organizations (HMOs) that properly leverage their data storehouses could achieve
$300 in cost savings annually, through improved efficiency and quality.

The MIT Technology Review reports [2] that it was the Obama campaign’s
effective use of data mining that helped President Obama win the 2012 presidential
election over Mitt Romney. They first identified likely Obama voters using a data
mining model, and then made sure that these voters actually got to the polls. The
campaign also used a separate data mining model to predict the polling outcomes
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county-by-county. In the important swing county of Hamilton County, Ohio, the
model predicted that Obama would receive 56.4% of the vote; the Obama share of the
actual vote was 56.6%, so that the prediction was off by only 0.02%. Such precise pre-
dictive power allowed the campaign staff to allocate scarce resources more efficiently.

About 13 million customers per month contact theWest Coast customer service
call center of the Bank of America, as reported by CIO Magazine [3]. In the past,
each caller would have listened to the same marketing advertisement, whether or not
it was relevant to the caller’s interests. However, “rather than pitch the product of the
week, we want to be as relevant as possible to each customer,” states Chris Kelly, vice
president and director of database marketing at Bank of America in San Francisco.
Thus Bank of America’s customer service representatives have access to individual
customer profiles, so that the customer can be informed of new products or services
that may be of greatest interest to him or her. This is an example of mining customer
data to help identify the type of marketing approach for a particular customer, based
on customer’s individual profile.

So, what is data mining?

Data mining is the process of discovering useful patterns and trends in large data
sets.

While waiting in line at a large supermarket, have you ever just closed your
eyes and listened? You might hear the beep, beep, beep, of the supermarket scanners,
reading the bar codes on the grocery items, ringing up on the register, and storing
the data on company servers. Each beep indicates a new row in the database, a new
“observation” in the information being collected about the shopping habits of your
family, and the other families who are checking out.

Clearly, a lot of data is being collected. However, what is being learned from
all this data? What knowledge are we gaining from all this information? Probably
not as much as you might think, because there is a serious shortage of skilled data
analysts.

1.2 WANTED: DATA MINERS

As early as 1984, in his book Megatrends [4], John Naisbitt observed that “We are
drowning in information but starved for knowledge.” The problem today is not that
there is not enough data and information streaming in. We are in fact inundated with
data in most fields. Rather, the problem is that there are not enough trained human
analysts available who are skilled at translating all of these data into knowledge, and
thence up the taxonomy tree into wisdom.

The ongoing remarkable growth in the field of data mining and knowledge
discovery has been fueled by a fortunate confluence of a variety of factors:

� The explosive growth in data collection, as exemplified by the supermarket
scanners above,
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� The storing of the data in data warehouses, so that the entire enterprise has
access to a reliable, current database,

� The availability of increased access to data from web navigation and intranets,
� The competitive pressure to increase market share in a globalized economy,
� The development of “off-the-shelf” commercial data mining software suites,
� The tremendous growth in computing power and storage capacity.

Unfortunately, according to the McKinsey report [1],

There will be a shortage of talent necessary for organizations to take advantage of big
data. A significant constraint on realizing value from big data will be a shortage of talent,
particularly of people with deep expertise in statistics and machine learning, and the
managers and analysts who know how to operate companies by using insights from big
data . . . . We project that demand for deep analytical positions in a big data world could
exceed the supply being produced on current trends by 140,000 to 190,000 positions. . . .
In addition, we project a need for 1.5 million additional managers and analysts in the
United States who can ask the right questions and consume the results of the analysis
of big data effectively.

This book is an attempt to help alleviate this critical shortage of data analysts.

1.3 THE NEED FOR HUMAN DIRECTION
OF DATA MINING

Many software vendorsmarket their analytical software as being a plug-and-play, out-
of-the-box application that will provide solutions to otherwise intractable problems,
without the need for human supervision or interaction. Some early definitions of data
mining followed this focus on automation. For example, Berry and Linoff, in their
book Data Mining Techniques for Marketing, Sales and Customer Support [5] gave
the following definition for data mining: “Data mining is the process of exploration
and analysis, by automatic or semi-automatic means, of large quantities of data in
order to discover meaningful patterns and rules” [emphasis added]. Three years later,
in their sequelMastering Data Mining [6], the authors revisit their definition of data
mining, andmention that, “If there is anything we regret, it is the phrase ‘by automatic
or semi-automatic means’ . . . because we feel there has come to be too much focus
on the automatic techniques and not enough on the exploration and analysis. This has
misled many people into believing that data mining is a product that can be bought
rather than a discipline that must be mastered.”

Very well stated! Automation is no substitute for human input. Humans need
to be actively involved at every phase of the data mining process. Rather than asking
where humans fit into data mining, we should instead inquire about how we may
design data mining into the very human process of problem solving.

Further, the very power of the formidable data mining algorithms embedded in
the black box software currently available makes their misuse proportionally more
dangerous. Just as with any new information technology, data mining is easy to
do badly. Researchers may apply inappropriate analysis to data sets that call for a
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completely different approach, for example, or models may be derived that are built
upon wholly specious assumptions. Therefore, an understanding of the statistical and
mathematical model structures underlying the software is required.

1.4 THE CROSS-INDUSTRY STANDARD PRACTICE
FOR DATA MINING

There is a temptation in some companies, due to departmental inertia and com-
partmentalization, to approach data mining haphazardly, to re-invent the wheel and
duplicate effort. A cross-industry standard was clearly required, that is industry-
neutral, tool-neutral, and application-neutral. The Cross-Industry Standard Process
for Data Mining (CRISP-DM) [7] was developed by analysts representing Daimler-
Chrysler, SPSS, and NCR. CRISP provides a nonproprietary and freely available
standard process for fitting data mining into the general problem solving strategy of
a business or research unit.

According to CRISP-DM, a given datamining project has a life cycle consisting
of six phases, as illustrated in Figure 1.1. Note that the phase-sequence is adaptive.

Business / Research
Understanding Phase

Deployment Phase

Evaluation Phase Modeling Phase

Data Understanding 
Phase

Data Preparation 
Phase

Figure 1.1 CRISP-DM is an iterative, adaptive process.
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That is, the next phase in the sequence often depends on the outcomes associated with
the previous phase. The most significant dependencies between phases are indicated
by the arrows. For example, suppose we are in the modeling phase. Depending
on the behavior and characteristics of the model, we may have to return to the
data preparation phase for further refinement before moving forward to the model
evaluation phase.

The iterative nature of CRISP is symbolized by the outer circle in Figure 1.1.
Often, the solution to a particular business or research problem leads to further
questions of interest, which may then be attacked using the same general process as
before. Lessons learned from past projects should always be brought to bear as input
into new projects. Here is an outline of each phase.

Issues encountered during the evaluation phase can conceivably send the analyst
back to any of the previous phases for amelioration.

1.4.1 Crisp-DM: The Six Phases

1. Business/Research Understanding Phase

a. First, clearly enunciate the project objectives and requirements in terms of
the business or research unit as a whole.

b. Then, translate these goals and restrictions into the formulation of a data
mining problem definition.

c. Finally, prepare a preliminary strategy for achieving these objectives.

2. Data Understanding Phase

a. First, collect the data.

b. Then, use exploratory data analysis to familiarize yourself with the data,
and discover initial insights.

c. Evaluate the quality of the data.

d. Finally, if desired, select interesting subsets that may contain actionable
patterns.

3. Data Preparation Phase

a. This labor-intensive phase covers all aspects of preparing the final data
set, which shall be used for subsequent phases, from the initial, raw,
dirty data.

b. Select the cases and variables you want to analyze, and that are appropriate
for your analysis.

c. Perform transformations on certain variables, if needed.

d. Clean the raw data so that it is ready for the modeling tools.

4. Modeling Phase

a. Select and apply appropriate modeling techniques.

b. Calibrate model settings to optimize results.
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c. Often, several different techniques may be applied for the same data mining
problem.

d. May require looping back to data preparation phase, in order to bring the
form of the data into line with the specific requirements of a particular data
mining technique.

5. Evaluation Phase

a. The modeling phase has delivered one or more models. These models must
be evaluated for quality and effectiveness, before we deploy them for use in
the field.

b. Also, determine whether the model in fact achieves the objectives set for it
in Phase 1.

c. Establish whether some important facet of the business or research problem
has not been sufficiently accounted for.

d. Finally, come to a decision regarding the use of the data mining results.

6. Deployment Phase

a. Model creation does not signify the completion of the project. Need to make
use of created models.

b. Example of a simple deployment: Generate a report.

c. Example of a more complex deployment: Implement a parallel data mining
process in another department.

d. For businesses, the customer often carries out the deployment based on your
model.

This book broadly follows CRISP-DM, with some modifications. For example,
we prefer to clean the data (Chapter 2) before performing exploratory data analysis
(Chapter 3).

1.5 FALLACIES OF DATA MINING

Speaking before the US House of Representatives SubCommittee on Technology,
Information Policy, Intergovernmental Relations, and Census, Jen Que Louie, Pres-
ident of Nautilus Systems, Inc. described four fallacies of data mining [8]. Two of
these fallacies parallel the warnings we have described above.

� Fallacy 1. There are data mining tools that we can turn loose on our data
repositories, and find answers to our problems.
� Reality. There are no automatic data mining tools, which will mechanically
solve your problems “while you wait.” Rather data mining is a process.
CRISP-DM is one method for fitting the data mining process into the overall
business or research plan of action.
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� Fallacy 2. The data mining process is autonomous, requiring little or no human
oversight.
� Reality. Data mining is not magic. Without skilled human supervision, blind
use of data mining software will only provide you with the wrong answer
to the wrong question applied to the wrong type of data. Further, the wrong
analysis is worse than no analysis, since it leads to policy recommendations
that will probably turn out to be expensive failures. Even after the model
is deployed, the introduction of new data often requires an updating of the
model. Continuous quality monitoring and other evaluative measures must
be assessed, by human analysts.

� Fallacy 3. Data mining pays for itself quite quickly.
� Reality. The return rates vary, depending on the start-up costs, analysis
personnel costs, data warehousing preparation costs, and so on.

� Fallacy 4. Data mining software packages are intuitive and easy to use.
� Reality. Again, ease of use varies. However, regardless of what some soft-
ware vendor advertisements may claim, you cannot just purchase some data
mining software, install it, sit back, and watch it solve all your problems.
For example, the algorithms require specific data formats, whichmay require
substantial preprocessing. Data analystsmust combine subject matter knowl-
edge with an analytical mind, and a familiarity with the overall business or
research model.

To the above list, we add three further common fallacies:
� Fallacy 5. Data mining will identify the causes of our business or research
problems.
� Reality. The knowledge discovery process will help you to uncover patterns
of behavior. Again, it is up to the humans to identify the causes.

� Fallacy 6. Data mining will automatically clean up our messy database.
� Reality. Well, not automatically. As a preliminary phase in the data min-
ing process, data preparation often deals with data that has not been
examined or used in years. Therefore, organizations beginning a new
data mining operation will often be confronted with the problem of data
that has been lying around for years, is stale, and needs considerable
updating.

� Fallacy 7. Data mining always provides positive results.
� Reality.There is no guarantee of positive results whenmining data for action-
able knowledge. Data mining is not a panacea for solving business problems.
But, used properly, by people who understand the models involved, the data
requirements, and the overall project objectives, data mining can indeed
provide actionable and highly profitable results.

The above discussion may have been termed, what data mining cannot or
should not do. Next we turn to a discussion of what data mining can do.
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1.6 WHAT TASKS CAN DATA MINING ACCOMPLISH?

The following list shows the most common data mining tasks.

Data Mining Tasks

Description

Estimation

Prediction

Classification

Clustering

Association

1.6.1 Description

Sometimes researchers and analysts are simply trying to findways to describe patterns
and trends lying within the data. For example, a pollster may uncover evidence that
those who have been laid off are less likely to support the present incumbent in
the presidential election. Descriptions of patterns and trends often suggest possible
explanations for such patterns and trends. For example, those who are laid off are
now less well off financially than before the incumbent was elected, and so would
tend to prefer an alternative.

Data mining models should be as transparent as possible. That is, the results
of the data mining model should describe clear patterns that are amenable to intuitive
interpretation and explanation. Some data mining methods are more suited to trans-
parent interpretation than others. For example, decision trees provide an intuitive and
human-friendly explanation of their results. On the other hand, neural networks are
comparatively opaque to nonspecialists, due to the nonlinearity and complexity of
the model.

High quality description can often be accomplished with exploratory data
analysis, a graphical method of exploring the data in search of patterns and trends.
We look at exploratory data analysis in Chapter 3.

1.6.2 Estimation

In estimation, we approximate the value of a numeric target variable using a set of
numeric and/or categorical predictor variables. Models are built using “complete”
records, which provide the value of the target variable, as well as the predictors.
Then, for new observations, estimates of the value of the target variable are made,
based on the values of the predictors.

For example, we might be interested in estimating the systolic blood pressure
reading of a hospital patient, based on the patient’s age, gender, body-mass index,
and blood sodium levels. The relationship between systolic blood pressure and the
predictor variables in the training set would provide us with an estimation model. We
can then apply that model to new cases.
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Examples of estimation tasks in business and research include

� Estimating the amount of money a randomly chosen family of four will spend
for back-to-school shopping this fall

� Estimating the percentage decrease in rotary movement sustained by a football
running back with a knee injury

� Estimating the number of points per game, LeBron James will score when
double-teamed in the playoffs

� Estimating the grade point average (GPA) of a graduate student, based on that
student’s undergraduate GPA.

Consider Figure 1.2, where we have a scatter plot of the graduate GPAs against
the undergraduate GPAs for 1000 students. Simple linear regression allows us to
find the line that best approximates the relationship between these two variables,
according to the least squares criterion. The regression line, indicated as a straight
line increasing from left to right in Figure 1.2 may then be used to estimate the
graduate GPA of a student, given that student’s undergraduate GPA.

Here, the equation of the regression line (as produced by the statistical package
Minitab, which also produced the graph) is ŷ = 1.24 + 0.67 x. This tells us that the
estimated graduate GPA ŷ equals 1.24 plus 0.67 times the student’s undergrad GPA.
For example, if your undergrad GPA is 3.0, then your estimated graduate GPA is
ŷ = 1.24 + 0.67 (3) = 3.25. Note that this point (x = 3.0, ŷ = 3.25) lies precisely on
the regression line, as do all of the linear regression predictions.

The field of statistical analysis supplies several venerable and widely used esti-
mation methods. These include, point estimation and confidence interval estimations,
simple linear regression and correlation, and multiple regression. We examine these

2

2

3

4

3.25

3

GPA - Undergraduate

G
P
A

 G
ra

d
u
a
te

4

Figure 1.2 Regression estimates lie on the regression line.
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methods and more in Chapters 4 and 5. Neural networks (Chapter 9) may also be
used for estimation.

1.6.3 Prediction

Prediction is similar to classification and estimation, except that for prediction, the
results lie in the future. Examples of prediction tasks in business and research include

� Predicting the price of a stock 3 months into the future.
� Predicting the percentage increase in traffic deaths next year if the speed limit
is increased.

� Predicting the winner of this fall’s World Series, based on a comparison of the
team statistics.

� Predicting whether a particular molecule in drug discovery will lead to a prof-
itable new drug for a pharmaceutical company.

Any of the methods and techniques used for classification and estimation may
also be used, under appropriate circumstances, for prediction. These include the tra-
ditional statistical methods of point estimation and confidence interval estimations,
simple linear regression and correlation, and multiple regression, investigated in
Chapters 4 and 5, as well as data mining and knowledge discovery methods like
k-nearest neighbor methods (Chapter 7), decision trees (Chapter 8), and neural
networks (Chapter 9).

1.6.4 Classification

Classification is similar to estimation, except that the target variable is categorical
rather than numeric. In classification, there is a target categorical variable, such
as income bracket, which, for example, could be partitioned into three classes or
categories: high income, middle income, and low income. The data mining model
examines a large set of records, each record containing information on the target
variable as well as a set of input or predictor variables. For example, consider the
excerpt from a data set shown in Table 1.1.

Suppose the researcher would like to be able to classify the income bracket of
new individuals, not currently in the above database, based on the other characteristics
associated with that individual, such as age, gender, and occupation. This task is a
classification task, very nicely suited to data mining methods and techniques.

TABLE 1.1 Excerpt from data set for classifying income

Subject Age Gender Occupation Income Bracket

001 47 F Software Engineer High
002 28 M Marketing Consultant Middle
003 35 M Unemployed Low
. . . . . . . . . . . . . . .
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The algorithm would proceed roughly as follows. First, examine the data
set containing both the predictor variables and the (already classified) target
variable, income bracket. In this way, the algorithm (software) “learns about” which
combinations of variables are associated with which income brackets. For example,
older females may be associated with the high income bracket. This data set is called
the training set.

Then the algorithm would look at new records, for which no information
about income bracket is available. Based on the classifications in the training set, the
algorithm would assign classifications to the new records. For example, a 63-year-old
female professor might be classified in the high income bracket.

Examples of classification tasks in business and research include

� Determining whether a particular credit card transaction is fraudulent;
� Placing a new student into a particular track with regard to special needs;
� Assessing whether a mortgage application is a good or bad credit risk;
� Diagnosing whether a particular disease is present;
� Determining whether a will was written by the actual deceased, or fraudulently
by someone else;

� Identifying whether or not certain financial or personal behavior indicates
possible criminal behavior.

For example, in the medical field, suppose we are interested in classifying the
type of drug a patient should be prescribed, based on certain patient characteristics,
such as the age of the patient and the patient’s sodium/potassium (Na/K) ratio. For a
sample of 200 patients, Figure 1.3 presents a scatter plot of the patients’ Na/K ratio
against the patients’ age. The particular drug prescribed is symbolized by the shade
of the points. Light gray points indicate Drug Y; medium gray points indicate Drugs
A or X; dark gray points indicate Drugs B or C. In this scatter plot, Na/K ratio is
plotted on the Y (vertical) axis and age is plotted on the X (horizontal) axis.

Suppose that we will base our prescription recommendation based on this
data set.

1. Which drug should be prescribed for a young patient with high Na/K ratio?

2. Young patients are on the left in the graph, and high Na/K ratios are in the
upper half, which indicates that previous young patients with high Na/K ratios
were prescribed Drug Y (light gray points). The recommended prediction clas-
sification for such patients is Drug Y.

3. Which drug should be prescribed for older patients with low Na/K ratios?

4. Patients in the lower right of the graph have been taking different prescriptions,
indicated by either dark gray (Drugs B or C) or medium gray (Drugs A or X).
Without more specific information, a definitive classification cannot be made
here. For example, perhaps these drugs have varying interactions with beta-
blockers, estrogens, or other medications, or are contraindicated for conditions
such as asthma or heart disease.
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Figure 1.3 Which drug should be prescribed for which type of patient?

Graphs and plots are helpful for understanding two and three dimensional
relationships in data. But sometimes classifications need to be based on many dif-
ferent predictors, requiring a many-dimensional plot. Therefore, we need to turn to
more sophisticated models to perform our classification tasks. Common data mining
methods used for classification are k-nearest neighbor (Chapter 7), decision trees
(Chapter 8), and neural networks (Chapter 9).

1.6.5 Clustering

Clustering refers to the grouping of records, observations, or cases into classes of
similar objects. A cluster is a collection of records that are similar to one another, and
dissimilar to records in other clusters. Clustering differs from classification in that
there is no target variable for clustering. The clustering task does not try to classify,
estimate, or predict the value of a target variable. Instead, clustering algorithms seek
to segment the whole data set into relatively homogeneous subgroups or clusters,
where the similarity of the records within the cluster is maximized, and the similarity
to records outside of this cluster is minimized.

Nielsen Claritas is in the clustering business. Among the services they provide
is a demographic profile of each of the geographic areas in the country, as defined
by zip code. One of the clustering mechanisms they use is the PRIZM segmentation
system, which describes every American zip code area in terms of distinct lifestyle
types. The 66 distinct clusters are shown in Table 1.2.

For illustration, the clusters for zip code 90210, Beverly Hills, California are

� Cluster # 01: Upper Crust Estates
� Cluster # 03: Movers and Shakers
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TABLE 1.2 The 66 clusters used by the PRIZM segmentation system

01 Upper Crust 02 Blue Blood Estates 03 Movers and Shakers
04 Young Digerati 05 Country Squires 06 Winner’s Circle
07 Money and Brains 08 Executive Suites 09 Big Fish, Small Pond
10 Second City Elite 11 God’s Country 12 Brite Lites, Little City
13 Upward Bound 14 New Empty Nests 15 Pools and Patios
16 Bohemian Mix 17 Beltway Boomers 18 Kids and Cul-de-sacs
19 Home Sweet Home 20 Fast-Track Families 21 Gray Power
22 Young Influentials 23 Greenbelt Sports 24 Up-and-Comers
25 Country Casuals 26 The Cosmopolitans 27 Middleburg Managers
28 Traditional Times 29 American Dreams 30 Suburban Sprawl
31 Urban Achievers 32 New Homesteaders 33 Big Sky Families
34 White Picket Fences 35 Boomtown Singles 36 Blue-Chip Blues
37 Mayberry-ville 38 Simple Pleasures 39 Domestic Duos
40 Close-in Couples 41 Sunset City Blues 42 Red, White and Blues
43 Heartlanders 44 New Beginnings 45 Blue Highways
46 Old Glories 47 City Startups 48 Young and Rustic
49 American Classics 50 Kid Country, USA 51 Shotguns and Pickups
52 Suburban Pioneers 53 Mobility Blues 54 Multi-Culti Mosaic
55Golden Ponds 56 Crossroads Villagers 57 Old Milltowns
58 Back Country Folks 59 Urban Elders 60 Park Bench Seniors
61 City Roots 62 Hometown Retired 63 Family Thrifts
64 Bedrock America 65 Big City Blues 66 Low-Rise Living

� Cluster # 04: Young Digerati
� Cluster # 07: Money and Brains
� Cluster # 16: Bohemian Mix

The description for Cluster # 01: Upper Crust is “The nation’s most exclusive
address, Upper Crust is the wealthiest lifestyle in America, a Haven for empty-nesting
couples between the ages of 45 and 64. No segment has a higher concentration of
residents earning over $100,000 a year and possessing a postgraduate degree. And
none has a more opulent standard of living.”

Examples of clustering tasks in business and research include

� Target marketing of a niche product for a small-cap business which does not
have a large marketing budget,

� For accounting auditing purposes, to segmentize financial behavior into benign
and suspicious categories,

� As a dimension-reduction tool when the data set has hundreds of attributes,
� For gene expression clustering, where very large quantities of genesmay exhibit
similar behavior.

Clustering is often performed as a preliminary step in a data mining process,
with the resulting clusters being used as further inputs into a different technique
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downstream, such as neural networks.1 We discuss hierarchical and k-means cluster-
ing in Chapter 10 and Kohonen networks in Chapter 11.

1.6.6 Association

The association task for data mining is the job of finding which attributes “go
together.” Most prevalent in the business world, where it is known as affinity analysis
or market basket analysis, the task of association seeks to uncover rules for quanti-
fying the relationship between two or more attributes. Association rules are of the
form “If antecedent then consequent,” together with a measure of the support and
confidence associated with the rule. For example, a particular supermarket may find
that, of the 1000 customers shopping on a Thursday night, 200 bought diapers, and
of those 200 who bought diapers, 50 bought beer. Thus, the association rule would be
“If buy diapers, then buy beer,” with a support of 200/1000 = 20% and a confidence
of 50/200 = 25%.

Examples of association tasks in business and research include

� Investigating the proportion of subscribers to your company’s cell phone plan
that respond positively to an offer of an service upgrade,

� Examining the proportion of children whose parents read to them who are
themselves good readers,

� Predicting degradation in telecommunications networks,
� Finding out which items in a supermarket are purchased together, and which
items are never purchased together,

� Determining the proportion of cases in which a new drugwill exhibit dangerous
side effects.

We discuss two algorithms for generating association rules, the a priori algo-
rithm, and the generalized rule induction (GRI) algorithm, in Chapter 12.
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EXERCISES

1. Refer to the Bank of America example early in the chapter. Which data mining task or tasks
are implied in identifying “the type of marketing approach for a particular customer, based
on customer’s individual profile”? Which tasks are not explicitly relevant?

2. For each of the following, identify the relevant data mining task(s):

a. The Boston Celtics would like to approximate how many points their next opponent will
score against them.

b. A military intelligence officer is interested in learning about the respective proportions
of Sunnis and Shias in a particular strategic region.

c. A NORAD defense computer must decide immediately whether a blip on the radar is a
flock of geese or an incoming nuclear missile.

d. A political strategist is seeking the best groups to canvass for donations in a particular
county.

e. A Homeland Security official would like to determine whether a certain sequence of
financial and residence moves implies a tendency to terrorist acts.

f. A Wall Street analyst has been asked to find out the expected change in stock price for
a set of companies with similar price/earnings ratios.

3. For each of the following meetings, explain which phase in the CRISP-DM process is
represented:

a. Managers want to know by next week whether deployment will take place. Therefore,
analysts meet to discuss how useful and accurate their model is.

b. The data mining project manager meets with the data warehousing manager to discuss
how the data will be collected.

c. The data mining consultant meets with the Vice President for Marketing, who says that
he would like to move forward with customer relationship management.

d. The data mining project manager meets with the production line supervisor, to discuss
implementation of changes and improvements.

e. The analysts meet to discuss whether the neural network or decision tree models should
be applied.

4. Discuss the need for human direction of data mining. Describe the possible consequences
of relying on completely automatic data analysis tools.

5. CRISP-DM is not the only standard process for datamining.Research an alternativemethod-
ology (Hint: SEMMA, from the SAS Institute). Discuss the similarities and differences with
CRISP-DM. �
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Chapter 1 introduced us to data mining, and the CRISP-DM standard process for
data mining model development. In Phase 1 of the data mining process, business
understanding or research understanding, businesses and researchers first enun-
ciate project objectives, then translate these objectives into the formulation of a data
mining problem definition, and finally prepare a preliminary strategy for achieving
these objectives.

Here in this chapter, we examine the next two phases of theCRISP-DMstandard
process, data understanding and data preparation. We will show how to evaluate
the quality of the data, clean the rawdata, dealwithmissing data, and perform transfor-
mations on certain variables. All of Chapter 3, Exploratory Data Analysis, is devoted
to this very important aspect of the data understanding phase. The heart of any data
mining project is the modeling phase, which we begin examining in Chapter 4.

2.1 WHY DO WE NEED TO PREPROCESS THE DATA?

Much of the raw data contained in databases is unpreprocessed, incomplete, and
noisy. For example, the databases may contain

� Fields that are obsolete or redundant,
� Missing values,
� Outliers,
� Data in a form not suitable for the data mining models,
� Values not consistent with policy or common sense.

In order to be useful for data mining purposes, the databases need to undergo
preprocessing, in the form of data cleaning and data transformation. Data mining
often deals with data that have not been looked at for years, so that much of the data
contain field values that have expired, are no longer relevant, or are simply missing.
The overriding objective is tominimize GIGO, to minimize the Garbage that gets Into
our model, so that we can minimize the amount of Garbage that our models give Out.

Depending on the data set, data preprocessing alone can account for 10–60%
of all the time and effort for the entire data mining process. In this chapter, we shall
examine several ways to preprocess the data for further analysis downstream.

2.2 DATA CLEANING

To illustrate the need for cleaning up the data, let us take a look at some of the kinds
of errors that could creep into even a tiny data set, such as that in Table 2.1.

Let us discuss, attribute by attribute, some of the problems that have found their
way into the data set in Table 2.1. The customer ID variable seems to be fine. What
about zip?

Let us assume that we are expecting all of the customers in the database to have
the usual five-numeral American zip code. Now, Customer 1002 has this unusual (to
American eyes) zip code of J2S7K7. If we were not careful, we might be tempted to
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TABLE 2.1 Can you find any problems in this tiny data set?

Marital Transaction
Customer ID Zip Gender Income Age Status Amount

1001 10048 M 78,000 C M 5000
1002 J2S7K7 F −40,000 40 W 4000
1003 90210 10,000,000 45 S 7000
1004 6269 M 50,000 0 S 1000
1005 55101 F 99,999 30 D 3000

classify this unusual value as an error, and toss it out, until we stop to think that not all
countries use the same zip code format. Actually, this is the zip code of St. Hyacinthe,
Quebec, Canada, and so probably represents real data from a real customer. What
has evidently occurred is that a French-Canadian customer has made a purchase, and
put their home zip code down in the required field. In the era of globalization, we
must be ready to expect unusual values in fields such as zip codes, which vary from
country to country.

What about the zip code for Customer 1004? We are unaware of any countries
that have four digit zip codes, such as the 6269 indicated here, so this must be an
error, right? Probably not. Zip codes for the New England states begin with the
numeral 0. Unless the zip code field is defined to be character (text) and not numeric,
the software will most likely chop off the leading zero, which is apparently what
happened here. The zip code may well be 06269, which refers to Storrs, Connecticut,
home of the University of Connecticut.

The next field, gender, contains a missing value for customer 1003. We shall
detail methods for dealing with missing values later in this chapter.

The income field has three potentially anomalous values. First, Customer 1003
is shown as having an income of $10,000,000 per year. While entirely possible,
especially when considering the customer’s zip code (90210, Beverly Hills), this
value of income is nevertheless an outlier, an extreme data value. Certain statis-
tical and data mining modeling techniques do not function smoothly in the pres-
ence of outliers; therefore, we shall examine methods of handling outliers later in
the chapter.

Poverty is one thing, but it is rare to find an income that is negative, as our
poor Customer 1002 has. Unlike Customer 1003’s income, Customer 1002’s reported
income of −$40,000 lies beyond the field bounds for income, and therefore must be
an error. It is unclear how this error crept in, with perhaps the most likely explanation
being that the negative sign is a stray data entry error. However, we cannot be sure,
and should approach this value cautiously, and attempt to communicate with the
database manager most familiar with the database history.

So what is wrong with Customer 1005’s income of $99,999? Perhaps nothing;
it may in fact be valid. But, if all the other incomes are rounded to the nearest $5000,
why the precision with Customer 1005? Often, in legacy databases, certain specified
values are meant to be codes for anomalous entries, such as missing values. Perhaps
99999 was coded in an old database to mean missing. Again, we cannot be sure and
should again refer to the database administrator.
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Finally, are we clear regarding which unit of measure the income variable is
measured in? Databases often get merged, sometimes without bothering to check
whether such merges are entirely appropriate for all fields. For example, it is quite
possible that customer 1002, with the Canadian zip code, has an income measured in
Canadian dollars, not U.S. dollars.

The age field has a couple of problems. Though all the other customers have
numeric values for age, Customer 1001’s “age” of C probably reflects an earlier
categorization of this man’s age into a bin labeled C. The data mining software will
definitely not like this categorical value in an otherwise numeric field, and we will
have to resolve this problem somehow. How about Customer 1004’s age of 0? Perhaps
there is a newborn male living in Storrs, Connecticut who has made a transaction
of $1000. More likely, the age of this person is probably missing and was coded as
0 to indicate this or some other anomalous condition (e.g., refused to provide the age
information).

Of course, keeping an age field in a database is a minefield in itself, since the
passage of time will quickly make the field values obsolete and misleading. It is better
to keep date-type fields (such as birthdate) in a database, since these are constant,
and may be transformed into ages when needed.

The marital status field seems fine, right? Maybe not. The problem lies in the
meaning behind these symbols. We all think we know what these symbols mean, but
are sometimes surprised. For example, if you are in search of cold water in a restroom
in Montreal, and turn on the faucet marked C, you may be in for a surprise, since the
C stands for chaude, which is French for hot. There is also the problem of ambiguity.
In Table 2.1, for example, does the S for Customers 1003 and 1004 stand for single
or separated?

The transaction amount field seems satisfactory, as long as we are confident
that we know what unit of measure is being used, and that all records are transacted
in this unit.

2.3 HANDLING MISSING DATA

Missing data are a problem that continues to plague data analysis methods. Even
as our analysis methods gain sophistication, we nevertheless continue to encounter
missing values in fields, especially in databases with a large number of fields. The
absence of information is rarely beneficial. All things being equal, more information
is almost always better. Therefore, we should think carefully about how we handle
the thorny issue of missing data.

To help us tackle this problem, we will introduce ourselves to a new data
set, the cars data set, originally compiled by Barry Becker and Ronny Kohavi
of Silicon Graphics, and available for download at the book series website
www.dataminingconsultant.com. The data set consists of information about 261
automobiles manufactured in the 1970s and 1980s, including gas mileage, number
of cylinders, cubic inches, horsepower, and so on.

Suppose, however, that some of the field valuesweremissing for certain records.
Figure 2.1 provides a peek at the first 10 records in the data set, with two of the field
values missing.
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Figure 2.1 Some of our field values are missing.

A common method of “handling” missing values is simply to omit the records
or fields with missing values from the analysis. However, this may be dangerous,
since the pattern of missing values may in fact be systematic, and simply deleting
the records with missing values would lead to a biased subset of the data. Further,
it seems like a waste to omit the information in all the other fields, just because one
field value is missing. In fact, Schmueli, et al. [1] state that if only 5% of data values
are missing from a data set of 30 variables, and the missing values are spread evenly
throughout the data, almost 80% of the records would have at least one missing value.
Therefore, data analysts have turned to methods that would replace the missing value
with a value substituted according to various criteria.

Some common criteria for choosing replacement values for missing data are as
follows:

1. Replace the missing value with some constant, specified by the analyst.

2. Replace the missing value with the field mean1 (for numeric variables) or the
mode (for categorical variables).

3. Replace the missing values with a value generated at random from the observed
distribution of the variable.

4. Replace the missing values with imputed values based on the other character-
istics of the record.

Let us examine each of the first three methods, none of which is entirely
satisfactory, as we shall see. Figure 2.2 shows the result of replacing the missing
values with the constant 0 for the numerical variable cubicinches and the label
missing for the categorical variable brand.

Figure 2.3 illustrates how themissing valuesmaybe replacedwith the respective
field means and modes.

Figure 2.2 Replacing missing field values with user-defined constants.

1See the Appendix for the definition of mean and mode.
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Figure 2.3 Replacing missing field values with means or modes.

The variable brand is categorical, with mode US, so the software replaces the
missing brand value with brand = US. Cubicinches, on the other hand, is contin-
uous (numeric), so that the software replaces the missing cubicinches values with
cubicinches = 200.65, which is the mean of all 258 non-missing values of that
variable.

Isn’t it nice to have the software take care of your missing data problems like
this? In a way, certainly. However, do not lose sight of the fact that the software is
creating information on the spot, actually fabricating data to fill in the holes in our
data set. Choosing the field mean as a substitute for whatever value would have been
there may sometimes work out well. However, the end-user needs to be informed that
this process has taken place.

Further, the mean may not always be the best choice for what constitutes a
“typical” value. For example, Larose [2] examines a data set where the mean is
greater than the 81st percentile. Also, if many missing values are replaced with the
mean, the resulting confidence levels for statistical inference will be overoptimistic,
since measures of spread will be artificially reduced. It must be stressed that replacing
missing values is a gamble, and the benefits must be weighed against the possible
invalidity of the results.

Finally, Figure 2.4 demonstrates how missing values can be replaced with
values generated at random from the observed distribution of the variable.

One benefit of this method is that the measures of center and spread should
remain closer to the original, when compared to the mean replacement method.
However, there is no guarantee that the resulting records would make sense. For
example, the random values drawn in Figure 2.4 has led to at least one car that does
not in fact exist! There is no Japanese-made car in the database which has an engine
size of 400 cubic inches.

Figure 2.4 Replacing missing field values with random draws from the distribution of the
variable.
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We therefore need data imputation methods that take advantage of the knowl-
edge that the car is Japanese when calculating its missing cubic inches. In data
imputation, we ask “What would be the most likely value for this missing value,
given all the other attributes for a particular record?” For instance, an American
car with 300 cubic inches and 150 horsepower would probably be expected to have
more cylinders than a Japanese car with 100 cubic inches and 90 horsepower. This is
called imputation of missing data. Before we can profitably discuss data imputation,
however, we need to learn the tools needed to do so, such as multiple regression or
classification and regression trees. Therefore, to learn about the imputation of missing
data, please see Chapter 13.

2.4 IDENTIFYING MISCLASSIFICATIONS

Let us look at an example of checking the classification labels on the categorical
variables, to make sure that they are all valid and consistent. Suppose that a frequency
distribution of the variable brand was as shown in Table 2.2.

The frequency distribution shows five classes, USA, France, US, Europe, and
Japan. However, two of the classes, USA and France, have a count of only one
automobile each. What is clearly happening here is that two of the records have
been inconsistently classified with respect to the origin of manufacture. To maintain
consistency with the remainder of the data set, the record with originUSA should have
been labeledUS, and the record with origin France should have been labeled Europe.

2.5 GRAPHICAL METHODS FOR
IDENTIFYING OUTLIERS

Outliers are extreme values that go against the trend of the remaining data. Identifying
outliers is important because they may represent errors in data entry. Also, even if an
outlier is a valid data point and not an error, certain statistical methods are sensitive
to the presence of outliers and may deliver unreliable results.

One graphical method for identifying outliers for numeric variables is to exam-
ine a histogram2 of the variable. Figure 2.5 shows a histogram of the vehicle weights
from the (slightly amended) cars data set. (Note: This slightly amended data set is
available as cars2 from the series website.)

TABLE 2.2 Notice anything strange about this
frequency distribution?

Brand Frequency

USA 1
France 1
US 156
Europe 46
Japan 51

2See the Appendix for more on histograms, including a caution on their interpretation.
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Figure 2.5 Histogram of vehicle weights: can you find the outlier?

There appears to be one lonely vehicle in the extreme left tail of the distribution,
with a vehicle weight in the hundreds of pounds rather than in the thousands. Further
investigation (not shown) tells us that the minimum weight is 192.5 pounds, which
is undoubtedly our little outlier in the lower tail. As 192.5 pounds is rather light for
an automobile, we would tend to doubt the validity of this information.

We can surmise that perhaps the weight was originally 1925 pounds, with
the decimal inserted somewhere along the line. We cannot be certain, however, and
further investigation into the data sources is called for.

Sometimes two-dimensional scatter plots3 can help to reveal outliers in more
than one variable. Figure 2.6, a scatter plot of mpg against weightlbs, seems to have
netted two outliers.

Most of the data points cluster together along the horizontal axis, except for two
outliers. The one on the left is the same vehicle we identified in Figure 2.6, weighing
only 192.5 pounds. The outlier near the top is something new: a car that gets over
500 miles per gallon! Clearly, unless this vehicle runs on dilithium crystals, we are
looking at a data entry error.

Note that the 192.5 pound vehicle is an outlier with respect to weight but
not with respect to mileage. Similarly, the 500-mpg car is an outlier with respect
to mileage but not with respect to weight. Thus, a record may be an outlier in a
particular dimension but not in another. We shall examine numeric methods for
identifying outliers, but we need to pick up a few tools first.

2.6 MEASURES OF CENTER AND SPREAD

Suppose that we are interested in estimating where the center of a particular variable
lies, as measured by one of the numerical measures of center, the most common

3See the Appendix for more on scatter plots.
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Figure 2.6 Scatter plot of mpg against Weightlbs shows two outliers.

of which are the mean, median, and mode. Measures of center are a special case
of measures of location, numerical summaries that indicate where on a number line
a certain characteristic of the variable lies. Examples of measures of location are
percentiles and quantiles.

The mean of a variable is simply the average of the valid values taken by
the variable. To find the mean, simply add up all the field values and divide by the
sample size. Here we introduce a bit of notation. The sample mean is denoted as
x̄ (“x-bar”) and is computed as x̄ =

∑
x/n, where

∑
(capital sigma, the Greek letter

“S,” for “summation”) represents “sum all the values” and n represents the sample
size. For example, suppose that we are interested in estimating where the center of
the customer service calls variable lies from the churn data set that we will explore
in Chapter 3. IBM/SPSS Modeler supplies us with the statistical summaries shown
in Figure 2.7. The mean number of customer service calls for this sample of n =
3333 customers is given as x̄ = 1.563. Using the sum and the count statistics, we can
verify that

x̄ =
∑
x

n
= 5209

3333
= 1.563

For variables that are not extremely skewed, the mean is usually not too far
from the variable center. However, for extremely skewed data sets, the mean becomes
less representative of the variable center. Also, the mean is sensitive to the presence of
outliers. For this reason, analysts sometimes prefer to work with alternative measures
of center, such as the median, defined as the field value in the middle when the field
values are sorted into ascending order. The median is resistant to the presence of
outliers. Other analysts may prefer to use the mode, which represents the field value
occurring with the greatest frequency. The mode may be used with either numerical
or categorical data, but is not always associated with the variable center.
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Figure 2.7 Statistical summary of customer service calls.

Note that measures of center do not always concur as to where the center of the
data set lies. In Figure 2.7, the median is 1, which means that half of the customers
made at least one customer service call; the mode is also 1, which means that the
most frequent number of customer service calls was 1. The median and mode agree.
However, the mean is 1.563, which is 56.3% higher than the other measures. This is
due to the mean’s sensitivity to the right-skewness of the data.

Measures of location are not sufficient to summarize a variable effectively. In
fact, two variables may have the very same values for the mean, median, and mode,
and yet have different natures. For example, suppose that stock portfolio A and stock
portfolio B contained five stocks each, with the price/earnings (P/E) ratios as shown
in Table 2.3. The portfolios are distinctly different in terms of P/E ratios. Portfolio A
includes one stock that has a very small P/E ratio and another with a rather large P/E
ratio. On the other hand, portfolio B’s P/E ratios are more tightly clustered around the
mean. But despite these differences, the mean, median, and mode of the portfolios,
P/E ratios are precisely the same: The mean P/E ratio is 10, the median is 11, and the
mode is 11 for each portfolio.

Clearly, these measures of center do not provide us with a complete picture.
What ismissing aremeasures of spread ormeasures of variability, whichwill describe
how spread out the data values are. Portfolio A’s P/E ratios are more spread out than
those of portfolio B, so the measures of variability for portfolio A should be larger
than those of B.

Typical measures of variability include the range (maximum − minimum),
the standard deviation, the mean absolute deviation, and the interquartile range. The

TABLE 2.3 The two portfolios have the same mean,
median, and mode, but are clearly different

Stock Portfolio A Stock Portfolio B

1 7
11 8
11 11
11 11
16 13
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sample standard deviation is perhaps the most widespread measure of variability and
is defined by

s =

√∑
(x − x̄)2

n − 1

Because of the squaring involved, the standard deviation is sensitive to the
presence of outliers, leading analysts to prefer other measures of spread, such as the
mean absolute deviation, in situations involving extreme values.

The standard deviation can be interpreted as the “typical” distance between a
field value and the mean, and most field values lie within two standard deviations of
the mean. From Figure 2.7 we can state that the number of customer service calls
made by most customers lies within 2(1.315) = 2.63 of the mean of 1.563 calls. In
other words, most of the number of customer service calls lie within the interval
(−1.067, 4.193), that is, (0, 4). (This can be verified by examining the histogram of
customer service calls in Figure 3.14 in Chapter 3.)

More information about these statistics may be found in the Appendix. A more
complete discussion of measures of location and variability can be found in any
introductory statistics textbook, such as Larose [2].

2.7 DATA TRANSFORMATION

Variables tend to have ranges that vary greatly from each other. For example, if we
are interested in major league baseball, players’ batting averages will range from zero
to less than 0.400, while the number of home runs hit in a season will range from
zero to around 70. For some data mining algorithms, such differences in the ranges
will lead to a tendency for the variable with greater range to have undue influence
on the results. That is, the greater variability in home runs will dominate the lesser
variability in batting averages.

Therefore, data miners should normalize their numeric variables, in order to
standardize the scale of effect each variable has on the results. Neural networks benefit
from normalization, as do algorithms that make use of distance measures, such as the
k-nearest neighbor algorithm. There are several techniques for normalization, and we
shall examine three of the more prevalent methods. Let X refer to our original field
value, and X∗ refer to the normalized field value.

2.8 MIN-MAX NORMALIZATION

Min-max normalization works by seeing how much greater the field value is than the
minimum value min(X), and scaling this difference by the range. That is

X∗
mm = X − min(X)

range(X)
= X − min(X)

max(X) −min(X)

The summary statistics for weight are shown in Figure 2.8.
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Figure 2.8 Summary statistics for weight.

The minimum weight is 1613 pounds, and the range = max (X) − min (X) =
4997 − 1613 = 3384 pounds. Let us find the min-max normalization for three auto-
mobiles weighing 1613 pounds, 3384 pounds, and 4997, respectively.

� For an ultra-light vehicle, weighing only 1613 pounds (the field minimum), the
min-max normalization is

X∗
mm = X − min(X)

range(X)
= 1613 − 1613

3384
= 0

Thus, data values that represent the minimum for the variable will have
a min-max normalization value of zero.

� The midrange equals the average of the maximum and minimum values in a
data set. That is,

midrange(X) = max(X) + min(X)
2

= 4997 + 1613
2

= 3305 pounds

For a “midrange” vehicle (if any), which weighs exactly halfway between
the minimum weight and the maximum weight, the min-max normalization is

X∗
mm = X − min(X)

range(X)
= 3305 − 1613

3384
= 0.5

So the midrange data value has a min-max normalization value of 0.5.
� The heaviest vehicle has a min-max normalization value of

X∗
mm = X − min(X)

range(X)
= 4497 − 1613

3384
= 1

That is, data values representing the field maximum will have a min-max nor-
malization of 1. To summarize, min-max normalization values will range from 0 to 1.

2.9 Z-SCORE STANDARDIZATION

Z-score standardization, which is very widespread in the world of statistical analysis,
works by taking the difference between the field value and the field mean value, and
scaling this difference by the standard deviation of the field values. That is

Z-score = X −mean(X)
SD(X)
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Figure 2.8 tells us that mean(weight) = 3005.49 and SD(weight) = 852.49.

� For the vehicle weighing only 1613 pounds, the Z-score standardization is

Z-score = X −mean(X)
SD(X)

= 1613 − 3005.49
852.49

≈ −1.63

Thus, data values that lie below the mean will have a negative Z-score
standardization.

� For an “average” vehicle (if any), with a weight equal to mean(X) = 3005.49
pounds, the Z-score standardization is

Z-score = X −mean(X)
SD(X)

= 3005.49 − 3005.49
852.49

= 0.

That is, values falling exactly on the mean will have a Z-score standard-
ization of zero.

� For the heaviest car, the Z-score standardization is

Z-score = X −mean(X)
SD(X)

= 4997 − 3005.49
852.49

≈ 2.34.

That is, data values that lie above the mean will have a positive Z-score
standardization.4

2.10 DECIMAL SCALING

Decimal scaling ensures that every normalized value lies between −1 and 1.

X∗
decimal =

X
10d

where d represents the number of digits in the data value with the largest absolute
value. For the weight data, the largest absolute value is |4997| = 4997, which has
d = 4 digits. The decimal scaling for the minimum and maximum weights is

Min: X∗
decimal =

1613
104

= 0.1613 Max: X∗
decimal =

4997
104

= 0.4997

2.11 TRANSFORMATIONS TO ACHIEVE NORMALITY

Some data mining algorithms and statistical methods require that the variables be
normally distributed. The normal distribution is a continuous probability distribution
commonly known as the bell curve, which is symmetric. It is centered at mean 𝜇

(“myu”) and has its spread determined by standard deviation 𝜎 (sigma). Figure 2.9
shows the normal distribution that has mean 𝜇 = 0 and standard deviation 𝜎 = 1,
known as the standard normal distribution Z.

4Also, for a given Z-score, we may find its associated data value. See the Appendix.
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Figure 2.9 Standard normal Z distribution.

It is a commonmisconception that variables that have had the Z-score standard-
ization applied to them follow the standard normal Z distribution. This is not correct!
It is true that the Z-standardized data will have mean 0 and standard deviation 1 (see
Figure 2.14), but the distribution may still be skewed. Compare the histogram of
the original weight data in Figure 2.10 with the Z-standardized data in Figure 2.11.
Both histograms are right-skewed; in particular, Figure 2.10 is not symmetric, and so
cannot be normally distributed.

We use the following statistic to measure the skewness of a distribution5:

Skewness = 3 (mean −median)
standard deviation

For right-skewed data, the mean is greater than the median, and thus the skew-
ness will be positive (Figure 2.12), while for left-skewed data, the mean is smaller
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Figure 2.10 Original data.

5Find more about standard deviations in the Appendix.
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Figure 2.11 Z-Standardized data are still right-skewed, not normally distributed.

MeanMedian

Figure 2.12 Right-skewed data have positive skewness.

than the median, generating negative values for skewness (Figure 2.13). For perfectly
symmetric data (such as in Figure 2.9) of course, the mean, median, and mode are all
equal, and so the skewness equals zero.

Much real-world data are right-skewed, including most financial data. Left-
skewed data are not as common, but often occurs when the data are right-censored,
such as test scores on an easy test, which can get no higher than 100. We use the
statistics for weight and weight_Z shown in Figure 2.14 to calculate the skewness for
these variables.

For weight we have

Skewness = 3 (mean −median)
standard deviation

= 3(3005.490 − 2835)
852.646

= 0.6
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Mean Median

Figure 2.13 Left-skewed data have negative skewness.

For weight_Z we have

Skewness = 3 (mean −median)
standard deviation

= 3(0 − (−0.2))
1

= 0.6

Thus, Z-score standardization has no effect on skewness.
To make our data “more normally distributed,” we must first make it sym-

metric, which means eliminating the skewness. To eliminate skewness, we apply a
transformation to the data. Common transformations are the natural log transfor-
mation ln(weight), the square root transformation

√
weight, and the inverse square

root transformation 1∕
√
weight. Application of the square root transformation (Fig-

ure 2.15) somewhat reduces the skewness, while applying the ln transformation
(Figure 2.16) reduces skewness even further.

Figure 2.14 Statistics for calculating skewness.
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Figure 2.15 Square root transformation somewhat reduces skewness.

The statistics in Figure 2.17 is used to calculate the reduction in skewness:

Skewness(sqrt (weight)) = 3 (54.280 − 53.245)
7.709

≈ 0.40

Skewness(ln (weight)) = 3 (7.968 − 7.950)
0.284

≈ 0.19

Finally, we try the inverse square root transformation 1∕
√
weight, which gives

us the distribution in Figure 2.18. The statistics in Figure 2.19 gives us

Skewness (inverse sqrt (weight)) = 3 (0.019 − 0.019)
0.003

= 0

which indicates that we have eliminated the skewness and achieved a symmetric
distribution.
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Figure 2.16 Natural log transformation reduces skewness even further.
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Figure 2.17 Statistics for calculating skewness.

Now, there is nothing magical about the inverse square root transformation; it
just happened to work for the amount of skewness present in this variable.

Though we have achieved symmetry, we still have not arrived at normality. To
check for normality, we construct a normal probability plot, which plots the quantiles
of a particular distribution against the quantiles of the standard normal distribution.
Similar to a percentile, the pth quantile of a distribution is the value xp such that p%
of the distribution values are less than or equal to xp.

In a normal probability plot, if the distribution is normal, the bulk of the points
in the plot should fall on a straight line; systematic deviations from linearity in this
plot indicate nonnormality. Note from Figure 2.18 that the distribution is not a good
fit for the normal distribution curve shown. Thus, we would not expect our normal
probability plot to exhibit normality. As expected, the normal probability plot of
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Figure 2.18 The transformation inverse sqrt (weight) has eliminated the skewness, but is still
not normal.



34 CHAPTER 2 DATA PREPROCESSING

Figure 2.19 Statistics for inverse sqrt (weight).

inverse_sqrt(weight) in Figure 2.20 shows systematic deviations from linearity, indi-
cating nonnormality. For contrast, a normal probability plot of normally distributed
data is shown in Figure 2.21; this graph shows no systematic deviations from linearity.

Experimentation with further transformations (not shown) did not yield accept-
able normality for inverse_sqrt(weight). Fortunately, algorithms requiring normality
usually do fine when supplied with data that is symmetric and unimodal.

Finally, when the algorithm is done with its analysis, do not forget to “de-
transform” the data. Let x represent the original variable, and y represent the trans-
formed variable. Then, for the inverse square root transformation, we have

y = 1√
x

“De-transforming,” we obtain: x = 1
y2
. Results that your algorithm provided on

the transformed scale would have to be de-transformed using this formula.6
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Figure 2.20 Normal probability plot of inverse_sqrt(weight) indicates nonnormality.

6For more on data transformations, seeData Mining Methods and Models, by Daniel Larose (Wiley, 2006)
or Data Mining and Predictive Analytics, by Daniel Larose and Chantal Larose (Wiley, 2015, to appear).
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Figure 2.21 Normal probability plot of normally distributed data.

2.12 NUMERICAL METHODS FOR
IDENTIFYING OUTLIERS

The Z-score method for identifying outliers states that a data value is an outlier if
it has a Z-score that is either less than −3 or greater than 3. Variable values with
Z-scores much beyond this range may bear further investigation, in order to verify
that they do not represent data entry errors or other issues. On the other hand, one
should not automatically omit outliers from analysis.

We saw that the minimum Z-score was for the vehicle weighing only 1613
pounds, and having a Z-score of −1.63, while the maximum Z-score was for the
4997-pound vehicle, with a Z-score of 2.34. Since neither Z-score is either less than
−3 or greater than 3, we conclude that there are no outliers among the vehicle weights.

Unfortunately, the mean and standard deviation, which are both part of the
formula for the Z-score standardization, are both rather sensitive to the presence of
outliers. That is, if an outlier is added to (or deleted from) a data set, the values
of mean and standard deviation will both be unduly affected by the presence (or
absence) of this new data value. Therefore, when choosing a method for evaluating
outliers, it may not seem appropriate to use measures which are themselves sensitive
to their presence.

Therefore, data analysts have developed more robust statistical methods for
outlier detection, which are less sensitive to the presence of the outliers themselves.
One elementary robust method is to use the interquartile range (IQR). The quartiles
of a data set divide the data set into four parts, each containing 25% of the data.

� The first quartile (Q1) is the 25th percentile.
� The second quartile (Q2) is the 50th percentile, that is, the median.
� The third quartile (Q3) is the 75th percentile.
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Then, the interquartile range (IQR) is a measure of variability, much more
robust than the standard deviation. The IQR is calculated as IQR = Q3 – Q1, and
may be interpreted to represent the spread of the middle 50% of the data.

A robust measure of outlier detection is therefore defined as follows. A data
value is an outlier if

a. It is located 1.5(IQR) or more below Q1 or

b. It is located 1.5(IQR) or more above Q3.

For example, suppose for a set of test scores, the 25th percentile was Q1 = 70
and the 75th percentile was Q3 = 80, so that half of all the test scores fell between 70
and 80. Then the interquartile range, or the difference between these quartiles was
IQR = 80 − 70 = 10.

A test score would be robustly identified as an outlier if

a. It is lower than Q1 – 1.5(IQR) = 70 – 1.5(10) = 55 or

b. It is higher than Q3 + 1.5(IQR) = 80 + 1.5(10) = 95.

2.13 FLAG VARIABLES

Some analytical methods, such as regression, require predictors to be numeric. Thus,
analysts wishing to use categorical predictors in regression need to recode the categor-
ical variable into one or more flag variables. A flag variable (or dummy variable
or indicator variable) is a categorical variable taking only two values, 0 and 1.
For example, the categorical predictor sex, taking values female and male, could be
recoded into the flag variable sex_flag as follows:

If sex = female = then sex flag = 0; if sex = male then sex flag = 1.

When a categorical predictor takes k ≥ 3 possible values, then define k − 1
dummy variables, and use the unassigned category as the reference category. For
example, if a categorical predictor region has k = 4 possible categories, {north,
east, south, west}, then the analyst could define the following k − 1 = 3 flag
variables.

north flag : If region = north then north flag = 1; otherwise north flag = 0.
east flag : If region = east then east flag = 1; otherwise east flag = 0.
south flag : If region = south then south flag = 1; otherwise south flag = 0.

The flag variable for the west is not needed, since, region = west is already
uniquely identified by zero values for each of the three existing flag variables. (Further,
inclusion of the fourth flag variable will cause some algorithms to fail, because of the
singularity of the (X′X)−1 matrix in regression, for instance.) Instead, the unassigned
category becomes the reference category, meaning that, the interpretation of the value
of north_flag is region = north compared to region = west. For example, if we are
running a regression analysis with income as the target variable, and the regression
coefficient (see Chapter 5) for north_flag equals $1000, then the estimated income
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for region = north is $1000 greater than for region = west, when all other predictors
are held constant.

2.14 TRANSFORMING CATEGORICAL VARIABLES INTO
NUMERICAL VARIABLES

Would not it be easier to simply transform the categorical variable region into a single
numerical variable rather than using several different flag variables? For example,
suppose we defined the quantitative variable region_num as follows:

Region Region_num

North 1
East 2
South 3
West 4

Unfortunately, this is a common and hazardous error. The algorithm now
erroneously thinks the following:

� The four regions are ordered,
� West > South > East > North,
� West is three times closer to South compared to North, and so on.

So, in most instances, the data analyst should avoid transforming categorical
variables to numerical variables. The exception is for categorical variables that are
clearly ordered, such as the variable survey_response, taking values always, usually,
sometimes, never. In this case, one could assign numerical values to the responses,
though one may bicker with the actual values assigned, such as:

Survey
Survey response Response_num

Always 4
Usually 3
Sometimes 2
Never 1

Should never be “0” rather than “1”? Is always closer to usually than usually
is to sometimes? Careful assignment of the numerical values is important.
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2.15 BINNING NUMERICAL VARIABLES

Some algorithms prefer categorical rather than continuous predictors7, in which case
we would need to partition any numerical predictors into bins or bands. For example,
we may wish to partition the numerical predictor house value into low, medium, and
high. There are four common methods for binning numerical predictors:

1. Equal width binning divides the numerical predictor into k categories of equal
width, where k is chosen by the client or analyst.

2. Equal frequency binning divides the numerical predictor into k categories,
each having k/n records, where n is the total number of records.

3. Binning by clustering uses a clustering algorithm, such as k-means clustering
(Chapter 10) to automatically calculate the “optimal” partitioning.

4. Binning based on predictive value. Methods (1)–(3) ignore the target variable;
binning based on predictive value partitions the numerical predictor based on
the effect each partition has on the value of the target variable. Chapter 3
contains an example of this.

Equal width binning is not recommended for most data mining applications,
since the width of the categories can be greatly affected by the presence of outliers.
Equal frequency distribution assumes that each category is equally likely, an assump-
tion which is usually not warranted. Therefore, methods (3) and (4) are preferred.

Suppose we have the following tiny data set, which we would like to discretize
into k = 3 categories: X = {1, 1, 1, 1, 1, 2, 2, 11, 11, 12, 12, 44}.

1. Using equal width binning, we partition X into the following categories of equal
width, illustrated in Figure 2.22a:
� Low: 0 ≤ X < 15, which contains all the data values except one.
� Medium: 15 ≤ X < 30, which contains no data values at all.
� High: 30 ≤ X < 45, which contains a single outlier.

2. Using equal frequency binning, we have n = 12, k = 3, and n/k = 4. The
partition is illustrated in Figure 2.22b.
� Low: Contains the first four data values, all X = 1.
� Medium: Contains the next four data values, X = {1, 2, 2, 11}.
� High: Contains the last four data values, X = {11, 12, 12, 44}.

Note that one of the medium data values equals a data value in the low
category, and another equals a data value in the high category. This violates
what should be a self-evident heuristic: Equal data values should belong to
the same category.

3. Finally, k-means clustering identifies what seems to be the intuitively correct
partition, as shown in Figure 2.22c.

7For further information about discrete and continuous variables, as well as other ways of classifying
variables, see the Appendix.
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Figure 2.22 Illustration of binning methods.

We provide two examples of binning based on predictive value in Chapter 3.

2.16 RECLASSIFYING CATEGORICAL VARIABLES

Reclassifying categorical variables is the categorical equivalent of binning numerical
variables. Often, a categorical variable will contain too many field values to be
easily analyzable. For example, the predictor state could contain 50 different field
values. Data mining methods such as logistic regression and the C4.5 decision tree
algorithm perform suboptimally when confronted with predictors containing too
manyfield values. In such a case, the data analyst should reclassify the field values. For
example, the 50 states could each be reclassified as the variable region, containing field
values Northeast, Southeast, North Central, Southwest, andWest. Thus, instead of 50
different field values, the analyst (and algorithm) is faced with only 5. Alternatively,
the 50 states could be reclassified as the variable economic_level, with three field
values containing the richer states, the midrange states, and the poorer states. The data
analyst should choose a reclassification that supports the objectives of the business
problem or research question.

2.17 ADDING AN INDEX FIELD

It is recommended that the data analyst create an index field, which tracks the sort
order of the records in the database. Data mining data gets partitioned at least once
(and sometimes several times). It is helpful to have an index field so that the original
sort order may be recreated. For example, using IBM/SPSS Modeler, you can use the
@Index function in the Derive node to create an index field.

2.18 REMOVING VARIABLES THAT ARE NOT USEFUL

The data analyst may wish to remove variables that will not help the analysis,
regardless of the proposed data mining task or algorithm. Such variables include

� Unary variables
� Variables which are very nearly unary
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Unary variables take on only a single value, so a unary variable is not so much
a variable as a constant. For example, data collection on a sample of students at an
all-girls private school would find that the sex variable would be unary, since every
subject would be female. Since sex is constant across all observations, it cannot have
any effect on any data mining algorithm or statistical tool. The variable should be
removed.

Sometimes a variable can be very nearly unary. For example, suppose that
99.95% of the players in a field hockey league are female, with the remaining 0.05%
male. The variable sex is therefore very nearly, but not quite, unary. While it may be
useful to investigate the male players, some algorithms will tend to treat the variable
as essentially unary. For example, a classification algorithm can be better than 99.9%
confident that a given player is female. So, the data analyst needs to weigh how
close to unary a given variable is, and whether such a variable should be retained or
removed.

2.19 VARIABLES THAT SHOULD PROBABLY
NOT BE REMOVED

It is (unfortunately) a common—though questionable—practice to remove from anal-
ysis the following types of variables:

� Variables for which 90% or more of the values are missing.
� Variables which are strongly correlated.

Before you remove a variable because it has 90% or more missing values, con-
sider that there may be a pattern in the missingness, and therefore useful information,
that you may be jettisoning. Variables which contain 90% missing values present
a challenge to any strategy for imputation of missing data (see Chapter 13). For
example, are the remaining 10% of the cases are truly representative of the missing
data, or are the missing values occurring due to some systematic but unobserved
phenomenon? For example, suppose we have a field called donation_dollars in a
self-reported survey database. Conceivably, those who donate a lot would be inclined
to report their donations, while those who do not donate much may be inclined to skip
this survey question. Thus, the 10% who report are not representative of the whole.
In this case, it may be preferable to construct a flag variable, donation_flag, since
there is a pattern in the missingness which may turn out to have predictive power.

However, if the data analyst has reason to believe that the 10% are representa-
tive, then he or she may choose to proceed with the imputation of the missing 90%. It
is strongly recommended that the imputation be based on the regression or decision
tree methods shown in Chapter 13. Regardless of whether the 10% are representative
of the whole or not, the data analyst may decide that it is wise to construct a flag
variable for the non-missing values, since they may very well be useful for prediction
or classification. Also, there is nothing special about the 90% figure; the data analyst
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may use any large proportion he or she considers warranted. Bottom line: one should
avoid removing variables just because they have lots of missing values.

An example of correlated variables may be precipitation and attendance at a
state beach. As precipitation increases, attendance at the beach tends to decrease, so
that the variables are negatively correlated8. Inclusion of correlated variables may at
best double-count a particular aspect of the analysis, and at worst lead to instability of
the model results. When confronted with two strongly correlated variables, therefore,
some data analysts may decide to simply remove one of the variables. We advise
against doing so, since important information may thereby be discarded. Instead, it
is suggested that principal component analysis be applied, where the common vari-
ability in correlated predictors may be translated into a set of uncorrelated principal
components9.

2.20 REMOVAL OF DUPLICATE RECORDS

During a database’s history, recordsmay have been inadvertently copied, thus creating
duplicate records. Duplicate records lead to an overweighting of the data values in
those records, so, if the records are truly duplicate, only one set of them should
be retained. For example, if the ID field is duplicated, then definitely remove the
duplicate records. However, the data analyst should apply common sense. To take
an extreme case, suppose a data set contains three nominal fields, and each field
takes only three values. Then there are only 3 × 3 × 3 = 27 possible different sets
of observations. In other words, if there are more than 27 records, at least one of
them has to be a duplicate. So, the data analyst should weigh the likelihood that the
duplicates represent truly different records against the likelihood that the duplicates
are indeed just duplicated records.

2.21 A WORD ABOUT ID FIELDS

Because ID fields have a different value for each record, they will not be helpful
for your downstream data mining algorithms. They may even be hurtful, with the
algorithm finding some spurious relationship between ID field and your target. Thus it
is recommended that ID fields should be filtered out from the data mining algorithms,
but should not be removed from the data, so that the data analyst can differentiate
between similar records.

In Chapter 3, Exploratory Data Analysis, we apply some basic graphical and
statistical tools to help us begin to uncover simple patterns and trends in the data
structure.

8For more on correlation, see the Appendix.
9For more on principal component analysis, see Data Mining Methods and Models, by Daniel Larose
(Wiley, 2006) or Data Mining and Predictive Analytics, by Daniel Larose and Chantal Larose (Wiley,
2015, to appear).
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THE R ZONE

Getting Started with R

R is a powerful, open-source language for exploring and analyzing data sets. Analysts using R
can take advantage of many freely available packages, routines, and graphical user interfaces,
to tackle most data analysis problems. Go to www.r-project.org, select “download R,” choose
a CRAN mirror close to your location, click the download link that applies to your operating
system, and follow the instructions to install R for the first time.

The format we will follow in much of The R Zone is to present the R code in the left
column, and the associated output in the right column. Sometimes, the R code takes up both
the columns.

How to Handle Missing Data: Example Using the Cars Data Set

Note: Lines beginning with “#” are comment lines explaining what we are doing. The R
compiler skips these lines. Lines indented (e.g., Create a Histogram, below) are meant to be
on the same line as the one above. A semicolon tells R to separate one line into two lines, one
before and one after the semicolon.

# Input data set Cars into Data Frame “cars”

cars <- read.csv(file = "C:/ . . . /cars.txt",
stringsAsFactors = FALSE)

# Show the new Data Frame "cars"
cars
# (only the first seven records shown
# in output)

# Create subset of "cars"

# Use records 1 to 5, variables 1, 3, 4, and 8.
cars_tiny <- cars[1:5,c(1, 3, 4, 8)]
cars_tiny

# Replace the missing value with some constant

cars_tiny[2,2] <- cars_tiny[4,4] <- NA
cars_tiny[2,2] <- 0
cars_tiny[4,4] <- "Missing"
cars_tiny
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# Replace the missing value with the field mean or mode

# Recreate the missing value table
cars_tiny[2,2] <- cars_tiny[4,4] <- NA
# Replace cars_tiny[2,2] with cubicinches mean
cars_tiny[2,2] <-

mean(na.omit(cars_tiny$cubicinches))
# Replace cars_tiny[4,4] with brand mode
our_table <- table(cars_tiny$brand)
our_mode <- names(our_table)[our_table ==

max(our_table)]
cars_tiny[4,4] <- our_mode
cars_tiny

# Replace missing values with a value generated at random from the observed distribution

# Recreate the missing value table
cars_tiny[2,2] <- cars_tiny[4,4] <- NA
# Generate random observation from
# observed distribution; results will vary
obs_brand <-

sample(na.omit(cars_tiny$brand), 1)
obs_cubicinches <-

sample(na.omit(cars_tiny$cubicinches), 1)
# Replace the missing values
cars_tiny[2,2] <- obs_cubicinches
cars_tiny[4,4] <- obs_brand
cars_tiny

# Five Number Summary with Mean # Count

summary(cars$weight) length(cars$weight)

# Min-Max Normalization # Z-score

mmnorm.weight <- (cars$weight -
min(cars$weight))/(max(cars$weight) -
min(cars$weight))

mmnorm.weight

zscore.weight <- (cars$weight -
mean(cars$weight))/sd(cars$weight)

zscore.weight
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# Create a histogram

# Input the cars2 dataset
cars2 <- read.csv(file = "C:/ . . . /cars2.txt",

stringsAsFactors = TRUE)
# Set up the plot area
par(mfrow = c(1,1))
# Create the histogram bars
hist(cars2$weight,

breaks = 30,
xlim = c(0, 5000),
col = "blue",
border = "black",
ylim = c(0, 40),
xlab = "Weight",
ylab = "Counts",
main = "Histogram of Car Weights")

# Make a box around the plot
box(which = "plot",

lty = "solid",
col="black")

# Create a scatterplot

plot(cars2$weight, cars2$mpg,
xlim = c(0, 5000),
ylim = c(0, 600),
xlab = "Weight",
ylab = "MPG",
main = "Scatterplot of MPG by Weight",
type = "p",
pch = 16,
col = "blue")

#Add open black circles
points(cars2$weight,

cars2$mpg,
type = "p",
col = "black")

# Natural Log transformation # Inverse Square Root transformation

natlog_weight <- log(cars$weight)
natlog_weight

invsqrt_weight <- 1 / sqrt(cars$weight)
invsqrt_weight
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# Calculate skewness # Find the skewness

weight_skew <- (3*(mean(cars$weight) -
median(cars$weight))) / sd(cars$weight)

zscore.weight_skew <-
(3*(mean(zscore.weight) -
median(zscore.weight))) /
sd(zscore.weight)

weight_skew; zscore.weight_skew

lnweight_skew <- (3*(mean(natlog_weight) -
median(natlog_weight))) /
sd(natlog_weight)

lnweight_skew

# Side-by-Side Histograms of Weight and Z-score of Weight

par(mfrow = c(1,2))
hist(cars$weight, breaks = 30,

xlim = c(1000, 5000),
main = "Histogram of Weight",
xlab = "Weight",
ylab = "Counts")

box(which = "plot",
lty = "solid",
col="black")

hist(zscore.weight,
breaks = 30,
xlim = c(-2, 3),
main = "Histogram of Z-score

of Weight",
xlab = "Z-score of Weight",
ylab = "Counts")

box(which = "plot",
lty = "solid",
col="black")

# Normal probability plot

par(mfrow = c(1,1))
qqnorm(invsqrt_weight,

datax = TRUE,
col = "red",
ylim = c(0.01, 0.03),
main = "Normal Q-Q Plot of Inverse

Square Root of Weight")
qqline(invsqrt_weight,

col = "blue",
datax = TRUE)
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# Inverse Square Root skewness

invsqweight_skew <- (3*(mean(invsqrt_weight) - median(invsqrt_weight)))/sd(invsqrt_weight)
invsqweight_skew

# Create histogram with fitted Normal distribution

# Simulate from a Normal distribution
x <- rnorm(1000000,

mean = mean(invsqrt_weight),
sd = sd(invsqrt_weight))

par(mfrow = c(1,1))
hist(invsqrt_weight,

breaks = 30,
xlim = c(0.0125, 0.0275),
col = "lightblue",
prob = TRUE,
border = "black",
xlab = "Inverse Square Root of Weight",
ylab = "Counts",
main = "Histogram of Inverse Square Root of

Weight")
box(which = "plot",

lty = "solid",
col="black")

lines(density(x),
col = "red")

# Create three flag variables for four categories

# Ten observations, with 999 as our placeholder for unassigned values
north_flag <- east_flag <- south_flag <- c(rep(999, 10))
# Create the variable region
region <- c(rep(c("north", "south", "east",

"west"),2), "north", "south")
# Change the flag variable values to 0 or 1
for (i in 1:length(region)) {

if(region[i] == "north") north_flag[i] = 1
else north_flag[i] = 0

if(region[i] == "east") east_flag[i] = 1 else
east_flag[i] = 0

if(region[i] == "south") south_flag[i] = 1
else south_flag[i] = 0

}
north_flag; east_flag; south_flag
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# Transforming the data

x <- cars$weight[1]; x
# Transform x using y = 1 / sqrt(x)
y <- 1 / sqrt(x); y
# Detransform x using x = 1 / (y)ˆ2
detransformedx <- 1 / yˆ2; detransformedx

# Find duplicate records in a data frame

anyDuplicated(cars)
# To examine each record, use Duplicated
duplicated(cars)
# 'True' indicates a record which is a duplicate of previous records,
# 'False' indicates a record which is not a duplicate of previous records
# Duplicate the first record in 'data' to make new dataset
new.cars <- rbind(cars, cars[1,])
# Check for duplicates
anyDuplicated(new.cars)
# The 262nd record is a duplicate
duplicated(new.cars)
# 'True' indicates a duplicate of a previous record

# Create an index field

# For data frames
# Data frames already have an index field;
# the left-most column
# The index of a record will stay with that
# record, even if the records are reordered.
cars
cars[order(cars$mpg),]

# For vectors or matrices
# Add a column to act as an index field
x <- c(1,1,3:1,1:4,3); y <- c(9,9:1)
z <-c(2,1:9)
matrix <- t(rbind(x,y,z)); matrix
indexed_m <- cbind(c(1:length(x)), matrix);
indexed_m
indexed_m[order(z),]
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# Binning

# Enter the dataset, call it xdata
xdata <- c(1,1,1,1,1,2,2,11,11,12,12,44)
# Get the sample size of the variable
n <- length(xdata)
#Declare number of bins and bin indicator
nbins <- 3
whichbin <- c(rep(0, n))

# K-means
kmeansclustering <- kmeans(xdata,

centers = nbins)
whichbin <- kmeansclustering$cluster;
whichbin

# Equal frequency
freq <- n/nbins
# Sort the data
xsorted <- sort(xdata)
for (i in 1:nbins) {
for (j in 1:n) {
if((i-1)*freq < j && j <=i*freq)
whichbin[j] <- i

}
}
whichbin

# Equal width
range_xdata <- max(xdata) - min(xdata) + 1
binwidth <- range_xdata/nbins
for (i in 1:nbins) {
for (j in 1:n) {
if((i-1)*binwidth < xdata[j] &&
xdata[j] <= (i)*binwidth)
whichbin[j] <- i

}
}
whichbin
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EXERCISES

1. Describe the possible negative effects of proceeding directly to mine data that has not been
preprocessed.

2. Refer to the income attribute of the five customers in Table 2.1, before preprocessing.

a. Find the mean income before preprocessing.

b. What does this number actually mean?

c. Now, calculate the mean income for the three values left after preprocessing. Does this
value have a meaning?

3. Explain why zip codes should be considered text variables rather than numeric.

4. What is an outlier? Why do we need to treat outliers carefully?

5. Explain why a birthdate variable would be preferred to an age variable in a database.

6. True or false: All things being equal, more information is almost always better.

7. Explain why it is not recommended, as a strategy for dealing with missing data, to simply
omit the records or fields with missing values from the analysis.
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8. Which of the fourmethods for handlingmissing datawould tend to lead to an underestimate
of the spread (e.g., standard deviation) of the variable? What are some benefits to this
method?

9. What are some of the benefits and drawbacks for the method for handling missing data
that chooses values at random from the variable distribution?

10. Of the four methods for handling missing data, which method is preferred?

11. Make up a classification scheme which is inherently flawed, and would lead to misclas-
sification, as we find in Table 2.2. For example, classes of items bought in a grocery
store.

12. Make up a data set, consisting of the heights and weights of six children, in which one of
the children is an outlier with respect to one of the variables, but not the other. Then alter
this data set so that the child is an outlier with respect to both variables.

Use the following stock price data (in dollars) for Exercises 13–18.

10 7 20 12 75 15 9 18 4 12 8 14

13. Calculate the mean, median, and mode stock price.

14. Compute the standard deviation of the stock price. Interpret what this number means.

15. Find the min-max normalized stock price for the stock worth $20.

16. Calculate the midrange stock price.

17. Compute the Z-score standardized stock price for the stock worth $20.

18. Find the decimal scaling stock price for the stock worth $20.

19. Calculate the skewness of the stock price data.

20. Explain why data analysts need to normalize their numeric variables.

21. Describe three characteristics of the standard normal distribution.

22. If a distribution is symmetric, does it follow that it is normal? Give a counterexample.

23. What do we look for in a normal probability plot to indicate nonnormality?
Use the stock price data for Exercises 24–26.

24. Do the following.

a. Identify the outlier.

b. Verify that this value is an outlier, using the Z-score method.

c. Verify that this value is an outlier, using the IQR method.

25. Identify all possible stock prices that would be outliers, using:

a. The Z-score method.

b. The IQR method.

26. Investigate how the outlier affects the mean and median by doing the following.

a. Find the mean score and the median score, with and without the outlier.

b. State which measure, the mean or the median, the presence of the outlier affects more,
and why.
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27. What are the four common methods for binning numerical predictors? Which of these are
preferred?

Use the following data set for Exercises 28–30: 1 1 1 3 3 7

28. Bin the data into three bins of equal width (width = 3).

29. Bin the data into three bins of two records each.

30. Clarify why each of the binning solutions above are not optimal.

31. Explain why we might not want to remove a variable that had 90% or more missing
values.

32. Explain why we might not want to remove a variable just because it is highly correlated
with another variable.

HANDS-ON ANALYSIS

Use the churn data set on the book series website for the following exercises.

33. Explore whether there are missing values for any of the variables.

34. Compare the area code and state fields. Discuss any apparent abnormalities.

35. Use a graph to visually determine whether there are any outliers among the number of
calls to customer service.

36. Identify the range of customer service calls that should be considered outliers, using:

a. The Z-score method, and

b. The IQR method.

37. Transform the day minutes attribute using Z-score standardization.

38. Work with skewness as follows.

a. Calculate the skewness of day minutes.

b. Then calculate the skewness of the Z-score standardized day minutes. Comment.

c. Based on the skewness value, would you consider day minutes to be skewed or nearly
perfectly symmetric?

39. Construct a normal probability plot of day minutes. Comment on the normality of the data.

40. Work with international minutes as follows.

a. Construct a normal probability plot of international minutes.

b. What is stopping this variable from being normally distributed.

c. Construct a flag variable to deal with the situation in (b).

d. Construct a normal probability plot of the derived variable nonzero international min-
utes. Comment on the normality.

41. Transform the night minutes attribute using Z-score standardization. Using a graph,
describe the range of the standardized values. �
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3.1 HYPOTHESIS TESTING VERSUS EXPLORATORY
DATA ANALYSIS

When approaching a data mining problem, a data mining analyst may already have
some a priori hypotheses that he or she would like to test regarding the relationships
between the variables. For example, suppose that cell phone executives are interested
in whether a recent increase in the fee structure has led to a decrease in market share.
In this case, the analyst would test the hypothesis that market share has decreased,
and would therefore use hypothesis testing procedures.

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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A myriad of statistical hypothesis testing procedures are available through the
traditional statistical analysis literature. We cover many of these in Chapters 4 and 5.
However, analysts do not always have a priori notions of the expected relationships
among the variables. Especially when confronted with unknown, large databases,
analysts often prefer to use exploratory data analysis (EDA), or graphical data
analysis. EDA allows the analyst to

� Delve into the data set;
� Examine the inter-relationships among the attributes;
� Identify interesting subsets of the observations; and
� Develop an initial idea of possible associations among the predictors, as well
as between the predictors and the target variable.

3.2 GETTING TO KNOW THE DATA SET

Graphs, plots, and tables often uncover important relationships that could indicate
important areas for further investigation. In this chapter, we use exploratory methods
to delve into the Churn data set [1] from the UCI Repository of Machine Learning
Databases at the University of California, Irvine. The data set is also available on the
book series website, www.dataminingconsultant.com. Churn, also called attrition, is
a term used to indicate a customer leaving the service of one company in favor of
another company. The data set contains 20 predictors worth of information about
3333 customers, along with the target variable, churn, an indication of whether that
customer churned (left the company) or not.

The variables are as follows:

� State: Categorical, for the 50 states and the District of Columbia
� Account Length: Integer-valued, how long account has been active
� Area code: Categorical
� Phone Number: Essentially a surrogate for customer ID
� International Plan: Dichotomous categorical, yes or no
� Voice Mail Plan: Dichotomous categorical, yes or no
� Number of Voice Mail Messages: Integer-valued
� Total Day Minutes: Continuous, minutes customer used service during the day
� Total Day Calls: Integer-valued
� Total Day Charge: Continuous, perhaps based on above two variables
� Total Eve Minutes: Continuous, minutes customer used service during the
evening

� Total Eve Calls: Integer-valued
� Total Eve Charge: Continuous, perhaps based on above two variables
� Total Night Minutes: Continuous, minutes customer used service during the
night

� Total Night Calls: Integer-valued
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� Total Night Charge: Continuous, perhaps based on above two variables
� Total International Minutes: Continuous, minutes customer used service to
make international calls

� Total International Calls: Integer-valued
� Total International Charge: Continuous, perhaps based on above two variables
� Number of Calls to Customer Service: Integer-valued
� Churn: Target. Indicator of whether the customer has left the company (True
or False)

To begin, it is often best to simply take a look at the field values for some of the records.
Figure 3.1 shows the variable values for the first 10 records of the churn data set.

We can begin to get a feel for the data by looking at Figure 3.1. We note for
example:

� The variable Phone uses only seven digits
� There are two flag variables
� Most of our variables are continuous
� The response variable Churn is a flag variable having two values, True and
False

Next, we turn to summarization and visualization (see Appendix). Figure 3.2
shows graphs (either histograms or bar charts) and summary statistics for each variable
in the data set, except Phone, which is an identification field. The variable types for
this software (Modeler, by IBM/SPSS) are shown (set for categorical, flag for flag,
and range for continuous). We may note that Vmail messages has a spike on the
length, and that most quantitative variables seem to be normally distributed, except
for Intl Calls and CustServ Calls, which are right-skewed (note that the Skewness

(a)

(b)

Figure 3.1 Field values of the first 10 records in the churn data set.
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(a)

(b)

Figure 3.2 Summarization and visualization of the churn data set.

statistic is larger for these variables). Unique represents the number of distinct field
values. We wonder how it can be that there are 51 distinct values for State, but only 3
distinct values for Area Code. Also, the mode of State being West Virginia may have
us scratching our heads a bit. More on this later. We are still just getting to know the
data set.
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3.3 EXPLORING CATEGORICAL VARIABLES

The bar graph in Figure 3.3 shows the counts and percentages of customers who
churned (True) and did not churn (False). Fortunately, only a minority (14.49%) of
our customers have left our service. Our task is to identify patterns in the data that
will help to reduce the proportion of churners.

One of the primary reasons for performing exploratory data analysis is to
investigate the variables, examine the distributions of the categorical variables, look
at histograms of the numeric variables, and explore the relationships among sets of
variables. On the other hand, our overall objective for the data mining project as a
whole (not just the EDA phase) is to develop a model of the type of customer likely
to churn (jump from your company’s service to another company’s service). Today’s
software packages allow us to become familiar with the variables, while at the same
time beginning to see which variables are associated with churn. In this way, we can
explore the data while keeping an eye on our overall goal. We begin by considering
the categorical variables, and their relationship to churn.

The first categorical variable we investigate is International Plan. Figure 3.4
shows a bar chart of International Plan, with an overlay of Churn, and represents
a comparison of the proportion of churners and non-churners, among customers
who either had selected the International Plan (yes, 9.69% of customers) or had not
selected it (no, 90.31% of customers). The graphic appears to indicate that a greater
proportion of International Plan holders are churning, but it is difficult to be sure.

In order to “increase the contrast” and better discern whether the proportions
differ, we can ask the software (in this case, IBM/SPSS Modeler) to provide the
same size bars for each category. Thus, in Figure 3.5, we see a graph of the very
same information as in Figure 3.4, except that the bar for the yes category has been
“stretched” out to be the same length as for the no category. This allows us to better
discern whether the churn proportions differ among the categories. Clearly, those who
have selected the International Plan have a greater chance of leaving the company’s
service than do those who do not have the International Plan.

Figure 3.3 Churners and non-churners.

Figure 3.4 Comparison bar chart of churn proportions, by International Plan participation.
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Figure 3.5 Comparison bar chart of churn proportions, by International Plan participation,
with equal bar length.

The graphics above tell us that International Plan holders tend to churn more
frequently, but they do not quantify the relationship. In order to quantify the rela-
tionship between International Plan holding and churning, we may use a contingency
table (Table 3.1), since both variables are categorical.

Note that the counts in the first column add up to the total number of nonselectors
of the International Plan fromFigure 3.4: 2664+ 346= 3010. Similarly for the second
column. The first row in Table 3.1 shows the counts of those who did not churn, while
the second row shows the counts of those that did churn.

The total column contains the marginal distribution for churn, that is, the
frequency distribution for this variable alone. Similarly the total row represents the
marginal distribution for International Plan. Note that the marginal distribution for
International Plan concurs with the counts in Figure 3.5.

We may enhance Table 3.1 with percentages, depending on our question of
interest. For example, Table 3.2 adds column percentages, which indicate, for each
cell, the percentage of the column total.

We calculate the column percentages whenever we are interested in comparing
the percentages of the rowvariable for each value of the column variable. For example,
here we are interested in comparing the proportions of churners (row variable) for
those who belong or do not belong to the International Plan (column variable).
Note that 137/(137 + 186) = 42.4% of the International Plan holders churned, as
compared to only 346/(346 + 2664) = 11.5% of those without the International Plan.
Customers selecting the International Plan are more than three times as likely to leave
the company’s service and those without the plan. Thus, we have now quantified the
relationship that we uncovered graphically earlier.

The graphical counterpart of the contingency table is the clustered bar chart.
Figure 3.6 shows a Minitab bar chart of churn, clustered by International Plan. The

TABLE 3.1 Contingency table of International Plan with Churn

International Plan

No Yes Total

Churn False 2664 186 2850
True 346 137 483
Total 3010 323 3333
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TABLE 3.2 Contingency table with column percentages

International Plan

No Yes Total

Churn False Count 2664
Col% 88.5%

Count 186
Col% 57.6%

Count 2850
Col% 85.5%

True Count 346
Col% 11.5%

Count 137
Col% 42.4%

Count 483
Col% 14.5%

Total 3010 323 3333

first set of two bars represents those who do not belong to the plan, and is associated
with the “No” column in Table 3.2. The second set of two bars represents thosewho do
belong to the International Plan, and is associated with the “Yes” column in Table 3.2.
Clearly, the proportion of churners is greater among those belonging to the plan.

Another useful graphic for comparing two categorical variables is the compar-
ative pie chart. Figure 3.7 shows a comparative pie chart of churn, for those who do
not (“no”) and those who do (“yes”) belong to the International Plan. The clustered
bar chart is usually preferred, because it conveys counts as well as proportions, while
the comparative pie chart conveys only proportions.

Contrast Table 3.2 with Table 3.3, the contingency table with row percentages,
which indicate, for each cell, the percentage of the row total. We calculate the row
percentages whenever we are interested in comparing the percentages of the column

Figure 3.6 The clustered bar chart is the graphical counterpart of the contingency table.
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no

Panel variable: International Plan

Pie Chart of Churn

yes False

Category

True

Figure 3.7 Comparative pie chart associated with Table 3.2.

variable for each value of the rowvariable. Table 3.3 indicates, for example, that 28.4%
of churners belong to the International Plan, compared to 6.5% of non-churners.

Figure 3.8 contains the bar chart of International Plan, clustered by Churn, and
represents the graphical counterpart of the contingency table with row percentages
in Table 3.3. The first set of bars represents non-churners, and is associated with the
“False” row in Table 3.3. The second set of bars represents churners, and is associated
with the “True” row in Table 3.3. Clearly, the proportion of International Plan holders
is greater among the churners. Similarly for Figure 3.9, which shows the comparative
bar chart of International Plan holders, by whether or not they have churned (“True”
or “False”).

To summarize, this EDA on the International Plan has indicated that

1. Perhaps we should investigate what it is about our International Plan that is
inducing our customers to leave!

2. We should expect that, whatever data mining algorithms we use to predict
churn, the model will probably include whether or not the customer selected
the International Plan.

TABLE 3.3 Contingency table with row percentages

International Plan

No Yes Total

Churn False Count 2664
Row % 93.5%

Count 186
Row % 6.5%

2850

True Count 346
Row % 71.6%

Count 137
Row % 28.4%

483

Total Count 3010
Row % 90.3%

Count 323
Row % 9.7%

3333
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Figure 3.8 Clustered bar chart associated with Table 3.3.

Let us now turn to the Voice Mail Plan. Figure 3.10 shows, using a bar graph
with equalized lengths, that those who do not have the Voice Mail Plan are more
likely to churn than those who do have the Plan. (The numbers in the graph indicate
proportions and counts of those who do and do not have the Voice Mail Plan, without
reference to churning.)

Again, we may quantify this finding by using a contingency table. Because
we are interested in comparing the percentages of the row variable (Churn) for each
value of the column variable (Voice Mail Plan), we choose a contingency table with
column percentages, shown in Table 3.4.

False

Panel variable: Churn

Pie Chart of International Plan

True no

Category

yes

Figure 3.9 Comparative pie chart associated with Table 3.3.
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Figure 3.10 Those without the Voice Mail Plan are more likely to churn.

The marginal distribution for Voice Mail Plan (row total) indicates that 842 +
80 = 922 customers have the Voice Mail Plan, while 2008 + 403 = 2411 do not. We
then find that 403/2411 = 16.7% of those without the Voice Mail Plan are churners,
as compared to 80/922 = 8.7% of customers who do have the Voice Mail Plan.
Thus, customers without the Voice Mail Plan are nearly twice as likely to churn as
customers with the plan.

To summarize, this EDA on the Voice Mail Plan has indicated that

1. Perhaps we should enhance our Voice Mail Plan still further, or make it easier
for customers to join it, as an instrument for increasing customer loyalty.

2. We should expect that, whatever data mining algorithms we use to predict
churn, the model will probably include whether or not the customer selected
the Voice Mail Plan. Our confidence in this expectation is perhaps not quite as
high as for the International Plan.

Wemay also explore the two-way interactions among categorical variables with
respect to churn. For example, Figure 3.11 shows a multilayer clustered bar chart of
churn, clustered by both International Plan and Voice Mail Plan.

The statistics associated with Figure 3.11 are shown in Figure 3.12. Note that
there are many more customers who have neither plan (1878+ 302= 2180) than have
the International Plan only (130 + 101 = 231). More importantly, among customers
with no Voice Mail Plan, the proportion of churners is greater for those who do have
an International Plan (101/231 = 44%) than for those who do not (302/2180 = 14%).
There are many more customers who have the Voice Mail Plan only (786 + 44 =
830) than have both plans (56 + 36 = 92). Again, however, among customers with
the Voice Mail Plan, the proportion of churners is much greater for those who also

TABLE 3.4 Contingency table with column percentages for the Voice Mail Plan

Voice Mail Plan

No Yes Total

Churn False Count 2008
Col% 83.3%

Count 842
Col% 91.3%

Count 2850
Col% 85.5%

True Count 403
Col% 16.7%

Count 80
Col% 8.7%

Count 483
Col% 14.5%

Total 2411 922 3333
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Figure 3.11 Multilayer clustered bar chart.

Figure 3.12 Statistics for multilayer clustered bar chart.
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select the International Plan (36/92 = 39%) than for those who do not (44/830 =
5%). Note also that there is no interaction among the categorical variables. That is,
International Plan holders have greater churn regardless of whether they are Voice
Mail Plan adopters or not.

Finally, Figure 3.13 shows a directed web graph of the relationships between
International Plan holders, VoiceMail Plan holders, and churners. Note that three
lines lead to the Churn = False node, which is good. However, note that one faint line
leads to the Churn = True node, that of the International Plan holders, indicating that
a greater proportion of International Plan holders choose to churn. This supports our
earlier findings.

Churn

FalseTrue

no
no

Voice Mail Plan

yes

International Plan

yes

Figure 3.13 Directed web graph supports earlier findings.

3.4 EXPLORING NUMERIC VARIABLES

Next, we turn to an exploration of the numeric predictive variables. Refer back to
Figure 3.2 and for histograms and summary statistics of the various predictors. Note
that many fields show evidence of symmetry, such as account length and all the
minutes, charge, and call fields. Fields not showing evidence of symmetry include
voice mail messages and customer service calls. The median for voice mail messages
is zero, indicating that at least half of all customers had no voice mail messages.
This results of course from fewer than half of the customers selecting the Voice Mail
Plan, as we saw above. The mean of customer service calls (1.563) is greater than
the median (1.0), indicating some right-skewness, as also indicated by the maximum
number of customer service calls being nine.

Unfortunately, the usual type of histograms (such as those in Figure 3.2) do
not help us determine whether the predictor variables are associated with the target
variable. To explore whether a predictor is useful for predicting the target variable,
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we should use an overlay histogram, which is a histogram where the rectangles are
colored according to the values of the target variable. For example, Figure 3.14 shows
a histogram of the predictor variable customer service calls, with no overlay. We can
see that the distribution is right skewed with a mode of one call, but we have no
information on whether this variable is useful for predicting churn. Next, Figure 3.15
shows a histogram of customer service calls, with an overlay of the target variable
churn.

Figure 3.15 hints that the proportion of churn may be greater for higher num-
bers of customer service calls, but it is difficult to discern this result unequivocally.
We therefore turn to the “normalized” histogram, where every rectangle has the same
height andwidth, as shown in Figure 3.16.Note that the proportions of churners versus
non-churners in Figure 3.16 is exactly the same as in Figure 3.15; it is just that “stretch-
ing out” the rectangles that have low counts enables better definition and contrast.
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Figure 3.14 Histogram of customer service calls with no overlay.
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Figure 3.15 Histogram of customer service calls, with churn overlay.
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Figure 3.16 “Normalized” histogram of customer service calls, with churn overlay.

The pattern now becomes crystal clear. Customers who have called customer
service three times or less have a markedly lower churn rate (darker part of the
rectangle) than customers who have called customer service four or more times.

This EDA on the customer service calls has indicated that

1. We should carefully track the number of customer service calls made by each
customer. By the third call, specialized incentives should be offered to retain
customer loyalty, because, by the fourth call, the probability of churn increases
greatly.

2. We should expect that, whatever data mining algorithms we use to predict
churn, the model will probably include the number of customer service calls
made by the customer.

Important note: Normalized histograms are useful for teasing out the relationship
between a numerical predictor and the target. However, data analysts should always
provide the companion nonnormalized histogram along with the normalized his-
togram, because the normalized histogram does not provide any information on the
frequency distribution of the variable. For example, Figure 3.16 indicates that the
churn rate for customers logging nine service calls is 100%; but Figure 3.15 shows
that there are only two customers with this number of calls.

Let us now turn to the remaining numerical predictors. The normalized his-
togram of Day Minutes in Figure 3.17b shows that high day-users tend to churn at a
higher rate. Therefore

1. We should carefully track the number of dayminutes used by each customer. As
the number of day minutes passes 200, we should consider special incentives.

2. We should investigate why heavy day-users are tempted to leave.

3. We should expect that our eventual data mining model will include day minutes
as a predictor of churn.
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Figure 3.17 (a) Nonnormalized histogram of day minutes; (b) normalized histogram of day
minutes.

Figure 3.18b shows a slight tendency for customerswith higher eveningminutes
to churn. Based solely on the graphical evidence, however, we cannot conclude
beyond a reasonable doubt that such an effect exists. Therefore, we shall hold off on
formulating policy recommendations on evening cell-phone use until our data mining
models offer firmer evidence that the putative effect is in fact present.

Figures 3.19b indicates that there is no obvious association between churn and
night minutes, since the pattern is relatively flat. In fact, EDA would indicate no
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Figure 3.18 (a) Nonnormalized histogram of evening minutes; (b) normalized histogram of
evening minutes.

obvious association with the target for any of the remaining numeric variables in the
data set (except one), though showing this is left as an exercise.

Note: The lack of obvious association at the EDA stage between a predictor
and a target variable is not sufficient reason to omit that predictor from the model. For
example, based on the lack of evident association between churn and night minutes,
we will not necessarily expect the data mining models to uncover valuable predictive
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Figure 3.19 (a) Nonnormalized histogram of night minutes; (b) normalized histogram of
night minutes.

information using this predictor. However, we should nevertheless retain the predictor
as an input variable for the data mining models, because actionable associations may
still exist for identifiable subsets of the records, and they may be involved in higher-
dimension associations and interactions. In any case, unless there is a good reason
for eliminating the variable prior to modeling, then we should probably allow the
modeling process to identify which variables are predictive and which are not.
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For example, Figures 3.20a and 3.20b, of the predictor International Callswith
churn overlay, do not indicate strong graphical evidence of the predictive importance
of International Calls. However, a t-test (see Chapter 4) for the difference in mean
number of international calls for churners and non-churners is statistically significant
(Figure 3.21, p-value = 0.003; p-values larger than, say, 0.10 are not considered
significant; see Chapter 4), meaning that this variable is indeed useful for predicting
churn: Churners tend to place a lower mean number of international calls. Thus,
had we omitted International Calls from the analysis based on the seeming lack of
graphical evidence, we would have committed a mistake, and our predictive model
would not perform as well.

A hypothesis test, such as this t-test, represents statistical inference and model
building, and as such lies beyond the scope of exploratory data analysis. We mention
it here merely to underscore the importance of not omitting predictors merely because
their relationship with the target is nonobvious using EDA.
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Figure 3.20 (a) Nonnormalized histogram of International Calls; (b) normalized histogram
of International Calls.
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Figure 3.21 t-test is significant for difference in mean international calls for churners and
non-churners.

3.5 EXPLORING MULTIVARIATE RELATIONSHIPS

We next turn to an examination of possible multivariate associations of numeric
variables with churn, using scatter plots. Multivariate graphics can uncover new
interaction effects which our univariate exploration missed.

Figure 3.22 shows a scatter plot of day minutes versus evening minutes, with
churners indicated by the darker circles. Note the straight-line partitioning off the
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Figure 3.22 Customers with both high day minutes and high evening minutes are at greater
risk of churning.
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upper right section of the graph. Records above this diagonal line, representing
customers with both high day minutes and high evening minutes, appear to have a
higher proportion of churners than records below the line. The univariate evidence
for a high churn rate for high evening minutes was not conclusive (Figure 3.18b), so
it is nice to have a multivariate graph that indicates that supports the association, at
least for customers with high day minutes.

Figure 3.23 shows a scatter plot of customer service calls versus day minutes.
Churners and non-churners are indicated with large and small circles, respectively.
Consider the records inside the rectangle partition shown in the scatter plot, which
indicates a high churn area in the upper left section of the graph. These records rep-
resent customers who have a combination of a high number of customer service calls
and a low number of day minutes used. Note that this group of customers could not
have been identified had we restricted ourselves to univariate exploration (exploring
variable by single variable). This is because of the interaction between the variables.

In general, customers with higher numbers of customer service calls tend to
churn at a higher rate, as we learned earlier in the univariate analysis. However,
Figure 3.23 shows that, of these customers with high numbers of customer service
calls, those who also have high day minutes are somewhat “protected” from this high
churn rate. The customers in the upper right of the scatter plot exhibit a lower churn
rate than those in the upper left. But how do we quantify these graphical findings?
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Figure 3.23 There is an interaction effect between customer service calls and day minutes,
with respect to churn.



3.7 USING EDA TO UNCOVER ANOMALOUS FIELDS 71

3.6 SELECTING INTERESTING SUBSETS OF THE DATA
FOR FURTHER INVESTIGATION

Graphical EDA can uncover subsets of records that call for further investigation, as
the rectangle in Figure 3.23 illustrates. Let us examine the records in the rectangle
more closely. IBM/SPSS Modeler allows the user to click and drag a box around
data points of interest, and select them for further investigation. Here we select the
records within the rectangular box in the upper left. Figure 3.24 shows that about 65%
(115 of 177) of the selected records are churners. That is, those with high customer
service calls and low day minutes have a 65% probability of churning. Compare this
to the records with high customer service calls and high day minutes (essentially
the data points to the right of the rectangle). Figure 3.25 shows that only about 26%
of customers with high customer service calls and high day minutes are churners.
Thus, it is recommended that we red-flag customers with low day minutes who have
a high number of customer service calls, as they are at much higher risk of leaving the
company’s service than customers with the same number of customer service calls,
but higher day minutes.

To summarize the strategy we implemented here.

1. Generate multivariate graphical EDA, such as scatter plots with a flag overlay.

2. Use these plots to uncover subsets of interesting records.

3. Quantify the differences by analyzing the subsets of records.

Figure 3.24 Very high proportion of churners for high customer service calls and low day
minutes.

Figure 3.25 Much lower proportion of churners for high customer service calls and high day
minutes.

3.7 USING EDA TO UNCOVER ANOMALOUS FIELDS

Exploratory data analysis will sometimes uncover strange or anomalous records or
fields which the earlier data cleaning phase may have missed. Consider, for example,
the area code field in the present data set. Though the area codes contain numerals,
they can also be used as categorical variables, since they can classify customers
according to geographic location. We are intrigued by the fact that the area code field



72 CHAPTER 3 EXPLORATORY DATA ANALYSIS

contains only three different values for all the records, 408, 415, and 510 (which all
happen to be California area codes), as shown by Figure 3.26.

Now, this would not be anomalous if the records indicated that the customers all
lived in California. However, as shown in the contingency table in Figure 3.27 (shown
only up to Georgia, to save space), the three area codes seem to be distributed more
or less evenly across all the states and the District of Columbia. Also, the chi-square
test (see Chapter 5) has a p-value of 0.608, supporting the suspicion that the area
codes are distributed randomly across all the states. Now, it is possible that domain
experts might be able to explain this type of behavior, but it is also possible that the
field just contains bad data.

We should therefore be wary of this area code field, and should not include it
as input to the data mining models in the next phase. Further, the state field may be
in error as well. Either way, further communication with someone familiar with the
data history, or a domain expert, is called for before inclusion of these variables in
the data mining models.

Figure 3.26 Only three area codes for all records.

Figure 3.27 Anomaly: three area codes distributed randomly across all 50 states.

3.8 BINNING BASED ON PREDICTIVE VALUE

Chapter 2 discussed four methods for binning numerical variables. Here, we pro-
vide two examples of the fourth method: Binning based on predictive value. Recall
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Figure 3.16, where we saw that customers with less than four calls to customer ser-
vice had a lower churn rate than customers who had four or more calls to customer
service. We may therefore decide to bin the customer service calls variable into two
classes, low (fewer than four) and high (four or more). Table 3.5 shows that the churn
rate for customers with a low number of calls to customer service is 11.3%, while the
churn rate for customers with a high number of calls to customer service is 51.7%,
more than four times higher.

This binning of customer service calls created a flag variable with two values,
high and low. Our next example of binning creates an ordinal categorical variable
with three values, low, medium, and high. Recall that we are trying to determine
whether there is a relationship between evening minutes and churn. Figure 3.18b
hinted at a relationship, but inconclusively. Can we use binning to help tease out a
signal from this noise? We reproduce Figure 3.18b here as Figure 3.28, somewhat
enlarged, and with the boundaries between the bins indicated.

Binning is an art, requiring judgment. Where can I insert boundaries between
the bins that will maximize the difference in churn proportions? The first boundary

TABLE 3.5 Binning customer service calls shows difference in churn rates

CustServPlan_Bin

Low High

Churn False Count 2721
Col% 88.7%

Count 129
Col% 48.3%

True Count 345
Col% 11.3%

Count 138
Col% 51.7%
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Figure 3.28 Binning evening minutes helps to tease out a signal from the noise.
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is inserted at evening minutes = 160, since the group of rectangles to the right of
this boundary seem higher than the group of rectangles to the left. And the second
boundary is inserted at evening minutes = 240 for the same reason. (Analysts may
fine tune these boundaries for maximum contrast, but for now these boundary values
will do just fine; remember that we need to explain our results to the client, and that
nice round numbers are more easily explained.) These boundaries thus define three
bins, or categories, shown in Table 3.6.

Did the binning manage to tease out a signal? We can answer this by construct-
ing a contingency table of EveningMinutes_Bin with Churn, shown in Table 3.7.

About half of the customers have medium amounts of evening minutes
(1626/3333 = 48.8%), with about one-quarter each having low and high evening
minutes. Recall that the baseline churn rate for all customers is 14.49% (Figure 3.3).
Themedium group comes in very close to this baseline rate, 14.1%. However, the high
evening minutes group has nearly double the churn proportion compared to the low
evening minutes group, 19.5% to 10%. The chi-square test (Chapter 4) is significant,
meaning that these results are most likely real and not due to chance alone. In other
words, we have succeeded in teasing out a signal from the evening minutes versus
churn relationship.

TABLE 3.6 Bin values for Evening Minutes

Bin for Categorical Variable
EveningMinutes_Bin

Values of Numerical Variable
Evening Minutes

Low Evening Minutes ≤ 160

Medium 160 < Evening Minutes ≤ 240

High Evening Minutes > 240

TABLE 3.7 We have uncovered significant differences in churn rates among the three
categories

EveningMinutes_Bin

Low Medium High

Churn False Count 618
Col% 90.0%

Count 1626
Col% 85.9%

Count 606
Col% 80.5%

True Count 69
Col% 10.0%

Count 138
Col% 14.1%

Count 138
Col% 19.5%

3.9 DERIVING NEW VARIABLES: FLAG VARIABLES

Strictly speaking, deriving new variables is a data preparation activity. However, we
cover it here in the EDA chapter to illustrate how the usefulness of the new derived
variables in predicting the target variable may be assessed. We begin with an example
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of a derived variable which is not particularly useful. Figure 3.2 shows a spike in the
distribution of the variable voicemailmessages, whichmakes its analysis problematic.
We therefore derive a flag variable (see Chapter 2), VoiceMailMessages_Flag, to
address this problem, as follows:

If Voice Mail Messages > 0 then VoiceMailMessages_Flag = 1;
otherwise VoiceMailMessages_Flag = 0.

The resulting contingency table is shown in Table 3.8. Compare the results with
those from Table 3.4, the contingency table for the Voice Mail Plan. The results are
exactly the same, which is not surprising, since those without the plan can have no
voice mail messages. Thus, since VoiceMailMessages_Flag has identical values as
the flag variable Voice Mail Plan, it is not deemed to be a useful derived variable.

Recall Figure 3.22 (reproduced here as Figure 3.29), showing a scatter plot of
dayminutes versus eveningminutes, with a straight line separating a group in the upper
right (with both high day minutes and high evening minutes) that apparently churns
at a greater rate. It would be nice to quantify this claim. We do so by selecting the
records in the upper right, and compare their churn rate to that of the other records.
One way to do this in IBM/SPSS Modeler is to draw an oval around the desired
records, which the software then selects (not shown). However, this method is ad
hoc, and not portable to a different data set (say the validation set). A better idea is to

1. Estimate the equation of the straight line and

2. Use the equation to separate the records, via a flag variable.

This method is portable to a validation set or other related data set.
We estimate the equation of the line in Figure 3.22 to be

ŷ = 400 − 0.6x

That is, for each customer, the estimated day minutes equals 400 minutes
minus 0.6 times the evening minutes. We may then create a flag variable High-
DayEveMins_Flag as follows:

If Day Minutes > 400 - 0.6 Evening Minutes then
HighDayEveMins_Flag = 1; otherwise HighDayEveMins_Flag = 0.

Then each data point above the line will haveHighDayEveMins_Flag= 1while
the data points below the line will have HighDayEveMins_Flag = 0. The resulting
contingency table (Table 3.9) shows the highest churn proportion of any variable

TABLE 3.8 Contingency table for VoiceMailMessages_Flag

VoiceMailMessages_Flag

0 1

Churn False Count 2008
Col% 83.3%

Count 842
Col% 91.3%

True Count 403
Col% 16.7%

Count 80
Col% 8.7%
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Figure 3.29 Use the equation of the line to separate the records, via a flag variable.

TABLE 3.9 Contingency table for HighDayEveMins_Flag

HighDayEveMins_Flag

0 1

Churn False Count 2792
Col% 89.0%

Count 58
Col% 29.6%

True Count 345
Col% 11.0%

Count 138
Col% 70.4%

we have studied thus far, 70.4% versus 11%, a more than sixfold difference. On the
other hand, this 70.4% churn rate is restricted to a subset of fewer than 200 records,
fortunately for the company.

A NOTE ABOUT CRISP-DM FOR DATA MINERS:
BE STRUCTURED BUT FLEXIBLE

For EveningMinutes_Bin, we referred to the chi-square significance test (Chapter 5), which
really belongs to the modeling phase of data analysis. Also, our derived variable really
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belongs to the data preparation phase. These examples illustrate the flexibility of the
CRISP-DM standard practice (or indeed any well-structured standard practice) of data
mining. The assorted phases are interdependent, and should not be viewed as isolated
from each other. For example, deriving variables is a data preparation activity, but derived
variables need to be explored using EDA and (sometimes) significance tests. The data miner
needs to be as flexible as CRISP-DM.

However, some data analysts fall victim to the opposite problem, interminably iter-
ating back and forth between data preparation and EDA, getting lost in the details, and
never advancing toward the research objectives. When this happens, CRISP-DM can serve
as a useful road map, a structure to keep the data miner organized and moving toward the
fulfillment of the research goals.

3.10 DERIVING NEW VARIABLES:
NUMERICAL VARIABLES

Suppose we would like to derive a new numerical variable which combines Customer
Service Calls and International Calls, and whose values will be the mean of the two
fields. Now, since International Calls has a larger mean and standard deviation
than Customer Service Calls, it would be unwise to take the mean of the raw field
values, since International Calls would thereby be more heavily weighted. Instead,
when combining numerical variables, we first need to standardize. The new derived
variable therefore takes the form:

CSCInternational Z = (CSC Z + International Z)
2

where CSC_Z represents the z-score standardization of Customer Service Calls and
International_Z represents the z-score standardization of International Calls. The
resulting normalized histogram of CSCInternational_Z indicates that it will be useful
for predicting churn, as shown in Figure 3.30b.

3.11 USING EDA TO INVESTIGATE CORRELATED
PREDICTOR VARIABLES

Two variables x and y are linearly correlated if an increase in x is associated with
either an increase in y or a decrease in y. The correlation coefficient r quantifies the
strength and direction of the linear relationship between x and y. The threshold for
significance of the correlation coefficient r depends on the sample size, but in data
mining, where there are a large number of records (over 1000), even small values of
r, such as −0.1 ≤ r ≤ 0.1 may be statistically significant.

One should take care to avoid feeding correlated variables to one’s data mining
and statistical models. At best, using correlated variables will overemphasize one
data component; at worst, using correlated variables will cause the model to become
unstable and deliver unreliable results. However, just because two variables are
correlated does not mean that we should omit one of them. Instead, while in the EDA
stage, we should apply the following strategy:
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Figure 3.30 (a) Nonnormalized histogram of CSCInternational_Z; (b) normalized histogram
of CSCInternational_Z.

STRATEGY FOR HANDLING CORRELATED PREDICTOR
VARIABLES AT THE EDA STAGE

1. Identify any variables that are perfectly correlated (i.e., r = 1.0 or r = −1.0). Do not
retain both variables in the model, but rather omit one.

2. Identify groups of variables that are correlated with each other. Then, later, during the
modeling phase, apply dimension reduction methods, such as principal components
analysis1, to these variables.

1For more on dimension reductions and principal component analysis, see Data Mining Methods and
Models, by Daniel Larose (Wiley, 2006) or Data Mining and Predictive Analytics, by Daniel Larose and
Chantal Larose (Wiley, 2015, to appear).
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Note that this strategy applies to uncovering correlation among the predictors alone,
not between a given predictor and the target variable.

Turning to our data set, for each of day, evening, night, and international, the
data set contains three variables, minutes, calls, and charge. The data description
indicates that the charge variable may be a function of minutes and calls, with the
result that the variables would be correlated. We investigate using a matrix plot
(Figure 3.31), which is a matrix of scatter plots for a set of numeric variables, in this
case for day minutes, day calls, and day charge. Figure 3.32 contains the correlation
coefficient values and the p-values for each pairwise set of variables.

There does not seem to be any relationship between day minutes and day calls,
nor between day calls and day charge. This we find to be rather odd, as one may have
expected that, as the number of calls increased, the number of minutes would tend to
increase (and similarly for charge), resulting in a positive correlation between these
fields. However, the graphical evidence in Figure 3.31 does not support this, nor do
the correlations in Figure 3.32, which are r = 0.07 for both relationships, with a large
p-value of 0.697.

Figure 3.31 Matrix plot of Day Minutes, Day Calls, and Day Charge.

Figure 3.32 Correlations and p-values.
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On the other hand, there is a perfect linear relationship between day minutes
and day charge, indicating that day charge is a simple linear function of day minutes
only. UsingMinitab’s regression tool (see Figure 3.33), we find that we may express
this function as the estimated regression equation: “Day charge equals 0.000613 plus
0.17 times Day minutes.” This is essentially a flat rate model, billing 17 cents per
minute for day use. Note from Figure 3.33 that the R-squared statistic is precisely
100%, indicating a perfect linear relationship.

Since day charge is perfectly correlated with day minutes, then we should
eliminate one of the two variables. We do so, arbitrarily choosing to eliminate day
charge and retain day minutes. Investigation of the evening, night, and international
components reflected similar findings, and we thus also eliminate evening charge,
night charge, and international charge. Note that had we proceeded to the modeling
phase without first uncovering these correlations, our data mining and statistical
models may have returned incoherent results, due, for example, to multicollinearity
in multiple regression.We have therefore reduced the number of predictors from 20 to
16 by eliminating one of each pair of perfectly correlated predictors. A further benefit
of doing so is that the dimensionality of the solution space is reduced, so that certain
data mining algorithms may more efficiently find the globally optimal solution.

After dealing with the perfectly correlated predictors, the data analyst should
turn to Step 2 of the strategy, and identify any other correlated predictors, for later
handling with principal component analysis. The correlation of each numerical pre-
dictor with every other numerical predictor should be checked, if feasible. Correla-
tions with small p-values should be identified. A subset of this procedure is shown
here in Figure 3.34. Note that the correlation coefficient 0.038 between account length
and day calls has a small p-value of 0.026, telling us that account length and day
calls are positively correlated. The data analyst should note this, and prepare to apply
principal component analysis during the modeling phase.

3.12 SUMMARY

Let us consider some of the insights we have gained into the churn data set through
the use of exploratory data analysis.We have examined each of the variables (here and
in the exercises), and have taken a preliminary look at their relationship with churn.

Figure 3.33 Minitab regression output for Day Charge vs. Day Minutes.
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Figure 3.34 Account length is positively correlated with day calls.

� The four charge fields are linear functions of the minute fields, and should be
omitted.

� The area code field and/or the state field are anomalous, and should be omitted
until further clarification is obtained.

Insights with respect to churn:
� Customers with the International Plan tend to churn more frequently.
� Customers with the VoiceMail Plan tend to churn less frequently.
� Customers with four or more Customer Service Calls churn more than four
times as often as the other customers.

� Customers with high Day Minutes and Evening Minutes tend to churn at a
higher rate than the other customers.

� Customers with both high Day Minutes and high Evening Minutes churn at a
rate about six times greater than the other customers.

� Customers with low Day Minutes and high Customer Service Calls churn at a
higher rate than the other customers.

� Customers with lower numbers of International Calls churn at a higher rate
than do customers with more international calls.

� For the remaining predictors, EDA uncovers no obvious association of churn.
However, these variables are still retained for input to downstream data mining
models and techniques.

Note the power of exploratory data analysis. We have not applied any high powered
data mining algorithms yet on this data set, such as decision trees or neural network
algorithms. Yet, we have still gained considerable insight into the attributes that are
associated with the customers leaving the company, simply by careful application
of exploratory data analysis. These insights can be easily formulated into actionable
recommendations, so that the company can take action to lower the churn rate among
its customer base.
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THE R ZONE

# Input data set Churn into Data Frame "Churn"

churn <- read.csv(file = "C:/ . . . /churn.txt",
stringsAsFactors=TRUE)

# Show the first ten records
churn[1:10,]

# Summarize the Churn variable # Calculate proportion of churners

sum.churn <- summary(churn$Churn)
sum.churn

prop.churn <- sum(churn$Churn == "True") /
length(churn$Churn)

prop.churn

# Bar chart of variable Churn

barplot(sum.churn,
ylim = c(0, 3000),
main = "Bar Graph of Churners and Non-Churners",
col = "lightblue")

box(which = "plot",
lty = "solid",
col="black")

# Make a table for counts of Churn and International Plan

counts <- table(churn$Churn, churn$Int.l.Plan,
dnn=c("Churn", "International Plan"))

counts

# Create a table with sums for both variables

sumtable <- addmargins(counts, FUN = sum)
sumtable
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# Overlayed bar chart

barplot(counts,
legend = rownames(counts),
col = c("blue", "red"),
ylim = c(0, 3300),
ylab = "Count",
xlab = "International Plan",
main = "Comparison Bar Chart:
Churn Proportions by International Plan")

box(which = "plot",
lty = "solid",
col="black")

# Create a table of proportions over rows

row.margin <- round(prop.table(counts,
margin = 1),

4)∗100
row.margin

# Create a table of proportions over columns

col.margin <- round(prop.table(counts,
margin = 2),

4)∗100
col.margin

# Histogram of non-overlayed Customer Service Calls

hist(churn$CustServ.Calls,
xlim = c(0,10),
col = "lightblue",
ylab = "Count",
xlab = "Customer Service Calls",
main = "Histogram of Customer Service Calls")
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# Clustered Bar Chart, with legend

barplot(counts,
col = c("blue", "red"),
ylim = c(0, 3300),
ylab = "Count",
xlab = "International Plan",
main = "Churn Count by International Plan",
beside = TRUE)

legend("topright",
c(rownames(counts)),
col = c("blue", "red"),
pch = 15,
title = "Churn")

box(which = "plot",
lty = "solid",
col="black")

# Download and install the R Package ggplot2

install.packages("ggplot2")
# Pick any CRAN mirror
# (see example image)
# Open the new package
library(ggplot2)

# Clustered Bar Chart of Churn and Int’l Plan with legend

barplot(t(counts),
col = c("blue", "green"),
ylim = c(0, 3300),
ylab = "Counts",
xlab = "Churn",
main = "International Plan Count by Churn",
beside = TRUE)

legend("topright",
c(rownames(counts)),
col = c("blue", "green"),
pch = 15,
title = "Int’l Plan")

box(which = "plot",
lty = "solid",
col="black")
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# Overlayed bar charts

ggplot() +
geom_bar(data = churn,
aes(x = factor(churn$CustServ.Calls),
fill = factor(churn$Churn.)),
position = "stack") +
scale_x_discrete("Customer Service Calls") +
scale_y_continuous("Percent") +
guides(fill=guide_legend(title="Churn")) +
scale_fill_manual(values=c("blue", "red"))
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ggplot() +
geom_bar(data=churn,
aes(x = factor(churn$CustServ.Calls),
fill = factor(churn$Churn.)),
position = "fill") +
scale_x_discrete("Customer Service Calls") +
scale_y_continuous("Percent") +
guides(fill=guide_legend(title="Churn")) +
scale_fill_manual(values=c("blue", "red"))
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# Two-sample T-Test for Int’l Calls

# Partition data
churn.false <- subset(churn,

churn$Churn == "False")
churn.true <- subset(churn,

churn$Churn == "True")
# Run the test
t.test(churn.false$Intl.Calls,

churn.true$Intl.Calls)
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# Scatterplot matrix

pairs(∼churn$Day.Mins+
churn$Day.Calls+
churn$Day.Charge)

# Regression of Day Charge vs Day Minutes

fit <- lm(churn$Day.Charge ∼
churn$Day.Mins)

summary(fit)

# Scatterplot of Evening Minutes and Day Minutes, colored by Churn

plot(churn$Eve.Mins,
churn$Day.Mins,
xlim = c(0, 400),
ylim = c(0, 400),
xlab = "Evening Minutes",
ylab = "Day Minutes",
main = "Scatterplot of Day and Evening

Minutes by Churn",
col = ifelse(churn$Churn=="True",

"red",
"blue"))

legend("topright",
c("True",
"False"),

col = c("red",
"blue"),

pch = 1,
title = "Churn")
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# Scatterplot of Day Minutes and Customer Service Calls, colored by Churn

plot(churn$Day.Mins,
churn$CustServ.Calls,
xlim = c(0, 400),
xlab = "Day Minutes",
ylab = "Customer Service Calls",
main = "Scatterplot of Day Minutes and

Customer Service Calls by Churn",
col = ifelse(churn$Churn=="True",

"red",
"blue"),

pch = ifelse(churn$Churn=="True",
16, 20))

legend("topright",
c("True",

"False"),
col = c("red",

"blue"),
pch = c(16, 20),
title = "Churn")

# Correlation values, with p-values

days <- cbind(churn$Day.Mins,
churn$Day.Calls,
churn$Day.Charge)

MinsCallsTest <- cor.test(churn$Day.Mins,
churn$Day.Calls)

MinsChargeTest <- cor.test(churn$Day.Mins,
churn$Day.Charge)

CallsChargeTest <- cor.test(churn$Day.Calls,
churn$Day.Charge)

round(cor(days),
4)

MinsCallsTest$p.value
MinsChargeTest$p.value
CallsChargeTest$p.value
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# Correlation values and p-values in matrix form

# Collect variables of interest
corrdata <- cbind(churn$Account.Length,

churn$VMail.Message,
churn$Day.Mins,
churn$Day.Calls,
churn$CustServ.Calls)

# Declare the matrix
corrpvalues <- matrix(rep(0, 25),

ncol = 5)
# Fill the matrix with correlations
for (i in 1:4) {
for (j in (i+1):5) {
corrpvalues[i,j] <- corrpvalues[j,i] <-
round(cor.test(corrdata[,i],
corrdata[,j])$p.value,

4)
}

}
round(cor(corrdata), 4)
corrpvalues
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EXERCISES

1. Explain the difference between EDA and hypothesis testing, and why analysts may prefer
EDA when doing data mining.

2. Why do we need to perform exploratory data analysis?Why should not we simply proceed
directly to the modeling phase and start applying our high powered data mining software?

3. Why do we use contingency tables, instead of just presenting the graphical results?

4. How can we find the marginal distribution of each variable in a contingency table?

5. What is the difference between taking row percentages and taking column percentages in
a contingency table?

6. What is the graphical counterpart of a contingency table?

7. Describe what it would mean for interaction to take place between two categorical vari-
ables, using an example.
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8. What type of histogram is useful for examining the relationship between a numerical
predictor and the target?

9. Explain one benefit and one drawback of using a normalized histogram. Should we ever
present a normalized histogram without showing its nonnormalized counterpart?

10. Explain whether we should omit a predictor from the modeling stage if it does not show
any relationship with the target variable in the EDA stage, and why.

11. Describe how scatter plots can uncover patterns in two dimensions that would be invisible
from one-dimensional EDA.

12. Make up a fictional data set (attributes with no records is fine) with a pair of anomalous
attributes. Describe how EDA would help to uncover the anomaly.

13. Explain the objective and the method of binning based on predictive value.

14. Why is binning based on predictive value considered to be somewhat of an art?

15. What step should precede the deriving of a new numerical variable representing the mean
of two other numerical variables?

16. What does it mean to say that two variables are correlated?

17. Describe the possible consequences of allowing correlated variables to remain in the
model.

18. A common practice among some analysts when they encounter two correlated predictors
is to omit one of them from the analysis. Is this practice recommended?

19. Describe the strategy for handing correlated predictor variables at the EDA stage.

20. For each of the following descriptivemethods, statewhether itmay be applied to categorical
data, continuous numerical data, or both.

a. Bar charts

b. Histograms

c. Summary statistics

d. Crosstabulations

e. Correlation analysis

f. Scatter plots

g. Web graphs

h. Binning

HANDS-ON ANALYSIS

21. Using the churn data set, develop EDA which shows that the remaining numeric variables
in the data set (apart from those covered in the text above) indicate no obvious association
with the target variable.

Use the Adult data set from the book series website for the following exercises. The
target variable is income, and the goal is to classify income based on the other variables.

22. Which variables are categorical and which are continuous?

23. Using software, construct a table of the first 10 records of the data set, in order to get a
feel for the data.
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24. Investigate whether we have any correlated variables.

25. For each of the categorical variables, construct a bar chart of the variable, with an overlay
of the target variable. Normalize if necessary.

a. Discuss the relationship, if any, each of these variables has with the target variables.

b. Which variables would you expect to make a significant appearance in any data mining
classification model we work with?

26. For each pair of categorical variables, construct a crosstabulation. Discuss your salient
results.

27. (If your software supports this.) Construct a web graph of the categorical variables. Fine
tune the graph so that interesting results emerge. Discuss your findings.

28. Report on whether anomalous fields exist in this data set, based on your EDA, which fields
these are, and what we should do about it.

29. Report the mean, median, minimum, maximum, and standard deviation for each of the
numerical variables.

30. Construct a histogram of each numerical variables, with an overlay of the target variable
income. Normalize if necessary.

a. Discuss the relationship, if any, each of these variables has with the target variables.

b. Which variables would you expect to make a significant appearance in any data mining
classification model we work with?

31. For each pair of numerical variables, construct a scatter plot of the variables. Discuss your
salient results.

32. Based on your EDA so far, identify interesting sub-groups of records within the data set
that would be worth further investigation.

33. Apply binning to one of the numerical variables. Do it in such a way as to maximize the
effect of the classes thus created (following the suggestions in the text). Now do it in such
a way as to minimize the effect of the classes, so that the difference between the classes is
diminished. Comment.

34. Refer to the previous exercise. Apply the other two binning methods (equal width, and
equal number of records) to this same variable. Compare the results and discuss the
differences. Which method do you prefer?

35. Summarize your salient EDA findings from the above exercises, just as if you were writing
a report. �



CHAPTER4
UNIVARIATE STATISTICAL
ANALYSIS

4.1 DATA MINING TASKS IN DISCOVERING KNOWLEDGE IN DATA 91

4.2 STATISTICAL APPROACHES TO ESTIMATION AND PREDICTION 92

4.3 STATISTICAL INFERENCE 93

4.4 HOW CONFIDENT ARE WE IN OUR ESTIMATES? 94

4.5 CONFIDENCE INTERVAL ESTIMATION OF THE MEAN 95

4.6 HOW TO REDUCE THE MARGIN OF ERROR 97

4.7 CONFIDENCE INTERVAL ESTIMATION OF THE PROPORTION 98

4.8 HYPOTHESIS TESTING FOR THE MEAN 99

4.9 ASSESSING THE STRENGTH OF EVIDENCE AGAINST THE NULL
HYPOTHESIS 101

4.10 USING CONFIDENCE INTERVALS TO PERFORM HYPOTHESIS TESTS 102

4.11 HYPOTHESIS TESTING FOR THE PROPORTION 104

THE R ZONE 105

REFERENCE 106

EXERCISES 106

4.1 DATA MINING TASKS IN DISCOVERING
KNOWLEDGE IN DATA

In Chapter 1 we were introduced to the six data mining tasks:

� Description
� Estimation
� Prediction
� Classification

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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� Clustering
� Association

In the description task, analysts try to find ways to describe patterns and trends
lying within the data. Descriptions of patterns and trends often suggest possible
explanations for such patterns and trends, as well as possible recommendations for
policy changes. This description task can be accomplished capably with exploratory
data analysis (EDA), as we saw in Chapter 3. The description task may also be
performed using descriptive statistics, such as the sample proportion or the regression
equation, which we learn about in Chapters 4 and 5. Table 4.1 provides an outline of
where in this book we learn about each of the data mining tasks.

Of course, the data mining methods are not restricted to only one task each,
which results in a fair amount of overlap among data mining methods and tasks.
For example, decision trees may be used for classification, estimation, or prediction.
Therefore, Table 4.1 should not be considered as a definitive partition of the tasks,
but rather as a general outline of how we are introduced to the tasks and the methods
used to accomplish them.

TABLE 4.1 Data mining tasks in Discovering Knowledge in Data

Task We Learn about This Task in

Description Chapter 3: Exploratory data analysis
Chapter 4: Univariate statistical analysis
Chapter 5: Multivariate statistical analysis

Estimation Chapter 4: Univariate statistical analysis
Chapter 5: Multivariate statistical analysis

Prediction Chapter 4: Univariate statistical analysis
Chapter 5: Multivariate statistical analysis

Classification Chapter 7: k-Nearest neighbor algorithm
Chapter 8: Decision trees
Chapter 9: Neural networks

Clustering Chapter 10: Hierarchical and k-means clustering
Chapter 11: Kohonen networks

Association Chapter 12: Association rules

4.2 STATISTICAL APPROACHES TO ESTIMATION
AND PREDICTION

If estimation and prediction are considered to be data mining tasks, statistical ana-
lysts have been performing data mining for over a century. In Chapters 4 and 5 we
examine widespread and traditional methods of estimation and prediction, drawn
from the world of statistical analysis. Here in Chapter 4 we examine univariate
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methods, statistical estimation, and prediction methods that analyze one variable at
a time. These methods include point estimation and confidence interval estimation
for population means and proportions. We discuss ways of reducing the margin of
error of a confidence interval estimate. Then we turn to hypothesis testing, examining
hypothesis tests for populationmeans and proportions. Then, inChapter 5we consider
multivariate methods for statistical estimation and prediction.

4.3 STATISTICAL INFERENCE

Consider our roles as data miners. We have been presented with a data set with which
we are presumably unfamiliar. We have completed the data understanding and data
preparation phases and have gathered some descriptive information using EDA. Next,
we would like to perform univariate estimation and prediction. A widespread tool for
performing estimation and prediction is statistical inference.

Statistical inference consists of methods for estimating and testing hypotheses
about population characteristics based on the information contained in the sample. A
population is the collection of all elements (persons, items, or data) of interest in a
particular study.

For example, presumably, the cell phone company does not want to restrict its
actionable results to the sample of 3333 customers from which it gathered the data.
Rather, it would prefer to deploy its churn model to all of its present and future cell
phone customers, which would therefore represent the population. A parameter is a
characteristic of a population, such as the mean number of customer service calls of
all cell phone customers.

A sample is simply a subset of the population, preferably a representative
subset. If the sample is not representative of the population, that is, if the sample
characteristics deviate systematically from the population characteristics, statistical
inference should not be applied. A statistic is a characteristic of a sample, such as the
mean number of customer service calls of the 3333 customers in the sample (1.563).

Note that the values of population parameters are unknown for most interesting
problems. Specifically, the value of the population mean is usually unknown. For
example, we do not know the true mean number of customer service calls to be
made by all of the company’s cell phone customers. To represent their unknown
nature, population parameters are often denoted with Greek letters. For example,
the population mean is symbolized using the Greek lowercase letter 𝜇 (pronounced
“myu”), which is the Greek letter for “m” (“mean”).

The value of the population mean number of customer service calls 𝜇 is
unknown for a variety of reasons, including the fact that the data may not yet have
been collected or warehoused. Instead, data analysts would use estimation. For exam-
ple, they would estimate the unknown value of the population mean 𝜇 by obtaining a
sample and computing the sample mean x̄, which would be used to estimate 𝜇. Thus,
we would estimate the mean number of customer service calls for all customers to
be 1.563, since this is the value of our observed sample mean.

An important caveat is that estimation is valid only as long as the sample is
truly representative of the population. For example, suppose for a moment that the
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churn data set represents a sample of 3333 disgruntled customers. Then this sample
would not be representative (one hopes!) of the population of all the company’s
customers, and none of the EDA that we performed in Chapter 3 would be actionable
with respect to the population of all customers.

Analysts may also be interested in proportions, such as the proportion of
customers who churn. The sample proportion p is the statistic used to measure
the unknown value of the population proportion, 𝜋. For example, in Chapter 3 we
found that the proportion of churners in the data set was p = 0.145, which could be
used to estimate the true proportion of churners for the population of all customers,
keeping in mind the caveats above.

Point estimation refers to the use of a single known value of a statistic to
estimate the associated population parameter. The observed value of the statistic is
called the point estimate. We may summarize estimation of the population mean,
standard deviation, and proportion using Table 4.2.

Estimation need not be restricted to the parameters in Table 4.2. Any statistic
observed from sample data may be used to estimate the analogous parameter in
the population. For example, we may use the sample maximum to estimate the
population maximum, or we could use the sample 27th percentile to estimate the
population 27th percentile. Any sample characteristic is a statistic, which, under
the appropriate circumstances, can be used to estimate its respective parameter.

More specifically, for example, we could use the sample churn proportion of
customers who did select the VoiceMail Plan, but did not select the International
Plan, and who made three customer service calls to estimate the population churn
proportion of all such customers. Or, we could use the sample 99th percentile of day
minutes used for customers without the VoiceMail Plan to estimate the population
99th percentile of day minutes used for all customers without the VoiceMail Plan.

TABLE 4.2 Use observed sample statistics to estimate unknown population parameters

Sample Statistic … Estimates…
Population
Parameter

Mean x̄ ⟶ 𝜇

Standard deviation s ⟶ 𝜎

Proportion p ⟶ 𝜋

4.4 HOW CONFIDENT ARE WE IN OUR ESTIMATES?

Let us face it: anyone can make estimates. Crystal ball gazers will be happy (for a
price) to provide you with an estimate of the parameter in which you are interested.
The question is: How confident can we be in the accuracy of the estimate?

Do you think that the population mean number of customer service calls made
by all of the company’s customers is exactly the same as the sample mean x̄ =
1.563? Probably not. In general, since the sample is a subset of the population,
inevitably the population contains more information than the sample about any given
characteristic. Hence, unfortunately, our point estimates will nearly always “miss”
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the target parameter by a certain amount, and thus be in error by this amount, which
is probably, though not necessarily, small.

This distance between the observed value of the point estimate and the unknown
value of its target parameter is called sampling error, defined as |statistic− parameter|.
For example, the sampling error for the mean is |x̄ − 𝜇|, the distance (always positive)
between the observed sample mean and the unknown population mean. Since the true
values of the parameter are usually unknown, the value of the sampling error is usually
unknown in real-world problems. In fact, for continuous variables, the probability that
the observed value of a point estimate exactly equals its target parameter is precisely
zero. This is because probability represents area above an interval for continuous
variables, and there is no area above a point.

Point estimates have no measure of confidence in their accuracy; there is no
probability statement associated with the estimate. All we know is that the estimate
is probably close to the value of the target parameter (small sampling error) but that
possibly it may be far away (large sampling error). In fact, point estimation has been
likened to a dart thrower, throwing darts with infinitesimally small tips (the point
estimates) toward a vanishingly small bull’s-eye (the target parameter). Worse, the
bull’s-eye is hidden, and the thrower will never know for sure how close the darts are
coming to the target.

The dart thrower could perhaps be forgiven for tossing a beer mug in frustration
rather than a dart. But wait! Since the beer mug has width, there does indeed exist
a positive probability that some portion of the mug has hit the hidden bull’s-eye.
We still do not know for sure, but we can have a certain degree of confidence that
the target has been hit. Very roughly, the beer mug represents our next estimation
method, confidence intervals.

4.5 CONFIDENCE INTERVAL ESTIMATION
OF THE MEAN

A confidence interval estimate of a population parameter consists of an interval of
numbers produced by a point estimate, together with an associated confidence level
specifying the probability that the interval contains the parameter. Most confidence
intervals take the general form

point estimate ±margin of error

where the margin of error is a measure of the precision of the interval estimate.
Smaller margins of error indicate greater precision. For example, the t-interval for
the population mean is given by

x̄ ± t𝛼∕2(s∕
√
n)

where the sample mean x̄ is the point estimate and the quantity t𝛼∕2(s∕
√
n) represents

themargin of error. The t-interval for themeanmay be usedwhen either the population
is normal or the sample size is large.
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Under what conditions will this confidence interval provide precise estimation?
That is, when will the margin of error t𝛼∕2(s∕

√
n) be small? The quantity s∕

√
n

represents the standard error of the sample mean (the standard deviation of the
sampling distribution of x̄) and is small whenever the sample size is large or the
sample variability is small. The multiplier t𝛼∕2 is associated with the sample size and
the confidence level (usually 90–99%) specified by the analyst, and is smaller for
lower confidence levels. Since we cannot influence the sample variability directly
and we hesitate to lower our confidence level, we must turn to increasing the sample
size should we seek to provide more precise confidence interval estimation.

Usually, finding a large sample size is not a problem for many data mining
scenarios. For example, using the statistics in Figure 4.1, we can find the 95% t-
interval for the mean number of customer service calls for all customers as follows:

x̄ ± t𝛼∕2(s∕
√
n)

1.563 ± 1.96(1.315∕
√
3333)

1.563 ± 0.045

(1.518, 1.608)

We are 95% confident that the population mean number of customer service
calls for all customers falls between 1.518 and 1.608 calls. Here, the margin of error
is 0.045 customer service calls, which is fairly precise for most applications.

However, data miners are often called upon to perform subgroup analyses, that
is, to estimate the behavior of specific subsets of customers instead of the entire
customer base, as in the example above. For example, suppose that we are interested
in estimating the mean number of customer service calls for customers who have
both the International Plan and the VoiceMail Plan and who have more than 220 day
minutes. This reduces the sample size to 28 (Figure 4.2), which however is still large
enough to construct the confidence interval.

Figure 4.1 Summary statistics of customer service calls.

Figure 4.2 Summary statistics of customer service calls for those with both the International
Plan and VoiceMail Plan and with more than 200 day minutes.
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There are only 28 customers in the sample who have both plans and who logged
more than 220minutes of day use. The point estimate for the populationmean number
of customer service calls for all such customers is the sample mean 1.607. We may
find the 95% t-confidence interval estimate as follows:

x̄ ± t𝛼∕2(s∕
√
n)

1.607 ± 2.048(1.892∕
√
28)

1.607 ± 0.732

(0.875, 2.339)

We are 95% confident that the population mean number of customer service
calls for all customers who have both plans and who have more than 220 minutes of
day use falls between 0.875 and 2.339 calls. Here, 0.875 is called the lower bound
and 2.339 is called the upper bound of the confidence interval. The margin of error
for this specific subset of customers is 0.732, which indicates that our estimate of
the mean number of customer service calls for this subset of customers is much less
precise than for the customer base as a whole.

Confidence interval estimation can be applied to any desired target parame-
ter. The most widespread interval estimates are for the population mean and the
population proportion.

4.6 HOW TO REDUCE THE MARGIN OF ERROR

The margin of error E for a 95% confidence interval for the population mean 𝜇 is
E = t𝛼 ∕2(s∕

√
n) and may be interpreted as follows:

We can estimate 𝜇 to within E units with 95% confidence.

For example, the margin of error above of the number of customer service calls for all
customers equals 0.045 service calls, which may be interpreted as, “We can estimate
the mean number of customer service calls for all customers to within 0.045 calls
with 95% confidence.”

Now, the smaller the margin of error, the more precise our estimation. So the
question arises, how can we reduce our margin of error? Now the margin of error E
contains three quantities:

� t𝛼 ∕2, which depends on the confidence level and the sample size,
� the sample standard deviation s, which is a characteristic of the data, and may
not be changed, and

� n, the sample size.

Thus, we may decrease our margin of error in two ways

� By decreasing the confidence level, which reduces the value of t𝛼 ∕2, and
therefore reduces E. Not recommended.
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� By increasing the sample size. Recommended. Increasing the sample size is
the only way to decrease the margin of error while maintaining a constant level
of confidence.

For example, had we procured a new sample of 5000 customers, with the same
standard deviation s = 1.315, then the margin of error for a 95% confidence interval
would be:

E = t𝛼∕2(s∕
√
n) = 1.96(1.315∕

√
5000) = 0.036

Due to the
√
n in the formula for E, an increase of a in the sample size leads to

a reduction in margin of error of
√
a.

4.7 CONFIDENCE INTERVAL ESTIMATION
OF THE PROPORTION

Figure 3.3 showed that 483 of 3333 customers had churned, so that an estimate of
the population proportion 𝜋 of all of the company’s customers who churn is

p = number who churn
sample size

= x
n
= 483

3333
= 0.1449

Unfortunately, with respect to the population of our entire customer base, we
have no measure of our confidence in the accuracy of this estimate. In fact, it is nearly
impossible that this value exactly equals 𝜋. Thus, we would prefer a confidence
interval for the population proportion 𝜋, given as follows.

p ± Z𝛼∕2

√
p ⋅ (1 − p)

n

where the sample proportion p is the point estimate of𝜋 and the quantityZ𝛼∕2

√
p⋅(1−p)

n
represents the margin of error. The quantity Z𝛼∕2 depends on the confidence level:
for 90% confidence Z𝛼∕2 = 1.645, for 95% confidence Z𝛼∕2 = 1.96, and for 99%
confidence Z𝛼∕2 = 2.576. This Z-interval for 𝜋 may be used whenever both np ≥ 5
and n(1 − p) ≥ 5.

For example, a 95% confidence interval for the proportion 𝜋 of churners among
the entire population of the company’s customers is given by:

p ± Z𝛼∕2

√
p ⋅ (1 − p)

n
= 0.1149 ± 1.96

√
(0.1449) (0.8551)

3333

= 0.1149 ± 0.012

= (0.1329, 0.1569)

We are 95% confident that this interval captures the population proportion 𝜋.
Note that the confidence interval for 𝜋 takes the form

p ± E = 0.1149 ± 0.012
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where the margin of error E for a 95% confidence interval for the population mean 𝜋

is E = Z𝛼∕2

√
p⋅(1−p)

n
. The margin of error may be interpreted as follows:

We can estimate 𝜋 to within E with 95% confidence.

In this case, we can estimate the population proportion of churners to with 0.012 (or
1.2%) with 95% confidence. For a given confidence level, the margin of error can be
reduced only by taking a larger sample size.

4.8 HYPOTHESIS TESTING FOR THE MEAN

Hypothesis testing is a procedure where claims about the value of a population
parameter (such as 𝜇 or 𝜋) may be considered using the evidence from the sample.
Two competing statements, or hypotheses, are crafted about the parameter value:

� The null hypothesis H0 is the status quo hypothesis, representing what has been
assumed about the value of the parameter, and

� The alternative hypothesis or research hypothesis Ha represents an alternative
claim about the value of the parameter.

The two possible conclusions are (a) Reject H0, and (b) Do not reject H0. A criminal
trial is a form of a hypothesis test, with the following hypotheses:

H0 : Defendant is innocent Ha : Defendant is guilty

Table 4.3 illustrates the four possible outcomes of the criminal trial with respect
to the jury’s decision, and what is true in reality.

� Type I error: Reject H0 when H0 is true. The jury convicts an innocent person.
� Type II error: Do not reject H0 when H0 is false. The jury acquits a guilty
person.

� Correct decisions:
� Reject H0 when H0 is false. The jury convicts a guilty person.
� Do not reject H0 when H0 is true. The jury acquits an innocent person.

TABLE 4.3 Four possible outcomes of the criminal trial hypothesis test

Reality

H0 true: defendant did not
commit crime

H0 false: defendant did
commit crime

Jury’s
decision

Reject H0: find
defendant guilty

Type I error Correct decision

Do not Reject H0:
find defendant
not guilty

Correct decision Type II error
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The probability of a Type I error is denoted 𝛼, while the probability of a Type
II error is denoted 𝛽. For a constant sample size, a decrease in 𝛼 is associated with an
increase in 𝛽, and vice versa. In statistical analysis, 𝛼 is usually fixed at some small
value, such as 0.05, and called the level of significance.

A common treatment of hypothesis testing for the mean is to restrict the
hypotheses to the following three forms.

� Left-tailed test. H0 : 𝜇 ≥ 𝜇0 vs. Ha : 𝜇 < 𝜇0
� Right-tailed test. H0 : 𝜇 ≤ 𝜇0 vs. Ha : 𝜇 > 𝜇0
� Two-tailed test. H0 : 𝜇 = 𝜇0 vs. Ha : 𝜇 ≠ 𝜇0

where 𝜇0 represents a hypothesized value of 𝜇.
When the sample size is large or the population is normally distributed, the test

statistic

tdata =
x̄ − 𝜇0

s∕
√
n

follows a t distribution, with n− 1 degrees of freedom. The value of tdata is interpreted
as the number of standard errors above or below the hypothesized mean 𝜇, that the
sample mean x̄ resides, where the standard error equals s∕

√
n. (Roughly, the standard

error represents a measure of spread of the distribution of a statistic.) When the value
of tdata is extreme, this indicates a conflict between the null hypothesis (with the
hypothesized value 𝜇0) and the observed data. Since the data represent empirical
evidence whereas the null hypothesis represents merely a claim, such conflicts are
resolved in favor of the data, so that, when tdata is extreme, the null hypothesis H0 is
rejected. How extreme is extreme? This is measured using the p-value.

The p-value is the probability of observing a sample statistic (such as x̄ or
tdata) at least as extreme as the statistic actually observed, if we assume that the null
hypothesis is true. Since the p-value (“probability value”) represents a probability,
its value must always fall between zero and one. Table 4.4 indicates how to calculate
the p-value for each form of the hypothesis test.

The names of the forms of the hypothesis test indicate in which tail or tails of
the t distribution the p-value will be found.

TABLE 4.4 How to calculate p-value

Form of Hypothesis Test p-Value

Left-tailed test
H0 : 𝜇 ≥ 𝜇0 vs. Ha : 𝜇 < 𝜇0

P(t < tdata)

Right-tailed test
H0 : 𝜇 ≤ 𝜇0 vs. Ha : 𝜇 > 𝜇0

P(t > tdata)

Two-tailed test
H0 : 𝜇 = 𝜇0 vs. Ha : 𝜇 ≠ 𝜇0

If tdata < 0 then p-value = 2 ⋅ P(t < tdata)
If tdata > 0 then p-value = 2 ⋅ P(t > tdata)
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A small p-value will indicate conflict between the data and the null hypothesis.
Thus we will reject H0 if the p-value is small. How small is small? Since researchers
set the level of significance 𝛼 at some small value (such as 0.05), we consider the
p-value to be small if it is less than 𝛼. This leads us to the rejection rule:

Reject H0 if the p-value is < 𝛼.

For example, recall our subgroup of customers who have both the International
Plan and the VoiceMail Plan and who have more than 220 day minutes. Suppose we
would like to test whether the mean number of customer service calls of all such
customers differs from 2.4, and we set the level of significance 𝛼 to be 0.05. We
would have a two-tailed hypothesis test:

H0 : 𝜇 = 2.4 vs. Ha : 𝜇 ≠ 2.4

The null hypothesis will be rejected if the p-value is <0.05. Here, we have
𝜇0 = 2.4, and earlier we saw that x̄ = 1.607, s = 1.892, and n = 28. Thus,

tdata =
x̄ − 𝜇0

s∕
√
n

= 1.607 − 2.4

1.892∕
√
28

= −2.2178

Since tdata < 0, we have

p-value = 2 ⋅ P(t < tdata) = 2 ⋅ P (t < −2.2178) = 2 ⋅ 0.01758 = 0.035

Since the p-value of 0.035 is less than the level of significance 𝛼 = 0.05, we
reject H0. The interpretation of this conclusion is that there is evidence at level of
significance 𝛼 = 0.05 that the population mean number of customer service calls of
all such customers differs from 2.4. Had we not rejected H0, we could simply insert
the word “insufficient” before “evidence” in the previous sentence.

4.9 ASSESSING THE STRENGTH OF EVIDENCE AGAINST
THE NULL HYPOTHESIS

However, there is nothing written in stone saying that the level of significance 𝛼 must
be 0.05. What if we had chosen 𝛼 = 0.01 in this example? Then the p-value 0.035
would not have been less than 𝛼 = 0.01, and we would not have rejectedH0. Note that
the hypotheses have not changed and the data have not changed, but the conclusion
has been reversed simply by changing the value of 𝛼.

Further, consider that hypothesis testing restricts us to a simple “yes-or-no”
decision: either to rejectH0 or not rejectH0. But this dichotomous conclusion provides
no indication of the strength of evidence against the null hypothesis residing in the
data. For example, for level of significance 𝛼 = 0.05, one set of data may return a p-
value of 0.06 while another set of data provides a p-value of 0.96. Both p-values lead
to the same conclusion—do not reject H0. However, the first data set came close to
rejecting H0, and shows a fair amount of evidence against the null hypothesis, while
the second data set shows no evidence at all against the null hypothesis. A simple
“yes-or-no” decision misses the distinction between these two scenarios. The p-value
provides extra information that a dichotomous conclusion does not take advantage of.
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TABLE 4.5 Strength of evidence against H0 for various p-values

p-Value Strength of Evidence Against H0

p-value ≤ 0.001 Extremely strong evidence
0.001 < p-value ≤ 0.01 Very strong evidence
0.01 < p-value ≤ 0.05 Solid evidence
0.05 < p-value ≤ 0.10 Mild evidence
0.10 < p-value ≤ 0.15 Slight evidence
0.15 < p-value No evidence

Some data analysts do not think in terms of whether or not to reject the null
hypothesis so much as to assess the strength of evidence against the null hypothesis.
Table 4.5 provides a thumbnail interpretation of the strength of evidence against H0
for various p-values. For certain data domains, such as physics and chemistry, the
interpretations may differ.

Thus, for the hypothesis test H0 : 𝜇 = 2.4 vs. Ha : 𝜇 ≠ 2.4, where the p-value
equals 0.035, we would not provide a conclusion as to whether or not to reject H0.
Instead, we would simply state that there is solid evidence against the null hypothesis.

4.10 USING CONFIDENCE INTERVALS TO PERFORM
HYPOTHESIS TESTS

Did you know that one confidence interval isworth 1000 hypothesis tests?Because the
t confidence interval and the t hypothesis test are both based on the same distribution
with the same assumptions, we may state the following:

A 100(1 − 𝛼)% confidence interval for 𝜇 is equivalent to
a two-tailed hypothesis test for 𝜇,with level of significance 𝛼.

Table 4.6 shows the equivalent confidence levels and levels of significance.
The equivalency is stated as follows (see Figure 4.3):

� If a certain hypothesized value for 𝜇0 falls outside the confidence interval with
confidence level 100 (1 − 𝛼)%, then the two-tailed hypothesis test with level
of significance 𝛼 will reject H0 for that value of 𝜇0.

TABLE 4.6 Confidence levels and levels of significance for equivalent
confidence intervals and hypothesis tests

Confidence Level 100 (1 − 𝛼)% Level of Significance 𝛼

90% 0.10
95% 0.05
99% 0.01
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Lower Bound Upper Bound

Reject H0Reject H0 Do not reject H0

Figure 4.3 Reject values of 𝜇0 that would fall outside the equivalent confidence interval.

� If the hypothesized value for 𝜇0 falls inside the confidence interval with con-
fidence level 100 (1 − 𝛼)%, then the two-tailed hypothesis test with level of
significance 𝛼 will not reject H0 for that value of 𝜇0.

For example, recall that our 95% confidence interval for the population mean
number of customer service calls for all customers who have the International Plan
and the VoiceMail plan and who have more than 220 minutes of day use is:

(lower bound, upper bound) = (0.875, 2.339)

Wemay use this confidence interval to test any number of possible values of 𝜇0,
as long as the test is two-tailed with level of significance 𝛼 = 0.05. For example, use
level of significance 𝛼 = 0.05 to test whether the mean number of customer service
calls for such customers differs from the following values:

a. 0.5

b. 1.0

c. 2.4

The solution is as follows. We have the following hypothesis tests:

a. H0 : 𝜇 = 0.5 vs. Ha : 𝜇 ≠ 0.5

b. H0 : 𝜇 = 1.0 vs. Ha : 𝜇 ≠ 1.0

c. H0 : 𝜇 = 2.4 vs. Ha : 𝜇 ≠ 2.4

We construct the 95% confidence interval, and place the hypothesized values of 𝜇0
on the number line, as shown in Figure 4.4.

Their placement in relation to the confidence interval allows us to immedi-
ately state the conclusion of the two-tailed hypothesis test with level of significance
𝛼 = 0.05, as shown in Table 4.7.

0.875

0.5

2.339

Reject H0Reject H0 Do not reject H0

1.0 2.4

Figure 4.4 Placing the hypothesized values of 𝜇0 on the number line in relation to the
confidence interval informs us immediately of the conclusion.
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TABLE 4.7 Conclusions for three hypothesis tests using the confidence interval

𝜇0 Hypotheses With 𝛼 = 0.05
Position in Relation to 95%
Confidence Interval Conclusion

0.5 H0 : 𝜇 = 0.5 vs. Ha : 𝜇 ≠ 0.5 Outside Reject H0

1.0 H0 : 𝜇 = 1.0 vs. Ha : 𝜇 ≠ 1.0 Inside Do not reject H0

2.4 H0 : 𝜇 = 2.4 vs. Ha : 𝜇 ≠ 2.4 Outside Reject H0

4.11 HYPOTHESIS TESTING FOR THE PROPORTION

Hypothesis tests may also be performed about the population proportion 𝜋. The test
statistic is:

Zdata =
p − 𝜋0√
𝜋0(1 − 𝜋0)

n

where 𝜋0 is the hypothesized value of 𝜋, and p is the sample proportion

p = number of successes
n

The hypotheses and p-values are shown in Table 4.8.
For example, recall that 483 of 3333 customers in our sample had churned, so

that an estimate of the population proportion 𝜋 of all of the company’s customers
who churn is

p = number who churn
sample size

= x
n
= 483

3333
= 0.1449

Suppose we would like to test using level of significance 𝛼 = 0.10 whether 𝜋
differs from 0.15. The hypotheses are

H0 : 𝜋 = 0.15 vs. Ha : 𝜋 ≠ 0.15

TABLE 4.8 Hypotheses and p-values for hypothesis tests about 𝝅

Hypotheses p-Value

Left-tailed test
H0 : 𝜋 ≥ 𝜋0 vs. Ha : 𝜋 < 𝜋0

P(Z < Zdata)

Right-tailed test
H0 : 𝜋 ≤ 𝜋0 vs. Ha : 𝜋 > 𝜋0

P(Z > Zdata)

Two-tailed test
H0 : 𝜋 = 𝜋0 vs. Ha : 𝜋 ≠ 𝜋0

If Zdata < 0 then p-value = 2 ⋅ P(Z < Zdata)
If Zdata > 0 then p-value = 2 ⋅ P(Z > Zdata)
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The test statistic is

Zdata =
p − 𝜋0√
𝜋0(1 − 𝜋0)

n

= 0.1449 − 0.15√
0.15(0.85)

3333

= −0.8246

Since Zdata < 0 the p-value = 2 ⋅ P(Z < Zdata) = 2 ⋅ P (Z < −0.8246) = 2 ⋅ 0.2048 =
0.4096.

Since the p-value is not less than 𝛼 = 0.10 we would not reject H0. There is
insufficient evidence that the proportion of all our customers who churn differs from
15%. Further, assessing the strength of evidence against the null hypothesis using
Table 4.5 would lead us to state that there is no evidence against H0. Also, given a
confidence interval, we may perform two-tailed hypothesis tests for 𝜋, just as we did
for 𝜇.

THE R ZONE

# Input the data set Churn

churn <- read.csv(file = "C:/ . . . /churn.txt",
stringsAsFactors=TRUE)

# Show the variables in Churn
names(churn)
# Show the first ten values of Int.l.Plan
churn$Int.l.Plan[1:10]
# Show the first ten values of VMail Plan
churn$VMail.Plan[1:10]

# Find a subgroup

# Customers who have Int’l and VMail
# plans, and more than 220 day minutes
subchurn <- subset(churn,

churn$Int.l.Plan == "yes" &
churn$VMail.Plan == "yes" &
churn$Day.Mins>220)

subchurn
summary(subchurn$CustServ.Calls)
length(subchurn$CustServ.Calls)
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# One Sample T-test and Confidence Interval for Mean

mean.test <- t.test(x= subchurn$CustServ.Calls,
mu=2.4,
conf.level= 0.95)

mean.test$statistic
mean.test$p.value
mean.test$conf.int

# One sample Proportion Test and Confidence Interval

# Show possible levels of Churn variable
levels(churn$Churn)
# Find how many customers churned
num.churn <- sum(churn$Churn == "True")
# Find sample size, Calculate p, Z_data
sample.size <- dim(churn)[1]
p <- num.churn/sample.size
Z_data <- (p - 0.15) / sqrt((0.15*(1-0.15))/sample.size)
# Find confidence interval, p-value of Z_data
error <- qnorm(0.975, mean = 0, sd = 1)*

sqrt((p*(1-p))/sample.size)
lower.bound <- p - error
upper.bound <- p + error
p.value <- 2*pnorm(Z_data, mean = 0, sd = 1)
Z_data; p.value
lower.bound; upper.bound

REFERENCE

1. Much more information regarding the topics covered in this chapter may be found in any introductory
statistics textbook, such as Discovering Statistics, by Daniel T. Larose, second edition, published by
W. H. Freeman, New York, 2013.

EXERCISES

1. Explain what is meant by statistical inference. Give an example of statistical inference
from everyday life, say, a political poll.

2. What is the difference between a population and a sample?

3. Describe the difference between a parameter and a statistic.

4. When should statistical inference not be applied?

5. What is the difference between point estimation and confidence interval estimation?
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6. Discuss the relationship between the width of a confidence interval and the confidence
level associated with it.

7. Discuss the relationship between the sample size and the width of a confidence interval.
Which is better, a wide interval or a tight interval? Why?

8. Explain what we mean by sampling error.

9. What is the meaning of the term margin of error?

10. What are the two ways to reduce margin of error, and what is the recommended
way?

11. A political poll has a margin of error of 3%. How do we interpret this number?

12. What is hypothesis testing?

13. Describe the two ways a correct conclusion can be made, and the two ways an incorrect
conclusion can be made.

14. Explain clearly why a small p-value leads to rejection of the null hypothesis.

15. Explain why it may not always be desirable to draw a black-and-white, up-or-down
conclusion in a hypothesis test. What can we do instead?

16. How can we use a confidence interval to conduct hypothesis tests?

17. The duration customer service calls to an insurance company is normally distributed, with
mean 20 minutes, and standard deviation 5 minutes. For the following sample sizes, con-
struct a 95% confidence interval for the populationmean duration of customer service calls.

a. n = 25

b. n = 100

c. n = 400

18. For each of the confidence intervals in the previous exercise, calculate and interpret the
margin of error.

19. Refer to the previous exercise. Describe the relationship between margin of error and
sample size.

20. Of 1000 customers who received promotional materials for a marketing campaign, 100
responded to the promotion. For the following confidence levels, construct a confidence
interval for the population proportion who would respond to the promotion.

a. 90%

b. 95%

c. 99%

21. For each of the confidence intervals in the previous exercise, calculate and interpret the
margin of error.

22. Refer to the previous exercise. Describe the relationship between margin of error and
confidence level.

23. A sample of 100 donors to a charity has a mean donation amount of $55 with a sample
standard deviation of $25. Test using 𝛼 = 0.05 whether the population mean donation
amount exceeds $50.

a. Provide the hypotheses. State the meaning of 𝜇.

b. What is the rejection rule?
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c. What is the meaning of the test statistic tdata?

d. Is the value of the test statistic tdata extreme? How can we tell?
What is the meaning of the p-value in this example?

e. What is our conclusion?

f. Interpret our conclusion so that a nonspecialist could understand it.

24. Refer to the hypothesis test in the previous exercise. Suppose we now set 𝛼 = 0.01.

a. What would our conclusion now be? Interpret this conclusion.

b. Note that the conclusion has been reversed simply because we have changed the value
of 𝛼. But have the data changed? No, simply our level of what we consider to be
significance. Instead go ahead and assess the strength of evidence against the null
hypothesis.

25. Refer to the first confidence interval you calculated for the population mean duration of
customer service calls. Use this confidence interval to test whether this population mean
differs from the following values, using level of significance 𝛼 = 0.05.

a. 15 minutes

b. 20 minutes

c. 25 minutes

26. In a sample of 100 customers, 240 churned when the company raised rates. Test whether
the population proportion of churners is less than 25%, using level of significance
𝛼 = 0.01. �
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So far we have discussed inference methods for one variable at a time. Data ana-
lysts are also interested in multivariate inferential methods, where the relationships
between two variables, or between one target variable and a set of predictor variables,
are analyzed.

We begin with bivariate analysis, where we have two independent samples and
wish to test for significant differences in the means or proportions of the two samples.
When would data miners be interested in using bivariate analysis? In Chapter 6, we

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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illustrate how the data is partitioned into a training data set and a test data set for cross-
validation purposes. Dataminers can use the hypothesis tests shown here to determine
whether significant differences exist between the means of various variables in the
training and test data sets. If such differences exist, then the cross-validation is invalid,
because the training data set is nonrepresentative of the test data set.

� For a continuous variable, use the two-sample t-test for the difference in means.
� For a flag variable, use the two-sample Z-test for the difference in proportions.
� For a multinomial variable, use the test for the homogeneity of proportions.

Of course, there are presumably many variables in each of the training set
and test set. However, spot-checking of a few randomly chosen variables is usually
sufficient.

5.1 TWO-SAMPLE t-TEST FOR DIFFERENCE IN MEANS

To test for the difference in population means, we use the following test statistic,

tdata =
x̄1 − x̄2√
s21
n1

+
s22
n2

which follows an approximate t distribution with degrees of freedom the smaller of
n1 − 1 and n2 − 1, whenever either both populations are normally distributed or both
samples are large.

For example, we partitioned the churn data set into a training set of 2529
records and a test set of 804 records (the reader’s partition will differ). We would like
to assess the validity of the partition by testing whether the population mean number
of customer service calls differs between the two data sets. The summary statistics
are given in Table 5.1.

Now, the sample means do not look very different, but we would like to have
the results of the hypothesis test just to make sure. The hypotheses are:

H0 : 𝜇1 = 𝜇2 vs. Ha : 𝜇1 ≠ 𝜇2

The test statistic is:

tdata =
x̄1 − x̄2√
s21
n1

+
s22
n2

= 1.5714 − 1.5361√
1.31262

2529
+ 1.32512

804

= 0.6595

TABLE 5.1 Summary statistics for customer service calls, training data set and test data set

Data Set Sample Mean Sample Standard Deviation Sample Size

Training set x̄1 = 1.5714 s1 = 1.3126 n1 = 2529
Test set x̄2 = 1.5361 s2 = 1.3251 n2 = 804
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The two-tailed p-value for tdata = 0.6594 is:

p-value = 2 ⋅ P(t > 0.6595) = 0.5098

Since the p-value is large, there is no evidence that themean number of customer
service calls differs between the training data set and the test data set. For this variable
at least, the partition seems valid.

5.2 TWO-SAMPLE Z-TEST FOR DIFFERENCE IN
PROPORTIONS

Of course not all variables are numeric, like customer service calls. What if we have
a 0/1 flag variable—such as membership in the VoiceMail Plan—and wish to test
whether the proportions of records with value 1 differ between the training data
set and test data set? We could turn to the two-sample Z-test for the difference in
proportions. The test statistic is

Zdata =
p1 − p2√

ppooled ⋅ (1 − ppooled)
(

1
n1

+ 1
n2

)
where ppooled =

x1+x2
n1+n2

, and xi and pi represents the number of and proportion of

records with value 1 for sample i, respectively.
For example, our partition resulted in x1 = 707 of n1 = 2529 customers in the

training set belonging to the VoiceMail Plan, while x2 = 215 of n2 = 804 customers
in the test set belonging, so that p1 =

x1
n1

= 707
2529

= 0.2796, p2 =
x2
n2

= 215
804

= 0.2674,

and ppooled =
x1+x2
n1+n2

= 707+215
2529+804 = 0.2766.

The hypotheses are

H0 : 𝜋1 = 𝜋2 vs. Ha : 𝜋1 ≠ 𝜋2

The test statistic is

Zdata =
p1 − p2√

ppooled ⋅ (1 − ppooled)
(

1
n1

+ 1
n2

)
= 0.2796 − 0.2674√

0.2766 ⋅ (0.7234)
(

1
2529

+ 1
804

) = 0.6736

The p-value is

p-value = 2 ⋅ P(Z > 0.6736) = 0.5006

Thus there is no evidence that the proportion of VoiceMail Planmembers differs
between the training and test data sets. For this variable, the partition is valid.
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5.3 TEST FOR HOMOGENEITY OF PROPORTIONS

Multinomial data is an extension of binomial data to k > 2 categories. For example,
suppose a multinomial variable marital status takes the values married, single, and
other. Suppose we have a training set of 1000 people and a test set of 250 people,
with the frequencies shown in Table 5.2.

To determine whether significant differences exist between the multinomial
proportions of the two data sets, we could turn to the test for the homogeneity of
proportions.1 The hypotheses are

H0 : pmarried,training = pmarried,test,

psingle,training = psingle,test,

pother,training = pother,test
Ha : At least one of the claims in H0 is wrong.

To determine whether these observed frequencies represent proportions that are
significantly different for the training and test data sets, we compare these observed
frequencies with the expected frequencies that we would expect if H0 were true. For
example, to find the expected frequency for the number of married people in the
training set, we (a) find the overall proportion of married people in both the training
and test sets, 505

1250
, and (b) we multiply this overall proportion by the number of

people in the training set, 1000, giving us the expected proportion of married people
in the training set to be

Expected frequencymarried,training =
(1000)(505)

1250
= 404

We use the overall proportion in (a) because H0 states that the training and test
proportions are equal. Generalizing, for each cell in the table, the expected frequencies
are calculated as follows:

Expected frequency = (row total) (column total)
grand total

Applying this formula to each cell in the table gives us the table of expected
frequencies in Table 5.3.

TABLE 5.2 Observed frequencies

Data Set Married Single Other Total

Training set 410 340 250 1000
Test set 95 85 70 250
Total 505 425 320 1250

1Thanks to Dr. Daniel S. Miller for helpful discussions on this topic.
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TABLE 5.3 Expected frequencies

Data Set Married Single Other Total

Training set 404 340 256 1000
Test set 101 85 64 250
Total 505 425 320 1250

The observed frequencies (O) and the expected frequencies (E) are compared
using a test statistic from the 𝜒2 (chi-square) distribution:

𝜒2
data =

∑ (O − E)2

E

Large differences between the observed and expected frequencies, and thus a
large value for𝜒2

data, will lead to a small p-value, and a rejection of the null hypothesis.
Table 5.4 illustrates how the test statistic is calculated.

The p-value is the area to the right of 𝜒2
data under the 𝜒

2 curve with degrees of
freedom equal to (number of rows – 1)(number of columns – 1) = (1)(2) = 2:

p-value = P(𝜒2 > 𝜒2
data) = P(𝜒2 > 1.15) = 0.5627

Because this p-value is large, there is no evidence that the observed frequencies
represent proportions that are significantly different for the training and test data sets.
In other words, for this variable, the partition is valid.

This concludes our coverage of the tests to apply when checking the validity
of a partition.

TABLE 5.4 Calculating the test statistic 𝜒2
data

Cell Observed Frequency Expected Frequency
(Obs − Exp)2

Exp

Married, training 410 404
(410 − 404)2

404
= 0.09

Married, test 95 101
(95 − 101)2

101
= 0.36

Single, training 340 340
(340 − 340)2

340
= 0

Single, test 85 85
(85 − 85)2

85
= 0

Other, training 250 256
(250 − 256)2

256
= 0.14

Other, test 70 64
(70 − 64)2

64
= 0.56

𝜒2
data = 1.15
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5.4 CHI-SQUARE TEST FOR GOODNESS OF FIT OF
MULTINOMIAL DATA

Next, suppose a multinomial variable marital status takes the values married, single,
and other, and suppose that we know that 40% of the individuals in the population
are married, 35% are single, and 25% report another marital status. We are taking
a sample and would like to determine whether the sample is representative of the
population. We could turn to the 𝜒2 (chi-square) goodness of fit test.

The hypotheses for this 𝜒2 goodness of fit test would be as follows:

H0 : pmarried = 0.40, psingle = 0.35, pother = 0.25

Ha : At least one of the proportion sin H0 is wrong.

Our sample of size n = 100 yields the following observed frequencies (repre-
sented by the letter “O”):

Omarried = 36,Osingle = 35,Oother = 29

To determine whether these counts represent proportions that are significantly
different from those expressed in H0, we compare these observed frequencies with
the expected frequencies that we would expect if H0 were true. If H0 were true, then
we would expect 40% of our sample of 100 individuals to be married, that is, the
expected frequency for married is

Emarried = n ⋅ pmarried = 100 ⋅ 0.40 = 40

Similarly,

Esingle = n ⋅ psingle = 100 ⋅ 0.35 = 35

Eother = n ⋅ pother = 100 ⋅ 0.25 = 25

These frequencies are compared using the test statistic:

𝜒2
data =

∑ (O − E)2

E

Again, large differences between the observed and expected frequencies, and
thus a large value for 𝜒2

data, will lead to a small p-value, and a rejection of the null
hypothesis. Table 5.5 illustrates how the test statistic is calculated.

The p-value is the area to the right of 𝜒2
data under the 𝜒2 curve with k − 1

degrees of freedom, where k = the number of categories (here k = 3):

p-value = P
(
𝜒2 > 𝜒2

data

)
= P(𝜒2 > 1.04) = 0.5945

Thus, there is no evidence that the observed frequencies represent proportions
that differ significantly from those in the null hypothesis. In other words, our sample
is representative of the population.
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TABLE 5.5 Calculating the test statistic 𝜒2
data

Marital Status Observed Frequency Expected Frequency
(Obs − Exp)2

Exp

Married 36 40
(36 − 40)2

40
= 0.4

Single 35 35
(35 − 35)2

35
= 0

Other 29 25
(29 − 25)2

25
= 0.64

𝜒2
data = 1.04

5.5 ANALYSIS OF VARIANCE

In an extension of the situation for the two-sample t test, suppose that we have
a threefold partition of the data set, and wish to test whether the mean value of
a continuous variable is the same across all three subsets. We could turn to one-
way analysis of variance (ANOVA). To understand how ANOVA works, consider
the following small example. We have samples from Groups A, B, and C, of four
observations each, for the continuous variable age, shown in Table 5.6.

The hypotheses are

H0 : 𝜇A = 𝜇B = 𝜇c

Ha : Not all the population means are equal.

The sample mean ages are x̄A = 45, x̄B = 40, and x̄C = 35. A comparison
dotplot of the data (Figure 5.1) shows that there is a considerable amount of overlap
among the three data sets. So, despite the difference in sample means, the dotplot

TABLE 5.6 Sample ages for Groups A, B, and C

Group A Group B Group C

30 25 25
40 30 30
50 50 40
60 55 45

25
C

B

A

30 35 40 45

Ages of Groups A, B, and C

50 55 60

Figure 5.1 Dotplot of groups A, B, and C shows considerable overlap.
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offers little or no evidence to reject the null hypothesis that the population means are
all equal.

Next, consider the following samples from Groups D, E, and F, for the contin-
uous variable age, shown in Table 5.7.

Once again, the sample mean ages are x̄D = 45, x̄E = 40, and x̄F = 35. A
comparison dotplot of these data (Figure 5.2) illustrates that there is very little
overlap among the three data sets. Thus, Figure 5.2 offers good evidence to reject the
null hypothesis that the population means are all equal.

To recapitulate, Figure 5.1 shows no evidence of difference in group means,
while Figure 5.2 shows good evidence of difference in group means, even though the
respective sample means are the same in both cases. The distinction stems from the
overlap among the groups, which itself is a result of the spread within each group.
Note that the spread is large for each group in Figure 5.1, and small for each group in
Figure 5.2.When the spread within each sample is large (Figure 5.1), the difference in
samplemeans seems small.When the spreadwithin each sample is small (Figure 5.2),
the difference in sample means seems large.

ANOVA works by performing the following comparison. Compare

1. The between-sample variability, that is, the variability in the sample means,
such as x̄A = 45, x̄B = 40, and x̄C = 35, with

2. The within-sample variability, that is, the variability within each sample, mea-
sured for example by the sample standard deviations.

When (1) is much larger than (2), this represents evidence that the population
means are not equal. Thus, the analysis depends on measuring variability, hence the
term analysis of variance.

Let x̄ represent the overall sample mean, that is, the mean of all observations
from all groups. We measure the between-sample variability by finding the variance

TABLE 5.7 Sample ages for Groups D, E, and F

Group D Group E Group F

43 37 34
45 40 35
45 40 35
47 43 36

25
F

E

D

30 35 40 45

Ages of Groups D, E, and F

50 55 60

Figure 5.2 Dotplot of Groups D, E, and F shows little overlap.



5.5 ANALYSIS OF VARIANCE 117

of the k sample means, weighted by sample size, and expressed as the mean square
treatment (MSTR):

MSTR =
∑
ni(x̄i − x̄)2

k − 1

We measure the within-sample variability by finding the weighted mean of the
sample variances, expressed as the mean square error (MSE):

MSE =
∑

(ni − 1)s2i
nt − k

We compare these two quantities by taking their ratio:

Fdata =
MSTR
MSE

which follows anF distribution,with degrees of freedom df1 = k − 1 and df2 = nt − k.
The numerator of MSTR is the sum of squares treatment, SSTR, and the numerator
of MSE is the sum of squares error, SSE. The total sum of squares (SST) is the sum
of SSTR and SSE. A convenient way to display the above quantities is in the ANOVA
table, shown in Table 5.8.

The test statistic Fdata will be large when the between-sample variability is
much greater than the within-sample variability, which is indicative of a situation
calling for rejection of the null hypothesis. The p-value is P(F > Fdata); reject the
null hypothesis when the p-value is small, which happens when Fdata is large.

For example, let us verify our claim that Figure 5.1 showed little or no evidence
that the population means were not equal. Figure 5.3 shows the Minitab ANOVA
results.

The p-value of 0.548 indicates that there is no evidence against the null hypoth-
esis that all population means are equal. This bears out our earlier claim. Next let us
verify our claim that Figure 5.2 showed evidence that the population means were not
equal. Figure 5.4 shows the Minitab ANOVA results.

TABLE 5.8 ANOVA table

Source of Variation Sum of Squares Degrees of Freedom Mean Square F

Treatment SSTR df1 = k − 1 MSTR = SSTR
df1

Fdata =
MSTR
MSE

Error SSE df2 = nt − k MSE = MSE
df2

Total SST

Figure 5.3 ANOVA results for H0 : 𝜇A = 𝜇B = 𝜇C.
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Figure 5.4 ANOVA results for H0 : 𝜇D = 𝜇E = 𝜇F .

The p-value of approximately zero indicates that there is strong evidence that
not all the population mean ages are equal, thus supporting our earlier claim.

5.6 REGRESSION ANALYSIS

To help us learn about regression methods for estimation and prediction, let us
get acquainted with a new data set, cereals. The cereals data set, included at the
book series website courtesy of the Data and Story Library [1], contains nutrition
information for 77 breakfast cereals and includes the following variables:

� Cereal name
� Cereal manufacturer
� Type (hot or cold)
� Calories per serving
� Grams of protein
� Grams of fat
� Milligrams of sodium
� Grams of fiber
� Grams of carbohydrates
� Grams of sugars
� Milligrams of potassium
� Percentage of recommended daily allowance of vitamins (0%, 25%, or 100%)
� Weight of one serving
� Number of cups per serving
� Shelf location (1 = bottom, 2 = middle, 3 = top)
� Nutritional rating, calculated by Consumer Reports

Table 5.9 provides a peek at eight of these fields for the first six cereals. We are
interested in estimating the nutritional rating of a cereal given its sugar content.

It is important to note that this data set contains some missing data. The
following four field values are missing:

� Potassium content of Almond Delight
� Potassium content of Cream of Wheat
� Carbohydrates and sugars content of Quaker Oatmeal



5.6 REGRESSION ANALYSIS 119

TABLE 5.9 Excerpt from cereals data set: eight fields, first six cereals

Cereal Name Manuf. Sugars Calories Protein Fat Sodium Rating

100% Bran N 6 70 4 1 130 68.4030
100% Natural Bran Q 8 120 3 5 15 33.9837
All-Bran K 5 70 4 1 260 59.4255
All-Bran Extra Fiber K 0 50 4 0 140 93.7049
Almond Delight R 8 110 2 2 200 34.3848
Apple Cinnamon

Cheerios
G 10 110 2 2 180 29.5095

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Weshall therefore not be able to use the sugar content ofQuakerOatmeal to help
build the regression model for predicting nutrition rating. In Chapter 13, Imputation
of Missing Data, we shall learn how to apply multiple regression to impute these four
missing values.

Figure 5.5 shows a scatter plot of the nutritional rating versus the sugar content
for the cereals, along with the least-squares regression line.

The regression line is written in the form ŷ = b0 + b1x, called the regression
equation, where:

� ŷ is the estimated value of the response variable
� b0 is the y-intercept of the regression line
� b1 is the slope of the regression line
� b0 and b1, together, are called the regression coefficients

95

85

75

65

55

45

35

25

15

0 5 10 15

Sugars

Actual Rating
(for Cheerios)

Estimated
Rating

R
a
ti
n
g

Figure 5.5 Scatter plot of nutritional rating versus sugar content for 76 cereals.



120 CHAPTER 5 MULTIVARIATE STATISTICS

The regression results are shown in Figure 5.6. At the top we see, “The regres-
sion equation is: Rating = 59.9 − 2.46 sugars”. These are rounded values for the
regression coefficients. Next comes a note that only 76 cereals were used (because
the sugar information for Quaker Oats is missing). Then, below “Coef”, are presented
more accurate values for the regression coefficients. We see that b0 (the coefficient
for constant) is 59.853, and b1 (the coefficient for sugars) is –2.4614. Thus regression

Figure 5.6 Regression results for using sugars to estimate rating.
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equation is given as ŷ = 59.853 − 2.4614 (sugars). This estimated regression equation
can then be interpreted as: “The estimated cereal rating equals 59.853 minus 2.4614
times the sugar content in grams.” The regression line and the regression equation
are used as a linear approximation of the relationship between the x (predictor) and
y (response) variables, that is, between sugar content and nutritional rating. We can
then use the regression equation to make estimates or predictions.

For example, suppose that we are interested in estimating the nutritional rating
for a new cereal (not in the original data) that contains x = 1 gram of sugar. Using the
regression equation, we find the estimated nutritional rating for a cereal with 1 gram
of sugar to be ŷ = 59.853 − 2.4614(1) = 57.3916. Note that this estimated value
for the nutritional rating lies directly on the regression line, at the location (x = 1,
ŷ = 57.3916), as shown in Figure 5.5. In fact, for any given value of x (sugar content),
the estimated value for y (nutritional rating) lies precisely on the regression line.

Now, there is one cereal in our data set that does have a sugar content of 1 gram,
Cheerios. Its nutrition rating, however, is 50.765, not 57.3916 as we estimated above
for the new cereal with 1 gram of sugar. Cheerios’ point in the scatter plot is located at
(x = 1, y = 50.765), within the oval in Figure 5.5. Now, the upper arrow in Figure 5.5
is pointing to a location on the regression line directly above the Cheerios point. This
is where the regression equation predicted the nutrition rating to be for a cereal with a
sugar content of 1 gram. The prediction was too low by 50.765 − 57.3916 = −6.6266
rating points, which represents the vertical distance from the Cheerios data point to
the regression line. This vertical distance, in general (y − ŷ), is known variously as
the prediction error, estimation error, or residual. In Figure 5.6 we see that Minitab
identifies two unusual observations, cereal 1 (100% Bran) and cereal 4 (All-Bran
with Extra Fiber), which have large positive residuals, indicating that the nutrition
rating was unexpectedly high, given their sugar level.

We, of course, seek to minimize the overall size of our prediction errors. Least-
squares regression works by choosing the unique regression line that minimizes the
sum of squared errors (SSE) over all the data points. There are alternative methods of
choosing the line that best approximates the linear relationship between the variables,
such as median regression, although least squares remain the most common method.

The y-intercept b0 is the location on the y-axis where the regression line inter-
cepts the y-axis, that is, the estimated value for the response variable when the
predictor variable equals zero. Now, in many regression situations, a value of zero
for the predictor variable would not make sense. For example, suppose that we were
trying to predict elementary school student weight (y) based on student height (x).
Themeaning of height= 0 is unclear, so that the denotative meaning of the y-intercept
would not make interpretive sense in this case. However, for our data set, a value of
zero for the sugar content does make sense, as several cereals contain zero grams of
sugar. Therefore, for our data set, the y-intercept b0 = 59.853 simply represents the
estimated nutritional rating for cereals with zero sugar content.

The slope of the regression line indicates the estimated change in y per unit
increase in x. We interpret b1 =−2.4614 to mean the following: “For each increase of
1 gram in sugar content, the estimated nutritional rating decreases by 2.4614 rating
points.” For example, cereal A with 5 more grams of sugar than cereal B would have
an estimated nutritional rating 5(2.4614) = 12.307 rating points lower than cereal B.
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5.7 HYPOTHESIS TESTING IN REGRESSION

Just as in univariate analysis we used the known value of the samplemean x̄ to perform
inference for the unknown value of the population mean 𝜇, so here in regression
analysis, we will use the known value for the slope b1 of the regression equation to
perform inference for the unknown value of the slope 𝛽1 of the population regression
equation. The population regression equation represents a linear approximation of
the relationship between, say, nutritional ratings and sugar content for the entire
population of cereals, not just the cereals in our sample. The population regression
equation looks like this:

y = 𝛽0 + 𝛽1x + 𝜀

where 𝜀 represents a random variable for modeling the errors. Note that, when 𝛽1 = 0,
the population regression equation becomes:

y = 𝛽0 + (0) x + 𝜀 = 𝛽0 + 𝜀

In other words, when 𝛽1 = 0, there is no relationship between the predictor x
and the response y. For any other value of 𝛽1, there is a linear relationship between
x and y. Thus, if we wish to test for the existence of a linear relationship between x
and y, we may simply perform the following hypothesis test:

H0 : 𝛽1 = 0 No relationship between x and y
vs.

Ha : 𝛽1 ≠ 0 Linear relationship between x and y

The test statistic for this hypothesis test is:

t =
b1
sb1

where sb1 represents the standard error of the coefficient b1. For example, in Fig-
ure 5.6, one may find sb1 = 0.2417 under SE coef. This is a measure of the variability
in the slope of the regression line, observed from sample to sample. Large values for
sb1 indicate that there may be too much wiggle-factor (that is, variability) in our slope
estimate b1, making precise inference regarding the slope difficult. This is reflected
in the presence of sb1 in the denominator of the t-statistic, so that large values of sb1
tend to reduce the size of the t-statistic.

Figure 5.6 provides the value of the t-statistic for sugars as t = −10.18. This is
obtained as the ratio of the slope b1 and the standard error sb1 :

t =
b1
sb1

= −2.4614
0.2417

= −10.18

The p-value for this test statistic is found in Figure 5.6 under P. The p-value
indicates the probability of observing this value for t, if there really is no relationship
between x and y.A small p-value (usually<0.05) indicates that 𝛽1 differs significantly
from zero. Here we have p-value ≈ 0, leading us to conclude that 𝛽1 ≠ 0, and that
there exists a linear relationship between sugar content and nutritional rating.
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5.8 MEASURING THE QUALITY OF A REGRESSION
MODEL

How do we measure how helpful our regression model is? Clearly, if we cannot reject
the null hypothesis in the hypothesis test above, then the regression model is no help
at all. But if we do find that 𝛽1 ≠ 0, then there are two statistics that indicate the
quality of our regression model. A very useful statistic is s, the standard error of
the estimate (not to be confused with s, the sample standard deviation for univariate
statistics, or sb1 , the standard error of the slope coefficient).

s =
√
MSE =

√
SSE∕n − 2

where SSE is the sum of squared errors. The statistic s is useful for assessing the
quality of a regression model because its value indicates a measure of the size of the
“typical” prediction error. For example, in Figure 5.6 we see that s = 9.16616 ≈ 9.2.
Thus, if we are given the sugar content (in grams) of a new cereal, our typical error
in predicting nutritional rating will be about 9.2 points. Roughly (using the empirical
rule), our estimate of the new cereal’s rating will be within 9.2 points about two-thirds
of the time. This may be good enough for some applications. But it is not likely to
be good enough for precise estimation of the nutritional rating. Thus, to reduce the
value of s, we would need to add more predictors to the model (such as sodium, and
so on), and use multiple regression.

Another measure of the quality of a regression model is the r2 (“r-squared)”
statistic. r2 measures how closely the linear regression fits the data, with values closer
to 100% indicating a more perfect fit. The formula for r2 is:

r2 = SSR
SST

where SST represents the variability in the y-variable, and SSR represents the
improvement in estimation from using the regression model as compared to just
using ȳ to estimate y. Thus, r2 may be interpreted as the ratio of the total variability
in y that is accounted for by the linear relationship between x and y.

� r2 is a measure of how closely the linear regression model fits the data, with
values closer to 90–100% indicating a very nice fit.

The correlation coefficient r for rating and sugars is −0.764 (not shown),
indicating that the nutritional rating and the sugar content are negatively correlated.
It is not a coincidence that both r and b1 are both negative. In fact, the correlation
coefficient r and the regression slope b1 always have the same sign. In Figure 5.6, we
have r2 = 58.4%. Thus, 58.4% of the variability in nutritional rating is accounted for
by the linear relationship between rating and sugars alone, without looking at other
variables such as sodium.

5.9 DANGERS OF EXTRAPOLATION

Suppose that a new cereal (say, the Chocolate Frosted Sugar Bombs loved by Calvin,
the comic strip character written by Bill Watterson) arrives on the market with a
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very high sugar content of 30 grams per serving. Let us use our estimated regression
equation to estimate the nutritional rating for Chocolate Frosted Sugar Bombs:

ŷ = 59.853 − 2.4614 (sugars) = 59.4 − 2.4614(30) = −13.989.

In other words, Calvin’s cereal has so much sugar that its nutritional rating is
actually a negative number, unlike any of the other cereals in the data set (minimum=
18) and analogous to a student receiving a negative grade on an exam. What is going
on here?

The negative estimated nutritional rating for Chocolate Frosted Sugar Bombs
is an example of the dangers of extrapolation. Analysts should confine the estimates
and predictions made using the regression equation to values of the predictor variable
contained within the range of the values of x in the data set. For example, in the
cereals data set, the lowest sugar content is zero grams and the highest is 15 grams,
so that predictions of nutritional rating for any value of x (sugar content) between zero
and 15 grams would be appropriate. However, extrapolation, making predictions for
x-values lying outside this range, can be dangerous, since we do not know the nature
of the relationship between the response and predictor variables outside this range.

Extrapolation should be avoided if possible. If predictions outside the given
range of xmust be performed, the end user of the prediction needs to be informed that
no x-data is available to support such a prediction. The danger lies in the possibility
that the relationship between x and y, which may be linear within the range of x in
the data set, may no longer be linear outside these bounds.

Consider Figure 5.7. Suppose that our data set consisted only of the data points
in black but that the true relationship between x and y consisted of both the black
(observed) and the gray (unobserved) points. Then, a regression line based solely

Predicted value of Y

based on available data.

Large prediction error.

Actual value of y.

Figure 5.7 Dangers of extrapolation.
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on the available (black dot) data would look approximately similar to the regression
line indicated. Suppose that we were interested in predicting the value of y for an
x-value located at the triangle. The prediction based on the available data would then
be represented by the dot on the regression line indicated by the upper arrow. Clearly,
this prediction has failed spectacularly, as shown by the vertical line indicating the
huge prediction error. Of course, since the analyst would be completely unaware of
the hidden data, he or she would hence be oblivious to the massive scope of the error
in prediction. Policy recommendations based on such erroneous predictions could
certainly have costly results.

5.10 CONFIDENCE INTERVALS FOR THE MEAN VALUE
OF y GIVEN x

Thus far, we have discussed point estimates for values of the response variable for
a given value of the predictor variable. Of course, point estimates in this context
suffer the same drawbacks as point estimates in the univariate case, notably the lack
of a probability statement associated with their accuracy. We may therefore turn to
confidence intervals for the mean value of y for a given value of x.

The confidence interval for the mean value of y for a given value of x is as
follows:

point estimate ±margin of error = ŷp ± t𝛼∕2(s)

√
1
n
+

(xp − x̄)2∑
(xi − x̄)2

where

xp = the particular value of x for which the prediction is being made
ŷp = the point estimate of y for a particular value of x

t𝛼∕2 = a multiplier associated with the sample size and confidence level

s =
√
MSE =

√
SSE∕n − 1 = the standard error of the estimate

SSE = the sum of squared residuals

We look at an example of this type of confidence interval below, but first we
are introduced to a new type of interval, the prediction interval.

5.11 PREDICTION INTERVALS FOR A RANDOMLY
CHOSEN VALUE OF y GIVEN x

Have you ever considered that it is “easier” to predict the mean value of a variable
than it is to predict a randomly chosen value of that variable? For example, baseball
buffs perusing the weekly batting average statistics will find that the team batting
averages (which are the means of all the team’s players) are more closely bunched
together than are the batting averages of the individual players. An estimate of the
team batting average will therefore be more precise than an estimate of a randomly
chosen member of that team for the same level of confidence.
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Exam scores provide another example. It is not unusual for a randomly selected
student’s score to exceed 95, say, but it is quite unusual for the class average to be
that high. This anecdotal evidence reflects the smaller variability associated with the
mean (class average) of a variable rather than a randomly selected value (individual
score) of that variable. Therefore, it is “easier” to predict the class average on an
exam than it is to predict a randomly chosen student’s score.

In many situations, data miners are more interested in predicting an individual
value rather than the mean of all the values, given x. For example, an analyst may be
more interested in predicting the credit score for a particular credit applicant rather
than predicting the mean credit score of all similar applicants. Or, a geneticist may
be interested in the expression of a particular gene rather than the mean expression
of all similar genes.

Prediction intervals are used to estimate the value of a randomly chosen value
of y, given x. Clearly, this is a more difficult task than estimating the mean, resulting
in intervals of greater width (lower precision) than confidence intervals for the mean
with the same confidence level. The prediction interval for a randomly chosen value
of y for a given value of x is as follows:

point estimate ±margin of error = ŷp ± t𝛼∕2(s)

√
1 + 1

n
+

(xp − x̄)2∑
(xi − x̄)2

Note that this formula is precisely the same as the formula for the confidence
interval for the mean value of y, given x, except for the presence of the “1+” inside
the square root. This ensures that the prediction interval is always wider than the
analogous confidence interval.

The last half-dozen lines of Figure 5.6 indicate the results for our confidence
intervals and prediction intervals for a new cereal containing 1 gram of sugar.

� Fit is nothing but the point estimate of the nutritional rating for a cereal with
1 gram of sugar: ŷ = 59.853−2.4614(1) = 57.3916.

� SE fit is a measure of the variability of the point estimate.
� The 95% confidence interval for the mean nutritional rating of all cereals
containing 1 gram of sugar is (53.81, 60.97).

� The 95% prediction interval for the nutritional rating of a randomly chosen
cereal containing 1 gram of sugar is (38.78, 76.00).

Note that as expected, the prediction interval is wider than the confidence
interval, reflecting the greater challenge of estimating a particular y value rather than
the mean y value for a given value of x.

5.12 MULTIPLE REGRESSION

Most data mining applications enjoy a wealth (indeed, a superfluity) of data, with
some data sets including hundreds of variables, many of which may have a linear
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relationship with the target (response) variable. Multiple regression modeling pro-
vides an elegant method of describing such relationships. Multiple regression models
provide improved precision for estimation and prediction, analogous to the improved
precision of regression estimates over univariate estimates.

To illustrate the use of multiple regression modeling using the cereals data set,
we shall add the predictor sodium to the model, and observe whether the quality of
the model has improved or not. The multiple regression equation for two predictors
looks like this:

ŷ = b0 + b1x1 + b2x2

Figure 5.8 shows the multiple regression results for predicting nutritional rating
based on sugars and sodium.

From Figure 5.8 we have the multiple regression equation:

ŷ = 69.180 − 2.3944 (sugars) − 0.06057 (sodium)

We have b2 = −0.06057, which is interpreted as follows. For each additional
milligram (mg) of sodium, the estimated decrease in nutritional rating is 0.06057
points, when sugars are held constant. The point estimate of nutritional rating for a
cereal, like Cheerios, that has 1 gram of sugars and 290 mg of sodium, is

ŷ = 69.180 − 2.3944(1) − 0.06057(290) = 49.22

The prediction error for Cheerios is the difference between its actual rating y
and the predicted rating ŷ: (y − ŷ) = 50.765 − 49.22 = 1.545. Note that the prediction
error for this multiple regression model is smaller than the prediction error from the
previous model, (y − ŷ) = −6.62266, because our new model uses double the data
(two predictors rather than one) compared to the earlier regression model.

The standard error of the estimate has been reduced from s ≈ 9.2 points to
s ≈ 7.7 points. The addition of the sodium information to the model has reduced our
typical prediction errors to 7.7 points. Finally, the value of r2 = 58.4% has increased
from 58.4% to 70.8%, so that the proportion of the variability in nutritional rating
that is explained by our regression model is now over 70%.

5.13 VERIFYING MODEL ASSUMPTIONS

Before a model can be implemented, the requisite model assumptions must be ver-
ified. Using a model whose assumptions are not verified is like building a house
whose foundation may be cracked. Making predictions using a model where the
assumptions are violated may lead to erroneous and overoptimistic results, with
costly consequences when deployed.

These assumptions—linearity, independence, normality, and constant
variance—may be checked using a normality plot of the residuals (Figure 5.9, upper
left), and a plot of the standardized residuals against the fitted (predicted) values (Fig-
ure 5.9, upper right). One evaluates a normality plot by judging whether systematic
deviations from linearity exist in the plot, in which case one concludes that the data
values plotted (the residuals in this case) are not drawn from the particular distribution
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Figure 5.8 Multiple regression results.
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Figure 5.9 Plots for verifying regression model assumptions. Note the outlier.

(the normal distribution in this case). The bulk of the points in the normal probability
plot do line up on a straight line, so our normality assumption is essentially. But there
is one extreme value (cereal 4: All-Bran with Extra Fiber) which may be making
mischief with respect to normality. We will return to this in a moment.

The plot of the residuals versus the fits (Figure 5.9, upper right) is examined
for discernible patterns. If obvious curvature exists in the scatter plot, the linearity
assumption is violated. If the vertical spread of the points in the plot is systematically
nonuniform, the constant variance assumption is violated. We detect no such patterns
in the plot of the residuals versus fits and therefore conclude that the linearity and
constant variance assumptions are intact for this example.

The independence assumption makes sense for this data set, since we would
not expect that the rating for one particular cereal would depend on the rating for
another cereal. Time-dependent data can be examined for order independence using
a runs test or a plot of the residuals versus ordering.

Now, humans are pattern recognition experts. For example, Rorschach tests
would indicate that humans see patterns everywhere, even where no such pattern
actually exists! Thus, we need to exercise care when reading these plots not to
see patterns that do not exist. For example, the departures from linearity must be
systematic and significant. Secondly, the huge data sets involved in data mining
usually are not well behaved mathematically, conforming perfectly with normality
and so on. Thus, the analyst should give the model assumptions the benefit of the
doubt, unless there is good evidence to the contrary.

Because least squares regression is based on the squared prediction errors,
outliers can have an outsized influence on the results. Thus care should be taken to
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identify extreme outliers, and, if necessary and appropriate, omit them. Figure 5.8
identified 4 outliers, including the most extreme outlier, cereal 4: All-Bran with Extra
Fiber. Note that this cereal is extreme in each of the four plots in Figure 5.9, and
is skewing our normality a bit. Suppose that we omit cereal 4 from our analysis.
Then our assumption plots look better behaved (Figure 5.10), especially the plots for
normality (upper left and lower left).

Is our omission of cereal 4 warranted? This depends on the scope and purpose
of the project. If we intend to include further predictors, then we should definitely
not omit cereal 4 at this stage, since an observation that is an outlier in 3-dimensional
space may not be an outlier in 10-dimensional space. On the other hand, if our project
required us to ignore all the other predictors in the data set, and restrict ourselves to
sugars and sodium, then omission of cereal 4 may perhaps be considered.

In Chapter 13, Imputation of Missing Data, we illustrate how to use multiple
regression to impute missing predictor values.
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Figure 5.10 Plots for verifying regression model assumptions, after outlier omitted.
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THE R ZONE

# Two-Sample T-Test for difference in means

# Input the summary statistics from Table 5.1
xbar1 <- 1.5714
xbar2 <- 1.5361
s1 <- 1.3126
s2 <- 1.3251
n1 <- 2529
n2 <- 804
# Make the degrees of freedom the smaller of the two sample sizes
dfs <- min(n1-1, n2-1)
# Calculate test statistic
tdata <- (xbar1 - xbar2) / sqrt((s1ˆ2/n1)+(s2ˆ2/n2))
# Find and display the p-value
pvalue <- 2*pt(tdata, df = dfs, lower.tail=FALSE)
tdata; pvalue

# Two-Sample Z-Test for Difference in Proportions

# Input the summary statistics
# Some of these will override the values
# from the previous example
x1 <- 707
x2 <- 215
n1 <- 2529
n2 <- 804
p1 <- x1 / n1
p2 <- x2 / n2
ppooled <- (x1+x2) / (n1+n2)
# Calculate test statistic
zdata <- (p1-p2) / sqrt(ppooled*(1-ppooled)*((1/n1)+(1/n2)))
# Find the p-value
pvalue <- 2*pnorm(abs(zdata), lower.tail = FALSE)
pvalue

# Chi-Square Goodness of Fit of Multinomial Data

# Population proportions
p_status <- c(0.40, 0.35, 0.25)
# Observed frequencies
o_status <- c(36, 35, 29)
chisq.test(o_status, p = p_status)
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# Chi-Square Test for Homogeneity of Proportions

# Recreate Table 5.2
table5.2 <- as.table(rbind(c(410, 340, 250),

c(95, 85, 70)))
dimnames(table5.2) <- list(Data.Set =

c("Training Set", "Test Set"),
Status = c("Married", "Single", "Other"))

Xsq_data <- chisq.test(table5.2)
# Show the test statistic,
# p-value, expected frequencies
Xsq_data$statistic
Xsq_data$p.value
Xsq_data$expected

# ANOVA

a <- c(30, 40, 50, 60)
b <- c(25, 30, 50, 55)
c <- c(25, 30, 40, 45)
ab <- append(a,b)
datavalues <- append(ab, c)
datalabels <- factor(c(rep("a", length(a)),

rep("b", length(b)),
rep("c", length(c))))

anova.results <- aov(datavalues ∼ datalabels)
summary(anova.results)

# Recreate Table 5.9

# Input the dataset Cereals
cereal <- read.csv(file =

"C:/ . . . /cereals.txt",
stringsAsFactors=TRUE,
header=TRUE,
sep="\t")

# Display the names of all the columns
names(cereal)
cereal[1:6,c("Name", "Manuf", "Type",

"Sugars", "Calories", "Protein",
"Fat", "Sodium", "Rating")]
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# Create regression line of rating by sugar content

# Save Rating and Sugar as new variables
sugars <- cereal$Sugars
rating <- cereal$Rating
# Create regression line
lm.out <- lm(rating∼sugars)
# Create scatterplot and overlay regression line
plot(sugars,

rating,
main = "Cereal Rating by Sugar Content",
xlab = "Sugar Content",
ylab = "Rating")

abline(lm.out)

# Show the full regression output

summary(lm.out)

# Confidence interval and Prediction interval using Regression output

pred.confidence <- predict(lm.out,
data.frame(sugars = 1),
interval = "confidence")

pred.prediction <- predict(lm.out,
data.frame(sugars = 1),
interval = "prediction")

pred.confidence
pred.prediction
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# Multiple Regression

# Use Sodium and Sugars
# to predict Rating
sodium <- cereal$Sodium
mreg.out <- lm(rating ∼ sugars

+ sodium)
summary(mreg.out)

# Prediction interval using Multiple Regression output

mreg.int <- predict(mreg.out,
data.frame(sugars = 1,
sodium = 290),
interval = "confidence")

mreg.int

# Plot the four default diagnostic plots

# The first two are the top
# two plots in Figure 5.9
par(mfrow=c(2,2))
plot(lm.out)
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EXERCISES

1. In Chapter 6, we will learn to split the data set into a training data set and a test data set.
To test whether there exist unwanted differences between the training and test set, which
hypothesis test do we perform, for the following types of variables:

a. Flag variable

b. Multinomial variable

c. Continuous variable

2. Table 5.10 contains information on the mean duration of customer service calls between
a training and a test data set. Test whether the partition is valid for this variable, using
𝛼 = 0.10.

TABLE 5.10 Summary statistics for duration of customer service calls

Data set Sample Mean Sample Standard Deviation Sample Size

Training set x̄1 = 20.5 s1 = 5.2 n1 = 2000
Test set x̄2 = 20.4 s2 = 4.9 n2 = 600

3. Our partition shows that 800 of the 2000 customers in our test set own a tablet, while 230
of the 600 customers in our training set own a tablet. Test whether the partition is valid
for this variable, using 𝛼 = 0.10.

4. Table 5.11 contains the counts for the marital status variable for the training and test set
data. Test whether the partition is valid for this variable, using 𝛼 = 0.10.

TABLE 5.11 Observed frequencies for marital status

Data set Married Single Other Total

Training set 800 750 450 2000
Test set 240 250 110 600
Total 1040 1000 560 2600

5. The multinomial variable payment preference takes the values credit card, debit card, and
check. Now, suppose we know that 50% of the customers in our population prefer to pay
by credit card, 20% prefer debit card, and 30% prefer to pay by check. We have taken a
sample from our population, and would like to determine whether it is representative of
the population. The sample of size 200 shows 125 customers preferring to pay by credit
card, 25 by debit card, and 50 by check. Test whether the sample is representative of the
population, using 𝛼 = 0.05.
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6. Suppose we wish to test for difference in population means among three groups.

a. Explain why it is not sufficient to simply look at the differences among the sample
means, without taking into account the variability within each group.

b. Describe what we mean by between-sample variability and within-sample variability.

c. Which statistics measure the concepts in (b).

d. Explain how analysis of variance would work in this situation.

7. Table 5.12 contains the amount spent (in dollars) in a random sample of purchases where
the payment was made by credit card, debit card, and check, respectively. Test whether
the population mean amount spent differs among the three groups, using 𝛼 = 0.05.

TABLE 5.12 Purchase amounts for three payment methods

Credit Card Debit Card Check

100 80 50
110 120 70
90 90 80

100 110 80

8. Refer to the previous exercise. Now test whether the population mean amount spent
differs among the three groups, using 𝛼 = 0.01. Describe any conflict between your two
conclusions. Suggest at least two courses of action to ameliorate the situation.

9. Explain why we use regression analysis and for which type of variables it is appropriate.

10. Suppose that we are interested in predicting weight of students based on height. We have
run a regression analysis with the resulting estimated regression equation as follows: “The
estimated weight equals (–180 pounds) plus (5 pounds times the height in inches).”

a. Suppose that one student is 3 inches taller than another student. What is the estimated
difference in weight?

b. Suppose that a given student is 65 inches tall. What is the estimated weight?

c. Suppose that the regression equation above was based on a sample of students ranging
in height from 60 to 75 inches. Now estimate the height of a 48-inch-tall student.
Comment.

d. Explain clearly the meaning of the 5 in the equation above.

e. Explain clearly the meaning of the –180 in the equation above.

HANDS-ON ANALYSIS

Use the cereals data set included, at the book series website, for the following exercises. Use
regression to estimate rating based on fiber alone.

11. What is the estimated regression equation?

12. Explain clearly the value of the slope coefficient you obtained in the regression.

13. What does the value of the y-intercept mean for the regression equation you obtained?
Does it make sense in this example?
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14. What would be a typical prediction error obtained from using this model to predict rating?
Which statistic are you using to measure this? What could we do to lower this estimated
prediction error?

15. How closely does our model fit the data? Which statistic are you using to measure this?

16. Find a point estimate for the rating for a cereal with a fiber content of 3 grams.

17. Find a 95% confidence interval for the true mean rating for all cereals with a fiber content
of 3 grams.

18. Find a 95%prediction interval for a randomly chosen cereal with a fiber content of 3 grams.

19. Based on the regression results, what would we expect a scatter plot of rating versus fiber
to look like? Why?

For the following exercises, use multiple regression to estimate rating based on
fiber and sugars.

20. What is the estimated regression equation?

21. Explain clearly and completely the value of the coefficient for fiber you obtained in the
regression.

22. Compare the r2 values from the multiple regression and the regression done earlier in the
exercises. What is going on? Will this always happen?

23. Compare the s values from the multiple regression and the regression done earlier in the
exercises. Which value is preferable, and why? �
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6.1 SUPERVISED VERSUS UNSUPERVISED METHODS

Data mining methods may be categorized as either supervised or unsupervised.
In unsupervised methods, no target variable is identified as such. Instead, the
data mining algorithm searches for patterns and structure among all the variables.
The most common unsupervised data mining method is clustering, our topic for
Chapters 10 and 11. For example, political consultants may analyze congressional
districts using clustering methods, to uncover the locations of voter clusters that may
be responsive to a particular candidate’s message. In this case, all appropriate vari-
ables (e.g., income, race, gender) would be input to the clustering algorithm, with no
target variable specified, in order to develop accurate voter profiles for fund-raising
and advertising purposes.

Another data mining method, which may be supervised or unsupervised, is
association rule mining. In market basket analysis, for example, one may simply be
interested in “which items are purchased together,” in which case no target variable

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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would be identified. The problem here, of course, is that there are so many items
for sale, that searching for all possible associations may present a daunting task, due
to the resulting combinatorial explosion. Nevertheless, certain algorithms, such as
the a priori algorithm, attack this problem cleverly, as we shall see when we cover
association rule mining in Chapter 12.

Most data mining methods are supervised methods, however, meaning that
(1) there is a particular prespecified target variable, and (2) the algorithm is given
many examples where the value of the target variable is provided, so that the algorithm
may learn which values of the target variable are associated with which values of the
predictor variables. For example, the regression methods of Chapter 5 are supervised
methods, since the observed values of the response variable y are provided to the
least-squares algorithm, which seeks to minimize the squared distance between these
y values and the y values predicted given the x-vector. All of the classificationmethods
we examine in Chapters 7–9 are supervised methods, including decision trees, neural
networks, and k-nearest neighbors.

Note: The terms supervised and unsupervised are widespread in the literature,
and hence used here. However, we do not mean to imply that unsupervised meth-
ods require no human involvement. To the contrary, effective cluster analysis and
association rule mining both require substantial human judgment and skill.

6.2 STATISTICAL METHODOLOGY AND DATA
MINING METHODOLOGY

In Chapters 4 and 5 we were introduced to a wealth of statistical methods for per-
forming inference, that is, for estimating or testing the unknown parameters of a
population of interest. Statistical methodology and data mining methodology differ
in two ways.

1. Applying statistical inference using the huge sample sizes encountered in data
mining tends to result in statistical significance, even when the results are not
of practical significance.

2. In statistical methodology, the data analyst has an a priori hypothesis in mind.
Data mining procedures usually do not have an a priori hypothesis, instead
freely trolling through the data for actionable results.

6.3 CROSS-VALIDATION

Unless properly conducted, data mining can become data dredging, whereby the
analyst “uncovers” phantom spurious results, due to random variation rather than
real effects. It is therefore crucial that data miners avoid data dredging. This is
accomplished through cross-validation.

Cross-validation is a technique for insuring that the results uncovered in an
analysis are generalizable to an independent, unseen, data set. In data mining, the
most common methods are twofold cross-validation and k-fold cross-validation. In
twofold cross-validation, the data are partitioned, using random assignment, into a
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training data set and a test data set. The test data set should then have the target
variable omitted. Thus, the only systematic difference between the training data set
and the test data set is that the training data includes the target variable and the test data
does not. For example, if we are interested in classifying income bracket, based on
age, gender, and occupation, our classification algorithm would need a large pool of
records, containing complete (as complete as possible) information about every field,
including the target field, income bracket. In other words, the records in the training
set need to be preclassified. A provisional data mining model is then constructed
using the training samples provided in the training data set.

However, the training set is necessarily incomplete; that is, it does not include
the “new” or future data that the data modelers are really interested in classifying.
Therefore, the algorithm needs to guard against “memorizing” the training set and
blindly applying all patterns found in the training set to the future data. For example,
it may happen that all customers named “David” in a training set may be in the high
income bracket. We would presumably not want our final model, to be applied to new
data, to include the pattern “If the customer’s first name is David, the customer has a
high income.” Such a pattern is a spurious artifact of the training set and needs to be
verified before deployment.

Therefore, the next step in supervised data mining methodology is to examine
how the provisional data mining model performs on a test set of data. In the test set,
a holdout data set, the values of the target variable are hidden temporarily from the
provisional model, which then performs classification according to the patterns and
structure it learned from the training set. The efficacy of the classifications is then
evaluated by comparing them against the true values of the target variable. The pro-
visional data mining model is then adjusted to minimize the error rate on the test set.

Estimates of model performance for future, unseen data can then be computed
by observing various evaluative measures applied to the test data set. Such model
evaluation techniques are covered in Chapter 14. The bottom line is that cross-
validation guards against spurious results, since it is highly unlikely that the same
random variation would be found to be significant in both training set and the test
set. For example, a spurious signal with probability 0.05 of being observed, if in fact
no real signal existed, would have only 0.052 = 0.0025 probability of being observed
in both the training and test sets, because these data sets are independent. In other
words, the data analyst could report on average 400 results before one would expect
a spurious result be reported.

But the data analyst must insure that the training and test data sets are indeed
independent, by validating the partition. We validate the partition into training and
test data sets by performing graphical and statistical comparisons between the two
sets. For example, we may find that, even though the assignment of records was made
randomly, a significantly higher proportion of positive values of an important flag
variable were assigned to the training set, compared to the test set. This would bias
our results, and hurt our prediction or classification accuracy on the test data set.
It is especially important that the characteristics of the target variable be as similar
as possible between the training and test data sets. Table 6.1 shows the suggested
hypothesis test for validating the target variable, based on the type of target variable.

In k-fold cross-validation, the original data are partitioned into k independent
and similar subsets. The model is then built using the data from k – 1 subsets, using
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TABLE 6.1 Suggested hypothesis tests for validating different types of target variables

Type of Target Variable Test From Chapter 5

Continuous Two-sample t-test for difference in means
Flag Two-sample Z-test for difference in proportions
Multinomial Test for homogeneity of proportions

the kth subset as the test set. This is done iteratively until we have k different models.
The results from the kmodels are then combined using averaging or voting. A popular
choice for k is 10. A benefit of using k-fold cross-validation is that each record appears
in the test set exactly once; a drawback is that the requisite validation task is made
more difficult.

To summarize, most supervised data mining methods apply the following
methodology for building and evaluating a model.

METHODOLOGY FOR BUILDING AND EVALUATING A
DATA MODEL

1. Partition the available data into a training set and a test set. Validate the partition.

2. Build a data mining model using the training set data.

3. Evaluate the data mining model using the test set data.

6.4 OVERFITTING

Usually, the accuracy of the provisional model is not as high on the test set as
it is on the training set, often because the provisional model is overfitting on the
training set. Overfitting results when the provisional model tries to account for every
possible trend or structure in the training set, even idiosyncratic ones such as the
“David” example above. There is an eternal tension in model building between model
complexity (resulting in high accuracy on the training set) and generalizability to the
test and validation sets. Increasing the complexity of the model in order to increase
the accuracy on the training set eventually and inevitably leads to a degradation in
the generalizability of the provisional model to the test set, as shown in Figure 6.1.

Figure 6.1 shows that as the provisional model begins to grow in complexity
from the null model (with little or no complexity), the error rates on both the training
set and the test set fall. As the model complexity increases, the error rate on the
training set continues to fall in amonotone fashion. However, as themodel complexity
increases, the test set error rate soon begins to flatten out and increase because
the provisional model has memorized the training set rather than leaving room for
generalizing to unseen data. The point where the minimal error rate on the test set
is encountered is the optimal level of model complexity, as indicated in Figure 6.1.
Complexity greater than this is considered to be overfitting; complexity less than this
is considered to be underfitting.
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Figure 6.1 The optimal level of model complexity is at the minimum error rate on the test
set.

6.5 BIAS–VARIANCE TRADE-OFF

Suppose that we have the scatter plot in Figure 6.2 and are interested in constructing
the optimal curve (or straight line) that will separate the dark gray points from the
light gray points. The straight line has the benefit of low complexity but suffers from
some classification errors (points ending up on the wrong side of the line).

In Figure 6.3 we have reduced the classification error to zero but at the cost of
a much more complex separation function (the curvy line). One might be tempted to
adopt the greater complexity in order to reduce the error rate. However, one should
be careful not to depend on the idiosyncrasies of the training set. For example,

Figure 6.2 Low complexity separator with high error rate.
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Figure 6.3 High complexity separator with low error rate.

suppose that we now add more data points to the scatter plot, giving us the graph in
Figure 6.4.

Note that the low complexity separator (the straight line) need not change very
much to accommodate the new data points. This means that this low complexity
separator has low variance. However, the high complexity separator, the curvy line,
must alter considerably if it is to maintain its pristine error rate. This high degree of
change indicates that the high complexity separator has a high variance.

Even though the high complexity model has a low bias (in terms of the
error rate on the training set), it has a high variance; and even though the low
complexity model has a high bias, it has a low variance. This is what is known as
the bias–variance trade-off. The bias–variance trade-off is another way of describ-
ing the overfitting/underfitting dilemma shown in Figure 6.1. As model complexity
increases, the bias on the training set decreases but the variance increases. The goal
is to construct a model in which neither the bias nor the variance is too high, but
usually, minimizing one tends to increase the other.

Figure 6.4 Withmore data: low complexity separator need not changemuch; high complexity
separator needs much revision.
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For example, a common method of evaluating how accurate model estimation
is proceeding for a continuous target variable is to use themean-squared error (MSE).
Between two competing models, one may select the better model as that model with
the lower MSE. Why is MSE such a good evaluative measure? Because it combines
both bias and variance. The MSE is a function of the estimation error (SSE) and the
model complexity (e.g., degrees of freedom). It can be shown (e.g., Hand et al. [1])
that the MSE can be partitioned using the following equation, which clearly indicates
the complementary relationship between bias and variance:

MSE = variance + bias2

6.6 BALANCING THE TRAINING DATA SET

For classification models in which one of the target variable classes has much lower
relative frequency than the other classes, balancing is recommended. A benefit of
balancing the data is to provide the classification algorithms with a rich balance of
records for each classification outcome, so that the algorithms have a chance to learn
about all types of records, not just those with high target frequency. For example,
suppose we are running a fraud classification model and our training data set consists
of 100,000 transactions, only 1000 of which are fraudulent. Then our classification
model could simply predict “non-fraudulent” for all transactions, and achieve 99%
classification accuracy. However, clearly this model is useless.

Instead the analyst should balance the training data set so that the relative
frequency of fraudulent transactions is increased. There are two ways to accomplish
this.

1. Resample a number of fraudulent records.

2. Set aside a number of non-fraudulent records.

Resampling refers to the process of sampling at random and with replacement from
a data set. Suppose we wished our 1000 fraudulent records to represent 25% of the
balanced training set, rather than the 1% represented by these records in the raw
training data set. Then we could add 32,000 resampled fraudulent records so that we
had 33,000 fraudulent records, out of a total of 100,000 + 32,000 = 132,000 records
in all. This represents 33,000

132,000
= 0.25 or the desired 25%.

How did we arrive at the number of 32,000 additional fraudulent records? By
using the equation

1000 + x = 0.25 (100,000 + x)

and solving for x, the required number of additional records to resample. In general,
this equation is:

rare + x = p(records + x)

and solving for x gives us:

x =
p(records) − rare

1 − p

where x is the required number of resampled records, p represents the desired pro-
portion of rare values in the balanced data set, records represents the number of



6.7 ESTABLISHING BASELINE PERFORMANCE 145

records in the unbalanced data set, and rare represents the current number of rare
target values.

Some data miners have a philosophical aversion to resampling records to
achieve balance, since they feel this amounts to fabricating data. In this case, a
sufficient number of non-fraudulent transactions would instead be set aside, thereby
increasing the proportion of fraudulent transactions. To achieve a 25% balance pro-
portion, we would retain only 3000 non-fraudulent records. We would then need to
discard from the analysis 96,000 of the 99,000 non-fraudulent records, using random
selection. It would not be surprising if our data mining models would suffer as a
result of starving them of data in this way. Instead, the data analyst would probably
be well-advised either to decrease the desired balance proportion to something like
10%, or to use resampling.

When choosing a desired balancing proportion, recall the rationale for doing
so: in order to allow the model a sufficiently rich variety of records to learn how
to classify the rarer value of the target variable across a range of situations. The
balancing proportion can be relatively low (e.g., 10%) if the analyst is confident that
the rare target value is exposed to a sufficiently rich variety of records. The balancing
proportion should be higher (e.g., 25%) if the analyst is not so confident of this.

The test data set should never be balanced. The test data set represents new
data that the models have not seen yet. Certainly the real world will not balance
tomorrow’s data for the convenience of our classification models; therefore, the test
data set itself should not be balanced. Note that all model evaluation will take place
using the test data set, so that the evaluative measures will all be applied to unbalanced
(real-world-like) data.

6.7 ESTABLISHING BASELINE PERFORMANCE

In Star Trek IV: The Voyage Home, Captain Kirk travels back in time to the twentieth
century, finds himself in need of cash, and pawns his eyeglasses. The buyer offers
him $100, to which Captain Kirk responds, “Is that a lot?” Unfortunately, the Captain
had no frame of reference to compare the $100 to, and so was unable to determine
whether the $100 was a satisfactory offer or not. As data analysts we should do our
best to avoid putting our clients into Captain Kirk’s situation, by reporting results
with no comparison to a baseline. Without comparison to a baseline, a client cannot
determine whether our results are any good.

For example, suppose we naively report that “only” 28.4% of customers adopt-
ing our International Plan (see Table 3.3) will churn. That does not sound too bad,
until we recall that, among all of our customers, the overall churn rate is only 14.49%
(Figure 3.3). This overall churn rate may be considered our baseline, against which
any further results can be calibrated. Thus, belonging to the International Plan actually
nearly doubles the churn rate, which is clearly not good.

The type of baseline one should use depends on the way the results are reported.
For the churn example, we are interested in decreasing the overall churn rate, which
is expressed as a percentage. So, our objective would be to report a decrease in the
overall churn rate. Note the difference between an absolute difference in churn rate
versus a relative difference in churn rate. Suppose our data mining model resulted
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in a predicted churn rate of 9.99%. This represents only a 14.49% – 9.99% = 4.5%
absolute decrease in the churn rate, but a 4.5%∕14.49% = 31% relative decrease in
the churn rate. The analyst should make it clear for the client which comparison
method is being used.

Suppose our task is estimation, and we are using a regression model. Then our
baseline model may take the form of a “ȳmodel”, that is, a model which simply finds
the mean of the response variable, and predicts that value for every record. Clearly
this is quite naı̈ve, so no data mining model worth its salt should have a problem
beating this ȳmodel. By the same token, if your data miningmodel cannot outperform
the ȳ model, then something is clearly wrong. (Recall that we measure the goodness
of a regression model using the standard error of the estimate s along with r2.)

A more challenging yardstick against which to calibrate your model is to use
existing research or results already existing in the field. For example, suppose the
algorithm your analytics company currently uses succeeds in identifying 90% of all
fraudulent online transactions. Then your company will probably expect your new
data mining model to outperform this 90% baseline.

THE R ZONE

# Input the data

dat <- read.csv(file = "C:/ . . . /adult.txt",
stringsAsFactors=TRUE)

# Partition data into 75% training data, 25% testing data

dat$part <- runif(length(dat$income),
min = 0,
max = 1)

dat[1:5, c(1,2,3,16)]
training <- dat[dat$part <= 0.75,]
testing <- dat[dat$part > 0.75,]
training[1:5, c(1,2,3,16)]
testing[1:5, c(1,2,3,16)]
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# Remove the target variable, Income, from the testing data

names(testing)
# The target variable is column 15
testing <- testing[,-15]
names(testing)
# Target variable is no longer in
# the testing data

# Remove the partitioning variable, Part, from both data sets

# Part is now the 15th variable
testing <- testing[,-15]
names(testing)
names(training)
# Part is the 16th variable
# in the training data set
training <- training[,-16]
names(training)

REFERENCE
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MA, 2001.

EXERCISES

1. Explain the difference between supervised and unsupervised methods. Which data mining
tasks are associated with unsupervised methods? Supervised? Both?

2. Describe the differences between the training set, test set, and validation set.

3. Should we strive for the highest possible accuracy with the training set? Why or why not?
How about the validation set?

4. How is the bias–variance trade-off related to the issue of overfitting and underfitting? Is
high bias associated with overfitting and underfitting, and why? High variance?

5. Explain why we sometimes need to balance the data.
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6. Suppose we are running a fraud classification model, with a training set of 10,000 records
of which only 400 are fraudulent. How many fraudulent records need to be resam-
pled if we would like the proportion of fraudulent records in the balanced data set to
be 20%?

7. When should the test data set be balanced?

8. Explain why we should always report a baseline performance, rather than merely citing
the uncalibrated results from our model.

9. Explain the distinction between reporting an absolute difference versus a relative
difference.

10. If we are using a regression model, what form may our baseline model take? �
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7.1 CLASSIFICATION TASK

Perhaps the most common data mining task is that of classification. Examples of
classification tasks may be found in nearly every field of endeavor:

� Banking: determining whether a mortgage application is a good or bad credit
risk, or whether a particular credit card transaction is fraudulent

� Education: placing a new student into a particular track with regard to special
needs

� Medicine: diagnosing whether a particular disease is present

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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� Law: determining whether a will was written by the actual person deceased or
fraudulently by someone else

� Homeland security: identifying whether or not certain financial or personal
behavior indicates a possible terrorist threat

In classification, there is a target categorical variable, (e.g., income bracket),
which is partitioned into predetermined classes or categories, such as high income,
middle income, and low income. The data mining model examines a large set of
records, each record containing information on the target variable as well as a set of
input or predictor variables. For example, consider the excerpt from a data set shown
in Table 7.1. Suppose that the researcher would like to be able to classify the income
bracket of persons not currently in the database, based on the other characteristics
associated with that person, such as age, gender, and occupation. This task is a
classification task, very nicely suited to data mining methods and techniques.

The algorithm would proceed roughly as follows. First, examine the data set
containing both the predictor variables and the (already classified) target variable,
income bracket. In this way, the algorithm (software) “learns about” which combi-
nations of variables are associated with which income brackets. For example, older
females may be associated with the high income bracket. This data set is called the
training set. Then the algorithm would look at new records for which no information
about income bracket is available. Based on the classifications in the training set, the
algorithm would assign classifications to the new records. For example, a 63-year-old
female professor might be classified in the high income bracket.

7.2 k-NEAREST NEIGHBOR ALGORITHM

The first algorithm we shall investigate is the k-nearest neighbor algorithm, which
is most often used for classification, although it can also be used for estimation and
prediction. k-Nearest neighbor is an example of instance-based learning, in which
the training data set is stored, so that a classification for a new unclassified record
may be found simply by comparing it to the most similar records in the training set.
Let us consider an example.

Recall the example from Chapter 1 where we were interested in classifying the
type of drug a patient should be prescribed, based on certain patient characteristics,
such as the age of the patient and the patient’s sodium/potassium (Na/K) ratio. For a
sample of 200 patients, Figure 7.1 presents a scatter plot of the patients’ Na/K ratio
against the patients’ age. The particular drug prescribed is symbolized by the shade

TABLE 7.1 Excerpt from data set for classifying income

Subject Age Gender Occupation Income Bracket

001 47 F Software engineer High
002 28 M Marketing consultant Middle
003 35 M Unemployed Low
⋮
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Figure 7.1 Scatter plot of sodium/potassium ratio against age, with drug overlay.

of the points. Light gray points indicate drug Y; medium gray points indicate drug A
or X; dark gray points indicate drug B or C.

Now suppose that we have a new patient record, without a drug classification,
and would like to classify which drug should be prescribed for the patient based
on which drug was prescribed for other patients with similar attributes. Identified
as “new patient 1,” this patient is 40 years old and has a Na/K ratio of 29, placing
her at the center of the circle indicated for new patient 1 in Figure 7.1. Which drug
classification should be made for new patient 1? Since her patient profile places her
deep into a section of the scatter plot where all patients are prescribed drug Y, we
would thereby classify new patient 1 as drug Y. All of the points nearest to this point,
that is, all of the patients with a similar profile (with respect to age and Na/K ratio)
have been prescribed the same drug, making this an easy classification.

Next, we move to new patient 2, who is 17 years old with a Na/K ratio of
12.5. Figure 7.2 provides a close-up view of the training data points in the local
neighborhood of and centered at new patient 2. Suppose we let k = 1 for our
k-nearest neighbor algorithm, so that new patient 2 would be classified according
to whichever single (one) observation it was closest to. In this case, new patient 2
would be classified for drugs B and C (dark gray), since that is the classification of
the point closest to the point on the scatter plot for new patient 2.

However, suppose that we now let k = 2 for our k-nearest neighbor algorithm,
so that new patient 2 would be classified according to the classification of the k = 2
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A
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Figure 7.2 Close-up of three nearest neighbors to new patient 2.

points closest to it. One of these points is dark gray, and one is medium gray, so that
our classifier would be faced with a decision between classifying new patient 2 for
drugs B and C (dark gray) or drugs A and X (medium gray). How would the classifier
decide between these two classifications? Voting would not help, since there is one
vote for each of two classifications.

Voting would help, however, if we let k= 3 for the algorithm, so that new patient
2 would be classified based on the three points closest to it. Since two of the three clos-
est points are medium gray, a classification based on voting would therefore choose
drugs A and X (medium gray) as the classification for new patient 2. Note that the
classification assigned for new patient 2 differed based on which value we chose for k.

Finally, consider new patient 3, who is 47 years old and has a Na/K ratio
of 13.5. Figure 7.3 presents a close-up of the three nearest neighbors to new

Figure 7.3 Close-up of three nearest neighbors to new patient 3.
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patient 3. For k = 1, the k-nearest neighbor algorithm would choose the dark gray
(drugs B and C) classification for new patient 3, based on a distance measure. For
k = 2, however, voting would not help. But voting would not help for k = 3 in this
case either, since the three nearest neighbors to new patient 3 are of three different
classifications.

This example has shown us some of the issues involved in building a classifier
using the k-nearest neighbor algorithm. These issues include:

� How many neighbors should we consider? That is, what is k?
� How do we measure distance?
� How do we combine the information from more than one observation?

Later we consider other questions, such as:

� Should all points be weighted equally, or should some points have more influ-
ence than others?

7.3 DISTANCE FUNCTION

We have seen above how, for a new record, the k-nearest neighbor algorithm assigns
the classification of the most similar record or records. But just how do we define
similar? For example, suppose that we have a new patient who is a 50-year-old male.
Which patient is more similar, a 20-year-old male or a 50-year-old female?

Data analysts define distance metrics to measure similarity. A distance metric
or distance function is a real-valued function d, such that for any coordinates x, y,
and z:

1. d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Property 1 assures us that distance is always nonnegative, and the only way for
distance to be zero is for the coordinates (e.g., in the scatter plot) to be the same.
Property 2 indicates commutativity, so that, for example, the distance from NewYork
to Los Angeles is the same as the distance from Los Angeles to New York. Finally,
property 3 is the triangle inequality, which states that introducing a third point can
never shorten the distance between two other points.

The most common distance function is Euclidean distance, which represents
the usual manner in which humans think of distance in the real world:

dEuclidean(x, y) =
√∑

i

(xi − yi)2

where x = x1, x2,… , xm, and y = y1, y2,… , ym represent the m attribute values of
two records. For example, suppose that patient A is x1 = 20 years old and has a Na/K
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ratio of x2 = 12, while patient B is y1 = 30 years old and has a Na/K ratio of y2 = 8.
Then the Euclidean distance between these points, as shown in Figure 7.4, is

dEuclidean(x, y) =
√∑

i

(xi − yi)2 =
√
(20 − 30)2 + (12 − 8)2

=
√
100 + 16 = 10.77

When measuring distance, however, certain attributes that have large values,
such as income, can overwhelm the influence of other attributes which are measured
on a smaller scale, such as years of service. To avoid this, the data analyst should
make sure to normalize the attribute values.

For continuous variables, the min-max normalization or Z-score standardiza-
tion, discussed in Chapter 2, may be used:

Min-max normalization:

X∗ = X − min(X)
range(X)

= X − min(X)
max(X) − min(X)

Z-score standardization:

X∗ = X −mean(X)
SD(X)

For categorical variables, the Euclidean distance metric is not appropriate.
Instead, we may define a function, “different from,” used to compare the ith attribute
values of a pair of records, as follows:

Different (xi, yi) =
{
0 if xi = yi
1 otherwise

where xi and yi are categorical values. We may then substitute different (xiyi) for the
ith term in the Euclidean distance metric above.

For example, let us find an answer to our earlier question: which patient is
more similar to a 50-year-old male: a 20-year-old male or a 50-year-old female?

N
a
/K

Age

(20,12)

(30, 8)

Figure 7.4 Euclidean distance.
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Suppose that for the age variable, the range is 50, the minimum is 10, the mean is
45, and the standard deviation is 15. Let patient A be our 50-year-old male, patient
B the 20-year-old male, and patient C the 50-year-old female. The original variable
values, along with the min-max normalization (ageMMN) and Z-score standardization
(ageZ-score), are listed in Table 7.2.

We have one continuous variable (age, x1) and one categorical variable (gender,
x2). When comparing patients A and B, we have different (x2, y2) = 0, with different
(x2, y2) = 1 for the other combinations of patients. First, let us see what happens when
we forget to normalize the age variable. Then the distance between patients A and B
is d(A,B) =

√
(50 − 20)2 + 02 = 30, and the distance between patients A and C is

d(A,C) =
√
(20 − 20)2 + 12 = 1. We would thus conclude that the 20-year-old male

is 30 times more “distant” from the 50-year-old male than the 50-year-old female is.
In other words, the 50-year-old female is 30 times more “similar” to the 50-year-old
male than the 20-year-old male is. Does this seem justified to you? Well, in certain
circumstances, it may be justified, as in certain age-related illnesses. But, in general,
one may judge that the two men are just as similar as are the two 50-year olds. The
problem is that the age variable is measured on a larger scale than the different (x2, y2)
variable. Therefore, we proceed to account for this discrepancy by normalizing and
standardizing the age values, as shown in Table 7.2.

Next, we use the min-max normalization values to find which patient is
more similar to patient A. We have dMMN(A,B) =

√
(0.8 − 0.2)2 + 02 = 0.6 and

dMMN(A,C) =
√
(0.8 − 0.8)2 + 12 = 0.1, which means that patient B is now consid-

ered to be more similar to patient A.
Finally, we use the Z-score standardization values to determine which patient is

more similar to patient A. We have dZ-score(A,B) =
√
[0.33 − (−1.67)]2 + 02 = 2.0

and dZ-score(A,C) =
√
(0.33 − 0.33)2 + 12 = 1.0, whichmeans that patient C is again

closer. Using the Z-score standardization rather than the min-max standardization has
reversed our conclusion aboutwhich patient is considered to bemore similar to patient
A. This underscores the importance of understanding which type of normalization
one is using. The min-max normalization will almost always lie between zero and 1
just like the “identical” function. The Z-score standardization, however, usually takes
values –3 < z < 3, representing a wider scale than that of the min-max normalization.
Therefore, perhaps, when mixing categorical and continuous variables, the min-max
normalization may be preferred.

TABLE 7.2 Variable values for age and gender

Patient Age AgeMMN AgeZ-score Gender

A 50
50 − 10

50
= 0.8

50 − 45
15

= 0.33 Male

B 20
20 − 10

50
= 0.2

20 − 45
15

= −1.67 Male

C 50
50 − 10

50
= 0.8

50 − 45
15

= 0.33 Female
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7.4 COMBINATION FUNCTION

Now that we have a method of determining which records are most similar to the new,
unclassified record, we need to establish how these similar records will combine to
provide a classification decision for the new record. That is, we need a combination
function. The most basic combination function is simple unweighted voting.

7.4.1 Simple Unweighted Voting

1. Before running the algorithm, decide on the value of k, that is, how many
records will have a voice in classifying the new record.

2. Then, compare the new record to the k nearest neighbors, that is, to the k records
that are of minimum distance from the new record in terms of the Euclidean
distance or whichever metric the user prefers.

3. Once the k records have been chosen, then for simple unweighted voting, their
distance from the new record no longer matters. It is simple one record, one
vote.

We observed simple unweighted voting in the examples for Figures 7.2 and
7.3. In Figure 7.2, for k = 3, a classification based on simple voting would choose
drugs A and X (medium gray) as the classification for new patient 2, since two of
the three closest points are medium gray. The classification would then be made for
drugs A and X, with confidence 66.67%, where the confidence level represents the
count of records, with the winning classification divided by k.

On the other hand, in Figure 7.3, for k = 3, simple voting would fail to choose
a clear winner since each of the three categories receives one vote. There would be a
tie among the three classifications represented by the records in Figure 7.3, and a tie
may not be a preferred result.

7.4.2 Weighted Voting

One may feel that neighbors that are closer or more similar to the new record should
be weighted more heavily than more distant neighbors. For example, in Figure 7.3,
does it seem fair that the light gray record farther away gets the same vote as the
dark gray vote that is closer to the new record? Perhaps not. Instead, the analyst may
choose to apply weighted voting, where closer neighbors have a larger voice in the
classification decision than do more distant neighbors. Weighted voting also makes
it much less likely for ties to arise.

In weighted voting, the influence of a particular record is inversely proportional
to the distance of the record from the new record to be classified. Let us look
at an example. Consider Figure 7.2, where we are interested in finding the drug
classification for a new record, using the k = 3 nearest neighbors. Earlier, when using
simple unweighted voting, we saw that there were two votes for the medium gray
classification, and one vote for the dark gray. However, the dark gray record is closer
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than the other two records. Will this greater proximity be enough for the influence of
the dark gray record to overcome that of the more numerous medium gray records?

Assume that the records in question have the values for age and Na/K ratio
given in Table 7.3, which also shows the min-max normalizations for these values.
Then the distances of records A, B, and C from the new record are as follows:

d(new,A) =
√
(0.05 − 0.0467)2 + (0.25 − 0.2471)2 = 0.004393

d(new,B) =
√
(0.05 − 0.0533)2 + (0.25 − 0.1912)2 = 0.58893

d(new,C) =
√
(0.05 − 0.0917)2 + (0.25 − 0.2794)2 = 0.051022

The votes of these records are then weighted according to the inverse square of their
distances.

One record (A) votes to classify the new record as dark gray (drugs B and C),
so the weighted vote for this classification is

votes (dark gray) = 1
d(new,A)2

= 1
0.0043932

≅ 51,818

Two records (B and C) vote to classify the new record as medium gray (drugs
A and X), so the weighted vote for this classification is

votes (medium gray) = 1
d(new,B)2

+ 1
d(new,C)2

= 1
0.0588932

+ 1
0.0510222

≅ 672

Therefore, by the convincing total of 51,818 to 672, the weighted voting pro-
cedure would choose dark gray (drugs B and C) as the classification for a new
17-year-old patient with a Na/K ratio of 12.5. Note that this conclusion reverses the
earlier classification for the unweighted k = 3 case, which chose the medium gray
classification.

When the distance is zero, the inverse would be undefined. In this case the
algorithm should choose the majority classification of all records whose distance is
zero from the new record.

Consider for a moment that once we begin weighting the records, there is
no theoretical reason why we could not increase k arbitrarily so that all existing
records are included in the weighting. However, this runs up against the practical
consideration of very slow computation times for calculating the weights of all of the
records every time a new record needs to be classified.

TABLE 7.3 Age and Na/K ratios for records from Figure 5.4

Record Age Na/K AgeMMN Na/KMMN

New 17 12.5 0.05 0.25
A (dark gray) 16.8 12.4 0.0467 0.2471
B (medium gray) 17.2 10.5 0.0533 0.1912
C (medium gray) 19.5 13.5 0.0917 0.2794
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7.5 QUANTIFYING ATTRIBUTE RELEVANCE:
STRETCHING THE AXES

Consider that not all attributes may be relevant to the classification. In decision trees
(Chapter 8), for example, only those attributes that are helpful to the classification
are considered. In the k-nearest neighbor algorithm, the distances are by default
calculated on all the attributes. It is possible, therefore, for relevant records that
are proximate to the new record in all the important variables, but are distant from
the new record in unimportant ways, to have a moderately large distance from the
new record, and therefore not be considered for the classification decision. Analysts
may therefore consider restricting the algorithm to fields known to be important for
classifying new records, or at least to blind the algorithm to known irrelevant fields.

Alternatively, rather than restricting fields a priori, the data analyst may prefer
to indicate which fields are of more or less importance for classifying the target
variable. This can be accomplished using a cross-validation approach or one based
on domain expert knowledge. First, note that the problem of determining which fields
are more or less important is equivalent to finding a coefficient zj by which to multiply
the jth axis, with larger values of zj associated with more important variable axes.
This process is therefore termed stretching the axes.

The cross-validation approach then selects a random subset of the data to be
used as a training set and finds the set of values z1, z2,… , zm that minimize the
classification error on the test data set. Repeating the process will lead to a more
accurate set of values z1, z2,… , zm. Otherwise, domain experts may be called upon
to recommend a set of values for z1, z2,… , zm. In this way, the k-nearest neighbor
algorithm may be made more precise.

For example, suppose that either through cross-validation or expert knowledge,
the Na/K ratio was determined to be three times as important as age for drug classifi-
cation. Then we would have zNa/K = 3 and zage = 1. For the example above, the new
distances of records A, B, and C from the new record would be as follows:

d(new,A) =
√
(0.05 − 0.0467)2 + [3(0.25 − 0.2471)]2 = 0.009305

d(new,B) =
√
(0.05 − 0.0533)2 + [3(0.25 − 0.1912)]2 = 0.17643

d(new,C) =
√
(0.05 − 0.0917)2 + [3(0.25 − 0.2794)]2 = 0.09756

In this case, the classification would not change with the stretched axis for
Na/K, remaining dark gray. In real-world problems, however, axis stretching can
lead to more accurate classifications, since it represents a method for quantifying the
relevance of each variable in the classification decision.

7.6 DATABASE CONSIDERATIONS

For instance-based learning methods such as the k-nearest neighbor algorithm, it is
vitally important to have access to a rich database full of as many different combina-
tions of attribute values as possible. It is especially important that rare classifications
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be represented sufficiently, so that the algorithm does not only predict common clas-
sifications. Therefore, the data set would need to be balanced, with a sufficiently large
percentage of the less common classifications. One method to perform balancing is
to reduce the proportion of records with more common classifications.

Maintaining this rich database for easy access may become problematic if
there are restrictions on main memory space. Main memory may fill up, and access
to auxiliary storage is slow. Therefore, if the database is to be used for k-nearest
neighbor methods only, it may be helpful to retain only those data points that are
near a classification “boundary.” For example, in Figure 7.1, all records with Na/K
ratio value greater than, say, 19 could be omitted from the database without loss of
classification accuracy, since all records in this region are classified as light gray.
New records with Na/K ratio >19 would therefore be classified similarly.

7.7 k-NEAREST NEIGHBOR ALGORITHM FOR
ESTIMATION AND PREDICTION

So far we have considered how to use the k-nearest neighbor algorithm for classifica-
tion. However, it may be used for estimation and prediction as well as for continuous-
valued target variables. One method for accomplishing this is called locally weighted
averaging.Assume that we have the same data set as the example above, but this time
rather than attempting to classify the drug prescription, we are trying to estimate the
systolic blood pressure reading (BP, the target variable) of the patient, based on that
patient’s age and Na/K ratio (the predictor variables). Assume that BP has a range of
80 with a minimum of 90 in the patient records.

In this example we are interested in estimating the systolic blood pressure
reading for a 17-year-old patientwith aNa/K ratio of 12.5, the same newpatient record
for which we earlier performed drug classification. If we let k = 3, we have the same
three nearest neighbors as earlier, shown here in Table 7.4. Assume that we are using
the zNa/K = three-axis stretching to reflect the greater importance of the Na/K ratio.

Locally weighted averaging would then estimate BP as the weighted average of
BP for the k = 3 nearest neighbors, using the same inverse square of the distances for
the weights that we used earlier. That is, the estimated target value ŷ is calculated as

ŷnew =

∑
i
wiyi∑
i
wi

TABLE 7.4 k = 3 nearest neighbors of the new record

Record Age Na/K BP AgeMMN Na/KMMN Distance

New 17 12.5 ? 0.05 0.25 –
A 16.8 12.4 120 0.0467 0.2471 0.009305
B 17.2 10.5 122 0.0533 0.1912 0.17643
C 19.5 13.5 130 0.0917 0.2794 0.26737
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where wi = 1∕d(new, xi)2 for existing records x1, x2,… , xk. Thus, in this example,
the estimated systolic blood pressure reading for the new record would be

ŷnew =

∑
i
wiyi∑
i
wi

=
120

0.0093052
+ 122

0.176432
+ 130

0.097562

1
0.0093052

+ 1
0.176432

+ 1
0.097562

= 120.0954.

As expected, the estimated BP value is quite close to the BP value in the present
data set that is much closer (in the stretched attribute space) to the new record. In
other words, since record A is closer to the new record, its BP value of 120 contributes
greatly to the estimation of the BP reading for the new record.

7.8 CHOOSING k

How should one go about choosing the value of k? In fact, there may not be an
obvious best solution. Consider choosing a small value for k. Then it is possible
that the classification or estimation may be unduly affected by outliers or unusual
observations (“noise”). With small k (e.g., k= 1), the algorithm will simply return the
target value of the nearest observation, a process that may lead the algorithm toward
overfitting, tending to memorize the training data set at the expense of generaliz-
ability.

On the other hand, choosing a value of k that is not too small will tend to smooth
out any idiosyncratic behavior learned from the training set. However, if we take this
too far and choose a value of k that is too large, locally interesting behavior will be
overlooked. The data analyst needs to balance these considerations when choosing
the value of k.

It is possible to allow the data itself to help resolve this problem, by following
a cross-validation procedure similar to the earlier method for finding the optimal
values z1, z2,… , zm for axis stretching. Here we would try various values of k with
different randomly selected training sets and choose the value of k that minimizes the
classification or estimation error.

7.9 APPLICATION OF k-NEAREST NEIGHBOR
ALGORITHM USING IBM/SPSS MODELER

Table 7.5 contains a small data set of 10 records excerpted from the ClassifyRisk
data set, with predictors age, marital status, and income, and target variable risk.
We seek the k-nearest neighbor for record 10, using k = 2. Modeler’s results are
shown in Figure 7.5. (Note that Modeler automatically normalizes the data.) Records
8 and 9 are the two nearest neighbors to record 10, with the same marital status, and
somewhat similar ages. Since both records 8 and 9 are classified as good risk, the
prediction for record 10 would be good risk as well.
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TABLE 7.5 Find the k-nearest neighbor for record #10

Record Age Marital Income Risk

1 22 Single $46,156.98 Bad loss
2 33 Married $24,188.10 Bad loss
3 28 Other $28,787.34 Bad loss
4 51 Other $23,886.72 Bad loss
5 25 Single $47,281.44 Bad loss
6 39 Single $33,994.90 Good risk
7 54 Single $28,716.50 Good risk
8 55 Married $49,186.75 Good risk
9 50 Married $46,726.50 Good risk
10 66 Married $36,120.34 Good risk

THE R ZONE

# Install the package needed to run KNN

install.packages("class")
library(class)

# Create the data set using Table 7.3

new <- c(0.05,0.25)
A <- c(0.0467, 0.2471)
B <- c(0.0533, 0.1912)
C <- c(0.0917, 0.2794)
data <- rbind(A, B, C)
dimnames(data) <- list(c("Dark", "Medium", "Medium"),

c("Age (MMN)", "Na/K (MMN)"))
# Declare true classifications of A, B, and C
trueclass <- c("Dark", "Medium", "Medium")

# Run KNN

knn(data,
new,
cl = trueclass,
k = 3,
prob = TRUE)
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# Calculate the Euclidean distance

install.packages("fields")
library(fields)
together <- rbind(new, data)
# The top row of rdist are the
# distance values from New
rdist(together)

# Stretch the axes

ds_newA <- sqrt((new[1] -A[1])ˆ2 + (3*(new[2]-A[2]))ˆ2)
ds_newB <- sqrt((new[1] -B[1])ˆ2 + (3*(new[2]-B[2]))ˆ2)
ds_newC <- sqrt((new[1] -C[1])ˆ2 + (3*(new[2]-C[2]))ˆ2)

# Table 7.4

distance <- c(ds_newA,
ds_newB,
ds_newC)

BP <- c(120, 122, 130)
data <- cbind(BP, data, distance)
data

# Weights = inverse of distance

weights <- (1/(distanceˆ2))
sum_wi <- sum(weights)
sum_wiyi <- sum(weights∗data[,1])
yhat_new <- sum_wiyi/sum_wi
yhat_new

EXERCISES

1. Clearly describe what is meant by classification.

2. What is meant by the term instance-based learning?

3. Make up a set of three records, each with two numeric predictor variables and one
categorical target variable, so that the classification would not change regardless of the
value of k.

4. Refer to Exercise 3. Alter your data set so that the classification changes for different
values of k.
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5. Refer to Exercise 4. Find the Euclidean distance between each pair of points. Using these
points, verify that Euclidean distance is a true distance metric.

6. Compare the advantages and drawbacks of unweighted versus weighted voting.

7. Why does the database need to be balanced?

8. The example in the text regarding using the k-nearest neighbor algorithm for estimation
has the closest record, overwhelming the other records in influencing the estimation.
Suggest two creative ways that we could dilute this strong influence of the closest record.

9. Discuss the advantages and drawbacks of using a small value versus a large value for k.

10. Why would one consider stretching the axes?

11. What is locally weighted averaging, and how does it help in estimation?

HANDS-ON ANALYSIS

12. Using the data in Table 7.5, find the k-nearest neighbor for record #10, using k = 3.

13. Using the ClassifyRisk data set with predictors age, marital status, and income, and target
variable risk, find the k-nearest neighbor for record #1, using k= 2 and Euclidean distance.

14. Using the ClassifyRisk data set with predictors age, marital status, and income, and target
variable risk, find the k-nearest neighbor for record #1, using k = 2 and Minkowski
(city-block) distance (see Chapter 10). �
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8.1 WHAT IS A DECISION TREE?

In this chapter we continue our examination of classificationmethods for data mining.
One attractive classification method involves the construction of a decision tree, a
collection of decision nodes, connected by branches, extending downward from the
root node until terminating in leaf nodes. Beginning at the root node, which by
convention is placed at the top of the decision tree diagram, attributes are tested at
the decision nodes, with each possible outcome resulting in a branch. Each branch
then leads either to another decision node or to a terminating leaf node. Figure 8.1
provides an example of a simple decision tree.

The target variable for the decision tree in Figure 8.1 is credit risk, with potential
customers being classified as either good or bad credit risks. The predictor variables
are savings (low, medium, and high), assets (low or not low), and income (≤$50,000
or >$50,000). Here, the root node represents a decision node, testing whether each
record has a low, medium, or high savings level (as defined by the analyst or domain
expert). The data set is partitioned, or split, according to the values of this attribute.

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

165



166 CHAPTER 8 DECISION TREES

Figure 8.1 Simple decision tree.

Those records with low savings are sent via the leftmost branch (savings = low)
to another decision node. The records with high savings are sent via the rightmost
branch to a different decision node.

The records with medium savings are sent via the middle branch directly to a
leaf node, indicating the termination of this branch. Why a leaf node and not another
decision node? Because, in the data set (not shown), all of the records with medium
savings levels have been classified as good credit risks. There is no need for another
decision node, because our knowledge that the customer has medium savings predicts
good credit with 100% accuracy in the data set.

For customers with low savings, the next decision node tests whether the
customer has low assets. Those with low assets are then classified as bad credit risks;
the others are classified as good credit risks. For customers with high savings, the
next decision node tests whether the customer has an income of at most $30,000.
Customers with incomes of $30,000 or less are then classified as bad credit risks,
with the others classified as good credit risks.

When no further splits can be made, the decision tree algorithm stops growing
new nodes. For example, suppose that all of the branches terminate in “pure” leaf
nodes, where the target variable is unary for the records in that node (e.g., each
record in the leaf node is a good credit risk). Then no further splits are necessary, so
no further nodes are grown.

However, there are instances when a particular node contains “diverse”
attributes (with non-unary values for the target attribute), and yet the decision tree
cannot make a split. For example, suppose that we consider the records from Figure
8.1 with high savings and low income (≤$30,000). Suppose that there are five records
with these values, all of which also have low assets. Finally, suppose that three of
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these five customers have been classified as bad credit risks and two as good credit
risks, as shown in Table 8.1. In the real world, one often encounters situations such
as this, with varied values for the response variable, even for exactly the same values
for the predictor variables.

Here, since all customers have the same predictor values, there is no possible
way to split the records according to the predictor variables that will lead to a pure
leaf node. Therefore, such nodes become diverse leaf nodes, with mixed values for
the target attribute. In this case, the decision tree may report that the classification
for such customers is “bad,” with 60% confidence, as determined by the three-fifths
of customers in this node who are bad credit risks. Note that not all attributes are
tested for all records. Customers with low savings and low assets, for example, are
not tested with regard to income in this example.

8.2 REQUIREMENTS FOR USING DECISION TREES

Certain requirements must be met before decision tree algorithms may be applied:

1. Decision tree algorithms represent supervised learning, and as such require pre-
classified target variables. A training data set must be supplied which provides
the algorithm with the values of the target variable.

2. This training data set should be rich and varied, providing the algorithm with
a healthy cross section of the types of records for which classification may
be needed in the future. Decision trees learn by example, and if examples
are systematically lacking for a definable subset of records, classification and
prediction for this subset will be problematic or impossible.

3. The target attribute classes must be discrete. That is, one cannot apply decision
tree analysis to a continuous target variable. Rather, the target variable must
take on values that are clearly demarcated as either belonging to a particular
class or not belonging.

Why in the example above, did the decision tree choose the savings attribute
for the root node split? Why did it not choose assets or income instead? Decision
trees seek to create a set of leaf nodes that are as “pure” as possible, that is, where
each of the records in a particular leaf node has the same classification. In this way,
the decision tree may provide classification assignments with the highest measure of
confidence available.

TABLE 8.1 Sample of records that cannot lead to pure leaf node

Customer Savings Assets Income Credit Risk

004 High Low ≤$30,000 Good
009 High Low ≤$30,000 Good
027 High Low ≤$30,000 Bad
031 High Low ≤$30,000 Bad
104 High Low ≤$30,000 Bad
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However, how does one measure uniformity, or conversely, how does one
measure heterogeneity? We shall examine two of the many methods for measuring
leaf node purity, which lead to the two leading algorithms for constructing decision
trees:

� Classification and regression trees (CART) algorithm
� C4.5 algorithm

8.3 CLASSIFICATION AND REGRESSION TREES

The classification and regression trees (CART) method was suggested by Breiman
et al. [1] in 1984. The decision trees produced by CART are strictly binary, contain-
ing exactly two branches for each decision node. CART recursively partitions the
records in the training data set into subsets of records with similar values for the
target attribute. The CART algorithm grows the tree by conducting for each decision
node, an exhaustive search of all available variables and all possible splitting
values, selecting the optimal split according to the following criteria (from Kennedy
et al. [2]).

LetΦ(s|t) be a measure of the “goodness” of a candidate split s at node t, where

Φ(s|t) = 2PLPR

#classes∑
j=1

|P(j|tL) − P(j|tR)| (8.1)

and where
tL = left child node of node t

tR = right child node of node t

PL =
number of records at tL

number of records in training set

PR =
number of records at tR

number of records in training set

P(j|tL) = number of class j records at tL
number of records at t

P(j|tR) = number of class j records at tR
number of records at t

Then the optimal split is whichever split maximizes this measure Φ(s|t) over all
possible splits at node t.

Let us look at an example. Suppose that we have the training data set shown
in Table 8.2 and are interested in using CART to build a decision tree for predicting
whether a particular customer should be classified as being a good or a bad credit risk.
In this small example, all eight training records enter into the root node. Since CART
is restricted to binary splits, the candidate splits that the CART algorithm would
evaluate for the initial partition at the root node are shown in Table 8.3. Although
income is a continuous variable, CARTmay still identify a finite list of possible splits
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TABLE 8.2 Training set of records for classifying credit risk

Customer Savings Assets Income ($1000s) Credit Risk

1 Medium High 75 Good
2 Low Low 50 Bad
3 High Medium 25 Bad
4 Medium Medium 50 Good
5 Low Medium 100 Good
6 High High 25 Good
7 Low Low 25 Bad
8 Medium Medium 75 Good

based on the number of different values that the variable actually takes in the data
set. Alternatively, the analyst may choose to categorize the continuous variable into
a smaller number of classes.

For each candidate split, let us examine the values of the various components
of the optimality measure Φ(s|t) in Table 8.4. Using these observed values, we may
investigate the behavior of the optimality measure under various conditions. For
example, when is Φ(s|t) large? We see that Φ(s|t) is large when both of its main
components are large: 2PLPR and

∑# classes
j=1 |P(j|tL) − P(j|tR)|.

Let Q(s|t) = ∑# classes
j=1 |P(j|tL) − P(j|tR)|. When is the component Q(s|t) large?

Q(s|t) is large when the distance between P(j|tL) and P(j|tR) is maximized across
each class (value of the target variable). In other words, this component is maximized
when the proportions of records in the child nodes for each particular value of the
target variable are as different as possible. The maximum value would therefore occur
when for each class the child nodes are completely uniform (pure). The theoretical
maximum value forQ(s|t) is k, where k is the number of classes for the target variable.
Since our output variable credit risk takes two values, good and bad, k = 2 is the
maximum for this component.

The component 2PLPR is maximized when PL and PR are large, which occurs
when the proportions of records in the left and right child nodes are equal. Therefore,

TABLE 8.3 Candidate splits for t = root node

Candidate Split Left Child Node, tL Right Child Node, tR

1 Savings = low Savings ∈ {medium, high}
2 Savings = medium Savings ∈ {low, high}
3 Savings = high Savings ∈ {low, medium}
4 Assets = low Assets ∈ {medium, high}
5 Assets = medium Assets ∈ {low, high}
6 Assets = high Assets ∈ {low, medium}
7 Income ≤ $25,000 Income > $25,000
8 Income ≤ $50,000 Income > $50,000
9 Income ≤ $75,000 Income > $75,000
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TABLE 8.4 Values of the components of the optimality measure Φ(s|t) for each candidate
split, for the root node

Split PL PR P(j|tL) P(j|tR) 2PLPR Q(s|t) Φ(s|t)

1 0.375 0.625 G: .333 G: .8 0.46875 0.934 0.4378
B: .667 B: .2

2 0.375 0.625 G: 1 G: 0.4 0.46875 1.2 0.5625
B: 0 B: 0.6

3 0.25 0.75 G: 0.5 G: 0.0667 0.375 0.334 0.1253
B: 0.5 B: 0.333

4 0.25 0.75 G: 0 G: 0.833 0.375 1.667 0.6248
B: 1 B: 0.167

5 0.5 0.5 G: 0.75 G: 0.5 0.5 0.5 0.25
B: 0.25 B: 0.5

6 0.25 0.75 G: 1 G: 0.5 0.375 1 0.375
B: 0 B: 0.5

7 0.375 0.625 G: 0.333 G: 0.8 0.46875 0.934 0.4378
B: 0.667 B: 0.2

8 0.625 0.375 G: 0.4 G: 1 0.46875 1.2 0.5625
B: 0.6 B: 0

9 0.875 0.125 G: 0.571 G: 1 0.21875 0.858 0.1877
B: 0.429 B: 0

Φ(s|t) will tend to favor balanced splits that partition the data into child nodes
containing roughly equal numbers of records. Hence, the optimality measure Φ(s|t)
prefers splits that will provide child nodes that are homogeneous for all classes
and have roughly equal numbers of records. The theoretical maximum for 2PLPR is
2(0.5)(0.5) = 0.5.

In this example, only candidate split 5 has an observed value for 2PLPR that
reaches the theoreticalmaximum for this statistic, 0.5, since the records are partitioned
equally into two groups of four. The theoretical maximum for Q(s|t) is obtained only
when each resulting child node is pure, and thus is not achieved for this data set.

The maximum observed value forΦ(s|t) among the candidate splits is therefore
attained by split 4, with Φ(s|t) = 0.6248. CART therefore chooses to make the initial
partition of the data set using candidate split 4, assets= low versus assets∈{medium,
high}, as shown in Figure 8.2.

The left child node turns out to be a terminal leaf node, since both of the records
that were passed to this node had bad credit risk. The right child node, however, is
diverse and calls for further partitioning.

We again compile a table of the candidate splits (all are available except split
4), along with the values for the optimality measure (Table 8.5). Here two candidate
splits (3 and 7) share the highest value for Φ(s|t), 0.4444. We arbitrarily select the
first split encountered, split 3, savings = high versus savings ∈{low, medium}, for
decision node A, with the resulting tree shown in Figure 8.3.

Since decision node B is diverse, we again need to seek the optimal split.
Only two records remain in this decision node, each with the same value for savings
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Figure 8.2 CART decision tree after initial split.

(high) and income (25). Therefore, the only possible split is assets = high versus
assets = medium, providing us with the final form of the CART decision tree for
this example, in Figure 8.4. Compare Figure 8.4 with Figure 8.5, the decision tree
generated by Modeler’s CART algorithm.

Let us leave aside this example now, and consider how CART would operate
on an arbitrary data set. In general, CART would recursively proceed to visit each
remaining decision node and apply the procedure above to find the optimal split
at each node. Eventually, no decision nodes remain, and the “full tree” has been
grown. However, as we have seen in Table 8.1, not all leaf nodes are necessarily
homogeneous, which leads to a certain level of classification error.

TABLE 8.5 Values of the components of the optimality measure Φ(s|t) for each candidate
split, for decision node A

Split PL PR P(j|tL) P(j|tR) 2PLPR Q(s|t) Φ(s|t)

1 0.167 0.833 G: 1 G: .8 0.2782 0.4 0.1113
B: 0 B: .2

2 0.5 0.5 G: 1 G: 0.667 0.5 0.6666 0.3333
B: 0 B: 0.333

3 0.333 0.667 G: 0.5 G: 1 0.4444 1 0.4444
B: 0.5 B: 0

5 0.667 0.333 G: 0.75 G: 1 0.4444 0.5 0.2222
B: 0.25 B: 0

6 0.333 0.667 G: 1 G: 0.75 0.4444 0.5 0.2222
B: 0 B: 0.25

7 0.333 0.667 G: 0.5 G: 1 0.4444 1 0.4444
B: 0.5 B: 0

8 0.5 0.5 G: 0.667 G: 1 0.5 0.6666 0.3333
B: 0.333 B: 0

9 0.833 0.167 G: 0.8 G: 1 0.2782 0.4 0.1112
B: 0.2 B: 0
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Figure 8.3 CART decision tree after decision node A split.

For example, suppose that since we cannot further partition the records in
Table 8.1, we classify the records contained in this leaf node as bad credit risk. Then
the probability that a randomly chosen record from this leaf node would be classified
correctly is 0.6, since three of the five records (60%) are actually classified as bad
credit risks. Hence, our classification error rate for this particular leaf would be 0.4 or
40%, since two of the five records are actually classified as good credit risks. CART
would then calculate the error rate for the entire decision tree to be the weighted
average of the individual leaf error rates, with the weights equal to the proportion of
records in each leaf.

Figure 8.4 CART decision tree, fully grown form.
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$R-Risk

Assets
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Category    %     n
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Category     %    n
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Total       100.00  8

Good         0.00  0

Total        25.00  2

Good       83.33  5
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Good         0.00  0

Total        12.50  1

Good     100.00  1

Total        12.50  1

Savings

Assets

Low High:Medium

High Low:Medium

Figure 8.5 Modeler’s CART decision tree.
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To avoid memorizing the training set, the CART algorithm needs to begin
pruning nodes and branches that would otherwise reduce the generalizability of the
classification results. Even though the fully grown tree has the lowest error rate on the
training set, the resulting model may be too complex, resulting in overfitting. As each
decision node is grown, the subset of records available for analysis becomes smaller
and less representative of the overall population. Pruning the tree will increase the
generalizability of the results. How the CART algorithm performs tree pruning is
explained in Breiman et al. [1]. Essentially, an adjusted overall error rate is found
that penalizes the decision tree for having too many leaf nodes and thus too much
complexity.

8.4 C4.5 ALGORITHM

The C4.5 algorithm is Quinlan’s extension of his own ID3 algorithm for generating
decision trees [3]. Just as with CART, the C4.5 algorithm recursively visits each
decision node, selecting the optimal split, until no further splits are possible. However,
there are interesting differences between CART and C4.5:

� Unlike CART, the C4.5 algorithm is not restricted to binary splits. Whereas
CART always produces a binary tree, C4.5 produces a tree of more variable
shape.

� For categorical attributes, C4.5 by default produces a separate branch for each
value of the categorical attribute. This may result in more “bushiness” than
desired, since some values may have low frequency or may naturally be asso-
ciated with other values.

� The C4.5 method for measuring node homogeneity is quite different from the
CART method and is examined in detail below.

The C4.5 algorithm uses the concept of information gain or entropy reduction
to select the optimal split. Suppose that we have a variable X whose k possible values
have probabilities p1, p2, … , pk. What is the smallest number of bits, on average
per symbol, needed to transmit a stream of symbols representing the values of X
observed? The answer is called the entropy of X and is defined as

H(X) = −
∑
j

pj log2(pj)

Where does this formula for entropy come from? For an event with probability
p, the average amount of information in bits required to transmit the result is –log2(p).
For example, the result of a fair coin toss, with probability 0.5, can be transmitted
using –log2(0.5) = 1 bit, which is a zero or 1, depending on the result of the toss.
For variables with several outcomes, we simply use a weighted sum of the log2(pj)’s,
with weights equal to the outcome probabilities, resulting in the formula

H(X) = −
∑
j

pj log2(pj)
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C4.5 uses this concept of entropy as follows. Suppose that we have a candidate
split S, which partitions the training data set T into several subsets, T1, T2, … , Tk.
The mean information requirement can then be calculated as the weighted sum of the
entropies for the individual subsets, as follows:

HS(T) = −
k∑
i=1

piHS(Ti) (8.2)

where pi represents the proportion of records in subset i. We may then define our
information gain to be gain(S) = H(T) – HS(T), that is, the increase in information
produced by partitioning the training data T according to this candidate split S. At
each decision node, C4.5 chooses the optimal split to be the split that has the greatest
information gain, gain(S).

To illustrate the C4.5 algorithm at work, let us return to the data set in Table 8.2
and apply the C4.5 algorithm to build a decision tree for classifying credit risk, just as
we did earlier using CART. Once again, we are at the root node and are considering
all possible splits using all the data (Table 8.6).

Now, because five of the eight records are classified as good credit risk, with
the remaining three records classified as bad credit risk, the entropy before splitting
is

H(T) = −
∑
j

pj log2(pj) = − 5
8
log2

( 5
8

)
− 3

8
log2

( 3
8

)
= 0.9544

We shall compare the entropy of each candidate split against this H(T) = 0.9544, to
see which split results in the greatest reduction in entropy (or gain in information).

For candidate split 1 (savings), two of the records have high savings, three of the
records have medium savings, and three of the records have low savings, so we have:
Phigh =

2
8
, Pmedium = 3

8
, Plow = 3

8
. Of the records with high savings, one is a good

credit risk and one is bad, giving a probability of 0.5 of choosing the record with a
good credit risk. Thus, the entropy for high savings is − 1

2
log2 (

1
2
) − 1

2
log2(

1
2
) = 1,

which is similar to the flip of a fair coin. All three of the records withmedium savings
are good credit risks, so that the entropy formedium is− 3

3
log2 (

3
3
) − 0

3
log2 (

0
3
) = 0,

where by convention we define log2(0) = 0.
In engineering applications, information is analogous to signal, and entropy is

analogous to noise, so it makes sense that the entropy for medium savings is zero,
since the signal is crystal clear and there is no noise. If the customer has medium

TABLE 8.6 Candidate splits at root node for C4.5 algorithm

Candidate Split Child Nodes

1 Savings = low Savings = medium Savings = high
2 Assets = low Assets = medium Assets = high
3 Income ≤ $25,000 Income > $25,000
4 Income ≤ $50,000 Income > $50,000
5 Income ≤ $75,000 Income > $75,000



176 CHAPTER 8 DECISION TREES

savings, he or she is a good credit risk, with 100% confidence. The amount of
information required to transmit the credit rating of these customers is zero, as long
as we know that they have medium savings.

One of the records with low savings is a good credit risk, and two records
with low savings are bad credit risks, giving us our entropy for low credit risk as
− 1

3
log2 (

1
3
) − 2

3
log2 (

2
3
) = 0.9183.We combine the entropies of these three subsets,

using Equation (8.2) and the proportions of the subsets pi, so that Hsavings(T) =
2
8
(1) + 3

8
(0) + 3

8
(0.9183) = 0.5944 . Then the information gain represented by the

split on the savings attribute is calculated asH(T) −Hsavings (T) = 0.9544 − 0.5944 −
0.36 bits.

How are we to interpret these measures? First, H(T) = 0.9544 means that, on
average, one would need 0.9544 bit (0’s or 1’s) to transmit the credit risk of the eight
customers in the data set. Now,Hsavings (T)= 0.5944means that the partitioning of the
customers into three subsets has lowered the average bit requirement for transmitting
the credit risk status of the customers to 0.5944 bits. Lower entropy is good. This
entropy reduction can be viewed as information gain, so that we have gained on
average H(T) − Hsavings(T) = 0.9544 − 0.5944 = 0.36 bits of information by using
the savings partition. We will compare this to the information gained by the other
candidate splits, and choose the split with the largest information gain as the optimal
split for the root node.

For candidate split 2 (assets), two of the records have high assets, four of
the records have medium assets, and two of the records have low assets, so we have
Phigh =

2
8
, Pmedium = 4

8
, Plow = 2

8
. Both of the records with high assets are classified

as good credit risks, which means that the entropy for high assets will be zero, just
as it was for medium savings above.

Three of the records with medium assets are good credit risks and one is a bad
credit risk, giving us entropy − 3

4
log2 (

3
4
) − 1

4
log2 (

1
4
) = 0.8113. And both of the

records with low assets are bad credit risks, which results in the entropy for low assets
equaling zero. Combining the entropies of these three subsets, using Equation (8.2)
and the proportions of the subsets pi, we haveHassets(T) =

2
8
(0) + 4

8
(0.8113) + 2

8
(0) =

0.4057. The entropy for the assets split is lower than the entropy (0.5944) for the
savings split, which indicates that the assets split contains less noise and is to be
preferred over the savings split. This is measured directly using the information gain,
as follows:H(T) −Hassets(T) = 0.9544 − 0.4057 = 0.5487 bits. This information gain
of 0.5487 bits is larger than that for the savings split of 0.36 bits, verifying that the
assets split is preferable.

While C4.5 partitions the categorical variables differently from CART, the par-
titions for the numerical variables are similar. Here we have four observed values for
income: 25,000, 50,000, 75,000, and 100,000, which provide us with three thresholds
for partitions, as shown in Table 8.6. For candidate split 3 from Table 8.6, income
≤ $25,000 versus income > $25,000, three of the records have income ≤ $25,000,
with the other five records having income > $25,000 giving us Pincome ≤ $25,000 =
3
8
, Pincome > $25,000 =

5
8
. Of the records with income ≤ $25,000, one is a good credit

risk and two are bad, giving us the entropy for income ≤ $25,000 as − 1
3
log2 (

1
3
) −

2
3
log2 (

2
3
) = 0.9483. Four of the five records with income > $25,000 are good credit
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risks, so that the entropy for income> $25,000 is− 4
5
log2(

4
5
) − 1

5
log2 (

1
5
) = 0.7219.

Combining, we find the entropy for candidate split 3 to be Hincome≤$25,000(T) =
3
8
(0.9183) + 5

8
(0.7219) = 0.7956. Then the information gain for this split is H(T) −

Hincome≤$25,000(T) = 0.9544 − 0.7956 = 0.1588 bits, which is our poorest choice yet.
For candidate split 4, income ≤ $50,000 versus income > $50,000, two of the

five records with income ≤ $50,000 are good credit risks, and three are bad, while all
three of the records with income > $50,000 are good credit risks. This gives us the
entropy for candidate split 4 as

Hincome≤ $50,000(T) =
5
8

(
−2
5

log2
2
5
− 3

5
log2

3
5

)
+3
8

(
−3
3

log2
3
3
− 0

3
log2

0
3

)
= 0.6069

The information gain for this split is thusH(T) –Hincome ≤ $50,000(T)= 0.9544 –
0.6069 = 0.3475, which is not as good as for assets. Finally, for candidate split 5,
income ≤ $75,000 versus income > $75,000, four of the seven records with income
≤ $75,000 are good credit risks, and three are bad, while the single record with
income > $75,000 is a good credit risk. Thus, the entropy for candidate split 4 is

Hincome ≤ $75,000(T) =
7
8

(
−4
7

log2
4
7

− 3
7

log2
3
7

)
+ 1

8

(
−1
1

log2
1
1
− 0

1
log2

0
1

)
= 0.8621

The information gain for this split is H(T) – Hincome ≤ $75,000(T) = 0.9544 –
0.8621 = 0.0923, making this split the poorest of the five candidate splits.

Table 8.7 summarizes the information gain for each candidate split at the root
node. Candidate split 2, assets, has the largest information gain, and so is chosen
for the initial split by the C4.5 algorithm. Note that this choice for an optimal split
concurs with the partition preferred by CART, which split on assets = low versus

TABLE 8.7 Information gain for each candidate split at the root node

Candidate Split Child Nodes Information Gain (Entropy Reduction)

1 Savings = low 0.36 bits
Savings = medium
Savings = high

2 Assets = low 0.5487 bits
Assets = medium
Assets = high

3 Income ≤ $25,000 0.1588 bits
Income > $25,000

4 Income ≤ $50,000 0.3475 bits
Income > $50,000

5 Income ≤ $75,000 0.0923 bits
Income > $75,000
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assets = {medium, high}. The partial decision tree resulting from C4.5’s initial split
is shown in Figure 8.6.

The initial split has resulted in the creation of two terminal leaf nodes and
one new decision node. Since both records with low assets have bad credit risk,
this classification has 100% confidence, and no further splits are required. Similarly
for the two records with high assets. However, the four records at decision node A
(assets = medium) contain both good and bad credit risks, so that further splitting is
called for.

We proceed to determine the optimal split for decision node A, containing
records 3, 4, 5, and 8, as indicated in Table 8.8. Because three of the four records are
classified as good credit risks, with the remaining record classified as a bad credit
risk, the entropy before splitting is

H(A) = −
∑
j

pj log2(pj) = − 3
4
log2

(
3
4

)
− 1

4
log2

(
1
4

)
= 0.8113

The candidate splits for decision node A are shown in Table 8.9.
For candidate split 1, savings, the single record with low savings is a good credit

risk, along with the two records with medium savings. Perhaps counterintuitively, the
single record with high savings is a bad credit risk. So the entropy for each of
these three classes equals zero, since the level of savings determines the credit risk
completely. This also results in a combined entropy of zero for the assets split,
Hassets(A) = 0, which is optimal for decision node A. The information gain for this
split is thus H(A) – Hassets(A) = 0.8113 – 0.0 = 0.8113. This is, of course, the
maximum information gain possible for decision node A. We therefore need not
continue our calculations, since no other split can result in a greater information gain.

Figure 8.6 C4.5 concurs with CART in choosing assets for the initial partition.

TABLE 8.8 Records available at decision node A for classifying credit risk

Customer Savings Assets Income ($1000s) Credit Risk

3 High Medium 25 Bad
4 Medium Medium 50 Good
5 Low Medium 100 Good
8 Medium Medium 75 Good



8.5 DECISION RULES 179

TABLE 8.9 Candidate splits at decision node A

Candidate Split Child Nodes

1 Savings = low Savings = medium Savings = high
3 Income ≤ $25,000 Income > $25,000
4 Income ≤ $50,000 Income > $50,000
5 Income ≤ $75,000 Income > $75,000

As it happens, candidate split 3, income ≤ $25,000 versus income > $25,000, also
results in the maximal information gain, but again we arbitrarily select the first such
split encountered, the savings split.

Figure 8.7 shows the form of the decision tree after the savings split. Note
that this is the fully grown form, since all nodes are now leaf nodes, and C4.5 will
grow no further nodes. Comparing the C4.5 tree in Figure 8.7 with the CART tree in
Figure 8.4, we see that the C4.5 tree is “bushier,” providing a greater breadth, while
the CART tree is one level deeper. Both algorithms concur that assets is the most
important variable (the root split) and that savings is also important. Finally, once
the decision tree is fully grown, C4.5 engages in pessimistic postpruning. Interested
readers may consult Kantardzic [4].

8.5 DECISION RULES

One of the most attractive aspects of decision trees lies in their interpretability,
especially with respect to the construction of decision rules. Decision rules can be
constructed from a decision tree simply by traversing any given path from the root
node to any leaf. The complete set of decision rules generated by a decision tree is
equivalent (for classification purposes) to the decision tree itself. For example, from
the decision tree in Figure 8.7, wemay construct the decision rules given in Table 8.10.

Figure 8.7 C4.5 Decision tree: fully grown form.
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TABLE 8.10 Decision rules generated from decision tree in Figure 8.7

Antecedent Consequent Support Confidence

If assets = low Then bad credit risk
2
8

1.00

If assets = high Then good credit risk
2
8

1.00

If assets = medium and savings = low Then good credit risk
1
8

1.00

If assets = medium and savings = medium Then good credit risk
2
8

1.00

If assets = medium and savings = high Then bad credit risk
1
8

1.00

Decision rules come in the form if antecedent, then consequent, as shown in
Table 8.10. For decision rules, the antecedent consists of the attribute values from the
branches taken by the particular path through the tree, while the consequent consists
of the classification value for the target variable given by the particular leaf node.

The support of the decision rule refers to the proportion of records in the data
set that rest in that particular terminal leaf node. The confidence of the rule refers to
the proportion of records in the leaf node for which the decision rule is true. In this
small example, all of our leaf nodes are pure, resulting in perfect confidence levels of
100% = 1.00. In real-world examples, such as in the next section, one cannot expect
such high confidence levels.

8.6 COMPARISON OF THE C5.0 AND CART
ALGORITHMS APPLIED TO REAL DATA

Next, we apply decision tree analysis using IBM/SPSS Modeler on a real-world data
set. We use a subset of the data set adult, which was drawn from US census data by
Kohavi [5]. You may download the data set used here from the book series website,
www.dataminingconsultant.com. Here we are interested in classifying whether or not
a person’s income is less than $50,000, based on the following set of predictor fields.

� Numerical variables

Age

Years of education

Capital gains

Capital losses

Hours worked per week
� Categorical variables

Race

Gender

Work class

Marital status
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The numerical variables were normalized so that all values ranged between
zero and 1. Some collapsing of low frequency classes was carried out on the work
class andmarital status categories. Modeler was used to compare the C5.0 algorithm
(an update of the C4.5 algorithm) with CART. The decision tree produced by the
CART algorithm is shown in Figure 8.8.

Here, the tree structure is displayed horizontally, with the root node at the
left and the leaf nodes on the right. For the CART algorithm, the root node split
is on marital status, with a binary split separating married persons from all others
(Marital_Status in [“Divorced” “Never-married” “Separated” “Widowed”]). That
is, this particular split onmarital statusmaximized the CART split selection criterion
[Equation (8.1)]:

Φ(s|t) = 2PLPR

# classes∑
j=1

|P(j|tL) − P(j|tR)|
Note that the mode classification for each branch is ≤$50,000. The married

branch leads to a decision node, with several further splits downstream. However,
the nonmarried branch is a leaf node, with a classification of ≤$50,000 for the 9228
such records, with 93.7% confidence. In other words, of the 9228 persons in the
data set who are not presently married, 93.7% of them have incomes of at most
$50,000.

The root node split is considered to indicate the most important single variable
for classifying income. Note that the split on the Marital_Status attribute is binary,
as are all CART splits on categorical variables. All the other splits in the full CART
decision tree shown in Figure 8.8 are on numerical variables. The next decision node
is Years of education_mm, representing the min-max normalized number of years of
education. The split occurs at Years of education_mm ≤ 0.700 (mode ≤$50,000) ver-
sus Years of education_mm > 0.700 (mode >$50,000). However, your client may not
understand what the normalized value of 0.700 represents. So, when reporting results,
the analyst should always denormalize, to identify the original field values. The min-
max normalizationwas of the formX∗ = X−min(X)

range(X)
= X−min(X)

max(X)−min(X)
. Years of education

ranged from 16 (maximum) to 1 (minimum), for a range of 15. Therefore, denor-
malizing, we have X = X∗ × range (X) + min (X) = 0.700 × 15 + 1 = 11.5. Thus, the
split occurs at 11.5 years of education. It seems that those who have graduated high
school tend to have higher incomes than those who have not.

Figure 8.8 CART decision tree for the adult data set.
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Interestingly, for both education groups, Capital gains represents the next most
important decision node. For the branch with more years of education, there are two
further splits, on Capital loss, and then Hours (worked per week).

Now, will the information-gain splitting criterion and the other characteristics
of the C5.0 algorithm lead to a decision tree that is substantially different from or
largely similar to the tree derived using CART’s splitting criteria? Compare the CART
decision tree above with Modeler’s C5.0 decision tree of the same data displayed in
Figure 8.9. (We needed to specify only three levels of splits. Modeler gave us eight
levels of splits, which would not have fit on the page.)

Differences emerge immediately at the root node. Here, the root split is on the
Capital gains_mm attribute, with the split occurring at the relatively low normalized
level of 0.068. Since the range of capital gains in this data set is $99,999 (maximum=
99,999, minimum = 0), this is denormalized as X = X∗ × range (X) + min (X) =
0.0685 × 99, 999 + 0 = $6850. More than half of those with capital gains greater
than $6850 have incomes above $50,000, whereas more than half of those with cap-
ital gains of less than $6850 have incomes below $50,000. This is the split that was
chosen by the information-gain criterion as the optimal split among all possible splits
over all fields. Note, however, that there are 23 times more records in the low capital
gains category than in the high capital gains category (23,935 vs. 1065 records).

For records with lower capital gains, the second split occurs on capital loss,
with a pattern similar to the earlier split on capital gains.Most people (23,179 records)
had low capital loss, and most of these have incomes below $50,000. Most of the few
(756 records) who had higher capital loss had incomes above $50,000.

Figure 8.9 C5.0 decision tree for the adult data set.
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For records with low capital gains and low capital loss, consider the next split,
which is made on marital status. Note that C5.0 provides a separate branch for each
categorical field value, whereas CART was restricted to binary splits. A possible
drawback of C5.0’s strategy for splitting categorical variables is that it may lead to
an overly bushy tree, with many leaf nodes containing few records.

Although the CART and C5.0 decision trees do not agree in the details, we may
nevertheless glean useful information from the broad areas of agreement between
them. For example, the most important variables are clearly marital status, education,
capital gains, capital loss, and perhaps hours per week. Both models agree that these
fields are important, but disagree as to the ordering of their importance. Much more
modeling analysis may be called for.

THE R ZONE

# Read in the data, install and load required packages for this chapter

dat <- read.csv(file = "C:/ . . . /adult.txt",
stringsAsFactors=TRUE)

install.packages(c("rpart", "rpart.plot", "C50"))
library("rpart"); library("rpart.plot"); library("C50")

# Collapse some of the categories by giving them the same factor label

levels(dat$marital.status)
levels(dat$workclass)
levels(dat$marital.status)[2:4] <-

"Married"
levels(dat$workclass)[c(2,3,8)] <-

"Gov"
levels(dat$workclass)[c(5, 6)] <-

"Self"
levels(dat$marital.status)
levels(dat$workclass)

# Standardize the numeric variables

dat$age.z <- (dat$age - mean(dat$age))/sd(dat$age)
dat$education.num.z <- (dat$education.num - mean(dat$education.num))/sd(dat$education.num)
dat$capital.gain.z <- (dat$capital.gain - mean(dat$capital.gain))/sd(dat$capital.gain)
dat$capital.loss.z <- (dat$capital.loss - mean(dat$capital.loss))/sd(dat$capital.loss)
dat$hours.per.week.z <- (dat$hours.per.week -

mean(dat$hours.per.week))/sd(dat$hours.per.week)
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# Use predictors to classify whether or not a person’s income is less than $50K

cartfit <- rpart(income ∼ age.z + education.num.z + capital.gain.z + capital.loss.z +
hours.per.week.z + race + sex + workclass + marital.status,
data = dat,
method = "class")

print(cartfit)

# Plot the decision tree

rpart.plot(cartfit)

# C5.0

# Put the predictors into ‘x’, the response into ‘y’
names(dat)
x <- dat[,c(2,6, 9, 10, 16, 17, 18, 19, 20)]
y <- dat$income
c50fit <- C5.0(x, y)
summary(c50fit)

REFERENCES

1. Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone, Classification and Regression
Trees, Chapman & Hall/CRC Press, Boca Raton, FL, 1984.

2. Ruby L. Kennedy, Yuchun Lee, Benjamin Van Roy, Christopher D. Reed, and Richard P. Lippman,
Solving Data Mining Problems through Pattern Recognition, Pearson Education, Upper Saddle River,
NJ, 1995.

3. J. Ross Quinlan,C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, CA, 1992.
4. Mehmed Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, 2nd edn, Wiley-

Interscience, Hoboken, NJ, 2011.
5. Ronny Kohavi, Scaling up the accuracy of naive Bayes classifiers: A decision tree hybrid, Proceed-

ings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR,
1996.



EXERCISES 185

EXERCISES

1. Describe the possible situations when no further splits can be made at a decision node.

2. Suppose that our target variable is continuous numeric. Can we apply decision trees
directly to classify it? How can we work around this?

3. True or false: Decision trees seek to form leaf nodes to maximize heterogeneity in each
node.

4. Discuss the benefits and drawbacks of a binary tree versus a bushier tree.
Consider the data in Table 8.11. The target variable is salary. Start by discretizing

salary as follows:
� Less than $35,000 Level 1
� $35,000 to less than $45,000 Level 2
� $45,000 to less than $55,000 Level 3
� Above $55,000 Level 4

TABLE 8.11 Decision tree data

Occupation Gender Age Salary

Service Female 45 $48,000
Male 25 $25,000
Male 33 $35,000

Management Male 25 $45,000
Female 35 $65,000
Male 26 $45,000
Female 45 $70,000

Sales Female 40 $50,000
Male 30 $40,000

Staff Female 50 $40,000
Male 25 $25,000

5. Construct a classification and regression tree to classify salary based on the other variables.
Do as much as you can by hand, before turning to the software.

6. Construct a C4.5 decision tree to classify salary based on the other variables. Do as much
as you can by hand, before turning to the software.

7. Compare the two decision trees and discuss the benefits and drawbacks of each.

8. Generate the full set of decision rules for the CART decision tree.

9. Generate the full set of decision rules for the C4.5 decision tree.

10. Compare the two sets of decision rules and discuss the benefits and drawbacks of each.

HANDS-ON ANALYSIS

For the following exercises, use the churn data set available at the book series website.
Normalize the numerical data and deal with the correlated variables.
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11. Generate a CART decision tree.

12. Generate a C4.5-type decision tree.

13. Compare the two decision trees and discuss the benefits and drawbacks of each.

14. Generate the full set of decision rules for the CART decision tree.

15. Generate the full set of decision rules for the C4.5 decision tree.

16. Compare the two sets of decision rules and discuss the benefits and drawbacks of
each. �
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The inspiration for neural networks was the recognition that complex learning sys-
tems in animal brains consisted of closely interconnected sets of neurons. Although
a particular neuron may be relatively simple in structure, dense networks of inter-
connected neurons could perform complex learning tasks such as classification and
pattern recognition. The human brain, for example, contains approximately 1011

neurons, each connected on average to 10,000 other neurons, making a total of
1,000,000,000,000,000= 1015 synaptic connections.Artificial neural networks (here-
after, neural networks) represent an attempt at a very basic level to imitate the type
of nonlinear learning that occurs in the networks of neurons found in nature.

As shown in Figure 9.1, a real neuron uses dendrites to gather inputs from
other neurons and combines the input information, generating a nonlinear response
(“firing”) when some threshold is reached, which it sends to other neurons using the

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
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Figure 9.1 Real neuron and artificial neuron model.

axon. Figure 9.1 also shows an artificial neuron model used in most neural networks.
The inputs (xi) are collected from upstream neurons (or the data set) and combined
through a combination function such as summation (Σ), which is then input into a
(usually nonlinear) activation function to produce an output response (y), which is
then channeled downstream to other neurons.

What types of problems are appropriate for neural networks? One of the advan-
tages of using neural networks is that they are quite robust with respect to noisy data.
Because the network contains many nodes (artificial neurons), with weights assigned
to each connection, the network can learn to work around these uninformative (or
even erroneous) examples in the data set. However, unlike decision trees, which
produce intuitive rules that are understandable to nonspecialists, neural networks are
relatively opaque to human interpretation, as we shall see. Also, neural networks
usually require longer training times than decision trees, often extending into several
hours.

9.1 INPUT AND OUTPUT ENCODING

One possible drawback of neural networks is that all attribute values must be encoded
in a standardized manner, taking values between zero and 1, even for categorical
variables. Later, when we examine the details of the back-propagation algorithm, we
shall understand why this is necessary. For now, however, how does one go about
standardizing all the attribute values?

For continuous variables, this is not a problem, as we discussed in Chapter 2.
We may simply apply the min-max normalization:

X∗ = X − min(X)
range(X)

= X − min(X)
max(X) − min(X)
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This works well as long as the minimum and maximum values are known
and all potential new data are bounded between them. Neural networks are somewhat
robust tominor violations of these boundaries. Ifmore serious violations are expected,
certain ad hoc solutions may be adopted, such as rejecting values that are outside the
boundaries, or assigning such values to either the minimum or maximum value.

Categorical variables are more problematical, as might be expected. If the
number of possible categories is not too large, one may use indicator (flag) variables.
For example, many data sets contain a gender attribute, containing values female,
male, and unknown. Since the neural network could not handle these attribute values
in their present form, we could, instead, create indicator variables for female and
male. Each record would contain values for each of these two indicator variables.
Records for females would have a value of 1 for female and 0 for male, while records
for males would have a value of 0 for female and 1 for male. Records for persons
of unknown gender would have values of 0 for female and 0 for male. In general,
categorical variables with k classes may be translated into k − 1 indicator variables,
as long as the definition of the indicators is clearly defined.

Be wary of recoding unordered categorical variables into a single variable
with a range between zero and 1. For example, suppose that the data set contains
information on a marital status attribute. Suppose that we code the attribute values
divorced, married, separated, single, widowed, and unknown, as 0.0, 0.2, 0.4, 0.6,
0.8, and 1.0, respectively. Then this coding implies, for example, that divorced is
“closer” to married than it is to separated, and so on. The neural network would be
aware only of the numerical values in themarital status field, not of their pre-encoded
meanings, and would thus be naive of their true meaning. Spurious and meaningless
findings may result.

With respect to output, we shall see that neural network output nodes always
return a continuous value between zero and 1 as output. How can we use such
continuous output for classification?

Many classification problems have a dichotomous result, an up-or-down deci-
sion, with only two possible outcomes. For example, “Is this customer about to leave
our company’s service?” For dichotomous classification problems, one option is to
use a single output node (such as in Figure 9.2), with a threshold value set a priori
which would separate the classes, such as “leave” or “stay.” For example, with the

Figure 9.2 Simple neural network.
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threshold of “leave if output ≥ 0.67,” an output of 0.72 from the output node would
classify that record as likely to leave the company’s service.

Single output nodes may also be used when the classes are clearly ordered. For
example, suppose that we would like to classify elementary school reading prowess
based on a certain set of student attributes. Then we may be able to define the
thresholds as follow:

� If 0 ≤ output < 0.25, classify first-grade reading level.
� If 0.25 ≤ output < 0.50, classify second-grade reading level.
� If 0.50 ≤ output < 0.75, classify third-grade reading level.
� If output ≥ 0.75, classify fourth-grade reading level.

Fine-tuning of the thresholds may be required, tempered by experience and the
judgment of domain experts.

Not all classification problems, however, are soluble using a single output node
only. For instance, suppose that we have several unordered categories in our target
variable, as, for example, with the marital status variable above. In this case, we
would choose to adopt 1-of-n output encoding, where one output node is used for
each possible category of the target variable. For example, if marital status was our
target variable, the network would have six output nodes in the output layer, one for
each of the six classes divorced, married, separated, single, widowed, and unknown.
The output node with the highest value is then chosen as the classification for that
particular record.

One benefit of using 1-of-n output encoding is that it provides a measure of
confidence in the classification, in the form of the difference between the highest
value output node and the second highest value output node. Classifications with
low confidence (small difference in node output values) can be flagged for further
clarification.

9.2 NEURAL NETWORKS FOR ESTIMATION AND
PREDICTION

Clearly, since neural networks produce continuous output, they may quite naturally
be used for estimation and prediction. Suppose, for example, that we are interested in
predicting the price of a particular stock 3months in the future. Presumably, wewould
have encoded price information using the min-max normalization above. However,
the neural network would output a value between zero and 1, which (one would hope)
does not represent the predicted price of the stock.

Rather, the min-max normalization needs to be inverted, so that the neural
network output can be understood on the scale of the stock prices. In general, this
denormalization is as follows:

prediction = output(data range) +minimum

where output represents the neural network output in the (0,1) range, data range
represents the range of the original attribute values on the nonnormalized scale, and
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minimum represents the smallest attribute value on the nonnormalized scale. For
example, suppose that the stock prices ranged from $20 to $30 and that the network
output was 0.69. Then the predicted stock price in 3 months is

prediction = output(data range) +minimum = 0.69($10) + $20 = $26.90

9.3 SIMPLE EXAMPLE OF A NEURAL NETWORK

Let us examine the simple neural network shown in Figure 9.2. A neural network
consists of a layered, feedforward, completely connected network of artificial neurons,
or nodes. The feedforward nature of the network restricts the network to a single
direction of flow and does not allow looping or cycling. The neural network is
composed of two or more layers, although most networks consist of three layers: an
input layer, a hidden layer, and an output layer. There may be more than one hidden
layer, althoughmost networks contain only one, which is sufficient for most purposes.
The neural network is completely connected, meaning that every node in a given layer
is connected to every node in the next layer, although not to other nodes in the same
layer. Each connection between nodes has a weight (e.g.,W1A) associated with it. At
initialization, these weights are randomly assigned to values between zero and 1.

The number of input nodes usually depends on the number and type of attributes
in the data set. The number of hidden layers and the number of nodes in each hidden
layer are both configurable by the user. One may have more than one node in the
output layer, depending on the particular classification task at hand.

How many nodes should one have in the hidden layer? Since more nodes in
the hidden layer increases the power and flexibility of the network for identifying
complex patterns, one might be tempted to have a large number of nodes in the hidden
layer. On the other hand, an overly large hidden layer leads to overfitting, memorizing
the training set at the expense of generalizability to the validation set. If overfitting
is occurring, one may consider reducing the number of nodes in the hidden layer;
conversely, if the training accuracy is unacceptably low, one may consider increasing
the number of nodes in the hidden layer.

The input layer accepts inputs from the data set, such as attribute values, and
simply passes these values along to the hidden layer without further processing. Thus,
the nodes in the input layer do not share the detailed node structure that the hidden
layer nodes and the output layer nodes share.

We will investigate the structure of hidden layer nodes and output layer nodes
using the sample data provided in Table 9.1. First, a combination function (usually

TABLE 9.1 Data inputs and initial values for neural network weights

x0 = 1.0 W0A = 0.5 W0B = 0.7 W0Z = 0.5

x1 = 0.4 W1A = 0.6 W1B = 0.9 WAZ = 0.9
x2 = 0.2 W2A = 0.8 W2B = 0.8 WBZ = 0.9
x3 = 0.7 W3A = 0.6 W3B = 0.4
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summation, Σ) produces a linear combination of the node inputs and the connection
weights into a single scalar value, which we will term net. Thus, for a given node j,

netj =
∑
i

Wijxij = W0jx0j +W1jx1j +⋯ +WIjxIj

where xij represents the ith input to node j, Wij represents the weight associated with
the ith input to node j, and there are I + 1 inputs to node j. Note that x1, x2, … , xI
represent inputs from upstream nodes, while x0 represents a constant input, analogous
to the constant factor in regression models, which by convention uniquely takes the
value x0j = 1. Thus, each hidden layer or output layer node j contains an “extra” input
equal to a particular weight W0jx0j = W0j, such as W0B for node B.

For example, for node A in the hidden layer, we have

netA =
∑
i
WiAxiA = W0A(1) +W1Ax1A +W2Ax2A +W3Ax3A

= 0.5 + 0.6(0.4) + 0.80(0.2) + 0.6(0.7) = 1.32

Within node A, this combination function netA = 1.32 is then used as an input to
an activation function. In biological neurons, signals are sent between neurons when
the combination of inputs to a particular neuron cross a certain threshold, and the
neuron “fires.” This is nonlinear behavior, since the firing response is not necessarily
linearly related to the increment in input stimulation. Artificial neural networksmodel
this behavior through a nonlinear activation function.

The most common activation function is the sigmoid function:

y = 1
1 + e−x

where e is base of natural logarithms, equal to about 2.718281828. Thus, within node
A, the activation would take netA = 1.32 as input to the sigmoid activation function,
and produce an output value of y = 1/(1 + e−1.32) = 0.7892. Node A’s work is done
(for the moment), and this output value would then be passed along the connection to
the output node Z, where it would form (via another linear combination) a component
of netZ.

But before we can compute netZ, we need to find the contribution of node B.
From the values in Table 9.1, we have

netB =
∑
i
WiBxiB = W0B(1) +W1Bx1B +W2Bx2B +W3Bx3B

= 0.7 + 0.9(0.4) + 0.80(0.2) + 0.4(0.7) = 1.5

Then

f (netB) =
1

1 + e−1.5
= 0.8176

Node Z then combines these outputs from nodes A and B, through netZ, a
weighted sum, using the weights associated with the connections between these
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nodes. Note that the inputs xi to node Z are not data attribute values but the outputs
from the sigmoid functions from upstream nodes:

netZ =
∑
i
WiZxiZ = W0Z(1) +WAZxAZ +WBZxBZ

= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461

Finally, netZ is input into the sigmoid activation function in node Z, resulting
in

f (netZ) =
1

1 + e−1.9461
= 0.8750

This value of 0.8750 is the output from the neural network for this first pass
through the network, and represents the value predicted for the target variable for the
first observation.

9.4 SIGMOID ACTIVATION FUNCTION

Why use the sigmoid function? Because it combines nearly linear behavior, curvi-
linear behavior, and nearly constant behavior, depending on the value of the input.
Figure 9.3 shows the graph of the sigmoid function y = f(x) = 1/(1 + e−x), for −5
< x < 5 (although f(x) may theoretically take any real-valued input). Through much
of the center of the domain of the input x (e.g., −1 < x < 1), the behavior of f(x) is
nearly linear. As the input moves away from the center, f(x) becomes curvilinear. By
the time the input reaches extreme values, f(x) becomes nearly constant.

Moderate increments in the value of x produce varying increments in the value
of f(x), depending, on the location of x. Near the center, moderate increments in
the value of x produce moderate increments in the value of f(x); however, near the
extremes, moderate increments in the value of x produce tiny increments in the value
of f(x). The sigmoid function is sometimes called a squashing function, since it takes
any real-valued input and returns an output bounded between zero and 1.

Figure 9.3 Graph of the sigmoid function y = f(x) = 1/(1 + e−x).
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9.5 BACK-PROPAGATION

How does the neural network learn? Neural networks represent a supervised learn-
ing method, requiring a large training set of complete records, including the target
variable. As each observation from the training set is processed through the network,
an output value is produced from the output node (assuming that we have only one
output node, as in Figure 9.2). This output value is then compared to the actual value
of the target variable for this training set observation, and the error (actual − output)
is calculated. This prediction error is analogous to the residuals in regression models.
To measure how well the output predictions fit the actual target values, most neural
network models use the sum of squared errors (SSEs):

SSE =
∑

records

∑
output nodes

(actual − output)2

where the squared prediction errors are summed over all the output nodes and over
all the records in the training set.

The problem is therefore to construct a set of model weights that will minimize
the SSE. In this way, the weights are analogous to the parameters of a regression
model. The “true” values for the weights that will minimize SSE are unknown, and
our task is to estimate them, given the data. However, due to the nonlinear nature of
the sigmoid functions permeating the network, there exists no closed-form solution
for minimizing SSE as exists for least-squares regression.

9.5.1 Gradient Descent Method

We must therefore turn to optimization methods, specifically gradient-descent meth-
ods, to help us find the set of weights that will minimize SSE. Suppose that we have
a set (vector) of m weights w = w0, w1, w2,… , wm in our neural network model and
we wish to find the values for each of these weights that, together, minimize SSE.
We can use the gradient descent method, which gives us the direction that we should
adjust the weights in order to decrease SSE. The gradient of SSE with respect to the
vector of weights w is the vector derivative:

∇SSE(w) =
[
𝜕SSE
𝜕w0

,
𝜕SSE
𝜕w1

,… ,
𝜕SSE
𝜕wm

]
that is, the vector of partial derivatives of SSE with respect to each of the weights.

To illustrate how gradient descent works, let us consider the case where there
is only a single weight w1. Consider Figure 9.4, which plots the error SSE against the
range of values for w1. We would prefer values of w1 that would minimize the SSE.
The optimal value for the weight w1 is indicated as w∗

1. We would like to develop a
rule that would help us move our current value of w1 closer to the optimal value w∗

1
as follows: wnew = wcurrent + Δwcurrent, where Δwcurrent is the “change in the current
location of w.”

Now, suppose that our current weight value wcurrent is near w1L. Then we would
like to increase our current weight value to bring it closer to the optimal value w∗

1.
On the other hand, if our current weight value wcurrent were near w1R, we would
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Figure 9.4 Using the slope of SSE with respect to w1 to find weight adjustment direction.

instead prefer to decrease its value, to bring it closer to the optimal value w∗
1. Now

the derivative 𝜕SSE/𝜕w1 is simply the slope of the SSE curve at w1. For values of w1
close to w1L, this slope is negative, and for values of w1 close to w1R, this slope is
positive. Hence, the direction for adjusting wcurrent is the negative of the sign of the
derivative of SSE at wcurrent, that is, −sign(𝜕SSE/𝜕wcurrent).

Now, how far should wcurrent be adjusted in the direction of
−sign(𝜕SSE/𝜕wcurrent)? Suppose that we use the magnitude of the derivative of SSE
at wcurrent. When the curve is steep, the adjustment will be large, since the slope is
greater in magnitude at those points.When the curve is nearly flat, the adjustment will
be smaller, due to less slope. Finally, the derivative is multiplied by a positive constant
𝜂 (Greek lowercase eta), called the learning rate, with values ranging between zero
and 1. (We discuss the role of 𝜂 in more detail below.) The resulting form ofΔwcurrent
is as follows:Δwcurrent = −𝜂 (𝜕SSE/𝜕wcurrent), meaning that the change in the current
weight value equals negative a small constant times the slope of the error function at
wcurrent.

9.5.2 Back-Propagation Rules

The back-propagation algorithm takes the prediction error (actual − output) for
a particular record and percolates the error back through the network, assigning
partitioned responsibility for the error to the various connections. The weights on
these connections are then adjusted to decrease the error, using gradient descent.

Using the sigmoid activation function and gradient descent,Mitchell [1] derives
the back-propagation rules as follows:

wij, new = wij, current + Δwij where Δwij = 𝜂𝛿jxij

Nowwe know that 𝜂 represents the learning rate and xij signifies the ith input to
node j, but what does 𝛿j represent? The component 𝛿j represents the responsibility for
a particular error belonging to node j. The error responsibility is computed using the
partial derivative of the sigmoid function with respect to netj and takes the following
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forms, depending on whether the node in question lies in the output layer or the
hidden layer:

𝛿j =

{
outputj(1 − outputj)(actualj − outputj) for output layernode

outputj(1 − outputj)
∑

downstream
Wjk𝛿j for hidden layer nodes

where Σdownstream Wjk𝛿j refers to the weighted sum of the error responsibilities for
the nodes downstream from the particular hidden layer node. (For the full derivation,
see Mitchell [1].)

Also, note that the back-propagation rules illustrate why the attribute values
need to be normalized to between zero and 1. For example, if income data, with values
ranging into six figures, were not normalized, the weight adjustment Δwij = 𝜂𝛿jxij
would be dominated by the data value xij. Hence the error propagation (in the form
of 𝛿j) through the network would be overwhelmed, and learning (weight adjustment)
would be stifled.

9.5.3 Example of Back-Propagation

Recall from our introductory example that the output from the first pass through the
network was output = 0.8750. Assume that the actual value of the target attribute is
actual= 0.8 and that we will use a learning rate of 𝜂 = 0.01. Then the prediction error
equals 0.8 − 0.8750 = −0.075, and we may apply the foregoing rules to illustrate
how the back-propagation algorithm works to adjust the weights by portioning out
responsibility for this error to the various nodes. Although it is possible to update
the weights only after all records have been read, neural networks use stochastic (or
online) back-propagation, which updates the weights after each record.

First, the error responsibility 𝛿Z for node Z is found. Since node Z is an output
node, we have

𝛿Z = outputZ(1 − outputZ)(actualZ − outputZ)

= 0.8751(1 − 0.875)(0.8 − 0.875) = −0.0082

We may now adjust the “constant” weight W0Z (which transmits an “input”
of 1) using the back-propagation rules as follows:

ΔW0Z = 𝜂𝛿Z(1) = 0.1(−0.0082)(1) = −0.00082
w0Z,new = w0Z,current + Δw0Z = 0.5 − 0.00082 = 0.49918

Next, we move upstream to node A. Since node A is a hidden layer node, its
error responsibility is

𝛿A = outputA(1 − outputA)
∑

downstream

Wjk𝛿j

The only node downstream from node A is node Z. The weight associated with
this connection is WAZ = 0.9, and the error responsibility at node Z is −0.0082, so
that 𝛿A = 0.7892(1 − 0.7892)(0.9)(−0.0082) = −0.00123.
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We may now update weightWAZ using the back-propagation rules as follows:

ΔWAZ = 𝜂𝛿Z ⋅ outputA = 0.1(−0.0082)(0.7892) = −0.000647
wAZ,new = wAZ,current + ΔwAZ = 0.9 − 0.000647 = 0.899353

The weight for the connection between hidden layer node A and output layer
node Z has been adjusted from its initial value of 0.9 to its new value of 0.899353.

Next, we turn to node B, a hidden layer node, with error responsibility

𝛿B = outputB(1 − outputB)
∑

downstream

Wjk𝛿j

Again, the only node downstream from node B is node Z, giving us 𝛿B =
0.8176(1 –0.8176)(0.9)(–0.0082) = –0.0011.

WeightWBZ may then be adjusted using the back-propagation rules as follows:

ΔWBZ = 𝜂𝛿Z ⋅ outputB = 0.1(−0.0082)(0.8176) = −0.00067

wBZ,new = wBZ,current + ΔwBZ = 0.9 − 0.00067 = 0.89933

We move upstream to the connections being used as inputs to node A. For
weight W1A we have

ΔW1A = 𝜂𝛿Ax1 = 0.1(−0.00123)(0.4) = −0.0000492

w1A,new = w1A,current + Δw1A = 0.6 − 0.000492 = 0.5999508

For weight W2A we have

ΔW2A = 𝜂𝛿Ax2 = 0.1(−0.00123)(0.2) = −0.0000246

w2A,new = w2A,current + Δw2A = 0.8 − 0.0000246 = 0.7999754

For weight W3A we have

ΔW3A = 𝜂𝛿Ax3 = 0.1(−0.00123)(0.7) = −0.0000861

w3A,new = w3A,current + Δw3A = 0.6 − 0.0000861 = 0.5999139.

Finally, for weight W0A we have

ΔW0A = 𝜂𝛿A(1) = 0.1(−0.00123) = −0.000123

w0A,new = w0A,current + Δw0A = 0.5 − 0.000123 = 0.499877

Adjusting weights W0B, W1B, W2B, and W3B is left as an exercise.
Note that the weight adjustments have beenmade based on only a single perusal

of a single record. The network calculated a predicted value for the target variable,
compared this output value to the actual target value, and then percolated the error
in prediction throughout the network, adjusting the weights to provide a smaller
prediction error. Showing that the adjusted weights result in a smaller prediction
error is left as an exercise.
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9.6 TERMINATION CRITERIA

The neural network algorithm would then proceed to work through the training data
set, record by record, adjusting the weights constantly to reduce the prediction error.
It may take many passes through the data set before the algorithm’s termination
criterion is met. What, then, serves as the termination criterion, or stopping criterion?
If training time is an issue, one may simply set the number of passes through the
data, or the amount of real time the algorithm may consume, as termination criteria.
However, what one gains in short training time is probably bought with degradation
in model efficacy.

Alternatively, one may be tempted to use a termination criterion that assesses
when the SSE on the training data has been reduced to some low threshold level.
Unfortunately, because of their flexibility, neural networks are prone to overfitting,
memorizing the idiosyncratic patterns in the training set instead of retaining general-
izability to unseen data.

Therefore, most neural network implementations adopt the following cross-
validation termination procedure:

1. Retain part of the original data set as a holdout validation set.

2. Proceed to train the neural network as above on the remaining training data.

3. Apply the weights learned from the training data on the validation data.

4. Monitor two sets of weights, one “current” set of weights produced by the
training data, and one “best” set of weights, as measured by the lowest SSE so
far on the validation data.

5. When the current set of weights has significantly greater SSE than the best set
of weights, then terminate the algorithm.

Regardless of the stopping criterion used, the neural network is not guaranteed
to arrive at the optimal solution, known as the global minimum for the SSE. Rather,
the algorithm may become stuck in a local minimum, which represents a good, if not
optimal solution. In practice, this has not presented an insuperable problem.

� For example, multiple networks may be trained using different initialized
weights, with the best-performing model being chosen as the “final” model.

� Second, the online or stochastic back-propagation method itself acts as a guard
against getting stuck in a local minimum, since it introduces a random element
to the gradient descent (see Reed and Marks [2]).

� Alternatively, a momentum term may be added to the back-propagation algo-
rithm, with effects discussed below.

9.7 LEARNING RATE

Recall that the learning rate 𝜂, 0 < 𝜂 < 1, is a constant chosen to help us move the
network weights toward a global minimum for SSE. However, what value should 𝜂

take? How large should the weight adjustments be?
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When the learning rate is very small, the weight adjustments tend to be very
small. Thus, if 𝜂 is small when the algorithm is initialized, the network will probably
take an unacceptably long time to converge. Is the solution therefore to use large
values for 𝜂? Not necessarily. Suppose that the algorithm is close to the optimal
solution and we have a large value for 𝜂. This large 𝜂 will tend to make the algorithm
overshoot the optimal solution.

Consider Figure 9.5, where W∗ is the optimum value for weight W, which
has current value Wcurrent. According to the gradient descent rule, Δwcurrent =
−𝜂(𝜕SSE/𝜕wcurrent),Wcurrent will be adjusted in the direction ofW

∗. But if the learning
rate 𝜂, which acts as a multiplier in the formula for Δwcurrent, is too large, the new
weight valueWnew will jump right past the optimal valueW∗, and may in fact end up
farther away from W∗ than Wcurrent.

In fact, since the new weight value will then be on the opposite side of W∗,
the next adjustment will again overshoot W∗, leading to an unfortunate oscillation
between the two “slopes” of the valley and never settling down in the ravine (the
minimum). One solution is to allow the learning rate 𝜂 to change values as the
training moves forward. At the start of training, 𝜂 should be initialized to a relatively
large value to allow the network to quickly approach the general neighborhood of
the optimal solution. Then, when the network is beginning to approach convergence,
the learning rate should gradually be reduced, thereby avoiding overshooting the
minimum.

Figure 9.5 Large 𝜂 may cause algorithm to overshoot global minimum.

9.8 MOMENTUM TERM

The back-propagation algorithm is made more powerful through the addition of a
momentum term 𝛼, as follows:

Δwcurrent = −𝜂 𝜕SSE
𝜕wcurrent

+ 𝛼Δwprevious

whereΔwprevious represents the previous weight adjustment, and 0 ≤ 𝛼 < 1. Thus, the
new component 𝛼Δwprevious represents a fraction of the previous weight adjustment
for a given weight.
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Essentially, the momentum term represents inertia. Large values of 𝛼 will
influence the adjustment in the current weight,Δwcurrent, tomove in the same direction
as previous adjustments. It has been shown (e.g., Reed and Marks [2]) that including
momentum in the back-propagation algorithm results in the adjustment becoming an
exponential average of all previous adjustments:

Δwcurrent = −𝜂
∞∑
k=0

𝛼k
𝜕SSE

𝜕wcurrent-k

The 𝛼k term indicates that the more recent adjustments exert a larger influence.
Large values of 𝛼 allow the algorithm to “remember” more terms in the adjustment
history. Small values of 𝛼 reduce the inertial effects aswell as the influence of previous
adjustments, until, with 𝛼 = 0, the component disappears entirely.

Clearly, a momentum component will help to dampen the oscillations around
optimality mentioned earlier, by encouraging the adjustments to stay in the same
direction. But momentum also helps the algorithm in the early stages of the algo-
rithm, by increasing the rate at which the weights approach the neighborhood of
optimality. This is because these early adjustments will probably all be in the same
direction, so that the exponential average of the adjustments will also be in that
direction. Momentum is also helpful when the gradient of SSE with respect to w
is flat. If the momentum term 𝛼 is too large, however, the weight adjustments may
again overshoot the minimum, due to the cumulative influences of many previous
adjustments.

For an informal appreciation of momentum, consider Figures 9.6 and 9.7. In
both figures, the weight is initialized at location I, local minima exist at locations A
and C, with the optimal global minimum at B. In Figure 9.6, suppose that we have
a small value for the momentum term 𝛼, symbolized by the small mass of the “ball”
on the curve. If we roll this small ball down the curve, it may never make it over the
first hill, and remain stuck in the first valley. That is, the small value for 𝛼 enables the
algorithm to easily find the first trough at location A, representing a local minimum,
but does not allow it to find the global minimum at B.

Next, in Figure 9.7, suppose that we have a large value for the momentum term
𝛼, symbolized by the large mass of the “ball” on the curve. If we roll this large ball

Figure 9.6 Small momentum 𝛼 may cause algorithm to undershoot global minimum.
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Figure 9.7 Large momentum 𝛼 may cause algorithm to overshoot global minimum.

down the curve, it may well make it over the first hill but may then have so much
momentum that it overshoots the global minimum at location B and settles for the
local minimum at location C.

Thus, one needs to consider carefully what values to set for both the learning
rate 𝜂 and the momentum term 𝛼. Experimentation with various values of 𝜂 and 𝛼

may be necessary before the best results are obtained.

9.9 SENSITIVITY ANALYSIS

One of the drawbacks of neural networks is their opacity. The same wonderful
flexibility that allows neural networks to model a wide range of nonlinear behavior
also limits our ability to interpret the results using easily formulated rules. Unlike
decision trees, no straightforward procedure exists for translating the weights of a
neural network into a compact set of decision rules.

However, a procedure is available, called sensitivity analysis, which does
allow us to measure the relative influence each attribute has on the output result.
Using the test data set mentioned above, the sensitivity analysis proceeds as
follows:

1. Generate a new observation xmean, with each attribute value in xmean equal to
the mean of the various attribute values for all records in the test set.

2. Find the network output for input xmean. Call it outputmean.

3. Attribute by attribute, vary xmean to reflect the attributeminimumandmaximum.
Find the network output for each variation and compare it to outputmean.

The sensitivity analysis will find that varying certain attributes from their
minimum to their maximum will have a greater effect on the resulting network
output than it has for other attributes. For example, suppose that we are interested
in predicting stock price based on price–earnings ratio, dividend yield, and other
attributes. Also, suppose that varying price–earnings ratio from its minimum to
its maximum results in an increase of 0.20 in the network output, while varying
dividend yield from its minimum to its maximum results in an increase of 0.30 in the
network output when the other attributes are held constant at their mean value. We
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conclude that the network is more sensitive to variations in dividend yield and that
therefore dividend yield is a more important factor for predicting stock prices than is
price–earnings ratio.

9.10 APPLICATION OF NEURAL NETWORK MODELING

Next, we apply a neural network model using Insightful Miner on the same adult
data set [3] from the UC Irvine Machine Learning Repository that we analyzed in
Chapter 8. The Insightful Miner neural network software was applied to a training set
of 25,000 cases, using a single hidden layer with eight hidden nodes. The algorithm
iterated 47 epochs (runs through the data set) before termination. The resulting neural
network is shown in Figure 9.8. The squares on the left represent the input nodes.
For the categorical variables, there is one input node per class. The eight dark circles
represent the hidden layer. The light gray circles represent the constant inputs. There
is only a single output node, indicating whether or not the record is classified as
having income less than or equal to $50,000.

Figure 9.8 Neural network for the adult data set generated by Insightful Miner.
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In this algorithm, the weights are centered at zero. An excerpt of the computer
output showing the weight values is provided in Figure 9.9. The columns in the first
table represent the input nodes: 1 = age, 2 = education-num, and so on, while the
rows represent the hidden layer nodes: 22 = first (top) hidden node, 23 = second
hidden node, and so on. For example, the weight on the connection from age to
the topmost hidden node is −0.97, while the weight on the connection from Race:
American Indian/Eskimo (the sixth input node) to the last (bottom) hidden node is
−0.75. The lower section of Figure 9.9 displays the weights from the hidden nodes
to the output node.

The estimated prediction accuracy using this very basic model is 82%, which
is in the ballpark of the accuracies reported by Kohavi [4]. Since over 75% of the
subjects have incomes at or below $50,000, simply predicted “less than or equal to
$50,000” for every person would provide a baseline accuracy of about 75%.

However, wewould like to knowwhich variables aremost important for predict-
ing (classifying) income. We therefore perform a sensitivity analysis using Modeler,
with results shown in Figure 9.10. Clearly, the amount of capital gains is the best
predictor of whether a person has income less than or equal to $50,000, followed by
the number of years of education. Other important variables include the number of
hours worked per week and marital status. A person’s gender does not seem to be
highly predictive of income.

Figure 9.9 Some of the neural network weights for the income example.
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Figure 9.10 Most important variables: results from sensitivity analysis.

Of course, there is much more involved with developing a neural network
classification model. For example, further data preprocessing may be called for; the
model would need to be validated using a holdout validation data set, and so on.

THE R ZONE

# Install package needed for this chapter

install.packages("neuralnet")
library(neuralnet)

# Read in the data, shrink the data set to 500 records for a brief example

dat <- read.csv(file = "C:/ . . . /adult.txt",
stringsAsFactors=TRUE)

newdat <- dat[1:500,]
# Combine factor labels as in Chapter 8
levels(newdat$marital.status)[2:4] <- "Married"
levels(newdat$workclass)[c(2,3,8)] <- "Gov"
levels(newdat$workclass)[c(5, 6)] <- "Self"

# Determine how many Indicator variables are needed

unique(newdat$income) # One variable for income
unique(newdat$sex) # One variable for sex
unique(newdat$race) # Four variables for race
unique(newdat$workclass) # Three variables for workclass
unique(newdat$marital.status) # Four variables for marital.status
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# Declare, assign indicator variables

newdat$race_white <- newdat$race_black <- newdat$race_as.pac.is <-
newdat$race_am.in.esk <- newdat$wc_gov <- newdat$wc_self <- newdat$wc_priv <-
newdat$ms_marr <- newdat$ms_div <- newdat$ms_sep <- newdat$ms_wid <-
newdat$income2 <- newdat$sex2 <- c(rep(0, length(newdat$income)))

for (i in 1:length(newdat$income)) {
if(newdat$income[i]!="<=50K.")

newdat$income2[i]<-1
if(newdat$sex[i] == "Male")

newdat$sex2[i] <- 1
if(newdat$race[i] == "White") newdat$race_white[i] <- 1
if(newdat$race[i] == "Amer-Indian-Eskimo") newdat$race_am.in.esk[i] <- 1
if(newdat$race[i] == "Asian-Pac-Islander") newdat$race_as.pac.is[i] <- 1
if(newdat$race[i] == "Black") newdat$race_black[i] <- 1
if(newdat$workclass[i] == "Gov") newdat$wc_gov[i] <- 1
if(newdat$workclass[i] == "Self") newdat$wc_self[i] <- 1
if(newdat$workclass[i] == "Private" ) newdat$wc_priv[i] <- 1
if(newdat$marital.status[i] == "Married") newdat$ms_marr[i] <- 1
if(newdat$marital.status[i] == "Divorced" ) newdat$ms_div[i] <- 1
if(newdat$marital.status[i] == "Separated" ) newdat$ms_sep[i] <- 1
if(newdat$marital.status[i] == "Widowed" ) newdat$ms_wid[i] <- 1

}

# To use the R package neuralnet, all variables must be of type Numeric or Complex

# Check the variable types.
class(newdat$age); class(newdat$education.num); class(newdat$capital.gain);

class(newdat$capital.loss); class(newdat$hours.per.week)
# Change these Integer types to Numeric types
newdat$age <- as.numeric(newdat$age)
newdat$education.num <- as.numeric(newdat$education.num)
newdat$capital.gain <- as.numeric(newdat$capital.gain)
newdat$capital.loss <- as.numeric(newdat$capital.loss)
newdat$hours.per.week <- as.numeric(newdat$hours.per.week)
# Check the rest of the variables
class(newdat$income2); class(newdat$sex2)
class(newdat$wc_priv); class(newdat$wc_gov); class(newdat$wc_self)
class(newdat$race_am.in.esk); class(newdat$race_as.pac.is); class(newdat$race_black);

class(newdat$race_white)
class(newdat$ms_div); class(newdat$ms_sep); class(newdat$ms_wid); class(newdat$ms_marr)
# These do not need to be changed
# Delete the variables we don’t need
newdat <- newdat[,-c(2, 3, 4, 6, 7, 8, 9, 10, 14, 15)]
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# Run the neural net package

# Code may take some minutes to run
print(net.dat <- neuralnet(formula =

income2 ∼ age + education.num + sex2 +
race_am.in.esk + race_as.pac.is +
race_black + race_white + capital.gain +
capital.loss + hours.per.week +
ms_div + ms_sep + ms_wid + ms_marr +
wc_priv + wc_gov + wc_self,
data = newdat,
rep = 10,
hidden = 8,
linear.output=FALSE))

# Note: If the package fails to converge,
# run the same lines again.
plot(net.dat, show.weights = FALSE)

# Show the weights

net.dat$weights
# In the first matrix,
# rows represent the 17
# input variables and one
# constant, while columns
# represent 8 hidden nodes.

# In the second matrix,
# rows represent the 8
# hidden nodes and one
# constant input, while the
# column represents the
# single output, income2.
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EXERCISES

1. Suppose that you need to prepare the data in Table 6.10 for a neural network algorithm.
Define the indicator variables for the occupation attribute.

2. Clearly describe each of these characteristics of a neural network:

a. Layered

b. Feedforward

c. Completely connected

3. What is the sole function of the nodes in the input layer?

4. Should we prefer a large hidden layer or a small one? Describe the benefits and drawbacks
of each.

5. Describe how neural networks function nonlinearly.

6. Explain why the updating term for the current weight includes the negative of the sign of
the derivative (slope).

7. Adjust the weightsW0B,W1B,W2B, andW3B from the example on back-propagation in the
text.

8. Refer to Exercise 7. Show that the adjusted weights result in a smaller prediction error.

9. True or false: Neural networks are valuable because of their capacity for always finding
the global minimum of the SSE.

10. Describe the benefits and drawbacks of using large or small values for the learning rate.

11. Describe the benefits and drawbacks of using large or small values for the momentum
term.

HANDS-ON ANALYSIS

For Exercises 12–14, use the data set churn. Normalize the numerical data, recode the cate-
gorical variables, and deal with the correlated variables.

12. Generate a neural network model for classifying churn based on the other variables.
Describe the topology of the model.

13. Which variables, in order of importance, are identified as most important for classifying
churn?



208 CHAPTER 9 NEURAL NETWORKS

14. Compare the neural network model with the CART and C4.5 models for this task in
Chapter 6. Describe the benefits and drawbacks of the neural network model compared to
the others. Is there convergence or divergence of results among the models?

For Exercises 15–17, use the ClassifyRisk data set.

15. Run an NNmodel predicting income based only on age. Use the default settings and make
sure there is one hidden layer with one neuron.

16. Consider the following quantity: (weight for Age-to-Neuron1) + (weight for Bias-to-
Neuron1) ∗ (weight for Neuron 1-to-Output node). Explain whether this makes sense,
given the data, and why.

17. Make sure the target variable takes the flag type. Compare the sign of (weight for Age-
to-Neuron1) + (weight for Bias-to-Neuron1) ∗ (weight for Neuron 1-to-Output node) for
the good risk output node, as compared to the bad loss output node. Explain whether this
makes sense, given the data, and why.

IBM/SPSS Modeler Analysis. For Exercises 18–19, use the nn1 data set.

18. Set your neural network build options as follows: Use a Multilayer Perceptron and cus-
tomize number of units in Hidden Layer 1 to be 1 and Hidden Layer 2 to be 0. For Stopping
Rules, select ONLY Customize number of maximum training cycles. Start at 1 and go to
about 20. For Advanced, deselect Replicate Results.

19. Browse yourmodel. In theNetworkwindowof theModel tab, select the Style: Coefficients.
Record the Pred1-to-Neuron1 weight and the Pred2-to-Neuron1 weight for each run.
Describe the behavior of these weights. Explain why this is happening. �
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10.1 THE CLUSTERING TASK

Clustering refers to the grouping of records, observations, or cases into classes of
similar objects. A cluster is a collection of records that are similar to one another and
dissimilar to records in other clusters. Clustering differs from classification in that
there is no target variable for clustering. The clustering task does not try to classify,
estimate, or predict the value of a target variable. Instead, clustering algorithms seek
to segment the entire data set into relatively homogeneous subgroups or clusters,

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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where the similarity of the records within the cluster is maximized, and the similarity
to records outside this cluster is minimized.

For example, the Nielsen PRIZM segments, developed by Claritas, Inc., repre-
sent demographic profiles of each geographic area in the United States, in terms of
distinct lifestyle types, as defined by zip code. For example, the clusters identified
for zip code 90210, Beverly Hills, California, are

� Cluster # 01: Upper Crust Estates
� Cluster # 03: Movers and Shakers
� Cluster # 04: Young Digerati
� Cluster # 07: Money and Brains
� Cluster # 16: Bohemian Mix

The description for Cluster # 01: Upper Crust is “The nation’s most exclusive address,
Upper Crust is the wealthiest lifestyle in America, a Haven for empty-nesting couples
between the ages of 45 and 64. No segment has a higher concentration of residents
earning over $100,000 a year and possessing a postgraduate degree. And none has a
more opulent standard of living.”

Examples of clustering tasks in business and research include

� Target marketing of a niche product for a small-capitalization business that
does not have a large marketing budget

� For accounting auditing purposes, to segment financial behavior into benign
and suspicious categories

� As a dimension-reduction tool when a data set has hundreds of attributes
� For gene expression clustering, where very large quantities of genesmay exhibit
similar behavior

Clustering is often performed as a preliminary step in a data mining process,
with the resulting clusters being used as further inputs into a different technique
downstream, such as neural networks. Due to the enormous size of many present-day
databases, it is often helpful to apply clustering analysis first, to reduce the search
space for the downstream algorithms. In this chapter, after a brief look at hierarchi-
cal clustering methods, we discuss in detail k-means clustering; in Chapter 11, we
examine clustering using Kohonen networks, a structure related to neural networks.

Cluster analysis encounters many of the same issues that we dealt within the
chapters on classification. For example, we shall need to determine

� How to measure similarity
� How to recode categorical variables
� How to standardize or normalize numerical variables
� How many clusters we expect to uncover

For simplicity, in this book, we concentrate on Euclidean distance between
records:

dEuclidean(x, y) =
√∑

i

(xi − yi)2
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where x = x1, x2,… , xm and y = y1, y2,… , ym represent them attribute values of two
records. Of course, many other metrics exist, such as city-block distance:

dcityblock(x, y) =
∑
i

|xi − yi|
orMinkowski distance, which represents the general case of the foregoing twometrics
for a general exponent q:

dMinkowski(x, y) =
∑
i

|xi − yi|q
For categorical variables, we may again define the “different from” function

for comparing the ith attribute values of a pair of records:

different(xi, yi) =
{
0 if xi = yi
1 otherwise

where xi and yi are categorical values. We may then substitute different (xi, yi) for the
ith term in the Euclidean distance metric above.

For optimal performance, clustering algorithms, just like algorithms for classi-
fication, require the data to be normalized so that no particular variable or subset of
variables dominates the analysis. Analysts may use either themin-max normalization
or Z-score standardization, discussed in earlier chapters:

Min-max normalization: X∗ = X − min(X)
Range(X)

Z-score standardization: X∗ = X −mean(X)
SD(X)

All clustering methods have as their goal the identification of groups of records
such that similarity within a group is very high while the similarity to records in other
groups is very low. In other words, as shown in Figure 10.1, clustering algorithms
seek to construct clusters of records such that the between-cluster variation is large

Figure 10.1 Clusters should have small within-cluster variation compared to the between-
cluster variation.
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compared to the within-cluster variation. This is somewhat analogous to the concept
behind analysis of variance.

10.2 HIERARCHICAL CLUSTERING METHODS

Clustering algorithms are either hierarchical or nonhierarchical. In hierarchical clus-
tering, a treelike cluster structure (dendrogram) is created through recursive partition-
ing (divisive methods) or combining (agglomerative) of existing clusters. Agglomer-
ative clustering methods initialize each observation to be a tiny cluster of its own.
Then, in succeeding steps, the two closest clusters are aggregated into a new com-
bined cluster. In this way, the number of clusters in the data set is reduced by one at
each step. Eventually, all records are combined into a single huge cluster. Divisive
clustering methods begin with all the records in one big cluster, with the most dis-
similar records being split off recursively, into a separate cluster, until each record
represents its own cluster. Because most computer programs that apply hierarchical
clustering use agglomerative methods, we focus on those.

Distance between records is rather straightforward once appropriate recoding
and normalization have taken place. But how do we determine distance between
clusters of records? Should we consider two clusters to be close if their nearest
neighbors are close or if their farthest neighbors are close? How about criteria that
average out these extremes?

We examine several criteria for determining distance between arbitrary clusters
A and B:

� Single linkage, sometimes termed the nearest-neighbor approach, is based on
the minimum distance between any record in cluster A and any record in cluster
B. In other words, cluster similarity is based on the similarity of themost similar
members from each cluster. Single linkage tends to form long, slender clusters,
which may sometimes lead to heterogeneous records being clustered together.

� Complete linkage, sometimes termed the farthest-neighbor approach, is based
on the maximum distance between any record in cluster A and any record in
cluster B. In other words, cluster similarity is based on the similarity of the
most dissimilar members from each cluster. Complete-linkage tends to form
more compact, sphere-like clusters, with all records in a cluster within a given
diameter of all other records.

� Average linkage is designed to reduce the dependence of the cluster-linkage
criterion on extreme values, such as the most similar or dissimilar records.
In average linkage, the criterion is the average distance of all the records in
cluster A from all the records in cluster B. The resulting clusters tend to have
approximately equal within-cluster variability.

Let us examine how these linkage methods works, using the following small,
one-dimensional data set:

2 5 9 15 16 18 25 33 33 45
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10.3 SINGLE-LINKAGE CLUSTERING

Suppose that we are interested in using single-linkage agglomerative clustering on
this data set. Agglomerative methods start by assigning each record to its own cluster.
Then, single linkage seeks theminimum distance between any records in two clusters.
Figure 10.2 illustrates how this is accomplished for this data set. Theminimum cluster
distance is clearly between the single-record clusters which each contain the value 33,
for which the distance must be zero for any valid metric. Thus, these two clusters are
combined into a new cluster of two records, both of value 33, as shown in Figure 10.2.
Note that, after step 1, only nine (n – 1) clusters remain. Next, in step 2, the clusters
containing values 15 and 16 are combined into a new cluster, since their distance of
1 is the minimum between any two clusters remaining.

Here are the remaining steps:
� Step 3: The cluster containing values 15 and 16 (cluster {15, 16}) is combined
with cluster {18}, since the distance between 16 and 18 (the closest records in
each cluster) is two, the minimum among remaining clusters.

� Step 4: Clusters {2} and {5} are combined.
� Step 5: Cluster {2, 5} is combined with cluster {9}, since the distance between
5 and 9 (the closest records in each cluster) is 4, the minimum among remaining
clusters.

� Step 6:Cluster {2, 5, 9} is combinedwith cluster {15, 16, 18}, since the distance
between 9 and 15 is 6, the minimum among remaining clusters.

� Step 7: Cluster {2, 5, 9, 15, 16, 18} is combined with cluster {25}, since the
distance between 18 and 25 is 7, the minimum among remaining clusters.

� Step 8: Cluster {2, 5, 9, 15, 16, 18, 25} is combined with cluster {33, 33}, since
the distance between 25 and 33 is 8, the minimum among remaining clusters.

� Step 9: Cluster {2, 5, 9, 15, 16, 18, 25, 33, 33} is combined with cluster {45}.
This last cluster now contains all the records in the data set.

Figure 10.2 Single-linkage agglomerative clustering on the sample data set.
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10.4 COMPLETE-LINKAGE CLUSTERING

Next, let us examine whether using the complete-linkage criterion would result in
a different clustering of this sample data set. Complete linkage seeks to minimize
the distance among the records in two clusters that are farthest from each other.
Figure 10.3 illustrates complete-linkage clustering for this data set.

� Step 1: Since each cluster contains a single record only, there is no difference
between single linkage and complete linkage at step 1. The two clusters each
containing 33 are again combined.

� Step 2: Just as for single linkage, the clusters containing values 15 and 16 are
combined into a new cluster. Again, this is because there is no difference in the
two criteria for single-record clusters.

� Step 3: At this point, complete linkage begins to diverge from its predecessor.
In single linkage, cluster {15, 16} was at this point combined with cluster {18}.
But complete linkage looks at the farthest neighbors, not the nearest neighbors.
The farthest neighbors for these two clusters are 15 and 18, for a distance of
3. This is the same distance separating clusters {2} and {5}. The complete-
linkage criterion is silent regarding ties, so we arbitrarily select the first such
combination found, therefore combining the clusters {2} and {5} into a new
cluster.

� Step 4: Now cluster {15, 16} is combined with cluster {18}.
� Step 5: Cluster {2, 5} is combined with cluster {9}, since the complete-linkage
distance is 7, the smallest among remaining clusters.

� Step 6:Cluster {25} is combinedwith cluster {33, 33}, with a complete-linkage
distance of 8.

� Step 7:Cluster {2, 5, 9} is combined with cluster {15, 16, 18}, with a complete-
linkage distance of 16.

� Step 8: Cluster {25, 33, 33} is combined with cluster {45}, with a complete-
linkage distance of 20.

� Step 9: Cluster {2, 5, 9, 15, 16, 18} is combined with cluster {25, 33, 33, 45}.
All records are now contained in this last large cluster.

Figure 10.3 Complete-linkage agglomerative clustering on the sample data set.
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Finally, with average linkage, the criterion is the average distance of all the
records in cluster A from all the records in cluster B. Since the average of a single
record is the record’s value itself, this method does not differ from the earlier meth-
ods in the early stages, where single-record clusters are being combined. At step 3,
average linkage would be faced with the choice of combining clusters {2} and {5}, or
combining the {15, 16} cluster with the single-record {18} cluster. The average dis-
tance between the {15, 16} cluster and the {18} cluster is the average of |18 − 15| and|18 − 16|, which is 2.5, while the average distance between clusters {2} and {5} is of
course 3. Therefore, average linkage would combine the {15, 16} cluster with cluster
{18} at this step, followed by combining cluster {2} with cluster {5}. The reader
may verify that the average-linkage criterion leads to the same hierarchical structure
for this example as the complete-linkage criterion. In general, average linkage leads
to clusters more similar in shape to complete linkage than does single linkage.

10.5 k-MEANS CLUSTERING

The k-means clustering algorithm [1] is a straightforward and effective algorithm for
finding clusters in data. The algorithm proceeds as follows:

� Step 1: Ask the user how many clusters k the data set should be partitioned
into.

� Step 2: Randomly assign k records to be the initial cluster center locations.
� Step 3: For each record, find the nearest cluster center. Thus, in a sense, each
cluster center “owns” a subset of the records, thereby representing a partition
of the data set. We therefore have k clusters, C1,C2,… ,Ck.

� Step 4: For each of the k clusters, find the cluster centroid, and update the
location of each cluster center to the new value of the centroid.

� Step 5: Repeat steps 3 to 5 until convergence or termination.

The “nearest” criterion in step 3 is usually Euclidean distance, although other
criteria may be applied as well. The cluster centroid in step 4 is found as follows.
Suppose that we have n data points (a1, b1, c1), (a2, b2, c2),… , (an, bn, cn), the cen-
troid of these points is the center of gravity of these points and is located at point
(
∑
ai∕n,

∑
bi∕n,

∑
ci∕n). For example, the points (1,1,1), (1,2,1), (1,3,1), and (2,1,1)

would have centroid(1 + 1 + 1 + 2
4

,
1 + 2 + 3 + 1

4
,
1 + 1 + 1 + 1

4

)
= (1.25, 1.75, 1.00)

The algorithm terminates when the centroids no longer change. In other words,
the algorithm terminates when for all clusters C1,C2,… ,Ck, all the records “owned”
by each cluster center remain in that cluster. Alternatively, the algorithm may termi-
nate when some convergence criterion is met, such as no significant shrinkage in the
mean squared error (MSE):

MSE = SSE
N − k

=
∑k
i=1

∑
p∈Ci d(p,mi)

2

N − k
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where SSE represents the sum of squares error, p ∈ Ci represents each data point
in cluster i, mi represents the centroid (cluster center) of cluster i, N is the total
sample size, and k is the number of clusters. Recall that clustering algorithms seek to
construct clusters of records such that the between-cluster variation is large compared
to the within-cluster variation. Because this concept is analogous to the analysis of
variance, we may define a pseudo-F statistic as follows:

Fk−1,N−k =
MSB
MSE

=
SSB∕k − 1

SSE∕N − k

where SSE is defined as above, MSB is the mean square between, and SSB is the
sum of squares between clusters, defined as

SSB =
k∑
i=1

ni ⋅ d(mi,M)2

where ni is the number of records in cluster i, mi is the centroid (cluster center) for
cluster i, and M is the grand mean of all the data.

MSB represents the between-cluster variation and MSE represents the within-
cluster variation. Thus a “good” cluster would have a large value of the pseudo-F
statistic, representing a situation where the between-cluster variation is large com-
pared to the within-cluster variation. Hence, as the k-means algorithm proceeds, and
the quality of the clusters increases, we would expect MSB to increase, MSE to
decrease, and F to increase.

10.6 EXAMPLE OF k-MEANS CLUSTERING AT WORK

Let us examine an example of how the k-means algorithm works. Suppose that we
have the eight data points in two-dimensional space shown in Table 10.1 and plotted
in Figure 10.4 and are interested in uncovering k = 2 clusters.

Let us apply the k-means algorithm step by step.

� Step 1: Ask the user how many clusters k the data set should be partitioned
into. We have already indicated that we are interested in k = 2 clusters.

� Step 2: Randomly assign k records to be the initial cluster center locations. For
this example, we assign the cluster centers to be m1 = (1,1) and m2 = (2,1).

� Step 3 (first pass): For each record, find the nearest cluster center. Table 10.2
contains the (rounded) Euclidean distances between each point and each cluster
center m1 = (1,1) and m2 = (2,1), along with an indication of which cluster
center the point is nearest to. Therefore, cluster 1 contains points {a, e, g}, and
cluster 2 contains points {b, c, d, f , h}.

TABLE 10.1 Data points for k-means example

A b c d E f g h
(1,3) (3,3) (4,3) (5,3) (1,2) (4,2) (1,1) (2,1)
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Figure 10.4 How will k-means partition these data into k = 2 clusters?

� Step 4 (first pass): For each of the k clusters find the cluster centroid and update
the location of each cluster center to the new value of the centroid. The centroid
for cluster 1 is [(1 + 1 + 1)/3, (3 + 2 + 1)/3] = (1,2). The centroid for cluster
2 is [(3 + 4 + 5 + 4 + 2)/5, (3 + 3 + 3 + 2 + 1)/5] = (3.6, 2.4). The clusters
and centroids (triangles) at the end of the first pass are shown in Figure 10.5.
Note that m1 has moved up to the center of the three points in cluster 1, while
m2 has moved up and to the right a considerable distance, to the center of the
five points in cluster 2.

� Step 5: Repeat steps 3 and 4 until convergence or termination. The centroids
have moved, so we go back to step 3 for our second pass through the algorithm.

� Step 3 (second pass): For each record, find the nearest cluster center. Table 10.3
shows the distances between each point and each updated cluster center m1 =
(1,2) andm2 = (3.6, 2.4), together with the resulting cluster membership. There
has been a shift of a single record (h) from cluster 2 to cluster 1. The relatively
large change in m2 has left record h now closer to m1 than to m2, so that record
h now belongs to cluster 1. All other records remain in the same clusters as
previously. Therefore, cluster 1 is {a, e, g, h}, and cluster 2 is {b, c, d, f}.

� Step 4 (second pass): For each of the k clusters, find the cluster centroid and
update the location of each cluster center to the new value of the centroid. The

TABLE 10.2 Finding the nearest cluster center for each record (first pass)

Point Distance from m1 Distance from m2 Cluster Membership

a 2.00 2.24 C1

b 2.83 2.24 C2

c 3.61 2.83 C2

d 4.47 3.61 C2

e 1.00 1.41 C1

f 3.16 2.24 C2

g 0.00 1.00 C1

h 1.00 0.00 C2
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Figure 10.5 Clusters and centroids Δ after first pass through k-means algorithm.

new centroid for cluster 1 is [(1 + 1 + 1 + 2)/4, (3 + 2 + 1 + 1)/4] = (1.25,
1.75). The new centroid for cluster 2 is [(3 + 4 + 5 + 4)/4, (3 + 3 + 3 + 2)/4]
= (4, 2.75). The clusters and centroids at the end of the second pass are shown
in Figure 10.6. Centroids m1 and m2 have both moved slightly.

� Step 5: Repeat steps 3 and 4 until convergence or termination. Since the cen-
troids have moved, we once again return to step 3 for our third (and as it turns
out, final) pass through the algorithm.

� Step 3 (third pass): For each record, find the nearest cluster center. Table 10.4
shows the distances between each point and each newly updated cluster center
m1 = (1.25, 1.75) and m2 = (4, 2.75), together with the resulting cluster
membership. Note that no records have shifted cluster membership from the
preceding pass.

� Step 4 (third pass):For each of the k clusters, find the cluster centroid and update
the location of each cluster center to the new value of the centroid. Since no
records have shifted cluster membership, the cluster centroids therefore also
remain unchanged.

� Step 5: Repeat steps 3 and 4 until convergence or termination. Since the cen-
troids remain unchanged, the algorithm terminates.

TABLE 10.3 Finding the nearest cluster center for each record (second pass)

Point Distance from m1 Distance from m2 Cluster Membership

a 1.00 2.67 C1

b 2.24 0.85 C2

c 3.16 0.72 C2

d 4.12 1.52 C2

e 0.00 2.63 C1

f 3.00 0.57 C2

g 1.00 2.95 C1

h 1.41 2.13 C1
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Figure 10.6 Clusters and centroids Δ after second pass through k-means algorithm.

TABLE 10.4 Finding the nearest cluster center for each record (third pass)

Point Distance from m1 Distance from m2 Cluster Membership

a 1.27 3.01 C1

b 2.15 1.03 C2

c 3.02 0.25 C2

d 3.95 1.03 C2

e 0.35 3.09 C1

f 2.76 0.75 C2

g 0.79 3.47 C1

h 1.06 2.66 C2

10.7 BEHAVIOR OF MSB, MSE, AND PSEUDO-F AS THE
k-MEANS ALGORITHM PROCEEDS

Let us observe the behavior of these statistics after step 4 of each pass.

First pass:

SSB =
k∑
i=1

nid(mi,M)2 = 3d((1, 2), (2.625, 2.25))2 + 5d((3.6, 2.4), (2.625, 2.25))2

= 12.975

MSB = SSB
k − 1

= 12.975
2 − 1

= 12.975

SSE =
k∑
i=1

∑
p𝜀Ci

d(p,mi)
2

= 22 + 2.242 + 2.832 + 3.612 + 12 + 2.242 + 02 + 02 = 36

MSE = SSE
N − k

= 36
6

= 6

F = MSB
MSE

= 12.975
6

= 2.1625



220 CHAPTER 10 HIERARCHICAL AND k-MEANS CLUSTERING

In general, we would expect MSB to increase, MSE to decrease, and F to increase,
and such is the case. The calculations are left as an exercise.

Second pass: MSB = 17.125, MSE = 1.313333, F = 13.03934.

Third pass: MSB = 17.125, MSE = 1.041667, F = 16.44.

These statistics indicate that we have achieved the maximum between-cluster varia-
tion (as measured by MSB), compared to the within-cluster variation (as measured
by MSE).

Note that the k-means algorithm cannot guarantee finding the global maximum
pseudo-F statistic, instead often settling at a local maximum. To improve the prob-
ability of achieving a global minimum, the analyst may consider using a variety of
initial cluster centers. Moore [2] suggests (1) placing the first cluster center on a
random data point and (2) placing the subsequent cluster centers on points as far
away from previous centers as possible.

One potential problem for applying the k-means algorithm: Who decides how
many clusters to search for? That is, who decides k? Unless the analyst has a priori
knowledge of the number of underlying clusters, therefore, an “outer loop” should
be added to the algorithm, which cycles through various promising values of k.
Clustering solutions for each value of k can therefore be compared, with the value
of k resulting in the largest F statistic being selected. Alternatively, some clustering
algorithms, such as the BIRCH clustering algorithm, can select the optimal number
of clusters.1

What if some attributes are more relevant than others to the problem for-
mulation? Since cluster membership is determined by distance, we may apply the
same axis-stretching methods for quantifying attribute relevance that we discussed in
Chapter 7. In Chapter 11, we examine another common clustering method, Kohonen
networks, which are related to artificial neural networks in structure.

10.8 APPLICATION OF k-MEANS CLUSTERING USING
SAS ENTERPRISE MINER

Next, we turn to the powerful SAS Enterpriser Miner 3] software for an application
of the k-means algorithm on the churn data set from Chapter 3 (available at the book
series website; also available from http://www.sgi.com/tech/mlc/db/). Recall that
the data set contains 20 variables worth of information about 3333 customers, along
with an indication of whether or not that customer churned (left the company).

The following variables were passed to the Enterprise Miner clustering node:

� Flag (0/1) variables
� International Plan and VoiceMail Plan

1For more on BIRCH clustering, seeData Mining and Predictive Analytics, by Daniel Larose and Chantal
Larose, John Wiley and Sons, 2015, to appear.
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� Numerical variables
� Account length, voice mail messages, day minutes, evening minutes, night
minutes, international minutes, and customer service calls,

� After applying min-max normalization to all numerical variables.

The Enterprise Miner clustering node uses SAS’s FASTCLUS procedure, a
version of the k-means algorithm. The number of clusters was set to k = 3. The
three clusters uncovered by the algorithm varied greatly in size, with tiny cluster 1
containing 92 records, large cluster 2 containing 2411 records, and medium-sized
cluster 3 containing 830 records.

Some basic cluster profiling will help us to learn about the types of records
falling into each cluster. Figure 10.7 provides a look at the clustering resultswindowof
EnterpriseMiner, containing a pie chart profile of the International Planmembership
across the three clusters. All members of cluster 1, a fraction of themembers of cluster
2, and no members of cluster 3 have adopted the International Plan. Note that the
left most pie chart represents all records, and is similar to cluster 2.

Next, Figure 10.8 illustrates the proportion of VoiceMail Plan adopters in
each cluster. (Note the confusing color reversal for yes/no responses.) Remarkably,
clusters 1 and 3 contain only VoiceMail Plan adopters, while cluster 2 contains only
nonadopters of the plan. In other words, this field was used by the k-means algorithm

1

Cluster ID

_ALL_

Intl Plan

no yes

2 3

Figure 10.7 Enterprise Miner profile of International Plan adopters across clusters.

1

Cluster ID

_ALL_

VMail Plan

no yes

2 3

Figure 10.8 VoiceMail Plan adopters and nonadopters are mutually exclusive.
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to create a “perfect” discrimination, dividing the data set perfectly among adopters
and nonadopters of the International Plan.

It is clear from these results that the algorithm is relying heavily on the cat-
egorical variables to form clusters. The comparison of the means of the numerical
variables across the clusters in Table 10.5 shows relatively little variation, indicating
that the clusters are similar across these dimensions. Figure 10.9, for example, illus-
trates that the distribution of customer service calls (normalized) is relatively similar
in each cluster. If the analyst is not comfortable with this domination of the clustering
by the categorical variables, he or she can choose to stretch or shrink the appropriate
axes, as mentioned earlier, which will help to adjust the clustering algorithm to a
more suitable solution.

The clusters may therefore be summarized, using only the categorical variables,
as follows:

� Cluster 1: Sophisticated Users. A small group of customers who have adopted
both the International Plan and the VoiceMail Plan.

TABLE 10.5 Comparison of variable means across clusters shows little variation

Cluster Freq. AcctLength_m VMailMessage DayMins_mm

1 92 0.4340639598 0.5826939471 0.5360015616
2 2411 0.4131940041 0 0.5126334451
3 830 0.4120730857 0.5731159934 0.5093940185

Cluster EveMins_mm NightMins_mm IntMins_mm CustServCalls

1 0.5669029659 0.4764366069 0.5467934783 0.1630434783
2 0.5507417372 0.4773586813 0.5119784322 0.1752615328
3 0.5564095259 0.4795138596 0.5076626506 0.1701472557

1_ALL_
0
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Cluster ID
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Figure 10.9 Distribution of customer service calls is similar across clusters.
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� Cluster 2: The Average Majority. The largest segment of the customer base,
some of whom have adopted the VoiceMail Plan but none of whom have
adopted the International Plan.

� Cluster 3: Voice Mail Users. A medium-sized group of customers who have all
adopted the VoiceMail Plan but not the International Plan.

10.9 USING CLUSTER MEMBERSHIP TO
PREDICT CHURN

Suppose, however, that we would like to apply these clusters to assist us in the churn
classification task. We may compare the proportions of churners directly among the
various clusters, using graphs such as Figure 10.10. Here we see that overall (the
leftmost column of pie charts), the proportion of churners is much higher among
those who have adopted the International Plan than among those who have not. This
finding was uncovered in Chapter 3. Note that the churn proportion is higher in cluster
1, which contains International Plan adopters, than in cluster 2, which contains a
mixture of adopters and nonadopters, and higher still than cluster 3, which contains
no such adopters of the International Plan. Clearly, the company should look at the
plan to see why the customers who have it are leaving the company at a higher rate.

Now, since we know from Chapter 3 that the proportion of churners is lower
among adopters of the VoiceMail Plan, we would expect that the churn rate for
cluster 3 would be lower than for the other clusters. This expectation is confirmed in
Figure 10.11.

1

Cluster ID

_ALL_

Churn?

False.

no

yes

Intl Plan

True.

2 3

Figure 10.10 Churn behavior across clusters for International Plan adopters and nonadopters.
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1

Cluster ID

_ALL_

Churn?
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VMail Plan
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2 3

Figure 10.11 Churn behavior across clusters for VoiceMail Plan adopters and nonadopters.

In Chapter 11, we explore using cluster membership as input to downstream
data mining models.

THE R ZONE

# Single-Linkage Clustering

agn <- agnes(data,
diss = FALSE,
stand = FALSE,
method = "single")

# Make and plot the dendrogram
dend_agn <- as.dendrogram(agn)
plot(dend_agn,

xlab = "Index of Data Points",
ylab = "Steps",
main = "Single-Linkage Clustering")
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# Install the required package

install.packages("cluster")
library(cluster)

# Create the data

data <- c(2, 5, 9, 15, 16, 18, 25, 33, 33, 45)

# Complete-Linkage Clustering

agn_complete <- agnes(data,
diss = FALSE,
stand = FALSE,
method = "complete")

# Make and plot the dendrogram
dend_agn_complete <-

as.dendrogram(agn_complete)
plot(dend_agn_complete,

xlab = "Index of Data Points",
ylab = "Steps",
main = "Complete-Linkage Clustering")

# K-Means clustering

# Create the data matrix
# from Table 10.1
a <- c(1,3)
b <- c(3,3)
c <- c(4,3)
d <- c(5,3)
e <- c(1,2)
f <- c(4,2)
g <- c(1,1)
h <- c(2,1)
m <- rbind(a,b,c,d,e,f,g,h)
km <- kmeans(m, centers = 2)
km
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EXERCISES

1. To which cluster for the 90210 zip code would you prefer to belong?

2. Describe the goal of all clustering methods.

3. Suppose that we have the following data (one variable). Use single linkage to identify the
clusters. Data: 0 0 1 3 3 6 7 9 10 10

4. Suppose that we have the following data (one variable). Use complete linkage to identify
the clusters. Data: 0 0 1 3 3 6 7 9 10 10

5. What is an intuitive idea for the meaning of the centroid of a cluster?

6. Suppose that we have the following data:

a B c d e f g h i j
(2,0) (1,2) (2,2) (3,2) (2,3) (3,3) (2,4) (3,4) (4,4) (3,5)

Identify the cluster by applying the k-means algorithm, with k = 2. Try using initial cluster
centers as far apart as possible.

7. Refer to Exercise 6. Show that the ratio of the between-cluster variation to the within-
cluster variation decreases with each pass of the algorithm.

8. Once again identify the clusters in Exercise 6 data, this time by applying the k-means
algorithm, with k = 3. Try using initial cluster centers as far apart as possible.

9. Refer to Exercise 8. Show that the ratio of the between-cluster variation to the within-
cluster variation decreases with each pass of the algorithm.

10. Which clustering solution do you think is preferable? Why?

11. Confirm the calculations for the second pass and third pass for MSB, MSE, and pseudo-F
for Step Four of the example given in the chapter.

HANDS-ON ANALYSIS

Use the cereals data set, included at the book series website, for the following exercises. Make
sure that the data are normalized.

12. Using all of the variables except name and rating, run the k-means algorithm with k = 5
to identify clusters within the data.

13. Develop clustering profiles that clearly describe the characteristics of the cereals within
the cluster.
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14. Rerun the k-means algorithm with k = 3.

15. Which clustering solution do you prefer, and why?

16. Develop clustering profiles that clearly describe the characteristics of the cereals within
the cluster.

17. Use cluster membership to predict rating. One way to do this would be to construct a
histogram of rating based on cluster membership alone. Describe how the relationship
you uncovered makes sense, based on your earlier profiles. �
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11.1 SELF-ORGANIZING MAPS

Kohonen networks were introduced in 1982 by Finnish researcher Tuevo Kohonen
[1]. Although applied initially to image and sound analysis, Kohonen networks are
nevertheless an effective mechanism for clustering analysis. Kohonen networks rep-
resent a type of self-organizing map (SOM), which itself represents a special class of
neural networks, which we studied in Chapter 9.

The goal of self-organizing maps is to convert a complex high-dimensional
input signal into a simpler low-dimensional discrete map [2]. Thus, SOMs are nicely
appropriate for cluster analysis, where underlying hidden patterns among records
and fields are sought. SOMs structure the output nodes into clusters of nodes, where
nodes in closer proximity are more similar to each other than to other nodes that are
farther apart. Ritter [3] has shown that SOMs represent a nonlinear generalization of
principal component analysis, another dimension-reduction technique.

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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SOMs are based on competitive learning, where the output nodes compete
among themselves to be the winning node (or neuron), the only node to be activated
by a particular input observation. As Haykin [2] describes it: “The neurons become
selectively tuned to various input patterns (stimuli) or classes of input patterns in the
course of a competitive learning process.” A typical SOM architecture is shown in
Figure 11.1. The input layer is shown at the bottom of the figure, with one input
node for each field. Just as with neural networks, these input nodes do no processing
themselves but simply pass the field input values along downstream.

Like neural networks, SOMs are feedforward and completely connected. Feed-
forward networks do not allow looping or cycling. Completely connected means that
every node in a given layer is connected to every node in the next layer, although
not to other nodes in the same layer. Like neural networks, each connection between
nodes has a weight associated with it, which at initialization is assigned randomly
to a value between zero and 1. Adjusting these weights represents the key for the
learning mechanism in both neural networks and SOMs. Variable values need to be
normalized or standardized, just as for neural networks, so that certain variables do
not overwhelm others in the learning algorithm.

Unlike most neural networks, however, SOMs have no hidden layer. The data
from the input layer are passed along directly to the output layer. The output layer is
represented in the form of a lattice, usually in one or two dimensions, and typically
in the shape of a rectangle, although other shapes, such as hexagons, may be used.
The output layer shown in Figure 11.1 is a 3 × 3 square.

Figure 11.1 Topology of a simple self-organizing map for clustering records by age and
income.
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For a given record (instance), a particular field value is forwarded from a
particular input node to every node in the output layer. For example, suppose that the
normalized age and income values for the first record in the data set are 0.69 and 0.88,
respectively. The 0.69 value would enter the SOM through the input node associated
with age, and this node would pass this value of 0.69 to every node in the output
layer. Similarly, the 0.88 value would be distributed through the income input node
to every node in the output layer. These values, together with the weights assigned to
each of the connections, would determine the values of a scoring function (such as
Euclidean distance) for each output node. The output node with the “best” outcome
from the scoring function would then be designated as the winning node.

SOMs exhibit three characteristic processes:

1. Competition. As mentioned above, the output nodes compete with each other
to produce the best value for a particular scoring function, most commonly the
Euclidean distance. In this case, the output node that has the smallest Euclidean
distance between the field inputs and the connection weights would be declared
the winner. Later, we examine in detail an example of how this works.

2. Cooperation. Thewinning node therefore becomes the center of a neighborhood
of excited neurons. This emulates the behavior of human neurons, which are
sensitive to the output of other neurons in their immediate neighborhood. In
SOMs, all the nodes in this neighborhood share in the “excitement” or “reward”
earned by the winning nodes, that of adaptation. Thus, even though the nodes in
the output layer are not connected directly, they tend to share common features,
due to this neighborliness parameter.

3. Adaptation. The nodes in the neighborhood of the winning node participate in
adaptation, that is, learning. The weights of these nodes are adjusted so as to
further improve the score function. In other words, these nodes will thereby
have an increased chance of winning the competition once again, for a similar
set of field values.

11.2 KOHONEN NETWORKS

Kohonen networks are SOMs that exhibit Kohonen learning. Suppose that we con-
sider the set of m field values for the nth record to be an input vector xn = xn1,
xn2, … , xnm, and the current set of m weights for a particular output node j to be a
weight vector wj = w1j, w2j, … , wmj. In Kohonen learning, the nodes in the neigh-
borhood of the winning node adjust their weights using a linear combination of the
input vector and the current weight vector:

wij,new = wij,current + 𝜂(xni − wij,current ) (11.1)

where 𝜂, 0 < 𝜂 < 1, represents the learning rate, analogous to the neural networks
case. Kohonen [4] indicates that the learning rate should be a decreasing function
of training epochs (runs through the data set) and that a linearly or geometrically
decreasing 𝜂 is satisfactory for most purposes.
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The algorithm for Kohonen networks (after Fausett [5]) is shown in the accom-
panying box. At initialization, the weights are randomly assigned, unless firm a priori
knowledge exists regarding the proper value for the weight vectors. Also at initial-
ization, the learning rate 𝜂 and neighborhood size R are assigned. The value of Rmay
start out moderately large but should decrease as the algorithm progresses. Note that
nodes that do not attract a sufficient number of hits may be pruned, thereby improving
algorithm efficiency.

11.2.1 Kohonen Networks Algorithm

For each input vector x, do:

� Competition. For each output node j, calculate the valueD(wj, xn) of the scoring

function. For example, for Euclidean distance, D(wj, xn) =
√∑

i (wij − xni)2.

Find the winning node J that minimizes D(wj, xn) over all output nodes.
� Cooperation. Identify all output nodes j within the neighborhood of J defined
by the neighborhood size R. For these nodes, do the following for all input
record fields:
� Adaptation. Adjust the weights:

wij,new = wij,current + 𝜂(xni − wij,current)

� Adjust the learning rate and neighborhood size, as needed.
� Stop when the termination criteria are met.

11.3 EXAMPLE OF A KOHONEN NETWORK STUDY

Consider the following simple example. Suppose that we have a data set with two
attributes, age and income, which have already been normalized, and suppose that
we would like to use a 2 × 2 Kohonen network to uncover hidden clusters in the data
set. We would thus have the topology shown in Figure 11.2.

A set of four records is ready to be input, with a thumbnail description of each
record provided. With such a small network, we set the neighborhood size to be
R = 0, so that only the winning node will be awarded the opportunity to adjust its
weight. Also, we set the learning rate 𝜂 to be 0.5. Finally, assume that the weights
have been randomly initialized as follows:

w11 = 0.9 w21 = 0.8 w12 = 0.9 w22 = 0.2

w13 = 0.1 w23 = 0.8 w14 = 0.1 w24 = 0.2

For the first input vector, x1 = (0.8, 0.8), we perform the following competition,
cooperation, and adaptation sequence.
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Output layer

Input layer

IncomeAge
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Figure 11.2 Example: topology of the 2 × 2 Kohonen network.

� Competition. We compute the Euclidean distance between this input vector and
the weight vectors for each of the four output nodes:

Node 1: D(w1, x1) =
√∑

i (wi 1 − x1i)2 =
√
(0.9 − 0.8)2 + (0.8 − 0.8)2

= 0.1

Node 2: D(w3, x1) =
√
(0.9 − 0.8)2 + (0.2 − 0.8)2 = 0.61

Node 3: D(w3, x1) =
√
(0.1 − 0.8)2 + (0.8 − 0.8)2 = 0.70

Node 4: D(w4, x1) =
√
(0.1 − 0.8)2 + (0.2 − 0.8)2 = 0.92

The winning node for this first input record is therefore node 1, since it mini-
mizes the score function D, the Euclidean distance between the input vector for this
record, and the vector of weights, over all nodes.

Note why node 1 won the competition for the first record, (0.8, 0.8). Node 1
won because its weights (0.9, 0.8) are more similar to the field values for this record
than are the other nodes’ weights. For this reason, we may expect node 1 to exhibit
an affinity for records of older persons with high income. In other words, we may
expect node 1 to uncover a cluster of older, high income persons.

� Cooperation. In this simple example, we have set the neighborhood size R = 0
so that the level of cooperation among output nodes is nil! Therefore, only the
winning node, node 1, will be rewarded with a weight adjustment. (We omit
this step in the remainder of the example.)
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� Adaptation. For the winning node, node 1, the weights are adjusted as follows:

wij,new = wij,current + 𝜂(xni − wij,current)

For j = 1 (node 1), n = 1 (the first record) and learning rate 𝜂 = 0.5, this
becomes wi 1, new = wi 1, current + 0.5(x1 i – wi 1, current) for each field:

For age: w11, new = w11, current + 0.5(x11 − w11, current)

= 0.9 + 0.5(0.8 − 0.9) = 0.85

For income: w21, new = w21, current + 0.5(x12 − w21, current)

= 0.8 + 0.5(0.8 − 0.8) = 0.8

Note the type of adjustment that takes place. The weights are nudged in the
direction of the fields’ values of the input record. That is, w11, the weight on the age
connection for the winning node, was originally 0.9, but was adjusted in the direction
of the normalized value for age in the first record, 0.8. Since the learning rate 𝜂 = 0.5,
this adjustment is half (0.5) of the distance between the current weight and the field
value. This adjustment will help node 1 to become even more proficient at capturing
the records of older, high income persons.

Next, for the second input vector, x2 = (0.8, 0.1), we have the following
sequence.

� Competition

Node 1: D(w1, x2) =
√∑

i (wi1 − x2i)2 =
√
(0.9 − 0.8)2 + (0.8 − 0.1)2

= 0.71

Node 2: D(w2, x2) =
√
(0.9 − 0.8)2 + (0.2 − 0.1)2 = 0.14

Node 3: D(w3, x2) =
√
(0.1 − 0.8)2 + (0.8 − 0.1)2 = 0.99

Node 4: D(w4, x2) =
√
(0.1 − 0.8)2 − (0.2 − 0.1)2 = 0.78

Winning node: node 2. Note that node 2 won the competition for the second
record, (0.8, 0.1), because its weights (0.9, 0.2) are more similar to the field values
for this record than are the other nodes’ weights. Thus, we may expect node 2 to
“collect” records of older persons with low income. That is, node 2 will represent a
cluster of older, low income persons.

� Adaptation. For the winning node, node 2, the weights are adjusted as follows:
For j = 2 (node 2), n = 2 (the first record) and learning rate 𝜂 = 0.5, we have
wi 2, new = wi 2, current +0.5(x2i – wi2, current) for each field:

For age: w12, new = w12, current + 0.5(x21 − w12, current)

= 0.9 + 0.5(0.8 − 0.9) = 0.85

For income: w22, new = w22, current + 0.5(x22 − w22, current)

= 0.2 + 0.5(0.1 − 0.2) = 0.15
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Again, the weights are updated in the direction of the field values of the input
record. Weight w12 undergoes the same adjustment w11 above, since the current
weights and age field values were the same. Weight w22 for income is adjusted
downward, since the income level of the second record was lower than the current
income weight for the winning node. Because of this adjustment, node 2 will be even
better at catching records of older, low income persons.

Next, for the third input vector, x3 = (0.2, 0.9), we have the following sequence.

� Competition

Node 1: D(w1, x3) =
√∑

i
(wi1 − x3i)2 =

√
(0.85 − 0.2)2 + (0.8 − 0.9)2

= 0.66

Node 2: D(w2, x3) =
√
(0.85 − 0.2)2 + (0.15 − 0.9)2 = 0.99

Node 3: D(w3, x3) =
√
(0.1 − 0.2)2 + (0.8 − 0.9)2 = 0.14

Node 4: D(w4, x3) =
√
(0.1 − 0.2)2 + (0.2 − 0.9)2 = 0.71

The winning node is node 3 because its weights (0.1, 0.8) are the closest to
the third record’s field values. Hence, we may expect node 3 to represent a cluster of
younger, high income persons.

� Adaptation. For the winning node, node 3, the weights are adjusted as follows:
wi3, new = wi3, current + 0.5(x3i – wi3, current), for each field:

For age: w13, new = w13, current + 0.5(x31 − w13, current)

= 0.1 + 0.5(0.2 − 0.1) = 0.15

For income: w23, new = w23, current + 0.5(x32 − w23, current)

= 0.8 + 0.5(0.9 − 0.8) = 0.85

Finally, for the fourth input vector, x4 = (0.1, 0.1), we have the following
sequence.

� Competition

Node 1: D(w1, x4) =
√∑

i
(wi1 − x4i)2 =

√
(0.85 − 0.1)2 + (0.8 − 0.1)2

= 1.03

Node 2: D(w2, x4) =
√
(0.85 − 0.1)2 + (0.15 − 0.1)2 = 0.75

Node 3: D(w3, x4) =
√
(0.15 − 0.1)2 + (0.85 − 0.1)2 = 0.75

Node 4: D(w4, x4) =
√
(0.1 − 0.1)2 + (0.2 − 0.1)2 = 0.10

The winning node is node 4 because its weights (0.1, 0.2) have the smallest
Euclidean distance to the fourth record’s field values. We may therefore expect node
4 to represent a cluster of younger, low income persons.
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� Adaptation. For the winning node, node 4, the weights are adjusted as follows:
wi4, new = wi4, current + 0.5(x4i − wi4, current), for each field:

For age: w14, new = w14, current + 0.5(x41 − w14, current)

= 0.1 + 0.5(0.1 − 0.1) = 0.10

For income: w24, new = w24, current + 0.5(x42 − w24, current)

= 0.2 + 0.5(0.1 − 0.2) = 0.15

Thus, we have seen that the four output nodes will represent four distinct
clusters if the network continues to be fed data similar to the four records shown in
Figure 11.2. These clusters are summarized in Table 11.1.

Clearly, the clusters uncovered by the Kohonen network in this simple example
are fairly obvious. However, this example does serve to illustrate how the network
operates at a basic level, using competition and Kohonen learning.

TABLE 11.1 Four clusters uncovered by Kohonen Network

Cluster Associated with: Description

1 Node 1 Older person with high income
2 Node 2 Older person with low income
3 Node 3 Younger person with high income
4 Node 4 Younger person with low income

11.4 CLUSTER VALIDITY

To avoid spurious results, and to assure that the resulting clusters are reflective of
the general population, the clustering solution should be validated. One common
validation method is to split the original sample randomly into two groups, develop
cluster solutions for each group, and then compare their profiles using the methods
below or other summarization methods.

Now, suppose that a researcher is interested in performing further inference,
prediction, or other analysis downstream on a particular field, and wishes to use the
clusters as predictors. Then, it is important that the researcher not include the field
of interest as one of the fields used to build the clusters. For example, in the example
below, clusters are constructed using the churn data set. We would like to use these
clusters as predictors for later assistance in classifying customers as churners or not.
Therefore, we must be careful not to include the churn field among the variables used
to build the clusters.

11.5 APPLICATION OF CLUSTERING USING
KOHONEN NETWORKS

Next, we apply the Kohonen network algorithm to the churn data set from
Chapter 3 (available at the book series website; also available from http://www
.sgi.com/tech/mlc/db/). Recall that the data set contains 20 variables worth
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of information about 3333 customers, along with an indication of whether that cus-
tomer churned (left the company) or not. The following variables were passed to the
Kohonen network algorithm, using IBM/SPSS Modeler:

� Flag (0/1) variables
� International Plan and VoiceMail Plan

� Numerical variables
� Account length, voice mail messages, day minutes, evening minutes, night
minutes, international minutes, and customer service calls

� After applying Z-score standardization to all numerical variables

The topology of the network was as in Figure 11.3, with every node in the
input layer being connected with weights (not shown) to every node in the output
layer, which are labeled in accordance with their use in the Modeler results. The
Kohonen learning parameters were set in Modeler as follows. For the first 20 cycles
(passes through the data set), the neighborhood size was set at R = 2, and the learning
rate was set to decay linearly starting at 𝜂 = 0.3. Then, for the next 150 cycles, the
neighborhood size was reset to R = 1 while the learning rate was allowed to decay
linearly from 𝜂 = 0.3 to at 𝜂 = 0.

As it turned out, the Modeler Kohonen algorithm used only six of the nine
available output nodes, as shown in Figure 11.4, with output nodes 01, 11, and 21
being pruned. [Note that each of the six clusters is actually of constant value in this
plot, such as (0,0), (1,2), and so on. A random shock (x, y agitation, artificial noise)
was introduced to illustrate the size of the cluster membership.]

Figure 11.3 Topology of 3 × 3 Kohonen network used for clustering the churn data set.
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Figure 11.4 Modeler uncovered six clusters.

11.6 INTERPRETING THE CLUSTERS

How are we to interpret these clusters? How can we develop cluster profiles? Con-
sider Figure 11.5, which plots the clusters similar to Figure 11.4, but with panels for
whether a customer is an adopter of the International Plan. Figure 11.5 shows that
International Plan adopters reside exclusively in Clusters 12 and 22, with the other
clusters containing only nonadopters of the International Plan. The Kohonen cluster-
ing algorithm has found a high quality discrimination along this dimension, dividing
the data set neatly among adopters and nonadopters of the International Plan.

Figure 11.6 shows the VoiceMail Plan adoption status of the cluster members.
The three clusters along the bottom row (i.e., Cluster 00, Cluster 10, and Cluster 20)
contain only nonadopters of the VoiceMail Plan. Clusters 02 and 12 contain only
adopters of the VoiceMail Plan. Cluster 22 contains mostly nonadopters but also
some adopters of the VoiceMailPlan.
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Figure 11.5 International Plan adopters reside exclusively in Clusters 12 and 22.
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Figure 11.6 Similar clusters are closer to each other.

Recall that because of the neighborliness parameter, clusters that are closer
together should bemore similar than clusters that are farther apart. Note in Figure 11.5
that all International Plan adopters reside in contiguous (neighboring) clusters, as do
all nonadopters. Similarly for Figure 11.6, except that Cluster 22 contains a mixture.

We see that Cluster 12 represents a special subset of customers, those who have
adopted both the International Plan and the VoiceMail Plan. This is a well-defined
subset of the customer base, which perhaps explains why the Kohonen network
uncovered it, even though this subset represents only 2.4% of the customers.

Figure 11.7 provides information about how the values of all the variables
are distributed among the clusters, with one column per cluster and one row per
variable. The darker rows indicate the more important variables, that is, the variables
which proved more useful for discriminating among the clusters. Consider Account
Length_Z. Cluster 00 contains customers who tend to have been with the company
for a long time, that is, their account lengths tend to be on the large side. Contrast
this with Cluster 20, whose customers tend to be fairly new.

For the quantitative variables, the data analyst should report the means for
each variable, for each cluster, along with an assessment of whether the difference in
means across the clusters is significant. It is important that the means reported to the
client appear on the original (untransformed) scale and not on the Z scale or min-max
scale, so that the client may better understand the clusters.

Figure 11.8 provides these means, along with the results of an analysis of
variance (see Chapter 5) for assessing whether the difference in means across clusters
is significant. Each row contains the information for one numerical variable, with
one analysis of variance for each row. Each cell contains the cluster mean, standard

deviation, standard error (standard deviation∕
√
cluster count), and cluster count. The

degrees of freedomare df1 = k − 1 = 6 − 1 = 5 and df2 = N − k = 3333 − 6 = 3327.
The F-test statistic is the value of F = MSTR∕MSE for the analysis of variance for
that particular variable, and the Importance statistic is simply 1 – p-value, where
p-value = P(F > F test statistic).
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Figure 11.7 How the variables are distributed among the clusters.

Note that both Figure 11.7 and 11.8 concur in identifying account length and
the number of voice mail messages as the two most important numerical variables
for discriminating among clusters. Next, Figure 11.7 showed graphically that the
account length for Cluster 00 is greater than that of Cluster 20. This is supported by
the statistics in Figure 11.8, which shows that the mean account length of 141.508
days for Cluster 00 and 61.707 days for Cluster 20. Also, tiny Cluster 12 has the
highest mean number of voice mail messages (31.662), with Cluster 02 also having a
large amount (29.229). Finally, note that the neighborliness of Kohonen clusters tends
to make neighboring clusters similar. It would have been surprising, for example, to
find a cluster with 141.508 mean account length right next to a cluster with 61.707
mean account length. In fact, this did not happen.

In general, not all clusters are guaranteed to offer obvious interpretability.
The data analyst should team up with a domain expert to discuss the relevance
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Figure 11.8 Assessing whether the means across clusters are significantly different.

and applicability of the clusters uncovered using Kohonen or other methods. Here,
however, most of these clusters appear fairly clear-cut and self-explanatory.

11.6.1 Cluster Profiles
� Cluster 00: Loyal Nonadopters. Belonging to neither theVoiceMail Plan nor the
International Plan, customers in large Cluster 00 have nevertheless been with
the company the longest, with by far the largest mean account length, which
may be related to the largest number of calls to customer service. This cluster
exhibits the lowest average minutes usage for day minutes and international
minutes, and the second lowest evening minutes and night minutes.

� Cluster 02: Voice Mail Users. This large cluster contains members of the
VoiceMail Plan, with therefore a high mean number of VoiceMail messages,
and no members of the International Plan. Otherwise, the cluster tends toward
the middle of the pack for the other variables.

� Cluster 10:Average Customers. Customers in this medium-sized cluster belong
to neither the VoiceMail Plan nor the International Plan. Except for the
second-largest mean number of calls to customer service, this cluster other-
wise tends toward the average values for the other variables.
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� Cluster 12: Power Customers. This smallest cluster contains customers who
belong to both the VoiceMail Plan and the International Plan. These sophisti-
cated customers also lead the pack in usage minutes across three categories and
are in second place in the other category. They also have the fewest average
calls to customer service. The company should keep a watchful eye on this
cluster, as they may represent a highly profitable group.

� Cluster 20: Newbie Nonadopters Users. Belonging to neither the VoiceMail
Plan nor the International Plan, customers in large Cluster 00 represent the
company’s newest customers, on average, with easily the shortest mean account
length. These customers set the pacewith the highestmean nightminutes usage.

� Cluster 22: International Plan Users. This small cluster contains members of
the International Plan and only a few members of the VoiceMail Plan. The
number of calls to customer service is second lowest, which may mean that
they need a minimum of hand-holding. Besides the lowest mean night minutes
usage, this cluster tends toward average values for the other variables.

Cluster profilesmay be of actionable benefit to companies and researchers. They
may, for example, suggest marketing segmentation strategies in an era of shrinking
budgets. Rather than targeting the entire customer base for a mass mailing, for exam-
ple, perhaps only the most profitable customers may be targeted. Another strategy
is to identify those customers whose potential loss would be of greater harm to the
company, such as the customers in Cluster 12 above. Finally, customer clusters could
be identified that exhibit behavior predictive of churning; intervention with these
customers could save them for the company.

Suppose, however, that we would like to apply these clusters to assist us in
the churn classification task. We may compare the proportions of churners among
the various clusters, using graphs such as Figure 11.9. From the figure, we can see
that customers in Clusters 12 (power customers) and 22 (International Plan users)
are in greatest danger of leaving the company, as shown by their higher overall
churn proportions. Cluster 02 (VoiceMail Plan users) has the lowest churn rate. The
company should take a serious look at its International Plan to see why customers do

Figure 11.9 Proportions of churners among the clusters.
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not seem to be happy with it. Also, the company should encourage more customers to
adopt its VoiceMail Plan, in order to make switching companies more inconvenient.
These results and recommendations reflect our findings from Chapter 3, where we
initially examined the relationship between churning and the various fields. Note also
that Clusters 12 and 22 are neighboring clusters; even though churn was not an input
field for cluster formation, the type of customers who are likely to churn are more
similar to each other than to customers not likely to churn.

11.7 USING CLUSTER MEMBERSHIP AS INPUT TO
DOWNSTREAM DATA MINING MODELS

Cluster membership may be used to enrich the data set and improve model efficacy.
Indeed, as data repositories continue to grow and the number of fields continues to
increase, clustering has become a common method of dimension reduction.

Wewill illustrate how cluster membershipmay be used as input for downstream
data mining models, using the churn data set and the clusters uncovered above. Each
record now has associated with it a cluster membership assigned by the Kohonen
networks algorithm. We shall enrich our data set by adding this cluster membership
field to the input fields used for classifying churn. A CART decision tree model was
run, to classify customers as either churners or nonchurners. The resulting decision
tree output is shown in Figure 11.10.

The root node split is on whetherDayMin_Z (the Z-standardized version of day
minutes; the analyst should untransform these values if this output is meant for the
client) is greater than about 1.573. This represents the 142 users who have the highest
day minutes, 1.573 standard deviations above the mean. For this group, the second-
level split is by cluster, with Cluster 02 split off from the remaining clusters. Note that
for high day minutes, the mode classification is True (churner), but that within this
subset, membership in Cluster 02 acts to protect from churn, since the 31 customers
with high day minutes and membership in Cluster 02 have a 100% probability of
not churning. Recall that Cluster 02, which is acting as a brake on churn behavior,
represents Voice Mail Users, who had the lowest churn rate of any cluster.

Figure 11.10 Output of CART decision tree for data set enriched by cluster membership.
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THE R ZONE
# Read in the Churn data set

churn <- read.csv(file = "C:/ . . . /churn.txt",
stringsAsFactors=TRUE)

# Install the required package and load the library

install.packages("kohonen")
library(kohonen)

# Run the algorithm to get a 3 × 3 Kohonen network

som.churn <- som(data,
grid = somgrid(3, 3),
rlen = 200,
alpha = c(0.03, 0.00),
radius = 1)

# Make a new color scheme
greys <- function(n, alpha = 1) {

rev(grey(0:9 /9))
}
# Plot the make-up of each cluster
plot(som.churn,

type = c("codes"),
palette.name = rainbow,
main = "Cluster Content")

# Plot the counts in each cluster
plot(som.churn,

type = c("counts"),
palette.name = greys,
main = "Cluster counts")
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# Create Flag Variables and standardize numeric variables

IntPlan <- VMPlan <- Churn <- c(rep(0, length(churn$Int.l.Plan)))
for (i in 1:length(churn$Int.l.Plan)) {

if (churn$Int.l.Plan[i]=="yes") IntPlan[i] = 1
if (churn$VMail.Plan[i]=="yes") VMPlan[i] = 1
if (churn$Churn[i] == "True") Churn[i] = 1

}
# Standardize
AcctLen <- (churn$Account.Length - mean(churn$Account.Length))/sd(churn$Account.Length)
VMMess <- (churn$VMail.Message - mean(churn$VMail.Message)) /

sd(churn$VMail.Message)
DayMin <- (churn$Day.Mins - mean(churn$Day.Mins))/sd(churn$Day.Mins)
EveMin <- (churn$Eve.Mins - mean(churn$Eve.Mins))/sd(churn$Eve.Mins)
NiteMin <- (churn$Night.Mins - mean(churn$Night.Mins))/sd(churn$Night.Mins)
IntMin <- (churn$Intl.Mins - mean(churn$Intl.Mins))/sd(churn$Intl.Mins)
CSC <- (churn$CustServ.Calls - mean(churn$CustServ.Calls))/sd(churn$CustServ.Calls)
# Make the variables into one matrix, and make sure the records are the rows
data <- t(rbind(IntPlan, VMPlan, AcctLen, VMMess, DayMin, EveMin, NiteMin, IntMin, CSC))

# Run the algorithm to get a 3 × 2 Kohonen network

som.churn6 <- som(data,
grid = somgrid(3, 2),
rlen = 200,
alpha = c(0.03, 0.00),
radius = 1)

# Plot the make-up of each cluster
plot(som.churn6,

type = c("codes"),
palette.name = rainbow,
main = "Cluster Content")

# Plot the counts in each cluster
plot(som.churn6,

type = c("counts"),
palette.name = greys,
main = "Cluster Counts")
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EXERCISES

1. Describe some of the similarities between Kohonen networks and the neural networks of
Chapter 7. Describe some of the differences.

2. Describe the three characteristic processes exhibited by self-organizing maps such as
Kohonen networks. What differentiates Kohonen networks from other self-organizing
map models?

3. Using weights and distance, explain clearly why a certain output node will win the
competition for the input of a certain record.

4. For larger output layers, what would be the effect of increasing the value of R?

5. Describe what would happen if the learning rate 𝜂 did not decline?

6. This chapter shows how cluster membership can be used for downstream modeling. Does
this apply to the cluster membership obtained by hierarchical and k-means clustering as
well?

HANDS-ON ANALYSIS

Use the adult data set at the book series website for the following exercises.

7. Apply the Kohonen clustering algorithm to the data set, being careful not to include the
income field. Use a topology that is not too large, such as 3 × 3.

8. Construct a scatter plot (with x/y agitation) of the cluster membership, with an overlay of
income. Discuss your findings.

9. Construct a bar chart of the cluster membership, with an overlay of income. Discuss your
findings. Compare to the scatter plot.

10. Construct a bar chart of the cluster membership, with an overlay ofmarital status. Discuss
your findings.

11. If your software supports this, construct a web graph of income, marital status, and the
other categorical variables. Fine-tune the web graph so that it conveys good information.

12. Generate numerical summaries for the clusters. For example, generate a cluster mean
summary.
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13. Using the information above and any other information you can bring to bear, construct
detailed and informative cluster profiles, complete with titles.

14. Use cluster membership as a further input to a CART decision tree model for classifying
income. How important is clustering membership in classifying income?

15. Use cluster membership as a further input to a C4.5 decision tree model for classifying
income. How important is clustering membership in classifying income? Compare to the
CART model. �
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12.1 AFFINITY ANALYSIS AND MARKET
BASKET ANALYSIS

Affinity analysis is the study of attributes or characteristics that “go together.” Meth-
ods for affinity analysis, also known as market basket analysis, seek to uncover
associations among these attributes; that is, it seeks to uncover rules for quantifying
the relationship between two or more attributes. Association rules take the form “If
antecedent, then consequent,” along with a measure of the support and confidence
associated with the rule. For example, a particular supermarket may find that of the

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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1000 customers shopping on a Thursday night, 200 bought diapers, and of the 200
who bought diapers, 50 bought beer. Thus, the association rule would be: “If buy
diapers, then buy beer,” with a support of 50/1000 = 5% and a confidence of 50/200
= 25%.

Examples of association tasks in business and research include the following:

� Investigating the proportion of subscribers to your company’s cell phone plan
that respond positively to an offer of a service upgrade

� Examining the proportion of children whose parents read to them who are
themselves good readers

� Predicting degradation in telecommunications networks
� Finding out which items in a supermarket are purchased together, and which
items are never purchased together

� Determining the proportion of cases in which a new drugwill exhibit dangerous
side effects

What types of algorithms can we apply to mine association rules from a par-
ticular data set? The daunting problem that awaits any such algorithm is the curse of
dimensionality. The number of possible association rules grows exponentially in the
number of attributes. Specifically, if there are k attributes, we limit ourselves to binary
attributes, we account only for the positive cases (e.g., buy diapers = yes), there are
on the order of (k)2k–1 possible association rules. Consider that a typical application
for association rules is market basket analysis and that there may be thousands of
binary attributes (buy beer? buy popcorn? buy milk? buy bread? etc.), the search
problem appears at first glance to be utterly hopeless. For example, suppose that a
tiny convenience store has only 100 different items, and a customer could either buy
or not buy any combination of those 100 items. Then there are 2100 ≅ 1.27 × 1030

possible association rules that await your intrepid search algorithm.
The a priori algorithm for mining association rules, however, takes advantage

of structure within the rules themselves to reduce the search problem to a more
manageable size. Before we examine the a priori algorithm, however, let us consider
some basic concepts and notation for association rule mining. We begin with a simple
example.

Suppose that a local farmer has set up a roadside vegetable stand and is offering
the following items for sale: {asparagus, beans, broccoli, corn, green peppers, squash,
tomatoes}. Denote this set of items as I. One by one, customers pull over, pick up
a basket, and purchase various combinations of these items, subsets of I. (For our
purposes, we do not keep track of how much of each item is purchased, just whether
or not that particular item is purchased.) Suppose Table 12.1 lists the transactions
made during one fine fall afternoon at this roadside vegetable stand.

12.1.1 Data Representation for Market Basket Analysis

There are two principal methods of representing this type of market basket data: using
either the transactional data format or the tabular data format. The transactional
data format requires only two fields, an ID field and a content field, with each
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TABLE 12.1 Transactions made at the roadside vegetable stand

Transaction Items Purchased

1 Broccoli, green peppers, corn
2 Asparagus, squash, corn
3 Corn, tomatoes, beans, squash
4 Green peppers, corn, tomatoes, beans
5 Beans, asparagus, broccoli
6 Squash, asparagus, beans, tomatoes
7 Tomatoes, corn
8 Broccoli, tomatoes, green peppers
9 Squash, asparagus, beans

10 Beans, corn
11 Green peppers, broccoli, beans, squash
12 Asparagus, beans, squash
13 Squash, corn, asparagus, beans
14 Corn, green peppers, tomatoes, beans, broccoli

record representing a single item only. For example, the data in Table 12.1 could be
represented using transactional data format as shown in Table 12.2.

In the tabular data format, each record represents a separate transaction, with as
many 0/1 flag fields as there are items. The data from Table 12.1 could be represented
using the tabular data format, as shown in Table 12.3.

TABLE 12.2 Transactional data format for the
roadside vegetable stand data

Transaction ID Items

1 Broccoli
1 Green peppers
1 Corn
2 Asparagus
2 Squash
2 Corn
3 Corn
3 Tomatoes
⋮ ⋮

12.2 SUPPORT, CONFIDENCE, FREQUENT ITEMSETS,
AND THE A PRIORI PROPERTY

Let D be the set of transactions represented in Table 12.1, where each transaction T
in D represents a set of items contained in I. Suppose that we have a particular set of
items A (e.g., beans and squash), and another set of items B (e.g., asparagus). Then
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TABLE 12.3 Tabular data format for the roadside vegetable stand data

Transaction Asparagus Beans Broccoli Corn Green Peppers Squash Tomatoes

1 0 0 1 1 1 0 0
2 1 0 0 1 0 1 0
3 0 1 0 1 0 1 1
4 0 1 0 1 1 0 1
5 1 1 1 0 0 0 0
6 1 1 0 0 0 1 1
7 0 0 0 1 0 0 1
8 0 0 1 0 1 0 1
9 1 1 0 0 0 1 0
10 0 1 0 1 0 0 0
11 0 1 1 0 1 1 0
12 1 1 0 0 0 1 0
13 1 1 0 1 0 1 0
14 0 1 1 1 1 0 1

an association rule takes the form if A, then B (i.e., A ⇒ B), where the antecedent
A and the consequent B are proper subsets of I, and A and B are mutually exclusive.
This definition would exclude, for example, trivial rules such as if beans and squash,
then beans.

The support s for a particular association rule A ⇒ B is the proportion of
transactions in D that contain both A and B. That is,

support = P(A ∩ B) =
number of transactions containing both A and B

total number of transactions
.

The confidence c of the association rule A ⇒ B is a measure of the accuracy of
the rule, as determined by the percentage of transactions in D containing A that also
contain B. In other words,

confidence = P(B|A) = P(A ∩ B)
P(A)

=
number of transactions containing both A and B

number of transactions containing A

Analysts may prefer rules that have either high support or high confidence,
and usually both. Strong rules are those that meet or surpass certain minimum sup-
port and confidence criteria. For example, an analyst interested in finding which
supermarket items are purchased together may set a minimum support level of 20%
and a minimum confidence level of 70%. On the other hand, a fraud detection ana-
lyst or a terrorism detection analyst would need to reduce the minimum support
level to 1% or less, since comparatively few transactions are either fraudulent or
terror-related.

An itemset is a set of items contained in I, and a k-itemset is an itemset containing
k items. For example, {beans, squash} is a 2-itemset, and {broccoli, green peppers,
corn} is a 3-itemset, each from the vegetable stand set I. The itemset frequency is
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simply the number of transactions that contain the particular itemset. A frequent
itemset is an itemset that occurs at least a certain minimum number of times, having
itemset frequency ≥ 𝜙. For example, suppose that we set 𝜙 = 4. Then itemsets that
occur more than four times are said to be frequent. We denote the set of frequent
k-itemsets as Fk.

MINING ASSOCIATION RULES

The mining of association rules from large databases is a two-step process:

1. Find all frequent itemsets; that is, find all itemsets with frequency ≥ 𝜙.

2. From the frequent itemsets, generate association rules satisfying the minimum sup-
port and confidence conditions.

The a priori algorithm takes advantage of the a priori property to shrink the
search space. The a priori property states that if an itemset Z is not frequent, then
adding another item A to the itemset Z will not make Z more frequent. That is, if
Z is not frequent, Z ∪ A will not be frequent. In fact, no superset of Z (itemset
containing Z) will be frequent. This helpful property reduces significantly the search
space for the a priori algorithm.

A PRIORI PROPERTY

If an itemset Z is not frequent then for any item A, Z ∪ A will not be frequent.

12.3 HOW DOES THE A PRIORI ALGORITHM WORK?

12.3.1 Generating Frequent Itemsets

Consider the set of transactions D represented in Table 12.1. How would the a priori
algorithm mine association rules from this data set?

Let 𝜙 = 4, so that an itemset is frequent if it occurs four or more times inD. We
first find F1, the frequent 1-itemsets, which represent simply the individual vegetable
items themselves. To do so, we may turn to Table 12.3 and take the column sums,
which give us the number of transactions containing each particular vegetable. Since
each sum meets or exceeds 𝜙 = 4, we conclude that each 1-itemset is frequent. Thus,
F1 = {asparagus, beans, broccoli, corn, green peppers, squash, tomatoes}.

Next, we turn to finding the frequent 2-itemsets. In general, to find Fk, the a
priori algorithm first constructs a set Ck of candidate k-itemsets by joining Fk–1 with
itself. Then it prunes Ck using the a priori property. The itemsets in Ck that survive
the pruning step then form Fk. Here, C2 consists of all the combinations of vegetables
in Table 12.4.
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TABLE 12.4 Candidate 2-itemsets

Combination Count Combination Count

Asparagus, beans 5 Broccoli, corn 2
Asparagus, broccoli 1 Broccoli, green peppers 4
Asparagus, corn 2 Broccoli, squash 1
Asparagus, green peppers 0 Broccoli, tomatoes 2
Asparagus, squash 5 Corn, green peppers 3
Asparagus, tomatoes 1 Corn, squash 3
Beans, broccoli 3 Corn, tomatoes 4
Beans, corn 5 Green peppers, squash 1
Beans, green peppers 3 Green peppers, tomatoes 3
Beans, squash 6 Squash, tomatoes 2
Beans, tomatoes 4

Since 𝜙 = 4, we have F2 = {{asparagus, beans}, {asparagus, squash}, {beans,
corn}, and {beans, squash}, {beans, tomatoes}, {broccoli, green peppers}, {corn,
tomatoes}}. Next, we use the frequent itemsets in F2 to generate C3, the candidate
3-itemsets. To do so, we join F2 with itself, where itemsets are joined if they have the
first k – 1 items in common (in alphabetical order). For example, {asparagus, beans}
and {asparagus, squash} have the first k – 1 = 1 item in common, asparagus. Thus,
they are joined into the new candidate itemset {asparagus, beans, squash}. Similarly,
{beans, corn} and {beans, squash} have the first item, beans, in common, generating
the candidate 3-itemset {beans, corn, squash}. Finally, candidate 3-itemsets {beans,
corn, tomatoes} and {beans, squash, tomatoes} are generated in like fashion. Thus,
C3 = {{asparagus, beans, squash}, {beans, corn, squash}, {beans, corn, tomatoes},
{beans, squash, tomatoes}}.

C3 is then pruned, using the a priori property. For each itemset s in C3, its size
k – 1 subsets are generated and examined. If any of these subsets are not frequent, s
cannot be frequent and is therefore pruned. For example, let s = {asparagus, beans,
squash}. The subsets of size k – 1 = 2 are generated, as follows: {asparagus, beans},
{asparagus, squash}, and {beans, squash}. From Table 12.4 we see that each of these
subsets is frequent and that therefore s = {asparagus, beans, squash} is not pruned.
The reader will verify that s = {beans, corn, tomatoes} will also not be pruned.

However, consider s = {beans, corn, squash}. The subset {corn, squash} has
frequency 3 < 4 = 𝜙, so that {corn, squash} is not frequent. By the a priori property,
therefore, {beans, corn, squash} cannot be frequent, is therefore pruned, and does
not appear in F3. Also consider s = {beans, squash, tomatoes}. The subset {squash,
tomatoes} has frequency 2 < 4 = 𝜙, and hence is not frequent. Again, by the a
priori property, its superset {beans, squash, tomatoes} cannot be frequent and is also
pruned, not appearing in F3.

We still need to check the count for these candidate frequent itemsets. The
itemset {asparagus, beans, squash} occurs four times in the transaction list, {beans,
corn, tomatoes} occurs only three times. Therefore, the latter candidate itemset is
also pruned, leaving us with a singleton frequent itemset in F3: {asparagus, beans,
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squash}. This completes the task of finding the frequent itemsets for the vegetable
stand data D.

12.3.2 Generating Association Rules

Next, we turn to the task of generating association rules using the frequent item-
sets. This is accomplished using the following two-step process, for each frequent
itemset s:

GENERATING ASSOCIATION RULES

1. First, generate all subsets of s.

2. Then, let ss represent a nonempty subset of s. Consider the association rule R : ss⇒
(s − ss), where (s − ss) indicates the set s without ss. Generate (and output) R if R
fulfills the minimum confidence requirement. Do so for every subset ss of s. Note
that for simplicity, a single-item consequent is often desired.

For example, let s = {asparagus, beans, squash} from F3. The proper subsets
of s are {asparagus}, {beans}, {squash}, {asparagus, beans}, {asparagus, squash},
{beans, squash}. For the first association rule shown in Table 12.5, we let ss =
{asparagus, beans}, so that (s – ss) = {squash}. We consider the rule R: {asparagus,
beans} ⇒ {squash}. The support is the proportion of transactions in which both
{asparagus, beans} and {squash} occur, which is 4 (or 28.6%) of the 14 total trans-
actions in D. To find the confidence, we note that {asparagus, beans} occurs in five
of the 14 transactions, four of which also contain {squash}, giving us our confidence
of 4/5 = 80%. The statistics for the second rule in Table 12.5 arise similarly. For the
third rule in Table 12.5, the support is still 4/14 = 28.6%, but the confidence falls to
66.7%. This is because {beans, squash} occurs in six transactions, four of which also
contain {asparagus}. Assuming that our minimum confidence criterion is set at 60%
and that we desire a single consequent, we therefore have the candidate rules shown
in Table 12.5. If our minimum confidence were set at 80%, the third rule would not
be reported.

Finally, we turn to single antecedent/single consequent rules. Applying the
association rule generation method outlined in the box above, and using the itemsets
in F2, we may generate the candidate association rules shown in Table 12.6.

TABLE 12.5 Candidate association rules for vegetable stand data: two antecedents

If Antecedent, then Consequent Support Confidence

If buy asparagus and beans, then buy squash 4/14 = 28.6% 4/5 = 80%
If buy asparagus and squash, then buy beans 4/14 = 28.6% 4/5 = 80%
If buy beans and squash, then buy asparagus 4/14 = 28.6% 4/6 = 66.7%
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TABLE 12.6 Candidate association rules for vegetable stand data: one antecedent

If Antecedent, then Consequent Support Confidence

If buy asparagus, then buy beans 5/14 = 35.7% 5/6 = 83.3%
If buy beans, then buy asparagus 5/14 = 35.7% 5/10 = 50%
If buy asparagus, then buy squash 5/14 = 35.7% 5/6 = 83.3%
If buy squash, then buy asparagus 5/14 = 35.7% 5/7 = 71.4%
If buy beans, then buy corn 5/14 = 35.7% 5/10 = 50%
If buy corn, then buy beans 5/14 = 35.7% 5/8 = 62.5%
If buy beans, then buy squash 6/14 = 42.9% 6/10 = 60%
If buy squash, then buy beans 6/14 = 42.9% 6/7 = 85.7%
If buy beans, then buy tomatoes 4/14 = 28.6% 4/10 = 40%
If buy tomatoes, then buy beans 4/14 = 28.6% 4/6 = 66.7%
If buy broccoli, then buy green peppers 4/14 = 28.6% 4/5 = 80%
If buy green peppers, then buy broccoli 4/14 = 28.6% 4/5 = 80%
If buy corn, then buy tomatoes 4/14 = 28.6% 4/8 = 50%
If buy tomatoes, then buy corn 4/14 = 28.6% 4/6 = 66.7%

To provide an overall measure of usefulness for an association rule, analysts
sometimes multiply the support times the confidence. This allows the analyst to rank
the rules according to a combination of prevalence and accuracy. Table 12.7 provides
such a list for our present data set, after first filtering the rules through a minimum
confidence level of 80%.

Compare Table 12.7 with Figure 12.1, the association rules reported by Mod-
eler’s version of the a priori algorithm, with minimum 80% confidence, and sorted
by support × confidence. The third column, which Modeler calls “Support %,” is
actually not what we defined support to be in this chapter (following Han and Kam-
ber [1], Hand et al. [2], and other texts). Instead, what Modeler calls “support” is
the proportion of occurrences of the antecedent alone rather than the antecedent and
the consequent. To find the actual support for the association rule using the Modeler
results, multiply the reported “support” times the reported confidence. For example,
Modeler reports 50% support and 85.714% confidence for the first association rule,

TABLE 12.7 Final list of association rules for vegetable stand data: ranked by support ×
confidence, minimum confidence 80%

If Antecedent, then Consequent Support Confidence Support × Confidence

If buy squash, then buy beans 6/14 = 42.9% 6/7 = 85.7% 0.3677
If buy asparagus, then buy beans 5/14 = 35.7% 5/6 = 83.3% 0.2974
If buy asparagus, then buy squash 5/14 = 35.7% 5/6 = 83.3% 0.2974
If buy broccoli, then buy green peppers 4/14 = 28.6% 4/5 = 80% 0.2288
If buy green peppers, then buy broccoli 4/14 = 28.6% 4/5 = 80% 0.2288
If buy asparagus and beans, then buy squash 4/14 = 28.6% 4/5 = 80% 0.2288
If buy asparagus and squash, then buy beans 4/14 = 28.6% 4/5 = 80% 0.2288
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Figure 12.1 Association rules for vegetable stand data, generated by Modeler.

but this really means 50% × 85.714% = 42.857% support, according to the gener-
ally accepted definition of support. Be careful with Figure 12.1, because it reports the
consequent before the antecedent. Apart from the “support” anomaly, the software’s
association rules shown in Figure 12.1 represent the same rules as those we found
step by step, and by hand, for the vegetable stand data.

Armed with this knowledge, the vegetable stand entrepreneur can deploy mar-
keting strategies that take advantage of the patterns uncovered above. Why do these
particular products co-occur in customers’ market baskets? Should the product lay-
out be altered to make it easier for customers to purchase these products together?
Should personnel be alerted to remind customers not to forget itemBwhen purchasing
associated item A?

12.4 EXTENSION FROM FLAG DATA TO GENERAL
CATEGORICAL DATA

Thus far, we have examined association rules using flag data types only. That is, all
of the vegetable stand attributes took the form of Boolean 0/1 flags, resulting in the
tabular data format found in Table 12.3, reflecting a straightforward market basket
analysis problem. However, association rules are not restricted to flag data types. In
particular, the a priori algorithm can be applied to categorical data in general. Let us
look at an example.

Recall the normalized adult data set analyzed in Chapters 8 and 9. Here in
Chapter 12 we apply the a priori algorithm, for the predictor variables marital-status,
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sex, workclass, and the target variable income in that same data set, using Modeler.
Minimum support of 15%, minimum confidence of 80%, and a maximum of two
antecedents are specified, with the resulting association rules shown in Figure 12.2.

Some of these rules contain the nominal variables Marital Status and Work
class, each of which contain several values, so that these attributes are truly non-flag
categorical attributes. The a priori algorithm simply finds the frequent itemsets just
as before, this time counting the occurrences of the values of the categorical variables
rather than simply the occurrence of the flag.

For example, consider the second rule reported in Figure 12.2: “If Marital
status = Never-married, then income ≤ 50K,” with confidence 95.319%. There were
8225 instances in the data set where the attributeMarital Status took the value Never-
married, which represents 32.9% of the number of records in the data set. (Again,
Modeler refers to this as the “support,” which is not how most researchers define that
term.) The support for this rule is (0.329)(0.95319) = 0.3136. That is, 31.362% of the
records contained the value Never-married for Marital Status and the value “≤50K”
for income, thus making this pairing a frequent 2-itemset of categorical attributes.

Figure 12.2 Association rules for categorical attributes found by the a priori algorithm.

12.5 INFORMATION-THEORETIC APPROACH:
GENERALIZED RULE INDUCTION METHOD

The structure of association rules, where the antecedent and consequent are both
Boolean statements, makes them particularly well suited for handling categorical
data, as we have seen. However, what happens when we try to extend our association
rule mining to a broader range of data, specifically, numerical attributes?

Of course, it is always possible to discretize the numerical attributes, for exam-
ple, by arbitrarily defining income under $30,000 as low, income over $70,000 as
high, and other income as medium. Also, we have seen how both C4.5 and CART
handle numerical attributes by discretizing the numerical variables at favorable loca-
tions. Unfortunately, the a priori algorithm is not well equipped to handle numeric
attributes unless they are discretized during preprocessing. Of course, discretization
can lead to a loss of information, so if the analyst has numerical inputs and prefers not
to discretize them, he or she may choose to apply an alternative method for mining
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association rules: generalized rule induction (GRI). The GRI methodology can han-
dle either categorical or numerical variables as inputs, but still requires categorical
variables as outputs.

Generalized rule induction was introduced by Smyth and Goodman in 1992 [3].
Rather than using frequent itemsets, GRI applies an information-theoretic approach
(as did the C4.5 decision tree algorithm) to determining the “interestingness” of a
candidate association rule.

12.5.1 J-Measure

Specifically, GRI applies the J-measure:

J = p(x)

[
p(y | x) ln

p(y | x)
p(y)

+ [1 − p(y | x)] ln
1 − p(y | x)
1 − p(y)

]
where

� p(x) represents the probability or confidence of the observed value of x. This is
a measure of the coverage of the antecedent. How prevalent is this value of the
antecedent attribute? You can calculate p(x) using a frequency distribution for
the variable in the antecedent.

� p(y) represents the prior probability or confidence of the value of y. This is a
measure of the prevalence of the observed value of y in the consequent. You can
calculate p(y) using a frequency distribution for the variable in the consequent.

� p(y|x) represents the conditional probability, or posterior confidence, of y given
that x has occurred. This is a measure of the probability of the observed value
of y given that this value of x has occurred. That is, p(y|x) represents an updated
probability of observing this value of y after taking into account the additional
knowledge of the value of x. In association rule terminology, p(y|x) is measured
directly by the confidence of the rule.

� ln represents the natural log function (log to the base e).

For rules with more than one antecedent, p(x) is considered to be the probability
of the conjunction of the variable values in the antecedent.

As usual, the user specifies desired minimum support and confidence criteria.
For GRI, however, the user also specifies howmany association rules he or she would
like to be reported, thereby defining the size of an association rule table referenced by
the algorithm. The GRI algorithm then generates single-antecedent association rules,
and calculates J, the value of the J-measure for the rule. If the “interestingness” of the
new rule, as quantified by the J-measure, is higher than the current minimum J in the
rule table, the new rule is inserted into the rule table, which keeps a constant size by
eliminating the rule with minimum J. More specialized rules with more antecedents
are then considered.

How can the behavior of the J-statistic be described? Clearly (since p(x) sits
outside the brackets), higher values of J will be associated with higher values of p(x).
That is, the J-measure will tend to favor those rules whose antecedent value is more
prevalent, reflecting higher coverage in the data set. Also, the J-measure tends toward
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higher values when p(y) and p(y|x) are more extreme (near zero or 1). Hence, the
J-measure will also tend to favor those rules whose consequent probability, p(y), is
more extreme, or whose rule confidence, p(y|x), is more extreme.

The J-measure favors rules with either very high or very low confidence. Why
would we be interested in an association rule with extremely low confidence? For
example, suppose that we have a rule R: If buy beer, then buy fingernail polish, with
confidence p(y|x) = 0.01%, which would presumably be favored by the J-measure,
since the confidence is so low. The analyst could then consider the negative form of R:
If buy beer, then NOT buy fingernail polish, with confidence 99.99%. Although such
negative rules are often interesting (“I guess we better move that fingernail polish out
of the beer section . . . ”), they are often not directly actionable.

12.6 ASSOCIATION RULES ARE EASY TO DO BADLY

Association rules need to be applied with care, since their results are sometimes
deceptive. Let us look at an example. Turning back to the a priori algorithm, we
asked Modeler to mine association rules from the adult database using 10% mini-
mum support, 60% minimum confidence, and a maximum of two antecedents. One
association rule is shown from the results, in Figure 12.3.

The results (not shown) include the following association rule: If Work_Class
= Private, then sex = Male, with 65.63% confidence. Marketing analysts interested
in small business owners might be tempted to use this association rule in support of
a new marketing strategy aimed at males. However, seen in its proper light, this rule
may in fact be worse than useless.

One needs to take into account the raw (prior) proportion of males in the data
set, which in this case is 66.84%. In other words, applying this association rule
actually reduces the probability of randomly selecting a male from 0.6684 to 0.6563.
You would have been better advised to pull a name out of a hat from the entire data
set than apply this rule.

Why, then, if the rule is so useless, did the software report it? The quick answer
is that the default ranking mechanism for Modeler’s a priori algorithm is confidence.
However, it needs to be emphasized here that data miners should never simply
believe the computer output without making the effort to understand the models and
mechanisms underlying the results. With the onset of sophisticated point-and-click
data mining software, poor analysis costing millions of dollars is more prevalent than
ever. In a word, data mining is easy to do badly. Insightful human expertise and
constant human vigilance are required to translate the nuggets hidden in the database
into actionable and profitable results.

Figure 12.3 An association rule that is worse than useless.
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With association rules, one needs to keep in mind the prior probabilities
involved. To illustrate, we now ask Modeler to provide us with a priori associa-
tion rules, but this time using the confidence difference as the evaluative measure.
Here, rules are favored that provide the greatest increase in confidence from the prior
to the posterior. One such association rule is shown in Figure 12.4: If Marital status
= Divorced then Sex = Female. The data set contains 33.16% females, so an associa-
tion rule that can identify females with 60.029% confidence is useful. The confidence
difference for this association rule is 0.60029 – 0.3316 = 0.26869 between the prior
and posterior confidences.

Alternatively, analysts may prefer to use the confidence ratio to evaluate poten-
tial rules. This is defined as

confidence ratio = 1 − min
(
p(y | x)
p(y)

,
p(y)
p(y | x)

)
For example, for the rule: If Marital Status = Divorced, then Sex = Female, we

have p(y) = 0.3316 and p(y|x) = 0.60029, so that

min

(
p(y|x)
p(y)

,
p(y)
p(y|x)

)
=

p(y)
p(y|x) = 0.3316

0.60029
= 0.5524

and the confidence ratio equals 1 – 0.5524 = 0.4476. In the exercises we explore
further the differences among these rule selection criteria.

Figure 12.4 This association rule is useful, because the posterior probability (0.60029) is
much greater than the prior probability (0.3316).

12.7 HOW CAN WE MEASURE THE USEFULNESS OF
ASSOCIATION RULES?

As we have seen, not all association rules are equally useful. Here we are introduced
to a measure that can quantify the usefulness of an association rule: lift. We define
lift as follows:

Lift = Rule confidence
Prior proportion of the consequent

Recall the supermarket example where, of 1000 customers, 200 bought diapers,
and of these 200 customers who bought diapers, 50 also bought beer. The prior
proportion of those who bought beer is 50/1000 = 5%, while the rule confidence is
50/200 = 25%. Therefore, the lift for the association rule, “If buy diapers, then buy
beer”, is

Lift = 0.25
0.05

= 5
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This may be interpreted as, “Customers who buy diapers are five times as likely
to buy beer as customers from the entire data set.” Clearly, this association rule would
be useful to a store manager wishing to sell more diapers. Next, suppose, of that
40 of the 1000 customers bought expensive makeup, whereas, of the 200 customers
who bought diapers, only 5 bought expensive makeup. In this case, the lift for the
association rule “If buy diapers, then buy expensive makeup”, is

Lift =
5∕200

40∕1000
= 0.025

0.04
= 0.625

So, customers who buy diapers are only 62.5% as likely to buy expensive
makeup as customers in the entire data set.

In general, association rules with lift values different from 1 will be more
interesting and useful than rules with lift values close to 1. Why are rules with lift
values close to 1 not useful? Recall the definition of confidence for the association
rule “If A then B”:

Confidence = P (B|A) = P(A∩B)
P(A)

Then, to obtain lift, we divide by the prior probability of the consequent B,
giving us:

Lift = Rule confidence
Prior proportion of the consequent

= P(A∩B)
P(A)P(B)

Now, events A and B are independent when P(A∩B) = P(A)P(B). Thus, the
ratio P(A∩B)

P(A)P(B)
being close to 1 implies that A and B are independent events, meaning

that knowledge of the occurrence of A does not alter the probability of the occurrence
of B. Such relationships are not useful from a data mining perspective, and thus
it makes sense that we prefer our association rules to have a lift value different
from 1.

12.8 DO ASSOCIATION RULES REPRESENT SUPERVISED
OR UNSUPERVISED LEARNING?

Beforewe leave the subject of association rules, let us touch on a few topics of interest.
First, we may ask whether association rules represent supervised or unsupervised
learning. Recall that most data mining methods represent supervised learning, since
(1) a target variable is prespecified, and (2) the algorithm is provided with a rich
collection of examples where possible association between the target variable and
the predictor variables may be uncovered. Conversely, in unsupervised learning, no
target variable is identified explicitly. Rather, the data mining algorithm searches
for patterns and structure among all the variables. Clustering is perhaps the most
common unsupervised data mining method.

Association rule mining, however, can be applied in either a supervised or an
unsupervised manner. In market basket analysis, for example, one may simply be
interested in “which items are purchased together,” in which case no target variable
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would be identified. On the other hand, some data sets are naturally structured so that
a particular variable fulfills the role of consequent, and not antecedent (see the play
example in the exercises). For example, suppose that political pollsters have collected
demographic data in their exit polling, along with the subject’s voting preference. In
this case, association rules could be mined from this data set, where the demographic
information could represent possible antecedents, and the voting preference could
represent the single consequent of interest. In this way, association rules could be
used to help classify the voting preferences of citizens with certain demographic
characteristics, in a supervised learning process.

Thus, the answer to the question is that association rules, while generally
used for unsupervised learning, may also be applied for supervised learning for a
classification task.

12.9 LOCAL PATTERNS VERSUS GLOBAL MODELS

Finally, data analysts need to consider the difference between models and patterns.
A model is a global description or explanation of a data set, taking a high level
perspective. Models may be descriptive or inferential. Descriptive models seek to
summarize the entire data set in a succinct manner. Inferential models aim to pro-
vide a mechanism that enables the analyst to generalize from samples to popula-
tions. Either way, the perspective is global, encompassing the entire data set. On
the other hand, patterns are essentially local features of the data. Recognizable pat-
terns may in fact hold true for only a few variables or a fraction of the records in
the data.

Most of the modeling methods we have covered have dealt with global model
building. Association rules, on the other hand, are particularly well suited to uncover-
ing local patterns in the data. As soon as one applies the if clause in an association rule,
one is partitioning a data so that, usually, most of the records do not apply. Applying
the if clause “drills down” deeper into a data set, with the aim of uncovering a hidden
local pattern which may or may not be relevant to the bulk of the data.

For example, consider the following association rule from Figure 12.4: if Mar-
ital Status = Divorced, then Sex = Female, with confidence 60.029%. We see that
this association rule applies to only 13.74% of the records and ignores the remaining
86.24% of the data set. Even among this minority of records, the association rule
ignores most of the variables, concentrating on only two. Therefore, this association
rule cannot claim to be global and cannot be considered a model in the strict sense.
It represents a pattern that is local to these records and variables only.

Then again, finding interesting local patterns is one of the most important goals
of data mining. Sometimes, uncovering a pattern within the data can lead to the
deployment of new and profitable initiatives. For example, recall from the churn
data set (Chapter 3) that those customers who belonged to the VoiceMail Plan were
at considerably lower risk of churning than other customers (see Figure 12.5). This
finding affected only 922 (27.663%) of the 3333 records and only two of the variables,
and is thus to be considered a local pattern. Nevertheless, the discovery of this nugget
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Figure 12.5 Profitable pattern: VoiceMail Plan adopters less likely to churn.

could lead to policy changes which, if properly deployed, could lead to increased
profits for the cell phone company.

THE R ZONE

# Read in the Adult data set

dat <- read.csv(file = "C:/ . . . /adult.txt",
stringsAsFactors=TRUE)

# Install and load the required package

install.packages("arules")
library(arules)

# Make the Factors into a Transaction object

testing <- as(dat[,-c(1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14)], "transactions")

# Run the program, view the output sorted by support

rules <- apriori(testing,
parameter = list(supp = 0.15,

conf = 0.80,
maxlen = 3))

inspect(sort(rules))
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EXERCISES

1. Describe the two main methods of representing market basket data. What are the benefits
and drawbacks of each?

2. Describe support and confidence. Express the formula for confidence using support.

3. Restate the a priori property in your own words.
For the following several exercises, consider the following data set fromQuinlan [4]

shown as Table 12.8. The goal is to develop association rules using the a priori algorithm
for trying to predict when a certain (evidently indoor) game may be played. Therefore,
unlike the vegetable stand example, wemay restrict our itemset search to items that include
the attribute play.

4. Let 𝜙 = 3. Generate the frequent 1-itemsets.

5. Let 𝜙 = 3. Generate the frequent 2-itemsets.

6. Let 𝜙 = 3. Generate the frequent 3-itemsets.

7. Using 75% minimum confidence and 20% minimum support, generate one-antecedent
association rules for predicting play.

TABLE 12.8 Weather data set for association rule mining

No. Outlook Temperature Humidity Windy Play

1 Sunny Hot High False No
2 Sunny Hot High True No
3 Overcast Hot High False Yes
4 Rain Mild High False Yes
5 Rain Cool Normal False Yes
6 Rain Cool Normal True No
7 Overcast Cool Normal True Yes
8 Sunny Mild High False No
9 Sunny Cool Normal False Yes
10 Rain Mild Normal False Yes
11 Sunny Mild Normal True Yes
12 Overcast Mild High True Yes
13 Overcast Hot Normal False Yes
14 Rain Mild High True No
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8. Using 75% minimum confidence and 20% minimum support, generate two-antecedent
association rules for predicting play.

9. Multiply the observed support times the confidence for each of the rules in Exercises 7
and 8, and rank them in a table.

10. Verify your manually found results using association rule software.

11. For each of the association rules found above by the a priori algorithm, find the J-measure.
Then order the rules by J-measure. Compare the ordering with that from the a priori
support × confidence ordering.

12. Find the value of the J-measure for the sixth rule from Figure 12.5.

HANDS-ON ANALYSIS

Use the churn data set, given at the book series website, for the following exercises. Use
the Churn_Training_File. Filter out all variables except the following: VMail Plan, Intl Plan,
CustServ Calls, and Churn. Set CustServ Calls to be ordinal. Allow the three predictors to be
in either antecedent or consequent, but do not allow Churn to be in the antecedent.

13. Set the minimum antecedent support to 1%, the minimum rule confidence to 5%, and the
maximum number of antecedents to 1. Use rule confidence as your evaluation measure.

a. Find the association rule with the greatest lift.

b. Report the following for the rule in (a).

i. Number of instances

ii. Support % (as defined in this chapter)

iii. Confidence %

iv. Rule support %

v. Lift

vi. Deployability

c. Using hand calculations, show how the measures were calculated.

d. Explain, in terms of this data, what each of the measures in (c) means (you can skip
(i)).

14. Set the minimum antecedent support to 1%, the minimum rule confidence to 5%, and the
maximum number of antecedents to 1.

a. Generate rules using confidence difference as your evaluation measure with evaluation
measure lower bound = 40. Explain what this evaluation measure means.

b. For the rules that are generated, use hand calculations to compute the reported evaluation
measure, and show that the evaluation measure lower bound has been met.

c. Generate rules using confidence difference as your evaluation measure with evaluation
measure lower bound = 30.

d. Select the rule with the highest deployability. Explain why the deployability of this rule
is greater than the rule we found in Question 1a.

15. Set the minimum antecedent support to 1%, the minimum rule confidence to 5%, and the
maximum number of antecedents to 1.

a. Generate rules using confidence ratio as your evaluation measure with evaluation
measure lower bound = 40. Explain what this evaluation measure means.
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b. Select the rule involving Intl Plan. Use hand calculations to compute the reported
evaluation measure, and show that the evaluation measure lower bound has been met.

16. Compare the results from Exercise 13 with the results from the EDA and decision tree
analysis in Chapters 3 and 6. Discuss similarities and differences. Which analysis format
do you prefer? Do you find a confluence of results?

17. Apply the GRI algorithm to uncover association rules for predicting either churn or
nonchurn behavior. Specify reasonable lower bounds for support and confidence.

18. Compare the results from the a priori algorithm with those of the GRI algorithm. Which
algorithm yields a richer set of rules, and why? Which algorithm is probably preferable
for this particular data set? Why? �
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13.1 NEED FOR IMPUTATION OF MISSING DATA

In this world of big data, the problem of missing data is widespread. It is the rare
database that contains no missing values at all. Depending on how the analyst deals
with the missing data may change the outcome of the analysis, so it is important to
learn methods for handling missing data that will not bias the results.

Missing datamay arise from any of several different causes. Survey datamay be
missing because the responder refuses to answer a particular question, or simply skips
a question by accident. Experimental observations may be missed due to inclement
weather or equipment failure. Data may be lost through a noisy transmission, and
so on.

In Chapter 2 we learned three common methods for handling missing data:

1. Replace the missing value with some constant, specified by the analyst,

2. Replace the missing value with the field mean (for numeric variables) or the
mode (for categorical variables),

3. Replace the missing values with a value generated at random from the observed
distribution of the variable.

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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We learned that there were problems with each of these methods, which could
generate inappropriate data values that would bias our results. For example, in
Chapter 2, a value of 400 cubic inches was generated for a vehicle whose cubic
inches value was missing. However, this value did not take into account that the
vehicle is Japanese, and there is no Japanese-made car in the database which has an
engine size of 400 cubic inches.

We therefore need data imputation methods that take advantage of the knowl-
edge that the car is Japanese when calculating its missing cubic inches. In data
imputation, we ask “What would be the most likely value for this missing value,
given all the other attributes for a particular record?” For instance, an American car
with 300 cubic inches and 150 horsepower would probably be expected to have more
cylinders than a Japanese car with 100 cubic inches and 90 horsepower. This is called
imputation of missing data. In this chapter we shall examine methods for imputing
missing values for (a) continuous variables, and (b) categorical variables.

13.2 IMPUTATION OF MISSING DATA: CONTINUOUS
VARIABLES

In Chapter 5 we introduced multiple regression using the cereals data set. It may be
worthwhile to take a moment to review the characteristics of the data set by looking
back at that chapter. We noted that there were four missing data values:

� Potassium content of Almond Delight
� Potassium content of Cream of Wheat
� Carbohydrates and sugars content of Quaker Oatmeal

Before we use multiple regression to impute these missing values, we must first
prepare the data for multiple regression. In particular, the categorical variables must
be transformed into 0/1 dummy variables. We did so (not shown) for the variable
type, turning it into a flag variable to indicate whether or not the cereal was cold
cereal. We then derived a series of dummy variables for the variable manufacturer,
with flags for Kellogg’s, General Mills, Ralston, and so on.

We begin by using multiple regression to build a good regression model for
estimating potassium content. Note that we will be using the variable potassium as
the response, and not the original response variable, rating. The idea is to use the
set of predictors (apart from potassium) to estimate the potassium content for our
Almond Delight cereal. Thus, all the original predictors (minus potassium) represent
the predictors, and potassium represents the response variable, for our regression
model for imputing potassium content. Do not include the original response variable
rating as a predictor for the imputation.

Because not all variables will be significant for predicting potassium, we apply
the stepwise variable selectionmethod ofmultiple regression. In stepwise regression,1

the regression model begins with no predictors, then the most significant predictor is

1For more on regression modeling andmultiple regression, including stepwise regression, seeDataMining
Methods and Models, by Daniel Larose (Wiley, 2006) or Data Mining and Predictive Analytics, by Daniel
Larose and Chantal Larose (Wiley, 2015, to appear).
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entered into the model, followed by the next most significant predictor. At each stage,
each predictor is tested whether it is still significant. The procedure continues until
all significant predictors have been entered into the model, and no further predictors
have been dropped. The resulting model is usually a good regression model, though
it is not guaranteed to be the global optimum.

Figure 13.1 shows the multiple regression results for the model chosen by the
stepwise variable selection procedure.2 The regression equation is

Estimated potassium = −73.11 + 10.137 (Protein) + 23.515 (Fiber)

+1.6444 (Sugars) + 7.841 (Shelf) + 70.61 (Weight)

−22.1 (Kelloggs)

Figure 13.1 Multiple regression results for imputation of missing potassium values. (The
predicted values section of this output is for Almond Delight only.)

2Note two things about this regression. First, the predictors were chosen using best subsets regression (see
reference in footnote 1). Second, for simplicity, Shelf is treated here as a numeric rather than a categorical
variable, in order to concentrate on issues of missing data.
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To estimate the potassium content for Almond Delight, we plug in Almond
Delight’s values for the predictors in the regression equation:

Estimated potassium for Almond Delight = −73.11 + 10.137 (2) + 23.515 (1)

+ 1.6444 (8) + 7.841 (3) + 70.61 (1)

− 22.1 (0) = 77.9672

That is, the estimated potassium in Almond Delight is 77.9672 mg. This, then,
is our imputed value for Almond Delight’s missing potassium value: 77.9672 mg.

We may use the same regression equation to estimate the potassium content
for Cream of Wheat, plugging in Cream of Wheat’s values for the predictors in the
regression equation:

Estimated potassium for Cream of Wheat = −73.11 + 10.137 (3) + 23.515 (1)

+ 1.6444 (0) + 7.841 (2) + 70.61 (1)

− 22.1 (0) = 67.108

The imputed value for Cream ofWheat’smissing potassium value is 67.108mg.
Next we turn to imputing the missing values for the carbohydrates and sugars

content of Quaker Oatmeal. A challenge here is that two predictors have missing
values for Quaker Oatmeal. For example, if we build our regression model to impute
carbohydrates, and the model requires information for sugars, what value do we use
for Quaker Oats sugars, since it is missing? Using the mean or other such ad hoc
substitute is unsavory, for the reasons mentioned earlier. Therefore, we will use the
following approach:

Step 1. Build a regressionmodel to impute carbohydrates; do not include sugars
as a predictor.

Step 2. Construct a regression model to impute sugars, using the carbohydrates
value found in Step 1.

Thus, the values from Steps 1 and 2 will represent our imputed values for
sugars and carbohydrates. Note that we will include the earlier imputed values for
potassium.

Step 1: The stepwise regression model for imputing carbohydrates, based on
all the predictors except sugars, is as follows (to save space, the computer output is
not shown):

Estimated carbohydrates = 6.004 − 1.7741 (Fat) + 0.06557 (Calories)

+ 0.9297 (Protein) + 0.013364 (Sodium)

− 0.7331 (Fiber) + 4.406 (Nabisco) + 2.7 (Ralston)

(Note that sugars is not one of the predictors.) Then the imputed Step 1 carbo-
hydrates for Quaker Oats is as follows:

Estimated carbohydrates for Quaker Oats = 6.004 − 1.7741 (2) + 0.06557 (100)

+ 0.9297 (5) + 0.013364 (0)

− 0.7331 (2.7) + 4.406 (0)

+ 2.7 (0) = 11.682 grams
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Step 2: We then replace the missing carbohydrates value for Quaker Oats with
11.682 in the data set. The stepwise regression model for imputing sugars is

Estimated sugars = 0.231 + 0.16307 (Calories) − 1.5664 (Fat)

− 1.04574 (Carbohydrates) − 0.8997 (Protein)

+ 1.329 (Cups) + 7.934 (Weight)

− 0.34937 (Fiber) + 1.342 (Ralston)

Estimated sugars for Quaker Oats = 0.231 + 0.16307 (100) − 1.5664 (2)

− 1.04574 (11.682) − 0.8997 (5) + 1.329 (0.67)

+ 7.934 (1) − 0.34937 (2.7) + 1.342 (0)

= 4.572 grams

We insert 4.572 for the missing sugars value for Quaker Oats in the data set, so
that there now remain no missing values in the data set.

Now, ambitious programmers may wish to (a) use the imputed 4.572 grams
sugars value to impute a more precise value for carbohydrates, (b) use that more
precise value for carbohydrates to go back and obtain a more precise value for
sugars, and (c) repeat steps (a) and (b) until convergence. However, the estimates
obtained using a single application of Steps 1 and 2 above usually result in a useful
approximation of the missing values.

When there are several variables with many missing values, the above step-
by-step procedure may be onerous, without recourse to a recursive programming
language. In this case, do the following:

Step 1. Impute the values of the variable with the fewest missing values. Use
only the variables with no missing values as predictors. If no such predictors
are available, use the set of predictors with the fewest missing values (apart
from the variable you are predicting, of course).

Step 2. Impute the values of the variable with the next fewest missing values,
using similar predictors as used in Step 1.

Step 3. Repeat Step 2 until all missing values have been imputed.

13.3 STANDARD ERROR OF THE IMPUTATION

Clients may wish to have an idea of the precision of an imputed value. When estimat-
ing or imputing anything, analysts should try to provide a measure of the precision
of their estimate or imputation. In this case, the standard error of the imputation3 is
used. The formula for the simple linear regression case is

Standard error of the imputation = SEI = s ⋅

√
1 + 1

n
+

(xp − x̄)2

(n − 1)s2x

3This is from the same formula used to find prediction intervals for the value of a randomly chosen y in
simple linear regression.
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where s is the standard error of the estimate for the regression, xp is the value of the
known predictor for the particular record, x̄ represents the mean value of the predictor
across all records, and s2x represents the variance of the predictor values.

For multiple regression (as used here) the formula for SEI is more complex and
is best left to the software. Minitab reports SEI as “SE Fit”. In Figure 13.1, where
we were imputing Almond Delight’s missing potassium value, the standard error of
the imputation is SEI = SE Fit = 4.41 mg. This is interpreted as meaning that, in
repeated samples of Almond Delight cereal, the typical prediction error for imputing
potassium, using the predictors in Figure 13.1, is 1.04 mg.

13.4 IMPUTATION OF MISSING DATA: CATEGORICAL
VARIABLES

One may use any classification algorithm to impute the missing values of categor-
ical variables. We will illustrate using CART (classification and regression trees,
Chapter 8). The data file classifyrisk is a small data file containing 6 fields and 246
records. The categorical predictors are maritalstatus and mortgage; the continuous
predictors are income, age, and number of loans. The target is risk, a dichotomous
field with values good risk and bad loss. The data file classifyrisk_missing contains
a missing value for the marital status of record number 19.

To impute this missing value, we apply CART, with maritalstatus as the target
field, and the other predictors as the predictors for the CART model. Z-score stan-
dardization is carried out on the continuous variables. The resulting CART model is
shown in Figure 13.2.

Record 19 represents a customer who has the following field values: loans = 1,
mortgage = y, age_Z = 1.450, income_Z = 1.498, thus representing a customer who

Figure 13.2 CART model for imputing the missing value of maritalstatus.
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is older than average, with higher income than average, with a mortgage and one
other loan. The root node split is on loans; we follow the branch down “loans in
[0 1]”. The next split checks whether income_Z is greater than 0.812. We fol-
low the branch down “income_Z > 0.812”, which ends at a leaf node containing
30 records, 96.7% of which have a marital status of married. Thus, our imputed
value for the marital status of record 19 is married, with a confidence level
of 96.7%.

13.5 HANDLING PATTERNS IN MISSINGNESS

The analyst should remain aware that imputation of missing data represents replace-
ment. The data value is now no longer missing; rather, its “missingness” has been
replaced with an imputed data value. However, there may be information in the pat-
tern of that missingness, information that will be wasted unless some indicator is
provided to the algorithm indicating that this data value had been missing. For
example, suppose a study is being made of the effect of a new fertility drug on
premenopausal women, and the variable age has some missing values. It is possible
that there is a correlation between the age of the subject, and the likelihood that the
subject declined to give their age. Thus, it may happen that the missing values for age
are more likely to occur for greater values of age. Because greater age is associated
with infertility, the analyst must account for this possible correlation, by flagging
which cases have had their missing ages imputed.

One method to account for patterns in missingness is simply to construct a flag
variable, as follows:

age missing =
{

1 if age value imputed
0 otherwise

Add age_missing to the model, and interpret its effect. For example, in a
regression model, perhaps the age_missing dummy variable has a negative regression
coefficient, with a very small p-value, indicating significance. This would indicate
that indeed there is a pattern in the missingness, namely that the effect size of the
fertility drug for those cases whose age value was missing tended to be smaller (or
more negative). The flag variable could also be used for classification models, such
as CART or C4.5.

Another method for dealing with missing data is to reduce the weight that the
case wields in the analysis. This does not account for the patterns in missingness, but
rather represents a compromise between no indication of missingness and completely
omitting the record. For example, suppose a data set has ten predictors, and Record
001 has one predictor value missing. Then this missing value could be imputed, and
Record 001 assigned a weight, say, of 0.90. Then Record 002, with two of ten field
values missing, would be assigned a weight of 0.80. The specific weights assigned
depend on the particular data domain and research question of interest. The algorithms
would then reduce the amount of influence the records with missing data have on the
analysis, proportional to how many fields are missing.
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THE R ZONE

# Input the data set

cereal <- read.csv(file = "C:/ . . . /cereals.txt",
stringsAsFactors=FALSE,
header=TRUE,
sep="\t")

names(cereal)

# Show what type of variable each one is

sapply(cereal, class)
# Name, Manuf, and Type are categorical variables
# The rest are numeric

# Use the model to estimate missing values

# Almond Delight is record 5;
# Cream of Wheat is record 21
predict(reg2, newdata = cereal[5,])
predict(reg2, newdata = cereal[21,])

# Read in the ClassifyRisk data set. Install and load the required packages

crisk <- read.csv(file = "C:/ . . . / classifyrisk.txt",
stringsAsFactors=TRUE,
sep="\t",
header=TRUE)

install.packages(c("rpart", "rpart.plot"))
library(rpart)
library(rpart.plot)
# Make Record 19’s marital status missing
crisk[19,4]<-NA
criskna <- crisk
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# Standardize the continuous variables

criskna$zincome <- (criskna$income - mean(criskna$income))/sd(criskna$income)
criskna$zage <- (criskna$age - mean(criskna$age))/sd(criskna$age)
criskna$zloans <- (criskna$loans - mean(criskna$loans))/sd(criskna$loans)

# Create the dummy variables

unique(cereal$Type) # needs one indicator
unique(cereal$Manuf) # needs six indicators
cereal$Cold <- c(rep(0, length(cereal$Type)))
cereal$Manuf_N <- cereal$Manuf_Q <- cereal$Manuf_K <- cereal$Manuf_R <-
cereal$Manuf_G <- cereal$Manuf_P <- c(rep(0, length(cereal$Manuf)))

for (i in 1:length(cereal$Type)) {
if(cereal$Type[i] == "C") cereal$Cold[i] <- 1
if(cereal$Manuf[i] == "N") cereal$Manuf_N[i] <- 1
if(cereal$Manuf[i] == "Q") cereal$Manuf_Q[i] <- 1
if(cereal$Manuf[i] == "K") cereal$Manuf_K[i] <- 1
if(cereal$Manuf[i] == "R") cereal$Manuf_R[i] <- 1
if(cereal$Manuf[i] == "G") cereal$Manuf_G[i] <- 1
if(cereal$Manuf[i] == "P") cereal$Manuf_P[i] <- 1

}

# Build the regression model

reg1<- lm(Potass ∼ Calories +
Protein + Fat + Sodium +
Fiber + Carbo + Sugars +
Vitamins + Shelf +
Weight + Cups + Cold +
Manuf_P + Manuf_R +
Manuf_G + Manuf_K +
Manuf_Q + Manuf_N,
data = cereal)

step1 <- step(reg1,
direction = "both")

summary(step1)
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# Run the final regression model

# Include only predictors
# significant in the
# previous analysis
reg2<- lm(Potass ∼ Protein +

Fiber + Sugars + Shelf +
Weight + Manuf_K,
data = cereal)

summary(reg2)

# Apply CART to impute the marital status

imp1 <- rpart(marital_status ∼
mortgage + zloans + zage +
zincome,
data = criskna,
model = TRUE,
method = "class")

# Plot the decision tree
rpart.plot(imp1)

# Predict the marital status of Record 19

predict(imp1, criskna[19,])
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EXERCISES

1. Why do we need to impute missing data?

2. When imputing a continuous variable, explain what we use for the set of predictors, and
for the target variable.

3. When imputing a missing value, do we include the original target variable as one of the
predictor variables for the data imputation model? Why or why not?

4. Describe what we should do if there are many variables with many missing values.

5. On your own, think of a data set where a potential pattern in missingness would represent
good information.

6. State two methods for handling patterns in missingness.

HANDS-ON ANALYSIS

Use the cereals data set for Exercises 7–12. Report the standard error of each imputation.

7. Impute the potassium content of Almond Delight using multiple regression.

8. Impute the potassium content of Cream of Wheat.

9. Impute the carbohydrates value of Quaker Oatmeal.

10. Impute the sugars value of Quaker Oatmeal.

11. Insert the value obtained in Exercise 10 for the sugars value of Quaker Oatmeal, and
impute the carbohydrates value of Quaker Oatmeal.

12. Compare the standard errors for the imputations obtained in Exercises 9 and 11. Explain
what you find.

13. Open the ClassifyRisk_Missing data set. Impute the missing value for marital status. Use
the ClassifyRisk_Missing2 data set for Exercises 14–15.

14. Impute all missing values in the data set. Explain the ordering that you are using.

15. Report the standard errors (for continuous values) or confidence levels (for categorical
values) for your imputations in Exercise 14. �
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As you may recall from Chapter 1, the CRISP cross-industry standard process for
data mining consists of six phases, to be applied in an iterative cycle:

1. Business understanding phase

2. Data understanding phase

3. Data preparation phase

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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4. Modeling phase

5. Evaluation phase

6. Deployment phase

Nestled between the modeling and deployment phases comes the crucial evaluation
phase, techniques for which are discussed in this chapter. By the time we arrive at the
evaluation phase, the modeling phase has already generated one or more candidate
models. It is of critical importance that these models be evaluated for quality and
effectiveness before they are deployed for use in the field. Deployment of data
mining models usually represents a capital expenditure and investment on the part of
the company. If the models in question are invalid, the company’s time and money
are wasted. In this chapter we examine model evaluation techniques for each of
the six main tasks of data mining: description, estimation, prediction, classification,
clustering, and association.

14.1 MODEL EVALUATION TECHNIQUES FOR THE
DESCRIPTION TASK

In Chapter 3 we learned how to apply exploratory data analysis (EDA) to learn
about the salient characteristics of a data set. EDA represents a popular and powerful
technique for applying the descriptive task of data mining. On the other hand, because
descriptive techniques make no classifications, predictions, or estimates, an objective
method for evaluating the efficacy of these techniques can be elusive. The watchword
is common sense. Remember that data mining models should be as transparent as
possible. That is, the results of the data mining model should describe clear patterns
that are amenable to intuitive interpretation and explanation. The effectiveness of your
EDA is best evaluated by the clarity of understanding elicited in your target audience,
whether a group of managers evaluating your new initiative or the evaluation board of
theU.S. Food andDrugAdministration assessing the efficacy of a newpharmaceutical
submission.

If one insists on using a quantifiable measure to assess description, one may
apply the minimum descriptive length principle. Other things being equal, Occam’s
razor (a principle named after the medieval philosopher William of Occam) states
that simple representations are preferable to complex ones. The minimum descriptive
length principle quantifies this, saying that the best representation (or description) of
a model or body of data is the one that minimizes the information required (in bits)
to encode (1) the model and (2) the exceptions to the model.

14.2 MODEL EVALUATION TECHNIQUES FOR THE
ESTIMATION AND PREDICTION TASKS

For estimation and prediction models, we are provided with both the estimated (or
predicted) value ŷ of the numeric target variable and the actual value y. Therefore,
a natural measure to assess model adequacy is to examine the estimation error, or
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residual, |y − ŷ|. Since the average residual is always equal to zero, we cannot use it
for model evaluation; some other measure is needed.

The usual measure used to evaluate estimation or prediction models is themean
square error (MSE):

MSE =

∑
i
(yi − ŷi)

2

n − p − 1

where p represents the number of model parameters. Models are preferred that min-
imize MSE. The square root of MSE can be regarded as an estimate of the typical
error in estimation or prediction when using the particular model. In context, this is

known as the standard error of the estimate and denoted by s =
√
MSE.

For example, consider Figure 14.1 (excerpted from Chapter 5), which provides
the Minitab regression output for the estimated nutritional rating based on sugar
content for the 76 breakfast cereals with nonmissing sugar values. Both MSE = 84.0
and s = 9.16616 are circled on the output. The value of 9.16616 for s indicates that
the estimated prediction error from using this regression model to predict nutrition
rating based on sugar content alone is 9.16616 rating points.

Is this good enough to proceed to model deployment? That depends on the
objectives of the business or research problem. Certainly the model is simplicity
itself, with only one predictor and one response; however, perhaps the prediction
error is too large to consider deployment. Compare this estimated prediction error
with the value of s obtained by the multiple regression in Figure 5.8 in Chapter 5:
s = 7.72769. The estimated error in prediction for the multiple regression is smaller,
but more information is required to achieve this, in the form of a second predictor:

Figure 14.1 Regression results, with MSE and s indicated.
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sodium. As with so much else in statistical analysis and data mining, there is a
trade-off between model complexity and prediction error. The domain experts for
the business or research problem in question need to determine where the point of
diminishing returns lies.

In Chapter 9, Neural Networks, we examined an evaluation measure that was
related to MSE:

SSE =
∑

records

∑
output nodes

(actual − output)

which represents roughly the numerator ofMSE above. Again, the goal is tominimize
the sum of squared errors over all output nodes. In Chapter 5 we learned another
measure of the goodness of a regression model is the coefficient of determination,

R2 = SSR
SST

R2 represents the proportion of the variability in the response that is accounted for
by the linear relationship between the predictor (or predictors) and the response. For
example, in Figure 14.1 we see that R2 = 58.4%, which means that 58.4% of the
variability in cereal ratings is accounted for by the linear relationship between ratings
and sugar content. This is actually quite a chunk of the variability, since it leaves only
41.6% of the variability left for all other factors.

14.3 MODEL EVALUATION TECHNIQUES FOR THE
CLASSIFICATION TASK

How dowe assess howwell our classification algorithm is functioning? Classification
assignments could conceivably be made based on coin flips, tea leaves, goat entrails,
or a crystal ball. Which evaluative methods should we use to assure ourselves that
the classifications made by our data mining algorithm are efficacious and accurate?
Are we outperforming the coin flips?

In this chapter we examine the following evaluative concepts, methods, and
tools: error rate, false positives, false negatives, error cost adjustment, lift, lift charts,
and gains charts, in the context of the C5.0 model for classifying income from
Chapter 8.

14.4 ERROR RATE, FALSE POSITIVES,
AND FALSE NEGATIVES

Recall the Adult data set from Chapter 8 that we applied a C5.0 model for classifying
whether a person’s income was low (≤$50,000) or high (>$50,000), based on a set
of predictor variables which included capital gain, capital loss, marital status, and so
on. Let us evaluate the performance of that decision tree classification model (with
all levels retained, not just three, as in Figure 8.9), using the notions of error rate,
false positives, and false negatives.
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The general form of the matrix of the correct and incorrect classifications made
by a classification algorithm, termed the contingency table,1 is shown in Table 14.1.
Table 14.2 contains the statistics from the C5.0 model, with “≥ 50K” denoted as the
positive classification. The columns represent the predicted classifications, and the
rows represent the actual (true) classifications, for each of the 25,000 records. There
are 19,016 records whose actual value for the target variable income is ≤50,000, and
there are 5984 records whose actual value income is >50,000. The C5.0 algorithm
classified 20,758 of the records as having income ≤50,000, and 4242 records as
having income >50,000.

Of the 20,758 records whose income is predicted by the algorithm to be
≤50,000, 18,197 of these records actually do have low income. However, the algo-
rithm incorrectly classified 2561 of these 20,758 records as having income ≤50,000,
when their income is actually >50,000.

Now, suppose that this analysis is being carried out for a financial lending
firm, which is interested in determining whether or not a loan applicant’s income
is >50,000. A classification of income >50,000 is considered to be positive, since
the lending firm would then proceed to extend the loan to the person in question. A
classification of income ≤50,000 is considered to be negative, since the firm would

TABLE 14.1 General form of the contingency table of correct and incorrect classifications

Predicted Category

0 1 Total

0 True negatives:
Predicted 0
Actually 0

False positives:
Predicted 1
Actually 0

Total actually negative

Actual category 1 False negatives:
Predicted 0
Actually 1

True positives:
Predicted 1
Actually 1

Total actually positive

Total Total
Predicted negative

Total
Predicted positive

Grand total

TABLE 14.2 Contingency table for the C5.0 model

Predicted Category

≤50K >50K Total

≤50K 18,197 819 19,016

Actual category >50K 2561 3423 5984

Total 20,758 4242 25,000

1Also referred to as the confusion matrix or the error matrix.
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proceed to deny the loan application to the person, based on low income (in this
simplified scenario). Assume that in the absence of other information, the default
decision would be to deny the loan due to low income.

Thus, the 20,758 classifications (predictions) of income ≤50,000 are said to be
negatives, and the 4242 classifications of income>50,000 are said to be positives. The
2561 negative classifications that were made in error are said to be false negatives.
That is, a false negative represents a record that is classified as negative but is actually
positive. Of the 4242 positive classifications, 819 actually had low incomes, so that
there are 819 false positives. A false positive represents a record that is classified as
positive but is actually negative.

Let TN, FN, FP, and TP represent the numbers of true negatives, false negatives,
false positives, and true positives, respectively, in our contingency table. Then we
may define our evaluation measures as follows.

Overall Error Rate = FN + FP
TN + FN + FP + TP

Overall Accuracy = 1 − Overall Error Rate = TN + TP
TN + FN + FP + TP

Proportion of False Positives = PFP = FP
FP + TP

Proportion of False Negatives = PFN = FN
FN + TN

Higher is better for Overall Accuracy, Sensitivity, and Specificity; lower is better for
Overall Error Rate, PFP, and PFN.

The overall error rate, or simply the error rate, is the sum of the false negatives
and false positives, divided by the total number of records. Here we have

overall error rate = FN + FP
TN + FN + FP + TP

= 2561 + 819
25,000

= 0.1352

To find the proportion of false negatives, divide the number of false negatives by
the total number of negative classifications. Similarly, to find the proportion of false
positives, divide the number of false positives by the total number of positive classi-
fications. Here we have

proportion of false negatives = PFN = 2561
20,758

= 0.1234

proportion of false positives = PFP = 819
4242

= 0.1931

That is, using the present C5.0 decision tree model, we are more likely to classify an
applicant’s income incorrectly as high than to classify an applicant’s income incor-
rectly as low. Using error rate, false positive rate, and proportion of false negatives,
analysts may compare the accuracy of various models. For example, a C5.0 decision
tree model may be compared against a CART decision tree model or a neural network
model. Model choice decisions can then be rendered based on the relative rankings
of these evaluation measures.
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As an aside, in the parlance of hypothesis testing, since the default decision is
to find that the applicant has low income, we would have the following hypotheses:

H0 : income ≤ 50,000

Ha : income > 50,000

whereH0 represents the default, or null, hypothesis, andHa represents the alternative
hypothesis,which requires evidence to support it. A false positivewould be considered
a type I error in this setting, incorrectly rejecting the null hypothesis, while a false
negativewould be considered a type II error, incorrectly accepting the null hypothesis.

14.5 SENSITIVITY AND SPECIFICITY

A good classification model should be sensitive, meaning that it should identify a
high proportion of the customers who are positive (have high income). Sensitivity is
defined as

Sensitivity =
Number of true positives

Number of actual positives
= TP

TP + FN

For example, fromTable 14.2, we calculate the sensitivity of our income classification
model to be:

Sensitivity =
Number of true positives

Number of actual positives
= 3423

5984
= 0.5720

This statistic is interpreted as follows: our classificationmodel has correctly classified
57.20% of the actual high income customers as having high income.

In some fields, such as information retrieval [1], sensitivity is referred to as
recall. Of course, a perfect classification model would have sensitivity = 1.0 =
100%. However, a null model which simply classified all customers as positive
would also have sensitivity = 1.0. Clearly, it is not sufficient to identify the positive
responses alone.

A classification model also needs to be specific, meaning that it should identify
a high proportion of the customers who are negative (have low income). Specificity
is defined as

Specificity =
Number of true negatives

Number of actual negatives
= TN

FP + TN

From Table 14.2, we compute the specificity of our income classification model
to be:

Specificity =
Number of true negatives

Number of actual negatives
= 18,197

19,016
= 0.9569

Thus, our classification model has correctly classified 95.69% of the actual low
income customers as having low income.

Of course, a perfect classification model would have specificity = 1.0. But so
would a model which classifies all customers as low income. A good classification
model should have acceptable levels of both sensitivity and specificity, but what
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constitutes acceptable varies greatly from domain to domain. Our model specificity
of 0.9569 is higher than our model sensitivity of 0.5720, which is probably okay in
this instance. In the credit application domain, it may be more important to correctly
identify the customers who will default rather than those who will not default, as we
discuss next.

14.6 MISCLASSIFICATION COST ADJUSTMENT
TO REFLECT REAL-WORLD CONCERNS

Consider this situation from the standpoint of the lending institution. Which error,
a false negative or a false positive, would be considered more damaging from the
lender’s point of view? If the lender commits a false negative, an applicant who
had high income gets turned down for a loan: an unfortunate but not very expensive
mistake.

On the other hand, if the lender commits a false positive, an applicant who
had low income would be awarded the loan. This error greatly increases the chances
that the applicant will default on the loan, which is very expensive for the lender.
Therefore, the lender would consider the false positive to be the more damaging
type of error and would prefer to minimize the proportion of false positives. The
analyst would therefore adjust the C5.0 algorithm’s misclassification cost matrix to
reflect the lender’s concerns. Suppose, for example, that the analyst increased the
false positive cost from 1 to 2, while the false negative cost remains at 1. Thus, a false
positive would be considered twice as damaging as a false negative. The analyst may
wish to experiment with various cost values for the two types of errors, to find the
combination best suited to the task and business problem at hand.

How did the misclassification cost adjustment affect the performance of the
algorithm? Which rate would you expect to increase or decrease, the false negative
or the false positive? Do you have an intuition of what might happen to the overall
error rate?

Well, we would expect that the proportion of false positives would decrease,
since the cost of making such an error has been doubled. Fewer false positives
usually mean more false negatives, however. Unfortunately, the overall error rate
will probably increase, since there are many more negative predictions made than
positive, giving the proportion of false negatives a greater weight in the computation
of the overall error rate.

The C5.0 algorithm was rerun, this time including the misclassification cost
adjustment. The resulting contingency table is shown in Table 14.3. As expected, the

TABLE 14.3 Contingency table after misclassification cost adjustment

Predicted Category

≤50K >50K Total

≤50K 18,711 305 19,016

Actual category >50K 3307 2677 5984

Total 22,018 2982 25,000
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proportion of false negatives has increased, while the proportion of false positives has
decreased. Whereas previously, false positives were more likely to occur, this time
the proportion of false positives is lower than the proportion of false negatives. As
desired, the proportion of false positives has decreased. However, this has come at
a cost. The algorithm, hesitant to classify records as positive due to the higher cost,
instead made many more negative classifications, and therefore more false negatives.

proportion of false negatives = 3307
22,018

= 0.1501, up from 0.1234 previously,

proportion of false positives = 305
2982

= 0.1023, down from 0.1931 previously.

Unfortunately, the overall error rate has climbed as well:

overall error rate = 3307 + 305
25,000

= 0.14448, up from 0.1352 previously.

Nevertheless, a higher overall error rate and a higher proportion of false negatives are
considered a “good trade” by this lender, who is eager to reduce the loan default rate,
which is very costly to the firm. The decrease in the proportion of false positives from
19.31% to 10.23% will surely result in significant savings to the financial lending
firm, since fewer applicants who cannot afford to repay the loan will be awarded the
loan. Data analysts should note an important lesson here: that we should not be wed
to the overall error rate as the best indicator of a good model.

14.7 DECISION COST/BENEFIT ANALYSIS

Company managers may require that model comparisons be made in terms of
cost/benefit analysis. For example, in comparing the original C5.0 model before
the misclassification cost adjustment (call thismodel 1) against the C5.0 model using
the misclassification cost adjustment (call thismodel 2), managers may prefer to have
the respective error rates, false negatives and false positives, translated into dollars
and cents.

Analysts can provide model comparison in terms of anticipated profit or loss by
associating a cost or benefit with each of the four possible combinations of correct and
incorrect classifications. For example, suppose that the analyst makes the cost/benefit
value assignments shown in Table 14.4. The “–$300” cost is actually the anticipated
average interest revenue to be collected from applicants whose income is actually

TABLE 14.4 Cost/benefit table for each combination of correct/incorrect decision

Outcome Classification Actual Value Cost Rationale

True negative ≤50,000 ≤50,000 $0 No money gained or lost
True positive >50,000 >50,000 –$300 Anticipated average interest

revenue from loans
False negative ≤50,000 >50,000 $0 No money gained or lost
False positive >50,000 ≤50,000 $500 Cost of loan default averaged over

all loans to ≤50,000 group
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>50,000. The $500 reflects the average cost of loan defaults, averaged over all loans
to applicants whose income level is low. Of course, the specific numbers assigned
here are subject to discussion and are meant for illustration only.

Using the costs from Table 14.4, we can then compare models 1 and 2:
Cost of Model 1 (False positive cost not doubled):

18,197($0) + 3423(−$200) + 2561($0) + 819($500) = −$275,100

Cost of Model 2 (False positive cost doubled):

18,711($0) + 2677(−$200) + 3307($0) + 305($500) = −$382,900

Negative costs represent profits. Thus, the estimated cost savings from deploy-
ing model 2, which doubles the cost of a false positive error, is

−$275,100 − (−$382,900) = $107,800

In other words, the simple data mining step of doubling the false positive cost
has resulted in the deployment of a model greatly increasing the company’s profit.
Is not it amazing what a simple misclassification cost adjustment can mean to the
company’s bottom line? Thus, even though model 2 suffered from a higher overall
error rate and a higher proportion of false negatives, it outperformedmodel 1 “where it
counted,” with a lower proportion of false positives, which led directly to a six-figure
increase in the company’s estimated profit.

14.8 LIFT CHARTS AND GAINS CHARTS

In Chapter 12 we were introduced to the concept of lift for association rules. For
classificationmodels, lift is a concept, originally from themarketing field,which seeks
to compare the response rates with and without using the classification model. Lift
charts and gains charts are graphical evaluative methods for assessing and comparing
the usefulness of classificationmodels.We shall explore these concepts by continuing
our examination of the C5.0 models for classifying income.

Suppose that the financial lending firm is interested in identifying high income
persons to put together a targeted marketing campaign for a new platinum credit card.
In the past, marketers may have simply canvassed an entire list of contacts without
regard to clues about the contact’s income. Such blanket initiatives are expensive and
tend to have low response rates. It is much better to apply demographic information
that the company may have about the list of contacts, build a model to predict which
contacts will have high income, and restrict the canvassing to these contacts classified
as high income. The cost of the marketing program will then be much reduced and
the response rate may be higher.

A good classification model should identify in its positive classifications (the
>50,000 column in Tables 14.2 and 14.3), a group that has a higher proportion
of positive “hits” than the database as a whole. The concept of lift quantifies this.
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We define lift as the proportion of positive hits in the set of the model’s positive
classifications, divided by the proportion of positive hits in the data set overall:

lift =
proportion of positive hits in set of positive classifications

proportion of positive hits in data set as a whole

For example, in Table 14.2, model 1 identifies 4242 records as being classified
positive (income >50,000). This is the set of positive classifications. Of these 4242,
3423 records are positive hits; that is, the actual value of income is >50,000. This
gives us 3423/4242 = 0.8069 as the proportion of positive hits in the set of positive
classifications. Now, in the data set as a whole, 5984 of the 25,000 records have
income >50,000, giving us 5984/25,000 = 0.23936 as the proportion of positive hits
in the data set as a whole. The lift, measured at the 4242 positively predicted records,
is therefore 0.8069/0.23936 = 3.37.

Lift is a function of sample size, which is why we had to specify that the lift
of 3.37 for model 1 was measured at n = 4242 records. When calculating lift, the
software will first sort the records by the probability of being classified positive. The
lift is then calculated for every sample size from n = 1 to n = the size of the data set.
A chart is then produced which graphs lift against the percentile of the data set.

Consider Figure 14.2, which represents the lift chart for model 1. Note that
lift is highest at the lowest percentiles, which makes sense since the data are sorted
according to the most likely positive hits. The lowest percentiles have the highest
proportion of positive hits. As the plot moves from left to right, the positive hits tend
to get “used up,” so that the proportion steadily decreases until the lift finally equals
exactly 1 when the entire data set is considered the sample. Therefore, for any lift
chart, the highest lift is always obtained with the smallest sample sizes.

Now, 4242 records represents about the 17th percentile of the 25,000 total
records. Note in Figure 14.2 that the lift at about the 17th percentile would be near
3.37, as we calculated above. If our market research project required merely the
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Figure 14.2 Lift chart for model 1: strong lift early, then falls away rapidly.
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most likely 5% of records, the lift would have been higher, about 4.1, as shown in
Figure 14.2. On the other hand, if the project required 60% of all records, the lift
would have fallen off to about 1.6. Since the data are sorted by positive propensity,
the further we reach into the data set, the lower our overall proportion of positive hits
becomes. Another balancing act is required: between reaching lots of contacts and
having a high expectation of success per contact.

Lift charts are often presented in their cumulative form, where they are denoted
as cumulative lift charts, or gains charts. The gains chart associated with the lift
chart in Figure 14.2 is presented in Figure 14.3. The diagonal on the gains chart is
analogous to the horizontal axis at lift = 1 on the lift chart. Analysts would like to see
gains charts where the upper curve rises steeply as one moves from left to right and
then gradually flattens out. In other words, one prefers a deeper “bowl” to a shallower
bowl. How do you read a gains chart? Suppose that we canvassed the top 20% of our
contact list (percentile = 20). By doing so, we could expect to reach about 62% of
the total number of high income persons on the list. Would doubling our effort also
double our results? No. Canvassing the top 40% on the list would enable us to reach
approximately 85% of the high income persons on the list. Past this point, the law of
diminishing returns is strongly in effect.

Lift charts and gains charts can also be used to compare model performance.
Figure 14.4 shows the combined lift chart for models 1 and 2. The figure shows that
when it comes tomodel selection, a particularmodelmay not be uniformly preferable.
For example, up to about the 6th percentile, there appears to be no apparent difference
in model lift. Then, up to approximately the 17th percentile, model 2 is preferable,
providing slightly higher lift. Thereafter, model 1 is preferable.

Hence, if the goal were to canvass up to the top 17% or so of the people on the
contact list with high incomes, model 2 would probably be selected. However, if the
goal were to extend the reach of the marketing initiative to 20% or more of the likely
contacts with high income, model 1 would probably be selected. This question of
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Figure 14.3 Gains chart for model 1.
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Figure 14.4 Combined lift chart for models 1 and 2.

multiple models and model choice is an important one, which we spend much time
discussing in Reference 1.

Finally, when applying misclassification costs in cost/benefit analysis, one
should use profit charts, which are discussed in Data Mining and Predictive Analyt-
ics.2

It is to be stressed that model evaluation techniques should be performed on
the test data set, rather than on the training set, or on the data set as a whole. (The
entire Adult data set was used here so that readers could replicate the results if they
so choose.)

14.9 INTERWEAVING MODEL EVALUATION WITH
MODEL BUILDING

In Chapter 1 the graphic representing the CRISP-DM standard process for data
mining contained a feedback loop between the model building and evaluation phases.
In Chapter 6 we presented a methodology for building and evaluating a data model.
Where do the methods for model evaluation from Chapter 14 fit into these processes?

We would recommend that model evaluation become a nearly “automatic”
process, performed to a certain degree whenever a newmodel is generated. Therefore,
at any point in the process, we may have an accurate measure of the quality of
the current or working model. Therefore, it is suggested that model evaluation be
interwoven seamlessly into the methodology for building and evaluating a data
model presented in Chapter 6, being performed on the models generated from each of
the training set and the test set. For example, when we adjust the provisional model
to minimize the error rate on the test set, we may have at our fingertips the proportion

2By Daniel Larose and Chantal Larose, John Wiley and Sons, Inc., 2015, to appear.
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of false positives, the proportion of false negatives, the overall error rate, the lift
charts, and the gains charts. These evaluative measures can then point the analyst in
the proper direction for best ameliorating any drawbacks of the working model.

14.10 CONFLUENCE OF RESULTS: APPLYING A SUITE
OF MODELS

In Olympic figure skating, the best-performing skater is not selected by a single judge
alone. Instead, a suite of several judges is called upon to select the best skater from
among all the candidate skaters. Similarly in model selection, whenever possible, the
analyst should not depend solely on a single data mining method. Instead, he or she
should seek a confluence of results from a suite of different data mining models.

For example, for the adult database, Figures 8.5, 8.7, and 9.9 show that the
variables listed in Table 14.5 are the most influential (ranked roughly in order of
importance) for classifying income, as identified by CART, C5.0, and the neural
network algorithm, respectively. Although there is not a perfect match in the ordering
of the important variables, there is still much that these three separate classification
algorithms have uncovered, including the following:

� All three algorithms identify Marital_Status, education-num, capital-gain,
capital-loss, and hours-per-week as the most important variables, except for
the neural network, where age snuck in past capital-loss.

� None of the algorithms identified either work-class or sex as important vari-
ables, and only the neural network identified age as important.

� The algorithms agree on various ordering trends, such as education-num is
more important than hours-per-week.

When we recall the strongly differing mathematical bases on which these three
data mining methods are built, it may be considered remarkable that such convincing
concurrence prevails among them with respect to classifying income. Remember that
CART bases its decisions on the “goodness of split” criterionΦ(s|t), that C5.0 applies
an information-theoretic approach, and that neural networks base their learning on
back-propagation. Yet these three different algorithms represent streams that broadly
speaking, have come together, forming a confluence of results. In this way, the models
act as validation for each other.

TABLE 14.5 Most important variables for classifying income, as identified by CART, C5.0,
and the neural network algorithm

CART C5.0 Neural Network

Marital_Status Capital-gain Capital-gain
Education-num Capital-loss Education-num
Capital-gain Marital_Status Hours-per-week
Capital-loss Education-num Marital_Status
Hours-per-week Hours-per-week Age Capital-loss
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THE R ZONE

# Install the required package

install.packages("C50")
library("C50")

# The confusion matrix

# After using the C5.0 package, the confusion matrix is included in the output of summary()
# See Chapter 8 for data preparation and code to implement the C5.0 package

# Add costs to the model

#After running data preparation from Chapter 8
x <- dat[,c(2,6, 9, 10, 16, 17, 18, 19, 20)]
y <- dat$income
# Without weights:
c50fit <- C5.0(x, y)
summary(c50fit)

# With weights:
costm <- matrix(c(1, 2, 1, 1),

byrow = FALSE,
2, 2)

c50cost <- C5.0(x, y,
costs = costm)

summary(c50cost)

REFERENCE

1. Zdravko Markov and Daniel Larose, Data Mining the Web, Uncovering Patterns in Web Content,
Structure, and Usage, John Wiley and Sons, New York, 2007.

EXERCISES

HANDS-ON ANALYSIS

Use the churn data set at the book series website for the following exercises. Make sure that
the correlated variables have been accounted for.
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1. Apply a CARTmodel for predicting churn. Use default misclassification costs. Determine
the following measures.

a. Proportion of false positives.

b. Proportion of false negatives.

c. Overall error rate.

d. Overall model accuracy (1 – overall error rate).

e. Sensitivity

f. Specificity

2. In a typical churn model, in which interceding with a potential churner is relatively cheap
but losing a customer is expensive, which error is more costly, a false negative or a false
positive (where positive = customer predicted to churn)? Explain.

3. Based on your answer to Exercise 2, adjust the misclassification costs for your CART
model to reduce the prevalence of themore costly type of error. Rerun the CART algorithm.
Compare the false positive, false negative, sensitivity, specificity, and overall error rate
with the previous model. Discuss the trade-off between the various rates in terms of cost
for the company.

4. Perform a cost/benefit analysis for the default CART model from exercise 1 as follows.
Assign a cost or benefit in dollar terms for each combination of false and true positives
and negatives, similar to Table 14.4. Then, using the contingency table, find the overall
anticipated cost.

5. Perform a cost/benefit analysis for the CART model with the adjusted misclassification
costs. Use the same cost/benefits assignments as for the default model. Find the overall
anticipated cost. Compare with the default model, and formulate a recommendation as to
which model is preferable.

6. Construct a lift chart for the default CARTmodel. What is the estimated lift at 20%? 33%?
40%? 50%?

7. Construct a gains chart for the default CART model. Explain the relationship between this
chart and the lift chart.

8. Construct a lift chart for the CART model with the adjusted misclassification costs. What
is the estimated lift at 20%? 33%? 40%? 50%?

9. Construct a single lift chart for both of the CART models. Which model is preferable over
which regions?

10. Now turn to a C4.5 decision tree model, and redo Exercises 1–9. Compare the results.
Which model is preferable?

11. Next, apply a neural network model to predict churn. Calculate the following measures.

a. Proportion of false positives.

b. Proportion of false negatives.

c. Overall error rate.

d. Overall model accuracy (1 – overall error rate).

e. Sensitivity

f. Specificity
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12. Construct a lift chart for the neural network model. What is the estimated lift at 20%?
33%? 40%? 50%?

13. Construct a single lift chart which includes the better of the two CART models, the better
of the two C4.5 models, and the neural network model. Which model is preferable over
which regions?

14. In view of the results obtained above, discuss the overall quality and adequacy of our
churn classification models. �
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Here, we present a very brief review of methods for summarizing and visualizing
data. For deeper coverage, please seeDiscovering Statistics, byDaniel Larose (second
edition, W.H. Freeman, New York, 2013).

PART 1 SUMMARIZATION 1: BUILDING BLOCKS
OF DATA ANALYSIS

� Descriptive statistics refers to methods for summarizing and organizing the
information in a data set.
Consider Table A.1, which we will use to illustrate some statistical concepts.

� The entities for which information is collected are called the elements. In
Table A.1, the elements are the 10 applicants. Elements are also called cases
or subjects.

� A variable is a characteristic of an element, which takes on different values
for different elements. The variables in Table A.1 are marital status, mortgage,
income, rank, year, and risk. Variables are also called attributes.

Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition.
By Daniel T. Larose and Chantal D. Larose.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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TABLE A.1 Characteristics of 10 loan applicants

Applicant Marital Status Mortgage Income ($) Income Rank Year Risk

1 Single y 38,000 2 2009 Good
2 Married y 32,000 7 2010 Good
3 Other n 25,000 9 2011 Good
4 Other n 36,000 3 2009 Good
5 Other y 33,000 4 2010 Good
6 Other n 24,000 10 2008 Bad
7 Married y 25,100 8 2010 Good
8 Married y 48,000 1 2007 Good
9 Married y 32,100 6 2009 Bad
10 Married y 32,200 5 2010 Good

� The set of variable values for a particular element is an observation. Observa-
tions are also called records. The observation for Applicant 2 is:

Applicant Marital Status Mortgage Income ($) Income Rank Year Risk

2 Married y 32,000 7 2010 Good

� Variables can be either qualitative or quantitative.
� A qualitative variable enables the elements to be classified or categorized
according to some characteristic. The qualitative variables in Table A.1 are
marital status, mortgage, rank, and risk. Qualitative variables are also called
categorical variables.

� A quantitative variable takes numeric values and allows arithmetic to be
meaningfully performed on it. The quantitative variables in Table A.1 are
income and year. Quantitative variables are also called numerical variables.

� Data may be classified according to four levels of measurement: nominal,
ordinal, interval, and ratio. Nominal and ordinal data are categorical; interval
and ratio data are numerical.
� Nominal data refer to names, labels, or categories. There is no natural
ordering, nor may arithmetic be carried out on nominal data. The nominal
variables in Table A.1 are marital status, mortgage, and risk.

� Ordinal data can be rendered into a particular order. However, arithmetic
cannot be meaningfully carried out on ordinal data. The ordinal variable in
Table A.1 is income rank.

� Interval data consist of quantitative data defined on an interval without a
natural zero. Addition and subtraction may be performed on interval data.
The interval variable in Table A.1 is year. (Note that there is no “year zero.”
The calendar goes from 1 B.C. to 1 A.D.)

� Ratio data are quantitative data for which addition, subtraction, multipli-
cation, and division may be performed. A natural zero exists for ratio data.
The interval variable in Table A.1 is income.

� A numerical variable that can take either a finite or a countable number of
values is a discrete variable, for which each value can be graphed as a
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separate point,with space between each point. The discrete variable inTableA.1
is year.

� A numerical variable that can take infinitely many values is a continuous
variable, whose possible values form an interval on the number line, with no
space between the points. The continuous variable in Table A.1 is income.

� A population is the set of all elements of interest for a particular problem.
A parameter is a characteristic of a population. For example, the population
is the set of all American voters, and the parameter is the proportion of the
population who supports a $1 per ton tax on carbon.
� The value of a parameter is usually unknown, but it is a constant.

� A sample consists of a subset of the population. A characteristic of a sample
is called a statistic. For example, the sample is the set of American voters in
your classroom, and the statistic is the proportion of the sample who supports
a $1 per ton tax on carbon.
� The value of a statistic is usually known, but it changes from sample to
sample.

� A census is the collection of information from every element in the population.
For example, the census here would be to find from every American voter
whether they support a $1 per ton tax on carbon. Such a census is impractical,
so we turn to statistical inference.

� Statistical inference refers to methods for estimating or drawing conclusions
about population characteristics based on the characteristics of a sample of that
population. For example, suppose 50% of the voters in your classroom support
the tax; using statistical inference, we would infer that 50% of all American
voters support the tax. Obviously, there are problems with this. The sample
is neither random nor representative. The estimate does not have a confidence
level, and so on.

� When we take a sample for which each element has an equal chance of being
selected, we have a random sample.

� A predictor variable is a variable whose value is used to help predict the
value of the response variable. The predictor variables in Table A.1 are all the
variables except risk.

� A response variable is a variable of interest whose value is presumably deter-
mined at least in part by the set of predictor variables. The response variable in
Table A.1 is risk.

PART 2 VISUALIZATION: GRAPHS AND TABLES FOR
SUMMARIZING AND ORGANIZING DATA

2.1 Categorical Variables
� The frequency (or count) of a category is the number of data values in each
category. The relative frequency of a particular category for a categorical
variable equals its frequency divided by the number of cases.
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TABLE A.2 Frequency distribution and relative frequency distribution

Category of Marital Status Frequency Relative Frequency

Married 5 0.5
Other 4 0.4
Single 1 0.1

Total 10 1.0

� A (relative) frequency distribution for a categorical variable consists of all the
categories that the variable assumes, together with the (relative) frequencies for
each value. The frequencies sum to the number of cases; the relative frequencies
sum to 1.

For example Table A.2 contains the frequency distribution and rela-
tive frequency distribution for the variable marital status for the data from
Table A.1.

� A bar chart is a graph used to represent the frequencies or relative frequencies
for a categorical variable. Note that the bars do not touch.
� A Pareto chart is a bar chart where the bars are arranged in decreasing
order. Figure A.1 is an example of a Pareto chart.

� A pie chart is a circle divided into slices, with the size of each slice proportional
to the relative frequency of the category associated with that slice. Figure A.2
shows a pie chart of marital status.

2.2 Quantitative Variables
� Quantitative data are grouped into classes. The lower (upper) class limit of
a class equals the smallest (largest) value within that class. The class width is
the difference between successive lower class limits.
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Figure A.1 Bar chart for marital status.
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Married
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Single
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Other

4, 40.0%

Figure A.2 Pie chart of marital status.

� For quantitative data, a (relative) frequency distribution divides the data into
nonoverlapping classes of equal classwidth. TableA.3 shows the frequency dis-
tribution and relative frequency distribution of the continuous variable income
from Table A.1.

� A cumulative (relative) frequency distribution shows the total number (rel-
ative frequency) of data values less than or equal to the upper class limit. See
Table A.4.

� A distribution of a variable is a graph, table, or formula that specifies the values
and frequencies of the variable for all elements in the data set. For example,
Table A.3 represents the distribution of the variable income.

� A histogram is a graphical representation of a (relative) frequency distribution
for a quantitative variable. See Figure A.3. Note that histograms represent a
simple version of data smoothing and can thus vary in shape depending on the
number and width of the classes. Therefore, histograms should be interpreted
with caution. See Discovering Statistics, by Daniel Larose (W.H. Freeman)
section 2.4 for an example of a data set presented as both symmetric and
right-skewed by altering the number and width of the histogram classes.

� A stem-and-leaf display shows the shape of the data distribution while retain-
ing the original data values in the display, either exactly or approximately. The

TABLE A.3 Frequency distribution and relative frequency distribution of income

Class of Income Frequency Relative Frequency

$24,000–$29,999 3 0.3
$30,000–$35,999 4 0.4
$36,000–$41,999 2 0.2
$42,000–$48,999 1 0.1

Total 10 1.0
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TABLE A.4 Cumulative frequency distribution and cumulative relative frequency
distribution of income

Cumulative Cumulative
Class of Income Frequency Relative Frequency

$24,000–$29,999 3 0.3
$30,000–$35,999 7 0.7
$36,000–$41,999 9 0.9
$42,000–$48,999 10 1.0

leaf units are defined to equal a power of 10, and the stem units are 10 times
the leaf units. Then each leaf represents a data value, through a stem-and-leaf
combination. For example, in Figure A.4, the leaf units (right-hand column)
are 1000s and the stem units (left-hand column) are 10,000s. So “2 4” rep-
resents 2 × 10, 000 + 4 × 1000 = $24, 000, while “2 55” represents two equal
incomes of $25,000 (one of which is exact, the other approximate, $25,100).
Note that Figure A.4, turned 90 degrees to the left, presents the shape of the
data distribution.

� In a dotplot, each dot represents one or more data values, set above the number
line. See Figure A.5.

� A distribution is symmetric if there exists an axis of symmetry (a line) that
splits the distribution into two halves that are approximately mirror images of
each other (Figure A.6a).

� Right-skewed data have a longer tail on the right than the left (Figure A.6b).
Left-skewed data have a longer tail on the left than the right (Figure A.6c).
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Figure A.3 Histogram of income.
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Figure A.4 Stem-and-leaf display of income.

24,000 28,000 32,000 36,000

Income

40,000 44,000 48,000

Figure A.5 Dotplot of income.

Bell-shaped curve is symmetric

(a)

Right-skewed distribution
(b)

Left-skewed distribution

(c)

Figure A.6 Symmetric and skewed curves.
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PART 3 SUMMARIZATION 2: MEASURES OF CENTER,
VARIABILITY, AND POSITION

� The summation notation
∑x means to add up all the data values x. The sample

size is n and the population size is N.
� Measures of center indicate where on the number line the central part of the
data is located. The measures of center we will learn are the mean, the median,
the mode, and the midrange.
� Themean is the arithmetic average of a data set. To calculate the mean, add
up the values and divide by the number of values. The mean income from
Table A.1 is

38,000 + 32,000 +⋯ + 32,200
10

= 325,400
10

= $32,540

� The sample mean is the arithmetic average of a sample, and is denoted x̄
(“x-bar”).

� The population mean is the arithmetic average of a population, and is
denoted 𝜇 (“myu”, the Greek letter for m).

� The median is the middle data value, when there is an odd number of data
values and the data have been sorted into ascending order. If there is an
even number, the median is the mean of the two middle data values. When
the income data are sorted into ascending order, the two middle values are
$32,100 and $32,200, the mean of which is the median income, $32,150.

� The mode is the data value that occurs with the greatest frequency. Both
quantitative and categorical variables can have modes, but only quantitative
variables can have means or medians. Each income value occurs only once,
so there is no mode. The mode for year is 2010, with a frequency of 4.

� Themidrange is the average of the maximum and minimum values in a data
set. The midrange income is

midrange (income) = (max (income) + min (income))
2

= 48,000 + 24,000
2

= $36,000

� Skewness and measures of center. The following are tendencies, and not
strict rules.
� For symmetric data, the mean and the median are approximately equal.
� For right-skewed data, the mean is greater than the median.
� For left-skewed data, the median is greater than the mean.

� Measures of variability quantify the amount of variation, spread, or dispersion
present in the data. The measures of variability we will learn are the range, the
variance, the standard deviation, and, later, the interquartile range.
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� The range of a variable equals the difference between the maximum and
minimum values. The range of income is

Range = max (income) − min (income) = 48,000 − 24,000 = $24,000.

� A deviation is the signed difference between a data value, and the mean
value. For Applicant 1, the deviation in income equals x − x̄ = 38,000 −
32,540 = 5,460. For any conceivable data set, the mean deviation always
equals zero, because the sum of the deviations equals zero.

� The population variance is the mean of the squared deviations, denoted as
𝜎2 (“sigma-squared”):

𝜎2 =
∑

(x − 𝜇)2

N
� The population standard deviation is the square root of the population

variance: 𝜎 =
√
𝜎2.

� The sample variance is approximately the mean of the squared deviations,
with n replaced by n – 1 in the denominator in order to make it an unbiased
estimator of 𝜎2. (An unbiased estimator is a statistic whose expected value
equals its target parameter.)

s2 =
∑
(x − x̄)2

n − 1
� The sample standard deviation is the square root of the sample variance:

s =
√
s2.

� The variance is expressed in units squared, an interpretation that may be
opaque to nonspecialists. For this reason, the standard deviation, which
is expressed in the original units, is preferred when reporting results. For
example, the sample variance of income is s2 =51,860,444 dollars squared,
the meaning of which may be unclear to clients. Better to report the sample
standard deviation s = $7201.

� The sample standard deviation s is interpreted as the size of the typical
deviation, that is, the size of the typical difference between data values and
the mean data value. For example, incomes typically deviate from their mean
by $7201.

� Measures of position indicate the relative position of a particular data value in
the data distribution. The measures of position we cover here are the percentile,
the percentile rank, the Z-score, and the quartiles.
� The pth percentile of a data set is the data value such that p percent of the
values in the data set are at or below this value. The 50th percentile is the
median. For example, the median income is $32,150, and 50% of the data
values lie at or below this value.

� The percentile rank of a data value equals the percentage of values in the
data set that are at or below that value. For example, the percentile rank
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of Applicant 1’s income of $38,000 is 90%, since that is the percentage of
incomes equal to or less than $38,000.

� The Z-score for a particular data value represents how many standard devia-
tions the data value lies above or below the mean. For a sample, the Z-score
is

Z-score = x − x̄
s

For Applicant 6, the Z-score is

24,000 − 32,540
7201

≈ −1.2

The income of Applicant 6 lies 1.2 standard deviations below the mean.
� We may also find data values, given a Z-score. Suppose no loans will be
given to those with incomes more than 2 standard deviations below the
mean. Here, Z-score = −2, and the corresponding minimum income is

Income = Z-score ⋅ s + x̄ = (−2) (7201) + 32,540 = $18,138

No loans will be provided to the applicants with incomes below $18,138.
� If the data distribution is normal, then the Empirical Rule states:

� About 68% of the data lies within 1 standard deviation of the mean,
� About 95% of the data lies within 2 standard deviations of the mean,
� About 99.7% of the data lies within 3 standard deviations of the mean.

� The first quartile (Q1) is the 25th percentile of a data set; the second
quartile (Q2) is the 50th percentile (median); and the third quartile (Q3)
is the 75th percentile.

� The interquartile range (IQR) is ameasure of variability that is not sensitive
to the presence of outliers. IQR = Q3 − Q1.

� In the IQR method for detecting outliers, a data value x is an outlier if
either
� x ≤ Q1 − 1.5(IQR), or
� x ≥ Q3 + 1.5(IQR).

� The five-number summary of a data set consists of the minimum, Q1, the
median, Q3, and the maximum.

� The boxplot is a graph based on the five-number summary, useful for recog-
nizing symmetry and skewness. Suppose for a particular data set (not from
Table A.1), we have Min = 15, Q1 = 29, Median = 36, Q3 = 42, and Max =
47. Then the boxplot is shown in Figure A.7.
� The box covers the “middle half” of the data from Q1 to Q3.
� The left whisker extends down to the minimum value which is not an outlier.
� The right whisker extends up to the maximum value that is not an outlier.
� When the left whisker is longer than the right whisker, then the distribution
is left-skewed. And vice versa.



304 APPENDIX DATA SUMMARIZATION AND VISUALIZATION

Figure A.7 Boxplot of left-skewed data.

� When the whiskers are about equal in length, the distribution is symmetric.
The distribution in Figure A.7 shows evidence of being left-skewed.

PART 4 SUMMARIZATION AND VISUALIZATION OF
BIVARIATE RELATIONSHIPS

� A bivariate relationship is the relationship between two variables.
� The relationship between two categorical variables is summarized using a con-

tingency table, which is a crosstabulation of the two variables, and contains
a cell for every combination of variable values (i.e., for every contingency).
Table A.5 is the contingency table for the variablesmortgage and risk. The total
column contains themarginal distribution for risk, that is, the frequency dis-
tribution for this variable alone. Similarly the total row represents the marginal
distribution for mortgage.

� Much can be learned from a contingency table. The baseline proportion of bad
risk is 2/10 = 20%. However, the proportion of bad risk for applicants without
a mortgage is 1/3 = 33%, which is higher than the baseline; and the proportion
of bad risk for applicants with a mortgage is only 1/7 = 1%, which is lower
than the baseline. Thus, whether or not the applicant has a mortgage is useful
for predicting risk.

� A clustered bar chart is a graphical representation of a contingency table.
Figure A.8 shows the clustered bar chart for risk, clustered by mortgage. Note
that the disparity between the two groups is immediately obvious.

� To summarize the relationship between a quantitative variable and a categorical
variable, we calculate summary statistics for the quantitative variable for each
level of the categorical variable. For example, Minitab provided the following

TABLE A.5 Contingency table formortgage versus risk

Mortgage

Yes No Total

Risk Good 6 2 8
Bad 1 1 2
Total 7 3 10
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Figure A.8 Clustered bar chart for risk, clustered by mortgage.

summary statistics for income, for records with bad risk and for records with
good risk. All summary measures are larger for good risk. Is the difference
significant? We need to perform a hypothesis test to find out (Chapter 4).

� To visualize the relationship between a quantitative variable and a categorical
variable, we may use an individual value plot, which is essentially a set of
vertical dotplots, one for each category in the categorical variable. Figure A.9
shows the individual value plot for income versus risk, showing that incomes
for good risk tend to be larger.
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Figure A.9 Individual value plot of income versus risk.
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� A scatter plot is used to visualize the relationship between two quantitative
variables, x and y. Each (x, y) point is graphed on a Cartesian plane, with
the x axis on the horizontal and the y axis on the vertical. Figure A.10 shows
eight scatter plots, showing some possible types of relationships between the
variables, along with the value of the correlation coefficient r.

� The correlation coefficient r quantifies the strength and direction of the linear
relationship between two quantitative variables. The correlation coefficient is
defined as

r =
∑
(x − x̄) (y − ȳ)

(n − 1) sxsy

where sx and sy represent the standard deviation of the x-variable and the
y-variable, respectively. −1 ≤ r ≤ 1.
� In data mining, where there are a large number of records (over 1000), even
small values of r, such as −0.1 ≤ r ≤ 0.1 may be statistically significant.

� If r is positive and significant, we say that x and y are positively correlated.
An increase in x is associated with an increase in y.

� If r is negative and significant, we say that x and y are negatively correlated.
An increase in x is associated with a decrease in y.
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scatter plot, 307
skewness, 301
statistic, 296
statistical inference, 296
stem-and-leaf display, 298
subject, 294
summation notation, 301
symmetric, 299
unbiased estimator, 302
variable, 294
Z-score, 303
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transactional data format, 248–249
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extension to general categorical data,

255
generalized rule induction (GRI),

256–258
itemset, 250
itemset frequency, 250
itemset, frequent, 251
local patterns versus global models, 261
market basket analysis, 247–249
measuring usefulness of, 259–260
procedure for mining, 251
supervised or unsupervised learning, 260
support, 250

Association rules, confidence difference
method, 259

Association rules, confidence ratio method,
259

Association rules, definition of, 250
Association rules, measuring usefulness of,

259–260
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Average linkage, 212
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Back-propagation rules, 195
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Between cluster variation (BCV), 211
Bias-variance trade-off, 142–144
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Binning, 38, 72
Binning based on predictive value, 72–74
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C4.5 algorithm, 174–178
Candidate splits, 170
CART, 168–173
CART optimality measure, 168
Case, 294
Categorical variable, 296
Census, 296
Chi-square test for goodness of fit, 114
Choosing k for k-nearest neighbor, 160
CIO Magazine, 2
City block distance, 211
Class limits, 297
Class width, 297
Classification, 10–12, 149–161, 165–182,

187–203
Classification and regression trees (CART),

168–173
Classification error, 171
Cluster centroid, 215
Cluster membership as input to downstream

models, 242–243
Cluster profiles, 240
Cluster validity, 235
Clustered bar chart, 304
Clustering, 12–14, 209–223, 228–242
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Clustering, hierarchical methods, 209–214
agglomerative methods, 209–214
average linkage, 212
complete linkage, 212
dendrogram, 212
divisive methods, 212
single linkage, 212

Clustering, k-means see k-means clustering
Combination function for k-nearest

neighbor, 156
Combination function for neural networks,

192
Comparison bar chart, 55–56
Comparison of the CART and C4.5

algorithms, 180–183
Competition for Kohonen networks, 230
Competitive learning, 229
Complete linkage, 212
Confidence for decision rules, 180
Confidence for association rules, 250
Confidence interval estimate, 95, 98
Confidence intervals for the mean, 94–97
Confidence intervals for the mean value of y

given x, 125
Confidence intervals for the proportion,

98–99
Confidence level, 95
Confluence of results, 290
Consequent, 250
Contingency table, 56, 281, 304
Continuous variable, 296
Cooperation for Kohonen networks, 230
Correlated predictor variables, 77–80
Correlation, 77, 123, 307
Correlation coefficient r, 307
Count, 296
CRISP-DM, cross industry standard

process, 4–6
Cross-validation, 139–141
Cumulative frequency distribution, 298

Dangers of extrapolation, 123
Data Cleaning, see Data pre-processing
Data Mining

definition of, xi, 2
fallacies of, 6–7
need for human direction, 3
tasks, 8

Data pre-processing, 17–41
binning numerical variables, 38

data cleaning, 17–19
data transformation, 27, 28–34
decimal scaling, 28
flag variables, 36
handling missing data, 19–22
identifying misclassifications, 22
ID fields, 41
index field, 39
measures of center and spread, 23–26,

301–303
min-max normalization, 26
need for, 17
outliers, graphical methods for

identifying, 22–23
outliers, numerical methods for

identifying, 35
reclassifying categorical variables, 39
removal of duplicate records, 41
removing variables that are not useful, 39
transformations to achieve normality,

28–34
transforming categorical variables into

numeric, 37
variables that should not be removed, 40
why pre-process data, 27–28
Z-score standardization, 27

Data representation for market basket
analysis, 248–249

Data transformation, see Data
pre-processing

Database considerations for k-nearest
neighbor, 158

Decimal scaling, 28
Decision cost/benefit analysis, 285–286
Decision nodes, 165
Decision rules, 179–180
Decision trees, 165–183
C4.5 algorithm, 174–179
entropy, 174
entropy as noise, 175
entropy reduction, 174
information gain, 175
information as signal, 175

classification and regression trees
(CART), 168–174

binary trees, 168
candidate splits, 170
CART optimality measure, 168
classification error, 171
tree pruning, 174
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Decision trees (Continued)
comparison of the CART and C4.5

algorithms, 180–183
decision nodes, 165
decision rules, 179–180
confidence for, 180
support for, 180

leaf nodes, 165
requirements for, 167

Definition of association rules, 250
Definition of data mining, xi, 2
Dendrogram, 212
Deriving new flag variables, 74–76
Deriving new numerical variables, 77
Description, 8
Description task, model evaluation

techniques, 278
Descriptive statistics, 294
Deviation, 302
“Different from” function, 154
Discrete variable, 295
Distance function (distance metric),

153–155
city block distance, 211
Euclidian distance, 153, 210
Minkowski distance, 211

Distribution, 298
Divisive methods, 212
Dotplot, 299

Element, 294
Empirical rule, 303
Entropy, 174
Entropy reduction, 174
Entropy as noise, 175
Error rate, overall, 280–283
Error responsibility in neural networks, 195
Establishing baseline performance,

145–146
Estimation, 8–10, 92–99, 118–122,

125–126, 190
in neural networks, 190
in regression, 118–122, 125–126
in univariate statistics, 93–99

Estimation and prediction using k-nearest
neighbor, 159–160

Estimation and prediction using neural
networks, 190–191

Estimation error (prediction error or
residual), 121, 278

Euclidian distance, 153–154, 210
Example of a Kohonen network study,

231–235
Example of k-means clustering, 216–219
Exploratory data analysis, 51–81
anomalous fields, 71–72
binning based on predictive value, 72–74
correlated predictor variables, 77–80
deriving new flag variables, 74–76
deriving new numerical variables, 77
exploring categorical variables, 55–62
comparison bar chart, 55–56
contingency table, 56
web graph, 62

exploring multivariate relationships,
69–71

interaction, 70
exploring numerical variables, 62–69
getting to know the data set, 52–55
selecting interesting subsets of the data,

71
versus hypothesis testing, 51–52

Exploring categorical variables, 55–62
Exploring multivariate relationships, 69–71
Exploring numerical variables, 62–69
Extension to general categorical data, 255
Extrapolation, 123–125

Fallacies of data mining, 6–7
False negatives, 204, 282
False positives, 204, 282
Five-number summary, 303
Flag variables, 36
Frequency, 296

Gains charts, 286–289
Generalized rule induction (GRI), 256–258
Getting to know the data set, 52–55
Gradient descent method, 194–195

Handling missing data, 19–22
Hidden layer, 191
Hierarchical clustering, 212–215
Histogram, 22–23, 298
Histogram, normalized, 63
Histogram, overlay, 63
How confident are we in our estimates, 94
Hypothesis testing for the mean, 99–101
Hypothesis testing for the proportion,

104–105
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Hypothesis testing in regression, 122
Hypothesis testing using confidence

intervals, 102–104

ID fields, 41
Identifying misclassifications, 22
Imputation of missing data, 266–273

for categorical variables, 272–272
for continuous variables, 267–270
need for, 266–267
patterns in missingness, 272–273
standard error of the imputation, 270

Imputation of missing data for categorical
variables, 272

Imputation of missing data for continuous
variables, 267–270

Index field, 39
Indicator variables (flag variables, dummy

variables), 36–37, 74–77
Indicator variables for neural networks, 189
Individual value plot, 305
Information gain, 174–175
Information as signal, 175
Input layer, 191
Instance-based learning, 150
Interaction, 70
Interquartile range (IQR), 35, 303
Interval data, 295
Interweaving model evaluation with model

building, 289
IQR method of detecting outliers, 303
Itemset, 250
Itemset frequency, 250
Itemset, frequent, 251

J-measure, 257

k-Fold cross-validation, 140
k-Means clustering, 215–224

application of k-means clustering using
SAS Enterprise Miner, 220–223

behavior of MSB, MSE, and pseudo-F,
219–220

cluster centroid, 215
example of k-means clustering, 216–219
using cluster membership to make

predictions, 223
k-Means clustering, application of, using

SAS Enterprise Miner, 223–224
k-Means clustering, example of, 216–219

k-Nearest neighbor algorithm, 149–161
choosing k, 160
combination function, 156–158
database considerations, 158
distance function (distance metric),

153–155
“different from” function, 154
Euclidian distance, 154
similarity, 153–155
triangle inequality, 153

estimation and prediction, 159–160
instance-based learning, 150

Kohonen networks, 228–243
adaptation in Kohonen networks, 230
application of clustering using Kohonen

networks, 235–236
cluster membership as input to

downstream models, 242–243
cluster profiles, 240
cluster validity, 235
competition in Kohonen networks, 230
cooperation in Kohonen networks, 230
example of a Kohonen network study,

231–235

Leaf nodes, 165
Learning rate for neural networks, 195
Least squares, 119
Left-skewed, 299
Levels of measurement, 295
Lift, 286–289
Lift charts, 286–289
Linkage, average, 212
Linkage, complete, 212
Linkage, single, 212
Local patterns versus global models, 261

Margin of error, 97–98
Marginal distribution, 304
Market basket analysis, 247–249
Mean, 301
Mean square error (MSE), 117, 279
Measures of center, 301
Measures of position, 302
Measures of variability, 301–302
Measuring quality of regression model, 123
Measuring usefulness of association rules,

259–260
Median, 301
Methodology for building, 141
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Midrange, 301
Minimum descriptive length principle, 278
Minkowski distance, 211
Min-max normalization, 26
Mode, 301
Model evaluation techniques, 278–291
confluence of results, 290
for the classification task, 280–290
contingency table, 281
decision cost/benefit analysis, 285–286
error rate, overall, 280–283
false negatives, 204
false positives, 204
gains charts, 286–289
lift, 286–289
lift charts, 286–289
type I error, 283
type II error, 283

for the description task, 278
minimum descriptive length principle,

278
Occam’s razor, 278

for the estimation and prediction tasks,
278–280

estimation error, 278
mean square error (MSE), 279
residual, 279
standard error of the estimate,

279
interweaving model evaluation with

model building, 289
sensitivity, 283
specificity, 283

Model evaluation techniques for the
classification task, 280–290

Model evaluation techniques for the
description task, 278

Model evaluation techniques for the
estimation and prediction tasks,
278–280

Momentum term, 199–201
Multicollinearity, 80
Multiple regression, 126–131
Multivariate statistics, 110–130
analysis of variance (ANOVA), 115–117
chi-square test for goodness of fit, 114
confidence intervals for the mean value

of y given x, 125
dangers of extrapolation, 123
extrapolation, 123

hypothesis testing in regression, 122
measuring quality of regression model,

123
multiple regression, 126–131
prediction intervals for a randomly

chosen value of y given x, 125
simple linear regression, 118–125
correlation, 123
estimation error, 121
least squares, 119
prediction error, 121
regression line, 119
residual, 121
slope, 119
y-intercept, 119

test for homogeneity of proportions, ‘,
112–114

two-sample test for means, 110
two-sample test for proportions, 111
verifying regression model assumptions,

127–130

Need for data pre-processing, 17
Need for human direction, 3
Need for imputation of missing data,

266–267
Neural networks, 188–203
application of neural network modeling,

202–203
back-propagation, 194–197
estimation and prediction using neural

networks, 190–191
gradient descent method, 194
learning rate, 195
momentum term, 199
neurons, 188
sensitivity analysis, 201–202
sigmoid activation function, 193
simple example of a neural network,

191–193
termination criteria, 198

Neurons, 188
Nominal data, 295
Numerical variable, 295

Observation, 295
Occam’s razor, 278
Ordinal data, 295
Outliers, graphical methods for identifying,

22–23
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Outliers, numerical methods for identifying,
35

Overfitting, 141–142

Parameter, 93, 296
Pareto chart, 297
Patterns in missingness, 272–273
Percentile, 302
Percentile rank, 302
Pie chart, 297
Point estimate, 94
Point estimation, 94
Population, 93, 296
Population mean, 301
Population standard deviation, 302
Population variance, 302
Prediction, 10, 91–105, 110–130, 159–160
Prediction error (estimation error, residual),

121
Prediction intervals for a randomly chosen

value of y given x, 125
Prediction task, model evaluation

techniques, 278–280
Predictor variable, 296
Preparing to model the data, 138–146

balancing the training data set, 144–145
bias-variance tradeoff, 142–144
establishing baseline performance,

145–146
cross-validation, 139–141
k-fold cross-validation, 140
methodology for building and
evaluating a data model, 141

test data set, 140
training data set, 140
two-fold cross-validation, 139
validating the partition, 140

overfitting, 141
statistical and data mining methodology,

139
supervised versus unsupervised methods,

138–139
supervised methods, 139
unsupervised methods, 138

Procedure for mining association rules,
251

Qualitative variable, 295
Quantitative variable, 295
Quartiles, 35, 303

Random sample, 296
Range, 302
Ratio data, 295
Reclassifying categorical variables, 39
Record, 295
Reducing the margin of error, 97–98
Regression line, 119
Regression, simple linear, 118–125
Relative frequency, 296
Relative frequency distribution, 297, 298
Removal of duplicate records, 41
Removing variables that are not useful, 39
Requirements for decision trees, 167
Residual (estimation error, prediction error),

121, 279
Response variable, 296
Right-skewed, 299

Sample, 93, 296
Sample mean, 301
Sample standard deviation, 302
Sample variance, 302
Sampling error, 95
Scatter plot, 307
Selecting interesting subsets of the data, 71
Self-organizing maps (SOMs), 228–230
Sensitivity, 283
Sensitivity analysis for neural networks,

201–202
Sigmoid activation function, 193
Similarity, 153–155
Simple example of a neural network,

191–193
Simple linear regression, 118–125
Single linkage, 212
Skewness, 301
Slope, 119
Specificity, 283
Standard deviation, 26, 302
Standard error of the estimate, s, 123, 279
Standard error of the imputation, 270
Statistic, 93, 296
Statistical and data mining methodology,

139
Statistical inference, 93–105, 296
Stem-and-leaf display, 298
Subject, 294
Summation notation, 301
Supervised methods, 139
Supervised or unsupervised learning, 260
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Supervised versus unsupervised methods,
138–139

Support, 180, 250
Support for decision rules, 180
Symmetric, 299

Tabular data format, 248–249
Tasks, data mining, 8–14
association, 14, 247–261
classification, 10–12, 149–161, 165–182,

187–203
clustering, 12–14, 209–223, 228–242
description, 8
estimation, 8–10, 93–99, 118–122,

125–126, 190
prediction, 10, 91–105, 110–130,

159–160
Termination criteria, 198
Test data set, 140
Test for homogeneity of proportions,

112–114
Training data set, 140
Transactional data format, 248–249
Transformations to achieve normality,

28–34
Transforming categorical variables into

numeric, 37
Tree pruning, 174
Triangle inequality, 153
Two-fold cross-validation, 139
Two-sample test for means, 110
Two-sample test for proportions, 111
Type I error, 283
Type II error, 283

Unbiased estimator, 302
Underfitting, 141–142
Univariate Statistics, 91–105
assessing strength of evidence against

null hypothesis, 101–102

confidence intervals, 94–99
confidence level, 95
margin of error, 97–98
for the mean, 94–97
for the proportion, 98–99

how confident are we in our estimates, 94
hypothesis testing for the mean, 99–101
hypothesis testing for the proportion,

104–105
hypothesis testing using confidence

intervals, 102–104
reducing the margin of error, 97–98
statistical inference, 93–105
estimation, 92–98
parameter, 93
point estimate, 94
point estimation, 94
population, 93
sample, 93
statistic, 93
sampling error, 95

Unsupervised methods, 138
Using cluster membership to make

predictions, 223

Validating the partition, 140
Variable, 294
Variables that should not be removed, 40
Verifying regression model assumptions,

127–130
Voting, simple unweighted, 156
Voting, weighted, 156

Web graph, 62
Why pre-process data, 27–28

y-Intercept, 119

Z-score, 303
Z-score standardization, 27
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