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Chapter 1
Introduction

Many large organizations operate from multiple branches. Some of these branches
collect data continuously. Thus, there are multi-branch organizations that possess
multiple databases. Global decisions made by such an organization might be more
appropriate if they are based on the data distributed over the branches. Moreover,
the number of such applications is increasing over time. In this chapter, we discuss
some of the major challenges encountered in multi-database mining that need to
be dealt with. We discuss different issues of distributed data mining arising in this
setting. In addition, we present three fundamental approaches to mining multiple
large databases. We also elaborate on the recent developments that are taken place
in this area. We provide a roadmap on how to develop an effective multi-database
mining application and conclude the chapter by identifying some future research
directions.

1.1 Motivation

With the advancement of science and technology, our civilization is changing at a
faster rate. Also, rapid population growth has been another influential factor to sup-
port significant industrial growth and business activities. In addition, many countries
across the globe are adopting slowly a liberal economic policy. Due to the influ-
ence of a number of such factors, some countries are experiencing rapid economic
growth. As a result, the number of companies including those being multi-branch
is increasing over time. In the recent time, the policy of merger and acquisition
has become quite common. Many large companies operate from different branches
located at different geographically distributed regions. Some of these branches are
fully operational and collect transactional data on a continuous basis. As an exam-
ple, consider shopping malls owned by a company. These malls are open at least
12 h a day. All the transactions made in a mall are stored locally. Thus, the company
possesses multiple databases. It might be required to manage all these databases
effectively for addressing different aspects of decision making especially if such
problems need to be addressed at a global level.

Many important decisions could be based on the data distributed over the indi-
vidual branches. Some global decisions might require an analysis of the entire data

1A. Adhikari et al., Developing Multi-database Mining Applications, Advanced
Information and Knowledge Processing, DOI 10.1007/978-1-84996-044-1_1,
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2 1 Introduction

distributed over the branches. The validity of the decisions would also depend on
how effectively one can handle and comprehend relevant data at different branches.
There exist some other categories of applications also where one would need to
mine multiple large databases.

The domain of multi-database mining is increasing over time. The types and
complexities of problems we encounter here are likely to increase in the future.
Consider storing in a database of operational details of a single-cell organism. At
minimum one would need to encode the following (Page and Craven 2003):

• Genome: DNA sequence and gene locations
• Proteome: the organism′s full complement of proteins, not necessarily a direct

mapping from its genes
• Metabolic pathways: linked biochemical reactions involving multiple proteins,

small molecules and protein-protein interactions
• Regulatory pathways: the mechanism by which the expression of some genes into

proteins, such as transcription factors, influences the expression of other genes –
includes protein-DNA interactions

In fact, such a database exists for part of what is known of the widely studied model
organism E. coli-EcoCyc (Karp et al. 1997). Recording the diversity of data requires
a rich and diversified relational schema with multiple, interacting relational tables.
In fact, even recording one type of data, such as metabolic pathways, requires mul-
tiple relational tables because of the linked nature of pathways. It is not surprising
that in this context multi-database mining (MDM) starts playing an essential role
in reaching an effective goal. However, in this book we present studies based on
multiple transactional databases.

Discovering knowledge from a large database is an interesting yet highly chal-
lenging issue. One of the visible challenges comes due to large size of a database.
In many applications, multiple databases are required to be mined. No doubt that in
these cases the challenges are increased manifold. In what follows, let us identify
and discuss some of the major challenges one has to deal with.

• Size of databases: Some of the local databases could be large. Thus, the collec-
tion of all the branch databases is very large. A traditional data mining technique
(Agrawal and Srikant 1994; Han et al. 2000) might take unreasonably large
amount of time to process the collection of all databases present at individual
branches. Sometimes, it might not be feasible to carry out the centralized data
mining using a single computer. Another solution to this problem would be to
employ parallel machines. This, unfortunately, might call for high investment on
hardware and software. We need to make a thorough cost-benefit analysis before
proceeding with such a decision. In some cases, it might not be an acceptable
solution to the management of the company. Moreover, it might be difficult to
find regional patterns when a traditional data mining technique is applied on the
entire database. Thus traditional data mining techniques might not be the most
suitable and fully recommended alternative in this situation.
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• Variety of data formats: It might be possible that all the data sources come in dif-
ferent formats. We need to process them before proceeding with any data mining
activity. Relevant data are required to be retained. Also, the definitions of data are
required to be the same at every data source. Moreover, real-world data may be
noisy. Thus, the preparation of data warehouse could be a significant task when
handling multiple large databases.

• Synthesis of non-local patterns: The process of synthesizing non-local patterns is
a challenging issue. In many cases, a pattern which is not reported from a local
database is assumed as absent in that database. As a result, a synthesized non-
local pattern then becomes approximate. There might exist a cascading, rippling
effect on the decisions made on the basis of such approximate non-local patterns.

• Limitations of exiting techniques of data mining: Existing techniques for deal-
ing with multiple large databases might not be satisfactory in all these situations.
In Section 1.3, we discuss three important approaches to mining multiple large
databases. We will also demonstrate that the existing multi-database mining
techniques are not effective in all the situations.

In the subsequent chapters, we will address many design issues either in the context
of a specific problem, or in general, for the purpose of developing effective multi-
database mining applications.

The chapter is organized as follows. In Section 1.2, we provide an overview
of mining distributed databases. In Section 1.3, we discuss existing approaches to
mining multiple large databases. We discuss different applications of multi-database
mining in Section 1.4. In Section 1.5, we present various issues on the development
of effective multi-database mining applications. Finally, in Section 1.6 we identify
some future research directions.

1.2 Distributed Data Mining

Distributed data mining (DDM) algorithms deals with mining multiple databases
distributed over different geographical regions. In the last few years, researchers
have started addressing problems where the databases stored at different places can-
not be moved to a central storage area for variety of reasons. In multi-database
mining, there are no such restrictions. Thus, distributed data mining could be
considered as a special type of multi-database mining. Distributed data mining
environment often comes with different distributed sources of computation. The
advent of ubiquitous computing (Greenfield 2006), sensor networks (Zhao and
Guibas 2004), grid computing (Wilkinson 2009), and privacy-sensitive multiparty
data (Kargupta et al. 2003) present examples where centralization of data is either
not possible, or at least not always desirable.

There is no doubt that ubiquitous computing could be the next wave of com-
puting. We experienced the first wave of computing due to the excessive use of
mainframes in both academia and industries. Each mainframe is shared by lots of
people. Now we are in the personal computing era, person and machine face at each
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other uncomfortably across the desktop. Moreover, a person sometimes is needed
to spend hours together to finish the task. It makes a person tiresome. Next comes
ubiquitous computing, or the age of calm technology, when technology recedes qui-
etly into the background of our lives. As opposed to the desktop paradigm, in which
a single user consciously engages a single device for a specialized purpose, some-
one using ubiquitous computing engages many computational devices and systems
simultaneously, in the course of ordinary activities, and may not necessarily even be
aware that they are doing so.

There are many domains where distributed processing of data becomes a natural
and scalable solution. Distributed wireless applications define one of such important
domains. Consider an ad hoc wireless sensor network where different sensor nodes
are monitoring some time-critical events. Central collection of data from every sen-
sor node may create heavy traffic over the limited bandwidth offered by wireless
channels and this may also drain a lot of power from the individual devices. Apart
from the issue of power consumption, DDM over wireless networks also requires
an application to run efficiently as many applications are time bound. The system
might require to monitor and mine the on-board data stream generated by different
sensors. Thus, centralization of databases is not desirable at all.

Many privacy-sensitive data mining adopt a distributed framework. The partici-
pating nodes exchange minimal amount information without transmitting raw data.
Stolfo et al. (1997) designed JAM system for mining multiparty distributed sensi-
tive data such as financial fraud detection. Distributed data in health care, finance,
counter-terrorism and homeland defense often use sensitive data held by differ-
ent parties. This comes into direct conflict with an individual’s need and right to
privacy. Yi and Zhang (2007) have proposed a privacy-preserving distributed asso-
ciation rule mining protocol based on a semi-trusted mixer model. The protocol
can protect the privacy of each distributed database against the coalition up to n−2
other data sites or even the mixer if the mixer does not collude with any data site.
Zhan et al. (2006) have proposed a secure protocol for multiple parties to collab-
oratively conduct association rule mining without disclosing their private data to
each other or any other parties. Zhong (2007) has proposed algorithms for both
vertically and horizontally partitioned data, with cryptographically strong privacy.
The author has presented two algorithms for vertically partitioned data; one of them
reveals only the support count and the other reveals nothing. Inan et al. (2007) have
proposed methods for constructing the dissimilarity matrix of objects from differ-
ent sites in a privacy preserving manner which can be used for privacy preserving
clustering as well as database joins, record linkage and other operations that require
pair-wise comparison of individual private data objects horizontally distributed to
multiple sites.

Industry, science, and commerce fields often need to analyze very large databases
maintained over geographically distributed sites by using the computational power
of distributed systems. Grid can play a significant role in providing an effective com-
putational infrastructure support for this kind of data mining. Similarly, the advent of
multi-agent systems has brought us a new paradigm for the development of complex
distributed applications. During the past decades, there have been several models
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and systems proposed to apply agent technology building distributed data mining.
Through a combination of these two techniques, Luo et al. (2007) have investigated
the different issues to build DDM on grid infrastructure and designed an agent grid
intelligent platform as a testbed. Data mining algorithms and knowledge discovery
processes are both compute and data intensive; therefore a grid can offer a comput-
ing and data management infrastructure for supporting decentralized and parallel
data analysis. Congiusta et al. (2007) discussed how grid computing can be used to
support distributed data mining.

In this book, we deal with multiple transactional databases that are not necessar-
ily sensitive. In the following section, we discuss how the existing approaches dealt
with multiple large databases.

1.3 Existing Multi-database Mining Approaches

In the following sections, we discuss three approaches to mining multiple large
databases. In a distributed data mining environment, we may encounter different
types of data. For example, stream data, geographical data, image data, transac-
tional data are quite common. In this book, we deal with multiple transactional
databases.

1.3.1 Local Pattern Analysis

Based on the number of data sources, patterns in multiple databases could be clas-
sified into three categories. They are local patterns, global patterns and patterns that
are neither local nor global. A pattern based on a single database is called a local
pattern. Local patterns are useful for local data analysis and decision making prob-
lems (Adhikari and Rao 2008b; Wu et al. 2005). On the other hand, global patterns
are based on all the databases under consideration. They are useful for global data
analyses (Adhikari and Rao 2008a; Wu and Zhang 2003). A convenient way to mine
global patterns is to mine each local database, and then analyze all the local patterns
to synthesize global patterns. This technique is simply called local pattern analysis.
Zhang et al. (2003) designed local pattern analysis for the purpose of addressing
various problems related to multiple large databases. Let us consider n branches of
a multi-branch company. Also, let Di be the database corresponding to i-th branch,
i = 1, 2, . . ., n. The essence of mining multiple databases using local pattern analysis
could be explained using Fig. 1.1.

Let LPBi be the local pattern base corresponding to Di, i = 1, 2, . . ., n. In multi-
database environment, local patterns could be used in three ways by (i) Analyzing
local data, (ii) Synthesizing non-local patterns, and (iii) Measuring relevant statistics
for a decision making problems. Multi-database mining using local pattern analysis
could be considered as an approximate method of mining multiple large databases.
Thus, it might be required to enhance the quality of knowledge synthesized from
multiple databases.
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Fig. 1.1 Mining patterns in multiple databases using local pattern analysis

1.3.2 Sampling

In multi-database environment, the collection of all branch databases might be very
large. Effective data analysis using a traditional data mining technique based on
multi-gigabyte repositories has proven difficult. An approximate knowledge derived
from large databases would be adequate for many decision support applications.
Such applications could be advantageous to offer quick support in decision-making
processes. In these cases, one could tame multiple large databases by sampling
(Babcock et al. 2003). For instance, a commonly used technique for approximate
query answering is sampling (Cochran 1977). If an itemset is frequent in a large
database then it is likely that the itemset is also frequent in a sample data. Thus,
one could analyze approximately the database by analyzing the frequent itemsets in
a representative sample data. A combination of sampling and local pattern analy-
sis could be a useful technique for mining multiple databases for addressing many
decision support applications.

1.3.3 Re-mining

For the purpose of mining multiple databases, one could apply partition algorithm
proposed by Savasere et al. (1995). The algorithm is designed for mining a very
large database by partitioning. The algorithm works as follows. It scans the database
twice. The database is divided into disjoint partitions, where each partition is small
enough to fit in memory. In a first scan, the algorithm reads each partition and com-
putes locally frequent itemsets in each partition using apriori algorithm (Agrawal
and Srikant 1994). In the second scan, the algorithm counts the supports of all
locally frequent itemsets toward the complete database. In this case, each local
database could be considered as a partition. Though partition algorithm mines fre-
quent itemsets in a database exactly, it might be an expensive solution to mining
multiple large databases, since each database is required to be scanned twice. During
the time of the second scanning, all the local patterns obtained at the first scan are
analyzed. Thus, partition algorithm used for mining multiple databases could be
considered as another type of local pattern analysis.
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1.4 Applications of Multi-database Mining

Multi-database mining has been recently recognized as an important area of research
in data mining. We discuss here a few applications of multi-database mining.

Kum et al. (2006) have proposed ApproxMAP algorithm, to mine approximate
sequential patterns, called consensus patterns, from large sequence databases in
two steps. First, sequences are organized into similarity groups, called clusters.
Then, consensus patterns are mined directly from each cluster through multiple
alignments.

Enterprise applications usually involve huge, complex, and persistent data to
work on, together with business rules and processes. In order to represent, inte-
grate, and use the information coming from huge, distributed, multiple sources,
Hu and Zhong (2006) have presented a conceptual model with dynamic multi-
level workflows corresponding to a mining-grid centric multi-layer grid architecture,
for multi-aspect analysis in building an e-business portal on the Wisdom Web.
The authors have showed that this integrated model would help to dynami-
cally organize status-based business processes that govern enterprise application
integration.

A multi-domain sequential pattern is a sequence of events whose occurrence time
is within a pre-defined time window. Given a set of sequence databases across mul-
tiple domains, Peng and Liao (2009) have aimed at mining multi-domain sequential
patterns.

A multi-branch company is often interested in high-frequency rules because they
are supported by most of its branches for corporate profitability. Wu and Zhang
(2003) have proposed a weighting model for synthesizing high-frequent association
rules from different data sources.

To reduce the search cost in the data from all databases, we need to identify which
databases are most likely relevant to a data mining application. For this purpose, Wu
et al. (2005) have proposed an algorithm for selecting relevant databases.

Ratio rules are aimed at capturing the quantitative association knowledge. Yan
et al. (2006) have extended this framework to mining ratio rules from distributed and
dynamic data sources. Authors have proposed an integrated method to mining ratio
rules from distributed and changing data sources, by first mining the ratio rules from
each data source separately through a novel robust and adaptive one-pass algorithm,
and then integrating the rules of each data source in a simple probabilistic model.

Zhang et al. (2009) have proposed a nonlinear method using kernel estimation for
mining global patterns in multiple databases. A global exceptional pattern describes
interesting individuality of few branches. Therefore, it is interesting to identify such
patterns. Adhikari and Rao (2007), Zhang et al. (2004a) have introduced different
strategies for identifying global exceptional patterns in multiple databases.

Principal component analysis (PCA) is frequently used for constructing the
reduced representation of the data. The method often reduces the dimensionality of
the original data by a large factor and constructs features that capture the maximally
varying directions in the data. Kargupta et al. (2000) have proposed a technique of
computing the collective principal component analysis from heterogeneous sites.
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Biological databases contain a wide variety of data types, often with rich rela-
tional structure. Consequently multi-relational data mining techniques frequently
are applied to biological data. Page and Craven (2003) have presented several appli-
cations of multi-relational data mining to biological data, taking care to cover a
broad range of multi-relational data mining techniques. The field of bioinformatics
is expanding rapidly. In this field large multiple as well as complex relational tables
are dealt with frequently. Wang et al. (2005) present various techniques in biological
data mining and data management. The book also includes preprocessing tasks such
as data cleaning and data integration as applied to biological data.

A general discussion on multi-database mining, applications, various issues and
challenges can be found in Zhang et al. (2004b). Kargupta et al. (2004) have edited
a book containing various issues on distributed data mining.

1.5 Improving Multi-database Mining

One could mine multiple databases using traditional data mining techniques or
consider the use of non-traditional techniques. Some examples of traditional data
mining techniques are apriori algorithm (Agrawal and Srikant 1994), FP-growth
algorithm (Han et al. 2000), and P-tree algorithm (Coenen et al. 2004). For applying
a traditional data mining technique, one needs to amass all the databases together.
Thus, the collection of branch databases could be then thought as a single source of
data. In virtue of the process, the patterns extracted are exact. Thus, no improvement
of patterns (output) is required. But, it might be possible to improve different tra-
ditional data mining algorithms with respect to time complexity, space complexity,
and other parameters of different mining algorithms. Though these are interesting
topics, in this book we will not be concerned about these issues. Some examples
of non-traditional data mining techniques that could be used for mining multi-
ple databases are partition algorithm (Savasere et al. 1995), local pattern analysis
(Zhang et al. 2003) and sampling technique (Babcock et al. 2003). In Section 1.3, we
have noted several drawbacks of each of the non-traditional data mining techniques.
We propose various strategies for improving multi-database mining applications.
Some improvements are general in nature, while others are more specific. The
efficiency of a multi-database application could be enhanced by choosing a better
multi-database mining model, a better pattern synthesizing technique, a better pat-
tern representation technique and a better algorithm for solving the problem. This
book illustrates each of these issues either in the context of a specific problem, or
in some general setting. It does not discuss an efficient implementation of different
algorithms, since the topic has been well studied.

1.5.1 Various Issues of Developing Effective Multi-database
Mining Applications

It might be possible to improve a multi-database mining application, if we critically
and constructively analyze each step of the development process. In what follows,
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we provide a brief description of the remaining chapters, and highlight how they
become instrumental in building effective multi-database mining applications.

In Chapter 2, we present an extended model for synthesizing global patterns
from local patterns present in different databases. We use this model to show how
one could systematically develop different multi-database mining applications using
local pattern analysis. For example, one could mine a specific type of global pat-
terns in multiple databases. In this context, we have presented the notion of heavy
association rule in multiple databases. Also, we have presented an algorithm for
synthesizing heavy association rules in multiple databases. In addition, the notion
of exceptional association rule in multiple databases is presented, and an extension is
made to this algorithm to notify whether a heavy association rule is high-frequent or
exceptional. We present experimental results in case of three real-world databases.
Also, we provide a comparative analysis of the proposed algorithm with the existing
algorithms.

Effective data analysis with multiple databases requires highly accurate pat-
terns. But local pattern analysis might extract low quality of patterns from multiple
databases. Thus, it becomes necessary to improve mining multiple databases. In
Chapter 3, we present a new technique of mining multiple databases in which each
local database is mined using a traditional data mining technique in a particular
order for synthesizing global patterns. The technique improves significantly the
quality of synthesized global patterns. We conduct experiments on both real and
synthetic databases to quantify the effectiveness of the proposed technique.

Many important decisions are based on a set of specific items called the select
items. Thus, the analysis of select items in multiple databases is an important
task. In Chapter 4, we discuss how one could extract patterns related to select
items exactly from multiple large databases. Thus, we present a model of mining
global patterns of select items from multiple databases. Then, a measure of over-
all association between two items in a database is proposed. Finally, an algorithm
is designed based on overall association between two items in a database for the
purpose of grouping the frequent items in local databases. Each group contains a
select item called the nucleus item, and the group grows being centered around the
nucleus item. Experimental results are provided using both real-world and synthetic
databases.

Multi-database mining using local pattern analysis could be considered as an
approximate method of mining multiple large databases. Thus, it might be required
to enhance the quality of knowledge synthesized from multiple databases. Also,
many decision-making applications are directly based on the available local pat-
terns in different databases. The quality of synthesized knowledge/decision based
on local patterns in different databases could be enhanced by incorporating more
local patterns in the knowledge synthesizing/processing activities. Thus, the avail-
able local patterns play a crucial role in building efficient multi-database mining
applications. In Chapter 5, we represent patterns in condensed form by employing
a coding called antecedent consequent pair (ACP) coding. It allows us to consider
more local patterns by lowering further the user inputs, like minimum support and
minimum confidence. The proposed coding enables more local patterns partici-
pate in the knowledge synthesizing / processing activities and thus, the quality of
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synthesized knowledge based on local patterns in different databases gets enhanced
significantly at a given pattern synthesizing algorithm and computing resource.

In Chapter 6, we present two measures of similarity between a pair of databases.
Also, we present an algorithm for clustering a set of databases. We have enhanced
the efficiency of the clustering process using several strategies such as reducing the
execution time of clustering algorithm, using more appropriate similarity measure,
and efficiently storing frequent itemsets space.

1.6 Experimental Settings

We have carried out several experiments to study the effectiveness of the proposed
approaches in different chapters. For Chapters 2, 4, 5 and 6, all the experiments
have been realized on a 1.6 GHz Pentium processor with 256 MB of memory using
Visual C++ (version 6.0) software. For Chapter 3, all the experiments have been
implemented on a 2.8 GHz Pentium D dual core processor with 512 MB of memory
using Visual C++ (version 6.0) compiler.

1.7 Future Directions

Multi-database mining is also applicable in other domains. In Section 1.1, we have
cited an example where multi-relational data mining is applied quite often in the
field of bioinformatics. In this book, we have confined our discussion on min-
ing multiple large transactional databases. We will discuss different strategies to
improve multi-database mining applications in the context of multiple large trans-
actional databases. Similar strategies could also be adopted to handle multiple
databases in other domains.

World Wide Web (WWW) is a large distributed repository of data. Su et al.
(2006) have proposed a logical framework for identifying quality knowledge from
different data sources. Various studies on WWW data might dominate future studies.

The popularity of the Internet as well as the availability of powerful comput-
ers and high-speed network technologies as low-cost commodity components is
changing the way we use computers today. These technology opportunities have
led to the possibility of using distributed computers as a single, unified comput-
ing resource, leading to what is popularly known as Grid computing (Foster and
Kesselman 1999). Clusters and grids of workstations provide available resources
for data mining processes. To exploit these resources, new distributed algorithms
are necessary, particularly concerning the way to distribute data and to use this par-
tition. Fiolet and Toursel (2007) have presented a clustering algorithm known as
distributed progressive clustering, for providing an “intelligent” distribution of data
on grids. Cluster and grid computing will be playing a dominant role in the next
generation of computing.

In a distributed environment, a large database could be fragmented vertically
and/or horizontally. This might bring additional complexities for mining patterns in
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multiple large databases. Agrawal and Shaffer (1999) introduced a parallel version
of apriori algorithm.

Distributed data mining for wireless applications is another active area of multi-
database mining. Challenges here are somewhat different from that of classical
multi-database mining. Bandwidth limitation is one of the major constraints in
this domain. There are other constraints, such as power consumption. The next
generation algorithms will have to deal with these important constraints.

Data privacy is likely to remain an important issue in data mining research and
application. The field of privacy-preserving data mining has started recently. Da
Silva and Klusch (2006) have proposed KDEC-S algorithm for distributed data clus-
tering, which is shown to provide mining results while preserving confidentiality of
original data. Stankovski et al. (2008) have designed DataMiningGrid system to
meet the requirements of modern and distributed data mining scenarios. Based on
the Globus Toolkit and other open technology and standards, the DataMiningGrid
system provides tools and services facilitating the grid-enabling of data mining
applications without any intervention on the application side. In future, the con-
cepts and various issues will get formalized. More privacy-preserving algorithms are
likely to appear as more applications on privacy-sensitive data are likely to emerge
in the future.

Multi-agent systems (MAS) offer architecture for distributed problem solving.
DDM algorithms focus on one class of such distributed problem solving tasks, anal-
ysis and modeling of distributed data. Da Silva et al. (2005) offer a perspective on
DDM algorithms in the context of multi-agents systems. It discusses broadly the
connection between DDM and MAS. In future, many DDM algorithms are likely to
come in association with MAS.

With the increasing popularity of object-oriented database systems in advanced
database applications, it is also important to study the data mining methods in
object-oriented data. Han et al. (1998) investigated issues on generalization-based
data mining in object-oriented databases considering three crucial aspects: (1) gen-
eralization of complex objects, (2) class-based generalization and (3) extraction
of different kinds of rules. The authors proposed an object cube model for class-
based generalization, on-line analytical processing and data mining. Various issues
of multiple object-oriented databases deserve to be investigated.

Clinical laboratory databases are among the largest generally accessible, detailed
records of human phenotype in disease, they will likely have an important role
in future studies designed to tease out associations between human gene expres-
sion and the presentation and progression of disease. Multi-database mining will be
playing an important role in this area (Siadaty and Harrison 2008).

The dramatic increase in the availability of massive, complex data from various
sources is creating computing, storage, communication, and human-computer inter-
action challenges for data mining. Providing a framework to better understand these
fundamental issues, Kargupta et al. (2008) have surveyed promising approaches to
data mining problems that span an array of disciplines. In the coming years, we will
witness more applications of multi-databases mining. We need to prepare ourselves
to tackle various issues and problems related to mining multiple large databases.
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Chapter 2
An Extended Model of Local Pattern Analysis

The model of local pattern analysis provides sound solutions to many multi-database
mining problems. In this chapter, we will discuss different types of extreme asso-
ciation rules in multiple databases viz., heavy association rule, high-frequency
association rule, low-frequency association rule and exceptional association rule.
Also, we show how one can apply the model of local pattern analysis more sys-
tematically and effectively. For this purpose, we introduce an extended model of
local pattern analysis. We apply the extended model to mine heavy association
rules in multiple databases. Also, we justify why the extended model works more
effectively. We develop an algorithm for synthesizing heavy association rule in mul-
tiple databases. Furthermore, we show that the algorithm identifies whether a heavy
association rule is high-frequency rule or exceptional rule. We have provided exper-
imental results obtained for both synthetic and real-world datasets and carried out
detailed error analysis. Furthermore, we bring a detailed comparative analysis by
contrasting the proposed algorithm with some of those reported in the literature.
This analysis is completed by taking into consideration the criteria of execution
time and average error.

2.1 Introduction

In the previous chapter, we have discussed limitations of using a conventional data
mining technique for mining multiple large databases. Also we have discussed
challenges involved in mining multiple large databases. In many decision support
applications, an approximate knowledge stemming from multiple large databases
might result in significant savings when being used in decision-making. Hence the
model of local pattern analysis (Zhang et al. 2003) used for mining multiple large
databases can constitute a viable solution. In this chapter, we show how one can
apply the model of local pattern analysis in a systematic and efficient manner for
mining non-local patterns in multiple databases.

For mining multiple large databases, careful preparation of data collected at the
respective branches is of significant importance. In fact, data preparation can be
divided into several sub-tasks, so that it makes the overall data mining easy to per-
form. We divide the overall data mining task into a hierarchy of sub-tasks to be

15A. Adhikari et al., Developing Multi-database Mining Applications, Advanced
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performed at each branch, and finally an application could be developed using local
patterns at different branch databases. A non-local application might aim at mining
non-local interesting patterns in multiple databases, or making a non-local decision
based on findings realized in multiple databases. For determining a solution to the
latter problem, sometimes we need to compute appropriate statistics based on the
patterns discovered in multiple databases. An appropriate statistic then enables us to
take such non-local decisions. For applying the extended model of mining multiple
large databases, we have synthesized a specific type of global patterns in multiple
databases. In Section 2.2, we discuss some interesting types of patterns in multiple
databases.

The rest of the chapter is organized as follows. We discuss some “extreme” types
of pattern (Section 2.2). In Section 2.3, we present an extended model of local
pattern analysis. We present an application of the extended model in Section 2.4.
Finally, some conclusions are provided in Section 2.5.

2.2 Some Extreme Types of Association Rule in Multiple
Databases

The analysis of relationships among variables is a fundamental task positioned at the
heart of many data mining problems. Mining association rules has received a lot of
attention in the data mining community. For instance, an association rule expresses
how the purchase of a group of items, called an itemset, affects the purchase of
another group of items. Association rule mining is based on two measures quantify-
ing the quality of the rules, that is support (supp) and confidence (conf) see Agrawal
et al. (1993). An association rule r in database DB can be expressed symbolically
as X → Y, where X and Y are two itemsets in database DB. It expresses an asso-
ciation between the itemsets X and Y, called the antecedent and consequent of r,
respectively. The meaning attached to this type of implication could be clarified
as follows. If the items in X are purchased by a customer then the items in Y are
likely to be purchased by the same customer at the same time. The interestingness
of an association rule could be expressed by its support and confidence. Let E be a
Boolean expression defined on the items in DB. Support of E in DB is defined as the
fraction of transactions in DB such that the Boolean expression E is true for each
of these transactions. We denote the support of E in DB as suppa(E, DB). Then the
support and confidence of association rule r could be expressed as follows:

suppa(r, DB) = suppa(X ∩ Y , DB), and

confa(r, DB) = suppa(X ∩ Y , DB)/suppa(X, DB)

Later, we will be dealing with synthesized support and synthesized confidence
of an association rule. Thus, it is required to differentiate between actual sup-
port/confidence with synthesized support/confidence of an association rule. The
subscript a used in the notation of support/confidence refers to the actual sup-
port/confidence of an association rule. On the other hand, the subscript s in the
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notation of support/confidence refers to synthesized support/confidence of an asso-
ciation rule. A synthesized support/confidence of an association rule might depend
on the technique applied for synthesizing support/confidence. We will introduce
and discuss a technique for synthesizing support and confidence of an associa-
tion rule in multiple databases. We say that an association rule r in database DB is
interesting if

suppa(r, DB) ≥ minimum support(α), and
confa(r, DB) ≥ minimum confidence(β)

The values of the parameters α and β are user-defined. The collection of association
rules extracted from a database for the given values of α and β is called a rulebase.

An association rule in multiple databases becomes more interesting if it possesses
higher support and higher confidence. This type of association rule is called heavy
association rules (Adhikari and Rao 2008). Sometimes the number of times an asso-
ciation rule gets reported from local databases becomes an interesting issue. In the
context of multiple databases, an association rule is called high-frequency rule (Wu
and Zhang 2003) if it is extracted from many databases. In this context an associ-
ation rule is called low-frequency rule (Adhikari and Rao 2008) if it is extracted
from a few databases. Some association rules possess high support but have been
extracted from a few databases only. These association rules are called exceptional
association rules (Adhikari and Rao 2008). Many corporate decisions could be influ-
enced by these types of extreme association rules in multiple databases. Thus, it is
important to mine them. In what follows, we define formally heavy association rule,
high-frequency association rule, low-frequency association rule, and exceptional
association rule in multiple databases.

Consider a large company with transactions originating from n branches. Let
Di be the database corresponding to the i-th branch of this multi-branch company,
i = 1, 2, . . ., n. Furthermore let D be the union of all branch databases. First, we
define a heavy association rule in a single database. Afterwards, we define a heavy
association rule in multiple databases.

Definition 2.1 An association rule r in database DB is heavy if suppa(r, DB) ≥ μ,
and confa(r, DB) ≥ ν, where μ ( > α ) and ν ( > β ) are the user-defined thresholds
of high-support and high-confidence for identifying heavy association rules in DB,
respectively.

If an association rule is heavy in a local database then it might not be heavy in D.
An association rule in D might have different statuses in different local databases.
For example, it might be a heavy association rule, or an association rule, or a sug-
gested association rule (defined later), or absent in a local database. Thus, we need
to synthesize an association rule for determining its overall status in D. The method
of synthesizing an association rule is discussed in Section 2.4.2. After synthesizing
an association rule, we get its synthesized support and synthesized confidence in D.
Let supps(r, DB) and confs(r, DB) denote synthesized support and synthesized con-
fidence of association rule r in DB, respectively. A heavy association rule in multiple
databases is defined as follows:
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Definition 2.2 Let D be the union of all local databases. An association rule r in
D is heavy if supps(r, D) ≥ μ, and confs(r, D) ≥ ν, where μ and ν are the user-
defined thresholds of high-support and high-confidence used for identifying heavy
association rules in D, respectively.

Apart from synthesized support and synthesized confidence of an association
rule, the frequency of an association rule is an important issue in multi-database
mining. We define frequency of an association rule as the number of extractions
of the association rule from different databases. If an association rule is extracted
from k out of n databases then the frequency of the association rule is k, for 0 ≤
k ≤ n. An association rule may be high-frequency rule or, low-frequency rule, or
neither high-frequency rule nor low-frequency rule in multiple databases. We could
arrive in such a conclusion only if we have user-defined thresholds of low-frequency
(γ 1) and high-frequency (γ 2) of an association rule, for 0 < γ 1 < γ 2 ≤ 1. A low-
frequency association rule is extracted from less than n × γ 1 databases. On the other
hand, a high-frequency association rule is extracted from at least n × γ 2 databases.
In the context of multi-database mining using local pattern analysis, we define a
high-frequency association rule and a low-frequency association rule as follows:

Definition 2.3 Let an association rule be extracted from k out of n databases. Then
the association rule is low-frequency rule if k < n × γ 1, where γ 1 is the user-defined
threshold of low-frequency.

Definition 2.4 Let an association rule be extracted from k out of n databases. Then
the association rule is high-frequency rule if k ≥ n × γ 2, where γ 2 is the user-
defined threshold of high-frequency.

While synthesizing heavy association rules in multiple databases, it may be worth
noting some other attributes of a synthesized association rule. For example, high-
frequency, low-frequency, and exceptionality are interesting as well as important
attributes of a synthesized association rule. We have already defined high-frequency
association rule and low-frequency association rule in multiple databases. We now
define an exceptional association rule in multiple databases as follows:

Definition 2.5 A heavy association rule in multiple databases is exceptional if it is
a low-frequency rule.

It may be worth contrasting between a heavy association rule, a high-frequency
association rule and an exceptional association rule in multiple databases.

• An exceptional association rule is also a heavy association rule.
• A high-frequency association rule is not an exceptional association rule, and vice

versa.
• A high-frequency association rule is not necessarily be a heavy association rule.
• There may exist heavy association rules that are neither high-frequency rule nor

exceptional rule.
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The goal of this chapter is to present an extended model of local pattern analysis.
Also, we see later how this model helps mining extreme types of association rules
as identified above.

2.3 An Extended Model of Local Pattern Analysis for
Synthesizing Global Patterns from Local Patterns in
Different Databases

Let Di be the database corresponding to i-th branch of the organization, i = 1, 2, . . .,
n. Patterns in multiple databases could be grouped into following categories based
on the number of databases: local patterns, global patterns, and patterns that are nei-
ther local nor global. A pattern based on a branch database is called a local pattern.
On the other hand, a global pattern is based on all databases under consideration.
An essence of the extended model of local pattern analysis (Adhikari and Rao 2008)
is illustrated in Fig. 2.1. The extended model comes with a set of interfaces and a
set of layers. Each interface realizes a set of operations that produces dataset(s)
(or, knowledge) based on the dataset(s) available at the next lower layer. There are
four interfaces of the proposed model of synthesizing global patterns from local
patterns.

Fig. 2.1 A model of synthesizing global patterns from local patterns in different databases

Interface 2/1 is concerned with different operations on data realized at the lowest
layer. By applying these operations, we come up with a processed database result-
ing from a local (original) database. These operations are performed on each branch
database. Interface 3/2 applies a filtering algorithm to each processed database to
separate relevant data from outliers. In particular, if we are interested in study-
ing durable items then the transactions containing only non-durable items could be
treated as outlier transactions. Different interesting criteria could be set to filter data.
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This interface supports loading data into the respective data warehouse. Interface
4/3 mines (local) patterns in each local data warehouse. There are two types of local
patterns: local patterns and suggested local patterns. A suggested local pattern is
close but fails to fully satisfy the requisite interestingness criteria. The reasons for
considering suggested patterns are given as follows. Firstly, by admitting these pat-
terns, we could synthesize patterns more accurately. Secondly, due to the stochastic
nature of the transactions, the number of suggested patterns could be significant in
some databases. Thirdly, there is a tendency that a suggested pattern of one database
could become a local pattern in some other databases. Thus, the correctness of syn-
thesizing global patterns would increase as the number of local patterns increases.
Therefore, the extended model becomes effective in synthesizing non-local patterns.
Consider a multi-branch company having n databases. Let LPBi and SPBi be the
local pattern base and suggested local pattern base corresponding to i-th branch
of the organization, respectively, i = 1, 2, . . ., n. Interface 5/4 synthesizes global
patterns, or analyses local patterns for finding solutions to many problems.

At the lowest layer, all the local databases are kept. We may need to process
these databases for the purpose of data mining task. Various data preparation tech-
niques (Pyle 1999) – data preprocessing like data cleaning, data transformation,
data integration, and data reduction are applied to data in the local databases. We
get the processed database PDi corresponding to the original database Di, for i =
1, 2, . . ., n. Then we retain all the data that are relevant to the data mining appli-
cations. Using a relevance analysis, one could detect outlier data (Last and Kandel
2001) from processed database. A relevance analysis is dependent on the context and
varies from one application to another application. Let ODi be the outlier database
corresponding to the i-th branch, i = 1, 2, . . ., n. Sometimes these databases are
also used in some other applications. After removing outliers from the processed
database we form data warehouse, where the data present there become ready for
data mining task. Let Wi be the data warehouse corresponding to i-th branch. Local
patterns for the i-th branch are extracted from Wi, for i = 1, 2, . . ., n. Finally, the
local patterns are forwarded to the central office for synthesizing global patterns,
or completing analysis of local patterns. Many data mining applications could be
developed based on the local patterns in different databases. In particular, if we are
interested in synthesizing global frequent itemsets then a frequent itemset may not
be extracted from all the databases. It might be required to estimate the support of
a frequent itemset in a database that fails to report it. Thus, in essence, a global fre-
quent itemset synthesized from local frequent itemsets is approximate. If any one of
the local databases is too large to apply a traditional data mining technique then this
model would fail. In this situation, one could apply an appropriate sampling tech-
nique to reduce the size of the corresponding local database. Otherwise, the database
could be partitioned into sub-databases. As a result, the error of data analysis would
increase.

Though the above model introduces many layers and interfaces for synthesizing
global patterns, in a real life application, some of these layers might not be fully
exploited. In the following section, we discuss a problem of multi-database mining
that uses the above model.
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2.4 An Application: Synthesizing Heavy Association Rules
in Multiple Real Databases

In the previous section, we have discussed different types of extreme association
rules. In this section, we present an algorithm for synthesizing heavy association
rules in multiple databases. The algorithm also notifies the high-frequency and
exceptionality statuses of heavy association rules.

As discussed in Chapter 1, we have observed some difficulties in extracting heavy
association rules in the union of all branch databases by employing a traditional data
mining technique. Therefore, we synthesize heavy association rules using patterns
in branch databases. Let D be the union of all branch databases. Also, let RBi and
SBi be the rulebase and suggested rulebase corresponding to database Di, respec-
tively. An association rule r ∈ RBi, if suppa(r, Di) ≥ α , and confa(r, Di) ≥ β,
i = 1, 2, . . ., n. An association rule r ∈ SBi, if suppa(r, Di) ≥ α , and confa(r, Di)
< β. There is a tendency of a suggested association rule in a database to become
an association rule in another database. Apart from the association rules, we also
consider the suggested association rules for synthesizing heavy association rules
in D. The reasons for considering suggested association rules are given as follows.
Firstly, we could synthesize support and confidence of an association rule in D more
accurately. Secondly, we could synthesize high-frequency association rules in D
more accurately. Thirdly, some experimental results have shown that the number of
suggested association rules could be significant for some databases. In general, the
accuracy of synthesizing an association rule increases as the number of extractions
of the association rule increases. Thus, we consider suggested association rules also
in synthesizing heavy association rules in D. In addition, the number of transactions
in a database would be required for synthesizing an association rule. We define size
of database DB as the number of transactions in DB, denoted by size(DB). We state
the application problem as follows.

Let there are n distinct databases D1, D2, . . ., Dn. Let RBi and SBi be the set
of association rules and suggested association rules in Di, respectively, i = 1, 2,
. . ., n. Synthesize heavy association rules in the union of all databases (D) based
on RBi and SBi, i = 1, 2, . . ., n. Also, notify whether each heavy association rule is
high-frequency rule or exceptional rule in D.

2.4.1 Related Work

Some applications of multiple large databases have been discussed in Chapter 1.
Association rule mining gives rise to interesting association between two itemsets
in a database. The notion of association rule is introduced by Agrawal et al. (1993).
The authors have proposed an algorithm to mine frequent itemsets in a database.
Many algorithms to extract association rules have been reported in the literature. In
what follows, we present a few interesting algorithms for extracting association rules
in a database. Agrawal and Srikant (1994) have proposed apriori algorithm that uses
breadth-first search strategy to count the supports of itemsets. The algorithm uses
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an improved candidate generation function, which exploits the downward closure
property of support and makes it more efficient than earlier algorithm. Han et al.
(2000) have proposed data mining method of FP-growth (frequent pattern growth)
which uses an extended prefix-tree (FP-tree) structure to store the database in a
compressed form. FP-growth adopts a divide-and-conquer approach to decompose
both the mining tasks and databases. It uses a pattern fragment growth method to
avoid the costly process of candidate generation and testing. Savasere et al. (1995)
have introduced partition algorithm. The database is scanned only twice. In the first
scan, the database is partitioned and in each partition support is counted. Then the
counts are merged to generate potential frequent itemsets. In the second scan, the
potential frequent itemsets are counted to find the actual frequent itemsets.

Existing parallel mining techniques (Agrawal and Shafer 1999; Chattratichat
et al. 1997; Cheung et al. 1996) could also be used to mine heavy association
rules in multi-databases. Zhong et al. (2003) have proposed a theoretical frame-
work for peculiarity oriented mining in multiple data sources. Zhang et al. (2009)
have proposed a nonlinear method, named KEMGP, which adopts kernel estimation
method for synthesizing global patterns from local patterns. Shang et al. (2008) have
proposed an extension to Piatetsky-Shapiro’s minimum interestingness condition to
mine association rules in multiple databases.

Yi and Zhang (2007) have proposed a privacy-preserving distributed associa-
tion rule mining protocol based on a semi-trusted mixer model. Rozenberg and
Gudes (2006) have presented their work on association rule mining from dis-
tributed vertically partitioned data with the goal of preserving the confidentiality of
each database. The authors have presented two algorithms for discovering frequent
itemsets and for calculating the confidence of the rules.

2.4.2 Synthesizing an Association Rule

The technique of synthesizing heavy association rules is suitable for the real
databases, where the trend of the customers’ behavior exhibited in one database is
usually present in other databases. In particular, a frequent itemset in one database
is usually present in some transactions of other databases even if it does not get
extracted. Our estimation procedure captures such trend and estimates the support
of a missing association rule in a database. Let E1(r, DB) be the amount of error
in estimating support of a missing association rule r in database DB. Also, let E2(r,
DB) be the level of error in assuming support as 0 for the missing association rule
in DB. Then the value of E1(r, DB) is usually lower than E2(r, DB). The estimated
support and confidence of a missing association rule usually reduce the error of syn-
thesizing heavy association rules in different databases. We would like to estimate
the support and confidence of a missing association rule rather assuming it as absent
in a database. If an association rule fails to get extracted from database DB, then we
assume that DB contributes some amount of support and confidence for the associa-
tion rule. The support and confidence of an association rule r in database DB satisfy
the following inequality:

0 ≤ suppa(r, DB) ≤ confa(r, DB) ≤ 1 (2.1)
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At a given α = α0, we observe that the confidence of an association rule r varies
over the interval [α0, 1] as explained in Example 2.1.

Example 2.1 Let α = 0.333. Assume that database D1 contains the following trans-
actions: {a1, b1, c1}, {a1, b1, c1}, {b2, c2}, {a2, b3, c3}, {a3, b4} and {c4}. The
support and confidence of association rule r: {a1}→{b1} in D1 are 0.333 and
1.0 (highest) respectively. Assume that database D2 contains the following trans-
actions: {a1, b1, c1}, {a1, b1}, {a1, c1}, {a1}, {a1, b2} and {a1, b3}. The support
and confidence of r in D2 are 0.333 and 0.333 (lowest), respectively.

As the support of an association rule is expressed as the lower bound of its con-
fidence, the confidence goes up as support increases. The support of an association
rule is distributed over [0, 1]. If an association rule is not extracted from a database,
then the support falls in [0, α), since the suggested association rules are also con-
sidered for synthesizing association rules. We would be interested in estimating
the support of such rules. Assume that the association rule r: {c}→{d} has been
extracted from m databases, 1 ≤ m ≤ n. Without any loss of generality, we assume
that the association rule r has been reported from the first m databases. We shall
use the average behavior of the customers of the first m branches to estimate the
average behavior of the customers in remaining branches. Let Di,j denote the union
of databases Di, Di+1, . . ., Dj, for 1 ≤ i ≤ j ≤ n. Then, suppa({c, d}, D1,m) could be
viewed as the average behavior of customers of the first m branches for purchasing
items c and d together at the same time. Then, suppa({c, d}, D1,m) is obtained by
the following formula:

suppa({c, d}, D1, m) =
(

m∑
i=1

suppa(r, Di) × size(Di)

)/
m∑

i=1

size(Di) (2.2)

We could estimate the support of association rule r for each of the remaining (n-m)
databases as follows:

supps(r, Dm+1,n) = α × suppa({c, d}, D1,m) (2.3)

The number of the transactions containing the itemset {c, d} in Di is suppa(r, Di) ×
size(Di), for i = 1, 2, . . ., m. The association rule r is not present in Di, for
i = m + 1, m + 2, . . ., n. Then the estimated number of the transactions con-
taining the itemset {c, d} in Di is supps(r, Dm+1, n) × size(Di), for i = m + 1,
m + 2, . . ., n. The estimated support of association rule r in Di is determined as
follows:

suppe (r,Di) =
{

suppa(r, Di), for i = 1, 2,...,m

supps
(
r, Dm+1, n

)
, for i = m + 1,m + 2,...,n

(2.4)
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Then the synthesized support of association rule r in D could be obtained as follows.

supps (r,D) =
(

n∑
i=1

suppe(r,Di) × size(Di)

)/
n∑

i=1

size(Di) (2.5)

The confidence of the association rule r depends on the supports of the itemsets {c}
and {c, d}. The support of itemset {c, d} has been synthesized. Now, we need to
synthesize the support of itemset {c}. Without any loss of generality, let the itemset
{c} gets extracted from first p databases, for 1 ≤ m ≤ p ≤ n. The estimated support
of frequent itemset {c} in Di could be obtained as follows:

suppe ({c},Di) =
{

suppa({c},Di), for i = 1, 2,...,p

supps
({c},Dp+1,n

)
, for i = p + 1,p + 2,...,n

(2.6)

Then the synthesized support of itemset {c} in D is determined as follows.

supps ({c},D) =
(

n∑
i=1

suppe({c},Di) × size(Di)

)/
n∑

i=1

size(Di) (2.7)

Then we compute the synthesized confidence of association rule r in D.

confs(r, D) = supps(r, D)/supps({c}, D) (2.8)

2.4.2.1 Design of the Algorithm

Here we present an algorithm for synthesizing heavy association rules in D. The
algorithm also indicates whether a heavy association rule is high-frequency rule or
exceptional rule. Let N and M be the number of association rules and the number of
suggested association rules in different local databases, respectively. The association
rules and suggested association rules are kept in arrays RB and SB, respectively. An
association rule could be described by following attributes: ant, con, did, supp and
conf. The attributes ant, con, did, supp and conf represent antecedent, consequent,
database identification, support, and confidence of a rule, respectively. An attribute
x of the i-th association rule of RB is denoted by RB(i).x, for i = 1, 2, . . ., |RB|. All
the synthesized association rules are kept in array SR. Each synthesized association
rule could be described by following attributes: ant, con, did, ssupp and sconf. The
attributes ssupp and sconf represent synthesized support and synthesized confidence
of a synthesized association rule, respectively. In the context of mining heavy asso-
ciation rules in D, the following additional attributes are also considered: heavy,
highFreq, lowFreq and except. The attributes heavy, highFreq, lowFreq and except
are used to indicate whether an association rule is a heavy rule, high-frequency rule,
low-frequency rule and exceptional rule in D, respectively. An attribute y of the i-th
synthesized association rule of SR is denoted by SR(i).y, for i = 1, 2, . . ., |SR|.
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Algorithm 2.1 Synthesize heavy association rules in D. Also, indicate whether a
heavy association rule is high-frequency rule or exceptional rule.

procedure Association-Rule-Synthesis (n, RB, SB, μ, ν, size, γ 1, γ 2)

Inputs:
n: number of databases
RB: array of association rules
SB: array of suggested association rules
μ: threshold of high-support for determining heavy association rules
ν: threshold of high-confidence for determining heavy association rules
size: array of the number of transactions in different databases
γ 1: threshold of low-frequency for determining low-frequency association rules
γ 2: threshold of high-frequency for determining high-frequency association

rules

Outputs:
Heavy association rules along with their high-frequency and exceptionality statuses

01: copy rules of RB and SB into array R;
02: sort rules of R based on attributes ant and con;
03: calculate total number of transactions in all the databases and store it in

totalTrans;
04: let nSynRules = 1;
05: let curPos = 1;
06: while ( curPos ≤ |R| ) do
07: calculate number of occurrences of current rule R(curPos) and store it in

nExtractions;
08: let SR(nSynRules).highFreq = false;
09: if ((nExtractions / n) ≥ γ 2) then
10: SR(nSynRules). highFreq = true;
11: end if
12: let SR(nSynRules).lowFreq = false;
13: if ((nExtractions / n) < γ 1) then
14: SR(nSynRules).lowFreq = true;
15: end if
16: calculate supps(R(curPos), D) using formula (2.5);
17: calculate confs(R(curPos), D) using formula (2.8);
18: let SR(nSynRules).heavy = false;
19: if ((supps(SR(nSynRules), D) ≥ μ) and (confs(SR(nSynRules), D) ≥ ν))

then
20: SR(nSynRules).heavy = true;
21: end if
22: let SR(nSynRules).except = false;
23: if ((SR(nSynRules) is a low-frequency rule) and (SR(nSynRules) is a heavy

rule)) then
24: SR(nSynRules).except = true;
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25: end if
26: update index curPos for processing the next association rule;
27: increase index nSynRules by 1;
28: end while
29: for each synthesized association rule τ in SR do
30: if τ is heavy then
31: display τ along with its high-frequency and exceptionality statuses;
32: end if
33: end for
end procedure

The above algorithm works as follows. The association rules and suggested asso-
ciation rules are copied into R. All the association rules in R are sorted on the
pair of attributes {ant, con}, so that the same association rule extracted from dif-
ferent databases remains together after sorting. Thus, it would help synthesizing
a single association rule at a time. The synthesis process is realized in the while-
loop shown in line 6. Based on the number of extractions of an association rule,
we could determine its high-frequency and low-frequency statuses. The number
of extractions of current association rule has been determined as indicated in line
7. The high-frequency status of current association rule is determined – see lines
8–11. Also, the low-frequency status of current association rule is determined (lines
12–15). We synthesize support and confidence of current association rule based on
(2.5) and (2.8), respectively. Once the synthesized support and synthesized confi-
dence have been determined, we could identify the heavy and exceptional statues of
current association rule. The heavy status of current association rule is determined
using the part of the procedure covered in lines 18–21. Also, the exceptional status
of current association rule is determined using lines 22–25. At line 26, we determine
the next association rule in R for the synthesizing process. Heavy association rules
are displayed along with their high-frequency and exceptionality statuses using lines
29–33.

Theorem 2.1 The time complexity of procedure Association-Rule-Synthesis is max-
imum {O((M + N) × log(M + N)), O(n × (M + N))}, where N and M are the number
of association rules and the number of suggested association rules extracted from n
databases.

Proof The lines 1 and 2 take time in O(M + N) and O((M + N) × log(M + N))
respectively, since there are M + N rules in different local databases. The while-
loop at line 6 repeats maximum M + N times. Line 7 takes O(n) time, since each
rule is extracted maximum n number of times. Lines 8–15 take O(1) time. Using
formula (2.3), we could calculate the average behavior of customers of the first m
databases in O(m) time. Each of lines 16 and 17 takes O(n) time. Lines 18–25 take
O(1) time. Line 26 could be executed during execution of line 7. Thus, the time
complexity of while-loop 6–28 is O(n × (M + N)). The time complexity of lines
29–33 is O(M + N), since the number of synthesized association rules is less than or
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equal to M + N. Thus, time complexity of procedure Association-Rule-Synthesis
is maximum {O((M + N) × log(M + N)), O(n × (M + N)), O(M + N)} =
maximum {O((M + N) × log(M + N)), O(n × (M + N))}.

Wu and Zhang (2003) have proposed RuleSynthesizing algorithm for synthesiz-
ing high-frequency association rules in different databases. The algorithm is based
on the weights of the different databases. Again, the weight of a database would
depend on the association rules extracted from the database. The proposed algo-
rithm executes in O(n4× maxNosRules × totalRules2) time, where n, maxNosRules,
and totalRules are the number of data sources, the maximum among the numbers of
association rules extracted from different databases, and the total number of associa-
tion rules in different databases, respectively. Ramkumar and Srinivasan (2008) have
proposed a modification of RuleSynthesizing algorithm. In this modified algorithm,
the weight of an association rule is based on the size of a database. This assumption
seems to be more logical. For synthesizing confidence of an association rule, the
authors have described a method which was originally proposed by Adhikari and
Rao (2008). Though the time complexity of modified RuleSynthesizing algorithm is
the same as that of original RuleSynthesizing algorithm, but it reduces the average
error in synthesizing an association rule. The algorithm Association-Rule-Synthesis
could synthesize heavy association rules, high-frequency association rules, and
exceptional association rules in maximum {O(totalRules × log(totalRules)),
O(n × totalRules)} time. Thus, algorithm Association-Rule-Synthesis takes much
less time than the existing algorithms. Moreover, the proposed algorithm is sim-
ple and straight forward. We illustrate the proposed algorithm using the following
example.

Example 2.2 Let D1, D2 and D3 be three databases of sizes 4,000 transactions,
3,290 transactions, and 10,200 transactions, respectively. Let D be the union of the
databases D1, D2, and D3. Assume that α = 0.2, β = 0.3, γ1 = 0.4, γ2 = 0.7, μ =
0.3 and ν = 0.4. The following association rules have been extracted from the given
databases. r1: {H} → {C, G}, r2: {C} → {G}, r3: {G} → {F}, r4: {H}→ {E},
r5: {A} → {B}. The rulebases are given as follows: RB1 = {r1, r2}, SB1 = {r3};
RB2 = {r4}, SB2 = {r1}; RB3 = {r1, r5}, SB3 = {r2}. The supports and confidences
of the association rules are given as follows. suppa(r1, D1) = 0.22, confa(r1, D1) =
0.55; suppa(r1, D2) = 0.25, confa(r1, D2) = 0.29; suppa(r1, D3) = 0.20, confa(r1,
D3) = 0.52; suppa(r2, D1) = 0.69, confa(r2, D1) = 0.82; suppa(r2, D3) = 0.23,
confa(r2, D3) = 0.28; suppa(r3, D1) = 0.22, confa(r3, D1) = 0.29; suppa(r4, D2) =
0.40, confa(r4, D2) = 0.45; suppa(r5, D3) = 0.86, confa(r5, D3) = 0.92. Also, let
suppa({A}, D3) = 0.90, suppa({C}, D1) = 0.80, suppa({C}, D3) = 0.40, suppa({G},
D1) = 0.29, suppa({H}, D1) = 0.31, suppa({H}, D2) = 0.33, and suppa({H}, D3) =
0.50. Heavy association rules are presented in Table 2.1.

The association rules r2 and r5 have synthesized support greater than or equal
to 0.3 and synthesized confidence greater than or equal to 0.4. So, r2 and r5 are
heavy association rules in D. The association rule r5 is a exceptional rule, since
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Table 2.1 Heavy association rules in the union of databases given in Example 2.2

r: ant→ con ant con supps(r, D) confs(r, D) Heavy High freq Except

r2 C G 0.31 0.66 True False False
r5 A B 0.57 0.90 True False True

it is a heavy and low-frequency rule. But the association rule r2 is neither a high-
frequency nor exceptional rule. Though the association rule r1 is a high-frequency
rule but it is not a heavy rule, since supps(r1, D) = 0.21 and confs(r1, D) = 0.48.

2.4.3 Error Calculation

To evaluate the proposed technique of synthesizing heavy association rules we have
determined the error which has occurred in the experiments. More specifically, the
error is expressed relative to the number of transactions, number of items, and the
length of a transaction in the databases. Thus the error of an experiment needs to
be expressed along with ANT, ALT, and ANI in the given databases, where ANT,
ALT and ANI denote the average number of transactions, the average length of a
transaction and the average number of items in a database, respectively. There are
several ways one could define the error. The proposed definition of error is based on
the frequent itemsets generated from heavy association rules. Let r: {c}→ {d} be a
heavy association rule. Then the frequent itemsets generated from association rule r
are {c}, {d}, and {c, d}. Let {X1, X2, . . ., Xm} be set of frequent itemsets generated
from all the heavy association rules in D. We define the following two types of error.

1. Average Error (AE)

AE(D,α,μ, ν) = 1

m

m∑
i=1

|suppa(Xi, D)−supps(Xi, D)| (2.9)

2. Maximum Error (ME)

ME(D,α,μ, ν) = maximum { |suppa(Xi, D)−supps(Xi, D)| ,i = 1, 2,...,m}
(2.10)

where suppa(Xi, D) and supps(Xi, D) are actual support i.e., the support based on
apriori algorithm and synthesized support of the itemset Xi in D, respectively. In
Example 2.3, we illustrate the behaviour of the measures given above.

Example 2.3 With reference to Example 2.2, r2: C → G and r5: A → B are heavy
association rules in D. The frequent itemsets generated from r2 and r5 are A, B, C,
G, AB and CG. For the purpose of finding the error of an experiment, we need to
find the actual support of the itemsets generated from the heavy association rules.
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The actual support of an itemset generated from a heavy association rule could be
obtained by mining all the databases D1, D2, and D3 together.

Thus, AE(D, 0.2, 0.3, 0.4) = 1

6
{ |suppa({A},D)−supps({A}, D)| +

|suppa({B},D)−supps({B},D)| + |suppa({C},D)−supps({C},D)| +
|suppa({G},D)−supps({G},D)| + |suppa({A,B},D)−supps({A,B},D)| +
|suppa({C,G},D)−supps({C,G},D)| } .

ME(D, 0.2, 0.3, 0.4) = maximum { |suppa({A},D)−supps({A},D)| ,

|suppa({B},D)−supps({B},D)| , |suppa({C},D)−supps({C},D)| ,

|suppa({G},D)−supps({G},D)| , |suppa({A,B},D)−supps({A,B},D)| ,

|suppa({C,G},D)−supps({C,G},D)| } .

2.4.4 Experiments

We have carried out several experiments to study the effectiveness of the approach
presented in this chapter. We present the experimental results using three real
databases. The database retail (Frequent itemset mining dataset repository 2004)
is obtained from an anonymous Belgian retail supermarket store. The databases
BMS-Web-Wiew-1 and BMS-Web-Wiew-2 can be found from KDD CUP 2000
(Frequent itemset mining dataset repository 2004). We present some character-
istics of these databases in Table 2.2. We use notation DB, NT, AFI, ALT and
NI to denote a database, the number of transactions, the average frequency of an
item, the average length of a transaction and the number of items in the database,
respectively.

Table 2.2 Dataset characteristics

Dataset N T ALT AFI NI

retail 88, 162 11.31 99.67 10, 000
BMS-Web-Wiew-1 1, 49, 639 2.00 155.71 1, 922
BMS-Web-Wiew-2 3, 58, 278 2.00 7, 165.56 100

Each of the above databases is divided into 10 subsets for the purpose of car-
rying out experiments. The databases obtained from retail, BMS-Web-Wiew-1 and
BMS-Web-Wiew-2 are named as Ri, B1i and B2i respectively, i = 0, 1, . . ., 9. The
databases Rj and Bij are called branch databases, i = 1, 2, and j = 0, 1, . . ., 9. Some
characteristics of these branch databases are presented in Table 2.3.
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Table 2.3 Branch database characteristics

DB N T ALT AFI NI DB N T ALT AFI NI

R0 9, 000 11.24 12.07 8, 384 R5 9, 000 10.86 16.71 5, 847
R1 9, 000 11.21 12.27 8, 225 R6 9, 000 11.20 17.42 5, 788
R2 9, 000 11.34 14.60 6, 990 R7 9, 000 11.16 17.35 5, 788
R3 9, 000 11.49 16.66 6, 206 R8 9, 000 12.00 18.69 5, 777
R4 9, 000 10.96 16.04 6, 148 R9 7, 162 11.69 15.35 5, 456

B10 14, 000 2.00 14.94 1, 874 B15 14, 000 2.00 280.00 100
B11 14, 000 2.00 280.00 100 B16 14, 000 2.00 280.00 100
B12 14, 000 2.00 280.00 100 B17 14, 000 2.00 280.00 100
B13 14, 000 2.00 280.00 100 B18 14, 000 2.00 280.00 100
B14 14, 000 2.00 280.00 100 B19 23, 639 2.00 472.78 100

B20 35, 827 2.00 1, 326.93 54 B25 35, 827 2.00 716.54 100
B21 35, 827 2.00 1, 326.93 54 B26 35, 827 2.00 716.54 100
B22 35, 827 2.00 716.54 100 B27 35, 827 2.00 716.54 100
B23 35, 827 2.00 716.54 100 B28 35, 827 2.00 716.54 100
B24 35, 827 2.00 716.54 100 B29 35, 835 2.00 716.70 100

The results of the three experiments using Algorithm 2.1 are presented in
Table 2.4. The choice of different parameters is an important issue. We have selected
different values of α and β for different databases. But, they are kept the same for
branch databases obtained from the same database. For example, α and β are the
same for branch databases Ri , for i = 0, 1, . . ., 9.

Table 2.4 First five heavy association rules reported from different databases (sorted in non-
increasing order on synthesized support)

Data
base α β μ ν

Heavy assoc
rules

Syn
supp

Syn
conf

High
freq Exceptional

∪9
i=0Ri 0.05 0.2 0.1 0.5 {48}→{39} 0.33 0.68 Yes No

{39}→{48} 0.33 0.56 Yes No
{41}→{39} 0.13 0.63 Yes No
{38}→{39} 0.12 0.66 Yes No
{41}→{48} 0.10 0.51 Yes No

∪9
i=0B1i 0.01 0.2 0.007 0.1 {1}→{5} 0.01 0.13 No No

{5}→{1} 0.01 0.11 No No
{7}→{5} 0.01 0.12 No No
{5}→{7} 0.01 0.11 No No
{3}→{5} 0.01 0.12 No No

∪9
i=0B2i 0.006 0.01 0.01 0.1 {3}→{1} 0.02 0.14 Yes No

{1}→{3} 0.02 0.14 Yes No
{7}→{1} 0.02 0.14 Yes No
{1}→{7} 0.02 0.14 Yes No
{5}→{1} 0.02 0.14 Yes No
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After mining a branch database from a group of branch databases using a reason-
ably low values α and β, one could fix α and β for the purpose data mining task.
If α and β are smaller, then synthesized support and synthesized confidence values
are closer to their actual values. Thus, the synthesized association rules are closer to
the true association rules in multiple databases.

The choice of μ and ν are context dependent. Also if μ and ν are kept fixed
then some databases might not report heavy association rules, while other databases
might report many heavy association rules. While generating association rule one
could estimate the average synthesized support and confidence based on the gen-
erated association rules. Thus, it gives an idea of thresholds for high-support and
high-confidence for synthesizing heavy association rules in different databases.
Also, the choice of γ 1 and γ 2 are also context dependent. It has been found that
“reasonable” values of γ 1 and γ 2 could lie in the interval [0.3, 0.4] and [0.6, 0.7],
respectively. Given these findings, we have taken γ 1 = 0.35, and γ 2 = 0.60 for
synthesizing heavy association rules.

The experiments conducted on the three databases have resulted in no exceptional
association rule. Normally, exceptional association rules are rare. Also, we have not
found any association rule which is heavy rule as well as high-frequency rule in
multiple databases obtained from BMS-Web-Wiew-1.

In many applications, the suggested association rules are significant. While syn-
thesizing the association rules from different databases we might need to consider
the suggested association rules for the correctness of synthesizing association rules.
We have observed that the number of suggested association rules in the set of
databases {R0, R1, . . ., R9} and {B10, B11, . . ., B19} are significant. But, the set
of databases {B20, B21, . . ., B29} do not generate any suggested association rule.
We present the number of association rules and the number of suggested association
rules for different experiments in Table 2.5.

Table 2.5 Number of association rules and suggested association rules extracted from multiple
databases

Database α β

Number of
association rules (N)

Number of suggested
association rules (M) M/(N + M)

∪9
i=0Ri 0.05 0.2 821 519 0.39

∪9
i=0B1i 0.01 0.2 50 96 0.66

∪9
i=0B2i 0.006 0.01 792 0 0

The error of synthesizing association rules in a database is relative to the fol-
lowing parameters: the number of transactions, the number of items, and the length
of transactions in the given databases. If the number of transactions in database
increases, the error of synthesizing association rules also increases, provided other
two parameters remain constant. If the lengths of transactions of a database increase,
the error of synthesizing association rules is likely to increase, provided that two
other parameters remain constant. Lastly, if the number of items increases, then the
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Table 2.6 Error of synthesizing heavy association rules

Database α β μ ν (AE, ANT, ALT, ANI) (ME, ANT, ALT, ANI)

∪9
i=0Ri 0.05 0.2 0.1 0.5 (0.00, 8,816.2, 11.31, 5,882.1) (0.00, 8,816.2, 11.31, 5,882.1)

∪9
i=0B1i 0.01 0.2 0.007 0.1 (0.00, 14,963.9, 2.0, 277.4) (0.00, 14,963.9, 2.0, 277.4)

∪9
i=0B2i 0.006 0.01 0.01 0.1 (0.000118, 35,827.8, 2.0, 90.8) (0.00, 35,827.8, 2.0, 90.8)

error of synthesizing association rules is likely to decrease, provided that two other
parameters remain constant. Thus, the error needs to be reported along with the
ANT, ALT and ANI for the given databases. The obtained results are presented in
Table 2.6.

2.4.4.1 Comparison with Existing Algorithm

In this section, we make a detailed comparison among the part of the proposed algo-
rithm that synthesizes only high-frequency association rules, RuleSynthesizing algo-
rithm (Wu and Zhang 2003) and Modified RuleSynthesizing algorithm (Ramkumar
and Srivinasan 2008). Let the part of the proposed algorithm be High-Frequency-
Rule-Synthesis used for synthesizing (only) high-frequency association rules in
different databases. We conduct experiments for comparing these algorithms. We
compare these algorithms on the basis of the following two issues: average error
and execution time.

Analysis of Average Error

The definitions of average error and maximum error given above and those proposed
by Wu and Zhang (2003) are similar and use the same set of synthesized frequent
itemsets. However the methods of synthesizing frequent itemsets for these two
approaches are different. Thus, the level of error incurred in these two approaches
might differ. In RuleSynthesizing algorithm, if an itemset fails to get extracted from
a database then the support of the itemset is assumed to be 0. But in Association-
Rule-Synthesis algorithm, if an itemset fails to get extracted from a database then
the support of the itemset is estimated. The synthesized support of an itemset in
the union of databases in these two approaches might be different. As the number
of databases increases the relative presence of a rule normally decreases. Thus, the
error of synthesizing an association rule normally increases. So the AE reported in
the experiment is likely to increase if the number of databases increases. We observe
such phenomenon in Figs. 2.2 and 2.3.

The proposed algorithm follows a direct approach in identifying high-frequency
association rules as opposed to the RuleSynthesizing and Modified RuleSynthesizing
algorithms. In Figs. 2.2 and 2.3, we observe that AE of an experiment con-
ducted using High-Frequency-Rule-Synthesis algorithm is less than that of
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RuleSynthesizing algorithm. But the Modified RuleSynthesizing algorithm improves
the accuracy of synthesizing an association rule as compared to RuleSynthesizing
algorithm. It remains less accurate when compared to the High-Frequency-Rule-
Synthesis algorithm.

Analysis of Execution Time

We have also completed experiments to study the execution time by varying
the number of databases. The number of synthesized frequent itemsets increases
as the number of databases increases. The execution time increases with the
increase of number of databases. We observe this phenomenon in Figs. 2.4 and 2.5.
However, more significant differences are noted with the increase in the number of
databases.

The time complexities of RuleSynthesizing and Modified RuleSynthesizing algo-
rithms are the same. When the number of databases is less the RuleSynthesizing and
Modified RuleSynthesizing algorithms might be faster than High-Frequency-Rule-
Synthesizing algorithm. As the number of databases increases, High-Frequency-
Rule-Synthesizing algorithm works faster than both RuleSynthesizing and Modified
RuleSynthesizing algorithms.
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2.5 Conclusions

The extended model of local pattern analysis enables us to develop useful multi-
database mining applications. Although it exhibits many layers and interfaces, this
general model can come with many variations. In particular, some of these lay-
ers might not be present when developing a particular application. Synthesizing
heavy association rule is an important component of a multi-database mining sys-
tem. In this chapter, we have presented three extreme types of association rules
present in multiple databases viz., heavy association rules, high-frequency associa-
tion rules and exceptional association rules. The introduced algorithm referred to as
the Association-Rule-Synthesis is used to synthesize these extreme association rules
in multiple databases.
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Chapter 3
Mining Multiple Large Databases

Effective data analysis using multiple databases requires highly accurate patterns.
As the local pattern analysis might extract patterns of low quality from multiple
databases, it becomes necessary to improve mining multiple databases. In this chap-
ter, we present an idea of multi-database mining by making use of local pattern
analysis. We elaborate on the existing specialized and generalized techniques which
are used for mining multiple large databases. In the sequel, we discuss a certain gen-
eralized technique, referred to as a pipelined feedback model, which is of particular
relevance for mining multiple large databases. It significantly improves the quality
of the synthesized global patterns. We define two types of error occurring in multi-
database mining techniques. Experimental results are provided and they are reported
for both real-world and synthetic databases. They help us assess the effectiveness of
the pipelined feedback model.

3.1 Introduction

As underlined earlier, many large companies operate from a number of branches
usually located at different geographical regions. Each branch collects data contin-
uously and local data become stored locally. The collection of all branch databases
might be large. Many corporate decisions of a multi-branch company are based on
data stored over the branches. The challenges are to make meaningful decisions
which are based on large volume of distributed data. This creates not only risk but
also offers opportunities. One of the risks is a significant amount investment on
hardware and software to deal with multiple large databases. The use of inefficient
data mining techniques has to be taken into account and in many scenarios this
shortcoming could be very detrimental to the quality of results.

Based on the number of data sources, patterns in multiple databases could be
classified into three categories. These are local patterns, global patterns and patterns
that are neither local nor global. A pattern based on a single database is called a
local pattern. Local patterns are useful for local data analysis, and locally restricted
decision making activities (Adhikari and Rao 2008b; Wu et al. 2005; Zhang et al.
2004b). On the other hand, global patterns are based on all the databases taken

37A. Adhikari et al., Developing Multi-database Mining Applications, Advanced
Information and Knowledge Processing, DOI 10.1007/978-1-84996-044-1_3,
C© Springer-Verlag London Limited 2010
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into consideration. They are useful for data analyses of global nature (Adhikari and
Rao 2008a; Wu and Zhang 2003) and global decision making problems. The intent
of this chapter is to introduce and analyze a certain global model of data mining,
referred to as a pipelined feedback model (PFM) (Adhikari et al. 2007b) which is
used for mining/synthesizing global patterns in multiple large databases.

In Section 3.2, we formalize the idea of multi-database mining using local pattern
analysis. Next, we discuss existing generalized multi-database mining techniques
(Section 3.3). We analyze the existing specialized multi-database mining techniques
in Section 3.4. The pipelined feedback model for mining multiple large databases is
covered in Section 3.5. We also define a way in which an error associated with the
model is quantified (Section 3.6). In Section 3.7, we provide experimental results
using both synthetic and real-world databases.

3.2 Multi-database Mining Using Local Pattern Analysis

Consider a large company that deals with multiple large databases. For mining mul-
tiple databases, we are faced with three scenarios viz., (i) Each of the local databases
is small, so that a single database mining technique (SDMT) could mine the union
of all databases. (ii) At least one of the local databases is large, so that a SDMT
could mine every local database, but fail to mine the union of all local databases.
(iii) At least one of the local databases is very large, so that a SDMT fails to mine
at least one local database. We are faced with challenges when handling the cases
(ii) and (iii) and these challenges are inherently present because of the large size of
some databases.

The first question which comes to our mind is whether a traditional data min-
ing technique (Agrawal and Srikant 1994; Han et al. 2000; Coenen et al. 2004)
could provide a sound solution when dealing with multiple large databases. To apply
a “traditional” data mining technique we need to amass all the branch databases
together. In such cases, a traditional data mining technique might not offer a good
solution due to the following reasons:

• It might not be suitable as it requires heavy investment on hardware and software
to deal with a large volume of data.

• A single computer might take unreasonable amount of time to mine a huge
amount of data.

• It is difficult to identify local patterns if a traditional data mining technique is
applied to the collection of all local databases.

In light of these problems and associated constraints, as encountered so far there
have been attempts to deal with multi-database mining in a different way. Zhang
et al. (2003) designed a multi-database mining technique (MDMT) using local
pattern analysis. Multi-database mining using local pattern analysis could be clas-
sified into two categories viz., the techniques that analyze local patterns, and the
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techniques that analyze approximate local patterns. A multi-database mining tech-
nique using local pattern analysis could be viewed as a two-step process, denoted
symbolically as M+S. Its essence can be explained as follows:

• Mine each local database using a SDMT by applying the model M (Step 1)
• Synthesize patterns using the algorithm S (Step 2)

We use the notation of M+S to stress a character of a multi-database mining
technique in which we first use the model of mining (M) being followed by the
synthesizing algorithm S.

One could apply sampling techniques (Babcock et al. 2003) for taming large
volume of data. If an itemset is frequent in a large dataset then it is likely to be
frequent in a sample dataset. Thus, one can mine patterns approximately in a large
dataset by analyzing patterns in a representative sample dataset.

In addition to generalized multi-database mining techniques, there exist also spe-
cialized multi-database mining techniques. In what follows, we discuss some of the
existing multi-database mining techniques.

3.3 Generalized Multi-database Mining Techniques

There is a significant variety of techniques that can be used in the multi-database
mining applications.

3.3.1 Local Pattern Analysis

Under this model of mining multiple databases, each branch requires to mine the
database using a traditional data mining technique. Afterwards, each branch is
required to forward the pattern base to the central office. Then the central office
processes the locally processed pattern bases collected from different branches to
synthesize the global patterns and subsequently to support decision-making activi-
ties. Zhang et al. (2003) designed a multi-database mining technique (MDMT) using
local pattern analysis. In Chapter 1, we presented this model in detail. We have
proposed an extended model of local pattern analysis (Adhikari and Rao 2008a).
It improves the quality of synthesized global patterns in multiple databases. In
addition, it supports a systematic approach to synthesize the global patterns. In
Chapter 2, we have presented the extended model of local pattern analysis for
mining multiple large databases.

3.3.2 Partition Algorithm

For the purpose of mining multiple databases, one could apply partition algorithm
(PA) proposed by Savasere et al. (1995). In Chapter 1, we have presented this model.
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3.3.3 IdentifyExPattern Algorithm

Zhang et al. (2004a) have proposed algorithm, IdentifyExPattern (IEP) for identi-
fying global exceptional patterns in multi-databases. Every local database is mined
separately at random order (RO) using a SDMT to synthesize global exceptional
patterns. For identifying global exceptional patterns in multiple databases, the fol-
lowing pattern synthesizing approach has been proposed. A pattern in a local
database is assumed as absent, if it does not get reported. Let suppa(p, DB) and
supps(p, DB) be the actual (i.e., apriori) support and synthesized support of pattern
p in database DB. Let D be the union of all local databases. Then support of pattern
p has been synthesized in D based on the following expression:

supps(p, D) = 1

num(p)

∑
num(p)
i=1 (suppa(p , Di)−α)

/
(1−α) (3.1)

where num(p) is the number of databases that report p at a given minimum support
level (α).

The size (i.e., the number of transactions) of a local database and support of
an itemset in a local database seem to be important parameters that are used to
determine the presence of an itemset in a database, since the number of transactions
containing the itemset X in a database D1 is equal to supp(X, D1) × size(D1). The
major concern in this investigation is that the algorithm does not consider the size
of a local database to synthesize the global support of a pattern. Using the IEP
algorithm, the global support of a pattern has been synthesized using only supports
of the pattern present in local databases.

3.3.4 RuleSynthesizing Algorithm

Wu and Zhang (2003) have proposed RuleSynthesizing (RS) algorithm for synthe-
sizing high-frequency association rules in multiple databases. Using this technique,
every local database is mined separately at random order (RO) using a SDMT
for synthesizing high-frequency association rules. A pattern in a local database is
assumed as absent, if it does not get reported. Based on the association rules present
in different databases, the authors have estimated weights of different databases. Let
wi be the weight of the i-th database, i = 1, 2, . . ., n. Without any loss of generality,
let the association rule r be extracted from first m databases, for 1 ≤ m ≤ n. Here,
suppa(r, Di) has been assumed as 0, for i = m + 1, m + 2, . . ., n. Then the support
of r in D has been determined in the following way:

supps(r, D) = w1 × suppa(r, D1) + . . .+ wm × suppa(r, Dm) (3.2)

Algorithm RuleSynthesizing offers an indirect approach for synthesizing association
rules in multiple databases. Thus the time complexity of the algorithm is reasonably
high. The algorithm executes in O(n4× maxNosRules × totalRules2) time, where n,
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maxNosRules, and totalRules are the number of data sources, the maximum among
the numbers of association rules extracted from different databases, and the total
number of association rules in different databases, respectively.

3.4 Specialized Multi-database Mining Techniques

For finding solution to a specific application, it might be possible to devise a better
multi-database mining technique. In this section, we elaborate in detail on three
specific multi-database mining techniques.

3.4.1 Mining Multiple Real Databases

We have proposed algorithm Association-Rule-Synthesis (ARS) for synthesizing
association rules in multiple real data sources (Adhikari and Rao 2008a). The algo-
rithm uses the model shown in Fig. 2.1. While synthesizing an association rule, it
uses a specific method which is explained as follows: For real databases, the trend of
the customers’ behaviour exhibited in a single database is usually present in other
databases. In particular, a frequent itemset in one database is usually present in
some transactions of other databases even if it does not get extracted. The proposed
estimation procedure captures such trend and estimates the support of a missing
association rule. Without any loss of generality, let the itemset X be extracted from
first m databases, for 1 ≤ m ≤ n. Then trend of X in first m databases could be
expressed as follows:

trend1, m(X|α) = 1∑ m
i=1|Di| ×

∑
m
i=1 (suppa (X, Di)× |Di|) (3.3)

The number of transactions in a database could be considered as its weight. In (3.3),
the trend of X in first m databases is estimated as a weighted sum of supports in
the first m databases. We can use the detected trend of X encountered in the first
m databases for synthesizing support of X in D. We estimate the support of X in
database Dj by computing the expression α × trend1, m(X | α), j = k + 1, k + 2, . . ., n.
Then the synthesized support of X is determined as follows:

supps(X, D) = trend1,m(X|α)
n∑

i=1
|Di|

×
[

(1 − α) ×
m∑

i=1

|Di| + α ×
n∑

i=1

|Di|
]

(3.4)

Association-Rule-Synthesis algorithm might return approximate global patterns,
since an itemset might not get extracted from all the databases.
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3.4.2 Mining Multiple Databases for the Purpose of Studying
a Set of Items

Many important decisions are based on a set of specific items called the select
items. We have proposed a technique for mining patterns of select items in multiple
databases (Adhikari and Rao 2007a).

3.4.3 Study of Temporal Patterns in Multiple Databases

Adhikari and Rao (2009) have proposed a technique for clustering items in multiple
databases based on their level of stability where a certain stability measure is used to
quantify this feature. Web sites and transactional databases contain a large amount
of time-stamped data related to an organization’s suppliers and/or customers activ-
ities that have been reported over time. Mining these time-stamped data could help
business leaders make better decisions by listening to their suppliers or customers
via their transactions collected over time. Taking advantage of the model visualized
in Fig. 3.1, we can extract global patterns in multiple temporal databases.

Fig. 3.1 A model of mining global patterns in multiple time-stamped databases

After a careful analysis, we note that the model shown there exhibits some com-
monalities with the model we showed in Fig. 2.1. Here we underline the most visible
differences between the models. The model comes with a set of interfaces and is
structured in a series of layers. Each interface is a set of operations that produces
dataset(s) (or, knowledge) based on the lower layer dataset(s). At interface labeled
3/2, the processed database PDi is partitioned into k time databases DTij, where DTij
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is the processed database (if available) for the j-th time slot at the i-th branch, j = 1,
2, . . ., k, and i = 1, 2, . . ., n. The j-th time databases of all the branches are merged
into a single time database DTj, j = 1, 2, . . ., k. A traditional data mining technique
is applied to DTj at the interface 5/4, for j = 1, 2, . . ., k. Let PBj be pattern base
corresponding to the time database DTj, j = 1, 2, . . ., k. Finally, all the pattern bases
are processed to synthesize knowledge or, take some decisions at the interface 6/5.
Other lines in Fig. 3.1 are assumed to be directed from bottom to top.

Layer 4 contains all the time databases. If any one of these databases is too
large to apply a traditional data mining technique then the model would fail.
In this situation, one can apply an appropriate sampling technique to reduce the
size of a database. In this case, one can obtain approximate patterns in databases
over time.

3.5 Mining Multiple Databases Using Pipelined
Feedback Model (PFM)

Before applying the pipelined feedback model, one needs to prepare data ware-
houses at different branches of a multi-branch organization. In Fig. 2.1, we have
shown how to preprocess data warehouse at each branch. Let Wi be the data ware-
house corresponding to the i-th branch, i = 1, 2, . . ., n. Then the local patterns for
the i-th branch are extracted from Wi, i = 1, 2, . . ., n. We mine each data warehouse
using any SDMT technique. In Fig. 3.2, we present a model of mining multiple
databases (Adhikari et al. 2007b).

In PFM, W1 is mined using a SDMT and as result a local pattern base LPB1
becomes extracted. While mining W2, all the patterns in LPB1 are extracted irrespec-
tive of their values of interestingness measures like, minimum support and minimum
confidence. Apart from these patterns, some new patterns that satisfy user-defined
threshold values of interestingness measures are also extracted. In general, while
mining Wi, all the patterns in Wi−1 are mined irrespective of their values of interest-
ingness measures, and some new patterns that satisfy user-defined threshold values
of interestingness measures, i = 2, 3, . . ., n. Due to this nature of mining each data
warehouse, the technique is called a feedback model. Thus, |LPBi−1| ≤ |LPBi|,
for i = 2, 3, . . ., n. There are n! arrangements of pipelining for n databases. All
the arrangements of data warehouses might not produce the same result of mining.
If the number of local patterns increases, one gets more accurate global patterns

Fig. 3.2 Pipelined feedback model of mining multiple databases
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which leads to a better analysis of local patterns. An arrangement of data ware-
houses would produce near optimal result if the cardinality |LPBn| is maximal. Let
size(Wi) be the size of Wi (in bytes), i = 1, 2, . . ., n. We will adhere to the follow-
ing rule of thumb regarding the arrangements of data warehouses for the purpose
of mining. The number of patterns in Wi is greater than or equal to the number of
patterns in Wi−1 when size(Wi) ≥ size(Wi−1), i = 2, 3, . . ., n. For the purpose of
increasing the number of local patterns, Wi−1 precedes Wi in the pipelined arrange-
ment of mining data warehouses if size(Wi−1) ≥ size(Wi), i = 2, 3, . . ., n. Finally,
we analyze the patterns in LPB1, LPB2, . . ., and LPBn to synthesize global patterns,
or analyze local patterns.

Let W be the collection of all branch data warehouses. For synthesizing global
patterns in W we discuss here a simple pattern synthesizing (SPS) algorithm.
Without any loss of generality, let the itemset X be extracted from first m databases,
for 1 ≤ m ≤ n. Then the synthesized support of X in W comes in the form.

supps(X, W) = 1
n∑

i=1
|Wi|

×
m∑

i=1

[
suppa (X, Wi)× |Wi|

]
(3.5)

3.5.1 Algorithm Design

In this section, we present an algorithm for mining multiple large databases. The
method is based on the pipelined feedback model discussed above.

Algorithm 3.1 Mine multiple data warehouses using pipelined feedback model.

procedure PipelinedFeedbackModel (W1, W2, . . ., Wn)
Input: W1, W2, . . ., Wn
Output: local pattern bases

01: for i = 1 to n do
02: if Wi does not fit in memory then
03: partition Wi into Wi1, Wi2, . . ., and Wipi for an integer pi;
04: else Wi1 = Wi;
05: end if
06: end for
07: sort data warehouses on size in non-increasing order and the data warehouses

are renamed as DW1, DW2, . . ., DWN, where N = ∑n
i=1 pi;

08: let LPB0 = φ;
09: for i = 1 to N do
10: mine DWi using a SDMT with input LPBi-1;
11: end for
12: return LPB1, LPB2, . . ., LPBN;
end procedure
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In the algorithm, the usage of LPBi−1 during mining DWi has been explained
above. Once a pattern has been extracted from a data warehouse, then it
also gets extracted from the remaining data warehouses. Thus, the algorithm
PipelinedFeedbackModel improves the quality of synthesized patterns as well as
contributes significantly to an analysis of local patterns.

3.6 Error Evaluation

To evaluate the quality of MDMT: PFM+SPS, one needs to quantify the error pro-
duced by the method. First, in an experiment we mine frequent itemsets in multiple
databases using PFM, and afterwards synthesize global patterns using the SPS algo-
rithm. One needs to find how the global synthesized support differs from the exact
(apriori) support of an itemset.

PFM improves mining multiple databases significantly over local pattern anal-
ysis. In the PFM, we have LPBi−1 ⊆ LPBi, for i = 2, 3, . . ., n. Then, patterns in
LPBi − LPBi−1 are generated from databases Di, Di+1, . . ., Dn. We assume suppa(X,
Dj) = 0, for each X ∈ LPBi − LPBi−1, and j = 1, 2, . . ., i−1. Thus, the error of
mining X could be defined as follows:

E(X|PFM, SPS) =

∣∣∣∣∣∣∣suppa(X, D)− 1
n∑

j=1
|Dj|

×
n∑

j=i

[
suppa(X, Dj) × |Dj|

]
∣∣∣∣∣∣∣ ,

for X ∈ LPBi − LPBi−1 and i = 2, 3,..., n.

(3.6)

Also, E(X|PFM, SPS) = 0, for X ∈ LPB1.
When a frequent itemset is reported from D1 then it gets reported from every

databases using PFM algorithm. Thus, E(X|PFM, SPS) = 0, for X ∈ LPB1.
Otherwise, an itemset X is not reported from all the databases. It is synthesized

using SPS algorithm. Then the synthesized support is subtracted from its apriori
support for finding the error of mining X.

There are several ways one could define the error of an experiment. In particular,
one could concentrate on the following definitions.

1. Average error (AE)

AE(D,α) = 1

|LPB1 + ∑n
i=2(LPBi − LPBi−1)|∑

X∈[LPB1∪{∪n
i=2(LPBi−LPBi−1)}] E(X|PFM, SPS)]

(3.7)

2. Maximum error (ME)

ME(D,α) = maximum
{
E(X|PFM, SPS), forX ∈ LPB1∪

{∪n
i=2(LPBi − LBPi−1)

} }
(3.8)
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where suppa(Xi, D) is obtained by mining D using a traditional data mining
technique, i = 1, 2, . . ., m. supps(Xi, D) is obtained by SPS, for i = 1, 2, . . ., m.

3.7 Experiments

We have carried out a series of experiments to study and quantify the effectiveness
of the PFM. We present experimental results using three synthetic databases and two
real-world databases. The synthetic databases are T10I4D100K (T) (Frequent item-
set mining dataset repository 2004), random500 (R1) and random1000 (R2). The
databases random500 and random1000 are generated synthetically for the purpose
of conducting experiments. The real databases are retail (R) (Frequent itemset min-
ing dataset repository 2004) and BMS-Web-Wiew-1 (B) (Frequent itemset mining
dataset repository 2004). The main characteristics of these datasets are displayed in
Table 3.1.

Table 3.1 Database characteristics

D N T ALT AFI NI

T 1, 00, 000 11.10 1, 276.12 870
R 88, 162 11.31 99.67 10, 000
B 1, 49, 639 2.00 155.71 1, 922
R1 10, 000 6.47 109.40 500
R2 10, 000 12.49 111.86 1, 000

Let NT, AFI, ALT, and NI denote the number of transactions, average frequency
of an item, average length of a transaction, and number of items in a database,
respectively. Each of the above databases is split into 10 databases for the pur-
pose of carrying out experiments. The databases obtained from T, R, B, R1 and
R2 are named as Ti, Ri, Bi, R1i and R2i, respectively, for i = 0, 1, . . ., 9. The
databases Ti, Ri, Bi, R1i, R2i are called input databases (DBs), for i = 0, 1, . . .,
9. Some characteristics of these input databases are presented in the Table 3.2.
In Tables 3.3 and 3.4, we include some outcomes to quantify how the proposed
technique improves the results of mining. We have completed experiments using
other MDMTs on these databases for the purpose of comparing them with MDMT:
PFM+SPS.

Figures 3.3, 3.4, 3.5, 3.6 and 3.7 show average error versus different values of
α. From these graphs, we conclude that AE normally increases as α increases. The
number of databases reporting a pattern decreases when the values of α increase.
Thus, the AE of synthesizing patterns normally increases as α increases. In case of
Fig. 3.5, the graphs for MDMT: PFM+SPS and MDMT: RO+PA are similar to those
with the X-axis.
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Table 3.2 Input database characteristics

D NT ALT AFI NI DB NT ALT AFI NI

T0 10, 000 11.06 127.66 866 T5 10, 000 11.14 128.63 866
T1 10, 000 11.133 128.41 867 T6 10, 000 11.11 128.56 864
T2 10, 000 11.07 127.64 867 T7 10, 000 11.10 128.45 864
T3 10, 000 11.12 128.44 866 T8 10, 000 11.08 128.56 862
T4 10, 000 11.14 128.75 865 T9 10, 000 11.08 128.11 865

R0 9, 000 11.24 12.07 8, 384 R5 9, 000 10.86 16.71 5, 847
R1 9, 000 11.21 12.27 8, 225 R6 9, 000 11.20 17.42 5, 788
R2 9, 000 11.34 14.60 6, 990 R7 9, 000 11.16 17.35 5, 788
R3 9, 000 11.49 16.66 6, 206 R8 9, 000 12.00 18.69 5, 777
R4 9, 000 10.96 16.04 6, 148 R9 7, 162 11.69 15.35 5, 456

B0 14, 000 2.00 14.94 1, 874 B5 14, 000 2.00 280.00 100
B1 14, 000 2.00 280.00 100 B6 14, 000 2.00 280.00 100
B2 14, 000 2.00 280.00 100 B7 14, 000 2.00 280.00 100
B3 14, 000 2.00 280.00 100 B8 14, 000 2.00 280.00 100
B4 14, 000 2.00 280.00 100 B9 23, 639 2.00 472.78 100

R10 1, 000 6.37 10.73 500 R15 1, 000 6.34 10.68 500
R11 1, 000 6.50 11.00 500 R16 1, 000 6.62 11.25 500
R12 1, 000 6.40 10.80 500 R17 1, 000 6.42 10.83 500
R13 1, 000 6.52 11.05 500 R18 1, 000 6.58 11.16 500
R14 1, 000 6.30 10.60 500 R19 1, 000 6.65 11.30 500

R20 1, 000 6.42 5.43 996 R25 1, 000 6.44 5.46 997
R21 1, 000 6.41 5.44 995 R26 1, 000 6.48 5.50 996
R22 1, 000 6.56 5.58 995 R27 1, 000 6.48 5.49 997
R23 1, 000 6.53 5.54 998 R28 1, 000 6.54 5.56 996
R24 1, 000 6.50 5.54 991 R29 1, 000 6.50 5.56 988

Table 3.3 Error obtained for the first three databases for selected value of α

Database T10I4D100K retail BMS-Web-Wiew-1
α 0.05 0.11 0.19

Error type AE ME AE ME AE ME

MDMT: RO+IEP 0.01 0.04 0.01 0.06 0.05 0.15
MDMT: RO+RS 0.01 0.04 0.01 0.06 0.02 0.13
MDMT: RO+ARS 0.01 0.04 0.01 0.06 0.02 0.11
MDMT: PFM+SPS 0 0.05 0.01 0.06 0 0
MDMT: RO+PA 0 0 0 0 0 0

3.8 Conclusions

In this chapter, we have discussed several generalized as well as specialized multi-
database mining techniques. For a particular problem at hand, one technique could
be more suitable than the others. However, we cannot claim that there is a single
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Table 3.4. Error reported for the last two databases for selected value of α

Database random500 random1000
α 0.005 0.004

Error type AE ME AE ME

MDMT: RO+IEP 0.01 0.01 0.01 0.01
MDMT: RO+RS 0.01 0.01 0 0.01
MDMT: RO+ARS 0.01 0.01 0.01 0.01
MDMT: PFM+SPS 0.01 0.01 0 0
MDMT: RO+PA 0 0 0 0
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method of universal nature which outperforms all other techniques. Instead, a choice
of the method has to be problem-driven. We have formalized the idea of multi-
database mining using local pattern analysis by considering an underlying two-step
process. We have also presented the pipelined feedback model which is particularly
suitable for mining multiple large databases. It improves significantly the accuracy
of mining multiple databases as compared to an existing technique that scans each
database only once. The pipelined feedback model could also be used for mining
a large database by dividing it into a series of sub-databases. Experimental results
obtained with the use of the MDMT: PFM+SPS are promising and underline the
usefulness of the method studied here.
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Chapter 4
Mining Patterns of Select Items in Multiple
Databases

A number of important decisions are based on a set of specific items in a database
called the select items. Thus the analysis of select items in multiple databases
becomes of primordial relevance. In this chapter, we focus on the following issues.
First, a model of mining global patterns of select items from multiple databases is
presented. Second, a measure of quantifying an overall association between two
items in a database is discussed. Third, we present an algorithm that is based
on the proposed overall association between two items in a database for the pur-
pose of grouping the frequent items in multiple databases. Each group contains
a select item called the nucleus item and the group grows while being centered
around the nucleus item. Experimental results are concerned with some synthetic
and real-world databases.

4.1 Introduction

In Chapter 3, we have presented a generalized technique viz., MDMT: PFM+SPS,
for mining multiple large databases. We have noted that one could develop a multi-
database mining application using MDMT: PFM+SPS which performs reasonably
well. The following question arises as to whether MDMT: PFM+SPS is the most
suitable technique for mining multiple large databases in all situations. In many
applications, one may need to extract true non-local patterns of a set of specific items
present in multiple large databases. In such applications, MDMT: PFM+SPS could
not be suggested as it may return approximate non-local patterns. In this chapter, we
present a technique that extracts genuine global patterns of a set of specific items
from multiple large databases.

Many decisions are based on a set of specific items called select items. Let us
highlight several decision support applications where the decisions are based on the
performance of select items.

• Consider a set of items (products) that are profit making. We could consider them
as the select items in this context. Naturally, the company would like to promote
them. There are various ways one could promote an item. An indirect way of
promoting a select item is to promote items that are positively associated with

51A. Adhikari et al., Developing Multi-database Mining Applications, Advanced
Information and Knowledge Processing, DOI 10.1007/978-1-84996-044-1_4,
C© Springer-Verlag London Limited 2010
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it. The implication of positive association between a select item P and another
item Q is that if Q is purchased by a customer then P is likely to be purchased
by the same customer at the same time. In this way, item P becomes indirectly
promoted. It is important to identify the items that are positively associated with
a select item.

• Each of the select items could be of high standard. Thus, they bring goodwill for
the company. They help promoting other items. Therefore it is essential to know
how the sales of select items affect the other items. Before proceeding with such
analyses, one may need to identify the items that are positively associated with
the select items.

• Again, each of the select items could be a low-profit making product. From this
perspective, it is important to know how they promote the sales of other items.
Otherwise, the company could stop dealing with those products.

In general, the performance of select items could affect many decision making prob-
lems. Thus a better, more comprehensive analysis of select items might lead to better
decisions. We study the select items based on the frequent itemsets extracted from
multiple databases. The first question is whether a “traditional” data mining tech-
nique could provide a good solution when dealing with multiple large databases. The
“traditional” way of mining multiple databases might not provide a good solution
due to several reasons:

• The company might have to employ parallel hardware and software to deal with
a large volume of data.

• A single computer might take unreasonable amount of time to mine a large
volume of data. In some extreme cases, it might not be feasible to carry data
mining.

• A traditional data mining algorithm might extract a large number of patterns com-
prising many irrelevant items. Thus the processing of patterns could be complex
and time consuming.

Therefore, the traditional way of mining multiple databases could not provide an
efficient solution to the problem. In this situation, one could apply local pattern
analysis (Zhang et al. 2003). Given this model of mining multiple databases, each
branch of a company requires to mine the local database by utilizing some tradi-
tional data mining technique. Afterwards, each branch forwards the pattern base to
the central office. The central office processes such pattern bases collected from dif-
ferent branches and synthesizes the global patterns and eventually makes decisions.
Due to the reasons stated above, the local pattern analysis would not be a judicious
choice to solve the proposed problem.

Each local pattern base might contain a large number of patterns consisting of
many irrelevant items. Under these circumstances, the data analysis becomes com-
plicated and time consuming. A pattern of a select item might be absent in some
local pattern bases. One may be required to estimate or ignore some patterns in
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certain databases. Therefore we may fail to report the true global patterns of select
items in the union of all local databases. All in all, we conclude that the local pattern
analysis alone might not provide a good solution to the problem.

Due to difficulties identified above, we aim at developing a technique that mines
true global patterns of select items in multiple databases. There are two apparent
advantages of using such technique. First, the synthesized global patterns are exact.
In other words, there is no necessity to estimate some patterns in some databases.
Second, we avoid dealing with huge volumes of data.

4.2 Mining Global Patterns of Select Items

In Fig. 4.1, we show an essence of the technique of mining global patterns of select
items in multiple databases (Adhikari and Rao 2007). It consists of the following
steps:

1. Each branch constructs the database and sends it to the central office.
2. Also, each branch extracts patterns from its local database.
3. The central office amalgamates these forwarded databases into a single database

FD.
4. A traditional data mining technique is applied to extract patterns from FD.
5. The global patterns of select items could be extracted effectively from local

patterns and the patterns extracted from FD.

Fig. 4.1 A multilevel process of mining global patterns of select items in multiple databases



54 4 Mining Patterns of Select Items in Multiple Databases

In Section 4.4, we will explain steps 1–5 with the help of a specific illustrative
example. The local databases are located at the bottom level of the figure. We need
to process these databases as they may not be at the appropriate state for the mining
task. Various data preparation techniques (Pyle 1999) like data cleaning, data trans-
formation, data integration, data reduction etc. are applied to these data present in
local databases. We produce local processed database PDi for the i-th branch, for i =
1, 2, . . ., n. The proposed model comes with a set of interfaces combined with a set
of layers. Each interface forms a set of operations that produces dataset(s) (or knowl-
edge) based on the dataset(s) available at the lower level. There are five interfaces
in the proposed model. The functions of the interfaces are described below.

Interface 2/1 is used to clean/transform/integrate/reduce data present at the lowest
level. By applying these procedures we construct database resulting from the origi-
nal database. These operations are carried out at the respective branch. We apply an
algorithm (located at interface 3/2) to partition a local database into two parts: for-
warded database and remaining database. It is easy to find the forwarded database
corresponding to a given database. In the following paragraph, we discuss how to
construct FDi, from Di, for i = 1, 2, . . ., n.

Initially, FDi is kept empty. Let Tij be the j-the transaction of Di, j = 1, 2, . . ., |Di|.
For Di, a for-loop on j would run |Di| times. At the j-th iteration, the transaction Tij is
tested. If Tij contains at least one of the select items then FDi is updated, resulting in
the union FDi ∪ {Tij}. At the end of the for-loop completed for j, FDi is constructed.

A transaction related to select items might contain items other than those being
selected. A traditional data mining algorithm could be applied to extract patterns
from FD. Let PB be the pattern base returned by a traditional data mining algorithm
(at the interface 5/4). Since the database FD is not large, one could reduce further
the values of user-defined parameters of the association rules, like minimum support
and minimum confidence, so that PB contains more patterns of select items. A better
analysis of select items could be realized by using more patterns. If we wish to study
the association between a select item and other frequent items then the exact support
values of other items might not be available in PB. In this case, the central office
sends a request to each branch office to forward the details (like support values)
of some items that would be required to study the select items. Hence each branch
applies a “traditional” mining algorithm (at interface 3/2) which is completed on
its local database and forwards the details of local patterns requested by the central
office. Let LPBi be the details of i-th local pattern base requested by the central
office, i = 1, 2, . . ., n. A global pattern mining application of select items might
be required to access the local patterns and the patterns in PB. A global pattern
mining application (interface 6/5) is developed based on the patterns present in PB
and LPBi, i = 1, 2, . . ., n. The technique of mining global patterns of select items is
efficient due to the following reasons:

• One could extract more patterns of select items by lowering further the parame-
ters of association rule such as the minimum support and minimum confidence,
based on the level of data analysis of select items, since FD is reasonably small.

• We get true global patterns of select items as there is no need to estimate them.
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In light of these observations, we can anticipate that the quality of global patterns is
high, since there is no need to estimate them.

To evaluate the effectiveness of the above technique, we present a problem on
multi-database mining. We show how the data mining technique presented above
could be used in finding the solution to the problem. We start with the notion of
overall association between two items in a database (Adhikari and Rao 2007).

4.3 Overall Association Between Two Items in a Database

Let I(DB) be the set of items in database DB. A common measure of similarity (Wu
et al. 2005; Xin et al. 2005) between two objects could be used as a measure of
positive association between two items in a database. We define positive association
between two items in a database as follows:

PA(x, y, DB) = # transaction containing both x and y, DB

# transaction containing at least one of x and y , DB
, for x, y ∈ I(DB)

(4.1)

where, # P, DB is the number of transactions in DB that satisfy predicate P. PA
measures only positive association between two items in a database. It does not
measure negative association between two items in a database. In the following
example, we show that PA fails to compute an overall association between two items.

Example 4.1 Let us consider four branches of a multi-branch company. Let Di be
the database corresponding to the i-th branch of the company, i = 1, 2, 3, 4. The
company is interested in analyzing globally a set of select items (SI). Let SI = {a,
b}. The contents of different databases are given as follows: D1 = { {a, e}, {b, c,
g}, {b, e, f}, {g, i} }; D2 = { {b, c}, {f, h} }; D3 = { {a, b, c}, {a, e}, {c, d}, {g} };
D4 = { {a, e}, {b, c, g} }. Initially, we wish to measure the association between
two items in a single database, say D1. Now, PA(a, b, D1) = 0, since there is no
transaction in D1 containing both the items a and b. In these transactions, if one of
the items of {a, b} is present then the other item of {a, b} is not present. Thus, the
transactions {a, e}, {b, c, g} and {b, e, f} in D1 imply that the items a and b are
negatively associated. We need to define a measure of negative association between
two items in a database. Similarly to the measure of positive association, one could
define a measure of negative association between two items in a database as follows:

NA(x, y, DB) = # transaction containing exactly one of x and y, DB

# transaction containing at least one of x and y, DB
for x, y ∈ I(DB).

(4.2)
Now, NA(a, b, D1) = 1. We note that PA(a, b, D1) < NA(a, b, D1). Overall, we
state that the items a and b are negatively associated, and the amount of overall
association between the items a and b in D1 is PA(a, b, D1) − NA(a, b, D1) = −1.0.
The accuracy of association analysis might be low if we consider only the positive
association between two items.
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The analysis of relationships among variables is a fundamental task being at
the heart of many data mining problems. For example, metrics such as support,
confidence, lift, correlation, and collective strength have been used extensively
to evaluate the interestingness of association patterns (Klemettinen et al. 1994;
Silberschatz and Tuzhilin 1996; Aggarwal and Yu 1998; Silverstein et al. 1998;
Liu et a. 1999). These metrics are defined in terms of the frequency counts tabu-
lated in a 2 × 2 contingency table as shown in Table 4.1. Tan et al. (2002) presented
an overview of twenty one interestingness measures proposed in statistics, machine
learning and data mining literature. We continue our discussion with the examples
cited in Tan et al. (2002) and show that none of the proposed measures is effec-
tive in finding the overall association by considering both positive and negative
associations between two items in a database.

Table 4.1 A 2 × 2 contingency table for variables x and y

y ¬y Total

x f11 f10 f1.
¬x f01 f00 f0.
Total f.1 f.0 f..

Table 4.2 Examples of contingency tables

Example f11 f10 f01 f00

E1 8,123 83 424 1,370
E2 8,330 2 622 1,046
E3 9,481 94 127 298
E4 3,954 3,080 5 2,961
E5 2,886 1,363 1,320 4,431
E6 1,500 2,000 500 6,000
E7 4,000 2,000 1,000 3,000
E8 4,000 2,000 2,000 2,000
E9 1,720 7,121 5 1,154
E10 61 2,483 4 7,452

From the examples in Table 4.2, we notice that the overall association between
two items could be negative as well as positive. In fact, a measure of overall asso-
ciation between two items in a database lies in [−1, 1]. We consider the following
five out of 21 interestingness measures, since the association between two items
calculated using one of these five measures lies in [−1, 1]. Thus, we study their use-
fulness for the specific requirement of the proposed problem. These five measures
are included in Table 4.3.
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Table 4.3 Selected interestingness measures for association patterns

Symbol Measure Formula

φ φ-coefficient P({x}∪{y})−P({x})×P({y})√
P({x})×P({y})×(1−P({x})×(1−P({y}))

Q Yule’s Q P({x}∪{y})×P(¬({x}∩{y}))−P({x}∪¬{y})×P(¬{x}∪{y})
P({x}∪{y})×P(¬({x}∩{y}))−P({x}∪¬{y})×P(¬{x}∪{y})

Y Yule’s Y
√

P({x}∪{y})×P(¬({x}∩{y}))−√
P({x}∪¬{y})×P(¬{x}∪{y})√

P({x}∪{y})×P(¬({x}∩{y}))−√
P({x}∪¬{y})×P(¬{x}∪{y})

κ Cohen’s κ P({x}∪{y})+P(¬{x}∪¬{y})−P({x})×P({y})−P(¬{x})×P(¬{y})
1−P({x})×P({y})−P(¬{x})×P(¬{y})

F Certainty factor max
(

P({y}|{x})−P({y})
1−P({y}) , P({x}|{y})−P({x})

1−P({x})
)

In Table 4.4, we rank the contingency tables by using each of the above measures.

Table 4.4 Ranking of contingency tables using above interestingness measures

Example E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

φ 1 2 3 4 5 6 7 8 9 10
Q 3 1 4 2 8 7 9 10 5 6
Y 3 1 4 2 8 7 9 10 5 6
κ 1 2 3 5 4 7 6 8 9 10
F 4 1 6 2 9 7 8 10 3 5

Also, we rank the contingency tables based on the concept of overall association
explained in Example 4.1. In Table 4.5, we present the ranking of contingency tables
using overall association.

Table 4.5 Ranking of contingency tables using overall association

Example Overall association Rank

E1 0.76 3
E2 0.77 2
E3 0.93 1
E4 0.09 5
E5 0.02 6
E6 −0.10 8
E7 0.10 4
E8 0 7
E9 −0.54 10
E10 −0.24 9

The ranks given in Table 4.5 and the ranks given for each of the five measures in
Table 4.4 are not similar. In other words, none of the above five measures satisfies
the requirement formulated in the proposed problem. Based on the above discussion,
we propose the following measure OA as an overall association between two items
in a database.



58 4 Mining Patterns of Select Items in Multiple Databases

Definition 4.1 OA(x, y, DB) = PA(x, y, DB) − NA(x, y, DB), for x, y ∈ I(DB).

If OA(x, y, DB) > 0 then the items x and y are positively associated in DB. If
OA(x, y, DB) < 0 then the items x and y are negatively associated in DB. The problem
is concerned with the association between a nucleus item and another item in a
database. Thus, we are not concerned about the association between two items in a
group, where none of them is a nucleus item. In other words, it could be considered
as a problem of grouping rather than a problem of classification or clustering.

4.4 An Application: Study of Select Items in Multiple
Databases Through Grouping

As before, let us consider a multi-branch company having n branches. Each branch
maintains a separate database for the transactions made in that particular branch. Let
Di be the database corresponding to the i-th branch of the multi-branch company,
i = 1, 2, . . ., n. Also, let D be the union of all branch databases. A large section of a
local database might be irrelevant to the current problem. Thus, we divide database
Di into FDi and RDi, where FDi and RDi are called the forwarded database and
remaining database corresponding to the i-th branch, respectively, i = 1, 2, . . ., n.
We are interested in the forwarded databases, since every transaction in a forwarded
database contains at least one select item. The database FDi is forwarded to the
central office for mining global patterns of select items, for i = 1, 2, . . ., n. All the
local forwarded databases are amassed into a single database (FD) for the purpose
of mining task. We note that the database FD is not overly large as it contains trans-
actions related to select items. Before proceeding with the detailed discussion, we
first offer some definitions.

A set of items is referred to as an itemset. An itemset containing k items is called
a k-itemset. The support (supp) (Agrawal et al. 1993) of an itemset refers to the frac-
tion of transactions containing this itemset. If an itemset satisfies the user-specified
minimum support (α) criterion, then it is called a frequent itemset (FIS). Similarly,
if an item satisfies the user-specified minimum support criterion, then it is called a
frequent item (FI). If a k-itemset is frequent then every item in the k-itemset is also
frequent. In this chapter, we study the items in SI. Let SI = {s1, s2, . . ., sm}. We wish
to construct m groups of frequent items in such a way that the i-th group grows by
being centered around the nucleus item si, i = 1, 2, . . ., m. Let FD be the union of
FDi, i = 1, 2, . . ., n. Furthermore let FISk(DB | α) be the set of frequent k-itemsets
in database DB at the minimum support level α, k = 1, 2. We state our problem as
follows:

Let Gi be the i-the group of frequent items containing the nucleus item si ∈ SI,
i = 1, 2, . . ., m. Construct Gi using FIS2(FD | α) and local patterns in Di such that
x ∈ Gi implies OA(si, x, D) > 0, for i = 1, 2, . . ., m.

Two groups may not be mutually exclusive, as our study involves identifying
pairs of items such that the following conditions are true: (i) the items in each pair
are positively associated between each other in D, and (ii) one of the items in a pair
is a select item. Our study is not concerned with the association between a pair of
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items in a group such that none of them is a select item. The above problem actually
results in m +1 groups where (m +1)-th group Gm+1 contains the items that are not
positively associated with any one of the select items. The proposed study is not
concerned with the items in Gm+1.

The crux of the proposed problem is to determine the supports of the relevant
frequent itemsets in multiple large databases. A technique of estimating support of
a frequent itemset in multiple real databases has been proposed by Adhikari and
Rao (2008a). To estimate the support of an itemset in a database, this technique
makes use of the trend of supports of the same itemset in other databases. The trend
approach for estimating support of an itemset in a database could be described as
follows:

Let the itemset X gets reported from databases D1, D2, . . ., Dm. Also let supp(X,
∪m

i=1Di) be the support of X in the union of D1, D2, . . ., Dm. Let Dk be a database that
does not report X, for k = m + 1, m + 2, . . ., n. Then the support of X in Dk could be
estimated by α × supp(X, ∪m

i=1Di). Given an itemset X, some local supports of X are
estimated and the remaining local supports of X are obtained using a traditional data
mining technique. The global support of X is obtained by combining these local
supports with the numbers of transactions (i.e., sizes) of the respective databases.
The proposed technique synthesizes true supports of relevant frequent itemsets in
multiple databases.

We have discussed the limitations of the traditional way of mining multiple large
databases in the previous chapters. We have observed that local pattern analysis
alone could not provide an effective solution to this problem. The mining technique
visualized in Fig. 4.1 offers a viable solution. A pattern based on all the databases is
called a global pattern. A global pattern containing at least one select item is called
a global pattern of select item.

4.4.1 Properties of Different Measures

If the itemset {x, y} is frequent in DB then OA(x, y, DB) is not necessarily be pos-
itive, since the number of transactions containing only one of the items of {x, y}
could be more than the number of transactions containing both the items x and y.
OA(x, y, DB) could attain maximum value for an infrequent itemset {x, y} also. Let
{x, y} be infrequent. The distributions of x and y in DB are such that no transaction
in DB contains only one item of {x, y}. Thus, OA(x, y, DB) = 1.0. In what follows,
we discuss a few properties of different measures.

Lemma 4.1 (i) 0 ≤ PA(x, y, DB) ≤ 1; (ii) 0 ≤ NA(x, y, DB) ≤ 1; (iii) −1 ≤ OA(x, y,
DB) ≤ 1; (iv) PA(x, y, DB) + NA(x, y, DB) = 1; for x, y ∈ I(DB).

PA(x, y, DB) could be considered as a similarity between x and y in DB. Thus,
1− PA(x, y, DB) i.e., NA(x, y, DB) could be considered as a distance between x
and y in DB. A characteristic of a good distance measure is that it satisfies metric
properties (Barte 1976) over the concerned domain.
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Lemma 4.2 NA(x, y, DB) = 1− PA(x, y, DB) is a metric over [0, 1], for x, y ∈ I(DB).

Proof We prove only the property of triangular inequality, since the remaining two
properties of the metric are obvious. Let I(DB) = {a1, a2, . . ., aN}. Let STi be the
set of transactions containing item ai ∈ I(DB), i = 1, 2, . . ., N.

1−PA(ap, aq, DB) = 1−|STp ∩ STq|
|STp ∪ STq| ≥ |STp−STq| + |STq−STp|

|STp ∪ STq ∪ STr| (4.3)

Thus, 1− PA(ap, aq, DB) + 1− PA(aq, ar, DB)

≥ |STp−STq| + |STq−STp| + |STq−STr| + |STr−STq|
|STp ∪ STq ∪ STr| (4.4)

= |STp ∪ STq ∪ STr| − |STp ∩ STq ∩ STr| + |STp ∩ STr| + |STq| − |STp ∩ STq| − |STq ∩ STr|
|STp ∪ STq ∪ STr|

(4.5)

= 1−|STp ∩ STq ∩ STs| − |STp ∩ STs|−|STq| + |STp ∩ STq| + |STq ∩ STs|
|STp ∪ STq ∪ STs| (4.6)

= 1−{|STp ∩ STq ∩ STs| + |STp ∩ STq| + |STq ∩ STs|} − {|STp ∩ STs| + |STq|}
|STp ∪ STq ∪ STs|

(4.7)

(a) (b) (c) (d)

Fig. 4.2 Simplification using Venn diagram

Let the number of elements in the shaded region of Figs. 4.2(c) and 4.2(d) be N1
and N2, respectively. Then the expression (4.7) becomes

1− N1−N2

|STp ∪ STq ∪ STr| ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− N1−N2

|STp ∪ STq ∪ STr| , if N1 ≥ N2 (case 1)

1− |STp ∩ STr|
|STp ∪ STq ∪ STr| , if N1 < N2 (case 2)

(4.8)

In case 1, the expression remains the same. In case 2, a positive quantity STp ∩ STr
has been put in place of a negative quantity N1−N2. Thus the expression (4.8) reads
as
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≥

⎧⎪⎪⎨
⎪⎪⎩

1− N1−N2

|STp ∪ STr| , if N1 ≥ N2

1−|STp ∩ STr|
|STp ∪ STr| , if N1 < N2

≥

⎧⎪⎪⎨
⎪⎪⎩

1− N1

|STp ∪ STr| , if N1 ≥ N2

1−|STp ∩ STr|
|STp ∪ STr| , if N1 < N2

≥

⎧⎪⎪⎨
⎪⎪⎩

1−|STp ∩ STr|
|STp ∪ STr| , if N1 ≥ N2

1−|STp ∩ STr|
|STp ∪ STr| , if N1 < N2

(4.9)

where N1 = | STp ∩ STq∩ STr | ≤ | STp ∩ STr |. Therefore, irrespective of the
relationship between N1 and N2, 1− PA(ap, aq, DB) + 1− PA(aq, ar, DB) ≥ 1−
PA(ap, ar, DB). Thus, 1− PA(x, y, DB) satisfies triangular inequality.

To compute an overall association between two items, we need to express OA in
terms of supports of frequent itemsets.

Lemma 4.3 For any two items x, y ∈ I(DB), OA(x, y, DB) can be expressed as
follows:

OA(x, y, DB) = 3 × supp({x, y}, DB)−supp({x}, DB)−supp({y}, DB)

supp({x}, DB) + supp({y}, DB)−supp({x, y}, DB)
(4.10)

Proof OA(x, y, DB) = PA(x, y, DB) − NA(x, y, DB)

Now, PA(x, y, DB) = supp({x, y}, DB)

supp({x}, DB) + supp({y}, DB)−supp({x, y}, DB)
(4.11)

Also, NA(x, y, DB) = supp({x}, DB) + supp({y}, DB) − 2 × supp({x, y}, DB)

supp({x}, DB) + supp({y}, DB)−supp({x, y}, DB)
(4.12)

Thus, the lemma follows.

4.4.2 Grouping of Frequent Items

For the purpose of explaining the grouping process, we continue our discussion of
Example 4.1.

Example 4.2 Based on SI, the forwarded databases are given as follows:

FD1 = { {a, e}, {b, c, g}, {b, e, f} }
FD2 = { { b, c} }
FD3 = { {a, b, c}, {a, e} }
FD4 = { {a, e}, {b, c, g} }
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Let size(DB) be the number of transactions in DB. Then size(D1) = 4, size(D2) = 2,
size(D3) = 4, and size(D4) = 2. The union of all forwarded databases is given as
FD = {{a, e}, {b, c, g}, {b, e, f}, { b, c}, {a, b, c}, {a, e}, {a, e}, {b, c, g}}.
The transaction {a, e} has been shown three times, since it has originated from
three data sources. We mine the database FD and get the following set of frequent
itemsets:

FIS1(FD | 1/14) = { {a} (4/12), {b} (5/12) }
FIS2(FD | 1/14) = { {a, b} (1/12), {a, c} (1/12), {a, e} (3/12), {b, c} (4/12), {b, e}
(1/12), {b, f} (1/12), {b, g} (2/12) }

where X(η) denotes the fact that the frequent itemset X has support η. All the trans-
actions containing item x not belonging to SI might not be available in FD. Thus
other frequent itemsets of size one could not be mined correctly from FD. They are
not shown in FIS1(FD). Each frequent itemset extracted from FD contains an item
from SI. The collection of patterns in FIS1(FD | 1/14) and FIS2(FD | 1/14) could be
considered as PB with reference to Fig. 4.1. Using the frequent itemsets in FIS1(FD
| α) and FIS2(FD |α) we might not be able to compute the value of OA between two
items. The central office of the company requests each branch for the supports of
the relevant items (RIs) to calculate the overall association between two items. Such
information would help the central office to compute exactly the value of the overall
association in the union of all databases. Relevant items are the items in FIS1(FD |
α) that do not belong to SI. In this example, RIs are c, e, f and g. The supports of
relevant items in different databases are given below:

RI(D1) = { {c} (1/4), {e} (2/4), {f} (1/4), {g} (2/4) }
RI(D2) = { {c} (1/2), {e} (0), {f} (1/2), {g} (0) }
RI(D3) = { {c}(2/4), {e}(1/4), {f}(0), {g}(1/4) }
RI(D4) = { {c} (1/2), {e} (1/2), {f} (0), {g} (1/2) }

RI(Di) could be considered as LPBi with reference to Fig. 4.1, i = 1, 2, . . ., n.
We follow here a grouping technique based on the proposed measure of overall
association OA. If OA(x, y, D) > 0 then y could be placed in the group of x, for x ∈
SI = {a, b}, y ∈ I(D). We explain the procedure of grouping frequent items with the
help of following example.

Example 4.3 Here we continue the discussion of Example 4.2. Based on the avail-
able supports of local 1-itemsets, we synthesize 1-itemsets in D as mentioned in
Table 4.6.

Table 4.6 Supports of relevant 1-itemsets in D

Itemset ({x}) {a} {b} {c} {e} {f} {g}

supp({x}, D) 4/12 5/12 5/12 4/12 2/12 4/12
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We note that the supports of {a} and {b} are not required to be synthesized, since
they could be determined exactly from mining FD. The values of OA corresponding
to itemsets of FIS2 are presented in Table 4.7.

Table 4.7 Overall association between two items in a frequent 2-itemset in FD

Itemset ({x, y}) {a, b} {a, c} {a, e} {b, c} {b, e} {b, f} {b, g}

OA(x, y, D) −3/4 −3/4 1/5 1/3 −3/4 −2/3 −3/7

In Table 4.7, we find that the items a and e are positively associated. Thus, item e
could be placed in the group containing nucleus item a. Items b and c are positively
associated as well. Item c could be put in the group containing nucleus item b. Thus,
the output grouping π using the proposed technique comes in the form:

π (FIS1(D)|{a, b}, 1/12) = {Group1, Group2},

where

Group 1 = {(a, 1.0), (e, 0.2)}
Group 2 = {(b, 0.1), (c, 0.33)}.

Each item in a group is associated with a real number which represents the strength
of an overall association between the item and the nucleus item of the group. The
proposed grouping technique also constructs the third group of items, i.e., {f, g}.
The proposed study is not concerned with the items in {f, g}.

Each group grows being centered around a select item. The i-th group (Gi) grows
centering around the i-th select item si, i = 1, 2, . . ., m. With respect to group Gi,
the item si is called the nucleus item of Gi, i = 1, 2, . . ., m. We define a group as
follows.

Definition 4.2 The i-th group is a collection of frequent items aj and the nucleus
item si ∈ SI such that OA(si, aj, D) > 0, j = 1, 2, . . ., |Gi|, and i = 1, 2, . . ., m.

Let us describe the data structures used in the algorithm for finding groups. The
set of frequent k-itemsets is maintained in an array FISk, k = 1, 2. After finding OA
value between two items in a 2-itemset, it is kept in array IS2. Thus, the number
of itemsets in IS2 is equal to the number of frequent 2-itemsets extracted from FD.
A two-dimensional array Groups is maintained to store m groups. The i-the row
of Groups stores the i-th group, for i = 1, 2, . . ., m. The first element of i-th row
contains the i-th select item, for i = 1, 2, . . ., m. In general, the j-th element of the
i-th row contains a pair (item, value), where item refers to the j-th item of the i-th
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group and value refers to the amount of OA value between the i-th select item and
item, for j = 1, 2, . . ., |Gi|. The grouping algorithm can be outlined as follows.

Algorithm 4.1 Construct m groups of frequent items in D such that i-th group grows
being centered around the i-th select item, for i = 1, 2, . . ., m.

procedure m-grouping (m, SI, N1, FIS1, N2, FIS2, GSize, Groups)

Input: m, SI, N1, FIS1, N2, FIS2
m: the number of select items
SI: set of select items
Nk: number of frequent k-itemsets
FISk: set of frequent k-itemsets

Output: GSize, Groups
GSize: array of number of elements in each group
Groups: array of m groups

01: for i = 1 to N2 do
02: IS2(i).value = OA(FIS2(i).item1, FIS2(i).item2, D);
03: IS2(i).item1 = FIS2(i).item1; IS2(i).item2 = FIS2(i).item2;
04: end for
05: for i = 1 to m do
06: Groups(i)(1).item = SI(i); Groups(i)(1).value = 1.0; GSize(i) = 1;
07: end for
08: for i = 1 to N2 do
09: for j = 1 to m do
10: if ((IS2(i).item1 = SI(j)) and (IS2(i).value > 0)) then
11: GSize(j) = GSize(j) + 1; Groups(j)(GSize(j)).item = IS2(i).item2;
12: Groups(j)(GSize(j)).value = IS2(i).value;
13: end if
14: if ((IS2(i).item2 = SI(j)) and (IS2(i).value > 0)) then
15: GSize(j) = GSize(j) + 1; Groups(j)(GSize(j)).item = IS2(i).item1;
16: Groups(j)(GSize(j)).value = IS2(i).value;
17: end if
18: end for
19: end for
20: for i = 1 to m do
21: sort items of group i in non-increasing order on OA value;
22: end for
end procedure

The algorithm works as follows. Using (4.10), we compute the value of OA for
each itemset in FIS2. After computing OA value for a pair of items, we store the
items and OA value in IS2. The algorithm performs these tasks using the for-loop
shown in lines 01–04. We initialize each group with the corresponding nucleus item
as shown in lines 05–07. A relevant item or an item in SI could belong to one or
more groups. Thus, we check for the possibility of including each of the relevant
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items and items in SI to each group using the for-loop (lines 09–18). All the relevant
items and items in SI are covered using for-loop present in lines 08–19. For the
purpose of better presentation, we finally sort items of i-th group in non-increasing
order on OA value, i = 1, 2, . . ., m.

Assume that the frequent itemsets in FIS1 and FIS2 are sorted on items in the
itemset. Thus, the time complexities for searching an itemset in FIS1 and FIS2
are O(log(N1)) and O(log(N2)), respectively. The time complexity of computing
present at line 02 is O(log(N1)), since N1 > N2. The time complexity of calculations
carried out in lines 01–04 is O(N2 × log(N1)). Lines 05–07 are used to complete
all necessary initialization. The time complexity of this program segment is O(m).
Lines 08–19 process frequent 2-itemsets and construct m groups. If one of the two
items in a frequent 2-itemset is a select item, then other item could be placed in the
group of the select item, provided the overall association between them is positive.
The time complexity of this program segment is O(m × N2). Lines 20–22 present
groups in sorted order. Each group is sorted in non-increasing order with respect to
the OA value. The association of nucleus item with itself is 1.0. Thus the nucleus
item is kept at the beginning of the group (line 06). Let the average size of a group
be k. Then the time complexity of this program segment is O(m × k × log(k)).
The time complexity of the procedure m-grouping is maximum { O(N2 × log(N1)),
O(m), O(m × N2), O(m × k × log(k)) }, i.e., maximum { O(N2 × log(N1)), O(m ×
N2), O(m × k × log(k)) }.

4.4.3 Experiments

We have carried out several experiments to quantify the effectiveness of the above
approach. We present the experimental results using four databases, viz., retail
(Frequent itemset mining dataset repository 2004), mushroom (Frequent itemset
mining dataset repository 2004), T10I4D100K (Frequent itemset mining dataset
repository 2004), and check. The database retail is real and obtained from an anony-
mous Belgian retail supermarket store. The database mushroom is real and obtained
from UCI databases. The database T10I4D100K is synthetic and was obtained using
a generator from IBM Almaden Quest research group. The database check is artifi-
cial whose grouping is already known. We have experimented with database check
to verify that our grouping technique works correctly. We present some character-
istics of these databases in Table 4.8. Let NT, AFI, ALT, and NI denote the number
of transactions, average frequency of an item, average length of a transaction, and
number of items in the database, respectively.

Table 4.8 Characteristics of databases used in the experiment

Database N T ALT AFI NI

retail (R) 88,162 11.31 99.67 10,000
mushroom (M) 8,124 24.00 1, 624.80 120
T10I4D100K (T) 100,000 11.10 1, 276.12 870
check(C) 40 3.03 3.10 39
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We divide each of these databases into ten databases called here input databases.
The input databases obtained from R, M, T and C are names as Ri, Mi, Ti, and Ci,
respectively, i = 1, 2, . . ., 10. We present some characteristics of the input databases
in Tables 4.9 and 4.10.

Table 4.9 Characteristics of input databases obtained from retail and mushroom

DB NT ALT AFI NI DB NT ALT AFI NI

R1 9,000 11.24 12.07 8,384 M1 812 24.00 295.27 66
R2 9,000 11.21 12.27 8,225 M2 812 24.00 286.59 68
R3 9,000 11.34 14.60 6,990 M3 812 24.00 249.85 78
R4 9,000 11.49 16.66 6,206 M4 812 24.00 282.43 69
R5 9,000 10.96 16.04 6,148 M5 812 24.00 259.84 75
R6 9,000 10.86 16.71 5,847 M6 812 24.00 221.45 88
R7 9,000 11.20 17.42 5,788 M7 812 24.00 216.53 90
R8 9,000 11.16 17.35 5,788 M8 812 24.00 191.06 102
R9 9,000 12.00 18.69 5,777 M9 812 24.00 229.27 85
R10 9,000 11.69 15.35 5,456 M10 816 24.00 227.72 86

Table 4.10 Characteristics of input databases obtained from T10I4D100K

DB ALT AFI NI DB ALT AFI NI

T1 11.06 127.66 866 T6 11.14 128.63 866
T2 11.13 128.41 867 T7 11.11 128.56 864
T3 11.07 127.65 867 T8 11.10 128.45 864
T4 11.12 128.44 866 T9 11.08 128.56 862
T5 11.13 128.75 865 T10 11.08 128.11 865

The input databases obtained from database check are given as follows:

C1 = { {1, 4, 9, 31}, {2, 3, 44, 50}, {6, 15, 19}, {30, 32, 42} }
C2 = { {1, 4, 7, 10, 50}, {3, 44}, {11, 21, 49}, {41, 45, 59} }
C3 = { {1, 4, 10, 20, 24}, {5 ,7, 21}, {21, 24, 39}, {26, 41, 46} }
C4 = { {1, 4, 10, 23}, {5, 8}, {5, 11, 21}, {42, 47} }
C5 = { {1, 4, 10, 34}, { 5, 49}, {25, 39, 49}, {49} }
C6 = { {1, 3, 44}, {6, 41}, {22, 26, 38}, {45, 49} }
C7 = { {1, 2, 3, 10, 20, 44}, {11, 12, 13}, {24, 35}, {47, 48, 49} }
C8 = { {2, 3, 20, 39}, {2, 3, 20, 44, 50}, {32, 49}, {42, 45} }
C9 = { {2, 3, 20, 44}, {3, 19, 50}, {5, 41, 45}, {21} }
C10 = { {2, 20, 45}, {5, 7, 21}, {11, 19}, {22, 30, 31} }

In Table 4.11, we present some relevant details regarding different experiments.
We have chosen the first 10 frequent items as the select items, except for the last
experiment. One could choose select items as the items whose data analyses are
needed to be performed.

The first experiment is based on database retail. The grouping of frequent items
in retail is given below:
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Table 4.11 Some relevant information regarding experiments

Database α SI

R 0.03 {0,1,2,3,4,5,6,7,8, 9}
M 0.05 {1, 3, 9, 13, 23, 34, 36, 38, 40, 52}
T 0.01 {2, 25, 52, 240, 274, 368, 448, 538, 561, 630}
C 0.07 {1, 2, 3}

π (FI(retail) | SI, α) = { 0 (1.00); 1 (1.00); 2 (1.00); 3 (1.00); 4 (1.00);
5 (1.00); 6 (1.00); 7 (1.00); 8 (1.00); 9 (1.00) }

Two resulting groups are separated by semicolon (;). The nucleus item in each
group is underlined. Each item in a group is associated with a real number shown
in bracket. This value represents the strength of the overall association between
the item and the nucleus item. The groups are shaded alternately for the purpose
of clarity of visualization. We observe that no item in database retail is positively
associated with the select items using the measure OA. This does not necessarily
mean that the amount of AE or ME for the experiment is zero. There may exist
frequent itemsets of size two such that overall association between two items in
each of the itemsets is non-positive and at least one of the two items belongs to the
set of select items.

The second experiment is based on database mushroom. The grouping of frequent
items in mushroom is given below:

π (FI(mushroom) | SI, α) = {1 (1.00), 24 (0.23, 110 (0.12), 29 (0.10), 36 (0.10),
61 (0.10), 38 ( 0.06), 66 (0.06), 90 (0.01); 3 (1.00); 9 (1.000000); 13 (1.00);
23 (1.00), 93 (0.53), 59 ( 0.22), 2 (0.14), 39 (0.01), 63 (0.15); 34 (1.00),
86 (0.99), 85 (0.95), 90 (0.80), 36 (0.63), 39 (0.33), 59 (0.23), 63 (0.17),
53 (0.16), 67 (0.13), 24 (0.12), 76 (0.11); 36 (1.00), 85 (0.68), 90 (0.65),
86 (0.63), 34 (0.63), 59 (0.17), 39 (0.16), 63 ( 0.11), 110 ( 0.10), 1 (0.10);
38 (1.00), 48 (0.38), 102 (0.19), 58 (0.14), 1 (0.06), 94 (0.05), 110 (0.01);
40 (1.00); 52 (1.00) }

We observe that some frequent items are not included in any of these groups,
since their overall associations with each of the select items are non-positive.

The third experiment is based on database T10I4D100K. The grouping of
frequent items in T10I4D100K is given below:

π (FI(T10I4D100K) | SI, α) = { 2 (1.00); 25 (1.00); 52 (1.00); 240 (1.00);
274 (1.00); 368 (1.00); 448 (1.00); 538 ( 1.00); 561 (1.00); 630 (1.00) }

We observe that databases retail and T10I4D100K are sparse. Thus, the grouping
contains groups of singleton item for these two databases. The overall association
between a nucleus item and itself is 1.0. Otherwise, the overall association between
a frequent item and a nucleus item is non-positive for these two databases.
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The fourth experiment is based on database check. The database check is
constructed artificially to verify the following existing grouping.

π (FI(check) | SI, α) = { (1, 1.00), (4, 0.43), (10, 0.43); (2, 1.00), (20, 0.43),
(3, 0.11); (3, 1.00), (44, 0.50), (2, 0.11) }.

We have calculated average errors using both trend and proposed approaches.
Figures 4.3, 4.4 and 4.5 show the graphs of AE versus the number databases for the
first three databases. The proposed model enables us to find actual supports of all
the relevant itemsets in a database. Thus, the AE of an experiment for the proposed
approach remains 0. As the number of databases increases, the relative presence of
a frequent itemset normally decreases. Thus, the error of synthesizing an itemset
also increases. Overall, the AE of the experiment using trend approach is likely
to increase as the number of databases increases. We observe this phenomenon in
Figs. 4.3, 4.4 and 4.5.
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4.5 Related Work

Recently, multi-database mining has been recognized as an important and timely
research area in the KDD community. The work reported so far could be classi-
fied broadly into two categories: mining/synthesizing patterns in multiple databases
and post processing of local patterns. We mention some work related to first cat-
egory. Wu and Zhang (2003) have proposed a weighting method for synthesizing
high-frequency rules in multiple databases. Zhang et al. (2004a) have developed
an algorithm to identify global exceptional patterns in multiple databases. When
it comes to the second category, Wu et al. (2005) have proposed a technique for
classifying multiple databases for multi-database mining. Using local patterns, we
have proposed an efficient technique for clustering multiple databases (Adhikari and
Rao 2008b).

In the context of estimating support of itemsets in a database, Jaroszewicz
and Simovici (2002) have proposed a method using Bonferroni-type inequalities
(Galambos and Simonelli 1996). The maximum-entropy approach to support esti-
mation of a general Boolean expression is proposed by Pavlov et al. (2000). But
these support estimation techniques are suitable for a single database only.

Zhang et al. (2004b), Zhang (2002) have studied various strategies for min-
ing multiple databases. Proefschrift (2004) has studied data mining on multiple
relational databases.

Existing parallel mining techniques (Agrawal and Shafer 1999; Chattratichat
et al. 1997; Cheung et al. 1996) could also be used to deal with multi-databases.
These techniques might provide expensive solutions for studying select items in
multiple databases.

4.6 Conclusions

The proposed measure of overall association OA is effective as it considers both
positive and negative association between two items. Association analysis of select
items in multiple market basket databases is an important as well as highly promis-
ing issue, since many data analyses of a multi-branch company are based on select
items. One could also apply one of the multi-database mining techniques discussed
in Chapter 3. Each technique, except partition algorithm, returns approximate global
patterns. On the other hand, the partition algorithm scans each database twice.
Therefore, the proposed model of mining global patterns of select items from multi-
ple databases is efficient, since one does not need to estimate the patterns in multiple
databases. Moreover, it does not fully scan each database two times.
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Chapter 5
Enhancing Quality of Knowledge Synthesized
from Multi-database Mining

Multi-database mining using local pattern analysis could be considered as an
approximate method of mining multiple large databases. Assuming this point of
view, it might be required to enhance the quality of knowledge synthesized from
multiple databases. Also, many decision-making applications are directly based on
the available local patterns present in different databases. The quality of synthe-
sized knowledge/decision based on local patterns present in different databases
could be enhanced by incorporating more local patterns in the knowledge syn-
thesizing/processing activities. Thus, the available local patterns play a crucial
role in building efficient multi-database mining applications. We represent pat-
terns in a condensed form by employing a so-called ACP (antecedent-consequent
pair) coding. It allows one to consider more local patterns by lowering further the
user-defined characteristics of discovered patterns, like minimum support and min-
imum confidence. The ACP coding enables more local patterns participate in the
knowledge synthesizing/processing activities and thus the quality of synthesized
knowledge based on local patterns becomes enhanced significantly with regard to
the synthesizing algorithm and required computing resources. To secure a conve-
nient access to association rule, we introduce an index structure. We demonstrate
that ACP coding represents rulebases by making use of the least amount of storage
space in comparison to any other rulebase representation technique. Furthermore we
present a technique for storing rulebases in the secondary storage.

5.1 Introduction

In Chapters 2, 3, and 4, we have discussed how to improve multi-database mining
by adopting different mining techniques. Also, we have learnt that a single multi-
database mining technique might not be sufficient in all situations. Chapters 2 and
3 present different variations of multi-database mining using local pattern analy-
sis. Multi-database mining using local pattern analysis could be considered as an
approximate method of mining multiple large databases. In this chapter, we employ
a coding, referred to as antecedent-consequent pair (ACP) coding, to improve the
quality of synthesized knowledge coming from multi-database mining. The ACP
coding enables an efficient storage for association rules in multiple databases space.

71A. Adhikari et al., Developing Multi-database Mining Applications, Advanced
Information and Knowledge Processing, DOI 10.1007/978-1-84996-044-1_5,
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One could extract knowledge of better quality by storing more association rules in
the main memory. In this way, applications dealing with association rules in multiple
databases become more efficient.

Consider a multi-branch company that operates at different locations. Each
branch generates a large database and subsequently we have to deal with multi-
ple large databases. In particular, the company might be interested in identifying
the global association rules in the union of all databases. Let X → Y be an associ-
ation rule extracted from a few databases. Then local pattern analysis might return
approximate association rule X → Y in the union of all databases, since the asso-
ciation rule might not get extracted from all the databases. As the higher number
of data sources report the association rule, the quality of synthesized association
rule gets elevated. We discuss how to enhance the quality of synthesized association
rules in multiple databases.

Many multi-database mining applications often handle a large number of pat-
terns. In multi-database mining applications, local patterns could be used in two
ways. In the first category of applications, global patterns are synthesized from local
patterns (Wu and Zhang 2003; Zhang et al. 2004). Synthesized global patterns could
be used in various decision-making problems. In the second category of applica-
tions, various decisions are taken based on the local patterns present in different
databases (Adhikari and Rao 2008; Wu et al. 2005). Thus, the available local pat-
terns could play an important role in finding a solution to a problem. For a problem
positioned in the first category, the quality of a global pattern is influenced by the
pattern synthesizing algorithm and the locally available patterns. Also, we observe
that a global pattern synthesized from local patterns might be approximate. For a
given pattern synthesizing algorithm, one could enhance the quality of synthesized
patterns by increasing the number of local patterns in a process of knowledge syn-
thesis. For the problems pertinent to the second category, the quality of the resulting
decision is implied by the quality of measure used in the decision-making process.
Again, the quality of measure is based on the correctness of the measure itself and
the available local patterns. For the purpose of database clustering, Wu et al. (2005)
have proposed two such measures expressing similarity between two databases. For
a given measure of decision-making, one could enhance the quality of decision by
increasing the number of local patterns in the decision making process. In other
words, the number of available local patterns plays a crucial role in building effi-
cient multi-database mining applications. One could increase the number of local
patterns by lowering the user-defined inputs, such as minimum support and min-
imum confidence. More patterns could be stored in main memory by applying a
space efficient pattern base representation technique. In this chapter, we present the
ACP coding (Adhikari and Rao 2007) to represent a set of association rules present
in different databases space.

As before, let Di be the database corresponding to the i-th branch of the company,
i = 1, 2, . . ., n, while D stands for the union of these databases. The data mining
model adopted in this chapter for association rule is the support (supp)-confidence
(conf) framework established by Agrawal et al. (1993). The set of association
rules extracted from a database is called a rulebase. Before proceeding with the
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algorithmic details, let us introduce some useful notations. Let RBi be the rulebase
corresponding to database Di at the minimum support level α and minimum confi-
dence level β, i = 1, 2, . . ., n. Also, let RB be the union of rulebases corresponding
to different databases. Many interesting algorithms have been reported on mining
association rules in a database (Agrawal and Srikant 1994; Han et al. 2000; Savasere
et al. 1995). Let T be a technique for representing RB in main memory. Let ϕ and
ψ denote the pattern synthesizing algorithm and computing resource used for a data
mining application, respectively. Also, let ξ (RB | T, α, β, ϕ, ψ) denote the collec-
tion of synthesized patterns over RB at a given tuple (T, α, β, ϕ, ψ). The quality
of synthesized patterns could be enhanced if the number of local patterns increases.
Thus, the quality of ξ (RB | T, α1, β1, ϕ, ψ) is lower than the quality of ξ (RB | T,
α2, β2, ϕ, ψ), if α2 < α1 and β2 < β1. Thus, the problem of enhancing the qual-
ity of synthesized patterns translates to the problem of designing a space-efficient
technique for representing rulebases corresponding to different databases.

As the frequent itemsets are the natural form of compression for association rules,
the following reasons motivate us to compress association rules rather than frequent
itemsets. Firstly, applications dealing with the association rules could be developed
efficiently. Secondly, a frequent itemset might not generate any association rule at a
given minimum confidence.

In this chapter, we present a space efficient technique to represent RB in a main
memory. Let SPT(RB | α, β, ψ) and SPT

min(RB | α, β, ψ) describe the amount of
space (expressed in bits) and minimum amount of space (expressed in bits) con-
sumed by RB using a rulebase representation technique T, respectively. We observe
that a rulebase representation technique might not represent RB at its minimum level
because of the random nature of the set of transactions contained in the database.
In other words, a frequent itemset might not generate all the association rules. For
example, the association rule X→Y might not get extracted from any one of the
given databases, even if the itemset {X, Y} is frequent in some databases. Thus
SPT

min(RB | α, β, ψ) ≤ SPT (RB | α, β, ψ), for a given tuple (α, β, ψ), where 0 <
α ≤ β ≤ 1. Let Γ be the set of all techniques for representing a set of association
rules. We are interested in finding a technique T1 ∈ Γ for representing RB, such that
SPT1 (RB | α, β, ψ) ≤ SPT(RB | α, β, ψ), for all T ∈ Γ . Let SPmin (RB | α, β, ψ) =
minimum { SPT

min(RB | α, β, ψ): T∈ Γ }. The efficiency of T for representing RB is
evaluated by comparing SPT(RB | α, β, ψ) with SPmin (RB | α, β, ψ). We would
like to design an efficient rulebase representation technique T1 such that SPT1 (RB |
α, β, ψ) ≤ SPT(RB | α, β, ψ), for T∈Γ .

The study presented in this chapter is based on a collection of rulebases RBi, i =
1, 2, . . ., n. One could lower α and β further so that each RBi represents the corre-
sponding database reasonably well. The work is not concerned with mining branch
databases. The coding presented in this chapter reduces RB significantly, so that the
coded RB becomes available in the main memory during the execution of pattern
processing/synthesizing algorithm. The benefits of coding RB are given as follows.
Firstly, the quality of processed/synthesized knowledge gets enhanced, since the
number of local association rules participate in the pattern processing/synthesizing
algorithm is higher. Secondly, the pattern processing/synthesizing algorithm could
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access all the local association rules conveniently, since coded RB becomes avail-
able in the main memory. This arrangement might be possible, since the coded RB
is reasonably small. For the purpose of achieving latter benefit, we present an index
structure to access the coded association rules. Finally, the coded RB and the cor-
responding index table could be stored in the secondary storage for the usage of
different multi-database mining applications. The following issues are discussed:

• We present the ACP coding, for representing rulebases corresponding to different
databases space efficiently. It enables us to incorporate more association rules for
synthesizing global patterns or decision-making activities.

• We present an index structure to access the coded association rules.
• We prove that the ACP coding represents RB using the least amount of storage

space in comparison to any other rulebase representation technique.
• We present a technique for storing rulebases corresponding to different databases

in the secondary storage.
• We conduct experiments to express the effectiveness of the proposed approach.

The chapter is organized as follows. In Section 5.2, we discuss related work. A
simple coding, called SBV coding, for representing different rulebases is presented
in Section 5.3. In Section 5.4, we present the ACP coding for representing rulebases
space. Experimental results are covered in Section 5.5.

5.2 Related Work

Our objective is to enhance the quality of decisions induced by local association
rules. To achieve this objective, we present ACP coding for reducing the storage
space of rulebases corresponding to different databases. There are three approaches
to reducing the amount of storage space of different rulebases. Firstly, one could
devise a mining technique for reducing the number of association rules extracted
from a database. Secondly, one could adopt a suitable data structure for reducing
the storage space for representing association rules in main memory. Thirdly, one
could devise a post-mining technique along with a suitable data structure for reduc-
ing storage space required for association rules in the main memory. The first and
second approaches to reducing the storage space are normally followed during a
data mining task. Here, we concentrate on the third approach to reduce the storage
space of different rulebases.

While mining association rules, we observe that there may exist many redun-
dant association rules in a database. Using the semantics based on the closure of
the Galois connection (Fraleigh 1982), one could define a condensed representa-
tion of association rules (Pasquier et al. 2005). This representation is characterised
by frequent closed itemsets and their generators (Zaki and Ogihara 1998). It con-
tains the non-redundant association rules having minimal antecedent and maximal
consequent. These rules are the most relevant since they are the most general
non-redundant association rules. Mining association rule is iterative and interactive
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nature. The user has to refine his/her mining queries until he/she is satisfied with the
discovered patterns. To support such an interactive process, an optimized sequence
of queries is proposed by means of a cache that stores information from previous
queries (Jeudy and Boulicaut 2002). The technique uses condensed representa-
tions like free and closed itemsets for both data mining and caching. A condensed
representation of the frequent patterns called disjunction-free sets (Bykowski and
Rigotti 2003), could be used to regenerate all the frequent patterns and their exact
frequencies without any access to the original data. In what follows, we discuss
work related to the second approach to reducing the storage space of different
rulebases.

Shenoy et al. (2000) have proposed a vertical mining algorithm that applies some
optimization techniques for mining frequent itemsets in a database. Coenen et al.
(2004) have proposed two new structures for association rule mining, the so-called
T-tree, and P-tree, together with associated algorithms. The T-tree offers signifi-
cant advantages in terms of generation time, and storage requirements compared
to hash tree structures (Agrawal and Srikant 1994). The P-tree offers significant
pre-processing advantages in terms of generation time and storage requirements
compared to the FP-tree (Han et al. 2000). The T-tree and P-tree data structures
are useful during the mining of a database. At the top level, T-tree stores supports
for 1-itemsets, the second level for 2-itemsets, and so on. In T-tree, each node is
an object containing support and a reference to an array of child T-tree nodes. The
implementation of this data structure could be optimised by storing levels in the
tree in the form of arrays, thus reducing the number of links needed and providing
indexing. P-tree is different from T-tree in some ways. The idea behind the construc-
tion of P-tree can be outlined as follows. At the first pass of scanning input data,
the entire database is copied into a data structure, which maintains all the relevant
aspects of the input, and then mines this structure. P-tree offers two advantages: (i) it
merges the duplicated records and records with common leading substrings, thus
reducing the storage and processing requirements, and (ii) it allows partial counts
of the support for individual nodes within the tree to be accumulated effectively as
the tree is constructed. The top level is comprised of an array of nodes, each index
describing a 1-itemset, with child references to body P-tree nodes. Each node at the
top level contains the following fields: (i) a field for the support, and (ii) a link to
a body P-tree node. A body P-tree node contains the following fields: (i) a support
field, (ii) an array of short integers for the itemset that the node represents, and (iii)
child and sibling links to further P-tree nodes. T-tree and P-tree structures are not
suitable for storing and accessing association rules. These structures do not provide
explicit provisions for storing confidence and database identification of association
rules in different databases. It is difficult to handle effectively association rules
in different databases during post-mining of rulebases corresponding to different
databases. Ananthanarayana et al. (2003) have proposed PC-tree to represent data
completely and minimally in main memory. It is built by scanning database only
once. It could be used to represent dynamic databases with the help of knowledge
that is either static or dynamic. It is not suitable for storing and accessing associ-
ation rules. Furthermore PC-tree lacks the capability of handling association rules
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in different databases during post-mining of rulebases corresponding to different
databases.

The proposed work falls under the third category of solutions to reducing storage
of different rulebases. It is useful for handling association rules effectively during
post-mining of association rules in different databases. No work has been reported
so far under this category.

In the context of mining good quality of knowledge from different data sources,
Su et al. (2006) have proposed a framework for identifying trustworthy knowledge
from external data sources. Such framework might not be useful in this context.

Zhang and Zaki (2002) have edited a study on various problems related to
multi-database mining. Zhang (2002) studied various strategies for mining multiple
databases. Kum et al. (2006) have presented an algorithm, ApproxMAP, to mine
approximate sequential patterns, called consensus patterns, from large sequence
databases in two steps. First, sequences are clustered by similarity. Then, consensus
patterns are mined directly from each cluster through multiple alignments.

5.3 Simple Bit Vector (SBV) Coding

We need to process all the association rules in different local databases for synthe-
sizing patterns, or decision-making applications. We use a tuple (ant, con, s, c) to
represent an association rule in a symbolic manner, where ant, con, s, and c repre-
sent antecedent, consequent, support and confidence of the association rule ant →
con, respectively. The following example serves as a pertinent illustration of this
representation.

Example 5.1 A multi-branch company has four branches. Let α = 0.35, and β =
0.45. The rulebases corresponding to these different databases are given below:

RB1 = { (A, C, 1.0, 1.0), (C, A, 1.0, 1.0), (A, B, 0.42, 0.42), (B, A, 0.42, 0.74),
(B, C, 0.40, 0.71), (C, B, 0.40, 0.40), (A, BC, 0.36, 0. 36), (B, AC, 0.36,
0.64), (C, AB, 0.36, 0.36), (AB, C, 0.36, 0.74), (AC, B, 0.36, 0.36), (BC,
A, 0.36, 0.90) }

RB2 = { (A, C, 0.67, 0.67), (C, A, 0.67, 1.0) }

RB3 = { (A, C, 0.67, 0.67), (C, A, 0.67, 1.0), (A, E, 0.67, 0.67),
(E, A, 0.67, 1.0) }

RB4 = { (F, D, 0.75, 0.75), (D, F, 0.75, 1.0), (F, E, 0.50, 0.50), (E, F, 0.50, 1.0),
(F, H, 0.50, 0.50), (H, F, 0.50, 1.0) }.

One could conveniently represent an association rule using an object (or a
record). A typical object representing an association rule consists of following
attributes: database identification, number of items in the antecedent, items in the
antecedent, number of items in the consequent, items in the consequent, support
and confidence. We further calculate the space requirement for such an object by
continuing Example 5.1.
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Example 5.2 A typical compiler represents an integer and a real number using 4
bytes and 8 bytes, respectively. An item could be considered as an integer. Consider
the association rule (A, BC, 0.36, 0.36) of RB1. Each of the following components of
an association rule could consume 4 bytes: database identification, number of items
in the antecedent, item A, number of items in the consequent, item B, and item C.
Support and confidence of an association rule could consume 8 bytes each. The
association rule (A, BC, 0.36, 0.36) of RB1 thus consumes 40 bytes. The association
rule (A, C, 1.0, 1.0) of RB1 could consume 36 bytes. Thus, the amount of space
required to store four rulebases is equal to (18 × 36 + 6 × 40) bytes, i.e. 7,104 bits.
A technique without optimization (TWO) could consume 7,104 bits to represent
these rulebases.

Let I be the set of all items in D. Let X, Y and Z be three itemsets such that Y, Z
⊆ X. Then {Y, Z} forms a 2-itemset partition of X if Y ∪ Z = X, and Y ∩ Z = φ. We
define size of itemset X as the number of items in X, denoted by |X|. Then, we have
2|X| 2-itemset partitions of X. For example, {{a}, {b, c}} is a 2-itemset partition of
{a, b, c}. An association rule Y → Z corresponds to a 2-itemset partition of X, for
Y, Z ⊆ X. The antecedent and consequent of an association rule are non-null. We
arrive at the following lemma.

Lemma 5.1 An itemset X can generate maximum 2|X|− 2 association rules for |X|
≥ 2.

Let there are 10 items. The number of itemsets using 10 items is 210. Thus,
10 bits would be enough to represent an itemset. The itemset ABC, i.e. {A, B, C}
could be represented by the bit combination 1110000000. 2-itemset partitions of
ABC are {φ, ABC}, {A, BC}, {B, AC}, {C, AB}, {AB, C}, {AC, B}, {BC, A}, and
{ABC, φ}. Number of 2-itemset partitions of a set containing 3 items is 23. Every 2-
itemset partition corresponds to an association rule, except the partitions {φ, ABC}
and {ABC, φ}. For example, the partition {A, BC} corresponds to the association
rule A→ BC. Thus, 3 bits are sufficient to identify an association rule generated
from ABC. If the number of items is large, then this method might take significant
amount of memory space to represent itemsets and the association rules generated
from the itemsets. Thus, this technique is not suitable to represent association rules
in databases containing large number of items.

5.3.1 Dealing with Databases Containing Large Number of Items

We explain the crux of the SBV coding with the help of the following example.

Example 5.3 We continue here the discussion we started in Example 5.1. Let the
number of items be 10,000. We need 14 bits to identify an item, since 213 <
10,000 ≤ 214. We assume that the support and confidence of an association rule are
represented using 5 decimal digits. Thus support/confidence value 1.0 could be rep-
resented as 0.99999. We use 17-bit binary number to represent support/confidence,
since 216 < 99,999 ≤ 217.
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Let us consider the association rule (A, BC, 0.36107, 0. 36107) of RB1. There
are 4 databases viz., D1, D2, D3, and D4. We need 2 bits to identify a database, since
21 < 4 ≤ 22. Also 4 bits are enough to represent the number of items in an association
rule. We place bit 1 at the beginning of binary representation of an item, if it appears
in the antecedent of the association rule. We use bit 0 at the beginning of binary rep-
resentation of an item, if it appears in the consequent of the association rule. Using
this arrangement, the lengths of the antecedent and consequent are not required to
be stored. The following bit vector could represent the above association rule

000011100000000000001000000000000010------ -------------------- ---------------------
1 2 3 4 5 6
00000000000001101000110100001011 01000110100001011--------------------- ---------------------------
7 8 9 10

The components of above bit vector are explained below.
Component 1 represents the first database (i.e., D1)
Component 2 represents the number of items in the association rule (i.e., 3)
Component 3 (i.e., bit 1) implies that the current item (i.e., item A) belongs to

antecedent
Component 4 represents item A (i.e., item number 1)
Component 5 (i.e., bit 0) implies that the current item (i.e., item B) belongs to

consequent
Component 6 represents item B (i.e., item number 2)
Component 7 (i.e., bit 0) implies that the current item (i.e., item C) belongs to

consequent
Component 8 represents item C (i.e., item number 3)
Component 9 represents support of association rule
Component 10 represents confidence of association rule

The storage space required for an association rule containing two items and
three items are 70 and 85 bits, respectively. Therefore, the amount of storage
space required to represent different rulebases is equal to (18 × 70 + 6 × 85)
bits, i.e., 1,770 bits. A technique without optimization could consume 7,104 bits
(as mentioned in Example 5.2) to represent the same structure. We note that SBV
coding significantly reduces the amount of storage space for representing different
rulebases.

In the following section, we consider a special case of bit vector coding. It opti-
mizes the storage space for representing different rulebases which is based on the
fact that many association rules have the same antecedent-consequent pair. Before
we move on to the next section, we consider the following lemma.

Lemma 5.2 Let there are p items. Let m be the minimum number of bits required to
represent an item. Then, m = �log2 (p)
.

Proof We have 2m−1 < p ≤ 2m, for an integer m. Thus we get m < log2 (p) + 1,
and log2 (p) ≤ m, since logk(x) is a monotonically increasing function of x, for k >
1. Combining these two inequalities we obtain log2 (p) ≤ m < log2 (p) + 1.
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5.4 Antecedent-Consequent Pair (ACP) Coding

The central office generates sets of frequent itemsets from different rulebases. Let
FISi be the set of frequent itemsets generated from RBi, i = 1, 2, . . ., n. Also let FIS
denote the union of all frequent itemsets being reported from different databases. In
a symbolic way, we denote a frequent itemset as a pair (itemset, support). The asso-
ciation rules (F, D, 0.75, 0.75) and (D, F, 0.75, 1.0) of RB4 generate the following
frequent itemsets: (D, 0.75), (F, 1.0) and (DF, 0.75). In the following example, we
generate FISi, for i = 1, 2, . . ., n.

Example 5.4 Continuing Example 5.1, the sets of frequent itemsets generated by the
central office comes as follows:

FIS1 = { (A, 1.0), (C, 1.0), (B, 0.57), (AC, 1.0), (AB, 0.42), (BC, 0.40), (ABC,
0.36) }

FIS2 = { (A, 1.0), (C, 0.67), (AC, 0.67) }
FIS3 = { (A, 1.0), (C, 0.67), (E, 0.67), (AC, 0.67), (AE, 0.67) }
FIS4 = { (D, 0.75), (E, 0.50), (F, 1.0), (H, 0.50), (DF, 0.75), (EF, 0.50), (FH,

0.50) }.

The ACP coding is a special case of bit vector coding, where antecedent-
consequent pairs of the associations rules are coded in a specific order. The ACP
coding is lossless (Sayood 2000) and similar to the Huffman coding (Huffman
1952). The ACP coding and the Huffman coding are not the same, in the sense
that an ACP code may be a prefix of another ACP code. Then a question arises: how
does a search procedure detect antecedent-consequent pair of an association rule
correctly? We arrive at the answer to this question in Section 5.4.1.

Let X be a frequent itemset generated from an association rule. Also, let f(X) be
the number of rulebases that generate itemset X. Furthermore let fi(X) = 1, if X is
extracted from the i-th database, and fi(X) = 0, otherwise; for i = 1, 2, . . ., n. Then,
f(X) ≤ ∑n

i=1fi(X). The central office sorts the frequent itemsets X using |X| as the
primary key and f(X) as the secondary key, for X ∈ FIS and |X| ≥ 2. Initially, the
itemsets are sorted on size in non-decreasing order. Then the itemsets of the same
size are sorted on f(X) in non-increasing order. If f(X) is high then the number of
association rules generated from X is expected to be high. Therefore, we represent
antecedent-consequent pair of such an association rule using a code of smaller size.
We explain the essence of this coding with the help of Example 5.5.

Example 5.5 We continue here the discussion of Example 5.4. We sort all the
frequent itemsets of size greater than or equal to 2. Sorted frequent itemsets are
presented in Table 5.1.

Table 5.1 Sorted frequent itemsets of size greater than or equal to 2

X AC AB AE BC DF EF FH ABC

f(X) 3 1 1 1 1 1 1 1
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The coding process is described as follows. Find an itemset that has a maximal
f-value. Itemset AC has the maximum f-value. We code AC as 0. The maximum
number of association rules could be generated from AC is two. Thus we code
association rules A→ C and C→ A as 0 and 1, respectively. Now, 1-digit codes
are no more available. Then we find an itemset that has a second maximal f-value.
We choose AB. We could have chosen any itemset from {AB, AE, BC, DF, EF,
FH}, since every itemset in the set has the same size and the same f-value. We
code AB as 00. The maximum number of association rules could be generated from
AB is two. Thus we code the association rules A→ B and B → A as 00 and 01,
respectively. We follow in the same way and code the association rules A→ E and
E → A as 10 and 11, respectively. Now, we have constructed 2-digit codes. Finally,
we choose ABC. We code ABC as 0000. The association rules A→ BC, B →AC,
C→AB, AB→C, AC→B, and BC→A get coded as 0000, 0001, 0010, 0011, 0100,
and 0101, respectively. Each frequent itemset receives a code. We call it an itemset
code. Also, antecedent-consequent pair of an association rule is assigned a code. We
call it a rule code.

Now an association rule could be represented in the main memory using the
following components: database identification number, ACP code, support and con-
fidence. Let n be the number of databases. Then we have 2k−1 < n ≤ 2k, for an
integer k. Thus, we need k bits to represent the database identification number.
We represent support/confidence using p decimal digits. If we represent a frac-
tion f using an integer d while f is given through the formula: f = d × 10−p. We
represent support/confidence by storing the corresponding integer. The following
lemma determines the minimum number of binary digits required to store a decimal
number.

Lemma 5.3 A p-digit decimal number can be represented by a �p× log210
-digit
binary number.

Proof Let t be the minimum number of binary digits required to represent a p-digit
decimal number x. Then we have x < 10p < 2t. So, t > p × log210, since logk(y) is
a monotonically increasing function of y, for k > 1. Thus the minimum integer t for
which x < 2t is true is given as �p × log210
.

The following lemma specifies the minimum amount of storage space required
to represent RB under some conditions.

Lemma 5.4 Let M be the number of association rules having distinct antecedent-
consequent pairs among N association rules extracted from n databases, where
2m−1 < M ≤ 2m, and 2p−1 < n ≤ 2p, for some positive integers m and p. Suppose
the support and confidence of an association rule are represented by a fractions
containing k digits after the decimal point. Assume that a frequent itemset X gen-
erates all possible associationrules, for X ∈ FIS, and |X| ≥ 2. Then the minimum
amount of storage space required to represent RB in the main memory is given
as follows.
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SPACP coding
min, main (RB|α, β, ψ)= M × (m − 1) − 2 × (2m−1 − m)

+ N × (p + 2 × �k × log210
) bits,

if M < 2m − 2; and

SPACP coding
min, main (RB|α, β, ψ)= M × m − 2 × (2m − m − 1)

+ N × (p + 2 × �k × log210
) bits, otherwise.

Proof p bits are required to identify a database. The amount of memory required to
represent database identifiers of N association rules is equal to P = N × p bits. The
minimum amount of memory required to represent both support and confidence of
N association rules is equal to Q = N × 2 × �k × log210
 bits (as shown in Lemma
5.3). Let R be the minimum amount of memory required to represent ACPs of M
association rules. The expression R could be obtained from the fact that 21 ACPs
are of length 1, 22 ACPs are of length 2, and so on. The expression of R is given as
follows.

R=∑m−2
i=1 i × 2i + (m − 1)×

(
M −∑m−2

i=1 2i
)

bits, if
(

M −∑m−2
i=1 2i

)
<2m−1; and

R = ∑m−1
i=1 i × 2i + m ×

(
M −∑m−1

i=1 2i
)

bits, if
(

M −∑−2
i=1 2i

)
≥ 2m−1.

(5.1)

R assumes second form of expression for a few cases. For example, if (M = 15)
then R assumes second form of expression. The ACP codes are given as follows: 0,
1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000. Then, the minimum
amount of storage space required to represent RB is equal to (P + Q + R) bits. Now,∑m−2

i=1 2i = 2m−1 − 2, and
∑m−2

i=1 i × 2i = (m − 3) × 2m−1 + 2. Thus the lemma
follows.

In the following example, we calculate the amount of storage space for repre-
senting rulebases of Example 5.1.

Example 5.6 The discussion of Example 5.1 is continued here. The number of asso-
ciation rules in RB is 24. With reference to Lemma 5.4, we have N = 24, M = 20,
and n = 4. Thus, m = 5, and p = 2. Assume that the support and confidence of an
association rule are represented by fractions containing 5 decimal digits.

Thus k = 5. Then, the minimum amount of storage space required to represent
RB is 922 bits.

The ACP coding may assign some codes for which there exists no associated
rule. Let ABC be a frequent itemset extracted from some databases. Assume that the
association rule AC→B is not extracted from any database that extracts ABC. Let
the itemset code corresponding to ABC is 0000. Then the ACP code for AC→B is
0100, i.e., the 4-th association rule generated from ABC. Therefore the ACP coding
does not always store rulebases at the minimum level.
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All rule codes are the ACP codes. But, the converse statement is not true. Some
ACP codes do not have assigned association rules, since the assigned association
rules are not extracted from any one of the given databases. An ACP code X is
empty if X is not a rule code.

Lemma 5.5 Let X ∈ FIS such that |X| ≥ 2. We assume that X generates at least one
association rule. Let m ( ≥ 2 ) be the maximum size of a frequent itemset in FIS. Let
ni be the number of distinct frequent itemsets in FIS of size i, i = 2, 3, . . ., m. Then
the maximum number of empty ACP codes is equal to

∑m
i=2(2i − 3) × ni.

Proof In the extreme case, only one association rule is generated for each frequent
itemset X in FIS, such that |X| ≥ 2. Using Lemma 5.1, one can note that a frequent
itemset X could generate maximum 2|X|−2 association rules. In such a situation,
2|X|−3 ACP codes are empty for X. Thus, the maximum number of empty ACP
codes for the frequent itemsets of size i is equal to (2i−3) × ni. Hence the result
follows.

To search an association rule we maintain all the itemsets in an index table along
with their itemset codes such that the size of an itemset is greater than one. We
generate rule codes of the association rules from the corresponding itemset code.
In Section 5.4.1, we discuss a procedure for constructing index table and accessing
mechanism for the association rules.

5.4.1 Indexing Rule Codes

An index table contains the frequent itemsets of size greater than one and the
corresponding itemset codes. These frequent itemsets are generated from differ-
ent rulebases. Example 5.7, being a continuation of Example 5.5, illustrates the
procedure of searching an association rule in the index table.

Example 5.7 Here we show how to construct an index table, Table 5.2.

Table 5.2 Index table for searching an association rule

Itemset AC AB AE BC DF EF FH ABC

Code 0 00 10 000 010 100 110 0000

The itemset code corresponding to AC is 0. The itemset code 0 corresponds to the
set of association rules {A→ C, C→ A}. We would like to discuss the procedure
for searching an association rule in the index table. Suppose we wish to search
for the association rule corresponding to rule code 111. We apply binary search
technique to find code 111. The binary search technique is based on the length
of an itemset code. The search might end up at the fourth cell containing itemset
code 000. Now, we apply sequential search towards the right side of the forth cell,
since value(000) < value(111). We find that 111 is not present in the index table.
But, the code 111 is positioned in-between 110 and 0000, since |111| < |0000| and
value(111) > value(110). We define value of a code ω as the numerical value of



5.4 Antecedent-Consequent Pair (ACP) Coding 83

the code, i.e. value(ω) = (ω)10. For example, value (010) = 2. Thus, the sequential
search stops at the cell containing itemset code 110. In general, for a rule code ω,
we get a consecutive pair of itemset codes (code1, code2) in the index table, such
that code1 ≤ ω < code2. Then code1 is the desired itemset code. Let Y be the desired
itemset corresponding to the rule code ω. Then ω corresponds to an association rule
generated by Y. Thus, the itemset code corresponding to the rule code 111 is 110.
The frequent itemset corresponding to itemset code 110 is FH. Thus, the association
rule corresponding rule code 111 is H→ F.

Initially, the binary search procedure finds an itemset code of desired length.
Then it moves forward or backward sequentially till we get the desired itemset code.
The algorithm for searching an itemset code is shown below.

Algorithm 5.1 Search for the itemset code corresponding to a rule code in the index
table.

procedure itemset-code-search (ω, T, i, j)

Inputs:
ω: rule code (an ACP code)
T: index table
i: start index
j: end index

Outputs:
Index of the itemset code corresponding to ω
01: x = |ω|;
02: k = binary-search (x, T, i, j);
03: if (value(ω) ≥ value((T(k).code)) then
04: q = forward-sequential-search (ω, T, k + 1, j);
05: else
06: q = backward-sequential-search (ω, T, k − 1, i);
07: end if
08: return(q);
end procedure

The above algorithm is described as follows. The algorithm itemset-code-search
(Adhikari and Rao 2007) searches index table T between the i-th and j-th cells and
returns the index of the itemset code corresponding to the rule code ω. The proce-
dure binary-search returns an integer k corresponding to rule code ω. If value(ω) ≥
value((T(k).code) then we search sequentially in T from index (k + 1) to j. Otherwise,
we search sequentially in T from index (k – 1) down to i. Let there are m cells in
the index table. Then binary search requires maximum �log2(m)� + 1 comparisons
(Knuth 1973). The sequential search makes O(1) comparison, since codes ω and
T(k).code are close and the search is performed only once. Therefore, algorithm
itemset-code-search takes O(log(m)) time.

Now, we need to find the association rule generated from the itemset correspond-
ing to the itemset code returned by algorithm itemset-code-search. We consider
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a certain example to illustrate the procedure for identifying association rule for a
given rule code. Let us consider the rule code 0100. Using the above technique, we
determine that 0000 is the itemset code corresponding to rule code 0100. The item-
set corresponding to the itemset code 0000 is ABC. The association rules generated
from itemset ABC could be numbered as follows: 0-th association rule (i.e., A→BC)
has rule code 0000, 1-th association rule (i.e., B→AC) has rule code 0001, and so
on. Proceeding in this way, we find that the 4-th association rule (i.e., AC→B) has
rule code 0100.

We now find the association rule number corresponding to rule code ω. Let X be
the itemset corresponding to rule code ω, and ν be the itemset code corresponding
to X. Let RB(X) be the set of all possible association rules generated by X. From
Lemma 5.1, we have |RB(X)| = 2|x| − 2, for |X| ≥ 2. If |ν| = |ω| then ω corresponds
to (ω10 − ν10)-th association rule generated from X, where Y10 denote the decimal
value corresponding to binary code Y. If |ν| < |ω| then ω corresponds to (2|ν| − ω10
+ ν10)-th association rule generated from X. In this case, ν = 0000, ω = 0100, and
X = ABC. Thus ω corresponds to 4-th association rule generated from X.

Algorithm 5.2 Find itemset and association rule number corresponding to a rule
code.

procedure rule-generation (k, T, C, X)

Input:
k: index
T: Index table
C: rule code (an ACP code)

Output:
Itemset X corresponding to C
Association rule number corresponding to C

01: let X = T(k).itemset;
02: if ( |T(k).code| = |C| ) then
03: return (C10 – (T(k).code)10);
04: else
05: return (2|T(k).code| − (C)10 + (T(k).code)10);
06: end if
end procedure

We assume that the algorithm itemset-code-search returns k as the index of the
itemset code corresponding to rule code C. Using index table T and k, the algorithm
rule-generation returns the rule number and the itemset corresponding to rule code
C. The itemset is returned through argument X, and rule number is returned by the
procedure.

The ACP coding maintains an index table in main memory. We show an example
to verify that the amount of space occupied by a rulebase (including the overhead
of indexing) is significantly less than that of other techniques. We determine an
overhead of maintaining index table in the following situation.
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Example 5.8 We refer here to Example 5.7. We encounter 8 frequent itemsets in the
index table. Let there are 10,000 items in the given databases. Therefore 14 bits are
required to identify an item. Thus an amount of storage space would require for AC
and ABC are equal to 2 × 14 = 28 bits, and 3 × 14 = 42 bits, respectively. The size
of index file is the size of itemsets plus the size of itemset codes. In this case, the
index table consumes (28 × 7 + 42 × 1) + 21 bits, i.e., we encounter 259 bits. The
total space required (including the overhead of indexing) to represent RB is equal to
(259 + 922) bits (as mentioned in Example 5.6) = 1,181 bits. Based on the running
example, we compare the amounts of storage space required to represent RB using
different rulebase representation techniques (Table 5.3).

Table 5.3 Amounts of storage space required for representing RB using different rulebase
representation techniques

Technique for representing RB TWO SBV ACP

Amount of space (bits) 7,104 1,770 1,181

We observe that the ACP coding consumes the least amount of space to represent
RB. Let OI(T) be the overhead of maintaining index table using technique T. A
technique without optimization (TWO) might not maintain index table separately.
In this case, OI(TWO) = 0 bit. But, the ACP coding performs better than the TWO
because ACP coding optimizes storage spaces for representing components of an
association rule.

We describe here the data structures used in the algorithm for representing rule-
bases using ACP coding. A frequent itemset could be described by the following
attributes: database identification, itemset and support. The frequent itemsets gener-
ated from RBi are stored into array FISi, i = 1, 2, . . ., n. We keep all the generated
frequent itemsets into array FIS. Also, we have calculated f-value for every distinct
frequent itemset X in FIS such that |X| ≥ 2. The frequent itemsets and their f-values
are stored into array IS_Table. We present below an algorithm (Adhikari and Rao
2007) for representing different rulebases using the ACP coding.

Algorithm 5.3 Represent rulebases using ACP coding.

procedure ACP-coding (n, RB)

Input:
n: number of databases
RB: union of rulebases
Output:
Coded association rules
01: let FIS = φ;
02: for i = 1 to n do
03: read RBi from secondary storage;
04: generate FISi from RBi;
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05: FIS = FIS ∪ FISi;
06: end for
07: let j = 1;
08: let i = 1;
09: while ( i ≤ |FIS| ) do
10: if ( |FIS(i).itemset| ≥ 2 ) then
11: compute f(X);
12: IS_Table(j).itemset = X;
13: IS_Table(j).f(X) = f(X);
14: increase index j by 1;
15: update index i for processing the next frequent itemset in FIS;
16: end if
17: end for
18: sort itemsets in IS_Table using |X| as the primary key and f(X) as the secondary key;
19: for i = 1 to |IS_Table| do
20: C = ACP code of IS_Table (i).itemset;
21: T(i) .itemset = IS_Table(i).itemset;
22: T(i).code = C;
23: end for
end procedure

In lines 1–6, we have generated frequent itemsets from different rulebases and
are stored them into array FIS. We compute f-value for every frequent itemset X and
store it into IS_Table (lines 7–17), for |X| ≥ 2. At line 18, we sort frequent itemsets
in IS_Table for the purpose of coding. Index table T is constructed by using lines
19–23.

Let maximum {|FISi|: 1 ≤ i ≤ n} be p. Then the total number of itemsets is O(n
× p). Therefore, lines 7–17 take O(n × p) time. Line 18 takes O(n × p × log (n ×
p)) time to sort O(n × p) itemsets. Lines 19–23 take O(n × p) time to construct the
index table.

5.4.2 Storing Rulebases in Secondary Memory

An association rule could be stored in main memory using the following com-
ponents: database identification, rule code, support, and confidence. Database
identification, support and confidence could be stored using the method described
in Section 5.3. Furthermore we need to maintain an index table in main memory to
code/decode an association rule.

The rulebases corresponding to different databases could be stored in secondary
memory using a bit sequential file F. The first line of F contains the number of
databases. The second line of F contains the number of association rules in the first
rulebase. The following lines of F contain the association rules in the first rulebase.
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After keeping all the association rules in the first rulebase, we keep number of asso-
ciation rules in the second rulebase, and the association rules in the second rulebase
thereafter. We illustrate the proposed file structure using the following example.

Example 5.9 Assume that there are 3 databases D1, D2, and D3. Let the number of
association rules extracted from these databases be 3, 4, and 2, respectively. The
coded rulebases could be stored as follows:

<3><\n>
<3><\n>
<r11><s11><c11><\n>
<r12><s12><c12><\n>
<r13><s13><c13><\n>
<4><\n>
<r21><s21><c21><\n>
<r22><s22><c22><\n>
<r23><s23><c23><\n>
<r24><s24><c24><\n>
<2><\n>
<r31><s31><c31><\n>
<r32><s32><c32><\n>

“\n” stands for the new line character. While storing an association rule in the sec-
ondary memory, if it contains a bit combination as that of “\n”, then we need to
insert one more “\n” after the occurrence of “\n”. We need not store the database
identification along with an association rule, since the i-th set of association rules
corresponds to the i-th database, i = 1, 2, 3. The terms rij, sij, and cij denote the rule
code, support, and confidence of j-th association rule reported from i-th database,
respectively, j = 1, 2, . . ., |RBi|, and i = 1, 2, 3.

Lemma 5.6 Let M be the number of association rules with distinct antecedent-
consequent pairs among N association rules reported from n databases, where 2m−1

< M ≤ 2m, for an integer m. Suppose the support and confidence of an association
rule are represented by fractions containing k digits after the decimal point. Assume
that a frequent itemset X in FIS generates all possible association rules, for |X| ≥ 2.
Then the minimum amount of storage space required to represent RB in secondary
memory is given as follows.

SPACP coding
min, secondary(RB|α, β)= 12 × n + M × (m − 1) + N × (2 × �k × log210
 + 8)

−2 × (2m−1 − m) + 12 bits, if M < 2m − 2; and

SPACP coding
min, secondary(RB|α, β)= 12 × n + M × m + N × (2 × �k × log210
 + 8)

−2 × (2m − m − 1) + 12 bits, otherwise.

Proof We do not need to store the database identification in the secondary storage, as
the rulebases are stored sequentially one after another. A typical compiler represents
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‘\n’ and an integer value using 1 byte and 4 bytes, respectively. The amount of
memory required to represent the new line characters is equal to P = 8 × (N + n +
1) bits. The amount of memory required to store the number of databases and the
number of association rules of each rulebase is equal to Q = 4 × (n + 1) bits. The
amount of memory required to represent both the support and confidence of N rules
is equal to R = N × 2× �k × log210
 bits (as mentioned in Lemma 5.3). Let S be
the minimum amount of memory required to represent the ACPs of M rules. Then,
S = M × (m−1) − 2 × (2m−1 − m) bits, if M < 2m − 2, and S = M × m − 2 ×
(2m − m −1) bits, otherwise (as mentioned in Lemma 5.4). Thus the minimum
amount of storage space required to represent RB in the secondary memory is equal
to (P + Q + R + S) bits.

5.4.3 Space Efficiency of Our Approach

The effectiveness of a rulebase representation technique requires to be validated by
its storage efficiency. There are many ways one could define the storage efficiency
of a rulebase representation technique. We use the following definition to measure
the storage efficiency of a rulebase representation technique.

Definition 5.1 Let RBi be the rulebase corresponding to database Di at a given pair
(α, β), i = 1, 2, . . ., n. Let RB be the union of rulebases corresponding to different
databases. The space efficiency of technique T for representing RB is defined as
follows:

ε (T , RB|α,β,ψ) = SPmin (RB|α,β, ψ)

SPT (RB|α,β,ψ)
, for T ∈ �

The symbols and notation have been specified in Section 5.1.

We note that 0 < ε ≤ 1. We say that a rulebase representation technique is good
if the value of ε is close to 1. We show that ACP coding stores rulebases at higher
level of efficiency than that of any other representation technique.

Lemma 5.7 Let RBi be the set of association rules extracted from database Di at a
given pair (α, β), i = 1, 2, . . ., n. Let RB be the union of rulebases corresponding to
different databases. Also, let Γ be the set of all rulebase representation techniques.
Then ε (ACP coding, RB | α, β, ψ) ≥ ε(T, RB | α, β, ψ ), for T ∈ Γ .

Proof We show that ACP coding stores RB using minimum storage space at a given
pair (α, β). A local association rule has the following components: database iden-
tification, antecedent, consequent, support, and confidence. We classify the above
components into the following three groups: {database identification}, {antecedent,
consequent}, and {support, confidence}. Among these three groups, the item of
group 1 is independent of the items of other groups. If there are n databases, we
need a minimum of �log2n
 bits to represent the item of group 1 (as shown in
Lemma 5.2). Many association rules may have the same antecedent-consequent pair.
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If an antecedent-consequent pair appears in many association rules, then it receives
a shorter code. Therefore the antecedent-consequent pair of association rule having
highest frequency is represented by a code of smallest size. ACP code starts from 0,
and then follows the sequence 1, 00, 01, 10, 11, 000, 001, . . . . Therefore, no other
technique would provide sizes of codes shorter than them. Therefore, the items of
group 2 are expressed minimally using ACP codes. Again, the items of group 3 are
related with the items of group 2. Suppose we keep p digits after the decimal point
for representing an item of group 3. Then the representation an item of group 3
becomes independent of the one present for items of group 2. We need minimum
2 × �p × log210
 bits to represent support and confidence of an association rule (as
mentioned in Lemma 5.3).

Thus, minimum {representation of an association rule} = minimum {represen-
tation of items of group 1 + representation of items of group 2 + representation
of items of group 3} = minimum {representation of items of group 1} + mini-
mum {representation of items of group 2} + minimum{ representation of items of
group 3}.

Also, there will be an entry in the index table for the itemset corresponding to an
association rule for the coding/decoding process.

Thus we have

minimum {representation of index table} = minimum {representation of itemsets
+ representation of codes}.

If there are p items then an itemset of size k could be represented by k × �log2
(p)
 bits (as mentioned in Lemma 5.2). Also, ACP codes consume minimum space
because of the way they have been designed.

Thus

minimum {representation of index table} = minimum {representation of itemsets
+ minimum {representation of codes}.

Therefore

minimum {representation of rulebases} = ∑
r {representation of association rule

r using ACP coding} + representation of index table used in ACP coding.

Hence the lemma follows.

Lemma 5.8 Let RBi be the set of association rules extracted from database Di at a
given pair (α, β), i = 1, 2, . . ., n. Let RB be the union of rulebases corresponding to
different databases. Then, SPmin (RB | α, β, ψ) = SPACPcoding

min (RB | α, β, ψ).

Proof From Lemma 5.7, we conclude that ACP coding represents rulebases using
lesser amount of storage space than that of any other technique. Thus, SPACPcoding

min
(RB | α, β, ψ) ≤ SPT

min (RB | α, β, ψ), for T ∈ Γ . We observe that a rulebase
representation technique T might not represent rulebases at its minimum level
because of the random nature of the set of transactions contained in a database.
In other words, a frequent itemset may not generate all the association rules in a
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database. For example, the association rule X→Y may not get extracted from some
of the given databases, even though the itemset {X, Y} is frequent in the remaining
databases. If the ACP coding represents RB using minimum storage space then it
would be the minimum representation of RB at a given tuple (α, β, ψ).

There are many ways one could define the quality of synthesized patterns. We
define the quality of synthesized patterns as follows.

Definition 5.2 Let RBi be the rulebase extracted from database Di at a given pair
(α, β), i = 1, 2, . . ., n. Let RB be the union of rulebases corresponding to different
databases. We represent RB using a rulebase representation technique T. Let ξ (RB |
T, α, β, ϕ, ψ) denote the collection of synthesized patterns over RB at a given tuple
(T, α, β, ϕ, ψ). We define quality of ξ (RB | T, α, β, ϕ, ψ) as ε(T, RB | α, β, ϕ, ψ).
The symbols and notation have been specified in Section 5.1.

Also, ε (ACP coding, RB, α, β) ≥ ε (T, RB, α, β), for T ∈ Γ (as mentioned in
Lemma 5.7). Thus the quality of ξ (RB | ACP coding, α, β, ϕ, ψ) ≥ quality of ξ (RB
| T, α, β, ϕ, ψ), for T ∈ Γ .

5.5 Experiments

We have carried out several experiments to study the effectiveness of ACP coding.
The following experiments are based on the transactional databases T10I4D100K
(T1) (Frequent itemset mining dataset repository 2004), and T40I10D100K (T2)
(Frequent itemset mining dataset repository 2004). These databases were generated
using synthetic database generator from IBM Almaden Quest research group. We
present some characteristics of these databases in Table 5.4.

Table 5.4 Database characteristics

Database N T ALT AFI NI

T1 1,00,000 11.10 1,276.12 870
T4 1,00,000 40.41 4,310.52 942

For the purpose of conducting the experiments, we divide each of these databases
into 10 databases. We call these two sets of 10 databases as the input databases. The
database Ti has been divided into 10 databases Tij of size 10,000 transactions each,
j = 0, 1, 2, . . ., 9, and i = 1, 4. We present the characteristics of the input databases
in Table 5.5.

The results of mining input databases are given in Table 5.6. The notations used
in the above tables are explained as follows. NT, ALT, AFI and NI stand for num-
ber of transactions, average length of a transaction, average frequency of an item,
and number of items in the data source, respectively. Some results are presented in
Table 5.6.

In the above table, NkIR stands for the number of k-item association rules result-
ing from different databases, for k ≥ 2. We present a comparison among different
rulebase representation techniques, see Tables 5.7 and 5.8.
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Table 5.5 Input database characteristics

Database ALT AFI NI Database ALT AFI NI

T10 11.06 127.66 866 T40 40.57 431.56 940
T11 11.13 128.41 867 T41 40.58 432.19 939
T12 11.07 127.65 867 T42 40.63 431.79 941
T13 11.12 128.44 866 T43 40.63 431.74 941
T14 11.14 128.75 865 T44 40.66 432.56 940
T15 11.14 128.63 866 T45 40.51 430.46 941
T16 11.11 128.56 864 T46 40.74 433.44 940
T17 11.10 128.45 864 T47 40.62 431.71 941
T18 11.08 128.56 862 T48 40.53 431.15 940
T19 11.081 128.11 865 T49 40.58 432.16 939

Table 5.6 Results of data mining

Database α β N2IR N3IR NkIR (k > 3)

10⋃
i=1

T1i 0.01 0.2 136 29 0

10⋃
i=1

T4i 0.05 0.2 262 0 0

Table 5.7 Different rulebase representation techniques-comparative analysis

Database SP(TWO) SP(SBV) OI SP(ACP) MSO AC(SBV) AC(ACP)

10⋃
i=1

T1i 48,448 bits 10,879 bits 619 bits 7,121 bits 7,051 bits 1.79640 1.17586

10⋃
i=1

T4i 75,456 bits 16,768 bits 549 bits 10,681 bits 10,661 bits 1.77778 1.13242

Table 5.8 Comparison among different rulebase representation techniques

Database ε(TWO) ε(SBV) ε(ACP)

10⋃
i=1

T1i 0.14554 0.64813 0.99017

10⋃
i=1

T4i 0.14129 0.63579 0.99813

In the above tables, we use the following abbreviations: SP stands for storage
space (including overhead of indexing), MSO denotes the minimum storage space
for representing rulebases including the overhead of indexing, and AC(T) stands
for amount of compression (bits/byte) using technique T. In Fig. 5.1, we com-
pare different rulebase representation techniques at different levels of minimum
support.
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Fig. 5.1 Storage efficiency of different rulebase representation techniques. (a) For association
rules extracted from T1i, i = 0, 1, . . ., 9. (b) For association rules extracted from T1i, i = 0, 1, . . .,
9

We have fixed the value β at 0.2 for all the experiments. The results show that
the ACP coding stores rulebases most efficiently among different rulebase represen-
tation techniques. Also, we find that the SBV coding reduces the size of a rulebase
considerably, but stores less efficiently than the ACP coding. This coding achieves
maximum efficiency when the following two conditions are satisfied: (i) All the
databases are of similar type and extract an identical set of association rules, and
(ii) Each of the frequent itemsets of size greater than one generates all possible
association rules.

Nelson (1996) studied data compression with the Burrows-Wheeler
Transformation (BWT) (Burrows and Wheeler 1994). Experiments were car-
ried out on 18 different files and average compression obtained by techniques using
BWT and PKZIP are 2.41 and 2.64 bits/byte, respectively.

The results of Figs. 5.1(a) and 5.1(b) are carried out at 11 different pairs of values
of pairs of (α, β). Using the ACP coding, we have obtained average compression
1.15014 bits/byte and 1.12190 bits/bytes for the experiments referring to Figs. 5.1(a)
and 5.1(b), respectively.

5.6 Conclusions

An efficient storage representation of a set of pattern bases could contribute to the
foundations of a multi-database mining system. Based on them, many applications
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of data mining of global nature could be developed in an efficient manner as reported
through experimental results presented in this chapter. Similar technique could be
employed to store frequent itemsets in different databases.
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Chapter 6
Efficient Clustering of Databases
Induced by Local Patterns

In view of answering queries provided in multiple large databases, it might be
required to mine relevant databases en block. In this chapter, we present an effi-
cient solution to clustering multiple large databases. We present two measures of
similarity between a pair of databases and study their main properties. In the sequel,
we design an algorithm for clustering multiple databases based on an introduced
similarity measure. Also, we present a coding, referred to as IS coding, to represent
itemsets space efficiently. The coding of this nature enables more frequent itemsets
to participate in the determination of the similarity between two databases. Thus
the invoked clustering process becomes more accurate. We also show that the IS
coding attains maximum efficiency in most of the cases of the mining processes.
The clustering algorithm becomes improved (in terms of its time complexity) when
contrasted with the existing clustering algorithms. The efficiency of the clustering
process has been improved using several strategies that is by reducing execution
time of the clustering algorithm, using more suitable similarity measure, and storing
frequent itemsets space efficiently.

6.1 Introduction

Effective data analysis using a traditional data mining technique on multi-gigabyte
repositories has proven difficult. A quick discovery of approximate knowledge from
large databases would be adequate for many decision support applications.

As before, let us consider a company that deals with multiple large databases. The
company might need to carry out association analysis involving non-profit making
items (products). The ultimate objective is to identify the items that neither make
much profit nor help promoting other products. An association analysis involving
non-profit making items might identify such items. The company could then stop
dealing with them. The analysis of this nature might require identifying similar
databases. Let us note that two databases are deemed similar if they contain many
similar transactions. Again, two transactions are similar if they have many common
items. We observe later that two databases containing many common items are not
necessarily very similar. First, let us define a few concepts used frequently in this
chapter.
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Let I(D) be the set of items in database D. An itemset is a set of items in a
database. An itemset X in D is associated with a statistical measure called support
(Agrawal et al. 1993), denoted by supp(X, D), for X ⊆ I(D). Support of an itemset X
in D is the fraction of transactions in D containing X. The importance of an itemset
could be judged by quantifying its support. X is called a frequent itemset (FIS) in D
if supp(X, D) ≥ α, where α is the user-defined minimum support. A frequent itemset
possesses higher support. Thus the collection of frequent itemsets determines major
characteristics of a database. One could define similarity between a pair databases
in terms of their frequent itemsets. We may observe that two databases are similar
if they have many common frequent itemsets.

Based on the similarity between two databases, one could cluster branch
databases. Once the clustering process has been completed, one could mine all the
databases in a class together to make an approximate association analysis involving
frequent items. An approximate association analysis could be performed using the
frequent itemsets in the union of all the databases in a class. In this manner, clus-
tering of databases helps reducing data for analyzing the items. In what follows,
we study the problem of clustering transactional databases using the local frequent
itemsets.

For clustering transactional databases, Wu et al. (2005b) have proposed two sim-
ilarity measures, denoted as sim1, and sim2. Let D = {D1, D2, . . ., Dn}, where Di

is the database corresponding to the i-th branch of a multi-branch company, i = 1,
2, . . ., n. sim1 is based on the items present in the databases, and becomes defined
as follows:

sim1(D1, D2) = |I(D1) ∩ I(D2)| / |I(D1) ∪ I(D2)|

Let Si be the set of association rules present in Di, i = 1, 2, . . ., n. The measure sim2
is based on the items generated from Si, i = 1, 2, . . ., n. Let I(Si) be the set of items
generated from Si, i = 1, 2, . . ., n. The similarity measure sim2 is expressed in the
form:

sim2(D1, D2) = |I(S1) ∩ I(S2)| / |I(S1) ∪ I(S2)|

I(Si) ⊆ I(Di), for i = 1, 2, . . ., n. sim1 estimates similarity between two databases
more correctly than sim2, since the number of items which participate in determin-
ing the value of the similarity between two databases under sim1 is higher than
that of sim2. A database may not extract any association rule for given values of
(α, β), where β is the user-defined minimum confidence level. In such situations, the
accuracy of sim2 is low. In the following example, we discuss a situation where the
accuracy of sim1 and sim2 are low.

Example 6.1 Consider a multi-branch company that possesses following three
databases:

DB1 = { {a, b, c, e}, {a, b, d, f}, {b, c, g}, {b, d, g} }
DB2 = { {a, g}, {b, e}, {c, f}, {d, g} } and
DB3 = { {a, b, c}, {a, b, d}, {b, c}, {b, d, g} }
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Here, I(DB1) = {a, b, c, d, e, f, g}, I(DB2) = {a, b, c, d, e, f, g}, I(DB3) = {a, b,
c, d, g}. Thus, sim1(DB1, DB2) = 1.0 (maximum), and sim1(DB1, DB3) = 0.71429.
Ground realities are as follows: (i) The similarity between DB1 and DB2 is low,
since they contain dissimilar transactions. (ii) The similarity between DB1 and DB3
is higher than the similarity observed between DB1 and DB2, since DB1 and DB3
contain similar transactions. Hence the similarity measures sim1 produces low accu-
racy in finding the similarity between two databases. There are no frequent itemsets
in DB2, if α > 0.25. Thus, I(S2) = φ, if α > 0.25. Hence, the accuracy of sim2 is low
in finding the similarity between DB1 and DB2 if α > 0.25.

We have observed that the similarity measures based on items in databases might
not be appropriate in finding similarity between two databases. A more suitable
similarity measure could be designed based on frequent itemsets present in both the
databases. The frequent itemsets in two databases could find better the similarity
among transactions in two databases. Thus, frequent itemsets in two databases could
find similarity between two databases correctly.

Wu et al. (2005a) have proposed a solution of inverse frequent itemset mining.
They argued that one could efficiently generate a synthetic market basket database
from the frequent itemsets and their supports. Thus, the similarity between two
databases could be estimated correctly by involving supports of the frequent item-
sets. We propose two measures of similarity based on the frequent itemsets and their
supports. A new algorithm for clustering databases is designed based on a proposed
measure of similarity.

The existing industry practice is to refresh a data warehouse on a periodic basis.
Let λ be the frequency of this process of data warehouse refreshing. In this situation,
an incremental mining algorithm (Lee et al. 2001) could be used to obtain updated
supports of the existing frequent itemsets in a database. But, there could be addition
or, deletion of frequent itemsets over time. We need to mine the databases individ-
ually and again this is being done in a periodic manner. Let Λ be the periodicity of
data warehouse mining. The values of λ and Λ could be chosen in such way that
Λ > λ. Based on the updated local frequent itemsets, one could cluster the databases
afresh.

Another alternative for taming multi-gigabyte data could be sampling. Let us
note that a commonly used technique for approximate query answering is sampling
(Babcock et al. 2003). If an itemset is frequent in a large database then it is likely that
this itemset is frequent in a sample database. Thus, one could analyze approximately
a database by analyzing the frequent itemsets present in a sample database.

The chapter is organized so that it reflects the main objectives identified above.
We formulate the problem in Section 6.2. In Section 6.3, we discuss some related
work. In Section 6.4, we show how to cluster all the branch databases. The
experimental results are presented in Section 6.5.

6.2 Problem Statement

Let there are n branch databases. Also, let FIS(Di, α) be the set of frequent itemsets
corresponding to database Di at a given value of α, i = 1, 2, . . ., n. The problem is
stated succinctly as follows:
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Find the best non-trivial partition (if it exists) of {D1, D2,. . ., Dn} using FIS(Di, α),
i = 1, 2, . . ., n.

A partition (Liu 1985) is a specific type of clustering. A formal definition of a non-
trivial partition will be given in Section 6.4.

6.2.1 Related Work

Jain et al. (1999) have presented an overview of clustering methods from a statis-
tical pattern recognition perspective, with a goal of providing a useful advice and
references to fundamental concepts accessible to the broad community of cluster-
ing practitioners. A traditional clustering technique (Zhang et al. 1997) is based
on metric attributes. A metric attribute is one whose values can be represented
by explicit coordinates in a Euclidean space. Thus a traditional clustering tech-
nique might not work in this case, since we are interested in clustering databases.
Ali et al. (1997) have proposed a partial classification technique using associa-
tion rules. The clustering of databases using local association rules might not be
a good idea. The number of frequent itemsets obtained from a set of association
rules might be much less than the number of frequent itemsets extracted using the
apriori algorithm (Agrawal et al. 1993). In this way, the efficiency of the cluster-
ing process could be low. Liu et al. (2001) have proposed a multi-database mining
technique that searches only the relevant databases. Identifying relevant databases
is based on selecting the relevant tables (relations) that contain specific, reliable
and statistically significant information pertaining to the query. Our study involves
clustering transactional databases. Yin and Han (2005) have proposed a new strat-
egy for relational heterogeneous database classification. This strategy might not be
suitable for clustering transactional databases. Yin et at. (2006) have proposed two
scalable methods for multi-relational classification: CrossMine-Rule, a rule-based
method and CrossMine-Tree, a decision-tree-based method. Bandyopadhyay et al.
(2006) have proposed a technique for clustering homogeneously distributed data
in a peer-to-peer environment like sensor networks. It is based on the idea of the
K-Means clustering. It works in a localized asynchronous manner by realizing a
communication with the neighboring nodes.

In the context of similarity measures, Tan et al. (2002) have presented an
overview of twenty one interestingness measures available in statistics, machine
learning, and data mining literature. Support and confidence measures (Agrawal
et al. 1993) are used to identify frequently occurring association rules between two
sets of items in large databases. Our first measure, simi1, is similar to the Jaccard
measure (Tan et al. 2002). Measures such as support, interest (Tan et al. 2002),
cosine (Tan et al. 2002) are expressed as a ratio of two quantities. Their numerators
represent a kind of closeness between two objects. But their denominators are not
appropriate to make these ratios as measures of association. As a result they do not
serve as sound measures of similarity.

Zhang et al. (2003) designed a local pattern analysis for mining multiple
databases. Zhang (2002) studied various strategies for mining multiple databases.
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For utilizing low-cost information and knowledge on the internet, Su et al. (2006)
have proposed a logical framework for identifying knowledge of sound quality com-
ing from different data sources. It helps working towards the development of a
generally acceptable ontology.

Privacy concerns over sensitive data have become important in knowledge dis-
covery. Usually, data owners have different levels of concerns over different data
attributes, which adds complexity to data privacy. Moreover, collusion among mali-
cious adversaries poses a severe threat to data security. Yang and Huang (2008) have
proposed an efficient clustering method for distributed multi-party data sets using
the orthogonal transformation and perturbation techniques. It allows data owners to
set up different levels of privacy for different attributes.

In many large e-commerce organizations, multiple data sources are often used
to describe the same customers, thus it is important to consolidate data of multiple
sources for intelligent business decision making. Ling and Yang (2006) have pro-
posed a method that predicts the classification of data from multiple sources without
class labels in each source.

6.3 Clustering Databases

The approach of finding the best partition of a set of databases can be explained
through a sequence of the following steps:

(i) Find FIS(Di, α), for i = 1, 2, . . ., n.
(ii) Determine the similarity between each pair of databases using the proposed

measure of similarity simi2.
(iii) Check for the existence of partitions at the required similarity levels (as

mentioned in Theorem 6.5).
(iv) Calculate the goodness values for all the non-trivial partitions.
(v) Report the non-trivial partition for which the goodness value attains its

maximum.

The steps (i)–(v) will be followed and explained with the help of a running example.
We start with an example of a multi-branch company that has multiple databases.
Example 6.2 A multi-branch company has seven branches. The branch databases
are given below.

D1 = {(a, b, c), (a, c), (a, c, d)}
D2 = {(a, c), (a, b), (a, c, e)}
D3 = {(a, e), (a, c, e), (a, b, c)}
D4 = {(f, d), (f, d, h), (e, f, d), (e, f, h)}
D5 = {(g, h, i), (i, j), (h, i), (i, j, g)}
D6 = {(g, h, i), (i, j, h), (i, j)}
D7 = { (a, b), (g, h), (h, i), (h, i, j) }
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The sets of frequent itemsets are shown below:

FIS(D1, 0.35) = { (a, 1.0), (c, 1.0), (ac, 1.0) }
FIS(D2, 0.35) = { (a, 1.0), (c, 0.67), (ac, 0.67) }
FIS(D3, 0.35) = { (a, 1.0), (c, 0.67), (e, 0.67), (ac, 0.67), (ae, 0.67) }
FIS(D4, 0.35) = { (d, 0.75), (e, 0.5), (f, 1.0), (h, 0.5), (df, 0.75), (ef, 0.5), (fh,

0.5) }
FIS(D5, 0.35) = { (g, 0.5), (h, 0.5), (i, 1.0)}, (j, 0.5), , (gi, 0.5), (hi, 0.5), (ij,

0.5) }
FIS(D6, 0.35) = { (i, 1.0), (j, 0.67), (h, 0.67), (hi, 0.67), (ij, 0.67) }
FIS(D7,0.35) = { (h, 0.75), (i, 0.5), (hi, 0.5) }.

Based on the sets of frequent itemsets in a pair of databases, one could define
many measures of similarity between them. The two measures of similarity between
a pair of databases are suitable for dealing with the problem at hand. The first
measure simi1 (Adhikari and Rao 2008) is defined as follows:

Definition 6.1 The measure of similarity simi1 between databases D1 and D2 is
defined as the following ratio:

simi1(D1,D2,α) = |FIS(D1,α) ∩ FIS(D2,α)|
|FIS(D1,α) ∪ FIS(D2,α)| ,

where the symbols ∪ and ∩ stand for the intersection and union operations used in
set theory, respectively.

The similarity measure simi1 is the ratio of the number frequent itemsets common
to D1 and D2, and the total number of distinct frequent itemsets in D1 and D2.
Frequent itemsets are the dominant patterns that determine major characteristics
of a database. There are many implementations of mining frequent itemsets in a
database (FIMI 2004). Let X and Y be two frequent itemsets in database DB. The
itemset X is more dominant than the itemset Y in DB if supp(X, DB) > supp(Y, DB).
Therefore the characteristics of DB are revealed more by the pair (X, supp(X, DB))
than that of (Y, supp(Y, DB)). In other words, a sound measure of similarity between
two databases is a function of the supports of the frequent itemsets in the databases.

The second measure of similarity simi2 (Adhikari and Rao 2008) comes in the
form:

Definition 6.2 The measure of similarity simi2 between databases D1 and D2 is
defined as follows:

simi2( D1, D2, α) =

∑
X∈{FIS( D1, α)∩FIS(D2, α)}

minimum {supp(X, D1), supp(X, D2)}
∑

X∈{FIS(D1, α)∪FIS(D2, α)}
maximum { supp(X, D1), supp(X, D2)} ,

Here we assume that supp(X, Di) = 0, if X/∈FIS(Di, α), for i = 1, 2.



6.3 Clustering Databases 101

With reference to Example 6.1, the frequent itemsets in different databases are
given as follows:

FIS(DB1, 0.3) = {a(0.5),b(1.0),c(0.5),d(0.5),g(0.5),ab(0.5),bc(0.5),bd(0.5)}
FIS(DB2, 0.3) = {g(0.5)}
FIS(DB3, 0.3) = {a(0.5),b(1.0),c(0.5),d(0.5),ab(0.5),bc(0.5),bd(0.5)}

We obtain simi1(DB1, DB2, 0.3) = 0.125, simi1(DB1, DB3, 0.3) = 0.875,
simi2(DB1, DB2, 0.3) = 0.111, and simi2(DB1, DB3, 0.3) = 0.889. Thus, the
proposed measures simi1 and simi2 are more suitable than the existing measures
mentioned in Example 6.1.

Theorem 6.1 justifies the fact that simi2 is more appropriate measure than simi1.

Theorem 6.1 The similarity measure simi2 exhibits higher discriminatory power
than that of the similarity measure simi1.
Proof The support of a frequent itemset could be considered as its weight in the
database. We attach weight 1.0 to itemset X in database Di, under the similar-
ity measure simi1, if X∈FIS(Di, α), i = 1, 2. We attach an weight supp(X, Di)
to the itemset X in database Di, under the similarity measure simi2, if X∈FIS(Di,
α), i = 1, 2. The similarity measures sim1 and sim2 are defined as a ratio of two
quantities. If X∈FIS(Di, α), and X∈FIS(Dj, α), then it is more justifiable to add min-
imum { supp(X, Di), supp(X, Dj) } (instead of 1.0) in the numerator and maximum
{ supp(X, Di), supp(X, Dj) } (instead of 1.0) in the denominator for the itemset X, i,
j ∈{1, 2}. If X∈FIS(Di, α), and X/∈FIS(Dj, α), then it is more justifiable to add 0 in
the numerator and supp(X, Di) ( instead of 1.0 ) in the denominator for itemset X, i,
j ∈{1, 2}. Hence, the theorem has been proved.

In Example 6.3, we verify that simi2 is more appropriate measure than simi1.
Example 6.3 With reference to Example 6.2, supp({a}, D1) = supp({c}, D1) =
supp({a, c}, D1) = 1.0, supp({a}, D2) = 1.0, and supp({c}, D2) = supp({a, c},
D2) = 0.67. simi2(D1, D2, 0.35) = 0.78, and simi1(D1, D2, 0.35) = 1.0. We observe
that the databases D1 and D2 are highly similar, but they are not the same. Thus, the
similarity computed by simi2 is more suitable.

We highlight some interesting properties of simi1 and simi2 by presenting
Theorems 6.2, 6.3 and 6.4.

Theorem 6.2 The similarity measure simik satisfies the following properties (k = 1,
2), (i) 0≤ simik(Di, Dj, α) ≤ 1, (ii) simik(Di, Dj, α) = simik(Dj, Di, α), (iii) simik(Di,
Di, α) = 1, for i, j = 1, 2, . . ., n.
Proof The properties follow from the definition of simik, (k = 1, 2).

Now we express the distance between two databases in term of their similarity.

Definition 6.3 The distance measure distk between two databases D1 and D2 based
on the similarity measure simik is defined as distk(D1, D2, α) = 1 – simik(D1, D2,
α), ( k = 1, 2).
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A “meaningful” distance satisfies the metric properties (Barte 1976). The higher
the distance between two databases, the lower is the similarity between them. For
the purpose of concise presentation, we use the notation Ii in place of FIS(Di, α)
used so far in Theorems 6.3 and 6.4, for i = 1, 2.

Theorem 6.3 dist1 is a metric over [0, 1].

Proof We show that dist1 satisfies the triangular inequality. Other properties of a
metric follow from Theorem 6.2.

dist1(D1,D2,α) = 1 − |I1 ∩ I2|
|I1 ∪ I2| ≥ |I1 − I2| + |I2 − I1|

|I1 ∪ I2 ∪ I3| (6.1)

Thus,

dist1(D1,D2, )+dist1(D2,D3,α) ≥ |I1−I2| + |I2−I1| + |I2−I3| + |I3−I2|
|I1 ∪ I2 ∪ I3| (6.2)

= |I1 ∪ I2 ∪ I3| − |I1 ∩ I2 ∩ I3| + |I1 ∩ I3| + |I2| − |I1 ∩ I2| − |I2 ∩ I3|
|I1 ∪ I2 ∪ I3| (6.3)

= 1−|I1 ∩ I2 ∩ I3| − |I1 ∩ I3|−|I2| + |I1 ∩ I2| + |I2 ∩ I3|
|I1 ∪ I2 ∪ I3| (6.4)

= 1−{|I1 ∩ I2 ∩ I3| + |I1 ∩ I2| + |I2 ∩ I3|} − {|I1 ∩ I3| + |I2|}
|I1 ∪ I2 ∪ I3| (6.5)

Let the number of elements in the shaded regions of Figs. 6.1(c) and 6.1(d) be
N1 and N2, respectively. Then the expression (6.5) becomes

1− N1−N2

|I1 ∪ I2 ∪ I3| ≥
{

1− N1−N2|I1∪I2∪I3| , if N1 ≥ N2 (case 1)

1− |I1∩I3||I1∪I2∪I3| , if N1 < N2 (case 2)
(6.6)

In case 1, the expression remains the same. In case 2, a positive quantity
|I1 ∩I3| has been put in place of a negative quantity N1−N2. Thus, the expression
(6.6) reads as

≥
{

1−N1−N2|I1∪I3| , if N1 ≥ N2

1−|I1∩I3||I1∪I3| , if N1 < N2
≥
{

1− N1|I1∩I3| , if N1 ≥ N2

1−|I1∩I3||I1∪I3| , if N1 < N2
(6.7)

≥
{

1−|I1∩I3||I1∪I3| , if N1 ≥ N2

1−|I1∩I3||I1∪I3| , if N1 < N2
, where, N1 = |I1 ∩ I2 ∩ I3| ≤ |I1 ∩ I3| (6.8)

Therefore, irrespective of the relationship between N1 and N2, dist1(D1, D2,
α) + dist1(D2, D3, α) ≥ dist1(D1, D3, α). Thus, dist1 satisfies the triangular
inequality.
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(a) (b) (c) (d)

Fig. 6.1 Simplification of the expression (6.5) using Venn diagram

We also show that dist2 satisfies the metric properties.

Theorem 6.4 dist2 is a metric over [0, 1].
Proof We show that dist2 satisfies the triangular inequality. The remaining
properties of a metric follow from Theorem 6.2.

dist2( D1, D2, α) = 1−
∑

x∈I1∩I2

minimum{supp(x, D1), supp(x, D2)}
∑

x∈I1∪I2

maximum{supp(x, D1), supp(x, D2)}

= 1−
∑

x∈I1∩I2

min12(x)

∑
x∈I1∪I2

max12(x)

(6.9)

where, maxij(x) = maximum{ supp(x, Di), supp(x, Dj) }, and minij(x) = minimum
{supp(x, Di), supp(x, Dj) }, for i �= j. Also, let max123(x) = maximum{ supp(x, D1),
supp(x, D2), supp(x, D3) }, and min123(x) = minimum{ supp(x, D1), supp(x, D2),
supp(x, D3) }.
Thus, dist2(D1, D2, α) + dist2(D2, D3, α)

=

∑
x∈I1∪I2

max12(x)− ∑
x∈I1∩I2

min12(x)

∑
x∈I1∪I2

max12(x)
+

∑
x∈I2∪I3

max23(x)− ∑
x∈I2∩I3

min23(x)

∑
x∈I2∪I3

max23(x)
(6.10)

≥
∑

x∈I1−I2

max12(x) + ∑
x∈I2−I1

max12(x)

∑
x∈I1∪I2

max12(x)
+

∑
x∈I2−I3

max23(x) + ∑
x∈I3−I2

max23(x)

∑
x∈I2∪I3

max23(x)

(6.11)

≥

∑
x∈I1−I2

max12(x) + ∑
x∈I2−I1

max12(x) + ∑
x∈I2−I3

max23(x) + ∑
x∈I3−I2

max23(x)

∑
x∈I1∪I2∪I3

max123(x)

(6.12)
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(a) (b) (c) (d)

Fig. 6.2 Simplification of the expression (6.12) using Venn diagram

Using the simplification visualized graphically in Fig. 6.2, the expression (6.12)
becomes ∑

x∈I1∪I2∪I3

max123(x)−N1 + N2∑
x∈I1∪I2∪I3

max123(x)
(6.13)

where N1 and N2 are the value of
∑

x max123(x) over the shaded regions of
Figs. 6.2(c) and 6.2(d), respectively. The expression (6.13) is equal to

1− N1−N2∑
x∈I1∪I2∪I3

max123(x)
≥

⎧⎪⎨
⎪⎩

1− N1∑
x∈I1∪I2∪I3

max123(x) , if N1 ≥ N2

1− N1−N2∑
x∈I1∪I2∪I3

max123(x) , if N1 < N2

≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1−
∑

x∈I1∩I3

max13(x)∑
x∈I1∪I2∪I3

max123(x) , if N1 ≥ N2

1−
∑

x∈I1∩I3

max13(x)∑
x∈I1∪I2∪I3

max123(x) , if N1 < N2

(6.14)

Therefore, irrespective of the relationship between N1 and N2, dist2(D1, D2, α) +
dist2(D2, D3, α) ≥ dist2(D1, D3, α). Thus, dist2 satisfies the triangular inequality.

Given a set of databases, the similarity between a collection of pairs of databases
could be expressed by a square matrix, called database similarity matrix (DSM).
We define DSM of a set of databases as follows:

Definition 6.4 Let D = {D1, D2, . . ., Dn} be the set of all databases. The database
similarity matrix DSMk of D expressed by the measure of similarity simik, is a sym-
metric square matrix of size n by n, whose (i, j)-th element DSM i, j

k (D, α) = simik(Di,
Dj, α); for Di, Dj ∈D, and i, j = 1, 2, . . ., n, (k = 1, 2).

For n databases, there are nC2 pairs of databases. For each pair of databases, we
determine the calculations of similarity between them. If the similarity is high then
the databases may be placed in the same class. We define this class as follows:
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Definition 6.5 Let D = {D1, D2, . . ., Dn}. A class classδk formed at the level of
similarity δ under the measure of similarity simik, is defined as classδk(D,α) ={

P:P ⊆ D, |P| ≥ 2, and simik(A,B,α) ≥ δ , for A,B ∈ P
P:P ⊆ D, |P| = 1

, (k = 1, 2).

A DSM could be viewed as a complete weighted graph. Each database forms
a vertex of the graph. A weight of the edge is the similarity between the pair of
the corresponding databases. During the process of clustering, we assume that the
databases D1, D2, . . ., Dr have been included in some classes, and the remaining
databases are yet to be clustered. Then the clustering process forms the next class by
finding a maximal complete sub-graph of the complete weighted graph containing
vertices Dr+1, Dr+2, . . ., Dn. A maximal complete sub-graph is defined as follows:

Definition 6.6 A weighted complete sub-graph g of a complete weighted graph G
is maximal at the similarity level δ if the following conditions are satisfied: (i) The
weight of every edge of g is greater than or equal to δ. (ii) The addition of one more
vertex (i.e., a database) to g leads to the addition of at least one edge to g having
weight less than δ.

We need to find out a maximal weighted complete sub-graph of the complete
weighted graph of the remaining vertices to form the next class. This process con-
tinues till all the vertices have been clustered. A clustering of databases is defined
as follows:

Definition 6.7 Let D be a set of databases. Let πδk (D, α) be a clustering of databases
in D at the similarity level δ under the similarity measure simik. Then, πδk (D, α) =
{X : X ∈ ρ(D) , and X is a classδκ (D, α)}, where ρ(D) is the power set of D, (k =
1, 2).

During the clustering process we may like to impose a restriction that each
database belongs to at least one class. This restriction makes a clustering complete.
We define a complete clustering as follows:

Definition 6.8 Let D be a set of databases. Let πδk (D, α) = {Cδk(D, α), Cδk,2(D, α),

. . ., Cδk,m(D, α)}, where Cδk,i(D, α) is the i-th class of πδk , i = 1, 2, . . ., m. πδk is

complete, if ∪m
i=1Cδk,i D, (k = 1, 2).

In complete clustering, two classes may have a common database. We may be
interested in forming clustering of mutually exclusive classes. We define mutually
exclusive clustering as follows:

Definition 6.9 Let D be a set of databases. Let πδk (D, α) = {Cδk,1(D, α), Cδk,2(D,

α), . . ., Cδk,m(D, α)}, where Cδk,i(D, α) is the i-th class of πδk , i = 1, 2, . . ., m. πδk is

mutually exclusive if Cδk,i(D, α) ∩Cδk,j (D, α) = φ, for i �= j, 1 ≤ i, j ≤ m, (k = 1, 2).

We may be interested in realizing such a mutually exclusive and complete
clustering. Here we have
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Definition 6.10 Let D be a set of databases. Also, let πδk (D, α) be a clustering of
databases in D at the similarity level δ under the similarity measure simik. If πδk (D,
α) is a mutually exclusive and complete clustering then it is called a partition (k =
1, 2).

Definition 6.11 Let D be a set of databases. Also let πδk (D, α) be a partition of
D at the similarity level δ under the similarity measure simik. πδk (D, α) is called a
non-trivial partition if 1 < |πδk | < n (k = 1, 2).

A clustering does not necessarily lead to a partition. In the following example,
we wish to find partitions (if they exist) of a set of databases.

Example 6.4 With reference to Example 6.2, consider the set of databases D = {D1,
D2, . . ., D7}. The corresponding DSM2 is given as follows.

DSM2(D, 0.35) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0.780 0.539 0.0 0.0 0.0 0.0
0.780 1.00 0.636 0.0 0.0 0.0 0.0
0.539 0.636 1.0 0.061 0.0 0.0 0.0
0.0 0.0 0.061 1.0 0.063 0.065 0.087
0.0 0.0 0.0 0.063 1.0 0.641 0.353
0.0 0.0 0.0 0.065 0.641 1.0 0.444
0.0 0.0 0.0 0.087 0.353 0.444 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

We arrange all non-zero and distinct DSMi,j
2 (D, 0.35) values in non-increasing

order, for 1 ≤ i < j ≤ 7. The arranged similarity values are given as follows: 0.780,
0.641, 0.636, 0.539, 0.444, 0.353, 0.087, 0.065, 0.063, 0.061. We obtain many non-
trivial partitions formed at different similarity levels. At the similarity levels equal
to 0.780, 0.641, 0.539, and 0.353, we get non-trivial partitions as π0.780

2 = { {D1,
D2}, {D3}, {D4}, {D5}, {D6}, {D7} }, π0.641

2 = { {D1, D2}, {D3}, {D4}, {D5, D6},
{D7} }, π0.539

2 = { {D1, D2, D3}, {D4}, {D5, D6}, {D7} }, and π0.353
2 = { {D1, D2,

D3}, {D4}, {D5, D6, D7} }, respectively.

Our BestDatabasePartition algorithm (as presented in Section 6.4.1) is based on
binary similarity matrix (BSM). We derive binary similarity matrix BSMk from the
corresponding DSMk (k = 1, 2). BSMk is defined as follows:

Definition 6.12 The (i, j)-th element of the binary similarity matrix BSMk at the
similarity level δ using the similarity measure simik is defined as follows.

BSMi,j
k (D, α, δ) =

{
1, if simik (Di , Dj, α) ≥ δ

0, otherwise
, for i, j = 1, 2, . . . ,n( k = 1, 2).

We take an example of BSM2 and observe the distribution of 0s and 1s.
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Example 6.5 With reference to Example 6.4, the BSM2 at the similarity level 0.353
is given below.

BSM2(D, 0.35, 0.353) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where D = {D1, D2, . . . , D7}.

There may exist two the same partitions at two distinct similarity levels. Two
partitions are distinct if they are not the same. In the following, we define two same
partitions at two distinct similarity levels.

Definition 6.13 Let D be a set of databases. Let C ⊆ D, and C �= φ. Two partitions
π
δ1
k (D, α) and πδ2

k (D, α) are the same, if the following statement is true: C∈πδ1k if

and only if C∈πδ2
k , for δ1 �= δ2.

We would like to enumerate the maximum number of possible distinct partitions.
In Theorem 6.5, we find the maximum number of possible distinct partitions of a
set of databases (Adhikari and Rao 2008).

Theorem 6.5 Let D be a set of databases. Let m be the number of distinct non-
zero similarity values in the upper triangle of DSM2. Then the number of distinct
partitions is less than or equal to m.
Proof We arrange the non-zero similarity values of the upper triangle of DSM2 in
non-increasing order. Let δ1, δ2, . . ., δm be m non-zero ordered similarity values.
Let δi , δi+1 be two consecutive similarity values in the sequence of non-increasing
similarity values. Let x, y ∈ [δi , δi+1), for some i = 1, 2, . . ., m, where δm+1 = 0.
Then BSM2(D, α, x) = BSM2(D, α, y). Thus, there exists at the most one distinct
non-trivial partition in the interval [δi , δi+1), for i = 1, 2, . . ., m. We have m such
semi-closed intervals [δi , δi+1), i = 1, 2, . . ., m. The theorem follows.

For the purpose of finding partitions of the input databases, we first design a
simple algorithm that uses the apriori property (Agrawal et al. 1993). The similarity
values considered here are based on the similarity measure simi2. Initially, we have
n database classes, where n is the number of databases. At this time, each class
contains a single database object. These classes are assumed at level 1. Based on
the classes at level 1, we construct database classes at level 2. At level 1, we assume
that the i-th class contains database Di, i = 1, 2, . . ., n. i-th class and j-th class
of level 1 could be merged if simi2(Di, Dj) ≥ δ, where δ is the user-defined level
of similarity. We proceed further until no more classes could be generated and no
more levels could be generated. The algorithm (Adhikari and Rao 2008) is presented
below.
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Algorithm 6.1 Find partitions (if they exist) of a set of databases using apriori
property.

procedure AprioriDatabaseClustering (n, DSM2)

Input: n, DSM2
n: number of databases
DSM2: database similarity matrix
Output: Partitions (if they exist) of input databases
01: sort all the non-zero values that exist in the upper triangle of DSM2 in non-increasing
02: order into an array called simValues; let the number of non-zero values be m;
03: let k = 1; let simValues(m +1) = 0; let delta = simValues(k);
04: while (delta > 0) do
05: construct n classes, where each class contains a single database; // level: 1
06: repeat line 7 until no more level could be generated;
07: construct all possible classes at level (i +1) using lines 8-10; // level: i +1
08: let A and B be two classes at the i-th level such that |A ∩ B| = i -1;
09: let a∈ (A-B), and b∈ (B-A);
10: if ≥ δ then construct a new class A ∪ B; end if
11: repeat line 12 from top level to level 1;
12: for each class at the current level do
13: if all databases of the current class are not included a class generated earlier then
14: generate the current class;
15: end if
16: end for
17: if the current clustering is a partition then store it; end if
18: increase k by 1; let delta = simValues(k);
19: end while
20: display all the partitions;
end procedure

Lines 1–2 take O(m × log(m)) time to sort m data. While-loop at line 4 exe-
cutes m times. Line 5 takes O(n) time. Initially (at line 5), n classes are constructed.
At the first iteration of line 6, the maximum number of classes generated is nC2.
At the second iteration, the maximum number of classes generated is nC3. Lastly,
at the (n–1)-th iteration, the maximum number of classes generated is nCn. Thus,
the maximum number of possible classes is O

(∑n
i=1

nCi
)
, i.e., O(2n). Let p be the

average size of a class. Line 8 takes O(p) time. Also, line 11 takes O(2n) time,
since the maximum number of possible classes is O(2n). Thus, the time complex-
ity of lines 4–19 is O(m × p × 2n). The line 20 takes time O(m × n), since the
maximum number of partitions is m. Thus, the time complexity of the procedure
AprioriDatabaseClustering is maximum {O(m × log(m), O(m × p × 2n), O(m ×
n)}, i.e., O(m × p × 2n), since p × 2n > 2n > n2 > m > log2(m), for p > 1 and n > 4.
The AprioriDatabaseClustering algorithm generates all possible classes level-wise.
It is a simple but not an efficient clustering technique, since the time-complexity of
the algorithm is an exponential function of n.

In Theorems 6.6–6.9, we discuss some properties of BSM2.

Theorem 6.6 Let D = {D1, D2, . . ., Dn}. Let πδ2 (D, α) be a clustering of databases
in D at the similarity level δ.πδ2 is a partition if and only if the corresponding BSM2
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gets transformed into the following form by inter-changing jointly a row and the
corresponding column with another row and the corresponding column.

⎡
⎢⎢⎣

U1 0 ... 0
0 U2 ... 0
... ... ... ...
0 0 ... Um

⎤
⎥⎥⎦, Ui is a matrix of size ni × ni, containing all elements as 1,

where
∑m

i=1 ni = n,
∣∣πδ2 ∣∣ = m.

Proof Let { Di
1, Di

2, . . ., Di
ni

} be the i-th database class of the partition at the sim-
ilarity level δ, i = 1, 2, . . ., m. The row referring to Di

j of BSM2 corresponds to a
unique combination of 0s and 1s, j = 1, 2, . . ., ni. Similarly, the column correspond-
ing to Di

j of BSM2 results as a unique combination of 0s and 1s, j = 1, 2, . . ., ni.
All such ni rows and columns may not be initially consecutive, i = 1, 2, . . ., m. We
keep these ni rows and columns consecutive, i = 1, 2, . . ., m. Initially, we keep n1
rows and the corresponding columns of the first database class to be consecutive.
Then, we keep n2 rows and the corresponding columns of the second database class
consecutively and so on. In general, to fix the matrix Ui at the proper position, we

interchange jointly
(∑i−1

1 nj + k
)

-th row and
(∑i−1

1 nj + k
)

-th column with Di
k-th

row and Di
k-th column of BSM2, 1 ≤ k ≤ ni, i = 1, 2, . . ., m.

Referring to BSM2 in Example 6.5, we apply Theorem 6.6, and conclude that a
partition exists at similarity level of 0.353.

Theorem 6.7 Let D be a set of databases. Let πδ2 (D, α) be a clustering of databases
in D at the similarity level δ. Let { Di

1, Di
2, . . .,Di

ni
} be the i-th database class of

πδ2 (D, α). Then Di
k-th row (or, Di

k-th column) of BSM2 contains ni 1s, k = 1, 2, . . .,
ni, i = 1, 2, . . ., | πδ2 |.
Proof If possible, let Di

k-th row or, Di
k-th column has (ni +1) 1s. Then Di

k-th
database would belong to two database classes. It contradicts the mutual exclusive-
ness of classes of a partition. If possible, let Di

k-th row or, Di
k-th column contains

(ni-1) 1s. It contradicts the fact that BSM
Di

j,D
i
k

2 = 1, j =1, 2, . . ., ni and j �= k.

Theorem 6.8 Let D be a set of databases. Let πδ2 (D, α) be a clustering of databases
in D at the similarity level δ. Then, the rank of the corresponding BSM2 is | πδ2 |.
Proof Let { Di

1, Di
2, . . ., Di

ni
} be the i-th database class of πδ2 . Then,

BSM
Di

j,D
i
k

2 (D,α) =
⎧⎨
⎩

1, for Di
j, Di

k ∈ {Di
1, Di

2,..., Di
ni
}

0, for Di
j ∈ {Di

1, Di
2,..., Di

ni
} and Di

k /∈ {Di
1, Di

2,..., Di
ni
}

0, for Di
j /∈ {Di

1, Di
2,..., Di

ni
} and Di

k ∈ {Di
1, Di

2,..., Di
ni
}

The row corresponding to Di
j of BSM2 corresponds to a unique combination of

0s and 1s, for j = 1, 2, . . ., ni. So, all the rows of BSM2 are divided into |πδ2 | groups
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such that all the rows in a group correspond to a unique combination of 0s and 1s.
Thus, BSM2 has |πδ2 | independent rows.

Theorem 6.9 Let D = {D1, D2, . . ., Dn}. At a given value of the triplet (D, α, δ),
there exists at the most one partition of D.
Proof At a given value of the pair (D, α), the element DSMi,j

2 is unique, i, j = 1,

2, . . ., n. Thus at a given value of the tuple (D, α, δ) the element BSMi,j
2 is unique,

for i, j = 1, 2, . . ., n. There exists a partition if the BSM2 gets transformed into a
specific form (as outlined in Theorem 6.6), by jointly interchanging a row and the
corresponding column with another row and the corresponding column. Hence, the
theorem follows.

6.3.1 Finding the Best Non-trivial Partition

Now we get back to Example 6.4. We observed that at different similarity levels
there may exist different partitions. We have observed the existence of four non-
trivial partitions. We would like to find the best partition among these partitions.
The best partition is based on the principle of maximizing the intra-class similarity
and maximizing the inter-class distance. The intra-class similarity and inter-class
distance are defined as follows.

Definition 6.14 The intra-class similarity intra-sim of a partition π at the similarity
level δ using the similarity measure simi2 is defined as follows:

intra-sim(πδ2 ) =
∑

C∈πδ2

∑
Di,Dj∈C;i<j

simi2(Di,Dj,α).

Definition 6.15 The inter-class distance inter-dist of a partition π at the similarity
level δ using the similarity measure simi2 is defined as follows:

inter-dist(πδ2 ) =
∑

Cp,Cq∈πδ2 ;p<q

∑
Di∈Cp;Dj∈Cq;i<j

dist2(Di,Dj,α).

The best partition among a set of partitions is selected on the basis of goodness
value of a partition. The goodness measure itself, goodness, of a partition is defined
as follows:

Definition 6.16 The goodness of a partition π at similarity level δ using the
similarity measure simi2 is expressed as follows:

goodness(πδ2 ) =intra-sim(πδ2 )+inter-dist(πδ2 ) − |πδ2 |,

where |πδ2 | is the number classes in π .
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Note that we have subtracted the term |πδ2 | from the sum of intra-class similarity
and inter-class distance to remove the bias of goodness value of a partition. The
higher the value of goodness, the better is the corresponding partition. Now, we
partition the set of databases D using the proposed goodness measure.

Example 6.6 Continuing Example 6.4, we calculate the goodness value of each of
the non-trivial partitions using simi2 as follows:

intra-sim(π0.353
2 ) = 3.185, inter-dist(π0.353

2 )

= 15.276, |π0.353
2 | = 3, and goodness(π0.353

2 ) = 15.461.

intra-sim(π0.539
2 ) = 2.596, inter-dist(π0.539

2 )

= 16.666, |π0.539
2 | = 4, and goodness(π0.539

2 ) = 15.262.

intra-sim(π0.641
2 ) = 1.421, inter-dist(π0.641

2 )

= 17.491, |π0.641
2 | = 5, and goodness(π0.641

2 ) = 13.912.

intra-sim(π0.780
2 ) = 0.780, inter-dist(π0.780

2 )

= 17.118, |π0.780
2 | = 6, and goodness(π0.780

2 ) = 11.898.

The goodness value corresponding to the partition π0.353
2 attains the maximal

value. The partition π0.353
2 = { {D1, D2, D3}, {D4}, {D5, D6, D7} } is the best

among all the non-trivial partitions. Let us look back into the databases presented
in Example 6.2. We find that the partition π0.353

2 matches the best the ground reality
among the partitions reported.

We present an algorithm (Adhikari and Rao 2008) for finding the best non-trivial
partition of a set of databases.

Algorithm 6.2 Find the best non-trivial partition (if it exists) of a set of databases.
procedure BestDatabasePartition (n, DSM2)

Input: n, DSM2
n: number of databases
DSM2: database similarity matrix

Output: The best partition (if it exists) of input databases
01: sort all the non-zero values that exist in the upper triangle of DSM2 in non-increas-
02: ing order into an array called simValues; let the number of non-zero values be m;
03: let k = 1; let simValues(m + 1) = 0; let delta = simValues(k);
04: while (delta > 0) do
05: for i = 1 to n do class(i) = 0; end for
06: construct the BSM2 at current level of the similarity delta;
07: let currentClass = 1; let currentRow = 1; let class(1) = currentClass;
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08: for col = (currentRow + 1) to n do
09: if (BSM2

currentRow, col = 1) then
10: if (class(col) = 0) then class(col) = currentClass;
11: else if (class(col) �= currentClass) then go to line 24; end if
12: end if
13: end if
14: end for
15: let i = 1; let class(n +1) = 0;
16: while (class(i) �= 0) do increase i by 1; end while
17: if (i = n +1) then
18: store the content of array class and current similarity level delta;
19: else
20: increase currentRow by 1;
21: if (class(currentRow) = 0) then increase currentClass by 1; end if
22: go to line 8;
23: end if
24: increase k by 1; let delta = simValues(k);
25: end while
26: for each non-trivial partition do
27: calculate the goodness value of the current partition;
28: end for
29: return the partition whose goodness value is the maximum;
end procedure

Initially, we have sorted all non-zero values in the upper triangle of DSM2 in
non-increasing order. The algorithm checks the existence of a partition starting with
the maximum of all the similarity values. At line 5, we initialize the class label of
each database to 0. The algorithm starts forming a class with D1 (the first database)
as the variable currentRow is initialized with 1. Also, class label starts with 1 as
the variable currentClass is initialized with 1. Lines 8–14 are used to check the
similarity of DcurrentRow with other databases. If the condition at line 9 is true then
databases DcurrentRow and Dcol are similar. At line 10, Dcol is put in the currentClass
if it is still unlabelled. If Dcol is already labeled with a class label not equal to current
class label then Dcol get another label. Thus, partition does not exist at the current
similarity level.

Operations in Line 1 take O(m × log(m) time. Line 3 repeats m times. Line 6
constructs BSM2 in O(n2) time as the order of BSM2 is n × n. Each of lines 5 and
16 takes O(n) time. For-loop positioned at line 8, repeats maximum n times. Line
18 takes O(n) time, since the time required to store a partition is O(n). Thus, the
time complexity of lines 4–25 is O(m × n2). Therefore, the time complexity of the
procedure best-database-partition is maximum { O(m × log(m), O(m × n2) }, i.e.,
O(m × n2), since n2 > m > log2(m).

The drawback of BestClassification (Wu et al. 2005b) algorithm is that the
step value for assigning the next similarity level has to be user-defined. Thus, the
method might fail to find the exact similarity level at which a partition exists.
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BestDatabasePartition algorithm reports the exact similarity level at which a par-
tition exists. Also, the algorithm works faster, since it is required to check for the
existence of partitions only at m similarity levels. Li et al. (2009) have recently
proposed BestCompleteClass algorithm for partitioning a set of databases. But,
the BestCompleteClass algorithm has followed the strategies that we have already
reported in the BestDatabasePartition algorithm. In Theorem 6.10, we prove the
correctness of the proposed algorithm.

Theorem 6.10 Algorithm BestDatabasePartition works correctly.
Proof Let D = {D1, D2, . . ., Dn}. Let there are m distinct non-zero similarity val-
ues in the upper triangle of DSM2. Using Theorem 6.5, one could conclude that the
maximum number of partitions of D is m at a given value of pair (D, α). While-
loop at line 4 checks for the existence of partitions at m similarity levels. At each
similarity level, we get a new BSM2. The existence of a partition is determined
from the BSM2. We have an array class that stores the class label given to each
database under the current level of similarity. In a partition, each database has a
unique class label. The existence of a partition is checked based on the principle
that every database receives a unique class label. As soon as we find that a labeled
database receives another class label, we conclude that a partition does not exist
at the current level of similarity delta (line 11). Initially, we put the class label 0
to all databases using line 5. Then, we start from the row 1 of BSM2 that corre-
sponds to database D1. Thus, D1 is kept in the first database class. If there is a
1 in the j-th column of BSM2, then we put class label of Dj as 1 using line 10.
We find a database Di that has not been clustered yet using lines 15–16. Then, we
start at row i of BSM2. If there is a 1 in the j-th column of row i, then we put
database Dj in the current class. Thus, the algorithm BestDatabasePartition works
correctly. •

6.3.2 Efficiency of Clustering Technique

The proposed clustering algorithm is based on the similarity measure simi2. The
same similarity measure simi2 is based on the supports of the frequent itemsets
in databases. If we vary the value of α then the number of frequent itemsets in a
database changes. The accuracy of similarity between two databases increases as
the number of frequent itemsets increases. Therefore, a clustering process would
be more accurate for lower values of α. The frequent itemsets participate in the
clustering process is limited by main memory. If we can store more frequent itemsets
in main memory then simi2 could determine similarity between two databases more
accurately. Thus, the clustering process would be more accurate. This limitation
begs for a space efficient representation of the frequent itemsets in main memory.
For this purpose, we propose a coding that efficiently represent frequent itemsets.
The coding allows more frequent itemsets to participate in determining the similarity
between two databases.
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6.3.2.1 Space Efficient Representation of Frequent Itemsets in Different
Databases

In this technique, we represent each frequent itemset using a bit vector. Each fre-
quent itemset has three components: database identification, frequent itemset, and
support. Let the number of databases be n. There exists an integer p such that 2p−1 <
n ≤ 2p. Then p bits are enough to represent a database. Let k be the number of digits
after the decimal point to represent support. Support value 1.0 could be represented
as 0.99999, for k = 5. If we represent the support s as an integer d containing of k
digits then s = d ×10−k. The number digits required to represent a decimal number
could be obtained by Theorem 5.3. The proposed coding is described with the help
of Example 6.7.
Example 6.7 We refer again to Example 6.2. The frequent itemsets sorted in non-
increasing order with regard to the number of extractions are given as follows:

(h, 4), (a, 3), (ac, 3), (c, 3), (hi,3), (i, 3), (j, 2), (e, 2), (ij, 2), (ae, 1), (d, 1), (df, 1),
(ef, 1), (f, 1), (fh, 1), (g, 1), (gi, 1).

(X, μ) denotes itemset X having number of extractions equal to μ. We code the
frequent itemsets of the above table from left to right. The frequent itemsets are
coded using a technique similar to Huffman coding (Huffman 1952). We attach
code 0 to itemset h, 1 to itemset a, 00 to itemset ac, 01 to itemset c, etc. Itemset
h gets a code of minimal length, since it has been extracted maximum number of
times. We call this coding as itemset (IS) coding. It is a lossless coding (Sayood
2000). IS coding and Huffman coding are not the same, in the sense that an IS code
may be a prefix of another IS code. Coded itemsets are given as follows:

(h, 0), (a, 1), (ac, 00), (c, 01), (hi, 10), (i, 11), (j, 000), (e, 001), (ij, 010),
(ae, 011), (d, 100), (df, 101), (ef, 110), (f, 111), (fh, 0000), (g, 0010),
(gi, 0011). Here (X, ν) denotes itemset X having IS code ν.

6.3.2.2 Efficiency of IS Coding

Using the above representation of the frequent itemsets, one could store more fre-
quent itemsets in the main memory during the clustering process. This enhances the
efficiency of the clustering process.

Definition 6.17 Let there are n databases D1, D2, . . ., Dn. Let ST
(∪n

i=1FIS (Di)
)

be
the amount of storage space (in bits) required to represent ∪n

i=1FIS (Di) by a tech-
nique T. Let Smin

(∪n
i=1FIS (Di)

)
be the minimum amount of storage space (in bits)

required to represent ∪n
i=1FIS (Di). Let τ , κ , and λ denote a clustering algorithm,

similarity measure, and computing resource under consideration, respectively. Let
Γ be the set of all frequent itemset representation techniques. We define efficiency
of a frequent itemset representation technique T at a given value of triplet (τ , κ , λ)
as follows:

ε(T|τ , κ , λ) = Smin
(∪n

i=1FIS (Di)
)
/ST (∪n

i=1FIS (Di)
)
, for T ∈ �.
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One could store an itemset conveniently using the following components:
database identification, items in the itemset, and support. Database identification,
an item and a support could be stored as a short integer, an integer and a real type
data, respectively. A typical compiler represents a short integer, an integer and a real
number using 2, 4 and 8 bytes, respectively. Thus, a frequent itemset of size 2 could
consume (2 + 2 × 4 + 8) × 8 bits, i.e. 144 bits. An itemset representation may have
an overhead of indexing frequent itemsets. Let OI(T) be the overhead of indexing
coded frequent itemsets using technique T.

Theorem 6.11 IS coding stores a set of frequent itemsets using minimum storage
space, if OI(IS coding) ≤ OI(T), for T ∈ Γ .
Proof A frequent itemset has three components, viz., database identification, item-
set, and support. Let the number of databases be n. Then 2p−1 < n ≤ 2p, for an integer
p. We need minimum p bits to represent a database identifier. The representation of
database identification is independent of the corresponding frequent itemsets. If we
keep k digits to store a support then �k × log210
 binary digits are needed to rep-
resent a support (as mentioned in Theorem 5.3). Thus, the representation of support
becomes independent of the other components of the frequent itemset. Also, the
sum of all IS codes is the minimum because of the way they are constructed. Thus,
the space used by the IS coding for representing a set of frequent itemsets attains
the minimum.

Thus, the efficiency of a frequent itemset representation technique T could be
expressed as follows:

ε(T|τ ,κ ,λ) = SIS coding
(∪n

i=1FIS (Di)
)
/ST

(∪n
i=1FIS (Di)

)
,

provided OI(IS coding) ≤ OI(T), for T ∈ �.
(6.15)

If the condition in (6.15) is satisfied, then the IS coding performs better than any
other techniques. If the condition in (6.15) is not satisfied, then the IS coding per-
forms better than any other techniques in almost all cases. The following corollary
is derived from Theorem 6.11.

Corollary 6.1 Efficiency of IS coding attains maximum, if OI(IS coding) ≤ OI(T),
for T ∈ Γ .
Proof ε(IS coding | τ , κ , λ) = 1.0.

The IS coding maintains an index table to decode/search a frequent itemset. In
the following example, we compute the amount of space required to represent the
frequent itemsets using an ordinary method and the IS coding.

Example 6.8 With reference to Example 6.7, there are 33 frequent itemsets in dif-
ferent databases. Among them, there are 20 itemsets of size 1 and 13 itemsets of
size 2. An ordinary method could use (112 × 20 + 144 × 13) = 4,112 bits. The
amount of space required to represent frequent itemsets in seven databases using
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IS coding is equal to P + Q bits, where P is the amount of space required to store
frequent itemsets, and Q is the amount of space required to maintain the index table.
Since there are seven databases, we need 3 bits to identify a database. The amount of
memory required to represent the database identification for 33 frequent itemsets is
equal to 33 × 3 bits = 99 bits. Suppose we keep 5 digits after the decimal point for
a support. Thus, �5 × log2(10)
 bits, i.e., 17 bits are required to represent a support.
The amount of memory required to represent the supports of 33 frequent itemsets
is equal to 33 × 17 bits = 561 bits. Let the number of items be 10,000. Therefore,
14 bits are required to identify an item. The amount of storage space would require
for itemsets h and ac are 14 and 28 bits respectively. To represent 33 frequent item-
sets, we need (20 × 14 + 13 × 28) bits = 644 bits. Thus, P = (99 + 561 + 644)
bits = 1,304 bits. There are 17 frequent itemsets in the index table. Using IS coding,
17 frequent itemsets consume 46 bits. To represent 17 frequent itemsets, we need
14 × 9 + 28 × 8 bits = 350 bits. Thus, Q = 350 + 46 bits = 396 bits. The total
amount of memory space required (including the overhead of indexing) to represent
frequent itemsets in 7 databases using IS coding is equal to P + Q bits, i.e., 1,700
bits. The amount of space saving in compared to an ordinary method is equal to
2,412 bits, i.e., 58.66% approximately. A technique without optimization (TWO)
may not maintain index table separately. In this case, OI(TWO) = 0. In spite of that,
IS coding performs better than a TWO in most of the cases.

Finally, we claim that our clustering technique is more accurate. There are two
reasons for this claim: (i) We propose more appropriate measures of similarity
than the existing ones. We have observed that the similarity between two databases
based on items might not be appropriate. The proposed measures are based on the
similarity between transactions of two databases. As a consequence the similarity
between two databases is estimated more accurately. (ii) Also, the proposed IS cod-
ing enables us to mine local databases further at a lower level of α to accommodate
more frequent itemsets in main memory. As a result, more frequent itemsets could
participate in the clustering process.

6.4 Experiments

We have carried out a number of experiments to study the effectiveness of our
approach. We present experimental results using two synthetic databases, and
one real database. The synthetic databases T10I4D100K (Frequent itemset min-
ing dataset repository 2004) and T40I10D100K (Frequent itemset mining dataset
repository 2004) have been generated using synthetic database generator from
IBM Almaden Quest research group. The real database BMS-Web-Wiew-1 could
be found at the KDD CUP 2000 repository (KDD CUP 2000). Let NT, ALT, AFI,
and NI denote the number of transactions, the average length of a transaction,
the average frequency of an item, and the number of items in the database (DB),
respectively.

Each of the above databases is divided into 10 databases for the purpose of carry-
ing out experiments. The databases obtained from T10I4D100K, and T40I10D100K
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are named T1j, and T4j, respectively, j = 0, 1, . . ., 9. The databases obtained from
BMS-Web-Wiew-1 are named B1j, j = 0, 1, . . ., 9. The databases Tij and B1j are
called input databases, for i = 1, 4, and j = 0, 1, . . ., 9. Some characteristics of these
input databases are presented in the Table 6.1.

At a given value of α, there may exist many partitions. Partitions of the set of
input databases are presented in Table 6.2. If we vary the value of α, the set of
frequent itemsets in a database varies. Apparently, the similarity between a pair of
databases changes over the change of α.

At a lower value of α, more frequent itemsets are reported from a database and
hence the database is represented more correctly by its frequent itemsets. We obtain
a more accurate value of similarity between a pair of databases. Thus, the partition
generated at a smaller value of α would be more correct. In Tables 6.3 and 6.4, we
have presented best partitions of a set of databases obtained for different values of
α. So, the best partition of a set of databases may change over the change of α.

Thus, a partition may not remain the same over the change of α. But, we have
observed a general tendency that the databases show more similarity over larger
values of α. As the value of α becomes smaller, more frequent itemsets are reported
from a database, and databases become more dissimilar.

In Fig. 6.3, we have shown how the execution time of an experiment increases as
the number databases increases. The execution time increases faster as we increase
input databases from database T1. The reason is that the size of each local database
obtained from T1 is larger than that of T4 and B1.

The number of frequent itemsets decreases as the value of α increases. Thus,
the execution time of an experiment decreases as α increases. We observe this
phenomenon in Figs. 6.4 and 6.5.

Table 6.1 Input database characteristics

DB N T ALT AFI NI DB N T ALT AFI NI

T10 10,000 11.06 127.66 866 T15 10,000 11.14 128.63 866
T11 10,000 11.13 128.41 867 T16 10,000 11.11 128.56 864
T12 10,000 11.07 127.65 867 T17 10,000 11.10 128.45 864
T13 10,000 11.12 128.44 866 T18 10,000 11.08 128.56 862
T14 10,000 11.14 128.75 865 T19 10,000 11.08 128.11 865
T40 10,000 40.57 431.57 940 T45 10,000 40.51 430.46 941
T41 10,000 40.58 432.19 939 T46 10,000 40.74 433.44 940
T42 10,000 40.63 431.79 941 T47 10,000 40.62 431.71 941
T43 10,000 40.63 431.74 941 T48 10,000 40.53 431.15 940
T44 10,000 40.66 432.56 940 T49 10,000 40.58 432.16 939
B10 14,000 2.00 14.94 1, 874 B15 14,000 2.00 280.00 100
B11 14,000 2.00 280.00 100 B16 14,000 2.00 280.00 100
B12 14,000 2.00 280.00 100 B17 14,000 2.00 280.00 100
B13 14,000 2.00 280.00 100 B18 14,000 2.00 280.00 100
B14 14,000 2.00 280.00 100 B19 23,639 2.00 472.78 100
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Table 6.2 Partitions of the input databases for a given value of α

Databases α Non-trivial distinct partition (π ) δ Goodness (π )

{T10, . . ., T19} 0.03 {{T10},{T11},{T12},{T13},{T14,T18},
{T15},{T16},{T17},{T19}}

0.881 0.01

{T40, . . ., T49} 0.1 {{T40},{T41, T45},{T42},{T43},
{T44},{T46},{T47},{T48},{T49}}

0.950 −3.98

{{T40},{T41,T45},{T42},{T43},
{T44},{T46},{T47},{T48,T49}}

0.943 11.72

{{T40},{T41, T43, T45},{T42},{T44},
{T46},{T47},{T48, T49}}

0.942 24.21

{B10,. . ., B19} 0.009 {{B10},{B11},{B12, B14},{B13},{B15},
{B16},{B17},{B18},{B19}}

0.727 11.70

{{B10},{B11},{B12, B14},{B13},{B15},
{B16, B19},{B17},{B18}}

0.699 27.69

{{B10},{B11},{B12, B13, B14},{B15},
{B16, B19},{B17},{B18}}

0.684 36.97

{{B10},{B11},
{B12, B13, B14, B15, B16, B19, B17,
B18}}

0.582 55.98

{{B10, B11},{B12, B13, B14, B15, B16,
B17, B18, B19}}

0.536 81.03

Table 6.3 Best partitions of {T10, T11, . . ., T19}

α Best partition (π ) δ Goodness (π )

0.07 {{T10,T13,T14,T16,T17},{T11},{T12,T15},{T18,T19}} 0.725 85.59
0.06 {{T10,T11,T15,T16,T17,T18},{T12},{T13,T14,T19}} 0.733 81.08
0.05 {{T10},{T11},{T12},{T13},{T14,T16},{T15},{T17,T19},{T18}} 0.890 13.35
0.04 {{T10},{T11,T13},{T12},{T14},{T15},{T16},{T17},{T18},{T19}} 0.950 –2.07
0.03 {{T10},{T11},{T12},{T13},{T14,T18},{T15},{T16},{T17},{T19}} 0.881 0.01

Table 6.4 Best partitions of {B10, B11, . . ., B19}

α Best partition (π ) δ Goodness (π )

0.020 {{B10},{B11,B12,B13,B14,B15,B16,B17,B18,B19}} 0.668 51.90
0.017 {{B10},{B11,B12,B13,B14,B15,B16,B17,B18,B19}} 0.665 66.10
0.014 {{B10},{B11,B12,B13,B14,B15,B16,B17,B18,B19}} 0.581 72.15
0.010 {{B10,B11},{B12,B13,B14,B15,B16,B17,B18,B19}} 0.560 63.67
0.009 {{B10,B11},{B12,B13,B14},{B15},{B16,B19 },{B17},{B18}} 0.536 81.03

6.5 Conclusions

Clustering a set of databases is an important activity. It reduces cost of searching
relevant information required for many problems. We provided an efficient solution
to this problem in three ways. Firstly, we proposed more suitable measures of simi-
larity between two databases. Secondly, we showed that there is a need to figure out
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the existence of the best clustering only at a few similarity levels. Thus, the proposed
clustering algorithm executes faster. Lastly, we introduce IS coding for storing fre-
quent itemsets in the main memory. It allows more frequent itemsets to participate
in the clustering process. The IS coding enhances the accuracy of the clustering pro-
cess. Thus, the proposed clustering technique is efficient in finding clusters in a set
of databases.

References

Adhikari A, Rao PR (2008) Efficient clustering of databases induced by local patterns. Decision
Support Systems 44(4):925–943

Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items
in large databases. In: Proceedings of ACM SIGMOD Conference, Washington, DC,
pp. 207–216



120 6 Efficient Clustering of Databases Induced by Local Patterns

Ali K, Manganaris S, Srikant R (1997) Partial classification using association rules. In: Proceedings
of the 3rd International Conference on Knowledge Discovery and Data Mining, Menlo Park,
CA, pp. 115–118

Babcock B, Chaudhury S, Das G (2003) Dynamic sample selection for approximate query pro-
cessing. In: Proceedings of ACM SIGMOD Conference Management of Data, New York, pp.
539–550

Bandyopadhyay S, Giannella C, Maulik U, Kargupta H, Liu K, Datta S (2006) Clustering dis-
tributed data streams in peer-to-peer environments. Information Sciences 176(14): 1952–1985

Barte RG (1976) The Elements of Real Analysis. Second edition, John Wiley & Sons, New York
FIMI (2004) http://fimi.cs.helsinki.fi/src/
Frequent Itemset Mining Dataset Repository (2004) http://fimi.cs.helsinki.fi/data
Huffman DA (1952) A method for the construction of minimum redundancy codes. In: Proceedings

of the IRE 40(9), pp. 1098–1101
Jain AK, Murty MN, Flynn PJ (1999) Data clustering: A review. ACM Computing Surveys 31(3):

264–323
KDD CUP (2000) http://www.ecn.purdue.edu/KDDCUP
Lee C-H, Lin C-R, Chen M-S (2001) Sliding-window filtering: An efficient algorithm for incre-

mental mining. In: Proceedings of the 10th International Conference on Information and
Knowledge Management, Atlanta, USA, pp. 263–270

Li H, Hu X, Zhang Y (2009) An improved database classification algorithm for multi-database
mining. In: Proceedings of the 3d International Workshop on Frontiers in Algorithmics,
Springer, Berlin/Heidelberg, pp. 346–357

Ling CX, Yang Q (2006) Discovering classification from data of multiple sources. Data Mining
Knowledge Discovery 12(2–3): 181–201

Liu CL (1985) Elements of Discrete Mathematics. Second edition, McGraw-Hill, New York
Liu H, Lu H, Yao J (2001) Toward multi-database mining: Identifying relevant databases. IEEE

Transactions on Knowledge and Data Engineering 13(4): 541–553
Sayood K (2000) Introduction to data compression. Morgan Kaufmann, San Francisco
Su K, Huang H, Wu X, S. Zhang S (2006) A logical framework for identifying quality knowledge

from different data sources. Decision Support Systems 42(3): 1673–1683
Tan P-N, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association

patterns. In: Proceedings of SIGKDD Conference, Edmonton, Alberta, Canada, pp. 32–41
Wu X, Wu Y, Wang Y, Li Y (2005a) Privacy-aware market basket data set generation: A feasible

approach for inverse frequent set mining. In: Proceedings of SIAM International Conference
on Data Mining, pp. 103–114

Wu X, Zhang C, Zhang S (2005b) Database classification for multi-database mining. Information
Systems 30(1): 71–88

Yang W, Huang S (2008) Data privacy protection in multi-party clustering. Data and Knowledge
Engineering 67(1): 185–199

Yin X, Han J (2005) Efficient classification from multiple heterogeneous databases. In:
Proceedings of 9-th European Conf. on Principles and Practice of Knowledge Discovery in
Databases, pp. 404–416

Yin X, Yang J, Yu PS, Han J (2006) Efficient classification across multiple database relations: A
crossmine approach. IEEE Transactions on Knowledge and Data Engineering 18(6): 770–783

Zhang S (2002) Knowledge discovery in multi-databases by analyzing local instances, Ph D thesis,
Deakin University

Zhang T, Ramakrishnan R, Livny M (1997) BIRCH: A new data clustering algorithm and its
applications. Data Mining and Knowledge Discovery 1(2): 141–182

Zhang S, Wu X, Zhang C (2003) Multi-database mining. IEEE Computational Intelligence Bulletin
2(1): 5–13



Chapter 7
A Framework for Developing Effective
Multi-database Mining Applications

Multi-database mining has been already recognized as an important and strategi-
cally essential area of research in data mining. In this chapter, we discuss how
one can systematically prepare data warehouses located at different branches for
ensuring data mining activities. An appropriate multi-database mining technique is
essential to develop efficient applications. Also, the efficiency of a multi-database
mining application could be improved by processing more patterns in the individ-
ual application. A faster algorithm could also contribute to the enhanced quality of
the data mining framework. The efficiency of a multi-database mining application
can be enhanced by choosing an appropriate multi-database mining model, a suit-
able pattern synthesizing technique, a better pattern representation technique, and
an efficient algorithm for solving the problem.

7.1 Introduction

More than 15 years have passed since Agrawal et al. (1993) introduced support-
confidence framework for mining association rules in a database. Since then, there
has been an orchestrated effort focused on a variety of ways of making the data
mining in large databases as efficient as possible. With this regard, many interesting
data mining algorithms (Agrawal and Srikant 1994; Coenen et al. 2004; Han et al.
2000; Toivonen 1996; Wu et al. 2004) have been proposed. But, the requirements
and expectations of the users have not been fully satisfied. New and challenging
applications arise over time. Multi-database mining applications are among those
ongoing challenges.

Most of the existing algorithms have attempted to address ways of mining large
databases. In this context, many parallel data mining algorithms (Agrawal and
Shafer 1999; Chattratichat et al. 1997; Cheung et al. 1996) have been reported.
These algorithms can be used to mine multiple databases by amalgamating them. It
requires an organization to acquire parallel computing system. Such solution might
not be suitable in many situations as these hardware requirements may easily result
in quite significant and somewhat questionable investments.

In the context of mining multiple large databases we have discussed three
approaches to mining multiple large databases (Chapter 1). In Section 7.2, we
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discuss the shortcomings of these approaches. There are two categories of multi-
database mining techniques. Some of them are specialized techniques, while
remaining techniques are quite general in their nature. In Chapter 3, we pre-
sented the existing multi-database mining techniques. The choice of an appropriate
multi-database mining technique becomes an important issue. When developing an
efficient multi-database mining application there are several important components
to be considered. There are many strategies using which one could develop a multi-
database mining application. One should stress, though, that not all solutions could
be equally efficient or suitable for the given application. The goal of this chapter
is to offer a comprehensive framework to support the systematic development of
multi-database mining applications.

A multi-database mining application can be developed through a sequence of
several stages (phases) and each of these stages can be designed within its own
framework. Thus an effective application can be developed by applying each stage
in a systematic manner. In Section 7.3, we move on to a detailed discussion on
different techniques aimed at the improvement of the process of multi-database min-
ing applications. First we analyze why the existing approaches are not sufficient to
develop an effective multi-database mining application.

7.2 Shortcomings of the Existing Approaches
to Multi-database Mining

Let us briefly note that, as discussed in Chapter 1, there are three important
approaches to multi-database mining such as local pattern analysis, sampling, and
re-mining. To apply a multi-database mining technique, it is required to prepare the
local databases. In the proposed framework, we wish to discuss this issue in details.
Moreover, these techniques do not apply any optimization technique in the pro-
cess of developing a multi-database mining application. We see later how one could
apply such techniques to the development of an effective application. Again, these
techniques do not talk about systematizing the development process of an applica-
tion. We wish to stress on this issue also. One of the main hurdles we are faced
with when dealing with multi-database mining applications that deal with mining
multiple databases with high degree of accuracy. Moreover, synthesis of non-local
patterns is a crucial stage for the first two approaches, while it remains a simple
task for the third approach of mining multiple large databases. Unfortunately, the of
re-mining approach is not advocated since it requires mining each of large databases
twice.

7.3 Improving Multi-database Mining Applications

The main problem of multi-database mining is that it involves mining multiple large
databases. Moreover, it is very likely that these databases might have been created
without any coordination. We believe there is a need to systematize and improve
the development stages of a multi-database mining application. We discuss various
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strategies for improving multi-database mining applications. Some improvements
are general in nature, while others are more domain–specific. There are various
techniques by which one could enhance the efficiency of multi-database mining
applications. The efficiency of a multi-database application could be enhanced by
choosing an appropriate multi-database mining model, a suitable pattern synthe-
sizing technique, a better pattern representation technique and a more efficient
algorithm to solve the problem. In addition, there are other important issues as dis-
cussed in the following sub-sections. In this book, we have illustrated each of these
issues either in the context of a specific problem, or in a general setting. We do not
stress much on efficient implementations of different algorithms, since this topic has
been studied very intensively and is well-documented in the literature.

7.3.1 Preparation of Data Warehouses

As before, we consider an organization that has multiple databases at its different
branches. It could well be that all the data sources are not of the same format. Many
times data need to be converted from one type to another. One needs to process
them before any mining task takes place. Relevant data are required to be retained
for the purpose of mining. Also, the definitions of data are required to be the same
at every data source. The preparation of data warehouse completed at every branch
of the organization could be a significant task (Pyle 1999; Zhang et al. 2003). We
have presented an extended model (in Chapter 2) for synthesizing global patterns
from local patterns in different databases. We have discussed how this model could
be used for mining heavy association rules in multiple databases. Also, it has been
shown how the task of data preparation could be broken into sub-tasks so that the
overall data preparation task becomes easier and can be realized in a systematic
fashion. Although the above model introduces many layers and interfaces for syn-
thesizing global patterns, many of these layers and interfaces might not be required
in a real-life application. Due to the heterogeneous nature of different data sources,
data integration is often one of the most challenging tasks in managing modern
information systems. Jiang et al. (2007) have proposed a framework for integrating
multiple data sources when a single “best” value has to be chosen and stored for
every attribute of an entity.

7.3.2 Choosing Appropriate Technique of Multi-database Mining

Zhang et al. (2003) designed local pattern analysis for mining multiple large
databases. It returns approximate global patterns in multiple large databases. In
many multi-database mining analyses, local pattern analysis alone might not be suf-
ficient. Thus, one might need different techniques in different situations. A certain
technique of mining multiple databases could not be appropriate in all situations. Its
choice has to be implied by the problem at hand. We have presented a multi-database
mining technique, MDMT: PFM+SPS, for mining multiple large databases (see



124 7 A Framework for Developing Effective Multi-database Mining Applications

Chapter 3). It improves multi-database mining when being compared with an exist-
ing technique that scans each database only once. Experimental results in Chapter
3 have shown the effectiveness of this technique. It has to be noted, though, that
it does not mean that such algorithm is the best in all situations. For example, we
have presented a technique for mining multiple large databases to study problems
involving a set of specific items in multiple databases (Chapter 4). It happened to
perform better than the MDMT: PFM+SPS. It extracts true patterns related to a set
of specific items coming from multiple databases. The multi-database mining pre-
sented in Chapter 4 is an important as well as highly promising issue, since many
data analyses of a multi-branch company are based on select items. The choice of a
multi-database mining technique is an important design issue.

7.3.3 Synthesis of Patterns

As discussed in Chapter 3, a multi-database mining using local pattern analysis is
two-step process. At the first step we apply a model for mining each local database
using a SDMT. We synthesize non-local patterns using local patterns in different
databases at the second stage. In many applications (Adhikari and Rao 2008; Wu
and Zhang 2003), the synthesis of patterns is an important component. It is always
better to avoid the stage of synthesizing patterns. For example, while mining global
patterns of select items in multiple databases, we have adopted a different technique
(Fig. 4.1). In this case the chosen multi-database mining technique does not require
the synthesizing step and returns true global patterns of select items. In fact, in this
technique there is no need to synthesize patterns. In many applications, it might not
be possible to avoid the synthesizing step. In such situations, one needs to apply a
multi-database mining technique that returns high quality of patterns. In Chapter 3,
we have presented one such technique, namely MDMT: PFM+SPS.

7.3.4 Selection of Databases

For answering a query, one needs to select appropriate databases. Their selection is
based on the inherent knowledge residing in the database. One needs to mine each
of the local databases. Then we process the local patterns in different databases for
the purpose of selecting relevant databases. Local patterns help selecting relevant
databases. Based on local patterns, one can cluster the local databases. For answer-
ing the given query, one mines all the databases positioned in a relevant cluster. In
many cases, the clustering of databases is based on a measure of similarity between
these databases. Thus, the measure of similarity between two databases is an impor-
tant design component whose development is based on local patterns present in the
databases.

Wu et al. (2005) have proposed a similarity measure sim1 to identify similar
databases based on item similarity. The authors have designed an algorithm based
on this measure to cluster databases for the purpose of selecting relevant databases.
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Such clustering is useful when the similarity is based on items present in differ-
ent databases. This measure might not be useful for many multi-database mining
applications where clustering of databases might be based on some other criteria.
For example, if we are interested in the relevant databases based on transaction
similarity then the above measures might not be appropriate. We have presented
a technique for clustering databases based on transaction similarity (Chapter 6).
We have introduced a similarity measure simi1 to cluster different databases and
designed a clustering algorithm based on simi1 for the purpose of selecting relevant
databases.

An approximate form of knowledge resulting from large databases would be
adequate for many decision support applications. In this sense, the selection of
databases might be important in many decision support applications by reducing
the cost of searching for necessary information.

7.3.5 Representing Efficiently Patterns Space

Usually an application dealing with multiple databases often handles a large number
of patterns. Multi-database mining using local pattern analysis is an approximate
method of mining multiple large databases. One needs to improve the quality of
knowledge synthesized from multi-database mining. The quality of synthesized
global patterns or a decision based on local patterns could be enhanced by incorpo-
rating more local patterns in the knowledge synthesizing/processing activities. One
could incorporate more local patterns by using a suitable coding technique. Frequent
itemset and association rule are two important and interesting types of pattern in a
database. In the context of storing patterns space efficiently, we have presented two
coding techniques:

7.3.5.1 Representing Association Rules

Association rule mining (ARM) has received a lot of attention in the KDD commu-
nity. Accordingly, many algorithms on ARM have been reported in the recent time.
We have observed that the number of association rules generated from a moderate-
size database could be quite large. Therefore an application that mines multiple large
databases and applies local pattern analysis often handles a large number of associ-
ation rules. To develop an effective application, we have presented the ACP coding
to represent association rules in multiple databases space efficiently (Chapter 5).
Such applications improve the quality of synthesized global association rules. We
have included experimental results to show the effectiveness of ACP coding for
representing association rules in multiple databases.

7.3.5.2 Representing Frequent Itemsets

In the process of extracting association rules in a database, one needs to extract fre-
quent itemsets from the database. In many applications, frequent itemsets are used to
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find the solutions. As noted in the previous section, a multi-database mining appli-
cation often handles a large number of frequent itemsets. To improve the quality of
the application one needs to incorporate a large number of frequent itemsets. In view
of this objective, we have presented the IS coding to represent frequent itemsets in
local databases space efficiently (Chapter 6). The theoretical analysis quantifies the
effectiveness of this coding.

7.3.6 Designing an Appropriate Measure of Similarity

Many algorithms are based on a measure used for decision making. For exam-
ple, most of the clustering algorithms are based on a measure of association. Such
clustering algorithms become more accurate if the similarity measure used in an
algorithm becomes more appropriate towards measuring the similarity between two
objects under consideration. For example, if we are interested in mining association
patterns approximately in multiple large databases, then the information regarding
the association among items would be available in itemsets rather than in data items
in different data sources (Chapter 6). In this case, a measure based on itemsets in
different data sources seem to be more appropriate in finding similarity between two
databases. The efficiency of a clustering algorithm is dependent on the suitability of
the similarity measure used in the algorithm.

7.3.7 Designing Better Algorithm for Problem Solving

Using suitable data structures and the algorithm one supports the realization of the
efficient multi-database mining applications (Aho et al. 1987; Aho et al. 1974). In
the context of extracting high-frequent association rules in multiple databases, we
have designed an algorithm that runs faster than the existing algorithms (Chapter 2).
Moreover, our algorithm is simple and straightforward. In the context of clustering
the databases, we have designed an improved algorithm based on different param-
eters (Chapter 6). In this algorithm, we have enhanced efficiency of the clustering
process using the following strategies: We use more appropriate measure of similar-
ity between two databases. Also we determine the existence of the best clustering
only at few similarity levels. Thus, the clustering algorithm executes faster. As the
IS coding for storing frequent itemsets space is efficient, more frequent itemsets
can participate in the clustering process. Thus, it makes the clustering process more
accurate.

7.4 Conclusions

Multi-database mining applications might come with different complexities across
different domains. It is difficult to establish a generalized framework for the develop-
ment of efficient multi-database mining applications. Nevertheless, we can identify
some important stages of the development process that are crucial to the overall per-
formance of the data mining environment. The sound design practices supporting
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the phases identified in this chapter are essential to enhance the quality of many
multi-database data mining applications.
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