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Preface:
Why Decision Trees? 

Data has an important and unique role to play in modern civilization: in addition to its 
historic role as the raw material of the scientific method, it has gained increasing 
recognition as a key ingredient of modern industrial and business engineering. Our 
reliance on data—and the role that it can play in the discovery and confirmation of 
science, engineering, business, and social knowledge in a range of areas—is central to 
our view of the world as we know it. 

Many techniques have evolved to consume data as raw material in the service of 
producing information and knowledge, often to confirm our hunches about how things 
work and to create new ways of doing things. Recently, many of these discovery 
techniques have been assembled into the general approaches of business intelligence and 
data mining.  

Business intelligence provides a process and a framework to place data display and data 
analysis capabilities in the hands of frontline business users and business analysts. Data 
mining is a more specialized field of practice that uses a variety of computer-mediated 
tools and techniques to extract trends, patterns, and relationships from data. These trends, 
patterns, and relationships are often more subtle or complex than the relationships that are 
normally presented in a business intelligence context. Consequently, business intelligence 
and data mining are highly complementary approaches to exposing the full range of 
information and knowledge that is contained in data. 

Some data mining techniques trace their roots to the origins of the scientific method and 
such statistical techniques as hypothesis testing and linear regression. Other techniques, 
such as neural networks, emerged out of relatively recent investigations in cognitive 
science: how does the human brain work? Can we reengineer its principles of operation 
as a software program? Other techniques, such as cluster analysis, evolved out of a range 
of disciplines rooted in the frameworks of scientific discovery and engineering power and 
practicality.  

Decision trees are a class of data mining techniques that have roots in traditional 
statistical disciplines such as linear regression. Decision trees also share roots in the same 
field of cognitive science that produced neural networks. The earliest decision trees were 
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modeled after biological processes (Belson 1956); others tried to mimic human methods 
of pattern detection and concept formation (Hunt, Marin, and Stone 1966).  

As decision trees evolved, they turned out to have many useful features, both in the 
traditional fields of science and engineering and in a range of applied areas, including 
business intelligence and data mining. These useful features include: 

Decision trees produce results that communicate very well in symbolic and visual 
terms. Decision trees are easy to produce, easy to understand, and easy to use. 
One useful feature is the ability to incorporate multiple predictors in a simple, 
step-by-step fashion. The ability to incrementally build highly complex rule sets 
(which are built on simple, single association rules) is both simple and powerful. 
Decision trees readily incorporate various levels of measurement, including 
qualitative (e.g., good – bad) and quantitative measurements. Quantitative 
measurements include ordinal (e.g., high, medium, low categories) and interval 
(e.g., income, weight ranges) levels of measurement. 
Decision trees readily adapt to various twists and turns in data—unbalanced 
effects, nested effects, offsetting effects, interactions and nonlinearities—that 
frequently defeat other one-way and multi-way statistical and numeric 
approaches.
Decision trees are nonparametric and highly robust (for example, they readily 
accommodate the incorporation of missing values) and produce similar effects 
regardless of the level of measurement of the fields that are used to construct 
decision tree branches (for example, a decision tree of income distribution will 
reveal similar results regardless of whether income is measured in 000s, in 10s of 
thousands, or even as a discrete range of values from 1 to 5). 

To this day, decision trees continue to share inputs and influences from both statistical 
and cognitive science disciplines. And, just as science often paves the way to the 
application of results in engineering, so, too, have decision trees evolved to support the 
application of knowledge in a wide variety of applied areas such as marketing, sales, and 
quality control. This hybrid past and present can make decision trees interesting and 
useful to some, and frustrating to use and understand by others. The goal of this book is 
to increase the utility and decrease the futility of using decision trees. 
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This book talks about decision trees in business intelligence, data mining, business 
analytics, prediction, and knowledge discovery. It explains and illustrates the use of 
decision trees in data mining tasks and how these techniques complement and supplement 
other business intelligence applications, such as dimensional cubes (also called OLAP 
cubes) and data mining approaches, such as regression, cluster analysis, and neural 
networks.

SAS Enterprise Miner decision trees incorporate a range of useful techniques that have 
emerged from the various influences, which makes the most useful and powerful aspects 
of decision trees readily available. The operation and underlying concepts of these 
various influences are discussed in this book so that more people can benefit from them. 
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Introduction
Decision trees are a simple, but powerful form of multiple variable analysis. They 
provide unique capabilities to supplement, complement, and substitute for  

traditional statistical forms of analysis (such as multiple linear regression) 
a variety of data mining tools and techniques (such as neural networks)  
recently developed multidimensional forms of reporting and analysis found in the 
field of business intelligence
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Decision trees are produced by algorithms that identify various ways of splitting a data 
set into branch-like segments. These segments form an inverted decision tree that 
originates with a root node at the top of the tree. The object of analysis is reflected in this 
root node as a simple, one-dimensional display in the decision tree interface. The name of 
the field of data that is the object of analysis is usually displayed, along with the spread or 
distribution of the values that are contained in that field. A sample decision tree is 
illustrated in Figure 1.1, which shows that the decision tree can reflect both a continuous 
and categorical object of analysis. The display of this node reflects all the data set 
records, fields, and field values that are found in the object of analysis. The discovery of 
the decision rule to form the branches or segments underneath the root node is based on a 
method that extracts the relationship between the object of analysis (that serves as the 
target field in the data) and one or more fields that serve as input fields to create the 
branches or segments. The values in the input field are used to estimate the likely value in 
the target field. The target field is also called an outcome, response, or dependent field or 
variable.

The general form of this modeling approach is illustrated in Figure 1.1. Once the 
relationship is extracted, then one or more decision rules can be derived that describe the 
relationships between inputs and targets. Rules can be selected and used to display the 
decision tree, which provides a means to visually examine and describe the tree-like 
network of relationships that characterize the input and target values. Decision rules can 
predict the values of new or unseen observations that contain values for the inputs, but 
might not contain values for the targets.
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Figure 1.1: Illustration of the Decision Tree 

Each rule assigns a record or observation from the data set to a node in a branch or 
segment based on the value of one of the fields or columns in the data set.1 Fields or 
columns that are used to create the rule are called inputs. Splitting rules are applied one 
after another, resulting in a hierarchy of branches within branches that produces the 
characteristic inverted decision tree form. The nested hierarchy of branches is called a  

1 The SAS Enterprise Miner decision tree contains a variety of algorithms to handle missing values, including 
a unique algorithm to assign partial records to different segments when the value in the field that is being 
used to determine the segment is missing. 
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decision tree, and each segment or branch is called a node. A node with all its descendent 
segments forms an additional segment or a branch of that node. The bottom nodes of the 
decision tree are called leaves (or terminal nodes). For each leaf, the decision rule 
provides a unique path for data to enter the class that is defined as the leaf. All nodes, 
including the bottom leaf nodes, have mutually exclusive assignment rules; as a result, 
records or observations from the parent data set can be found in one node only. Once the 
decision rules have been determined, it is possible to use the rules to predict new node 
values based on new or unseen data. In predictive modeling, the decision rule yields the 
predicted value.

Figure 1.2: Illustration of Decision Tree Nomenclature
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Although decision trees have been in development and use for over 50 years (one of the 
earliest uses of decision trees was in the study of television broadcasting by Belson in 
1956), many new forms of decision trees are evolving that promise to provide exciting 
new capabilities in the areas of data mining and machine learning in the years to come. 
For example, one new form of the decision tree involves the creation of random forests.
Random forests are multi-tree committees that use randomly drawn samples of data and 
inputs and reweighting techniques to develop multiple trees that, when combined, 
provide for stronger prediction and better diagnostics on the structure of the decision tree.  

Besides modeling, decision trees can be used to explore and clarify data for dimensional 
cubes that can be found in business analytics and business intelligence.  

Using Decision Trees with Other Modeling Approaches 

Decision trees play well with other modeling approaches, such as regression, and can be 
used to select inputs or to create dummy variables representing interaction effects for 
regression equations. For example, Neville (1998) explains how to use decision trees to 
create stratified regression models by selecting different slices of the data population for 
in-depth regression modeling. 

The essential idea in stratified regression is to recognize that the relationships in the data 
are not readily fitted for a constant, linear regression equation. As illustrated in Figure 
1.3, a boundary in the data could suggest a partitioning so that different regression 
models of different forms can be more readily fitted in the strata that are formed by 
establishing this boundary. As Neville (1998) states, decision trees are well suited in 
identifying regression strata. 
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Figure 1.3: Illustration of the Partitioning of Data Suggesting Stratified
 Regression Modeling

Decision trees are also useful for collapsing a set of categorical values into ranges that are 
aligned with the values of a selected target variable or value. This is sometimes called 
optimal collapsing of values. A typical way of collapsing categorical values together 
would be to join adjacent categories together. In this way 10 separate categories can be 
reduced to 5. In some cases, as illustrated in Figure 1.4, this results in a significant 
reduction in information. Here categories 1 and 2 are associated with extremely low and 
extremely high levels of the target value. In this example, the collapsed categories 3 and 
4, 5 and 6, 7 and 8, and 9 and 10 work better in this type of deterministic collapsing 
framework; however, the anomalous outcome produced by collapsing categories 1 and 2 
together should serve as a strong caution against adopting any such scheme on a regular 
basis.

Decision trees produce superior results. The dotted lines show how collapsing the 
categories with respect to the levels of the target yields different and better results. If we 
impose a monotonic restriction on the collapsing of categories—as we do when we 
request tree growth on the basis of ordinal predictors—then we see that category 1 
becomes a group of its own. Categories 2, 3, and 4 join together and point to a relatively 
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high level in the target. Categories 5, 6, and 7 join together to predict the lowest level of 
the target. And categories 8, 9, and 10 form the final group.  

If a completely unordered grouping of the categorical codes is requested—as would be 
the case if the input was defined as “nominal”—then the 3 bins as shown in the bottom of 
Figure 1.4 might be produced. Here the categories 1, 5, 6, 7, 9, and 10 group together as 
associated with the highest level of the target. The medium target levels produce a 
grouping of categories 3, 4, and 8. The lone high target level that is associated with 
category 2 falls out as a category of its own. 

Figure 1.4:  Illustration of Forming Nodes by Binning Input-Target Relationships
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Since a decision tree allows you to combine categories that have similar values with 
respect to the level of some target value there is less information loss in collapsing 
categories together. This leads to improved prediction and classification results. As 
shown in the figure, it is possible to intuitively appreciate that these collapsed categories 
can be used as branches in a tree. So, knowing the branch—for example, branch 3 
(labeled BIN 3), we are better able to guess or predict the level of the target. In the case 
of branch 2 we can see that the target level lies in the mid-range, whereas in the last 
branch—here collapsed categories 1, 5, 6, 7, 9, 10—the target is relatively low. 

Why Are Decision Trees So Useful? 

Decision trees are a form of multiple variable (or multiple effect) analyses. All forms of 
multiple variable analyses allow us to predict, explain, describe, or classify an outcome 
(or target). An example of a multiple variable analysis is a probability of sale or the 
likelihood to respond to a marketing campaign as a result of the combined effects of 
multiple input variables, factors, or dimensions. This multiple variable analysis capability 
of decision trees enables you to go beyond simple one-cause, one-effect relationships and 
to discover and describe things in the context of multiple influences. Multiple variable 
analysis is particularly important in current problem-solving because almost all critical 
outcomes that determine success are based on multiple factors. Further, it is becoming 
increasingly clear that while it is easy to set up one-cause, one-effect relationships in the 
form of tables or graphs, this approach can lead to costly and misleading outcomes. 

According to research in cognitive psychology (Miller 1956;  Kahneman, Slovic, and 
Tversky 1982) the ability to conceptually grasp and manipulate multiple chunks of 
knowledge is limited by the physical and cognitive processing limitations of the short-
term memory portion of the brain. This places a premium on the utilization of 
dimensional manipulation and presentation techniques that are capable of preserving and 
reflecting high-dimensionality relationships in a readily comprehensible form so that the 
relationships can be more easily consumed and applied by humans.  

There are many multiple variable techniques available. The appeal of decision trees lies 
in their relative power, ease of use, robustness with a variety of data and levels of 
measurement, and ease of interpretability. Decision trees are developed and presented 
incrementally; thus, the combined set of multiple influences (which are necessary to fully 
explain the relationship of interest) is a collection of one-cause, one-effect relationships  
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presented in the recursive form of a decision tree. This means that decision trees deal 
with human short-term memory limitations quite effectively and are easier to understand 
than more complex, multiple variable techniques. Decision trees turn raw data into an 
increased knowledge and awareness of business, engineering, and scientific issues, and 
they enable you to deploy that knowledge in a simple, but powerful set of human-
readable rules. 

Decision trees attempt to find a strong relationship between input values and target values 
in a group of observations that form a data set. When a set of input values is identified as 
having a strong relationship to a target value, then all of these values are grouped in a bin 
that becomes a branch on the decision tree. These groupings are determined by the 
observed form of the relationship between the bin values and the target. For example, 
suppose that the target average value differs sharply in the three bins that are formed by 
the input. As shown in Figure 1.4, binning involves taking each input, determining how 
the values in the input are related to the target, and, based on the input-target relationship, 
depositing inputs with similar values into bins that are formed by the relationship. 

To visualize this process using the data in Figure 1.4, you see that BIN 1 contains values 
1, 5, 6, 7, 9, and 10; BIN 2 contains values 3, 4, and 8; and BIN 3 contains value 2. The 
sort-selection mechanism can combine values in bins whether or not they are adjacent to 
one another (e.g., 3, 4, and 8 are in BIN 2, whereas 7 is in BIN 1). When only adjacent 
values are allowed to combine to form the branches of a decision tree, then the 
underlying form of measurement is assumed to monotonically increase as the numeric 
code of the input increases. When non-adjacent values are allowed to combine, then the 
underlying form of measurement is non-monotonic. A wide variety of different forms of 
measurement, including linear, nonlinear, and cyclic, can be modeled using decision 
trees.

A strong input-target relationship is formed when knowledge of the value of an input 
improves the ability to predict the value of the target. A strong relationship helps you 
understand the characteristics of the target. It is normal for this type of relationship to be 
useful in predicting the values of targets. For example, in most animal populations, 
knowing the height or weight improves the ability to predict the gender. In the following 
display, there are 28 observations in the data set. There are 20 males and 8 females.  
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       Gender      Weight  Height  Ht_Cent.  BMIndex  BodyType 

       Female      179     4’10    147       162      slim 
       Female      160     5’ 4    163       161      slim 
       Male        191     5’ 8    173       182      average 
       Male        132     5’1     155       143      slim 
       Female      167     5’1     180       174      average 
       Female      128     5’2     157       142      slim 
       Female      150     5’2     157       154      slim 
       Male        150     5’2     157       154      slim 
       Female      215     5’2     157       184      heavy 
       Female       89     5’3     160       119      slim 
       Female      167     5’3     160       163      slim 
       Male        180     5’4     163       171      average 
       Male        206     5’4     163       183      average 
       Male        239     5’5     165       199      heavy 
       Male        161     5’6     168       164      average 
       Male        188     5’6     168       178      average 
       Male        284     5’6     168       218      heavy 
       Female      117     5’7     170       141      slim 
       Male        163     5’7     170       167      average 
       Male        194     5’7     170       182      average 
       Male        201     5’7     170       185      heavy 
       Male        254     5’8     173       209      heavy 
       Male        201     5’9     175       188      heavy 
       Male        206     5’9     175       190      heavy 
       Male        216     5’9     175       195      heavy 
       Male        206     6’0     183       194      heavy 
       Male        220     6’1     185       202      heavy 
       Female      182     6’2     188       185      heavy 

In this display, the overall average height is 5’6 and the overall average weight is 183. 
Among males, the average height is 5’7, while among females, the average height is 5’3 
(males weigh 200 on average, versus 155 for females).  

Knowing the gender puts us in a better position to predict the height and weight of the 
individuals, and knowing the relationship between gender and height and weight puts us 
in a better position to understand the characteristics of the target. Based on the 
relationship between height and weight and gender, you can infer that females are both 
smaller and lighter than males. As a result, you can see how this sort of knowledge that is 
based on gender can be used to determine the height and weight of unseen humans.  

From the display, you can construct a branch with three leaves to illustrate how decision 
trees are formed by grouping input values based on their relationship to the target.  
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Figure 1.5: Illustration of Decision Tree Partitioning of Physical Measurements

Level of Measurement 

The example as shown here illustrates an important characteristic of decision trees: both 
quantitative and qualitative data can be accommodated in decision tree construction. 
Quantitative data, like height and weight, refers to quantities that can be manipulated 
with arithmetic operations such as addition, subtraction, and multiplication. Qualitative 
data, such as gender, cannot be used in arithmetic operations, but can be presented in 
tables or decision trees. In the previous example, the target field is weight and is 
presented as an average. Height, BMIndex, or BodyType could have been used as inputs 
to form the decision tree. 

Some data, such as shoe size, behaves like both qualitative and quantitative data. For 
example, you might not be able to do meaningful arithmetic with shoe size, even though 
the sequence of numbers in shoe sizes is in an observable order. For example, with shoe 
size, size 10 is larger than size 9, but it is not twice as large as size 5. 

Figure 1.6 displays a decision tree developed with a categorical target variable. This 
figure shows the general, tree-like characteristics of a decision tree and illustrates how 
decision trees display multiple relationships—one branch at a time. In subsequent figures, 
decision trees are shown with continuous or numeric fields as targets. This shows how 
decision trees are easily developed using targets and inputs that are both qualitative 
(categorical data) and quantitative (continuous, numeric data). 

Low weight
Average: 138 lb

Medium weight
Average: 183 lb

Heavy weight
Average: 227 lb

Root Node
Average Weight: 183 lb
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Figure 1.6: Illustration of a Decision Tree with a Categorical Target

The decision tree in Figure 1.6 displays the results of a mail-in customer survey 
conducted by HomeStuff, a national home goods retailer. In the survey, customers had 
the option to enter a cash drawing. Those who entered the drawing were classified as a 
HomeStuff best customer. Best customers are coded with 1 in the decision tree. 

The top-level node of the decision tree shows that, of the 8399 respondents to the survey, 
57% were classified as best customers, while 43% were classified as other (coded  
with 0).

Figure 1.6 shows the general characteristics of a decision tree, such as partitioning the 
results of a 1–0  (categorical) target across various input fields in the customer survey 
data set. Under the top-level node, the field GENDER further characterizes the best – 
other (1–0) response. Females (coded with F) are more likely to be best customers than 
males (coded with M). Fifty-nine percent of females are best customers versus fifty-four 
percent of males. A wide variety of splitting techniques has been developed over time to 
gauge whether this difference is statistically significant and whether the results are 
accurate and reproducible. In Figure 1.6, the difference between males and females is 
statistically significant. Whether a difference of 5% is significant from a business point of 
view is a question that is best answered by the business analyst.  
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The splitting techniques that are used to split the 1–0 responses in the data set are used to 
identify alternative inputs (for example, income or purchase history) for gender. These 
techniques are based on numerical and statistical techniques that show an improvement 
over a simple, uninformed guess at the value of a target (in this example, best–other), as 
well as the reproducibility of this improvement with a new set of data.  

Knowing the gender enables us to guess that females are 5% more likely to be a best 
customer than males. You could set up a separate, independent hold out or validation data 
set and (having determined that the gender effect is useful or interesting) you might see 
whether the strength and direction of the effect is reflected in the hold out or validation 
data set. The separate, independent data set will show the results if the decision tree is 
applied to a new data set, which indicates the generality of the results. Another way to 
assess the generality of the results is to look at data distributions that have been studied 
and developed by statisticians who know the properties of the data and who have 
developed guidelines based on the properties of the data and data distributions. The 
results could be compared to these data distributions and, based on the comparisons, you 
could determine the strength and reproducibility of the results. These approaches are 
discussed at greater length in Chapter 3, “The Mechanics of Decision Tree Construction.” 

Under the female node in the decision tree in Figure 1.6, female customers can be further 
categorized into best–other categories based on the total lifetime visits that they have 
made to HomeStuff stores: those who have made fewer than 3.5 visits are less likely to be 
best customers compared to those who have made more than 4.5 visits: 29% versus 
100%. (In the survey, a shopping visit of less than 20 minutes was characterized as a half 
visit.)

On the right side of the figure, the decision tree is asymmetric; a new field—Net sales—
has entered the analysis. This suggests that Net sales is a stronger or more relevant 
predictor of customer status than Total lifetime visits, which was used to analyze 
females. It was this kind of asymmetry that spurred the initial development of decision 
trees in the statistical community: these kinds of results demonstrate the importance of 
the combined (or interactive) effect of two indicators in displaying the drivers of an 
outcome. In the case of males, when Net sales exceed $281.50, then the likelihood of 
being a best customer increases from 45% to 77%.  

As shown in the asymmetry of the decision tree, female behavior and male behavior have 
different nuances. To explain or predict female behavior, you have to look at the 
interaction of gender (in this case, female) with Total lifetime visits. For males, Net
sales is an important characteristic to look at. 
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In Figure 1.6, of all the k-way or n-way branches that could have been formed in this 
decision tree, the 2-way branch is identified as best. This indicates that a 2-way branch 
produces the strongest effect. The strength of the effect is measured through a criterion 
that is based on strength of separation, statistical significance, or reproducibility, with 
respect to a validation process. These measures, as applied to the determination of branch 
formation and splitting criterion identification, are discussed further in Chapter 3. 

Decision trees can accommodate categorical (gender), ordinal (number of visits), and 
continuous (net sales) types of fields as inputs or classifiers for the purpose of forming 
the decision tree. Input classifiers can be created by binning quantitative data types 
(ordinal and continuous) into categories that might be used in the creation of branches—
or splits—in the decision tree. The bins that form total lifetime visits have been placed 
into three branches:  

< 3.5 … less than 3.5 
[3.5 – 4.5) … between 3.5 to strictly less than 4.5 
>= 4.5 … greater than or equal to 4.5 

Various nomenclatures are used to indicate which values fall in a given range. Meyers 
(2000) proposes an alternative, which is shown below: 

< 3.5 … less than 3.5 
[3.5 – 4.5[ … between 3.5 to strictly less than 4.5 
>= 4.5 … greater than or equal to 4.5 

The key difference from the convention used in the SAS decision tree is in the second 
range of values, where the designator “[” is used to indicate the interval that includes the 
lower number and includes up to any number that is strictly less than the upper number in 
the range.

A variety of techniques exist to cast bins into branches: 2-way (binary branches), n-way 
(where n equals the number of bins or categories), or k-way (where k represents an 
attempt to create an optimal number of branches and is some number greater than or 
equal to 2 and less than or equal to n).  
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Figure 1.7: Illustration of a Decision Tree—Continuous (Numeric) Target

Figure 1.7 shows a decision tree that is created with a continuous response variable as the 
target. In this case, the target field is Net sales. This is the same field that was used as a 
classifier (for males) in the categorical response decision tree shown in Figure 1.6.  

Overall, as shown in Figure 1.7, the average net sale amount is approximately $250. 
Figure 1.7 shows how this amount can be characterized by performing successive splits 
of net sales according to the income level of the survey responders and, within their 
income level, according to the field Number of Juvenile category purchases.  In 
addition to characterizing net sales spending groups, this decision tree can be used as a 
predictive tool. For example, in Figure 1.7, high income, high juvenile category 
purchases typically outspend the average purchaser by an average of $378, versus the 
norm of $250. If someone were to ask what a relatively low income purchaser who buys 
a relatively low number of juvenile category items would spend, then the best guess 
would be about $200. This result is based on the decision rule, taken from the decision 
tree, as follows: 

IF Number of Juvenile category purchases <     1.5 
AND INCOME_LEVEL $50,000 - $74,9,  

$40,000 - $49,9,
$30,000 - $39,9,
UNDER $30,000 
THEN Average Net Sales = $200.14 
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Decision trees can contain both categorical and numeric (continuous) information in the 
nodes of the tree. Similarly, the characteristics that define the branches of the decision 
tree can be both categorical or numeric (in this latter case, the numeric values are 
collapsed into bins—sometimes called buckets or collapsed groupings of categories—to 
enable them to form the branches of the decision tree). 

Figure 1.8 shows how the Fisher-Anderson iris data can yield three different types of 
branches when classifying the target SETOSA versus OTHER (Fisher 1936); in this case, 
2-, 3-, and 5-leaf branches. There are 50 SETOSA records in the data set. With the binary 
partition, these records are classified perfectly by the rule petal width <= 6 mm. The 3-
way and 5-way branch partitions are not as effective as the 2-way partition and are shown 
only for illustration. More examples are provided in Chapter 2, “Descriptive, Predictive, 
and Explanatory Analyses,” including examples that show how 3-way and n-way 
partitions are better than 2-way partitions. 

Figure 1.8: Illustration of Fisher-Anderson Iris Data and Decision Tree Options 

(a) Two Branch Solution

(b) Three Branch Solution

(c) Five Branch Solution
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Introduction
In data analysis, it is common to work with data with descriptive, predictive, or 
explanatory outcomes in mind. A descriptive analysis could simply display a relationship 
in data or it could display the relationship as a graphic, such as a bar chart. The goal is to 
describe the data or a relationship among various data elements in the data set. This is 
common and normally the baseline point of departure in working with data to develop 
insight. For example, you could describe the weather by indicating the temperature, 
relative humidity, or atmospheric pressure.  

Predictive use of data is a little different from descriptive use of data. In the predictive 
setting, it is normal to describe a relationship among data elements; furthermore, you can 
assert that this relationship will hold over time and be the same with new data, meaning 
that the relationship will be roughly reproduced in a novel situation. In the weather 
example, you can predict a weather effect based on the current rate of movement of a 
weather pattern, the differential pressure between competing weather systems, and air 
path measurements such as land mass, temperature, and humidity.  

The explanatory use of data describes a relationship and attempts to show, by reference to 
the data, the effect and interpretation of the relationship. In the weather example, you 
could say that the effect of temperature on air mass humidity is rain or snow, depending 
on the degrees of temperature and the percent of humidity in the air (and other factors, 
such as atmospheric pressure and air particle concentration). 
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Typically, you must step up the rigor of the data work and task organization as you move 
from descriptive use to explanatory use. In a descriptive setting, the baseline goal is likely 
to be to present the facts in a clear and unambiguous fashion. In a predictive setting, the 
baseline goal is likely to be to produce a reliable and reproducible predicted outcome 
(which is usually confirmed by reference to validation or test data drawn from a novel, 
but related, set of circumstances as the host data used to train the predictive model). In a 
predictive setting, it is important to show the numerical relationship between predictive 
rules or equations and the target value. As a result, you can say that an increase in, for 
example, 10 units of a given predictor is likely to cause an increase in 2 units of the target 
or outcome of the prediction. 

The explanatory use of data is more difficult to implement than either the descriptive or 
predictive use. Here, it is necessary to show how and to what degree a given relationship 
that is reflected in the data occurs. Usually, this demonstration is through reference to 
some explicit or implicit explanatory concept. For example, you can say that there is a 
direct relationship between air pressure and buoyancy of an air mass (or, for that matter, 
you can assert that there is a direct relationship between air pressure and the boiling 
temperature of water). Here, in the explanatory setting, you must show, through some 
kind of experiment, that the supposed relationship holds across various points of 
measurement, in different circumstances, and in different points in time. For example, if 
you describe the effect of air pressure on the boiling temperature of water, you might 
predict the boiling point at a given atmospheric pressure and then confirm the prediction 
through a measurement in an experimental setting. The most effective explanations 
demonstrate that the presumed relationship is primary, in that it is not an artifact of some 
preexisting relationship, nor is it mimicking the effects of an overarching or intervening 
relationship that is not expressed in the explanatory concept. 

The Importance of Showing Context  
Decision trees are constructed through successive recursive branches, where a branch is 
contained within the parent branch and is usually accompanied by peers that are formed 
at the same level of the decision tree. Because of this, a defining characteristic of a 
decision tree is that it clearly and graphically displays the interrelationships among the 
multiple factors that form the decision tree model, as viewed from branch to branch and 
between branches at any level of the decision tree. Decision trees display contextual 
effects—hot spots and soft spots in relationships that characterize data. These hot spots 
and soft spots reveal the frequently hidden and sometimes counterintuitive complexities 
in a relationship that unlock the decision-making potential of the data. For example, 
explore symmetry in branches that are peers at a given level of the decision tree: are sub-
branches of a male gender split formed by the same inputs as sub-branches of a female 
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gender split? In other words, are these relationships symmetrical? Is the direction of the 
relationship the same? Or, is there a reversal of the relationship—an interaction—that 
depends on the parent split? 

You intuitively know the importance of multiple, contextual effects, but you often find it 
difficult to understand the context because of the inherent difficulty of capturing and 
describing the richly woven complexity of multiple, interrelated factors. It is tempting to 
resort to simpler models to describe relationships; however, as shown in the following 
example, this can produce misleading, maybe contrary, results.  

Look back at the results of the decision tree in Figure 1.7. You might find it easy to 
conclude that the average purchase increases directly with the income level of the 
purchaser. This relationship is dramatically illustrated in the first branch of the decision 
tree. Average purchases increase from about $220 for those consumers whose incomes 
are $74,900 per year or less, to $270 for those consumers whose incomes are more than 
$74,900 annually. A better and more thorough understanding of this relationship comes 
from a closer examination of the various antecedents and intervening factors that could 
influence this relationship.  

The term antecedent refers to factors or effects that are at the base of a chain of events or 
relationships, just as planting a seed can be an antecedent to measuring stem growth. An 
intervening factor comes between the ordering established by the other factors and 
outcome (for example, earth and water can serve as intermediate sprouting media to 
observe the effect of the planted seed on stem growth). Intervening factors can interact 
with antecedents or other intervening factors to produce an interactive effect. Interactive 
effects are an important dimension of discussions about decision trees and are explained 
more fully later. Decision trees show both main effects and interactive effects. For 
example, in Figure 1.7, the first level (branch) of the decision tree shows the main effect 
of income on purchases. The second level, under income, shows the interactive effect of 
income by number of purchases in the sales category of juvenile purchases.  

Figure 2.1 displays a classic relationship observed between X and Z. X can represent any 
number of situations, events, states, or factors, usually captured on a data record. The 
same is true for Z. Antecedents, shown as A in Figure 2.2, include a variety of situations, 
events, states, or factors that precede X (conceptually or temporally), and I illustrates a 
variety of situations, events, states, or factors that could intervene between X and Z.
Decision trees enable you to quickly explore your hypotheses about these relationships 
and to scan the data set for antecedents and intervening factors that might help you better 
understand the relationship between income level and amount purchased.  



Chapter 2:  Descriptive, Predictive, and Explanatory Analyses 21

Figure 2.1: Illustration of Direction of Relationship

You might ask, “Does the relationship between income level and purchase amount 
depend on the gender of the customer?” (This question asks for an antecedent that might 
shed light on the relationship.) Or you might ask, “Does the relationship between income 
level and purchase amount depend on the number of average shopping visits in a year, or 
does it depend on the most recent purchase?” (This question asks for an intervening 
factor that could enhance your understanding of the relationship.) The results of looking 
at these two questions are illustrated in Figures 2.3 and 2.4.

Figure 2.2:  Illustration of Antecedents and Intervening Factors

Antecedents
Figure 2.3 provides a concrete example of how an antecedent (in this case, gender) can 
affect the relationship between two other variables (income level and average purchase). 

Figure 2.3: Illustration of the Effect of Other Factors
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In Figure 2.3, the general form of the relationship confirms that females spend more, on 
average, than males, and spending increases with income level for both males and 
females. However, there is an anomaly in the spending of the high-income males; the 
$100,000+  annual income males actually outspend the same category of females—$286 
versus $267. One interpretation of this effect is that the very best customers (in terms of 
purchase amount) are not high-income females, they are high-income males. This shows 
how decision trees can be used to test the effects of antecedents on the form of a 
relationship.  

Intervening Factors  
The decision tree in Figure 2.4 shows the effect of the intervening factor—latency—on 
the form of the relationship between income level and purchase amount. The term latency
is borrowed from physics to describe the period of time that one component in a system is 
waiting for another component. In this case, latency refers to the period of time when the 
customer is outside the purchase cycle. Generally, the greater the latency (the time since 
last purchase), the lower the average purchase amount. This suggests that high-spending 
customers are also high-value customers.  

An anomaly is revealed in the decision tree in the low-income group; among the 631 
people included in the survey from low-income groups (incomes of $30,000 per year or 
less), the amount of purchase actually increases with latency (purchasers with latency in 
the >=90 day range out-spent those in the 60-day range). There are several interpretations 
of this phenomenon; for example, low-income customers may save up money to make 
planned-for purchases.

The important point to note is that intervening factors can mediate interrelationships 
between input variables, and decision trees provide a flexible method of examining how 
these effects can be accommodated in the interpretation and extraction of marketing 
knowledge.
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Figure 2.4: Illustration of the Effect of Intervening Factors 

A Classic Study and Illustration of the Need to  
Understand Context 

Antecedents and intervening factors can have an important effect on the form of a 
relationship. Many documented cases show that this effect is substantial, and might 
involve a complete reversal in the direction of a relationship (e.g., from positive to 
negative), and can be both surprising and counterintuitive. A classic example is illustrated 
in the article “Simpson’s Paradox and the Sure-Thing Principle,” in the Journal of the 
American Statistical Association (Blyth 1972). To understand the scenario presented in 
this article, assume that you are a marketing manager for a software 
development/publishing company and that you are evaluating the effects of various 
promotional programs on long-term software retention. In Figure 2.5, you can see that the 
results to date have been particularly discouraging.1

1 Figures presented in this example are, in general, the same as those in the original article. The 
variable names and scenario have been changed to reflect a marketing application instead of the 
epidemiological research application that was featured in the original article. 
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Figure 2.5: Illustration of Relationship Reversals—Baseline

0%
10%
20%
30%
40%
50%
60%
70%

%
Retention

Keep After Eval Return 

Try - Buy Promotional Program Results

Figure 2.5 shows that a randomly selected group of respondents—11,000 were selected 
from advertisement responders and 11,000 were selected from information request 
responders—have a poor overall product retention (buy the product after an evaluation 
period) of only 32%. What is even more disturbing is that it was assumed that the 
information request responders would have a higher product retention because, 
presumably, these responders were better qualified than the responders from the general 
advertisement. The results on the source of the response are shown in Figure 2.6. 
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Figure 2.6: Illustration of the Effect of Third Variables
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The marketing model assumed that, although it was more expensive to generate leads 
from articles and infomercials, these leads would be more likely to result in a better-
qualified consumers than leads from general advertising, and that these leads would, in 
turn, have a higher retention rate.  

The results presented in Figure 2.6 demonstrate that this marketing model was 
completely wrong…or was it? Are there other factors present and unaccounted for that 
would confirm the marketing model and perhaps indicate a successful program? In other 
words, are there other variables that capture contextual effects that need to be looked at to 
more accurately understand the relationship between retention and promotion? 

The Effect of Context 
So far, the results have been presented without considering all of the effects of possible 
predisposing or intervening factors in the presentation. One such factor—customer 
segment—has been excluded from the current analysis. Segment membership is 
recognized as an important component in the overall marketing program. Because of its 
importance, all customers are scored on a segmentation framework that was developed to 
chart the value of customers. As a result, customers are managed better and new 
customers can graduate to higher levels of customer value.  
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Segmentation makes a major distinction between the software’s general users (generic) 
and higher-value power users. When the results of the promotional program are 
displayed, taking these two critical segments into account, a considerably different 
picture emerges, as shown in Figure 2.7. 

Figure 2.7: Illustration of Relationships in Context

When results are presented with the important customer segments included, a different 
view is provided; in both customer segments, the information request promotional vehicle 
outperforms the general advertisement. In both customer segments, responders who were 
selected for the evaluation via the information request where about twice as likely to keep 
the software (10% versus 5% and 95% versus 50%).  

How Do Misleading Results Appear? 
How do the kinds of astonishing reversals of results, such as what it is in the “sure thing 
principle” (Blythe 1972), occur? How can decision trees be used to ensure the discovery 
and presentation of valid results? The decision tree could show some of the drivers of 
these reversal results. In Figure 2.8 the information request vehicle appears to confirm the 
original assumption: advertisements are a better source of renewed business. 
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Figure 2.8: Illustration of Advertisement vs. Information Request Promotion 

If you look at the full decision tree in Figure 2.9, however, a different picture emerges. In 
the favored customer segment power users, the effect of information requests as a source 
of renewed business is very strong. Clearly, a decision tree application that is capable of 
sifting through the various interactions (combinations of antecedents and intervening 
factors that can influence the interpretation of relationships) would be useful. 

Figure 2.9: Illustration of Full Decision Tree
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Automatic Interaction Detection
It is precisely this motivation that drove the results presented in a series of articles 
authored by the primary developers of decision tree software in North America—Morgan 
and Sonquist. They were economists working with economic indicators and predicting 
economic events at the Institute for Social Research at the University of Michigan in the 
late 1960s and early 1970s when they began to write a software program called AID 
(Automatic Interaction Detection). AID became the first decision tree program in North 
America.  

Along with many other researchers at the time, they noted the same results that have been 
shown in previous examples—the form of a specific relationship is very much dependent 
on the context of the relationship and on the influence of other relevant factors in 
constructing and interpreting the relationship. They documented these observations in a 
seminal article in the Journal of the American Statistical Association (Morgan and 
Sonquist 1963). In this article, they suggested the use of decision trees to search through 
the many factors that can influence a relationship to ensure that the final results that are 
presented are accurate. The suggested approach evolved from a method of tabular 
analysis—a precursor to current-day multidimensional (OLAP) cubes—that was popular 
at the time. Although they were working within a regression framework, it is noteworthy 
that regression techniques, at that time, were in their infancy due to the limitations of 
computers. Even though Morgan and Sonquist were working with numeric data and 
regression models, they suggested an approach that was built on a style of contingency 
table analysis that had been developed by social scientists working on social theory and 
survey research analysis. This places this early development in the same context as 
current business analysts who may use regression techniques, but are more comfortable 
with developing and presenting results that are based on table views drawn from 
multidimensional cubes (for example, business intelligence and business analytics). 

This style of analysis is a systematic attempt, in the examination of a relationship, to 
identify a preceding relationship (sometimes called a controlling or specifying 
relationship) that could change the nature or form of the relationship. This analysis 
approach was developed by P.F. Lazarsfeld and M. Rosenberg and was originally 
discussed in The Language of Social Research (1955).2 Because of the limitations of 
computers at the time, it was common to conduct a tabular analysis of data. Data was  

2 Michael Weisberg, John Krosnick, and Bruce Bowen provide a more recent description of this 
method in An Introduction to Survey Research and Data Analysis (1989); however, the basic 
methodology remains unchanged to this day. 
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stored in 80-column punch cards, and the distribution of a field of data (column) in the 
card could be found by passing the data records (the card file) through a mechanical 
(rather than electronic) card sorter. This card sorter split up the records in a column into 
10 bins, numbered 0 through 9. By counting the number of cards in each of the bins for a 
column, it was possible to derive the distribution of values for a field of information in 
the data set. 

By applying this technique, it was also possible to successively partition the target of the 
analysis—say, income or dollars spent—according to the other fields in the analysis—for 
example, age of the study participants, gender, place of residence, and so on. The card 
sorter approach enabled the researchers to explore various subcategorizations of the 
target by looking at the results of various age–gender groupings and various age–gender–
residence groupings, and so on. This approach produced the characteristic decision tree 
display that is now so familiar. Until the arrival of digital computers, this approach served 
as more computationally accessible compared to regression. 

This approach was eventually adopted and embedded in the code that resulted in the 
development of the AID software program. As decision trees evolved, the goals of the 
approach expanded to handle both continuous and categorical table cell entries and multi-
way branches. Statistical tests and validation approaches were later developed to assure 
the integrity of the decision tree. 

In Morgan and Sonquist’s approach, the type of intervening effect shown in the previous 
marketing example is due to an interaction between customer segment and the effect of 
the promotional program versus retention. The overall effect is negative, as you move 
from information requests to advertisements, with respect to keep versus return. Yet, the 
interaction displays subregions of the relationship that are dominated by the predisposing 
factor of customer segment. Within customer segment, the relationship is positive. In a 
term that was introduced by Lazarsfeld and Rosenberg, this is an example of a 
“controlling” relationship.  

The concept of an interaction effect—or controlling relationship—is common in many 
modeling situations. As originally pointed out by Morgan and Sonquist, an interaction 
can obscure a strong relationship. In their article, they produced an example (Figure 2.10) 
where there is a relationship between savings and income—but only for the self-
employed. There is an interaction between employment status and rate of savings. In 
Figure 2.10, the effect of employment status “specifies” the relationship between savings 
and income; it shows a more specific relationship among the various income categories. 
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Figure 2.10: Illustration of an Interaction Effect

Morgan and Sonquist proposed the use of this approach as an improvement over standard 
regression models. Thus, the automatic discovery of this kind of interactive relationship 
could be used to either grow a decision tree as an alternative to regression, or as a means 
to introduce interaction terms in the regression equations. The interaction term is used to 
segment the regression equation into two slopes; one slope captures the relationship 
between savings and income for the self-employed, and the other slope captures the 
relationship between savings and income for others.

Morgan and Sonquist noted that the decision tree approach provided an explanation of 
about two-thirds of the variability in the savings-income relationship, while the 
regression approach, even with interaction terms in the equations, accounted for only 36 
percent of the variability. So, although decision tree results can be used to improve 
regression equations, these improvements may not perform at the same level as the 
original decision tree. This observation, and the resulting inquiry—and exposition of the 
relative merits of regression versus decision trees—prompted a lively discussion that 
continues to this day.  

Morgan and Sonquist discovered and published an extremely important consideration 
regarding the complementarity and substitutability of regression and decision tree 
approaches: it is normal for decision trees to perform well with strong categorical, 
nonlinear effects. Even when these effects are used to enhance the regression equation, 
the regression results can still be inferior to the decision tree results. However, decision 
trees are inefficient at packaging the predictive effects of generally linear relationships  
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and, in this situation, regression tends to perform better (and yield more economical 
models).3

Morgan and Sonquist discussed using the AID decision tree approach in dealing with 
another common problem with regression equations—multicollinearity. In 
multicollinearity, the relationships between the predictive terms in an equation obscure 
their effect on the target. This problem is shown in Figure 2.11. An appropriate remedy 
for multicollinearity is to respecify the regression equation (in this example, you would 
introduce a high–low savings term in the regression model to force separate slope 
estimates). 

Figure 2.11: Illustration of Multicollinearity

Figure 2.12 shows how a regression model could be masked by a combination of both 
interactive and multicollinear effects. In this situation, decision trees would be immune to 
the model-defeating characteristics of these effects, and would be a useful tool in 

3  When a decision tree fits a linear relationship, it tends to fit the single line—represented by a 
slope coefficient in regression—as a series of decision tree branches. This tends to produce a line-
fitting, staircase effect, which is neither economical nor as effective in prediction as regression is.  
Recent developments in multi-tree techniques, discussed elsewhere in this book, offset this 
disadvantage somewhat. 



32 Decision Trees for Business Intelligence and Data Mining: Using SAS Enterprise Miner

identifying terms for the regression equation to help the models perform better (and yield 
more interpretable results).  

The power and utility of decision tree methods, and the original AID software program, is 
that both decision trees and AID addressed the problem of hidden relationships. This type 
of analysis technique proved to be very popular. The publication of Morgan and 
Sonquist’s results, coupled with the availability of decision tree software (both in the 
United States and Europe), led to the development of decision trees as a stand-alone 
analysis technique. For many analysts, including statistical analysts, it became simpler 
and just as effective to use decision trees alone, which avoided the requirement of 
respecifying the regression equation. This decision tree popularity coincided with the 
growing power of computers and the ability of statistical analysts to move out of a tabular 
analysis framework and into a regression framework, or into a regression-augmented-
with-AID framework. 

Figure 2.12:  Illustration of an Interaction with Multicollinearity

It should be noted that interpretability is sometimes overlooked as a desirable model 
feature in its own right, particularly as quantitative methods continue their migration into 
more general areas of business use. A decision tree display is often superior to the purely 
numerical display of the regression model because general users can recognize the 
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qualitative and visual characteristics of a decision tree. By the same token, a general user 
can more easily recognize a regression-line display of a regression equation.  

Figure 2.13: Illustration of Numerical, Regression, and Decision Tree Displays 

Regression formulation: 

Y = 2X 

Decision tree rule form: 

IF x_  <  70.5 THEN DO; 
 Predicted y  =    146; 
 END; 

Regression slope display: 

Decision tree slope display: 
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The Role of Validation and Statistics in
Growing Decision Trees 

Although it had several benefits and utilities, the AID decision tree approach developed 
by Morgan and Sonquist turned out to have major problems. The first problem was 
caused by the strength of the numerical-searching algorithm. Essentially, because the 
algorithm looks through so many potential groupings of values, it is more likely to find 
groupings that are actually anomalies in the data. Further, the successive partitioning of 
the data set into bins that form the nodes of the branches of the decision tree quickly 
exhausts the number of observations that are included in lower levels of the decision tree. 
As a result, the successively lower levels of the decision tree are based on an increasing 
number of assumptions about the splits that are used to form the branches. Also, due to 
the recursive nature of the decision tree algorithm, fewer data records and associated data 
points are used to identify the specific leaves or nodes that are formed by the branch 
splits or partitions.  

Both problems—fitting anomalous relationships and fitting relationships with limited 
data—meant that it was not always possible to believe the efficacy of the branches that 
were identified by AID. This was pointed out as early as 1972 by Einhorn in an article 
that demonstrated that AID could form branches that reflected idiosyncrasies in the data, 
rather than reflecting effects in the population that the data represented. He pointed out 
that branches were formed based on a statistic that tried to minimize the variance within 
nodes and maximize the difference between nodes. The advantage of AID—looking 
through data and identifying any branch or split that could be used as an interaction—
meant that many splits were formed and examined. This led to a “data-dredging” effect, 
where inputs formed branches with numerical values (branch partition values) that 
showed overstated results. These results were no more than artifacts of chance. The 
overstated results can be produced by the intensive computation to identify combinations 
of values that can be used to form branches of a decision tree. When many combinations 
are examined numerically, then it is usual to identify combinations that favor a particular 
view of the data that reflects the idiosyncrasies of the data, not the characteristics of the 
universe that the data was drawn from. This is the result even if the sample data is an 
accurate reflection of the universe that the sample data was drawn from.  

An additional problem with AID was its tendency to find branches in inputs with large 
numbers of values, to the exclusion of branches in inputs with smaller numbers of values. 
This, too, was an artifact of chance and computation. For example, when looking for a 
binary split in a range of 100 values, AID would form a split for 1 versus 2+, 1-2 versus 
3+, and so on. This process increases the chance that there will be at least one split along 
this range of 100 values that shows differences in a given target. In contrast, when 
exploring the relationship between gender, there is only one split possible—male versus 
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female. If this branch does not produce a strong effect, then the algorithm will examine 
another input. There is less opportunity for chance to produce an effect (as there was with 
100 values) and, consequently, there is less opportunity for fields with relatively few 
values to enter into the model when compared to fields with relatively more values.  

Overall, three different kinds of problems were noted with AID: 

“Untrue” relationships (e.g., showing structure in random data) 
Biased selection of inputs or predictors 
AID did not know when to stop growing branches, and it formed splits at lower 
extremities of the decision tree where few data records were actually available  

Because of its growing popularity and the utility of AID as an analysis tool, remedies to 
the problems were proposed. Remedies include using statistical tests to test the efficacy 
of a branch that is grown. For example, if a branch shows a difference between males and 
females with respect to an outcome, is this difference significant from a statistical point 
of view? Another remedy involves using validating data to test any branch that is formed 
for reproducibility. Hold out or validation data is typically formed by drawing a random 
sample from a data set before the data set is introduced into an analysis. The hold-out 
data is used to test any relationships that are formed with the original data (minus the 
hold-out data). Because the original data is used to form the relationship, it is sometimes 
called the “learning” or “training” data (because the algorithm “learns” the relationship). 

One of the first remedies for addressing the problems with AID was proposed by Kass 
(1975). Kass suggested the use of statistical tests and Bonferroni adjustments. Bonferroni 
adjustments are named after the statistician who suggested that the level of statistical 
confidence of a statistical test be adjusted to account for the number of tests or trials that 
were used in producing the test. This provided a means to place inputs with 100 values or 
2 values on the same footing. And it overcame the AID tendency toward the biased 
selection of predictors. These statistical tests also tested the reliability of branches formed 
in the AID decision tree, including the branches at lower levels of the decision tree. 

Kass’s approach was called CHAID. This stood for “chi-square AID”. In conjunction 
with Hawkins (another statistician), Kass developed another approach, called XAID, 
which also used statistical tests, but worked with continuous targets (Hawkins and Kass 
1982).
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Remedies based on a validation approach were soon proposed by Breiman, Friedman, 
Olshen, and Stone (1984). Whereas the Kass approach used classical statistical theory to 
address the shortcomings of AID, the Breiman et al. approach relied on validation 
techniques to improve upon AID. Breiman et al. also introduced a number of new 
features. Their approach was called Classification and Regression Trees (CRT) and was 
published in a book of the same name. 

The Application of Statistical Knowledge to Growing 
Decision Trees

Solutions based on Kass and Hawkins’s methods began to appear in the late 1970s. The 
CHAID method works with a categorical response or target. The XAID method works 
with a continuous (or numeric) response or target. The general approach of their 
methods—referred to as CHAID analysis—allows for the development of decision trees 
with both categorical and numeric targets. The inputs to the analysis are used to form the 
attributes of the decision tree. The inputs, like the target, may be categorical or numeric. 
Although branches are formed as categories, Kass provided a method of dealing with 
numeric data that is at ordinal or interval levels of measurement. (It is usually possible to 
compress ordinal or interval data into a more restricted range of categorical values.) 

Significance Tests 
Statistical tests that are used in the CHAID analysis approach: 

1. CHAID methods use a test of similarity to determine whether individual values of an 
input should be combined. With the age values, for example, if two age values have 
the same response value (from a statistical point of view, they are indistinguishable), 
then they are combined. 

2. After similar values for an input have been combined according to the previous rule, 
tests of significance are used to select whether inputs are significant descriptors of 
target values and, if so, what are their strengths relative to other inputs. 
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The approach developed by Kass addresses all the problems in the AID approach: 

1. A statistical test is used to ensure that only relationships that are significantly 
different from random effects are identified. 

2. Statistical adjustments address the biased selection of variables as candidates for the 
branch partitions. 

3. Tree growth is terminated when the branch that is produced fails the test of 
significance.

Kass introduced another innovation in the development of the form of the decision tree 
by describing how to form multi-way splits in the branches of the decision tree (as 
opposed to the simple binary or 2-way splits that form the AID decision tree). This multi-
way splitting emerged as a result of Kass developing what he described as a merging-
and-splitting heuristic in the construction of the branches of the decision tree. 

The Role of Statistics in CHAID 
CHAID relies on a traditional statistical test of significance to form the group boundaries 
that determine the values of the inputs that form the branches of the decision tree. 
Traditionally, the test of significance is constructed around the null hypothesis. When 
comparing the distributions of two or more groups in a data set, the statistician gathers 
numeric evidence to characterize the two or more groups and then poses the question, 
“Are there differences in magnitude among the groups so great that the null hypothesis of 
no differences can be rejected as not tenable?” 

In practice, as greater magnitudes of differences are observed among groups, the 
statistician has more confidence in the structure and form of the relationship. 

Confidence     
Extremely Good Good Pretty Good Not So Good Extremely 

Weak
.001 .01 .05 .10 .15 

This test of significance determines which values are combined. The values are used as 
the various inputs that are considered as splitting criteria in the construction of the 
decision tree. To elaborate, a test of significance determines whether two values are the 
same with respect to their relationship to the target. If their values are the same, then they 
are combined. If their values are different, then they are separate branches on the decision  
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tree. The significance test is illustrated in Figure 2.14. The degree of separation between 
two groups can be used as a test of the difference between two groups. The larger the 
separation, the stronger the relationship and, consequently, the greater the statistical 
confidence in the relationship. Because any two nodes on the branch of a decision tree 
can be seen as two groups, the internode separation can be tested with a test of 
significance. Multi-node tests can be used just as multigroup tests are used. 

Figure 2.14: Illustration of Tests of Significance

The second way that CHAID methods use statistics is to judge which relationships are 
strong enough to use in building the model. Once the values of a given input to the 
CHAID decision tree are combined through the merge-and-split method, then the 
resulting table can be set aside for subsequent evaluation. The process of combining field 
values for each input in the decision tree continues using the merge-and-split heuristic 
until, finally, all inputs have had their values combined. 
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Figure 2.15: Significance as a Function of Distribution Separations

After the values of the inputs have been combined, you can look at each of the inputs and 
determine the overall statistical relationship between a given input, its associated 
branches, and the target to be predicted. 

Kass proposed the use of statistical adjustments—referred to as Bonferroni adjustments—
to eliminate the side effects of data-dredging. The level of statistical significance used to 
assess the identification of branches on the tree is adjusted. This adjustment factors in the 
number of tests that were conducted in identifying the relationship.  

After Bonferroni adjustments have been applied, alternative partitions can be presented to 
the decision tree display, and the most appropriate input can be selected as the splitting 
criterion. In the absence of any other criterion, the input that is selected is the input with 
the highest Bonferroni-adjusted level of significance. Although this could be the best way 
to grow a decision tree from a predictive point of view, it might not be the best way to 
show the nature and sequence of relationships that characterize a given target. It is 
preferable for the analyst to grow the decision tree so that it supports the conceptual 
model that is being used to describe the target. So, when examining a list of alternative 
branches at a given level of the tree—all branches being significant—the analyst might 
choose the branch that best fits the conceptual model. This type of choice (from the SAS 
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Enteprise Miner interface) is shown in Display 2.1. In a banking application, a number of 
variables—such as IRA Balance, Age and so on—are potential inputs. Although the 
variable IRA Balance has the highest splitting criterion value (9.65622), there are many 
other variables that could be selected to grow the decision tree. Any of the variables 
could be used as a splitting criterion because all of them are significant from a statistical 
point of view. Selecting branches in a particular sequence has analogies in regression 
modeling, whereby the entry sequence of terms in a regression equation is determined by 
the analyst. 

Display 2.1: SAS Enterprise Miner

The measure of significance –Log(p) is a transformation of the normal method of 
displaying significance. This transformation is shown in the Glossary section of this 
book. 

Validation to Determine Tree Size and Quality 
While Kass was improving the operation of AID through tests of significance, parallel 
research and development was going on to validate data in the construction of decision 
trees. The results of this research and development were published by Breiman, 
Friedman, Olshen, and Stone (1984). The data validation approach developed by Breiman 
et al. was called Classification and Regression Trees (CRT). 
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CRT closely follows the original AID goal, but with improvement through the 
application of validation and cross-validation. In CRT, it is easy to determine where there 
is overfitting; as the decision tree is being developed, construct an algorithm to verify the 
reproducibility of the decision tree structure using hold-out or validation data. After a 
decision tree or a branch of a decision tree is grown, then reproduce the growth in the 
hold-out or validation data. If the validation results deviate from the training results, then 
the decision tree is not stable. Typically, the top level of the decision tree is readily 
reproduced; however, at lower levels of the decision tree, training results and validation 
results tend to deviate. And, at some level, the deviation is too severe to retain the form of 
the decision tree. 

Breiman et al. found that it was not necessary to have hold-out or validation data to 
implement this grow-and-compare method. A cross-validation method can be used by 
resampling the training data that is used to grow the decision tree. This resampled data 
can also be used as a reference point—relative to the original or training data—to check 
and verify the accuracy and reproducibility of the tree as it is being grown. 

CRT can include complexity (parsimony) to tune the size of the decision tree. With CRT, 
lower branches are penalized in the validation, which makes it harder to grow bigger 
trees that pass all the validation tests. In addition, it is possible to use prior probabilities 
to tune the size and shape of the decision tree. Here, the validation test is adjusted to 
reflect a distribution of the validation statistics that are calculated, so that the validation 
test is calculated on the basis of this distribution (rather than on the raw distribution, as 
reflected in the hold-out validation data). 

What Is Validation? 
Validation is a method of verifying the integrity (reproducibility) of a statistical model. 
Validation works by setting aside test data (typically 30%, selected randomly) that is 
from the original (training) data set used to develop the statistical model. This test data is 
subsequently used to test the performance of the model that is developed with the original 
(training) data. This form of validation is an alternative to resubstitution. Resubstitution 
uses data twice—once to grow the model and then again to test it. Simple methods of 
resubstitution overestimate the model’s integrity. 
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Figure 2.16: Illustration of Validating Training and Test Data
A

cc
ur

ac
y

Model Complexity

Training data

Test dataResubstitution data

Regardless of the method used to validate the decision tree, you can assess the stability of 
the decision tree by comparing branch distributions of the target in the training and test 
data; if the test decision tree produces results that match the training decision tree, then 
there is confidence that the branches are reproducible and accurate.  

In practice, training and test decision trees are built branch by branch. Comparisons 
between training and test decision trees are made with each successive branch that is 
built. Comparisons are made on the basis of deviations in the target values in the 
respective decision trees. If the target value is categorical, then the modal (most common) 
category predictions in the training decision tree are compared to the test tree. For 
interval targets, training mean values, as well as the variability between training and test 
samples can be compared for similarity. Comparisons are made on the basis of error 
rates.

At some point when growing branches, the error rates between training and test samples 
begin to diverge. As error rates climb the decision tree, the stability and reproducibility of 
the respective training and test trees at the lower branches deteriorate. When deterioration 
begins, it is time to stop growing the tree and select a subtree consisting of the higher 
branches that are more stable.  



Chapter 2:  Descriptive, Predictive, and Explanatory Analyses 43

Figure 2.17: Illustration of the Grow-and-Prune Strategy

The development of CRT laid the groundwork for these and many other validation 
approaches and provided tractable methods to grow reliable and accurate decision trees 
(what Breiman et al. called “honest” decision trees at the time). CRT solved the problems 
with the AID approach and proved as powerful a technique as the CHAID and XAID 
approaches developed by Kass. 

The full methodology for growing and pruning branches in CRT include the following: 

For a continuous response field, both least squares and least absolute deviation 
measures can be used. Deviations between training and test measures can assess 
when the error rate has reached a point to justify pruning the subtree below the 
error-calculation point. 
For a categorical-dependent response field, it is possible to use either the Gini 
diversity measure or Twoing criteria. 
Ordered Twoing is a criterion for spitting ordinal target fields. 
Calculating misclassification costs of smaller decision trees is possible. 
Selecting the decision tree with the lowest or near-lowest cost is an option. 
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Costs can be adjusted. 
Picking the smallest decision tree within one standard error of the lowest cost 
decision tree is an option. 

In addition to a validated decision tree structure, CRT provided other extensions to AID:  

works with both continuous and categorical response variables  
handles missing values by imputation 
employs surrogate splits 
grows a larger-than-optimal decision tree and then prunes it to a final decision tree 
using a variety of pruning rules 
considers misclassification costs in the desirability of a split 
uses cost-complexity rules in the desirability of a split 
splits on linear and multiple linear combinations 
does subsampling with large data sets 

Like AID, CRT employs a binary splitting methodology, which produces binary decision 
trees. CRT does not use the statistical hypothesis testing approach proposed by Kass, and 
CRT relies on the empirical properties of a validation or resampled data set to guard 
against overfit. Breiman et al. did not embrace the kind of merge-and-split heuristic 
developed by Kass to grow multi-way splits, so multi-way splits are not included in the 
CRT approach. 

Pruning  
The role of validation and pruning can be described using a decision tree run against a 
data set of banking transactions. The data set contains credit score as a target variable, 
and a number of inputs, including customer demographics, banking attributes (such as 
accounts used), and behavioral data such as transaction timing, counts, and monetary 
value. Figure 2.18 illustrates how a decision tree can grow with or without validation on 
the same data set (here, banking customers). As shown in the figure, a different approach 
to validation can produce dramatically different results. 
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Figure 2.18: Illustration of a Pruning Scenario 

With a continuous target (such as credit score), a typical measure of decision tree model 
accuracy is to use an average squared error comparison between the training data set and 
the validation. The results are displayed in an iteration chart that shows the relationship 
between the average squared error computed as the decision tree creates leaf after leaf. 

Display 2.2: Illustration of an Iteration Chart
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The training and validation data set decision trees yield a similar average squared error 
through the construction of 10 leaves, but they begin to diverge in the construction of 
leaves 11, 12, and so on. This results in the decision tree shown in Figure 2.19. 

Figure 2.19: Illustration of the Effect of Pruning Decision Tree Growth

By contrast, if you were to grow the decision tree using standard branch-to-branch 
lookahead based on a test of significance, the decision tree would have more branches. 
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Figure 2.20: Tree Growth Using Significance Tests to Stop 

This decision tree has a total of 24 leaves, which is twice as many as what was produced 
using pruning as shown in Figure 2.19. 

Decision trees have evolved significantly; however, early forms of decision trees laid the 
groundwork for many adaptations. The significant characteristics of these early decision 
trees are summarized in the following table. 
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Table 2.1: AID, CHAID, XAID, and CRT Compared

Technical Feature AID CHAID XAID CRT

Target variable - continuous � � �

Target variable - ordinal �

Target variable - categorical � �

Degree of branch partitioning 2 multi multi 2

Splitting criterion adjusted for number of 
categories in predictor � �

Splitting criterion adjusted for variable type 
(e.g., ordered, unordered) � �

Criteria for splitting the node—for all possible 
2-way splits, choose the one which explains the 
most variation 

� �

Criteria for splitting the node - for all possible 
multi-way splits, choose the one which explains 
the most variation 

� �

To determine final decision tree stop: when too 
few observations � � � �

To determine final decision tree stop: when no 
more splits are significant � �

Build a large decision tree and prune based on 
validation tests formed from test sample or 
resampling approach 

�

Split on linear combination of predictors �

Prior probabilities and cost function can be 
specified �
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The entry “Split on linear combination of predictors” formed the basis of a number of 
enhancements in later years, such as the QUEST algorithm (Quick, Unbiased, Efficient, 
Statistical Tree). These enhancements are described by Loh and Vanichsetakul (1988). 
Although they are statistically powerful, these enhanced splits have never been adopted 
on a large scale. Splits that are made on a linear combination defeat one of the primary 
advantages of decision trees: ease of use and ease of interpretation and comprehension. 

One of the early inspirations for decision trees—the Concept Learning System (CLS)—
was proposed by Hunt, Marin, and Stone (1966). It inspired a parallel development of 
decision trees in the areas of machine learning and artificial intelligence. The connection 
between statistical approaches and approaches based on pattern recognition (including 
machine learning) has continued through the development of decision trees. In addition, 
this connection has been a robust source of innovation as decision trees have developed 
into a mature method of data mining. 

Machine Learning, Rule Induction, and Statistical  
Decision Trees 

Machine learning is a general way of describing computer-mediated methods of learning 
or developing knowledge. Machine learning began as an academic discipline. It is often 
associated with using computers to simulate or reproduce intelligent behavior. Example 
application areas include robotics, speech recognition, and language understanding and 
translation. Machine learning has also been used to build intelligent chess-playing 
programs (Shapiro 1987). Machine learning and business analytics share common goals: 
In order to behave with intelligence, it is necessary to acquire intelligence; further, it is 
necessary to acquire intelligence, and even refine it, over time as circumstances change. 
In these circumstances, there is a strong incentive to acquire intelligence from databases, 
which serve as records of positive and negative outcomes. An advantage of acquiring 
intelligence from databases is that the acquisition process can unfold in an automatic 
fashion. So, if data is accumulated less automatically, and if intelligence is extracted 
automatically, then it is possible to build and refine knowledge in ways that are not 
possible manually.

The broad goals of machine learning can be roughly compared to human learning goals: 
through the study of and experimentation with a particular area or subject, you can learn 
how the area or subject operates, how to react to it, and, possibly, how to exploit it to 
achieve whatever purpose you have in mind. 
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Knowledge can be captured and expressed in many ways and forms; for example, both 
collections of books and collections of data contain knowledge. Because data sets are 
usually more structured than books, they are a desirable source of knowledge for machine 
learning applications. 

All decision trees are collections of rules. Although decision trees appear to be visual 
representations, if you look underneath, you will see that decision trees are rule 
expressions. Thus, every branch on the decision tree has a semantic description and 
because of this, decision trees are natural forms of machine learning. The development of 
decision trees to form rules is called rule induction in machine learning literature. 
Induction is the process of developing general laws on the basis of an examination of 
particular cases. 

The areas of rule induction, machine learning, and statistical decision trees are closely 
linked. A good discussion of these areas and some useful references are provided by 
Michie (1991) and McKenzie et al. (1993). Many forms of machine learning work with 
data in an approach that is analogous to statistical approaches, and attempt to achieve 
results that are comparable to statistical results. Statistical approaches are used in the 
aspects of science that depend upon observations to confirm or deny objective indicators 
of the theories and hypotheses that explain events and phenomena in academic 
disciplines. Physical scientists often use empirical data to confirm their theories and 
hypotheses; for example, the continued effect of humidity on oxidation rates in various 
metal composites. Sciences of human behavior use empirical data to confirm theories; for 
example, increases in purchases in response to a lowered rate of interest or promotional 
discount. The role of statistics in these examples is often to assess the importance and 
reliability of the rules or relations that are discovered through the examination of the data. 
In this respect, the goals of statistics and machine learning are so aligned that, in many 
cases, they are indistinguishable (at times, they are similar disciplines with separate 
names). This is particularly true in the field of data mining, which explores the use of 
generally available data sources to extract knowledge, often in the form of rules, to 
illuminate a practical or academic concern. 

Rule Induction 
In the early years of the academic study of intelligence, it was common to think of 
knowledge and thinking processes as consisting of rules and the processing of rules. 
Humans, for example, could be considered rule processors who make decisions based on 
rules that they carry in their heads. So, if the weather is cool, you put on a warm coat. 
Early forms of machine learning were modeled after this conceptualization of human 
behavior. One of the earliest forms of machine learning was based on a form of rule 
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induction called the Concept Learning System (CLS) and was developed by Hunt, Marin, 
and Stone (1966). Most forms of decision trees can trace their roots back to CLS. 

Forms of rule induction inspired by the CLS algorithm (and the underlying concept 
learning model of Hunt, Marin, and Stone) most closely resemble statistical decision 
trees. Here, a concept is learned by discovering rules that can classify an object. An 
object is classified by discovering how variations in a criterion attribute can be predicted 
or explained in terms of the other attributes that have been collected or measured for the 
object.

In most applications of rule induction, the goal is to examine a set of cases to inductively 
derive predictive rules that allow you to characterize a situation with accuracy and 
reliability. For example, if you observe that in winter, at high altitudes, the temperature is 
lower, then you might propose the following predictive rule: 

IF  season is winter 
AND altitude is high 
THEN temperature is low 

Almost all computer systems that rely on machine learning contain at least some rules, 
and the majority of computer systems rely on rules to accomplish most of their main 
functions. A rule has the following form: 

IF  <condition> 
THEN <action> 

A condition can be a state that is determined by the results of an equality (for example, is 
age equal to 30 years?) or an inequality (for example, is hair color not blonde?) 
relationship.

Rules can be collected from experts or extracted from an appropriate data set. For 
example, in a medical expert system, a medical practitioner might propose a rule such as: 

IF       temperature-elevated 
THEN prescribe-remedy 

In this example, the rule reflects medical knowledge (and, in this case, conventional 
wisdom) that an elevated temperature usually indicates that the subject is fighting off an 
infectious organism, such as a cold, or has a bacterial infection; therefore, the subject 
requires some kind of remedy.  
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A study discussed by Ho Tu Bao (2002) provides real-world data on meningitis that was 
collected at the Medical Research Institute, Tokyo Medical and Dental University from 
1979 to 1993. The database contains data of patients who suffered from meningitis and 
who were admitted to the department of emergency and neurology in several hospitals. A 
pattern discovered from this database is expressed in the form of rules:   

IF    Poly-nuclear cell count in CFS <= 220
AND  Risk factor = n 
AND  Loss of consciousness = positive 
AND  When nausea starts > 15 

THEN  Prediction = Virus

Rules can be extracted from data quickly and inexpensively. If the data is structured 
appropriately, then the rules are not subject to human bias and can be thought to reflect 
objective truth. Data can be designed to quickly respond to and reflect the environment. 
Thus, rules extracted in this fashion are always up to date. In summary, rules generated 
by software possess many advantages. 

Because rules are extracted from data, they are objective and not prone to 
subjective interpretation; they are as good as the data they are extracted from and 
the extraction method that is used. 
Rules can be extracted automatically. Hence, they are less expensive. 
Because rules are extracted automatically, they can be produced quickly. 
Although subjective experience and domain knowledge often cannot keep up with 
changes in the environment (for example, new external market constraints, new 
technology, and so forth), data can if it is collected properly. 

Improved methods of mineral exploration is one of the many uses of rule induction in the 
discovery of knowledge in data. This is illustrated by the work of the Geological Survey 
of Canada (Reddy and Bonham-Carter 1991). Reddy and Bonham-Carter have used an 
inductive approach to predict mineral deposits. A database contains information on the 
presence of a given mineral deposit. Each record in this database also contains 
information about the surrounding geology, gravity, magnetic vertical gradient readings, 
proximity to volcanic sites, and so on. By inductively examining the conditions that are 
associated with the presence of a mineral deposit, it is possible to formulate a rule that 
predicts the location of a mineral deposit. For example: 
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RULE_1

 IF geology = mafic intermediate volcanics  
 OR mafic intrusives magnetic vertical gradient = 1 to 6 

THEN

  no deposit = 86.6% 
  deposit = 13.4% 

RULE_2

 IF  geology = mafic intermediate volcanics  
 OR  mafic intrusives magnetic vertical gradient = 7 

THEN

  no deposit = 60.3% 
  deposit = 39.7% 

Both of these rules predict a higher likelihood of mineral deposit than the average of 
about 5% in the entire database. Information on the surrounding geology and magnetic 
vertical gradient readings enables the development of these predictive rules. These rules 
were developed using a decision tree.  

Michie and Sammut (1991) have shown that not only can decision tree rules be used to 
examine remotely sensed data or medical records, but that they can examine physical 
behavior to derive a set of rules for balancing a pole, controlling a satellite, or even flying 
a plane. An article in AI Magazine (Michie and Sammut 1991) described their work with 
a pole and cart problem, shown in Figure 2.21. 
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Figure 2.21: Illustration of the Motion Dynamics in the Pole and Cart Problem

The pole and cart problem involves balancing a pole on a cart on a horizontal track that 
travels along a left-right axis. A human operator runs the pole and cart and is connected 
to a device that records the adjustments made to keep the pole balanced vertically. The 
human intervention forms a training set of data that contains rules that describe the 
adjustments. 

Michie and Sammut applied the same process to controlling a satellite. The relationships 
in the data were more complicated because, unlike the two-dimensional adjustments 
made to the pole and cart, a satellite has pitch, yaw, and roll directions. Nevertheless, the 
process is similar. Here is a sample set of rules used to control a satellite’s movements: 

if z < -0.002 then apply torque of 1.5 
else if z > 0.002 then apply torque of -1.5 
else if pitch < -2 then apply torque of 1.5 
else if pitch > 2 then apply torque of -1.5 
else if y < -0.002 then apply torque of 1.5 
else if y > 0.002 then apply torque of -1.5 
else if roll < -2 then apply torque of 1.5 
else if roll > 2 then apply torque of -1.5 
else if x < -0.002 then apply torque of 0.5 
else if x > 0.002 then apply torque of -0.5 
else if yaw < -2 then apply torque of 0.5 
else if yaw > 2 then apply torque of -0.5 

Michie and Sammut call these implementations “adaptive control systems.” They point 
out that the conventional control theory requires a mathematical model to predict the 
behavior of a process so that appropriate control actions can be made.  An example of 
this type of mathematical model is shown in Figure 2.22. 
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Figure 2.22: Illustration of the Mathematical Model to Describe the Pole and Cart 
Movement

Many processes are too complicated to model accurately. Often, not enough information 
is available about the process’s environment. When the process is too complicated or the 
environment is not well-understood, an adaptive controller might work. An adaptive 
controller learns how to use the control actions available to meet the process’s objective. 
The process is treated as a black box and the adaptive controller interacts with it by 
responses that have been learned through rule induction. 

Rule Induction and the Work of Ross Quinlan 
Rule induction was the inspiration for one of the most popular forms of machine learning, 
which was developed by Ross Quinlan at the University of Sydney, Australia. Quinlan 
developed one of the earliest top-down approaches to the rule induction of decision trees 
approach called “ID3”. “ID” stands for “Interactive Dichotomizer” and “3” stands for 
“version 3”, which was the most widely known version. More information and some 
useful references are provided by Michie (1991).  Briefly, ID3 computes a gain ratio to 
determine the structure of the decision tree. The gain ratio functions like the variance 
reduction statistic in AID, or like the chi-square statistic in CHAID. ID3 is based on the 
concept of entropy, developed by Claude Shannon to describe the amount of information 
that is contained in a signal. Although this concept was originally used to describe the 
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capacity of various communications channels, it can be used in decision trees to describe 
the communications capacity of competing splits or inputs and the resulting branches on 
the decision tree.

The ID3 algorithm had many of the same shortcomings as the AID algorithm; for 
example, decision trees might be grown too large to be reliable; multi-valued inputs could 
be favored over inputs with fewer values. Unlike AID or CHAID, ID3 did not combine 
similar values on the branches; if an input had three values, it produced a branch with 
three nodes, while a five-valued input produced five nodes, and so on. 

The development of ID3 provided a significant boost for decision tree methods in 
machine learning. ID3 ultimately led to the introduction of more traditional, statistically 
based decision tree methods in a machine learning setting. This led to the continued 
development of decision trees in a variety of areas and applications—a development that 
continues to this day. 

Improvements to the ID3 algorithm culminated in the development of the C4.5 method of 
decision tree construction, as well as its successor—C5.0. The C4.5 algorithm resolves 
problems identified in the original AID and ID3 implementations, and deals with both 
qualitative and quantitative attributes, missing values, and overfitting. C4.5 expanded the 
types of inputs possible—the target is nominal and the inputs can be either nominal or 
interval.

Unlike the ID3 algorithm, which produced n-way splits, the C4.5 decision tree algorithm  
produces binary splits. For multiple values, each attribute is first assigned to a unique 
branch, and then, in steps, two branches are merged until only two branches exist. 
Missing values are excluded from the split search on that input and from the numerator of 
the gain ratio. Missing values are an additional branch in the decision tree. For interval 
inputs, C4.5 finds the best binary split. For nominal inputs, a branch is created for every 
value, and then, optionally, the branches are merged until splitting does not improve the 
decision tree.

Merging is performed stepwise. At each step, the pair of branches that most improves the 
splitting measure is merged.  When creating a split, observations with a missing value in 
the splitting variable are discarded when computing the reduction in entropy. The entropy 
of a split is then computed as if the split makes an additional branch exclusively for the 
missing values.
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The decision tree is grown to overfit the training data. In each node, an upper-confidence 
limit of the number misclassified is estimated, assuming a binomial distribution around 
the number misclassified. A subtree is sought that minimizes the number 
misclassifications in each node.   

C4.5 can convert a decision tree into a rule set. A rule set is a collection of rules that 
describe the leaves of a decision tree. An optimizer runs through the rule set so that 
similar rules are combined and redundancies are eliminated. Because these rule sets 
contain fewer rules than the decision tree, they are more readily understandable than most 
rule representations. In some cases, rule sets can be more readily understandable than 
decision tree representations.   

C4.5 can create fuzzy splits on interval inputs. The decision tree is constructed the same 
as with non-fuzzy splits. If an interval input has a value near the splitting value, then the 
observation is effectively replaced by two observations, each with weight related to the 
proximity of the internal input value to the splitting value. The posterior probabilities of 
the original observation equal the weighted sum of the posterior probabilities of the two 
new observations.

The most recent version of Quinlan’s approach is C5.0. C5.0 is an improvement over 
C4.5 and provides boosting and cross-validation. Boosting resamples the data that is used 
to train the decision tree. Each time the data is used to grow a decision tree, the accuracy 
of the decision tree is computed. Over time, data is adjusted to address previously 
computed inaccuracies. C5.0 provides facilities to specify number misclassification costs. 

The Use of Multiple Trees 
The mid-1990s were a watershed era for decision trees. In addition to Quinlan’s work and 
the work of Breiman, Friedman, Olshen, and Stone, significant developments came from 
computer science. Two researchers, in particular, developed a new approach that became 
influential. The work of Amit and Geman (1991) on digit recognition involved using 
multiple decision trees to create what they called a holographic view of the digits in the 
source database. 

This led to the development of a new class of decision tree approaches based on 
resampling and reweighting the original data to create a family of predictors that perform 
together better than single predictor. Multi-tree—or boost approaches—are discussed 
further in Chapter 4. 
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Amit and Geman compared their approach to creating a holographic view of the problem 
so that a given decision tree split could be viewed from various perspectives. The family 
of random decision trees that were grown from the original data is used to create these 
various perspectives. 

Amit and Geman’s work served as an inspiration to Quinlan, and most significantly to 
Leo Breiman, who developed this approach into random forests. The work on random 
forests is most notable because it represents decades of interaction between the machine 
learning community and the statistical community. This interaction is not always 
productive, possibly because of a difference in emphasis. As Breiman noted in the Wald 
series of lectures (2002): machine learning people tend to be interested in whether things 
work, whereas statisticians tend to be interested in why things work.

A Review of the Major Features of Decision Trees 
So far, this chapter has described how decision trees have readily definable features that 
characterize and distinguish them from other data discovery, display, and deployment 
techniques. Decision trees were originally developed as robust yet simple methods to deal 
with the many complexities of multiple relationships among fields of information in data 
sets.  These complexities and contextual effects are often missed by other methods of 
analysis, which can lead to inappropriate decisions. This is why decision trees, which 
explicitly discover and display multiple relationships in context, are such important tools 
for the empirical discovery, display, and validation of knowledge. The simplicity of 
decision trees facilitates the examination of multiple relationships, which enables 
decision trees to go beyond simplistic one-cause-one-effect types of analysis. 

Roots and Trees
Decision tree results are produced graphically in the form of a decision tree. The normal 
display is an inverted tree with the root node at the top. The root node contains a 
summary of the data set to be examined; typically, it consists of the values of the field 
that will be partitioned or examined as the decision tree grows. Because this field is the 
target of the analysis, it is often called the target; however, because its values can be 
dependent on the values of the fields that will be used to examine it, then it can also be 
called a dependent field or variable.  
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Branches 
Important inputs are selected as the splitting criteria in forming the shape and sequence of 
branches on the decision tree. The decision tree criteria separate important from 
unimportant branches so only strong relationships between inputs and the target are 
retained.

Inputs are referred to as predictors or classifiers because their values can be used to 
predict target values or classify target values. Whether inputs are predictors or classifiers, 
they are still considered inputs. Inputs have utility as a general descriptive term for 
predictors, classifiers, independent variables and, as is sometimes used in machine-
learning applications, attributes. Branches can be 2-way (binary) or multi-way (many) 
and are formed by partitioning or splitting the target values with respect to the 
corresponding values in the inputs. Inputs can be any level of measurement—qualitative 
or quantitative. 

Similarity Measures 
Many measures have been used to select inputs and combine inputs that form partitions 
or classifications of the target. Attributes of the branches are grouped in the two or more 
nodes that characterize the branches. So, when a branch is identified with its associated 
leaves or nodes, then the members of each leaf or node are as homogenous as possible 
(with respect to their relationship with the target). In addition, each leaf or node is 
maximally distinguished or differentiated from other nodes on the same branch of the 
decision tree. Internode (between node) differences are maximized, and intranode (within 
node) similarities are maximized. 

Typical statistical measures of association include a measure of how one set of values is 
related to or associated with another set; a measure of information gain (i.e., how much 
information about a target do I gain knowing corresponding information about an input?); 
or a measure or purity (how homogenous or diversified are the members of a branch of 
the tree?). It is possible to review the partitions or classifications formed by various 
inputs and to either select an input based on the numerical properties of the partitioning 
mechanism, or to select an input based on business rules.  

Recursive Growth 
Decision trees are said to be grown recursively; that is, once the initial or root node is 
split into a branch, all subsequent nodes are also split using the same methodology. So, 
once you discover how to split one node on a decision tree, you can recursively apply the 
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same methodology to all descendent branches and associated nodes on the decision tree. 
Once a classification that is formed by the branches of an input is selected, the decision 
tree can be grown incrementally by descending to the nodes formed by this branch. This 
branch is, in turn, partitioned like the original root node was. This process continues as 
the decision tree is grown until it either runs out of data in the descendent node, or the 
growth is stopped according to a stopping rule. This is called recursive partitioning 
growth.

Shaping the Decision Tree 
Various stopping rules can suggest when recursive partitioning should be stopped. It is 
necessary to stop at some point because deep decision trees are more complicated to 
understand and less useful. In addition, the lower branches are formed by fewer cases in 
the target data set; therefore, the statistical results are based on less statistical power and 
are consequently less accurate and reproducible. The validity, accuracy, and 
reproducibility of the decision tree can be tested through validation. Indeed, both 
validation testing can be used to shape the form and depth of the tree (including which 
input to use for branching and how many branches to form for a given input). 

Deploying Decision Trees 
The results, interpretation, and application of decision trees can be described, 
semantically, as simple IF <condition> THEN <action> rules. This way of describing 
relationships is very general and close to natural language, so it is readily understandable 
in non-scientific (i.e., non-mathematical) situations. In fact, these rules are virtually 
indistinguishable from the programming rules in many programming languages. In most 
cases, the rules are deployed in a markup language, such as PMML (Predictive Modeling 
Markup Language). 

A Brief Review of the SAS Enterprise Miner  
ARBORETUM Procedure

The SAS ARBORETUM procedure is the computational engine that lies behind the 
decision tree construction that is found in SAS Enterprise Miner. The ARBORETUM 
procedure works with nominal, ordinal, and interval data as both inputs and targets in a 
decision tree. The ARBORETUM procedure forms branches in a decision tree using a 
variety of criteria, including: 
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variance reduction for interval targets 
F-test for interval targets  
Gini or entropy reduction (information gain) for categorical targets
chi-squared for nominal targets 

The ARBORETUM procedure produces both binary and multi-way branches in the 
decision tree. Missing values in the input fields that are used to form branches can be 
handled in a variety of ways: 

use missing values as a separate, but legitimate code in the split search 
assign missing values to the leaf that they most closely resemble 
distribute missing observations across all branches 
use surrogate, non-missing inputs to impute the distribution of missing 
values in the branch 

The ARBORETUM procedure provides a variety of methods for trimming and shaping 
the size and form of the decision tree, including: 

cost-complexity pruning and reduced-error pruning (with validation data) 
prior probabilities can be used in training or assessment 
misclassification costs can be used to influence decisions and branch 
construction
interactive training mode can be used to produce branches and prune 
branches

The ARBORETUM procedure provides methods to compute variable importance, which 
can be done with both training and validation data. The ARBORETUM procedure 
provides for the generation of SAS programming code. This code can contain indicator 
variables that refer to specific leaves on the decision tree. These indicator variables can 
then be used as inputs to capture effects in other modeling applications. In addition, the 
generation of PMML code is provided. 
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The Basics of Decision Trees 
The goal of this section is to provide a comprehensive and detailed overview of the 
process of growing a decision tree. Many of the most common decision tree options and 
approaches are covered. These options and approaches have their roots in the original 
AID algorithm, as well as successor algorithms, such as CHAID, ID3, and CRT. The 
decision tree component of SAS Enterprise Miner incorporates and extends these options 
and approaches. It includes the popular features of CHAID and CRT and incorporates the 
decision tree algorithm refinements of the machine learning community (including the 
methods developed by Quinlan in ID3 and its successors). 

The SAS Enterprise Miner decision tree supports both interactive (manual) and automatic 
growth approaches. Adjustable defaults are provided in both interactive and automatic 
approaches to help identify the best decision tree models for the analyst’s purpose. 

The decision tree growing process can be broken down into a number of subprocesses, as 
shown in Figure 3.1. 
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Figure 3.1: Illustration of Subprocesses in Growing a Decision Tree

The six steps for growing decision trees are: 

1. Preprocess the data for the decision tree growing engine. 
2. Set the input and target modeling characteristics. 
3. Select the decision tree growth parameters. 
4. Cluster and process each branch-forming input field. 
5. Select the candidate decision tree branches. 
6. Complete the form and content of the final decision tree. 

a. Stop, grow, prune, or iterate the decision tree. 
b. Select the final decision tree. 

These steps are performed in sequence, with the development of each layer of branches 
(or levels) of the decision tree. The decision tree growing process—steps 4 and 5—is an 
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iterative process. This means that once the steps have been applied to the main set of 
data, which forms the root node of the decision tree, they can be reapplied recursively to 
any descendents of the root node. 

Step 6—Complete the form and content of the final decision tree—is subject to both 
formal and informal shaping methods, which are used to terminate tree construction often 
before the mechanical components of the tree-growing algorithms stop functioning. 

Step 1—Preprocess the Data for the Decision Tree  
            Growing Engine 

Data preparation is a study in its own right. There are books and courses on data 
preparation, for example, Data Preparation for Data Mining (Pyle 1999). It is frequently 
necessary to write code to preprocess the data. For example, the following SAS code 
transforms string abbreviations into numeric state codes: 

IF substr(upcase(left(state)),1,2) in (“ME”,”NH”,”VT”,”MA”)
THEN region = 1 

Here are some rules-of-thumb for decision tree modeling. 

1. Understand the differences between categorical and continuous data. Categorical data 
such as zip codes might have a numeric form with many values that can look like 
continuous data, but that are actually categories. Consider clustering categories 
together outside of the decision tree. It might be possible to cluster categories 
together with respect to a target variable (this is discussed later). 

2. Categorical targets with more than two values are extremely difficult to interpret. 
Rework multi-category targets into a 1-of-N code scheme. With 1-of-N coding, each 
distinct category becomes a binary yes-no/on-off outcome in a new input. There are 
as many binary inputs as categories in the original multi-category input. 

3. Dates can be a continuous field, but might need to be changed to Julian format. It is 
useful to compute time intervals, such as length of time as a customer, before 
beginning analysis. 

4. There can be other time and distance measures; these need to be calculated and 
verified before analysis. 

5. Try to avoid information loss; higher levels of measurement contain more 
information than lower levels, so actual income is preferable to income ranges. 

6. If you are working with variables that are expressed along a scale, for example, 1, 2, 
3, and so on, then you might find it easier to express all scales in the same direction. 
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7. Multiple response items might need to be treated with care. For example, if you have 
a list of products that are purchased, then each product might need to be totaled 
separately, and a total number of products purchased might need to be calculated. In 
this s, multiple response items within each unit of observation might need to be 
summed to create an analysis data set. 

8. Do not confuse missing information with a missing value because this is not always 
the same. For example, Quantity Purchased can be blank for a given day or a given 
product type if the customer did not purchase on that day or did not purchase that 
product.

9. It might be necessary to pivot records, particularly if you want to compute purchase 
quantities for given products. The product purchases tend to be one-line-per-purchase 
records with purchase details and a customer number. The purchase details need to be 
summarized through a pivoting operation, such as PROC TRANSFORM. Then, the 
aggregates are attached to the record (typically using customer number as a key). 

Once the data is available, display the attributes using a summarization routine, such as 
what is provided in the StatExplore node in SAS Enterprise Miner. The StatExplore node 
produces a good diagnostic summary of the attributes, as illustrated in the following 
output using the shopping data set from Chapter 2. 

Variable       Numcat   NMiss   Mode       Pct     Mode2    Mode2Pct 
      
RECENCY        8        0       30         20.17   60        17.38 
children_home  3        10822   64.43      Y       33.17 
freq           7        0       5          47.59   4         23.21 
gender         3        1839    female     58.95   male      30.1 
has_new_car    2        0       N          63.51   Y         36.49 
inc            10       2622    $100,000-  22.97   $75,000-  19.91 
                                $124,999           $99,999 
maritalStatus  2        0       Married    63.31   Self      36.69 
money          18       0       200-299    16.12   100-149   15.19 
occupation     10       7459               44.41   1         22.74 
state          46       0       NJ         11.33   CA        10.31 

Class Variables 1 
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Variable               Mean  StdDev  Non     Missing   Min Median Max
                                     Missing 
        
NetSalesLife           248   283     16797   0        -4991 168     8493 
adultsInHH             2     1       16797   0         0    2       6 
age                    47    13      15693   1104      18   46      96 
bathroomPurchases      5     8       16797   0         0    2       240 
bedroom                3     4       16797   0         0    1       74 
couponPurchase         2     5       16797   0         0    0       105 
display                2     3       16797   0         0    0       78 
hasBankCard            1     0       16797   0         0    1       1 
hasStoreCard           1     0       16797   0         0    1       1 
has_card               0     0       16797   0         0    0       1 
has_credit_card        0     0       16797   0         0    0       1 
has_upscale_store_card 1     0       16797   0         0    1       1 
income                 6     2       16797   0         0    7       9 
juvenile               2     4       16797   0         0    0       129 
kitchen                2     4       16797   0         0    1       96 
length_of_residence    7     5       15356   1441      1    6       15 
lifeTransactions       21    18      16797   0         3    16      379 
lifeVisits             4     2       16797   0         3    4       50 
mystery_field          1     0       16797   0         0    1       1 
owns_RV                0     0       16797   0         0    0       1 
owns_motorcycle        0     0       16797   0         0    0       1 
owns_truck             0     0       16797   0         0    0       1 
table                  1     2       16797   0         0    0       37 
topIndicator           1     0       16797   0         0    1       1 
valueOfCar             24    19      7743    9054      1    20      205 
windowDisplay          5     6       16797   0         0    3       85 

Interval Variables 1 

The Segment Profile node in SAS Enterprise Miner produces profile results, as illustrated 
in Figure 3.2. 

Figure 3.2: Distribution of the Target Values
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Or, assume that the data set has been defined and introduced into the data mining 
environment. The data set takes the form of a table with rows and columns. The rows 
represent individual records or observations. The columns contain measurements taken 
across each record or observation. So, each data line represents an object of analysis that 
has attributes with associated values. 

Step 2—Set the Input and Target Modeling Characteristics 
Decision tree inputs and targets can be encoded at any level of measurement, ranging 
from raw, nonmetric categories (such as high, medium, and low) to highly refined, 
precise, quantitative measurements (such as temperature in fractional degrees of 
Fahrenheit or Celsius). It is useful and necessary to preprocess the inputs and targets in 
order to do meaningful work with a decision tree. 

One of the fields of the data set serves as the target of analysis. Other fields are defined as 
inputs that can be used to predict or describe this target of analysis. These inputs are 
columns of the table that are used as input variables to construct a set of decision rules. 
These decision rules describe or predict variations in the target. 

Targets
Interval targets are the easiest to deal with. Almost all decision tree algorithms accept an 
interval target. In a data analysis task, you should always check the missing value 
indicator for the target field. Look for values such as –1, –99, and even 0 (which can 
indicate a missing measurement) and ensure that the target field is either removed from 
the analysis or handled appropriately. 

Some fields such as SIC code or zip code can appear to be interval targets, when in fact 
they are categorical targets and, except under special circumstances, cannot be treated as 
interval targets. Variables can be treated as interval, only if the average value and 
deviations from the average value have meaning. In the case of SIC codes and zip codes, 
the average value of SIC codes or zip codes does not represent the average value of the 
codes that they are formed from. Therefore, averages and deviations from averages have 
no readily interpretable meaning for these codes. 

With this type of categorical target, you create a 1-of-N derivation of the categorical 
codes. Thus, SIC code 8062 (hospitals) becomes 1 and all other target values become 0. 
This allows you to distinguish hospitals from all other target values in the analysis. 
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Similarly, zip code 10010 (for New York city) becomes 1 and all other target values 
become 0. 

You should treat all categorical outcomes this way, even when a small number of 
categories could be modeled as an unmodified categorical or nominal target, such as a 
target with low, medium, and high category codes. (In this case, the target is also an 
ordered target.) The main reason for this recommendation is interpretability; it is very 
hard to understand the distribution of categories in the nodes of the branches of a decision 
tree when more than two categories are present. 

The decision tree algorithm accommodates multi-valued categorical and ordinal targets 
so you can use them in the raw form. If you are interested in prediction, then the ability to 
read and interpret the nodes of a decision tree might be less pressing. Consequently, in 
predictive applications, the need to change multi-valued categorical and ordinal targets 
might not be great. 

In the following example, height is the target variable that is set up as a function of 
various input variables (or inputs), which are used as distinguishing attributes to construct 
the decision rules that describe the functional relationship between target and inputs. 

Height <--- I1, I2, ... , In  (For example, Gender, Age, ... , 
Hair color) 

Height, which is the target, is called a target or dependent variable (meaning, because its 
value is a function of the input variables, it depends on the values of the inputs). Because 
the values of the inputs in this formulation can vary, they may be called independent 
variables.

Targets can be quantitative or continuously valued entities, such as height. Targets in 
nonmetric, nonquantitative, or categorical forms (such as short or tall) can also be used. 
As with targets, input fields can be any measurement, from nonnumeric categories (such 
as gender) to numeric quantities (such as weight and age). Numeric quantities can be 
used in both continuous and ordinal representations. For example, you can have age 
ranging from 0 to infinity (quantitative representation) or in one-year increments, such as 
1 through life expectancy < 100 years. 

Both targets and inputs can be unordered, such as State code. Decision trees are a useful 
and versatile method for handling many unordered inputs. Although decision trees have 
many flexible and powerful ways of handling multi-category targets, decision trees with 
more than two or three categories become difficult to work with and interpret. 
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Inputs
To prepare the data for decision tree analysis, SAS Enterprise Miner transforms the 
representation of inputs into discrete categories (e.g., age 15–25). All input values have to 
be able to form one of the branches of the decision tree and these branches are defined by 
discrete values of the inputs. Therefore, all input values need to be mapped to categories 
before analysis. For example, instead of using age as a continuously valued quantity (e.g., 
ranging from 5 to 85), age is transformed into an input with discrete categories. 
Categories are determined by the following: 

interval ranges (e.g., a natural range such as lower school, middle school, and high 
school in education) 
buckets, bins, or grouping rules (e.g., groups formed by interval ranges) 
quantiles (e.g., equal frequency groups formed by ranked quantities) 

A discrete category is the age category of 15 to 25. This age value is substituted for all 
age values in the data set that are in the range of 15 to 25 (inclusive). This step is 
necessary because age, as an input, has to take on values that can form groups or classes 
of values on the branches of the decision tree. In most cases, this means that the values 
need to be set up as classes of values (i.e., the level of measurement must be categorical). 

The SAS Enterprise Miner decision tree can take a parameter that determines the number 
of bins (called “n” in the following equation). This parameter indirectly specifies the 
minimum width between two successive candidate split points on an interval input. The 
width equals (max(x)  min(x))/(n + 1), where max(x) and min(x) are the maximum and 
minimum of the input variable values in the within-node sample being searched. The 
width is computed separately for each input and node. 

You could classify a field like age into 10 buckets or bins to turn it into a categorical 
field. It is also possible to define your own preset collapsed categories. For example, age 
can be classified into the following groupings: 

Preteens  < 13 
Teens   13–19 
Young adults  20–29 
Older adults  30–55 
Seniors   > 55 
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In general, numeric fields can be classified in the following ways: 

in defined ranges (as previously shown) 
as buckets or bins, in which the number of records in each bucket or bin depends 
on the definition of the bin attributes and the mapping process that assigns 
individual records to each bin in the data set 
as deciles or other quantiles, in which there are an equal number of records in each 
decile group 

If a quantile has been defined, then binning is based on the frequency of records that are 
in a quantile range. Quantiles are computed by taking the frequency of each value in the 
input. The quantile is formed by establishing a lower and upper quantile value that 
encompasses the number of records that form the quantile. So, if a decile is computed, 
then the first decile contains 10% of the input records according to the frequency of 
occurrence.

In addition to establishing all input values as categorical fields, you must establish 
whether the categories are ordered or unordered. Age is ordered or monotonic—there is a 
steady increase in the magnitude of age as you move from the lowest category (e.g., 
preteens) to the highest category (e.g., seniors). 

However, if you use the values of State as input, then you would define this input as 
nominal or unordered. There is no innate underlying increase or decrease in the assumed 
magnitude of a State code as you move from IA to AL, or, if the State codes are assigned 
a number, as you move from 12 (representing the state of New York) to 25 (representing 
the state of Montana), there is no increase or decrease. 

Step 3—Select the Decision Tree Growth Parameters 
Although there are many decision tree algorithms, forming a decision tree is a simple 
process. Originally, decision trees were formed by sorting inputs into ordered groupings. 
The sort order was a function of the value of the input category, with respect to the value 
in the target. With a continuous target, input categories were sorted from low to high, and 
the corresponding average target value was recorded in each of the input categories. If the 
input categories were combined to form a node that represented multiple categorical 
values, then the input categories were combined either ordered or unordered. 
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This original decision tree process begins by transforming each ordinal and interval type 
of input into categories that can be manipulated and combined. 

Once all inputs are transformed, the decision tree algorithm performs its most important 
task—picking the best input to form a split. A number of choices affect this task. The 
more important considerations are the following: 

How will input categories be combined to form branches or will they be combined 
at all? 
How will branches be sorted and combined? Will they be in line with their level of 
measurement—continuous, ordinal, and categorical? 
How many nodes on a branch will be allowed? 
How many alternative branches will be stored at each level of the decision tree? 
How will differences be determined (for example, predictive power between 
branches)? 
How will branches be evaluated, selected, and displayed? 
How will input data records be segmented into branches? What will happen when 
a given input data record has missing information in the input field that is being 
used to form a branch? 
Will a branch growth strategy be based on empirical tests of accuracy or will 
theoretical tests (for example, hypothesis tests) be used to grow branches? 
Will branches be pruned ahead of time or will branches be trimmed after an initial 
growth stage or once an overly large tree has been grown? 
When will the decision tree processor stop identifying potential branches? 
When will the decision tree stop identifying potential nodes? 

A number of settings determine how to act on these considerations. For example, the total 
number of potential split-and-merge points in a range of bins for an input is an important 
setting. A split-and-merge point is a potential cutting point between two bins or 
categories of an input that can be merged to form a larger bin. Because the bins have 
different target attributes (which means they have different input-target behavior), 
categories are split apart. A typical default is to examine 5,000 potential split-and-merge 
points. If there are 5,000 or fewer points to examine, then SAS Enterprise Miner 
exhaustively examines all possible points. If more than 5,000 points exist, then a heuristic 
merge-and-shuffle approach is used. A merge-and-shuffle approach examines 
approximate groupings of categories so that the branches capture differences in the input-
target behavior. 
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Various measures of computing the strength of a branch are used. Branches can be picked 
based on strength or based on validation and test statistics. The strength value is referred 
to as the “worth” of a branch. Typically, higher worth branches are picked over lower 
worth branches. 

The decision tree mechanism in SAS Enterprise Miner treats missing values in different 
ways. The mechanism can: 1) include missing values, 2) put missing values into a 
separate category, 3) distribute observations with missing values in proportion to the size 
of the nodes on a branch, and, 4) use surrogate inputs in place of missing values. A 
surrogate input performs like an input, but has a lower worth. A surrogate input is highly 
correlated with the missing value, and forms the branch partition when there is a missing 
value for the input on the data record that is making the split. In this case, a non-missing 
surrogate input value on this data record can be used. You can set the maximum number 
of surrogates that can be used in growing the decision tree because when surrogates are 
used, the data has to be re-read (and this takes more time). 

Nodes can be constrained to a minimum size, and any category in the target classification 
can be constrained to a certain size. For example, a constraint can be that no nodes with 
less than 50 observations will be identified, and no node with a categorical value with 
less than 5 observations will be identified. 

Decision trees can be constrained to grow to a certain depth. For example, decision trees 
can be constrained to stop growing after 3 levels. Levels are calculated from the root 
node (in the example, the first set of branches forms the first level). 

Inputs can be constrained to be used on only one level, so once they are used, they cannot 
be used again on a lower level. 

Step 4—Cluster and Process Each Branch-Forming Input
            Field 

Clusters of codes are formed when values in the input fields that form the branches of the 
decision tree are grouped together. The goal of this step is twofold: 

1. Put similar observations into the same cluster so that the characteristics of the 
observations in that cluster are as similar as possible. Create clusters on the same 
level of the split on the tree so that the differences between clusters are magnified. 
Create clusters of codes that make intuitive or theoretical sense (as when State codes 
are arranged into East, Central, West, North, and South). 



Chapter 3: The Mechanics of Decision Tree Construction 75

2. Clustering forms nodes on the input that maximize the predictive relationship 
between the input and the target. This is the original and persistent goal of forming 
leaves on the input. However, this goal is sometimes at odds with the first goal 
because the most appealing or most understandable branch is not always the best 
predictor. In this case, the analyst has to choose between numerical strength and 
interpretability.

The result of the clustering step is the selection of an algorithm and the guidance rules 
that form the branches that, in turn, form the decision tree. One exception to this step is 
the rare case in which no input codes are grouped together (such as when the ID3 
algorithm is running). The setting in SAS Enterprise Miner that controls this step is the 
maximum number of branches. For example, a setting of 2 to 50 will accommodate the 
construction of branches with 2 to 50 nodes or leaves. 

When the maximum number of branches is set to 2, the decision tree is a binary tree. A 
number greater than 2 results in multi-way branches. Binary branches are easier to 
calculate. Input values are clustered on one of two sides when forming the decision tree 
branches—either on the left side or on the right side. The main question is whether the 
categories of the inputs are clustered in an ordered or unordered way. With ordered 
comparisons, adjacent categories in the range of categories in an input can be combined. 
With unordered comparisons, any category in an input can be combined with any other 
category. These different comparisons produce different results, as shown in Figure 3.3 
and Figure 3.4. 

In Figure 3.3, a decision tree shows the relationship with YOJ (Years On the Job) and its 
influence on the target variable in the analysis—bad debt. This decision tree is from the 
Home Equity Loan data that is provided in the sample Help files with SAS. 

Figure 3.3:  Illustration of Clusters Producing Two Nodes
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All values lower than or equal to 5.6 are on the left side of the branch; all values greater 
than or equal to 6 are on the right side. In Figure 3.4, an unordered search for branches in 
the YOJ variable is shown. 

Figure 3.4: Illustration of Binary Partitioning with Unordered Branch (Cluster)  
                    Components

When unordered clustering is used, out-of-sequence values can combine. In Figure 3.4, 
the value of 4, which would usually be in the sequence between 2.5 and 4.5 on the left 
side of the decision tree, has been grouped with the value of 7 on the right side of the 
decision tree. If you look at the distribution of YOJ versus bad debt, as shown in Figure 
3.5, you can see this process at work. 
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Figure 3.5:  Illustration of Bad Debt Distributed by YOJ - Ordered Search

The first five vertical bars have an elevated BAD count when compared to the bars that 
follow (in this example, BAD=code 1). In an ordered comparison, you would expect to 
see a split in the left and right branches, between the fifth and sixth bars. At this point, the 
cumulative number of bad counts is greater than the cumulative number of bad counts to 
the right (i.e., sixth bar and greater). This is exactly what is in the decision tree with the 
ordered split in Figure 3.5 (the split is at value 5.6). However, in an unordered search for 
left and right clusters, you would see that the fourth bar has a lower proportion of bad 
debts when compared to the bars in the sequence of low values less than 6. The 
unordered search algorithm has determined this and has grouped the value 4 on the right 
side of the decision tree. 

All of these results are preliminary and unverified and are based on samples, not the data 
set. They are provided to illustrate the differences between ordered and unordered 
searches. After you begin to examine the distribution of values, you might find potential 
combinations of values that SAS Enterprise Miner has not detected. The comprehensive 
search of all possible values is covered in the discussion of search algorithms that 
follows.
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Clusters of input values that form multi-way branches are more difficult to calculate than 
binary branches. However, multi-way branches have useful, visual, and conceptually 
appealing properties that make them more robust, economical, and flexible, especially in 
explanatory and expository decision tree applications. To explain further, suppose a 
decision tree breaks out sales into West, South West, Great Lakes, North East, and South 
East regions. All regions can be represented on one level of the decision tree with one 
decision rule. Binary trees would need to segment the data four times, with corresponding 
decision rules, to accomplish this. With multi-way branches, however, there are the issues 
of how many multi-way nodes to create, and where to establish the cutting points in the 
clusters that form the multi-way nodes. 

Clustering Algorithms 
A variety of clustering algorithms can form the branches that define the leaves in the 
decision tree. All algorithms try to create leaves that are as alike as possible (i.e., pure or 
homogeneous) and that are as different as possible when compared to other leaves on the 
same level of the decision tree. Observations in a leaf are similar, and differences 
between observations in leaf-to-leaf comparisons are as great as possible. Choosing an 
algorithm depends on the measurement of the input values that are grouped together. 

continuous-type measurements need quantity measures of clustering (to determine 
similar group members) 
categorical-type measurements need categorical measures of clustering (to 
determine similar group members) 

The clustering algorithms most commonly used are the following: 

variance reduction (used in the original AID) 
entropy (adopted by Ross Quinlan) 
Gini (introduced by Breiman et al.) 
tests of significance (introduced by Kass) 
o  t-test and F-test for continuous measures 
o  chi-squared test (Fisher’s exact test for small numbers) for categorical measures 

When tests of significance are used, Bonferroni adjustments can be applied. Bonferroni 
adjustments compensate for measurement and test effects that force changes in the one-
test/one-hypothesis approach. This approach forms the basis of traditional tests of 
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significance and, consequently, the statistical tables that are published that reflect the 
underlying mathematics of these tests. This multi-test adjustment was originated by Kass 
(1976). It addressed shortcomings with the original AID algorithm and with the variance 
reduction test that was used to form the resulting decision tree. Specifically, these tests do 
the following: 

compensate for multiple tests of significance (affect the presentation order of 
potential branches) 
adjust the statistical strength of any input in the analysis to compensate for the 
number of inputs that are used to form potential branches (for example, asking “Is 
it a significant relationship?”) 
adjust the stopping rule that is used to stop growing the tree (if a statistical test of 
significance is used as a stopping rule) 

Variance Reduction 
After the data is preprocessed (so that, for example, all continuous inputs are arranged as 
categorical inputs), the effect of each input is examined. The goal is to cluster the 
attributes of the inputs together, based on the strengths of their relationships with the 
values of the target. In the original AID decision tree approach, variance reduction was 
used to form binary groups or clusters for each input in the data set. Values were chosen 
so that variations from the average values of the two groups formed by the binary branch 
were minimal. 

            Gender     Height     Weight     BMI 

            male       68         203        31 
            female     59         94         19 
            female     64         113        19 
            male       64         160        27 
            female     67         125        20 
            female     64         120        21 
            female     64         120        21 
            female     67         134        21 
            female     63         125        22 
            male       65         135        22 
            female     65         135        22 
            male       67         144        23 
            female     67         145        23 
            female     57         105        23 
            male       68         150        23 
            female     68         150        23 
            male       66         143        23 
            female     62         128        23 

                                                                                                                             (continued)
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            male       71         170        24 
            female     63         138        24 
            male       65         148        25 
            female     62         135        25 
            male       65         155        26 
            male       65         160        27 
            female     62         97         18 
            male       67         175        27 
            male       63         160        28 
            male       62         155        28 
            male       64         180        31 

In the previous display, the mean and variance of BMI (Body Mass Index) are 23 and 11, 
respectively. BMI is calculated as weight divided by height, squared. Variance is the sum of 
the deviations of the individual measurements around the mean or average of the measure. If 
BMI is segmented into males and females, then the mean and variance are as follows: 

                            Number      Variance 
Female 21 4

                  Male         26          9 

Segmenting the BMI scores into females and males can reduce the variance in the 
resulting groups when compared to the overall variance. Gender is an important 
discriminator and is a likely candidate for splitting criterion in the decision tree. 

Gini Impurity 
The Gini index is a measure of variability/purity for categorical data. It was developed by 
the Italian statistician Corrado Gini in 1912. The Gini index can be used as a measure of 
node impurity, where p1, p2, … , pr are the relative frequencies of each class in a node. 
The Gini criterion was proposed by Breiman et al. 

Gini impurity = 

r

j
jp21

A pure node has a Gini index of 0—as the number of evenly distributed classes increases, 
the Gini index approaches 1. The splitting criterion is the one that most reduces the node 
impurity. In the following example, the impurity of the root node when considering body 
type is shown: 

1 – (average purity measure) – (heavy purity measure) – (slim purity measure) 
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The Gini index is computed as follows: 

222 )28
9()28

11()28
8(1   or .82 

         Gender   Weight   Height     Ht_Cent.   BodyType 

         Female   89       5’3        160        slim 
         Female   117      5’7        170        slim 
         Female   128      5’2        157        slim 
         Male     132      5’1        155        slim 
         Female   150      5’2        157        slim 
         Male     150      5’2        157        slim 
         Female   160      5’ 4       163        slim 
         Female   179      4’10       147        slim 
         Female   167      5’3        160        slim 
         Male     161      5’6        168        average 
         Male     163      5’7        170        average 
         Male     180      5’4        163        average 
         Female   167      5’1        180        average 
         Male     188      5’6        168        average 
         Male     191      5’8        173        average 
         Male     194      5’7        170        average 
         Male     206      5’4        163        average 
         Female   215      5’2        157        heavy 
         Male     201      5’7        170        heavy 
         Female   182      6’2        188        heavy 
         Male     201      5’9        175        heavy 
         Male     206      5’9        175        heavy 
         Male     206      6’         183        heavy 
         Male     216      5’9        175        heavy 
         Male     239      5’5        165        heavy 
         Male     220      6’1        185        heavy 
         Male     254      5’8        173        heavy 
         Male     284      5’6        168        heavy 

A split on gender produces two nodes with impurity measures of .48 and .89 (for females 
and males, respectively). This is a reduction in impurity of .41. 

Entropy and Information Gain 
Entropy was developed as a measure of the uncertainty of a transmitted message, in bits 
(Shannon 1948). Entropy is used with categorical outcomes—it measures variability 
(homogeneity) in splits and the leaves that are formed by the splits. 

The entropy of a split is found by computing the entropy in each of the leaves, and by 
summing the entropy of all the leaves of a split. The variability of an outcome in a leaf is 
computed using the formula -log2(p i ). The summed entropy of all the leaves of a split is  
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-
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p log 2 (p i ), where p i is the proportion of a particular class i in the collection of 

categories contained in the branch. 

This measure is calculated as follows. The decision tree has 28 observations. The 
probability of body type is 8/28 (0.29), 11/28 (0.39), and 9/28 (0.32), for average, heavy, 

and slim, respectively. To compute the entropy, sum the three 
r

i
ip

1
log 2 (p i ) terms. The 

results are –0.51639, –0.52954, and –0.52632, with a summed entropy of 1.57. You can 
use other splits among the categories in the table, such as gender. For example, the 
entropy for males is 1.382 and for females is 1.156. The total entropy for gender is 1.30 
and the information gain is .27 or 17%. You can verify these results with the following 
display: 

          Body Type    Frequency    Percent    Cumulative 
                                               Percent 

average 8           28.57      28.57 
heavy 11           39.29      67.86 
slim 9           32.14        100 

                       28 

For body type, the best guess for the 28 observations is heavy. The likely outcome to 
classify the body type is 11 right guesses versus 17 wrong guesses, which results in a 
classification hit rate of about 40%.  

         bodytype    Gender(Gender)           Total 
                      Female        Male  
          average       1               7          8 

3.57              25      28.57 
12.5            87.5  

10           38.89  
heavy 2               9         11 

7.14           32.14      39.29 
18.18           81.82  

20              50  
slim 7               2          9 

25            7.14      32.14 
77.78           22.22  

70           11.11  
Total 10              18         28 

                    35.71           64.29        100 
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Knowing the distribution of gender increases the ability to guess correctly. For males, the 
best guess is heavy; for females, the best guess is slim. Using this guessing strategy 
means that you could get 9 guesses for males wrong, and 3 guesses for females wrong, 
which results in a classification hit rate of 57%. This yields an improvement of about 
40%, equal to the information gain previously calculated. 

Chi-Squared 
The clustering process in the CHAID approach to forming a decision tree is based on 
applying a test of significance. In CHAID, input groupings are formed by combining 
values in the input if their relationships with the target are similar. Values are 
indistinguishable from a statistical point of view if the pair-wise differences between two 
values relative to the target are not statistically significant. Statistical significance can be 
determined by a simple t-test that tests the differences between the average values of the 
target for one input value versus another input value. If the test is not significant, then the 
two values are combined. 

Ordered comparisons require pair-wise comparisons of adjacent values. If the test of 
significance fails, then the values are combined to form one category. 

Unordered comparisons require pair-wise comparisons of all available values, regardless 
of order. If the test of significance between the two selected values fails, then the values 
are combined to form one value. 

When selecting the test of significance, the test that is applied depends on how the values 
of the target are measured. Are they categorical (for example, yes–no) or are they 
numeric (for example, dollars spent)? For categorical targets, the usual test of 
significance is the chi-squared test (denoted 2). For numeric targets, the usual test of 
significance is the t-test. 
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Figure 3.6: Illustration of a Test of Significance between Means

Tuning the Level of Significance 
The level of significance affects whether the test succeeds or fails. Different branch 
targets are produced if different levels of significance are used to perform the test to 
establish the groupings. Statisticians have evolved rules for selecting the level of 
significance to use to perform a test. The .05 level of significance is an example. 
According to this test, the categories that are being compared are collapsed together if 
they cannot be shown to be significantly related to the value of the target at the 95% level 
of statistical confidence.1

Many other levels of significance can be used—for example, the .01 level (a more 
conservative test) or the .10 level (a more liberal test). In practice, as more conservative 
tests are applied to the construction of groups, greater differences between individual 
levels of encoding need to be observed for these codes to be considered for forming a 
separate leaf. The net effect is that the selection of the level of significance affects the 
bushiness of the decision tree and the homogeneity of clusters (in CHAID methods only). 
At higher levels of statistical significance, it can be hard to reject the null hypothesis of 
no differences between distributions (i.e., there is not enough separation between their 

1 The 95% level of statistical confidence asserts that the difference in the two distributions is so 
sufficiently large (or abnormal) that you would see this effect only about 5% of the time by
chance alone. Because the likelihood of seeing it by chance is small (i.e., 5%), the statistical 
conclusion is to assert that the relationship is significant. 
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distributions); therefore, many codes are collapsed together. This results in a smaller 
number of leaves, illustrated in Figure 3.7. 

Figure 3.7: Illustration of Branch Granularity as a Function of Cluster Similarity  
                    Measures 

Fine grain (produced with higher levels of significant differences)

Coarser grain (produced with lower levels of significant differences)

Observation Selection 
As the decision tree is grown, successive samples of data set values are used to form the 
branches of the decision tree. Tree-growing settings determine the number of 
observations (records) that are taken to form the sample. In the simplest case, all 
observations are taken to form the sample. However, it is not necessary to take all 
observations, for example, if the host data set is large. A sample containing less than all 
observations in the data set can yield identical or equivalent results to the full data set. 
When samples are taken, it is normal to take independent samples at each node of the 
decision tree. For nominal targets, it is normal to try to balance the sizes of the outcome 
categories. For example, suppose a node contains 100 observations of one value of a 
binary target, and 1,000 observations of another value. If the sample size is set to 200 or 
more, it makes sense to take all 100 observations of the first target, and to take a random 
sampling of the other target, until the sample of 200 observations is created. In 
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calculating binary splits, the best binary partition of binary and interval targets is always 
found.

The creation of multi-branch decision trees is more complicated because of the numerous 
potential splits (compared to simple, binary splits), You should first consolidate the data 
before applying the method to evaluate all potential splits or, if a large number of 
potential splits seems likely, you should use a heuristic search for the best split. A 
consolidation phase searches for values of the input that would likely be assigned to the 
same group or cluster in the best split. Simple clustering can be used for consolidation 
(for example, group all input values that have the same or similar target value). The split-
search algorithm treats observations in the same group as if they have the same input 
value. This results in a faster split search because fewer candidate values need evaluating. 

The Kass Merge-and-Split Heuristic 
In the development of the CHAID algorithm, Kass specified a merge-and-split heuristic 
to develop multi-branch trees. The merge-and-split heuristic tries to converge on a single, 
optimal clustering of like codes. This heuristic begins by merging codes within clusters 
and reassigning consolidated groups of observations to different branches. Then, the 
merge-and-split heuristic operates as a consolidation algorithm—the consolidated groups 
are broken up (by splitting out the members with the weakest relationships). These 
broken-up groups are remerged with consolidated groups that are similar. 

The effect of the merge-and-split heuristic is to look at fewer potential combinations of 
values than would be required by a complete evaluation of all the potential combinations. 
The process stops when either a binary split is reached or there are no consolidated 
groups that can be split and merged at the similarity level specified by the algorithm. 

SAS Enterprise Miner uses a variation of this heuristic called merge-and-shuffle. The 
merge-and-shuffle algorithm begins by assigning each consolidated group of 
observations to a different node. At each merge, the two nodes that degrade the worth of 
the split the least are merged. After two nodes are merged, the algorithm considers 
reassigning consolidated groups of observations to different nodes. Each consolidated 
group is considered and the process stops when no consolidated group can be reassigned. 

When using the chi-squared test and F-test criteria, the p-value of the selected split on an 
input is subjected to more adjustments: if the adjusted p-value is greater than or equal to 
the worth value, the split is rejected. 
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Although the merge-and-split heuristic developed by Kass is designed to find a single 
solution, Biggs et al. (1991) realized that all the intermediate products that are formed in 
the merge-and-split process can be stored and, subsequently, evaluated for worth. Then, 
from all the candidate splits that are stored, the one split with the best worth can be 
chosen.

Dealing with Missing Data and Missing Inputs in Decision 
Trees
When forming groups from the values of the inputs, it is common for a data record to 
contain a missing value. This is almost always true in live data sets, regardless of the 
amount of data quality and data scrubbing. The net effect is that if the target or input 
value is missing, it is usually ignored. 

In a multivariable technique like decision trees, missing values can lead to a considerable 
loss of data; once a data record is dropped at any stage of the decision tree growth 
process, all other data that is available in the data record is lost. For example, a missing 
value at the top level of the decision tree will cause the data record to be dropped, as well 
as any other input fields. 

Clearly, you would want to recover as much of the data as possible in a data record. A 
number of methods for dealing with missing values in decision trees have been 
developed.

treat a missing value as a legitimate value (i.e., explicitly include it in the analysis) 
use surrogates (i.e., another input) to populate descendent nodes where the input 
value for the preferred input is missing 
estimate the missing value based on non-missing inputs (i.e., treat the missing 
value category as a target value that can be estimated and, in a two-stage process, 
include the estimated value in the analysis—the simplest form of this method is to 
estimate the missing value as the average value for the input) 
distribute the missing value in the input to the descendent node based on a 
distribution rule (i.e., distribute the missing value to the most common descendent 
node)
distribute missing values over all branches in proportion to the missing values by 
branch
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During the search for a split, it is possible to use a missing value as another value when 
calculating the worth of a split. One advantage of using missing values during the search 
for splits is that the calculation of the worth of a split is computed with a larger number of 
observations for each potential split. Another advantage is that, even if there are missing 
values, this information can increase the predictive accuracy of a split. For splits on a 
categorical variable, this concept is the same as treating a missing value as a separate 
category. For continuous (numerical) target splits, this is the same as treating missing 
values as having the same (unknown) value. 

This approach was developed in the original CHAID. A statistical test considers the 
missing value as another code that is grouped with the class that it most closely resembles 
(or, the missing values can be grouped into a separate class of their own). There are three 
variants to accommodate categorical (ordered and unordered) and continuous inputs 
(ordered, unordered, and floating variations). 

An approach pioneered by CRT is to use surrogate splits when there is a missing value 
for the preferred branch on the decision tree. The input variable to form the split can be 
missing for an input data record. Other input variables are available (maybe not as strong, 
but still good) that can be used to determine whether that row of data (observation) goes 
to the right or the left of the node that is being split. This alternative input variable or 
surrogate is used to determine where the missing data record is assigned in the 
descendent node. Both surrogate and competing input variables are alternatives to the 
input variable that has been selected to form the splits that determine the descendent 
nodes. Surrogate splits are used only to distribute parent data records to descendent nodes 
when the selected input variable has missing values that prevent the distribution of 
records to nodes based on input values. In this case, the surrogate record values determine 
where to distribute data records in descendent nodes. 

Imputation has long been used as a method to handle missing values. The distribution of 
the valid values for a field in the data set can be defined as a function of a set of inputs in 
the decision tree or regression form. This means that a predictive equation in the decision 
tree or regression form is available to produce a score for any target on any record as a 
function of other fields or inputs in the record. Thus, the values in any field can be 
considered a function of the values in all the fields in the same data row or record. The 
predictive equation in the decision tree or regression form can make predictions about 
unknown situations. A missing value is an unknown situation, so it can be predicted or 
imputed using this method. 
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The rules to distribute missing values to descendents in SAS Enterprise Miner are the 
following:

distribute missing values across all available branches 
assign missing values to the most correlated branch 
assign missing values to the largest branch 

In the distribution approach, data records are distributed to branches in proportion to the 
size of the branch. Thus, a branch with 50% of the observations, based on valid values, 
would receive 50% of the data records that contain missing values. (The data records are 
selected at random.) This method preserves all of the available information and reflects 
that information in proportion to the size of the branch that it is associated with. This 
concept is similar to substituting the average value for the decision tree analysis variables 
whereby the average value is weighted according to the probability of occurrence. 

Surrogate Splits 
When a split is applied for an observation with a missing value, it is possible to look for 
surrogate splits on another value before assigning the observation to the branch with the 
missing values. This surrogate-splitting rule is a backup for the main splitting rule. For 
example, the main splitting rule uses county. The surrogate-splitting rule uses region. If 
the county is unknown for a given observation, then region is used in its place. 

If several surrogates exist, then when an observation for the main splitting rule is missing, 
each surrogate is considered in sequence until one can be applied to the observation. If no 
surrogate can be applied, the main splitting rule assigns the observation to the branch 
with the missing values. 

The surrogates are considered in the order of their agreement with the main splitting rule. 
The agreement is measured as the proportion of training observations that it and the main 
splitting rule assign to the same branch. The surrogate rules saved in the decision tree run 
options to determine the number of surrogates that will be sought. A surrogate is 
discarded if it has a low agreement with the main splitting rule. A low agreement is less 
than or equal to 1, divided by the number of branches in the main split. As a result, a 
node might have fewer surrogates than the number specified in the surrogate rules saved 
in each node option. 

Other characteristics of the calculation of the agreement can be noted. The agreement 
measure applies only to observations that are valid for the main splitting rule. Of these 
observations, any instances where the surrogate rule cannot be applied count as 
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observations that do not get assigned to the same branch as the main splitting rule. Thus, 
an observation with a missing value in the observation used in the surrogate rule, but not 
in the observation used in the main splitting rule, counts against the surrogate. 

Step 5—Select the Candidate Decision Tree Branches 
Once the clustering is complete for all inputs that are being considered as branches at a 
level of the decision tree, then the inputs can be arranged in a list and ranked according to 
their predictive or classification power. The measure of power depends on the splitting 
criterion. In the previous illustration of the calculation of entropy, worth is calculated as 
the sum of the node computations across a branch. This calculation is used for entropy, 
Gini, and variance reduction. The test statistic is weighted by the proportion of 
observations contained in any node of the branch. Prior probabilities can be specified, 
and if these prior probabilities are incorporated in the split search, then the proportions 
are modified accordingly. 

The chi-squared test and F-test criteria use the worth measure to assess the split. Worth is 
derived from the traditional p-value that is calculated for these test statistics, and is 
computed by taking the –log of the p-value. For the test criteria, the best split is the one 
with the smallest p-value (highest worth). The threshold value (p-value)—used to 
determine the significance of the test statistic and called the alpha level, which 
corresponds to the probability of a type I error—is set to .20 by default. The .20 level is 
liberal by most academic standards (where alpha levels of .05, .01, and even .001 are 
commonly used), but is considered appropriate in exploratory data mining work. Results 
need to be confirmed through validation or test trials. 

The p-values may be adjusted to account for multiple testing. An approach that follows 
the original work of Kass is usually used. These adjustments to p-values can be reflected 
in the display if the adjustment option has been selected. If the Kass adjustment is applied 
before the split is selected, then the best split is the one with the smallest Kass-adjusted p-
value. For nodes with many observations, the algorithm can use a sample for the split 
search, for computing the worth, and for observing the limit on the minimum size of a 
branch.

Adjustments can be applied after the split is selected. In this case, the unadjusted worth 
value is used to select the split. Split worth statistics, shown in the display, may use the 
Kass-adjusted p-values. Because the Kass adjustments reflect the level of measurement 
and the type of search, it is believed that the relative worth of inputs is more correctly 
reflected by adjusted worth measures, and the analyst is less likely to be deceived by the 
apparent value of a split. 
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The CHAID Approach 
In the CHAID approach, it is common to apply a test of significance to the tables that are 
formed by each clustered input. The outcome of that test is then used as a measure of the 
quality of the branch that is formed by that input. The inputs are presented as partition 
candidates to form the branch of the decision tree at that level of the decision tree growth, 
in order of statistical confidence based on the test of significance. Statistical adjustments 
are applied to variables with many categories—ordered and unordered variables are 
compared on the basis of an adjusted metric so that the metric can be equitably applied to 
all inputs, regardless of the form of input. 

Figure 3.8:  Illustration of an F-Test on Multiple Means 

For numeric targets with interval-level measurements, the usual test of significance 
applied to the candidate branches of the decision tree is the F-test. The F-test provides a 
measure of between-group similarity versus within-group similarity. Similarity is 
assessed by measuring the variability of scores around the mean or average values in a 
descendent node, compared to the variability between the average values across the nodes 
of a branch. 

The F-test calculation is a ratio of the between-node variability (sum of squares) versus 
the within-node variability. The degrees of freedom are n (the number of observations) 
and B (the number of branches). As shown in Figure 3.9, a ratio is calculated and 
assessed for significance to determine a p-value or test metric. The significance test uses 
measures to reflect statistical degrees of freedom, which provides a common way to look 



92 Decision Trees for Business Intelligence and Data Mining: Using SAS Enterprise Miner

at numerical comparisons across different numbers of nodes on a branch and different 
numbers of observations. 

Figure 3.9:  Illustration of the Calculation of the F-Test 
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The expression for computing the sum of squares between and the sum of squares within 
is the following: 

Figure 3.10: Illustration of the Calculation of Sum of Squares Between
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Figure 3.11: Illustration of the Calculation of Sum of Squares Within
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In the context of a decision tree, the F-test statistic can be viewed as a measure of 
deviation of the child leaves of a split, compared to the parent as a function of the pooled 
variability within the child leaves. The F-test statistic can be used to find branches that 
have nodes that are distinct from one another, and that have node members that are as 
homogeneous as possible. 

For categorical targets, the usual test of significance applied to the candidate splits is the 
2 (chi-squared test). This test examines the cells of a table, looking for disproportionate 

numbers of observations in the cells. This happens when greater or fewer observations 
occur in the cell than would be expected if the observations were distributed randomly. 
The value of the test statistic increases as more observations collect in one or more cells 
in disproportionate numbers.2 In Table 3.1, the relationship between gender and car 

2 The 2 test was developed for row X column tables. It is appropriate for a decision tree because 
a partition on a decision tree is, in fact, a row X column table (where the values of the target form 
the rows and the values of the partitions form the columns). This similarity between decision trees 
and tables is reflected in the use of decision trees for multidimensional cube analysis. In fact, a 
decision tree can be viewed as a multidimensional cube. 
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ownership is shown. Approximately 36% of females (3,606) own a new car, while about 
38% of males (1,939) own a new car. 

Table 3.1 Relationship between Gender and Car Ownership

Gender and New Car Ownership 

       gender Owns new car 

female male 

Total

No

(percent) 

6296

63.58 

3117

61.65 

9413

Yes

(percent) 

3606

36.42 

1939

38.35 

5545

Total 9902 5056 14958 

If there were no relationship between new car ownership and gender, then both males and 
females would have a 37% rate. This is shown as “Observed” versus “Expected” columns 
for females and males, respectively, in the following table. 

           Observed                Expected 

           6296      3117          6231      3182 
           3606      1939          3671      1874 
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Chi-Squared Test 
The chi-squared test is based on calculating the sum of expected, minus the observed 
frequencies for each cell of the table. These quantities are squared to eliminate negative 
numbers. 

Figure 3.12: Illustration of the Calculation of the Chi-Squared Test 
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The table is a two-dimensional table (a crosstabulation table) that shows the distribution 
of new car ownership within categories of gender. There are a total of 14,958 
observations in this data set. A chi-squared value of 5.36 yields a probability of .02 
(based on the probability table of chi-squared values). At this point, you might accept the 
hypothesis that there is no significant difference between males and females if you were 
using a .01 level of significance. If you were using a .05 level of significance, you would 
reject the hypothesis. In this case, gender might emerge as a significant input in a 
decision tree on new car ownership. If you rejected the null hypothesis, then the 
categories of male and female could not be merged because merging would be treating 
male and female categories as equivalent. 

In a close case such as this, often business rules, derived from business knowledge, are 
used to determine whether a split is used. Alternatively, a validation sample may be used 
to determine whether differences between males and females persist, even if the absolute 
size of the difference is small. 

Statistical Adjustments and the Number of Tests 
As designed by Kass, the CHAID algorithm provided a method to apply statistics to 
assess the quality of the branches that were selected for presentation on the decision tree. 
Part of the statistical-testing framework included adjusting the level of significance to 
accommodate the number of tests of significance that were applied to determine the 
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characteristics of a branch (statistical tests are used in forming the clusters). It is common 
in statistical hypothesis testing to adjust the level of significance according to the number 
of tests applied to a sample. This is because tables of statistical significance have been 
prepared assuming there is one test on one sample of data. The adjustments help prevent 
overfitting based on a calculation of a test statistic that is overstated.

These statistical adjustments—called Bonferroni adjustments—are designed to return a 
true probability level for statistical confidence that is independent of the number of 
statistical tests that formed the branches of the decision tree. In Figure 3.13, more 
statistical tests are performed with unordered categories in branch clustering than with 
ordered categories. Adjustments that consider the number of tests that form the branches 
regard either method on the same basis in terms of the values of the computed probability 
levels.

Figure 3.13: Illustration of Computing the Number of Statistical Tests 

Branches are reported with a true level of significance or a worth metric; furthermore, all 
branches are reported on the same basis. This means that branches that consist of many 
values or branches that are unordered (and, therefore, can combine in many ways) are 
appropriately adjusted so that they can be evaluated on the same basis as a branch with 
fewer categories. The net result is that alternative splits are presented in a valid order in 
terms of their probability levels. 
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Research by Biggs et al. (1991) led to the development of the exhaustive method of 
identifying branch splits. This method incorporates Bonferroni adjustments that should be 
applied for the various types of inputs and number of categories that are included in the 
analysis. (Original work by Kass suggested Bonferroni adjustments that were more 
conservative than necessary.) 

Other adjustments have been incorporated into the SAS Enterprise Miner decision tree. 
The Kass adjustment (1980) can cause the p-value to become unnecessarily more 
conservative than an alternative method, called Gabriel’s adjustment, does. In this case, 
Gabriel’s p-value is used. 

A depth adjustment can adjust the final p-value for a partition to simultaneously accept 
all previous partitions used to create the current subset being partitioned. The CHAID 
algorithm has a Bonferroni adjustment within each node, but it does not provide a 
multiplicity adjustment for the number of leaves. For example, imagine an extreme case 
where a decision tree has grown to a thousand leaves. If a significance test were 
conducted in each leaf at an alpha level of 0.05, a CHAID algorithm would obtain about 
50 false test of significance outcomes (reject the null hypothesis of no differences 
between two leaves in a decision tree). Hence, the decision tree is likely to grow too big. 
The depth receives a Bonferroni adjustment for the number of leaves to correct the 
excessive number of rejections. 

In addition, there is a method to adjust the p-value for the effective number of inputs. The 
more inputs, the more likely an input will accidentally win over the truly predictive 
inputs. The more correlated inputs, the more likely the risk. The input adjustment 
multiplies the p-value by the number that is declared for the effective number of inputs. 
The default effective number of inputs equals the number of inputs that are declared live 
in the analysis. 
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An Example 
Data is in the form of Amount Purchased, including Time of Purchase, Quantity 
Purchased, Age of Customer, and Distance Traveled. Quantity Purchased is the target 
field. The task is to describe the target field—Quantity—in terms of the other input 
fields.

   Age   Date        Hour   Distance  Quantity   Amount   Category 

   35    3/21/2003   6      2         2          14.95    Shelving 
   29    3/21/2003   6      5         2          29.9     Shelving 
   40    3/21/2003   7      9         5          39.8     KitchenWare 
   33    3/21/2003   7     44         5          12.71    KitchenWare 
   50    3/21/2003   8     33         5          37.35    Shelving 
   27    3/21/2003   9      8         5          20       Shelving 
   34    11/11/2003  9     10         1          78.6     Bathrooms 
   58    5/17/2002   1     37         9          78.37    Bathrooms 
   37    5/17/2002   2     22         9          39.95    Electrical 
   39    5/17/2002   2     12         9          34.9     Books 
   24    5/17/2002   3      7         9          73       Bathrooms 
   44    5/17/2002   3     51         9          14.95    Bathrooms 
   41    5/17/2002   4      6         9          78.6     Music 
   30    5/17/2002   6      1         9          20       Bathrooms 

With Quantity as a target, potential inputs include Age, Date, Hour, Distance, and 
Category. Total Amount could be used as an input, but would usually not be because the 
two measures are tightly related. In many software products, the user does not usually 
control the search order of inputs. In this example, the software begins by looking at the 
association between the target Quantity and the time input of Hour.

Some preprocessing is required before the decision tree is grown. 

1. Continuous inputs need to be converted to categories. 
2. The search order of inputs needs to be determined. Is the input categorical or 

continuous? 
3. The number of allowable branches needs to be determined. 
4. The similarity measure, used to combine similar categories, needs to be determined. 

After this preprocessing, the target Quantity is set to be modeled as determined by the 
inputs Age, Date, Hour, Distance, and Category. Hour and Distance have been 
calculated so that the categories are meaningful. The decision tree algorithm begins by 
examining time, looking through such combinations as: 
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Hour combinations 

9-10
9-10-11
9-10-11-12
9-10 vs. 11-12 
and so on 

The goal of this step is to find a meaningful combination of input values that can usefully 
describe variations in the Quantity Purchased. This could produce a decision tree like 
Figure 3.14. 

Figure 3.14: Illustration of a Decision Tree of Quantity Purchased Grouped by Hour

It could also be a cube-like dimensional representation like Figure 3.15. 

Figure 3.15:  Illustration of a Translation of Decision Tree Results to a Cube Display
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As you can see, there is a direct relationship between the branches of a decision tree and 
the cells of a table. The notations that describe the branches of the decision tree indicate 
the range of acceptable values; for example, [9.5-13.5) indicates a range of values from 
9.5 (including .5) 5 to, but not including, the last value before 13.5 (this is shown as 1:29 
in Figure 3.15). 

The decision of whether to combine values is made by a numerical or statistical test—
essentially, these tests combine codes that are alike (with respect to the target), while 
distinguishing them from other codes. 

Using the previous example, assume the next input to be evaluated is Age. The decision 
tree algorithm tries to find the best way of characterizing Quantity as a function of Age.
Assume that the first age category was 14, and that the combined value for Quantity in 
the 14 age category was 5. Assuming that the next age category is 15, the decision tree 
algorithm essentially sets up a test of similarity between the quantities in the age category 
14 compared to the quantities in the age category of 15. 

The decision tree algorithm examines 14 and 15. If the two categories are similar, then 
the categories are combined. If age categories 14 and 15 are combined, then this 
combined category is compared to the distribution of target values in the age category  
of 16. 

14+15+16 same? 

If yes, combine, and so on. 

14+15+16 vs. 17+18+19 

Maybe the best age profile is what is shown in Figure 3.16. 
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Figure 3.16:  Illustration of Branch Partitions Applied to a Dimensional Display
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Several things are going on here: 

1. This is a continuous target. If the target is categorical, the process is similar. 
However, the test of similarity is different. With continuous targets, the test of 
similarity compares variance around the average in each of the groups that are 
formed by the input categories. With categorical targets, a test of significance 
(typically, a chi-squared test) or a Gini or entropy test can be applied. 

2. Multi-branch trees (i.e., more than 2 leaves) are allowed. 
3. Only monotonic combinations are being looked at (i.e., combinations of a lower-

valued quantity, such as 3, with a higher-valued quantity, such as 4). 
4. The specifics of the test determining whether two categories are the same are not 

being discussed. Typically, a test of significance is used. It is possible to indicate 
ahead of time that you want 3-way branches or 5-way branches. In this example, the 
decision tree algorithm tries to split the categories into the specified number of 
branches to maximize the inter-branch category values and to force the greatest 
amount of intra-branch differences. 
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There are several splitting criteria. For interval targets, there are the following: 
variance reduction 
F-test

For nominal (categorical) targets, there are the following: 

Gini or entropy reduction (information gain) 
CHAID or chi-squared test 

The decision trees perform the same way for the final field (Distance).

Figure 3.17: Illustration of Branch Partitioning for Distance
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After this step is completed, the decision tree will have a candidate list of branches that 
could form the branches of the decision tree. If you could see inside the memory of the 
decision tree algorithm, you might see a table that looks like the following: 

Figure 3.18:  Illustration of the Candidate List for Node Partitioning 

Once the values are combined, alternative branches can be compared to determine how 
strongly they relate to the target. This information is often used to select the appropriate 
branch to form the first level of the decision tree. 

In the interactive mode of operation in the SAS Enterprise Miner decision tree, this 
candidate list of branches is displayed for selection. If you were to browse the list in 
interactive mode, a set of displays as shown in Figure 3.19 might be produced. 
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Figure 3.19:  Illustration of Potential Branches in Interactive Mode

The decision tree algorithm inspects each one of these views to identify which view to 
choose as the splitting criterion to form the decision tree. Assume that the algorithm 
selected Age as the splitting criterion. This would produce a decision tree such as the 
following:

Figure 3.20: Final Branch Partition Selected at This Level of the Decision Tree
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In the original CHAID algorithm, the inputs are either nominal or ordinal. Most software 
packages accept interval inputs and automatically group the input values into categorical 
ranges of discrete nominal or ordinal values before growing the decision tree. The 
splitting criteria are based on p-values from the F-test distribution (interval targets) or 
chi-squared test distribution (nominal targets). The p-values are adjusted to accommodate 
multiple testing. A missing value can be treated as a separate value. For nominal inputs, a 
missing value constitutes a new category. For ordinal inputs, a missing value can group 
with the code grouping it most closely resembles (as determined by a test of 
significance). 

The search for a split on an input proceeds step by step. Initially, a node is allocated for 
each value of the input. Nodes are alternately merged and re-split, according to the intra-
branch p-values. The original CHAID algorithm stops when no merge or re-splitting 
operation creates an adequate p-value. Then, the final split is adopted. A common 
alternative to this split method, called the exhaustive method, continues merging to a 
binary split, and then adopts the split with the most favorable p-value among all of the 
splits that the algorithm considered. After a split is adopted, its p-value is adjusted, and 
the input with the smallest adjusted p-value is selected as the splitting variable. If the 
adjusted p-value is under the threshold you specified, then the node is split. Decision tree 
construction ends when all of the adjusted p-values of the splitting variables in the unsplit 
nodes are above the user-specified threshold (because they do not meet the test of 
significance). 

The SAS Enterprise Miner decision tree implementation is different from the original 
CHAID algorithm. 

CHAID transforms interval inputs into discrete categories (bins or deciles); the 
SAS Enterprise Miner decision tree consolidates observations into groups. In the 
original CHAID algorithm, these transformed interval inputs were maintained 
throughout the analysis. The SAS Enterprise Miner decision tree can group and 
regroup interval and ordinal values dynamically as the decision tree partitions data 
throughout the analysis. 
The decision tree node searches on a within-node sample, unlike CHAID. 

The CRT Approach 
In the CRT approach, it is common to grow a decision tree with more branches and sub-
branches than the CHAID approach grows. The CRT approach relies on pruning to cut 
the branches that do not perform well. Whereas performance in CHAID is determined by 
a test of significance, in CRT, performance is determined by a validation approach. The 
CHAID approach grows decision trees with more than 2 nodes in the branches; the CRT 
approach grows only 2-way (binary) branches. 
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In CRT, branches can be selected by the following: 

Number of Leaves. When this selection method is used, the branch with n leaves 
(where n is the number of leaves selected in the user interface) is selected. Leaves 
refer to the number of terminal nodes on a decision tree. 
Best Assessment Value. This method chooses the smallest branch with the best 
assessment value. The assessment is based on validation data, when available. 
The Most Leaves. This method chooses the largest branch after pruning nodes that 
do not increase the assessment (based on training data). 
Gini (CRT). Gini is used in the CRT method. CRT uses probabilities to compute 
the impurity of the nodes. The formula for a node t is computed as: 

i(t) = 1 – S 

S  is the sum of the squared probabilities of the components of the node. Impurity is 
a measure of homogeneity in the node membership for classification decision trees. 
Variance Reduction. This method is used to compute the best assessment value of 
a branch when interval data is used for the target. 

For CRT, the inputs are either nominal or interval. Ordinal inputs are treated as interval 
inputs. The traditional splitting criteria are the following: 

for interval targets, variance reduction and least-absolute-deviation reduction 
for nominal targets, Gini and impurity 
for binary targets, Gini, Twoing, and ordered Twoing create the same splits. 
Twoing and ordered Twoing are used infrequently with binary targets. These 
criteria are considered superior to entropy or Gini criteria with multi-valued 
discrete targets. 

The CRT method does an exhaustive search for the best binary split. Linear combination 
splits are also available. Using a linear combination split, an observation is assigned to 
the left branch when a linear combination of interval inputs is less than a specified 
constant. The coefficients and the constant define the split. The CRT method for 
searching for linear combination splits is heuristic, and might not find the best linear 
combination. 

When creating a split, observations with a missing value in the splitting variable (or 
variables, in the case of linear combination) are omitted. Surrogate splits are created and 
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used to assign observations to branches when the main splitting variable is missing. If 
missing values prevent the use of the main and surrogate splitting variables, then the 
observation is assigned to the largest branch (based on the within-node training sample). 

When a node contains many training observations, a sample is used for the split search. 
The samples in different nodes are independent. For nominal targets, prior probabilities 
and misclassification costs are recognized. 

The decision tree is purposefully grown to contain branches and subtrees that are not 
stable from the point of view of reproducibility in a new data set (or by reference to a 
validation data set). This intention is called overfitting. A sequence of subtrees is formed 
at each split. The splitting criteria are based on a measure that includes maximum-
divided-by-minimum node size and the depth of the decision tree. These three 
measures—maximum, minimum, and depth—are used as measures of complexity. The 
assessment measure is calculated and used to construct each subtree. Accuracy is used as 
the assessment measure. If a profit matrix is available, then profitability can be used as an 
assessment measure. Accuracy can be computed based on a training sample, a validation 
data set, and a cross-validation approach. 

For nominal targets, class probability decision trees are sometimes used as an alternative 
to classification trees. Decision trees are grown to produce discriminations between the 
distributions of class probabilities in the leaves. Decision trees are evaluated by the 
overall Gini index. 

Retrospective Pruning, Cost-Complexity Pruning, and Reduced-Error 
Pruning
Retrospective pruning originated with cost-complexity pruning and is described in the 
development of the CRT algorithm by Breiman et al. (1984). This pruning method 
attempts to identify the best subtree. The “best” is determined by predictive accuracy, 
weighted by the number of leaves in the subtree. This method is a kind of “Occam’s 
razor,” meaning that the subtree with the highest accuracy and fewest leaves is chosen 
over any other subtree that has a similar predictive accuracy. 

The decision tree in SAS Enterprise Miner provides the ability to create subtree 
sequences, using either the training data or validation data to compute the assessment 
values for choosing subtrees in the sequence. Using the training data produces a sequence 
that would result from using cost-complexity pruning, which was developed by Breiman 
et al. (1984). Using the validation data produces a sequence that would result from using 
reduced-error pruning, as described by Quinlan (1987). Reduced-error pruning relies 
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exclusively on validation data; it finds the subtree that is best for a validation data set and 
does not rely on the creation of sequences of subtrees. 

Selecting the Final Branch 
The decision of which branch to select to form the split is an important one because the 
form of the subsequent decision tree depends entirely on which branch, with which 
number of nodes or leaves, is selected. Following are some of the main considerations: 

Select the branch that will develop the best descriptive model for the analysis. 
Select the branch that will develop the best predictive model for the analysis. 
Select the branch that will develop the best explanatory model for the analysis. 

If the goal is to construct a descriptive model, then it is best to create splits in branches 
that reflect the business user’s conceptual approach to the subject area. In this case, the 
strength of a split on a decision tree is less important than the form of a branch. For 
example, if states are split into regional groups that reflect the business structure of the 
enterprise, the description is enhanced. This could be a preferable split over one which 
yields a better predictive result, but is less intuitive. 

When prediction is the goal, the form and shape of the decision tree might never be 
examined at all. In this case, you want good predictive results. This is measured by the 
validated prediction or classification rate of the decision tree. The result can be visually 
inspected using indicators such as a lift chart. 

When the goal is explanation, it is useful to grow the branches of the decision tree in a 
particular sequence. This enables you to construct a decision tree where earlier effects are 
introduced higher in the decision tree. Therefore, their effects on lower or later effects 
can be gauged. Sequencing can be used to suggest the form of the interactions among 
inputs with respect to the target. This is a way of using the decision tree to support 
explanations that relate to presumed sequences of events and interrelationships. This 
treatment is not usually possible if the decision tree is grown for simply descriptive 
purposes or for maximizing prediction. 

Step 6—Complete the Form and Content of the Final  
            Decision Tree 

After the first level of the decision tree is formed, the decision tree algorithm can be 
applied recursively to the nodes (or, at this point, leaves) of the first branch. These nodes 
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become candidates for splitting into branches, in the same way as the original root node 
was examined. This process continues recursively until a full decision tree is grown. The 
process can be stopped in a number of ways, as discussed below. 

It is worthwhile to stop at a good point to avoid overfitting the decision tree. Detecting 
overfitting is important because: 

If the decision tree is overfitting the data, then the relationships that are displayed 
in the decision tree are not stable and could be a source of misunderstanding about 
the relationships in the data. 
If the decision tree is overfitting the data, then predictions, which are based on the 
structure of relationships as identified in the decision tree, will not be good. This 
means that the predictive power and reproducibility of the decision tree will be 
weak.

Stop, Grow, Prune, or Iterate 
Statistical measures and validation methods can be used to decide how large to grow a 
decision tree and to evaluate the quality of the decision tree. 

After the branch has been selected to form the first level of the decision tree (which is 
below the root node), the process of splitting is repeated for each of the leaf nodes in the 
new decision tree to fill out the decision tree to its final form. 

The process of forming the CHAID decision tree continues until a node is selected that 
cannot produce any significant splits below it. Or, the process continues until a stopping 
rule is encountered. A typical stopping rule might be: “Do not split any node with less 
than 10 records in it” or “Do not create any node with less than 10 records in it”. 

The process of forming the CRT decision tree begins much like the CHAID process. 
CRT forms binary decision trees, rather than multi-way decision trees. While CHAID 
uses adjusted tests of significance to stop tree growth, CRT relies on validation tests to 
prune branches, to stop tree growth, and to form an optimal decision tree. 

In CHAID, after a node is split, the newly created nodes are considered for splitting. This 
recursive process ends when no further node can be split. The reasons a node can no 
longer split are the following: 

The user can decide when to stop. 
The node contains too few observations to split in a meaningful way. 
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The maximum depth of the decision tree (i.e., the number of nodes in the path 
between the root node and the given node) exceeds a specific level (typically set by 
the user). 
No split exceeds the threshold worth requirement specified in the F-test or chi-
squared significance level value, or in the variance reduction setting. 

The last reason is the most informative. Typically, in this situation all the observations in 
the node contain almost the same target value, or no input in the node is sufficiently 
predictive. The decision tree approach is very effective at developing a strong fit between 
the branches of a decision tree and the data that is used to discover the particular form of 
the decision tree. However, this type of use comes at a price. The specific form of the 
decision tree, particularly at lower levels, cannot be exactly reproduced when applied to 
new data. Decision trees that fit the training data at deeper levels often predict too poorly 
to apply to new data. While the general form of the higher-level branches might track 
new data well, lower-level branches are more idiosyncratic and cannot usually reproduce 
in new data. 

When the basic defaults for growing the decision tree are set to extreme values, the 
decision tree is likely to grow until all observations in a leaf contain the same target 
value. Such decision trees overfit the training data and will poorly predict new data. 

A primary consideration when developing a decision tree for prediction is deciding how 
large to grow the decision tree or what nodes to prune. The CHAID method specifies a 
significance level of a chi-squared test to stop tree growth. The originators of the C5 and 
CRT methods argue that the right thresholds for stopping tree growth are not knowable in 
advance, they recommend growing a decision tree too large and then pruning nodes. 

The SAS Enterprise Miner decision tree node provides both the CHAID approach and the 
grow-and-prune approach. A sequence of subtrees of the original decision tree is always 
grown—one subtree for each possible number of leaves. After the sequence of subtrees is 
established, the decision tree node uses one of four methods to select which subtree to use 
for prediction: 

1. most leaves 
2. at most indicated number of leaves 
3. best assessment value 
4. average profit 
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The user typically determines the desired subtree method. Options available include: 

if at most indicated number of leaves = n subtree (n is the number of leaves in the 
subtree)
best assessment value 

If the first approach is selected, then the decision engine uses the largest subtree with at 
most n leaves. If the second approach is selected, then the decision engine uses the 
smallest subtree with the best assessment value. 

The decision tree stops growing at a certain point, depending on the outcome of this 
assessment. The assessment is based on the validation data when available. If the subtree 
method is set to most leaves, then the node uses the largest subtree after pruning nodes 
that do not increase the assessment. For nominal targets, the largest subtree in the 
sequence might be much smaller than the original unpruned tree because a splitting rule 
can have a good branch assessment value (split worth) without increasing the number of 
observations correctly classified. 

Assessment Measures 
The most common assessment measure is proportion correctly classified if the target is 
qualitative or categorical, and the sum of squared errors if the target is quantitative. For 
continuous targets, average square error is used. 

Other assessment measures include proportion of event in the top 50% on target 1. This 
uses the half of the observations that are predicted most likely to equal 1, and uses the 
training data to compute the proportion in which the target equals 1. This measure can be 
extended to include proportion of event in the top x% on target value y. This uses a user-
defined threshold as an alternative to 50% to observe the successful classification rates at 
an arbitrary percent level (for example, 33 to compute the percentage of success in the 
top third). 

In summary, the CHAID method does the following: 

performs subprocess 2–4 in the selected node, for all nodes 
stops when no more branches are significant 
stops when cell sizes fall below a certain threshold (or when nodes of a certain size 
cannot be produced) 
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The CRT method picks the best subtree for each of the extremities of the decision tree 
through pruning. The final decision tree is the tree that is left after the subtrees have been 
pruned according to the tree growth selections. 

Key Differences between CHAID and CRT 
The main difference between a CHAID approach to growing a tree and a CRT approach 
lies in whether a test of significance or a train-and-test measurement comparison is used. 

In the classical CHAID approach, a test of significance forms the groups of codes that 
form the branch. In turn, this branch is evaluated with a test of significance to determine 
whether it is used in the decision tree. In the CRT approach, a number of methods can be 
used to form the branches (although, classically, a variance reduction approach is used to 
form binary branches). The resulting branches are tested against a validation sample to 
determine whether the branch accuracy is sufficiently high enough to be used in the 
decision tree. 

Accuracy can be computed many ways. In the simplest way, a decision tree is grown and 
the predicted classification or prediction is tested against the data set used to train the 
form of the decision tree. This is called a resubstitution test. The predicted score is 
substituted for the original score in the training data set, and the overall accuracy rate is 
computed by comparing the substituted score with the original score. 

The resubstituted accuracy rate appears higher than the true accuracy rate because the 
same data that is used to train the form of the decision tree is used to test the efficacy of 
the form that was trained. Training the form of the decision tree in this way might pick up 
idiosyncrasies in the training data that are specific only to the training data This means 
that the data is not reflective of the data universe that the training data is designed to 
reflect. So, the trained decision tree contains these idiosyncrasies. The accuracy rate is 
computed on training data that includes the idiosyncrasies because this is the same data 
that was used to train the decision tree. 

If a new data set from the data universe was used to test the accuracy of the decision tree, 
it is unlikely that the new data would include the idiosyncrasies that the trained data 
included. The accuracy rate that would be computed with this new data is less than the 
accuracy rate that would be computed using resubstitution. 

One-pass resubstitution always overstates accuracy rate. Multi-pass methods, such as 
cross-validation or boosting through re-sampling, produce better results. A better, more 
accurate rate would come from the use of a new, independent data set. This is the 
preferred method of computing the accuracy rate. This means that a separate data set is 
made from the original data and is used for testing purposes only. Because it is made 
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before the testing begins, this data is not likely to have idiosyncrasies that will be trained 
in the decision tree. 

Guiding Tree Growth with Costs and Benefits in the Target 
When there is a gain and loss associated with correct and incorrect predictive decisions, it 
is important to incorporate cost and benefit into the selection of decision tree targets. A 
cost or profit can be assigned to an outcome. The implied profitability of a recommended 
outcome (the prediction) is used to determine the final form of the decision tree. 
Psychologists have shown that implied costs and benefits lie behind a wide range of 
human decision-making. This theory is based on the theory of signal detection (Green 
and Swets). For example, the decision of whether you have enough gas to get to the next 
gas station when driving on a road carries a different weight than the decision of whether 
you have enough gas to get to the next airport when flying a jetliner. On the road, the 
implied saving of time might easily outweigh the potential cost of running out of gas 
before arrival; this is not so on the jetliner. Timeliness is important, but easily offset by 
the potential cost associated with a catastrophic loss of life. Moreover, different decision-
makers (as well as their decision-making tools) make different decisions based on their 
decision-making style (for example, whether they tend to be conservative or more 
liberal).

Guidance in decision-making tasks is provided by referring to a confusion matrix, as 
shown in Figure 3.21. The event of interest—X—can either occur or not occur. So, it is 
either X or Not X. The confusion matrix compares the actual distribution of X and Not X
to the observed (or predicted) distribution. Hits happen when the predicted event—X—
actually occurs. Misses happen when, for example, it is predicted that there is an X event, 
but, in actuality, it is Not X.
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Figure 3.21:  Confusion Matrix 
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Signal detection assesses the effectiveness of the decision boundary that is used to 
determine whether an event is X or Not X. The idea of signal detection is shown in 
Figure 3.22. There are two distributions—A and B. Distribution A represents the 
distribution of an outcome; for example, the probability that a customer who buys a pair 
of jeans will also buy an accompanying sweatshirt. Distribution B represents the same 
distribution with noise or uncertainty added. This noise comes from a variety of sources, 
such as a conservative versus liberal decision-making style. The difference between the 
two distributions is illustrated by the line showing the distance between the peaks of the 
two distributions. 
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Figure 3.22: Illustration of Signal Versus Noise Distributions in Signal Detection

The signal detection theory says that, given the uncertainty represented by the difference 
between the two distributions, decisions can result in hits, misses, false alarms, and 
correct rejections. If you guess that the customer will buy and the actual result is a 
purchase, then you have a hit. If you guess that the customer will buy, but the customer 
does not buy, then you have a false alarm. If the customer buys and you guess that the 
customer will not buy, then you have a miss. One goal of signal detection is to determine 
the ideal circumstances that maximize correct decisions (hits and correct rejections), 
while minimizing incorrect decisions (misses or false alarms). 

This can be illustrated by referencing the area under the distributions in Figure 3.23. You 
see the effect of a default 50% decision threshold that represents a halfway point between 
conservative and liberal. The area to the right of the threshold represents hits, and the 
area to the left represents misses. 
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Figure 3.23:  Illustration of the Effect of Decision Threshold on the Signal Versus  
                      Noise Distributions

Costs and benefits can be used to construct predictive decision trees that are accurate 
(regardless of the decision method) and produce the most profitable result. This is 
possible because decision thresholds are rarely clear-cut and can be changed to reflect 
costs and benefits. 

Figure 3.24: Illustration of Hit Rate Given the Decision Threshold on the Signal
                      Versus Noise Distributions
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Other Software Features 
As shown in Figure 3.25, a change in the decision threshold can change the proportions 
of hits, misses, and false alarms. When comparing Figure 3.23 to Figure 3.24, you see 
that while hits increase and misses decrease, there is an accompanying increase in false 
alarms. 

This situation is shown in Figure 3.25. A grid is set up to compare the distribution of 
values that are predicted by the decision engine at a given threshold. If you predict the 
presence of an event—designated with X—then you have a hit. If there are events in the 
data, but you do not predict them, then you have a miss. Similarly, when you predict an 
event, but the event is not there, you have a false alarm. 

Figure 3.25: Illustration of Hits and Misses at a 50% Decision Threshold
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Figure 3.25 shows the distribution of a target value in a record (illustrated as X) and 
whether the value is detected at a baseline threshold. For illustration, assume that the 
decision threshold is 50% - a common setting for most decision-making tasks. This 
threshold reflects the notion that if the probability of an event, as estimated by the 
prediction engine, is .5 or greater, then you will set the decision to the event (in this case, 
X). If the probability is less than .5, then you will set the decision to Not X. A results 
table, called a misclassification table, is shown below. There are 15 X events in the 
prediction space and the prediction engine has correctly identified 10 of them. This 
provides a sensitivity of about 67%. This sensitivity was gained from a decision threshold 
of 50%, that returned 13 predicted X events overall. The success rate of this prediction 
engine is 10 out of 13—77%. This is called the specificity. 

Table 3.2: Misclassification Table

Actual

Predicted x
not-

x sum
not-x 5 9 14

x 10 3 13
sum 15 12 27

If you assigned a benefit or return metric to a hit, and assigned a penalty or cost to run the 
prediction engine, then you would see that a good prediction engine maximizes 
sensitivity and specificity. Assume that a hit is worth $20 and that the cost per candidate 
to run the prediction engine is $5. In this example, this means that the return was $200 
and the search cost was $65. 

Now, consider changing the decision threshold to 65%. In this example, demand a 
predicted probability of .65 or greater before you predict that an event is present in the 
data records being classified. This might produce a result as shown in Figure 3.26. 
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Figure 3.26: Illustration of Hits and Misses at a 65% Decision Threshold
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If you look at the return on investment of this decision approach, you see that there were 
12 hits (for a return of $240) and that the search cost was $115. 

Actual 

Predicted x
not-

x sum
not-x 3 1 4

x 12 11 23
sum 15 12 27
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Now, look at the two approaches, as shown in the following table: 

50% 
Threshold

65% 
Threshold

Sensitivity 0.67 0.80
Specificity 0.77 0.52
Return on 
Investment 200 125

If you use the typical 50% cutoff in estimating the probability of an event (for example, 
an additional purchase), then you will get x hits. You also get y misses. Now, if you shift 
the decision threshold to a 65% cutoff, then you increase the number of hits to x+1. The 
misses decrease, but, as expected, the number of false alarms increases.  

Prior Probabilities 
Prior probabilities for the target classes can determine whether the counts and proportions 
in the formula for the assessment measure are adjusted by prior probabilities. For 
example, suppose 60% of the observations have a target value of 0, and the remaining 
40% have a target value of 1. Assume that the decision tree predicts all observations to be 
0, and the prior probability of 0 is 10%. Because the decision tree predicts all zeros, then 
it appears that the misclassification rate is 40% (because the apparent distribution shows 
40%). If prior probabilities are incorporated in the assessment measure, then the 
proportion misclassified would be 90%. Otherwise, it would be 40%. 
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Figure 3.27: Illustration of the Effect of Prior Probabilities on Apparent and Real  
                      Distributions
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Prior probabilities do not change the shape of the decision tree. The decision tree makes 
the same prediction, regardless of whether the assessment measure incorporates prior 
probabilities or not. Only the assessment results change with the prior probability 
specification.

The decision tree always uses prior probabilities when predicting a target value. If the 
training and validation data sets are obtained by oversampling observations that have a 
rare target value, then incorporating prior probabilities in the misclassification rate could 
offset the goal of oversampling, which would artificially boost the apparent incidence of 
a rare code in the training data. On the other hand, when the assessment measure is the 
proportion of the event in the data, then the incorporation of prior probabilities would 
give a better idea of how the decision tree will perform when it is deployed in a live 
environment with new data. 
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Introduction
Business Intelligence (BI) applications have been one of the fastest growing applications 
in the early years of the twenty-first century. BI applications provide a set of tools and 
techniques to enable the storage, retrieval, manipulation, and display of data to domain 
experts and business analysts in a form that facilitates business and policy decision-
making. BI applications are part of a maturity evolution in the computer industry that has 
enabled the use of computers to move from operational applications that can be used to 
run the business, to analytical applications that can be used to drive the business and steer 
its direction. 

A key feature of BI is the deployment of a wide range of readily available reporting 
capabilities. Deployment is achieved without obvious intervention of specialized IT staff. 
The consumers of the information contained in the reports have a much higher degree of 
access than was possible before the development of BI. As a result, BI has become a 
pervasive business tool and approach since its origin in the mid-1990s. 

Key drivers of BI use include: 

the development of data warehousing concepts and techniques (to access data and 
to combine multiple data sources to form a view of data that can be consumed by 
BI computer agents) 
the development of data and dimensional storage and retrieval capabilities that 
have been adapted to serve in the BI reporting engines 
the evolution of a wide variety of data viewing techniques, including the 
production of reports, spreadsheets, business graphics, and Web deployment 
environments 

More recently, BI has given rise to the identification of business analytics. The term 
“business analytics” explicitly recognizes that there is so much data available and that 
there are so many factors involved in business processes and business decision-making 
that analytical approaches and techniques are a necessary underpinning for BI to perform 
effective data summarization and trend identification. In the beginning of BI, its analytic 
nature and the real-time deployment of results to the user led to a description of the area 
as OLAP (Online Analytical Processing). The term “OLAP,” which is still used, has 
given way to “multidimensional cubes” and so provides a broader description of the area. 
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Traditional BI tools enable an analyst or decision-maker to display multiple views of 
multiple items of interest. For example, BI reports and spreadsheets show sales by region, 
sales by time, or sales by product line. With the increasing incorporation of business 
analytics within the BI framework, there are more methods and mechanisms to use 
business analytics in the identification, explanation, and dissemination of BI results. 

For example, many views can be derived from the following display: 

Credit-Worthiness  Mortgage Due  Home Value  Length of Residence  Age 

                1         25860       39025                 10.5   64 
                1         70053       68400                    7   21 
                1         13500       16700                    4   49 
                0         97800      112000                    3   60 
                1         30548       40320                    9   31 
                1         48649       57037                    5   47 
                1         28502       43034                   11   38 
                1         32700       46740                    3   42 
                1         20627       29800                   11   28 
                1         45000       55000                    3   36 
                0         64536       87400                  2.5   47 
                1         71000       83850                    8   40 
                1         24280       34687                        31 
                1         90957      102600                    7   23 
                1         28192       40150                  4.5   54 
                0        102370      120953                    2   45 
                1         37626       46200                    3   62 
                1         50000       73395                    5
                1         28000       40800                   12   67 
                1         17180                                    56 
                1         34863       47471                   12   34 

This display can be viewed as cube slices, as shown in Figure 4.1. 
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Figure 4.1: Illustration of Cube Slices Defined for BI Display

When viewed this way, you can see that the cube concept is dominant in BI. Many 
advances have been made in both the front end (data presentation) and back end (data 
warehousing, data integration, and data manipulation) aspects of BI to handle the range 
of records, fields, field values, and associated observations, variables, and variable values 
that are richly reflected in the enterprise data store. BI products are timelier, more 
accessible, and more flexible than ever before. 

As the state of the art continues to evolve, there has been a corresponding demand in the 
area of business analytics. Improvements in techniques in the areas required to perform 
prospective tasks in BI are needed: 

Provide multi-factor versus single-factor approaches and displays. Until recently, 
it was common to show 2-way diagrams (e.g., sales by region) or 3-way diagrams 
(e.g., sales by region by product line). The ability to show multi-factor hot spots 
and soft spots has been difficult to produce (for example, produce a display that 
shows that while sales in the west for new products are low, this is not the case for 
special segments of the population). 
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Provide forward-looking, predictive, or what-if approaches versus historical, 
snapshot-of-the-past approaches. 

The tasks of understanding and identifying business drivers require classifying and 
confirming trends and relationships in the data. Multidimensional cube tools and 
regression perform these tasks. Multidimensional cubes form the underpinnings of BI. 
Cubes or multidimensional cube tools enable business users to look at multiple views of 
their business data as they seek a better understanding of the trends and relationships that 
are relevant to their business. Cubes provide pre-calculated and pre-summarized 
dimensions of information, which results in instantaneous retrieval and examination. The 
ultimate goal is to better understand the data-based drivers of the business so that these 
drivers can be anticipated and manipulated in ways that are favorable to the business. 

Whereas multidimensional cube tools are based on pre-calculated dimensions to improve 
a user’s judgment when assessing trends and relationships, multivariable techniques, such 
as decision trees and regression, are based on statistical knowledge and business 
experience in order to generate results on the fly. Multidimensional cube tools and 
regression can explore the classification and predictive power of multiple fields of data in 
a data store. Cubes are limited by their reliance on pre-calculated fields; simply put, not 
all relevant business dimensions can be pre-calculated and pre-summarized in a business 
analysis. There are significant limits to a user’s judgment and cognitive abilities in terms 
of the number of quantities that can be judged and manipulated, as well as in the 
reliability and accuracy of size estimates, when exploring and comparing various effects 
in the BI display. Decision trees are well adapted to producing results that can be 
rendered as cubes for reporting purposes. 

A Decision Tree Approach to Cube Construction 
Like BI tools, decision trees perform the tasks of trend and pattern identification. 
Decision trees are built using a methodology that explicitly addresses the need to identify 
the relationships between the factors that combine to provide a complete view of the area 
being examined. Decision trees are designed to search for a wider range of relationships 
than multidimensional cubes or standard regression methods. Because decision trees drill 
down to the record level in data, they enable multidimensional business reports that 
identify trends and patterns that might be missed in normal, multidimensional cube and 
regression analyses that rely on aggregate data. 
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The BI report is based on displaying facts (usually from the fact table of the underlying 
data warehouse) along preselected dimensions and sub-dimensions. BI reports are 
defined ahead of time to reflect commonly used business reporting dimensions. Decision 
trees also display facts (usually from the distribution of a target field) along dimensions 
and sub-dimensions, which are formed by the branches of the decision tree. The major 
difference between the dimensions of a decision tree and the dimensions of a BI approach 
is that the dimensions of a decision tree are formed on an ad hoc basis, either 
automatically or through user interaction. Decision tree displays result from compressing 
or collapsing dimensional values on the display. Values of the dimensions and sub-
dimensions are collapsed to show similarities and differences among the dimensional 
values that are not highlighted in BI displays. 

Decision trees evolved as data analysis tools in both applied and academic settings. The 
earliest use of decision trees was in a marketing research analysis that involved an 
audience. Other early uses were developed to assist the identification of relationships in 
data to support sociological and economic research at the Survey Research Center at the 
University of Michigan. Decision trees have had a strong business analysis orientation 
from the early days of their conception. 

Decision trees began as a method of finding tables within tables or relationships within 
relationships. In this respect, they are like multidimensional cube tools in that they both 
look at various dimensions of data and within a dimension, they both look within sub-
dimensions. As decision trees matured, the goals extended to handle continuous and 
categorical table cell entries and multi-way branches. Statistical tests and validation 
approaches were developed to assure the integrity of the decision tree. Decision trees use 
data search and summarization algorithms and verification and validation mechanisms 
that distinguish them from multidimensional cube tools. 

Multidimensional Cubes and Decision Trees Compared: A 
Small Business Example 
Assume you have a lemonade stand and are selling lemonade by the glass or by the jug. 
You have a database of sales transactions. You even have a number of fields of 
information where you collect additional data each time you make a sale. 
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A sales transaction record might appear as follows: 

Sale
Item

Quantity Price Discount Time of 
Day

Sales
Agent

Customer 
Identifier

You use the database to calculate sales commissions and to keep track of inventory to 
reorder supplies. Today, with the growth of analytical systems, you could use this data to 
try to understand your customers and your sales patterns, to create sales campaigns, and 
to drive new product development. You could look for types of sales that maximize the 
profit from your sales effort (ROI). 

A typical multidimensional cube analysis starts with historical business queries and 
reports. It attempts to identify dimensions in the data that elaborate the business model to 
create views of the contextual effects. These views lead to a better understanding of the 
relevant business issues. The multidimensional cube analysis proceeds intuitively—it 
follows hunches to look for relationships that can be used to better understand or predict 
events. Consider your database of lemonade sales to determine sales trends. 

A multidimensional cube analysis might look at sales by time of day, as shown in  
Figure 4.2. 
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Figure 4.2: Illustration of a Multidimensional Cube by Time of Day 

Or, the analysis might characterize customer by customer type. 

Figure 4.3: Illustration of Age Characteristics of Customers 

Or, the analysis might break down sales by volume. 
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Figure 4.4: Illustration of Sales by Volume 

The analysis might even look at sales by geographic area served (customer origin). 

Figure 4.5: Illustration of Customer Origin 

Behind the scenes, a typical multidimensional cube analysis is based on a cube that has 
dimensions of analysis that have been determined as being important characterizations of 
the business data. Following in Figure 4.6 are two simple examples—one in two-
dimensional form and one in three-dimensional form. 
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Figure 4.6: Multidimensional Cube Analysis

Customer $        $        
Quantity $    $    $    $    
Location $  $  $  $  $  $  $  $  
Time of day $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 

In these examples, the business user is using the cube definitions and associated data 
tables to present views of the data. Views could be a screen display or a printed report 
with graphics. Figure 4.6 shows 2-way relationships: one field on one axis, and one field 
on the other axis. However, multi-way relationships are possible and desirable. The 
ability to drill down into various views of data and show multi-way relationships within a 
dimension enables multidimensional cube tools to show one or more relationships in the 
context of another relationship; for example, a multidimensional cube tool can show the 
discount rate for a product for an enterprise division. 
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Although both decision trees and multidimensional cube tools show multi-way 
relationships in context, there are important differences between the two; 
multidimensional cube tools do not have the same relationship-searching capabilities that 
decision trees have, nor do they have the onboard statistics or validation facilities that 
decision trees have. A decision tree looks through more relationships than a 
multidimensional cube looks through; furthermore, a decision tree verifies and validates 
relationships as being statistically or numerically sound. 

Multidimensional cube views are designed to support quick viewing and decision-making 
by the business user. As a result, the cubes are built to optimize the user’s time. Much 
care and effort are required in constructing the underlying multidimensional cube 
database and in precomputing the contents of the views, sub-views, and drill-downs that 
the business user is likely to review. This means that the business user is not able to point 
and click through various alternative analysis scenarios within the multidimensional cube 
environment, as can be done with decision trees. 

Because the dimensions of a cube analysis are created from a preexisting warehouse and 
because the associated reports are often pre-calculated, multidimensional cube reports 
tend to be more structured and rigid than decision tree reports. For example, typical state 
aggregations can be drawn along regional lines—East, West, South West, and so on. 
These dimensions can be fixed by business rules and business policies. Nevertheless, 
once the dimensions are established and set up either in the data warehouse or as 
reporting dimensions in the multidimensional cube reporting application, they cannot 
easily be changed, nor can they be recombined based on a relationship in the data (for 
example, combine all high-margin states). 

Decision trees permit the recalculation of dimensional groupings on the fly. They support 
dimensional groupings that are based on the properties of data and the relationships 
between data elements, rather than on business rules or business policies. For example, 
the following decision tree shows how trees can be used to form the framework of a cube. 
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Figure 4.7: Illustration of a Decision Tree as Raw Material for Cube Construction 

Decision trees provide utilities to tell you which variables are important and which 
interactions (i.e., which cube faces and cube combinations) should be presented. From 
Figure 4.7, you can see many useful features for the display of cubes. 

The decision tree identifies empirical-based ranges of values to collapse (or group) within 
display fields, such as age. Normally, these ranges are predetermined or calculated 
mechanically. The decision tree identifies whether sub-dimensions are significant (from a 
statistical point of view, and also from a business-rules perspective) and, if so, what the 
optimal collapsed categories for the values should be. 

In Figure 4.7, you can see that at the top level of the decision tree, the optimal code 
ranges for Age are < 24.5, 24.5 to 32.5, and >= 32.5. The structure of the decision tree 
suggests that two sub-dimensions, based on Home Value, are appropriate in the lower 
Age range. Length of Residence is an appropriate sub-dimension in the low-end value of 
the middle Age range.
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Multidimensional Cubes and Decision Trees: A Side-By-Side 
Comparison 
Multidimensional cubes and decision trees can be compared and contrasted as follows: 

While multidimensional cubes have pre-built data dimensions, the dimensions of 
decision trees are dynamically collapsed to highlight similarities and differences 
among and between nodes that are being formed by the decision trees. These 
nodes are equivalent to classes in the cells of the tables. 
In decision trees, the dimensions and groupings can be determined by business 
rules, as BI approaches are, but they are more commonly determined by the 
strength of the association or prediction, which is based on numerical methods or 
statistical approaches. Typically, the dimensions and groupings are formed 
through a dynamic that combines business rules with numerical methods and 
statistical approaches. 
Multidimensional cubes are almost always retrospective; that is, they show what 
has already happened based on the data. Decision trees are retrospective, 
prospective, and predictive. Like multidimensional cubes, decision trees show 
how the data is arranged in-line with the historical past. Decision trees can be 
used to extrapolate and infer future events. Underlying rules are commonly used 
as the basis for predictive and expert systems. 
Decision trees are more effective at handling missing values. Missing values are 
handled by using surrogate or stand-in values or by treating missing values as a 
different code that is grouped with similar codes in the reporting dimension of the 
decision tree. 
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Table 4.1: Comparison of Multidimensional Cubes and Decision Trees 

Multidimensional Cube Decision Tree 

Shows tabular views of data as tables with 
relatively fixed dimensions; dimensions 
are determined primarily on the basis of 
business rules 

Shows tabular views of data within 
relevant dimensions as determined 
by computational algorithms and 
business rules 

Has database that is pre-built to support 
anticipated queries 

Has database that is pre-built to 
support numerous unanticipated 
queries

Provides quick view retrieval Has lengthy retrieval 

Tends to limit number of cross-views or 
relevant factors 

Has few limitations on the relevant 
factors

Makes it difficult, almost impossible to 
identify novel results 

Emphasizes novel results and the 
identification of important versus 
unimportant contributions 

Decision tree results can be made to look very much like multidimensional cube results; 
the branches of a decision tree are just simple n-way tables that show the relationship 
between the attributes of the field that is used to form the branch and the values of the 
target in that node or leaf. Like multidimensional cube tools, decision trees can display 
both categorical and continuous n-way relationships in any node or leaf. Like 
multidimensional cube tools, a leaf is presented in the context of higher-level dimensions. 
In a decision tree, these higher-level dimensions are the higher-level branches. In a 
multidimensional cube, the higher-level dimensions represent the drill-down sequence 
that was followed to be at that face in the cube. 

Both decision trees and multidimensional cube tools provide a drill-through capability 
(i.e., the ability to display and analyze detailed information that belongs to the individual 
records that characterize the relationships that are displayed in any single table, leaf, or 
face of the cube). And, just as decision trees can be represented as multidimensional 
cubes and associated displays, multidimensional cubes can be represented as decision 
trees (although typically, they are not). 

Both multidimensional cubes and decision trees provide the means to apply all relevant 
dimensions when identifying key drivers that affect a target or outcome value. However, 
multidimensional cube dimensions are displayed and examined hierarchically, whereas 
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decision trees present results in tree form as a network. In summary, both support a style 
of analysis that can lead to identifying important relationships between fields or variables 
that need to be considered to accurately and reliably describe and predict a target or 
outcome. 

Multidimensional cubes present numerical results (such as average, standard deviation, 
mode, range, and count) within the cells that are formed by the dimensional categories. 
Decision trees can present numerical values and categorical values as the target. 

The Main Difference between Decision Trees and 
Multidimensional Cubes 
The major difference between decision trees and multidimensional cubes is the heavy 
concentration of statistical and search algorithms that are built into decision trees. All 
forms of multidimensional cube analyses depend on the creation of a view of the analysis 
data. The view enables the dimensions of the cube to be retrieved and assembled as the 
various faces of the cube are selected for analysis and display. In this respect, decision 
trees require less preprocessing of the data and of associated dimensions because the 
statistical and search algorithms have been built to identify the specific form of 
dimensions at the time that the decision tree is grown. 

Decision trees support a looser initial definition of the dimensions of data that are 
included in the analysis. They support a more dynamic identification of the specific 
structure of the dimensional relationships through the use of the statistical and search 
algorithms. These algorithms assemble the dimension in real time as the decision tree is 
grown.

The actual statistical and search algorithms in decision trees are another major difference 
between decision trees and multidimensional cubes. Decision trees provide more methods 
to identify the strength of relationships than are provided in multidimensional cubes. 
Furthermore, decision trees provide more methods to guard against overfitting the data 
(i.e., decision trees provide methods to identify inaccurate and unreliable relationships, 
which is not usually provided in multidimensional cubes). 
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Overall, decision trees can uncover more relationships and more effects—based on 
unique groupings—than multidimensional cubes can. In addition, decision trees provide 
more options to check the efficacy of relationships that are discovered and displayed, 
which helps prevent overfitted relationships and the misunderstandings and unreliable 
predictions that are associated with them. Some multidimensional cube tools provide 
forecasting or predictive features, but they do not provide as many options and validation 
functions as decision trees provide. 

Regression as a Business Tool 

The use of regression techniques has long been a mainstay in scientific research and 
statistical process control. The pervasiveness of computers and information technology in 
business environments has created a situation that is ripe for uncovering uses for 
regression in business data analysis. Although regression is used in relatively specialized 
areas such as supply chain management, statistical process control, and database 
marketing, it has not been adopted as a business intelligence tool, even though it would 
address the major prescriptive requirements for BI approaches to provide forward-
looking multiple-indicator results. The same could be said about more recent techniques, 
such as neural networks. Neural networks could serve as a flexible family of nonlinear 
regression and discriminant analysis techniques. They are in the same class of methods as 
regression techniques. 

Although the multidimensional cube is the most prevalent type of data analysis tool used 
in business settings, regression is used very often. And while the multidimensional cube 
is a recent data analysis tool, regression has been used in business and scientific settings 
for many decades. 

Regression describes the relationship between two quantities in the form of an equation 
where one quantity—Y—is viewed as a function of the other quantity—X. This simple 
relationship can be shown as follows: 
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Figure 4.8: Illustration of a Typical Regression Result

In this simple case of regression, the relationship is approximately linear. The regression 
method has been extended in many ways. For example, the target—Y—can be a function 
of multiple predictors. The form of the relationship has been extended so that both linear 
and nonlinear relationships can be included. And, in addition to numeric quantities, 
nonnumeric qualitative information (i.e., categorical data) can be included. 

Decision Trees and Regression Compared 
Decision trees and regression share a common form where target values are associated 
with multiple input values in order to show the form of the association and to be able to 
predict new target values based of new input values. Although regression and decision 
trees perform the same function, which is displaying a relationship between a target 
(outcome or response) variable and one or more input variables, they take widely 
different approaches. Regression works by manipulating an entire matrix of information  
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that contains all the values of all the inputs against the target and that attempts to compute 
an optimal form of the relationship that holds across the entire data set. 

Decision trees proceed incrementally through the data. Because of this approach, a 
decision tree might find a local effect that is very interesting and would be missed by 
regression. Yet, because it is a local effect, it might be only locally significant or locally 
reproducible, meaning it will not replicate or generalize very well. New approaches, such 
as boosting and bagging (which present the averaged results of many decision trees), 
offset this tendency. 

Figure 4.9 Illustration of a Linear Trend Suggesting a Good Regression Fit 

Regression is capable of presenting a linear relationship, as shown in Figure 4.9. A 
simple relationship can be eloquently expressed as a linear equation. Decision trees can 
only approximate this relationship, as shown in Figure 4.10. 
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Figure 4.10: Illustration of Decision Trees Displaying a Linear Trend 

When trying to reproduce a linear relationship with decision trees, various parts of the 
linear relationship are fit by many components of the decision tree. This produces a 
staircase-type of relationship fit, as shown in Figure 4.11. 

Figure 4.11: Illustration of the Staircase Effect When Multiple Decision Trees Fit a  
                      Linear Trend



140 Decision Trees for Business Intelligence and Data Mining: Using SAS Enterprise Miner

Under certain circumstances, this staircase effect can be useful, for example, when the 
audience has difficulty conceptualizing the regression equation. Or, this effect can be 
more visual when the branches on the staircase represent convenient and well-understood 
conceptual categories (e.g., child, preadolescent, adolescent, young adult, and so on). 
Often, a decision tree reveals just enough of the necessary information to be easily and 
intuitively interpreted, as shown in Figure 4.12. 

Figure 4.12: Illustration of an Intuitive Decision Tree Displaying a Fitted  
                      Linear Trend 

New approaches that handle many decision trees at once (e.g., boosting and bagging) 
offer a method of producing a smooth surface like you see with regression. 

Differences between Regression and Decision Trees 
The differences between regression and decision trees, as well as the indicators of the 
strengths and weaknesses, can be described as the following: 

local versus global search 
rules versus coefficients 
distributional and metric assumptions about the data 
description of the relationships 
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Local versus Global Search  Decision trees attempt to find a function that can split the 
observations of a target (outcome or response) into subgroups that form descendent 
branches. These subgroups are candidates for further splitting until some stopping 
criterion is met. When a decision tree processes a data set, it does so in successive 
increments where each increment produces a leaf node that becomes a local subset where 
the relationship between the response and the input variables is described in a local 
context.

On the other hand, regression attempts to find a function that can characterize the 
observations of a target (outcome or response) so that the deviations between the score of 
the function and the actual function are minimized across all cases. The regression 
approach manipulates the data set and the input variables that it contains as a single 
canonical representation. While decision trees proceed one branch at a time to identify 
combined effects, regression identifies combined effects of all inputs simultaneously and 
then identifies individual effects. More differentiated functions are introduced into the 
regression equation to construct an optimal deviation-reduction function. The regression 
approach is global in contrast to the local segments of decision trees. 

Rules versus Coefficients  Decision trees proceed to segment data on an incremental 
basis by descending to lower branches of the decision tree. Unlike regression, decision 
trees look at each input separately and iteratively. They recursively choose between 
alternative groups or branches of input values to grow the decision tree by splitting nodes 
in-line with groups or branches that are identified. 

By comparison, regression techniques are holistic. Regression identifies the combined 
and individual effects of data on the basis of matrix operations that capture and 
summarize the relationships between inputs and target as a single multidimensional 
expression. While decision tree results can be described as a series of incremental <IF> 
<THEN> rules, regression results are described as a series of coefficients for the model 
inputs. These coefficients are computed with respect to the values of all other coefficients 
that are in the model. 

The regression equivalent of a node can be conceptualized as a slope. The value of the 
slope is captured by the coefficient bx in the following expression: 

bxy 2
^

This expression reveals the upward trend in the distribution of x-y points in the regression 
line, as shown in Figure 4.8. 
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In their simplest forms, decision trees and regression equations perform different and 
complementary functions. 

A decision tree provides a graphical representation of the structure of the 
relationships in data. The decision tree identifies how the target rises and falls as 
the data that is associated with the target is filtered through views provided by the 
multidimensional breakdowns represented as leaves in the decision tree. 
A regression equation provides a clear and mathematically rigorous expression of 
the form of the relationships in data that is reflected by the sign and strength of the 
coefficients in the regression equation. 

Decision trees were originally developed as a complement or alternative to linear 
regression. One of the earliest decision tree implementations of AID was used to detect 
nonlinear effects and interactions among predictors in a regression equation. Decision 
trees readily select sub-segment effects in a data set that might be missed by regression. 

Decision trees deliver their sub-segment effects through their recursive partitioning 
method. This offers the advantage of more readily selecting sub-segment effects, but it 
does so at the cost of requiring much data to work with. As decision trees successively 
partition the data set, smaller sub-segments of data are created at lower levels of the 
branches of the decision tree. Because regression computes the combined effects of all 
data points through a summary operation that works with all data points simultaneously, 
regression does not dice the data in the same way decision trees do and it makes more 
efficient use of the available data. Neural networks, like decision trees, readily select 
nonlinear and sub-segment effects that are contained in the data. 

Distributional and Metric Assumptions About the Data  A major difference between 
decision trees and regression is the use of categorical or nonmetric data values. This 
difference underscores a general difference between decision trees and regression that 
relates to the assumed form of the data that underlies the approaches. Because decision 
trees successively segment input values based on discrete, nonmetric distinctions, 
decision trees work with data that can be measured in a variety of metric and nonmetric 
(quantitative and qualitative) ways. On the other hand, regression is a quantitative 
technique based on an approach to data manipulation that assumes that data values are 
linear and additive. Common intervals are inferred so that the metric distance between 
values 10 and 11 is the same as the metric distance between values 11 and 12, and so on. 
The statistical techniques at the core of the regression algorithm rely on data that is 
distributed according to the law of large numbers. When data deviates from this form, the 
regression technique begins to break down. Although there are techniques for handling 
deviations, the results become more uncertain and more difficult to produce. 
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Description of the Relationships  As decision trees and regression have evolved, there 
has been an increasing cross-fertilization of techniques drawn from these two approaches. 
For example, regression approaches now accommodate nonlinear relationships and 
interactive effects in data. A common way to accommodate nonlinear relationships in a 
regression equation is to form a variable that is used to segment the data set so that 
different regression equations are fitted for different subsets of data. In this way, 
nonlinear effects are isolated by different regression equations that are formed for the 
different subsets. Decision trees can be used to construct the variable that is used to 
segment the data set. This is one of the many preprocessing functions that a decision tree 
can do before a regression analysis. SAS Enterprise Miner provides facilities to do this. 

Likewise, decision trees have evolved to include simple and multiple linear relationships 
as splitting criteria in the construction of a decision tree. Decision trees can now apply 
fine-grained layers of branch partitions that are computed through resampling. As a 
result, the data space is cut into finer discriminations that resemble the discriminations 
made by regression equations. The differences between decision trees and regression 
have become smaller over the years. 

Over time, hybrid approaches have evolved. A decision tree can be used as a 
preprocessor for regression to identify one or more atomic leaf nodes that, in turn, can 
become outcome groups to be modeled in the context of a regression analysis. By the 
same token, error-reducing functions, developed in the regression modeling framework, 
can be used to identify the attributes of the branches that should be used when creating 
the decision tree. 

Because decision trees are developed recursively, they result in successively finer 
subcategories of data and successively smaller subgroups. Each subgroup is uniquely 
defined by the sequence of multidimensional branches that must be scanned to define the 
subgroup. These are the attributes of the subgroup that distinguish it and separate it from 
the other subgroups in the data. Unfortunately, as the decision tree grows deeper, it is 
harder to comprehend the overall view of data that the decision tree is describing. For this 
reason, decision trees that are more than three layers deep can be hard to understand. 
Also, as the decision tree deepens, branches are identified and displayed that rely on 
fewer observations to determine their characteristics. As a result, the reliability, accuracy, 
and reproducibility of the decision tree are threatened by the fewer observations that are 
used to shape the decision tree. 
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Regression techniques share a similar fate. Regression equations do not artificially divide 
the data into finer subcategories; however, they divide the data into finer functional 
descriptions. Ultimately, this means that regression equations suffer from opacity and a 
complexity of interpretation that decision trees do not suffer from. With decision trees, 
each and every subgroup can be precisely, easily, and uniquely defined through a visual 
or automated scanning of the decision tree or the rule representation. 
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Introduction
The discussion in previous chapters has served to highlight and illustrate the two major 
characteristics and attractions of decision trees as methods of dealing with data:  

to extract and apply information from data, particularly predictive information 

to extract and communicate insight from data 

The first major characteristic, prediction, emphasizes the accuracy and reproducibility of 
the decision tree model and does not emphasize the underlying form, structure, or 
intrinsic comprehensibility of the decision tree. The second major characteristic 
emphasizes pattern detection, identification, and communication. This approach is 
exploratory and can be used as a precursor to other techniques, such as multidimensional 
cube reporting or building predictive components. 

The strength of decision trees for exposition is in the decision tree’s ability to uncover 
multiple effects both visually and intuitively. To create the best decision tree for 
expository value, the decision tree often takes a form that maximizes expository efficacy, 
but might compromise or undermine the decision tree’s optimal numerical powers in 
prediction and accuracy. There can be a trade-off between the business-rules approach to 
decision tree use and the statistical efficacy. 

Since the initial substantial deployment of decision trees as data analytical tools in the 
‘70s and ‘80s, decision trees have solved many of the early problems that labeled them as 
ineffective prediction tools in terms of validity, accuracy, and efficacy. Recently, 
encouraging developments have suggested that predictive goals and descriptive insight 
goals are not necessarily antagonistic. Results presented by Breiman in the area of 
random forests (2001) and Friedman in gradient boosting (1999) demonstrate the 
effective communication of what seems to be deeply complex, potentially obscure multi-
tree models. Both random forests and gradient boosting are boosting approaches that 
resample the analysis data set numerous times to generate results that form a weighted 
average of the resampled data set. When summarized, the results of many decision trees 
are better than the results of a single decision tree. In both random forests and gradient 
boosting, the emphasis is not so much on detecting the form and representation of a 
single decision tree, but on presenting a graphical representation of the associated 
decision tree predictive components, such as scores and deviations. 
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Whether the goal is prediction or insight, a major benefit of decision trees is exposing 
relationships and patterns in data, generating predictive results, and communicating these 
findings. The user’s task is to understand the various approaches and to choose wisely 
when conducting analyses. 

Crafting the Decision Tree Structure for Insight and 
Exposition 

Growing a decision tree for insight (extracting conceptually appealing information from 
data) and exposition (displaying the decision tree results in a form to communicate 
insight and to inform policy and planning) needs to be fully understood. The goals of 
insight and exposition differ and complement the goal of using decision trees to extract 
key relationships and predictive structure from data (which satisfies the requirement of 
maintaining an overall form, structure, and sequence of branch formation in the decision 
tree). The decision tree reveals information and communicates best when it can be used 
to “tell a story” that fits the conceptual framework of the audience. The story illuminates 
key interests and potentially contains a few plot twists that upset conventional ways of 
looking at the data and, hence, pave the way for the development of insight and improved 
understanding. 

In telling the story, it is important to have a beginning, middle, and end. The story should 
be told in terms that are familiar to the audience. And, while it can be useful to include a 
few twists in the plot, the insights that are revealed should be plausible. The best way to 
ensure a good story line is to construct the decision tree in-line with the conceptual model 
of the area that the decision tree is designed to illuminate. For example, if you are looking 
at purchase behavior, then the attributes of the decision tree need to reflect concepts that 
are relevant to purchasing behavior. If the application is quality control and you are 
looking at part failures, then the attributes of the decision tree need to reflect concepts 
that are relevant to part failures. 

Every application area in which expository decision trees can be deployed is 
characterized by concepts that either explicitly or implicitly exist in the minds of the 
audience. Concepts have been measured and reflected by different entities in the data set 
and can be linked differently, particularly if the entities suggest different links based on 
the empirical characteristics of the data. However, there is always an underlying story 
line, a presumed relation, and a presumed cause and effect or sequence of causes and 
effects. Some decision trees can be more comprehensive than others. One characteristic 
of a comprehensive decision tree is that the data in the conceptual area that is being 
explored contains a range of related attributes. As a result, the story that is told by the 
decision tree reflects both a plausible set of relationships and a fairly complete set of 
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relationships (i.e., to the extent possible, the substantial drivers of the relationships being 
explored have been included). 

To build this type of decision tree for exposition, the following tasks should be 
performed:

1. Determine the conceptual model. 
2. Determine the data measures, fields, and field values that will become the 

operational components of the conceptual model when the model is translated to 
form the decision tree. 

3. Develop the story line (i.e., the presumed sequence of events as the operational 
components unfold to tell the story). 

4. Determine key relationships or potential plot twists to be examined in shaping the 
form of the decision tree. 

Conceptual Model 
So far, the decision tree concept has been described by the analogy of telling a story. It 
can also be described by comparing it to the traditional scientific method. In the scientific 
method, you begin with a theoretical model. From the theoretical model, you build an 
exposition that consists of an operational model. Then, you form constructs that reflect 
empirical data and that can develop a set of hypothesized relationships and proposed tests 
of hypothesis that can demonstrate the mirroring between the operational model and the 
theoretical model. 

While the decision tree is constructed to be readily consumed and useful to the audience, 
it is also constructed to support scientific rigor and defensibility on scientific and 
engineering grounds. This kind of defensibility is essential because ultimately, the 
decision tree results are designed to become enterprise policy deployments that will 
produce substantial savings and profits. Therefore, no matter how appealing the story is 
or how compelling the plot is, the results must be scientifically robust to support a review 
and implementation program that could offer significant benefits. 

A decision tree can illustrate the operation of the model being used to explain the 
relationship being examined. The most important consideration relates to crafting the 
structure and sequence of the branch partitions used to expose the model and explain the 
results, in explanatory modeling or when you want to expose the relationships between 
the multiple factors in the model and the target. 
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Consider the following weather forecasting example: 

Figure 5.1: Illustration of a Conceptual Model of the Analysis of Weather Patterns 

A simplified model of weather might be as follows—water evaporates over the ocean, 
forming clouds of moisture in the air. These clouds move in a direction based on the 
prevailing winds. Moisture can be squeezed out of the atmosphere depending on what 
happens to the prevailing winds as they encounter landmasses. Finally, if there are 
particles of dust in the air, the condensation of water droplets to produce rain is 
accelerated. 

The prediction of rain or shine depends on the cumulative operation of a sequence of 
variables. The winds have no effect unless there is evaporation for them to carry. 
Landmasses and particle concentrations on their own cannot produce rain; they need the 
winds that carry moisture. And, without landmasses and particle concentrations to run 
into, moisture could be carried by the winds forever and never be released. 

If there is rain and a mountain range nearby (a frequent event on the West Coast of North 
America), you should not conclude that the mountainous surroundings have produced the 
rain. This is an example of a spurious relationship. To know the whole story, you need to 
measure evaporation over the ocean, you need to measure the speed and direction of the 
prevailing winds, and so on. 

When growing the decision tree so that it will reflect this order in the model of the 
domain, you should observe this sequence of events. There are many competing branches 
at the top level of a decision tree. It is common to have a number of alternative 
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branches—all significantly related to the target (as indicated by their logworth measure). 
The question becomes, “Which branch should I select?” For the purpose of exposition, it 
is best to select branches in the order that conforms to your modeling framework. This 
usually involves selecting a branch with a lower logworth than other available branches. 
In the weather example, this suggests that the topmost branches of the decision tree 
should reflect evaporation rate. Next, you should select branches reflecting the operation 
of the wind. Then, you should select branches reflecting landmass profiles and particle 
concentrations, in that order. In some cases, you might select a branch that does not pass 
a test of significance. It is important to include these nonsignificant branches in the 
displayed decision tree so that the conceptual model is properly reflected. 

These tasks can be called the analytical approach or the analytical framework. They are 
illustrated in Figure 5.2. 

Figure 5.2: Illustration of the Top-Down Work Breakdown to Develop an Analytical  
                    Model 

In the purchasing example developed in Chapter 2, the theoretical model could presume 
that purchase preference follows socioeconomic status and is influenced by life cycle 
factors, such as marital status, home ownership, and children. Other influential factors 
can be presumed, such as sociopsychological lifestyle and personal preference. A 
predisposing factor, such as a recent loan or home purchase, might be a signal that 



Chapter 5: Theoretical Issues in the Decision Tree Growing Process 151

indicates an immediate or impending change in one or more of the dimensions of life 
cycle. To better understand, consider the balloon-and-line diagram in Figure 5.3. 

The balloons can illustrate the components of the model. The connecting lines can 
illustrate the presumed relationships. To model the relationships in the form of a decision 
tree, you need data that encapsulates the presumed behavior of the components in 
relationship with one another. The data is used to derive the empirical measures that will 
operationalize the behavior that you want to examine. 

As the model evolves, you can form hypotheses to test as you construct the decision tree 
that represents the conceptual approach. After forming the hypotheses, you can control 
and guide the construction of the decision tree. This, in turn, puts you in a position to 
meaningfully, constructively, and efficiently produce and interpret the results that you 
find.

Figure 5.3: Illustration of an Analytical Model 

Following is an example hypothesis: 

Is there a limit to the variety of drinkable products a consumer will be attracted to? How 
is this limit distributed in my current (and future) market population? How will this vary 
over time and by customer? 

Question 1: How can various products be clearly packaged and differentiated? 

Question 2: Which of these product packages can give me a satisfactory ROI given 
the competitive environment and satisfactory marketing mix (product, 
price, place, promotion)? 
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Each layer in the model can consist of theoretical constructs that are operationalized by 
the database contents. Operationalize is the process of assigning numeric tokens for 
conceptual entities. For example: 

Table 5.1: Theoretical Constructs 

Socioeconomic
Factors

Sociopsychological 
Factors

Psychological 
Style

Range of 
Preferences 

Buying 
Decisions

Age
Education
Marital/Family 
Status
Income

Marital/Family 

Type of 
Employment 

Indebtedness

Outward-
Directed
versus
Inward-
Directed

Outdoor
Products

Indoor
Products

Buy Product X 

Buy Product Y 

The hypothesis is that the propensity to buy the explosive, multi-fruit blend is a function 
of adolescent, upwardly mobile, outdoor-oriented, outward-looking types, with elevated 
levels of spending power. 

To support the evolution of the plot as the story unfolds while building the decision tree, 
you must introduce the branch partitions in the order that is implied in the conceptual 
model shown in Figure 5.4. The top branches of the decision tree are grown to reflect the 
background socioeconomic factors. Next, sociopsychological factors and psychological 
style factors are introduced. Finally, the range of preferences are introduced (if available). 
Preferences provide the most accurate and attention-grabbing presentation of the 
combination of factors and relationships that are optimal in capturing the data in the 
context of extracting meaning to understand purchase behavior. 

This method of growing the decision tree can correctly preserve sequence information 
and explicit and implicit time-ordered relationships in the data so that the results reflect 
the logic of preconditions and consequent targets. Simpson’s paradox states that if you 
are examining relationships among the independent variables, then the sequence of the 
construction of these variables can be important. There are limits to computation-based 
measures; this is an opportunity for the analyst to rely on knowledge of theory, practice, 
and experience to choose the branches and sequence of branches in the decision tree. 
Furthermore, in a data mining context, it is common for a data set to have hundreds of 
potential inputs serving as explanatory or descriptive decision tree components. It is not 
sufficient to let the decision tree grow in a way in which branches are picked on the basis 
of predictive strength. To explain the results, it is important to construct the form and 
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sequence of the branches. A heuristic approach that is based on the underlying conceptual 
model can substantially reduce the construction burden on the analyst. 

A practical method is to use a fishbone or Ishikawa diagram. In the retailer data first 
discussed in Chapter 1, you can start with an Ishikawa diagram as shown in Figure 5.4. 

Figure 5.4: Illustration of an Ishikawa Diagram to Organize the Constructs of an  
                    Analytical Model 

In practice, determine what dimensions are likely to be relevant by examining the source 
data. The source data is shown in the following display. 

Socio-Economic Consumer Style 

Demographics Life Style Customer Style 
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          Number     Variable                Dimension 

1 gender Demographic
2 occupation              Socioeconomic 
3 owns_truck              Lifestyle 
4 owns_motorcycle Lifestyle
5 owns_RV Lifestyle
6 valueOfCar Socioeconomic
7 length_of_residence Socioeconomic
8 maritalStatus Demographic
9 age Demographic
10 hasBankCard Consumer Style 
11 hasStoreCard Consumer Style 
12 has_card Consumer Style 
13 has_credit_card Consumer Style 
14 has_upscale_store_card Socioeconomic
15 children_home Lifestyle
16 adultsInHH Lifestyle
17 income Socioeconomic
18 has_new_car Socioeconomic
19 Recency Customer Style 
20 lifeTransactions Customer Style 
21 lifeVisits Customer Style 
22 NetSalesLife Customer Style 
23 state Demographic
24 bathroomPurchases Customer Style 
25 bedroom Customer Style 
26 kitchen Customer Style 
27 juvenile Customer Style 
28 table Customer Style 
29 windowDisplay Customer Style 
30 couponPurchase Customer Style 
31 Monetary Value Customer Style 
32 Frequency Customer Style 

There are a number of potential inputs for the five dimensions, as shown in Table 5.2. 

Table 5.2: Measurement Inputs 

Dimension Measures (Inputs) 
Demographic 4 
Socioeconomic 6 
Lifestyle 5 
Consumer Style 4 
Customer Style 13 
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There are numerous potential combinations of branches if all measures for all dimensions 
are inserted into the decision tree. By constraining the order of entry, the potential 
number of combinations is reduced considerably. This might be considered a 
shortcoming if the only goal in growing the decision tree is predictive accuracy. 
However, it is damaging beyond repair if the goal is to grow a decision tree that can be 
displayed and explained in conceptual terms that are relevant for an audience that is eager 
to better understand its business or research. 

In summary, remember that data represents operational measures of concepts or of 
analytical constructs. For example, atmospheric pressure is a concept. The height of a 
column of mercury is used as a method of making the concept operational. As the 
mercury rises, the atmospheric pressure diminishes. In all the models, data is used as an 
operational measure of some analytical construct. The characteristics of the phenomenon 
being modeled can be captured and exposed by examining the relationships between the 
data points that operationalize the various terms in the construct. To maintain the time-
ordered nature of effects and produce a more readily interpretable decision tree, you 
should introduce branches with fields that move from the left to the right in the causal 
sequence of effects (as you move from the top to the bottom of the decision tree). 

Predictive Issues: Accuracy, Reliability, Reproducibility, and 
Performance 
Decision trees are sensitive to the sequence of branch growth. Once a branch is selected, 
it affects the structure of the entire decision tree below it. Thus, is critical to be very 
careful in selecting the sequence of branches that are introduced into the decision tree if 
the goal is to interpret the decision tree components to gain a better understanding of the 
factors that influence the area under examination. 

If the goal is raw prediction, then the sequences of chains of branches in the decision tree 
in terms of their expository value are less important. What is important is identifying 
sequences that have predictive value. In this situation, decision tree quality relates to how 
well the decision tree performs in terms of accuracy, reliability, and reproducibility. 
Because some computations can be time-consuming, quality also relates to the ability of 
the decision tree to deliver results within defined time periods. A number of techniques 
are available to capture these various dimensions of quality. 
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Sample Design, Data Efficacy, and Operational Measure 
Construction 
Sample Design. The issue of sample design applies to all situations where empirical data 
is used to gain knowledge of the environment. The data that is used to gain knowledge of 
the environment must be representative of the environment. For example, with lemonade 
stand sales, you assume that the data is representative of the situation that you are 
modeling. There are random elements in data collection. For example, different people 
pass the lemonade stand on different days; thus, the data collected depends on the day 
that the data was collected. 

The variability and potential gaps in data can affect the results produced in the decision 
tree. Suppose lemonade sales are modeled on either time of day (morning versus 
afternoon) or on location (corner versus mid-block). On some days, such as hot days, 
time of day might best explain sales. On other days, location would predict better. If data 
were collected over several days, including both hot and not-so-hot days, the time model 
and the location model might predict sales with about the same degree of accuracy. 

For prediction, either model will produce good results. However, for explanatory 
purposes, the models might suggest completely different things. One model might 
suggest selling only in the afternoons, saving the cost of morning operations. The other 
model might suggest paying more for a corner location. It might turn out that an 
underlying variable—in this case, temperature—would explain both the time of day and 
the location differences, but because of the variability in data collection, this variable is 
missing from the data. 

Data Efficacy and Operational Measures. In addition to constructing a comprehensive 
data sample, it is important that the data contains information that relates to factors that 
are known to be or likely to be relevant to understanding and predicting the target. So, if 
temperature is relevant, then you need to have measurements of temperature. 

It is also important to have true metrics to reflect measures. Cold, warm, and hot might 
not be as good as temperature measured by a thermometer when building the effects of 
temperature into the model. Many measurements of human behavior do not follow a 
linear form. As amply illustrated by extensive work in psychometrics, most forms of 
human perception are not only nonlinear, but are often non-monotonic and circular in 
nature.

Strong Sets of Predictors. After sample design, data efficacy, and measuring, the most 
likely issue to emerge in growing the decision tree for prediction involves identifying 
strong sets of predictors. A predictor is strong if it is consistently and accurately related to 
the target or outcome under examination. In a previous example, height and weight were 
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generally good combined predictors of gender. In a decision tree framework, you want to 
identify ranges of height as nodes in a decision tree that have an associated likelihood of 
predicting male or female gender. The same is true of weight and height-weight 
combinations. 

The difficulty with decision trees is selecting ranges that work well. A range of 90–110 
pounds in one sample can be almost exclusively female. Yet, in another sample, this 
range can be 50% females and 50% males. The challenge is to find not only strong 
predictors, but also strong ranges or cut-points in the branches of the decision trees. This 
is the rule, rather than the exception. This is especially true in regression when some of 
the input variables are associated or collinear. Some variables at cut-points can suppress 
the effects that might otherwise be observed at lower parts of the decision tree. An 
unstable model often provides reliable accuracy, but without reliable explanation. 

Another challenge is to find strong combinations of predictors (i.e., height-weight 
combinations that produce consistent predictions of gender over time). Tree-based 
models are particularly unstable. Small changes in the training data can completely 
change the structure of the decision tree. If the variable in the first splitting rule changes 
and another branch is substituted, then the descendent branches can be very different. 

The two most generally applied approaches to identify predictor combinations in decision 
trees rely on statistical tests of significance, usually with multiple Bonferroni adjustments 
and various forms of validation or cross-validation. 

There are many options to deal with instability in the inputs that are selected: 

use stand-in variables (i.e., a variable that approximates the unstable variable, but 
is more reliably related to the outcome) 
create composites (e.g., principal components or factor scores or another 
reduction measure that is more stable because it represents the weighted 
combination of multiple indicators) 
get more data to capture more power in the relationships that are being examined 

A best-fit model is neither too big nor too small. At some point in the growth of the 
decision tree, after one or two top predictors have been identified, you might be tempted 
to introduce another predictor. For example, in the height and weight data, you might 
want to use age to capture another dimension of the predictive space and, consequently, 
produce a more accurate or reliable prediction. 
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How large should the final decision tree be? The interpretability of the decision tree 
decreases as you descend to its lower levels. And, the statistical power of the results is 
weakened. The developers of the CRT approach have done the most work in this area. 
The CRT approach grows an overly large decision tree and then prunes. 

As shown in Figure 5.5, there is a point of divergence between the readings provided by a 
training data set and the readings provided by a test data set. At the point where the 
trained form of the decision tree model is not replicated in an independent sample, it is 
time to prune the decision tree. 

Figure 5.5: Illustration of the Drop in Accuracy in Training and Test Data with  
                    Complexity 
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Choosing the Right Number of Branches 
If the goal is predictive, then there are rare cases in which an unordered, multi-way split 
can create better predictive results than a binary decision tree. If you have strong 
theoretical reasons for presenting an unordered grouping of codes in predetermined (or 
computed) clusters, then you should. You might even get superior predictive results. 

If the goal is explanatory, there is no statistical answer, per se. You can use experience or 
theoretical reasons to assist you in creating multi-way groupings that are logical or that 
concisely capture the nature of the subpopulation. This will help you interpret and 
communicate the results. It will enable you to find more meaningful interactions among 
the predictors. If you have reasons for a binary decision tree (e.g., North-South, East-
West), then use one. If you have reasons for a multi-way decision tree (e.g., East-Mid-
West-West), then use it. 

Multiple Decision Trees 
The traditional form of a decision tree model works with a single target variable that is 
predicted based on a collection of inputs. Typically, this target is modeled as a function 
of the values of an associated row of inputs. The model is built across the entire data set 
and uses all or most of the rows of data as the learning or training data set. Often, one or 
more data sets are taken as a random sample from the original data set. This data is used 
to test or validate the model that is developed. 

To score a data set with a single decision tree, the records of the data set are run through 
the rule set that has been produced by the final decision tree of the modeling phase. This 
process is true for any target value, whether it is continuous or categorical. Typically, 
many single decision tree models are built by the analyst. They are evaluated by 
inspection or by reference to the test or validation data. One or more preferred decision 
tree models are selected as the product of the modeling phase. 

The process of vetting various decision trees supports the original concept of developing 
formal methods of multiple decision tree modeling. In these methods, the original data set 
is used to create derived data sets or alternative decision tree models. These data sets or 
models are used to develop multiple decision tree models and scoring algorithms. One or 
more of the derived data sets can be used as test or validation data. Scoring is performed 
by pooling the results of the multiple decision trees that are grown. These pooled results 
can be compared to the results of a panel of experts. As in real life, the results from a 
panel of experts outperform the results of a single expert. 
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A single decision tree can produce the following results: 

IF Age > 20 
AND Weight > 180 (lbs.) 
THEN Gender = Male 

Multiple decision trees can produce the following results: 

Rule 1 

IF Age > 20 
AND Weight > 180 (lbs.) 
THEN Probability of Gender = Male is .6 

Rule 2 

IF Height > 160 (cm.) 
AND BodyMass < .3 
THEN Probability of Gender = Female is .3 

The results can be pooled using various voting algorithms. For example: 

Target Assignment = .6(Rule 1) + .4(Rule 2) 

The combined probability of Male is (.6 x .6) + (.4 x .7), which is .36 + .28. This equals 
.64 and because this is greater than .5 (equal probability), the outcome is male. Many 
voting algorithms have been devised to assess the combined outcome, just as many 
voting algorithms have been devised to determine committee votes in real life. Different 
voting algorithms can be devised and used depending on the circumstance. Using 
multiple rule sets to derive a summary score is sometimes called an expert committee. 

Advantages of Multiple Decision Trees 
One of the main problems of a single decision tree model is that small changes in the data 
set can produce substantial changes in the model. Thus, small changes can easily change 
the size and shape of a decision tree. There is a tendency to overfit the data and it can be 
difficult to determine the most appropriate size of a decision tree. These small changes in 
the composition of the data can influence which branches are grown or pruned in a 
decision tree. 
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In medical diagnoses, it is common to ask for a second opinion. Even though the 
diagnosis is coming from an expert in the field, this expert might have idiosyncrasies that 
could bias the outcome of the medical examination. Similarly, a single decision tree 
might reflect idiosyncrasies that could bias the predicted results. 

One solution to these two problems is to grow multiple decision trees using a 
randomization approach and then combine the information from the multiple decision 
trees into one summary representation. This approach was initially developed in the mid-
1980s as a form of cross-validation. 

In this approach, instead of relying on a single decision tree, many decision trees are 
assembled to create an aggregate outcome that represents the summary of all decision 
trees. The approach repeats and reinforces an argument made by Surowiecki in his book 
The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective 
Wisdom Shapes Business, Economies, Societies and Nations (2004). He relates the story 
of an observation made by Francis Galton at the 1906 West of England Fat Stock and 
Poultry Exhibition. As many as 800 people, both experts and nonexperts, participated in a 
contest to guess the weight of one of the showcase oxen. The guess had to be based on 
the weight after the ox had been slaughtered and dressed. While no one person guessed 
the correct weight, which was 1,198 pounds, amazingly the average of the 800 odd 
guesses was 1,197 pounds! 

Since the initial development of the multiple decision tree approach, numerous research 
studies and practical results have demonstrated that aggregation based on multiple 
decision trees significantly improves model results. Because many models are developed 
and averaged, the results are highly stable. The traditional form of the decision tree 
display cannot usually be produced using multiple decision tree methods, but other forms 
of display are available and as effective as the simple single decision tree display. 

Major Multiple Decision Tree Methods 
The major methods for multiple decision tree modeling include cross-validation, v-fold 
cross-validation, and bootstrap-based methods (i.e., boosting and bagging (bootstrap 
aggregation)). Bootstrapping is useful as an estimation technique and in drawing multiple 
samples from a host data set as input to multiple decision tree learning environments. 
Recent innovations include arcing, adaptive gradient boosting, and random forests. 
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Cross-Validation 
A method of multiple decision tree modeling was introduced in the mid-1990s with the 
use of cross-validation in the CRT decision tree approach that was developed by 
Breiman, Friedman, Olshen, and Stone. All of the rows in the learning data set are used to 
build the initial decision tree. This parent decision tree is allowed to grow larger than 
normal because cross-validation is then used to trim branches. The parent data set is 
partitioned into groups called folds. Typically, 10 folds are used; this is called 10-fold 
cross-validation. Nine of the partitions are used as a new cross-validation training data 
set. The 10% (1 out of 10 partitions) of the data that was held back from the cross-
validation training data set is used as an independent test sample for the test decision tree. 
This data is run through the test decision tree and the classification error rate for that data 
is computed. This error rate is stored as the independent test error rate for the first test 
decision tree. 

A different set of nine partitions is now collected into a cross-validation training data set. 
The partition held back this time is different from the partition held back for the first test 
decision tree. A second test decision tree is built and its classification error rate is 
computed. This process is repeated 10 times, building 10 separate test decision trees. In 
each case, 90% of the data is used to build a test decision tree, and 10% is held back for 
independent testing. A different 10% is held back for each test decision tree. Once the 10 
test decision trees have been built, their classification error rates (which is a function of 
decision tree size) are averaged. This averaged error rate for a decision tree size is known 
as the cross-validation cost.  

The decision tree size is a function of how many terminal nodes or leaves exists on the 
decision tree. Two different sized decision trees might yield the same cross-validation 
cost. The cross-validation cost for each size of the test decision tree is computed. The 
decision tree size that produces the minimum cross-validation cost is found. The parent 
decision tree is pruned to the number of nodes matching the size that produces the 
minimum cross-validation cost. The pruning is done stepwise, removing the least 
important nodes during each pruning cycle. The decision of which node is the least 
important is based on the cost-complexity measure, as described in Classification and 
Regression Trees by Breiman et al. Cost complexity exploits the notion of parsimony; 
i.e., every thing equal, a simpler model is preferred to a more complex model. Thus, cost-
complexity pruning penalizes branches that are lower on the decision tree. 

Note that cross-validation is different from the split-sample or hold-out method. In the 
split-sample method, only a single subset (the validation data set) is used to estimate the 
generalized error rate, instead of k different subsets (i.e., there is no cross folding). 
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Cross-validation and bootstrapping both use resampling to estimate generalized error 
rates (Weiss and Kulikowski 1991). The resulting estimates of generalized error rates are 
often used when choosing a model. 

Bootstrapping 
During the 1990s, the method of bootstrapping gained currency and wide acceptance as a 
method for estimating the reliability of a quantitative model. The bootstrap process 
begins with the original or training data set of observations and forms a bootstrap sample 
of the original data set by repeatedly selecting an observation from the original data set at 
random. Because the same observation can be selected more than once, this is called 
sampling with replacement. 

A bootstrap sample usually contains as many observations as the original training data, so 
if you began with 1,000 observations, you would have 1,000 observations in the bootstrap 
sample. Many of the observations are duplicates. Bootstrapping consists of constructing 
many bootstrap samples, for example, 50 or 100. These samples are used to train a model 
for each sample to collect predictions and predictive errors across all samples. Collecting 
and displaying this pooled information will indicate how precise the model, which is built 
solely on the original data, will be. 

Bootstrapping can also be used to assess the stability of various predictors. Bootstrapping 
forms 10 bootstrap samples, which are used to train decision trees for each of the 
samples. Stability and variability among predictors from model to model can serve as 
indicators of how well predictors will perform in the new data sets. 

A bootstrap data set is created by randomly selecting observations from the training data 
set. Bootstrap estimation uses a selection process that repeatedly creates independently 
sampled data sets. These data sets are treated as independent estimates for the purpose of 
producing a predicted score or class outcome. Class outcomes are typically determined 
by a plurality vote. 

In the simplest form of bootstrapping, instead of repeatedly analyzing subsets of data, 
you repeatedly analyze subsamples of data. Each subsample is a random sample with 
replacements from the full sample. Depending on what you want to do, 50 to 2,000 
subsamples might be used. The usual process for creating a subsample is to pick an 
observation at random from the original data set and copy it to the subsample data set. 
This process is repeated multiple times. Each time, the subsample observation is returned 
to the original data set after the subsample has been created. The same observation can be 
copied many times, but more than likely, different observations will be copied. 
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Figure 5.6: Illustration of Consolidated Bagging and Bootstrapping Processes 

Bagging
Bagging refers to the creation of a pooled estimate of the target. This estimate is based on 
a collection of models using the same algorithm in data sets sampled with replacements 
from a single training data set. Bagging stands for bootstrap aggregation and was 
invented by Leo Breiman (1996). He uses the voting method for classification, in which 
plurality determines the target outcome. 

Bagging is illustrated in Figures 5.7 and 5.8. Successive samples from the original data 
set are taken and the decision tree is trained in this sample. Typically, a random sample 
with replacement is taken. The non-sample observations can be used as validation data. 
These are called OOB (Out of Bag) observations. 
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Figure 5.7: Illustration of a High-Level View of Bagging 

Bagging can improve the predictive accuracy of unstable models. Breiman showed that 
combining predictions from models based on bootstrapped samples improves the 
accuracy of the predictions if the models are unstable. He coined the term “bagging” to 
mean the process of bootstrap aggregation. For continuous targets, the predictions are 
averaged. For classification (categorical) targets, the predictions are based on voting. In 
voting, the predicted class is the one that most of the bootstrap samples predict. An 
alternative strategy is to average the probabilities of the various categories occurring in 
the bootstrap samples, and to base the predicted class on these averaged posterior 
probabilities.
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Bagging not only helps with instability, it helps smooth out the prediction. Smoothing 
works especially well for a technique, such as decision trees, that dices data in a 
recursive, piecewise linear fashion (i.e., the decision boundaries in the data are formed by 
linear cut-points that are determined by the values on the left and right sides of the branch 
partitions). Thus, a decision tree with 20 leaves partitions the data space with 20 linear 
edges. These 20 linear edges partition the data space into 20 rectangles. The 20 rectangles 
are subsegmented by lower partitions in the decision trees that are grown in each of the 
descendents of the original 20 leaves. Bagging 100, 20-leaf decision trees will average 
100-step functions across the data space. This process forms a more continuous set of 
boundaries in the data space and approximates the data-fitting characteristics of 
techniques, such as regression and neural networks. 

In general, bagging smoothes and blurs the normal, hard-edged partitions that are formed 
by a single decision tree. If the true relationship between the inputs and the target is not 
well represented by a single, hard-edged partition, then smoothing will help reveal the 
relationship. One side effect of smoothing is obscuring the overall structure of the 
decision tree. Because the decision tree is averaged across many decision trees, the 
original, readily interpretable decision tree structure is lost. 

In some cases, growing one decision tree with 2,000 leaves might smooth the partition to 
the same extent as averaging 100 decision trees with 20 leaves. Bagging might be 
preferred if the data does not support growing a large decision tree. An averaged 
prediction from several models, including models of different types, is generally a better 
prediction than the prediction of an individual model. 

This is likely to happen if the models are very different. Imagine a plot in which the 
prediction from one model is measured on the horizontal axis, and the prediction from the 
other model is measured on the vertical axis. Each point represents the predictions of the 
two models for one observation. If the points are predominantly near the main diagonal, 
then averaging the predictions does not help. If the points form a blur, then averaging the 
predictions might help. 
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Figure 5.8: Illustration of Selecting Observations in Samples Used in Bagging 

Boosting
When predictions from a set of models are combined into a single prediction, the result is 
often called an ensemble. One of the most important areas in the discussion of ensembles 
is boosting. The boosting approach was developed by Schapire (1989). Recent work of 
Freund and Schapire (1997) and Friedman (2001) extends the original development. 
Boosting has been incorporated in many approaches, including the recent development of 
the C4.5 and C5 toolkits by Quinlan. Boosting operates much like bagging; however, 
boosting uses varying probabilities in selecting an observation to be included in the 
sample. 

In bagging, each observation is equally likely to be selected each time a new sample is 
created. Therefore, no matter how many rules are developed, each decision tree that is 
produced from a boosting iteration has no dependence on any previous decision tree. 

The goal of boosting is to increase the probability of selecting an observation that 
performs well when predicting the target. The assessment of how well an observation 
predicts a target depends on comparing the predicted results of an observation with the 
actual results. In the initial boosted sample, all observations that had poor prediction 
performance, as indicated by a validation of the original decision tree, have a greater 
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probability of being selected for the boosted sample. This has the effect of including 
more observations and generating more statistical power for examples in the training data 
set that do not perform well. The resulting ensemble has a combined decision rule with a 
higher accuracy. 

Whereas bagging builds the decision trees in parallel and they vote on the prediction, 
boosting builds a series of decision trees and the prediction receives incremental 
improvement by each decision tree in the series. The method of reweighting works so 
that classifiers change depending on previous performance. 

The original data is placed in training and test partitions (for example, in a 70% to 30% 
ratio) so that the decision tree is grown using the training data set and the accuracy of the 
decision tree growth is checked using the test data set. Decision tree growth terminates 
when test results begin to deviate from training results. 

A series of many decision tree models is grown this way. Often, 25 decision trees are 
grown, but 50 or more could have been grown. After each iteration of decision tree 
growth, the correct and incorrect classifications are calculated for each record in the test 
data set. A classification is determined correct if the rules that predict a record do, in fact, 
agree with the code that is contained in the test data set. 

All of the correct records are marked for that iteration and the total number of incorrect 
records is calculated. A proportion of incorrect records is calculated, and a reciprocal of 
this proportion is used to calculate a weight that is used to boost the relative percentage of 
records that were incorrect. Correct records are automatically down-weighted. The 
proportions of the weighted records are standardized so that the total number of records 
adds up to the original total number of records. 

After the records are up-weighted or down-weighted, the reweighted records are run 
through another iteration of the decision tree. The same settings that were used on the 
initial decision tree growth iteration are used. However, the results will be different 
because the weights of the records that contribute to the results are different. Records that 
have a tendency to be misclassified have more instances in the data and more opportunity 
to build the necessary statistical power to produce a correct classification. At the end of 
each iteration, the total number of correct and incorrect classifications for each record is 
calculated, and the corresponding boosted weights and down-weights are calculated 
depending on the summed total of incorrect classifications that are calculated for each 
record.
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After the iterations are done, a voting process calculates the most likely category of the 
predicted classification based on a summed average of the predicted classes that were 
calculated at the end of each iteration. The classification with the most number of votes is 
used. This is determined by the simple majority rule. 

Boosting is a classification algorithm that has been shown to produce lower error rates 
than bagging. In data sets in which decision trees are effective for classification, boosting 
improves the classification rate slightly. Bagging works by taking a bootstrap sample 
from the training data set. Bagging produces good results, but only if a single decision 
tree is reasonably effective to start with. 

Boosting has been shown to work in a wide variety of circumstances, even though it is 
not always clear why it works. The explanation of its success is different from bagging. 
Friedman et al. interpret boosting as maximizing the likelihood of a certain type of 
additive logistic model. This way of explaining the success of boosting is understandable 
and reassuring to statisticians. Several methods to select probabilities have been 
proposed. Breiman proposed the following simple formula: 

Let m(n) equal the number of models that misclassify the nth observation. 

Set P(n) = 
))(1(

))(1(

4

1

4

nm

nm
n

P(n) is the probability of choosing the nth observation in the next bootstrap sample. 
Although this formula assumes a classification task, it is possible to include another 
measure of fit, such as squared error, so that continuous outcomes could be estimated. 

AdaBoost
AdaBoost is a form of boosting that builds an initial model from the training data set. 
This first pass through the training data results in a standard model. From this model, 
some records will be correctly classified by the decision algorithm, and some records will 
be misclassified. The misclassified records are identified as a separate training data set, 
and the decision search criteria are adjusted by weighting the attributes of the 
misclassified records. 

A new model is built with the misclassified records as a modified training data set. This 
boosts the importance of the misclassified records in the training process. 
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The building of the initial model, followed by boosting, is repeated until the 
incrementally generated model performs at the level of a random guess. This indicates 
that forming additional boosted samples is not likely to contribute worthwhile results. At 
this point, there is a panel of models. This panel is used to make a decision on new data 
by combining the expertise of each model so that the more accurate experts carry more 
weight. This process appears as follows: 

Figure 5.9: Illustration of a Panel of Models Based on Reweighted Samples Used in  
                    Boosting

Because each successive model is weighted according to classification accuracy, this 
approach is sometimes called stochastic gradient boosting. 

Multiple Random Classification Decision Trees 
The paths of artificial intelligence, cognitive science, and data mining have been 
interwoven from the original development of the first decision trees. Their relationship 
has stayed in place and is stronger than it has ever been. No place is this more obvious 
than in the development of one of the most recent forms of multiple decision trees—
random forests. The inspiration for random forests is in work originally reported in 1997 
by Amit and Geman. The authors were interested in the effects of randomization on the 
construction of the decision tree and adopted the idea of choosing a random sample of 
predictors from the collection of inputs at each node of the decision tree. They referred to 
their work as the construction of a kind of “holographic” decision tree. The decision tree 
is holographic in the sense that each node has the possibility of reflecting a different facet 
of the predictive space that is contained in the training data. This was accomplished by 
taking a random sample of available predictors or inputs available at each node. 

At each node, after the sample of predictors was taken, an estimate of the best predictor 
was made using a random sample of data points. After producing n decision trees—T1, 
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T2, …, Tn —the authors picked a predictive structure designed to maximize the average 
terminal distribution in the resulting decision tree. 

At this point, they chose a random sample of predictors from the entire candidate data set. 
From this sample, they developed an estimate of the optimal predictor using a random 
sample of data points. They then developed a maximum estimate based on the average 
(leaf) distribution. To test their approach, the authors used 223,000 binary images of 
isolated digits written by more than 2,000 writers. They used 100,000 images for training 
and 50,000 for testing. 

What they found was that the best classification rate for a single decision tree was 5%, 
whereas the best classification rate of multiple decision trees was 91%. They 
convincingly showed that by aggregating decision trees, the success of automatic digit 
classification improves dramatically. 

Random Forests 
Amit and Geman’s work served as inspiration for the random forests approach developed 
by Leo Breiman. Originally a statistician, Breiman was inspired by the research and 
development that he observed in the artificial intelligence and cognitive science world. 
As a statistician, he could say, “Statisticians want to know why things work; whereas, 
artificial intelligence researchers want to know whether things worked.” In the case of 
random forests, he succeeded in developing something that certainly worked. 

Like the precursor, a random forest is an average of decision trees. In each node, a branch 
search is performed on a random set of inputs, instead of on the full set of inputs. The 
training data is a random sample of the original data set. A portion of the random sample 
is set aside as a test sample. Like in bagging, decision trees are grown independently (in 
parallel). As Breiman pointed out, the randomness makes the variable selection less 
greedy (i.e., less likely to overfit), thus mitigating the need for pruning. Because many 
decision trees are grown, the expectation is that in the long run, the better variables are 
more likely to be selected. 

Each decision tree in the random forest is grown in a bootstrap sample of the training data 
set. Because a subset of all the available inputs is selected for sampling, the number is 
smaller than the total number of inputs that are available across the entire data set. At 
each node of the developed decision tree, a subset of inputs is selected at random out of 
the total number of inputs that are available. The branch that is used is the one that 
produces the best split on this subset of inputs. 
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Each time a decision tree is grown, about one-third of the cases are left out of the sample 
used to grow the decision tree. This is called the OOB (Out of Bag) sample and is used to 
test and validate the decision tree that is grown with the bootstrap sample. Bag now refers 
to the data that forms the bootstrap aggregate. This OOB data set can be used to form 
estimates of the incremental error as new decision trees are added to the panel. The OOB 
data set can also be used to form estimates of variable importance. 

To score a new data set, pass each row of the new data through each decision tree in the 
random forest and record the predicted value that is given by each decision tree. To 
aggregate the results, either compute an average of all the scores (for a continuous target) 
or determine the most likely class value through a majority rule from the classifications 
that are produced by the decision trees (for a categorical target). 

Breiman’s research with random forests showed that in many cases, random forests are 
more accurate than boosting approaches. He found that the random forest approach could 
handle hundreds and thousands of input variables with no degeneration in accuracy. In 
his latest work, he presented many unique ways to present the results of random forests 
and proposed methods for using random forests to do a form of cluster analysis (Breiman 
2001).
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Introduction
So far most of the discussion on decision trees has been in the area of their direct utility 
as descriptive and predictive tools. This chapter shows how decision trees can also be 
used to provide software support when integrating decision trees with other data mining 
techniques. The following topics are addressed in this chapter: 

Stratified regression 
Decision trees in forecasting applications 
Decision trees in variable selection, interaction detection 
Decision trees in Analytical model development 

Recall that the original use of decision trees was as a complement or alternative to 
regression. As decision trees have developed, their abilities as a complement to, as well 
as a substitute for, other data mining techniques have increased.  

Decision Trees in Stratified Regression 
Stratified regression is one of the oldest applications of decision trees. As illustrated in 
Figure 1.3 in Chapter 1, the goal of stratified regression is to divide the main data set into 
subgroups so that different regression equations fit into each of the subgroups. This is 
especially appropriate when the differences in the subgroups are so profound that it is 
simpler and more effective to determine the specialized shape of the regression equation 
in each of the subgroups. 

A formal definition and extensive explanation of stratified regression is provided in 
Neville’s article on stratified regression (1999). Boston housing data is used as a basis for 
the examples in this article and the StatLib repository (http://lib.stat.cmu.edu/) is the 
source of the original data. The following display lists the variables that are included in 
the data set. The dependent variable is Lmv.
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Name      Description 

Crim      Per capita crime rate by town 
Zn        Proportion of a town’s residential land zoned for lots greater 
          than 25,000 square feet 
Indus     Proportion of non-retail business acres per town 
Chas      Charles River dummy variable 
Noxsq     Nitrogen oxide concentration (parts per hundred million)
          squared 
RmSq      Average number of rooms squared 
Age       Proportion of owner-occupied units built prior to 1940 
Dis       Logarithm of the weighted distances to five unemployment
          centers in the Boston region 
Rad       Logarithm of index of accessibility to radial highways 
Tax       Full-value property tax rate 
Ptratio   Pupil-teacher ratio by town 
B         (Bk-0.63) squared, where Bk is the proportion of blacks 
Lstat     Logarithm of the proportion of the population that is lower
          status 
Lmv       Logarithm of the median value of owner-occupied homes 

Neville’s article explains that there are several ways to form strata based on decision 
trees. From this strata, regression models were produced that were better than regression 
models based on fitting the entire data set as one block of data. Figure 6.1 illustrates the 
decision tree branch with one of the possible strata that could be used to improve the 
regression results. The branch split on nitrogen oxide concentration (parts per hundred 
million) squared (Noxsq).

Figure 6.1: Illustration of Decision Tree Identifying Strata
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Tax and ?  (missing) are also strata that could improve the regression results. 

To implement stratified regression, it is necessary to partition the data. Alternatively, you 
could create an effect variable that will partition the data numerically. In the case of strata 
formed by nitrogen oxide, you should form two regression equations. One regression 
equation will fit the data on the left (217 observations) and one regression equation will 
fit the data on the right (235 observations). 

Time-Ordered Data 
Traditionally, decision trees have been used to analyze cross-sectional data such as 
survey data. A cross-sectional data set contains measurements of a variety of 
observations at a given point in time, as shown in Figure 6.2. 

Figure 6.2: Illustration of the Form of Data Captured from One Point in Time 
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By contrast, time series data contains measurements of a variety of observations at 
various time intervals (e.g., stock prices), as shown in Figure 6.3. 

Figure 6.3: Illustration of the Form of Data Captured from a Time Series 

Decision Trees in Forecasting Applications 
As analysts have gained more experience with time-ordered data, they have discovered 
that techniques that are commonly used to analyze cross-sectional data can be adapted to 
analyze time series data. Thus, regression techniques are used in the analysis of both 
cross-sectional and time series data. Similarly, decision trees can be used to analyze both 
cross-sectional and time series data. 
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Figure 6.4 illustrates a typical time series in cross-sectional form, where m stands for 
measure and t stands for time. 

Figure 6.4: Illustration of Reworking Time Series Data into Cross-Sectional Form 

Next, in Figure 6.5, a time series shows the rise and fall of lynx traps in any given year as 
the lynx population rises and falls according to the operation of other factors in ecology, 
such as food supply, disease, and predators. The lynx population hits a peak in the years 
of 1828, 1866, and 1904. 
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Figure 6.5: Illustration of a Time Series
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A portion of the data underlying these results is shown in the following display. 

                        Year       Traps 

                        1821       269 
                        1822       321 
                        1823       585 
                        1824       871 
                        1825       1475 
                        1826       2821 
                        1827       3928 
                        1918       81 
                        1919       80 
                        1920       108 
                        1921       229 
                        1922       399 
                        1923       1132 
                        1924       2432 
                        1925       3574 
                        1926       2935 
                        1927       1537 
                        1928       529 
                        1929       485 
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Figure 6.6 shows a decision tree that reproduces the results of the graph in Figure 6.5. 
The peaks in the graph are captured in the intervals of 1827–1830, 1864–1867, and  
1903–1906 (the lowest interval of <= 1826 and the highest interval of >= 1907 are not 
shown in the decision tree). 

Figure 6.6: Illustration of a Decision Tree of the Lynx Time Series Data 

In many situations, a decision tree will handle time series data in a straightforward way. 
This is shown in the classic study of lynx traps. In many applied situations, some 
reworking of the data may be necessary. For example, in direct marketing, there is a need 
to derive customer measures for recency, frequency, and monetary value. These measures 
come from transaction data based on purchase interactions. For recency, you can sum all 
transactions and create measures, such as last purchase date. For frequency, you can 
count the number of monthly purchases. You can use total or average purchases for 
monetary value. 

Banks like to distinguish card account holders by their purchase habits. Do the card 
holders use the card a lot, and pay down the outstanding balance on a monthly basis? Do 
they consistently maintain an outstanding balance? Has a customer moved from one 
mode of payment to another? If so, why? Distinguishing card account holders in these 
ways means that fields must be created to measure these characteristics on a monthly 
basis. Furthermore, the characteristics need to be stored on a month-to-month basis and, 
if a characteristic changes, an indicator needs to be set. This results in the creation of a 
new field of data. 
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Decision Trees in Variable Selection 
In the following banking data set, the goal is to determine the attributes of online 
transactions.
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A traditional variable-importance approach looks at the zero-order correlations between 
all possible inputs and the target. This approach produces the following chart: 

                    Input        Correlation 
                    DEPAMT       0.35970 
                    POSAMT       0.21106 
                    POS          0.18395 
                    ACCTAGE      0.13256 
                    DDABAL       0.11238 
                    ATMAMT       0.10031 
                    NSFAMT       0.08569 
                    ILSBAL       0.08247 
                    LOCBAL       0.07963 
                    HMVAL        0.06979 
                    AGE          0.02890 
                    CCBAL        0.02787 
                    MTGBAL       0.01641 
                    INCOME       0.01173 
                    CRSCORE      0.01077 
                    LORES        0.00613 
                    SAVBAL       0.00116 
                    IRABAL      -0.01121 
                    INVBAL      -0.02104 
                    MMBAL       -0.03722 
                    CDBAL       -0.07074 

The strength of the correlation is shown in Figure 6.7. 

Figure 6.7: Correlation between Inputs and Target 
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Decision Tree Results 
The decision tree results tell a different story. In the decision tree, variable importance is 
calculated as the sum of the worth statistics for an input across all the split nodes of the 
decision tree. If an input is an important splitting criterion in many levels of the decision 
tree, then its importance grows as a result. Inputs that do not appear in any splits have 
zero importance. 

             DEPAMT     Amount Deposited             1.0 
             DEP        Checking Deposits            0.34 
             CCBAL      Credit Card Balance          0.19 
             ACCTAGE    Age of Oldest Account        0.18 
             DDABAL     Checking Balance             0.09 
             ATMAMT     ATM Withdrawal Amount        0.09 
             LOC        Line of Credit               0.06 
             POSAMT     Amount Point of Sale         0.05 
             MTG        Mortgage                     0.05 
             DIRDEP     Direct Deposit               0.05 
             AGE        Age                          0.05 
             PHONE      Number Telephone Banking     0.05 
             ATM        ATM                          0.04 

Because the decision tree method of calculating variable importance incorporates the 
effect of an input across various splits, it captures the effect of an input in various regions 
and subregions of the data set. This captures a different dimension of variable importance 
from a simple zero-order correlation between an input and a target. Similarly, it captures 
a different dimension from multiple regression. In this case, the value of the coefficient of 
an input in the regression equation is constrained by the values of all the other inputs in 
one global equation. 

Interactions
The next decision tree shows an analysis of a data set on home equity loan histories and 
whether the loans have defaulted or not. A default is indicated by a Bad=0 field in the 
analysis. The high overall default rate of 80% is used to illustrate interactions. 
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Figure 6.8: Illustration of a Decision Tree Identifying an Interaction (Account Age  
                    and Mortgage Due)

Defaults increase in parallel with how old the outstanding credit line is. The decision tree 
shows 73% default for credit lines that are up to 172 days old, and 87% default for credit 
lines that are older than 172 days. 

The lower level of the decision tree shows an interaction between credit line age and the 
amount of mortgage due. When the age is less than 172 days, the greater amount of 
mortgage due increases the default rate by 10%—from 67% to 77%. When the age is 
equal to or more than 172 days, the greater amount of mortgage due increases the default 
rate from 61% to 87%—a difference of 26%. This is more than twice the increase in the 
younger credit lines. 

This suggests that it could be useful to construct an interaction term that combines age 
and mortgage due (clage*mortdue) when building the regression model to predict default. 
In this example, the direction of the interaction on the left and right of the decision tree is 
the same. On the lowest level of the decision tree on both sides, the decision tree is 
formed by the same branch (created by using MORTDUE as a branch split input). This 
decision tree and its interactions can be considered symmetrical. 
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It is possible to have asymmetric interactions in decision trees. The subtree formed by 
MORTDUE might produce different directions of the interaction depending on the side of 
the decision tree. This is a reversal; envision that the left side of the decision tree contained 
leaves with 77% and 67% defaults, rather than 67% and 77% as seen in Figure 6.1). 

Another form of asymmetry is when there is a different partitioning field on the right side 
of the decision tree, compared to what is on the left side. 

Cross-Contributions of Decision Trees and Other Approaches 
The following table describes the various impacts between the data mining methods: 

Table 6.1: Data Mining Methods Cross-Impact Matrix 

Data Mining Methods Cross Impact Matrix A
ssociation 

C
lustering 

Regression Decision Trees Neural Networks 

Association Create associations 
and sequences as 
composite inputs to 
decision trees to 
determine 
relationships 

Clustering Might be useful in 
creating composite 
clusters for inclusion 
in decision trees 

Regression Use regression 
techniques to create 
linear composites 
for inclusion as 
inputs - a data 
reduction technique 

(continued)
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Data Mining Methods Cross Impact Matrix A
ssociation 

C
lustering 

Regression Decision Trees Neural Networks 

Decision
Trees

Define strata for 
regression
treatment 

Compute dummy 
variables 

Qualify variables 
in the equation 
(e.g., identify 
interactions) 

Impute missing 
values based on 
inputs with 
various levels of 
measurement 

Prequalify 
variables for 
inclusion, 
including bins for 
categories 

Turn decision 
tree on predicted 
scores (and 
residuals) to 
assist in 
interpretation

Turn decision 
tree on score 
residuals

Neural 
Networks 

Fit and fine-tune 
unclassified 
observations 

Decision Trees in Analytical Model Development 
The following example shows how a decision tree is used in a business-to-business 
marketing application. The analysis deals with network equipment sales. The display 
shows current sales in the target geography: 
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This display shows penetration rates based on current sales in a target U.S. sales region. 
Vendor sales data has been enriched by linking with Dun & Bradstreet data to show how 
sales are distributed according to enterprise size and vertical market. 

Penetration rates in large enterprises (over 10,000 employees) are good—74%.  
However, penetration rates in smaller enterprises (e.g., 500–1,000 employees) are lower 
—only 32%. 

Vertical market figures show that the best penetration is in large universities (26%); 
government, financial services, and health penetration rates taper off to less than 10%. 

There are some important lessons here: 

Further penetration is only likely with lower-cost, lower-margin offers. 
Penetration into smaller enterprises in new vertical markets depends on indirect 
sales methods and leveraging partner relationships in these accounts. 
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It might be useful to look at distribution of sales according to cities in a region and city 
size (i.e., broken up into Tier 1 and Tier 2). As with enterprise size and vertical market, 
you can identify cities and proposed technologies where penetration rates could be 
higher, as shown in the following display. 

The power of analytics comes from using known sales data to build a model that is 
applied against the universe of enterprises. Sales data comes from the vendor’s sales data 
store. Universe data comes from third-party data vendors (in this case, Dun & Bradstreet; 
however, Harte-Hanks and infoUSA also provide business-to-business data). 

With known sales data (and the attributes of these sales), you can match the sales and 
their attributes with the attributes of the universe data to determine where the 
opportunities are (and how strong and what kind they are). To do this, you need a 
predictive model. 

You should begin by using decision trees to look through the data. From the Dun & 
Bradstreet data, you can get information on potential key predictors of sales. This is 
basically corporate demographics, sometimes called firmographics. Decision trees are 
one of many prediction methods available in SAS Enterprise Miner. They are very useful 
in the early stages of forming predictive models because they provide a robust view into 
the relationships in the data. 
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Figure 6.9: Illustration of Decision Trees Predicting New Technology (Business-to- 
                    Business) 

Figure 6.9 shows the relationship between the enterprise size and the probability to 
purchase new technology. There is a strong positive relationship that shows that among 
small enterprises, new technology purchases are in the range of 30% of all enterprises. 
Among larger enterprises (e.g., those with more than 7,750 employees), 60% have new 
technology purchases. Marketing and sales planners can take advantage of this 
knowledge when planning sales campaigns. 

Predictive models can also take advantage of this knowledge and combine it with 
knowledge of other known relationships to form a multiple predictor model. 

In this example, numerous decision trees were run to determine what strong relationships 
existed in the data. The following analytics-derived sales predictors were identified in the 
analysis: 

head count 
corporate location 
regional concentration 
business type 
PC estimator 
multi-site indicator (business knowledge) 

After a good knowledge of the data is extracted using decision trees, it is useful to 
combine decision trees with other predictive approaches, specifically regression and 
neural networks. Combined predictive models, sometimes called ensembles, can produce 
better predictions. A combined approach is illustrated in Figure 6.10. 
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Figure 6.10: Illustration of the Combined Predictive Model to Compute Business-to- 
                      Business Propensity Scores

The final results of this model are shown in Figure 6.11. In this business-to-business 
example, there is a total of 15,309 customers in the data set. The predicted sales, based on 
an analysis of the current sales data as applied to all candidate businesses in the proposed 
sales area, are classed into high, medium, and low probability (depending on the strength 
of the combined predictive score). As shown in Figure 6.11, there were over 76,000 high 
probability purchasers in this sales area. As illustrated earlier in Figure 6.9, general 
businesses (fewer than 250 employees) have the largest number of high probability sales 
(38,348). 

These results show how decision trees can be used to explore the data before constructing 
predictive models, which might combine multiple predictive approaches. They also show 
the value of predictive modeling in general; for example, in this sales area, there were 
only about 15,000 customers, yet the predictive model indicated that there were as many 
as 76,000 high probability purchasers. These results can be used to construct sales 
campaigns to contact these highly probable customers. 
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Figure 6.11: Results of Business-to-Business Example 
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Conclusion
Two of the many themes explored in this book relate to the synergy and 
complementarities found between decision trees and Business Intelligence, and the 
synergy and complementarities between decision trees and data mining tools and 
predictive modeling techniques. Is seems likely that the complementarities will continue 
in these respective areas and, in so doing, is likely to lead to increased synergy and 
integration  in the future. Further developments in these areas include the following: 

Business Intelligence 
Decision tree drill down through any face of any cube constructed through the 
multidimensional data interface. 

Drill down provides the ability to retrieve the underlying detail data that the cube 
surface summaries are based on. Drill down allows the analyst to examine data in any 
of the multidimensional segments formed by the cube. It enables the analyst to reveal 
predictive and classification structure on this detail data through decision tree 
execution against the detail data. 

Dimensional aggregation in-line with decision tree methods. 

It should be possible to express any dimensional view in an aggregated way using 
decision tree algorithms to collapse across dimensions with one or more of the 
measures being displayed. This provides a level of data summarization and data 
effect identification in what is otherwise a manual operation done “by eyeball.” 

Decision trees in cube form for subsequent display, viewing, and analysis. 

Just as data cubes can be pre-stored or pre-computed structures, so should decision 
trees. This ability is available in some applications. For example, decision tree results 
are used to determine the importance of various faces of the cubes. Decision tree 
results and input value clusters that are determined by decision tree methods can be 
used to produce collapsed values for dimensional cube faces. 
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Data Mining 
The use of multiple decision tree approaches. 

Multiple decision tree approaches that use a variety of boosting and bagging 
techniques are emerging. These approaches will be more routine in the future, 
especially as computational power increases to support this kind of decision tree 
growth in real time. Decision trees grown this way retain ease of use and the 
presentation characteristics that they share with business intelligence methods, while 
more closely resembling the other classic data mining methods, such as regression, 
neural networks, and cluster analysis. 

More information about inputs. 

With the growth of metadata repositories and metadata definitions, data sets are 
acquiring more information that defines the characteristics of inputs. For example, in 
addition to characteristics such as data type (integer, character, or numeric), you 
might expect to see the data element origin (such as customer table or transaction 
table). This could make it possible to associate a theoretical role and method to fields 
of data. Many applications use custom-defined fields to guide the construction of 
business intelligence dimensional reports. Likewise, extended metadata can be used 
to introduce business rules in the construction of decision trees. This has a number of 
benefits, for example, decreased computation and automated construction of reports 
and decision structures that are relevant to specific business uses. 
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adjusted significance a significance measure that has been adjusted for the 
number of tests that were carried out in order to 
determine the level of significance. This adjustment 
prevents the identification of statistically significant 
results by chance. 

algorithm a sequence of actions that performs a task. A procedure 
for solving a recurrent mathematical problem. 

analytical model a structure and process for analyzing a data set. For 
example, a decision tree is a model for the classification 
of a data set. 

anomalous data data that result from errors (for example, data entry 
errors) or that represent unusual events. Anomalous data 
should be examined carefully because it may carry 
important information. 

ANOVA ANalysis Of Variance. A procedure used to detect 
statistically significant effects induced by an 
independent variable on a continuous dependent 
variable. The ANOVA procedure employs an F-test to 
measure the differences between a given set of 
population means, where F = Mean Square for 
Treatments divided by the Mean Square for Error  
(F = MST/MSE). See F-ratio statistic. 

artificial neural network non-linear predictive models that learn through training 
and resemble biological neural networks in structure. 

ASCII American Standard Code for Information Interchange. 
The American National Standards Institute established a 
standard set of character codes that enable you to 
transmit text between computers or between a computer 
and a peripheral device. 
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assessment plot a line graph that shows a plot of the accuracy of the 
decision tree for various subtrees. 

bagging a method that resamples the training data to create a 
pooled estimate of the target. Various decision trees are 
grown independently and a group vote is used to 
produce the target estimate. Bagging stands for bootstrap 
aggregation and was developed by Leo Breiman.   

binary variable  a variable that takes only two distinct values. A binary 
variable is the most basic form of measurement 
indicating the presence or absence of some 
characteristic. 

Bonferonni adjustment a conservative adjustment that is applied to a test of 
significance to compensate for the number of statistical 
or mathematical operations that are performed in 
advance of a specific statistical test. These adjustments 
are designed to ensure that the test statistic conforms to 
the assumptions necessary for its calculation (for 
example, no dependencies between one test and 
another).

boosting boosting resamples the data to form a succession of 
decision trees many times to form one average estimate 
for the target. Each time the data is used to grow a tree 
and the accuracy of the tree is computed. The successive 
samples are adjusted to accommodate previously 
computed inaccuracies. Because each successive sample 
is weighted according to the classification accuracy of 
previous models, this approach is sometimes called 
stochastic gradient boosting. 

case a collection of measurements regarding one of numerous 
entities represented in a data set.  Synonyms: 
observation, record, example, pattern, sample, instance, 
row, vector, pair, tuple, fact. 
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case weight  a positive numeric variable that serves as a multiplier to 
magnify the contribution of each line of data to an 
analysis. There are three kinds of case weights: 
frequencies, sampling weights, and variance weights. 

categorical field/variable a variable that can assume only a limited number of 
discrete values. One example of a categorical variable is 
shoe size; another is hair color. A variable that lies in a 
nominal measurement space is sometimes called a 
qualitative, discrete, non-metric, or classification 
variable.

category  one of the possible values of a categorical variable. 
Synonyms: class, label. 

CHAID Chi-square Automatic Interaction Detection. A method 
of segmenting a file applied to a discrete response 
variable.

Chi-Squared Test a test measuring the statistical association between two 
categorical variables. 

class variable in such fields as data mining, pattern recognition, and 
knowledge discovery, a class variable means a 
categorical target variable, and classification means 
assigning cases to categories of a target variable. In 
traditional research methodology, class variables are 
categorical variables and may be used as either an input 
or a target. 

classification the process of dividing a data set into mutually exclusive 
groups such that the members of each group are as close 
as possible to one another, and different groups are as far 
as possible from one another, where distance is 
measured with respect to the specific variables you are 
trying to classify. For example, a typical classification 
problem is to divide a database of companies into groups 
that are as homogeneous as possible with respect to 
creditworthiness.
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classification model  a model to predict the class value of a categorical—or 
class—target. See class variable and predictive model. 

clustering the process of dividing a data set into mutually exclusive 
groups such that the members of each group are as close 
as possible to one another, and different groups are as far 
as possible from one another, where distance is 
measured with respect to all available variables. 

column a column contains a field of information where each new 
column entry corresponds to a new row of data. In 
database terms, there may be many columns of data, 
each containing many rows of figures. Row and column 
data attributes are familiar as database terminology and 
are sometimes referred to as cases and variables in 
research data settings. 

contingency table analysis tabular analysis, which is the analysis of 
crosstabulations.

continuous field a field that has a numeric or ordered range of values, 
such as temperature readings, e.g., 25, 26, 27, ... . 

correlation  a statistical measure or the association (or co-relation) 
between two fields of data. 

CRT Classification and Regression Trees. A decision tree 
technique developed by Brieman, Friedman, Olshen and 
Stone (1984) used for classification of a data set. It 
employs a grow-and-prune strategy to develop a right-
sized tree and associated set of rules. Branches are 
formed by creating two-way splits.  

database information that you have gathered that is closely 
related. Most databases consist of fields, which contain 
units of information, and records, which contain sets or 
collections of fields. In general, fields are stored in 
columns and records are stored in rows. 

data cleansing the process of ensuring that all values in a data set are 
consistent and correctly recorded. 
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data mining the extraction of hidden predictive information, typically 
from large databases that are often assembled from 
disparate sources. 

data navigation the process of viewing different dimensions, slices, and 
levels of detail of a multidimensional database. See 
dimensional cube. 

data visualization the visual interpretation of complex relationships in 
multidimensional data through scatter plots, dimensional 
cubes, and contour plots, for example. 

data warehouse a system for storing and delivering numerous sources of 
data into a unified and accessible location. 

decision tree a tree-shaped structure that represents a set of decisions. 
These decisions generate rules for the classification of a 
data set. See CRT and CHAID. 

dependent variable the field that you want to analyze as a function of other 
fields or variables in a data set. Also called the target 
field.

dimension in a flat or relational database, each field in a record 
represents a dimension. In a multidimensional database, 
a dimension is a set of similar entities; for example, a 
multidimensional sales database might include the 
dimensions product, time, and city. 

dimensional cube an interactive analytical processing technique that 
originally referred to database applications that enable 
users to view, navigate, manipulate, and analyze 
databases as multidimensional entities. The approach has 
been incorporated into SQL in producing 
multidimensional summaries, and is now used for a 
variety of multidimensional reports and data 
manipulations based on dimensional cubes. 

example a member of a training set with measures for various 
attributes used to derive a decision tree structure. 
Equivalent to a subject, record or observation. 
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exhaustive partitioning  an alternative to standard CHAID branch grouping 
methods that is more likely to find the partitioning with 
the highest level of significance (since more groupings 
of values with respect to the dependent variable are 
formed). But the partitions formed are empirically 
stronger than heuristically derived partitions. Decision 
trees formed using the exhaustive partitioning method 
tend to have more branches than those formed using the 
original method. Developed by Biggs, et al. 

exploratory data analysis the use of graphical and descriptive statistical techniques 
to learn about the structure of a data set, normally as a 
preliminary step to predictive modeling. 

extrapolation  scoring or generalization for values of observations 
outside or beyond a given training data set, typically on 
the basis of values or functions taken from other inputs 
in the training data set. Often used for predicting likely 
values for new observations. 

field a column that you label in your database that contains 
the same kind of information for each record.  

floating a branch clustering option originally developed by Kass 
that allows the missing values of an ordered field to 
group with other values in the field that they most 
closely resemble; i.e., they have a similar effect on the 
dependent variable as the ones they are grouped with. 

F-ratio statistic a value calculated as part of the ANOVA procedure. The 
larger this number is, the greater the distance between 
the means or average values of the nodes in the split. See 
ANOVA. 

generalization the ability of a model to compute good outputs 
from input data not used during training. Synonyms: 
interpolation and extrapolation, prediction. 

genetic algorithm an optimization technique that uses processes such as 
genetic combination, mutation, and natural selection in a 
design based on the concepts of natural evolution. 
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heuristic partitioning a method of partitioning field data that provides optimal 
branching based on heuristics or statistical rules of 
thumb. It is less time consuming than exhaustive 
partitioning and tends to produce fewer branches and 
more compact trees than the exhaustive approach. 

ID3 a machine learning algorithm. 

independent variable one of potentially many fields or variables that are used 
to describe, predict, or explain variability in a dependent 
or target field. Usually called inputs in a data mining 
context since the input value will influence the outcome 
of the model describing the relationship between the 
input and target. 

induction a method of proving statements about an ordered data 
set. It is reasoning from particulars to generals or the 
individual to the universal. Synonym: inference. 

input a variable used to predict/guess the value of the target 
variables. Synonyms: independent variable, predictor, 
regressor, explanatory variable, carrier, factor, covariate. 

interaction effect an effect on the relationships between two (or more) 
variables where the direction of the relationship (i.e. 
positive or negative) depends on the value of another 
variable. An example of interaction effect would be the 
relationship between weight and blood pressure changes 
for different age groups. 

interpolation  the scoring or generalization for values of observations 
in a given training data set typically on the basis of 
values or functions taken from other inputs in the 
training data set. Often used for estimating missing 
values.

interval a defined range of values. 

interval boundary a breaking point in a continuous field that divides the 
field into intervals. 
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interval variable  a numeric variable for which arithmetic operations with 
values are informative. An interval level of measurement 
means that the observed levels are ordered and numeric 
and that any interval of one unit on the scale of 
measurement represents the same amount, regardless of 
its location on the scale. Typical interval scales include 
income and temperature.  

leaf the bottom or final nodes in a decision tree. 

linear model an analytical model that assumes linear relationships in 
the coefficients of the variables being studied. 

linear regression a statistical technique used to find the best-fitting linear 
relationship between a target (dependent) variable and its 
predictors (independent variables). 

–log (p) see logworth. 

logistic regression  a linear regression that predicts the proportions of a  
   binary category target variable, such as type of customer, 
   or has attribute vs. does not have attribute. 

logworth a transformation of the normal method of presenting 
significance that takes a negative log of the significance 
in order to express greater levels of significance in larger 
numbers (so the magnitude of the significance is 
reflected in the magnitude of the number). 

measurement  the process of assigning numbers to objects such that the 
properties of the numbers reflect some attribute of the 
objects.

measurement level  one of several different ways in which properties 
of numbers can reflect attributes of objects. The most 
common measurement levels are nominal, ordinal, 
interval, log-interval, ratio, and absolute. For details, see 
the measurement theory FAQ at 
ftp://ftp.sas.com/pub/neural/measurement.html. 

metric    supports arithmetic operations. See interval. 
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missing value a value that is absent from a field. Missing values are 
represented as the “.” character in SAS. 

model    a general term that describes a conceptual   
   representation of some phenomenon typically consisting  
   of symbolic terms, factors, or constructs that may be  
   rendered in language, pictures, or mathematics. Models  
   include formulas or algorithms for computing outputs  
   from inputs. A statistical model also includes   
   information about the conditional distribution of   
   the targets given the inputs. See trained model.   

multidimensional database a database designed for online analytical processing  
   (dimensional cube). Structured as a multidimensional  
   hypercube with one axis per dimension. 

multiprocessor computer a computer that includes multiple processors connected  
   by a network. See parallel processing.  

nearest neighbor  a technique that classifies each record in a data set  
   based on a combination of the classes of the k records  
   most similar to it in a historical data set (where k is  
   greater than or equal to 1). Synonym: k-nearest   
   neighbor. 

node a location defined by branch attributes on a tree. The 
root node is the initial node displayed in a decision tree. 
All branches originate at the root node. The nodes on the 
bottom-most branches of the tree are terminal nodes or 
leaves.

noise  an unpredictable variation, usually in a target variable. 
For example, if two cases have identical input values but 
different target values, the variation in those 
different target values is not predictable from any model 
using only those inputs; hence, that variation is noise. 
Noise is often assumed to be random, in which case it is 
inherently unpredictable. Whereas noise prevents target 
values from being accurately predicted, the distribution 
of the noise can be estimated statistically given enough 
data.
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nominal variable  a numeric or character categorical variable in which the  
   categories are unordered, and the category values convey 
   no additional information beyond category membership. 

nonlinear model   an analytical model that does not assume linear   
   relationships in the coefficients of the variables being  
   studied. 

null category    a category that has no corresponding observation in a  
   field displayed in a descendent node of the decision tree.  

observation    a data record or subject of a given collection of data  
   where one or more attribute measures are taken and  
   recorded for each unit of analysis. 

operational data   a type of data to be scored in a practical application,  
   containing inputs but not target values. Scoring   
   operational data is the main purpose of training models  
   in data mining. Synonym: scoring data. 

operationalize describes the process of assigning representations, such 
as numeric tokens or concise term relations for 
conceptual entities. 

ordered a clustering option to collapse input values that treats a  
set of values as an ordered sequence, and that only 
allows adjacent values to be grouped together. 

ordinal    a description of a method of measurement whereby  
   adjacent values are ordered. Typically, the ordering is  
   monotonic such that each higher level adjacent category  
   is at least as great as the lower category and may be  
   greater by some measurement. 

ordinal variable   a numeric or character categorical variable in which the  
   categories are ordered, but the category values convey  
   no additional information beyond membership and  
   order. In particular, the number of levels between two  
   categories is not informative, and for numeric variables,  
   the difference between category values is not   
   informative. The results of an analysis that includes  
   ordinal variables will typically be unchanged if you  
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   replace all the values of an ordinal variable by different  
   numeric or character values as long as the order is  
   maintained, although some algorithms may use the  
   numeric values for initialization. 

outlier a data item whose value falls outside the bounds 
enclosing most of the other corresponding values in the 
sample. May indicate anomalous data. Outliers should 
be examined carefully; they may carry important 
information. 

output    a variable computed from the inputs as a   
   prediction/guess of the value of the target variables  
   Synonyms: predicted value, estimate, y-hat. 

parallel processing  the coordinated use of multiple processors to perform  
   computational tasks. Parallel processing can occur on a  
   multiprocessor computer or on a network of   
   workstations or PCs. 

parameter     the true or optimal value of the weights or other   
   quantities (such as standard deviations) in a model. 

partitioning    the act of breaking up a set of field values into discrete  
   groups based on similarity with respect to a dependent  
   variable as determined by a test of statistical   
   significance. 

pattern     a set of relationships between fields of data typically  
   derived through statistical methods as in predictive  
   modeling. Typically, the emphasis is on the display of  
   the pattern as opposed to the prediction. 

PMML Predictive Modeling Markup Language. PMML 
describes data mining models in the Extensible Markup 
Language (XML), a universal format to describe 
structured documents and data designed by W3C group 
(http://www.w3c.org). The format was designed by 
(http://www.dmg.org) and enables researchers and 
commercial users to carry out various data mining tasks 
in a universal notation that is shared across 
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environments. Typically, these environments employ 
proprietary standards that would otherwise make 
interoperation difficult, if not impossible.  

population    the set of all cases that you want to be able to   
   generalize to. The data to be analyzed in data mining are  
   usually a subset of the population. 

predictive model   a model with a target or outcome field or variable that is  
   shown to be a function of one or more input or predictor  
   fields or variables. Outcomes may be categorical (buy/no 
   buy) or continuous (dollars spent; time spent). With  
   categorical outcomes the models are called   
   classification models, and with continuous outcomes  
   they are called regression models. 

prospective data analysis a process that predicts future trends, behaviors, or  
   events based on historical data. 

qualitative    a process or entity that is defined in qualitative or non- 
   exacting forms of measurement. 

quantitative    a process or entity that is defined in quantitative,  
   numerically based terms. 

random forest a collection of multiple decision trees that produce an 
average estimate for the target. In each node, a branch 
search is made on a random set of inputs instead of the 
full set of inputs. Each decision tree in the random forest 
is grown on a bootstrap sample of the training data set. 

ratio variable  a numeric variable for which ratios of values are 
informative. In SAS Enterprise Miner, ratio and higher-
level variables are not generally distinguished from 
interval variables, since the analytical methods are 
the same. However, ratio measurements are required for 
some computations in model assessment, such as profit 
and ROI measures. 
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record    a piece of information contained in a database that  
   comprises an entry for each field in the database. For  
   example, an employee database contains a record for  
   each employee. 

retrospective data analysis a process that provides insights into trends,   
   behaviors, or events that have already occurred. 

root node the node at the very top of a hierarchical decision tree 
display. In this node, values in the dependent variable 
are also represented. 

row    the second dimension—along with column—of a  
   traditional table. Since data sets are usually stored in  
   tables, then the observations, or examples, that are  
   captured by the data set are considered to be rows. 

rule induction the extraction of useful if-then rules from data that is 
based on statistical significance. 

sample     a subset of the population that is available for analysis. 

scoring a method of applying a trained model to data to compute 
outputs. Synonyms: running (for neural nets), simulating 
(for neural nets), filtering (for decision trees), 
interpolating or extrapolating. 

signal    a predictable variation in a target variable. It is often  
   assumed that target values are the sum of signal and  
   noise, where the signal is a function of the input   
   variables. Synonyms: function, systematic component. 

significance    a measure of the strength of a relationship between  
   sample elements based on statistical probability. 

split    a partition in a set of field values. 

standard deviation  the square root of the variance. It is the measure of the  
   level of variability in a collection of data. The larger the  
   number, the greater the variability. 

stochastic gradient boosting see boosting. 
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subtree a subset of the full decision tree created by pruning one 
or more branches up from the bottom of the tree. 
Subtrees always contain the root node. 

supervised learning an environment where the goal is to predict or classify 
the value of an outcome or target measure based on a 
number of input measures. 

surrogate the use of the predictive information that is held in a 
field, which is closely associated with the field that is 
being used as an input to form a branch. For example, if 
a value is missing for an input, then a surrogate may be 
used to estimate the likely value of the input at that point 
in the decision tree. 

target    a field or variable that is being examined, estimated 
estimated, or described with the data mining model or 
process. It is synonymous with a dependent variable in a   
statistical analysis or a modeled outcome. The target  
variable value is known in some currently available data, 
but will be unknown in some future/fresh/operational 
data set. You want to be able to predict/guess the values 
of the target variables from other known variables. 
Synonyms: dependent variable, response, observed 
values, training values, desired output, correct output, 
outcome. 

test data  a type of data that contains input and target values, not 
generally used during model training, but instead used to 
estimate generalization error. Test data is designed to 
provide an estimate of model performance in novel 
situations, and is ideally an independent collection of 
data that is separate from the data used in training the 
model. 

time series analysis  the analysis of a sequence of measurements made at  
   specified time intervals. Time is usually the dominating  
   dimension of the data. 
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trained model    a specific formula or algorithm for computing outputs  
   from inputs, with all weights or parameter estimates in  
   the model chosen via a training algorithm from a class of 
   such formulas or algorithms designated by the model.   
   Synonym: fitted model. 

training    the process of computing good values for the weights in  
   a model, or, for tree-based models, choosing good split  
   variables and split values. Synonyms: estimation,  
   fitting, learning, adaptation, induction, growing   
   trees. 

training data  a type of data that contains input and target values used 
for training to estimate weights or other parameters. This 
is the data that is used to develop the data mining model. 
The notion of training derives from a machine-learning 
approach whereby the underlying development model 
mimics the extraction of knowledge from data through 
the use of lines of data as training instances. 

twoing a node partitioning technique that segments the classes 
in a node into two groups by combining classes together 
that form up to 50 percent of the data.  

unsupervised learning  an environment where there is no outcome measure. The 
goal is to describe the associations and patterns among a 
set of input measures. 

validation data    a type of data that contains input and target values used  
   indirectly during training for branch selection and to  
   determine when to form terminal nodes.   

variable an item of information represented in numeric or 
character form for each case in a data set. Both targets 
and inputs are variables. Synonyms: column, feature, 
attribute, coordinate, measurement. 
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variance    a measure of the range of values in a distribution that  
   also combines a measure of the density. Sometimes  
   referred to as the second moment around the mean. The  
   expected value of the square of the deviations of a  
   random variable from its mean value. 

weight a numeric value used in a model that is usually unknown 
or unspecified prior to the analysis. Weights may be 
estimated by the model or may be used in computing 
model results. Synonyms: estimated parameters, 
estimates, coefficients, betas. 
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