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PREFACE 

The fast growing, tremendous amount of data, collected and stored in 
large databases has far exceeded our human ability to comprehend it without 
proper tools. There is a critical need of data analysis systems that can 
automatically analyze the data, summarize it and predict future trends. Data 
warehousing and data mining provide techniques for collecting information 
from distributed databases and then performing data analysis. 

In the modem age of Internet connectivity, concerns about denial of 
service attacks, computer viruses and worms have become very important. 
There are a number of challenges in dealing with cyber security. First, the 
amount of data generated from monitoring devices is so large that it is 
humanly impossible to analyze it. Second, the importance of cyber security 
to safeguard the country's Critical Infrastructures requires new techniques to 
detect attacks and discover the vulnerabilities. The focus of this book is to 
provide information about how data warehousing and data mining 
techniques can be used to improve cyber security. 

OBJECTIVES 

The objective of this book is to contribute to the discipline of Security 
Informatics. It provides a discussion on topics that intersect the area of 
Cyber Security and Data Mining. Many of you want to study this topic: 
College and University students, computer professionals, IT managers and 
users of computer systems. The book will provide the depth and breadth that 
most readers want to learn about techniques to improve cyber security. 

INTENDED AUDIENCE 

What background should you have to appreciate this book? Someone 
who has an advanced undergraduate or graduate degree in computer science 
certainly has that background. We also provide enough background material 
in the preliminary chapters so that the reader can follow the concepts 
described in the later chapters. 



PLAN OF THE BOOK 

Chapter 1: Introduction to Data Warehousing and Data Mining 

This chapter introduces the concepts and basic vocabulary of data 
warehousing and data mining. 

Chapter 2: Introduction to Cyber Security 

This chapter discusses the basic concepts of security in networks, denial of 
service attacks, network security controls, computer virus and worms 

Chapter 3: Intrusion Detection Systems 

This chapter provides an overview of the state of art in Intrusion Detection 
Systems and their shortcomings. 

Chapter 4: Data Mining for Intrusion Detection 

It shows how data mining techniques can be applied to Intrusion Detection. 
It gives a survey of different research projects in this area and possible 
directions for future research. 

Chapter 5: Data Modeling and Data Warehousing to Improve IDS 

This chapter demonstrates how a multidimensional data model can be used 
to do network security analysis and detect denial of service attacks. These 
techniques have been implemented in a prototype system that is being 
successfully used at Army Research Labs. This system has helped the 
security analyst in detecting intrusions and in historical data analysis for 
generating reports on trend analysis. 

Chapter 6: MINDS: Architecture and Design 

It provides an overview of the Minnesota Intrusion Detection System 
(MINDS) that uses a set of data mining techniques to address different 
aspects of cyber security. 

Chapter 7: Discovering Novel Strategies from INFOSEC Alerts 

This chapter discusses an advanced correlation system that can reduce alarm 
redundancy and provide information on attack scenarios and high level 
attack strategies for large networks. 
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Chapter 1 

AN OVERVIEW OF DATA WAREHOUSE, OLAP 
AND DATA MINING TECHNOLOGY 

Anoop Singhal 

Abstract: In this chapter, a summary of Data Warehousing, OLAP and Data Mining 
Technology is provided. The technology to build Data Analysis Application 
for NetworkAVeb services is also described 

Key words: STAR Schema, Indexing, Association Analysis, Clustering 

1. MOTIVATION FOR A DATA WAREHOUSE 

Data warehousing (DW) encompasses algorithms and tools for bringing 
together data from distributed information repositories into a single 
repository that can be suitable for data analysis [13]. Recent progress in 
scientific and engineering applications has accumulated huge volumes of 
data. The fast growing, tremendous amount of data, collected and stored in 
large databases has far exceeded our human ability to comprehend it without 
proper tools. It is estimated that the total database size for a retail store chain 
such as Walmart will exceed 1 Petabyte (IK Terabyte) by 2005. Similarly, 
the scope, coverage and volume of digital geographic data sets and 
multidimensional data has grown rapidly in recent years. These data sets 
include digital data of all sorts created and disseminated by government and 
private agencies on land use, climate data and vast amounts of data acquired 
through remote sensing systems and other monitoring devices [16], [18]. It is 
estimated that multimedia data is growing at about 70% per year. Therefore, 
there is a critical need of data analysis systems that can automatically 
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analyze the data, to summarize it and predict future trends. Data 
warehousing is a necessary technology for collecting information from 
distributed databases and then performing data analysis [1], [2], [3], and [4]. 

Data warehousing is an enabling technology for data analysis 
applications in the area of retail, finance, telecommunicationAVeb services 
and bio-informatics. For example, a retail store chain such as Walmart is 
interested in integrating data from its inventory database, sales database from 
different stores in different locations, and its promotions from various 
departments. The store chain executives could then 1) determine how sales 
trend differ across regions of the country 2) correlate its inventory with 
current sales and ensure that each store's inventory is replaced to keep up 
with the sales 3) analyze which promotions are leading to increases product 
sales. Data warehousing can also be used in telecommunicationAVeb 
services applications for collecting the usage information and then identify 
usage patterns, catch fraudulent activities, make better use of resources and 
improve the quality of service. In the area of bio-informatics, the integration 
of distributed genome databases becomes an important task for systematic 
and coordinated analysis of DNA databases. Data warehousing techniques 
will help in integration of genetic data and construction of data warehouses 
for genetic data analysis. Therefore, analytical processing that involves 
complex data analysis (usually termed as decision support) is one of the 
primary uses of data warehouses [14]. 

The commercial benefit of Data Warehousing is to provide tools for 
business executives to systematically organize, understand and use the data 
for strategic decisions. In this paper, we motivate the concept of a data 
warehouse, provide a general architecture of data warehouse and data mining 
systems, discuss some of the research issues and provide information on 
commercial systems and tools that are available in the market. 

Some of the key features of a data warehouse (DW) are as follows. 

1. Subject Oriented: The data in a data warehouse is organized around 
major subjects such as customer, supplier and sales. It focuses on 
modeling data for decision making. 

2. Integration: It is constructed by integrating multiple heterogeneous 
sources such as RDBMS, flat files and OLTP records. 

3. Time Variant: Data is stored to provide information from a historical 
perspective. 
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The data warehouse is physically separate from the OLTP databases 
due to the following reasons: 

1. Application databases are 3NF optimized for transaction response time 
and throughput. OLAP databases are market oriented and optimized for 
data analysis by managers and executives. 

2. OLTP systems focus on current data without referring to historical data. 
OLAP deals with historical data, originating from multiple organizations. 

3. The access pattern for OLTP applications consists of short, atomic 
transactions where as OLAP applications are primarily read only 
transactions that perform complex queries. 

These characteristics differentiate data warehouse applications from 
OLTP applications and they require different DBMS design and 
implementation techniques. Clearly, running data analysis queries over 
globally distributed databases is likely to be excruciatingly slow. The 
natural solution is to create a centralized repository of all data i.e. a data 
warehouse. Therefore, the desire to do data analysis and data mining is a 
strong motivation for building a data warehouse. 

This chapter is organized as follows. Section 2 discusses the multi­
dimensional data model and section 3 discusses the data warehouse 
architecture. Section 4 discusses the implementation techniques and section 
5 presents commercial tools available to implement data warehouse systems. 
Section 6 discusses the concepts of Data Mining and applications of data 
mining. Section 7 presents a Data Analysis Application using Data 
Warehousing technology that the authors designed and implemented for 
AT&T Business Services. This section also discusses some open research 
problems in this area. Finally section 8 provides the conclusions. 

2. A MULTIDIMENSIONAL DATA MODEL 

Data Warehouse uses a data model that is based on a multidimensional 
data model. This model is also known as a data cube which allows data to 
be modeled and viewed in multiple dimensions. Dimensions are the different 
perspectives for an entity that an organization is interested in. For example, a 
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store will create a sales data warehouse in order to keep track of the store' 
sales with respect to different dimensions such as time, branch, and location. 
"Sales" is an example of a central theme around which the data model is 
organized. This central theme is also referred as di fact table. Facts are 
numerical measures and they can be thought of as quantities by which we 
want to analyze relationships between dimensions. Examples of facts are 
dollars_sold, units_jold and so on. ThQfact table contains the names of the 
facts as well as keys to each of the related dimension tables. 

The entity-relationship data model is commonly used in the design of 
relational databases. However, such a schema is not appropriate for a data 
warehouse. A data warehouse requires a concise, subject oriented schema 
that facilitates on-line data analysis. The most popular data model for a data 
warehouse is a multidimensional model. Such a model can exist in the form 
of a star schema. The star schema consists of the following. 
1. A large central table (fact table) containing the bulk of data. 
2. A set of smaller dimension tables one for each dimension. 

OrderNo 
OrderDate 

CustNo 
CustNa 

OrderNo 
CustNo 
ProdNo 
DateKey 

ProdNo 
ProdName 

Date Key 
Day, Month 
Year 

Figure 1: A Star Schema 
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The schema resembles a star, with the dimension tables displayed in a 
radial pattern around the central fact table. An example of a sales table and 
the corresponding star schema is shown in the figure 1. For each dimension, 
the set of associated values can be structured as a hierarchy. For example, 
cities belong to states and states belong to countries. Similarly, dates belong 
to weeks that belong to months and quarters/years. The hierarchies are 
shown in figure 2. 

country years 

state quarters 

city 

months 

days 

Figure 2: Concept Hierarchy 

In data warehousing, there is a distinction between a data warehouse and a 
data mart. A data warehouse collects information about subjects that span 
the entire organization such as customers, items, sales and personnel. 
Therefore, the scope of a data warehouse is enterprise wide. A data mart on 
the other hand is a subset of the data warehouse that focuses on selected 
subjects and is therefore limited in size. For example, there can be a data 
mart for sales information another data mart for inventory information. 
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3. DATA WAREHOUSE ARCHITECTURE 

Figure 3 shows the architecture of a Data Warehouse system. Data 
warehouses often use three tier architecture. 
1. The first level is a warehouse database server that is a relational database 

system. Data from operational databases and other external sources is 
extracted, transformed and loaded into the database server. 

2. Middle tier is an OLAP server that is implemented using one of the 
following two methods. The first method is to use a relational OLAP 
model that is an extension of RDBMS technology. The second method is 
to use a multidimensional OLAP model that uses a special purpose server 
to implement the multidimensional data model and operations. 

3. Top tier is a client which contains querying, reporting and analysis tools. 

Monitoring & Administration 

r ^ i 1 
Metadata Repository 

OLAP Server 

External Sources 

Operational 
dbs 

SQQ 
Data Marts 

Figure 3: Architecture of a Data Warehouse System 

DATA WAREHOUSE IMPLEMENTATION 

Data warehouses contain huge volumes of data. Users demand that 
decision support queries be answered in the order of seconds. Therefore, it is 
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critical for data warehouse systems to support highly efficient cube 
computation techniques and query processing techniques. At the core of 
multidimensional analysis is the efficient computation of aggregations across 
many sets of dimensions. These aggregations are referred to as group-by. 
Some examples of "group-by" are 
1. Compute the sum of sales, grouping by item and city. 
2. Compute the sum of sales, grouping by item. 

Another use of aggregation is to summarize at different levels of a 
dimension hierarchy. If we are given total sales per city, we can aggregate on 
the location dimension to obtain sales per state. This operation is called roll-
up in the OLAP literature. The inverse of roll-up is drill-down: given total 
sales by state, we can ask for a more detailed presentation by drilling down 
on location. Another common operation is pivoting. Consider a tabular 
presentation of Sales information. If we pivot it on the Location and Time 
dimensions, we obtain a table of total sales for each location for each time 
value. The time dimension is very important for OLAP. Typical queries are 
• Find total sales by month 
• Find total sales by month for each city 
• Find the percentage change in total monthly sales 

The OLAP framework makes it convenient to implement a broad class of 
queries. It also gives the following catchy names: 
• Slicing: a data set amounts to an equality selection on one or more 

dimensions 
• Dicing: a data set amounts to a range selection. 

4.1 Indexing of OLAP Data 

To facilitate efficient data accessing, most data warehouse systems 
support index structures and materialized views. Two indexing techniques 
that are popular for OLAP data are bitmap indexing and join indexing. 

4.1.1 Bitmap indexing 

The bitmap indexing allows for quick searching in data cubes. In the bit 
map index for a given attribute, there is a distinct bit vector, Bv, for each 
value V in the domain of the attribute. If the domain for the attribute consists 
of n values, then n bits are needed for each entry in the bitmap index. 
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4.1.2 Join indexing 

Consider 2 relations R(RID, A) and S(B, RID) that join on attributes A 
and B. Then the join index record contains the pair (RID, SID) where RID 
and SID are record identifiers from the R and S relations. The advantage of 
join index records is that they can identify joinable tuples without 
performing costly join operations. Join indexing is especially useful in the 
star schema model to join the fact table with the corresponding dimension 
table. 

4.2 Metadata Repository 

Metadata is data about data. A meta data repository contains the 
following information. 

1. A description of the structure of data warehouse that includes the schema, 
views and dimensions. 

2. Operations metadata that includes data lineage (history of data and the 
sequence of transformations applied to it). 

3. The algorithms used for summarization. 
4. The mappings from the operational environment to the data warehouse 

which includes data extraction, cleaning and transformation rules. 
5. Data related to system performance which include indices and profiles 

that improve data access and retrieval performance. 

4.3 Data Warehouse Back-end Tools 

There are many challenges in creating and maintaining a large data 
warehouse. Firstly, a good database schema must be designed to hold an 
integrated collection of data copied from multiple sources. Secondly, after 
the warehouse schema is designed, the warehouse must be populated and 
over time, it must be kept consistent with the source databases. Data is 
extracted from external sources, cleaned to minimize errors and 
transformed to create aggregates and summary tables. Data warehouse 
systems use backend tools and utilities to populate and refresh their data. 
These tools are called Extract, Transform and Load (ETL) tools. They 
include the following functionality: 
• Data Cleaning: Real world data tends to be incomplete, noisy and 

inconsistent [5]. The ETL tools provide data cleaning routines to fill in 
missing values, remove noise from the data and correct inconsistencies in 
the data. Some data inconsistencies can be detected by using the 
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functional dependencies among attributes to find values that contradict 
the functional constraints. The system will provide capability for users to 
add rules for data cleaning. 
Data Integration: The data mining/analysis task requires combining data 
from multiple sources into a coherent data store [6]. These sources may 
be multiple sources or flat files. There are a number of issues to consider 
during data integration. Schema integration can be quite tricky. How can 
real-world entities from multiple data sources be matched up? For 
example, how can we make sure that customer ID in one database and 
cust number in another database refers to the same entity? Our 
application will use metadata to help avoid errors during data integration. 
Redundancy is another important issue for data integration. An attribute 
is redundant if it can be derived from another table. For example, annual 
revenue for a company can be derived from the monthly revenue table for 
a company. One method of detecting redundancy is by using correlation 
analysis. A third important issue in data integration is the detection and 
resolution of data value conflicts. For example, for the same real world 
entity, attribute values from different sources may differ. For example, 
the weight attribute may be stored in the metric unit in one system and in 
British imperial unit on the other system. 
Data Transformation: Data coming from input sources can be 
transformed so that it is more appropriate for data analysis [7]. Some 
examples of transformations that are supported in our system are as 
follows 

- Aggregation: Apply certain summarization operations to incoming 
data. For example, the daily sales data can be aggregated to compute 
monthly and yearly total amounts. 

- Generalization: Data coming from input sources can be generalized 
into higher-level concepts through the use of concept hierarchies. For 
example, values for numeric attributes like age can be mapped to 
higher-level concepts such as young, middle age, senior. 

- Normalization: Data from input sources is scaled to fall within a 
specified range such as 0.0 to 1.0 

- Data Reduction: If the input data is very large complex data analysis 
and data mining can take a very long time making such analysis 
impractical or infeasible. Data reduction techniques can be used to 
reduce the data set so that analysis on the reduced set is more efficient 
and yet produce the same analytical resuhs. The following are some 
of the techniques for data reduction that are supported in our system. 

a) Data Cube Aggregation: Aggregation operators are applied to the 
data for construction of data cubes. 
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b) Dimension Reduction: This is accomplished by detecting and 
removing irrelevant dimensions. 

c) Data Compression: Use encoding mechanisms to reduce the data set 
size. 

d) Concept Hierarchy Generation: Concept hierarchies allow mining 
of data at multiple levels of abstraction and they are a powerful tool 
for data mining. 

• Data Refreshing: The application will have a scheduler that will allow 
the user to specify the frequency at which the data will be extracted from 
the source databases to refresh the data warehouse. 

4.4 Views and Data Warehouse 

Views are often used in data warehouse applications. OLAP 
queries are typically aggregate queries. Analysts often want fast 
answers to these queries over very large data sets and it is natural to 
consider pre-computing views and the aggregates. The choice of 
views to materialize is influenced by how many queries they can 
potentially speed up and the amount of space required to store the 
materialized view. 

A popular approach to deal with the problem is to evaluate the view 
definition and store the results. When a query is now posed on the view, the 
query is executed directly on the pre-computed result. This approach is 
called view materialization and it results in fast response time. The 
disadvantage is that we must maintain consistency of the materialized view 
when the underlying tables are updated. 

There are three main questions to consider with regard to view 
materialization. 
1. What views to materialize and what indexes to create. 
2. How to utilize the materialized view to answer a query 
3. How often should the materialized view be refreshed. 



An Overview of Data Warehouse, OLAP and Data Mining 11 

5. COMMERCIAL DATA WAREHOUSE TOOLS 

The following is a summary of comjnercial data warehouse tools that are 
available in the market. 

1. Back End ETL Tools 

• DataStage: This was originally developed by Ardent Software and it is 
now part of Ascential Software. See http://www.ascentialsoftware.com 

• Informatica is an ETL tool for data warehousing and it provides analytic 
software that for business intelligence. See http://www.infonnatica.com 

• Oracle: Oracle has a set of data warehousing tools for OLAP and ETL 
functionality. See http://www.oracle.com 

• DataJunction: See http://www.datajunction.com 

2. Multidimensional Database Engines: Arbor ESSbase, SAS system 
3. Query/OLAP Reporting Tools: Brio, Cognos/Impromptu, Business 
Objects, Mirostrategy/DSS, Crystal reports 

6. FROM DATA WAREHOUSING TO DATA MINING 

In this section, we study the usage of data warehousing for data mining 
and knowledge discovery. Business executives use the data collected in a 
data warehouse for data analysis and make strategic business decisions. 
There are three kinds of applications for a data warehouse. Firstly, 
Information Processing supports querying, basic statistical analysis and 
reporting. Secondly, Analytical Processing supports multidimensional data 
analysis using slice-and-dice and drill-down operations. Thirdly, Data 
Mining supports knowledge discovery by finding hidden patterns and 
associations and presenting the results using visualization tools. The process 
of knowledge discovery is illustrated in the figure 4 and it consists of the 
following steps: 

a) Data cleaning: removing invalid data 
b) Data integration: combine data from multiple sources 
c) Data transformation: data is transformed using summary or aggregation 

operations 
d) Data mining: apply intelligent methods to extract patterns 
e) Evaluation and presentation: use visualization techniques to present the 

knowledge to the user 
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Evaluation and 
Presentation 

Data IVIining 

Reduction and 

Transformation 

Cleaning and 

integration 

Databases Flat files 

Figure 4: Architecture of the Knowledge Discovery Process 

6.1 Data Mining Techniques 

The following are different kinds of techniques and algorithms that data 
mining can provide. 

a) Association Analysis: This involves discovery of association rules 
showing attribute-value conditions that occur frequently together in a 
given set of data. This is used frequently for market basket or transaction 
data analysis. For example, the following rule says that if a customer is in 
age group 20 to 29 years and income is greater than 40K/year then he or 
she is likely to buy a DVD player. 

Age(X, "20-29") & income(X, ">40K") => buys (X, "DVD player") 
[support = 2% , confidence = 60%] 
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Rule support and confidence are two measures of rule 
interestingness. A support of 2% means that 2% of all transactions under 
analysis show that this rule is true. A confidence of 60% means that 
among all customers in the age group 20-29 and income greater than 
40K, 60% of them bought DVD players. 

A popular algorithm for discovering association rules is the Apriori 
method. This algorithm uses an iterative approach known as level-wise 
search where k-itemsets are used to explore (k+1) itemsets. Association 
rules are widely used for prediction. 

b) Classification and Prediction: Classification and prediction are two forms 
of data analysis that can be used to extract models describing important 
data classes or to predict future data trends. For example, a classification 
model can be built to categorize bank loan applications as either safe or 
risky. A prediction model can be built to predict the expenditures of 
potential customers on computer equipment given their income and 
occupation. Some of the basic techniques for data classification are 
decision tree induction, Bayesian classification and neural networks. 

These techniques find a set of models that describe the different 
classes of objects. These models can be used to predict the class of an 
object for which the class is unknown. The derived model can be 
represented as rules (IF-THEN), decision trees or other formulae. 

c) Clustering: This involves grouping objects so that objects within a cluster 
have high similarity but are very dissimilar to objects in other clusters. 
Clustering is based on the principle of maximizing the intraclass similarity 
and minimizing the inter class similarity. 

In business, clustering can be used to identify customer groups based 
on their purchasing patterns. It can also be used to help classify documents 
on the web for information discovery. Due to the large amount of data 
collected, cluster analysis has recently become a highly active topic in 
data mining research. As a branch of statistics, cluster analysis has been 
extensively studied for many years, focusing primarily on distance based 
cluster analysis. These techniques have been built into statistical analysis 
packages such as S-PLUS and SAS. In machine learning, clustering is an 
example of unsupervised learning. For this reason clustering is an 
example of learning by observation. 

d) Outlier Analysis: A database may contain data objects that do not comply 
with the general model or behavior of data. These data objects are called 
outliers. These outliers are useful for applications such as fraud detection 
and network intrusion detection. 
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6.2 Research Issues in Data Mining 

In this section, we briefly discuss some of the research issues in data 
mining. 

a) Mining methodology and user interaction issues: 
• Data mining query languages 
• Presentation and visualization of data mining results 
• Data cleaning and handling of noisy data 

b) Performance Issues: 
• Efficiency and scalability of data mining algorithms 
• Coupling with database systems 
• Parallel, distributed and incremental mining algorithms 
• Handling of complex data types such as multimedia, spatial data and 

temporal data 

6.3 Applications of Data Mining 

Data mining is expected to have broader applications as compared to 
OLAP. It can help business managers fmd and reach suitable customers as 
well as develop special intelligence to improve market share and profits. 
Here are some applications of data mining. 
1. DNA Data Analysis: A great deal of biomedical research is focused on 

DNA data analysis. Recent research in DNA data analysis has enabled 
the discovery of genetic causes of many diseases as well as discovery of 
new medicines. One of the important search problems in genetic analysis 
is similarity search and comparison among the DNA sequences. Data 
mining techniques can be used to solve these problems. 

2. Intrusion Detection and Network Security: This will be discussed further 
in later chapters. 

3. Financial Data Analysis: Most financial institutions offer a variety of 
banking services such as credit and investment services. Data 
warehousing techniques can be used to gather the data to generate 
monthly reports. Data mining techniques can be used to predict loan 
payments and customer credit policy analysis. 

4. Data Analysis for Retail Industry: Retail is a big application of data 
mining since it collects huge amount of data on sales, shopping history 
and service records. Data mining techniques can be used for 
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multidimensional analysis of sales, and customers by region and time. It 
can also be used to analyze effectiveness of sales campaigns. 
Data Analysis for Telecom Industry: The following are some examples 
of where data mining can be used to improve telecom services: 
• Analysis of calling patterns to determine what kind of calling plans to 

offer to improve profitability. 
• Fraud detection by discovering unusual patterns 
• Visualization tools for data analysis. 

6.4 Commercial Tools for Data Mining 

In this section, we briefly outline a few typical data mining systems in 
order to give the reader an idea about what can be done with the current data 
mining products. 
• Intelligent Miner is an IBM data mining product that provides a wide 

range of data mining algorithms including association, classification, 
predictive modeling and clustering. It also provides an application toolkit 
for neural network algorithms and data visualization. It includes 
scalability of mining algorithms and tight integration with IBM's DB2 
relational database systems. 

• Enterprise Miner was developed by SAS Institute, Inc. It provides 
multiple data mining algorithms including regression, classification and 
statistical analysis packages. One of it's distinctive feature is the variety 
of statistical analysis tools, which are built based on the long history of 
SAS in the market for statistical analysis. 

• MineSet was developed by Silicon Graphics Inc. (SGI). It also provides 
multiple data mining algorithms and advanced visualization tools. One 
distinguishing feature of MineSet is the set of robust graphics tools such 
as rule visualizer, tree visualizer and so on. 

• Clementine was developed by Integral Solutions Ltd. (ISL). It provides 
an integrated data mining development environment for end users and 
developers. It's object oriented extended module interface allows user's 
algorithms and utilities to be added to Clementine's visual programming 
environment. 

• DBMiner was developed by DBMiner Technology Inc. It provides 
multiple data mining algorithms including discovery driven OLAP 
analysis, association, classification and clustering. A distinct feature of 
DBMiner is its data cube based analytical mining. 
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There are many other commercial data mining products, systems and 
research prototypes that are also fast evolving. Interested readers can consult 
surveys on data warehousing and data mining products. 

7. DATA ANALYSIS APPLICATIONS FOR 
NETWORKAVEB SERVICES 

In this section we discuss our experience [8] [9] [10], [11] [12] in 
developing data analysis applications using data warehousing, OLAP and 
data mining technology for AT&T Business Services. AT&T Business 
Services (ABS) designs, manages and operates global networks for 
multinational corporations. Global Enterprise Management System (GEMS) 
is a platform that is used by ABS to support design, provisioning and 
maintenance of the network (LANs, WANS, intranets etc.) and desktop 
devices for multinational corporations such as BANCONE and CITICORP. 
The primary functions supported by GEMS are: ticketing, proactive 
management of client's networks, client's asset management, network 
engineering and billing. GEMS applications use an Integrated Database to 
store fault tickets, assets and inventory management information. 

The main purpose of GEMS DW is for ABS to generate reports about the 
performance and reliability of the network and compare it with the system 
level agreements (SLAs) that ABS has agreed to provide to its client 
companies. An SLA is a contract between the service provider and a 
customer (usually an enterprise) on the level of service quality that should be 
delivered. An SLA can contain the following metrics: 
1. Mean Time To Repair (MTTR) a fault 
2. Available network bandwidth (e.g. 1.3 Mbps, 90% of the time on 80% of 

user nodes) 
3. Penalty (e.g. $10,000) if agreement is not met. 

SLAs give service providers a competitive edge for selling network/web 
services into the consumer market and maintain customer satisfaction. In 
order to track SLAs, service providers have to generate user reports on 
satisfaction/violation of the metrics. In addition, the provider must have the 
ability to drill down to detailed data in response to customer inquires. 

The DW enables the knowledge worker (executive, manager, and 
analyst) to track the SLAs. For example, the DW is used to generate monthly 
reports for a client and to gather statistics such as Mean Time to Repair 
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(MTTR) and average number of fault tickets that are open for an ABS client 
company. The main reason to separate the decision support data from the 
operation data is performance. Operational databases are designed for 
known transaction workloads. Complex queries/reports degrade the 
performance of the operational databases. Moreover special data 
organization and access methods are required for optimizing the report 
generation process. This project also required data integration and data 
fusion from many external sources such as operational databases and flat 
files. 

The main components used in our system are as follows. 

1. Ascential's DataStage Tool is an Extraction-Transformation-Load-
Management (ETLM) class of tool that defines how data is extracted 
from a data source, transformed by the application of functions, joins and 
possibly external routines, and then loaded into a target data source. 

2. DataStage reads data from the source information repositories and it 
applies transformations as it loads all data into a repository (atomic) 
database. 

3. Once the atomic data repository is loaded with all source information a 
second level of ETL transformations is applied to various data streams to 
create one or more Data Marts. Data Marts are a special sub-component 
of a data warehouse in that they are highly de-normalized to support the 
fast execution of reports. Some of these Data Marts are created using 
Star Schemas. 

4. Both the atomic data repository and the data marts are implemented using 
Oracle version 8i DBMS. 

5. Once the atomic repository and the data marts have been populated , 
OLAP tools such as COGNOS and ORACLE EXPRESS are configured 
to access both the data marts as well as the atomic repository in order to 
generate the monthly reports. 

An architecture diagram of our system is shown in Figure 5 
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ORACLE 8i DBMS 
MS SQL 

Figure 5: Architecture of the GEMS Data Warehouse System 

The main advantages our system are: 

Since a separate DW system is used to generate the reports the time taken 
to generate the reports is much better. Also, the execution of reports 
does not impact the applications that are using the source databases. 
The schemas in the DW are optimized by using de-normalization and 
pre-aggregation techniques. This results in much better execution time 
for reports. 

Some of the open research problems that we are currently investigating 

are: 

Time to refresh the data in the data warehouse was large and report 
generation activity had to be suspended until the time when changes were 
propagated into the DW. Therefore, there was a need to investigate 
incremental techniques for propagating the updates from source 
databases 
Loading the data in the data warehouse took a long time (10 to 15 hours). 
In case of any crashes, the entire loading process had to be re-started. 
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This further increased the down time for the DW and there was a need 
deal with crash recovery more efficiently. 

• There was no good support for tracing the data in the DW back to the 
source information repositories. 

7.1 Open Research Problems in Data Warehouse 
Maintenance 

A critical part of data analysis systems is a component that can efficiently 
extract data from multiple sources, filter it to remove noise, transform it and 
then load it into the target data analysis platform. This process, which is used 
to design, deploy and manage the data marts is called the ETL (Extract, 
Transform and Load) process. There are a number of open research 
problems in designing the ETL process. 
1. Maintenance of Data Consistency: Since source data repositories 

continuously evolve by modifying their content or changing their schema 
one of the research problems is how to incrementally propagate these 
changes to the central data warehouse. Both re-computation and 
incremental view maintenance are well understood for centralized 
relational databases. However, more complex algorithms are required 
when updates originate from multiple sources and affect multiple views 
in the Data Warehouse. The problem is further complicated if the source 
databases are going through schema evolution. 

2. Maintenance of Summary Tables: Decision support functions in a data 
warehouse involve complex queries. It is not feasible to execute these 
queries by scanning the entire data. Therefore, a data warehouse builds a 
large number of summary tables to improve performance. As changes 
occur in the source databases, all summary tables in the data warehouse 
need to be updated. A critical problem in data warehouse is how to 
update these summary tables efficiently and incrementally. 

3. Incremental Resuming of Failed Loading Process: Warehouse 
creation and maintenance loads typically take hours to run. Our 
experience in loading a data warehouse for network management 
applications at AT&T took about 10 to 15 hours. If the load is interrupted 
by failures, traditional recovery methods undo the changes. The 
administrator must then restart the load and hope that it does not fail 
again. More research is required into algorithms for resumption of the 
incomplete load so as to reduce the total load time. 

4. Tracing the Lineage of Data: Given data items in the data warehouse, 
analysts often want to identify the source items and source databases that 
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produced those data items. Research is required for algorithms to trace 
the Uneage of an item from a view back to the source data items in the 
multiple sources. 

5. Data Reduction Techniques: If the input data is very large, data 
analysis can take a very long time making such analysis impractical or 
infeasible. There is a need for data reduction techniques that can be used 
to reduce the data set so that analysis on the reduced set is more efficient 
and yet produce the same analytical results.The following are examples 
of some of the algorithmic techniques that can be used for data reduction. 
- Data Cube Aggregation: Aggregation operations such as 

AVERAGEO, SUM() and COUNT() can be applied to input data for 
construction of data cubes. These operations reduce the amount of data 
in the DW and also improve the execution time for decision support 
queries on data in the DW 

- Dimension Reduction: This is accomplished by detecting and 
removing irrelevant attributes that are not required for data analysis. 
Data Compression: Use encoding mechanisms to reduce the data set 
size. 

- Concept Hierarchy Generation: Concept hierarchies allow analysis of 
data at multiple levels of abstraction and they are a powerful tool for 
data analysis. For example, values for numeric attributes like age can be 
mapped to higher-level concepts such as young, middle age, senior. 

6. Data Integration and Data Cleaning Techniques: Generally, data 
analysis task includes data integration, which combine data from multiple 
sources into a coherent data store. These sources may include multiple 
databases or flat files. A number of problems can arise during data 
integration. Real world entities in multiple data sources can be given 
different names. How does an analyst know that employee-id in one 
database is same as employee-number in another database. We plan to use 
meta-data to solve the problem of data integration. Data coming from 
input sources tends to be incomplete, noisy and inconsistent. If such data 
is directly loaded in the DW it can cause errors during the analysis phase 
resulting in incorrect results. Data cleaning methods will attempt to 
smooth out the noise, while identifying outliers, and correct 
inconsistencies in the data. We are investigating the following techniques 
for noise reduction and data smoothing. 

a) Binning: These methods smooth a sorted data value by consulting the 
values around it. 

b) Clustering: Outliers may be detected by clustering, where similar 
values are organized into groups or clusters. Intuitively, values that 
fall outside of the set of clusters may be considered outliers. 
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c) Regression: Data can be smoothed by fitting the data to a function, 
such as with regression. Using regression to find a mathematical 
equation to fit the data helps smooth out the noise. 

Data pre-processing is an important step for data analysis. Detecting data 
integration problems, rectifying them and reducing the amount of data to be 
analyzed can result in great benefits during the data analysis phase. 

7.2 Current Research in the area of Data Warehouse 
Maintenance 

A number of techniques for view maintenance and propagation of 
changes from the source databases to the data warehouse (DW) have been 
discussed in literature. [5] [14] describes techniques for view maintenance 
and refreshing the data in a DW. 

[15] also describes techniques for maintenance of data cubes and 
summary tables in a DW environment. However, the problem of propagating 
changes in a DW environment is more complicated due to the following 
reasons: 
a) In a DW, data is not refreshed after every modification to the base data. 

Rather, large batch updates to the base data must be considered which 
requires new algorithms and techniques. 

b) In a DW environment, it is necessary to transform the data before it is 
deposited into the DW. These transformations may include aggregating 
or summarizing the data. 

c) The requirements of data sources may change during the life cycle, which 
may force schema changes for the data source. Therefore techniques are 
required that can deal with both source data changes and schema 
changes. [Liu 2002] describes some techniques for dealing with schema 
changes in the data sources. 

[6], [13] describes techniques for practical lineage tracing of data in a 
DW environment. It enables users to "drill through" from the views in the 
DW all the way to the source data that was used to create the data in the 
DW. However, their methods lack techniques to deal with historical source 
data or data from previous source versions. 
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8. CONCLUSIONS 

A data warehouse is a subject oriented collection of data that is used for 
decision support systems. They typically use a multidimensional data model 
to facilitate data analysis. They are implemented using a three tier 
architecture. The bottom most tier is a database server which is typically a 
RDBMS. The middle tier is a OLAP server and the top tier is a client, 
containing query and reporting tools. Data mining is the task of discovering 
interesting patterns from large amounts of data where data can be stored in 
multiple repositories. Efficient data warehousing and data mining techniques 
are challenging to design and implement for large data sets. 

In this chapter, we have given a summary of Data Warehousing, OLAP 
and Data Mining Technology. We have also described our experience in 
using this technology to build Data Analysis Application for Network/Web 
services. We have also described some open research problems that need to 
be solved in order to efficiently extract data from distributed information 
repositories. Although, some commercial tools are available in the market, 
our experience in building a decision support system for a network/web 
services has shown that they are inadequate. We believe that there are 
several important research problems that need to be solved to build flexible, 
powerful and efficient data analysis applications using data warehousing and 
data mining techniques. 
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Chapter 2 

NETWORK AND SYSTEM SECURITY 

Anoop Singhal 

Abstract: This chapter discusses the elements of computer security such as 
authorization, authentication and integrity. It presents threats against 
networked applications such as denial of service attacks and protocol attacks. 
It also presents a brief discussion on firewalls and intrusion detection systems 

Key words: computer virus, worms, DOS attacks, firewall, intrusion detection 

Computer security is of importance to a wide variety of practical domains 
ranging from banking industry to multinational corporations, from space 
exploration to the intelligence community and so on. The following 
principles are the foundation of a good security solution: 

• Authentication: The process of establishing the validity of a claimed 
identity. 

• Authorization: The process of determining whether a validated entity is 
allowed access to a resource based on attributes, predicates, or context. 

• Integrity: The prevention of modification or destruction of an asset by an 
unauthorized user. 

• Availability: The protection of assets from denial-of-service threats that 
might impact system availability. 

• Confidentiality: The property of non-disclosure of information to 
unauthorized users. 

• Auditing: The property of logging all system activities 
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Computer security attempts to ensure the confidentiality, integrity and 
availability of computing resources. The principal components of a computer 
that need to be protected are hardware, software and the communication 
links. This chapter describes different kind of threats related to computer 
security and protection mechanisms that have been developed to protect the 
different components. 

1. VIRUSES AND RELATED THREATS 

This section briefly discusses a variety of software threats. We first 
present information about computer viruses and worms followed by 
techniques to handle them. 

A virus is a program that can "infect" other programs by modifying them 
and inserting a copy of itself into the program. This copy can then go to 
infect other programs. Just like its biological counterpart, a computer virus 
carries in its instructional code the recipe for making perfect copies of itself. 
A virus attaches itself to another program and then executes secretly when 
the host program is run. 

During it lifetime a typical virus goes through the following stages: 
Dormant Phase: In this state the virus is idle waiting for some event to 
happen before it gets activated. Some examples of these events are 
date/timestamp, presence of another file or disk usage reaching some 
capacity. 
Propagation Phase: In this stage the virus makes an identical copy of 
itself and attaches itself to another program. This infected program 
contains the virus and will in turn enter into a propagation phase to 
transmit the virus to other programs. 
Triggering Phase: In this phase the virus starts performing the function 
it was intended for. The triggering phase can also be caused by a set of 
events. 
Execution Phase: In this phase the virus performs its fiinction such as 
damaging programs and data files. 
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1.1 Types of Viruses 

The following categories give the most significant types of viruses. 

Parasitic Virus: This is the most common kind of virus. It attaches itself 

to executable files and replicates when that program is executed. 
Memory Resident Virus: This kind of virus resides in main memory. 
When ever a program is loaded into memory for execution, it attaches 
itself to that program. 
Boot Sector Virus: This kind of virus infects the boot sector and it 
spreads when the system is booted from the disk. 
Stealth Virus: This is a special kind of virus that is designed to evade 
itself from detection by antivirus software. 
Polymorphic virus: This kind of virus that mutates itself as it spreads 
from one program to the next, making it difficult to detect using the 
"signature" methods. 

1.2 Macro Viruses 

In recent years macro viruses have become quite popular. These viruses 
exploit certain features found in Microsoft Office Applications such as MS 
Word or MS Excel. These applications have a feature called macro that 
people use to automate repetitive tasks. The macro is written in a 
programming language such as Basic. The macro can be set up so that it is 
invoked when a certain function key is pressed. Certain kinds of macros are 
auto execute, they are automatically executed upon some events such as 
starting the execution of a program or opening of a file. These auto 
execution macros are often used to spread the virus. New version of MS 
Word provides mechanisms to protect itself from macro virus. One example 
of this tool is a Macro Virus Protection tool that can detect suspicious Word 
files and alert the customer about a potential risk of opening a file with 
macros. 

1.3 E-mail Viruses 

This is a new kind of virus that arrives via email and it uses the email 
features to propagate itself The virus propagates itself as soon as it is 
activated (typically by opening the attachment) and sending an email with 
the attachment to all e-mail addresses known to this host. As a result these 
viruses can spread in a few hours and it becomes very hard for anti-virus 
software to respond before damage is done. 
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1.4 Worms 

A virus typically requires some human intervention (such as opening a 
file) to propagate itself. A worm on the other hand typically propagates by 
itself A worm uses network connections to propagate from one machine to 
another. Some examples of these connections are: 

Electronic mail facility 
Remote execution facility 
Remote login facility 

A worm will typically have similar phases as a virus such as dormant 
phase, a propagation phase, a triggering phase and an execution phase. The 
propagation phase for a worm uses the following steps: 

Search the host tables to determine other systems that can be infected. 
Establish a connection with the remote system 
Copy the worm to the remote system and cause it to execute 

Just like virus, network worms are also difficuh to detect. However, 
properly designed system security applications can minimize the threat of 
worms. 

1.5 The Morris Worm 

This worm was released into the internet by Robert Morris in 1998. It 
was designed to spread on UNIX systems and it used a number of techniques 
to propagate. In the beginning of the execution, the worm would discover 
other hosts that are known to the current host. The worm performed this task 
by examining various list and tables such as machines that are trusted by this 
host or user's mail forwarding files. For each discovered host, the worm 
would try a number of methods to login to the remote host: 

Attempt to log on to a remote host as a legitimate user. 
Use the finger protocol to report on the whereabouts of a remote user. 
Exploit the trapdoor of a remote process that sends and receives email. 

1.6 Recent Worm Attacks 

One example of a recent worm attack is the Code Red Worm that started 
in July 2001. It exploited a security hole in the Microsoft Internet 
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Information Server (IIS) to penetrate and spread itself. The worm probes 
random IP addresses to spread to other hosts. Also during certain periods of 
times it issues denial of service attacks against certain web sites by flooding 
the site with packets from several hosts. Code Red I infected nearly 360,000 
servers in 14 hours. Code Red II was a second variant that targeted 
Microsoft IIS. 

In late 2001, another worm called Nimda appeared. The worm spread 
itself using different mechanisms such as 

Client to client via email 
From web server to client via browsing of web sites 
From client to Web server via exploitation of Microsoft IIS 
vulnerabilities 

The worm modifies Web documents and certain executables files on the 
infected system. 

1.7 Virus Counter Measures 

Early viruses were relatively simple code fragments and they could be 
detected and purged with simple antivirus software. As the viruses got more 
sophisticated the antivirus software packages have got more complex to 
detect them. 

There are four generations of antivirus software: 

First Generation: This kind of scanner requires a specific signature to 
identify a virus. They can only detect known viruses. 
Second Generation: This kind of scanner does not rely on a specific 
signature. Rather, the scanner uses heuristic rules to search for probable 
virus infections. Another second generation approach to virus detection is 
to use integrity checking. For example, a checksum can be appended to 
every program. If a virus infects the program without changing the 
checksum, then an integrity check will detect the virus. 
Third Generation: These kind of programs are memory resident and 
they identify a virus by its actions rather than by its structure. The 
advantage of this approach is that it is not necessary to generate signature 
or heuristics. This method works by identifying a set of actions that 
indicate some malicious work is being performed and then to intervene. 
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Fourth Generation: These kind of packages consist of a variety of 
antivirus techniques that are used in conjunction. They including 
scanning, access control capability which limits the ability of a virus to 
penetrate the system and update the files to propagate the infection. 

2. PRINCIPLES OF NETWORK SECURITY 

In the modern world we interact with networks on a daily basis such as 
when we perform banking transactions, make telephone calls or ride trains 
and planes. Life without networks would be considerably less convenient 
and many activities would be impossible. In this chapter, we describe the 
basics of computer networks and how the concepts of confidentiality, 
integrity and availability can be applied for networks. 

2.1 Types of Networks and Topologies 

A network is a collection of communicating hosts. There are several 
types of networks and they can be connected in different ways. This section 
provides information on different classes of networks. 

a) Local Area Networks: A local area network (or LAN) covers a small 
distance, typically within a single building. Usually a LAN connects several 
computers, printers and storage devices. The primary advantage of a LAN to 
users is that it provides shared access to resources such programs and 
devices such as printers. 
b) Wide Area Networks: A wide are network differs from a local area 
network in terms of both size and distance. It typically covers a wide 
geographical area. The hosts on a WAN may belong to a company with 
many offices in different cities or they may be a cluster of independent 
organizations within a few miles of each other who would like to share the 
cost of networking. Therefore a WAN could be controlled by one 
organization or it can be controlled by multiple organizations. 
c) Internetworks (Internets): Network of networks or internet is a connection 
of two or more separate networks in that they are separately managed and 
controlled. The Internet is a collection of networks that is loosely controlled 
by the Internet Society. The Internet Society enforces certain minimal rules 
to make sure that all users are treated fairly. 
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2.2 Network Topologies 

The security of a network is dependent on its topology. The three 
different topologies are as follows. 
a) Common Bus: Conceptually, a common bus is a single wire to which 

each node of a LAN is connected. In a common bus, the information is 
broadcast and nodes must continually monitor the bus to get the 
information addressed to it. 

b) Star or Hub: In this topology each node is connected to a central "traffic 
controller" node. All communication flows from the source node to the 
traffic controller node and from the traffic controller node to the other 
nodes. 

c) Ring: In this architecture, each node receives many messages, scans 
each and removes the one designated for itself In this topology, there is 
no central node. However, there is one drawback with this architecture. If 
a node fails to pass a message that it has received, the other nodes will 
not be able to receive that information. 

3. THREATS IN NETWORKS 

Network security has become important due to the inter-connection of 
computers and the rise of the internet. This section describes some of the 
popular network threats. 

a) Spoofing: By obtaining the network authentication credentials of an 
entity (such as a user or a process) permits an attacker to create a full 
communication under the entity's identity. Examples of spoofing are 
masquerading and man-in-the-middle attack. 

b) Masquerade: In a masquerade a user who is not authorized to use a 
computer pretends to be a legitimate user. A common example is URL 
confusion. Thus abc.com, abc.org or abc.net might be three different 
organizations or one legitimate organization and two masquerade 
attempts from some one who registered similar names. 
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c) Phishing Attacks: These attacks are becoming quite popular due to the 
proliferation of Web sites. In phishing scams, an attacker sets up a web 
site that masquerades as a legitimate site. By tricking a user, the phishing 
site obtains the user's cleartext password for the legitimate site. Phishing 
has proven to be quite effective in stealing user passwords. 

d) Session Hijacking: It is intercepting and carrying out a session begun 
by another entity. Suppose two people have entered into a session but 
then a third person intercepts the traffic and carries out a session in the 
name of the other person then this will be called session hijacking. For 
example, if an Online merchant used a wiretap to intercept packets 
between you and Amazon.com, the Online merchant can monitor the 
flow of packets. When the user has completed the order, Online merchant 
can intercept when the "Ready to check out" packet is sent and finishes 
the order with the user obtaining shipping address, credit card detail and 
other information. In this case we say the Online merchant has hijacked 
the session. 

e) Man-in-the-Middle Attack: In this type of attack also one entity intrudes 
between two others. The difference between man-in-the-middle and 
hijacking is that a man-in-the-middle usually participates from the start 
of the session, whereas a session hijacking occurs after a session has 
been established. This kind of attack is frequently described in protocols. 
For example, suppose two parties want to exchange encrypted 
information. One party contacts the key server to get a secret key that 
will be used in the communication. The key server responds by sending 
the private key to both the parties. A malicious middleman intercepts the 
response key and then eavesdrop on the communication between the two 
parties. 

f) Web Site Defacement: One of the most widely known attacks is the web 
site defacement attack. Since this can have a wide impact they are often 
reported in the popular press. Web sites are designed so that their code 
can be easily downloaded enabling an attacker to obtain the full 
hypertext document. One of the popular attacks against a web site is 
buffer overflow. In this kind of attack the attacker feeds a program more 
data than what is expected. A buffer size is exceeded and the excess data 
spills over adjoining code and data locations. 
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g) Message Confidentiality Threats: 

- Misdelivery: Sometimes messages are misdelivered because of some 
flaw in the network hardware or software. We need to design 
mechanisms to prevent this. 

- Exposure: To protect the confidentiaHty of a message, we must track it 
all the way from its creation to its disposal. 

- Traffic Flow Analysis: Consider the case during wartime, if the enemy 
sees a large amount of traffic between the headquarters and a particular 
unit, the enemy will be able to infer that a significant action is being 
planned at that unit. In these situations there is a need to protect the 
contents of the message as well as how the messages are flowing in the 
network. 

DENIAL OF SERVICE ATTACKS 

So far we have presented attacks that lead to failures of confidentiality or 
integrity. Availability attacks in network context are called denial of service 
attacks and they can cause a significant impact. The following are some 
sample denial of service attacks. 

Connection Flooding: This is the most primitive denial-of-service 
attack. If an attacker sends so much data that the communication system 
cannot handle it then you are prevented from receiving any other data. 
Ping of Death: Since ping requires the recipient to respond to the ping 
request, all that the recipient needs to do it to send a flood of pings to the 
intended victim. 
Smurf: This is a variation of a ping attack. It uses the same vehicle, a 
ping packet with two extra twists. First, the attacker chooses a network of 
victims. The attacker spoofs the source address in the ping packet so that 
it appears to come from the victim. Then, the attacker sends this request 
to the network in broadcast mode by setting the last byte of the address to 
all Is; broadcast mode packets are distributed to all the hosts. 
Syn Flood: The attacker can deny service to the target by sending many 
SYN requests and never responding with ACKs. This fills up the victim's 
SYN_RECV queue. Typically, the SYN_RECV queue is quite small 
(about 10 to 20 entries). Attackers using this approach do one more thing, 
they spoof the nonexistent return address in the initial SYN packet. 
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4.1 Distributed Denial of Service Attacks 

In order to perpetrate a distributed denial of service attack, an attacker 
does two things. In the first step, the attacker uses any convenient step (such 
as exploiting a buffer overflow) to plant a Trojan horse on a target machine. 
The installation of the Trojan horse as a file or a process does not attract any 
attention. The attacker repeats this process with many targets. Each of these 
targets then become what is known as a zombie. The target system carry out 
their work , unaware of the resident zombie. 

At some point, the attacker chooses a victim and sends a signal to all the 
zombies to launch the attack. Then, instead of the victim trying to defend 
against one denial-of-service attack from one malicious host, the victim must 
try to counter n attacks from n zombies all acting at one. 

4.2 Denial of Service Defense Mechanisms 

The increased frequency of Denial of Service attacks has led to the 
development of numerous defense mechanisms. This section gives a 
summary of the taxonomy of defense mechanisms based on this paper. 

Classification by Activity Level 

Based on the activity level defense mechanisms can be classified into 
preventive and reactive mechanisms. 

Preventive Mechanisms 
The goal of these mechanisms is to either eliminate the possibility of 

DOS attacks or to endure the attack without denying services to legitimate 
clients. 

Attack Prevention Mechanisms 
These mechanisms modify the system configuration to eliminate the 

possibility of a DOS attack. System security mechanisms increase the 
overall security by guarding against illegitimate access from other machines. 
Examples of system security mechanisms include monitored access to the 
machine, install security patches, and firewall systems. 

Protocol security mechanisms address the problem of bad protocol design 
which can be misused to exhaust the resources of a server by initiating a 
large number of such transactions. Classic misuse examples are the TCP 
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SYN attacks and the fragmented packet attack. An example of a protocol 
security mechanism is to have a design in which resources are committed to 
the client only after sufficient authentication is done. 

Reactive Mechanisms 
Reactive mechanisms alleviate the impact of an attack by detecting an 

attack and responding to it. Reactive mechanisms can be classified based on 
the mechanisms that they use pattern detection, anomaly detection and 
hybrid detection. 

Mechanism with Pattern Attack Detection 
In this method, signatures of known attacks are stored in a database. Each 

communication is monitored and compared with the database entries to 
discover the occurrence of an attack. Occasionally, the database is updated 
with new attack signatures. The obvious drawback of this detection 
mechanism is that it can only detect known attacks. On the other hand the 
main advantage is that known attacks are reliably detected and no false 
positives are encountered. 

Mechanism with Anomaly Attack Detection 
Mechanisms that deploy anomaly detection have a model of normal 

system behavior such as traffic or system performance. The current state of 
the system is periodically compared with the models to detect anomalies. 
The advantage of these techniques as compared to pattern detection is that 
unknown attacks can be discovered. However, they have to solve the 
following problems 

Threshold setting: Anomalies are detected based on known settings. The 
setting of a low threshold leads to many false positives, while a high 
threshold reduces the sensitivity of the detection mechanism. 

Model Update: Systems and communication patterns evolve with time 
and models need to be updated to reflect this change. 

Mechanisms with Hybrid Attack Detection 
These techniques combine the pattern based and anomaly-based 

detection, using data about attacks discovered through an anomaly detection 
mechanism to devise new attack signatures and update the database. Many 
intrusion detection systems use this technique but they have to be carefully 
designed. 
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Attack Response 
The goal of the attack response is to mitigate the impact of attack on a 

victim machine so as to minimize the collateral damage to clients of the 
victim. Reactive mechanisms can be classified based on the response 
strategy into agent identification, filtering and reconfiguration approaches. 

Agent Identification Mechanisms 
These mechanisms provide the victim with information about the identity 

of the machines that are responsible to perform the attacks. This information 
can be combined with other response approaches to reduce the impact of 
attacks. 

Filtering Mechanism 
These techniques use the information provided by a detection mechanism 

to filter out the attack stream completely. A dynamically deployed firewall is 
an example of such a system. 

Reconfiguration System 
These mechanisms change the connectivity of the victim or the 

intermediate network topology to isolate the attack machines. One example 
of such a system is a reconfigurable overlay network. 

NETWORK SECURITY CONTROLS 

Encryption 
Encryption is the most important and versatile tool for network security 

experts. It can provide privacy, authenticity, integrity and limited access to 
data. Encryption can be applied wither between two hosts (link encryption) 
or between two applications (called end-to-end encryption). 

Link Encryption 
Link encryption protects the message in transit between two computers, 

however the message is in clear text inside the host. In this method, the data 
is encrypted before it is placed on the physical communication link. The 
encryption occurs at the lowest layer 1 or 2 in the OSI model. Similarly, 
decryption occurs when the data arrives at the receiving computer. This 
mechanism is really useful when the transmission point is of greatest 
vulnerability. 
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End-to-end Encryption 
This mechanism provides security from one end of transmission to the 

other. In this case encryption is performed at the highest levels (layer 7 or 
layer 6). 

Virtual Private Networks 

Link encryption can be used to give the same protection to a user as of 
they are on a private network, even when their communication links are part 
of a public network. 

Firewalls can be used to implement a Virtual Private Network (VPN). 
When a user first requests communication with a firewall, the user can 
request a VPN session with the firewall. The user and the firewall can agree 
on a session encryption key and the user can use that key for all subsequent 
communication. With a VPN all communication passes through an 
encrypted tunnel. 

PKI and Certificates 

A public key infrastructure (PKI) is a process created to enable users 
to implement public key cryptography usually in a distributed environment. 
PKI usually offers the following services 

Create certificates that associates a user's identity to s cryptographic key 
Distribute certificates from its database 
Sign certificates to provide authenticity 
Confirm a certificate if it is valid 

PKI is really a set of policies, products and procedures with some 
flexibility for interpretation. The policies define a set of rules under which 
the system operates, it defines procedures on how to handle keys and how to 
manage the risks. 

SSH Encryption 

SSH is a protocol that is available under Unix and Windows 2000 that 
provides an authenticated and encrypted path to the shell or the OS 
command interpreter. SSH protects against spoofing attacks and 
modification of during in communication. 
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SSL Encryption 

The Secure Sockets Layer (SSL) protocol was originally designed by 
Netscape to protect communication between a web browser and a server. It 
is also known as transport layer security (TLS). SSL interfaces between the 
applications (e.g. a browser) and the TCP/IP protocols to provide server 
authentication, client authentication and an encrypted communications 
channel between the client and server. 

IPSec 

The address space for Internet is running out as more machines and 
domain names are being added to the Internet. A new structure called IPv6 
solves this problem by providing a 64 bit address space to IP addresses. As 
part of IPv6, the Internet Engineering Task Force (IETF) adopted an IP 
Security Protocol (IPSec) Suite that addresses problems such as spoofing, 
eavesdropping and session hijacking. IPSec is implemented at the IP layer so 
it affects all layers above it. IPSec is somewhat similar to SSL, in that it 
supports authentication and confidentiality that does not necessitate 
significant changes either above it (in applications) or below it (in the TCP 
protocols). Just like SSL, it was designed to be independent of the 
cryptographic protocols and to allow the two communicating parties to agree 
on a mutually supported set of protocols. 

The basis of IPSec is called a security association which is basically a set 
of security parameters that are required to establish a secured 
communication. Some examples of these parameters are: 

Encryption algorithm and mode 
Encryption Key 
Authentication protocol and key 
Lifespan of the association to permit long running sessions to select a 
new key 
Address of the opposite end of an association 

FIREWALLS 

6.1 What they are 

A firewall is a device that filters all traffic between a "protected" network 
and the "outside" network. Generally, a firewall runs on a dedicated machine 
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which is a single point through which all the traffic is channeled. The 
purpose of a firewall is to keep "malicious" things outside a protected 
environment. For example, a firewall may impose a policy that will permit 
traffic coming from only certain IP addresses or users. 

6.2 How do they work 

There are different kind of firewalls. 

Packet Filtering Firewall 
It is the simplest form of firewall and in some situations it is most 

effective. It is based on certain packet address (source or destination) or 
transportation protocol (HTTP Web traffic). 

Stateful Inspection Firewall 
Filtering firewalls work on a packet at a time. They have no concept of 

"state" or "context" from one packet to next. A stateful inspection firewall is 
more sophisticated and it maintains state information to provide better 
filtering 

Personal Firewall 
A personal firewall is an application program that runs on a workstation 

or a PC to block unwanted traffic on a single workstation. A personal 
firewall can be configured to enforce a certain policy. For example, a user 
may decide that certain sites (for example a computer on a company 
network) is trustworthy and the firewall should allow traffic from only those 
sites. It is useful to combine a virus scanner with a personal firewall. For 
example, a firewall can direct all incoming email to a virus scanner, which 
examines every attachment the moment it reaches a particular host. 

Application Proxy Gateway 
An application proxy gateway is also called a bastion host. It is a firewall 

that simulates the proper effects of an application so that the application will 
receive only requests to act properly. The proxies on a firewall can be 
tailored to specific requirements such as logging details about the access. A 
proxy can demand strong authentication such as name, password and 
challenge-response. 

Guard 
A guard is another form of a sophisticated firewall. It receives protocol 

data units, interprets them and passes through the same or different protocol 
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data units that achieve either the same result or a modified result. The guard 
decides what services to perform on user's behalf in accordance with its 
available knowledge. The following example illustrates the use of a guard. A 
university wants all students to restrict the size of email messages to a 
certain number of words or characters. Although, this rule can be 
implemented by modifying email handlers, it is more easily done by 
monitoring the common point through which all email flows. 

6.3 Limitations of Firewalls 

Firewalls do not offer complete solutions to all computer security 
problems. A firewall can only protect the perimeter of its environment 
against attacks from outsiders. The following are some of the important 
points about firewall based protection 

Firewalls can only protect if they control the entire perimeter. Even if 
one inside host connects to an outside address by a modem, the entire inside 
net can be vulnerable through the modem and its host. 

Firewalls are the most visible parts of a network and therefore they are 
the most attractive target for attacks.. 

Firewalls exercise only minor control over the content of the packets that 
are admitted inside the network. Therefore inaccurate data or malicious code 
must be controlled by other means inside the parameter. 

7. BASICS OF INTRUSION DETECTION SYSTEMS 

Perimeter controls such as a firewall, or authentication and access control 
act as the first line of defense. However, prevention is not a complete 
security solution. Intrusion Detection systems complement these preventive 
controls by acting as the next line of defense. An IDS is a sensor, like a 
smoke detector that raises an alarm if specific things occur. Intrusion 
Detection is the process of identifying and responding to malicious activities 
targeted at computing and network resources. It involves technology, people 
and tools. An Intrusion Detection System basically monitors and collects 
data from a target system that should be protected, processes and correlates 
the gathered information and initiate responses when an intrusion is detected. 
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8. C O N C L U S I O N S 

Computer security ensures the confidentiality, integrity and availability 
of computing resources: hardware, software, network and data. These 
components have vulnerabilities and people exploit these vulnerabilities to 
stage attacks against these resources. 

In this chapter we have discussed some of the salient features of security 
in networks and distributed applications. Since the world is becoming 
connected by computers the significance of network security will continue to 
grow. When a network and its components are designed and architectured 
well, the resulting system is quite resilient to attacks. 

A lot of work is being done to enhance computer security. Products from 
vendor companies will lead to more secure boxes. There is a lot of research 
interests in the area of authentication, access control and authorizations. 
Another challenge for security is that networks are pervasive: cell phones, 
personal digital assistants and other consumer appliances are being 
connected. New applications lead to a new protocol development. There is a 
need to make sure that these protocols are tested for security flaws and that 
security measures are incorporated as needed. Intrusion Detection Systems 
and Firewalls have become popular products to secure networks. In the 
future, security of mobile code and web services will become an important 
issue as remote updates and patches become popular. 
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Chapter 3 

INTRUSION DETECTION SYSTEMS 

Anoop Singhal 

Abstract: This chapter provides an overview of the state of the art in intrusion detection 
systems. Intrusion detection systems are software/hardware components that 
monitor systems and analyze the events for intrusions. This chapter first 
provides a taxonomy of intrusion detection systems. Second, architecture of 
IDS and their basic characteristics are presented. Third, a brief survey of 
different IDS products is discussed. Finally, significant gaps and direction for 
future work is discussed 

Key words: intrusion, signatures, anomaly, data mining 

Intrusion Detection is the process of identifying and responding to 
malicious activity targeted at computing and networking resources. It is a 
device, typically another computer that monitors activities to identify 
malicious or suspicious events. An IDS receives raw input from sensors, 
analyzes those inputs and then takes some action. 

Since the cost of information processing and Internet accessibility is 
dropping, more and more organizations are becoming vulnerable to a wide 
variety of cyber threats. According to a recent survey by CERT, the rate of 
cyber attacks has been doubling every year in recent times. Therefore, it has 
become increasingly important to make our information systems, especially 
those used for critical functions such as mihtary and commercial purpose, 
resistant to and tolerant of such attacks. Intrusion Detection Systems (IDS) 
are an integral part of any security package of a modern networked 
information system. An IDS detects intrusions by monitoring a network or 
system and analyzing an audit stream collected from the network or system 
to look for clues of malicious behavior. 
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1. CLASSIFICATION OF INTRUSION DETECTION 
SYSTEMS 

Intrusion Detection Systems can be described in terms of three functional 
components: 

1. Information Sources: The different sources of data that are used to 
determine the occurrence of an intrusion. The common sources are 
network, host and application monitoring. 

2. Analysis: This part deals with techniques that the system uses to detect an 
intrusion. The most common approaches are misuse detection and 
anomaly detection 

3. Response: This implies the set of actions that the system takes after it has 
detected an intrusion. The set of actions can be grouped into active and 
passive actions. An active action involves an automated intervention 
whereas a passive action involves reporting IDS alerts to humans. The 
humans are in turn expected to take action. 

Information Sources 

Some IDSs analyze network packets captured from network bones or 
LAN segments to find attackers. Other IDSs analyze information 
generated by operating system or application software for signs of 
intrusion. 

Network Based IDS 

A network based IDS analyzes network packets that are captured on a 
network. This involves placing a set of traffic sensors within the network. 
The sensors typically perform local analysis and detection and report 
suspicious events to a central location. The majority of commercial 
intrusion detection systems are network based. One advantage of a 
network based IDS is that a few well placed network based IDS can 
monitor a large network. A disadvantage of a network based IDS is that it 
cannot analyze encrypted information. Also, most network based IDS 
cannot tell if an attack was successful, they can only detect that an attack 
was started. 
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Host Based IDS 

A host based IDS analyzes host-bound audit sources such as operating 
system audit trails, system logs or application logs. Since host based 
systems directly monitor the host data files and operating system 
processes, they can determine exactly which host resources are targets of 
a particular attack. Due to the rapid development of computer networks, 
traditional single host intrusion detection systems have been modified to 
monitor a number of hosts on a network. They transfer the monitored 
information from multiple monitored hosts to a central site for 
processing. These are termed as distributed intrusion detection systems. 
One advantage of a host based IDS is that it can "observe" the outcome 
of an attempted attack, as it can directly access and monitor the data files 
and system processes that are usually targeted by attacks. A disadvantage 
of a host based IDS is that it is harder to manage and it is more 
vulnerable to attacks. 

Application Based IDS 

Application based IDS are a special subset of host based IDS that analyze 
the event that occur within a software application. The application log 
files are used to observe the events. One advantage of application based 
IDS is that they can directly monitor the interaction between a user and 
an application which allows them to trace individual users. 

IDS Analysis 

There are two primary approaches to analyze events to detect attacks: 
misuse detection and anomaly detection. Misuse detection is used by 
most commercial IDS systems and the analysis targets something that is 
known to be bad. Anomaly detection is one in which the analysis looks 
for abnormal forms of activity. It is a subject of great deal of research and 
is used by a limited number of IDS. 

Misuse Detection 

This method finds intrusions by monitoring network traffic in search of 
direct matches to known patterns of attack (called signatures or rules). 
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This kind of detection is also sometimes called "signature based 
detection". A common form of misuse detection that is used in 
commercial products specifies each pattern of events that corresponds to 
an attack as a separate signature. However, there are more sophisticated 
approaches called state based analysis that can leverage a single signature 
to detect a group of attacks. 

A disadvantage of this approach is that it can only detect intrusions that 
match a pre-defined rule. The set of signatures need to be constantly 
updated to keep up with the new attacks. One advantage of these systems 
is that they have low false alarm rates. 

Anomaly Detection 

In this approach, the system defines the expected behavior of the network 
in advance. The profile of normal behavior is built using techniques that 
include statistical methods, association rules and neural networks. Any 
significant deviations from this expected behavior are reported as possible 
attacks. The measures and techniques used in anomaly detection include: 

• Threshold Detection: In this kind of IDS certain attributes of user 
behavior are expressed in terms of counts, with some level established as 
permissible. Some examples of these attributes include number of files 
accessed by a user in a given period, the number of failed attempts to 
login to the system, the amount of CPU utilized by a process. 

• Statistical Measures: In this case the distribution of profiled attributes is 
assumed to fit a pattern. 

• Other Techniques: These include data mining, neural networks, genetic 
algorithms and immune system models. 

In principle, the primary advantage of anomaly based detection is the 
ability to detect novel attacks for which signatures have not been defined yet. 
However, in practice, this is difficult to achieve because it is hard to obtain 
accurate and comprehensive profiles of normal behavior. This makes an 
anomaly detection system generate too many false alarms and it can be very 
time consuming and labor intensive to sift through this data. 



Intrusion Detection Systems 47 

Response Options for IDS 

After an IDS has detected an attack, it generates responses. Commercial 
IDS support a wide range of response options, categorized as active 
responses, passive responses or a mixture of two. 

Active Responses 

Active responses are automated actions taken when certain types of 
intrusions are detected. There are three categories of active responses. 

Collect additional information 

The most common response to an attack is to collect additional 
information about a suspected attack. This might involve increasing the level 
of sensitivity of information sources for example turn up the number of 
events logged by an operating system audit trail or increase the sensitivity of 
a network monitor to capture all the packets. The additional information 
collected can help in resolving and diagnosing whether an attack is taking 
place or not. 

Change the Environment 

Another kind of active response is to halt an attack in progress and block 
subsequent access by the attacker. Typically, an IDS accomplishes this by 
blocking the IP address from which the attacker appears to be coming. 

Take Action Against the Intruder 

Some folks in the information warfare area believe that the first action in 
active response area is to take action against the intruder. The most 
aggressive form of this response is to launch an attack against the attacker's 
host or site. 

Passive Responses 

Passive IDS responses provide information to system users and they 
assume that human users will take subsequent action based on that 
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information. Alarms and notifications are generated by an IDS to inform 
users when an attack is detected. The most common form of an alarm is an 
on screen alert or a popup window. Some commercial IDS systems are 
designed to generate alerts and report them to a network management system 
using SNMP traps. They are then displayed to the user via the network 
management consoles. 

INTRUSION DETECTION ARCHITECTURE 

Figure 1 shows different components of IDS. They are briefly described 
below. 

Target System: The System that is being analyzed for intrusion detection 
is considered as the target system. Some examples of target systems are 
corporate intranets and servers. 

Feed: A feed is an abstract notion of information from the target system 
to the intrusion detection system. Some examples of a feed are system log 
files on a host machine or network traffic and connections. 

Processing: Processing is the execution of algorithms designed to detect 
malicious activity on some target system. These algorithms can either use 
signature or some other heuristic techniques to detect the malicious activity. 
The physical architecture of the machine should have enough CPU power 
and memory to execute the different algorithms. 

Knowledge Base: In an intrusion detection system, knowledge bases are 
used to store information about attacks as signatures, user and system 
behavior as profiles. These knowledge bases are defined with appropriate 
protection and capacity to support intrusion detection in real time. 

Storage: The type of information that must be stored in an intrusion 
detection system will vary from short termed cached information about an 
ongoing session to longer term event related information for trend analysis. 
The storage capacity requirements will grow as networks start working at 
higher speeds. 

Alarms/directives: The most common response of an intrusion detection 
system is to send alarms to a human analyst who will then analyze it and 
take proper action. However, the future trend is for IDS to take some action 
(e.g. update the access control list of a router) to prevent further damage. As 
this trend continues, we believe that intrusion detection will require 
messaging architectures for transmitting information between components. 
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Such messaging is a major element of the Common Intrusion Detection 
Framework. 

GUI/operator interface: Proper Display of alarms from an IDS are usually 
done using a Graphical User Interface. Most commercial IDS have a fancy 
GUI with capabilities for data visualization and writing reports. 

Communications infrastructure: Different components of an IDS and 
different IDS communicate using messages. This infrastructure also requires 
protection such as encryption and access control. 
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Figure 1: Intrusion Detection Architecture 

3. IDS P R O D U C T S 

This section presents some of the research and commercial IDS products. 

3.1 Research Products 

EMERALD 
Event Monitoring Enabling Responses to Anomalous Live Disturbances 

is a research tool developed by SRI International. They have explored issues 
in intrusion detection associated with both deviations from normal user 
behavior (anomalies) and known intrusion patterns (signatures). 
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NetStat 

This is a research tool produced by the University of CaHfomia at Santa 
Barbara. It explores the use of state-transition analysis to detect real time 
intrusions. 

Bro 

Bro is a research tool developed by the Lawrence Livermore National 
Laboratory. The main design goals of Bro were 

a) High Load Monitoring 
b) Real Time Notification 
c) Separating Mechanism from Policy 
d) Ability to protect against attacks on the IDS 

3.2 Commercial Products 

This section gives examples of some of the commercial products. 

NetProwler 

This is a product from Axent Corporation. It supports both host based 
and network based detection. NetProwler provides signatures for a wide 
variety of operating system and application attacks. It allows a user to build 
customized signature profiles using a signature definition wizard. Examples 
of attack signatures that NetProwler supports include denial of service, 
unauthorized access, vulnerability probes and suspicious activity that is 
counter to company policies. 

NetRanger 

This is a product from Cisco Systems. It operates in real time and is 
scalable to enterprise level. A NetRanger system is composed of Sensors and 
one or more Directors that are connected by a communication system. In 
addition to providing many standard attack signatures, NetRanger provides 
the ability for the user to define their own customized signatures. In response 
to an attack, the Sensor can be configured with several options that include 
generating an alarm, logging the alarm event and denying further network 
access. 
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The Director provides a centralized management support for the 
NetRanger system. It allows the cabability to remotely install new signatures 
into the Sensors. The Director also provides a centralized collection and 
analysis of alert data. The status of Sensors can be monitored by the 
Director using a color coded scheme. 

RealSecure 

This is a product from ISS. It uses a three level architecture consisting of 
a network-based engine, a host based engine and an administrator's module. 
The network recognition engine runs on dedicated workstations to provide 
intrusion detection and response. Each network recognition engine watches 
the packet traffic traveling over a specific network segment for attack 
signatures. If it detects unauthorized activity, it can respond by terminating 
the connection, sending email or pager alerts, reconfiguring the firewalls or 
taking some user definable action. 

The host based recognition engine is a host resident complement to the 
network recognition engine. It analyzes host logs to recognize attacks, 
determines whether the attack was successful or not and provides other 
forensic information that is not available in a real time environment. 

All recognition engines report to and are configured by the administrative 
module, a management console that monitors the status of any number of 
UNIX and Windows NT recognition engines. This results in a 
comprehensive protection that is easily configured and administered from a 
single location. 

3.3 Public Domain Tools 

TripWire 

This is a file integrity assessment tool that was originally developed at 
Purdue University. Tripwire is different from others as it detects changes in 
the file system of the monitored system. Tripwire comes in both commercial 
and free versions. 

Tripwire computes checksums or cryptographic signatures of files. It can 
be configured to report all changes in the monitored file system. For 
example, it can check if system binaries have been modified, if syslog files 
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have shrunk or if security settings have unexpectedly changed. It can be 
configured to perform integrity checks at regular intervals and to provide 
information to system administrators to implement recovery if tampering has 
occurred. 

SNORT 

SNORT is an open source NIDS that uses a combination of rules and 
preprocessors to analyze traffic. SNORT is easy to configure allowing users 
to create their own signatures and to alter the base functionality using 
plugins. Snort has evolved from a simple network management tool to a 
world-class enterprise distributed intrusion detection system. Snort detects 
suspicious traffic by using signature matching. Snort signatures are written 
and released by the Snort community within hours of the announcement of a 
new security exposure. It has the largest and most comprehensive collection 
of attack signatures for any IDS. 

SNORT uses output plug-ins to store the output of its detection engine. 
It's outputting functionality is modular and provides different formats (e.g. 
XML, Relational Database. Text logfile and so on) to store the output. 
SNORT also provides a GUI to view the alerts. ACID is a Web application 
that reads intrusion data stored in a database and presents it in a browser in a 
human friendly format. ACID includes a charting component that is used to 
create statistics and graphs. 

Network Flight Recorder 

This is a network based IDS that was previously available in both a 
commercial version and a public domain version. NFR includes a complete 
programming language, called N, designed for packet analysis. Filters are 
written in this language which is compiled into byte code and interpreted by 
the execution engine. Programs can be written in N to perform pattern 
matching. Also, functions are provided to store the alert data into a database 
and perform back end analysis. Some examples of backend analysis are 
histogram and list. Histogram provides a facility for capturing data in a 
multi dimensional matrix. The system can be programmed to generate alerts 
based on the counts in different cells. The list functions allows records to be 
stored in a chronological order to store historical information. 

NFR also provides query back ends that allow you to analyze the data. 
Query back ends have their own CGI interface and they also provide 
graphical functions for data visualization. 
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3.4 Government Off-the Shelf (GOTS) Products 

CIDDS (Common Intrusion Detection Director System) 

This was supported by the Air Force Information Warfare Center. 
CIDDS receives near real time connections data and associated events from 
Automated Security Incident Measurement (ASIM) Sensor host machines 
and selected other IDS tools. It stores this data on a local database and 
allows for detailed correlation and analysis by human analyst. Various uses 
of this data include 

• Detecting potentially intrusive activities 
• Detecting those activities that target specific machines 
• Trend analysis for historical purposes 

CIDDS provides the ASIM system with a centralized data storage and 
analysis capability. 

ASIM Sensor 

ASIM Sensor is a promiscuous data packet sniffer and analyzer. It 
consists of a suite of compiled C code and Java language programs. Real­
time ASIM identifies strings and services that could indicate attempts at 
unauthorized access. 

4. TYPES OF COMPUTER ATTACKS COMMONLY 
DETECTED BY IDS 

Three type of computer attacks are commonly detected by IDS: system 
scanning, denial of service (DOS) and system penetration. These attacks can 
be launched locally, on the attacked machine or remotely using a network to 
access the target. 

4.1 Scanning Attacks 

A scanning attack occurs when an attacker probes a target network or 
system by sending different kinds of packets. From the responses received. 



54 Anoop Singhal 

the attacker can learn many of the system characteristics and vulnerabilities. 
Some of the information that the responses can provide are 

• Topology of the target network 
• Active hosts and operating systems on those hosts 
• The different applications that are running on the host and their 

version numbers 

Various tools that are used to perform these activities are: network 
mappers, port mappers, port scanners and vulnerability scanning tools. 

4.2 Denial of Service Attacks 

Denial of Service (DOS) attacks attempt to slow or shut down targeted 
network systems or services. There are two main types of DOS attacks: flaw 
exploitation and flooding. 

4.2.1 Flaw Exploitation DOS Attacks 

In this kind of an attack the attacker exploits a flaw in the target system's 
software. An example of such a processing failure is the "ping of death" 
attack. This attack involves sending a large ping packets that the target 
system cannot handle and it will result in a crash. 

4.2.2 Flooding DOS Attack 

A flooding attack is one in which the attacker sends more information 
than what the target can handle which results in an exhaustion of system 
resources. One example of this attack is the "SYN Flood" attack. The term 
distributed DOS attack is used where the attacker uses multiple computers to 
launch an attack. 
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4.3 Penetration Attacks 

These attacks involve unauthorized acquisition or alteration of a system 
resource. Consider these as integrity and control violations. Some examples 
of penetration attacks are 

User to Root: A local user on a host gains root access 

Remote to User: An attacker on a network gains access to a user account 
on the target host 

Remote to Root: An attacker on the network gains complete control of the 
target host 

5. SIGNIFICANT GAPS AND FUTURE 
DIRECTIONS FOR IDS 

This section discusses significant gaps in the current IDS products. 

a) Historical Data Analysis: As networks are getting large and 
complex, security officers that are responsible for managing these 
networks need tools that help in historical data analysis, generating 
reports and doing trend analysis on alerts that were generated in the 
past. Current IDS often generate too msiny false alerts due to their 
simplistic analysis. The storage management of alerts from IDS for 
a complex network is a challenging task. 

b) Support for Real Time Alert Correlation: Intrusion correlation 
refers to interpretation, combination and analysis of information 
from several sensors. For large networks, sensors will be 
distributed and they will send their alerts to one central place for 
correlation processing. There is a need for this information to be 
stored and organized efficiently at the correlation center. Also, 
traditional IDSs focus on low level alerts and they do not group 
them even if there is a logical connection among them. As a result, 
it becomes difficult for human users to understand these alerts and 
take appropriate actions. It has been reported that for a typical 
network "users are encountering 10 to 20,000 alerts per sensor per 
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day". Therefore, there is a need to store these alerts efficiently and 
group them to construct attack scenarios. 

c) Heterogeneous Data Support: In a typical network environment, 
there are multiple audit streams from diverse cyber sensors 1) raw 
network traffic data 2) netflow data 3) system calls 4) output alerts 
from an IDS and so on. It is important to have an architecture that 
can integrate these data sources into a unified framework, together 
so that an analyst can access it in real time. Since current IDS are 
not perfect they produce a lot of false alarms. There is a need for 
efficient querying techniques for a user to verify if an alert is 
genuine by correlating it with the input audit data. 

d) Forensic Analysis: With the rapidly growing theft and 
unauthorized destruction of computer based information, the 
frequency of prosecution is rising. To support prosecution, 
electronic data must be captured and stored in such a way that it 
provides legally acceptable evidence. 

e) Feature extraction from Network Traffic Data and Audit Trails: For 
each type of data that needs to be examined (network packets, host 
event logs, process traces etc.) data preparation and feature 
extraction is currently a challenging task. Due to large amounts of 
data that needs to be prepared for the operation of IDS system, this 
becomes expensive and time consuming. 

f) Data Visualization: During attack, there is a need for the system 
administrator to graphically visualize the alerts and respond to 
them. There is also a need to filter and view alerts, sorted 
according to priority, sub-net or time dimensions. 

In the next chapter we will describe how data warehousing and data 
mining techniques can solve some of these problems in IDS Applications. 
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6. CONCLUSIONS 

The market for IDS and vulnerability assessment products has grown 
drastically in the last few years. While IDS research is maturing, commercial 
IDS products have become stable. Some commercial IDS systems have been 
blamed for large number of false alarm rates, awkward user interfaces and 
difficult to use. However, the strong commercial demand for IDS has forced 
the commercial IDS vendors to solve these problems in a timely manner. 
Furthermore, it is likely that certain IDS capabilities will become core 
features of network infrastructure such as routers, bridges and switches. 
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Chapter 4 

DATA MINING FOR INTRUSION DETECTION 

Anoop Singhal 

Abstract: Data Mining Techniques have been successfully applied in many different 
fields including marketing, manufacturing, fraud detection and network 
management. Over the past years there is a lot of interest in security 
technologies such as intrusion detection, cryptography, authentication and 
firewalls. This paper discusses the application of Data Mining techniques to 
computer security. Conclusions are drawn and directions for future research 
are suggested. 

Key words: anomaly detection, correlation, association rules, classification 

1. INTRODUCTION 

Intrusion detection is the process of monitoring and analyzing the events 
occurring in a computer system in order to detect signs of security problems. 
Over the past several years, intrusion detection and other security 
technologies such as cryptography, authentication and firewalls have 
increasingly gained in importance. There is a lot of interest in applying data 
mining techniques to intrusion detection. This chapter gives a critical 
summary of data mining research for intrusion detection. We provide a 
survey of research projects that apply data mining techniques to intrusion 
detection. We then suggest new directions for research and then give our 
conclusions. 
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2. DATA MINING FOR INTRUSION DETECTION 

Recently, there is a great interest in application of data mining techniques 
to intrusion detection systems. The problem of intrusion detection can be 
reduced to a data mining task of classifying data. Briefly, one is given a set 
of data points belonging to different classes (normal activity, different 
attacks) and aims to separate them as accurately as possible by means of a 
model. This section gives a summary of the current research project in this 
area. 

2.1 Adam 

The ADAM project at George Mason University [1], [2] is a network-
based anomaly detection system. ADAM learns normal network behavior 
from attack-free training data and represents it as a set of association rules, 
the so called profile. At run time, the connection records of past delta 
seconds are continuously mined for new association rules that are not 
contained in the profile. 

ADAM is an anomaly detection system. It is composed of three modules: 
a preprocessing engine, a mining engine and a classification engine. The 
preprocessing engine sniffs TCP/IP traffic data and extracts information 
from the header of each connection according to a predefined schema. The 
mining engine applies mining association rules to the connection records. It 
works in two modes: training mode and detecting mode. In training mode, 
the mining engine builds a profile of the users and systems normal behavior 
and generates association rules that are used to train the classification 
engine. In detecting mode, the mining engine mines unexpected association 
rules that are different from the profile. The classification engine will 
classify the unexpected association rules into normal and abnormal events. 
Some abnormal events can be further classified as attacks. Although mining 
of association rules has used previously to detect intrusions in audit trail 
data, the ADAM system is unique in the following ways: 

It is on-line; it uses an incremental mining (on-line mining) which does 
not look at a batch of TCP connections, but rather uses a sliding window of 
time to find the suspicious rules within that window. 

It is an anomaly detection system that aims to categorize using data 
mining the rules that govern misuse of a system. For this, the technique 
builds, apriori, a profile of "normal" rules, obtained by mining past periods 
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of time in which there were no attacks. Any rule discovered during the on­
line mining that also belongs to this profile is ignored, assuming that it 
corresponds to a normal behavior. 

Figures 1 and 2 show the basic architecture of ADAM. ADAM performs 
its task in two phases. In the training phase, ADAM uses a data stream for 
which it knows where the attacks are located. The attack free parts of the 
stream are fed into a module that performs off-Hne association rules 
discovery. The output of this module is a profile of rules that we call 
"normal" i.e. it provides the behavior during periods when there are no 
attacks. The profile along with the training data set is also fed into a module 
that uses a combination of dynamic, on line algorithm for association rules, 
whose output consists of frequent item sets that characterize attacks to the 
system. These item sets are used as a classifier or decision tree. This whole 
phase takes place off-line before we use the system to detect attacks. 

The second phase of ADAM in which we actually detect attacks is shown 
in the figure below. Again, the on-line association rules mining algorithm is 
used to process a window of current connections. Suspicious connections are 
flagged and sent along with their feature vectors to the trained classifier, 
where they are labeled as attacks, false alarms or unknown. When, the 
classifier labels connections as false alarms, it is filtering them out of the 
attacks set and avoiding passing these alerts to the security officer. The last 
class, i.e. unknown is reserved for the events whose exact nature cannot be 
confirmed by the classifier. These events are also considered as attacks and 
they are included in the set of alerts that are passed to the security officer. 
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2.2 Madam ID 

The MADAM ID project at Columbia University [7], [8] has shown how 
data mining techniques can be used to construct an IDS in a more systematic 
and automated manner. Specifically, the approach used by MADAM ID is 
to learn classifiers that distinguish between intrusions and normal activities. 
Unfortunately, classifiers can perform really poorly when they have to rely 
on attributes that are not predictive of the target concept. Therefore, 
MADAM ID proposes association rules and frequent episode rules as means 
to construct additional more predictive attributes. These attributes are termed 
disfeatures. 

We will describe briefly how MADAM ID is used to construct network 
based misuse detection systems. First all network traffic is preprocessed to 
create connection records. The attributes of connection records are intrinsic 
connection characteristics such as source host, the destination host, the 
source and destination posts, the start time, the duration, header flags and so 
on. In the case of TCP/IP networks, connection records summarize TCP 
sessions. 

The most important characteristic of MADAM ID is that it learns a 
misuse detection model from examples. In order to use MADAM ID, one 
needs a large set of connection records that have already been classified into 
"normal records" or some kind of attacks. MADAM ID proceeds in two 
steps. In the first step it doQS feature construction in which some additional 
features are constructed that are considered useful for doing the analysis. 
One example for this step is to calculate the count of the number of 
connections that have been initiated during the last two seconds to the same 
destination host as the current host. The feature construction step is followed 
by the classifier learning step. It consists of the following process: 

1. The training connection records are partitioned into two sets, namely 
normal connection records and intrusion connection records. 

2. Association rules and frequent episode rules are mined separately from 
the normal connection records and from the intrusion connection records. 
The resulting patterns are compared and all patterns that are exclusively 
contained in the intrusion connection records are collected to form the 
intrusion only patterns. 

3. The intrusion only patterns are used to derive additional attributes such as 
count or percentage of connection records that share some attribute 
values with the current connection records. 



64 Anoop Singhal 

4. A classifier is learned that distinguishes normal connection records from 
intrusion connection records, This classifier is the end product of 
MADAM ID. 

2.3 Minds 

The MINDS project [4] [6] at University of Minnesota uses a suite of 
data mining techniques to automatically detect attacks against computer 
networks and systems. Their system uses an anomaly detection technique to 
assign a score to each connection to determine how anomalous the 
connection is compared to normal network traffic. Their experiments have 
shown that anomaly detection algorithms can be successful in detecting 
numerous novel intrusions that could not be identified using widely popular 
tools such as SNORT. 

Input to MINDS is Netflow data that is collected using Netflow tools. 
The netflow data contains packet header information i.e. they do not capture 
message contents. Netflow data for each 10 minute window which typically 
results in 1 to 2 million records is stored in a flat file. The analyst uses 
MINDS to analyze these 10 minute data files in a batch mode. The first step 
in MINDS involves constructing features that are used in the data mining 
analysis. Basic features include source IP address and port, destination IP 
address and port, protocol, flags, number of bytes and number of packets. 
Derived features include time-window and connection window based 
features. After the feature construction step, the data is fed into the MINDS 
anomaly detection module that uses an outlier detection algorithm to assign 
an anomaly score to each network connection. A human analyst then has to 
look at only the most anomalous connections to determine if they are actual 
attacks or other interesting behavior. 

MINDS uses a density based outlier detection scheme for anomaly 
detection. The reader is referred to [4] for a more detailed overview of their 
research. MINDS assigns a degree of being an outlier to each data point 
which is called the local outlier factor (LOF). The output of the anomaly 
detector contains the original Netflow data with the addition of the anomaly 
score and relative contribution of the different attributes to that score. The 
analyst typically looks at only the top few connections that have the highest 
anomaly scores. The researchers of MINDS have their system to analyze the 
University of Minnesota network traffic. They have been successful in 
detecting scanning activities, worms and non standard behavior such as 
policy violations and insider attacks. 
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2.4 Clustering of Unlabeled ID 

Traditional anomaly detection systems require "clean" training data in 
order to learn the model of normal behavior. A major drawback of these 
systems is that clean training data is not easily available. To overcome this 
weakness, recent research has investigated the possibility of training 
anomaly detection systems over noisy data [11]. Anomaly detection over 
noisy data makes two key assumptions about the training data. First, the 
number of normal elements in the training data is assumed to be significantly 
larger than the number of anomalous elements. Secondly, anomalous 
elements are assumed to be qualitatively different from normal ones. Then, 
given that anomalies are both rare and different, they are expected to appear 
as outliers that stand out from the normal baseline data. Portnoy et al. [11] 
apply clustering to the training data. Here the hope is that intrusive elements 
will bundle with other intrusive elements whereas normal elements will 
bundle with other normal ones. Moreover, as intrusive elements are assumed 
to be rare, they should end up in small clusters. Thus, all small clusters are 
assumed to contain intrusions/anomalies, whereas large clusters are assumed 
to represent normal activities. At run time, new elements are compared 
against all clusters and the most similar cluster determines the new element's 
classification as either "normal" or "intrusive". 

2.5 Alert Correlation 

Correlation techniques from multiple sensors for large networks is 
described in [9], [10]. A language for modeling alert correlation is described 
in [3]. Traditional IDS systems focus on low level alerts and they raise alerts 
independently though there may be a logical connection between them. In 
case of attacks, the number of alerts that are generated become 
unmanageable. As a result, it is difficult for human users to understand the 
alerts and take appropriate actions. Ning et al. present a practical method for 
constructing attack scenarios through alert correlation, using prerequisites 
and consequences of intrusions. Their approach is based on the observation 
that in a series of attacks, alerts are not isolated, but related as different 
stages, with earlier stages preparing for the later ones. They proposed a 
formal framework to represent alerts with their prerequisites and 
consequences using the concept of hyper-alerts. They evaluated their 
approach using the 2000 DARPA intrusion detection scenario specific 
datasets. 
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3. CONCLUSIONS AND FUTURE RESEARCH 
DIRECTIONS 

In this chapter, we reviewed the application of data mining techniques to 
the area of computer security. Data mining is primarily being used to detect 
intrusions rather than to discover new knowledge about the nature of attacks. 
Moreover, most research is based on strong assumptions that complicate 
building of practical applications. First, it is assumed that labeled training 
data is readily available, and second it is assumed that this data is of high 
quality. Different authors have remarked that in many cases, it is not easy to 
obtain labeled data. Even if one could obtain labeled training data by 
simulating intrusions, there are many problems with this approach. 
Additionally, attack simulation limits the approach to the set of known 
attacks. We think that the difficulties associated with the generation of high 
quality training data will make it difficult to apply data mining techniques 
that depend on availability of high quality labeled training data. Finally, 
data mining in intrusion detection focuses on a small subset of possible 
applications. Interesting future applications of data mining might include the 
discovery of new attacks, the development of better IDS signatures and the 
construction of alarm correlation systems. 

For future research, it should be possible to focus more on the KDD 
process and detection of novel attacks. It is known that attackers use a 
similar strategy to attack in the future as what they used in the past. The 
current IDSs can only detect a fraction of these attacks. There are new 
attacks that are hidden in the audit logs, and it would be useful to see how 
data mining can be used to detect these attacks. 

Data mining can also be applied to improve IDS signatures. IDS vendors 
can run their systems in operational environment where all alarms and audit 
logs are collected. Then, data mining can be used to search for audit log 
patterns that are closely related with particular alarms. This might lead to 
new knowledge as to why false positives arise and how they can be avoided. 

Finally, data mining projects should focus on the construction of alarm 
correlation systems. Traditional intrusion detection systems focus on low 
level alerts and they raise alerts independently even though there is a logical 
connection among them. More work needs to be done on alert correlation 
techniques that can construct "attack strategies" and facilitate intrusion 
analysis. One way is to store data from multiple sources in a data warehouse 
and then perform data analysis. Alert correlation techniques will have 
several advantages. First, it will provide a high level representation of the 
alerts along with a temporal relationship of the sequence in which these 
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alerts occurred. Second, it will provide a way to distinguish a true alert from 
a false alert. We think that true alerts are likely to be correlated with other 
alerts whereas false alerts will tend to be random and, therefore, less likely to 
be related to other alerts. Third, it can be used to anticipate the future steps 
of an attack and, thereby, come up with a strategy to reduce the damage. 
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Chapter 5 

DATA MODELING AND DATA 
WAREHOUSING TECHNIQUES TO IMPROVE 
INTRUSION DETECTION 

Anoop Singhal 

Abstract: This chapter describes data mining and data warehousing techniques that can 
improve the performance and usability of Intrusion Detection Systems (IDS). 
Current IDS do not provide support for historical data analysis and data 
summarization. This chapter presents techniques to model network traffic and 
alerts using a multi-dimensional data model and star schemas. This data model 
was used to perform network security analysis and detect denial of service 
attacks. Our data model can also be used to handle heterogeneous data sources 
(e.g. firewall logs, system calls, net-flow data) and enable up to two orders of 
magnitude faster query response times for analysts as compared to the current 
state of the art. We have used our techniques to implement a prototype system 
that is being successfully used at Army Research Labs. Our system has helped 
the security analyst in detecting intrusions and in historical data analysis for 
generating reports on trend analysis. 

Key words: data warehouse, OLAP, data mining and analysis, star schema 

1. INTRODUCTION 

This section describes the author's experience in designing a data 
warehousing system for historical data analysis and data summarization for 
analysts at the Center for Intrusion Detection in Army Research Labs. 

Since the cost of information processing and Internet accessibility is 
dropping, more and more organizations are becoming vulnerable to a wide 
variety of cyber threats. According to a recent survey by CERT, the rate of 
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cyber attacks has been doubling every year in recent times. Therefore, it has 
become increasingly important to make our information systems, especially 
those used for critical functions such as military and commercial purpose, 
resistant to and tolerant of such attacks. Intrusion Detection Systems (IDS) 
are an integral part of any security package of a modem networked 
information system. An IDS detects intrusions by monitoring a network or 
system and analyzing an audit stream collected from the network or system 
to look for clues of malicious behavior. 

Intrusion Detection Systems generate a lot of alerts. There is a need to 
develop methods and tools that can be used by the system security analyst to 
understand the massive amount of data that is being collected by IDS, 
analyze and summarize the data and determine the importance of an alert. 
The problem is further complicated due the temporal variations. For 
instance, the "normal" number and duration of FTP connections may vary 
from morning to afternoon to evening. It may also vary depending on the 
class of users being considered. 

In this chapter, we present data modeling, data visualization and data 
warehousing techniques that can drastically improve the performance and 
usability of Intrusion Detection Systems. Data warehousing and On Line 
Analytical Processing (OLAP) techniques can help the security officer in 
detecting attacks, monitoring current activities on the network, historical 
data analysis about critical attacks in the past, and generating reports on 
trend analysis. We present techniques for feature extraction from network 
traffic data and how a multi-dimensional data model or STAR schemas can 
be used to represent network traffic data and relate it to the corresponding 
IDS alerts. 

This chapter is organized as follows. We first give a survey of research 
projects that apply data mining techniques to intrusion detection. Then we 
discuss the shortcomings in current systems. Section 3 presents a data 
architecture for IDS. Section 4 presents the data model followed by System 
Implementation. Finally section 5 gives the conclusions. 

2. BACKGROUND 

Recently, there is a great interest in application of data mining techniques 
to intrusion detection systems [1]. The problem of intrusion detection can be 
reduced to a data mining task of classifying data. Briefly, one is given a set 
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of data points belonging to different classes (normal activity, different 
attacks) and aims to separate them as accurately as possible by means of a 
model. This section gives a summary of the current research in this area. 

1. MADAM ID: The MADAM ID project at Columbia University [2], [3] 
has shown how data mining techniques can be used to construct a IDS in 
a more systematic and automated manner. 

2. ADAM: The ADAM project [4], [5] is a network-based anomaly 
detection system. ADAM learns normal network behavior from attack-
free training data and represents it as a set of association rules, the so 
called profile. At run time, the connection records of past delta seconds 
are continuously mined for new association rules that are not contained in 
the profile. 

3. MINDS: The MINDS project [6], [7] at University of Minnesota uses a 
suite of data mining techniques to automatically detect attacks against 
computer networks and systems. Their system uses an anomaly detection 
technique to assign a score to each connection to determine how 
anomalous the connection is compared to normal network traffic. Their 
experiments have shown that anomaly detection algorithms can be 
successful in detecting numerous novel intrusions that could not be 
identified using widely popular tools such as SNORT []. 

4. Clustering of Unlabeled ID: Traditional anomaly detection systems 
require "clean" training data in order to learn the model of normal 
behavior. A major drawback of these systems is that clean training data is 
not easily available. To overcome these weakness, recent research has 
investigated the possibility of training anomaly detection systems over 
noisy data [8] 

5. IDDM: The IDDM system [9] uses anomaly detection techniques for 
intrusion detection. 

6. eBayes: The eBayes [10] system also uses anomaly detection for 
intrusion detection. 

7. Alert Correlation: [11], [12] use correlation techniques to construct 
"attack scenarios" from low level alerts. [13] also describe a language for 
modeling alert correlation. [22], [23] describe probabilistic alert 
correlation. [24] describes use of attack graphs to correlate intrusion 
events. 
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3. RESEARCH GAPS 

Historical Data Analysis: As networks are getting large and complex, 
security officers that are responsible for managing these networks need tools 
that help in historical data analysis, generating reports and doing trend 
analysis on alerts that were generated in the past. Current IDS often 
generate too many false alerts due to their simplistic analysis. The storage 
management of alerts from IDS for a complex network is a challenging task. 

Support for Real Time Alert Correlation: Intrusion correlation refers to 
interpretation, combination and analysis of information from several sensors. 
For large networks, sensors will be distributed and they will send their alerts 
to one central place for correlation processing. There is a need for this 
information to be stored and organized efficiently at the correlation center. 
Also, traditional IDSs focus on low level alerts and they do not group them 
even if there is a logical connection among them. As a result, it becomes 
difficult for human users to understand these alerts and take appropriate 
actions. It has been reported that for a typical network "users are 
encountering 10 to 20,000 alerts per sensor per day". Therefore, there is a 
need to store these alerts efficiently and group them to construct attack 
scenarios [11], [12]. 

Heterogeneous Data Support: In a typical network environment, there are 
multiple audit streams from diverse cyber sensors 1) raw network traffic data 
2) netflow data 3) system calls 4) output alerts from an IDS and so on. It is 
important to have an architecture that can integrate these data sources into a 
unified framework, together so that an analyst can access it in real time. 
Since current IDS are not perfect they produce a lot of false alarms. There is 
a need for efficient querying techniques for a user to verify if an alert is 
genuine by correlating it with the input audit data. 

Forensic Analysis: With the rapidly growing theft and unauthorized 
destruction of computer based information, the frequency of prosecution is 
rising. To support prosecution, electronic data must be captured and stored in 
such a way that it provides legally acceptable evidence. 

Feature extraction from Network Traffic Data and Audit Trails: For each 
type of data that needs to be examined (network packets, host event logs, 
process traces etc.) data preparation and feature extraction is currently a 
challenging task. Due to large amounts of data that needs to be prepared for 
the operation of IDS system, this becomes expensive and time consuming. 
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Data Visualization: During attack, there is a need for the system 
administrator to graphically visualize the alerts and respond to them. There 
is also a need to filter and view alerts, sorted according to priority, sub-net or 
time dimensions. 

4. A DATA ARCHITECTURE FOR IDS 

In this section we describe a set of techniques that will considerably 
improve the performance of intrusion detection systems. The improvement is 
focused in the area of multi-dimensional data model that can be used to 
represent alerts and to detect new kinds of attacks. Techniques for feature 
extraction from network traffic data and alert correlation are also presented. 

4.1 A Software Architecture and Data Model for 
Intrusion Detection 

Systciti Arcliitecturc 

GUI 
C^^ri to Detect wtticlls 

Fcunafc Extrac^ 

Stnpojtf AucKDato Delsciore 

Alerts 0»U ^p^i^ 

Data Warehouse 

Figure 1: Data Architecture for Intrusion Detection System 
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Figure 1 shows an architecture diagram of our system. In a typical 
network environment there are many different audit streams that are useful 
for detecting intrusions. For example, such data includes network packets 
(headers, payload features), system logs on the host and system calls of 
processes on these machines. These types of data have different properties. 
Also, the detection models can vary. The most widely used detection model 
is a signature based system while data mining based approaches are also 
being explored. It is important to have an architecture that can handle any 
kind of data and different detection models. Our architecture supports the 
following components: 
1. Real time components that includes sensors and detectors 
2. A data warehouse component to store the data efficiently 
3. Feature extraction component that reads the audit data from the data 

warehouse, extracts some features and computes some aggregates and 
then stores the information back in the data warehouse. These features 
are useful to the analysts to detect attacks. 

4. Visualization engine that presents information to the analyst. 

The proposed architecture has several advantages: 

1. Modularity: All the data is stored in one central place and can be easily 
queried by the security analyst or the intrusion detection applications. 

2. Support for multiple detectors: We have separated the sensor component 
from the detector component. This allows us to use a signature based 
detection engine and a data mining based detection engine on the same 
set of audit data. 

3. Correlation of audit data from multiple sensors: Since the data from 
multiple sensors is stored in one central place, a detection engine can 
easily access the data from multiple sensors by executing a database 
query. 

4. Reusability: Since the features extracted from the audit data are stored in 
one central place, they can be re-used by multiple applications to detect 
attacks. 
Some more benefits for this software architecture and data warehouse 

for Network Fault Management and Provisioning Applications are discussed 
in [14] [15] [16]. 
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4.2 Data Modeling for Historical Data Analysis Using 
STAR Schema: 

In order to help the security officer or an analyst to decide whether an 
alert needs further investigation we plan to support the capability of querying 
and browsing a historical database. We model the alert data as a 
multidimensional dataset and borrow the model used in On Line Analytical 
Processing (OLAP). A popular abstraction for multidimensional data that is 
widely used in OLAP is the data cube. A cube is simply a multidimensional 
structure that contains at each point an aggregate value, i.e. the result of 
applying an aggregate function to an underlying relation. 

In our case, the underlying relation is the alerts that are generated from an 
IDS. The alerts can be viewed as a multidimensional data. This schema is 
known as the star schema. In it, the main table is called the^^c^ table. The 
attributes are the dimensions of the data. Examples of dimensions are 
Time&Date, Duration, Sdinfo, Service, Attack Time&Date contains 
information of date and time when the attack was staged. Duration records 
duration of the attack. Sdinfo describes the Source/Destination IP addresses 
and destination port information. This dimension encompasses a hierarchy 
which shows how this information can be aggregated to produce different 
views. Both, the source and destination IP addresses are composed of 4 bytes 
SiplSip2Sip3Sip4 and Dip lDip2Dip3Dip4. Dropping one or more of these 
fields produces a higher level view of the address. For example, SiplSip2 
corresponds to a series of domain of IP addresses each characterized by the 
first 2 bytes of the address. The Service dimension table contains the service 
name that was attacked and the class of service (e.g. TCP, UDP). The 
hierarchy for these dimensions are also shown. Similarly, the dimension 
table contains Attack contains both the name of the attack and its type (e.g. 
DOS, Probe). The dimension Time&Date presents different views of timing 
information. Finally, the dimension Duration contains the length of the 
attack. This can also be viewed as long, medium or short. 
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Figure 2: A Star Schema for the IDS Data Warehouse 

Figure 3: Dimension Hierarchy for IP Address 

Using this schema, a corresponding cube would be a five dimensional 
structure in which cell contains aggregates of the operations measures. For 
instance, a cell could correspond to short duration attacks over the ftp service 
in the period 1 pm to 2 pm during Oct 20̂ ^ 1998. Data cubes can be 
constructed by using SQL aggregation functions (COUNT, SUM, MIN, 
MAX). Cubes can be organized in a hierarchical manner. At the base of the 
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hierarchy are the aggregates computed from the fact table. We call this base 
data. As data is consolidated into higher levels it is called consolidated 
data. For example, in our data cube, the base data could be cells that contain 
aggregates of measures per user, operation, time period and date. Higher 
levels of hierarchy can be specified in terms of classes of users (users in 
division W), coarser time periods (e.g. morning) and date consolidation (e.g. 
Sept. 2000). 
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Figure 4: Dimension Hierarchy for Time and Services 

4.3 Support for High Speed Drill Down Queries and 
Detection of AttacksA îrusAVorms 

When an alert is generated by an IDS the analyst is interested to "drill 
down" and check the corresponding "raw network traffic" data to verify the 
alert. If the network traffic data is large (typically a Terabyte for 1 week of 
network traffic data) this can be time consuming. We describe techniques to 
organize the raw network traffic data using STAR schemas so that it is 
efficient to query it and link the raw network traffic data for the 
corresponding output alert. We use "bit map indexing" and "join indexing" 
techniques to speed up query processing. We have designed queries for 
security analysis of network traffic data. The following are some examples 
of security analysis: 
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a) Scanning Activity: Process one hour of data (17:00 -18:00 GMT on 
October 15*̂  2004) and look for all flows where the SYN flag was set and 
ACK/FIN flags are not set. 

b) Recently, Sasser worm was released that scans port 445. To detect this 
worm a query was written to search for flows that scan for port 445. If 
the analyst is interested in internal machines that have been infected he 
can narrow the search to only those machines with destination port 445. 
A query was written that would generate the top ten source-destination IP 
pairs on destination port 445 for netflow data during a certain period of 
time. 

c) Another security concern is denial of service attacks. One of the common 
network based denial of service attacks is SYN flooding. A query was 
written which was similar to those for worm detection to detect if a SYN 
flood has occurred. In this case we detected all source-destination IP 
pairs that have seen an excessive number of SYN packets. 

d) Worm Detection: Recently, the MyDoom worm spread via an email 
attachment that created a backdoor on ports 3127-3198. After the release 
of this worm, scanning for this backdoor increased significantly. SQL 
queries were written to generate reports about the number of flows 
caused by this scanning in 10 minute intervals. The report shows that 
there is a sudden jump in the number of bytes transferred, even though 
the number of flows stayed constant. 

4.4 Feature Extraction From Network Traffic Data 

A number of data mining based IDS applications need to pre-process the 
network traffic data before they can do their analysis. For example, the 
preprocessing module of ADAM [4] generates a record for each connection 
from the header information of its packets based on the following schema: 

R(TS, Src.IP, Src.Port, Dest.IP, Dest.Port, FLAG) 
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In this schema, TS represents the beginning time of a connection, Src.IP 
and Src.Port refer to source IP and port number respectively, while Dest.IP 
and Dest.Port represent the destination IP and port number. The attribute 
FLAG describes the status of a connection. This relation R is used for 
association mining. We store the connection records in the data warehouse 
so that they are available in one central place by several applications to do 
the analysis. Besides the basic features, we also store some derived features 
based on the window of time (number of bytes, number of packets, number 
of connections) that can be useful to detect attacks. These features are used 
to capture connections with similar characteristics (src-ip, dest-ip, src-port, 
dest-port, protocol) in the last T seconds, since typically DOS and scanning 
attacks involve hundreds of connections. A similar approach was used for 
constructing features in the KDDCup '99 data [20]. 

4.5 Help the Security Officer for Forensic Analysis 

One of the important kind of analysis is forensic analysis. Currently 
forensic analysis of data is done manually. Computer experts have to search 
through large amounts of data, sometimes millions of records, individually 
and look for suspicious behavior. This is an extremely inefficient and 
expensive process. Since we can store all the historical data (net-flow data, 
system calls, fire-wall logs) in a data warehouse we can help the security 
officer in accessing all the records which are suspicious and possibly have 
some intrusions. The suspicious activity can then be labeled as either 
anomalous or normal using SQL statements to mark the appropriate data. 
Since all the data is stored in a data warehouse we can update the record and 
store it back in the database. Our database platform can be used to design 
Digital Forensics tools tailored to Information Warfare that can provide real 
time performance. 
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5. CONCLUSIONS 

This chapter described data modeling and data warehousing techniques 
that drastically improve the performance and usability of Intrusion Detection 
Systems (IDS). Current IDS do not provide support for historical data 
analysis and data summarization. This chapter presented techniques to model 
network traffic and alerts using a multi-dimensional data model and star 
schemas. This data model was used to perform network security analysis and 
detect denial of service attacks. Our data model can also be used to handle 
heterogeneous data sources (e.g. firewall logs, system calls, net-flow data) 
and enable up to two orders of magnitude faster query response times for 
analysts as compared to the current state of the art. We have used our 
techniques to implement a prototype system that is being successfully used 
at Army Research Labs. Our system has helped the security analyst in 
detecting intrusions and in historical data analysis for generating reports on 
trend analysis 
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Abstract This chapter provides an overview of the Minnesota Intrusion De­
tection System (MINDS), which uses a suite of data mining based 
algorithms to address different aspects of cyber security. The var­
ious components of MINDS such as the scan detector, anomaly de­
tector and the profiling module detect different types of attacks 
and intrusions on a computer network. The scan detector aims 
at detecting scans which are the percusors to any network attack. 
The anomaly detection algorithm is very effective in detecting be­
havioral anomalies in the network traffic which typically trans­
late to malicious activities such as denial-of-service (DoS) traffic, 
worms, policy violations and inside abuse. The profiling module 
helps a network analyst to understand the characteristics of the 
network traffic and detect any deviations from the normal profile. 
Our analysis shows that the intrusions detected by MINDS are com­
plementary to those of traditional signature based systems, such as 
SNORT, which implies that they both can be combined to increase 
overall attack coverage. MINDS has shown great operational suc­
cess in detecting network intrusions in two live deployments at 
the University of Minnesota and as a part of the Interrogator ar­
chitecture at the US Army Research Lab - Center for Intrusion 
Monitoring and Protection (ARL-CIMP). 

Keywords: network intrusion detection, anomaly detection, summarization, 
profiling, scan detection 
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The conventional approach to securing computer systems against 
cyber threats is to design mechanisms such as firewalls, authenti­
cation tools, and virtual private networks that create a protective 
shield. However, these mechanisms almost always have vulner­
abilities. They cannot ward off attacks that are continually be­
ing adapted to exploit system weaknesses, which are often caused 
by careless design and implementation flaws. This has created 
the need for intrusion detection [6], security technology that com­
plements conventional security approaches by monitoring systems 
and identifying computer attacks. 

Traditional intrusion detection methods are based on human ex­
perts' extensive knowledge of attack signatures which are charac­
ter strings in a messageSs payload that indicate malicious content. 
Signatures have several limitations. They cannot detect novel at­
tacks, because someone must manually revise the signature data­
base beforehand for each new type of intrusion discovered. Once 
someone discovers a new attack and develops its signature, de­
ploying that signature is often delayed. These limitations have led 
to an increasing interest in intrusion detection techniques based on 
data mining [12, 22,2]. 

This chapter provides an overview of the Minnesota Intrusion 
Detection System (MINDŜ ) which is a suite of different data min­
ing based techniques to address different aspects of cyber security. 
In Section 1 we will discuss the overall architecture of MINDS. In 
the subsequent sections we will briefly discuss the different com­
ponents of MINDS which aid in intrusion detection using various 
data mining approaches. 

MINDS - Minnesota INtrusion Detection System 
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Figure 6.1. The Minnesota Intrusion Detection System (MINDS) 
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Figure 6.1 provides an overall architecture of the MINDS. The 
MINDS suite contains various modules for collecting and analyz­
ing massive amounts of network traffic. Typical analyses include 
behavioral anomaly detection, summarization, scan detection and 
profiling. Additionally, the system has modules for feature extrac­
tion and filtering out attacks for which good signatures have been 
learnt [8]. Each of these modules will be individually described 
in the subsequent sections. Independently, each of these modules 
provides key insights into the network. When combined, which 
MINDS does automatically, these modules have a multiplicative af­
fect on analysis. As shown in the figure, MINDS system is involves 
a network analyst who provides feedback to each of the modules 
based on their performance to fine tune them for more accurate 
analysis. 

While the anomaly detection and scan detection modules aim 
at detecting actual attacks and other abnormal activities in the net­
work traffic, the profiling module detects the dominant modes of 
traffic to provide an effective profile of the network to the analyst. 
The summarization module aims at providing a concise represen­
tation of the network traffic and is typically applied to the output 
of the anomaly detection module to allow the analyst to investigate 
the anomalous traffic in very few screen-shots. 

The various modules operate on the network data in the Net Flow 
format by converting the raw network traffic using i\\Q flow-tools 
library ^. Data in NetFlow format is a collection of records, where 
each record corresponds to a unidirectional flow of packets within 
a session. Thus each session (also referred to as a connection) 
between two hosts comprises of two flows in opposite directions. 
These records are highly compact containing summary informa­
tion extracted primarily from the packet headers. This information 
includes source IP, source port, destination IP, destination port, 
number of packets, number of bytes and timestamp. Various mod­
ules extract more features from these basic features and apply data 
mining algorithms on the data set defined over the set of basic as 
well as derived features. 

MINDS is deployed at the University of Minnesota, where sev­
eral hundred million network flows are recorded from a network 
of more than 40,000 computers every day. MINDS is also part of 
the Interrogator [15] architecture at the US Army Research Lab 
- Center for Intrusion Monitoring and Protection (ARL-CIMP), 
where analysts collect and analyze network traffic from dozens of 
Department of Defense sites [7]. MINDS is enjoying great opera-
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tional success at both sites, routinely detecting brand new attacks 
that signature-based systems could not have found. Additionally, 
it often discovers rogue communication channels and the exfiltra-
tion of data that other widely used tools such as SNORT [19] have 
had difficulty identifying. 

2. Anomaly Detection 
Anomaly detection approaches build models of normal data and 

detect deviations from the normal model in observed data. Anom­
aly detection applied to intrusion detection and computer security 
has been an active area of research since it was originally pro­
posed by Denning [6]. Anomaly detection algorithms have the 
advantage that they can detect emerging threats and attacks (which 
do not have signatures or labeled data corresponding to them) as 
deviations from normal usage. Moreover, unlike misuse detection 
schemes (which build classification models using labeled data and 
then classify an observation as normal or attack), anomaly detec­
tion algorithms do not require an explicitly labeled training data 
set, which is very desirable, as labeled data is difficult to obtain in 
a real network setting. 

The MINDS anomaly detection module is a local outlier detec­
tion technique based on the local outlier factor (LOF) algorithm 
[3]. The LOF algorithm is effective in detecting outliers in data 
which has regions of varying densities (such as network data) and 
has been found to provide competitive performance for network 
traffic analysis[13]. 

The input to the anomaly detection algorithm is NetFlow data 
as described in the previous section. The algorithm extracts 8 de­
rived features for each flow [8]. Figure 6.2 lists the set of features 
which are used to represent a network flow in the anomaly detec­
tion algorithm. Note that all of these features are either present in 
the NetFlow data or can be extracted from it without requiring to 
look at the packet contents. 

Applying the LOF algorithm to network data involves computa­
tion of similarity between a pair of flows that contain a combina­
tion of categorical and numerical features. The anomaly detection 
algorithm uses a novel data-driven technique for calculating the 
distance between points in a high-dimensional space. Notably, 
this technique enables meaningful calculation of the similarity be­
tween records containing a mixture of categorical and numerical 
features shown in Figure 6.2. 
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Figure 6.2. The set of features used by the MINDS anomaly detection algorithm 

LOF requires the neighborhood around all data points be con­
structed. This involves calculating pairwise distances between all 
data points, which is an 0{ii?) process, which makes it computa­
tionally infeasible for a large number of data points. To address 
this problem, we sample a training set from the data and compare 
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all data points to this small set, which reduces the complexity to 
0{n^m) where n is the size of the data and m is the size of the 
sample. Apart from achieving computational efficiency, sampling 
also improves the quality of the anomaly detector output. The nor­
mal flows are very frequent and the anomalous flows are rare in 
the actual data. Hence the training data (which is drawn uniformly 
from the actual data) is more likely to contain several similar nor­
mal flows and far less likely to contain a substantial number of 
similar anomalous flows. Thus an anomalous flow will be unable 
to find similar anomalous neighbors in the training data and will 
have a high LOF score. The normal flows on the other hand will 
find enough similar normal flows in the training data and will have 
a low LOF score. 

Thus the MINDS anomaly detection algorithm takes as input a 
set of network flows^ and extracts a random sample as the training 
set. For each flow in the input data, it then computes its nearest 
neighbors in the training set. Using the nearest neighbor set it then 
computes the LOF score (referred to as the Anomaly Score) for that 
particular flow. The flows are then sorted based on their anomaly 
scores and presented to the analyst in a format described in the 
next section. 

Output of Anomaly Detection Algorithm: The output of the 
MINDS anomaly detector is in plain text format with each input 
flow described in a single line. The flows are sorted according 
to their anomaly scores such that the top flow corresponds to the 
most anomalous flow (and hence most interesting for the analyst) 
according to the algorithm. For each flow, its anomaly score and 
the basic features describing that flow are displayed. Addition­
ally, the contribution of each feature towards the anomaly score is 
also shown. The contribution of a particular feature signifies how 
different that flow was from its neighbors in that feature. This al­
lows the analyst to understand the cause of the anomaly in terms 
of these features. 

Table 6.1 is a screen-shot of the output generated by the MINDS 
anomaly detector from its live operation at the University of Min­
nesota. This output is for January 25, 2003 data which is one 
day after the Slammer worm hit the Internet. All the top 18 flows 
shown in Table 6.1 actually correspond to the worm related traf­
fic generated by an external host to different U of M machines on 
destination port 1434 (which corresponds to the Slammer worm). 
The first entry in each line denotes the anomaly score of that 



Anomaly Detection 89 

o 
o 

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

<N (N <N CN (N^ <N̂  (N CN <N (N (N (N CN (N r | <N (N (N 
o" o" o" o" o" o" o" o" o" o" o" o" o" o" o" o" o" o" 

o o o o o o o o o o o o o o o o o o 

S 2 <=̂  r̂  
i ^ "^ ^ . 

m r-H VO <N _^. 

oo o vo o 5̂ ; 

o\ a\ ^ ^ o\ as OS Gs ^ o\ 
- v u VU vrv v o v o vr» >t-' -

en 
en 

en 

^.^ 

CO 

KJ ^- ^ "^. 

S N -S- OS • * 

"^^ "^^ ^n \j^ "^^ ^^ ^ ""^^ \j^ "^^ ^^ 

r-^ r^ T-^ T^ r-H y'^ r — I r - H 

-K Q 
^ S S S 

ON 0^ 
^ O vo O 
^ \0 ^ \0 

(N 

^ O 

<N 
^ 

(N 
Tf 
O 

(N 
vo 

(N 

^ O 

(N 
VO 

fN 

^ O 

(N 
vo 

(N 
^ O 

<N 
VO 

(N 
Tt-
O 

(N 
VO 

<N 

^ O 

(N 
VO 

(N 
T^ 

o 

(N 
VO 

(N 
^ O 

(N 
VO 

(N 
"̂  O 

(N 
VO 

<N 
-̂  O 

(N 
VO 

(N 
Tf 
O 

<N 
VO 

(N 
^ O 

(N 
VO 

<N 

^ O 

(N 
VO 

(N 
^ O 

(N 
VO 

(N 
^ O 

<N 
VO 

(N 
^ O 

(N 
VO 

(N 
^ O 

(N 
VO 

t> 

00 
(N 

r-

oo 
(N 

t^ 

00 
(N 

r-

00 
(N 

r̂  

00 
CN 

r-* 

00 
<N 

C^ 

oo 
<N 

t> 

00 
<N 

t^ 

00 
<N 

r-

00 
(N 

r--

00 
CN 

r-

00 
(N 

l> 

00 
(N 

l> 

00 
(N 

l> 

00 
<N 

r--

00 
(N 

r-

oo 
cs 

r-

oo 
(N 

O N c o c N ^ v o c n r - H v o m m i n ^ - ^ ^ i ^ ^ . ^ v q o q o q ^ T - H ^ ^ ( N < N c - : ^ ( N ^ ^ g » n f : : J g ON i n VO 

c N ^ G N f l i i ^ ^ o o i ^ ' K o o a s r q ' ^ ' E ^ ^ S ^ g i VO 2 »n 
Tf 00 in m -^ r-- oo in 

1-H C^ o o OS CN ^ 
v.^^ K' I V N f^^ ' ' \ | l ^ Vw*̂  V.^ l ^ XJ I N - ^ _ + . ^ CO -:t ^ 

00 i n 
i n CNI 
i n (N 

H 
CO 
o o 
CN 

CN 

O 
P 

o 

•g 

Q Q. 

O (D 

o -a "I 
§ o 

vd (u 

I ^ 
K O 



90 MINDS: Architecture & Design 

flow. The very high anomaly score for the top flows(the normal 
flows are assigned a score close to 1), illustrates the strength of 
the anomaly detection module in separating the anomalous traf­
fic from the normal. Entries 2-7 show the basic features for each 
flow while the last entry lists all the features which had a signifi­
cant contribution to the anomaly score. Thus we observe that the 
anomaly detector detects all worm related traffic as the top anom­
alies. A contribution vector for each of the flow (not shown in 
the figure due to lack of space) signifies that these anomalies were 
caused due to the feature - count _src_conn. The anomaly due to 
this particular feature translates to the fact that the external source 
was talking to an abnormally high number of inside hosts during 
a window of certain number of connections. 

Table 6.2 shows another output screen-shot from the University 
of Minnesota network traffic for January 26, 2003 data (48 
hours after the Slammer worm hit the Internet). By this time, the 
effect of the worm attack was reduced due to preventive measures 
taken by the network administrators. Table 6.2 shows the top 19 
anomalous flows as ranked by the anomaly detector. Thus while 
most of the top anomalous flows still correspond to the worm traf­
fic originating from an external host to different U of M machines 
on destination port 1434, there are two other type of anomalous 
flows which are highly ranked by the anomaly detector 

1 Anomalous flows that correspond to a ping scan by an external host 
(Bold rows in Table 6.2) 

2 Anomalous flows corresponding to U of M machines connecting to half-
life game servers (Italicized rows in Table 6.2) 

3. Summarization 

The ability to summarize large amounts of network traffic can 
be highly valuable for network security analysts who must often 
deal with large amounts of data. For example, when analysts use 
the MINDS anomaly detection algorithm to score several million 
network flows in a typical window of data, several hundred highly 
ranked flows might require attention. But due to the limited time 
available, analysts often can look only at the first few pages of re­
sults covering the top few dozen most anomalous flows. A careful 
look at the tables 6.1 and 6.2 shows that many of the anomalous 
flows are almost identical. If these similar flows can be condensed 
into a single line, it will enable the analyst to analyze a much 
larger set of anomalous flows. For example, the top 19 anom-
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alous flows shown in Table 6.2 can be represented as a three line 
summary as shown in Table 6.3. The column count indicates the 
number of flows represented by a line. "***" indicates that the set 
of flows represented by the line had several distinct values for this 
feature. We observe that every flow is represented in the summary. 
The first summary represents flows corresponding to the slammer 
worm traffic coming from a single external host and targeting sev­
eral internal hosts. The second summary represents connections 
made to half-life game servers by an internal host. The third sum­
mary corresponds to ping scans by different external hosts. Thus 
an analyst gets a fairly informative picture in just three lines. In 
general, such summarization has the potential to reduce the size of 
the data by several orders of magnitude. This motivates the need 

avg Score cnt srcIP sPort dstIP dPort proto 

15102 
3833 
3371 

10 
2 
7 

63.150.X.253 
*** 
*** 

1161 
27016 
0 

*** 
128.101.X.116 

*** 

1434 
H e * * 

2048 

tcp 
tcp 
icmp 

Table 6.3. A three line summary of the 32 anomalous flows in Table 6.2. 

to summarize the network flows into a smaller but meaningful rep­
resentation. We have formulated a methodology for summarizing 
information in a database of transactions with categorical features 
as an optimization problem [4]. We formulate the problem of sum­
marization of transactions that contain categorical data, as a dual-
optimization problem and characterize a good summary using two 
metrics - compaction gain and information loss. Compaction gain 
signifies the amount of reduction done in the transformation from 
the actual data to a summary. Information loss is defined as the 
total amount of information missing over all original data transac­
tions in the summary. We have developed several heurisitic algo­
rithms which use frequent itemsets from the association analysis 
domain [1] as the candidate set for individual summaries and se­
lect a subset of these frequent itemsets to represent the original set 
of transactions. 

The MINDS summarization module [8] is one such heuristic-
based algorithm based on the above optimization framework. The 
input to the summarization module is the set of network flows 
which are scored by the anomaly detector. The summarization al­
gorithm first generates frequent itemsets from these network flows 
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(treating each flow as a transaction). It then greedily searches for 
a subset of these frequent itemsets such that the information loss 
incurred by the flows in the resulting summary is minimal. The 
summarization algorithm is further extended in MINDS by incor­
porating the ranks associated with the flows (based on the anom­
aly score). The underlying idea is that the highly ranked flows 
should incur very little loss, while the low ranked flows can be 
summarized in a more lossy manner. Furthermore, summaries 
that represent many anomalous flows (high scores) but few nor­
mal flows (low scores) are preferred. This is a desirable feature 
for the network analysts while summarizing the anomalous flows. 

The summarization algorithm enables the analyst to better un­
derstand the nature of cyberattacks as well as create new signature 
rules for intrusion detection systems. Specifically, the MINDS sum­
marization component compresses the anomaly detection output 
into a compact representation, so analysts can investigate numer­
ous anomalous activities in a single screen-shot. Table 6.4 illus­
trates a typical MINDS output after anomaly detection and sum­
marization. Each line contains the average anomaly score, the 
number of anomalous and normal flows represented by the line, 
eight basic flow features, and the relative contribution of each ba­
sic and derived anomaly detection feature (not shown in the figure 
due to lack of space). For example, the second line in Table 6.4 
represents a total of 150 connections, of which 138 are highly 
anomalous. From this summary, analysts can easily infer that this 
is a backscatter from a denial-of-service attack on a computer that 
is outside the network being examined. Note that if an analyst 
looks at any one of these flows individually, it will be hard to in­
fer that the flow belongs to back scatter even if the anomaly score 
is available. Similarily, lines 7, 17, 18, 19 together represent a 
total of 215 anomalous and 13 normal flows that represent sum­
maries of FTP scans of the U of M network by an external host 
(200.75.X.2). Line 10 is a summary of IDENT lookups, where a 
remote computer is trying to get the user name of an account on an 
internal machine. Such inference is hard to make from individual 
flows even if the anomaly detection module ranks them highly. 

4. Profiling Network Traffic Using Clustering 
Clustering is a widely used data mining technique [10,24] which 

groups similar items, to obtain meaningful groups/clusters of data 
items in a data set. These clusters represent the dominant modes 
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of behavior of the data objects determined using a similarity mea­
sure. A data analyst can get a high level understanding of the 
characteristics of the data set by analyzing the clusters. Clustering 
provides an effective solution to discover the expected and unex­
pected modes of behavior and to obtain a high level understanding 
of the network traffic. 

The profiling module of MINDS essentially performs cluster­
ing, to find related network connections and thus discover domi­
nant modes of behavior. MINDS uses the Shared Nearest Neighbor 
(SNN) clustering algorithm [9], which can find clusters of vary­
ing shapes, sizes and densities, even in the presence of noise and 
outliers. The algorithm can also handle data of high dimension­
alities, and can automatically determine the number of clusters. 
Thus SNN is well-suited for network data. SNN is highly compu­
tationally intensive — of the order O(n^), where n is the number 
of network connections. We have developed a parallel formulation 
of the SNN clustering algorithm for behavior modeling, making it 
feasible to analyze massive amounts of network data. 

An experiment we ran on a real network illustrates this ap­
proach as well as the computational power required to run SNN 
clustering on network data at a DoD site [7]. The data consisted 
of 850,000 connections collected over one hour. On a 16-CPU 
cluster, the SNN algorithm took 10 hours to run and required 100 
Mbytes of memory at each node to calculate distances between 
points. The final clustering step required 500 Mbytes of mem­
ory at one node. The algorithm produced 3,135 clusters ranging 
in size from 10 to 500 records. Most large clusters correspond 
to normal behavior modes, such as virtual private network traffic. 
However, several smaller clusters correspond to deviant behavior 
modes that highlight misconfigured computers, insider abuse, and 
policy violations that are difficult to detect by manual inspection 
of network traffic. 

Table 6.5 shows three such clusters obtained from this experi­
ment. Cluster in Table 6.5(a) represents connections from inside 
machines to a site called GoToMyPC. com, which allows users (or 
attackers) to control desktops remotely. This is a policy violation 
in the organization for which this data was being analyzed. Clus­
ter in Table 6.5(b) represents mysterious ping and SNMP traffic 
where a mis-configured internal machine is subjected to SNMP 
surveillance. Cluster in Table 6.5(c) represents traffic involving 
suspicious repeated ftp sessions. In this case, further investiga­
tions revealed that a mis-configured internal machine was trying 
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(a) Cluster representing connections to GoToMyPC. com 

Duration 
0:00:00 
0:00:03 
0:00:00 
0:00:00 
0:00:00 
0:00:01 
0:00:00 
0:00:01 
0:00:00 
0:00:00 

sIP 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 

sPort 
4125 
4127 
4138 
4141 
4143 
4149 
4163 
4172 
4173 
4178 

dip 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 

dPort 
8200 
8200 
8200 
8200 
8200 
8200 
8200 
8200 
8200 
8200 

Pro 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 

Pkt 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

Bytes 
248 
248 
248 1 
248 
248 
248 
248 
248 
248 
248 

(b) Clusters representing mis-configured computers subjected to SNMP surveillance 

Duration 
0:00:00 
0:00:00 
0:00:00 
0:00:00 

1 0:00:00 
0:00:00 
0:00:00 
0:00:00 
0:00:00 
0:00:00 

sIP 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 

sPort 
1176 
-1 

1514 
-1 
-1 
-1 
-1 

3013 
-1 

3329 

dip 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 

dPort 
161 
-1 

161 
-1 
-1 
-1 
-1 
161 
-1 
161 

Pro 
udp 

icmp 
udp 
icmp 
icmp 
icmp 
icmp 
udp 

icmp 
udp 

Pkt Bytes 
95 
84 
95 
84 ' 
84 
84 
84 
95 
84 
95 

(c) Cluster representing a mis-configured computer trying to contact Microsoft 

Duration 
0:00:00 
0:00:00 
0:00:00 
0:00:00 
0:00:00 

j 0:00:00 

sIP 
A 
A 
A 
A 
A 
A 

sPort 
3004 
3007 
3008 
3011 
3013 
3015 

dip 
B 
B 
B 
B 
B 
B 

dPort 
21 
21 
21 
21 
21 
21 

Pro 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 

Pkt 
7 
7 
7 
7 
7 
7 

Bytes 
318 
318 
318 
318 
318 
318 

Table 6.5. Clusters obtained from network traffic at a US Army Fort 
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to contact Microsoft. Such clusters give analysts information they 
can act on immediately and can help them understand their net­
work traffic behavior. 

Table 6.6 shows a sample of interesting clusters obtained by 
performing a similar experiment on a sample of 7500 network 
flows sampled from the University of Minnesota network data. 
The first cluster (Table 6.6(a)) represent Kazaa (P2P) traffic be­
tween a U of M machine and different external P2P clients. Since 
Kazaa usage is not allowed in the university, this cluster brings 
forth an anomalous profile for the network analyst to investigate. 
Cluster in Table 6.6(b) represents traffic involving bulk data trans­
fers between internal and external hosts; i.e. this cluster covers 
traffic in which the number of packets and bytes are much larger 
than the normal values for the involved IPs and ports. Cluster 
in Table 6.6(c) represents traffic between different U of M hosts 
and Hotmail servers (characterized by the port 1863). Cluster in 
Table 6.6(d) represents/rp traffic in which the data transferred is 
low. This cluster has different machines connecting to different 
ftp servers all of which are transferring much lower amount of 
data than the usual values for ftp traffic. A key observation to 
be made is that the clustering algorithm automatically determines 
the dimensions of interest in different clusters. In cluster of Table 
6.6(a), the protocol, source port and the number of bytes are sim­
ilar. In cluster of Table 6.6(b) the only common characteristic is 
large number of bytes. The common characteristics in cluster of 
Table 6.6(c) are the protocol and the source port. In cluster of Ta­
ble 6.6(d) the common features are the protocol, source port and 
the low number of packets transferred. 

5. Scan Detection 

A precursor to many attacks on networks is often a reconnais­
sance operation, more commonly referred to as a scan. Identifying 
what attackers are scanning for can alert a system administrator or 
security analyst to what services or types of computers are being 
targeted. Knowing what services are being targeted before an at­
tack allows an administrator to take preventative measures to pro­
tect the resources e.g. installing patches, firewalling services from 
the outside, or removing services on machines which do not need 
to be running them. 

Given its importance, the problem of scan detection has been 
given a lot of attention by a large number of researchers in the 
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(a) Cluster representing Kazaa traffic between a UofM host and external machines 

Duration 
0:14:44 
0:14:54 
0:14:17 
0:17:00 
0:13:33 

sIP 
Ai 
Ai 
Ai 
Ai 
Ai 

sPort 
3531 
3531 
3531 
3531 
3531 

dip 
Bi 
B2 
Bs 
B4 
^ 5 

dPort 
3015 
4184 
10272 
4238 
2008 

Pro 
tcp 
tcp 
tcp 
tcp 
tcp 

Pkt 
20 
19 
17 
20 
15 

Bytes 
857 
804 
701 
835 
620 

(b) Cluster representing bulk data transfer between different hosts 

Duration 
0:31:07 
0:20:24 
0:18:42 
0:15:08 

i 0:10:20 
1 0:09:00 

sIP 
Ai 

A2 
As 
A4 
A, 
Ae 

sPort 
2819 
5100 
6881 
4670 
27568 
6881 

dip 
Bi 

B2 
Bs 
B4 
B^ 
Be 

dPort 
4242 
1224 
1594 
21 

63144 
5371 

Pro 
tcp 
tcp 
tcp 
tcp 
tcp 
tcp 

Pkt 
3154 
2196 
3200 
2571 
2842 
2677 

Bytes 
129k 
121k 

4399k 
3330k 
113k 
115k 

(c) Cluster representing traffic between U of M hosts and Hotmail servers 

Duration 
00:00:00 
00:00:30 
00:00:00 
00:00:00 
00:00:50 

sIP 
Ai 

A2 
As 
A4 
As 

sPort 
1863 
1863 
1863 
1863 
1863 

dip 
Bi 

B2 
Bs 
BA 
B, 

dPort 
3969 
1462 
3963 
4493 
1102 

Pro 
tcp 
tcp 
tcp 
tcp 
tcp 

Pkt 
1 
4 
1 
1 
4 

Bytes 
41 
189 
41 
41 
176 

(d) Cluster representing FTP traffic with small payload 

Duration 
00:00:02 
00:00:05 
00:00:11 
00:00:00 
00:00:00 

sIP 
Ai 
Ai 
A2 
Ai 
Ai 

sPort 
21 
21 
21 
21 
21 

dip 
Bi 

B2 
Bs 
BA 

B5 

dPort 
1280 

34781 
9305 
27408 
45607 

Pro 
tcp 
tcp 
tcp 
tcp 
tcp 

Pkt 
13 
18 
13 
2 
4 

Bytes 
1046 
1532 
1185 
144 
227 

Table 6.6. Four clusters obtained from University of Minnesota network traffic 
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network security community. Initial solutions simply counted the 
number of destination IPs that a source IP made connection at­
tempts to on each destination port and declared every source IP a 
scanner whose count exceeded a threshold [19]. Many enhance­
ments have been proposed recently [23,11,18,14,17,16], but de­
spite the vast amount of expert knowledge spent on these methods, 
current, state-of-the-art solutions still suffer from high percentage 
of false alarms or low ratio of scan detection. For example, a re­
cently developed scheme by Jung [11] has better performance than 
many earlier methods, but its performance is dependent on the se­
lection of the thresholds. If a high threshold is selected, TRW 
will report only very few false alarms, but its coverage will not be 
satisfactory. Decreasing the threshold will increase the coverage, 
but only at the cost of introducing false alarms. P2P traffic and 
backscatter have patterns that are similar to scans, as such traffic 
results in many unsuccessful connection attempts from the same 
source to several destinations. Hence such traffic leads to false 
alarms by many existing scan detection schemes. 

MINDS uses a data-mining-based approach to scan detection. 
Here we present an overview of this scheme and show that an 
off-the-shelf classifier. Ripper [5], can achieve outstanding per­
formance both in terms of missing only very few scanners and 
also in terms of very low false alarm rate. Additional details are 
available in [20, 21]. 

Methodology: Currently our solution is a batch-mode implemen­
tation that analyzes data in windows of 20 minutes. For each 20-
minute observation period, we transform the NetFlow data into a 
summary data set. Figure 6.3 depicts this process. With our fo­
cus on incoming scans, each new summary record corresponds 
to a potential scanner—that is pair of external source IP and desti­
nation port (SIDP). For each SIDP, the summary record contains a 
set of features constructed from the raw netflows available during 
the observation window. Observation window size of 20 minutes 
is somewhat arbitrary. It needs to be large enough to generate 
features that have reliable values, but short enough so that the 
construction of summary records does not take too much time or 
memory. 

Given a set of summary data records corresponding to an ob­
servation period, scan detection can be viewed as a classification 
problem [24] in which each SIDP, whose source IP is external to 
the network being observed, is labeled as scanner if it was found 
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sil,spl,dil,dpl,. 

sil,sp2,di2,dpl,. 

si2,sp3,di2,dpl,. 

sil,sp4,di2,dp2,. 

si2,sp5,di3,dp3,. 

si2,sp6,di3,dp2,. 

Raw NefFlows 
(5M) 

sil,dpl 

sil,dp2 

si2,dpl 

SIDP 

— 

Features 

— 

—TA 

Label 

Summary Data Records 
(look) 

Figure 6.3. Transformation of raw netflow data in an observation window to the 
Summary Data Set. 

scanning or non-scanner otherwise. This classification problem 
can be solved using predictive modeling techniques developed in 
the data mining and machine learning community if class labels 
(scanner/non-scanner) are available for a set of SIDPs that can 
be used as a training set. 

Figure 6.4. Scan Detection using an off-the-shelf classifier, Ripper. 

Figure 6.4 depicts the overall paradigm. Each SIDP in the sum­
mary data set for an observation period (typically 20 minutes) is 
labeled by analyzing the behavior of the source IPs over a period 
of several days. The process involves two steps — (1) Building 
a predictive model: 20 minutes of NetFlow data is converted 
into unlabeled Summary Record format, which is labeled by the 
Labeler using several days of data. Predictive model is built on 
the labeled Summery Records. (2) Scan Detection: 20 minutes 
of data is converted into unlabeled Summary Record format. The 
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predictive model is applied to it resulting in a list of predicted 
scanners. 

The success of this method depends on (1) whether we can la­
bel the data accurately and (2) whether we have derived the right 
set of features that facilitate the extraction of knowledge. In the 
following sections, we will elaborate on these points. 

Features: The key challenge in designing a data mining method 
for a concrete application is the necessity to integrate the expert 
knowledge into the method. A part of the knowledge integration 
is the derivation of the appropriate features. We make use of two 
types of expert knowledge. The first type of knowledge consists of 
a list of inactive IPs, a set of blocked ports and a list of P2P hosts 
in the network being monitored. This knowledge may be avail­
able to the security analyst or can be simply constructed by ana­
lyzing the network traffic data over a long period (several weeks 
or months). Since this information does not change rapidly, this 
analysis can be done relatively infrequently. The second type of 
knowledge captures the behavior of <source IP, destination port> 
(SIDP) pairs, based on the 20-minute observation window. Some 
of these features only use the second type of knowledge, and oth­
ers use both types of knowledge. 

Labeling the Data Set: The goal of labeling is to generate a data 
set that can be used as training data set for Ripper. Given a set 
of summarized records corresponding to 20-minutes of observa­
tion with unknown labels (unknown scanning statuses), the goal 
is to determine the actual labels with very high confidence. The 
problem of computing the labels is very similar to the problem of 
scan detection except that we have the flexibility to observe the 
behavior of an SIDP over a long period. This makes it possible 
to declare certain SIDPs as scanner or non-scanner with great 
confidence in many cases. For example, if a source IP sJp makes 
a few failed connection attempts on a specific port in a short time 
window, it may be hard to declare it a scanner. But if the behavior 
of s.ip can be observed over a long period of time (e.g. few days), 
it can be labeled as non-scanner (if it mostly makes successful 
connections on this port) or scanner (if most of its connection at­
tempts are to destinations that never offered service on this port). 
However, there will situations, in which the above analysis does 
not offer any clear-cut evidence one way or the other. In such 
cases, we label the SIDP as dontknow. For additional details on 
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the labeling method, the reader is referred to [20]. 

Evaluation: For our experiments, we used real-world network 
trace data collected at the University of Minnesota between the 
1st and the 22nd March, 2005. The University of Minnesota net­
work consists of 5 class-B networks with many autonomous sub­
networks. Most of the IP space is allocated, but many subnetworks 
have inactive IPs. We collected information about inactive IPs and 
P2P hosts over 22 days, and we used flows in 20 minute windows 
during 03/21/2005 (Mon.) and 03/22/2005 (Tue.) for construct­
ing summary records for the experiments. We took samples of 
20-minute duration every 3 hours starting at midnight on March 
21. A model was built for each of the 13 periods and tested on the 
remaining 12 periods. This allowed us to reduce possible depen­
dence on a certain time of the day, and performed our experiments 
on each sample. 

Table 6.4 describes the traffic in terms of number of <source IP, 
destination port> (SIDP) combinations pertaining to scanning-, 
P2P-, normal- and backscatter traffic. 

ID 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 

Total 
67522 
53333 
56242 

78713 
93557 
85343 
92284 

82941 
69894 

63621 
60703 
78608 

91741 

scan 
3984 
5112 
5263 

5126 
4473 
3884 
4723 
4273 
4480 

4953 

5629 
4968 

4130 

p2p 
28911 
19442 
19485 

32573 
38980 

36358 
39738 
39372 
33077 

26859 
25436 
33783 

43473 

normal 
697r" 
9190 
8357 

10590 
12354 

10191 
10488 
8816 
5848 
4885 

4467 
7520 

6319 

backscatter 
443r" 
1544 
2521 

5115 
4053 

5383 
5876 
1074 
1371 

4993 
3241 

4535 

4187 

dont-know 
23225 
18045 
20616 

25309 
33697 
29527 
31459 
29406 
25118 

21931 
21930 
27802 

33632 

Table 6.7. The distribution of (source IP, destination ports) (SIDPs) over the 
various traffic types for each traffic sample produced by our labeling method 

In our experimental evaluation, we provide comparison to TRW 
[11], as it is one of the state-of-the-art schemes. With the pur­
pose of applying TRW for scanning worm containment. Weaver 
et al. [25] proposed a number of simplifications so that TRW 
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can be implemented in hardware. One of the simplifications they 
applied—without significant loss of quality—is to perform the se­
quential hypothesis testing in logarithmic space. TRW then can 
be modeled as counting: a counter is assigned to each source IP 
and this counter is incremented upon a failed connection attempt 
and decremented upon a successful connection establishment. 

Our implementation of TRW used in this paper for comparative 
evaluation draws from the above ideas. If the count exceeds a 
certain positive threshold, we declare the source to be scanner, 
and if the counter falls below a negative threshold, we declare the 
source to be normal. 

The performance of a classifier is measured in terms of preci­
sion, recall and F-measure. For a contingency table of 

actual Scanner 
actual not Scanner 

classified as classified as 
Scanner not Scanner 

TP FN 
FP TN 

precision 

recall 

F — measure 

TP 
TP + FP 

TP 
TP-hFN 
2 * prec * recall 

prec + recall 

Less formally, precision measures the percentage of scanning 
(source IP, destination port)-pairs (SIDPs) among the SIDPs that 
got declared scanners; recall measures the percentage of the ac­
tual scanners that were discovered; F-measure balances between 
precision and recall. 

To obtain a high-level view of the performance of our scheme, 
we built a model on the 0321.0000 data set (ID 1) and tested it 
on the remaining 12 data sets. Figure 6.5 depicts the performance 
of our proposed scheme and that of TRW on the same data sets ^. 
From left to right, the six box plots correspond to the precision, 
recall and F-measure of our proposed scheme and the precision, 
recall and F-measure of TRW. Each box plot has three lines cor­
responding (from top downwards) to the upper quartile, median 
and lower quartile of the performance values obtained over the 13 
data sets. The whiskers depict the best and worst performance. 
One can see that not only does our proposed scheme outperform 
TRW by a wide margin, it is also more stable: the performance 
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Performance Comparison 

Prec Rec F-m Prec Rec F-m 
Ripper TRW 

Figure 6.5. Performance comparison between the proposed scheme and TRW. 

varies less from data set to data set (the boxes in Figure 6.5 appear 
much smaller). 

1 

0.8 

0.6| 

0.4 

0.21 

o' 

Performance of Ripper 

Precision 

- Recall 

F-measure 

5 7 9 
Test Set ID 

11 13 

Figure 6.6. The performance of the proposed scheme on the 13 data sets in 
terms of precision (topmost line), F-measure (middle line) and recall (bottom 
line). 

Figure 6.6 shows the actual values of precision, recall and F-
measure for the different data sets. The performance in terms of 
F-measure is consistently above 90% with very high precision, 
which is important, because high false alarm rates can rapidly de­
teriorate the usability of a system. The only jitter occurs on data 
set # 7 and it was caused by a single source IP that scanned a single 
destination host on 614(!) different destination ports meanwhile 
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touching only 4 blocked ports. This source IP got misclassified as 
P2P, since touching many destination ports (on a number of IPs) is 
characteristic of P2P. This single misclassification introduced 614 
false negatives (recall that we are classifying SIDPs not source 
IPs). The reason for the misclassification is that there were no 
vertical scanners in the training set — the highest number of des­
tination ports scanned by a single source IP was 8, and this source 
IP touched over 47 destination IPs making it primarily a horizontal 
scanner. 

6. Conclusion 
MINDS is a suite of data mining algorithms which can be used as 

a tool by network analysts to defend the network against attacks 
and emerging cyber threats. The various components of MINDS 
such as the scan detector, anomaly detector and the profiling mod­
ule detect different types of attacks and intrusions on a computer 
network. The scan detector aims at detecting scans which are the 
percusors to any network attack. The anomaly detection algorithm 
is very effective in detecting behavioral anomalies in the network 
traffic which typically translate to malicious activities such as dos 
traffic, worms, policy violations and inside abuse. The profiling 
module helps a network analyst to understand the characteristics 
of the network traffic and detect any deviations from the normal 
profile. Our analysis shows that the intrusions detected by MINDS 
are complementary to those of traditional signature based systems, 
such as SNORT, which implies that they both can be combined to 
increase overall attack coverage. MINDS has shown great opera­
tional success in detecting network intrusions in two live deploy­
ments at the University of Minnesota and as a part of the Inter­
rogator [15] architecture at the US Army Research Lab - Center 
for Intrusion Monitoring and Protection (ARL-CIMP). 
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Notes 
1. www.cs.umn.edu/research/minds 
2. www.splintered.net/sw/flow-tools 
3. Typically, for a large sized network such as the University of Minnesota, data for a 

10 minute long window is analyzed together 
4. The authors of TRW recommend a threshold of 4. In our experiments, we found, 

that TRW can achieve better performance (in terms of F-measure) when we set the thresh­
old to 2, this is the threshold that was used in Figure 6.5, too. 
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Abstract Deploying a large number of information security (INFOSEC) systems can pro­
vide in-depth protection for systems and networks. However, the sheer number 
of security alerts output by security sensors can overwhelm security analysts 
and keep them from performing effective analysis and initiating timely response. 
Therefore, it is important to develop an advanced alert correlation system that 
can reduce alarm redundancy, intelligently correlate security alerts and detect 
attack strategies. Alert correlation is therefore a core component of a security 
management system. 

Correlating security alerts and discovering attack strategies are important and 
challenging tasks for security analysts. Recently, there have been several pro­
posed techniques to analyze attack scenarios from security alerts. However, most 
of these approaches depend on a priori and hard-coded domain knowledge that 
lead to their limited capabilities of detecting new attack strategies. In addition, 
these approaches focus more on the aggregation and analysis of raw security 
alerts, and build basic or low-level attack scenarios. 

This paper focuses on discovering novel attack strategies via analysis of se­
curity alerts. Our integrated alert correlation system helps security administrator 
aggregate redundant alerts, filter out unrelated attacks, correlate security alerts 
and analyze attack scenarios. 

Our integrated correlation system consists of three complementary correla­
tion mechanisms based on two hypotheses of attack step relationship. The first 

*The work was done when the author was at College of Computing at Georgia Institute of Technology. 
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hypothesis is that some attack steps are directly related because an earlier attack 
enables or positively affects the later one. We have developed a probabilistic-
based correlation engine that incorporates domain knowledge to correlate alerts 
with direct causal relationship. The second hypothesis is that some related attack 
steps, even though they do not have obvious or direct (or known) relationship in 
terms of security and performance measures, still exhibit statistical and temporal 
patterns. For this category of relationship, we have developed two correlation 
engines to discover attack transition patterns based on statistical analysis and 
temporal pattern analysis, respectively. Based on the correlation results of these 
three correlation engines, we construct attack scenarios and conduct attack path 
analysis. The security analysts are presented with aggregated information on 
attack strategies from the integrated correlation system. 

We evaluate our approaches using DARPA's Grand Challenge Problem (GCP) 
data sets. Our evaluation shows that our approach can effectively discover novel 
attack strategies, provide a quantitative analysis of attack scenarios and identify 
attack plans. 

Keywords: Security alert correlation, intrusion detection, security management 

1. Introduction 
Information security (INFOSEC) is a complex process with many challeng­

ing problems. As more security systems are developed, deploying a large scale 
of INFOSEC mechanisms, e.g., authentication systems, firewalls, intrusion de­
tection systems (IDSs), antivirus software, network management and monitor­
ing systems, can provide protection in depth for the IT infrastructure. INFOSEC 
sensors often output a large quantity of low-level or incomplete security alerts 
because there is a large number of network and system activities being moni­
tored and multiple INFOSEC systems can each report some aspects of security 
events. The sheer quantity of alerts from these security systems and sensors 
can overwhelm security administrators and prevent them from performing com­
prehensive security analysis of the protected domains and initiating timely re­
sponse. 

From a security administrator's point of view, it is important to reduce the re­
dundancy of alarms, intelligently integrate and analyze security alerts, construct 
attack scenarios (defined as a sequence of related attack steps) and present high-
level aggregated information from multiple local-scale events. To address this 
issue, researchers and security product vendors have proposed alert correlation, 
a process to analyze and correlate security alerts to provide an aggregated in­
formation on the networks and systems under protection. Applying alert corre­
lation techniques to identifying attack scenarios can also help forensic analysis, 
response and recovery, and even prediction of forthcoming attacks. Therefore, 
alert correlation is a core component in a security management system. 

Recently there have been several proposals on alert correlation, including 
alert similarity measurement [52], probabilistic reasoning [19], clustering algo-
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rithms [14], pre- and post-condition matching of known attacks [39,12,7], and 
chronicles formalism approach [38]. Most of these proposed approaches have 
limited capabilities because they rely on various forms of predefined knowledge 
of attack conditions and consequences. They cannot recognize a correlation 
when an attack is new or the relationship between attacks is new. In other 
words, these approaches in principle are similar to misuse detection techniques, 
which use the "signatures" of known attacks to perform pattern matching and 
cannot detect new attacks. It is obvious that the number of possible correla­
tions is very large, potentially a combinatorial of the number of known and 
new attacks. It is infeasible to know a priori and encode all possible matching 
conditions between attacks. To further complicate the matter, the more danger­
ous and intelligent adversaries will always invent new attacks and novel attack 
sequences. Therefore, we must develop significantly better alert correlation 
algorithms that can discover sophisticated and new attack sequences. 

We have two motivations in our work. First, we want to develop an alert cor­
relation system that can discover new attack strategies without relying solely on 
domain knowledge. Second, we want to incorporate more evidence or indica­
tors from other non-security monitoring systems to correlate alerts and detect 
attack strategies. For example, we can incorporate alerts from network man­
agement systems (NMS) into the security alert correlation. Although alerts 
from NMS may not directly tell us what attacks are present, they provide us 
information on the state of protected domains. 

This paper focuses on correlation techniques. Our main contribution in this 
paper is the design of an integrated correlation system to discover novel attack 
strategies from INFOSEC alerts. Our alert correlation mechanism integrates 
three different correlation methods based on two hypotheses of attack step rela­
tionships to discover and analyze relationships among alerts. Bayesian-based 
correlation engine [48] applies probabilistic reasoning to correlate alerts that 
have direct causal relationships according to some domain knowledge. This cor­
relation mechanism is based on the hypothesis that some attack steps have direct 
relationship because prior attack step enables the later one. Causal discovery 
theory-based correlation mechanism performs alert correlation using statistical 
analysis of attack occurrences to identify the dependency between alerts. Time 
series-based correlation engine [46] conducts alert correlation using statistical 
test and investigating temporal relationship between alerts. These two statis­
tical and temporal-based correlation mechanisms are based on the hypothesis 
that some attack steps have temporal or statistical patterns even though they 
may not have direct or obvious (or known) relationships in terms of security 
or performance measures. We integrate these three complementary correlation 
engines to perform alert analysis and correlation. We construct attack scenar­
ios and conduct attack path analysis based on the output of three correlation 
engines. We evaluate and rank the overall likelihood of various attack paths 
and identify those with higher probabilities. The result of alert correlation is 
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a set of candidate attack plans corresponding to the intrusions executed by the 
attacker. The outputs of this phase can be used for further analysis in the later 
phase, i.e., attack plan recognition [47]. 

We evaluate our methods using DARPA's Grand Challenge Problem (GCP) 
data sets [13]. The results show that our approach can successfully discover new 
attack strategies and provide a quantitative analysis method to analyze attack 
strategies. 

The remainder of this paper is organized as follows. We describe our method 
of alert aggregation and prioritization in Section 2. We present our probabilistic-
based correlation mechanism in Section 3. We describe our statistical-based 
alert correlation engine in Section 4. Causal discovery-based correlation engine 
is described in Section 5. In Section 6, we present our approach to integrate 
these three correlation engines and scenario analysis. In Section 7, we report the 
experiments and results on the GCP. Section 8 discusses the related work. We 
summarize the paper and point out some ongoing and future work in Section 9. 

2. Alert Aggregation and Prioritization 
In this section, we describe two major components in our alert correlation 

system, i.e., alert aggregation and alert prioritization. 

2.1 Alert Aggregation and Clustering 
One of the issues with deploying multiple security devices is the large number 

of alerts output by the devices. The large volume of alerts make it very difficult 
for the security administrator to analyze attack events and handle alerts in a 
timely fashion. Therefore, the first step in alert analysis is alert aggregation and 
volume reduction. 

In our approach, we use alert fusion and clustering techniques to reduce the 
redundancy of alerts while keeping the important information. Specifically, 
each alert has a number of attributes such as time stamp, source IP, destination 
IP, port(s), user name, process name, attack class, and sensor ID, which are 
defined in a standard document named "Intrusion Detection Message Exchange 
Format (IDMEF)" drafted by IETF Intrusion Detection Working Group [21]. 

IDMEF has defined alert formats and attributes. IDMEF is intended to be 
a standard data format that intrusion detection systems can use to report alerts 
about suspicious events. A Document Type Definition (DTD) has been proposed 
to describe IDMEF data format by XML documents. 

In IDMEF, three temporal attributes have been defined to be associated to an 
alert. Detect-time refers to the time that the attack occurs, create-time represents 
the time when the attack is detected and analyzer-time is the time when the alert 
is output by an IDS. Create-time and analyzer-time are fully dependant on the 
characteristics of the IDS. Therefore, we use detect-time attributes in our alert 
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aggregation process. In other words, two alerts might be considered similar 
even though their create-time and analyzer-time are completely different. 

In the IDMEF format, the structures of attributes source and target are similar. 
They can be described by a node, a user, a process and a service. A node 
might be identified by its IP address (typically by a network-based IDS) or by 
its host name (typically by a host-based IDS). Similarly, some IDSs provide 
service names or port numbers. We create and use two correspondence tables 
between host names and IP addresses, and between services and port numbers. 
For most alerts output by a host-based IDS, we specify that a similarity exists 
between alerts' source and target attributes if both their nodes, users, services 
and processes are similar. And for most network attacks, we compare the nodes 
and services. 

Alert fusion has two phases, i.e., aggregation of alerts of the same IDS and 
aggregation of alerts of different sensors. Specifically, we first combine alerts 
that have the same attributes except time stamps. This step is intended to 
aggregate alerts that are output by the same IDS and are corresponding to the 
same attack but have a small delay, i.e., the time stamps of those alerts can be 
slightly different, e.g., two seconds apart. Second, based on the results of step 
1, we aggregate alerts with the same attributes but are reported from different 
heterogeneous sensors. The alerts varied on time stamp are fused together if 
they are close enough to fall in a pre-defined time window. 

Alert clustering is used to further group alerts after alert fusion. Based on 
various clustering algorithms, we can group alerts in different ways according 
to the similarity among alerts, (e.g., [52] and [30]). Currently, based on the 
results of alert fusion, we further group alerts that have same attributes except 
time stamps into one cluster. After this step, we have further reduced the 
redundancy of alerts. 

DEFINITION 1 A hyper alert is defined as a time ordered sequence of alerts 
that belong to the same cluster. 

For example, after alert clustering, we have a series of aggregated alert 
instances, ai,a2...a^, in one cluster that have the same attributes along the 
time axis. We use hyper alert A to represent this sequence of alerts, i.e., 
A = {ai ,a2, . . . ,an}. 

2.2 Alert Verification and Prioritization 
The next phase of alert processing is to verify and prioritize each hyper alert 

based on its success and relevance to the mission goals. 
When a correlation engine receives false positives as input, the quality of 

correlation results can degrade significantly. Therefore, the reduction of false 
positive and irrelevant alerts is an important prerequisite to achieve a good 
correlation results. 
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The task of alert verification is to examine an alert and determine the success 
or failure of the corresponding attack. It aims to filter out the false positive 
alerts output by security sensors. 

We apply evidence cross checking to identifying the false positive alert. In 
other words, we use alerts or evidence output by other security sensors to cross 
check the validity of an alert. In particular, for an alert generated by a security 
sensor (e.g., an IDS), we check if there are any similar alerts output by other 
security sensors or if there are any alerts or evidence corresponding to the impact 
of the attack. For example, when a network-based IDS output a buffer overflow 
alert targeting a specific process running on the target host, and if the host-
based IDS installed on the target machine also generated an alert representing 
an abnormal running of that process or other abnormal activities (e.g., illegal 
file access) corresponding to the evidence of the attack impact, then we can 
enforce the validity of the buffer overflow alert. 

Priorities are important to classify alerts and quickly discard information 
that is irrelevant or of less importance to a particular site. The alert prioritizing 
component has to take into account the security policy and the security require­
ments of the site where the correlation system is deployed. The objective is that, 
with the alert priority rank, security analyst can select important alerts as the 
target alerts for further correlation and analysis. Specifically, the priority score 
of an alert is computed based on the relevance of the alert to the configuration 
of the protected networks and hosts as well as the severity of the corresponding 
attack assessed by the security analyst. In practice, a correlation system uses 
the information from the impact analysis and the asset database to determine 
the importance of network services to the overall mission goals of the network. 

Porras et al. proposed a more comprehensive mechanism of incident/alert 
rank computation model in a "mission-impact-based" correlation engine, named 
M-Correlator [45]. Since we focus on alert correlation and scenario analysis 
instead of alert priority ranking, and alert prioritization is just an intermediate 
step to facilitate further alert analysis, we adapted the priority computation 
model of M-Correlator with a simplified design. 

Figure 7.1. Alert Priority Computation Model 
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Figure 7.1 shows our priority computation model that is constructed based 
on Bayesian networks [43]. We use Bayesian inference to obtain a belief over 
states (hypotheses) of interests. A Bayesian network is usually represented as 
a directed acyclic graph (DAG) where each node represents a variable, and 
the directed edges represent the causal or dependent relationships among the 
variables. A conditional probability table (CPT) [43] is associated with each 
child node. It encodes the prior knowledge between the child node and its 
parent node. Specifically, an element of the CPT at a child node is defined 
by CPTij = P{child.state = j\parentstate — i) [43]. The behef in 
hypotheses of the root is related to the belief propagation from its child nodes, 
and ultimately the evidence at the leaf nodes. 

Specifically, in our priority computation model, the root represents the prior­
ity with two hypothesis states, i.e., "high" and "low". Each leaf node has three 
states. For node "Interest", its three states are "low", "medium" and "high". 
For other nodes, the three states are "matched", "unmatched" and "unknown". 
The computation result is a value in [0,1] where 1 is the highest priority score. 

We denote e^ as the k^^ leaf node and Hi as the i^^ hypothesis of the root 
node. Given the evidence from the leaf nodes, assuming conditional indepen­
dence with respect to each Hi, the belief in hypothesis at the root is: P{Hi \ 
e i , e 2 , . . . , e ^ ) = 7 i ' ( ^ i ) n f = i ^ ( e * = | i ? i ) , w h e r e 7 = [ P ( e i , e 2 , . . . , e ^ ) ] - i 
and 7 can be computed using the constraint ^ ^ P ( i 7 ^ | e \ e ^ , . . . , e ^ ) = 1. 
For example, for the hyper alert of FTP Globbing Buffer Overflow attack, we 
get evidence [highy matched, matched, unknown, unknown] from the corre­
sponding leaf nodes, i.e.. Interest, OS, Services/Ports, Applications and User, 
respectively. As Figure 7.1 shows, the root node represents the priority of 
hyper alert. Assume that we have the prior probabilities for the hypotheses 
of the root, i.e., P{Priority = high) = 0.8 and P{Priority = low) = 
0.2, and the following conditional probabilities as defined in the CPT at each 
leaf node, P{Interest = high\Priority = high) = 0.70, P{Interest = 
high\Priority = low) = 0.10, P{OS = matched\Priority = high) = 
0.75, P{OS = matched\Priority = low) = 0.20, P{Services = matched 
\Priority = high) = 0.70, P{Services = matched\Priority = low) = 
0.30, P{Applications = unknown\Priority = high) = 0.15, P{Appli — 
cations = unknown\Priority = low) = 0.15, P{User = unknown\Prio— 
rity = high) = 0.10, P{User = unknown\Priority = low) = 0.10, 
we then can get 7 = 226.3468, therefore, P{Priority — high\Interest — 
matched^ OS — matched^ Service — matched^ Applications = matched^ 
User = unknown) = 0.9959. We regard this probabiUty as the priority score 
of the alert. The current CPTs are predefined based on our experience and 
domain knowledge. 

To calculate the priority of each hyper alert, we compare the dependencies 
of the corresponding attack represented by the hyper alert against the configu­
rations of target networks and hosts. We have a knowledge base in which each 
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hyper alert has been associated with a few fields that indicate its attacking OS, 
services/ports and appHcations. For the alert output from a host-based IDS, 
we will further check if the target user exists in the host configuration. The 
purpose of relevance check is that we can downgrade the importance of some 
alerts that are unrelated to the protected domains. For example, an attacker may 
launch an individual buffer overflow attack against a service blindly, without 
knowing if the service exists. It is quite possible that a signature-based IDS 
outputs the alert once the packet contents match the detection rules even though 
such service does not exist on the protected host. The relevance check on the 
alerts aims to downgrade the impact of such kind of alerts on further correlation 
analysis. The interest of the attack is assigned by the security analyst based 
on the nature of the attack and missions of the target hosts and services in the 
protected domain. 

3. Probabilistic-Based Alert Correlation 
3.1 Motivation 

In practice, we observe that when a host is compromised by an attacker, it 
usually becomes the target of further attacks or a stepping-stone for launching 
attacks against other systems. Therefore, the consequences of an attack on a 
compromised host can be used to reason about a possible matching with the 
goals of another attack. In a series of attacks where the attackers launch earlier 
attacks to prepare for later ones, there are usually strong connections between 
the consequences of the earlier attacks and the prerequisites of the later ones. 
If an earlier attack is to prepare for a later attack, the consequence of the earlier 
attack should at least partly satisfy the prerequisite of the later attack. 

It is possible to address this type of correlation by defining pre- and post­
conditions of individual attacks and applying condition matching. However, it 
is infeasible to enumerate and precisely encode all possible attack consequences 
and goals into pre- and post-conditions. In addition, in practice, an attacker does 
not have to perform early attacks to prepare for a later one, even though the 
later attack has certain prerequisites. For example, an attacker can launch an 
individual buffer overflow attack against a service blindly without knowing if 
the service exists or not. In other words, the prerequisite of an attack should 
not be mistaken for the necessary existence of an earlier attack. A hard-coded 
pre- and post-conditions matching approach cannot handle such cases. 

Having the challenges in mind, we apply probabilistic reasoning to alert cor­
relation by incorporating system indicators of attack consequences and prior 
knowledge of attack transitions. In this section, we discuss how to apply prob­
abilistic reasoning to attack consequences and goals in order to discover the 
subtle relationships between attack steps in an attack scenario. 
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(a) Inference flowchart (b) Bayesian-based correlation model 

Figure 7,2. Probabilistic reasoning model 

3.2 Model Description 
Figure 7.2(a) shows the procedure of correlation inference. Given a stream 

of alerts, evaluators first analyze one or more features of alert pairs and output 
results as evidence to the inference module. The inference module combines 
the individual opinions expressed by the evaluators into a single assessment 
of the correlation by computing and propagating correlation beliefs within the 
inference network. 

In our inference module, we use a Bayesian network [43] as our reasoning 
engine. Bayesian networks are usually used as a principle method to reason 
uncertainty and are capable of leveraging prior expert opinions with the learned 
information from data. A Bayesian network is usually represented as a directed 
acyclic graph (DAG) where each node represents a variable that has a certain set 
of states, and the directed edges represent the causal or dependent relationships 
among the variables. A Bayesian network consists of several parameters, i.e., 
prior probabiHty of parent node's states (i.e., P {parent.state = %)), and a set of 
conditional probability tables (CPT) associated with child nodes. CPT encodes 
the prior knowledge between child node and its parent node. Specifically, an 
entry of the CPT at a child node is defined by CPTij — P{child^state = 
j\parent.state — i). We have more discussions on probability properties of a 
Bayesian network in Section 5.2.1. 

Figure 7.2(b) shows the structure of our Bayesian inference model for pair-
wise correlation. Since we depend on domain knowledge to correlate directly 
related alert pairs, we design a one-level Bayesian network that is good enough 
to perform inference. 

In the inference model, the root node represents the hypothesis that two 
attacks are correlated. Specifically, the root node has two hypothesis states, 
i.e., "high correlation" and "low correlation". Each child node represents a 
type of attack consequences on the host. The evaluator on each child node 
detects the condition matching between the consequences and the necessary 
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conditions of the two alerts being correlated. The evaluation result on each leaf 
node is mapped to a state of the child node. Each child node has three states: 
"matched", "not matched" and "unknown". The state "unknown" handles the 
case that there is no need of condition matching, e.g., some attacks do not 
necessarily have any pre-conditions in order to be launched. The output of 
the inference engine represents the probability or confidence of the correlation 
between two alerts being analyzed (i.e., P{correlation = high\evidence)) 
based on the evidence (e.g., "matched" or "unmatched") provided by the leaf 
nodes. 

The belief computation is conducted by propagating belief messages among 
leaf nodes and the root node. Specifically, we denote e^ as the k^^ leaf node 
and Hi as the i*^ hypothesis of the root node. Given the evidence from the leaf 
nodes, assuming conditional independence with respect to each Hi, the belief in 
hypothesis at the root is: P{Hi | e \ e^ . . . , e^) = ^P{Hi) Y[^^^ P{e^\Hi), 
where 7 = [P(e^, e^ , . . . , e^)]~^ and 7 can be computed using the constraint 
Y^- P{Hi\e^,e^,..., e^) = 1 [43]. Since the belief computation can be per­
formed incrementally instead of being delayed until all the evidence is collected, 
the Bayesian inference engine can also function on partial evidence, and the 
lack of evidence input from an evaluator does not require special treatment. 

As Figure 7.2(b) shows, each leaf node represents an attack consequence on 
the attack victim. 

When reasoning about the correlation between two alerts, we consider broad 
aspects of attack consequences, in particular, (1) Probe or Surveillance: infor­
mation on system or network has been gained by an attacker, e.g., a probing 
attack can get information on open ports. (2) Availability: the system is out of 
service or the service is negatively affected by the attack, e.g., because of a DoS 
attack. (3) Access Violation: an illegal access to a file or data of a system. (4) 
Information Disclosure: the attacker exports (sensitive) data to external site. 
(5) Root Privilege has been obtained by an attacker, for example, by a buffer 
overflow attack. (6) Malicious Concealment: malicious binary codes have been 
installed on the system, e.g., a Trojan horse. (7) Integrity Violation: the file 
on a system has been modified or deleted, violating the security policy. (8) 
Suspicious Connection: a covert channel has been set up by the attack. (9) 
User Privilege has been obtained by the attacker. 

For each attack, it may result in one or more of those impacts on the victim 
host or network. Each attack may also need some pre-conditions prepared 
by prior attack(s) in one or more above fields. Therefore, when correlating 
two alerts, we compare the causal alert candidate's consequences with effected 
alert's pre-conditions in each leaf nodes of Figure 7.2(b). 

Table 7.1 shows the set of predicates that we defined to assess the conse­
quences of attack. Each attack impact shown in Figure 7.2(b) has been associ­
ated with a set of predicates defined in Table 7.1. 
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Table 7.1. Predicates used in impact evaluation 

FailService 

DegradeProcess 

GainUserPrivilege 

GainOSInfo 

SetupCovertChannel 

GainFile 

DegradeService 

ModifyData 

GainRootPrivilege 

InstallMaliciousDaemon 

FailCovertChannel 

AccessSystem 

FailProcess 

DeleteData 

GainServicelnfo 

InstallTrojan 

ExportData 

Leaklnformation 

For example, predicates "FailService" and "DegradeService" represent the 
attack impacts on the availability of the target's service. The definition of 
predicates is a broad template and each predicate can be instantiated to a 
specific consequence instance according to information provided by alerts. 
For example, when a port scan alert is output, its corresponding impact in­
stance is GainServicelnfo.targetlP. For another example, an attack may result 
in compromise of the root privilege and modification of the password file at 
a victim host. The corresponding attack consequence can be represented by 
{GainRootPrivilege.targetIP,ModifiyData,passwordFile}. 

Each alert has also been defined 3,pre-condition(s) using the predicates shown 
in Table 7.1. Like the definition of impact of attack, pre-condition(s) of each 
alert can also be instantiated based on alert specific attributes. Each alert can 
provide the necessary information from its attributes, such as source IP, target 
IP, attack class. 

Correlating two alerts includes the following steps. First, each alert first ini­
tializes its corresponding pre-condition and impact fields. Second, alert pairs 
are checked to see if they comply with certain constraints, e.g., an implicit 
temporal constraint between these two alerts is that alert Ai occurs before alert 
Aj. Third, evaluations are conducted by comparing the causal alert's impacts 
and ejfected alert's pre-conditions on each of the leaf nodes as shown in Fig­
ure 7.2. Fourth, results of evaluations are mapped to the states of leaf nodes, 
i.e., "matched", "unmatched" and "unknown". Finally, an overall probability 
computation is conducted based on the state evidence of each leaf node. 

For example, alert portscan has a consequence defined as GainService­
lnfo.targetlP that is associated with attack consequence Probe or Surveillance 
as shown in Figure 7.2(b). Alert imap buffer overflow has a pre-condition 
as GainServicelnfo.targetlP, where predicate "GainServicelnfo" is associated 
with attack consequence Probe/Surveillance shown in Figure 7.2(b). If portscan 
alert occurs before alert imap buffer overflow and they have the same target IP 
addresses, then their pre- and post-conditions are matched. The corresponding 
state of leaf node Probe/Surveillance in Figure 7.2(b) will be set as "matched". 
The Bayesian-model computes the evidence and outputs the probability or con­
fidence of the correlation of these two alerts. 
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3.3 Parameters in Bayesian Model 
When using a Bayesian model for inference, we need to set two types of 

parameters, i.e., prior probability of root's states and CPT associated with each 
child node. In this section, we describe how we set the parameters used in our 
Bayesian model. 

3.3.1 Parameters in Bayesian Model I: Prior Probability or Estimation 
on Attack Transition. In this section, we describe the attack classes used 
in our work and the prior probability estimation on attack transition, i.e., the 
root states in our model. 

The prior probabiHty of root states (e.g., P{correlation = high)) used in 
the inference engine is set based on the attack class of alerts being correlated. 
It indicates the prior knowledge estimation of the possibiHty that one attack 
class reasonably transits to another one. For example, it is reasonable for us 
to have a higher estimation of the possibility that an exploit attack follows a 
probe than the other way around. We use domain-specific knowledge based 
on prior experience and empirical studies to estimate appropriate probability 
values. Related work [52] also helps us on the probability estimation. 

In our work, we denote the attack classes as the follows. 
CI: Super Privilege Violation, C2: User Privilege Violation. C3: DoS. C4: 

Probe. C5: Access Violation. C6: Integrity Violation. C7: Asset Distress. C8: 
Connection Violation. C9: Malicious Binary Installation. CIO: Exfiltration. 

In alert correlation, the pair of alerts being evaluated in the correlation en­
gine (as shown in Figure 7.2(b)) is only known at run-time. Therefore, we 
cannot use an inference engine with a fixed set of CPT parameters. Instead, 
we set up a set of CPTs based on each pair of attack classes (e.g.. Malicious 
Concealment and DoS). At run-time, when correlating a pair of alerts Ai and 
Aj with respective corresponding attack classes C{Ai) and C{Aj) (e.g., alert 
imap buffer overflow with attack class Super PrivilegeViolation and alert 
illegal file access with attack class Access Violation), the inference engine 
selects the corresponding CPT parameters for the attack classes C{Ai) and 
C{Aj), and computes the overall probability that Aj is "caused" by Ai given 
the evidence from the evaluators, i.e., P{correlation = high\e = evidence). 
An implicit temporal constraint between these two alerts is that alert Ai occurs 
before Aj. In this example, we can interpret the correlation as: the imap buffer 
overflow attack is followed by an illegal access to a file after the attacker gets 
root privileges on the target. Initial values of CPTs are pre-defined based on 
our experience and domain knowledge. 

We have also defined an attack transition table that includes the estimated 
possibility that how reasonably an attack with class Ci (i.e., i^^ column in the 
matrix) may progress to another attack with class Cj (i.e., f^ row in the matrix). 
The table entry is used as the prior probability of the root state in our model. 
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The estimation is based on our prior experience and empirical studies. In the 
process of estimation, we also refer to the related work in [52]. 

3.3.2 Parameters in Bayesian Model II: Adaptive CPT Update. 
Another important parameter in Bayesian model is the CPT associated with 
each node. CPT values associated with each node adapt to new evidence and 
therefore can be updated accordingly. We apply an adaptive algorithm originally 
proposed by [1] and further developed by [9]. The motivation of using adaptive 
Bayesian network is that we want to fine-tune the parameters of the model and 
adapt the model to the evidence to fix the initial CPTs that may be pre-defined 
inappropriately. The intuition of the algorithms proposed by [1] is that we want 
to adapt the new model by updating CPT parameters to fit the new data cases 
while balancing movement away from the current model. 

Specifically, we denote X as a node in a Bayesian network, and let U be the 
parent node of X. X has r states with values of x^, where k = 1,..., r and U 
has q states with values of î -̂, where jf = 1,..., g. An entry of CPT of the node 
X can be denoted as: 9jk = P{X — Xk\U = Uj), Given a set of new data 
cases, denoted as D, D = yi^ .,.,yn, and assuming there is no missing data in 
evidence vector of yu where evidence vector yt represents the evidence at the 
t^^ time, the CPT updating rules are: 

O'jk = v + i^-vW%\ for P{uj\yt) = land P{xf,\yt) = 1.(1,1) 

6% = {1-V)0%\ forP{uj\yt) = landP(xk\yt) = 0. (7.2) 

e^.j^ = ^ ^ - 1 , otherwise. (13) 

rj is the learning rate. The intuition of the above updating rules is that, 
for an entry of CPT, e.g., 9mm we either increase or decrease its value (i.e., 
P(X = Xn\U = Um)) based on the new evidence received. Specifically, given 
the evidence vector yt, if the parent node U is observed in its m*^ state, i.e., 
U = Um, and X is in its n^^ state, i.e., X = Xn, we regard the evidence as 
supporting evidence of the CPT entry 6mn^ We then increase its value (i.e., 
P(X = Xn\U = Um)), which indicates the likelihood that X is in its n*^ state 
given the condition that parent node U is in its m^^ state, as shown in Eq. (7.1). 
By contrast, if node X is not in its n*^ state while its parent node U is in the 
m*^ state, we then regard the evidence as un-supporting evidence of Omn and 
decrease 6mn^ value as shown in Eq. (7.2). We do not change the value of Omn 
if no corresponding evidence is received. The learning rate ry controls the rate 
of convergence of 9. rj equaling 1 yields the fastest convergence, but also yields 
a larger variance. When rj is smaller, the convergence is slower but eventually 
yields a solution to the true CPT parameter [9]. We build our inference model 
based on above updating rules. 
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We also need to point out that the adaptive capability of the inference model 
does not mean that we can ignore the accuracy of initial CPT values. If the initial 
values are set with a large variance to an appropriate value, it will take time for 
the model to converge the CPT values to the appropriate points. Therefore, this 
mechanism works for fine-tuning instead of changing CPT values dramatically. 

For an alert pair, (Ai, Aj), if its correlation value computed by the Bayesian-
based model, denoted as Pbayes^ is larger than a pre-defined threshold, e.g., 
0.5, then we say Bayesian-based correlation engine identifies that alert Aj is 
"caused" by alert Ai. 

3.4 Summary 
Our alert correlation engine using Bayesian network has several advantages. 

First, we can incorporate prior knowledge and expertise by populating the CPTs. 
It is also convenient to introduce partial evidence and find the probability of 
unobserved variables. Second, it is capable of adapting to new evidence and 
knowledge by belief updates through network propagation. Third, the correla­
tion output is probability rather than a binary result from a logical combination. 
We can adjust the correlation engine to have the maximum detection rate or a 
minimum false positive rate by simply adjusting the probability threshold. By 
contrast, it is not directly doable when using a logical combination of pre-/post-
condition matching. Finally, Bayesian networks have been studied extensively 
and successfully applied to many applications such as causal reasoning, diag­
nosis analysis, event correlation in NMS, and anomaly detection in IDS. We 
have confidence that it can be very useful to INFOSEC alert correlation. 

There are also several limitations in our approach. First, our correlation 
engine relies on the underlying security sensors (e.g., IDSs) to provide alerts. 
If the security sensors miss a critical attack that links two stages of a series 
of attacks, the related attack steps may be split into two correlated groups. 
Therefore, we need some other techniques (e.g., attack plan recognition) to link 
isolated alert sets that includes correlated alerts. Second, our approach is based 
on domain knowledge of attack transition patterns. If there are new attack 
transition patterns or two related alerts have no direct causal relationship, our 
approach is not fully effective. Therefore, we need to develop complementary 
correlation techniques (e.g., statistical-based correlation technique) and use 
them along with our Bayesian-based correlation engine. 

4. Statistical-Based Alert Correlation 

4.1 Motivation 
The motivation to develop another complementary correlation mechanism is 

to discover more attack step dependency that the prior correlation engines have 
missed. Our Bayesian-based correlation engine focuses on discovering alert 
pairs with direct causal relationship (i.e., the consequences of an earlier attack 
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consequence satisfy or partially satisfy the prerequisite of a later attack). In 
order to discover attack steps that have indirect dependency but strong statistical 
and temporal patterns, we have developed two correlation engines based on 
statistical and temporal analysis. In this section, we introduce our GCT-based 
correlation engine using Granger Causality Test (OCT) [20]. In Section 5, we 
introduce our correlation mechanism based on causal discovery theory. 

4.2 Time Series Analysis 
Time series analysis aims to identify the nature of a phenomenon represented 

by a sequence of observations. The objective requires the study of patterns of 
the observed time series data. 

There are two main goals of time series analysis: (a) identifying the nature of 
the phenomenon represented by the sequence of observations, and (b) forecast­
ing (predicting future values of the time series variable). Both goals require that 
the pattern of observed time series data is identified and more or less formally 
described. Once the pattern is established, we can interpret and integrate it with 
other techniques to extrapolate future events. 

A time series is an ordered finite set of numerical values of a variable of 
interest along the time axis. It is assumed that the time interval between con­
secutively recorded values is constant. We denote a univariate time series as 
x{k), where fc = 0 , 1 , . . . , iV — 1, and N denotes the number of elements in 
xlk). 

Time series causal analysis deals with analyzing the correlation between 
time series variables and discovering the causal relationships. Causal analysis 
in time series has been widely studied and used in many applications, e.g., 
economy forecasting and stock market analysis. 

Granger Causality Test (GCT) is a time series-based statistical analysis 
method that aims to test if a time series variable X correlates with another 
time series variable Y by performing a statistical hypothesis test. In time se­
ries analysis theory, although there exist some other simple lagged correlation 
analysis, e.g., computing correlation coefficients between two time series vari­
ables, GCT has been proved to be more rigorous. GCT was originally proposed 
and applied in econometrics, it has been widely applied in other areas, such 
as weather analysis (e.g., [32]), automatic control system (e.g., [5, 18]) and 
neurobiology (e.g., [31, 26]). 

Network security is another application in which time series analysis can be 
very useful. In our prior work [3, 2], we have used time series-based causal­
ity analysis for pro-active detection of Distributed-Denial-of-Service (DDoS) 
attacks using MIB II [51] variables. We based our approach on the Granger 
Causality Test (GCT) [20]. Our results showed that the GCT is able to detect the 
"precursor" events, e.g., the communication between Master and Slave hosts, 
without prior knowledge of such communication signatures, on the attacker's 
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network before the victim is completely overwhelmed (e.g., shutdown) at the 
final stage of DDoS. 

In this work, we apply the GCT to INFOSEC alert streams for alert correlation 
and scenario analysis. The intuition is that attack steps that do not have well-
known patterns or obvious relationships may nonetheless have some temporal 
correlations in the alert data. For example, there are one or more alerts for one 
attack only when there are also one or more alerts for another attack within a 
certain time window. We can apply temporal causality analysis to find such 
alerts to identify an attack scenario. We next give some background on the 
GCT. 

4.3 Granger Causality and Granger Causality Test 
The intuition of Granger Causality is that if an event X is the cause of another 

event Y, then the event X should precede the event Y. Formally, the Granger 
Causality Test (GCT) uses statistical functions to test if lagged information on 
a time-series variable x provides any statistically significant information about 
another time-series variable y. If the answer is yes, we say variable x Granger-
causes y. We model variable y by two auto-regression models, namely, the 
Autoregressive Model (AR Model) and the Autoregressive Moving Average 
Model (ARMA Model). The GCT compares the residuals of the AR Model with 
the residuals of the ARMA Model. Specifically, for two time series variables y 
and X with size N, the Autoregressive Model oiy is defined as: 

y{k) = Y,eiy{k-i)-]-eo{k) (7.4) 

The Autoregressive Moving Average Model ofy is defined as: 

p p 

y{k) = Y^aiy(k-i)^Y^ Pix{k - i) + ei {k) (7.5) 
z = l ^ = l 

Here, /? is a particular lag length, and parameters a .̂ Pi and Oi {1 < i < 
p) are computed in the process of solving the Ordinary Least Square (OLS) 
problem (which is to find the parameters of a regression model in order to 
have the minimum estimation error). The residuals of the AR Model is RQ = 
Ylk=i ^o(^)' ^^^ ^^^ residuals of the ARMA Model is Ri = J2k=i ^i(^)-
Here, T =^N -p. 

The AR Model, i.e., Eq.(7.4), represents that the current value of variable 
y is predicted by its past p values. The residuals RQ indicate the total sum of 
squares of error. The ARMA Model, i.e., Eq.(7.5), shows that the current value 
of variable y is predicted by the past p values of both variable y and variable x. 
The residuals R\ represents the sum of squares of prediction error. 
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The Null Hypothesis HQ of GCT is ^o : A = 0, i = 1,2, • • • ,p. That is, 
X does not affect y up to a. delay ofp time units. We denote g as the Granger 
Causality Index (GCI): 

^ Ri/{T-2p-l) yy^ ^ J V / 

Here, F(a, b) is Fisher's F distribution with parameters a and 6 [23]. F-test 
is conducted to verify the validity of the Null Hypothesis. If the value of g 
is larger than a critical value in the F-test, then we reject the Null Hypothesis 
and conclude that x Granger-causes y. Critical values of F-test depends on the 
degree of freedoms and significance value. The critical values can be looked 
up in a mathematic table [24]. 

The intuition of GCI (g) is that it indicates how better variable y can be 
predicted using histories of both variable x and y than using the history of y 
alone. In the ideal condition, the ARMA model precisely predicts variable y 
with residuals i?i = 0, and the GCI value g is infinite. Therefore, the value of 
GCI (g) represents the strength of the causal relationship. We say that variable 
{xi{k)} is more likely to be causally related with {y{k)} than {x2{k)} if 
91 > 92 and both have passed the F-test, where gi,i = 1,2, denotes the GCI 
for the input-output pair (x^, y). 

4.4 Procedure of Data Processing in GCT 
Before applying GCT to data sets, we propose a procedure of data processing. 

In each step, there are multiple possible testing techniques and we chose the 
one that is most commonly used and conveniently implemented. 

Step 1: testing for individual stationary. This step is to statistically test if each 
data set is stationary. A stationary time series means the probability 
distribution is stable during the stochastic process. In this step, we use 
testing technique proposed by Dickey-Fuller [15]. 

Step 2: data transformations. For non-stationary data sets, we can apply trans­
form functions to change a non-stationary time series into a stationary 
one. The most common used transformations are log transformation and 
the differencing transformation. They can be also used together. For ex­
ample, an initial log transformation is followed by first differencing, i.e., 
(1 — L)Log{x{t)) = Log{x{t)) — Log{x{t — 1)), where L represents lag 
operator defined SisLx{t) = x{t — l) 3nd{l — L)x{t) — x{t) — x{t — l). 

Step 3: testing for multivariate independence. This step is to test if two time 
series variables are statistically independent of each other. The available 
test techniques are proposed by Chitturi [8] and Hosking [27]. 
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In practice, we can go through this step and then conduct the GCT for 
the non-independent bivariates. Results of GCT can tell us if they are 
causally related and the causal order or direction. As an alternative, we 
can also skip this step and conduct GCT directly because we can also 
infer the variable relationship from GCT output that can tell if they are 
independent of each other or if there are any causal relationships. 

Step 4: testing for co-integration of data sets. In this step, we can apply mul­
tivariate version of Dickey-Fuller Test or Johansen Test [29] to test the 
existence of co-integration between two time series. Theoretically, GCT 
can be conducted on two co-integrated time series variables. However, 
as Lee et al. [35] empirically pointed out, GCT can result in spurious 
causality when testing co-integrated variables. Therefore, we recom­
mend not to apply GCT on co-integrated time series in order to avoid the 
inaccuracy. 

Step 5: testing Granger Causality. As described in Section 4.3, we conduct the 
statistical hypothesis test with a significance level, e.g., 5% or 1%. 

Step 6: confidence computation. This step is to compute the probability or con­
fidence of correlation. As GCI conforms to F-distribution, i.e., F(p, T — 
2p — 1), therefore, we can compute the corresponding probabiHty as: 
Pgct = CDFF-distribtuion{p,T - 2p - I, GCI), which represents the 
correlation confidence between two variables. 

4.5 Applying GCT to Alert Correlation 
4.5.1 Alert Time Series Formulation. Before applying GCT to alert 
correlation, we need to formulate each hyper alert into a univariate time series. 

Specifically, we set up a series of time slots with equal time interval, denoted 
as tsiou along the time axis. Given a time range T, we have m = T/tgiot time 
slots. Recall that each hyper alert or cluster A include a set of alert instances 
with the same attributes except time stamps, i.e., A = [ai, a2 , . . . , an], where 
ai represents an aggregated alert instance in the cluster, we denote A as the 
corresponding time series variable of hyper alert A. A = {ni,n2, . . . . ,n^}, 
where each value ni represents the number of alert instances of hyper alert A 
occurring within a specific time slot sloU. 

Table 7.2 is an example that shows how we formulate a time series variable 
for each hyper alert. From Table 7.2, we can see that the time variable ̂ ' s value 
equals the number of alert instances of hyper alert A occurring within a time 
slot. 

We currently do not use categorical variables such as port accessed and 
pattern of TCP flags as time series variables in our approach. 
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Table 7,2. An example of alert time series formulation 

Time slot 

sloti 

slot2 

Number of A 's alert instances 

1 

5 

i ' s value 

1 

5 

sloti 

slotm 

9 

0 

9 

0 

4.5.2 GCT-based Alert Correlation. Applying the GCT to alert cor­
relation, the task is to determine which hyper alerts among Ai, A2,..., A/ most 
likely have the causal relationship with hyper alert B (a hyper alert represents a 
sequence of alerts in the same cluster). Based on alert priority value and mission 
goals as described in Section 2.2, the security analyst can specify a hyper alert as 
a target (e.g., alert MstreamJDDOS against a database server) which other alerts 
are correlated with. The GCT algorithm is applied to the corresponding alert 
time series. The formulation of alert time series is described in Section 4.5.1. 

As described in Section 4.5.1, values of a hyper alert's time series (e.g., B) 
represent the number of alert instances occurring within a certain time period. 
Specifically, given a hyper alert 5 , for each hyper alert pair, i.e., (A^, B),i = 
1,2, . . . ,m, we apply GCT to their corresponding time series variables, i.e., 
GCT{Ai, J5). In other words, we are testing the temporal correlation of alert 
instances to determine if Ai has a causal relationship with B. 

As described in Section 4.3, the GCT index (GCI) g returned by the GCT 
function represents the evidence strength of the cause-effect relationship, and 
GCI also conforms to F-distribution. In practice, after performing GCT com­
putation on each pair of alert time series variables (e.g., GCT{Ai,B), i = 
1,2, . . . , m), we record the alert time series variables whose GCI values have 
passed the F-distribution test (e.g., ^ 1 , ^ 5 , ^ 9 ) , then select the corresponding 
hyper alerts (e.g., Ai,A^, Ag) as candidates of causal alerts w.r.t. alert B. We 
rank order the candidate alerts according to their GCI values, then select the top 
m candidate alerts and regard them as being causally related to alert B. These 
candidate relationships can be further inspected by other techniques or security 
analyst based on expertise and domain knowledge. The corresponding attack 
scenario is constructed based on the correlation results. 

In alert correlation, identifying and removing background alerts is an impor­
tant step. We use Ljung-Box [37] test to identify the background alerts. The 
assumption is that background alerts have characteristic of randomness. The 
Ljung-Box algorithm tests for such randomness via autocorrelation plots. The 
Null Hypothesis is that the data is random. The test value is compared with 
critical values to determine if we reject or accept the Null Hypothesis. 
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When applying GCT, one important parameter is the variable p as shown in 
Eq.(7.4) and Eq.(7.5). This parameter represents the number of history values 
(or the length of lagged time window) needed when performing the GCT. ^ 

Given two hyper alerts A and B that have corresponding time series A = 
{ai ,a2, . . . ,a i , . . . ,an} and JB = {fci,&2, •••, ^ j , ••• '̂̂ n} respectively, we want to 
identify if A Granger-causes B or not. As described in Section 4.2, a time series 
variable is under the assumption that the time interval between consecutively 
recorded values is constant. Therefore, the position difference between time 
series instances can be regarded as the time delay between alert instances. 

In our work, We denote the corresponding parameter p as p^^. We set the 
parameter j9^^ as follows. 

DEFINITION 2 Given a time series variable instance di (di G A and di ^ 0) 
and its most adjacent time series instance bj (bj G B, bj ^ 0 and j > i), we 
denote Adij as the adjacent time delay between di and bj, 

^dij =j-i 
We denote dadjacent-time-gap ^^ ^ ^^t Variable that unions all the time delays 

between adjacent time series instances in A and B, 
^adjacent-time-gap ^^ 
where i^j = 1,2, ...,n. 

W e then set p ^ ^ as p^^ = mSix{dadjacent-time.gap}' 

The intuition of the method of setting parameter p is that we want to have a 
time window with an enough length so that we can include all potential causal 
alerts with respect to an effect alert. 

A 

0 1 

R 

^̂ 2 

2 3 

i d2.4 

... 

b 4 

5 

^15.17 
b i 7 

i 

di.j 
bj 

0 1 2 3 4 15 17 • • • i j 

p = m a x { d 2 , 4 , d j 5 , 7 , d i j } 

Figure 7.3. An example of time delay between time series instances 

Figure 7.3 shows an example how we set the parameter p. In the figure, time 
series variable A has 3 non-zero instances at A; = 2,15, i (i.e., 02, ^15, di), time 
series variable B has 3 non-zero instances at A; = 4,17, j (i.e., 64,617, bj). We 
set p as the maximum value of delays between adjacent time series instance as 
shown in Figure 7.3. 
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The main advantage of using statistical causality test such as GCT for alert 
correlation is that the approach does not requirt a priori knowledge about attack 
behaviors and how the attacks could be related. This approach can identify the 
correlation between two attack steps as long as the two have a temporal pattern 
(not necessarily high frequency) when occurring together. We believe that a 
large number of attacks, e.g., worms, have attack steps with such characteristics. 
Thus, we beUeve that causal analysis is a very useful technique. As discussed 
in [3, 2, 4], when there are sufficient training data available, we can use GCT 
off-line to compute and validate very accurate causal relationships from alert 
data. We can then update the knowledge base with these "known" correlations 
for efficient pattern matching in run-time. When GCT is used in real-time and 
finds a new causal relationship, as discussed above, the top m candidates can 
be selected for further analysis by other techniques. 

5. Causal Discovery-Based Alert Correlation 

5.1 Motivation 
Knowledge-based alert correlation system depends on attack transition pat­

terns to correlate security alerts. It has the advantage of efficiency and accuracy. 
However, the signature-based correlation system lacks the capability of detect­
ing the attack transitions whose scenario patterns are unknown. In practice, 
security analysts are more interested in those novel attack strategies that can 
easily evade signature-based correlation analysis and can potentially cause more 
damages due to the lack of knowledge about them. 

Bearing this challenge in mind, we have studied and built a correlation tech­
nique based on statistical analysis. This correlation engine is based on the 
hypothesis that for some attack steps, even though they do not have direct 
causal relationship, they can have statistical dependence patterns. For exam­
ple, a malicious daemon keeps uploading sensitive information to an external 
site and downloading new malicious code updates from the external site. GCT-
based correlation engine as described in Section 4 is an approach to identify 
this type of attack transition patterns. GCT-based correlation technique has the 
strength of identifying the causality direction between alert pairs, however, it 
has the limitation on attack steps that have a weak temporal pattern (e.g., the 
variance of time lags between attack steps is large). In order to identify the 
statistical dependence pattern of alert pairs that have weak temporal relation­
ship, we have developed a correlation mechanism based on causal discovery 
theory [44]. Our goal is to identify new attack transition patterns beyond the 
limitation of domain-knowledge. 

In this section, we introduce and describe our correlation mechanism using 
causal discovery theory. 
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Figure 7,4. An example of a causal network 

5.2 Introduction to Causal Discovery 
Causal discovery has been an active research topic in the fields of artificial 

intelligence (AI) and social science. The goal of causal discovery is to test and 
identify causal relationships among variables under study. Researchers have 
developed and shown that causal Bayesian network can be used to represent the 
causal relationships between variables [44]. 

5.2.1 Causal Bayesian Network. A Bayesian network is usually repre­
sented as a directed acyclic graph (DAG) where each node represents a variable, 
and the directed edges represent the causal or dependent relationships among 
the variables. 

Figure 7.4 shows an example of a causal network adapted from [43]. Here, 
a house alarm may sound as a result of either a burglary or an earthquake. 
An earthquake may also result in a TV news report. Neighbors John or Mary 
may report a call when the alarm sounds. The directed edge represents the 
cause-effect between variables. 

In practice, causal discovery can be regarded as a task of constructing causal 
Bayesian networks from observational data. 

Learning a Bayesian network from data includes two subtasks, i.e., learn­
ing the structure of the Bayesian network and learning the parameters of the 
network. The first subtask learns the causal relationship between variables and 
the second one represents the strength of these dependencies, which are en­
coded in conditional probability tables (CPTs) associated with each child node. 
Specifically, an element of the CPT at a child node is a conditional probability 
defined as CPTij = P{child.state = j\parent.state = i) [43]. Since it is 
relatively straightforward to learn the parameters given observational data and 
a causal network structure, the challenge in causal discovery is the first task, 
i.e., learning the network structure from data sets. 

In the causal discovery theory, the fundamental assumption is causal Markov 
condition. Causal Markov condition means that, in a causal Bayesian network, 
any node is conditionally independent of its non-descendants (i.e., non-effect 
nodes) given its parent nodes (i.e., direct causes) [50]. The independence rela-
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tionships represented by the structure of a causal Bayesian network are given 
by the causal Markov condition. 

The conditional independence properties of a causal network can be deduced 
from the structure of the DAG by the d-separation criterion as defined in [43], 

The structure of a causal network under discovery is a directed acyclic graph 
(DAG) that encodes conditional independencies via the causal Markov assump­
tion. Learning the Bayesian network structure from the data actually is the 
process of identifying the conditional independency among variables. 

5.2.2 Approaches to Causal Discovery. Based on causal Markov as­
sumption, there have been many research work on causal discovery. Generally, 
there are two approaches to discovering causal Bayesian networks. 

One causal discovery approach is based on score functions, e.g., Bayes­
ian computation [10, 16, 25]. Intuitively, this approach computes the prob­
ability that the causal relationship exists among the variables. For each pair 
of variables, a probabilistic computation is conducted to exam the dependence 
or independence between the two variables. In looking for the structures that 
fit for the conditional independence constraints, the approach in [25] makes 
probabilistic inferences about the conditional-independence constraints and the 
goal is to find the Bayesian network structures that have maximum score. 

In [25], the score is defined as the posterior probabilities p(m|D), where 
m corresponds to the causal network models learned from the given data D, 
This Bayesian-based approach can give a quantitative evaluation of causal net­
work structures constructed from data. The goal is to identify a causal network 
structure m(m G m) so tha.tp{m\D) has the maximum value among all other 
causal network structures learned from data D. One challenge to this approach 
is model search and selection. Researchers usually use model selection method 
to select the best fitted model among others (i.e., the one with highest posterior 
probability p{m\D)) or selective model averaging method to average a num­
ber of better fitted models from all models [25]. There are still challenges to 
these two model selection methods, in particular, the accuracy issue [25]. In 
practice, people use some heuristic search algorithms to solve the model se­
lection problems. However, those heuristic search algorithms may not give the 
best causal Bayesian network structures. Some scoring-based algorithms also 
have the issues that the different input ordering of variables can generate very 
different causal network structures. 

Another category of causal discovery mechanism is constraint-based or de­
pendency analysis-based approach (e.g., [6,50]). This category of approaches 
usually apply statistical tests (e.g., x^ test, a statistical test for accepting or 
rejecting an hypothesis [24], and mutual information, a measure of dependency 
between variables [11]) to discovering conditional independence and depen­
dence among variables and use these relationships as constraints to construct a 
Bayesian network. Specifically, for each pair of variables, this approach tests 
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if any dependence exists. If so, an edge will be added between these two vari­
ables accordingly. Further tests will be conducted on each edge to examine if 
the two end-nodes are found to be conditionally independent. If the conditional 
independence is identified, the edge will be removed. The intuition on this 
approach is that a pair of nodes with larger test score (e.g., mutual information 
that measures the dependency between variables) is more likely to represent 
a direct connection (an edge) than a pair with smaller test score, which may 
represent an indirect connection. Search and scoring methods can be applied 
to identifying the directions of edges. 

In our work, we applied constraint-based approach using mutual information 
for conditional independence test [6]. 

In information theory [11], mutual information is defined and used to measure 
the statistical dependence between two random variables. 

DEFINITION 3 For two random variables X and Y with a joint probability 
distribution P{x^y) and marginal probability distributions P{x) and P{y), 
mutual information I{X, Y) is defined as [11] 

HX.Y)=^P(.,y)U^^^ (7.7, 

DEFINITION 4 For three random variables X, Y and Z with a joint probabil­
ity distribution P{x,y^z) and conditional probability distributions P{x^y\z), 
P{x\z) and P{y\z), the conditional mutual information I{X, y\Z) is defined 
as [11] 

/ ( X . y | Z ) = E P ( x , . , . ) . o « j | f e | a _ ,7.8) 

Intuitively, mutual information / ( X , Y) measures the information of X that 
is shared by Y. If X and Y are independent, then X contains no information 
about Y and vice versa, so their mutual information is zero. If X and Y are 
dependent, knowing the value of one variable can give us some information 
about the value of the other. In building the causal Bayesian network, we can 
apply mutual information to test if two variables are dependent and evaluate the 
strength of corresponding dependence. 

Similarly, conditional mutual information I{X, Y\Z) is used to test if two 
variables (i.e., X and Y) are dependent given the condition variable Z. 

In theory, we claim X and Y are independent when I{X, Y) = 0 given 
the actual distributions of corresponding variables. In practice, given a data 
set D, we use empirical instead of theoretic distributions of variables when 
computing mutual information. Therefore, the normal practice is usually to set 
up a small threshold e and claim X and Y are independent when / (A, B) < e. 
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Similarly, we declare X and Y are conditionally independent given Z when 
I{X,Y\Z)<e. 

The intuition of applying mutual information to causal discovery is that when 
two variables have a strong statistical dependency pattern, mutual information 
can detect it. The causality direction is determined by the conditional mutual 
information measure under the assumption that, in a causal network, two cause 
nodes are independent with each other, but conditionally dependent with each 
other given a common effect node. Specifically, based on mutual informa­
tion measure, if we have identified variable A, B are mutually independent 
(i.e., / (A, B) < e), and are dependent with C respectively (i.e., / (A, C) > e, 
I{B^C) > e), and if we have also identified variable A and B are condi­
tionally dependent given C based on conditional mutual information measure 
(i.e., / (A, B\C) > e), then we can determine that A, B are causes to C, i.e., 
{A —> C, 5 —> C}. Such structure is called V-structure [25]. Such deter­
mination intuitively satisfies the notion of causaHty because when an effect 
is determined (i.e., given C), the increasing confidence on cause A reduces 
the belief that B causes C. In our example of Figure 7.4, we have seen such 
cause-effect pattern among Earthquake, Burglary and Alarm, 

In our work, we did not to select the score function-based approach (e.g., 
[25]) because that approach usually requires prior knowledge (e.g., prior prob­
ability) of causal network models in the model construction, model comparison 
and final model selection. According to our experience it is difficult to get 
such prior knowledge in the security application. In fact, our goal is to identify 
novel attack transition patterns that can be totally unknown in the past. In [6], 
the researchers have developed algorithms to avoid complex conditional inde­
pendence tests based on mutual information divergence. The enhanced test 
algorithms have eliminated the need for an exponential number of conditional 
independence tests that is an issue in earlier constraint-based algorithms. 

5,3 Applying Causal Discovery Analysis to Alert 
Correlation 

Before we apply causal-discovery approach to alert correlation, raw alerts 
need to get aggregated and clustered into hyper alerts as described in Section 2.1 
so that we can investigate the statistical patterns between alerts. 

After the above process, we formulate transaction data for each hyper alert. 
Specifically, we set up a series of time slots with equal time interval, denoted 
as tsiou along the time axis. Given a time range T, we have m = T/tsiot 
time slots. Recall that each hyper alert A includes a set of alert instances with 
the same attributes except time stamps, i.e., A = [ai, a 2 , . . . , an], where â  
represents an alert instance in the cluster. We denote NA = {ni, n2,..., rim} as 
the variable to represent the occurrence of hyper alert A during the time range 
T, where n^ is corresponding to the occurrence (i.e., n^ = 1) or un-occurrence 
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(i.e., rii = 0) of the alert A in a specific time slot sloU, In other words, if there 
is one or more instances of alert A (e.g., a) occurring in the time slot sloU, then 
rii — 1; otherwise, Ui = 0. 

Using the above process, we can create a set of transaction data and input 
them to the causal discovery engine for analysis. Table 7.3 shows an example of 
the transaction data corresponding to hyper alert A, B and C. The correlation 
engine will output the causal network model based on transaction data set. 

Table 73. An example of transaction data set 

Time slot 

5/0^1 

sloi2 

AlertA 

1 

0 

AlertB 

0 

0 

Alertc 

1 

1 

sloti 

Slotm 

1 

0 

0 

0 

0 

1 

Algorithm 1 shows the steps to apply causal discovery theory to correlating 
alerts. In step 1, we apply mutual information measure to identify alerts with 
strong statistical dependence. In step 2, we identify alert triplets that have a 
V-structure (i.e., X —> Z, y —> Z, as described in Section 5.2). The causality 
directions in a V-structure triplets are determined by the conditional mutual 
information measure under the assumption that, in a causal network, two cause 
nodes are respectively dependent with a common effect node. These two cause 
nodes are mutually independent with each other, but conditionally dependent 
with each other given a common effect node. In step 3, for the partially directed 
alert triplets, since Afyi and A]^ are not directly connected, it means Afd and 
Ak are mutually independent (otherwise they should have been connected in 
step 1). The causality direction between An and Ak is tested based on the 
causal Markov assumption (i.e., in a causal network, a node X is independent 
to other nodes (except its direct effect node) given X's direct cause). Therefore, 
if Am and Ak are also conditionally independent given An, we can identify the 
causality direction between An and Ak (i.e.. An -> Ak). Otherwise, ifAm and 
Ak are conditionally dependent given An, the triplet has a v-structure, then Ak 
is the parent node of An (i.e., Ak —> An). 

Figure 7.5 shows an example of the causal network model among alert A, 
B and C of which A and B are two causal alerts of C, As described in Sec­
tion 5.2.1, in a causal network, each non-root node is associated with a condi­
tional probability table (CPT) that shows the strength of the causal relationship 
between the node and its parent node. Table 7.4 shows the CPT entries asso­
ciated with alert C in which " 1 " represents the occurrence of the alert and "0" 
represents the nonoccurrence. Among the CPT entries as shown in Table 7.4, 
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Algorithm 1 Alert correlation using causal discovery theory 

1. For each alert pair Ai, Aj 
if Ai and Aj are dependent using mutual information measure, i.e., 
I{Ai, Aj) > e, where e is a small threshold, then 

Connect Ai and Aj directly. 
end if 
2. For any three alerts Am, An, Ak that have the connection pattern that Am 
and Aji, An and Ak are directly connected, and Am and A^ are not directly 
connected (i.e.. Am — An — Ak) 
if Am and Ak are conditionally dependent given An using conditional mutual 
information measure, i.e., I{Am, Ak\An) > e then 

Let Am be the parent node of An, and Ak be the parent node of An, 
respectively, (i.e.. Am —> An and Ak —> An)-

end if 
3. For any three alerts Am,An,Ak that have a partially directed pattern 
(Am —^ An — Ak), i.e., Am is a parent node of An, An and Ak are directly 
connected (edge {An, Ak) is not oriented), and Am is not directly connected 
with Ak 
if Am and A^ are conditionally independent given An, i.e., /(A^n,, Ak \An) < 
e, then 

Let An be the parent node of Ak, i.e., A^ —> A/.. 
else if i4^ and Ak are conditionally dependent given An, i.e., 
/(A^,A/c|A^) > e,then 

Let Ak be the parent node of An, i.e., Ak —> A^. 
end if 
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Figure 7.5. An example of the causal network model of alert A, B and C 

Table 7.4. An example of CPT associated with node C 

c = o 
C = l 

AB = 0 

Pi 

P5 

AB = 01 

V2 

P6 

AB = 10 

P3 

V7 

AB= 11 

P4 

P8 

we are more interested in PQ and p^. The value of PQ represent the probabil­
ity of the occurrence of alert C given that alert B has already occurred, i.e., 
PQ = P{C — 1\B — 1). Similarly, the entry of pr shows the dependency of 
alert C to the causal alert A, i.e., pj = P{C = 1\A = 1). In practice, we 
can regard PQ and p7 as the likelihood of attack step transition from attack B to 
attack C and from attack A to attack C, respectively. 

Given the transaction data, computing the CPT entries is more straightfor­
ward. For example, the value of pe can be empirically computed as P(C = 
1|JB = 1) = ^ ""J^f^^f^^^K We can also apply the algorithm of adaptive CPT 
updates as described in Section 3.3.2 to update the parameters. 

6. Integration of Three Correlation Engines 

6.1 The Integration Process of Three Correlation Engines 
Our three correlation engines are built on different techniques and focus on 

different correlation aspects. Bayesian-based correlation engine is analogous 
to an extension of pattern matching-based detection. Causal discovery theory-
based correlation mechanism investigates statistical pattern of attack step oc­
currences to identify causal relationship between alerts. GCT-based correlation 
engine focuses on temporal pattern of attacks to discover new attack transition 
patterns. 

The rationale of our integration process in alert correlation is analogous to 
intrusion detection where security analysts usually first SLpply pattern-based de­
tection, then anomaly detection to cover the attack space that pattern-matching 
method cannot discover. 

In practice, we integrate and apply the three correlation mechanisms with 
the following steps. 
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First, we apply Bayesian-based correlation engine on target hyper alerts. 
Target alerts are hyper alerts with high priorities computed by the alert priority 
computation module as described in Section 2.2. Thus, they should be the main 
interests in the correlation analysis to correlate with all the other hyper alerts. 
The goal of this step is to correlate alerts that have direct relationship based on 
prior knowledge of attack step transitions. The result of this step can be a set 
of isolated correlation graphs. For those alert pairs that have not got any causal 
relationship, we leave them to be processed in the next step. 

Second, for those uncorrelated alert pairs, we run causal discovery-based 
correlation engine to correlate them. The goal of this step is to discover more 
correlation between alerts that have not been identified in the prior step. 

Third, for each alert pair that has not established any cause-effect relationship 
from prior correlation engines, we apply GCT to it. That is, GCT is used 
to correlate alerts that have strong temporal relationship and link the isolated 
correlation results together. 

Figure 7.6 shows an example of our integration process. For example, we 
have 8 hyper alerts, denoted as Ai, A2, A3, A4, As, Ae, A7, As. Assuming we 
have identified alert A2 and A5 as target alerts and we want to identify causal 
alerts w.r.t. A2 and A5 respectively. After applying Bayesian-based corre­
lation engine, i.e., the first step of correlation, we have got two groups of 
correlated alerts, i.e., {Ai —> ^ 2 , ^ 3 —> A2} and {A4 —> A.5}, as shown 
by solid lines in Figure 7.6. We then apply causal discovery algorithm to the 
rest isolated alerts that have not been correlated with A2 and A5 respectively. 
In particular, we check if causal relationship exists between alerts {^1,^5}, 
{^2,^5}, {^3,^5}, {^6,^5}, {Ay, As}, {Ag^As}, {A4,A2}, {A5,A2}, 
{Ae, A2}, {A7,A2} and {Ag, A2}. Assuming after this step, we have got 
3 more causal-related alert pairs, i.e., {A3 -^ A5}, {Ae —> A2}, {A4 —> A2} 
as represented by dotted lines in the figure. We finally apply GCT to check if the 
rest isolated alert pairs {Ai^As}, {A2,A5}, {A^^Ar,], {Aj^Ar,}, {A^,A^], 
{A4, A2}, {A5, A2} and {As, A2} have the causality w.r.t. A5 and A2 respec­
tively. Figure 7.6 shows that GCT identifies the causality of {A7 -> A2} and 
{As —> A5} as shown by the dashed fine. 

6.2 Probability/Confidence Integration 
In Section 3.2, we introduced our Bayesian-based correlation engine that 

outputs the correlation probability or confidence of two alerts, denoted as Ptayes-
In practice, we have a threshold t, and when Pbayes is over the threshold t, 
we say the corresponding alert pair has a causal relationship identified by the 
Bayesian-based correlation engine. 

As described in Section 5.3, the CPT associated with each child node in a 
causal network shows the strength of relationship between the child node and its 
parent node. Particularly, one CPT entry (i.e., P(c/iiMnode = l\parentnode = 
1) can be interpreted as the probability of attack transition from parent node 
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Figure 7.6. An example of integration process. The solid line represents a correlation identified 
by Bayesian-based correlation engine. The dotted line shows the causal relationship found by 
causal discovery-based correlation engine. The dashed line represents a new correlation specified 
by GCT-based correlation engine. 

(attack) to child node (attack), e.g., the PQ or py in Table 7.4. We denote such 
attack transition probability as Pcausai-disccwery^ 

As discussed in Section 4.3, GCT Index (GCI) represents the strength of cor­
relation between two alerts being correlated. It conforms to F-distribution with 
parameters ofp and Â  — 3p — 1, where p is the number of history values of the 
time series variable used in the GCT computation, and N is the size of the time 
series variable. Therefore, for any two correlated alerts identified by GCT-based 
correlation engine, we can compute the corresponding F-distribution probabil­
ity values, i.e., Pgd = CDFp^distribution{p, N - 3p - I, GCI), where CDF 
represents the cumulative distribution function. Pgct represents the probabil­
ity/confidence of correlation between two alerts. 

When integrating the three correlation engines, we can adjust the confidence 
output from GCT-based engine as: 

Pgct.final = {Pgct - t) ^ U) + t (7.9) 

In Eq. (7.9), t is the threshold defined in Bayesian-based correlation engine, 
and cj is a weight value that is determined based on prior experience and per­
formance measurements of the two correlation engines. The adjusted value of 
Pgct.final IS in the range of [0, t + e], where e is a small positive number. The 
intuition of this adjustment is that we want to downgrade the output of GCT-
based correlation engine a little because it is based on temporal analysis that is 
less accurate than the domain-knowledge-based Bayesian correlation engine. 

Therefore, for a correlated alert pair, e.g., (A ,̂ Aj), we can have a probabil­
ity or confidence of its correlation (i.e., attack transition from Ai to Aj) com­
puted by Bayesian correlation engine (i.e., Pbayes)^ causal discovery algorithm 
(i.e., Pcausai^discovery) OX GCT-bascd Correlation mechanism (i.e., Pgct.finai) 
depending on which correlation engine identifies the causal relationship. 
We denote the probability of alert correlation (or attack transition) as 
•F^carrelationK-^i-) -^jjf l'C«> 
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-^correlationy-^i^-^j) — \ 

Pb. >ayes •> 

causal-discovery) 

gct-finah 

if causality found by Bayesian 
-based correlation engine 

if causality found by causal 
discovery-based correlation 
engine 

if causality found by GCT 
based correlation engine 

We also note that two different approaches have been proposed to integrate 
isolated correlation graphs. Ning [40] et al. apply graph theory to measure and 
merge similar correlation graphs. In [41], Ning et al. link isolated correlation 
graphs based on attack pre-/post-conditions. Our approach is different from 
their work in that our integration method is based on the correlation probability 
evaluated by our three complementary correlation engines instead of graph or 
pre- /post-condition-based merging algorithms. 

6.3 Attack Transition Table Updates 
Statistical and temporal-based alert correlation has the advantages of dis­

covering attack transition steps without depending on prior domain knowledge. 
However, compared with pattern-matching correlation techniques, it is has rel­
atively high positive false rate and the computation cost is also relatively high. 

In practice, we periodically incorporate newly discovered attack transition 
patterns into our domain knowledge so that we can use our Bayesian -based 
correlation engine to analyze and correlate alerts efficiently. Also based on new 
analysis results and data sets, we update the attack transition table as described 
in Section 3.3.1. 

Denote 9 as an original entry in the attack transition table, 6' as the corre­
sponding new value computed based on new analysis results and data after a 
regular period T, the current table update policy is that we do not update the 
table entry until the new value 6 has varied from ^ by a certain percentage f3, 
e.g., 5%. 

6.4 Attack Strategy Analysis 
Attack strategy analysis is an important component in a correlation system. 

It can provides security analysts an aggregated information about what has 
happened and what is happening to the protected IT infrastructure. 

Having correlated alert pairs output by correlation engines, we can con­
struct attack scenarios represented by correlation graph to represent the attack 
strategies. A correlation graph is defined as a directed graph where each edge 
Eij represents a causal relationship from alert Ai to Aj, Alerts with causal 
relationship compose the nodes in the scenario graph. We denote the node 



140 Discovering Novel Attack Strategies from INFO SEC Alerts 

Figure 7.7. An example of correlation graph 

corresponding to the causal alert as cause node, and the node corresponding 
to the effected alert as effect node. A threshold t is pre-defined and alert Aj 
is considered to be caused by alert Ai only when Pcorreiationi^i^ ^j) > i- In 
constructing scenario graphs, we only include the correlated alert pairs whose 
Pcarreiation valucs are over the threshold t. 

In a correlation graph, each edge is associated with a correlation probability 
(i.e., Pcarreiation) from causc nodc to effect node, which can be also regarded 
as the probability of attack step transition. Having such information, we can 
perform quantitative analysis on the attack strategies. In a correlation graph, 
each path is potentially a subsequence of an attack scenario and can be seen 
as a Markov chain [17, 49]. Having the probabiHty associated with each edge, 
for any two nodes in the graph that are connected by multiple paths, we can 
compute the overall probability of each path [49]. 

In the example of Figure 7.7, nodes Ai and A4 have to paths to connect each 
other. Assuming the conditional independence of A4 and Ai, we can compute 
the overall probability of each path, e.g., P(Ai,A2,A4) = P{A^\A2)P{A2\Ai) 

We then rank order and select the path(s) with the highest overall correlation 
probability as the most likely sequence(s) connecting two nodes. 

Combining all the probability along each edge, we can also compute an 
overall probability of two nodes connected with multiple paths. For example, 
in the Figure 7.7, P{Ai to A4} = 1 — (1 — pi * P2)(l — Ps * PA)-

7. Experiments and Performance Evaluation 

7.1 The Grand Challenge Problem (GCP) 
To evaluate the effectiveness of our alert correlation mechanisms, we applied 

our correlation algorithms to the data sets of the Grand Challenge Problem 
(GCP) version 3.1 provided by DARPA's Cyber Panel program [13,22]. In this 
section, we describe and report our experiment results. 

GCP version 3.1 is an attack scenario simulator. It can simulate the behavior 
of security sensors and generate alert streams. GCP 3.1 includes two innova­
tive worm attack scenarios to specifically evaluate alert correlation techniques. 
In GCP, multiple heterogeneous security systems, e.g., network-based IDSs, 
host-based IDSs, firewalls, and network management systems, are deployed in 
several network enclaves. Therefore, GCP alerts are from both security sys­
tems and network management system. In addition to the complicated attack 
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scenarios, the GCP data sets also include many background alerts that make 
alert correlation and attack strategy detection more challenging. GCP alerts 
are in the Intrusion Detection Message Exchange Format (IDMEF) defined by 
IETF [21]. 

According to the GCP documents that include detailed configurations of 
protected networks and systems, we established a configuration database. In­
formation on mission goals enables us to identify the servers of interest and 
assign interest score to corresponding alerts targeting at the important hosts. 
The alert priority is computed based on our model described in Section 2.2. 

To better understand the effectiveness of our correlation system, we have 
defined two performance measures, true positive correlation rate and false 
positive correlation rate. 

(7.10) 

(7.11) 

True positive correlation rate 
_ tt of correctly correlated alert pairs 

jl of related alert pairs 
and 

False positive correlation rate 
jl of incorrectly correlated alert pairs 

tt of correlated alert pairs 

In Eq.(7.10), related alert pairs represents the alerts that have cause-effect 
relationship. In Eq.(7.11), correlated alert pairs refer to the correlation result 
output by a correlation system. 

True positive correlation rate examines the completeness of alert correlation 
techniques. It measures the percentage of related alert pairs that a correlation 
system can identify. It is analogous to true positive rate or detection rate 
commonly used in intrusion detection. 

False positive correlation rate measures the soundness of an alert correlation 
system. It examines how correctly the alerts are correlated. It is analogous to 
false positive rate used in intrusion detection. 

In our experiments, we refer to the documents with the ground truth to de­
termine the correctness of the alert correlation. Scenario graph is constructed 
based on alerts that have causal relationship identified by our correlation en­
gines. 

In formulating hyper alert time series, we set the unit time slot to 60 seconds. 
In the GCP, the entire time range is 5 days. Therefore, each hyper alert A, 
its corresponding time series variable A has a size of 7,200 instances, i.e., 
A = {do^di^ '"^cii^i^^}' 

1.1 A GCP Scenario I. In the GCP Scenario I, there are multiple network 
enclaves in which attacks are conducted separately. The attack scenario in each 
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network enclave is almost same. We select a network enclave as an example to 
show the correlation process. 

The procedure of alert correlation is shown as follows. 
First, alert aggregation. We conducted raw alert aggregation and clustering 

in order to have aggregated hyper alerts. In scenario I, there are a little more 
than 25,000 low-level raw alerts output by heterogeneous security devices in all 
enclaves. After alert fusion and clustering, we have around 2,300 hyper alerts. 
In our example network enclave, there are 370 hyper alerts after low-level alert 
aggregation. 

Second, alert noise detection. We applied the Ljung-Box statistical test [37] 
with significance level a = 0.05 to all hyper alerts in order to identify back­
ground alerts. In scenario I, we identified 255 hyper alerts as background 
alerts using this mechanism. Most of background alerts are "HTTP_Cookie" 
and "HTTP_Posts". Therefore, we have 115 non-noise hyper alerts for further 
analysis. 

Third, alert prioritization. The next step is to select the alerts with high 
priority values as the target alerts. The priority computation is described in 
Section 2.2. In this step, we set the threshold /3 = 0.6. Alerts with priority 
scores above /? were regarded as important alerts and were selected as target 
alerts of which we had much interest. In this step, we identified 15 hyper alerts 
whose priority values are above the threshold 

Fourth, alert correlation. When applying correlation algorithms, we cor­
related each target alert with all other non-background alerts (i.e., the back­
ground alerts identified by the Ljung-Box test are excluded.). As described in 
Section 6.1, we have three steps in correlating alerts. First, we applied Bayesian-
based correlation engine on hyper alerts and discover the correlated alert pairs. 
Figure 7.8 shows the correlation results related to the hyper alerts that we iden­
tified as most interested alerts. Second, we applied causal discovery-based 
correlation engine to alerts that have not been identified to be correlated with 
others in the first step. Third, we appHed GCT-based correlation algorithm to 
further correlate alert pairs which have not been correlated after prior two steps. 
Figure 7.9 shows the correlation results after the three-step correlation process. 
The dotted line in Figure 7.8 and Figure 7.9 represent false positive correlation. 
The correlation probability or confidence of each alert-pair is associated with 
the edge in the correlation graph. In Eq. (7.9), u equals 0.3 and t equals 0.6. 

Fifth, attack path analysis. As discussed in Section 6.4, for any two nodes 
in the correlation graph that are connected on multiple paths, we can compute 
the probability of attack transition along each path, then rank and select the one 
with highest overall value. For example, from node DBJ^TP.GlobbingAttack 
to node DBJNewClient in the graph shown in Figure 7.9, there are 6 paths that 
connect these two nodes. Based on the probabiHty or confidence associated on 
the edge, we can compute the value of each path and rank the order. 
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Figure 7.8. The GCP scenario I: The correlation graph discovered by Bayesian-based approach. 

For example, the overall confidence for the attack path DB.FTP.Glob-
bingAttack—> Loki-^ DB-NewClient is: 

P{DB.FTP.Globbing.AUack, Loki, DBMewClient) 
= P{DB.FTP.GlobhingA.Uack) * P{Loki\DB.FTP.GlobbingA.ttack) 
^P{DB.NewClient\Loki) 
= P{DB.FTP.Globbing.Attack) * 0.7 * 0.72 
= plDB.FTP.GlobbingA.ttack) * 0.5 

Table 7.5 shows the ordered multi-paths according to the corresponding path 
values. From the table, we can see that it is more confident to say that the attacker 
is more likely to launch FTP Globbing Attack against the Database Server, then 
New Client attack from the Database Server that denotes a suspicious connection 
to an external site (e.g., set up a covert channel). 

Sixth, attack strategy analysis. In this phase, we performed attack strat­
egy analysis by abstracting the scenario graphs. Instead of using hyper alerts 
representing each node, we used the corresponding attack class (e.g., DoS and 
Access Violation) to abstractly present attack strategies. While analyzing attack 
strategy, we focused on each target and abstracted the attacks against the target. 
Figure 7.10(a) shows the high-level attack strategy on the Plan Server extracted 
from attack scenario graphs shown in Figure 7.9. From Figure 7.10(a), we can 
see that the attacker uses a covert channel (indicated by Connection Violation) 
to export data and import malicious code to root the Plan Server. The attacker 
accesses to the data stored on the Plan Server (indicated by Access Violation) 
to steal the data, then export the information. The activity of Surveillance has 
impacted the server on the performance (indicated by Asset Distress), Fig­
ure 7.10(b) shows the attack strategy on the Database Server. It is easy to see 
that the attacker launches an exploit attack against the Database Server in order 
to get root access. Then the attacker sets up a covert channel, accesses data and 
exports the data. The mutual loop pattern between attack classes Connection 
Violation, Access Violation and Exfiltration indicates the attack continuously 
accesses file, exports data and downloads the mahcious code. 
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umjm) 

Figure 7.9. The GCP scenario I: The correlation graph discovered by the integrated approach. 

Table 7.5. Ranking of paths from node DB FTP Globbing Attack to node DB NewClient. 
P = P{DB FTP Globbing Attack) 

Order Nodes Along the Path Score 

Path 1 DB FTP Globbing Attack-^DB NewClient P*0.62 

Path2 DB FTP Globbing Attack->Loki-»DB NewClient P*0.50 

Path3 DB FTP Globbing Attack->DB NewClient Target-^DB NewClient P*0.47 

Path4 DB FTP Globbing Attack->DB IllegalFileAccess-^DB NewClient P*0.45 

Paths DB FTP Globbing Attack-^DB NewClient Target-»Loki 
-^DB NewClient P*0.31 

Path6 DB FTP Globbing Attack->DB NewClient Target-^ 
DB IllegalFileAccess -> DB NewClient P*0.23 

7.1.2 Discussion on GCP Scenario I. Applying our integrated cor­
relation mechanism can discover more attack step relationships than using a 
single approach. Figure 7.8 shows that when we apply Bayesian-based ap­
proach alone, we can only discover partial attack step relationships. The rea­
son is that the Bayesian-based correlation engine relies on domain knowledge 
to correlate alerts. Therefore, it is only capable of discovering the direct at-
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(a) GCP scenario I: attack strategy (b) GCP scenario I: attack 
on Plan Server strategy on Database Server 

Figure 7,10. GCP I: Attack strategy graph 

tack step transitions, e.g., attack MailJRootShareMounted followed by attack 
MailJllegalFileAccess. When the alert relationship is new or has not been 
encoded into the correlation engine, such relationship cannot be detected. Fig­
ure 7.9 shows that we can discover more attack relationships after applying 
causal discovery-based and GCT-based correlation methods. Using comple­
mentary correlation engines enable us to link isolated correlation graphs output 
by Bayesian-correlation engine. The reason is that our statistical and temporal-
based correlation mechanisms correlate attack steps based on the analysis of 
statistical and temporal patterns between attack steps. For example, the loop 
pattern of attack transitions among attack DBJVewClient, DBJllegalFileAccess 
and Loki, This correlation engine does not rely on prior knowledge. By incor­
porating the three correlation engines, in this experiment, we can improve the 
true positive correlation rate from 95.06% (when using GCT-based correlation 
engine alone [46]) to 97.53%. False positive correlation rate is decreased from 
12.6% (when using GCT-based correlation engine alone [46]) to 6.89%. 

Our correlation approach can also correlate non-security alerts, e.g., alerts 
from network management system (NMS), to detect attack strategy. Although 
NMS alerts cannot directly tell us what attacks are unfolding or what damages 
have occurred, they can provide us some useful information about the state of 
system and network health. So we can use them in detecting attack strategy. 
In this scenario, NMS outputs alert PlanJiostStatus indicating that the Plan 
Server's CPU is overloaded. Applying our GCT-based and Bayesian-based 
correlation algorithms, we can correlate the alert PlanJiostStatus with alert 
PlanJ^ewClient (i.e., suspicious connection) and PlanJ^ICJPromiscuous (i.e., 
traffic surveillance). 



146 Discovering Novel Attack Strategies from INFO SEC Alerts 

7.2 GCP Scenario II 
In GCP scenario II, there are around 22,500 raw alerts. We went through the 

same process steps as described in Section 7.1.1 to analyze and correlate alerts. 
After alert aggregation and clustering, we got 1,800 hyper alerts. We also 

use the same network enclave used in Section 7.1.1 as an example to show our 
results in the GCP Scenario II. 

In this network enclave, there are a total of 387 hyper alerts. Applying the 
Ljung-Box test to the hyper alerts, we identify 273 hyper alerts as the background 
alerts. In calculating the priority of hyper alerts, there are 9 hyper alerts whose 
priority values are above the threshold /3 = 0.6, meaning that we have more 
interest in these alerts than others. 

As described in Section 6.1, we apply three correlation engines sequentially 
to the alert data to identify the alert relationship. For example, we select two 
alerts, PlanJServiceJStatusJDown and Plan-HostJStatusJ)own, as target alerts, 
then apply the GCT algorithm to correlating other alerts with them. 

Table 7,6. Alert Correlation by the GCT on the GCP Scenario II: Target Alert: Plan Service 
Status Down 

Alerti 

PIan_Registry-Modified 

HTTP Java 

HTTP_Shells 

Target Alert 

Plan_Service_Status_Down 

Plan_Service_Status_Down 

Plan_Service_Status_Down 

GCT Index 

20.18 

17.35 

16.28 

Table 7.7. Alert Correlation by the GCT on the GCP Scenario II: Target Alert: Plan Server 
Status Down 

Alerti 

HTTP Java 

PlanJ^egistry-Modified 

Plan_Service_Status_Down 

HTTPJ^obotsTxt 

Target Alert 

Plan_Server_Status_Down 

Plan_Server_Status_Down 

Plan_Server_Status_Down 

Plan_Server_Status_Down 

GCT Index 

7.73 

7.63 

6.78 

1.67 

Table 7.6 and Table 7.7 show the corresponding GCT correlation results. In 
the tables, we list alerts whose GCI values have passed the F-test. The alerts 
PlanJHfostJStatus and PlanJServiceJStatus are issued by a network management 
system deployed on the network. 

Figure 7.11 shows the correlation graph of Plan Server. The solid lines in­
dicate the correct alert relationship while dotted lines represent false positive 
correlation. Figure 7.11 shows that PlanJRegistryModified is causally related 
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Figure 7.11. The GCP Scenario II: Correlation graph of the plan server 

to alerts Plan^ervice Status Down and Plan^erver 
JStatusDown, The GCP document verifies such relationship. The attacker 
launched IIS-Unicode Attack and IISJBujfer.Ove-rflow attack against the Plan 
Server in order to traversal the root directory and access the plan server to install 
the malicious executable code. The Plan Server's registry file is modified (alert 
Plan-Registry Modified) and the service is down (alert PlanService Status) 
during the daemon installation. Alert Plan Jiost Status Down indicates the 
"down" state of the plan server resulted from the reboot initiated by the mali­
cious daemon. Plan server's states are affected by the activities of the malicious 
daemon installed on it. The ground truth described in the GCP document also 
supports the causal relationships discovered by our approach. In this experi­
ment, the true positive correlation rate is 94.25% (vs. 93.15% using GCT-engine 
alone [46]) and false positive correlation rate is 8.92% (vs. 13.92% using GCT-
engine alone [46]). 

Table 7.8. Ranking of paths from node IIS Buffer Overflow to node Plan Server Status Down. 
P = P{IIS.Buffer-Overflow) 

Order Nodes Along the Path Score 

Path 1 IIS_Buffer_Overflow -> PlanJlegistry_Modified 
-> Plan_Server_StatusJDown P* 0.61 

Path 2 IIS_Buffer_Overflow -^ Plan-RegistryJvlodified 
Plan_Service_Status.Down P*0.49 

For nodes with multiple paths in the correlation graph, we can also per­
form path analysis quantitatively. For example, there are two paths connect­
ing node IIS-Bujfev-Overflow and node PlanServerStatusDown as shown in 
Figure 7.11. We can rank these two paths according to score of the overall 
likeHhood, as shown in Table 7.8. 
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7.2.1 Discussion on GCP Scenario II. Similar to our analysis in GCP 
Scenario I, our integrated correlation engine enables us to detect more cause-
effect relationship between alerts. For example, in Figure 7.11, if using know­
ledge-based correlation engine, we can only detect the causal relationship be­
tween alerts IISJBujfer.Overflow and Plan^egistryModified, as well as be­
tween alerts IIS-Unicode Attack and Plan-Registry Modified, With comple­
mentary temporal-based GCT alert correlation engine, we can detect other 
cause-effect relationship among alerts. For example, GCT-based correlation 
engine detected causahty between a security alert {Q.%,,Plan.Registry-Modified) 
and an alert output by the network management system (e.g., PlanJServerJStatus 
-Down). In practice, it is difficult to detect such causality between security ac­
tivity and network management fault using a knowledge-based correlation ap­
proach, unless such knowledge has been priory incorporated to the knowledge 
base. 

Compared with GCP Scenario I, GCP Scenario II is more challenging due 
to the nature of the attack. Our correlation result in the GCP Scenario II is not 
comprehensive enough to cover the complete attack scenarios. By comparing 
the alert streams with the GCP document, we notice that many malicious ac­
tivities in the GCP Scenario II are not detected by the IDSs and other security 
sensors. Therefore, some intermediate attack steps are missed, which is another 
challenge in GCP Scenario II. 

Our approach depends on alert data for correlation and scenario analysis. 
When there is a lack of alerts corresponding to the intermediate attack steps, 
we cannot construct the complete attack scenario. In practice, IDSs or other 
security sensors can miss some attack activities. One solution is to apply attack 
plan recognition techniques that can partially link isolated attack correlation 
graphs resulted from missing alerts. 

7.3 Discussion on Statistical and Temporal Correlation 
Engines 

In our alert correlation system, we have designed three correlation engines. 
The Bayesian-based correlation aims to discover alerts that have direct causal 
relationship. Specifically, this correlation engine uses predicates to represent 
attack prerequisite and consequence, applies probabilistic reasoning to eval­
uating the property of preparation-for relationship between alerts. It applies 
time constraints to testing if the alert pair candidate conforms to the property of 
sequential relationship (i.e., causal alert appears before effect alert), and uses 
the pre-defined probability table of attack step transitions to evaluate the prop­
erty of statistical one-way dependence (i.e., the probability that an effect alert 
occurs when a causal alert occurs) between alerts under correlation. Alert pairs 
that have matched these three properties are identified as having direct causal 
relationship. 
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In order to discover alerts that have no known direct causal relationship, we 
have also developed two statistical and temporal-based correlation models to 
discover novel and new attack transition patterns. The development of these 
two correlation techniques is based on the hypothesis that attack steps can still 
exhibit statistical dependency patterns (i.e., the third property of cause-effect 
alerts) or temporal patterns even though they do not have an obvious or known 
preparation-for relationship. Therefore, these two correlation engines aim to 
discover correlated alerts based on statistical dependency analysis and tempo­
ral pattern analysis with sequential time constraints. More formally, these two 
engines actually perform correlation analysis instead of a direct causaUty anal­
ysis because the preparation-for relationship between alerts are either indirect 
or unknown. 

In theory, causality is a subset of correlation [24], which means that a causally 
related alert pair is also correlated, however, the reverse statement is not neces­
sarily true. Therefore, the correlation output is actually a super set of correlated 
alerts that can include the causally related alert pairs as well as some corre­
lated but non-causally related alerts. Our goal is to apply these two correlation 
engines to identifying the correlated alerts that have strong statistical dependen­
cies and temporal patterns, and also conform to the sequential time constraint 
property. We present these correlated alert candidates to the security analysts 
for further analysis. 

As an extra experiment, we applied GCP data sets to causal discovery-based 
correlation engine and GCT-based correlation engine only in order to test if 
the output of these two correlation engines can include the causally related 
alert pairs identified by Bayesian-based correlation engine. Our experiment 
results have shown that the correlated alerts identified by causal discovery-
based correlation engine and GCT-based correlation engine have included those 
causally related alerts discovered by Bayesian-based correlation engine. In 
practice, we still use Bayesian-based correlation engine to identify causally 
related alerts in order to decrease the false positive correlation rate. 

However, it does not necessarily mean that those two correlation engines (i.e., 
casual-discovery and GCT-based engines) can discover all the correlated alerts 
that have strong statistical and temporal patterns because of their limitations. 

As described in Section 5.2, causal discovery-based correlation engine as­
sumes that causality between variables can be represented by a causal Bayesian 
network that has a DAG structure. The statistical dependency between variables 
can be measured, for example, by mutual information. As described in Algo­
rithm 1, causality direction among variables are identified by the assumption 
of causal Markov condition (i.e., a node X is independent with other nodes 
(except its direct effect nodes) given X's direct cause node) and the properties 
of V-structure as described in Section 5.2.2. 

Due to the assumptions and properties used by causal discovery theory, in the 
process of alert correlation, the causal discovery-based correlation engine can 
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result in cases that the causality direction cannot be identified among dependent 
alerts. 

For example, for three variables A, B and C, after applying mutual infor­
mation measures, we have got a dependency structure as A — 5 — C, which 
means A and B, B and C are mutually dependent respectively, A and C are 
mutually independent. If we apply conditional mutual information measure 
to A, B and C and get the result that A and C are conditionally independent 
given the variable B, then, without any other information, the causal discovery-
based correlation engine actually cannot identify the causahty among these 
three variables. In fact, with the above statistical dependency information, we 
can have the following three different causality structures, i.e., A -^ B -^ C, 
A <r- B <r- C and A <r- B —> C. These three causahty structures have the same 
statistical dependency properties if no other information has been provided or 
extra causality has been identified (e.g., AovBorC has some dependency with 
another variable D, etc.). For the simplest dependency structure, i.e., A — B, 
without any extra information, causal discovery-based algorithm cannot iden­
tify the causality direction between A and B either. 

By contrast, GCT-based correlation engine performs pairwise statistical de­
pendency analysis and identify corresponding pairwise dependency direction. 
However, GCT-based correlation algorithm also incorporates the temporal in­
formation in the process of correlation. In particular, the GCT-correlation en­
gine has the limitation of identifying correlated alert pairs whose time intervals 
have a loose temporal pattern (i.e., the variance of their time intervals has a 
large value) even though they may have a strong statistical dependency pattern. 

In summary, considering the strength and limitations of causal discovery 
based and GCT-based correlation engines, from the perspective of statistical 
dependency and temporal pattern analysis, we can have a good correlation per­
formance in identifying alerts that have a strong statistical dependency and 
strong temporal pattern because these two correlation engines can complement 
and enhance each other in this correlation space. If alerts that have a strong 
statistical dependency pattern but a loose temporal pattern, the correlation per­
formance may be weak because GCT-based correlation engine has limitations in 
the loose temporal pattern space and causal discovery-based correlation engine 
also has its own limitations in the causality identification. 

8. Related Work 
Recently, there have been several proposed techniques of alert correlation 

and attack scenario analysis. 
Valdes and Skinner [52] proposed probabilistic-based approach to correlate 

security alerts by measuring and evaluating the similarities of alert attributes. 
In particular, the correlation process includes two phases. The first phase ag­
gregates low-level events using the concept of attack threads. The second phase 
uses a similarity metric to fuse alerts into meta-alerts to provide a higher-level 
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view of the security state of the system. Alert aggregation and scenario con­
struction are conducted by enhancing or relaxing the similarity requirements in 
some attribute fields. 

Porras et al. designed a "mission-impact-based" correlation system with 
a focus on the attack impacts on the protected domains [45]. The work is 
an extension to the prior system proposed in [52], The system uses clustering 
algorithms to aggregate and correlate alerts. Security incidents are ranked based 
on the security interests and the relevance of attack to the protected networks 
and systems. 

Some correlation research work are based on pre-defined attack scenarios or 
association between mission goals and security events. Goldman et al. [19] built 
a correlation system based on Bayesian reasoning. The system predefines the 
causal relationship between mission goals and corresponding security events 
as a knowledge base. The inference engine relies on the causal relationship 
library to investigate security alerts and perform alert correlation. 

Debar and Wespi [14] applied backward and forward reasoning techniques 
to correlate alerts. Two alert relationships were defined, i.e., duplicate and 
consequence. In a correlation process, backward-reasoning looks for duplicates 
of an alert, and forward-reasoning determines if there are any consequences 
of an alert. They used clustering algorithms to detect attack scenarios and 
situations. This approach pre-defines consequences of attacks in a configuration 
file. 

Kriigel et al. [34] proposed a distributed pattern matching scheme based on 
an attack specification language that describes various attack scenario patterns. 
Alert analysis and correlation are based on the pattern matching scheme. 

Morin and Debar [38] applied chronicles formalism to aggregating and cor­
relating alerts. Chronicles provide a high level language to describe the attack 
scenarios based on time information. Chronicles formalism approach has been 
used in many areas to monitor dynamic systems. The approach performs at­
tack scenario pattern recognition based on known malicious event sequences. 
Therefore, this approach is analogous to misuse intrusion detection. 

Ning et al. [39], Cuppens and Miege [12] and Cheung et al. [7] built alert 
correlation systems based on matching the pre- and post-conditions of indi­
vidual alerts. The idea of this approach is that prior attack steps prepare for 
later ones. Therefore, the consequences of earlier attacks correspond to the 
prerequisites of later attacks. The correlation engine searches alert pairs that 
have a consequence and prerequisite matching. In addition to the alert pre- and 
post-condition matching, the approach in [12] also has a number of phases 
including alert clustering, alert merging, and intention recognition. In the first 
two phases, alerts are clustered and merged using a similarity function. The 
intention recognition phase is referenced in their model, but has not been im­
plemented. Having the correlation result, the approach in [39] further builds 
correlation graphs based on correlated alert pairs [39]. Recently, Ning et al. [41 ] 
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have extended the pre- and post-condition-based correlation technique to cor­
relate some isolated attack scenarios by hypothesizing missed attack steps. 

In the field of network management, alert or event correlation has been 
an active research topic and a subject of numerous scientific publications for 
over 10 years. The objective of alert correlation in a network management 
system (NMS) is to localize the faults occurred in communication systems. 
The problem of alert correlation in NMS is also referred as root cause analysis. 
During the past 10 more years, many solutions have been proposed, e.g., case-
based systems [36], model-based approaches [42, 28] and code book-based 
technique [33]. The techniques are derived from different areas of computer 
science including artificial intelligence (AI), graph theory, neural networks, 
information theory, and automata theory. 

Most of the proposed approaches have limited capabilities because they rely 
on various forms of predefined knowledge of attacks or attack transition pat­
terns using attack modeling language or pre- and post-conditions of individual 
attacks. Therefore, those approaches cannot recognize a correlation when an 
attack is new or the relationship between attacks is new. In other words, these 
approaches in principle are similar to misuse detection techniques, which use 
the "signatures" of known attacks to perform pattern matching and cannot detect 
new attacks. It is obvious that the number of possible correlations is very large, 
potentially a combinatorial of the number of known and new attacks. It is in-
feasible to know a priori and encode all possible matching conditions between 
attacks. In practice, the more dangerous and intelligent adversaries will always 
invent new attacks and novel attack sequences. Therefore, we must develop 
significantly better alert correlation algorithms that can discover sophisticated 
and new attack sequences. 

In the network management system (NMS), most event correlation tech­
niques also depend on various knowledge of underlying networks and the rela­
tionship among faults and corresponding alerts. In addition, in an NMS, event 
correlation focuses more on alerts resulted from network faults that often have 
fixed patterns. Therefore, modeling-based or rule-based techniques are mostly 
appUed in various correlation systems. Whereas in security, alerts are more di­
verse and unpredictable because the attackers are intelligent and can use flexible 
strategies. Therefore, it is difficult to apply correlation techniques developed 
in network management system to the analysis of security alerts. 

Our approach aims to address the challenge of how to detect novel attack 
strategies that can consist of a series of unknown patterns of attack transitions. 
In alert correlation techniques, our approach differs from other work in the 
following aspects. Our approach integrates three complementary correlation 
engines to discover attack scenario patterns. It includes both knowledge-based 
correlation mechanisms and statistical and temporal-based correlation methods. 

We apply a Bayesian-based correlation engine to the attack steps that are 
directly related, e.g., a prior attack enables the later one. Our Bayesian-based 
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correlation engine differs from previous work in that we incorporate knowledge 
of attack step transitions as a constraint when conducting probabilistic inference. 
The correlation engine performs the inference about the correlation based on 
broad indicators of attack impacts without using the strict hard-coded pre-/post-
condition matching. 

In addition to domain knowledge-based correlation engine, we have devel­
oped two statistical and temporal-based correlation engines. The first one ap­
plies causal discovery theory to alert analysis and correlation. This approach 
identifies alert relationship based on statistical analysis of attack dependence. 
Having observed that many attack steps in a complicated attack strategy of­
ten have a strong temporal relationship, we have developed a correlation en­
gine using temporal analysis. In particular, we applied Granger-Causality Test 
technique to discovering attack steps that have strong temporal and statistical 
patterns. 

These two statistical and temporal-based correlation techniques differ from 
other related work in that they do not rely on prior knowledge of attack strategies 
or pre- and post-conditions of individual attacks. Therefore, these two statistical 
and temporal-based approaches can be used to discover new attack strategies 
that can have unknown attack transition patterns. To the best of our knowledge, 
our approach is the first approach that detects new attack strategies without 
relying on pre-defined knowledge base. 

Our integrated approach also provides a quantitative analysis of the likelihood 
of various attack paths. With the aggregated correlation results, security analysts 
can perform further analysis and make inferences about high-level attack plans. 

9. Conclusion and Future Work 
In this paper, we have described an integrated alert correlation system de­

signed to analyze INFOSEC alerts and detect novel attack strategies. 
To meet the needs of detecting novel attack strategies, we have developed an 

integrated correlation system based on three complementary correlation tech­
niques. Our correlation techniques are developed based on three hypotheses of 
attack step transitions. (1) The first hypothesis is that some attack steps have 
directly related connection, i.e., a prepare-for relationship. For this type of at­
tack steps, we have developed a Bayesian-based correlation engine. It identifies 
alert causal relationship with a broad range of indicators of attack impacts. This 
correlation engine can also relax the strict hard-coded pre- and post-condition 
matching and handle the partial input evidence. (2) The second hypothesis is 
that some attack steps have statistical dependence patterns. We have developed 
and presented a statistical-based correlation engine based on causal discovery 
theory. (3) The third hypothesis is that attack steps have temporal patterns in 
their time intervals. For this type of attack relationship, we have built a correla­
tion engine based on the Granger Causality Test. The major benefit provided by 
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statistical and temporal correlation engines is that they can discover new attack 
transition patterns without relying on the domain knowledge. 

We also described how to perform attack scenarios analysis by constructing 
correlation graphs based on correlation results. A quantitative analysis of attack 
strategy is conducted using the outputs of our integrated correlation engines. 
Attack strategies are analyzed using correlation graphs. 

Finally, we have validated our correlation approach using DARPA Grand 
Challenge Problem (GCP) data set. The results have shown that our approach 
can effectively discover novel attack strategies with high accuracy. 

In our future work, we will continue to study alert correlation with a focus 
on attack plan recognition and prediction. 
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