

Data Warehousing and
Data Mining Techniques for

Cyber Security

Advances in Information Security

Sushil Jajodia
Consulting Editor

Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444
email: jajodia @smu. edu

The goals of the Springer International Series on ADVANCES IN INFORMATION
SECURITY are, one, to establish the state of the art of, and set the course for future research
in information security and, two, to serve as a central reference source for advanced and
timely topics in information security research and development. The scope of this series
includes all aspects of computer and network security and related areas such as fault tolerance
and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in scope
or that contain more detailed background information than can be accommodated in shorter
survey articles. The series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

Additional titles in the series:
SECURE LOCALIZATION AND TIME SYNCHRONIZATION FOR WIRELESS
SENSOR AND AD HOC NETWORKS edited by Radha Poovendran, Cliff Wang, and Sumit
Roy; ISBN: 0-387-32721-5
PRESERVING PRIVACY IN ON-LINE ANALYTICAL PROCESSING (OLAP) by Lingyu
Wang, Sushil Jajodia and Duminda Wijesekera; ISBN: 978-0-387-46273-8
SECURITY FOR WIRELESS SENSOR NETWORKS by Donggang Liu and Peng Ning;
ISBN: 978-0-387-32723-5
MALWARE DETECTION edited by Somesh Jha, Cliff Wang, Mihai Christodorescu, Dawn
Song, and Douglas Maughan; ISBN: 978-0-387-32720-4
ELECTRONIC POSTAGE SYSTEMS: Technology, Security, Economics by Gerrit
Bleumer; ISBN: 978-0-387-29313-2
MULTIVARIATE PUBLIC KEY CRYPTOSYSTEMS by Jintai Ding, Jason E. Gower and
Dieter Schmidt; ISBN-13: 978-0-378-32229-2
UNDERSTANDING INTRUSION DETECTION THROUGH VISUALIZATION by
Stefan Axelsson; ISBN-10: 0-387-27634-3
QUALITY OF PROTECTION: Security Measurements and Metrics by Dieter Gollmann,
Fabio Massacci and Artsiom Yautsiukhin; ISBN-10: 0-387-29016-8
COMPUTER VIRUSES AND MALWARE by John Aycock; ISBN-10: 0-387-30236-0
HOP INTEGRITY IN THE INTERNET by Chin-Tser Huang and Mohamed G. Gouda;
ISBN-10: 0-387-22426-3
CRYPTOGRAPHICS: Exploiting Graphics Cards For Security by Debra Cook and
Angelos Keromytis; ISBN: 0-387-34189-7

Additional information about this series can M obtained from
http://www.springer.com

Data Warehousing and
Data Mining Techniques for

Cyber Security

by

Anoop Singhal
NIST, Computer Security Division

USA

Springer

Anoop Singhal
NIST, Computer Security Division
National Institute of Standards and Tech
Gaithersburg MD 20899
psinghal@nist.gov

Library of Congress Control Number: 2006934579

Data Warehousing and Data Mining Techniques for Cyber Security
by Anoop Singhal

ISBN-10: 0-387-26409-4
ISBN-13: 978-0-387-26409-7
e-ISBN-10: 0-387-47653-9
e-ISBN-13: 978-0-387-47653-7

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

PREFACE

The fast growing, tremendous amount of data, collected and stored in
large databases has far exceeded our human ability to comprehend it without
proper tools. There is a critical need of data analysis systems that can
automatically analyze the data, summarize it and predict future trends. Data
warehousing and data mining provide techniques for collecting information
from distributed databases and then performing data analysis.

In the modem age of Internet connectivity, concerns about denial of
service attacks, computer viruses and worms have become very important.
There are a number of challenges in dealing with cyber security. First, the
amount of data generated from monitoring devices is so large that it is
humanly impossible to analyze it. Second, the importance of cyber security
to safeguard the country's Critical Infrastructures requires new techniques to
detect attacks and discover the vulnerabilities. The focus of this book is to
provide information about how data warehousing and data mining
techniques can be used to improve cyber security.

OBJECTIVES

The objective of this book is to contribute to the discipline of Security
Informatics. It provides a discussion on topics that intersect the area of
Cyber Security and Data Mining. Many of you want to study this topic:
College and University students, computer professionals, IT managers and
users of computer systems. The book will provide the depth and breadth that
most readers want to learn about techniques to improve cyber security.

INTENDED AUDIENCE

What background should you have to appreciate this book? Someone
who has an advanced undergraduate or graduate degree in computer science
certainly has that background. We also provide enough background material
in the preliminary chapters so that the reader can follow the concepts
described in the later chapters.

PLAN OF THE BOOK

Chapter 1: Introduction to Data Warehousing and Data Mining

This chapter introduces the concepts and basic vocabulary of data
warehousing and data mining.

Chapter 2: Introduction to Cyber Security

This chapter discusses the basic concepts of security in networks, denial of
service attacks, network security controls, computer virus and worms

Chapter 3: Intrusion Detection Systems

This chapter provides an overview of the state of art in Intrusion Detection
Systems and their shortcomings.

Chapter 4: Data Mining for Intrusion Detection

It shows how data mining techniques can be applied to Intrusion Detection.
It gives a survey of different research projects in this area and possible
directions for future research.

Chapter 5: Data Modeling and Data Warehousing to Improve IDS

This chapter demonstrates how a multidimensional data model can be used
to do network security analysis and detect denial of service attacks. These
techniques have been implemented in a prototype system that is being
successfully used at Army Research Labs. This system has helped the
security analyst in detecting intrusions and in historical data analysis for
generating reports on trend analysis.

Chapter 6: MINDS: Architecture and Design

It provides an overview of the Minnesota Intrusion Detection System
(MINDS) that uses a set of data mining techniques to address different
aspects of cyber security.

Chapter 7: Discovering Novel Strategies from INFOSEC Alerts

This chapter discusses an advanced correlation system that can reduce alarm
redundancy and provide information on attack scenarios and high level
attack strategies for large networks.

ACKNOWLEDGEMENTS

This book is the result of hard work by many people. First, I would like
to thank Prof. Vipin Kumar and Prof. Wenke Lee for contributing two
chapters in this book. I would also like to thank Melissa, Susan and Sharon
of Springer for their continuous support through out this project. It is also
my pleasure to thank George Mason University, Army Research Labs and
National Institute of Standards and Technology (NIST) for supporting my
research on cyber security.

Authors are products of their environment. I had good education and I
think it is important to pass it along to others. I would like to thank my
parents for providing me good education and the inspiration to write this
book.

-Anoop Singhal

T A B L E O F C O N T E N T S

Chapter 1: An Overview of Data Warehouse, OLAP and
Data Mining Technology 1
l.Motivationfor a Data Warehouse 1
2.A Multidimensional Data Model 3
3.Data Warehouse Architecture 6
4. Data Warehouse Implementation 6

4.1 Indexing of OLAP Data 7
4.2 Metadata Repository 8
4.3 Data Warehouse Back-end Tools 8
4.4 Views and Data Warehouse 10

5.Commercial Data Warehouse Tools 11
6.FromData Warehousing to Data Mining 11

6.1 Data Mining Techniques 12
6.2 Research Issues in Data Mining 14
6.3 Applications of Data Mining 14
6.4 Commercial Tools for Data Mining 15

7.Data Analysis Applications for NetworkyWeb Services 16
7.1 Open Research Problems in Data Warehouse 19
7.2 Current Research in Data Warehouse 21

8.Conclusions 22

Chapter 2: Network and System Security 25
1. Viruses and Related Threats 26

1.1 Types of Viruses 27
1.2 Macro Viruses 27
1.3 E-mail Viruses 27
1.4 Worms 28
1.5 The Morris Worm 28
1.6 Recent Worm Attacks 28
1.7 Virus Counter Measures 29

2. Principles of Network Security 30
2.1 Types of Networks and Topologies 30
2.2 Network Topologies 31

3.Threats in Networks 31
4.Denial of Service Attacks 33

4.1 Distributed Denial of Service Attacks 34
4.2 Denial of Service Defense Mechanisms 34

5.Network Security Controls 36
6. Firewalls 38

6.1 What they are 38

6.2 How do they work 39
6.3 Limitations of Firewalls 40

7.Basics of Intrusion Detection Systems 40
8. Conclusions 41

Chapter 3: Intrusion Detection Systems 43
l.Classification of Intrusion Detection Systems 44
2.Intrusion Detection Architecture 48
3.IDS Products 49

3.1 Research Products 49
3.2 Commercial Products 50
3.3 Public Domain Tools 51
3.4 Government Off-the Shelf (GOTS) Products 53

4. Types of Computer Attacks Commonly Detected by IDS 53
4.1 Scanning Attacks 53
4.2 Denial of Service Attacks 54
4.3 Penetration Attacks 55

5.Significant Gaps and Future Directions for IDS 55
6. Conclusions 57

Chapter 4: Data Mining for Intrusion Detection 59
1. Introduction 59
2.Data Mining for Intrusion Detection 60

2.1 Adam 60
2.2 Madam ID 63
2.3 Minds 64
2.4 Clustering of Unlabeled ID 65
2.5 Alert Correlation 65

3.Conclusions and Future Research Directions 66

Chapter 5: Data Modeling and Data Warehousing Techniques
to Improve Intrusion Detection 69
1. Introduction 69
2. Background 70
3.Research Gaps 72
4.A Data Architecture for IDS 73
5. Conclusions 80

Chapter 6: MINDS - Architecture & Design 83
1. MINDS- Minnesota Intrusion Detection System 84
2. Anomaly Detection 86
3. Summarization 90

4. Profiling Network Traffic Using Clustering 93
5. Scan Detection 97
6. Conclusions 105
7. Acknowledgements 105

Chapter 7: Discovering Novel Attack Strategies from
INFOSEC Alerts 109
1. Introduction 110
2. Alert Aggregation and Prioritization 112
3. Probabilistic Based Alert Correlation 116
4. Statistical Based Correlation 122
5. Causal Discovery Based Alert Correlation 129
6. Integration of three Correlation Engines 136
7. Experiments and Performance Evaluation 140
8. Related Work 150
9. Conclusion and Future Work 153

Index 159

Chapter 1

AN OVERVIEW OF DATA WAREHOUSE, OLAP
AND DATA MINING TECHNOLOGY

Anoop Singhal

Abstract: In this chapter, a summary of Data Warehousing, OLAP and Data Mining
Technology is provided. The technology to build Data Analysis Application
for NetworkAVeb services is also described

Key words: STAR Schema, Indexing, Association Analysis, Clustering

1. MOTIVATION FOR A DATA WAREHOUSE

Data warehousing (DW) encompasses algorithms and tools for bringing
together data from distributed information repositories into a single
repository that can be suitable for data analysis [13]. Recent progress in
scientific and engineering applications has accumulated huge volumes of
data. The fast growing, tremendous amount of data, collected and stored in
large databases has far exceeded our human ability to comprehend it without
proper tools. It is estimated that the total database size for a retail store chain
such as Walmart will exceed 1 Petabyte (IK Terabyte) by 2005. Similarly,
the scope, coverage and volume of digital geographic data sets and
multidimensional data has grown rapidly in recent years. These data sets
include digital data of all sorts created and disseminated by government and
private agencies on land use, climate data and vast amounts of data acquired
through remote sensing systems and other monitoring devices [16], [18]. It is
estimated that multimedia data is growing at about 70% per year. Therefore,
there is a critical need of data analysis systems that can automatically

2 Anoop Singhal

analyze the data, to summarize it and predict future trends. Data
warehousing is a necessary technology for collecting information from
distributed databases and then performing data analysis [1], [2], [3], and [4].

Data warehousing is an enabling technology for data analysis
applications in the area of retail, finance, telecommunicationAVeb services
and bio-informatics. For example, a retail store chain such as Walmart is
interested in integrating data from its inventory database, sales database from
different stores in different locations, and its promotions from various
departments. The store chain executives could then 1) determine how sales
trend differ across regions of the country 2) correlate its inventory with
current sales and ensure that each store's inventory is replaced to keep up
with the sales 3) analyze which promotions are leading to increases product
sales. Data warehousing can also be used in telecommunicationAVeb
services applications for collecting the usage information and then identify
usage patterns, catch fraudulent activities, make better use of resources and
improve the quality of service. In the area of bio-informatics, the integration
of distributed genome databases becomes an important task for systematic
and coordinated analysis of DNA databases. Data warehousing techniques
will help in integration of genetic data and construction of data warehouses
for genetic data analysis. Therefore, analytical processing that involves
complex data analysis (usually termed as decision support) is one of the
primary uses of data warehouses [14].

The commercial benefit of Data Warehousing is to provide tools for
business executives to systematically organize, understand and use the data
for strategic decisions. In this paper, we motivate the concept of a data
warehouse, provide a general architecture of data warehouse and data mining
systems, discuss some of the research issues and provide information on
commercial systems and tools that are available in the market.

Some of the key features of a data warehouse (DW) are as follows.

1. Subject Oriented: The data in a data warehouse is organized around
major subjects such as customer, supplier and sales. It focuses on
modeling data for decision making.

2. Integration: It is constructed by integrating multiple heterogeneous
sources such as RDBMS, flat files and OLTP records.

3. Time Variant: Data is stored to provide information from a historical
perspective.

An Overview of Data Warehouse, OLAP and Data Mining

The data warehouse is physically separate from the OLTP databases
due to the following reasons:

1. Application databases are 3NF optimized for transaction response time
and throughput. OLAP databases are market oriented and optimized for
data analysis by managers and executives.

2. OLTP systems focus on current data without referring to historical data.
OLAP deals with historical data, originating from multiple organizations.

3. The access pattern for OLTP applications consists of short, atomic
transactions where as OLAP applications are primarily read only
transactions that perform complex queries.

These characteristics differentiate data warehouse applications from
OLTP applications and they require different DBMS design and
implementation techniques. Clearly, running data analysis queries over
globally distributed databases is likely to be excruciatingly slow. The
natural solution is to create a centralized repository of all data i.e. a data
warehouse. Therefore, the desire to do data analysis and data mining is a
strong motivation for building a data warehouse.

This chapter is organized as follows. Section 2 discusses the multi­
dimensional data model and section 3 discusses the data warehouse
architecture. Section 4 discusses the implementation techniques and section
5 presents commercial tools available to implement data warehouse systems.
Section 6 discusses the concepts of Data Mining and applications of data
mining. Section 7 presents a Data Analysis Application using Data
Warehousing technology that the authors designed and implemented for
AT&T Business Services. This section also discusses some open research
problems in this area. Finally section 8 provides the conclusions.

2. A MULTIDIMENSIONAL DATA MODEL

Data Warehouse uses a data model that is based on a multidimensional
data model. This model is also known as a data cube which allows data to
be modeled and viewed in multiple dimensions. Dimensions are the different
perspectives for an entity that an organization is interested in. For example, a

4 Anoop Singhal

store will create a sales data warehouse in order to keep track of the store'
sales with respect to different dimensions such as time, branch, and location.
"Sales" is an example of a central theme around which the data model is
organized. This central theme is also referred as di fact table. Facts are
numerical measures and they can be thought of as quantities by which we
want to analyze relationships between dimensions. Examples of facts are
dollars_sold, units_jold and so on. ThQfact table contains the names of the
facts as well as keys to each of the related dimension tables.

The entity-relationship data model is commonly used in the design of
relational databases. However, such a schema is not appropriate for a data
warehouse. A data warehouse requires a concise, subject oriented schema
that facilitates on-line data analysis. The most popular data model for a data
warehouse is a multidimensional model. Such a model can exist in the form
of a star schema. The star schema consists of the following.
1. A large central table (fact table) containing the bulk of data.
2. A set of smaller dimension tables one for each dimension.

OrderNo
OrderDate

CustNo
CustNa

OrderNo
CustNo
ProdNo
DateKey

ProdNo
ProdName

Date Key
Day, Month
Year

Figure 1: A Star Schema

An Overview of Data Warehouse, OLAP and Data Mining

The schema resembles a star, with the dimension tables displayed in a
radial pattern around the central fact table. An example of a sales table and
the corresponding star schema is shown in the figure 1. For each dimension,
the set of associated values can be structured as a hierarchy. For example,
cities belong to states and states belong to countries. Similarly, dates belong
to weeks that belong to months and quarters/years. The hierarchies are
shown in figure 2.

country years

state quarters

city

months

days

Figure 2: Concept Hierarchy

In data warehousing, there is a distinction between a data warehouse and a
data mart. A data warehouse collects information about subjects that span
the entire organization such as customers, items, sales and personnel.
Therefore, the scope of a data warehouse is enterprise wide. A data mart on
the other hand is a subset of the data warehouse that focuses on selected
subjects and is therefore limited in size. For example, there can be a data
mart for sales information another data mart for inventory information.

6 Anoop Singhal

3. DATA WAREHOUSE ARCHITECTURE

Figure 3 shows the architecture of a Data Warehouse system. Data
warehouses often use three tier architecture.
1. The first level is a warehouse database server that is a relational database

system. Data from operational databases and other external sources is
extracted, transformed and loaded into the database server.

2. Middle tier is an OLAP server that is implemented using one of the
following two methods. The first method is to use a relational OLAP
model that is an extension of RDBMS technology. The second method is
to use a multidimensional OLAP model that uses a special purpose server
to implement the multidimensional data model and operations.

3. Top tier is a client which contains querying, reporting and analysis tools.

Monitoring & Administration

r ^ i 1
Metadata Repository

OLAP Server

External Sources

Operational
dbs

SQQ
Data Marts

Figure 3: Architecture of a Data Warehouse System

DATA WAREHOUSE IMPLEMENTATION

Data warehouses contain huge volumes of data. Users demand that
decision support queries be answered in the order of seconds. Therefore, it is

An Overview of Data Warehouse, OLAP and Data Mining 7

critical for data warehouse systems to support highly efficient cube
computation techniques and query processing techniques. At the core of
multidimensional analysis is the efficient computation of aggregations across
many sets of dimensions. These aggregations are referred to as group-by.
Some examples of "group-by" are
1. Compute the sum of sales, grouping by item and city.
2. Compute the sum of sales, grouping by item.

Another use of aggregation is to summarize at different levels of a
dimension hierarchy. If we are given total sales per city, we can aggregate on
the location dimension to obtain sales per state. This operation is called roll-
up in the OLAP literature. The inverse of roll-up is drill-down: given total
sales by state, we can ask for a more detailed presentation by drilling down
on location. Another common operation is pivoting. Consider a tabular
presentation of Sales information. If we pivot it on the Location and Time
dimensions, we obtain a table of total sales for each location for each time
value. The time dimension is very important for OLAP. Typical queries are
• Find total sales by month
• Find total sales by month for each city
• Find the percentage change in total monthly sales

The OLAP framework makes it convenient to implement a broad class of
queries. It also gives the following catchy names:
• Slicing: a data set amounts to an equality selection on one or more

dimensions
• Dicing: a data set amounts to a range selection.

4.1 Indexing of OLAP Data

To facilitate efficient data accessing, most data warehouse systems
support index structures and materialized views. Two indexing techniques
that are popular for OLAP data are bitmap indexing and join indexing.

4.1.1 Bitmap indexing

The bitmap indexing allows for quick searching in data cubes. In the bit
map index for a given attribute, there is a distinct bit vector, Bv, for each
value V in the domain of the attribute. If the domain for the attribute consists
of n values, then n bits are needed for each entry in the bitmap index.

8 Anoop Singhal

4.1.2 Join indexing

Consider 2 relations R(RID, A) and S(B, RID) that join on attributes A
and B. Then the join index record contains the pair (RID, SID) where RID
and SID are record identifiers from the R and S relations. The advantage of
join index records is that they can identify joinable tuples without
performing costly join operations. Join indexing is especially useful in the
star schema model to join the fact table with the corresponding dimension
table.

4.2 Metadata Repository

Metadata is data about data. A meta data repository contains the
following information.

1. A description of the structure of data warehouse that includes the schema,
views and dimensions.

2. Operations metadata that includes data lineage (history of data and the
sequence of transformations applied to it).

3. The algorithms used for summarization.
4. The mappings from the operational environment to the data warehouse

which includes data extraction, cleaning and transformation rules.
5. Data related to system performance which include indices and profiles

that improve data access and retrieval performance.

4.3 Data Warehouse Back-end Tools

There are many challenges in creating and maintaining a large data
warehouse. Firstly, a good database schema must be designed to hold an
integrated collection of data copied from multiple sources. Secondly, after
the warehouse schema is designed, the warehouse must be populated and
over time, it must be kept consistent with the source databases. Data is
extracted from external sources, cleaned to minimize errors and
transformed to create aggregates and summary tables. Data warehouse
systems use backend tools and utilities to populate and refresh their data.
These tools are called Extract, Transform and Load (ETL) tools. They
include the following functionality:
• Data Cleaning: Real world data tends to be incomplete, noisy and

inconsistent [5]. The ETL tools provide data cleaning routines to fill in
missing values, remove noise from the data and correct inconsistencies in
the data. Some data inconsistencies can be detected by using the

An Overview of Data Warehouse, OLAP and Data Mining 9

functional dependencies among attributes to find values that contradict
the functional constraints. The system will provide capability for users to
add rules for data cleaning.
Data Integration: The data mining/analysis task requires combining data
from multiple sources into a coherent data store [6]. These sources may
be multiple sources or flat files. There are a number of issues to consider
during data integration. Schema integration can be quite tricky. How can
real-world entities from multiple data sources be matched up? For
example, how can we make sure that customer ID in one database and
cust number in another database refers to the same entity? Our
application will use metadata to help avoid errors during data integration.
Redundancy is another important issue for data integration. An attribute
is redundant if it can be derived from another table. For example, annual
revenue for a company can be derived from the monthly revenue table for
a company. One method of detecting redundancy is by using correlation
analysis. A third important issue in data integration is the detection and
resolution of data value conflicts. For example, for the same real world
entity, attribute values from different sources may differ. For example,
the weight attribute may be stored in the metric unit in one system and in
British imperial unit on the other system.
Data Transformation: Data coming from input sources can be
transformed so that it is more appropriate for data analysis [7]. Some
examples of transformations that are supported in our system are as
follows

- Aggregation: Apply certain summarization operations to incoming
data. For example, the daily sales data can be aggregated to compute
monthly and yearly total amounts.

- Generalization: Data coming from input sources can be generalized
into higher-level concepts through the use of concept hierarchies. For
example, values for numeric attributes like age can be mapped to
higher-level concepts such as young, middle age, senior.

- Normalization: Data from input sources is scaled to fall within a
specified range such as 0.0 to 1.0

- Data Reduction: If the input data is very large complex data analysis
and data mining can take a very long time making such analysis
impractical or infeasible. Data reduction techniques can be used to
reduce the data set so that analysis on the reduced set is more efficient
and yet produce the same analytical resuhs. The following are some
of the techniques for data reduction that are supported in our system.

a) Data Cube Aggregation: Aggregation operators are applied to the
data for construction of data cubes.

10 Anoop Singhal

b) Dimension Reduction: This is accomplished by detecting and
removing irrelevant dimensions.

c) Data Compression: Use encoding mechanisms to reduce the data set
size.

d) Concept Hierarchy Generation: Concept hierarchies allow mining
of data at multiple levels of abstraction and they are a powerful tool
for data mining.

• Data Refreshing: The application will have a scheduler that will allow
the user to specify the frequency at which the data will be extracted from
the source databases to refresh the data warehouse.

4.4 Views and Data Warehouse

Views are often used in data warehouse applications. OLAP
queries are typically aggregate queries. Analysts often want fast
answers to these queries over very large data sets and it is natural to
consider pre-computing views and the aggregates. The choice of
views to materialize is influenced by how many queries they can
potentially speed up and the amount of space required to store the
materialized view.

A popular approach to deal with the problem is to evaluate the view
definition and store the results. When a query is now posed on the view, the
query is executed directly on the pre-computed result. This approach is
called view materialization and it results in fast response time. The
disadvantage is that we must maintain consistency of the materialized view
when the underlying tables are updated.

There are three main questions to consider with regard to view
materialization.
1. What views to materialize and what indexes to create.
2. How to utilize the materialized view to answer a query
3. How often should the materialized view be refreshed.

An Overview of Data Warehouse, OLAP and Data Mining 11

5. COMMERCIAL DATA WAREHOUSE TOOLS

The following is a summary of comjnercial data warehouse tools that are
available in the market.

1. Back End ETL Tools

• DataStage: This was originally developed by Ardent Software and it is
now part of Ascential Software. See http://www.ascentialsoftware.com

• Informatica is an ETL tool for data warehousing and it provides analytic
software that for business intelligence. See http://www.infonnatica.com

• Oracle: Oracle has a set of data warehousing tools for OLAP and ETL
functionality. See http://www.oracle.com

• DataJunction: See http://www.datajunction.com

2. Multidimensional Database Engines: Arbor ESSbase, SAS system
3. Query/OLAP Reporting Tools: Brio, Cognos/Impromptu, Business
Objects, Mirostrategy/DSS, Crystal reports

6. FROM DATA WAREHOUSING TO DATA MINING

In this section, we study the usage of data warehousing for data mining
and knowledge discovery. Business executives use the data collected in a
data warehouse for data analysis and make strategic business decisions.
There are three kinds of applications for a data warehouse. Firstly,
Information Processing supports querying, basic statistical analysis and
reporting. Secondly, Analytical Processing supports multidimensional data
analysis using slice-and-dice and drill-down operations. Thirdly, Data
Mining supports knowledge discovery by finding hidden patterns and
associations and presenting the results using visualization tools. The process
of knowledge discovery is illustrated in the figure 4 and it consists of the
following steps:

a) Data cleaning: removing invalid data
b) Data integration: combine data from multiple sources
c) Data transformation: data is transformed using summary or aggregation

operations
d) Data mining: apply intelligent methods to extract patterns
e) Evaluation and presentation: use visualization techniques to present the

knowledge to the user

12 Anoop Singhal

Evaluation and
Presentation

Data IVIining

Reduction and

Transformation

Cleaning and

integration

Databases Flat files

Figure 4: Architecture of the Knowledge Discovery Process

6.1 Data Mining Techniques

The following are different kinds of techniques and algorithms that data
mining can provide.

a) Association Analysis: This involves discovery of association rules
showing attribute-value conditions that occur frequently together in a
given set of data. This is used frequently for market basket or transaction
data analysis. For example, the following rule says that if a customer is in
age group 20 to 29 years and income is greater than 40K/year then he or
she is likely to buy a DVD player.

Age(X, "20-29") & income(X, ">40K") => buys (X, "DVD player")
[support = 2% , confidence = 60%]

An Overview of Data Warehouse, OLAP and Data Mining 13

Rule support and confidence are two measures of rule
interestingness. A support of 2% means that 2% of all transactions under
analysis show that this rule is true. A confidence of 60% means that
among all customers in the age group 20-29 and income greater than
40K, 60% of them bought DVD players.

A popular algorithm for discovering association rules is the Apriori
method. This algorithm uses an iterative approach known as level-wise
search where k-itemsets are used to explore (k+1) itemsets. Association
rules are widely used for prediction.

b) Classification and Prediction: Classification and prediction are two forms
of data analysis that can be used to extract models describing important
data classes or to predict future data trends. For example, a classification
model can be built to categorize bank loan applications as either safe or
risky. A prediction model can be built to predict the expenditures of
potential customers on computer equipment given their income and
occupation. Some of the basic techniques for data classification are
decision tree induction, Bayesian classification and neural networks.

These techniques find a set of models that describe the different
classes of objects. These models can be used to predict the class of an
object for which the class is unknown. The derived model can be
represented as rules (IF-THEN), decision trees or other formulae.

c) Clustering: This involves grouping objects so that objects within a cluster
have high similarity but are very dissimilar to objects in other clusters.
Clustering is based on the principle of maximizing the intraclass similarity
and minimizing the inter class similarity.

In business, clustering can be used to identify customer groups based
on their purchasing patterns. It can also be used to help classify documents
on the web for information discovery. Due to the large amount of data
collected, cluster analysis has recently become a highly active topic in
data mining research. As a branch of statistics, cluster analysis has been
extensively studied for many years, focusing primarily on distance based
cluster analysis. These techniques have been built into statistical analysis
packages such as S-PLUS and SAS. In machine learning, clustering is an
example of unsupervised learning. For this reason clustering is an
example of learning by observation.

d) Outlier Analysis: A database may contain data objects that do not comply
with the general model or behavior of data. These data objects are called
outliers. These outliers are useful for applications such as fraud detection
and network intrusion detection.

14 Anoop Singhal

6.2 Research Issues in Data Mining

In this section, we briefly discuss some of the research issues in data
mining.

a) Mining methodology and user interaction issues:
• Data mining query languages
• Presentation and visualization of data mining results
• Data cleaning and handling of noisy data

b) Performance Issues:
• Efficiency and scalability of data mining algorithms
• Coupling with database systems
• Parallel, distributed and incremental mining algorithms
• Handling of complex data types such as multimedia, spatial data and

temporal data

6.3 Applications of Data Mining

Data mining is expected to have broader applications as compared to
OLAP. It can help business managers fmd and reach suitable customers as
well as develop special intelligence to improve market share and profits.
Here are some applications of data mining.
1. DNA Data Analysis: A great deal of biomedical research is focused on

DNA data analysis. Recent research in DNA data analysis has enabled
the discovery of genetic causes of many diseases as well as discovery of
new medicines. One of the important search problems in genetic analysis
is similarity search and comparison among the DNA sequences. Data
mining techniques can be used to solve these problems.

2. Intrusion Detection and Network Security: This will be discussed further
in later chapters.

3. Financial Data Analysis: Most financial institutions offer a variety of
banking services such as credit and investment services. Data
warehousing techniques can be used to gather the data to generate
monthly reports. Data mining techniques can be used to predict loan
payments and customer credit policy analysis.

4. Data Analysis for Retail Industry: Retail is a big application of data
mining since it collects huge amount of data on sales, shopping history
and service records. Data mining techniques can be used for

An Overview of Data Warehouse, OLAP and Data Mining 15

multidimensional analysis of sales, and customers by region and time. It
can also be used to analyze effectiveness of sales campaigns.
Data Analysis for Telecom Industry: The following are some examples
of where data mining can be used to improve telecom services:
• Analysis of calling patterns to determine what kind of calling plans to

offer to improve profitability.
• Fraud detection by discovering unusual patterns
• Visualization tools for data analysis.

6.4 Commercial Tools for Data Mining

In this section, we briefly outline a few typical data mining systems in
order to give the reader an idea about what can be done with the current data
mining products.
• Intelligent Miner is an IBM data mining product that provides a wide

range of data mining algorithms including association, classification,
predictive modeling and clustering. It also provides an application toolkit
for neural network algorithms and data visualization. It includes
scalability of mining algorithms and tight integration with IBM's DB2
relational database systems.

• Enterprise Miner was developed by SAS Institute, Inc. It provides
multiple data mining algorithms including regression, classification and
statistical analysis packages. One of it's distinctive feature is the variety
of statistical analysis tools, which are built based on the long history of
SAS in the market for statistical analysis.

• MineSet was developed by Silicon Graphics Inc. (SGI). It also provides
multiple data mining algorithms and advanced visualization tools. One
distinguishing feature of MineSet is the set of robust graphics tools such
as rule visualizer, tree visualizer and so on.

• Clementine was developed by Integral Solutions Ltd. (ISL). It provides
an integrated data mining development environment for end users and
developers. It's object oriented extended module interface allows user's
algorithms and utilities to be added to Clementine's visual programming
environment.

• DBMiner was developed by DBMiner Technology Inc. It provides
multiple data mining algorithms including discovery driven OLAP
analysis, association, classification and clustering. A distinct feature of
DBMiner is its data cube based analytical mining.

16 Anoop Singhal

There are many other commercial data mining products, systems and
research prototypes that are also fast evolving. Interested readers can consult
surveys on data warehousing and data mining products.

7. DATA ANALYSIS APPLICATIONS FOR
NETWORKAVEB SERVICES

In this section we discuss our experience [8] [9] [10], [11] [12] in
developing data analysis applications using data warehousing, OLAP and
data mining technology for AT&T Business Services. AT&T Business
Services (ABS) designs, manages and operates global networks for
multinational corporations. Global Enterprise Management System (GEMS)
is a platform that is used by ABS to support design, provisioning and
maintenance of the network (LANs, WANS, intranets etc.) and desktop
devices for multinational corporations such as BANCONE and CITICORP.
The primary functions supported by GEMS are: ticketing, proactive
management of client's networks, client's asset management, network
engineering and billing. GEMS applications use an Integrated Database to
store fault tickets, assets and inventory management information.

The main purpose of GEMS DW is for ABS to generate reports about the
performance and reliability of the network and compare it with the system
level agreements (SLAs) that ABS has agreed to provide to its client
companies. An SLA is a contract between the service provider and a
customer (usually an enterprise) on the level of service quality that should be
delivered. An SLA can contain the following metrics:
1. Mean Time To Repair (MTTR) a fault
2. Available network bandwidth (e.g. 1.3 Mbps, 90% of the time on 80% of

user nodes)
3. Penalty (e.g. $10,000) if agreement is not met.

SLAs give service providers a competitive edge for selling network/web
services into the consumer market and maintain customer satisfaction. In
order to track SLAs, service providers have to generate user reports on
satisfaction/violation of the metrics. In addition, the provider must have the
ability to drill down to detailed data in response to customer inquires.

The DW enables the knowledge worker (executive, manager, and
analyst) to track the SLAs. For example, the DW is used to generate monthly
reports for a client and to gather statistics such as Mean Time to Repair

An Overview of Data Warehouse, OLAP and Data Mining 17

(MTTR) and average number of fault tickets that are open for an ABS client
company. The main reason to separate the decision support data from the
operation data is performance. Operational databases are designed for
known transaction workloads. Complex queries/reports degrade the
performance of the operational databases. Moreover special data
organization and access methods are required for optimizing the report
generation process. This project also required data integration and data
fusion from many external sources such as operational databases and flat
files.

The main components used in our system are as follows.

1. Ascential's DataStage Tool is an Extraction-Transformation-Load-
Management (ETLM) class of tool that defines how data is extracted
from a data source, transformed by the application of functions, joins and
possibly external routines, and then loaded into a target data source.

2. DataStage reads data from the source information repositories and it
applies transformations as it loads all data into a repository (atomic)
database.

3. Once the atomic data repository is loaded with all source information a
second level of ETL transformations is applied to various data streams to
create one or more Data Marts. Data Marts are a special sub-component
of a data warehouse in that they are highly de-normalized to support the
fast execution of reports. Some of these Data Marts are created using
Star Schemas.

4. Both the atomic data repository and the data marts are implemented using
Oracle version 8i DBMS.

5. Once the atomic repository and the data marts have been populated ,
OLAP tools such as COGNOS and ORACLE EXPRESS are configured
to access both the data marts as well as the atomic repository in order to
generate the monthly reports.

An architecture diagram of our system is shown in Figure 5

18 Anoop Singhal

ORACLE 8i DBMS
MS SQL

Figure 5: Architecture of the GEMS Data Warehouse System

The main advantages our system are:

Since a separate DW system is used to generate the reports the time taken
to generate the reports is much better. Also, the execution of reports
does not impact the applications that are using the source databases.
The schemas in the DW are optimized by using de-normalization and
pre-aggregation techniques. This results in much better execution time
for reports.

Some of the open research problems that we are currently investigating

are:

Time to refresh the data in the data warehouse was large and report
generation activity had to be suspended until the time when changes were
propagated into the DW. Therefore, there was a need to investigate
incremental techniques for propagating the updates from source
databases
Loading the data in the data warehouse took a long time (10 to 15 hours).
In case of any crashes, the entire loading process had to be re-started.

An Overview of Data Warehouse, OLAP and Data Mining 19

This further increased the down time for the DW and there was a need
deal with crash recovery more efficiently.

• There was no good support for tracing the data in the DW back to the
source information repositories.

7.1 Open Research Problems in Data Warehouse
Maintenance

A critical part of data analysis systems is a component that can efficiently
extract data from multiple sources, filter it to remove noise, transform it and
then load it into the target data analysis platform. This process, which is used
to design, deploy and manage the data marts is called the ETL (Extract,
Transform and Load) process. There are a number of open research
problems in designing the ETL process.
1. Maintenance of Data Consistency: Since source data repositories

continuously evolve by modifying their content or changing their schema
one of the research problems is how to incrementally propagate these
changes to the central data warehouse. Both re-computation and
incremental view maintenance are well understood for centralized
relational databases. However, more complex algorithms are required
when updates originate from multiple sources and affect multiple views
in the Data Warehouse. The problem is further complicated if the source
databases are going through schema evolution.

2. Maintenance of Summary Tables: Decision support functions in a data
warehouse involve complex queries. It is not feasible to execute these
queries by scanning the entire data. Therefore, a data warehouse builds a
large number of summary tables to improve performance. As changes
occur in the source databases, all summary tables in the data warehouse
need to be updated. A critical problem in data warehouse is how to
update these summary tables efficiently and incrementally.

3. Incremental Resuming of Failed Loading Process: Warehouse
creation and maintenance loads typically take hours to run. Our
experience in loading a data warehouse for network management
applications at AT&T took about 10 to 15 hours. If the load is interrupted
by failures, traditional recovery methods undo the changes. The
administrator must then restart the load and hope that it does not fail
again. More research is required into algorithms for resumption of the
incomplete load so as to reduce the total load time.

4. Tracing the Lineage of Data: Given data items in the data warehouse,
analysts often want to identify the source items and source databases that

20 Anoop Singhal

produced those data items. Research is required for algorithms to trace
the Uneage of an item from a view back to the source data items in the
multiple sources.

5. Data Reduction Techniques: If the input data is very large, data
analysis can take a very long time making such analysis impractical or
infeasible. There is a need for data reduction techniques that can be used
to reduce the data set so that analysis on the reduced set is more efficient
and yet produce the same analytical results.The following are examples
of some of the algorithmic techniques that can be used for data reduction.
- Data Cube Aggregation: Aggregation operations such as

AVERAGEO, SUM() and COUNT() can be applied to input data for
construction of data cubes. These operations reduce the amount of data
in the DW and also improve the execution time for decision support
queries on data in the DW

- Dimension Reduction: This is accomplished by detecting and
removing irrelevant attributes that are not required for data analysis.
Data Compression: Use encoding mechanisms to reduce the data set
size.

- Concept Hierarchy Generation: Concept hierarchies allow analysis of
data at multiple levels of abstraction and they are a powerful tool for
data analysis. For example, values for numeric attributes like age can be
mapped to higher-level concepts such as young, middle age, senior.

6. Data Integration and Data Cleaning Techniques: Generally, data
analysis task includes data integration, which combine data from multiple
sources into a coherent data store. These sources may include multiple
databases or flat files. A number of problems can arise during data
integration. Real world entities in multiple data sources can be given
different names. How does an analyst know that employee-id in one
database is same as employee-number in another database. We plan to use
meta-data to solve the problem of data integration. Data coming from
input sources tends to be incomplete, noisy and inconsistent. If such data
is directly loaded in the DW it can cause errors during the analysis phase
resulting in incorrect results. Data cleaning methods will attempt to
smooth out the noise, while identifying outliers, and correct
inconsistencies in the data. We are investigating the following techniques
for noise reduction and data smoothing.

a) Binning: These methods smooth a sorted data value by consulting the
values around it.

b) Clustering: Outliers may be detected by clustering, where similar
values are organized into groups or clusters. Intuitively, values that
fall outside of the set of clusters may be considered outliers.

An Overview of Data Warehouse, OLAP and Data Mining 21

c) Regression: Data can be smoothed by fitting the data to a function,
such as with regression. Using regression to find a mathematical
equation to fit the data helps smooth out the noise.

Data pre-processing is an important step for data analysis. Detecting data
integration problems, rectifying them and reducing the amount of data to be
analyzed can result in great benefits during the data analysis phase.

7.2 Current Research in the area of Data Warehouse
Maintenance

A number of techniques for view maintenance and propagation of
changes from the source databases to the data warehouse (DW) have been
discussed in literature. [5] [14] describes techniques for view maintenance
and refreshing the data in a DW.

[15] also describes techniques for maintenance of data cubes and
summary tables in a DW environment. However, the problem of propagating
changes in a DW environment is more complicated due to the following
reasons:
a) In a DW, data is not refreshed after every modification to the base data.

Rather, large batch updates to the base data must be considered which
requires new algorithms and techniques.

b) In a DW environment, it is necessary to transform the data before it is
deposited into the DW. These transformations may include aggregating
or summarizing the data.

c) The requirements of data sources may change during the life cycle, which
may force schema changes for the data source. Therefore techniques are
required that can deal with both source data changes and schema
changes. [Liu 2002] describes some techniques for dealing with schema
changes in the data sources.

[6], [13] describes techniques for practical lineage tracing of data in a
DW environment. It enables users to "drill through" from the views in the
DW all the way to the source data that was used to create the data in the
DW. However, their methods lack techniques to deal with historical source
data or data from previous source versions.

22 Anoop Singhal

8. CONCLUSIONS

A data warehouse is a subject oriented collection of data that is used for
decision support systems. They typically use a multidimensional data model
to facilitate data analysis. They are implemented using a three tier
architecture. The bottom most tier is a database server which is typically a
RDBMS. The middle tier is a OLAP server and the top tier is a client,
containing query and reporting tools. Data mining is the task of discovering
interesting patterns from large amounts of data where data can be stored in
multiple repositories. Efficient data warehousing and data mining techniques
are challenging to design and implement for large data sets.

In this chapter, we have given a summary of Data Warehousing, OLAP
and Data Mining Technology. We have also described our experience in
using this technology to build Data Analysis Application for Network/Web
services. We have also described some open research problems that need to
be solved in order to efficiently extract data from distributed information
repositories. Although, some commercial tools are available in the market,
our experience in building a decision support system for a network/web
services has shown that they are inadequate. We believe that there are
several important research problems that need to be solved to build flexible,
powerful and efficient data analysis applications using data warehousing and
data mining techniques.

References

1. S. Chaudhuri, U. Dayal: An Overview of Data Warehousing and OLAP
Technology, SIGMOD Record, March 1997.

2. W.H. Inmon: Building the Data Warehouse (2"̂ * Edition) John Wiley, 1996.
3. R. Kimball: The Data Warehouse Toolkit, John Wiley, 1996.
4. D. Pyne: Data Preparation for Data Mining, San Francisco, Morgan Kaufmann,

1999
5. Prabhu Ram and Lyman Do: Extracting Delta for Incremental Warehouse,

Proceedings of IEEE 16̂*̂ Int. Conference on Data Engineering, 2000.
6. Y. Cui and J. Widom: Practical Lineage Tracing in Data Warehouses, Proceedings

of IEEE 16̂ ^ Int. Conference on Data Engineering, 2000.
7. S. Chaudhuri, G. Das and V. Narasayya: A Robust, Optimization Based Approach

for Approximate Answering of Aggregate Queries, Proceeding of ACM SIGMOD
Conference, 2001, pp 295-306

8. Anoop Singhal, "Design of a Data Warehouse for Network/Web Services",
"Proceedings of Conference on Information and Knowledge Management, CIKM
2004.

9. Anoop Singhal, "Design of GEMS Data Warehouse for AT&T Business Services",
Proceedings of AT&T Software Architecture Symposium, Somerset, NJ, March
2000

10. ANSWER: Network Monitoring using Object Oriented Rules" (with G. Weiss and
J. Ros), Proceedings of the Tenth Conference on Innovative Application of
Artificial Intelligence, Madison, Wisconsin, July 1998.

An Overview of Data Warehouse, OLAP and Data Mining 23

11. "A Model Based Approach to Network Monitoring", Proceedings of ACM
Workshop on Databases: Active and Real Time, Rockville, Maryland Nov. '96
pages 41-45.

12. Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, Morgan
Kaufmann, August 2000

13. Jennifer Widom, "Research Problems in Data warehousing", Proc. Of 4̂^̂ Int'l
Conference on Information and Knowledge Management, Nov. 1995

14. Hector Garcia Molina, "Distributed and Parallel Computing Issues in Data
Warehousing", Proc. Of ACM Conference on Distributed Computing, 1999.

15. A. Gupta and I.S. Mumick, "Maintenance of Materialized Views", IEEE Data
Engineering Bulletin, June 1995

16. Vipin Kumar et al. Data Mining for Scientific and Engineering Applications,
Kluwer Publishing 2000

17. Bernstein P., Principles of Transaction Processing, Morgan Kaufman, San Mateo,
CA 1997

18. Miller H and Han J, Geographic Data Ming and Knowledge Discovery, UK 2001
19. Liu, Bin, Chen, Songting and Rundensteiner, E. A. Batch Data Warehouse

Maintenance in Dynamic Environment. In Proceedings of CIKM' 2002, McLean,
VA, Nov. 2002

20. Hector Garcia Molina, J.D. Ullman, J. Widom, Database Systems the Complete
Book, Prentice Hall, 2002

Chapter 2

NETWORK AND SYSTEM SECURITY

Anoop Singhal

Abstract: This chapter discusses the elements of computer security such as
authorization, authentication and integrity. It presents threats against
networked applications such as denial of service attacks and protocol attacks.
It also presents a brief discussion on firewalls and intrusion detection systems

Key words: computer virus, worms, DOS attacks, firewall, intrusion detection

Computer security is of importance to a wide variety of practical domains
ranging from banking industry to multinational corporations, from space
exploration to the intelligence community and so on. The following
principles are the foundation of a good security solution:

• Authentication: The process of establishing the validity of a claimed
identity.

• Authorization: The process of determining whether a validated entity is
allowed access to a resource based on attributes, predicates, or context.

• Integrity: The prevention of modification or destruction of an asset by an
unauthorized user.

• Availability: The protection of assets from denial-of-service threats that
might impact system availability.

• Confidentiality: The property of non-disclosure of information to
unauthorized users.

• Auditing: The property of logging all system activities

26 Anoop Singhal

Computer security attempts to ensure the confidentiality, integrity and
availability of computing resources. The principal components of a computer
that need to be protected are hardware, software and the communication
links. This chapter describes different kind of threats related to computer
security and protection mechanisms that have been developed to protect the
different components.

1. VIRUSES AND RELATED THREATS

This section briefly discusses a variety of software threats. We first
present information about computer viruses and worms followed by
techniques to handle them.

A virus is a program that can "infect" other programs by modifying them
and inserting a copy of itself into the program. This copy can then go to
infect other programs. Just like its biological counterpart, a computer virus
carries in its instructional code the recipe for making perfect copies of itself.
A virus attaches itself to another program and then executes secretly when
the host program is run.

During it lifetime a typical virus goes through the following stages:
Dormant Phase: In this state the virus is idle waiting for some event to
happen before it gets activated. Some examples of these events are
date/timestamp, presence of another file or disk usage reaching some
capacity.
Propagation Phase: In this stage the virus makes an identical copy of
itself and attaches itself to another program. This infected program
contains the virus and will in turn enter into a propagation phase to
transmit the virus to other programs.
Triggering Phase: In this phase the virus starts performing the function
it was intended for. The triggering phase can also be caused by a set of
events.
Execution Phase: In this phase the virus performs its fiinction such as
damaging programs and data files.

Network and System Security 27

1.1 Types of Viruses

The following categories give the most significant types of viruses.

Parasitic Virus: This is the most common kind of virus. It attaches itself

to executable files and replicates when that program is executed.
Memory Resident Virus: This kind of virus resides in main memory.
When ever a program is loaded into memory for execution, it attaches
itself to that program.
Boot Sector Virus: This kind of virus infects the boot sector and it
spreads when the system is booted from the disk.
Stealth Virus: This is a special kind of virus that is designed to evade
itself from detection by antivirus software.
Polymorphic virus: This kind of virus that mutates itself as it spreads
from one program to the next, making it difficult to detect using the
"signature" methods.

1.2 Macro Viruses

In recent years macro viruses have become quite popular. These viruses
exploit certain features found in Microsoft Office Applications such as MS
Word or MS Excel. These applications have a feature called macro that
people use to automate repetitive tasks. The macro is written in a
programming language such as Basic. The macro can be set up so that it is
invoked when a certain function key is pressed. Certain kinds of macros are
auto execute, they are automatically executed upon some events such as
starting the execution of a program or opening of a file. These auto
execution macros are often used to spread the virus. New version of MS
Word provides mechanisms to protect itself from macro virus. One example
of this tool is a Macro Virus Protection tool that can detect suspicious Word
files and alert the customer about a potential risk of opening a file with
macros.

1.3 E-mail Viruses

This is a new kind of virus that arrives via email and it uses the email
features to propagate itself The virus propagates itself as soon as it is
activated (typically by opening the attachment) and sending an email with
the attachment to all e-mail addresses known to this host. As a result these
viruses can spread in a few hours and it becomes very hard for anti-virus
software to respond before damage is done.

28 Anoop Singhal

1.4 Worms

A virus typically requires some human intervention (such as opening a
file) to propagate itself. A worm on the other hand typically propagates by
itself A worm uses network connections to propagate from one machine to
another. Some examples of these connections are:

Electronic mail facility
Remote execution facility
Remote login facility

A worm will typically have similar phases as a virus such as dormant
phase, a propagation phase, a triggering phase and an execution phase. The
propagation phase for a worm uses the following steps:

Search the host tables to determine other systems that can be infected.
Establish a connection with the remote system
Copy the worm to the remote system and cause it to execute

Just like virus, network worms are also difficuh to detect. However,
properly designed system security applications can minimize the threat of
worms.

1.5 The Morris Worm

This worm was released into the internet by Robert Morris in 1998. It
was designed to spread on UNIX systems and it used a number of techniques
to propagate. In the beginning of the execution, the worm would discover
other hosts that are known to the current host. The worm performed this task
by examining various list and tables such as machines that are trusted by this
host or user's mail forwarding files. For each discovered host, the worm
would try a number of methods to login to the remote host:

Attempt to log on to a remote host as a legitimate user.
Use the finger protocol to report on the whereabouts of a remote user.
Exploit the trapdoor of a remote process that sends and receives email.

1.6 Recent Worm Attacks

One example of a recent worm attack is the Code Red Worm that started
in July 2001. It exploited a security hole in the Microsoft Internet

Network and System Security 29

Information Server (IIS) to penetrate and spread itself. The worm probes
random IP addresses to spread to other hosts. Also during certain periods of
times it issues denial of service attacks against certain web sites by flooding
the site with packets from several hosts. Code Red I infected nearly 360,000
servers in 14 hours. Code Red II was a second variant that targeted
Microsoft IIS.

In late 2001, another worm called Nimda appeared. The worm spread
itself using different mechanisms such as

Client to client via email
From web server to client via browsing of web sites
From client to Web server via exploitation of Microsoft IIS
vulnerabilities

The worm modifies Web documents and certain executables files on the
infected system.

1.7 Virus Counter Measures

Early viruses were relatively simple code fragments and they could be
detected and purged with simple antivirus software. As the viruses got more
sophisticated the antivirus software packages have got more complex to
detect them.

There are four generations of antivirus software:

First Generation: This kind of scanner requires a specific signature to
identify a virus. They can only detect known viruses.
Second Generation: This kind of scanner does not rely on a specific
signature. Rather, the scanner uses heuristic rules to search for probable
virus infections. Another second generation approach to virus detection is
to use integrity checking. For example, a checksum can be appended to
every program. If a virus infects the program without changing the
checksum, then an integrity check will detect the virus.
Third Generation: These kind of programs are memory resident and
they identify a virus by its actions rather than by its structure. The
advantage of this approach is that it is not necessary to generate signature
or heuristics. This method works by identifying a set of actions that
indicate some malicious work is being performed and then to intervene.

30 Anoop Singhal

Fourth Generation: These kind of packages consist of a variety of
antivirus techniques that are used in conjunction. They including
scanning, access control capability which limits the ability of a virus to
penetrate the system and update the files to propagate the infection.

2. PRINCIPLES OF NETWORK SECURITY

In the modern world we interact with networks on a daily basis such as
when we perform banking transactions, make telephone calls or ride trains
and planes. Life without networks would be considerably less convenient
and many activities would be impossible. In this chapter, we describe the
basics of computer networks and how the concepts of confidentiality,
integrity and availability can be applied for networks.

2.1 Types of Networks and Topologies

A network is a collection of communicating hosts. There are several
types of networks and they can be connected in different ways. This section
provides information on different classes of networks.

a) Local Area Networks: A local area network (or LAN) covers a small
distance, typically within a single building. Usually a LAN connects several
computers, printers and storage devices. The primary advantage of a LAN to
users is that it provides shared access to resources such programs and
devices such as printers.
b) Wide Area Networks: A wide are network differs from a local area
network in terms of both size and distance. It typically covers a wide
geographical area. The hosts on a WAN may belong to a company with
many offices in different cities or they may be a cluster of independent
organizations within a few miles of each other who would like to share the
cost of networking. Therefore a WAN could be controlled by one
organization or it can be controlled by multiple organizations.
c) Internetworks (Internets): Network of networks or internet is a connection
of two or more separate networks in that they are separately managed and
controlled. The Internet is a collection of networks that is loosely controlled
by the Internet Society. The Internet Society enforces certain minimal rules
to make sure that all users are treated fairly.

Network and System Security 31

2.2 Network Topologies

The security of a network is dependent on its topology. The three
different topologies are as follows.
a) Common Bus: Conceptually, a common bus is a single wire to which

each node of a LAN is connected. In a common bus, the information is
broadcast and nodes must continually monitor the bus to get the
information addressed to it.

b) Star or Hub: In this topology each node is connected to a central "traffic
controller" node. All communication flows from the source node to the
traffic controller node and from the traffic controller node to the other
nodes.

c) Ring: In this architecture, each node receives many messages, scans
each and removes the one designated for itself In this topology, there is
no central node. However, there is one drawback with this architecture. If
a node fails to pass a message that it has received, the other nodes will
not be able to receive that information.

3. THREATS IN NETWORKS

Network security has become important due to the inter-connection of
computers and the rise of the internet. This section describes some of the
popular network threats.

a) Spoofing: By obtaining the network authentication credentials of an
entity (such as a user or a process) permits an attacker to create a full
communication under the entity's identity. Examples of spoofing are
masquerading and man-in-the-middle attack.

b) Masquerade: In a masquerade a user who is not authorized to use a
computer pretends to be a legitimate user. A common example is URL
confusion. Thus abc.com, abc.org or abc.net might be three different
organizations or one legitimate organization and two masquerade
attempts from some one who registered similar names.

32 Anoop Singhal

c) Phishing Attacks: These attacks are becoming quite popular due to the
proliferation of Web sites. In phishing scams, an attacker sets up a web
site that masquerades as a legitimate site. By tricking a user, the phishing
site obtains the user's cleartext password for the legitimate site. Phishing
has proven to be quite effective in stealing user passwords.

d) Session Hijacking: It is intercepting and carrying out a session begun
by another entity. Suppose two people have entered into a session but
then a third person intercepts the traffic and carries out a session in the
name of the other person then this will be called session hijacking. For
example, if an Online merchant used a wiretap to intercept packets
between you and Amazon.com, the Online merchant can monitor the
flow of packets. When the user has completed the order, Online merchant
can intercept when the "Ready to check out" packet is sent and finishes
the order with the user obtaining shipping address, credit card detail and
other information. In this case we say the Online merchant has hijacked
the session.

e) Man-in-the-Middle Attack: In this type of attack also one entity intrudes
between two others. The difference between man-in-the-middle and
hijacking is that a man-in-the-middle usually participates from the start
of the session, whereas a session hijacking occurs after a session has
been established. This kind of attack is frequently described in protocols.
For example, suppose two parties want to exchange encrypted
information. One party contacts the key server to get a secret key that
will be used in the communication. The key server responds by sending
the private key to both the parties. A malicious middleman intercepts the
response key and then eavesdrop on the communication between the two
parties.

f) Web Site Defacement: One of the most widely known attacks is the web
site defacement attack. Since this can have a wide impact they are often
reported in the popular press. Web sites are designed so that their code
can be easily downloaded enabling an attacker to obtain the full
hypertext document. One of the popular attacks against a web site is
buffer overflow. In this kind of attack the attacker feeds a program more
data than what is expected. A buffer size is exceeded and the excess data
spills over adjoining code and data locations.

Network and System Security 33

g) Message Confidentiality Threats:

- Misdelivery: Sometimes messages are misdelivered because of some
flaw in the network hardware or software. We need to design
mechanisms to prevent this.

- Exposure: To protect the confidentiaHty of a message, we must track it
all the way from its creation to its disposal.

- Traffic Flow Analysis: Consider the case during wartime, if the enemy
sees a large amount of traffic between the headquarters and a particular
unit, the enemy will be able to infer that a significant action is being
planned at that unit. In these situations there is a need to protect the
contents of the message as well as how the messages are flowing in the
network.

DENIAL OF SERVICE ATTACKS

So far we have presented attacks that lead to failures of confidentiality or
integrity. Availability attacks in network context are called denial of service
attacks and they can cause a significant impact. The following are some
sample denial of service attacks.

Connection Flooding: This is the most primitive denial-of-service
attack. If an attacker sends so much data that the communication system
cannot handle it then you are prevented from receiving any other data.
Ping of Death: Since ping requires the recipient to respond to the ping
request, all that the recipient needs to do it to send a flood of pings to the
intended victim.
Smurf: This is a variation of a ping attack. It uses the same vehicle, a
ping packet with two extra twists. First, the attacker chooses a network of
victims. The attacker spoofs the source address in the ping packet so that
it appears to come from the victim. Then, the attacker sends this request
to the network in broadcast mode by setting the last byte of the address to
all Is; broadcast mode packets are distributed to all the hosts.
Syn Flood: The attacker can deny service to the target by sending many
SYN requests and never responding with ACKs. This fills up the victim's
SYN_RECV queue. Typically, the SYN_RECV queue is quite small
(about 10 to 20 entries). Attackers using this approach do one more thing,
they spoof the nonexistent return address in the initial SYN packet.

34 Anoop Singhal

4.1 Distributed Denial of Service Attacks

In order to perpetrate a distributed denial of service attack, an attacker
does two things. In the first step, the attacker uses any convenient step (such
as exploiting a buffer overflow) to plant a Trojan horse on a target machine.
The installation of the Trojan horse as a file or a process does not attract any
attention. The attacker repeats this process with many targets. Each of these
targets then become what is known as a zombie. The target system carry out
their work , unaware of the resident zombie.

At some point, the attacker chooses a victim and sends a signal to all the
zombies to launch the attack. Then, instead of the victim trying to defend
against one denial-of-service attack from one malicious host, the victim must
try to counter n attacks from n zombies all acting at one.

4.2 Denial of Service Defense Mechanisms

The increased frequency of Denial of Service attacks has led to the
development of numerous defense mechanisms. This section gives a
summary of the taxonomy of defense mechanisms based on this paper.

Classification by Activity Level

Based on the activity level defense mechanisms can be classified into
preventive and reactive mechanisms.

Preventive Mechanisms
The goal of these mechanisms is to either eliminate the possibility of

DOS attacks or to endure the attack without denying services to legitimate
clients.

Attack Prevention Mechanisms
These mechanisms modify the system configuration to eliminate the

possibility of a DOS attack. System security mechanisms increase the
overall security by guarding against illegitimate access from other machines.
Examples of system security mechanisms include monitored access to the
machine, install security patches, and firewall systems.

Protocol security mechanisms address the problem of bad protocol design
which can be misused to exhaust the resources of a server by initiating a
large number of such transactions. Classic misuse examples are the TCP

Network and System Security 3 5

SYN attacks and the fragmented packet attack. An example of a protocol
security mechanism is to have a design in which resources are committed to
the client only after sufficient authentication is done.

Reactive Mechanisms
Reactive mechanisms alleviate the impact of an attack by detecting an

attack and responding to it. Reactive mechanisms can be classified based on
the mechanisms that they use pattern detection, anomaly detection and
hybrid detection.

Mechanism with Pattern Attack Detection
In this method, signatures of known attacks are stored in a database. Each

communication is monitored and compared with the database entries to
discover the occurrence of an attack. Occasionally, the database is updated
with new attack signatures. The obvious drawback of this detection
mechanism is that it can only detect known attacks. On the other hand the
main advantage is that known attacks are reliably detected and no false
positives are encountered.

Mechanism with Anomaly Attack Detection
Mechanisms that deploy anomaly detection have a model of normal

system behavior such as traffic or system performance. The current state of
the system is periodically compared with the models to detect anomalies.
The advantage of these techniques as compared to pattern detection is that
unknown attacks can be discovered. However, they have to solve the
following problems

Threshold setting: Anomalies are detected based on known settings. The
setting of a low threshold leads to many false positives, while a high
threshold reduces the sensitivity of the detection mechanism.

Model Update: Systems and communication patterns evolve with time
and models need to be updated to reflect this change.

Mechanisms with Hybrid Attack Detection
These techniques combine the pattern based and anomaly-based

detection, using data about attacks discovered through an anomaly detection
mechanism to devise new attack signatures and update the database. Many
intrusion detection systems use this technique but they have to be carefully
designed.

36 Anoop Singhal

Attack Response
The goal of the attack response is to mitigate the impact of attack on a

victim machine so as to minimize the collateral damage to clients of the
victim. Reactive mechanisms can be classified based on the response
strategy into agent identification, filtering and reconfiguration approaches.

Agent Identification Mechanisms
These mechanisms provide the victim with information about the identity

of the machines that are responsible to perform the attacks. This information
can be combined with other response approaches to reduce the impact of
attacks.

Filtering Mechanism
These techniques use the information provided by a detection mechanism

to filter out the attack stream completely. A dynamically deployed firewall is
an example of such a system.

Reconfiguration System
These mechanisms change the connectivity of the victim or the

intermediate network topology to isolate the attack machines. One example
of such a system is a reconfigurable overlay network.

NETWORK SECURITY CONTROLS

Encryption
Encryption is the most important and versatile tool for network security

experts. It can provide privacy, authenticity, integrity and limited access to
data. Encryption can be applied wither between two hosts (link encryption)
or between two applications (called end-to-end encryption).

Link Encryption
Link encryption protects the message in transit between two computers,

however the message is in clear text inside the host. In this method, the data
is encrypted before it is placed on the physical communication link. The
encryption occurs at the lowest layer 1 or 2 in the OSI model. Similarly,
decryption occurs when the data arrives at the receiving computer. This
mechanism is really useful when the transmission point is of greatest
vulnerability.

Network and System Security 37

End-to-end Encryption
This mechanism provides security from one end of transmission to the

other. In this case encryption is performed at the highest levels (layer 7 or
layer 6).

Virtual Private Networks

Link encryption can be used to give the same protection to a user as of
they are on a private network, even when their communication links are part
of a public network.

Firewalls can be used to implement a Virtual Private Network (VPN).
When a user first requests communication with a firewall, the user can
request a VPN session with the firewall. The user and the firewall can agree
on a session encryption key and the user can use that key for all subsequent
communication. With a VPN all communication passes through an
encrypted tunnel.

PKI and Certificates

A public key infrastructure (PKI) is a process created to enable users
to implement public key cryptography usually in a distributed environment.
PKI usually offers the following services

Create certificates that associates a user's identity to s cryptographic key
Distribute certificates from its database
Sign certificates to provide authenticity
Confirm a certificate if it is valid

PKI is really a set of policies, products and procedures with some
flexibility for interpretation. The policies define a set of rules under which
the system operates, it defines procedures on how to handle keys and how to
manage the risks.

SSH Encryption

SSH is a protocol that is available under Unix and Windows 2000 that
provides an authenticated and encrypted path to the shell or the OS
command interpreter. SSH protects against spoofing attacks and
modification of during in communication.

38 Anoop Singhal

SSL Encryption

The Secure Sockets Layer (SSL) protocol was originally designed by
Netscape to protect communication between a web browser and a server. It
is also known as transport layer security (TLS). SSL interfaces between the
applications (e.g. a browser) and the TCP/IP protocols to provide server
authentication, client authentication and an encrypted communications
channel between the client and server.

IPSec

The address space for Internet is running out as more machines and
domain names are being added to the Internet. A new structure called IPv6
solves this problem by providing a 64 bit address space to IP addresses. As
part of IPv6, the Internet Engineering Task Force (IETF) adopted an IP
Security Protocol (IPSec) Suite that addresses problems such as spoofing,
eavesdropping and session hijacking. IPSec is implemented at the IP layer so
it affects all layers above it. IPSec is somewhat similar to SSL, in that it
supports authentication and confidentiality that does not necessitate
significant changes either above it (in applications) or below it (in the TCP
protocols). Just like SSL, it was designed to be independent of the
cryptographic protocols and to allow the two communicating parties to agree
on a mutually supported set of protocols.

The basis of IPSec is called a security association which is basically a set
of security parameters that are required to establish a secured
communication. Some examples of these parameters are:

Encryption algorithm and mode
Encryption Key
Authentication protocol and key
Lifespan of the association to permit long running sessions to select a
new key
Address of the opposite end of an association

FIREWALLS

6.1 What they are

A firewall is a device that filters all traffic between a "protected" network
and the "outside" network. Generally, a firewall runs on a dedicated machine

Network and System Security 39

which is a single point through which all the traffic is channeled. The
purpose of a firewall is to keep "malicious" things outside a protected
environment. For example, a firewall may impose a policy that will permit
traffic coming from only certain IP addresses or users.

6.2 How do they work

There are different kind of firewalls.

Packet Filtering Firewall
It is the simplest form of firewall and in some situations it is most

effective. It is based on certain packet address (source or destination) or
transportation protocol (HTTP Web traffic).

Stateful Inspection Firewall
Filtering firewalls work on a packet at a time. They have no concept of

"state" or "context" from one packet to next. A stateful inspection firewall is
more sophisticated and it maintains state information to provide better
filtering

Personal Firewall
A personal firewall is an application program that runs on a workstation

or a PC to block unwanted traffic on a single workstation. A personal
firewall can be configured to enforce a certain policy. For example, a user
may decide that certain sites (for example a computer on a company
network) is trustworthy and the firewall should allow traffic from only those
sites. It is useful to combine a virus scanner with a personal firewall. For
example, a firewall can direct all incoming email to a virus scanner, which
examines every attachment the moment it reaches a particular host.

Application Proxy Gateway
An application proxy gateway is also called a bastion host. It is a firewall

that simulates the proper effects of an application so that the application will
receive only requests to act properly. The proxies on a firewall can be
tailored to specific requirements such as logging details about the access. A
proxy can demand strong authentication such as name, password and
challenge-response.

Guard
A guard is another form of a sophisticated firewall. It receives protocol

data units, interprets them and passes through the same or different protocol

40 Anoop Singhal

data units that achieve either the same result or a modified result. The guard
decides what services to perform on user's behalf in accordance with its
available knowledge. The following example illustrates the use of a guard. A
university wants all students to restrict the size of email messages to a
certain number of words or characters. Although, this rule can be
implemented by modifying email handlers, it is more easily done by
monitoring the common point through which all email flows.

6.3 Limitations of Firewalls

Firewalls do not offer complete solutions to all computer security
problems. A firewall can only protect the perimeter of its environment
against attacks from outsiders. The following are some of the important
points about firewall based protection

Firewalls can only protect if they control the entire perimeter. Even if
one inside host connects to an outside address by a modem, the entire inside
net can be vulnerable through the modem and its host.

Firewalls are the most visible parts of a network and therefore they are
the most attractive target for attacks..

Firewalls exercise only minor control over the content of the packets that
are admitted inside the network. Therefore inaccurate data or malicious code
must be controlled by other means inside the parameter.

7. BASICS OF INTRUSION DETECTION SYSTEMS

Perimeter controls such as a firewall, or authentication and access control
act as the first line of defense. However, prevention is not a complete
security solution. Intrusion Detection systems complement these preventive
controls by acting as the next line of defense. An IDS is a sensor, like a
smoke detector that raises an alarm if specific things occur. Intrusion
Detection is the process of identifying and responding to malicious activities
targeted at computing and network resources. It involves technology, people
and tools. An Intrusion Detection System basically monitors and collects
data from a target system that should be protected, processes and correlates
the gathered information and initiate responses when an intrusion is detected.

Network and System Security 41

8. C O N C L U S I O N S

Computer security ensures the confidentiality, integrity and availability
of computing resources: hardware, software, network and data. These
components have vulnerabilities and people exploit these vulnerabilities to
stage attacks against these resources.

In this chapter we have discussed some of the salient features of security
in networks and distributed applications. Since the world is becoming
connected by computers the significance of network security will continue to
grow. When a network and its components are designed and architectured
well, the resulting system is quite resilient to attacks.

A lot of work is being done to enhance computer security. Products from
vendor companies will lead to more secure boxes. There is a lot of research
interests in the area of authentication, access control and authorizations.
Another challenge for security is that networks are pervasive: cell phones,
personal digital assistants and other consumer appliances are being
connected. New applications lead to a new protocol development. There is a
need to make sure that these protocols are tested for security flaws and that
security measures are incorporated as needed. Intrusion Detection Systems
and Firewalls have become popular products to secure networks. In the
future, security of mobile code and web services will become an important
issue as remote updates and patches become popular.

References

1. Pfleeger C.P. and Pfleeger S.L, "Security in Computing", Third
Edition, Published by Prentice Hall, 2003

2. Bishop Matt, "Computer Security Art and Science", Addison-
Wesley 2003, ISBN 0-201-44099-7

3. M. D. Abrams, S. Jajodia, and H. J. Podell, eds., Information
Security: An Integrated Collection of Essays. IEEE Computer
Society Press, 1995

4. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1996

5. E. Amoroso, Fundamentals of Computer Security Technology,
Prentice Hall, 1994

6. C.Kaufman, R.Perlman, and M.Speciner. Network Security: Private
Communication in a Public World. 2nd ed. Prentice Hall, 2002

7. R.Anderson, Security Engineering, John Wiley and Sons 2001

42 Anoop Singhal

8. Stallings W, "Network Security Essentials", Prentice Hall 2003,
ISBN 0-13-035128-8

9. W. Cheswick, S.M. Bellovin, A. Rubin, "Firewalls and Internet
Security", Addison Wesley, ISBN 0-201-63466-X, 2003

Chapter 3

INTRUSION DETECTION SYSTEMS

Anoop Singhal

Abstract: This chapter provides an overview of the state of the art in intrusion detection
systems. Intrusion detection systems are software/hardware components that
monitor systems and analyze the events for intrusions. This chapter first
provides a taxonomy of intrusion detection systems. Second, architecture of
IDS and their basic characteristics are presented. Third, a brief survey of
different IDS products is discussed. Finally, significant gaps and direction for
future work is discussed

Key words: intrusion, signatures, anomaly, data mining

Intrusion Detection is the process of identifying and responding to
malicious activity targeted at computing and networking resources. It is a
device, typically another computer that monitors activities to identify
malicious or suspicious events. An IDS receives raw input from sensors,
analyzes those inputs and then takes some action.

Since the cost of information processing and Internet accessibility is
dropping, more and more organizations are becoming vulnerable to a wide
variety of cyber threats. According to a recent survey by CERT, the rate of
cyber attacks has been doubling every year in recent times. Therefore, it has
become increasingly important to make our information systems, especially
those used for critical functions such as mihtary and commercial purpose,
resistant to and tolerant of such attacks. Intrusion Detection Systems (IDS)
are an integral part of any security package of a modern networked
information system. An IDS detects intrusions by monitoring a network or
system and analyzing an audit stream collected from the network or system
to look for clues of malicious behavior.

44 Anoop Singhal

1. CLASSIFICATION OF INTRUSION DETECTION
SYSTEMS

Intrusion Detection Systems can be described in terms of three functional
components:

1. Information Sources: The different sources of data that are used to
determine the occurrence of an intrusion. The common sources are
network, host and application monitoring.

2. Analysis: This part deals with techniques that the system uses to detect an
intrusion. The most common approaches are misuse detection and
anomaly detection

3. Response: This implies the set of actions that the system takes after it has
detected an intrusion. The set of actions can be grouped into active and
passive actions. An active action involves an automated intervention
whereas a passive action involves reporting IDS alerts to humans. The
humans are in turn expected to take action.

Information Sources

Some IDSs analyze network packets captured from network bones or
LAN segments to find attackers. Other IDSs analyze information
generated by operating system or application software for signs of
intrusion.

Network Based IDS

A network based IDS analyzes network packets that are captured on a
network. This involves placing a set of traffic sensors within the network.
The sensors typically perform local analysis and detection and report
suspicious events to a central location. The majority of commercial
intrusion detection systems are network based. One advantage of a
network based IDS is that a few well placed network based IDS can
monitor a large network. A disadvantage of a network based IDS is that it
cannot analyze encrypted information. Also, most network based IDS
cannot tell if an attack was successful, they can only detect that an attack
was started.

Intrusion Detection Systems 45

Host Based IDS

A host based IDS analyzes host-bound audit sources such as operating
system audit trails, system logs or application logs. Since host based
systems directly monitor the host data files and operating system
processes, they can determine exactly which host resources are targets of
a particular attack. Due to the rapid development of computer networks,
traditional single host intrusion detection systems have been modified to
monitor a number of hosts on a network. They transfer the monitored
information from multiple monitored hosts to a central site for
processing. These are termed as distributed intrusion detection systems.
One advantage of a host based IDS is that it can "observe" the outcome
of an attempted attack, as it can directly access and monitor the data files
and system processes that are usually targeted by attacks. A disadvantage
of a host based IDS is that it is harder to manage and it is more
vulnerable to attacks.

Application Based IDS

Application based IDS are a special subset of host based IDS that analyze
the event that occur within a software application. The application log
files are used to observe the events. One advantage of application based
IDS is that they can directly monitor the interaction between a user and
an application which allows them to trace individual users.

IDS Analysis

There are two primary approaches to analyze events to detect attacks:
misuse detection and anomaly detection. Misuse detection is used by
most commercial IDS systems and the analysis targets something that is
known to be bad. Anomaly detection is one in which the analysis looks
for abnormal forms of activity. It is a subject of great deal of research and
is used by a limited number of IDS.

Misuse Detection

This method finds intrusions by monitoring network traffic in search of
direct matches to known patterns of attack (called signatures or rules).

46 Anoop Singhal

This kind of detection is also sometimes called "signature based
detection". A common form of misuse detection that is used in
commercial products specifies each pattern of events that corresponds to
an attack as a separate signature. However, there are more sophisticated
approaches called state based analysis that can leverage a single signature
to detect a group of attacks.

A disadvantage of this approach is that it can only detect intrusions that
match a pre-defined rule. The set of signatures need to be constantly
updated to keep up with the new attacks. One advantage of these systems
is that they have low false alarm rates.

Anomaly Detection

In this approach, the system defines the expected behavior of the network
in advance. The profile of normal behavior is built using techniques that
include statistical methods, association rules and neural networks. Any
significant deviations from this expected behavior are reported as possible
attacks. The measures and techniques used in anomaly detection include:

• Threshold Detection: In this kind of IDS certain attributes of user
behavior are expressed in terms of counts, with some level established as
permissible. Some examples of these attributes include number of files
accessed by a user in a given period, the number of failed attempts to
login to the system, the amount of CPU utilized by a process.

• Statistical Measures: In this case the distribution of profiled attributes is
assumed to fit a pattern.

• Other Techniques: These include data mining, neural networks, genetic
algorithms and immune system models.

In principle, the primary advantage of anomaly based detection is the
ability to detect novel attacks for which signatures have not been defined yet.
However, in practice, this is difficult to achieve because it is hard to obtain
accurate and comprehensive profiles of normal behavior. This makes an
anomaly detection system generate too many false alarms and it can be very
time consuming and labor intensive to sift through this data.

Intrusion Detection Systems 47

Response Options for IDS

After an IDS has detected an attack, it generates responses. Commercial
IDS support a wide range of response options, categorized as active
responses, passive responses or a mixture of two.

Active Responses

Active responses are automated actions taken when certain types of
intrusions are detected. There are three categories of active responses.

Collect additional information

The most common response to an attack is to collect additional
information about a suspected attack. This might involve increasing the level
of sensitivity of information sources for example turn up the number of
events logged by an operating system audit trail or increase the sensitivity of
a network monitor to capture all the packets. The additional information
collected can help in resolving and diagnosing whether an attack is taking
place or not.

Change the Environment

Another kind of active response is to halt an attack in progress and block
subsequent access by the attacker. Typically, an IDS accomplishes this by
blocking the IP address from which the attacker appears to be coming.

Take Action Against the Intruder

Some folks in the information warfare area believe that the first action in
active response area is to take action against the intruder. The most
aggressive form of this response is to launch an attack against the attacker's
host or site.

Passive Responses

Passive IDS responses provide information to system users and they
assume that human users will take subsequent action based on that

48 Anoop Singhal

information. Alarms and notifications are generated by an IDS to inform
users when an attack is detected. The most common form of an alarm is an
on screen alert or a popup window. Some commercial IDS systems are
designed to generate alerts and report them to a network management system
using SNMP traps. They are then displayed to the user via the network
management consoles.

INTRUSION DETECTION ARCHITECTURE

Figure 1 shows different components of IDS. They are briefly described
below.

Target System: The System that is being analyzed for intrusion detection
is considered as the target system. Some examples of target systems are
corporate intranets and servers.

Feed: A feed is an abstract notion of information from the target system
to the intrusion detection system. Some examples of a feed are system log
files on a host machine or network traffic and connections.

Processing: Processing is the execution of algorithms designed to detect
malicious activity on some target system. These algorithms can either use
signature or some other heuristic techniques to detect the malicious activity.
The physical architecture of the machine should have enough CPU power
and memory to execute the different algorithms.

Knowledge Base: In an intrusion detection system, knowledge bases are
used to store information about attacks as signatures, user and system
behavior as profiles. These knowledge bases are defined with appropriate
protection and capacity to support intrusion detection in real time.

Storage: The type of information that must be stored in an intrusion
detection system will vary from short termed cached information about an
ongoing session to longer term event related information for trend analysis.
The storage capacity requirements will grow as networks start working at
higher speeds.

Alarms/directives: The most common response of an intrusion detection
system is to send alarms to a human analyst who will then analyze it and
take proper action. However, the future trend is for IDS to take some action
(e.g. update the access control list of a router) to prevent further damage. As
this trend continues, we believe that intrusion detection will require
messaging architectures for transmitting information between components.

Intrusion Detection Systems 49

Such messaging is a major element of the Common Intrusion Detection
Framework.

GUI/operator interface: Proper Display of alarms from an IDS are usually
done using a Graphical User Interface. Most commercial IDS have a fancy
GUI with capabilities for data visualization and writing reports.

Communications infrastructure: Different components of an IDS and
different IDS communicate using messages. This infrastructure also requires
protection such as encryption and access control.

Target
System

Feed

= ^ >

Processing

System
Management

<—•

•

^
KB

c ^
Storage

Alarms

GUI

Figure 1: Intrusion Detection Architecture

3. IDS P R O D U C T S

This section presents some of the research and commercial IDS products.

3.1 Research Products

EMERALD
Event Monitoring Enabling Responses to Anomalous Live Disturbances

is a research tool developed by SRI International. They have explored issues
in intrusion detection associated with both deviations from normal user
behavior (anomalies) and known intrusion patterns (signatures).

50 Anoop Singhal

NetStat

This is a research tool produced by the University of CaHfomia at Santa
Barbara. It explores the use of state-transition analysis to detect real time
intrusions.

Bro

Bro is a research tool developed by the Lawrence Livermore National
Laboratory. The main design goals of Bro were

a) High Load Monitoring
b) Real Time Notification
c) Separating Mechanism from Policy
d) Ability to protect against attacks on the IDS

3.2 Commercial Products

This section gives examples of some of the commercial products.

NetProwler

This is a product from Axent Corporation. It supports both host based
and network based detection. NetProwler provides signatures for a wide
variety of operating system and application attacks. It allows a user to build
customized signature profiles using a signature definition wizard. Examples
of attack signatures that NetProwler supports include denial of service,
unauthorized access, vulnerability probes and suspicious activity that is
counter to company policies.

NetRanger

This is a product from Cisco Systems. It operates in real time and is
scalable to enterprise level. A NetRanger system is composed of Sensors and
one or more Directors that are connected by a communication system. In
addition to providing many standard attack signatures, NetRanger provides
the ability for the user to define their own customized signatures. In response
to an attack, the Sensor can be configured with several options that include
generating an alarm, logging the alarm event and denying further network
access.

Intrusion Detection Systems 51

The Director provides a centralized management support for the
NetRanger system. It allows the cabability to remotely install new signatures
into the Sensors. The Director also provides a centralized collection and
analysis of alert data. The status of Sensors can be monitored by the
Director using a color coded scheme.

RealSecure

This is a product from ISS. It uses a three level architecture consisting of
a network-based engine, a host based engine and an administrator's module.
The network recognition engine runs on dedicated workstations to provide
intrusion detection and response. Each network recognition engine watches
the packet traffic traveling over a specific network segment for attack
signatures. If it detects unauthorized activity, it can respond by terminating
the connection, sending email or pager alerts, reconfiguring the firewalls or
taking some user definable action.

The host based recognition engine is a host resident complement to the
network recognition engine. It analyzes host logs to recognize attacks,
determines whether the attack was successful or not and provides other
forensic information that is not available in a real time environment.

All recognition engines report to and are configured by the administrative
module, a management console that monitors the status of any number of
UNIX and Windows NT recognition engines. This results in a
comprehensive protection that is easily configured and administered from a
single location.

3.3 Public Domain Tools

TripWire

This is a file integrity assessment tool that was originally developed at
Purdue University. Tripwire is different from others as it detects changes in
the file system of the monitored system. Tripwire comes in both commercial
and free versions.

Tripwire computes checksums or cryptographic signatures of files. It can
be configured to report all changes in the monitored file system. For
example, it can check if system binaries have been modified, if syslog files

52 Anoop Singhal

have shrunk or if security settings have unexpectedly changed. It can be
configured to perform integrity checks at regular intervals and to provide
information to system administrators to implement recovery if tampering has
occurred.

SNORT

SNORT is an open source NIDS that uses a combination of rules and
preprocessors to analyze traffic. SNORT is easy to configure allowing users
to create their own signatures and to alter the base functionality using
plugins. Snort has evolved from a simple network management tool to a
world-class enterprise distributed intrusion detection system. Snort detects
suspicious traffic by using signature matching. Snort signatures are written
and released by the Snort community within hours of the announcement of a
new security exposure. It has the largest and most comprehensive collection
of attack signatures for any IDS.

SNORT uses output plug-ins to store the output of its detection engine.
It's outputting functionality is modular and provides different formats (e.g.
XML, Relational Database. Text logfile and so on) to store the output.
SNORT also provides a GUI to view the alerts. ACID is a Web application
that reads intrusion data stored in a database and presents it in a browser in a
human friendly format. ACID includes a charting component that is used to
create statistics and graphs.

Network Flight Recorder

This is a network based IDS that was previously available in both a
commercial version and a public domain version. NFR includes a complete
programming language, called N, designed for packet analysis. Filters are
written in this language which is compiled into byte code and interpreted by
the execution engine. Programs can be written in N to perform pattern
matching. Also, functions are provided to store the alert data into a database
and perform back end analysis. Some examples of backend analysis are
histogram and list. Histogram provides a facility for capturing data in a
multi dimensional matrix. The system can be programmed to generate alerts
based on the counts in different cells. The list functions allows records to be
stored in a chronological order to store historical information.

NFR also provides query back ends that allow you to analyze the data.
Query back ends have their own CGI interface and they also provide
graphical functions for data visualization.

Intrusion Detection Systems 53

3.4 Government Off-the Shelf (GOTS) Products

CIDDS (Common Intrusion Detection Director System)

This was supported by the Air Force Information Warfare Center.
CIDDS receives near real time connections data and associated events from
Automated Security Incident Measurement (ASIM) Sensor host machines
and selected other IDS tools. It stores this data on a local database and
allows for detailed correlation and analysis by human analyst. Various uses
of this data include

• Detecting potentially intrusive activities
• Detecting those activities that target specific machines
• Trend analysis for historical purposes

CIDDS provides the ASIM system with a centralized data storage and
analysis capability.

ASIM Sensor

ASIM Sensor is a promiscuous data packet sniffer and analyzer. It
consists of a suite of compiled C code and Java language programs. Real­
time ASIM identifies strings and services that could indicate attempts at
unauthorized access.

4. TYPES OF COMPUTER ATTACKS COMMONLY
DETECTED BY IDS

Three type of computer attacks are commonly detected by IDS: system
scanning, denial of service (DOS) and system penetration. These attacks can
be launched locally, on the attacked machine or remotely using a network to
access the target.

4.1 Scanning Attacks

A scanning attack occurs when an attacker probes a target network or
system by sending different kinds of packets. From the responses received.

54 Anoop Singhal

the attacker can learn many of the system characteristics and vulnerabilities.
Some of the information that the responses can provide are

• Topology of the target network
• Active hosts and operating systems on those hosts
• The different applications that are running on the host and their

version numbers

Various tools that are used to perform these activities are: network
mappers, port mappers, port scanners and vulnerability scanning tools.

4.2 Denial of Service Attacks

Denial of Service (DOS) attacks attempt to slow or shut down targeted
network systems or services. There are two main types of DOS attacks: flaw
exploitation and flooding.

4.2.1 Flaw Exploitation DOS Attacks

In this kind of an attack the attacker exploits a flaw in the target system's
software. An example of such a processing failure is the "ping of death"
attack. This attack involves sending a large ping packets that the target
system cannot handle and it will result in a crash.

4.2.2 Flooding DOS Attack

A flooding attack is one in which the attacker sends more information
than what the target can handle which results in an exhaustion of system
resources. One example of this attack is the "SYN Flood" attack. The term
distributed DOS attack is used where the attacker uses multiple computers to
launch an attack.

Intrusion Detection Systems 55

4.3 Penetration Attacks

These attacks involve unauthorized acquisition or alteration of a system
resource. Consider these as integrity and control violations. Some examples
of penetration attacks are

User to Root: A local user on a host gains root access

Remote to User: An attacker on a network gains access to a user account
on the target host

Remote to Root: An attacker on the network gains complete control of the
target host

5. SIGNIFICANT GAPS AND FUTURE
DIRECTIONS FOR IDS

This section discusses significant gaps in the current IDS products.

a) Historical Data Analysis: As networks are getting large and
complex, security officers that are responsible for managing these
networks need tools that help in historical data analysis, generating
reports and doing trend analysis on alerts that were generated in the
past. Current IDS often generate too msiny false alerts due to their
simplistic analysis. The storage management of alerts from IDS for
a complex network is a challenging task.

b) Support for Real Time Alert Correlation: Intrusion correlation
refers to interpretation, combination and analysis of information
from several sensors. For large networks, sensors will be
distributed and they will send their alerts to one central place for
correlation processing. There is a need for this information to be
stored and organized efficiently at the correlation center. Also,
traditional IDSs focus on low level alerts and they do not group
them even if there is a logical connection among them. As a result,
it becomes difficult for human users to understand these alerts and
take appropriate actions. It has been reported that for a typical
network "users are encountering 10 to 20,000 alerts per sensor per

56 Anoop Singhal

day". Therefore, there is a need to store these alerts efficiently and
group them to construct attack scenarios.

c) Heterogeneous Data Support: In a typical network environment,
there are multiple audit streams from diverse cyber sensors 1) raw
network traffic data 2) netflow data 3) system calls 4) output alerts
from an IDS and so on. It is important to have an architecture that
can integrate these data sources into a unified framework, together
so that an analyst can access it in real time. Since current IDS are
not perfect they produce a lot of false alarms. There is a need for
efficient querying techniques for a user to verify if an alert is
genuine by correlating it with the input audit data.

d) Forensic Analysis: With the rapidly growing theft and
unauthorized destruction of computer based information, the
frequency of prosecution is rising. To support prosecution,
electronic data must be captured and stored in such a way that it
provides legally acceptable evidence.

e) Feature extraction from Network Traffic Data and Audit Trails: For
each type of data that needs to be examined (network packets, host
event logs, process traces etc.) data preparation and feature
extraction is currently a challenging task. Due to large amounts of
data that needs to be prepared for the operation of IDS system, this
becomes expensive and time consuming.

f) Data Visualization: During attack, there is a need for the system
administrator to graphically visualize the alerts and respond to
them. There is also a need to filter and view alerts, sorted
according to priority, sub-net or time dimensions.

In the next chapter we will describe how data warehousing and data
mining techniques can solve some of these problems in IDS Applications.

Intrusion Detection Systems 57

6. CONCLUSIONS

The market for IDS and vulnerability assessment products has grown
drastically in the last few years. While IDS research is maturing, commercial
IDS products have become stable. Some commercial IDS systems have been
blamed for large number of false alarm rates, awkward user interfaces and
difficult to use. However, the strong commercial demand for IDS has forced
the commercial IDS vendors to solve these problems in a timely manner.
Furthermore, it is likely that certain IDS capabilities will become core
features of network infrastructure such as routers, bridges and switches.

References

1. There are several books on IDS including:
• Bace, Rebecca G., Intrusion Detection, Macmillan Technical Publishing, 2000
• Amoroso, Edward G., Intrusion Detection: An Introduction to Internet

Surveillance, Intrusion.net 1999.
• Northcutt, Stephen, Network Intrusion Detection: An Analyst's Handbook,

New Riders, 1999
2. For an overview of IDS and their capabilities read the white paper "An

Introduction to Intrusion Detection Assessment", at
http://www.icsa.net/services/consortia/intrusion/intmsion.pdf

3. Snort is a lightweight network intrusion detection system, which can perform a
variety of logging and analysis functions on IP networks. The URL for both
Snort and attack signatures is http://www.snort.otg

4. RealSecure IDS, http://www.iss.net
5. CERIAS at Purdue University has produced several network security tools.

The URL is http://www.cerias.purdue.edu

Chapter 4

DATA MINING FOR INTRUSION DETECTION

Anoop Singhal

Abstract: Data Mining Techniques have been successfully applied in many different
fields including marketing, manufacturing, fraud detection and network
management. Over the past years there is a lot of interest in security
technologies such as intrusion detection, cryptography, authentication and
firewalls. This paper discusses the application of Data Mining techniques to
computer security. Conclusions are drawn and directions for future research
are suggested.

Key words: anomaly detection, correlation, association rules, classification

1. INTRODUCTION

Intrusion detection is the process of monitoring and analyzing the events
occurring in a computer system in order to detect signs of security problems.
Over the past several years, intrusion detection and other security
technologies such as cryptography, authentication and firewalls have
increasingly gained in importance. There is a lot of interest in applying data
mining techniques to intrusion detection. This chapter gives a critical
summary of data mining research for intrusion detection. We provide a
survey of research projects that apply data mining techniques to intrusion
detection. We then suggest new directions for research and then give our
conclusions.

60 Anoop Singhal

2. DATA MINING FOR INTRUSION DETECTION

Recently, there is a great interest in application of data mining techniques
to intrusion detection systems. The problem of intrusion detection can be
reduced to a data mining task of classifying data. Briefly, one is given a set
of data points belonging to different classes (normal activity, different
attacks) and aims to separate them as accurately as possible by means of a
model. This section gives a summary of the current research project in this
area.

2.1 Adam

The ADAM project at George Mason University [1], [2] is a network-
based anomaly detection system. ADAM learns normal network behavior
from attack-free training data and represents it as a set of association rules,
the so called profile. At run time, the connection records of past delta
seconds are continuously mined for new association rules that are not
contained in the profile.

ADAM is an anomaly detection system. It is composed of three modules:
a preprocessing engine, a mining engine and a classification engine. The
preprocessing engine sniffs TCP/IP traffic data and extracts information
from the header of each connection according to a predefined schema. The
mining engine applies mining association rules to the connection records. It
works in two modes: training mode and detecting mode. In training mode,
the mining engine builds a profile of the users and systems normal behavior
and generates association rules that are used to train the classification
engine. In detecting mode, the mining engine mines unexpected association
rules that are different from the profile. The classification engine will
classify the unexpected association rules into normal and abnormal events.
Some abnormal events can be further classified as attacks. Although mining
of association rules has used previously to detect intrusions in audit trail
data, the ADAM system is unique in the following ways:

It is on-line; it uses an incremental mining (on-line mining) which does
not look at a batch of TCP connections, but rather uses a sliding window of
time to find the suspicious rules within that window.

It is an anomaly detection system that aims to categorize using data
mining the rules that govern misuse of a system. For this, the technique
builds, apriori, a profile of "normal" rules, obtained by mining past periods

Data Mining for Intrusion Detection 61

of time in which there were no attacks. Any rule discovered during the on­
line mining that also belongs to this profile is ignored, assuming that it
corresponds to a normal behavior.

Figures 1 and 2 show the basic architecture of ADAM. ADAM performs
its task in two phases. In the training phase, ADAM uses a data stream for
which it knows where the attacks are located. The attack free parts of the
stream are fed into a module that performs off-Hne association rules
discovery. The output of this module is a profile of rules that we call
"normal" i.e. it provides the behavior during periods when there are no
attacks. The profile along with the training data set is also fed into a module
that uses a combination of dynamic, on line algorithm for association rules,
whose output consists of frequent item sets that characterize attacks to the
system. These item sets are used as a classifier or decision tree. This whole
phase takes place off-line before we use the system to detect attacks.

The second phase of ADAM in which we actually detect attacks is shown
in the figure below. Again, the on-line association rules mining algorithm is
used to process a window of current connections. Suspicious connections are
flagged and sent along with their feature vectors to the trained classifier,
where they are labeled as attacks, false alarms or unknown. When, the
classifier labels connections as false alarms, it is filtering them out of the
attacks set and avoiding passing these alerts to the security officer. The last
class, i.e. unknown is reserved for the events whose exact nature cannot be
confirmed by the classifier. These events are also considered as attacks and
they are included in the set of alerts that are passed to the security officer.

62 Anoop Singhal

Attack free

Tranmg Data

Training Data

Off Line
Domain Level Mining

Domain Level Mining

Feature Selection

suspici
item sets

^ Profile

DUS

features

Label items as
False alarms or
attacks training

Classifier builder

Figure 1: The Training Phase of ADAM

ItftDstai
QP^KT^ DftlDiilX

FMLtma SfiLbclkiiL

^Tvpicoiv

n^tltasn^rt

1 V^Skk

CW îfifiX Fdkft iiloXSî

AttUi]^.TZ&]

Figure 2: The Intrusion Detection Phase of ADAM

Data Mining for Intrusion Detection 63

2.2 Madam ID

The MADAM ID project at Columbia University [7], [8] has shown how
data mining techniques can be used to construct an IDS in a more systematic
and automated manner. Specifically, the approach used by MADAM ID is
to learn classifiers that distinguish between intrusions and normal activities.
Unfortunately, classifiers can perform really poorly when they have to rely
on attributes that are not predictive of the target concept. Therefore,
MADAM ID proposes association rules and frequent episode rules as means
to construct additional more predictive attributes. These attributes are termed
disfeatures.

We will describe briefly how MADAM ID is used to construct network
based misuse detection systems. First all network traffic is preprocessed to
create connection records. The attributes of connection records are intrinsic
connection characteristics such as source host, the destination host, the
source and destination posts, the start time, the duration, header flags and so
on. In the case of TCP/IP networks, connection records summarize TCP
sessions.

The most important characteristic of MADAM ID is that it learns a
misuse detection model from examples. In order to use MADAM ID, one
needs a large set of connection records that have already been classified into
"normal records" or some kind of attacks. MADAM ID proceeds in two
steps. In the first step it doQS feature construction in which some additional
features are constructed that are considered useful for doing the analysis.
One example for this step is to calculate the count of the number of
connections that have been initiated during the last two seconds to the same
destination host as the current host. The feature construction step is followed
by the classifier learning step. It consists of the following process:

1. The training connection records are partitioned into two sets, namely
normal connection records and intrusion connection records.

2. Association rules and frequent episode rules are mined separately from
the normal connection records and from the intrusion connection records.
The resulting patterns are compared and all patterns that are exclusively
contained in the intrusion connection records are collected to form the
intrusion only patterns.

3. The intrusion only patterns are used to derive additional attributes such as
count or percentage of connection records that share some attribute
values with the current connection records.

64 Anoop Singhal

4. A classifier is learned that distinguishes normal connection records from
intrusion connection records, This classifier is the end product of
MADAM ID.

2.3 Minds

The MINDS project [4] [6] at University of Minnesota uses a suite of
data mining techniques to automatically detect attacks against computer
networks and systems. Their system uses an anomaly detection technique to
assign a score to each connection to determine how anomalous the
connection is compared to normal network traffic. Their experiments have
shown that anomaly detection algorithms can be successful in detecting
numerous novel intrusions that could not be identified using widely popular
tools such as SNORT.

Input to MINDS is Netflow data that is collected using Netflow tools.
The netflow data contains packet header information i.e. they do not capture
message contents. Netflow data for each 10 minute window which typically
results in 1 to 2 million records is stored in a flat file. The analyst uses
MINDS to analyze these 10 minute data files in a batch mode. The first step
in MINDS involves constructing features that are used in the data mining
analysis. Basic features include source IP address and port, destination IP
address and port, protocol, flags, number of bytes and number of packets.
Derived features include time-window and connection window based
features. After the feature construction step, the data is fed into the MINDS
anomaly detection module that uses an outlier detection algorithm to assign
an anomaly score to each network connection. A human analyst then has to
look at only the most anomalous connections to determine if they are actual
attacks or other interesting behavior.

MINDS uses a density based outlier detection scheme for anomaly
detection. The reader is referred to [4] for a more detailed overview of their
research. MINDS assigns a degree of being an outlier to each data point
which is called the local outlier factor (LOF). The output of the anomaly
detector contains the original Netflow data with the addition of the anomaly
score and relative contribution of the different attributes to that score. The
analyst typically looks at only the top few connections that have the highest
anomaly scores. The researchers of MINDS have their system to analyze the
University of Minnesota network traffic. They have been successful in
detecting scanning activities, worms and non standard behavior such as
policy violations and insider attacks.

Data Mining for Intrusion Detection 65

2.4 Clustering of Unlabeled ID

Traditional anomaly detection systems require "clean" training data in
order to learn the model of normal behavior. A major drawback of these
systems is that clean training data is not easily available. To overcome this
weakness, recent research has investigated the possibility of training
anomaly detection systems over noisy data [11]. Anomaly detection over
noisy data makes two key assumptions about the training data. First, the
number of normal elements in the training data is assumed to be significantly
larger than the number of anomalous elements. Secondly, anomalous
elements are assumed to be qualitatively different from normal ones. Then,
given that anomalies are both rare and different, they are expected to appear
as outliers that stand out from the normal baseline data. Portnoy et al. [11]
apply clustering to the training data. Here the hope is that intrusive elements
will bundle with other intrusive elements whereas normal elements will
bundle with other normal ones. Moreover, as intrusive elements are assumed
to be rare, they should end up in small clusters. Thus, all small clusters are
assumed to contain intrusions/anomalies, whereas large clusters are assumed
to represent normal activities. At run time, new elements are compared
against all clusters and the most similar cluster determines the new element's
classification as either "normal" or "intrusive".

2.5 Alert Correlation

Correlation techniques from multiple sensors for large networks is
described in [9], [10]. A language for modeling alert correlation is described
in [3]. Traditional IDS systems focus on low level alerts and they raise alerts
independently though there may be a logical connection between them. In
case of attacks, the number of alerts that are generated become
unmanageable. As a result, it is difficult for human users to understand the
alerts and take appropriate actions. Ning et al. present a practical method for
constructing attack scenarios through alert correlation, using prerequisites
and consequences of intrusions. Their approach is based on the observation
that in a series of attacks, alerts are not isolated, but related as different
stages, with earlier stages preparing for the later ones. They proposed a
formal framework to represent alerts with their prerequisites and
consequences using the concept of hyper-alerts. They evaluated their
approach using the 2000 DARPA intrusion detection scenario specific
datasets.

66 Anoop Singhal

3. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

In this chapter, we reviewed the application of data mining techniques to
the area of computer security. Data mining is primarily being used to detect
intrusions rather than to discover new knowledge about the nature of attacks.
Moreover, most research is based on strong assumptions that complicate
building of practical applications. First, it is assumed that labeled training
data is readily available, and second it is assumed that this data is of high
quality. Different authors have remarked that in many cases, it is not easy to
obtain labeled data. Even if one could obtain labeled training data by
simulating intrusions, there are many problems with this approach.
Additionally, attack simulation limits the approach to the set of known
attacks. We think that the difficulties associated with the generation of high
quality training data will make it difficult to apply data mining techniques
that depend on availability of high quality labeled training data. Finally,
data mining in intrusion detection focuses on a small subset of possible
applications. Interesting future applications of data mining might include the
discovery of new attacks, the development of better IDS signatures and the
construction of alarm correlation systems.

For future research, it should be possible to focus more on the KDD
process and detection of novel attacks. It is known that attackers use a
similar strategy to attack in the future as what they used in the past. The
current IDSs can only detect a fraction of these attacks. There are new
attacks that are hidden in the audit logs, and it would be useful to see how
data mining can be used to detect these attacks.

Data mining can also be applied to improve IDS signatures. IDS vendors
can run their systems in operational environment where all alarms and audit
logs are collected. Then, data mining can be used to search for audit log
patterns that are closely related with particular alarms. This might lead to
new knowledge as to why false positives arise and how they can be avoided.

Finally, data mining projects should focus on the construction of alarm
correlation systems. Traditional intrusion detection systems focus on low
level alerts and they raise alerts independently even though there is a logical
connection among them. More work needs to be done on alert correlation
techniques that can construct "attack strategies" and facilitate intrusion
analysis. One way is to store data from multiple sources in a data warehouse
and then perform data analysis. Alert correlation techniques will have
several advantages. First, it will provide a high level representation of the
alerts along with a temporal relationship of the sequence in which these

Data Mining for Intrusion Detection 67

alerts occurred. Second, it will provide a way to distinguish a true alert from
a false alert. We think that true alerts are likely to be correlated with other
alerts whereas false alerts will tend to be random and, therefore, less likely to
be related to other alerts. Third, it can be used to anticipate the future steps
of an attack and, thereby, come up with a strategy to reduce the damage.

References

1. Barbara D., Wu N., and Jajodia S., Detecting novel network intrusions using bayes
estimators. In Proc. First SIAM Conference on Data Mining, Chicago, IL, April
2001.

2. Barbara D., Couto J., Jajodia S., and Wu N., Adam: Detecting Intrusions by Data
Mining, In Proc. 2"^ Annual IEEE Information Assurance Workshop, West Point,
NY, June 2001.

3. Cuppens F. and Miege A., Alert Correlation in a Cooperative Intrusion Detection
Framework, Proc. IEEE Symposium on Security and Privacy, May 2002.

4. Ertoz L., Eilertson E., Lazarevic A., Tan P., Dokes P., Kumar V., Srivastava J.,
Detection of Novel Attacks using Data Mining, Proc. IEEE Workshop on Data
Mining and Computer Security, November 2003.

5. Han J and Kamber M., Data Mining: Concepts and Techniques, Morgan
Kaufmann, August 2000

6. Kumar V., Lazarevic A., Ertoz L., Ozgur A., Srivastava J., A Comparative Study of
Anomaly Detection Schemes in Network Intrusion Detection, Proc.Third SIAM
International Conference on Data Mining, San Francisco, May 2003.

7. Lee W., Stolfo, S. J., and Kwok K. W. Mining audit data to build intrusion
detection models. In Proc. Fourth International Conference on Knowledge
Discovery and Data Mining, NewYork, 1998.

8. Lee W. and Stolfo S. J. Data Mining approaches for intrusion detection, In Proc.
Seventh USENIX Security Symposium, San Antonio, TX, 1998.

9. Ning P., Cui Y., Reeves D. S., Constructing Attack Scenarios through Correlation
of Intrusion Alerts, Proc. ACM Computer and Communications Security Conf.,
2002.

10. Ning P., Xu D., earning Attack Strategies from Intrusion Alerts, Proc. ACM
Computer and Communications Security Conf, 2003.

11. Portnoy L., Eskin E., Stolfo S. J., Intrusion Detection with unlabeled data using
clustering. In Proceedings of ACM Workshop on Data Mining Applied to Security,
2001.

Chapter 5

DATA MODELING AND DATA
WAREHOUSING TECHNIQUES TO IMPROVE
INTRUSION DETECTION

Anoop Singhal

Abstract: This chapter describes data mining and data warehousing techniques that can
improve the performance and usability of Intrusion Detection Systems (IDS).
Current IDS do not provide support for historical data analysis and data
summarization. This chapter presents techniques to model network traffic and
alerts using a multi-dimensional data model and star schemas. This data model
was used to perform network security analysis and detect denial of service
attacks. Our data model can also be used to handle heterogeneous data sources
(e.g. firewall logs, system calls, net-flow data) and enable up to two orders of
magnitude faster query response times for analysts as compared to the current
state of the art. We have used our techniques to implement a prototype system
that is being successfully used at Army Research Labs. Our system has helped
the security analyst in detecting intrusions and in historical data analysis for
generating reports on trend analysis.

Key words: data warehouse, OLAP, data mining and analysis, star schema

1. INTRODUCTION

This section describes the author's experience in designing a data
warehousing system for historical data analysis and data summarization for
analysts at the Center for Intrusion Detection in Army Research Labs.

Since the cost of information processing and Internet accessibility is
dropping, more and more organizations are becoming vulnerable to a wide
variety of cyber threats. According to a recent survey by CERT, the rate of

70 Anoop Singhal

cyber attacks has been doubling every year in recent times. Therefore, it has
become increasingly important to make our information systems, especially
those used for critical functions such as military and commercial purpose,
resistant to and tolerant of such attacks. Intrusion Detection Systems (IDS)
are an integral part of any security package of a modem networked
information system. An IDS detects intrusions by monitoring a network or
system and analyzing an audit stream collected from the network or system
to look for clues of malicious behavior.

Intrusion Detection Systems generate a lot of alerts. There is a need to
develop methods and tools that can be used by the system security analyst to
understand the massive amount of data that is being collected by IDS,
analyze and summarize the data and determine the importance of an alert.
The problem is further complicated due the temporal variations. For
instance, the "normal" number and duration of FTP connections may vary
from morning to afternoon to evening. It may also vary depending on the
class of users being considered.

In this chapter, we present data modeling, data visualization and data
warehousing techniques that can drastically improve the performance and
usability of Intrusion Detection Systems. Data warehousing and On Line
Analytical Processing (OLAP) techniques can help the security officer in
detecting attacks, monitoring current activities on the network, historical
data analysis about critical attacks in the past, and generating reports on
trend analysis. We present techniques for feature extraction from network
traffic data and how a multi-dimensional data model or STAR schemas can
be used to represent network traffic data and relate it to the corresponding
IDS alerts.

This chapter is organized as follows. We first give a survey of research
projects that apply data mining techniques to intrusion detection. Then we
discuss the shortcomings in current systems. Section 3 presents a data
architecture for IDS. Section 4 presents the data model followed by System
Implementation. Finally section 5 gives the conclusions.

2. BACKGROUND

Recently, there is a great interest in application of data mining techniques
to intrusion detection systems [1]. The problem of intrusion detection can be
reduced to a data mining task of classifying data. Briefly, one is given a set

Data Modeling and Data Warehousing Techniques 71

of data points belonging to different classes (normal activity, different
attacks) and aims to separate them as accurately as possible by means of a
model. This section gives a summary of the current research in this area.

1. MADAM ID: The MADAM ID project at Columbia University [2], [3]
has shown how data mining techniques can be used to construct a IDS in
a more systematic and automated manner.

2. ADAM: The ADAM project [4], [5] is a network-based anomaly
detection system. ADAM learns normal network behavior from attack-
free training data and represents it as a set of association rules, the so
called profile. At run time, the connection records of past delta seconds
are continuously mined for new association rules that are not contained in
the profile.

3. MINDS: The MINDS project [6], [7] at University of Minnesota uses a
suite of data mining techniques to automatically detect attacks against
computer networks and systems. Their system uses an anomaly detection
technique to assign a score to each connection to determine how
anomalous the connection is compared to normal network traffic. Their
experiments have shown that anomaly detection algorithms can be
successful in detecting numerous novel intrusions that could not be
identified using widely popular tools such as SNORT [].

4. Clustering of Unlabeled ID: Traditional anomaly detection systems
require "clean" training data in order to learn the model of normal
behavior. A major drawback of these systems is that clean training data is
not easily available. To overcome these weakness, recent research has
investigated the possibility of training anomaly detection systems over
noisy data [8]

5. IDDM: The IDDM system [9] uses anomaly detection techniques for
intrusion detection.

6. eBayes: The eBayes [10] system also uses anomaly detection for
intrusion detection.

7. Alert Correlation: [11], [12] use correlation techniques to construct
"attack scenarios" from low level alerts. [13] also describe a language for
modeling alert correlation. [22], [23] describe probabilistic alert
correlation. [24] describes use of attack graphs to correlate intrusion
events.

72 Anoop Singhal

3. RESEARCH GAPS

Historical Data Analysis: As networks are getting large and complex,
security officers that are responsible for managing these networks need tools
that help in historical data analysis, generating reports and doing trend
analysis on alerts that were generated in the past. Current IDS often
generate too many false alerts due to their simplistic analysis. The storage
management of alerts from IDS for a complex network is a challenging task.

Support for Real Time Alert Correlation: Intrusion correlation refers to
interpretation, combination and analysis of information from several sensors.
For large networks, sensors will be distributed and they will send their alerts
to one central place for correlation processing. There is a need for this
information to be stored and organized efficiently at the correlation center.
Also, traditional IDSs focus on low level alerts and they do not group them
even if there is a logical connection among them. As a result, it becomes
difficult for human users to understand these alerts and take appropriate
actions. It has been reported that for a typical network "users are
encountering 10 to 20,000 alerts per sensor per day". Therefore, there is a
need to store these alerts efficiently and group them to construct attack
scenarios [11], [12].

Heterogeneous Data Support: In a typical network environment, there are
multiple audit streams from diverse cyber sensors 1) raw network traffic data
2) netflow data 3) system calls 4) output alerts from an IDS and so on. It is
important to have an architecture that can integrate these data sources into a
unified framework, together so that an analyst can access it in real time.
Since current IDS are not perfect they produce a lot of false alarms. There is
a need for efficient querying techniques for a user to verify if an alert is
genuine by correlating it with the input audit data.

Forensic Analysis: With the rapidly growing theft and unauthorized
destruction of computer based information, the frequency of prosecution is
rising. To support prosecution, electronic data must be captured and stored in
such a way that it provides legally acceptable evidence.

Feature extraction from Network Traffic Data and Audit Trails: For each
type of data that needs to be examined (network packets, host event logs,
process traces etc.) data preparation and feature extraction is currently a
challenging task. Due to large amounts of data that needs to be prepared for
the operation of IDS system, this becomes expensive and time consuming.

Data Modeling and Data Warehousing Techniques 73

Data Visualization: During attack, there is a need for the system
administrator to graphically visualize the alerts and respond to them. There
is also a need to filter and view alerts, sorted according to priority, sub-net or
time dimensions.

4. A DATA ARCHITECTURE FOR IDS

In this section we describe a set of techniques that will considerably
improve the performance of intrusion detection systems. The improvement is
focused in the area of multi-dimensional data model that can be used to
represent alerts and to detect new kinds of attacks. Techniques for feature
extraction from network traffic data and alert correlation are also presented.

4.1 A Software Architecture and Data Model for
Intrusion Detection

Systciti Arcliitecturc

GUI
C^^ri to Detect wtticlls

Fcunafc Extrac^

Stnpojtf AucKDato Delsciore

Alerts 0»U ^p^i^

Data Warehouse

Figure 1: Data Architecture for Intrusion Detection System

74 Anoop Singhal

Figure 1 shows an architecture diagram of our system. In a typical
network environment there are many different audit streams that are useful
for detecting intrusions. For example, such data includes network packets
(headers, payload features), system logs on the host and system calls of
processes on these machines. These types of data have different properties.
Also, the detection models can vary. The most widely used detection model
is a signature based system while data mining based approaches are also
being explored. It is important to have an architecture that can handle any
kind of data and different detection models. Our architecture supports the
following components:
1. Real time components that includes sensors and detectors
2. A data warehouse component to store the data efficiently
3. Feature extraction component that reads the audit data from the data

warehouse, extracts some features and computes some aggregates and
then stores the information back in the data warehouse. These features
are useful to the analysts to detect attacks.

4. Visualization engine that presents information to the analyst.

The proposed architecture has several advantages:

1. Modularity: All the data is stored in one central place and can be easily
queried by the security analyst or the intrusion detection applications.

2. Support for multiple detectors: We have separated the sensor component
from the detector component. This allows us to use a signature based
detection engine and a data mining based detection engine on the same
set of audit data.

3. Correlation of audit data from multiple sensors: Since the data from
multiple sensors is stored in one central place, a detection engine can
easily access the data from multiple sensors by executing a database
query.

4. Reusability: Since the features extracted from the audit data are stored in
one central place, they can be re-used by multiple applications to detect
attacks.
Some more benefits for this software architecture and data warehouse

for Network Fault Management and Provisioning Applications are discussed
in [14] [15] [16].

Data Modeling and Data Warehousing Techniques 75

4.2 Data Modeling for Historical Data Analysis Using
STAR Schema:

In order to help the security officer or an analyst to decide whether an
alert needs further investigation we plan to support the capability of querying
and browsing a historical database. We model the alert data as a
multidimensional dataset and borrow the model used in On Line Analytical
Processing (OLAP). A popular abstraction for multidimensional data that is
widely used in OLAP is the data cube. A cube is simply a multidimensional
structure that contains at each point an aggregate value, i.e. the result of
applying an aggregate function to an underlying relation.

In our case, the underlying relation is the alerts that are generated from an
IDS. The alerts can be viewed as a multidimensional data. This schema is
known as the star schema. In it, the main table is called the^^c^ table. The
attributes are the dimensions of the data. Examples of dimensions are
Time&Date, Duration, Sdinfo, Service, Attack Time&Date contains
information of date and time when the attack was staged. Duration records
duration of the attack. Sdinfo describes the Source/Destination IP addresses
and destination port information. This dimension encompasses a hierarchy
which shows how this information can be aggregated to produce different
views. Both, the source and destination IP addresses are composed of 4 bytes
SiplSip2Sip3Sip4 and Dip lDip2Dip3Dip4. Dropping one or more of these
fields produces a higher level view of the address. For example, SiplSip2
corresponds to a series of domain of IP addresses each characterized by the
first 2 bytes of the address. The Service dimension table contains the service
name that was attacked and the class of service (e.g. TCP, UDP). The
hierarchy for these dimensions are also shown. Similarly, the dimension
table contains Attack contains both the name of the attack and its type (e.g.
DOS, Probe). The dimension Time&Date presents different views of timing
information. Finally, the dimension Duration contains the length of the
attack. This can also be viewed as long, medium or short.

76 Anoop Singhal

Attack
Class

Service
Class

SourcelP
DestJnatifmlP
SrcPOrt

AttacWC:^
IPKey
ServiceKey

Duration

*:

M
TimeJDay, M€axQ:\
Year

Figure 2: A Star Schema for the IDS Data Warehouse

Figure 3: Dimension Hierarchy for IP Address

Using this schema, a corresponding cube would be a five dimensional
structure in which cell contains aggregates of the operations measures. For
instance, a cell could correspond to short duration attacks over the ftp service
in the period 1 pm to 2 pm during Oct 20̂ ^ 1998. Data cubes can be
constructed by using SQL aggregation functions (COUNT, SUM, MIN,
MAX). Cubes can be organized in a hierarchical manner. At the base of the

Data Modeling and Data Warehousing Techniques 11

hierarchy are the aggregates computed from the fact table. We call this base
data. As data is consolidated into higher levels it is called consolidated
data. For example, in our data cube, the base data could be cells that contain
aggregates of measures per user, operation, time period and date. Higher
levels of hierarchy can be specified in terms of classes of users (users in
division W), coarser time periods (e.g. morning) and date consolidation (e.g.
Sept. 2000).

/ \
/

ckss I quarters
/

/
weeks ntontlis

y service

days

Figure 4: Dimension Hierarchy for Time and Services

4.3 Support for High Speed Drill Down Queries and
Detection of AttacksA îrusAVorms

When an alert is generated by an IDS the analyst is interested to "drill
down" and check the corresponding "raw network traffic" data to verify the
alert. If the network traffic data is large (typically a Terabyte for 1 week of
network traffic data) this can be time consuming. We describe techniques to
organize the raw network traffic data using STAR schemas so that it is
efficient to query it and link the raw network traffic data for the
corresponding output alert. We use "bit map indexing" and "join indexing"
techniques to speed up query processing. We have designed queries for
security analysis of network traffic data. The following are some examples
of security analysis:

78 Anoop Singhal

a) Scanning Activity: Process one hour of data (17:00 -18:00 GMT on
October 15*̂ 2004) and look for all flows where the SYN flag was set and
ACK/FIN flags are not set.

b) Recently, Sasser worm was released that scans port 445. To detect this
worm a query was written to search for flows that scan for port 445. If
the analyst is interested in internal machines that have been infected he
can narrow the search to only those machines with destination port 445.
A query was written that would generate the top ten source-destination IP
pairs on destination port 445 for netflow data during a certain period of
time.

c) Another security concern is denial of service attacks. One of the common
network based denial of service attacks is SYN flooding. A query was
written which was similar to those for worm detection to detect if a SYN
flood has occurred. In this case we detected all source-destination IP
pairs that have seen an excessive number of SYN packets.

d) Worm Detection: Recently, the MyDoom worm spread via an email
attachment that created a backdoor on ports 3127-3198. After the release
of this worm, scanning for this backdoor increased significantly. SQL
queries were written to generate reports about the number of flows
caused by this scanning in 10 minute intervals. The report shows that
there is a sudden jump in the number of bytes transferred, even though
the number of flows stayed constant.

4.4 Feature Extraction From Network Traffic Data

A number of data mining based IDS applications need to pre-process the
network traffic data before they can do their analysis. For example, the
preprocessing module of ADAM [4] generates a record for each connection
from the header information of its packets based on the following schema:

R(TS, Src.IP, Src.Port, Dest.IP, Dest.Port, FLAG)

Data Modeling and Data Warehousing Techniques 79

In this schema, TS represents the beginning time of a connection, Src.IP
and Src.Port refer to source IP and port number respectively, while Dest.IP
and Dest.Port represent the destination IP and port number. The attribute
FLAG describes the status of a connection. This relation R is used for
association mining. We store the connection records in the data warehouse
so that they are available in one central place by several applications to do
the analysis. Besides the basic features, we also store some derived features
based on the window of time (number of bytes, number of packets, number
of connections) that can be useful to detect attacks. These features are used
to capture connections with similar characteristics (src-ip, dest-ip, src-port,
dest-port, protocol) in the last T seconds, since typically DOS and scanning
attacks involve hundreds of connections. A similar approach was used for
constructing features in the KDDCup '99 data [20].

4.5 Help the Security Officer for Forensic Analysis

One of the important kind of analysis is forensic analysis. Currently
forensic analysis of data is done manually. Computer experts have to search
through large amounts of data, sometimes millions of records, individually
and look for suspicious behavior. This is an extremely inefficient and
expensive process. Since we can store all the historical data (net-flow data,
system calls, fire-wall logs) in a data warehouse we can help the security
officer in accessing all the records which are suspicious and possibly have
some intrusions. The suspicious activity can then be labeled as either
anomalous or normal using SQL statements to mark the appropriate data.
Since all the data is stored in a data warehouse we can update the record and
store it back in the database. Our database platform can be used to design
Digital Forensics tools tailored to Information Warfare that can provide real
time performance.

80 Anoop Singhal

5. CONCLUSIONS

This chapter described data modeling and data warehousing techniques
that drastically improve the performance and usability of Intrusion Detection
Systems (IDS). Current IDS do not provide support for historical data
analysis and data summarization. This chapter presented techniques to model
network traffic and alerts using a multi-dimensional data model and star
schemas. This data model was used to perform network security analysis and
detect denial of service attacks. Our data model can also be used to handle
heterogeneous data sources (e.g. firewall logs, system calls, net-flow data)
and enable up to two orders of magnitude faster query response times for
analysts as compared to the current state of the art. We have used our
techniques to implement a prototype system that is being successfully used
at Army Research Labs. Our system has helped the security analyst in
detecting intrusions and in historical data analysis for generating reports on
trend analysis

References

1. Singhal A. and Jajodia S., "Data Mining for Intrusion Detection", Published as a
chapter in Data Mining Handbook, Kluwer, December 2004.

2. Lee W., Stolfo, S. J., and Kwok K. W. Mining audit data to build intrusion
detection models. In Proc. Fourth International Conference on Knowledge
Discovery and Data Mining, New York, 1998.

3. Lee W. and Stolfo S. J. Data Mining approaches for intrusion detection. In Proc.
Seventh USENIX Security Symposium, San Antonio, TX, 1998.

4. Barbara D., Wu N., and Jajodia S., Detecting novel network intrusions using bayes
estimators. In Proc. First SIAM Conference on Data Mining, Chicago, IL, April
2001.

5. Barbara D., Couto J., Jajodia S., and Wu N., Adam: Detecting Intrusions by Data
Mining, In Proc. 2"̂ * Annual IEEE Information Assurance Workshop, West Point,
NY, June 2001.

6. Ertoz L., Eilertson E., Lazarevic A., Tan P., Dokes P., Kumar V., Srivastava J.,
Detection of Novel Attacks using Data Mining, Proc. IEEE Workshop on Data
Mining and Computer Security, November 2003.

Data Modeling and Data Warehousing Techniques 81

7. Kumar V., Lazarevic A., Ertoz L., Ozgur A., Srivastava J., A Comparative Study of
Anomaly Detection Schemes in Network Intrusion Detection, Proc.Third SIAM
International Conference on Data Mining, San Francisco, May 2003.

8. Portnoy L., Eskin £., Stolfo S. J., Intrusion Detection with unlabeled data using
clustering. In Proceedings of ACM Workshop on Data Mining Applied to Security,
2001.

9. Abraham T. (2001) IDDM: Intrusion Detection Using Data Mining Techniques.
Technical Report DSTO-GD-0286, DSTO Electronics and Surveillance Research
Laboratory

10. Valdes A. and Skinner K. (2000) Adaptive, model based monitoring for cyber
attack detection. In Recent Advances on Intrusion Detection, pp 80-93, France,
Springer Verlag

11. Ning P., Cui Y., Reeves D. S., Constructing Attack Scenarios through Correlation
of Intrusion Alerts, Proc. ACM Computer and Communications Security Conf.,
2002.

12. Ning P., Xu D., Learning Attack Strategies from Intrusion Alerts, Proc. ACM
Computer and Communications Security Conf, 2003.

13. Cuppens F. and Miege A., Alert Correlation in a Cooperative Intrusion Detection
Framework, Proc. IEEE Symposium on Security and Privacy, May 2002.

14. A. Singhal, "ANSWER: Network Monitoring using Object Oriented Rules" (with
G. Weiss and J. Ros), Proceedings of the Tenth Conference on Innovative
Application of Artificial Intelligence, Madison, Wisconsin, July 1998

15. Singhal A., "Design of GEMS Data Warehouse for AT&T Business Services",
Proceedings of AT&T Software Architecture Symposium, Somerset, NJ, March
2000

16. Singhal A., "Design of Data Warehouse for NetworkAVeb Services", Proceedings
of Conference on Information and Knowledge Management (CIKM), November
2004..

17. DARPA, DARPA 1998 Intrusion Detection Evaluation,
http://ideval.H.mit.edu/1998 index.html

18. SNORT, SNORT Intrusion Detection System, http://www.snort.org
19. RealSecure IDS, http://www.iss.net
20. KDD Cup 1999, http://www.kdd.ics.uci.edu/databases/kddcup99/task.htnil
21. Graph Viz, Graph layout and drawing software,

http://www.research.att.coni/sw/tools/graphviz
22. X. Qin and W. Lee , "Statistical causality analysis of INFOSEC alert data". In

Proceedings of 6**̂ International Symposium on Recent Advances in Intrusion
Detection (RAID 2003), September 2003.

82 Anoop Singhal

23. X. Qin and W. Lee , "Discovering novel attack strategies from INFOSEC alerts", In
Proceedings of the 9'*̂ European Symposium on Research in Computer Security
(ESORICS 2004), September 2004.

24. Steven Noel, Eric Robertson, Sushil Jajodia, "Correlating Intrusion Events and
Building Attack Scenarios through Attack Graph Distances," in Proceedings of the
20'^ Annual Computer Security Applications Conference, Tucson, Arizona,
December 2004.

Chapter 6

MINDS: ARCHITECTURE & DESIGN

Varun Chandola, Eric Eilertson, Levent Ertoz, Gyorgy Simon and
Vipin Kumar
Department of Computer Science
University of Minnesota

-[chandola,eric,ertoz,gsimon,kumar}(3)cs.umn.edu

Abstract This chapter provides an overview of the Minnesota Intrusion De­
tection System (MINDS), which uses a suite of data mining based
algorithms to address different aspects of cyber security. The var­
ious components of MINDS such as the scan detector, anomaly de­
tector and the profiling module detect different types of attacks
and intrusions on a computer network. The scan detector aims
at detecting scans which are the percusors to any network attack.
The anomaly detection algorithm is very effective in detecting be­
havioral anomalies in the network traffic which typically trans­
late to malicious activities such as denial-of-service (DoS) traffic,
worms, policy violations and inside abuse. The profiling module
helps a network analyst to understand the characteristics of the
network traffic and detect any deviations from the normal profile.
Our analysis shows that the intrusions detected by MINDS are com­
plementary to those of traditional signature based systems, such as
SNORT, which implies that they both can be combined to increase
overall attack coverage. MINDS has shown great operational suc­
cess in detecting network intrusions in two live deployments at
the University of Minnesota and as a part of the Interrogator ar­
chitecture at the US Army Research Lab - Center for Intrusion
Monitoring and Protection (ARL-CIMP).

Keywords: network intrusion detection, anomaly detection, summarization,
profiling, scan detection

84 MINDS: Architecture & Design

The conventional approach to securing computer systems against
cyber threats is to design mechanisms such as firewalls, authenti­
cation tools, and virtual private networks that create a protective
shield. However, these mechanisms almost always have vulner­
abilities. They cannot ward off attacks that are continually be­
ing adapted to exploit system weaknesses, which are often caused
by careless design and implementation flaws. This has created
the need for intrusion detection [6], security technology that com­
plements conventional security approaches by monitoring systems
and identifying computer attacks.

Traditional intrusion detection methods are based on human ex­
perts' extensive knowledge of attack signatures which are charac­
ter strings in a messageSs payload that indicate malicious content.
Signatures have several limitations. They cannot detect novel at­
tacks, because someone must manually revise the signature data­
base beforehand for each new type of intrusion discovered. Once
someone discovers a new attack and develops its signature, de­
ploying that signature is often delayed. These limitations have led
to an increasing interest in intrusion detection techniques based on
data mining [12, 22,2].

This chapter provides an overview of the Minnesota Intrusion
Detection System (MINDŜ) which is a suite of different data min­
ing based techniques to address different aspects of cyber security.
In Section 1 we will discuss the overall architecture of MINDS. In
the subsequent sections we will briefly discuss the different com­
ponents of MINDS which aid in intrusion detection using various
data mining approaches.

MINDS - Minnesota INtrusion Detection System

f' Data
I Capture
V Device

i Storage •^>k:'
Feature

Extraction

Association
Pattern
Analysis

Anomaly V J Anomaly
Dstftction J \ Scores

W Known
/ ' ^ Dete<

Attack
Detection

Labels

Detected known

Analyst

Figure 6.1. The Minnesota Intrusion Detection System (MINDS)

MINDS - Minnesota INtrusion Detection System 85

Figure 6.1 provides an overall architecture of the MINDS. The
MINDS suite contains various modules for collecting and analyz­
ing massive amounts of network traffic. Typical analyses include
behavioral anomaly detection, summarization, scan detection and
profiling. Additionally, the system has modules for feature extrac­
tion and filtering out attacks for which good signatures have been
learnt [8]. Each of these modules will be individually described
in the subsequent sections. Independently, each of these modules
provides key insights into the network. When combined, which
MINDS does automatically, these modules have a multiplicative af­
fect on analysis. As shown in the figure, MINDS system is involves
a network analyst who provides feedback to each of the modules
based on their performance to fine tune them for more accurate
analysis.

While the anomaly detection and scan detection modules aim
at detecting actual attacks and other abnormal activities in the net­
work traffic, the profiling module detects the dominant modes of
traffic to provide an effective profile of the network to the analyst.
The summarization module aims at providing a concise represen­
tation of the network traffic and is typically applied to the output
of the anomaly detection module to allow the analyst to investigate
the anomalous traffic in very few screen-shots.

The various modules operate on the network data in the Net Flow
format by converting the raw network traffic using i\\Q flow-tools
library ^. Data in NetFlow format is a collection of records, where
each record corresponds to a unidirectional flow of packets within
a session. Thus each session (also referred to as a connection)
between two hosts comprises of two flows in opposite directions.
These records are highly compact containing summary informa­
tion extracted primarily from the packet headers. This information
includes source IP, source port, destination IP, destination port,
number of packets, number of bytes and timestamp. Various mod­
ules extract more features from these basic features and apply data
mining algorithms on the data set defined over the set of basic as
well as derived features.

MINDS is deployed at the University of Minnesota, where sev­
eral hundred million network flows are recorded from a network
of more than 40,000 computers every day. MINDS is also part of
the Interrogator [15] architecture at the US Army Research Lab
- Center for Intrusion Monitoring and Protection (ARL-CIMP),
where analysts collect and analyze network traffic from dozens of
Department of Defense sites [7]. MINDS is enjoying great opera-

86 MINDS: Architecture & Design

tional success at both sites, routinely detecting brand new attacks
that signature-based systems could not have found. Additionally,
it often discovers rogue communication channels and the exfiltra-
tion of data that other widely used tools such as SNORT [19] have
had difficulty identifying.

2. Anomaly Detection
Anomaly detection approaches build models of normal data and

detect deviations from the normal model in observed data. Anom­
aly detection applied to intrusion detection and computer security
has been an active area of research since it was originally pro­
posed by Denning [6]. Anomaly detection algorithms have the
advantage that they can detect emerging threats and attacks (which
do not have signatures or labeled data corresponding to them) as
deviations from normal usage. Moreover, unlike misuse detection
schemes (which build classification models using labeled data and
then classify an observation as normal or attack), anomaly detec­
tion algorithms do not require an explicitly labeled training data
set, which is very desirable, as labeled data is difficult to obtain in
a real network setting.

The MINDS anomaly detection module is a local outlier detec­
tion technique based on the local outlier factor (LOF) algorithm
[3]. The LOF algorithm is effective in detecting outliers in data
which has regions of varying densities (such as network data) and
has been found to provide competitive performance for network
traffic analysis[13].

The input to the anomaly detection algorithm is NetFlow data
as described in the previous section. The algorithm extracts 8 de­
rived features for each flow [8]. Figure 6.2 lists the set of features
which are used to represent a network flow in the anomaly detec­
tion algorithm. Note that all of these features are either present in
the NetFlow data or can be extracted from it without requiring to
look at the packet contents.

Applying the LOF algorithm to network data involves computa­
tion of similarity between a pair of flows that contain a combina­
tion of categorical and numerical features. The anomaly detection
algorithm uses a novel data-driven technique for calculating the
distance between points in a high-dimensional space. Notably,
this technique enables meaningful calculation of the similarity be­
tween records containing a mixture of categorical and numerical
features shown in Figure 6.2.

Anomaly Detection 87

Basic
Source IP
Source Port
Dest inat ion IP
Dest inat ion Port
Protocol
Duration
Packets Sent
Bytes per Packet Sent

Derived (Time-window Based)
count-deSt

count-src

count -serv-s rc

count-serv-dest

Number of flows to unique destination IP addresses
inside the network in the last T seconds from the
same source
Number of flows from unique source IP addresses
inside the network in the last T seconds to the same
destination
Number of flows from the source IP to the same des­
tination port in the last T seconds
Number of flows to the destination IP address using
same source port in the last T seconds

Derived (Connection Based)
count-dest-conn

count-src-conn

count-serv-src-conn

count-serv-dest-conn

Number of flows to unique destination
IP addresses inside the network in the
last N flows from the same source
Number of flows from unique source IP
addresses inside the network in the last
Â flows to the same destination
Number of flows from the source IP to
the same destination port in the last N
flows
Number of flows to the destination IP
address using same source port in the
last Â flows

Figure 6.2. The set of features used by the MINDS anomaly detection algorithm

LOF requires the neighborhood around all data points be con­
structed. This involves calculating pairwise distances between all
data points, which is an 0{ii?) process, which makes it computa­
tionally infeasible for a large number of data points. To address
this problem, we sample a training set from the data and compare

88 MINDS: Architecture & Design

all data points to this small set, which reduces the complexity to
0{n^m) where n is the size of the data and m is the size of the
sample. Apart from achieving computational efficiency, sampling
also improves the quality of the anomaly detector output. The nor­
mal flows are very frequent and the anomalous flows are rare in
the actual data. Hence the training data (which is drawn uniformly
from the actual data) is more likely to contain several similar nor­
mal flows and far less likely to contain a substantial number of
similar anomalous flows. Thus an anomalous flow will be unable
to find similar anomalous neighbors in the training data and will
have a high LOF score. The normal flows on the other hand will
find enough similar normal flows in the training data and will have
a low LOF score.

Thus the MINDS anomaly detection algorithm takes as input a
set of network flows^ and extracts a random sample as the training
set. For each flow in the input data, it then computes its nearest
neighbors in the training set. Using the nearest neighbor set it then
computes the LOF score (referred to as the Anomaly Score) for that
particular flow. The flows are then sorted based on their anomaly
scores and presented to the analyst in a format described in the
next section.

Output of Anomaly Detection Algorithm: The output of the
MINDS anomaly detector is in plain text format with each input
flow described in a single line. The flows are sorted according
to their anomaly scores such that the top flow corresponds to the
most anomalous flow (and hence most interesting for the analyst)
according to the algorithm. For each flow, its anomaly score and
the basic features describing that flow are displayed. Addition­
ally, the contribution of each feature towards the anomaly score is
also shown. The contribution of a particular feature signifies how
different that flow was from its neighbors in that feature. This al­
lows the analyst to understand the cause of the anomaly in terms
of these features.

Table 6.1 is a screen-shot of the output generated by the MINDS
anomaly detector from its live operation at the University of Min­
nesota. This output is for January 25, 2003 data which is one
day after the Slammer worm hit the Internet. All the top 18 flows
shown in Table 6.1 actually correspond to the worm related traf­
fic generated by an external host to different U of M machines on
destination port 1434 (which corresponds to the Slammer worm).
The first entry in each line denotes the anomaly score of that

Anomaly Detection 89

o
o

o

<N (N <N CN (N^ <N̂ (N CN <N (N (N (N CN (N r | <N (N (N
o" o" o" o" o" o" o" o" o" o" o" o" o" o" o" o" o" o"

o o o o o o o o o o o o o o o o o o

S 2 <=̂ r̂
i ^ "^ ^ .

m r-H VO <N _^.

oo o vo o 5̂ ;

o\ a\ ^ ^ o\ as OS Gs ^ o\
- v u VU vrv v o v o vr» >t-' -

en
en

en

^.^

CO

KJ ^- ^ "^.

S N -S- OS • *

"^^ "^^ ^n \j^ "^^ ^^ ^ ""^^ \j^ "^^ ^^

r-^ r^ T-^ T^ r-H y'^ r — I r - H

-K Q
^ S S S

ON 0^
^ O vo O
^ \0 ^ \0

(N

^ O

<N
^

(N
Tf
O

(N
vo

(N

^ O

(N
VO

fN

^ O

(N
vo

(N
^ O

<N
VO

(N
Tt-
O

(N
VO

<N

^ O

(N
VO

(N
T^

o

(N
VO

(N
^ O

(N
VO

(N
"̂ O

(N
VO

<N
-̂ O

(N
VO

(N
Tf
O

<N
VO

(N
^ O

(N
VO

<N

^ O

(N
VO

(N
^ O

(N
VO

(N
^ O

<N
VO

(N
^ O

(N
VO

(N
^ O

(N
VO

t>

00
(N

r-

oo
(N

t^

00
(N

r-

00
(N

r̂

00
CN

r-*

00
<N

C^

oo
<N

t>

00
<N

t^

00
<N

r-

00
(N

r--

00
CN

r-

00
(N

l>

00
(N

l>

00
(N

l>

00
<N

r--

00
(N

r-

oo
cs

r-

oo
(N

O N c o c N ^ v o c n r - H v o m m i n ^ - ^ ^ i ^ ^ . ^ v q o q o q ^ T - H ^ ^ (N < N c - : ^ (N ^ ^ g » n f : : J g ON i n VO

c N ^ G N f l i i ^ ^ o o i ^ ' K o o a s r q ' ^ ' E ^ ^ S ^ g i VO 2 »n
Tf 00 in m -^ r-- oo in

1-H C^ o o OS CN ^
v.^^ K' I V N f^^ ' ' \ | l ^ Vw*̂ V.^ l ^ XJ I N - ^ _ + . ^ CO -:t ^

00 i n
i n CNI
i n (N

H
CO
o o
CN

CN

O
P

o

•g

Q Q.

O (D

o -a "I
§ o

vd (u

I ^
K O

90 MINDS: Architecture & Design

flow. The very high anomaly score for the top flows(the normal
flows are assigned a score close to 1), illustrates the strength of
the anomaly detection module in separating the anomalous traf­
fic from the normal. Entries 2-7 show the basic features for each
flow while the last entry lists all the features which had a signifi­
cant contribution to the anomaly score. Thus we observe that the
anomaly detector detects all worm related traffic as the top anom­
alies. A contribution vector for each of the flow (not shown in
the figure due to lack of space) signifies that these anomalies were
caused due to the feature - count _src_conn. The anomaly due to
this particular feature translates to the fact that the external source
was talking to an abnormally high number of inside hosts during
a window of certain number of connections.

Table 6.2 shows another output screen-shot from the University
of Minnesota network traffic for January 26, 2003 data (48
hours after the Slammer worm hit the Internet). By this time, the
effect of the worm attack was reduced due to preventive measures
taken by the network administrators. Table 6.2 shows the top 19
anomalous flows as ranked by the anomaly detector. Thus while
most of the top anomalous flows still correspond to the worm traf­
fic originating from an external host to different U of M machines
on destination port 1434, there are two other type of anomalous
flows which are highly ranked by the anomaly detector

1 Anomalous flows that correspond to a ping scan by an external host
(Bold rows in Table 6.2)

2 Anomalous flows corresponding to U of M machines connecting to half-
life game servers (Italicized rows in Table 6.2)

3. Summarization

The ability to summarize large amounts of network traffic can
be highly valuable for network security analysts who must often
deal with large amounts of data. For example, when analysts use
the MINDS anomaly detection algorithm to score several million
network flows in a typical window of data, several hundred highly
ranked flows might require attention. But due to the limited time
available, analysts often can look only at the first few pages of re­
sults covering the top few dozen most anomalous flows. A careful
look at the tables 6.1 and 6.2 shows that many of the anomalous
flows are almost identical. If these similar flows can be condensed
into a single line, it will enable the analyst to analyze a much
larger set of anomalous flows. For example, the top 19 anom-

Summarization 91

o
o

ON
(N
oo
o

(N
O

OS
(N
OO

o
L—U

(N
O

as
(N
00

o

<N
O

ON
<N
OO

o

(N
O

ON
<N
OO

o
t_J

(N
O

ON
(N
OO

o

<N

o

ON
(N
00

o

(N
O

ON
(N
00

o

(N
O

ON
(N
OO

o

(N
O

ON
fN
00

o

(N

o

ON
<N
QO

O

rr
<N

ON
(N
00

O
^ - j

>

r̂ ^--j

ON
<N
00

O
•-̂

>
<N̂

ON
<S
QO

O

"̂
<s Ui-J

OS
n QO

o
u—^

TT
<N

OS
<N
QO

O
l..^

fS

o

OS

n 00
o

<s
o

ON
<N
00

o

"̂
<N

ON
<M
00

o

TT
<N

Cu Cu Cu CU Cii
o o o o o

Q4
OH DH Cli g 0 0 0

dt fl* Q^ Ck Q4 Q4

s s s s s g
O O O O O iJ

^ ' ^ ' ^ ^ ^ ^ ^ ^ ' ^ ^ O O O s O o Q O Q O Q O Q O Q O Q O

< ^ ^ S r ^ ON O O

<N on 2 F; 2 § gj
X. X X* X' X' X x;

<̂ Q od S S S .Q

O O m (N t ^ V O ^ Q O O , - ^ i H ^ O N

<N VD

X >< X H H H X H ^ X X H
-I 1-H ^ g rH g FH

:> o o 2 o 2 o

v o v o S o d o o o d o o ^ o d o o o o J S o o J S o o
^ ^ _ - J _ H — J ^ ^ Î ^SI ' - ^ ^ ^ ^ ^ < ^ ^ ^ ^ ^ ^ ^

\0\0\^\0\0\0\Q\Q\0^ 0 0 0 0 0 0

m en m CO CO
in wn m wn un
CN (Sj (N CN <N
KJ KJi KJ KJ K^
t^ rS rS KN 1 ^
c5 d> d> d> CD
wo wn in in un
CO CO CO CO CO

\o \o \o \o \o

CO CO CO CO CO S

in in in in in S
(N CN <N (N (N .

>< xi >< >< xi X
c5 d> cS d> c^ ^
in in in in in i:
r-H »—I r—l r-H r—I ,

CO CO CO CO CO J2
V£) VD 'sD VO VO 5

t\ -̂H NO TH rH ^H 1-H
CT) O f̂ O O O O
(NJ ̂ fS FH rH iH FH

i ^ l O o d o o d o

.̂ '^ '^ '^
^ ^ F H F H r H r H f H f H

ON
VO

^
r-VO
r--CO

(N
VO
VO
r--VO
VO
<N

in
in
CO
<N
CO
^ CN|

ON

^
ON
VO
1-H
T-H

<N

r-^

CO
in
rsi
in
ON
r—1

ON
CO
in
CO
<N
ON
r—1

i - H o o o o r - H O \ t n o - > Q O v o r ^ » i ^
ON i n O N O T T C r j C s i O O ^ - i - f ^

Tf QO
in fo

r ^ C O C N O N Q O O O K f O

v o o o ^ c o r r o ^ n O N
^ o o c ^ i n r r ^ ^ ^ f S

IT) t̂ ON Tf
QO U^ FH fO fO O ON VO

H
CO
o
o

CO
CN

o

:3
a.

o
B
4—»

o

o

6 ^
o >>

Q Q,

I ̂
O (L>

O
J3

O
C/5

s
c
o
c
c3

• OH
vd (1̂

f^ O

92 MINDS: Architecture & Design

alous flows shown in Table 6.2 can be represented as a three line
summary as shown in Table 6.3. The column count indicates the
number of flows represented by a line. "***" indicates that the set
of flows represented by the line had several distinct values for this
feature. We observe that every flow is represented in the summary.
The first summary represents flows corresponding to the slammer
worm traffic coming from a single external host and targeting sev­
eral internal hosts. The second summary represents connections
made to half-life game servers by an internal host. The third sum­
mary corresponds to ping scans by different external hosts. Thus
an analyst gets a fairly informative picture in just three lines. In
general, such summarization has the potential to reduce the size of
the data by several orders of magnitude. This motivates the need

avg Score cnt srcIP sPort dstIP dPort proto

15102
3833
3371

10
2
7

63.150.X.253

1161
27016
0

128.101.X.116

1434
H e * *

2048

tcp
tcp
icmp

Table 6.3. A three line summary of the 32 anomalous flows in Table 6.2.

to summarize the network flows into a smaller but meaningful rep­
resentation. We have formulated a methodology for summarizing
information in a database of transactions with categorical features
as an optimization problem [4]. We formulate the problem of sum­
marization of transactions that contain categorical data, as a dual-
optimization problem and characterize a good summary using two
metrics - compaction gain and information loss. Compaction gain
signifies the amount of reduction done in the transformation from
the actual data to a summary. Information loss is defined as the
total amount of information missing over all original data transac­
tions in the summary. We have developed several heurisitic algo­
rithms which use frequent itemsets from the association analysis
domain [1] as the candidate set for individual summaries and se­
lect a subset of these frequent itemsets to represent the original set
of transactions.

The MINDS summarization module [8] is one such heuristic-
based algorithm based on the above optimization framework. The
input to the summarization module is the set of network flows
which are scored by the anomaly detector. The summarization al­
gorithm first generates frequent itemsets from these network flows

Profiling Network Traffic Using Clustering 93

(treating each flow as a transaction). It then greedily searches for
a subset of these frequent itemsets such that the information loss
incurred by the flows in the resulting summary is minimal. The
summarization algorithm is further extended in MINDS by incor­
porating the ranks associated with the flows (based on the anom­
aly score). The underlying idea is that the highly ranked flows
should incur very little loss, while the low ranked flows can be
summarized in a more lossy manner. Furthermore, summaries
that represent many anomalous flows (high scores) but few nor­
mal flows (low scores) are preferred. This is a desirable feature
for the network analysts while summarizing the anomalous flows.

The summarization algorithm enables the analyst to better un­
derstand the nature of cyberattacks as well as create new signature
rules for intrusion detection systems. Specifically, the MINDS sum­
marization component compresses the anomaly detection output
into a compact representation, so analysts can investigate numer­
ous anomalous activities in a single screen-shot. Table 6.4 illus­
trates a typical MINDS output after anomaly detection and sum­
marization. Each line contains the average anomaly score, the
number of anomalous and normal flows represented by the line,
eight basic flow features, and the relative contribution of each ba­
sic and derived anomaly detection feature (not shown in the figure
due to lack of space). For example, the second line in Table 6.4
represents a total of 150 connections, of which 138 are highly
anomalous. From this summary, analysts can easily infer that this
is a backscatter from a denial-of-service attack on a computer that
is outside the network being examined. Note that if an analyst
looks at any one of these flows individually, it will be hard to in­
fer that the flow belongs to back scatter even if the anomaly score
is available. Similarily, lines 7, 17, 18, 19 together represent a
total of 215 anomalous and 13 normal flows that represent sum­
maries of FTP scans of the U of M network by an external host
(200.75.X.2). Line 10 is a summary of IDENT lookups, where a
remote computer is trying to get the user name of an account on an
internal machine. Such inference is hard to make from individual
flows even if the anomaly detection module ranks them highly.

4. Profiling Network Traffic Using Clustering
Clustering is a widely used data mining technique [10,24] which

groups similar items, to obtain meaningful groups/clusters of data
items in a data set. These clusters represent the dominant modes

94 MINDS: Architecture & Design

s
>. jo>

i-2 i

o
o ^
^
t:̂
o
P̂
ra

F
to

ro

t;
o

\p^
C/3

F
o
00

<0

^

12
O
C/3

i n i n i n i n i n

"̂ ^ ^ ^ ^
o o o o o (N (N

S £

Ĝ oT
i n " o ^

O H ><
O X
- ^ X

5̂ *

ON ,^
(N ><
r - l ><

n X
^ x'
oq X
^ X
CO ><

o ^ o *
i n ^

0 0 _+.

22 ^ ?5 ^

• Si

0 0
t c n

T — t

- s
. o

\^ ^

CN CN CN

S £ 2̂

Ĝ Ĝ Ĝ
i n i n i n

Cli O H CL(
O O O

v£) <N (N
ON O O
OO O O
^ i n i n

O N OO OO
Cs| v o ^
r - H r - H T - H

><><><
^ ' ON ON
O O r - H T - H

T f od od
CO r-H ^
-̂H CN (N

(N O O
O C^ ON
O l > 0 0
i n ^ CO

0 0 O N O N
^ (N (N
T - H r—1 r—1

><><><
ON T f ^ '
r-H OO OO
0 0 T t T t
r-H CO CO
(N T - H r - H

1 1 1

1 1 1

^ ^ r - H .̂ .̂ S
:2 2 r̂

i n

* o
Z <N

O ^

* -x-
•3f *

^ *

^ 3
O ><
^ X

* *

X ^

X X.
X i n
X l >

3 1 X <^J

^ At.

X X
X X
X X
X X
X X
X X

X X
X X

T-H 0 0

^s
O N 1-H
p T t
CO CN

i n i n

ss CN (N

£ S

G G i rT i K

Cl. O H
O O

v o ^
t ^ (N
\0 \o
CO ^

O N O N
CN (N
T - H T - H

>< ><
r t T t
0 0 OO

-^ ^ C O C O
y—t j—t

(N (N

o o O O
i n i n

0 0 0 0
VsO VO
T - H 1 - H

>< ><
O N O N

' — J ^
0 0 od
r—< r - i

(N <N

1 1

1 1

S ^
\6 ^

i n i n i n

sss 0 4 CN (N

S £ £

^ ^ ^ o " i n i n
i_—J) _ ^ i _ - j

CL(& (O l
o o o

CO ^ ^

2 I^ t^ Z : i n i n
"̂ ^ ^
^ <^ o\
>< (N CN
X ^ r-H

X "=̂* :3:
p OO OO

X ^ ^
>< CO CO

r - H j—i

o o
^ O O
* i n i n

^ OO 0 0
>< VO v o
X r - H 1 - H

1

^ 0 0

1

CO
OO

2̂

a,
o

ON

n̂

o

H
OO

s
0 0

i n

^
7—i

T - H

i n i n i n i n i n i n

S S S S S S I
CN (N (N

o o o

^ (S ^
i n i n^ in^

CL| O H Cl(
O O O

i n - ^ ON
(N (N i n
i n i n r-H

^ ^ ^
O N ON O N
CS (N C<l
r - H r - H r - H

><><><
'^ ' '^ ' T t
OO OO OO
T f ^ " ^
CO CO CO
T - H r - H r - H

(N (N <N

o o o O O O
i n i n i n

0 0 0 0 0 0
v£> VO VD
T - H r - H r - H

>^ K> KA Kji Kji KJ^ KJ^
X 1 ^ >^ r S r S r s r S
>< ON ON
X ^ ^
J OO 0 0
s > r - H r - H

'^ <N <N

O 1 I

j : j • •

• - ? 5 ^
•^ '^ ^

'•^
ON

o
VO

'^
o

0 0

r--
o
^

O N O N O N

' — J '—̂ '—̂
od 0 0 0 0
T - H T - H r - H

CN| C N C N

1 1 1

1 1 1

O N OO ^

^. ^. ^
CO CO C O

(N

o
""

^ •5f
•X-

a.
o

y—i

<N

X
X
X
X
X
X
X
X

4f
•X-
•X-

<N

i n
r--
o
o
(N

O

i n

VD

^
(N

(N CN

o o U _ l L - _ J

^ * •x- *

^ *

CI. O H
O O

<N ><

^ X
i n X
• > X

§ 3
< ^ X

T - H ^

<^ t

X ^

X ^
X wo
X f ^
X d
X O
X <N

i n o

(N OO
T^ i n

t ^ i n
CO ' ^

(N (N

T3
C
a
wa
3
O
c^

s o

t+H

o

s =3

(D
xi

fl)
; H

O
o
00

>.
6
o

G
cd
00
C

O
o

5̂
c i ^

^ C)
ctl

w
(D

-§
O

S
c
o '•S
c3
N

s
s
=3
00

CO

u ;2;
M

S
(D

^ • * " *

« 4 H

o
"rn
a.
:3

O

^ ^

(5

<L)

S
o

' S H

o

Z3

cj

4_>
00

>» d
C
ci
D ^

13
411

td
^
c
o • r i

s
o

«+H
c

<H-(

o
00
(U
o
a>
Ou
V H

r C !
4 - >

O

13
; H

<1)

> (D
OO

T3

oo"

00

f̂
O H
<1)
U i

<D

a
r—H

(1)
4:3

td
^
00

Ŝ
0

CC

,_«^ ci

s
W H

0

Profiling Network Traffic Using Clustering 95

of behavior of the data objects determined using a similarity mea­
sure. A data analyst can get a high level understanding of the
characteristics of the data set by analyzing the clusters. Clustering
provides an effective solution to discover the expected and unex­
pected modes of behavior and to obtain a high level understanding
of the network traffic.

The profiling module of MINDS essentially performs cluster­
ing, to find related network connections and thus discover domi­
nant modes of behavior. MINDS uses the Shared Nearest Neighbor
(SNN) clustering algorithm [9], which can find clusters of vary­
ing shapes, sizes and densities, even in the presence of noise and
outliers. The algorithm can also handle data of high dimension­
alities, and can automatically determine the number of clusters.
Thus SNN is well-suited for network data. SNN is highly compu­
tationally intensive — of the order O(n^), where n is the number
of network connections. We have developed a parallel formulation
of the SNN clustering algorithm for behavior modeling, making it
feasible to analyze massive amounts of network data.

An experiment we ran on a real network illustrates this ap­
proach as well as the computational power required to run SNN
clustering on network data at a DoD site [7]. The data consisted
of 850,000 connections collected over one hour. On a 16-CPU
cluster, the SNN algorithm took 10 hours to run and required 100
Mbytes of memory at each node to calculate distances between
points. The final clustering step required 500 Mbytes of mem­
ory at one node. The algorithm produced 3,135 clusters ranging
in size from 10 to 500 records. Most large clusters correspond
to normal behavior modes, such as virtual private network traffic.
However, several smaller clusters correspond to deviant behavior
modes that highlight misconfigured computers, insider abuse, and
policy violations that are difficult to detect by manual inspection
of network traffic.

Table 6.5 shows three such clusters obtained from this experi­
ment. Cluster in Table 6.5(a) represents connections from inside
machines to a site called GoToMyPC. com, which allows users (or
attackers) to control desktops remotely. This is a policy violation
in the organization for which this data was being analyzed. Clus­
ter in Table 6.5(b) represents mysterious ping and SNMP traffic
where a mis-configured internal machine is subjected to SNMP
surveillance. Cluster in Table 6.5(c) represents traffic involving
suspicious repeated ftp sessions. In this case, further investiga­
tions revealed that a mis-configured internal machine was trying

96 MINDS: Architecture & Design

(a) Cluster representing connections to GoToMyPC. com

Duration
0:00:00
0:00:03
0:00:00
0:00:00
0:00:00
0:00:01
0:00:00
0:00:01
0:00:00
0:00:00

sIP
A
A
A
A
A
A
A
A
A
A

sPort
4125
4127
4138
4141
4143
4149
4163
4172
4173
4178

dip
B
B
B
B
B
B
B
B
B
B

dPort
8200
8200
8200
8200
8200
8200
8200
8200
8200
8200

Pro
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp

Pkt
5
5
5
5
5
5
5
5
5
5

Bytes
248
248
248 1
248
248
248
248
248
248
248

(b) Clusters representing mis-configured computers subjected to SNMP surveillance

Duration
0:00:00
0:00:00
0:00:00
0:00:00

1 0:00:00
0:00:00
0:00:00
0:00:00
0:00:00
0:00:00

sIP
A
A
A
A
A
A
A
A
A
A

sPort
1176
-1

1514
-1
-1
-1
-1

3013
-1

3329

dip
B
B
B
B
B
B
B
B
B
B

dPort
161
-1

161
-1
-1
-1
-1
161
-1
161

Pro
udp

icmp
udp
icmp
icmp
icmp
icmp
udp

icmp
udp

Pkt Bytes
95
84
95
84 '
84
84
84
95
84
95

(c) Cluster representing a mis-configured computer trying to contact Microsoft

Duration
0:00:00
0:00:00
0:00:00
0:00:00
0:00:00

j 0:00:00

sIP
A
A
A
A
A
A

sPort
3004
3007
3008
3011
3013
3015

dip
B
B
B
B
B
B

dPort
21
21
21
21
21
21

Pro
tcp
tcp
tcp
tcp
tcp
tcp

Pkt
7
7
7
7
7
7

Bytes
318
318
318
318
318
318

Table 6.5. Clusters obtained from network traffic at a US Army Fort

Scan Detection 97

to contact Microsoft. Such clusters give analysts information they
can act on immediately and can help them understand their net­
work traffic behavior.

Table 6.6 shows a sample of interesting clusters obtained by
performing a similar experiment on a sample of 7500 network
flows sampled from the University of Minnesota network data.
The first cluster (Table 6.6(a)) represent Kazaa (P2P) traffic be­
tween a U of M machine and different external P2P clients. Since
Kazaa usage is not allowed in the university, this cluster brings
forth an anomalous profile for the network analyst to investigate.
Cluster in Table 6.6(b) represents traffic involving bulk data trans­
fers between internal and external hosts; i.e. this cluster covers
traffic in which the number of packets and bytes are much larger
than the normal values for the involved IPs and ports. Cluster
in Table 6.6(c) represents traffic between different U of M hosts
and Hotmail servers (characterized by the port 1863). Cluster in
Table 6.6(d) represents/rp traffic in which the data transferred is
low. This cluster has different machines connecting to different
ftp servers all of which are transferring much lower amount of
data than the usual values for ftp traffic. A key observation to
be made is that the clustering algorithm automatically determines
the dimensions of interest in different clusters. In cluster of Table
6.6(a), the protocol, source port and the number of bytes are sim­
ilar. In cluster of Table 6.6(b) the only common characteristic is
large number of bytes. The common characteristics in cluster of
Table 6.6(c) are the protocol and the source port. In cluster of Ta­
ble 6.6(d) the common features are the protocol, source port and
the low number of packets transferred.

5. Scan Detection

A precursor to many attacks on networks is often a reconnais­
sance operation, more commonly referred to as a scan. Identifying
what attackers are scanning for can alert a system administrator or
security analyst to what services or types of computers are being
targeted. Knowing what services are being targeted before an at­
tack allows an administrator to take preventative measures to pro­
tect the resources e.g. installing patches, firewalling services from
the outside, or removing services on machines which do not need
to be running them.

Given its importance, the problem of scan detection has been
given a lot of attention by a large number of researchers in the

98 MINDS: Architecture & Design

(a) Cluster representing Kazaa traffic between a UofM host and external machines

Duration
0:14:44
0:14:54
0:14:17
0:17:00
0:13:33

sIP
Ai
Ai
Ai
Ai
Ai

sPort
3531
3531
3531
3531
3531

dip
Bi
B2
Bs
B4
^ 5

dPort
3015
4184
10272
4238
2008

Pro
tcp
tcp
tcp
tcp
tcp

Pkt
20
19
17
20
15

Bytes
857
804
701
835
620

(b) Cluster representing bulk data transfer between different hosts

Duration
0:31:07
0:20:24
0:18:42
0:15:08

i 0:10:20
1 0:09:00

sIP
Ai

A2
As
A4
A,
Ae

sPort
2819
5100
6881
4670
27568
6881

dip
Bi

B2
Bs
B4
B^
Be

dPort
4242
1224
1594
21

63144
5371

Pro
tcp
tcp
tcp
tcp
tcp
tcp

Pkt
3154
2196
3200
2571
2842
2677

Bytes
129k
121k

4399k
3330k
113k
115k

(c) Cluster representing traffic between U of M hosts and Hotmail servers

Duration
00:00:00
00:00:30
00:00:00
00:00:00
00:00:50

sIP
Ai

A2
As
A4
As

sPort
1863
1863
1863
1863
1863

dip
Bi

B2
Bs
BA
B,

dPort
3969
1462
3963
4493
1102

Pro
tcp
tcp
tcp
tcp
tcp

Pkt
1
4
1
1
4

Bytes
41
189
41
41
176

(d) Cluster representing FTP traffic with small payload

Duration
00:00:02
00:00:05
00:00:11
00:00:00
00:00:00

sIP
Ai
Ai
A2
Ai
Ai

sPort
21
21
21
21
21

dip
Bi

B2
Bs
BA

B5

dPort
1280

34781
9305
27408
45607

Pro
tcp
tcp
tcp
tcp
tcp

Pkt
13
18
13
2
4

Bytes
1046
1532
1185
144
227

Table 6.6. Four clusters obtained from University of Minnesota network traffic

Scan Detection 99

network security community. Initial solutions simply counted the
number of destination IPs that a source IP made connection at­
tempts to on each destination port and declared every source IP a
scanner whose count exceeded a threshold [19]. Many enhance­
ments have been proposed recently [23,11,18,14,17,16], but de­
spite the vast amount of expert knowledge spent on these methods,
current, state-of-the-art solutions still suffer from high percentage
of false alarms or low ratio of scan detection. For example, a re­
cently developed scheme by Jung [11] has better performance than
many earlier methods, but its performance is dependent on the se­
lection of the thresholds. If a high threshold is selected, TRW
will report only very few false alarms, but its coverage will not be
satisfactory. Decreasing the threshold will increase the coverage,
but only at the cost of introducing false alarms. P2P traffic and
backscatter have patterns that are similar to scans, as such traffic
results in many unsuccessful connection attempts from the same
source to several destinations. Hence such traffic leads to false
alarms by many existing scan detection schemes.

MINDS uses a data-mining-based approach to scan detection.
Here we present an overview of this scheme and show that an
off-the-shelf classifier. Ripper [5], can achieve outstanding per­
formance both in terms of missing only very few scanners and
also in terms of very low false alarm rate. Additional details are
available in [20, 21].

Methodology: Currently our solution is a batch-mode implemen­
tation that analyzes data in windows of 20 minutes. For each 20-
minute observation period, we transform the NetFlow data into a
summary data set. Figure 6.3 depicts this process. With our fo­
cus on incoming scans, each new summary record corresponds
to a potential scanner—that is pair of external source IP and desti­
nation port (SIDP). For each SIDP, the summary record contains a
set of features constructed from the raw netflows available during
the observation window. Observation window size of 20 minutes
is somewhat arbitrary. It needs to be large enough to generate
features that have reliable values, but short enough so that the
construction of summary records does not take too much time or
memory.

Given a set of summary data records corresponding to an ob­
servation period, scan detection can be viewed as a classification
problem [24] in which each SIDP, whose source IP is external to
the network being observed, is labeled as scanner if it was found

100 MINDS: Architecture & Design

sil,spl,dil,dpl,.

sil,sp2,di2,dpl,.

si2,sp3,di2,dpl,.

sil,sp4,di2,dp2,.

si2,sp5,di3,dp3,.

si2,sp6,di3,dp2,.

Raw NefFlows
(5M)

sil,dpl

sil,dp2

si2,dpl

SIDP

—

Features

—

—TA

Label

Summary Data Records
(look)

Figure 6.3. Transformation of raw netflow data in an observation window to the
Summary Data Set.

scanning or non-scanner otherwise. This classification problem
can be solved using predictive modeling techniques developed in
the data mining and machine learning community if class labels
(scanner/non-scanner) are available for a set of SIDPs that can
be used as a training set.

Figure 6.4. Scan Detection using an off-the-shelf classifier, Ripper.

Figure 6.4 depicts the overall paradigm. Each SIDP in the sum­
mary data set for an observation period (typically 20 minutes) is
labeled by analyzing the behavior of the source IPs over a period
of several days. The process involves two steps — (1) Building
a predictive model: 20 minutes of NetFlow data is converted
into unlabeled Summary Record format, which is labeled by the
Labeler using several days of data. Predictive model is built on
the labeled Summery Records. (2) Scan Detection: 20 minutes
of data is converted into unlabeled Summary Record format. The

Scan Detection 101

predictive model is applied to it resulting in a list of predicted
scanners.

The success of this method depends on (1) whether we can la­
bel the data accurately and (2) whether we have derived the right
set of features that facilitate the extraction of knowledge. In the
following sections, we will elaborate on these points.

Features: The key challenge in designing a data mining method
for a concrete application is the necessity to integrate the expert
knowledge into the method. A part of the knowledge integration
is the derivation of the appropriate features. We make use of two
types of expert knowledge. The first type of knowledge consists of
a list of inactive IPs, a set of blocked ports and a list of P2P hosts
in the network being monitored. This knowledge may be avail­
able to the security analyst or can be simply constructed by ana­
lyzing the network traffic data over a long period (several weeks
or months). Since this information does not change rapidly, this
analysis can be done relatively infrequently. The second type of
knowledge captures the behavior of <source IP, destination port>
(SIDP) pairs, based on the 20-minute observation window. Some
of these features only use the second type of knowledge, and oth­
ers use both types of knowledge.

Labeling the Data Set: The goal of labeling is to generate a data
set that can be used as training data set for Ripper. Given a set
of summarized records corresponding to 20-minutes of observa­
tion with unknown labels (unknown scanning statuses), the goal
is to determine the actual labels with very high confidence. The
problem of computing the labels is very similar to the problem of
scan detection except that we have the flexibility to observe the
behavior of an SIDP over a long period. This makes it possible
to declare certain SIDPs as scanner or non-scanner with great
confidence in many cases. For example, if a source IP sJp makes
a few failed connection attempts on a specific port in a short time
window, it may be hard to declare it a scanner. But if the behavior
of s.ip can be observed over a long period of time (e.g. few days),
it can be labeled as non-scanner (if it mostly makes successful
connections on this port) or scanner (if most of its connection at­
tempts are to destinations that never offered service on this port).
However, there will situations, in which the above analysis does
not offer any clear-cut evidence one way or the other. In such
cases, we label the SIDP as dontknow. For additional details on

102 MINDS: Architecture & Design

the labeling method, the reader is referred to [20].

Evaluation: For our experiments, we used real-world network
trace data collected at the University of Minnesota between the
1st and the 22nd March, 2005. The University of Minnesota net­
work consists of 5 class-B networks with many autonomous sub­
networks. Most of the IP space is allocated, but many subnetworks
have inactive IPs. We collected information about inactive IPs and
P2P hosts over 22 days, and we used flows in 20 minute windows
during 03/21/2005 (Mon.) and 03/22/2005 (Tue.) for construct­
ing summary records for the experiments. We took samples of
20-minute duration every 3 hours starting at midnight on March
21. A model was built for each of the 13 periods and tested on the
remaining 12 periods. This allowed us to reduce possible depen­
dence on a certain time of the day, and performed our experiments
on each sample.

Table 6.4 describes the traffic in terms of number of <source IP,
destination port> (SIDP) combinations pertaining to scanning-,
P2P-, normal- and backscatter traffic.

ID
01
02
03
04
05
06
07
08
09
10
11
12
13

Total
67522
53333
56242

78713
93557
85343
92284

82941
69894

63621
60703
78608

91741

scan
3984
5112
5263

5126
4473
3884
4723
4273
4480

4953

5629
4968

4130

p2p
28911
19442
19485

32573
38980

36358
39738
39372
33077

26859
25436
33783

43473

normal
697r"
9190
8357

10590
12354

10191
10488
8816
5848
4885

4467
7520

6319

backscatter
443r"
1544
2521

5115
4053

5383
5876
1074
1371

4993
3241

4535

4187

dont-know
23225
18045
20616

25309
33697
29527
31459
29406
25118

21931
21930
27802

33632

Table 6.7. The distribution of (source IP, destination ports) (SIDPs) over the
various traffic types for each traffic sample produced by our labeling method

In our experimental evaluation, we provide comparison to TRW
[11], as it is one of the state-of-the-art schemes. With the pur­
pose of applying TRW for scanning worm containment. Weaver
et al. [25] proposed a number of simplifications so that TRW

Scan Detection 103

can be implemented in hardware. One of the simplifications they
applied—without significant loss of quality—is to perform the se­
quential hypothesis testing in logarithmic space. TRW then can
be modeled as counting: a counter is assigned to each source IP
and this counter is incremented upon a failed connection attempt
and decremented upon a successful connection establishment.

Our implementation of TRW used in this paper for comparative
evaluation draws from the above ideas. If the count exceeds a
certain positive threshold, we declare the source to be scanner,
and if the counter falls below a negative threshold, we declare the
source to be normal.

The performance of a classifier is measured in terms of preci­
sion, recall and F-measure. For a contingency table of

actual Scanner
actual not Scanner

classified as classified as
Scanner not Scanner

TP FN
FP TN

precision

recall

F — measure

TP
TP + FP

TP
TP-hFN
2 * prec * recall

prec + recall

Less formally, precision measures the percentage of scanning
(source IP, destination port)-pairs (SIDPs) among the SIDPs that
got declared scanners; recall measures the percentage of the ac­
tual scanners that were discovered; F-measure balances between
precision and recall.

To obtain a high-level view of the performance of our scheme,
we built a model on the 0321.0000 data set (ID 1) and tested it
on the remaining 12 data sets. Figure 6.5 depicts the performance
of our proposed scheme and that of TRW on the same data sets ^.
From left to right, the six box plots correspond to the precision,
recall and F-measure of our proposed scheme and the precision,
recall and F-measure of TRW. Each box plot has three lines cor­
responding (from top downwards) to the upper quartile, median
and lower quartile of the performance values obtained over the 13
data sets. The whiskers depict the best and worst performance.
One can see that not only does our proposed scheme outperform
TRW by a wide margin, it is also more stable: the performance

104 MINDS: Architecture & Design

Performance Comparison

Prec Rec F-m Prec Rec F-m
Ripper TRW

Figure 6.5. Performance comparison between the proposed scheme and TRW.

varies less from data set to data set (the boxes in Figure 6.5 appear
much smaller).

1

0.8

0.6|

0.4

0.21

o'

Performance of Ripper

Precision

- Recall

F-measure

5 7 9
Test Set ID

11 13

Figure 6.6. The performance of the proposed scheme on the 13 data sets in
terms of precision (topmost line), F-measure (middle line) and recall (bottom
line).

Figure 6.6 shows the actual values of precision, recall and F-
measure for the different data sets. The performance in terms of
F-measure is consistently above 90% with very high precision,
which is important, because high false alarm rates can rapidly de­
teriorate the usability of a system. The only jitter occurs on data
set # 7 and it was caused by a single source IP that scanned a single
destination host on 614(!) different destination ports meanwhile

Acknowledgements 105

touching only 4 blocked ports. This source IP got misclassified as
P2P, since touching many destination ports (on a number of IPs) is
characteristic of P2P. This single misclassification introduced 614
false negatives (recall that we are classifying SIDPs not source
IPs). The reason for the misclassification is that there were no
vertical scanners in the training set — the highest number of des­
tination ports scanned by a single source IP was 8, and this source
IP touched over 47 destination IPs making it primarily a horizontal
scanner.

6. Conclusion
MINDS is a suite of data mining algorithms which can be used as

a tool by network analysts to defend the network against attacks
and emerging cyber threats. The various components of MINDS
such as the scan detector, anomaly detector and the profiling mod­
ule detect different types of attacks and intrusions on a computer
network. The scan detector aims at detecting scans which are the
percusors to any network attack. The anomaly detection algorithm
is very effective in detecting behavioral anomalies in the network
traffic which typically translate to malicious activities such as dos
traffic, worms, policy violations and inside abuse. The profiling
module helps a network analyst to understand the characteristics
of the network traffic and detect any deviations from the normal
profile. Our analysis shows that the intrusions detected by MINDS
are complementary to those of traditional signature based systems,
such as SNORT, which implies that they both can be combined to
increase overall attack coverage. MINDS has shown great opera­
tional success in detecting network intrusions in two live deploy­
ments at the University of Minnesota and as a part of the Inter­
rogator [15] architecture at the US Army Research Lab - Center
for Intrusion Monitoring and Protection (ARL-CIMP).

7. Acknowledgements

This work is supported by ARDA grant AR/F30602-03-C-0243,
NSF grants IIS-0308264 and ACI-0325949, and the US Army
High Performance Computing Research Center under contract DAAD
19-01-2-0014. The research reported in this article was performed
in collaboration with Paul Dokas, Yongdae Kim, Aleksandar Lazare-
vic, Haiyang Liu, Mark Shaneck, Jaideep Srivastava, Michael Stein-
bach, Pang-Ning Tan, and Zhi-li Zhang. Access to computing fa-

106 MINDS: Architecture & Design

cilities was provided by the AHPCRC and the Minnesota Super-
computing Institute.

Notes
1. www.cs.umn.edu/research/minds
2. www.splintered.net/sw/flow-tools
3. Typically, for a large sized network such as the University of Minnesota, data for a

10 minute long window is analyzed together
4. The authors of TRW recommend a threshold of 4. In our experiments, we found,

that TRW can achieve better performance (in terms of F-measure) when we set the thresh­
old to 2, this is the threshold that was used in Figure 6.5, too.

References

[1] Rakesh Agrawal, Tomasz Imieliski, and Arun Swami. Mining association
rules between sets of items in large databases. In Proceedings of the 1993
ACM SIGMOD international conference on Management of data, pages
207-216. ACM Press, 1993.

[2] Daniel Barbara and Sushil Jajodia, editors. Applications of Data Mining
in Computer Security. Kluwer Academic Publishers, Norwell, MA, USA,
2002.

[3] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and J Sander.
Lof: identifying density-based local outliers. In Proceedings of the 2000
ACM SIGMOD international conference on Management of data, pages
93-104. ACM Press, 2000.

[4] Varun Chandola and Vipin Kumar. Summarization - compressing data into
an informative representation. In Fifth IEEE International Conference on
Data Mining, pages 98-105, Houston, TX, November 2005.

[5] William W. Cohen. Fast effective rule induction. In International Confer­
ence on Machine Learning (ICML), 1995.

[6] Dorothy E. Denning. An intrusion-detection model. IEEE Trans. Softw.
Eng., 13(2):222-232, 1987.

[7] Eric Eilertson, Levent Ertez, Vipin Kumar, and Kerry Long. Minds - a
new approach to the information security process. In 24^^ Army Science
Conference. US Army, 2004.

[8] Levent Ertez, Eric Eilertson, Aleksander Lazarevic, Pang-Ning Tan, Vipin
Kumar, Jaideep Srivastava, and Paul Dokas. MINDS - Minnesota Intru­
sion Detection System. In Data Mining - Next Generation Challenges and
Future Directions. MIT Press, 2004.

[9] Levent Ertoz, Michael Steinbach, and Vipin Kumar. Finding clusters of
different sizes, shapes, and densities in noisy, high dimensional data. In
Proceedings of 3rd SI AM International Conference on Data Mining, May
2003.

Acknowledgements 107

[10] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, Inc., 1988.

[11] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan.
Fast portscan detection using sequential hypothesis testing. In IEEE Sym­
posium on Security and Privacy, 2004.

[12] Vipin Kumar, Jaideep Srivastava, and Aleksander Lazarevic, editors.
Managing Cyber Threats-Issues, Approaches and Challenges. Springer
Verlag, May 2005.

[13] Aleksandar Lazarevic, Levent Ertez, Vipin Kumar, Aysel Ozgur, and
Jaideep Srivastava. A comparative study of anomaly detection schemes in
network intrusion detection. In SIAM Conference on Data Mining (SDM),
2003.

[14] C. Lickie and R. Kotagiri. A probabilistic approach to detecting network
scans. In Eighth IEEE Network Operations and Management, 2002.

[15] Kerry Long. Catching the cyber-spy, ad's interrogator. In 24*̂ ^ Army
Science Conference. US Army, 2004.

[16] V. Paxon. Bro: a system for detecting network intruders in real-time. In
Eighth IEEE Network Operators and Management Symposium (NOMS),
2002.

[17] Phillip A. Porras and Alfonso Valdes. Live traffic analysis of tcp/ip gate­
ways. In NDSS, 1998.

[18] Seth Robertson, Eric V. Siegel, Matt Miller, and Salvatore J. Stolfo. Sur­
veillance detection in high bandwidth environments. In DARPA DISCEX
III Conference, 2003.

[19] Martin Roesch. Snort: Lightweight intrusion detection for networks. In
LISA, pages 229-238, 1999.

[20] Gyorgy Simon, Hui Xiong, Eric Eilertson, and Vipin Kumar. Scan detec­
tion: A data mining approach. Technical Report AHPCRC 038, University
of Minnesota - Twin Cities, 2005.

[21] Gyorgy Simon, Hui Xiong, Eric Eilertson, and Vipin Kumar. Scan de­
tection: A data mining approach. In Proceedings of SIAM Conference on
Data Mining (SDM), 2006.

[22] Anoop Singhal and Sushil Jajodia. Data mining for intrusion detection.
In Data Mining and Knowledge Discovery Handbook, pages 1225-1237.
Springer, 2005.

[23] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practi­
cal automated detection of stealthy portscans. Journal of Computer Secu­
rity, 10(1/2): 105-136, 2002.

[24] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining. Addison-Wesley, May 2005.

[25] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very fast contain­
ment of scanning worms. In 13th USENIX Security Symposium, 2004.

Chapter 7

DISCOVERING NOVEL ATTACK STRATEGIES
FROM INFOSEC ALERTS

Xinzhou Qin*
Cisco Systems, Inc.
210 West Tasman Dr., San Jose, CA
keqin@cisco.com

Wenke Lee
College of Computing, Georgia Institute of Technology
Atlanta, GA 30332

wenke@cc.gatech.edu

Abstract Deploying a large number of information security (INFOSEC) systems can pro­
vide in-depth protection for systems and networks. However, the sheer number
of security alerts output by security sensors can overwhelm security analysts
and keep them from performing effective analysis and initiating timely response.
Therefore, it is important to develop an advanced alert correlation system that
can reduce alarm redundancy, intelligently correlate security alerts and detect
attack strategies. Alert correlation is therefore a core component of a security
management system.

Correlating security alerts and discovering attack strategies are important and
challenging tasks for security analysts. Recently, there have been several pro­
posed techniques to analyze attack scenarios from security alerts. However, most
of these approaches depend on a priori and hard-coded domain knowledge that
lead to their limited capabilities of detecting new attack strategies. In addition,
these approaches focus more on the aggregation and analysis of raw security
alerts, and build basic or low-level attack scenarios.

This paper focuses on discovering novel attack strategies via analysis of se­
curity alerts. Our integrated alert correlation system helps security administrator
aggregate redundant alerts, filter out unrelated attacks, correlate security alerts
and analyze attack scenarios.

Our integrated correlation system consists of three complementary correla­
tion mechanisms based on two hypotheses of attack step relationship. The first

*The work was done when the author was at College of Computing at Georgia Institute of Technology.

110 Discovering Novel Attack Strategies from INFOSEC Alerts

hypothesis is that some attack steps are directly related because an earlier attack
enables or positively affects the later one. We have developed a probabilistic-
based correlation engine that incorporates domain knowledge to correlate alerts
with direct causal relationship. The second hypothesis is that some related attack
steps, even though they do not have obvious or direct (or known) relationship in
terms of security and performance measures, still exhibit statistical and temporal
patterns. For this category of relationship, we have developed two correlation
engines to discover attack transition patterns based on statistical analysis and
temporal pattern analysis, respectively. Based on the correlation results of these
three correlation engines, we construct attack scenarios and conduct attack path
analysis. The security analysts are presented with aggregated information on
attack strategies from the integrated correlation system.

We evaluate our approaches using DARPA's Grand Challenge Problem (GCP)
data sets. Our evaluation shows that our approach can effectively discover novel
attack strategies, provide a quantitative analysis of attack scenarios and identify
attack plans.

Keywords: Security alert correlation, intrusion detection, security management

1. Introduction
Information security (INFOSEC) is a complex process with many challeng­

ing problems. As more security systems are developed, deploying a large scale
of INFOSEC mechanisms, e.g., authentication systems, firewalls, intrusion de­
tection systems (IDSs), antivirus software, network management and monitor­
ing systems, can provide protection in depth for the IT infrastructure. INFOSEC
sensors often output a large quantity of low-level or incomplete security alerts
because there is a large number of network and system activities being moni­
tored and multiple INFOSEC systems can each report some aspects of security
events. The sheer quantity of alerts from these security systems and sensors
can overwhelm security administrators and prevent them from performing com­
prehensive security analysis of the protected domains and initiating timely re­
sponse.

From a security administrator's point of view, it is important to reduce the re­
dundancy of alarms, intelligently integrate and analyze security alerts, construct
attack scenarios (defined as a sequence of related attack steps) and present high-
level aggregated information from multiple local-scale events. To address this
issue, researchers and security product vendors have proposed alert correlation,
a process to analyze and correlate security alerts to provide an aggregated in­
formation on the networks and systems under protection. Applying alert corre­
lation techniques to identifying attack scenarios can also help forensic analysis,
response and recovery, and even prediction of forthcoming attacks. Therefore,
alert correlation is a core component in a security management system.

Recently there have been several proposals on alert correlation, including
alert similarity measurement [52], probabilistic reasoning [19], clustering algo-

Introduction 111

rithms [14], pre- and post-condition matching of known attacks [39,12,7], and
chronicles formalism approach [38]. Most of these proposed approaches have
limited capabilities because they rely on various forms of predefined knowledge
of attack conditions and consequences. They cannot recognize a correlation
when an attack is new or the relationship between attacks is new. In other
words, these approaches in principle are similar to misuse detection techniques,
which use the "signatures" of known attacks to perform pattern matching and
cannot detect new attacks. It is obvious that the number of possible correla­
tions is very large, potentially a combinatorial of the number of known and
new attacks. It is infeasible to know a priori and encode all possible matching
conditions between attacks. To further complicate the matter, the more danger­
ous and intelligent adversaries will always invent new attacks and novel attack
sequences. Therefore, we must develop significantly better alert correlation
algorithms that can discover sophisticated and new attack sequences.

We have two motivations in our work. First, we want to develop an alert cor­
relation system that can discover new attack strategies without relying solely on
domain knowledge. Second, we want to incorporate more evidence or indica­
tors from other non-security monitoring systems to correlate alerts and detect
attack strategies. For example, we can incorporate alerts from network man­
agement systems (NMS) into the security alert correlation. Although alerts
from NMS may not directly tell us what attacks are present, they provide us
information on the state of protected domains.

This paper focuses on correlation techniques. Our main contribution in this
paper is the design of an integrated correlation system to discover novel attack
strategies from INFOSEC alerts. Our alert correlation mechanism integrates
three different correlation methods based on two hypotheses of attack step rela­
tionships to discover and analyze relationships among alerts. Bayesian-based
correlation engine [48] applies probabilistic reasoning to correlate alerts that
have direct causal relationships according to some domain knowledge. This cor­
relation mechanism is based on the hypothesis that some attack steps have direct
relationship because prior attack step enables the later one. Causal discovery
theory-based correlation mechanism performs alert correlation using statistical
analysis of attack occurrences to identify the dependency between alerts. Time
series-based correlation engine [46] conducts alert correlation using statistical
test and investigating temporal relationship between alerts. These two statis­
tical and temporal-based correlation mechanisms are based on the hypothesis
that some attack steps have temporal or statistical patterns even though they
may not have direct or obvious (or known) relationships in terms of security
or performance measures. We integrate these three complementary correlation
engines to perform alert analysis and correlation. We construct attack scenar­
ios and conduct attack path analysis based on the output of three correlation
engines. We evaluate and rank the overall likelihood of various attack paths
and identify those with higher probabilities. The result of alert correlation is

112 Discovering Novel Attack Strategies from INFOSEC Alerts

a set of candidate attack plans corresponding to the intrusions executed by the
attacker. The outputs of this phase can be used for further analysis in the later
phase, i.e., attack plan recognition [47].

We evaluate our methods using DARPA's Grand Challenge Problem (GCP)
data sets [13]. The results show that our approach can successfully discover new
attack strategies and provide a quantitative analysis method to analyze attack
strategies.

The remainder of this paper is organized as follows. We describe our method
of alert aggregation and prioritization in Section 2. We present our probabilistic-
based correlation mechanism in Section 3. We describe our statistical-based
alert correlation engine in Section 4. Causal discovery-based correlation engine
is described in Section 5. In Section 6, we present our approach to integrate
these three correlation engines and scenario analysis. In Section 7, we report the
experiments and results on the GCP. Section 8 discusses the related work. We
summarize the paper and point out some ongoing and future work in Section 9.

2. Alert Aggregation and Prioritization
In this section, we describe two major components in our alert correlation

system, i.e., alert aggregation and alert prioritization.

2.1 Alert Aggregation and Clustering
One of the issues with deploying multiple security devices is the large number

of alerts output by the devices. The large volume of alerts make it very difficult
for the security administrator to analyze attack events and handle alerts in a
timely fashion. Therefore, the first step in alert analysis is alert aggregation and
volume reduction.

In our approach, we use alert fusion and clustering techniques to reduce the
redundancy of alerts while keeping the important information. Specifically,
each alert has a number of attributes such as time stamp, source IP, destination
IP, port(s), user name, process name, attack class, and sensor ID, which are
defined in a standard document named "Intrusion Detection Message Exchange
Format (IDMEF)" drafted by IETF Intrusion Detection Working Group [21].

IDMEF has defined alert formats and attributes. IDMEF is intended to be
a standard data format that intrusion detection systems can use to report alerts
about suspicious events. A Document Type Definition (DTD) has been proposed
to describe IDMEF data format by XML documents.

In IDMEF, three temporal attributes have been defined to be associated to an
alert. Detect-time refers to the time that the attack occurs, create-time represents
the time when the attack is detected and analyzer-time is the time when the alert
is output by an IDS. Create-time and analyzer-time are fully dependant on the
characteristics of the IDS. Therefore, we use detect-time attributes in our alert

Alert Aggregation and Prioritization 113

aggregation process. In other words, two alerts might be considered similar
even though their create-time and analyzer-time are completely different.

In the IDMEF format, the structures of attributes source and target are similar.
They can be described by a node, a user, a process and a service. A node
might be identified by its IP address (typically by a network-based IDS) or by
its host name (typically by a host-based IDS). Similarly, some IDSs provide
service names or port numbers. We create and use two correspondence tables
between host names and IP addresses, and between services and port numbers.
For most alerts output by a host-based IDS, we specify that a similarity exists
between alerts' source and target attributes if both their nodes, users, services
and processes are similar. And for most network attacks, we compare the nodes
and services.

Alert fusion has two phases, i.e., aggregation of alerts of the same IDS and
aggregation of alerts of different sensors. Specifically, we first combine alerts
that have the same attributes except time stamps. This step is intended to
aggregate alerts that are output by the same IDS and are corresponding to the
same attack but have a small delay, i.e., the time stamps of those alerts can be
slightly different, e.g., two seconds apart. Second, based on the results of step
1, we aggregate alerts with the same attributes but are reported from different
heterogeneous sensors. The alerts varied on time stamp are fused together if
they are close enough to fall in a pre-defined time window.

Alert clustering is used to further group alerts after alert fusion. Based on
various clustering algorithms, we can group alerts in different ways according
to the similarity among alerts, (e.g., [52] and [30]). Currently, based on the
results of alert fusion, we further group alerts that have same attributes except
time stamps into one cluster. After this step, we have further reduced the
redundancy of alerts.

DEFINITION 1 A hyper alert is defined as a time ordered sequence of alerts
that belong to the same cluster.

For example, after alert clustering, we have a series of aggregated alert
instances, ai,a2...a^, in one cluster that have the same attributes along the
time axis. We use hyper alert A to represent this sequence of alerts, i.e.,
A = {ai ,a2, . . . ,an}.

2.2 Alert Verification and Prioritization
The next phase of alert processing is to verify and prioritize each hyper alert

based on its success and relevance to the mission goals.
When a correlation engine receives false positives as input, the quality of

correlation results can degrade significantly. Therefore, the reduction of false
positive and irrelevant alerts is an important prerequisite to achieve a good
correlation results.

114 Discovering Novel Attack Strategies from INFO SEC Alerts

The task of alert verification is to examine an alert and determine the success
or failure of the corresponding attack. It aims to filter out the false positive
alerts output by security sensors.

We apply evidence cross checking to identifying the false positive alert. In
other words, we use alerts or evidence output by other security sensors to cross
check the validity of an alert. In particular, for an alert generated by a security
sensor (e.g., an IDS), we check if there are any similar alerts output by other
security sensors or if there are any alerts or evidence corresponding to the impact
of the attack. For example, when a network-based IDS output a buffer overflow
alert targeting a specific process running on the target host, and if the host-
based IDS installed on the target machine also generated an alert representing
an abnormal running of that process or other abnormal activities (e.g., illegal
file access) corresponding to the evidence of the attack impact, then we can
enforce the validity of the buffer overflow alert.

Priorities are important to classify alerts and quickly discard information
that is irrelevant or of less importance to a particular site. The alert prioritizing
component has to take into account the security policy and the security require­
ments of the site where the correlation system is deployed. The objective is that,
with the alert priority rank, security analyst can select important alerts as the
target alerts for further correlation and analysis. Specifically, the priority score
of an alert is computed based on the relevance of the alert to the configuration
of the protected networks and hosts as well as the severity of the corresponding
attack assessed by the security analyst. In practice, a correlation system uses
the information from the impact analysis and the asset database to determine
the importance of network services to the overall mission goals of the network.

Porras et al. proposed a more comprehensive mechanism of incident/alert
rank computation model in a "mission-impact-based" correlation engine, named
M-Correlator [45]. Since we focus on alert correlation and scenario analysis
instead of alert priority ranking, and alert prioritization is just an intermediate
step to facilitate further alert analysis, we adapted the priority computation
model of M-Correlator with a simplified design.

Figure 7.1. Alert Priority Computation Model

Alert Aggregation and Prioritization 115

Figure 7.1 shows our priority computation model that is constructed based
on Bayesian networks [43]. We use Bayesian inference to obtain a belief over
states (hypotheses) of interests. A Bayesian network is usually represented as
a directed acyclic graph (DAG) where each node represents a variable, and
the directed edges represent the causal or dependent relationships among the
variables. A conditional probability table (CPT) [43] is associated with each
child node. It encodes the prior knowledge between the child node and its
parent node. Specifically, an element of the CPT at a child node is defined
by CPTij = P{child.state = j\parentstate — i) [43]. The behef in
hypotheses of the root is related to the belief propagation from its child nodes,
and ultimately the evidence at the leaf nodes.

Specifically, in our priority computation model, the root represents the prior­
ity with two hypothesis states, i.e., "high" and "low". Each leaf node has three
states. For node "Interest", its three states are "low", "medium" and "high".
For other nodes, the three states are "matched", "unmatched" and "unknown".
The computation result is a value in [0,1] where 1 is the highest priority score.

We denote e^ as the k^^ leaf node and Hi as the i^^ hypothesis of the root
node. Given the evidence from the leaf nodes, assuming conditional indepen­
dence with respect to each Hi, the belief in hypothesis at the root is: P{Hi \
e i , e 2 , . . . , e ^) = 7 i ' (^ i) n f = i ^ (e * = | i ? i) , w h e r e 7 = [P (e i , e 2 , . . . , e ^)] - i
and 7 can be computed using the constraint ^ ^ P (i 7 ^ | e \ e ^ , . . . , e ^) = 1.
For example, for the hyper alert of FTP Globbing Buffer Overflow attack, we
get evidence [highy matched, matched, unknown, unknown] from the corre­
sponding leaf nodes, i.e.. Interest, OS, Services/Ports, Applications and User,
respectively. As Figure 7.1 shows, the root node represents the priority of
hyper alert. Assume that we have the prior probabilities for the hypotheses
of the root, i.e., P{Priority = high) = 0.8 and P{Priority = low) =
0.2, and the following conditional probabilities as defined in the CPT at each
leaf node, P{Interest = high\Priority = high) = 0.70, P{Interest =
high\Priority = low) = 0.10, P{OS = matched\Priority = high) =
0.75, P{OS = matched\Priority = low) = 0.20, P{Services = matched
\Priority = high) = 0.70, P{Services = matched\Priority = low) =
0.30, P{Applications = unknown\Priority = high) = 0.15, P{Appli —
cations = unknown\Priority = low) = 0.15, P{User = unknown\Prio—
rity = high) = 0.10, P{User = unknown\Priority = low) = 0.10,
we then can get 7 = 226.3468, therefore, P{Priority — high\Interest —
matched^ OS — matched^ Service — matched^ Applications = matched^
User = unknown) = 0.9959. We regard this probabiUty as the priority score
of the alert. The current CPTs are predefined based on our experience and
domain knowledge.

To calculate the priority of each hyper alert, we compare the dependencies
of the corresponding attack represented by the hyper alert against the configu­
rations of target networks and hosts. We have a knowledge base in which each

116 Discovering Novel Attack Strategies from INFOSEC Alerts

hyper alert has been associated with a few fields that indicate its attacking OS,
services/ports and appHcations. For the alert output from a host-based IDS,
we will further check if the target user exists in the host configuration. The
purpose of relevance check is that we can downgrade the importance of some
alerts that are unrelated to the protected domains. For example, an attacker may
launch an individual buffer overflow attack against a service blindly, without
knowing if the service exists. It is quite possible that a signature-based IDS
outputs the alert once the packet contents match the detection rules even though
such service does not exist on the protected host. The relevance check on the
alerts aims to downgrade the impact of such kind of alerts on further correlation
analysis. The interest of the attack is assigned by the security analyst based
on the nature of the attack and missions of the target hosts and services in the
protected domain.

3. Probabilistic-Based Alert Correlation
3.1 Motivation

In practice, we observe that when a host is compromised by an attacker, it
usually becomes the target of further attacks or a stepping-stone for launching
attacks against other systems. Therefore, the consequences of an attack on a
compromised host can be used to reason about a possible matching with the
goals of another attack. In a series of attacks where the attackers launch earlier
attacks to prepare for later ones, there are usually strong connections between
the consequences of the earlier attacks and the prerequisites of the later ones.
If an earlier attack is to prepare for a later attack, the consequence of the earlier
attack should at least partly satisfy the prerequisite of the later attack.

It is possible to address this type of correlation by defining pre- and post­
conditions of individual attacks and applying condition matching. However, it
is infeasible to enumerate and precisely encode all possible attack consequences
and goals into pre- and post-conditions. In addition, in practice, an attacker does
not have to perform early attacks to prepare for a later one, even though the
later attack has certain prerequisites. For example, an attacker can launch an
individual buffer overflow attack against a service blindly without knowing if
the service exists or not. In other words, the prerequisite of an attack should
not be mistaken for the necessary existence of an earlier attack. A hard-coded
pre- and post-conditions matching approach cannot handle such cases.

Having the challenges in mind, we apply probabilistic reasoning to alert cor­
relation by incorporating system indicators of attack consequences and prior
knowledge of attack transitions. In this section, we discuss how to apply prob­
abilistic reasoning to attack consequences and goals in order to discover the
subtle relationships between attack steps in an attack scenario.

Probabilistic-Based Alert Correlation 117

Probabilistic
Inference

Evaluators

Correlation
Output

Alert Pairs
(a) Inference flowchart (b) Bayesian-based correlation model

Figure 7,2. Probabilistic reasoning model

3.2 Model Description
Figure 7.2(a) shows the procedure of correlation inference. Given a stream

of alerts, evaluators first analyze one or more features of alert pairs and output
results as evidence to the inference module. The inference module combines
the individual opinions expressed by the evaluators into a single assessment
of the correlation by computing and propagating correlation beliefs within the
inference network.

In our inference module, we use a Bayesian network [43] as our reasoning
engine. Bayesian networks are usually used as a principle method to reason
uncertainty and are capable of leveraging prior expert opinions with the learned
information from data. A Bayesian network is usually represented as a directed
acyclic graph (DAG) where each node represents a variable that has a certain set
of states, and the directed edges represent the causal or dependent relationships
among the variables. A Bayesian network consists of several parameters, i.e.,
prior probabiHty of parent node's states (i.e., P {parent.state = %)), and a set of
conditional probability tables (CPT) associated with child nodes. CPT encodes
the prior knowledge between child node and its parent node. Specifically, an
entry of the CPT at a child node is defined by CPTij — P{child^state =
j\parent.state — i). We have more discussions on probability properties of a
Bayesian network in Section 5.2.1.

Figure 7.2(b) shows the structure of our Bayesian inference model for pair-
wise correlation. Since we depend on domain knowledge to correlate directly
related alert pairs, we design a one-level Bayesian network that is good enough
to perform inference.

In the inference model, the root node represents the hypothesis that two
attacks are correlated. Specifically, the root node has two hypothesis states,
i.e., "high correlation" and "low correlation". Each child node represents a
type of attack consequences on the host. The evaluator on each child node
detects the condition matching between the consequences and the necessary

118 Discovering Novel Attack Strategies from INFO SEC Alerts

conditions of the two alerts being correlated. The evaluation result on each leaf
node is mapped to a state of the child node. Each child node has three states:
"matched", "not matched" and "unknown". The state "unknown" handles the
case that there is no need of condition matching, e.g., some attacks do not
necessarily have any pre-conditions in order to be launched. The output of
the inference engine represents the probability or confidence of the correlation
between two alerts being analyzed (i.e., P{correlation = high\evidence))
based on the evidence (e.g., "matched" or "unmatched") provided by the leaf
nodes.

The belief computation is conducted by propagating belief messages among
leaf nodes and the root node. Specifically, we denote e^ as the k^^ leaf node
and Hi as the i*^ hypothesis of the root node. Given the evidence from the leaf
nodes, assuming conditional independence with respect to each Hi, the belief in
hypothesis at the root is: P{Hi | e \ e^ . . . , e^) = ^P{Hi) Y[^^^ P{e^\Hi),
where 7 = [P(e^, e^ , . . . , e^)]~^ and 7 can be computed using the constraint
Y^- P{Hi\e^,e^,..., e^) = 1 [43]. Since the belief computation can be per­
formed incrementally instead of being delayed until all the evidence is collected,
the Bayesian inference engine can also function on partial evidence, and the
lack of evidence input from an evaluator does not require special treatment.

As Figure 7.2(b) shows, each leaf node represents an attack consequence on
the attack victim.

When reasoning about the correlation between two alerts, we consider broad
aspects of attack consequences, in particular, (1) Probe or Surveillance: infor­
mation on system or network has been gained by an attacker, e.g., a probing
attack can get information on open ports. (2) Availability: the system is out of
service or the service is negatively affected by the attack, e.g., because of a DoS
attack. (3) Access Violation: an illegal access to a file or data of a system. (4)
Information Disclosure: the attacker exports (sensitive) data to external site.
(5) Root Privilege has been obtained by an attacker, for example, by a buffer
overflow attack. (6) Malicious Concealment: malicious binary codes have been
installed on the system, e.g., a Trojan horse. (7) Integrity Violation: the file
on a system has been modified or deleted, violating the security policy. (8)
Suspicious Connection: a covert channel has been set up by the attack. (9)
User Privilege has been obtained by the attacker.

For each attack, it may result in one or more of those impacts on the victim
host or network. Each attack may also need some pre-conditions prepared
by prior attack(s) in one or more above fields. Therefore, when correlating
two alerts, we compare the causal alert candidate's consequences with effected
alert's pre-conditions in each leaf nodes of Figure 7.2(b).

Table 7.1 shows the set of predicates that we defined to assess the conse­
quences of attack. Each attack impact shown in Figure 7.2(b) has been associ­
ated with a set of predicates defined in Table 7.1.

Probabilistic-Based Alert Correlation 119

Table 7.1. Predicates used in impact evaluation

FailService

DegradeProcess

GainUserPrivilege

GainOSInfo

SetupCovertChannel

GainFile

DegradeService

ModifyData

GainRootPrivilege

InstallMaliciousDaemon

FailCovertChannel

AccessSystem

FailProcess

DeleteData

GainServicelnfo

InstallTrojan

ExportData

Leaklnformation

For example, predicates "FailService" and "DegradeService" represent the
attack impacts on the availability of the target's service. The definition of
predicates is a broad template and each predicate can be instantiated to a
specific consequence instance according to information provided by alerts.
For example, when a port scan alert is output, its corresponding impact in­
stance is GainServicelnfo.targetlP. For another example, an attack may result
in compromise of the root privilege and modification of the password file at
a victim host. The corresponding attack consequence can be represented by
{GainRootPrivilege.targetIP,ModifiyData,passwordFile}.

Each alert has also been defined 3,pre-condition(s) using the predicates shown
in Table 7.1. Like the definition of impact of attack, pre-condition(s) of each
alert can also be instantiated based on alert specific attributes. Each alert can
provide the necessary information from its attributes, such as source IP, target
IP, attack class.

Correlating two alerts includes the following steps. First, each alert first ini­
tializes its corresponding pre-condition and impact fields. Second, alert pairs
are checked to see if they comply with certain constraints, e.g., an implicit
temporal constraint between these two alerts is that alert Ai occurs before alert
Aj. Third, evaluations are conducted by comparing the causal alert's impacts
and ejfected alert's pre-conditions on each of the leaf nodes as shown in Fig­
ure 7.2. Fourth, results of evaluations are mapped to the states of leaf nodes,
i.e., "matched", "unmatched" and "unknown". Finally, an overall probability
computation is conducted based on the state evidence of each leaf node.

For example, alert portscan has a consequence defined as GainService­
lnfo.targetlP that is associated with attack consequence Probe or Surveillance
as shown in Figure 7.2(b). Alert imap buffer overflow has a pre-condition
as GainServicelnfo.targetlP, where predicate "GainServicelnfo" is associated
with attack consequence Probe/Surveillance shown in Figure 7.2(b). If portscan
alert occurs before alert imap buffer overflow and they have the same target IP
addresses, then their pre- and post-conditions are matched. The corresponding
state of leaf node Probe/Surveillance in Figure 7.2(b) will be set as "matched".
The Bayesian-model computes the evidence and outputs the probability or con­
fidence of the correlation of these two alerts.

120 Discovering Novel Attack Strategies from INFO SEC Alerts

3.3 Parameters in Bayesian Model
When using a Bayesian model for inference, we need to set two types of

parameters, i.e., prior probability of root's states and CPT associated with each
child node. In this section, we describe how we set the parameters used in our
Bayesian model.

3.3.1 Parameters in Bayesian Model I: Prior Probability or Estimation
on Attack Transition. In this section, we describe the attack classes used
in our work and the prior probability estimation on attack transition, i.e., the
root states in our model.

The prior probabiHty of root states (e.g., P{correlation = high)) used in
the inference engine is set based on the attack class of alerts being correlated.
It indicates the prior knowledge estimation of the possibiHty that one attack
class reasonably transits to another one. For example, it is reasonable for us
to have a higher estimation of the possibility that an exploit attack follows a
probe than the other way around. We use domain-specific knowledge based
on prior experience and empirical studies to estimate appropriate probability
values. Related work [52] also helps us on the probability estimation.

In our work, we denote the attack classes as the follows.
CI: Super Privilege Violation, C2: User Privilege Violation. C3: DoS. C4:

Probe. C5: Access Violation. C6: Integrity Violation. C7: Asset Distress. C8:
Connection Violation. C9: Malicious Binary Installation. CIO: Exfiltration.

In alert correlation, the pair of alerts being evaluated in the correlation en­
gine (as shown in Figure 7.2(b)) is only known at run-time. Therefore, we
cannot use an inference engine with a fixed set of CPT parameters. Instead,
we set up a set of CPTs based on each pair of attack classes (e.g.. Malicious
Concealment and DoS). At run-time, when correlating a pair of alerts Ai and
Aj with respective corresponding attack classes C{Ai) and C{Aj) (e.g., alert
imap buffer overflow with attack class Super PrivilegeViolation and alert
illegal file access with attack class Access Violation), the inference engine
selects the corresponding CPT parameters for the attack classes C{Ai) and
C{Aj), and computes the overall probability that Aj is "caused" by Ai given
the evidence from the evaluators, i.e., P{correlation = high\e = evidence).
An implicit temporal constraint between these two alerts is that alert Ai occurs
before Aj. In this example, we can interpret the correlation as: the imap buffer
overflow attack is followed by an illegal access to a file after the attacker gets
root privileges on the target. Initial values of CPTs are pre-defined based on
our experience and domain knowledge.

We have also defined an attack transition table that includes the estimated
possibility that how reasonably an attack with class Ci (i.e., i^^ column in the
matrix) may progress to another attack with class Cj (i.e., f^ row in the matrix).
The table entry is used as the prior probability of the root state in our model.

Probabilistic-Based Alert Correlation 121

The estimation is based on our prior experience and empirical studies. In the
process of estimation, we also refer to the related work in [52].

3.3.2 Parameters in Bayesian Model II: Adaptive CPT Update.
Another important parameter in Bayesian model is the CPT associated with
each node. CPT values associated with each node adapt to new evidence and
therefore can be updated accordingly. We apply an adaptive algorithm originally
proposed by [1] and further developed by [9]. The motivation of using adaptive
Bayesian network is that we want to fine-tune the parameters of the model and
adapt the model to the evidence to fix the initial CPTs that may be pre-defined
inappropriately. The intuition of the algorithms proposed by [1] is that we want
to adapt the new model by updating CPT parameters to fit the new data cases
while balancing movement away from the current model.

Specifically, we denote X as a node in a Bayesian network, and let U be the
parent node of X. X has r states with values of x^, where k = 1,..., r and U
has q states with values of î -̂, where jf = 1,..., g. An entry of CPT of the node
X can be denoted as: 9jk = P{X — Xk\U = Uj), Given a set of new data
cases, denoted as D, D = yi^ .,.,yn, and assuming there is no missing data in
evidence vector of yu where evidence vector yt represents the evidence at the
t^^ time, the CPT updating rules are:

O'jk = v + i^-vW%\ for P{uj\yt) = land P{xf,\yt) = 1.(1,1)

6% = {1-V)0%\ forP{uj\yt) = landP(xk\yt) = 0. (7.2)

e^.j^ = ^ ^ - 1 , otherwise. (13)

rj is the learning rate. The intuition of the above updating rules is that,
for an entry of CPT, e.g., 9mm we either increase or decrease its value (i.e.,
P(X = Xn\U = Um)) based on the new evidence received. Specifically, given
the evidence vector yt, if the parent node U is observed in its m*^ state, i.e.,
U = Um, and X is in its n^^ state, i.e., X = Xn, we regard the evidence as
supporting evidence of the CPT entry 6mn^ We then increase its value (i.e.,
P(X = Xn\U = Um)), which indicates the likelihood that X is in its n*^ state
given the condition that parent node U is in its m^^ state, as shown in Eq. (7.1).
By contrast, if node X is not in its n*^ state while its parent node U is in the
m*^ state, we then regard the evidence as un-supporting evidence of Omn and
decrease 6mn^ value as shown in Eq. (7.2). We do not change the value of Omn
if no corresponding evidence is received. The learning rate ry controls the rate
of convergence of 9. rj equaling 1 yields the fastest convergence, but also yields
a larger variance. When rj is smaller, the convergence is slower but eventually
yields a solution to the true CPT parameter [9]. We build our inference model
based on above updating rules.

122 Discovering Novel Attack Strategies from INFOSEC Alerts

We also need to point out that the adaptive capability of the inference model
does not mean that we can ignore the accuracy of initial CPT values. If the initial
values are set with a large variance to an appropriate value, it will take time for
the model to converge the CPT values to the appropriate points. Therefore, this
mechanism works for fine-tuning instead of changing CPT values dramatically.

For an alert pair, (Ai, Aj), if its correlation value computed by the Bayesian-
based model, denoted as Pbayes^ is larger than a pre-defined threshold, e.g.,
0.5, then we say Bayesian-based correlation engine identifies that alert Aj is
"caused" by alert Ai.

3.4 Summary
Our alert correlation engine using Bayesian network has several advantages.

First, we can incorporate prior knowledge and expertise by populating the CPTs.
It is also convenient to introduce partial evidence and find the probability of
unobserved variables. Second, it is capable of adapting to new evidence and
knowledge by belief updates through network propagation. Third, the correla­
tion output is probability rather than a binary result from a logical combination.
We can adjust the correlation engine to have the maximum detection rate or a
minimum false positive rate by simply adjusting the probability threshold. By
contrast, it is not directly doable when using a logical combination of pre-/post-
condition matching. Finally, Bayesian networks have been studied extensively
and successfully applied to many applications such as causal reasoning, diag­
nosis analysis, event correlation in NMS, and anomaly detection in IDS. We
have confidence that it can be very useful to INFOSEC alert correlation.

There are also several limitations in our approach. First, our correlation
engine relies on the underlying security sensors (e.g., IDSs) to provide alerts.
If the security sensors miss a critical attack that links two stages of a series
of attacks, the related attack steps may be split into two correlated groups.
Therefore, we need some other techniques (e.g., attack plan recognition) to link
isolated alert sets that includes correlated alerts. Second, our approach is based
on domain knowledge of attack transition patterns. If there are new attack
transition patterns or two related alerts have no direct causal relationship, our
approach is not fully effective. Therefore, we need to develop complementary
correlation techniques (e.g., statistical-based correlation technique) and use
them along with our Bayesian-based correlation engine.

4. Statistical-Based Alert Correlation

4.1 Motivation
The motivation to develop another complementary correlation mechanism is

to discover more attack step dependency that the prior correlation engines have
missed. Our Bayesian-based correlation engine focuses on discovering alert
pairs with direct causal relationship (i.e., the consequences of an earlier attack

Statistical-Based Alert Correlation 123

consequence satisfy or partially satisfy the prerequisite of a later attack). In
order to discover attack steps that have indirect dependency but strong statistical
and temporal patterns, we have developed two correlation engines based on
statistical and temporal analysis. In this section, we introduce our GCT-based
correlation engine using Granger Causality Test (OCT) [20]. In Section 5, we
introduce our correlation mechanism based on causal discovery theory.

4.2 Time Series Analysis
Time series analysis aims to identify the nature of a phenomenon represented

by a sequence of observations. The objective requires the study of patterns of
the observed time series data.

There are two main goals of time series analysis: (a) identifying the nature of
the phenomenon represented by the sequence of observations, and (b) forecast­
ing (predicting future values of the time series variable). Both goals require that
the pattern of observed time series data is identified and more or less formally
described. Once the pattern is established, we can interpret and integrate it with
other techniques to extrapolate future events.

A time series is an ordered finite set of numerical values of a variable of
interest along the time axis. It is assumed that the time interval between con­
secutively recorded values is constant. We denote a univariate time series as
x{k), where fc = 0 , 1 , . . . , iV — 1, and N denotes the number of elements in
xlk).

Time series causal analysis deals with analyzing the correlation between
time series variables and discovering the causal relationships. Causal analysis
in time series has been widely studied and used in many applications, e.g.,
economy forecasting and stock market analysis.

Granger Causality Test (GCT) is a time series-based statistical analysis
method that aims to test if a time series variable X correlates with another
time series variable Y by performing a statistical hypothesis test. In time se­
ries analysis theory, although there exist some other simple lagged correlation
analysis, e.g., computing correlation coefficients between two time series vari­
ables, GCT has been proved to be more rigorous. GCT was originally proposed
and applied in econometrics, it has been widely applied in other areas, such
as weather analysis (e.g., [32]), automatic control system (e.g., [5, 18]) and
neurobiology (e.g., [31, 26]).

Network security is another application in which time series analysis can be
very useful. In our prior work [3, 2], we have used time series-based causal­
ity analysis for pro-active detection of Distributed-Denial-of-Service (DDoS)
attacks using MIB II [51] variables. We based our approach on the Granger
Causality Test (GCT) [20]. Our results showed that the GCT is able to detect the
"precursor" events, e.g., the communication between Master and Slave hosts,
without prior knowledge of such communication signatures, on the attacker's

124 Discovering Novel Attack Strategies from INFO SEC Alerts

network before the victim is completely overwhelmed (e.g., shutdown) at the
final stage of DDoS.

In this work, we apply the GCT to INFOSEC alert streams for alert correlation
and scenario analysis. The intuition is that attack steps that do not have well-
known patterns or obvious relationships may nonetheless have some temporal
correlations in the alert data. For example, there are one or more alerts for one
attack only when there are also one or more alerts for another attack within a
certain time window. We can apply temporal causality analysis to find such
alerts to identify an attack scenario. We next give some background on the
GCT.

4.3 Granger Causality and Granger Causality Test
The intuition of Granger Causality is that if an event X is the cause of another

event Y, then the event X should precede the event Y. Formally, the Granger
Causality Test (GCT) uses statistical functions to test if lagged information on
a time-series variable x provides any statistically significant information about
another time-series variable y. If the answer is yes, we say variable x Granger-
causes y. We model variable y by two auto-regression models, namely, the
Autoregressive Model (AR Model) and the Autoregressive Moving Average
Model (ARMA Model). The GCT compares the residuals of the AR Model with
the residuals of the ARMA Model. Specifically, for two time series variables y
and X with size N, the Autoregressive Model oiy is defined as:

y{k) = Y,eiy{k-i)-]-eo{k) (7.4)

The Autoregressive Moving Average Model ofy is defined as:

p p

y{k) = Y^aiy(k-i)^Y^ Pix{k - i) + ei {k) (7.5)
z = l ^ = l

Here, /? is a particular lag length, and parameters a .̂ Pi and Oi {1 < i <
p) are computed in the process of solving the Ordinary Least Square (OLS)
problem (which is to find the parameters of a regression model in order to
have the minimum estimation error). The residuals of the AR Model is RQ =
Ylk=i ^o(^)' ^^^ ^^^ residuals of the ARMA Model is Ri = J2k=i ^i(^)-
Here, T =^N -p.

The AR Model, i.e., Eq.(7.4), represents that the current value of variable
y is predicted by its past p values. The residuals RQ indicate the total sum of
squares of error. The ARMA Model, i.e., Eq.(7.5), shows that the current value
of variable y is predicted by the past p values of both variable y and variable x.
The residuals R\ represents the sum of squares of prediction error.

Statistical-Based Alert Correlation 125

The Null Hypothesis HQ of GCT is ^o : A = 0, i = 1,2, • • • ,p. That is,
X does not affect y up to a. delay ofp time units. We denote g as the Granger
Causality Index (GCI):

^ Ri/{T-2p-l) yy^ ^ J V /

Here, F(a, b) is Fisher's F distribution with parameters a and 6 [23]. F-test
is conducted to verify the validity of the Null Hypothesis. If the value of g
is larger than a critical value in the F-test, then we reject the Null Hypothesis
and conclude that x Granger-causes y. Critical values of F-test depends on the
degree of freedoms and significance value. The critical values can be looked
up in a mathematic table [24].

The intuition of GCI (g) is that it indicates how better variable y can be
predicted using histories of both variable x and y than using the history of y
alone. In the ideal condition, the ARMA model precisely predicts variable y
with residuals i?i = 0, and the GCI value g is infinite. Therefore, the value of
GCI (g) represents the strength of the causal relationship. We say that variable
{xi{k)} is more likely to be causally related with {y{k)} than {x2{k)} if
91 > 92 and both have passed the F-test, where gi,i = 1,2, denotes the GCI
for the input-output pair (x^, y).

4.4 Procedure of Data Processing in GCT
Before applying GCT to data sets, we propose a procedure of data processing.

In each step, there are multiple possible testing techniques and we chose the
one that is most commonly used and conveniently implemented.

Step 1: testing for individual stationary. This step is to statistically test if each
data set is stationary. A stationary time series means the probability
distribution is stable during the stochastic process. In this step, we use
testing technique proposed by Dickey-Fuller [15].

Step 2: data transformations. For non-stationary data sets, we can apply trans­
form functions to change a non-stationary time series into a stationary
one. The most common used transformations are log transformation and
the differencing transformation. They can be also used together. For ex­
ample, an initial log transformation is followed by first differencing, i.e.,
(1 — L)Log{x{t)) = Log{x{t)) — Log{x{t — 1)), where L represents lag
operator defined SisLx{t) = x{t — l) 3nd{l — L)x{t) — x{t) — x{t — l).

Step 3: testing for multivariate independence. This step is to test if two time
series variables are statistically independent of each other. The available
test techniques are proposed by Chitturi [8] and Hosking [27].

126 Discovering Novel Attack Strategies from INFOSEC Alerts

In practice, we can go through this step and then conduct the GCT for
the non-independent bivariates. Results of GCT can tell us if they are
causally related and the causal order or direction. As an alternative, we
can also skip this step and conduct GCT directly because we can also
infer the variable relationship from GCT output that can tell if they are
independent of each other or if there are any causal relationships.

Step 4: testing for co-integration of data sets. In this step, we can apply mul­
tivariate version of Dickey-Fuller Test or Johansen Test [29] to test the
existence of co-integration between two time series. Theoretically, GCT
can be conducted on two co-integrated time series variables. However,
as Lee et al. [35] empirically pointed out, GCT can result in spurious
causality when testing co-integrated variables. Therefore, we recom­
mend not to apply GCT on co-integrated time series in order to avoid the
inaccuracy.

Step 5: testing Granger Causality. As described in Section 4.3, we conduct the
statistical hypothesis test with a significance level, e.g., 5% or 1%.

Step 6: confidence computation. This step is to compute the probability or con­
fidence of correlation. As GCI conforms to F-distribution, i.e., F(p, T —
2p — 1), therefore, we can compute the corresponding probabiHty as:
Pgct = CDFF-distribtuion{p,T - 2p - I, GCI), which represents the
correlation confidence between two variables.

4.5 Applying GCT to Alert Correlation
4.5.1 Alert Time Series Formulation. Before applying GCT to alert
correlation, we need to formulate each hyper alert into a univariate time series.

Specifically, we set up a series of time slots with equal time interval, denoted
as tsiou along the time axis. Given a time range T, we have m = T/tgiot time
slots. Recall that each hyper alert or cluster A include a set of alert instances
with the same attributes except time stamps, i.e., A = [ai, a2 , . . . , an], where
ai represents an aggregated alert instance in the cluster, we denote A as the
corresponding time series variable of hyper alert A. A = {ni,n2, ,n^},
where each value ni represents the number of alert instances of hyper alert A
occurring within a specific time slot sloU.

Table 7.2 is an example that shows how we formulate a time series variable
for each hyper alert. From Table 7.2, we can see that the time variable ̂ ' s value
equals the number of alert instances of hyper alert A occurring within a time
slot.

We currently do not use categorical variables such as port accessed and
pattern of TCP flags as time series variables in our approach.

Statistical-Based Alert Correlation 127

Table 7,2. An example of alert time series formulation

Time slot

sloti

slot2

Number of A 's alert instances

1

5

i ' s value

1

5

sloti

slotm

9

0

9

0

4.5.2 GCT-based Alert Correlation. Applying the GCT to alert cor­
relation, the task is to determine which hyper alerts among Ai, A2,..., A/ most
likely have the causal relationship with hyper alert B (a hyper alert represents a
sequence of alerts in the same cluster). Based on alert priority value and mission
goals as described in Section 2.2, the security analyst can specify a hyper alert as
a target (e.g., alert MstreamJDDOS against a database server) which other alerts
are correlated with. The GCT algorithm is applied to the corresponding alert
time series. The formulation of alert time series is described in Section 4.5.1.

As described in Section 4.5.1, values of a hyper alert's time series (e.g., B)
represent the number of alert instances occurring within a certain time period.
Specifically, given a hyper alert 5 , for each hyper alert pair, i.e., (A^, B),i =
1,2, . . . ,m, we apply GCT to their corresponding time series variables, i.e.,
GCT{Ai, J5). In other words, we are testing the temporal correlation of alert
instances to determine if Ai has a causal relationship with B.

As described in Section 4.3, the GCT index (GCI) g returned by the GCT
function represents the evidence strength of the cause-effect relationship, and
GCI also conforms to F-distribution. In practice, after performing GCT com­
putation on each pair of alert time series variables (e.g., GCT{Ai,B), i =
1,2, . . . , m), we record the alert time series variables whose GCI values have
passed the F-distribution test (e.g., ^ 1 , ^ 5 , ^ 9) , then select the corresponding
hyper alerts (e.g., Ai,A^, Ag) as candidates of causal alerts w.r.t. alert B. We
rank order the candidate alerts according to their GCI values, then select the top
m candidate alerts and regard them as being causally related to alert B. These
candidate relationships can be further inspected by other techniques or security
analyst based on expertise and domain knowledge. The corresponding attack
scenario is constructed based on the correlation results.

In alert correlation, identifying and removing background alerts is an impor­
tant step. We use Ljung-Box [37] test to identify the background alerts. The
assumption is that background alerts have characteristic of randomness. The
Ljung-Box algorithm tests for such randomness via autocorrelation plots. The
Null Hypothesis is that the data is random. The test value is compared with
critical values to determine if we reject or accept the Null Hypothesis.

128 Discovering Novel Attack Strategies from INFOSEC Alerts

When applying GCT, one important parameter is the variable p as shown in
Eq.(7.4) and Eq.(7.5). This parameter represents the number of history values
(or the length of lagged time window) needed when performing the GCT. ^

Given two hyper alerts A and B that have corresponding time series A =
{ai ,a2, . . . ,a i , . . . ,an} and JB = {fci,&2, •••, ^ j , ••• '̂̂ n} respectively, we want to
identify if A Granger-causes B or not. As described in Section 4.2, a time series
variable is under the assumption that the time interval between consecutively
recorded values is constant. Therefore, the position difference between time
series instances can be regarded as the time delay between alert instances.

In our work, We denote the corresponding parameter p as p^^. We set the
parameter j9^^ as follows.

DEFINITION 2 Given a time series variable instance di (di G A and di ^ 0)
and its most adjacent time series instance bj (bj G B, bj ^ 0 and j > i), we
denote Adij as the adjacent time delay between di and bj,

^dij =j-i
We denote dadjacent-time-gap ^^ ^ ^^t Variable that unions all the time delays

between adjacent time series instances in A and B,
^adjacent-time-gap ^^
where i^j = 1,2, ...,n.

W e then set p ^ ^ as p^^ = mSix{dadjacent-time.gap}'

The intuition of the method of setting parameter p is that we want to have a
time window with an enough length so that we can include all potential causal
alerts with respect to an effect alert.

A

0 1

R

^̂ 2

2 3

i d2.4

...

b 4

5

^15.17
b i 7

i

di.j
bj

0 1 2 3 4 15 17 • • • i j

p = m a x { d 2 , 4 , d j 5 , 7 , d i j }

Figure 7.3. An example of time delay between time series instances

Figure 7.3 shows an example how we set the parameter p. In the figure, time
series variable A has 3 non-zero instances at A; = 2,15, i (i.e., 02, ^15, di), time
series variable B has 3 non-zero instances at A; = 4,17, j (i.e., 64,617, bj). We
set p as the maximum value of delays between adjacent time series instance as
shown in Figure 7.3.

Causal Discovery-Based Alert Correlation 129

The main advantage of using statistical causality test such as GCT for alert
correlation is that the approach does not requirt a priori knowledge about attack
behaviors and how the attacks could be related. This approach can identify the
correlation between two attack steps as long as the two have a temporal pattern
(not necessarily high frequency) when occurring together. We believe that a
large number of attacks, e.g., worms, have attack steps with such characteristics.
Thus, we beUeve that causal analysis is a very useful technique. As discussed
in [3, 2, 4], when there are sufficient training data available, we can use GCT
off-line to compute and validate very accurate causal relationships from alert
data. We can then update the knowledge base with these "known" correlations
for efficient pattern matching in run-time. When GCT is used in real-time and
finds a new causal relationship, as discussed above, the top m candidates can
be selected for further analysis by other techniques.

5. Causal Discovery-Based Alert Correlation

5.1 Motivation
Knowledge-based alert correlation system depends on attack transition pat­

terns to correlate security alerts. It has the advantage of efficiency and accuracy.
However, the signature-based correlation system lacks the capability of detect­
ing the attack transitions whose scenario patterns are unknown. In practice,
security analysts are more interested in those novel attack strategies that can
easily evade signature-based correlation analysis and can potentially cause more
damages due to the lack of knowledge about them.

Bearing this challenge in mind, we have studied and built a correlation tech­
nique based on statistical analysis. This correlation engine is based on the
hypothesis that for some attack steps, even though they do not have direct
causal relationship, they can have statistical dependence patterns. For exam­
ple, a malicious daemon keeps uploading sensitive information to an external
site and downloading new malicious code updates from the external site. GCT-
based correlation engine as described in Section 4 is an approach to identify
this type of attack transition patterns. GCT-based correlation technique has the
strength of identifying the causality direction between alert pairs, however, it
has the limitation on attack steps that have a weak temporal pattern (e.g., the
variance of time lags between attack steps is large). In order to identify the
statistical dependence pattern of alert pairs that have weak temporal relation­
ship, we have developed a correlation mechanism based on causal discovery
theory [44]. Our goal is to identify new attack transition patterns beyond the
limitation of domain-knowledge.

In this section, we introduce and describe our correlation mechanism using
causal discovery theory.

130 Discovering Novel Attack Strategies from INFO SEC Alerts

Figure 7,4. An example of a causal network

5.2 Introduction to Causal Discovery
Causal discovery has been an active research topic in the fields of artificial

intelligence (AI) and social science. The goal of causal discovery is to test and
identify causal relationships among variables under study. Researchers have
developed and shown that causal Bayesian network can be used to represent the
causal relationships between variables [44].

5.2.1 Causal Bayesian Network. A Bayesian network is usually repre­
sented as a directed acyclic graph (DAG) where each node represents a variable,
and the directed edges represent the causal or dependent relationships among
the variables.

Figure 7.4 shows an example of a causal network adapted from [43]. Here,
a house alarm may sound as a result of either a burglary or an earthquake.
An earthquake may also result in a TV news report. Neighbors John or Mary
may report a call when the alarm sounds. The directed edge represents the
cause-effect between variables.

In practice, causal discovery can be regarded as a task of constructing causal
Bayesian networks from observational data.

Learning a Bayesian network from data includes two subtasks, i.e., learn­
ing the structure of the Bayesian network and learning the parameters of the
network. The first subtask learns the causal relationship between variables and
the second one represents the strength of these dependencies, which are en­
coded in conditional probability tables (CPTs) associated with each child node.
Specifically, an element of the CPT at a child node is a conditional probability
defined as CPTij = P{child.state = j\parent.state = i) [43]. Since it is
relatively straightforward to learn the parameters given observational data and
a causal network structure, the challenge in causal discovery is the first task,
i.e., learning the network structure from data sets.

In the causal discovery theory, the fundamental assumption is causal Markov
condition. Causal Markov condition means that, in a causal Bayesian network,
any node is conditionally independent of its non-descendants (i.e., non-effect
nodes) given its parent nodes (i.e., direct causes) [50]. The independence rela-

Causal Discovery-Based Alert Correlation 131

tionships represented by the structure of a causal Bayesian network are given
by the causal Markov condition.

The conditional independence properties of a causal network can be deduced
from the structure of the DAG by the d-separation criterion as defined in [43],

The structure of a causal network under discovery is a directed acyclic graph
(DAG) that encodes conditional independencies via the causal Markov assump­
tion. Learning the Bayesian network structure from the data actually is the
process of identifying the conditional independency among variables.

5.2.2 Approaches to Causal Discovery. Based on causal Markov as­
sumption, there have been many research work on causal discovery. Generally,
there are two approaches to discovering causal Bayesian networks.

One causal discovery approach is based on score functions, e.g., Bayes­
ian computation [10, 16, 25]. Intuitively, this approach computes the prob­
ability that the causal relationship exists among the variables. For each pair
of variables, a probabilistic computation is conducted to exam the dependence
or independence between the two variables. In looking for the structures that
fit for the conditional independence constraints, the approach in [25] makes
probabilistic inferences about the conditional-independence constraints and the
goal is to find the Bayesian network structures that have maximum score.

In [25], the score is defined as the posterior probabilities p(m|D), where
m corresponds to the causal network models learned from the given data D,
This Bayesian-based approach can give a quantitative evaluation of causal net­
work structures constructed from data. The goal is to identify a causal network
structure m(m G m) so tha.tp{m\D) has the maximum value among all other
causal network structures learned from data D. One challenge to this approach
is model search and selection. Researchers usually use model selection method
to select the best fitted model among others (i.e., the one with highest posterior
probability p{m\D)) or selective model averaging method to average a num­
ber of better fitted models from all models [25]. There are still challenges to
these two model selection methods, in particular, the accuracy issue [25]. In
practice, people use some heuristic search algorithms to solve the model se­
lection problems. However, those heuristic search algorithms may not give the
best causal Bayesian network structures. Some scoring-based algorithms also
have the issues that the different input ordering of variables can generate very
different causal network structures.

Another category of causal discovery mechanism is constraint-based or de­
pendency analysis-based approach (e.g., [6,50]). This category of approaches
usually apply statistical tests (e.g., x^ test, a statistical test for accepting or
rejecting an hypothesis [24], and mutual information, a measure of dependency
between variables [11]) to discovering conditional independence and depen­
dence among variables and use these relationships as constraints to construct a
Bayesian network. Specifically, for each pair of variables, this approach tests

132 Discovering Novel Attack Strategies from INFOSEC Alerts

if any dependence exists. If so, an edge will be added between these two vari­
ables accordingly. Further tests will be conducted on each edge to examine if
the two end-nodes are found to be conditionally independent. If the conditional
independence is identified, the edge will be removed. The intuition on this
approach is that a pair of nodes with larger test score (e.g., mutual information
that measures the dependency between variables) is more likely to represent
a direct connection (an edge) than a pair with smaller test score, which may
represent an indirect connection. Search and scoring methods can be applied
to identifying the directions of edges.

In our work, we applied constraint-based approach using mutual information
for conditional independence test [6].

In information theory [11], mutual information is defined and used to measure
the statistical dependence between two random variables.

DEFINITION 3 For two random variables X and Y with a joint probability
distribution P{x^y) and marginal probability distributions P{x) and P{y),
mutual information I{X, Y) is defined as [11]

HX.Y)=^P(.,y)U^^^ (7.7,

DEFINITION 4 For three random variables X, Y and Z with a joint probabil­
ity distribution P{x,y^z) and conditional probability distributions P{x^y\z),
P{x\z) and P{y\z), the conditional mutual information I{X, y\Z) is defined
as [11]

/ (X . y | Z) = E P (x , . , .) . o « j | f e | a _ ,7.8)

Intuitively, mutual information / (X , Y) measures the information of X that
is shared by Y. If X and Y are independent, then X contains no information
about Y and vice versa, so their mutual information is zero. If X and Y are
dependent, knowing the value of one variable can give us some information
about the value of the other. In building the causal Bayesian network, we can
apply mutual information to test if two variables are dependent and evaluate the
strength of corresponding dependence.

Similarly, conditional mutual information I{X, Y\Z) is used to test if two
variables (i.e., X and Y) are dependent given the condition variable Z.

In theory, we claim X and Y are independent when I{X, Y) = 0 given
the actual distributions of corresponding variables. In practice, given a data
set D, we use empirical instead of theoretic distributions of variables when
computing mutual information. Therefore, the normal practice is usually to set
up a small threshold e and claim X and Y are independent when / (A, B) < e.

Causal Discovery-Based Alert Correlation 133

Similarly, we declare X and Y are conditionally independent given Z when
I{X,Y\Z)<e.

The intuition of applying mutual information to causal discovery is that when
two variables have a strong statistical dependency pattern, mutual information
can detect it. The causality direction is determined by the conditional mutual
information measure under the assumption that, in a causal network, two cause
nodes are independent with each other, but conditionally dependent with each
other given a common effect node. Specifically, based on mutual informa­
tion measure, if we have identified variable A, B are mutually independent
(i.e., / (A, B) < e), and are dependent with C respectively (i.e., / (A, C) > e,
I{B^C) > e), and if we have also identified variable A and B are condi­
tionally dependent given C based on conditional mutual information measure
(i.e., / (A, B\C) > e), then we can determine that A, B are causes to C, i.e.,
{A —> C, 5 —> C}. Such structure is called V-structure [25]. Such deter­
mination intuitively satisfies the notion of causaHty because when an effect
is determined (i.e., given C), the increasing confidence on cause A reduces
the belief that B causes C. In our example of Figure 7.4, we have seen such
cause-effect pattern among Earthquake, Burglary and Alarm,

In our work, we did not to select the score function-based approach (e.g.,
[25]) because that approach usually requires prior knowledge (e.g., prior prob­
ability) of causal network models in the model construction, model comparison
and final model selection. According to our experience it is difficult to get
such prior knowledge in the security application. In fact, our goal is to identify
novel attack transition patterns that can be totally unknown in the past. In [6],
the researchers have developed algorithms to avoid complex conditional inde­
pendence tests based on mutual information divergence. The enhanced test
algorithms have eliminated the need for an exponential number of conditional
independence tests that is an issue in earlier constraint-based algorithms.

5,3 Applying Causal Discovery Analysis to Alert
Correlation

Before we apply causal-discovery approach to alert correlation, raw alerts
need to get aggregated and clustered into hyper alerts as described in Section 2.1
so that we can investigate the statistical patterns between alerts.

After the above process, we formulate transaction data for each hyper alert.
Specifically, we set up a series of time slots with equal time interval, denoted
as tsiou along the time axis. Given a time range T, we have m = T/tsiot
time slots. Recall that each hyper alert A includes a set of alert instances with
the same attributes except time stamps, i.e., A = [ai, a 2 , . . . , an], where â
represents an alert instance in the cluster. We denote NA = {ni, n2,..., rim} as
the variable to represent the occurrence of hyper alert A during the time range
T, where n^ is corresponding to the occurrence (i.e., n^ = 1) or un-occurrence

134 Discovering Novel Attack Strategies from INFOSEC Alerts

(i.e., rii = 0) of the alert A in a specific time slot sloU, In other words, if there
is one or more instances of alert A (e.g., a) occurring in the time slot sloU, then
rii — 1; otherwise, Ui = 0.

Using the above process, we can create a set of transaction data and input
them to the causal discovery engine for analysis. Table 7.3 shows an example of
the transaction data corresponding to hyper alert A, B and C. The correlation
engine will output the causal network model based on transaction data set.

Table 73. An example of transaction data set

Time slot

5/0^1

sloi2

AlertA

1

0

AlertB

0

0

Alertc

1

1

sloti

Slotm

1

0

0

0

0

1

Algorithm 1 shows the steps to apply causal discovery theory to correlating
alerts. In step 1, we apply mutual information measure to identify alerts with
strong statistical dependence. In step 2, we identify alert triplets that have a
V-structure (i.e., X —> Z, y —> Z, as described in Section 5.2). The causality
directions in a V-structure triplets are determined by the conditional mutual
information measure under the assumption that, in a causal network, two cause
nodes are respectively dependent with a common effect node. These two cause
nodes are mutually independent with each other, but conditionally dependent
with each other given a common effect node. In step 3, for the partially directed
alert triplets, since Afyi and A]^ are not directly connected, it means Afd and
Ak are mutually independent (otherwise they should have been connected in
step 1). The causality direction between An and Ak is tested based on the
causal Markov assumption (i.e., in a causal network, a node X is independent
to other nodes (except its direct effect node) given X's direct cause). Therefore,
if Am and Ak are also conditionally independent given An, we can identify the
causality direction between An and Ak (i.e.. An -> Ak). Otherwise, ifAm and
Ak are conditionally dependent given An, the triplet has a v-structure, then Ak
is the parent node of An (i.e., Ak —> An).

Figure 7.5 shows an example of the causal network model among alert A,
B and C of which A and B are two causal alerts of C, As described in Sec­
tion 5.2.1, in a causal network, each non-root node is associated with a condi­
tional probability table (CPT) that shows the strength of the causal relationship
between the node and its parent node. Table 7.4 shows the CPT entries asso­
ciated with alert C in which " 1 " represents the occurrence of the alert and "0"
represents the nonoccurrence. Among the CPT entries as shown in Table 7.4,

Causal Discovery-Based Alert Correlation 135

Algorithm 1 Alert correlation using causal discovery theory

1. For each alert pair Ai, Aj
if Ai and Aj are dependent using mutual information measure, i.e.,
I{Ai, Aj) > e, where e is a small threshold, then

Connect Ai and Aj directly.
end if
2. For any three alerts Am, An, Ak that have the connection pattern that Am
and Aji, An and Ak are directly connected, and Am and A^ are not directly
connected (i.e.. Am — An — Ak)
if Am and Ak are conditionally dependent given An using conditional mutual
information measure, i.e., I{Am, Ak\An) > e then

Let Am be the parent node of An, and Ak be the parent node of An,
respectively, (i.e.. Am —> An and Ak —> An)-

end if
3. For any three alerts Am,An,Ak that have a partially directed pattern
(Am —^ An — Ak), i.e., Am is a parent node of An, An and Ak are directly
connected (edge {An, Ak) is not oriented), and Am is not directly connected
with Ak
if Am and A^ are conditionally independent given An, i.e., /(A^n,, Ak \An) <
e, then

Let An be the parent node of Ak, i.e., A^ —> A/..
else if i4^ and Ak are conditionally dependent given An, i.e.,
/(A^,A/c|A^) > e,then

Let Ak be the parent node of An, i.e., Ak —> A^.
end if

136 Discovering Novel Attack Strategies from INFO SEC Alerts

Figure 7.5. An example of the causal network model of alert A, B and C

Table 7.4. An example of CPT associated with node C

c = o
C = l

AB = 0

Pi

P5

AB = 01

V2

P6

AB = 10

P3

V7

AB= 11

P4

P8

we are more interested in PQ and p^. The value of PQ represent the probabil­
ity of the occurrence of alert C given that alert B has already occurred, i.e.,
PQ = P{C — 1\B — 1). Similarly, the entry of pr shows the dependency of
alert C to the causal alert A, i.e., pj = P{C = 1\A = 1). In practice, we
can regard PQ and p7 as the likelihood of attack step transition from attack B to
attack C and from attack A to attack C, respectively.

Given the transaction data, computing the CPT entries is more straightfor­
ward. For example, the value of pe can be empirically computed as P(C =
1|JB = 1) = ^ ""J^f^^f^^^K We can also apply the algorithm of adaptive CPT
updates as described in Section 3.3.2 to update the parameters.

6. Integration of Three Correlation Engines

6.1 The Integration Process of Three Correlation Engines
Our three correlation engines are built on different techniques and focus on

different correlation aspects. Bayesian-based correlation engine is analogous
to an extension of pattern matching-based detection. Causal discovery theory-
based correlation mechanism investigates statistical pattern of attack step oc­
currences to identify causal relationship between alerts. GCT-based correlation
engine focuses on temporal pattern of attacks to discover new attack transition
patterns.

The rationale of our integration process in alert correlation is analogous to
intrusion detection where security analysts usually first SLpply pattern-based de­
tection, then anomaly detection to cover the attack space that pattern-matching
method cannot discover.

In practice, we integrate and apply the three correlation mechanisms with
the following steps.

Integration of Three Correlation Engines 137

First, we apply Bayesian-based correlation engine on target hyper alerts.
Target alerts are hyper alerts with high priorities computed by the alert priority
computation module as described in Section 2.2. Thus, they should be the main
interests in the correlation analysis to correlate with all the other hyper alerts.
The goal of this step is to correlate alerts that have direct relationship based on
prior knowledge of attack step transitions. The result of this step can be a set
of isolated correlation graphs. For those alert pairs that have not got any causal
relationship, we leave them to be processed in the next step.

Second, for those uncorrelated alert pairs, we run causal discovery-based
correlation engine to correlate them. The goal of this step is to discover more
correlation between alerts that have not been identified in the prior step.

Third, for each alert pair that has not established any cause-effect relationship
from prior correlation engines, we apply GCT to it. That is, GCT is used
to correlate alerts that have strong temporal relationship and link the isolated
correlation results together.

Figure 7.6 shows an example of our integration process. For example, we
have 8 hyper alerts, denoted as Ai, A2, A3, A4, As, Ae, A7, As. Assuming we
have identified alert A2 and A5 as target alerts and we want to identify causal
alerts w.r.t. A2 and A5 respectively. After applying Bayesian-based corre­
lation engine, i.e., the first step of correlation, we have got two groups of
correlated alerts, i.e., {Ai —> ^ 2 , ^ 3 —> A2} and {A4 —> A.5}, as shown
by solid lines in Figure 7.6. We then apply causal discovery algorithm to the
rest isolated alerts that have not been correlated with A2 and A5 respectively.
In particular, we check if causal relationship exists between alerts {^1,^5},
{^2,^5}, {^3,^5}, {^6,^5}, {Ay, As}, {Ag^As}, {A4,A2}, {A5,A2},
{Ae, A2}, {A7,A2} and {Ag, A2}. Assuming after this step, we have got
3 more causal-related alert pairs, i.e., {A3 -^ A5}, {Ae —> A2}, {A4 —> A2}
as represented by dotted lines in the figure. We finally apply GCT to check if the
rest isolated alert pairs {Ai^As}, {A2,A5}, {A^^Ar,], {Aj^Ar,}, {A^,A^],
{A4, A2}, {A5, A2} and {As, A2} have the causality w.r.t. A5 and A2 respec­
tively. Figure 7.6 shows that GCT identifies the causality of {A7 -> A2} and
{As —> A5} as shown by the dashed fine.

6.2 Probability/Confidence Integration
In Section 3.2, we introduced our Bayesian-based correlation engine that

outputs the correlation probability or confidence of two alerts, denoted as Ptayes-
In practice, we have a threshold t, and when Pbayes is over the threshold t,
we say the corresponding alert pair has a causal relationship identified by the
Bayesian-based correlation engine.

As described in Section 5.3, the CPT associated with each child node in a
causal network shows the strength of relationship between the child node and its
parent node. Particularly, one CPT entry (i.e., P(c/iiMnode = l\parentnode =
1) can be interpreted as the probability of attack transition from parent node

138 Discovering Novel Attack Strategies from INFOSEC Alerts

Figure 7.6. An example of integration process. The solid line represents a correlation identified
by Bayesian-based correlation engine. The dotted line shows the causal relationship found by
causal discovery-based correlation engine. The dashed line represents a new correlation specified
by GCT-based correlation engine.

(attack) to child node (attack), e.g., the PQ or py in Table 7.4. We denote such
attack transition probability as Pcausai-disccwery^

As discussed in Section 4.3, GCT Index (GCI) represents the strength of cor­
relation between two alerts being correlated. It conforms to F-distribution with
parameters ofp and Â — 3p — 1, where p is the number of history values of the
time series variable used in the GCT computation, and N is the size of the time
series variable. Therefore, for any two correlated alerts identified by GCT-based
correlation engine, we can compute the corresponding F-distribution probabil­
ity values, i.e., Pgd = CDFp^distribution{p, N - 3p - I, GCI), where CDF
represents the cumulative distribution function. Pgct represents the probabil­
ity/confidence of correlation between two alerts.

When integrating the three correlation engines, we can adjust the confidence
output from GCT-based engine as:

Pgct.final = {Pgct - t) ^ U) + t (7.9)

In Eq. (7.9), t is the threshold defined in Bayesian-based correlation engine,
and cj is a weight value that is determined based on prior experience and per­
formance measurements of the two correlation engines. The adjusted value of
Pgct.final IS in the range of [0, t + e], where e is a small positive number. The
intuition of this adjustment is that we want to downgrade the output of GCT-
based correlation engine a little because it is based on temporal analysis that is
less accurate than the domain-knowledge-based Bayesian correlation engine.

Therefore, for a correlated alert pair, e.g., (A ,̂ Aj), we can have a probabil­
ity or confidence of its correlation (i.e., attack transition from Ai to Aj) com­
puted by Bayesian correlation engine (i.e., Pbayes)^ causal discovery algorithm
(i.e., Pcausai^discovery) OX GCT-bascd Correlation mechanism (i.e., Pgct.finai)
depending on which correlation engine identifies the causal relationship.
We denote the probability of alert correlation (or attack transition) as
•F^carrelationK-^i-) -^jjf l'C«>

Integration of Three Correlation Engines 139

-^correlationy-^i^-^j) — \

Pb. >ayes •>

causal-discovery)

gct-finah

if causality found by Bayesian
-based correlation engine

if causality found by causal
discovery-based correlation
engine

if causality found by GCT
based correlation engine

We also note that two different approaches have been proposed to integrate
isolated correlation graphs. Ning [40] et al. apply graph theory to measure and
merge similar correlation graphs. In [41], Ning et al. link isolated correlation
graphs based on attack pre-/post-conditions. Our approach is different from
their work in that our integration method is based on the correlation probability
evaluated by our three complementary correlation engines instead of graph or
pre- /post-condition-based merging algorithms.

6.3 Attack Transition Table Updates
Statistical and temporal-based alert correlation has the advantages of dis­

covering attack transition steps without depending on prior domain knowledge.
However, compared with pattern-matching correlation techniques, it is has rel­
atively high positive false rate and the computation cost is also relatively high.

In practice, we periodically incorporate newly discovered attack transition
patterns into our domain knowledge so that we can use our Bayesian -based
correlation engine to analyze and correlate alerts efficiently. Also based on new
analysis results and data sets, we update the attack transition table as described
in Section 3.3.1.

Denote 9 as an original entry in the attack transition table, 6' as the corre­
sponding new value computed based on new analysis results and data after a
regular period T, the current table update policy is that we do not update the
table entry until the new value 6 has varied from ^ by a certain percentage f3,
e.g., 5%.

6.4 Attack Strategy Analysis
Attack strategy analysis is an important component in a correlation system.

It can provides security analysts an aggregated information about what has
happened and what is happening to the protected IT infrastructure.

Having correlated alert pairs output by correlation engines, we can con­
struct attack scenarios represented by correlation graph to represent the attack
strategies. A correlation graph is defined as a directed graph where each edge
Eij represents a causal relationship from alert Ai to Aj, Alerts with causal
relationship compose the nodes in the scenario graph. We denote the node

140 Discovering Novel Attack Strategies from INFO SEC Alerts

Figure 7.7. An example of correlation graph

corresponding to the causal alert as cause node, and the node corresponding
to the effected alert as effect node. A threshold t is pre-defined and alert Aj
is considered to be caused by alert Ai only when Pcorreiationi^i^ ^j) > i- In
constructing scenario graphs, we only include the correlated alert pairs whose
Pcarreiation valucs are over the threshold t.

In a correlation graph, each edge is associated with a correlation probability
(i.e., Pcarreiation) from causc nodc to effect node, which can be also regarded
as the probability of attack step transition. Having such information, we can
perform quantitative analysis on the attack strategies. In a correlation graph,
each path is potentially a subsequence of an attack scenario and can be seen
as a Markov chain [17, 49]. Having the probabiHty associated with each edge,
for any two nodes in the graph that are connected by multiple paths, we can
compute the overall probability of each path [49].

In the example of Figure 7.7, nodes Ai and A4 have to paths to connect each
other. Assuming the conditional independence of A4 and Ai, we can compute
the overall probability of each path, e.g., P(Ai,A2,A4) = P{A^\A2)P{A2\Ai)

We then rank order and select the path(s) with the highest overall correlation
probability as the most likely sequence(s) connecting two nodes.

Combining all the probability along each edge, we can also compute an
overall probability of two nodes connected with multiple paths. For example,
in the Figure 7.7, P{Ai to A4} = 1 — (1 — pi * P2)(l — Ps * PA)-

7. Experiments and Performance Evaluation

7.1 The Grand Challenge Problem (GCP)
To evaluate the effectiveness of our alert correlation mechanisms, we applied

our correlation algorithms to the data sets of the Grand Challenge Problem
(GCP) version 3.1 provided by DARPA's Cyber Panel program [13,22]. In this
section, we describe and report our experiment results.

GCP version 3.1 is an attack scenario simulator. It can simulate the behavior
of security sensors and generate alert streams. GCP 3.1 includes two innova­
tive worm attack scenarios to specifically evaluate alert correlation techniques.
In GCP, multiple heterogeneous security systems, e.g., network-based IDSs,
host-based IDSs, firewalls, and network management systems, are deployed in
several network enclaves. Therefore, GCP alerts are from both security sys­
tems and network management system. In addition to the complicated attack

Experiments and Performance Evaluation 141

scenarios, the GCP data sets also include many background alerts that make
alert correlation and attack strategy detection more challenging. GCP alerts
are in the Intrusion Detection Message Exchange Format (IDMEF) defined by
IETF [21].

According to the GCP documents that include detailed configurations of
protected networks and systems, we established a configuration database. In­
formation on mission goals enables us to identify the servers of interest and
assign interest score to corresponding alerts targeting at the important hosts.
The alert priority is computed based on our model described in Section 2.2.

To better understand the effectiveness of our correlation system, we have
defined two performance measures, true positive correlation rate and false
positive correlation rate.

(7.10)

(7.11)

True positive correlation rate
_ tt of correctly correlated alert pairs

jl of related alert pairs
and

False positive correlation rate
jl of incorrectly correlated alert pairs

tt of correlated alert pairs

In Eq.(7.10), related alert pairs represents the alerts that have cause-effect
relationship. In Eq.(7.11), correlated alert pairs refer to the correlation result
output by a correlation system.

True positive correlation rate examines the completeness of alert correlation
techniques. It measures the percentage of related alert pairs that a correlation
system can identify. It is analogous to true positive rate or detection rate
commonly used in intrusion detection.

False positive correlation rate measures the soundness of an alert correlation
system. It examines how correctly the alerts are correlated. It is analogous to
false positive rate used in intrusion detection.

In our experiments, we refer to the documents with the ground truth to de­
termine the correctness of the alert correlation. Scenario graph is constructed
based on alerts that have causal relationship identified by our correlation en­
gines.

In formulating hyper alert time series, we set the unit time slot to 60 seconds.
In the GCP, the entire time range is 5 days. Therefore, each hyper alert A,
its corresponding time series variable A has a size of 7,200 instances, i.e.,
A = {do^di^ '"^cii^i^^}'

1.1 A GCP Scenario I. In the GCP Scenario I, there are multiple network
enclaves in which attacks are conducted separately. The attack scenario in each

142 Discovering Novel Attack Strategies from INFOSEC Alerts

network enclave is almost same. We select a network enclave as an example to
show the correlation process.

The procedure of alert correlation is shown as follows.
First, alert aggregation. We conducted raw alert aggregation and clustering

in order to have aggregated hyper alerts. In scenario I, there are a little more
than 25,000 low-level raw alerts output by heterogeneous security devices in all
enclaves. After alert fusion and clustering, we have around 2,300 hyper alerts.
In our example network enclave, there are 370 hyper alerts after low-level alert
aggregation.

Second, alert noise detection. We applied the Ljung-Box statistical test [37]
with significance level a = 0.05 to all hyper alerts in order to identify back­
ground alerts. In scenario I, we identified 255 hyper alerts as background
alerts using this mechanism. Most of background alerts are "HTTP_Cookie"
and "HTTP_Posts". Therefore, we have 115 non-noise hyper alerts for further
analysis.

Third, alert prioritization. The next step is to select the alerts with high
priority values as the target alerts. The priority computation is described in
Section 2.2. In this step, we set the threshold /3 = 0.6. Alerts with priority
scores above /? were regarded as important alerts and were selected as target
alerts of which we had much interest. In this step, we identified 15 hyper alerts
whose priority values are above the threshold

Fourth, alert correlation. When applying correlation algorithms, we cor­
related each target alert with all other non-background alerts (i.e., the back­
ground alerts identified by the Ljung-Box test are excluded.). As described in
Section 6.1, we have three steps in correlating alerts. First, we applied Bayesian-
based correlation engine on hyper alerts and discover the correlated alert pairs.
Figure 7.8 shows the correlation results related to the hyper alerts that we iden­
tified as most interested alerts. Second, we applied causal discovery-based
correlation engine to alerts that have not been identified to be correlated with
others in the first step. Third, we appHed GCT-based correlation algorithm to
further correlate alert pairs which have not been correlated after prior two steps.
Figure 7.9 shows the correlation results after the three-step correlation process.
The dotted line in Figure 7.8 and Figure 7.9 represent false positive correlation.
The correlation probability or confidence of each alert-pair is associated with
the edge in the correlation graph. In Eq. (7.9), u equals 0.3 and t equals 0.6.

Fifth, attack path analysis. As discussed in Section 6.4, for any two nodes
in the correlation graph that are connected on multiple paths, we can compute
the probability of attack transition along each path, then rank and select the one
with highest overall value. For example, from node DBJ^TP.GlobbingAttack
to node DBJNewClient in the graph shown in Figure 7.9, there are 6 paths that
connect these two nodes. Based on the probabiHty or confidence associated on
the edge, we can compute the value of each path and rank the order.

Experiments and Performance Evaluation 143

Figure 7.8. The GCP scenario I: The correlation graph discovered by Bayesian-based approach.

For example, the overall confidence for the attack path DB.FTP.Glob-
bingAttack—> Loki-^ DB-NewClient is:

P{DB.FTP.Globbing.AUack, Loki, DBMewClient)
= P{DB.FTP.GlobhingA.Uack) * P{Loki\DB.FTP.GlobbingA.ttack)
^P{DB.NewClient\Loki)
= P{DB.FTP.Globbing.Attack) * 0.7 * 0.72
= plDB.FTP.GlobbingA.ttack) * 0.5

Table 7.5 shows the ordered multi-paths according to the corresponding path
values. From the table, we can see that it is more confident to say that the attacker
is more likely to launch FTP Globbing Attack against the Database Server, then
New Client attack from the Database Server that denotes a suspicious connection
to an external site (e.g., set up a covert channel).

Sixth, attack strategy analysis. In this phase, we performed attack strat­
egy analysis by abstracting the scenario graphs. Instead of using hyper alerts
representing each node, we used the corresponding attack class (e.g., DoS and
Access Violation) to abstractly present attack strategies. While analyzing attack
strategy, we focused on each target and abstracted the attacks against the target.
Figure 7.10(a) shows the high-level attack strategy on the Plan Server extracted
from attack scenario graphs shown in Figure 7.9. From Figure 7.10(a), we can
see that the attacker uses a covert channel (indicated by Connection Violation)
to export data and import malicious code to root the Plan Server. The attacker
accesses to the data stored on the Plan Server (indicated by Access Violation)
to steal the data, then export the information. The activity of Surveillance has
impacted the server on the performance (indicated by Asset Distress), Fig­
ure 7.10(b) shows the attack strategy on the Database Server. It is easy to see
that the attacker launches an exploit attack against the Database Server in order
to get root access. Then the attacker sets up a covert channel, accesses data and
exports the data. The mutual loop pattern between attack classes Connection
Violation, Access Violation and Exfiltration indicates the attack continuously
accesses file, exports data and downloads the mahcious code.

144 Discovering Novel Attack Strategies from INFO SEC Alerts

umjm)

Figure 7.9. The GCP scenario I: The correlation graph discovered by the integrated approach.

Table 7.5. Ranking of paths from node DB FTP Globbing Attack to node DB NewClient.
P = P{DB FTP Globbing Attack)

Order Nodes Along the Path Score

Path 1 DB FTP Globbing Attack-^DB NewClient P*0.62

Path2 DB FTP Globbing Attack->Loki-»DB NewClient P*0.50

Path3 DB FTP Globbing Attack->DB NewClient Target-^DB NewClient P*0.47

Path4 DB FTP Globbing Attack->DB IllegalFileAccess-^DB NewClient P*0.45

Paths DB FTP Globbing Attack-^DB NewClient Target-»Loki
-^DB NewClient P*0.31

Path6 DB FTP Globbing Attack->DB NewClient Target-^
DB IllegalFileAccess -> DB NewClient P*0.23

7.1.2 Discussion on GCP Scenario I. Applying our integrated cor­
relation mechanism can discover more attack step relationships than using a
single approach. Figure 7.8 shows that when we apply Bayesian-based ap­
proach alone, we can only discover partial attack step relationships. The rea­
son is that the Bayesian-based correlation engine relies on domain knowledge
to correlate alerts. Therefore, it is only capable of discovering the direct at-

Experiments and Performance Evaluation 145

(a) GCP scenario I: attack strategy (b) GCP scenario I: attack
on Plan Server strategy on Database Server

Figure 7,10. GCP I: Attack strategy graph

tack step transitions, e.g., attack MailJRootShareMounted followed by attack
MailJllegalFileAccess. When the alert relationship is new or has not been
encoded into the correlation engine, such relationship cannot be detected. Fig­
ure 7.9 shows that we can discover more attack relationships after applying
causal discovery-based and GCT-based correlation methods. Using comple­
mentary correlation engines enable us to link isolated correlation graphs output
by Bayesian-correlation engine. The reason is that our statistical and temporal-
based correlation mechanisms correlate attack steps based on the analysis of
statistical and temporal patterns between attack steps. For example, the loop
pattern of attack transitions among attack DBJVewClient, DBJllegalFileAccess
and Loki, This correlation engine does not rely on prior knowledge. By incor­
porating the three correlation engines, in this experiment, we can improve the
true positive correlation rate from 95.06% (when using GCT-based correlation
engine alone [46]) to 97.53%. False positive correlation rate is decreased from
12.6% (when using GCT-based correlation engine alone [46]) to 6.89%.

Our correlation approach can also correlate non-security alerts, e.g., alerts
from network management system (NMS), to detect attack strategy. Although
NMS alerts cannot directly tell us what attacks are unfolding or what damages
have occurred, they can provide us some useful information about the state of
system and network health. So we can use them in detecting attack strategy.
In this scenario, NMS outputs alert PlanJiostStatus indicating that the Plan
Server's CPU is overloaded. Applying our GCT-based and Bayesian-based
correlation algorithms, we can correlate the alert PlanJiostStatus with alert
PlanJ^ewClient (i.e., suspicious connection) and PlanJ^ICJPromiscuous (i.e.,
traffic surveillance).

146 Discovering Novel Attack Strategies from INFO SEC Alerts

7.2 GCP Scenario II
In GCP scenario II, there are around 22,500 raw alerts. We went through the

same process steps as described in Section 7.1.1 to analyze and correlate alerts.
After alert aggregation and clustering, we got 1,800 hyper alerts. We also

use the same network enclave used in Section 7.1.1 as an example to show our
results in the GCP Scenario II.

In this network enclave, there are a total of 387 hyper alerts. Applying the
Ljung-Box test to the hyper alerts, we identify 273 hyper alerts as the background
alerts. In calculating the priority of hyper alerts, there are 9 hyper alerts whose
priority values are above the threshold /3 = 0.6, meaning that we have more
interest in these alerts than others.

As described in Section 6.1, we apply three correlation engines sequentially
to the alert data to identify the alert relationship. For example, we select two
alerts, PlanJServiceJStatusJDown and Plan-HostJStatusJ)own, as target alerts,
then apply the GCT algorithm to correlating other alerts with them.

Table 7,6. Alert Correlation by the GCT on the GCP Scenario II: Target Alert: Plan Service
Status Down

Alerti

PIan_Registry-Modified

HTTP Java

HTTP_Shells

Target Alert

Plan_Service_Status_Down

Plan_Service_Status_Down

Plan_Service_Status_Down

GCT Index

20.18

17.35

16.28

Table 7.7. Alert Correlation by the GCT on the GCP Scenario II: Target Alert: Plan Server
Status Down

Alerti

HTTP Java

PlanJ^egistry-Modified

Plan_Service_Status_Down

HTTPJ^obotsTxt

Target Alert

Plan_Server_Status_Down

Plan_Server_Status_Down

Plan_Server_Status_Down

Plan_Server_Status_Down

GCT Index

7.73

7.63

6.78

1.67

Table 7.6 and Table 7.7 show the corresponding GCT correlation results. In
the tables, we list alerts whose GCI values have passed the F-test. The alerts
PlanJHfostJStatus and PlanJServiceJStatus are issued by a network management
system deployed on the network.

Figure 7.11 shows the correlation graph of Plan Server. The solid lines in­
dicate the correct alert relationship while dotted lines represent false positive
correlation. Figure 7.11 shows that PlanJRegistryModified is causally related

Experiments and Performance Evaluation 147

Figure 7.11. The GCP Scenario II: Correlation graph of the plan server

to alerts Plan^ervice Status Down and Plan^erver
JStatusDown, The GCP document verifies such relationship. The attacker
launched IIS-Unicode Attack and IISJBujfer.Ove-rflow attack against the Plan
Server in order to traversal the root directory and access the plan server to install
the malicious executable code. The Plan Server's registry file is modified (alert
Plan-Registry Modified) and the service is down (alert PlanService Status)
during the daemon installation. Alert Plan Jiost Status Down indicates the
"down" state of the plan server resulted from the reboot initiated by the mali­
cious daemon. Plan server's states are affected by the activities of the malicious
daemon installed on it. The ground truth described in the GCP document also
supports the causal relationships discovered by our approach. In this experi­
ment, the true positive correlation rate is 94.25% (vs. 93.15% using GCT-engine
alone [46]) and false positive correlation rate is 8.92% (vs. 13.92% using GCT-
engine alone [46]).

Table 7.8. Ranking of paths from node IIS Buffer Overflow to node Plan Server Status Down.
P = P{IIS.Buffer-Overflow)

Order Nodes Along the Path Score

Path 1 IIS_Buffer_Overflow -> PlanJlegistry_Modified
-> Plan_Server_StatusJDown P* 0.61

Path 2 IIS_Buffer_Overflow -^ Plan-RegistryJvlodified
Plan_Service_Status.Down P*0.49

For nodes with multiple paths in the correlation graph, we can also per­
form path analysis quantitatively. For example, there are two paths connect­
ing node IIS-Bujfev-Overflow and node PlanServerStatusDown as shown in
Figure 7.11. We can rank these two paths according to score of the overall
likeHhood, as shown in Table 7.8.

148 Discovering Novel Attack Strategies from INFOSEC Alerts

7.2.1 Discussion on GCP Scenario II. Similar to our analysis in GCP
Scenario I, our integrated correlation engine enables us to detect more cause-
effect relationship between alerts. For example, in Figure 7.11, if using know­
ledge-based correlation engine, we can only detect the causal relationship be­
tween alerts IISJBujfer.Overflow and Plan^egistryModified, as well as be­
tween alerts IIS-Unicode Attack and Plan-Registry Modified, With comple­
mentary temporal-based GCT alert correlation engine, we can detect other
cause-effect relationship among alerts. For example, GCT-based correlation
engine detected causahty between a security alert {Q.%,,Plan.Registry-Modified)
and an alert output by the network management system (e.g., PlanJServerJStatus
-Down). In practice, it is difficult to detect such causality between security ac­
tivity and network management fault using a knowledge-based correlation ap­
proach, unless such knowledge has been priory incorporated to the knowledge
base.

Compared with GCP Scenario I, GCP Scenario II is more challenging due
to the nature of the attack. Our correlation result in the GCP Scenario II is not
comprehensive enough to cover the complete attack scenarios. By comparing
the alert streams with the GCP document, we notice that many malicious ac­
tivities in the GCP Scenario II are not detected by the IDSs and other security
sensors. Therefore, some intermediate attack steps are missed, which is another
challenge in GCP Scenario II.

Our approach depends on alert data for correlation and scenario analysis.
When there is a lack of alerts corresponding to the intermediate attack steps,
we cannot construct the complete attack scenario. In practice, IDSs or other
security sensors can miss some attack activities. One solution is to apply attack
plan recognition techniques that can partially link isolated attack correlation
graphs resulted from missing alerts.

7.3 Discussion on Statistical and Temporal Correlation
Engines

In our alert correlation system, we have designed three correlation engines.
The Bayesian-based correlation aims to discover alerts that have direct causal
relationship. Specifically, this correlation engine uses predicates to represent
attack prerequisite and consequence, applies probabilistic reasoning to eval­
uating the property of preparation-for relationship between alerts. It applies
time constraints to testing if the alert pair candidate conforms to the property of
sequential relationship (i.e., causal alert appears before effect alert), and uses
the pre-defined probability table of attack step transitions to evaluate the prop­
erty of statistical one-way dependence (i.e., the probability that an effect alert
occurs when a causal alert occurs) between alerts under correlation. Alert pairs
that have matched these three properties are identified as having direct causal
relationship.

Experiments and Performance Evaluation 149

In order to discover alerts that have no known direct causal relationship, we
have also developed two statistical and temporal-based correlation models to
discover novel and new attack transition patterns. The development of these
two correlation techniques is based on the hypothesis that attack steps can still
exhibit statistical dependency patterns (i.e., the third property of cause-effect
alerts) or temporal patterns even though they do not have an obvious or known
preparation-for relationship. Therefore, these two correlation engines aim to
discover correlated alerts based on statistical dependency analysis and tempo­
ral pattern analysis with sequential time constraints. More formally, these two
engines actually perform correlation analysis instead of a direct causaUty anal­
ysis because the preparation-for relationship between alerts are either indirect
or unknown.

In theory, causality is a subset of correlation [24], which means that a causally
related alert pair is also correlated, however, the reverse statement is not neces­
sarily true. Therefore, the correlation output is actually a super set of correlated
alerts that can include the causally related alert pairs as well as some corre­
lated but non-causally related alerts. Our goal is to apply these two correlation
engines to identifying the correlated alerts that have strong statistical dependen­
cies and temporal patterns, and also conform to the sequential time constraint
property. We present these correlated alert candidates to the security analysts
for further analysis.

As an extra experiment, we applied GCP data sets to causal discovery-based
correlation engine and GCT-based correlation engine only in order to test if
the output of these two correlation engines can include the causally related
alert pairs identified by Bayesian-based correlation engine. Our experiment
results have shown that the correlated alerts identified by causal discovery-
based correlation engine and GCT-based correlation engine have included those
causally related alerts discovered by Bayesian-based correlation engine. In
practice, we still use Bayesian-based correlation engine to identify causally
related alerts in order to decrease the false positive correlation rate.

However, it does not necessarily mean that those two correlation engines (i.e.,
casual-discovery and GCT-based engines) can discover all the correlated alerts
that have strong statistical and temporal patterns because of their limitations.

As described in Section 5.2, causal discovery-based correlation engine as­
sumes that causality between variables can be represented by a causal Bayesian
network that has a DAG structure. The statistical dependency between variables
can be measured, for example, by mutual information. As described in Algo­
rithm 1, causality direction among variables are identified by the assumption
of causal Markov condition (i.e., a node X is independent with other nodes
(except its direct effect nodes) given X's direct cause node) and the properties
of V-structure as described in Section 5.2.2.

Due to the assumptions and properties used by causal discovery theory, in the
process of alert correlation, the causal discovery-based correlation engine can

150 Discovering Novel Attack Strategies from INFOSEC Alerts

result in cases that the causality direction cannot be identified among dependent
alerts.

For example, for three variables A, B and C, after applying mutual infor­
mation measures, we have got a dependency structure as A — 5 — C, which
means A and B, B and C are mutually dependent respectively, A and C are
mutually independent. If we apply conditional mutual information measure
to A, B and C and get the result that A and C are conditionally independent
given the variable B, then, without any other information, the causal discovery-
based correlation engine actually cannot identify the causahty among these
three variables. In fact, with the above statistical dependency information, we
can have the following three different causality structures, i.e., A -^ B -^ C,
A <r- B <r- C and A <r- B —> C. These three causahty structures have the same
statistical dependency properties if no other information has been provided or
extra causality has been identified (e.g., AovBorC has some dependency with
another variable D, etc.). For the simplest dependency structure, i.e., A — B,
without any extra information, causal discovery-based algorithm cannot iden­
tify the causality direction between A and B either.

By contrast, GCT-based correlation engine performs pairwise statistical de­
pendency analysis and identify corresponding pairwise dependency direction.
However, GCT-based correlation algorithm also incorporates the temporal in­
formation in the process of correlation. In particular, the GCT-correlation en­
gine has the limitation of identifying correlated alert pairs whose time intervals
have a loose temporal pattern (i.e., the variance of their time intervals has a
large value) even though they may have a strong statistical dependency pattern.

In summary, considering the strength and limitations of causal discovery
based and GCT-based correlation engines, from the perspective of statistical
dependency and temporal pattern analysis, we can have a good correlation per­
formance in identifying alerts that have a strong statistical dependency and
strong temporal pattern because these two correlation engines can complement
and enhance each other in this correlation space. If alerts that have a strong
statistical dependency pattern but a loose temporal pattern, the correlation per­
formance may be weak because GCT-based correlation engine has limitations in
the loose temporal pattern space and causal discovery-based correlation engine
also has its own limitations in the causality identification.

8. Related Work
Recently, there have been several proposed techniques of alert correlation

and attack scenario analysis.
Valdes and Skinner [52] proposed probabilistic-based approach to correlate

security alerts by measuring and evaluating the similarities of alert attributes.
In particular, the correlation process includes two phases. The first phase ag­
gregates low-level events using the concept of attack threads. The second phase
uses a similarity metric to fuse alerts into meta-alerts to provide a higher-level

Related Work 151

view of the security state of the system. Alert aggregation and scenario con­
struction are conducted by enhancing or relaxing the similarity requirements in
some attribute fields.

Porras et al. designed a "mission-impact-based" correlation system with
a focus on the attack impacts on the protected domains [45]. The work is
an extension to the prior system proposed in [52], The system uses clustering
algorithms to aggregate and correlate alerts. Security incidents are ranked based
on the security interests and the relevance of attack to the protected networks
and systems.

Some correlation research work are based on pre-defined attack scenarios or
association between mission goals and security events. Goldman et al. [19] built
a correlation system based on Bayesian reasoning. The system predefines the
causal relationship between mission goals and corresponding security events
as a knowledge base. The inference engine relies on the causal relationship
library to investigate security alerts and perform alert correlation.

Debar and Wespi [14] applied backward and forward reasoning techniques
to correlate alerts. Two alert relationships were defined, i.e., duplicate and
consequence. In a correlation process, backward-reasoning looks for duplicates
of an alert, and forward-reasoning determines if there are any consequences
of an alert. They used clustering algorithms to detect attack scenarios and
situations. This approach pre-defines consequences of attacks in a configuration
file.

Kriigel et al. [34] proposed a distributed pattern matching scheme based on
an attack specification language that describes various attack scenario patterns.
Alert analysis and correlation are based on the pattern matching scheme.

Morin and Debar [38] applied chronicles formalism to aggregating and cor­
relating alerts. Chronicles provide a high level language to describe the attack
scenarios based on time information. Chronicles formalism approach has been
used in many areas to monitor dynamic systems. The approach performs at­
tack scenario pattern recognition based on known malicious event sequences.
Therefore, this approach is analogous to misuse intrusion detection.

Ning et al. [39], Cuppens and Miege [12] and Cheung et al. [7] built alert
correlation systems based on matching the pre- and post-conditions of indi­
vidual alerts. The idea of this approach is that prior attack steps prepare for
later ones. Therefore, the consequences of earlier attacks correspond to the
prerequisites of later attacks. The correlation engine searches alert pairs that
have a consequence and prerequisite matching. In addition to the alert pre- and
post-condition matching, the approach in [12] also has a number of phases
including alert clustering, alert merging, and intention recognition. In the first
two phases, alerts are clustered and merged using a similarity function. The
intention recognition phase is referenced in their model, but has not been im­
plemented. Having the correlation result, the approach in [39] further builds
correlation graphs based on correlated alert pairs [39]. Recently, Ning et al. [41]

152 Discovering Novel Attack Strategies from INFOSEC Alerts

have extended the pre- and post-condition-based correlation technique to cor­
relate some isolated attack scenarios by hypothesizing missed attack steps.

In the field of network management, alert or event correlation has been
an active research topic and a subject of numerous scientific publications for
over 10 years. The objective of alert correlation in a network management
system (NMS) is to localize the faults occurred in communication systems.
The problem of alert correlation in NMS is also referred as root cause analysis.
During the past 10 more years, many solutions have been proposed, e.g., case-
based systems [36], model-based approaches [42, 28] and code book-based
technique [33]. The techniques are derived from different areas of computer
science including artificial intelligence (AI), graph theory, neural networks,
information theory, and automata theory.

Most of the proposed approaches have limited capabilities because they rely
on various forms of predefined knowledge of attacks or attack transition pat­
terns using attack modeling language or pre- and post-conditions of individual
attacks. Therefore, those approaches cannot recognize a correlation when an
attack is new or the relationship between attacks is new. In other words, these
approaches in principle are similar to misuse detection techniques, which use
the "signatures" of known attacks to perform pattern matching and cannot detect
new attacks. It is obvious that the number of possible correlations is very large,
potentially a combinatorial of the number of known and new attacks. It is in-
feasible to know a priori and encode all possible matching conditions between
attacks. In practice, the more dangerous and intelligent adversaries will always
invent new attacks and novel attack sequences. Therefore, we must develop
significantly better alert correlation algorithms that can discover sophisticated
and new attack sequences.

In the network management system (NMS), most event correlation tech­
niques also depend on various knowledge of underlying networks and the rela­
tionship among faults and corresponding alerts. In addition, in an NMS, event
correlation focuses more on alerts resulted from network faults that often have
fixed patterns. Therefore, modeling-based or rule-based techniques are mostly
appUed in various correlation systems. Whereas in security, alerts are more di­
verse and unpredictable because the attackers are intelligent and can use flexible
strategies. Therefore, it is difficult to apply correlation techniques developed
in network management system to the analysis of security alerts.

Our approach aims to address the challenge of how to detect novel attack
strategies that can consist of a series of unknown patterns of attack transitions.
In alert correlation techniques, our approach differs from other work in the
following aspects. Our approach integrates three complementary correlation
engines to discover attack scenario patterns. It includes both knowledge-based
correlation mechanisms and statistical and temporal-based correlation methods.

We apply a Bayesian-based correlation engine to the attack steps that are
directly related, e.g., a prior attack enables the later one. Our Bayesian-based

Conclusion and Future Work 153

correlation engine differs from previous work in that we incorporate knowledge
of attack step transitions as a constraint when conducting probabilistic inference.
The correlation engine performs the inference about the correlation based on
broad indicators of attack impacts without using the strict hard-coded pre-/post-
condition matching.

In addition to domain knowledge-based correlation engine, we have devel­
oped two statistical and temporal-based correlation engines. The first one ap­
plies causal discovery theory to alert analysis and correlation. This approach
identifies alert relationship based on statistical analysis of attack dependence.
Having observed that many attack steps in a complicated attack strategy of­
ten have a strong temporal relationship, we have developed a correlation en­
gine using temporal analysis. In particular, we applied Granger-Causality Test
technique to discovering attack steps that have strong temporal and statistical
patterns.

These two statistical and temporal-based correlation techniques differ from
other related work in that they do not rely on prior knowledge of attack strategies
or pre- and post-conditions of individual attacks. Therefore, these two statistical
and temporal-based approaches can be used to discover new attack strategies
that can have unknown attack transition patterns. To the best of our knowledge,
our approach is the first approach that detects new attack strategies without
relying on pre-defined knowledge base.

Our integrated approach also provides a quantitative analysis of the likelihood
of various attack paths. With the aggregated correlation results, security analysts
can perform further analysis and make inferences about high-level attack plans.

9. Conclusion and Future Work
In this paper, we have described an integrated alert correlation system de­

signed to analyze INFOSEC alerts and detect novel attack strategies.
To meet the needs of detecting novel attack strategies, we have developed an

integrated correlation system based on three complementary correlation tech­
niques. Our correlation techniques are developed based on three hypotheses of
attack step transitions. (1) The first hypothesis is that some attack steps have
directly related connection, i.e., a prepare-for relationship. For this type of at­
tack steps, we have developed a Bayesian-based correlation engine. It identifies
alert causal relationship with a broad range of indicators of attack impacts. This
correlation engine can also relax the strict hard-coded pre- and post-condition
matching and handle the partial input evidence. (2) The second hypothesis is
that some attack steps have statistical dependence patterns. We have developed
and presented a statistical-based correlation engine based on causal discovery
theory. (3) The third hypothesis is that attack steps have temporal patterns in
their time intervals. For this type of attack relationship, we have built a correla­
tion engine based on the Granger Causality Test. The major benefit provided by

154 Discovering Novel Attack Strategies from INFOSEC Alerts

statistical and temporal correlation engines is that they can discover new attack
transition patterns without relying on the domain knowledge.

We also described how to perform attack scenarios analysis by constructing
correlation graphs based on correlation results. A quantitative analysis of attack
strategy is conducted using the outputs of our integrated correlation engines.
Attack strategies are analyzed using correlation graphs.

Finally, we have validated our correlation approach using DARPA Grand
Challenge Problem (GCP) data set. The results have shown that our approach
can effectively discover novel attack strategies with high accuracy.

In our future work, we will continue to study alert correlation with a focus
on attack plan recognition and prediction.

References

[1] E. Bauer, D. Koller, and Y. Singer. Update rules for parameter estimation
in Bayesian networks. In Proceedings of the Thirteenth Conference on
Uncertainty in Artificial Intelligence (UAI), pages 3-13, Providence, RI,
August 1997.

[2] J. B. D. Cabrera, L. Lewis, X. Qin, W. Lee, and R.K. Mehra. Proactive
intrusion detection and distributed denial of service attacks - a case study
in security management. Journal of Network and Systems Management,
vol. 10(no. 2), June 2002.

[3] J. B. D. Cabrera, L. Lewis, X. Qin, W. Lee, R. K. Prasanth, B. Ravichan-
dran, and R. K. Mehra. Proactive detection of distributed denial of
service attacks using mib traffic variables - a feasibility study. In Pro­
ceedings oflFIP/IEEE International Symposium on Integrated Network
Management (IM 2001), May 2001.

[4] J. B. D. Cabrera and R. K. Mehra. Extracting precursor rules from
time series - a classical statistical viewpoint. In Proceedings of the
Second SI AM International Conference on Data Mining, pages 213-
228, Arlington, VA, USA, April 2002.

[5] P. E. Caines and C. W. Chan. Feedback between stationary stastic pro­
cess. IEEE Transactions on Automatic Control, 20:495-508, 1975.

[6] J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu. Learning bayesian
networks from data: An information-theory based approach. Artificial
Intelligence, vol. 137:43-90, 2002.

[7] S. Cheung, U. Lindqvist, and M. W. Fong. Modeling multistep cyber
attacks for scenario recognition. In Proceedings of the Third DARPA In­
formation Survivability Conference and Exposition (DISCEXIII), Wash­
ington, D.C., April 2003.

[8] R. V. Chitturi. Distribution of residual autocorrelations in multiple au-
toregressive schemes. Journal of American Statistician Association,
69:928-934, 1974.

Conclusion and Future Work 155

[9] I. Cohen, A. Bronstein, and F. G. Cozman. Online learning of bayesian
network parameters. Hewlett Packard Laboratories Technical Report,
HPL-2001-55(R,1), June 2001.

[10] G. F. Cooper and E. Herskovits. A bayesian method for constructing
bayesian belief networks from databases. In Proceedings of the Seventh
Conference on Uncertainty in Artificial Intelligence, 1991.

[11] T. Cover and J. Thomas. Elements of Information Theory. John Wiley,
1991.

[12] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion
detection framework. In Proceedings of the 2002 IEEE Symposium on
Security and Privacy, pages 202-215, Oakland, CA, May 2002.

[13] DAPRA Cyber Panel Program. DARPA cyber panel program grand chal­
lenge problem (GCP). http://www.grandchallengeproblem.net/, 2003.

[14] H. Debar and A. Wespi. The intrusion-detection console correlation
mechanism. In 4th International Symposium on Recent Advances in
Intrusion Detection (RAID), October 2001.

[15] D. A. Dickey and W. A. Fuller. Distribution of the estimators for autore-
gressive time series with a unit root. Journal of American Statistician
Association, 74:427-431, 1979.

[16] N. Friedman, I. Nachman, and D. Peer. Learning bayesian network
structure from massive datasets: The sparse candidate algorithm. In
Proceedings of the 15th Conference on Uncertainty in Artificial Intelli­
gence, 1999.

[17] C. W. Geib and R. P. Goldman. Plan recognition in intrusion detection
system. In DARPA Information Survivability Conference and Exposition
(DISCEXII), June 2001,

[18] M. R. Gevers and B. D. O. Anderson. Representations of jointly sta­
tionary stochastic feedback processes. International Journal of Control,
33:777-809, 1981.

[19] R. P. Goldman, W. Heimerdinger, and S. A. Harp. Information modeHng
for intrusion report aggregation. In DARPA Information Survivability
Conference and Exposition (DISCEXII), June 2001.

[20] C. W. J. Granger. Investigating causal relations by econometric methods
and cross-spectral methods. Econometrica, 34:424-428, 1969.

[21] IETF Intrusion Detection Working Group. Intrusion detection message
exchange format, http://www.ietf.org/intemet-drafts/draft-ietf-idwg-
idmef-xml-09.txt, 2002.

[22] J. Haines, D. K. Ryder, L. Tinnel, and S. Taylor. VaUdation of sensor
alert correlators. IEEE Security & Privacy Magazine, January/February,
2003.

[23] J.Hamilton. Time Series Analysis, Princeton University Press, 1994.
[24] A. J. Hayter. Probability and Statistics for Engineers and Scientists,

Duxbury Press, 2002.

156 Discovering Novel Attack Strategies from INFO SEC Alerts

[25] D. Heckerman, C. Meek, and G. R Cooper. A bayesian approach to
causal discovery. In Book of Computation, Causation, and Discovery,
C. Glymour and G, Cooper, editors. MIT Press, 1999.

[26] W. Hesse, E. Moller, M. Arnold, H. Witte, and B. Schack. Investigation
of time-variant causal interactions between two eeg signals by means of
the adaptive granger causality. Brain Topography, 15:265-266, 2003.

[27] J. R. M. Hosking. Lagrange multiplier tests of multivariate time series
models. Journal of The Royal Statistical Society Series B, 43:219-230,
1981.

[28] G. Jakobson and M. Weissman. Real-time telecommunication network
management: Extending event correlation with temporal constraints. In
Proceedings of the Fourth IFIP/IEEE International Symposium on Inte­
grated Network Management (IM1995), May 1995.

[29] S. Johansen. Statistical analysis of co-integration vectors. Journal of
Economic Dynamics and Control, 1:321-346, 1988.

[30] K. Julisch and M. Dacier. Mining intrusion detection alarms for action­
able knowledge. In The 8th ACM International Conference on Knowl­
edge Discovery and Data Mining, July 2002.

[31] M. Kaminski, M. Ding, W. A. Truccolo, and S. L. Bressler. Evaluat­
ing causal relations in neural systems: Granger causality, direct transfer
function (dtf) and statistical assessment of significance. Biological Cy­
bernetics, 85:145-157, 2001.

[32] R. K. Kaufamnn and D. I. Stem. Evidence for human influence on
climate from hemispheric temperature relations. Nature, 388:39-44,
July 1997.

[33] S. Kliger, S. Yemini, Y. Yemini, D. Oshie, and S. Stolfo. A coding
approach to event correlations. In Proceedings of the 6th IFIP/IEEE In­
ternational Symposium on Integrated Network Management, May 1995.

[34] C. Krugel, T. Toth, and C. Keren Decentralized event correlation for
intrusion detection. In Proceedings of the 4th International Conference
on Information Security and Cryptology, 2001.

[35] H. Lee, K. S. Lin, and J. Wu. Pitfalls in using granger causality tests to
find an engine of growth. Applied Economics Letters, 9:411-414, May
2002.

[36] L. Lewis. A case-based reasoning approach to the management of faults
in communication networks. In Proceedings of the IEEE INFOCOM,
1993.

[37] G. M. Ljung and G. E. P. Box. On a measure of lack of fit in time series
models. In Biometrika 65, pages 297-303, 1978.

[38] B. Morin and H. Debar. Correlation of intrusion symptoms: an applica­
tion of chronicles. In Proceedings of the 6th International Symposium
on Recent Advances in Intrusion Detection (RAID 2003), Pittsburgh, PA,
September 2003.

Conclusion and Future Work 157

[39] P. Ning, Y. Cui, and D. S. Reeves. Constructing attack scenarios through
correlation of intrusion alerts. In 9th ACM Conference on Computer and
Communications Security, November 2002.

[40] P. Ning and D. Xu. Leamign attack strategies from intrusion alerts. In
Proceedings of 10th ACM Conference on Computer and Communica­
tions Security (CCS'03), October 2003.

[41] P. Ning, D. Xu, C.G. Healey, and R. A. Amant. Building attack scenarios
through integration of complementary alert correlation methods. In Pro­
ceedings of the 11th Annual Network and Distributed System Security
Symposium (NDSS'04), San Diego, CA, February 2004.

[42] Y. A. Nygate. Event correlation using rule and object based techniques.
In Proceedings of the 6th IFIP/IEEE International Symposium on Inte­
grated Network Management, May 1995.

[43] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, Inc, 1988.

[44] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge
University Press, 2000.

[45] P. A. Porras, M. W. Fong, and A. Valdes. A Mission-Impact-Based
approach to INFOSEC alarm correlation. In Proceedings of the 5th
International Symposium on Recent Advances in Intrusion Detection
(RAID), October 2002.

[46] X. Qin and W. Lee. Statistical causality analysis of INFOSEC alert data.
In Proceedings of the 6th International Symposium on Recent Advances
in Intrusion Detection (RAID 2003), Pittsburgh, PA, September 2003.

[47] X. Qin and W. Lee. Attack plan recognition and prediction using causal
networks. In Proceedings of the 20th Annual Computer Security Appli­
cations Conference (ACSAC 2004), Tucson, AZ, December 2004.

[48] X. Qin and W. Lee. Discovering novel attack strategies from INFOSEC
alerts. In Proceedings of the 9th European Symposium on Research in
Computer Security, Sophia AntipoHs, France, September 2004.

[49] S. M. Ross. Introduction to Probability Models. Harcourt Academic
Press, 7th edition, 2000.

[50] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and
Search. Springer-Verlag NY, Inc., 1993.

[51] W. Stallings. SNMP, SNMPv2, SNMPv3, andRMON 1 and2. Addison-
Wesley, 1999.

[52] A. Valdes and K. Skinner. Probabilistic alert correlation. In Proceedings
of the 4th International Symposium on Recent Advances in Intrusion
Detection (RAID), October 2001.

INDEX

Aggregation, 9
Alert Correlation, 55, 65
Alert Verification, 113
Anomaly detection, 46, 60, 86
Apriori, 13
Authentication, 25
Authorization, 25

Backend Tools, 8
Bayesian Model, 114, 115
Binning, 20
Bitmap indexing, 7

Classification, 13, 63
Cluster Analysis, 13, 71, 93
Confidentiality, 25

Data Cleaning, 8, 20
Data Exploration, 1
Data High Dimensional, 3
Data Mining, 2
Data Modeling, 75
Data Quality, 9
Data Visualization, 56, 74
Data Warehouse, 1, 2
Denial of Service, 33, 54

ETL, 8
Encryption, 36

Feature Extraction, 79
Firewalls, 38
Forensic Analysis, 56, 73, 110

Historical Data Analysis, 55, 75
Host Based IDS, 45

Indexing, 7

Information Security, 103
Integrity, 25
Intrusion Detection, 40, 44, 70
IPSec, 38

Join Indexing, 8

Lineage of data, 20, 21

Misuse Detection, 45
Morris Worm, 3
Multi-dimensional data, 3

Nimda Worm, 29

Outlier, 13, 69
0LAP,7, 11,75

Penetration Attack, 55
Phishing attack, 32
Public Key Infrastructure, 37

Regression, 21

Scan Detection, 94
Scanning Attack, 53
Session Hijacking, 32
Spoofing, 31
Star Schema, 4, 75, 77

SSH, 37

Time Series Analysis, 126

Virtual Private Networks, 37
Virus, 27

Web site defacement, 32
Worms, 28

Printed in the United States

	000dw.bmp
	520.pdf
	520_001.pdf
	520_002.pdf
	520_003.pdf
	520_004.pdf
	520_005.pdf
	520_006.pdf
	520_007.pdf
	520_008.pdf

