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Preface 

There are many invaluable books available on data mining theory and applications. 
However, in compiling a volume titled “DATA MINING: Foundations and Intelligent 
Paradigms: Volume 2: Core Topics including Statistical, Time-Series and Bayesian 
Analysis” we wish to introduce some of the latest developments to a broad audience 
of both specialists and non-specialists in this field. 

The term ‘data mining’ was introduced in the 1990’s to describe an emerging field 
based on classical statistics, artificial intelligence and machine learning. Important 
core areas of data mining such as support vector machines, a kernel based learning 
method, have been very productive in recent years as attested by the rapidly 
increasing number of papers published each year. Time series analysis and prediction 
have been enhanced by methods in neural networks, particularly in the area of 
financial forecasting. Bayesian analysis is of primary importance in data mining 
research, with ongoing work in prior probability distribution estimation. 

In compiling this volume we have sought to present innovative research from 
prestigious contributors in these particular areas of data mining. Each chapter is self-
contained and is described briefly in Chapter 1. 

This book will prove valuable to theoreticians as well as application scientists/ 
engineers in the area of Data Mining. Postgraduate students will also find this a useful 
sourcebook since it shows the direction of current research. 

We have been fortunate in attracting top class researchers as contributors and wish 
to offer our thanks for their support in this project. We also acknowledge the expertise 
and time of the reviewers. Finally, we also wish to thank Springer for their support. 

 
 

Dr. Dawn E. Holmes  Dr. Lakhmi C. Jain 
University of California  University of South Australia 
Santa Barbara, USA  Adelaide, Australia 
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1 Introduction

As discussed in the previous volume, the term Data Mining grew from the relentless
growth of techniques used to interrogation masses of data. As a myriad of databases
emanated from disparate industries, enterprise management insisted their information
officers develop methodology to exploit the knowledge held in their repositories. Indus-
try has invested heavily to gain knowledge they can exploit to gain a market advantage.
This includes extracting hidden data, trends or pattern from what was traditionally con-
sidered noise. For instance most corporations track sales, stock, pay role and other op-
erational information. Acquiring and maintaing these repositories relies on mainstream
techniques, technology and methodologies. In this book we discuss a number of found-
ing techniques and expand into intelligent paradigms.

2 Foundations

Management relies heavily of information systems to gain market advantage. For this
reason they invest heavily in Information Technology (IT) systems that enable them to
acquire, retain and manipulate industry related facts. Payroll and accounting systems
were traditionally based on statistical manipulation, however have evolved to include
machine learning and artificial intelligence [1]. A non-exhaustive list of existing tech-
niques would include:

• Artificial Intelligence (AI) Class introduction;
• Bayesian Networks;
• Biosurveillance;
• Cross-Validation;
• Decision Trees;

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 24, pp. 1–7.
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2 D.E. Holmes, J. Tweedale, and L.C. Jain

• Eight Regression Algorithms;
• Elementary probability;
• Game Tree Search Algorithms;
• Gaussian Bayes Classifiers and Mixture Models;
• Genetic Algorithms;
• K-means and Hierarchical Clustering;
• Markov Decision Processes and Hidden Markov Models;
• Maximum Likelihood Estimation;
• Neural Networks;
• Predicting Real-valued Outputs;
• Probability Density Functions;
• Probably Approximately Correct Learning;
• Reinforcement Learning;
• Robot Motion Planning.
• Search - Hill Climbing, Simulated Annealing and A-star Heuristic Search;
• Spatial Surveillance;
• Support Vector Machines;
• Time Series Methods;
• Time-series-based anomaly detection;
• Visual Constraint Satisfaction Algorithms; and
• Zero and non-zero-Sum Game Theory.

2.1 Statistical Modelling

Using statistics we are able to gain useful information from raw data. Based on a found-
ing knowledge of probability theory, statistical data analysis provides historical mea-
sures from empirical data. Based on this premise, there has been an evolutionary ap-
proach in Statistical Modelling techniques [2]. A recent example is Exceptional Model
Mining (EMM). This is a framework that allows for more complicated target concepts.
Rather than finding subgroups based on the distribution of a single target attribute,
EMM finds subgroups where a model fitted to that subgroup is somehow exceptional.
These models enable experts to discover historical results, but work has also been done
on prediction using analytical techniques.

2.2 Predictions Analysis

In order to gain a market advantage, industry continues to seek, forecast or predict future
trends [3]. Many algorithms have been developed to enable us to perform prediction and
forecasting. Many of these focus on improving performance by altering the means of
interacting with data. For example, Time Series Predictions is widely applied across var-
ious domains. There is a growing trend for industry to automate this process. Many now
produce annual lists that indexes or rates their competitors based on a series of business
parameters. Focuses on a series of observations that are statistically analyzed to generate
a prediction based on a predefined number of previous values. A recent example in this
book uses the average sum of nth-order difference of series terms with limited range
margins. The algorithm performances are evaluated using measurement data-sets of
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monthly average Sunspot Number, Earthquakes and Pseudo-Periodical Synthetic Time
Series. An alternative algorithm using time-discrete target-environment regulatory sys-
tems (TE-systems) under ellipsoidal uncertainty is also examined. More sophisticated
data analysis tools have also emanated in this area.

2.3 Data Analysis

Not long ago, accountants manually manipulated data to extract patterns or trends. Re-
searchers have continued to evolve methodology to automate this process in many do-
mains. Data analysis is the process of applying one or more models to data in the effort
to discover knowledge or even predict patterns. This process has proven useful, regard-
less of the repository source or size. There are many commercial data mining meth-
ods, algorithms and applications, with several that have had major impact. Examples
include: SAS1, SPSS2 and Statistica3. The analysis methodology is mature enough to
produce visualised representations that make results easier to interpret by management.
The emerging field of Visual Analytics combines several fields. Highly complexity data
mining tasks often require employing a multi-level top-down approach. The uppermost
level conducts a qualitative analysis of complex situations in an attempt to discover pat-
terns. This chapter focuses on the concept of using Monotone Boolean Function Visual
Analytics (MBFVA) and provides an application framework named DIS3GNO. The vi-
sualization shows the border between a number of classes and displays any location of
the case of interest relative to the border between the patterns. Detection of abnormal
case buried inside the abnormals area, is visually highlighted when the results show a
significant separation from the border typically depicting normal and abnormal classes.
Based on the anomaly, an analyst can extort this manifestation by following any rela-
tionship chains determined prior to the interrogation.

2.4 Chains of Relationships

Often we choose to follow several relationships within a set of data. For instance a di-
etitian may wish to report on good nutrition from food labels. Using the same data they
may need to identify products or suppliers suitable for specific groups of the population.
Typically data mining considers a single relation that relates two different attributes [4].
In real life it is often the case that we have multiple attributes related through chains of
relations. The final chapter of this book discusses various algorithms and identify the
conditions when apriori techniques can be used. This chapter experimentally demon-
strates the effectiveness and efficiency of an algorithm using a three-level chain relation.
This discussion focuses on four common problems, namely frequency [5], authority [6],
the program committee [7] and classification problems [8]. Chains of relationships must
be identified before investigating the use of any intelligent paradigm techniques.

1 See http://www.sas.com/
2 See http://www.spss.com/
3 See http://www.statsoft.com/
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3 Intelligent Paradigms

A number of these techniques include decision-trees, rule-based techniques, Bayesian,
rough sets, dependency networks, reinforcement learning, Support Vector Machines
(SVM), Neural Networkss (NNs), genetic algorithms, evolutionary algorithms and
swarm intelligence. Many of these topics are covered in this book. An example of in-
telligence is to use AI search algorithms to create automated macros or templates [9].
Again Genetic Algorithm (GA) can be employed to induce rules using rough sets or
numerical data. A simple search on data mining will reveal numerous paradigms, many
of which are intelligent. The scale of search escalates with the volume of data, hence
the reason to model data. As data becomes ubiquitous, there is increasing pressure to
provide an on-line presence to enable access to public information repositories and
warehouses. Industry is also increasingly providing access to certain types of informa-
tion using kiosks or paid web services. Data warehousing commonly uses the following
steps to model information:

• data extraction,
• data cleansing,
• modeling data,
• applying data mining algorithm,
• pattern discovery, and
• data visualization.

Any number of paradigms are used to mine data and visualize queries. For instance,
the popular six-sigma approach (define, measure, analyse, improve and control) is used
to eliminate defects, waste and quality issues. An alternative is the SEMMA (sample,
explore, modify, model and assess). Other intelligent techniques are also commonly
employed. Although we don’t provide a definitive list of such techniques, this book
focuses on many of the most recent paradigms being developed, such as Bayesian anal-
ysis, SVMs and learning techniques.

3.1 Bayesian Analysis

Bayesian methods have been used to discover patterns and represent uncertainty in
many domains. It has proven valuable in modeling certainty and uncertainty in data
mining. It can be used to explicitly indicate a statistical dependence or independence of
isolated parameters in any repository. Biomedical and healthcare data presents a wide
range of uncertainties [10]. Bayesian analysis techniques can deal with missing data by
explicitly isolating statistical dependent or independent relationships. This enables the
integration of both biomedical and clinical background knowledge. These requirements
have given rise to an influx of new methods into the field of data analysis in healthcare,
in particular from the fields of machine learning and probabilistic graphical models.

3.2 Support Vector Machines

In data mining there is always a need to model information using classification or re-
gression. An SVM represents a suitable robust tool for use in noisy, complex domains
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[11]. Their major feature is the use of generalization theory or non-linear kernel func-
tions. SVMs provide flexible machine learning techniques that can fit complex nonlin-
ear mappings. They transform the input variables into a high dimensional feature space
and then finds the best hyperplane that models the data in the feature space. SVMs are
gaining the attention of the data mining (community and are particularly useful when
simpler data models fail to provide satisfactory predictive models.

3.3 Learning

Decision trees use a combination of statistics and machine learning as a predictive tool
to map observations about a specific item based on a given value. Decision trees are
generally generated using two methods; classification and regression. Regardless of the
methodology, decision trees provide many advantages. They are:

• able to handle both numerical and categorical data,
• generally use a white box model,
• perform well with large data in a short time
• possible to validate a model using statistical tests,
• requires little data preparation,
• robust, and
• simple to understand and interpret.

A well known methodology of learning decision trees is the use of data streams. Some
aspects of decision tree learning still need solving. For example, numerical attribute
discretization. The best-known discretization approaches are unsupervised equal-width
and equal-frequency binning. Other learning methods include:

• Association Rules,
• Bayesian Networks,
• Classification Rules,
• Clustering,
• Extending Linear Models,
• Instance-Based Learning,
• Multi-Instance Learning,
• Numeric Prediction with Local Linear Models,
• Semisupervised Learning, and
• ‘Weka’ Implementations.

There is a significant amount of research on these topics. This book provide a collection
of recent and topical techniques. A description of these topics is outlined next.

4 Chapters Included in the Book

This book includes eleven chapters. Each chapter is self-contained and is briefly de-
scribed below. Chapter 1 provides an introduction to data mining and presents a brief
abstract of each chapter included in the book. Chapter 2 is on data mining with Multi-
Layer Perceptronss (MLPs) and SVMs. The author demonstrates the applications
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of MLPs and SVMs to the real world classification and regression data mining
applications.

Chapter 3 is on regulatory networks under ellipsoidal uncertainty. The authors have
introduced and analyzed time-discrete target-environment regulatory systems under el-
lipsoidal uncertainty. Chapter 4 is on visual environment for designing and running data
mining workflows in the knowledge grid.

Chapter 5 is on formal framework for the study of algorithmic properties of objective
interestingness measures. Chapter 6 is on Non-negative Matrix Factorization (NMF).
The author presents a survey of NMF in terms of the model formulation and its varia-
tions and extensions, algorithms and applications, as well as its relations with k means
and probabilistic latent semantic indexing.

Chapter 7 is on visual data mining and discovery with binarized vectors. The authors
present the concept of monotone Boolean function visual analytics for top level pattern
discovery. Chapter 8 is on a new approach and its applications for time series analy-
sis and prediction. The approach focuses on a series of observations with the aim of
using mathematical and artificial intelligence techniques for analyzing, processing and
predicting on the next most probable value based on a number of previous values. The
approach is validated for its superiority.

Chapter 9 is on Exceptional Model Mining (EMM). It allows for more complicated
target concepts. The authors have discussed regression as well as classical models and
defined quality measures that determine how exceptional a given model on a subgroup
is. Chapter 10 is on online ChiMerge algorithm. The authors have shown that a sampling
theoretical attribute discretization algorithm ChiMerge can be implemented efficiently
in online setting. A comparative evaluation of the algorithm is presented. Chapter 11 is
on mining chains of relations. The authors formulated a generic problem of finding se-
lector sets such that the projected dataset satisfies a specific property. The effectiveness
of the technique is demonstrated experimentally.

5 Conclusion

This chapter presents a collection of selected contribution of leading subject matter
experts in the field of data mining. This book is intended for students, professionals and
academics from all disciplines to enable them the opportunity to engage in the state of
art developments in:

• Data Mining with Multilayer Perceptrons and Support Vector Machines;
• Regulatory Networks under Ellipsoidal Uncertainty - Data Analysis and Prediction;
• A Visual Environment for Designing and Running Data Mining Workflows in the

Knowledge Grid;
• Formal framework for the Study of Algorithmic Properties of Objective Interest-

ingness Measures;
• Nonnegative Matrix Factorization: Models, Algorithms and Applications;
• Visual Data Mining and Discovery with Binarized Vectors;
• A New Approach and Its Applications for Time Series Analysis and Prediction

based on Moving Average of nth-order Difference;
• Exceptional Model Mining;
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• Online ChiMerge Algorithm; and
• Mining Chains of Relations.

Readers are invited to contact individual authors to engage with further discussion or
dialog on each topic.
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Abstract. Multilayer perceptrons (MLPs) and support vector machines (SVMs)
are flexible machine learning techniques that can fit complex nonlinear mappings.
MLPs are the most popular neural network type, consisting on a feedforward
network of processing neurons that are grouped into layers and connected by
weighted links. On the other hand, SVM transforms the input variables into a
high dimensional feature space and then finds the best hyperplane that models the
data in the feature space. Both MLP and SVM are gaining an increase attention
within the data mining (DM) field and are particularly useful when more simpler
DM models fail to provide satisfactory predictive models. This tutorial chapter
describes basic MLP and SVM concepts, under the CRISP-DM methodology,
and shows how such learning tools can be applied to real-world classification and
regression DM applications.

1 Introduction

The advances in information technology has led to an huge growth of business and
scientific databases. Powerful information systems are available in virtually all organi-
zations and each year more procedures are being automatized, increasing data accumu-
lation over operations and activities. All this data (often with high complexity), may
hold valuable information, such as trends and patterns, that can be used to improve
decision making and optimize success. The goal of data mining (DM) is to use (semi-
)automated tools to analyze raw data and extract useful knowledge for the domain user
or decision-maker [16][35]. To achieve such goal, several steps are required. For in-
stance, the CRISP-DM methodology [6] divides a DM project into 6 phases (e.g. data
preparation, modeling and evaluation).

In this chapter, we will address two important DM goals that work under the su-
pervised learning paradigm, where the intention is to model an unknown function that
maps several input variables with one output target [16]:

classification – labeling a data item into one of several predefined classes (e.g. classify
the type of credit client, “good” or “bad”, given the status of her/his bank account,
credit purpose and amount, etc.); and

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 24, pp. 9–25.
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regression – estimate a real-value (the dependent variable) from several (independent)
attributes (e.g. predict the price of a house based on its number of rooms, age and
other characteristics).

Typically, a data-driven approach is used, where the model is fitted with a training set of
examples (i.e. past data). After training, the DM model is used to predict the responses
related to new items. For the classification example, the training set could be made of
thousands of past records from a banking system. Once the DM model is built, it can be
fed with the details of a new credit request (e.g. amount), in order to estimate the credit
worthiness (i.e. “good” or “bad”).

Given the interest in DM, several learning techniques are available, each one with
its own purposes and advantages. For instance, the linear/multiple regression (MR) has
been widely used in regression applications, since it is simple and easy to interpret due
to the additive linear combination of its independent variables. Multilayer perceptrons
(MLPs) and support vector machines (SVMs) are more flexible models (i.e. no a pri-
ori restriction is imposed) that can cope with noise and complex nonlinear mappings.
Both models are being increasingly used within the DM field and are particularly suited
when more simpler learning techniques (e.g. MR) do not provide sufficiently accurate
predictions [20][35]. While other DM models are easier to interpret (e.g. MR), it is still
possible to extract knowledge from MLPs and SVMs, given in terms of input variable
relevance [13] or by extracting a set of rules [31]. Examples of three successful DM
applications performed by the author of this chapter (and collaborators) are: assessing
organ failure in intensive care units (three-class classification using MLP) [32]; spam
email filtering (binary classification using SVM) [12]; and wine quality prediction (re-
gression/ordinal classification using SVM, some of the details are further described in
Sect. 4.1) [11].

This chapter is focused on the use of MLPs and SVMs for supervised DM tasks.
First, supervised learning, including MLP and SVM, is introduced (Sect. 2). Next, ba-
sic concepts of DM and use of MLP/SVM under the CRISP-DM methodology are pre-
sented (Sect. 3). Then, two real-world datasets from the UCI repository (i.e. white wine
quality assessment and car price prediction) [1] are used to show the MLP and SVM
capabilities (Sect. 4). Finally, conclusions are drawn in Sect. 5.

2 Supervised Learning

DM learning techniques mainly differ on two aspects: model representation and search
algorithm used to adjust the model parameters [25]. A supervised model is adjusted
to a dataset, i.e. training data, made up of k ∈ {1, ...,N} examples. An example maps
an input vector xk = (xk,1, . . . ,xk,I) to a given output target yk. Each input (xi) or output
variable (y) can be categorical or continuous. A classification task assumes a categorical
output with G ∈ {G1, . . . ,GNG} groups, while regression a continuous one (i.e. y ∈ ℜ).
Discrete data can be further classified into:

binary – with NG =2 possible values (e.g. G ∈{yes, no});
ordered – with NG >2 ordered values (e.g. G ∈{low, medium, high});
nominal – non-ordered with NG >2 classes (e.g. G ∈{red, blue, yellow}).
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Due to its historical importance, this section starts by presenting two classical methods:
multiple and logistic regression. Then, the MLP is introduced, followed by the SVM.

2.1 Classical Regression

The linear/multiple regression (MR) is the classical approach for regression [20]:

ŷk = w0 +
I

∑
i=1

wixk,i (1)

where ŷk denotes the predicted value for example k and {w0, . . . ,wI} the parameters to
be adjusted (e.g. by using a least squares algorithm). This model can also be used in bi-
nary classification, for instance using the encoding y ∈ {G1 = 0,G2 = 1} and assigning
the rule: G2 if ŷk > 0.5 else G1.

For binary classification, the logistic regression (LR) is a popular choice (e.g. in
Medicine) that operates a smooth nonlinear logistic transformation over the MR model
and allows the estimation of class probabilities [36]:

p(Gc|xk) =
1

1 + exp(w0 + ∑I
i=1 wixk,i)

(2)

where p(Gc|x) denotes the probability of event Gc ∈ G given the example xk. There is
also the multinomial logistic regression variant, which extends the LR model to multi-
class tasks.

Both MR and LR are easy to interpret, due to the additive linear combination of its
independent variables (i.e. x). Yet, these models are quite rigid and can only model ad-
equately linear or logistic relationships in the data. While there are other variants (e.g.
polynomial regression), the classical statistical approach requires a priori knowledge or
trial-and-error experiments to set/select the type of model used (e.g. order of the poly-
nomial regression). In contrast, there are learning techniques, such as MLP and SVM,
that use a more flexible representation and are universal approximators, i.e. capable in
theory to learn any type of mapping, provided there is an implicit relationship between
the inputs and the desired output target [21]. MLP and SVM require more computation
and are more difficult to interpret when compared with the MR and LR models. Yet,
they tend to give more accurate predictions and this is an important factor in several
real-world applications. Moreover, it is possible to extract knowledge from MLP and
SVM, as described in Sec. 3.

2.2 Multilayer Perceptron

Since the advent of the backpropagation algorithm in 1986, the multilayer perceptron
(MLP) has become the most popular NN architecture [21] (Fig. 1). The MLP is ac-
tivated by feeding the input layer with the input vector and then propagating the ac-
tivations in a feedforward fashion, via the weighted connections, through the entire
network. For a given input xk the state of the i-th neuron (si) is computed by:

si = f (wi,0 + ∑
j∈Pi

wi, j × s j) (3)
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Fig. 1. Example of a multilayer perceptron with 3 input, 2 hidden and 1 output nodes

where Pi represents the set of nodes reaching node i; f the activation function; wi, j

the weight of the connection between nodes j and i; and s1 = xk,1, . . . ,sI = xk,I . The
wi,0 connections are called bias and are often included to increase the MLP learning
flexibility.

While several hidden layers can be used for complex tasks (e.g. two-spirals), the most
common approach is to use one hidden layer of H hidden nodes with the the logistic
( f (x) = 1

1+exp(−x) ) activation function. For binary classification, one output node with
logistic function is often used, in a configuration that allows to interpret the output as a
probability and also equivalent to the LR model when H=0. For multi-class tasks (with
NG > 2 output classes), usually there are NG output linear nodes ( f (x) = x) and the
softmax function is used to transform these outputs into class probabilities [30]:

p(Gc|xk) =
exp(ŷk,c)

∑NG
j=1 exp(ŷk, j)

(4)

where ŷk,c is the MLP output for class Gc. For regression, typically one linear output
neuron is used, since outputs may lie out of the logistic range ([0,1]). When H = 0, this
network is equivalent to MR.

MLPs learn through an iterative algorithm that starts from random initial weights
(e.g. within [−0.7,+0.7]). Next, a training algorithm adjusts the weights to the desired
target values. Several training algorithms have been developed for MLPs. The stan-
dard backpropagation is quite used, but there are variants that often lead to a faster
convergence (e.g. QuickProp, RProp) [24]. Other fast alternatives are the Levenberg-
Marquardt and BFGS algorithms [30][36]. During the training, several cost functions
can be used. Often, minimization of the squared error is used for regression, while the
likelihood is maximized for classification [20]. The training is usually stopped when the
error slope approaches zero, when the validation error arises (if early stopping is used)
or after a maximum number of epochs. Since the NN cost function is nonconvex (with
multiple minima), NR runs can be applied to each MLP configuration, being selected
the MLP with the lowest error. Another option is to use an ensemble of all MLPs and
output the average of the individual predictions [10].

Under this settings, performance is heavily dependent on tuning one hyperparameter
[20]: weight decay (λ ∈ [0,1]) or number of hidden nodes (H ∈ {0,1, . . .}). The former
option includes fixing H to a high value and then search for the best λ , which is a
penalty value that shrinks the size of the weights, i.e. a higher λ produces a simpler
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MLP. The latter strategy (λ = 0) searches for the best H value. The simplest MLP will
have H = 0, while more complex models will use a high H value.

2.3 Support Vector Machines

Support vector machine (SVM) is a powerful learning tool that is based in a statisti-
cal learning theory and was developed in the 1990s, due to the work of Vapnik and
its collaborators (e.g. [9]). SVMs present theoretical advantages over MLPs, such as
the absence of local minima in the learning phase. In effect, the SVM was recently
considered one of the most influential DM algorithms, in particular due to its high per-
formance on classification tasks [40]. The basic idea is transform the input x into a
high m-dimensional feature space (m > I) by using a nonlinear mapping. Then, the
SVM finds the best linear separating hyperplane, related to a set of support vector
points, in the feature space (Fig. 2). The transformation depends on a nonlinear map-
ping (φ ) that does not need to be explicitly known but that depends of a kernel func-
tion K(x,x′) = ∑m

i=1 φi(x)φi(x′). The gaussian kernel is popular option and presents less
hyperparameters and numerical difficulties than other kernels (e.g. polynomial or sig-
moid):

K(x,x′) = exp(−γ||x− x′||2), γ > 0 (5)

For binary classification, the output target is encoded in the range y ∈ {G1 = −1,G2 =
1} and the classification function is:

f (xk) = ∑m
j=1 y jα jK(x j,xk)+ b (6)

where b and α j are coefficients of the model and m is the number of support vectors.
The discriminant rule is given by G2 if f (xk) > 0 else G1. The probabilistic SVM output
is given by [39]:

p(G2|xk) = 1/(1 + exp(A f (xk)+ B)) (7)

where A and B are determined by solving a regularized maximum likelihood problem.
When NG > 2, the one-against-one approach is often used, which trains NG(NG −1)/2
binary classifiers and the output is given by a pairwise coupling [39]. For regression,
the ε-insensitive cost function is commonly used [33], which sets a tube around the
residuals, being the tiny errors within this tube discarded (Fig. 2). Then, SVM finds the
best linear separating hyperplane:

ŷk = w0 +
m

∑
i=1

wiφi(xk) (8)

For all these SVM variants, the sequential minimal optimization (SMO) is the most
commonly used training algorithm.

Under these settings, classification performance is affected by two hyperparameters:
γ , the parameter of the kernel, and C > 0, a penalty parameter of the error term. For
regression, there is the additional hyperparameter ε > 0. The gaussian parameter has
a strong impact in performance, with too low (γ=0) or too large (γ ≈ ∞) leading to
poor generalizations [37]. During model selection, exponentially growing search se-
quences are often used to set these parameters [5], such as γ ∈ {2−15,2−13, . . . ,23},
C ∈ {2−5,2−3, . . . ,215} and ε ∈ {2−8,2−7, . . . ,2−1}.
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Fig. 2. Example of a SVM classification (left) and regression using the ε-insensitive tube (right)

3 Data Mining

DM is an iterative process that consists in several steps. The CRISP-DM [6], a tool-
neutral methodology supported by the industry (e.g. SPSS, DaimlerChryslyer), parti-
tions a DM project into 6 phases (Fig. 3): 1) business understanding; 2) data under-
standing; 3) data preparation; 4) modeling; 5) evaluation; and 6) deployment. The next
subsections address these steps, with an emphasis on the use of MLPs and SVMs to
solve classification and regression goals.

2. Data

−−?
?−−
??? ....

....

....

1. Business
Understanding

Data
Warehouse/

Database

4. ModelingPreparation
3. Data 5. Evaluation 6. Deployment

Predictive/
Explanatory

Knowledge

Dataset Models
processed

Pre−

Dataset

Understanding

Fig. 3. The CRISP-DM methodology (adapted from [6])

3.1 Business Understanding

The first phase involves tasks such as learning the business domain, goals and suc-
cess criteria, setting DM goals, project plan and inventory of resources, including per-
sonnel and software tools. Currently, there are dozens of software solutions that offer
MLP/SVM capabilities for DM tasks [26]. Examples of commercial tools that imple-
ment both MLP and SVM are IBM SPSS Modeler (former Clementine), GhostMiner
and Matlab. There are also open source tools, such as RapidMiner, WEKA and R. Most
of these solutions follow the guidelines described in this chapter (e.g. data preparation).

3.2 Data Understanding

The second phase comprehends data collection, description, exploration and quality
verification. Data collection may involve data loading and integration from multiple
sources. The remaining phase tasks allow the identification of the data main character-
istics (e.g. use of histograms) and data quality problems.
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3.3 Data Preparation

It is assumed that a dataset, with past examples of the learning goal, is available. Pre-
processing involves tasks such as data selection, cleaning, transformation [28]. Using
examples and attributes that are more related with the learning goal will improve the
DM project success. Data selection can be guided by domain knowledge or statistics
(e.g. for outlier removal) and includes selection of attributes (columns) and also exam-
ples (rows). Since MLP and SVM work only with numeric values, data cleaning and
transformation are key prerequisites.

Missing data is quite common, due to several reasons, such as procedural factors or
refusal of response. To solve this issue, there are several solutions, such as [4]:

• use complete data only;
• for categorical data, treat missing values as an additional “unknown” class;
• perform data imputation (e.g. substitute by mean, median or values found in other

data sources);
• model-based imputation, where a DM model (e.g. k-nearest neighbor) is used to

first model the variable relationship to the remaining attributes in the dataset and
then the model predictions are used as substitute values.

The first strategy is suited when there is few missing data. Imputation methods allow
the use of all cases, but may introduce “wrong” values. For instance, mean substitution
is simple and popular method based on the assumption that it is a reasonable estimate,
yet it may distort the variable distribution values. Model-based imputation is a more
sophisticated method that estimates the missing value from the remaining dataset (e.g.
most similar case).

Before fitting a MLP or SVM, categorical values need to be transformed. Binary at-
tributes can be easily encoded into 2 values (e.g. {-1,1} or {0,1}). Ordered variables
can be encoded in a scale that preserves the order (e.g. low→-1, medium→0, high→1).
For nominal attributes, the One-of-NG remapping is the most adopted solution,
where one binary variable is assigned to each class (e.g. red→(1,0,0); blue→(0,1,0);
yellow→(0,0,1)), allowing the definition of in between items (e.g. orange→(0.5,0,0.5)).
Other m-of-NG remappings may lead to more useful transformations but require domain
knowledge (e.g. encode a U.S. state under 2 geographic coordinates) [28].

Another common MLP/SVM transformation is to rescale the data, for instance by
standardizing each xa attribute according to:

x′a =
xa − xa

sxa

(9)

where xa and sxa are the mean and sample standard deviation of xa (measured over the
training data). This transformation has the advantage of rescaling all inputs to the same
range, thus assigning them an equal importance. Also, it reduces numerical difficulties
related to MLP and SVM learning algorithms [30].

3.4 Modeling

This stage involves selecting the learning models, estimation method, design strategy,
building and assessing the models.
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3.4.1 Estimation Method

Powerful learners, such as MLP and SVM, can overfit the data by memorizing all exam-
ples. Thus, the generalization capability needs to be assessed on unseen data. To achieve
this, the holdout validation is commonly used. This method randomly partitions the data
into training and test subsets. The former subset is used to fit the model (typically with
2/3 of the data), while the latter (with the remaining 1/3) is used to compute the es-
timate. A more robust estimation procedure is the K-fold cross-validation [14], where
the data is divided into K partitions of equal size. One subset is tested each time and
the remaining data are used for fitting the model. The process is repeated sequentially
until all subsets have been tested. Therefore, under this scheme, all data are used for
training and testing. However, this method requires around K times more computation,
since K models are fitted. In practice, the 10-fold estimation is a common option when
there are a few thousands or hundreds of samples. If very few samples are available
(e.g. N < 100), the N-fold validation, also known as leave-one-out, is used. In contrast,
if the number of samples is too large (e.g. N > 5000) then the simpler holdout method
is a more reasonable option.

The estimation method is stochastic, due to the random train/test partition. Thus,
several R runs should be applied. A large R value increases the robustness of the es-
timation but also the computational effort. R should be set according to the data size
and computational effort available (common R values are 5, 10, 20 or 30). When R > 1,
results should be reported using mean or median values and statistical tests (e.g. t-test)
should be used to check for statistical differences [17].

3.4.2 Design Strategy

As describe in Sect. 2, both MLP and SVM have several configuration details that need
to be set (e.g. number of hidden layers, kernel function or learning algorithm). Further-
more, for a given setup there are hyperparameters that need to be set (e.g. number of
hidden nodes or kernel parameter). The design of the best model that can be solved by
using heuristic rules, a simple grid search or more advanced optimization algorithms,
such as evolutionary computation [29]. For example, the WEKA environment uses the
default rule for setting H = I/2 in MLP classification tasks [38]. Such heuristic rules
require few computation but may lead to models that are far from the optimum. The grid
search a popular approach, usually set by defining an internal estimation method (e.g.
holdout or K-fold) over the training data, i.e., the training data is further divided into
training and validation sets. A grid of parameters (e.g. H ∈ {2,4,6,8} for MLP) is set
for the search and the model that produces the best generalization estimate is selected.

The design strategy may also include variable selection, which is quite valuable when
the number of inputs is large (I �). Variable selection [19] is useful to discard irrelevant
inputs, leading to simpler models that are easier to interpret and that usually give better
performances. Such selection can be based on heuristic or domain related rules (e.g.
use of variables that are more easy to collect). Another common approach is the use
of variable selection algorithms (e.g. backward and forward selection or evolutionary
computation). Also, variable and model selection should be performed simultaneously.
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Table 1. The 2×2 confusion matrix

↓ actual \ predicted → negative positive
negative TN FP
positive FN TP

TN - true negative, FP - false positive, FN - false negative, TP - true positive.

3.4.3 Model Assessment

This section describes the most common classification and regression metrics (e.g. con-
fusion matrix and MAE). The confusion matrix [23] is commonly used for classification
analysis, a matrix of size NG ×NG (Table 1). The matrix is created by matching the pre-
dicted (ŷ) with the desired (y) values. From the matrix, several metrics can be computed,
such as: the accuracy (ACC) or correct classification rate; the true positive rate (TPR)
or recall/sensitivity; and the true negative rate (TNR) or specificity. These metrics can
be computed using the equations:

TPR = T P
FN+T P × 100 (%)

TNR = T N
T N+FP × 100 (%)

ACC = T N+T P
T N+FP+FN+T P ×100 (%)

(10)

A classifier should present high values of ACC, TPR and TNR. When there are dif-
ferent FP and FN costs and/or balanced (i.e. towards a given class) output targets, the
ACC metric is not sufficient and both TPR and TNR such be used, as there is often a
trade-off between the two. The receiver operating characteristic (ROC) curve shows the
performance of a two class classifier across the range of possible threshold (D) values,
plotting FPR= 1−TNR (x-axis) versus TPR (y-axis) [15]. When the output is modeled
as a probability, then D ∈ [0.0,1.0] and the output class Gc is positive if p(Gc|x) > D.
The global accuracy is given by the area under the curve (AUC=

∫ 1
0 ROCdD). A ran-

dom classifier will have an AUC of 0.5, while the ideal value should be close to 1.0.
The ROC analysis has the advantage of being insensitive to the output class distribution.
Moreover, it provides a wide range of FPR/TPR points to the domain user, which can
later, based on her/his knowledge, select the most advantageous setup.

For multi-class tasks, the NG ×NG confusion matrix can be converted into a 2× 2
one by selecting a given class (Gc) as the positive concept and ¬Gc as the negative one.
Also, a global AUC can also be defined by weighting the AUC for each class according
its prevalence in the data [27].

The error of a regression model is given by ek = yk − ŷk. The overall performance is
computed by a global metric, such as mean absolute error (MAE), relative absolute error
(RAE), root mean squared error (RMSE), root relative squared error (RRSE), which can
be computed as [38]:
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MAE = 1/N×∑N
i=1 |yi − ŷi|

RAE = MAD/∑N
i=1 |yi − yi|× 100 (%)

RMSE =
√

∑N
i=1 (yi − ŷi)2/N

RRSE =
√

∑N
i=1 (yi−ŷi)2

∑N
i=1 (yi−yi)2 × 100 (%)

(11)

where N denotes the number of examples (or cases) considered. A good regressor
should present a low error. The RAE, RRSE and MAPE metrics are scale independent,
where 100% denotes an error similar to the naive average predictor (y).

3.5 Evaluation

The previous phase leads to a model with some given accuracy. In this phase, the aim
is to assess if the such model meets the business goals and if it is interesting. The for-
mer issue involves analyzing the model in terms of business criteria for success. For
instance, when considering the bank credit example (Sect. 1), the best model could
present a ROC curve with an AUC=0.9 (high discrimination power). Still, such ROC
curve presents several FPR vs TPR points. A business analysis should select the best
ROC point based on the expected profit and cost. The latter issue (i.e. model interesting-
ness) involves checking if the model makes sense to the domain experts and if it unveils
useful or challenging information. When using MLPs or SVMs, this can be achieved
by measuring input importance or by extracting rules from fitted models.

Input variable importance can be estimated from any supervised model (after train-
ing) by adopting a sensitivity analysis procedure. The basic idea is to measure how
much the predictions are affected when the inputs are varied through their range of val-
ues. For example, a computationally efficient sensitivity analysis version was proposed
in [22] and works as follows. Let ŷa, j denote the output obtained by holding all input
variables at their average values except xa, which varies through its entire range (xa, j,
with j ∈ {1, . . . ,L} levels). If a given input variable (xa ∈ {x1, . . . ,xI}) is relevant then it
should produce a high variance (Va). For classification tasks, Va can be computed over
output probabilities. If NG > 2 (multi-class), Va can be set as the sum of the variances
for each output class probability (p(Gc)|xa, j) [10]. The input relative importance (Ra)
is given by Ra = Va/∑I

i=1 Vi × 100 (%). For a more detailed individual input influence
analysis, the variable effect characteristic (VEC) curve [13] can be used, which plots
the xa, j values (x-axis) versus the ya, j predictions (y-axis).

The extraction of knowledge from MLPs and SVMs is still an active research area
[31][2]. The two main approaches are based on decompositional and pedagogical tech-
niques. The former extracts first rules from a lower level, such as a rule for each indi-
vidual neuron of a MLP. Then, the subsets of rules are aggregated to form the global
knowledge. The latter approach extracts the direct relationships (e.g. by applying a de-
cision tree) between the inputs and outputs of the model. By using a black-box point of
view, less computation effort is required and a simpler set of rules may be achieved.

3.6 Deployment

The aim is to use the data mining results in the business or domain area. This in-
cludes monitoring and maintenance, in order to deal with issues such as: user feedback,
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checking if there have been changes in the environment (i.e. concept drift or shift) and
if the DM model needs to be updated or redesigned. Regarding the use of the model,
MLP and SVMs should be integrated into a friendly business intelligence or decision
support system. This can be achieved by using the DM tool to export the best model
into a standard format, such as the predictive model markup language (PMML) [18],
and then loading this model into a standalone program (e.g. written in C or Java).

4 Experiments

The UCI machine learning is a public repository that includes a wide range of real-
world problems that are commonly used to test classification and regression algorithms
[1]. The next subsections address two UCI tasks: white wine quality (classification) and
automobile (regression). Rather than presenting state of the art results, the intention
is to show tutorial examples of the MLP and SVM capabilities. All experiments were
conducted under the rminer library [10], which facilitates the use of MLP and SVM al-
gorithms in the R open source tool. The rminer library and code examples are available
at: http://www3.dsi.uminho.pt/pcortez/rminer.html.

4.1 Classification Example

The wine quality data [11] includes 4898 white vinho verde samples from the north-
west region of Portugal. The goal is to predict human expert taste preferences based
on 11 analytical tests (continuous values, such as pH or alcohol levels) that are easy to
collect during the wine certification step. The output variable is categorical and ordered,
ranging from 3 (low quality) to 9 (high quality).

In this example, a binary classification was adopted, where the goal is to predict
very good wine (i.e. G2 = 1 if quality> 6) based on the 11 input variables. Also, three
DM models were tested (LR, MLP and SVM), where each model output probabilities
(p(G2|xk)). Before fitting the models, the data was first standardized to a zero mean
and one standard deviation (using only training data). The MLP was set with logistic
activation functions, one hidden layer with H hidden nodes, one output node. The initial
weights were randomly set within the range [-0.7,0.7]. Both LR and MLP were trained
with 100 epochs of the BFGS algorithm for a likelihood maximization. The final MLP
output is given by the average of an ensemble of NR = 5 MLPs. The best MLP setup was
optimized using a grid search with H ∈ {0,1,2, . . . ,9} (in a total of 10 searches) using
an internal (i.e. using only training data) 3-fold validation. The best H corresponds
to the MLP setup that provides the highest AUC value under a ROC analysis. After
selecting H, the final MLP ensemble was retrained with all training data. The SVM
probabilistic output model uses a gaussian kernel and is fit using the SMO algorithm.
To reduce the search space, the simple heuristic rule C = 3 [7] was adopted and the
gaussian hyperparameter was set using a grid search (γ ∈ {23,21, . . . ,2−15} [37]) that
works similarly to the MLP search (e.g. use of 3-fold internal validation).

Each selected model was evaluated using R =10 runs of an external 3-fold cross-
validation (since the dataset is quite large). The results are summarized in Table 2. The
first row presents the average hyperparameter values, the second row shows the com-
putational effort, in terms of time elapsed, and the last row contains the average test set
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AUC value (with the respective 95% confidence intervals under a t-student distribution).
In this example, the LR requires much less computation when compared with MLP and
SVM. The high H and γ values suggest that this task is highly nonlinear. In effect, both
MLP and SVM outperform the simpler LR model in terms of discriminatory power (i.e.
AUC values). When comparing SVM against MLP, the average AUC is slightly higher,
although the difference is not statistically significant under a t-test (p-value=0.2).

A more detailed analysis is given by the ROC test set curves (Fig. 4). In the fig-
ure, baseline gray curve denotes the performance of a random classifier, while the
whiskers show the 95% t-student confidence intervals for the 10 runs. Both SVM and
MLP curves are clearly above the LR performance. Selecting the best model depends
on the TNR/TPR gains and FN/FP costs. The DM model could be used to assist and
speed up the wine expert evaluations (e.g. the expert could repeat is evaluation only
if it differs from the DM prediction) [11]. Hence, it should be the expert to select the
best ROC point (i.e. TNR vs TPR tradeoff). For a better TNR the best choice is SVM
(when FPR< 0.25), else the best option is to use the MLP. As an example of explanatory
knowledge, the left of Fig. 4 plots the relevance of the 11 inputs (ordered by importance)
as measured by a sensitivity analysis procedure (L = 6) described in Sec.3.5. The plot
shows that the most important input is alcohol, followed by the volatile acidity, pH and
sulphates.

Table 2. The white wine quality results (best values in bold)

LR MLP SVM
Parameter – H=8.4 γ = 20.27

Time (s) 14 1699 2520
AUC 78.9%±0.1 85.9%±0.2 86.3%±0.6
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Fig. 4. ROC curves for the white wine quality task (left) and SVM input importances (right)
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Fig. 5. Histogram for the normalized losses with missing data (left) and after model-based impu-
tation (right)

4.2 Regression Example

The automobile dataset goal is to predict car prices using 25 continuous and categorical
attributes. To simplify the example, only 9 inputs were used: normalized losses (contin-
uous), fuel type (categorical, NG = 2), aspiration (NG = 2), number of doors (NG = 2),
body style (NG = 5), drive wheels (NG = 3), curb weight (cont.), horsepower (cont.) and
peak rpm (cont.). The data includes 205 instances, although there are several missing
values. To deal with missing data, two strategies were adopted. First, the two examples
with missing values in the output variable were deleted. Second, the remaining miss-
ing values (37 in normalized losses; 2 in number of doors, horsepower and peak rpm)
were replaced using a model-based (i.e. 1-nearest neighbor) imputation (as described in
Sect. 3.3). Fig. 5 plots two histograms for the normalized losses input (with 37 missing
values), before and after the model-based imputation. In general, it can be seen that this
imputation method maintains the original distribution values.

Before fitting the models, the categorical attributes were remapped using a One-
of-NG transformation, leading to a total of 1+2+2+2+5+3+1+1+1=18 inputs. Also, the
numeric values were standardized to a zero mean and one standard deviation. Three
models were tested during the modeling phase: MR, MLP and SVM. Each model was
set similarly to the wine quality example, except for the following differences: MR
and MLP were fit using the BGFS algorithm under a least squares minimization; MLP
has a linear output node and the ensemble uses NR = 7 MLPs; the ε-insensitive cost
function was used for SVM, with the heuristic rule ε = 3σy

√
log(N)/N, where σy

denotes the standard deviation of the predictions of given by a 3-nearest neighbor [7];
and the RMSE metric was used to select the best model during the grid search (for MLP
and SVM).

Since the number of samples is rather small (i.e. 203), the models were evaluated
using R =10 runs of a 10-fold validation and the obtained results are shown in Table 3.
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Again, the MR algorithm requires less computation when compared with SVM and
MLP. Yet, MR presents the worst predictive results. The best predictive model is SVM
(RRSE=47.4%, 52.6 pp better than the average naive predictor), followed by MLP (the
differences are statistically significant under paired t-tests). The quality of the SVM
predictions is shown in the left of Fig. 6, which plots the observed vs predicted val-
ues. In the scatter plot, the diagonal line denotes the ideal method. Most of the SVM
predictions follow this line, although the model tends to give higher errors for highly
costly cars (top right of the plot). Only using domain knowledge it is possible to judge
the quality of this predictive performance (although it should be stressed that better
results can be achieved for this dataset, as in this example only 9 inputs were used).
Assuming it is interesting, in the deployment phase the SVM model could be integrated
into a decision support system (e.g used by car auction sites). Regarding the extraction
of knowledge, the sensitivity analysis procedure revealed the curb weight as the most
relevant factor. For demonstration purposes, the VEC curve (left of Fig. 6) shows that
this factor produces a positive effect in the price (in an expected outcome), particularly
within the range [2500,3500].

Table 3. The automobile results (best values in bold)

LR MLP SVM
Parameter – H=4.3 γ = 2−3.1

Time (s) 15 918 230
RMSE 3760±49 3234±174 2822±128
RRSE 47.4%±0.6 40.8%±2.2 35.6%±1.6
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Fig. 6. Scatter plot for the best automobile predictive model (left, x-axis denotes target values and
y-axis the predictions) and VEC curve for the curb weight influence (right, x-axis denotes the 6
curb weight levels and y-axis the SVM average response variation)
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5 Conclusions and Further Reading

In the last few decades, powerful learning techniques, such as multilayer perceptrons
(MLPs) and more recently support vector machines (SVMs) are emerging. Both tech-
niques are flexible models (i.e. no a priori restriction is required) that can cope with
complex nonlinear mappings. Hence, the use of MLPs and SVMs in data mining (DM)
classification and regression tasks is increasing. In this tutorial chapter, basic MLP and
SVM concepts were first introduced. Then, the CRISP-DM methodology, which in-
cludes 6 phases, was used to describe how such models can be used in a real DM
project. Next, two real-world applications were used to demonstrate the MLP and SVM
capabilities: wine quality assessment (binary classification) and car price estimation (re-
gression). In both cases, MLP and SVM have outperformed more simpler methods (e.g.
logistic and multiple regression). Also, it was shown how knowledge can be extracted
from MLP/SVM models, in terms of input relevance.

For more solid mathematical explanation on MLPs and SVMs, the recommended
books are [3], [20] and [21]. Additional details about the CRISP-DM methodology can
be found in [6] and [8]. Reference [35] shows examples of MLP/SVM DM applica-
tions and their integration into business intelligence and decision support systems. The
kdnuggets web portal aggregates information about DM in general and includes an ex-
tensive list of commercial and free DM tools [26]. There are also web sites with lists of
tools (and other useful details) that specifically target MLPs [30] and SVMs [34].
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Abstract. We introduce and analyze time-discrete target-environment regulatory
systems (TE-systems) under ellipsoidal uncertainty. The uncertain states of clus-
ters of target and environmental items of the regulatory system are represented
in terms of ellipsoids and the interactions between the various clusters are de-
fined by affine-linear coupling rules. The parameters of the coupling rules and
the time-dependent states of clusters define the regulatory network. Explicit rep-
resentations of the uncertain multivariate states of the system are determined with
ellipsoidal calculus. In addition, we introduce various regression models that al-
low us to determine the unknown system parameters from uncertain (ellipsoidal)
measurement data by applying semidefinite programming and interior point meth-
ods. Finally, we turn to rarefications of the regulatory network. We present a cor-
responding mixed integer regression problem and achieve a further relaxation by
means of continuous optimization. We analyze the structure of the optimization
problems obtained, especially, in view of their solvability, we discuss the struc-
tural frontiers and research challenges, and we conclude with an outlook.

Keywords: regulatory systems, continuous optimization, mixed integer program-
ming, mathematical modeling, uncertainty, networks, operations research, param-
eter estimation, dynamical systems, gene-environment networks, eco-finance
networks.

1 Introduction

Regulatory networks are often characterized by the presence of a large number of
variables and parameters resulting in a complexity which is beyond man’s everyday
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perception. The development of high throughput technologies led to a generation of
massive quantities of data and this technological progress has been accompanied by the
development of new mathematical methods for the analysis of highly interconnected
systems that allows to gain deeper insights in the dynamic behaviour and the topologi-
cal aspects of complex regulatory systems in biology, finance and engineering sciences.

In this paper, we address the special class of so-called TE-regulatory systems (Target-
Environment regulatory systems). These systems are composed of two distinct groups
of data, exhibiting a completely different behaviour, although they are strongly related.
The first group consists of the targets; these are the most important variables of the
system and they depend on an additional group of so-called environmental items. This
specific type of regulatory systems occurs in many applications. For example, in mod-
eling and prediction of gene-expression and environmental patterns, so-called gene-
environment networks are investigated in order to determine the complex interactions
between genes and other components of cells and tissues. Here, the target variables are
the expression values of the genes while the environmental items are given by toxins,
transcription factors, radiation, etc. [1, 19, 24, 25, 26, 27, 28, 29, 35, 38, 55, 57, 66, 67, 68,
75, 76, 82, 83, 88, 89, 90, 91, 94, 95].

In Operational Research, eco-finance networks were introduced in [43] and applied
to an extension of the Technology-Emissions-Means Model (in short: TEM-model),
which allows a simulation of the cooperative economic behaviour of countries or enter-
prises with the aim of a reduction of greenhouse gas emissions. Here, the target vari-
ables are the emissions that the actors wish to reduce and the required financial means
act as additional environmental items [36, 39, 40, 41, 47, 59, 60, 61, 62].

As it is clearly understood today, environmental factors constitute an essential group
of regulating components and by including these additional variables the models per-
formance can be significantly improved. The advantage of such an refinement has been
demonstrated for example in [48], where it is shown that prediction and classifica-
tion performances of supervised learning methods for the most complex genome-wide
human disease classification can be greatly improved by considering environmental
aspects. Many other examples from biology and life sciences refer to TE-regulatory
systems where environmental effects are strongly involved. Among them are, e.g.,
metabolic networks [17, 58, 88], immunological networks [32], social- and ecological
networks [30]. We refer to [27,36,66,67,68,94,95] for applications, practical examples
and numerical calculations.

TE-models are usually based on measurements which are always effected by ran-
dom noise and uncertainty. In order to include errors and uncertainty in TE-regulatory
systems various regression models based on interval arithmetics but also on spline re-
gression and stochastic differential equations have been developed. In particular, gen-
eralized additive models and models based on multivariate adaptive regression splines
(MARS) have been introduced and the related Tikhonov regularization problem was
treated by methods from conic quadratic programming [69, 70, 71, 72, 73, 74, 92, 93].
In general, for data corrupted by random noise the probability function is usually as-
sumed to be Gaussian. This assumption has computational advantages but this approach
is not sufficient as in case of real world data one has to include non-Gaussian or non-
white noise. To overcome these difficulties, set theoretic approaches can be used where
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bounds on the uncertain variable are imposed. Here, we focus on ellipsoids which have
proved to be suitable for data corrupted by noise. Ellipsoids are very flexible with re-
spect to correlations of the data, while intervals and parallelpipes usually come from
a perspective where stochastic dependencies among any two of the errors made in
the measurements of the expression values of targets and environmental levels are not
taken into account explicitly [8]. Moreover, these sets are usually smaller than the ellip-
soids and their orthogonal projections into the 2-dimensional Cartesian planes, respec-
tively [8]. Indeed, those confidence ellipsoids are obtained with respect to stochastic
dependencies of the error variables. Those dependencies are the case in reality, e.g.,
in microarray experiments and in environmental studies as well. In reverse, any ellip-
soid can be inscribed into a sufficiently large parallelpipe which, in addition, could be
suitably located and directed in space around its eigenaxes.

There is a rich list of roles and performances delivered which are associated and
assigned to ellipsoids. They include: (i) encompassing of objects, (ii) inner or outer
approximation of shapes and bodies, of discrete or continuous kinds of sets, (iii) sup-
port for classification of objects and discrimination of different objects, (iv) defining
critical points or contours which mark tails of higher dimensional and connected ver-
sions of tails that describe neighbourhoods of infinity, usually with small values of small
probabilities assigned, (v) set-valued generalizations of numbers, and generalizations of
balls with a reduced wealth of symmetries but still highly symmetrical, (vi) geometrical
representation of linear mappings which execute certain expansions and contractions
(herewith, deformation; e.g., applied to a ball) and rotations, with respect to axes in
an orthogonal system of coordinates, (vi) geometrical representation of some symme-
try breakings, compared with balls, (vii) geometrical representation of dependencies,
especially, of variances and correlations, (viii) easy measurability and support for an
approximate measuring of other sets and subsets.

Clustering and classification provides an insight in the structure of the data and al-
lows to identify groups of data items jointly acting on other clusters of target and en-
vironmental items. The uncertain states of these clusters are represented by ellipsoids
and ellipsoidal calculus is applied to model the dynamics of the TE-regulatory system.
Affine-linear transformations define the coupling rules which describe the multiple in-
teractions between the clusters and lead to a propagation of ellipsoidal states. The un-
known parameters of the time-discrete TE-model are also arranged in clusters and have
to be adapted according to uncertain (ellipsoidal) measurement data. Various regression
models will be introduced which compare measurements and predictions. For parame-
ter estimation we have to measure the size of certain ellipsoids which will be expressed
by nonnegative criteria functions associated with the configuration matrix of the ellip-
soid. The trace, the trace of square, the determinant or the volume are examples of such
measures and they lead to different regression models for parameter estimation of the
TE-model. In particular, semidefinite programming as well as conic programming and
interior point methods can be applied to solve the various regression models.

Complex regulatory systems usually consist of a large number of interconnected
components and the TE-regulatory network is highly structured with multiple interac-
tions between many different clusters. For practical reasons, it may be necessary to
reduce the number of branches of the TE-regulatory network. In this situation, bounds
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on the indegrees of the nodes (clusters) can reduce the complexity of the model. Binary
constraints can be used to decide whether or not there is a connection between pairs
of clusters. Adding these additional constraints to the objective function of the regres-
sion problem, we obtain a mixed integer optimization problem which corresponds to
our network rarefication. However, binary constraints are very strict and in some situa-
tions they can even destroy the connectivity of the regulatory network. In order to avoid
these difficulties, the binary constraints can be replaced by more flexible continuous
constraints leading to a further relaxation in terms of continuous optimization.

The paper is organized as follows: In Section 2, we state some basic facts about
ellipsoids and introduce basic operations of ellipsoidal calculus. In Section 3, we intro-
duce the time-discrete TE-model under ellipsoidal uncertainty. Explicit representations
of the predictions of this model are given in Section 3.2. In Section 4, we turn to an
estimation of parameters of the TE-model and introduce various regression models. We
discuss their solvability by semidefinite programming and interior point methods. Re-
duction of complexity will be addressed in Section 5, where an associated mixed integer
approximation problem and a further relaxation based on continuous optimization are
introduced.

2 Ellipsoidal Calculus

The states of target and environmental variables of our TE-model will be represented
in terms of ellipsoids. In this section, we introduce the basic operations needed to deal
with ellipsoidal uncertainty such as sums, intersections (fusions) and affine-linear trans-
formations of ellipsoids. The family of ellipsoids in R

p is closed with respect to affine-
linear transformations but neither the sum nor the intersection is generally ellipsoidal,
so both must be approximated by ellipsoidal sets.

2.1 Ellipsoidal Descriptions

An ellipsoid in R
p will be parameterized in terms of its center c ∈ R

p and a symmetric
non-negative definite configuration matrix Σ ∈ R

p×p as

E(c,Σ) = {Σ1/2u+ c | ‖u‖ ≤ 1},
where Σ1/2 is any matrix square root satisfying Σ1/2(Σ1/2)T = Σ. When Σ is of full
rank, the non-degenerate ellipsoid E(c,Σ) may be expressed as

E(c,Σ) = {x ∈ R
p | (x− c)TΣ−1(x− c) ≤ 1}.

The eigenvectors of Σ point in the directions of principal semiaxes of E . The lengths
of the semiaxes of the ellipsoid E(c,Σ) are given by

√
λi, where λi are the eigenvalues

of Σ for i = 1, . . . , p. The volume of the ellipsoid E(c,Σ) is given by vol E(c,Σ) =
Vp

√
det(Σ), where Vp is the volume of the unit ball in R

p, i.e.,

Vp =

⎧
⎪⎪⎨

⎪⎪⎩

πp/2

(p/2)! , for even p

2pπ(p−1)/2((p− 1)/2)!
p! , for odd p.
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2.2 Affine Transformations

The family of ellipsoids is closed with respect to affine transformations. Given an el-
lipsoid E(c,Σ) ⊂ R

p, matrix A ∈ R
m×p and vector b ∈ R

m we get AE(c,Σ) + b =
E(Ac + b, AΣAT ). Thus, ellipsoids are preserved under affine transformation. If the
rows of A are linearly independent (which implies m ≤ p), and b = 0, the affine
transformation is called projection [45].

2.3 Sums of Two Ellipsoids

Given two non-degenerate ellipsoids E1 = E(c1, Σ1) and E2 = E(c2, Σ2), their geo-
metric (Minkowksi) sum E1 + E1 = {z1 + z2 | z1 ∈ E1, z2 ∈ E2} is not generally an
ellipsoid. However, it can be tightly approximated by parameterized families of external
ellipsoids. The range of values of E1 + E1 is contained in the ellipsoid

E1 ⊕ E1 := E(c1 + c2, Σ(s))

for all s > 0, where

Σ(s) = (1 + s−1)Σ1 + (1 + s)Σ2.

For a minimal and unique external ellipsoidal approximation an additional condition
has to be fulfilled. The value of s is commonly chosen to minimize either the trace or
the determinant of Σ(s). If we select

s =
(TrΣ1)1/2

(TrΣ2)1/2
,

then this value defines the ellipsoid containing the sum that has minimal trace, or, sum
of squares of semiaxes. We note that the minimum trace calculation can also be used in
case of degenerate ellipsoids [22, 44, 45].

2.4 Sums of K Ellipsoids

Given K bounded ellipsoids of R
p, Ek = E(ck , Σk), k = 1, . . . ,K . We adapt the

notion of the minimal trace ellipsoid from [21] and introduce the outer ellipsoidal ap-
proximation E(σ, P ) = ⊕K

k=1Ek containing the sum S =
∑K

k=1 Ek of ellipsoids which
is defined by

σ =
K∑

k=1

ck

and

P =
( K∑

k=1

√
TrΣk

)( K∑

k=1

Σk√
TrΣk

)

.
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2.5 Intersection of Ellipsoids

As the intersection of two ellipsoids is generally not an ellipsoid we replace this set by
the outer ellipsoidal approximation of minimal volume. We adapt the notion of fusion
of ellipsoids from [64]. Given two non-degenerate ellipsoids E(c1, Σ1) and E(c2, Σ2)
in R

p with E(c1, Σ1) ∩ E(c2, Σ2) 	= ∅ we define an ellipsoid

Eλ(c0, Σ0) := {x ∈ R
p |λ(x− c1)TΣ−1

1 (x− c1)

+ (1 − λ)(x − c2)TΣ−1
2 (x− c2) ≤ 1},

where λ ∈ [0, 1].
The ellipsoid Eλ(c0, Σ0) coincides with E(c1, Σ1) and E(c2, Σ2) for λ = 1 and

λ = 0, respectively. In order to determine a tight external ellipsoidal approximation
Eλ(c0, Σ0) of the intersection of E(c1, Σ1) and E(c2, Σ2), we introduce

X := λΣ−1
1 + (1 − λ)Σ−1

2

and

τ := 1 − λ(1 − λ)(c2 − c1)TΣ−1
2 X−1Σ−1

1 (c2 − c1).

The ellipsoid Eλ(c0, Σ0) is given by the center

c0 = X−1(λΣ−1
1 c1 + (1 − λ)Σ−1

2 c2)

and configuration matrix

Σ0 = τX−1.

The fusion of E(c1, Σ1) and E(c2, Σ2), whose intersection is a nonempty bounded re-
gion, is defined as the ellipsoid Eλ(c0, Σ0) for the value λ ∈ [0, 1] that minimizes
its volume [64]. The fusion of E(c1, Σ1) and E(c2, Σ2) is E(c1, Σ1), if E(c1, Σ1) ⊂
E(c2, Σ2); or E(c2, Σ2), if E(c2, Σ2) ⊂ E(c1, Σ1); otherwise, it is Eλ(c0, Σ0) defined
as above where λ is the only root in (0, 1) of the following polynomial of degree 2p−1:

τ(detX ) Tr (co(X )(Σ−1
1 −Σ−1

2 )) − p(detX )2

× (2cT0 Σ
−1
1 c1 − 2cT0Σ

−1
2 c2 + cT0 (Σ−1

2 −Σ−1
1 )c0 − cT1 Σ

−1
1 c1 + cT2Σ

−1
2 c2) = 0.

Here, co(X ) denotes the matrix of cofactors of X . Since X−1 = co(X )/ detX , we
represent this polynomial as

τ(detX )2 Tr (X−1(Σ−1
1 −Σ−1

2 )) − p(detX )2

× (2cT0 Σ
−1
1 c1 − 2cT0Σ

−1
2 c2 + cT0 (Σ−1

2 −Σ−1
1 )c0 − cT1 Σ

−1
1 c1 + cT2Σ

−1
2 c2) = 0.

We note that it is also possible to define an inner ellipsoidal approximation. The method
of finding the internal ellipsoidal approximation of the intersection of two ellipsoids is
described in [77].
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3 Target-Environment Regulatory Systems under Ellipsoidal
Uncertainty

In this section, we introduce a time-discrete model for TE-regulatory systems under
ellipsoidal uncertainty. This approach is based on clustering of the sets of targets and
environmental items what refers to combinations of variables commonly exerting in-
fluence on other groups of system variables. The uncertain states of these clusters are
represented in terms of ellipsoids which provide a more detailed description of uncer-
tainty that reflects the correlation of data items. The dynamic behaviour of the clus-
ters and their interactions are determined by clusters of unknown parameters which
directly depend on the structure of the system variables. This approach further ex-
tends the time-discrete models developed for an analysis of gene-environment net-
works and eco-finance networks where errors and uncertainty are represented by
intervals [43, 84, 85, 87].

3.1 The Time-Discrete Model

In our time-discrete TE-regulatory system, we consider n target variables and m envi-
ronmental factors. Motivated by the applications presented in the introduction we as-
sume that functionally related groups of targets and environmental items are identified
in a preprocessing step of clustering and data analysis. In particular, the set of targets
can be divided in R disjoint or overlapping clusters Cr ⊂ {1, . . . , n}, r = 1, . . . , R.
Similarly, the set of all environmental items can be divided in S (disjoint or overlap-
ping) clusters Ds ⊂ {1, . . . ,m}, s = 1, . . . , S. In case of disjoint clusters the relations
Cr1 ∩ Cr2 = ∅ for all r1 	= r2 and Ds1 ∩ Ds2 = ∅ for all s1 	= s2 are fulfilled. The
papers [2, 11, 12, 56, 78] introduce into clustering theory as a central element of unsu-
pervised learning and data mining, and they discuss the questions of how to determine
the number of clusters and of the stability of the clustering. For clustering techniques
based on nonsmooth optimization we refer to [9, 10].

Since each cluster corresponds to a functionally related group of data items, the
uncertain states of these clusters are represented in terms of ellipsoids

E(μr, Σr) ⊂ R
|Cr|, E(ρs, Πs) ⊂ R

|Ds|.

We note that ellipsoids can be identified with intervals if clusters are singletons. In
addition, flat ellipsoids E(μr, Σr) and E(ρs, Πs) would refer to data sets where at least
one of the variables is exactly known, but, if necessary in the approximating sense, we
can avoid this by an artificial extension in the corresponding coordinate directions of
length ε > 0. In other words, one can impose lower bounds on the semiaxes lengths.
Similarly, one can control the extension by imposing sufficiently large upper bounds
and, thus, avoid needle-shaped or degenerate ellipsoids.

The dynamic behaviour of the time-discrete TE-regulatory system is governed by
affine-linear coupling rules which describe the interactions between the various clusters.
These affine-linear relations have to reflect the mutual dependence of pairs of clusters
but also overlaps of clusters have to be taken into account.
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The regulatory system of the target items is defined by

(1) the interactions between the clusters of target items
(represented by an n× n-interaction matrix ATT and an n-intercept vector V TT ),

(2) the effects of the clusters of environmental items on the target clusters
(represented by an n×m interaction-matrixATE and an n-intercept vector V TE).

The entries of the interaction matrices ATT , ATE and the intercept vectors V TT , V TE

comprise the unknown parameters of the regulatory system. Clusters of parameters,
given by specific sub-matrices and sub-vectors ofATT , ATE and V TT , V TE , define the
affine-linear coupling rules. In order to describe the interactions between the clusters of
target items we assign a sub-matrix ΓTT

jr ∈ R
|Cj |×|Cr| of ATT to each pair Cj and

Cr (the elements of Cj and Cr determine the indices of rows and columns). This sub-
matrix can in turn be considered as a connectivity matrix between the clusters Cj and
Cr that represents the (uncertain) degree of connectivity between the elements of the
two clusters of targets. Later we will add an additional shift (intercept) by the sub-vector
ΦTT

j ∈ R
|Cj| of V TT . We note that the sub-matrices Γ TT

jr and sub-vectors ΦTT
j will be

partly composed of the same elements in case of overlapping clusters.
In an analogous manner we can describe the effects of the clusters of environmen-

tal items on the target clusters. For each pair of target clusters Cj and environmental
clusters Ds we define a sub-matrix ΓTE

js ∈ R
|Cj|×|Ds| (the elements of Cj and Ds

determine the indices of rows and columns) and a sub-vector ΦTE
j ∈ R

|Cj| of V TE .
The sub-matrix ΓTE

js acts as a connectivity matrix between the clusters Cj and Ds and
ΦTE

j acts as a shift.
Beside the regulatory system of target variables, there can be an additional environ-

mental regulatory system which is defined by

(3) the interactions between the clusters of environmental items
(represented by anm×m interaction-matrixAEE and anm-intercept vectorV EE),

(4) the effects of the target clusters on the environmental clusters
(represented by anm×n interaction-matrixAET and anm-intercept vector V ET ).

The degree of connectivity between pairs of environmental clustersDi andDs or a pair
of environmental and target clusters, Di and Cr , is given by the sub-matrices ΓEE

is ∈
R

|Di|×|Ds| of AEE and ΓET
ir ∈ R

|Di|×|Cr| of AET as well as the sub-vectors ΦEE
i ∈

R
|Di| of V EE and ΦET

i ∈ R
|Di| of V ET .

Now we introduce our time-discrete model that allows us to calculate predictions
X

(k)
r and E(k)

s of the ellipsoidal states targets and environmental variables.
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TE-Model

For k = 0, 1, 2, . . .

For j = 1, 2, . . . , R :
(1) Interactions between the clusters of targets

(A) Effect of cluster Cr on cluster Cj

G
(k)
jr = ΓTT

jr ·X(k)
r + ΦTT

j , r = 1, 2, . . . , R

(B) Sum of the effects of all clusters of targets on cluster Cj

G
(k)
j =

R⊕

r=1

G
(k)
jr

(2) Effects of the environmental clusters on the clusters of targets

(A) Effect of environmental cluster Ds on target cluster Cj

H
(k)
js = ΓTE

js · E(k)
s + ΦTE

j , s = 1, 2, . . . , S

(B) Sum of the effects of all environmental clusters on cluster Cj

H
(k)
j =

S⊕

s=1

H
(k)
js

(3) Sum of effects on the target clusters
X

(k+1)
j = G

(k)
j ⊕ H

(k)
j

For i = 1, 2, . . . , S :
(1) Interactions between the clusters of environmental items

(A) Effect of cluster Ds on cluster Di

M
(k)
is = ΓEE

is · E(k)
s + ΦEE

i , s = 1, 2, . . . , S

(B) Sum of the effects of all environmental clusters on cluster Di

M
(k)
i =

S⊕

s=1

M
(k)
is

(2) Effects of the target clusters on the clusters of environmental items

(A) Effect of target cluster Cr on environmental cluster Di

N
(k)
ir = ΓET

ir ·X(k)
r + ΦET

i , r = 1, 2, . . . , R

(B) Sum of the effects of all target clusters on environmental cluster Di

N
(k)
i =

R⊕

r=1

N
(k)
ir

(3) Sum of effects on clusters of environmental items

E
(k+1)
i = M

(k)
i ⊕ N

(k)
i
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Since Γ TT
jr ·X(k)

r +ΦTT
j , Γ TE

js ·E(k)
s +ΦTE

j , ΓEE
is ·E(k)

s +ΦEE
i and ΓET

ir ·X(k)
r +ΦET

i

are affine-linear transformations, the sets G(k)
jr , H(k)

js , M (k)
is and N (k)

ir are ellipsoids. In

addition, G(k)
j , H(k)

j , M (k)
i and N (k)

i are defined as sums of ellipsoids and, therefore,
constitute ellipsoids themselves. Therefore, the above algorithm allows us to calculate
predictions (

X
(k+1)
1 , . . . , X

(k+1)
R , E

(k+1)
1 , . . . , E

(k+1)
S

)

of the ellipsoidal states of targets and environmental items. In the next subsection, we
investigate the structure of the ellipsoids and determine the corresponding centers and
configuration matrices.

ATT =

aTT
11 aTT

12 aTT
13 aTT

14 aTT
15 aTT

16

aTT
21 aTT

22 aTT
23 aTT

24 aTT
25 aTT

26

aTT
31 aTT

32 aTT
33 aTT

34 aTT
35 aTT

36

aTT
41 aTT

42 aTT
43 aTT

44 aTT
45 aTT

46

aTT
51 aTT

52 aTT
53 aTT

54 aTT
55 aTT

56

aTT
61 aTT

62 aTT
63 aTT

64 aTT
65 aTT

66

, ΦTT =

ΦTT
1

ΦTT
2

ΦTT
3

ΦTT
4

ΦTT
5

ΦTT
6

G
(k)
23 = Γ TT

23 · X(k)
3 + ΦTT

2 =

(
aTT

33 aTT
34

aTT
43 aTT

44

)

· X(k)
3 +

(
ΦTT

3

ΦTT
4

)

Fig. 1. Interaction matrices and intercept vectors. In a TE-regulatory network with six targets and
three target clusters C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6}, the interaction between target
clusters C2 and C3 is determined by the affine-linear transformation Γ TT

23 · X
(k)
3 + ΦTT

2 given

by the corresponding parts Γ TT
23 =

(
aTT
33 aTT

34

aTT
43 aTT

44

)

of the interaction matrix ATT and ΦTT
2 =

(
ΦTT

33

ΦTT
34

)

of the intercept vector ΦTT .

REMARK. In the above model, the state of each cluster depends on the state of this
cluster at the previous time-step. We can avoid this by introducing the following cluster
interaction formulas:

G
(k)
jr = (1 − δjr) ·

(
Γ TT

jr ·X(k)
r + ΦTT

j

)
, r = 1, 2, . . . , R

H
(k)
js = (1 − δjs) ·

(
ΓTE

js · E(k)
s + ΦTE

j

)
, s = 1, 2, . . . , S

M
(k)
is = (1 − δis) ·

(
ΓEE

is ·E(k)
s + ΦEE

i

)
, s = 1, 2, . . . , S

N
(k)
ir = (1 − δir) ·

(
ΓET

ir ·X(k)
r + ΦET

i

)
, r = 1, 2, . . . , R,

where δαβ denotes the Kronecker-Delta.
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REMARK. The relations and interconnections between the various clusters of target and
environmental items of the regulatory system can be represented in terms of a highly
interconnected TE-regulatory network (Target-Environment regulatory network). The
nodes of this network are given by the clusters and the branches are weighted by the
matrices and vectors that determine the affine linear coupling rules of the TE-model.
Additional weights can be assigned to the nodes of the network. This can be, e.g., the
ellipsoids (or some measures of the size of the ellipsoids) associated with the clusters.
Although the weights of the branches are static, the evolution of ellipsoids leads to a
time-dependent TE-regulatory network. Hereby, discrete mathematics and its network
algorithms in both versions, statically and dynamically, becomes applicable on subjects
such as connectedness, components, clusters, cycles, shortest paths or further subnet-
works. Beside these discrete-combinatorial aspects, combinatorial relations between
graphs and (nonlinear) optimization problems as well as topological properties of reg-
ulatory networks can be analyzed [42]. When we regard the matrices of interactions as
a map, then we can ”navigate” between the different entries [82, 83]. This can be con-
sidered as a focus and control about the dynamics of, e.g., medical, environmental or
financial items and their change rates. This kind of navigation is represented by discrete
homotopies within the matrices and by continuous homotopies between the underlying
ellipsoids. This very much depends on the structures of overlapping or (projective) in-
tersections of these ellipsoidal sets, which are of a polynomial definition [13, 15, 31].
Via such intersections and, covering the paths of navigation, unions of ellipsoids, we
in fact arrive at real semialgebraic sets. Then, these classes represent the uncertainty
which we study in this paper and take the place of σ-algebras that we would employ
from an alternative stochastic viewpoint. We note that the study of our paths of navi-
gation can be analyzed by homotopy theory [31]. The paper [63] gives example how
conic, especially, semidefinite programming comes into play via introducing semialge-
braic sets, and we remark that the normal forms (sums of squares of polynomials) relate
with regression theory where also conic quadratic programming serves for [13, 15, 31].
In forthcoming papers, we shall work out these various new aspects.

3.2 Algorithm

With the TE-Model we can calculate predictions of the ellipsoidal states X(k)
r and E(k)

s

of targets and environmental items in terms of subsets of R
|Cr| and R

|Ds|, respectively.
Now, we introduce an algorithm that can be used to determine centers and configuration
matrices of the predictions obtained from the TE-model.

At time step k ∈ N0 these predictions are given by the ellipsoids

X(k)
r = E(

μ(k)
r , Σ(k)

r

)
and E(k)

s = E(
ρ(k)

s , Π(k)
s

)
.
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Applying the ellipsoidal calculus from Section 2, we obtain the following algorithm:

TE-Model: Centers and Configuration Matrices

For k = 0, 1, 2, . . .

For j = 1, 2, . . . , R :
(1) Interactions between the clusters of targets

(A) Effect of cluster Cr on cluster Cj

g
(k)
jr = ΓTT

jr μ
(k)
r + ΦTT

j , r = 1, 2, . . . , R

G(k)
jr = ΓTT

jr Σ
(k)
r (Γ TT

jr )T , r = 1, 2, . . . , R

G
(k)
jr = E(

g
(k)
jr ,G(k)

jr

)
, r = 1, 2, . . . , R

(B) Sum of the effects of all clusters of targets on cluster Cj

g
(k)
j =

R∑

r=1

g
(k)
jr

G(k)
j =

( R∑

r=1

√
TrG(k)

jr

)

·
( R∑

r=1

G(k)
jr√

TrG(k)
jr

)

G
(k)
j = E(

g
(k)
j ,G(k)

j

)

(2) Effects of the environmental clusters on the clusters of targets

(A) Effect of environmental cluster Ds on target cluster Cj

h
(k)
js = ΓTE

js ρ
(k)
s + ΦTE

j , s = 1, 2, . . . , S

H(k)
js = ΓTE

js Π(k)
s (Γ TE

js )T , s = 1, 2, . . . , S

H
(k)
js = E(

h
(k)
js ,H(k)

js

)
, s = 1, 2, . . . , S

(B) Sum of the effects of all environmental clusters on cluster Cj

h
(k)
j =

S∑

s=1

h
(k)
js

H(k)
j =

( S∑

s=1

√
TrH(k)

js

)

·
( S∑

s=1

H(k)
js√

TrH(k)
js

)

H
(k)
j = E(

h
(k)
j ,H(k)

j

)

(3) Sum of effects on the target clusters
μ

(k+1)
j = g

(k)
j + h

(k)
j

Σ
(k+1)
j =

(√
TrG(k)

j +
√

TrH(k)
j

)

·
( G(k)

j√
TrG(k)

j

+
H(k)

j√
TrH(k)

j

)

X
(k+1)
j = E(

μ
(k+1)
j , Σ

(k+1)
j

)



Regulatory Networks under Ellipsoidal Uncertainty – Data Analysis and Prediction 39

TE-Model: Centers and Configuration Matrices (continued)

For i = 1, 2, . . . , S :
(1) Interactions between the clusters of environmental items

(A) Effect of cluster Ds on cluster Di

m
(k)
is = ΓEE

is ρ
(k)
s + ΦEE

i , s = 1, 2, . . . , S

M(k)
is = ΓEE

is Π
(k)
s (ΓEE

is )T , s = 1, 2, . . . , S

M
(k)
is = E(

m
(k)
is ,M(k)

is

)
, s = 1, 2, . . . , S

(B) Sum of the effects of all environmental clusters on cluster Di

m
(k)
i =

S∑

s=1

m
(k)
is

M(k)
i =

( S∑

s=1

√
TrM(k)

is

)

·
( S∑

s=1

M(k)
is√

TrM(k)
is

)

M
(k)
i = E(

m
(k)
i ,M(k)

i

)

(2) Effects of the target clusters on the clusters of environmental items

(A) Effect of target cluster Cr on environmental cluster Di

n
(k)
ir = ΓET

ir μ
(k)
r + ΦET

i , r = 1, 2, . . . , R

N (k)
ir = ΓET

ir Σ
(k)
r (ΓET

ir )T , r = 1, 2, . . . , R

N
(k)
ir = E(

n
(k)
ir ,N (k)

ir

)
, r = 1, 2, . . . , R

(B) Sum of the effects of all target clusters on environmental cluster Di

n
(k)
i =

R∑

r=1

n
(k)
ir

N (k)
i =

( R∑

r=1

√
TrN (k)

ir

)

·
( R∑

r=1

N (k)
ir√

TrN (k)
ir

)

N
(k)
i = E(

n
(k)
i ,N (k)

i

)

(3) Sum of effects on clusters of environmental items

ρ
(k+1)
i = m

(k)
i + n

(k)
i

Π
(k+1)
i =

(√
TrM(k)

i +
√

TrN (k)
i

)

·
( M(k)

i√
TrM(k)

i

+
N (k)

i√
TrN (k)

i

)

E
(k+1)
i = E(

ρ
(k+1)
i , Π

(k+1)
i

)
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4 The Regression Problem

We now turn to an estimation of parameters of the time-discrete TE-model with ellip-
soidal states. As mentioned before, the states of predictions of targets and environmental
items depend on the unknown entries of the interaction matricesATT ,ATE ,AEE ,AET

and vectors V TT
j , V TE

j , V EE
i and V ET

i . For an estimation of parameters we compare
the predictions

X̂(κ)
r = E(

μ̂(κ)
r , Σ̂(κ)

r

)
, Ê(κ)

s = E(
ρ̂(κ)

s , Π̂(κ)
s

)

calculated with the algorithm from Subsection 3.2 with the data

X
(κ)

r = E(
μ(κ)

r , Σ
(κ)

r

)
, E

(κ)

s = E(
ρ(κ)

s , Π
(κ)

s

)
,

obtained from measurements of target and environmental items at sampling times t0 <

t1 < . . . < tT . The initial values of the algorithm may be given by X̂(0)
r := X

(0)
r and

Ê
(0)
s := E

(0)
s (here, r = 1, . . . , R, s = 1, . . . , S, κ = 0, 1, . . . , T ).

As the predictions and measurement values (both ellipsoids) should overlap as much
as possible, we introduce the ellipsoids

ΔX(κ)
r := X̂(κ)

r ∩X(κ)
r and ΔE(κ)

s := Ê(κ)
s ∩ E(κ)

s .

In addition, the centers of the ellipsoids are adjusted, so that their distance

Δμ(κ)
r := μ̂(κ)

r − μ(κ)
r and Δρ(κ)

s := ρ̂(κ)
s − ρ(κ)

s

becomes minimized (cf. Figure 2). This leads us to the following regression problem:

(R) Maximize
T∑

κ=1

{ R∑

r=1

(∥
∥ΔX(κ)

r

∥
∥
∗ −

∥
∥Δμ(κ)

r

∥
∥2

2

)

+
S∑

s=1

(∥
∥ΔE(κ)

s

∥
∥
∗ −

∥
∥Δρ(κ)

s

∥
∥2

2

)}

.

Here, ‖ · ‖∗ denotes a measure that reflects the geometrical size of the intersections

(fusions) and we assume that ‖ΔX(κ)
r ‖∗ = 0, if ΔX(κ)

r = ∅ and ‖ΔE(κ)
s ‖∗ = 0, if

ΔE
(κ)
s = ∅. There exist various measures that are related to the shape of the intersec-

tions, e.g., the volume (which corresponds to the ellipsoid matrix determinant), the sum
of squares of semiaxes (which corresponds to the trace of the configuration matrix), the
length of the largest semiaxes (which corresponds to the eigenvalues of the configura-
tion matrix). All these examples lead to specific formulations of the regression problem
(R) and they depend on the configuration matrices of the fusionsΔX(κ)

r and ΔE(κ)
s as

well as the distances Δμ(κ)
r and Δρ(κ)

s .
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Fig. 2. Overlap of ellipsoids: The intersections of the two ellipsoids X̂
(κ)
r and X

(κ)
r have the same

geometrical size with the same measure of fusions on the left and the right side. On the right side,
the centers μ̂

(κ)
r and μ(κ)

r are adjusted in order to minimize the difference between the centers of
ellipsoids.

For a deeper analysis of the above stated regression problem (R), explicit representa-

tions of the fusionsΔX(κ)
r andΔΣ(κ)

r are required. The fusionΔX(κ)
r = X̂

(κ)
r ∩X(κ)

Cr

is an ellipsoid E(
Δμ

(κ)
r , ΔΣ

(κ)
r

)
with center

Δμ(κ)
r =

[X (κ)
r

]−1(
λ
[
Σ̂(κ)

r

]−1
μ̂(κ)

r + (1 − λ)
[
Σ

(κ)

r

]−1
μ(κ)

r

)

and configuration matrix
ΔΣ(κ)

r = ξ(κ)
r

[X (κ)
r

]−1
,

where
X (κ)

r := λ
[
Σ̂(κ)

r

]−1
+ (1 − λ)

[
Σ

(κ)

r

]−1

and

ξ(κ)
r := 1 − λ(1 − λ)

(
μ(κ)

r − μ̂(κ)
r

)T [
Σ

(κ)

r

]−1[X (κ)
r

]−1[
Σ̂(κ)

r

]−1(
μ(κ)

r − μ̂(κ)
r

)
.

The parameter λ is the only root in (0, 1) of the following polynomial of degree
2|Cr| − 1:

ξ(κ)
r

(
detX (κ)

r

)2
Tr

([X (κ)
r

]−1
([
Σ̂(κ)

r

]−1 − [
Σ

(κ)
r

]−1
))

− |Cr|
(
detX (κ)

r

)2

×
(
2
[
Δμ(κ)

r

]T [
Σ̂(κ)

r

]−1
μ̂(κ)

r − 2
[
Δμ(κ)

r

]T [
Σ

(κ)

r

]−1
μ(κ)

r

+
[
Δμ(κ)

r

]T
([
Σ

(κ)

r

]−1 − [
Σ̂(κ)

r

]−1
)
Δμ(κ)

r − [
μ̂(κ)

r

]T [
Σ̂(κ)

r

]−1
μ̂(κ)

r

+
[
μ(κ)

r

]T [
Σ

(κ)

r

]−1
μ(κ)

r

)
= 0.
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Similarly, the fusion ΔE(κ)
s = Ê

(κ)
s ∩ E

(κ)
s is an ellipsoid E(

Δρ
(κ)
s , ΔΠ

(κ)
s

)
with

center
Δρ(κ)

s =
[Y(κ)

s

]−1(
λ
[
Π̂(κ)

s

]−1
ρ̂(κ)

s + (1 − λ)
[
Π

(κ)
s

]−1
ρ(κ)

s

)

and configuration matrix
ΔΠ(κ)

s = η(κ)
s

[Y(κ)
s

]−1
,

where
Y(κ)

s := λ
[
Π̂(κ)

s

]−1 + (1 − λ)
[
Π

(κ)
s

]−1

and

η(κ)
s := 1 − λ(1 − λ)

(
ρ(κ)

s − ρ̂(κ)
s

)T [
Π

(κ)
s

]−1[Y(κ)
s

]−1[
Π̂(κ)

s

]−1(
ρ(κ)

s − ρ̂(κ)
s

)
.

The parameter λ is the only root in (0, 1) of the following polynomial of degree
2|Ds| − 1:

η(κ)
s

(
detY(κ)

s

)2
Tr

([Y(κ)
s

]−1
([
Π̂(κ)

s

]−1 − [
Π

(κ)

s

]−1
))

− |Ds|
(
detY(κ)

s

)2

×
(
2
[
Δρ(κ)

s

]T [
Π̂(κ)

s

]−1
ρ̂(κ)

s − 2
[
Δρ(κ)

s

]T [
Π

(κ)

s

]−1
ρ(κ)

s

+
[
Δρ(κ)

s

]T
([
Π

(κ)
s

]−1 − [
Π̂(κ)

s

]−1
)
Δρ(κ)

s − [
ρ̂(κ)

s

]T [
Π̂(κ)

s

]−1
ρ̂(κ)

s

+
[
ρ(κ)

s

]T [
Π

(κ)

s

]−1
ρ(κ)

s

)
= 0.

As a measure for the size of a p-dimensional ellipsoid E(0, Q) (here, the size of the
fusion) we use nonnegative-valued criteria functions ψ(E(0, Q)) defined on the set of
all nondegenerate ellipsoids and which are monotonous by increasing with respect to
inclusion, i.e., ψ(E1) ≤ ψ(E2) if E1 ⊆ E2. Such measures are, e.g.,

(a) the trace of Q,
ψT (E(0, Q)) := TrQ = λ1 + . . .+ λp,

where λi are the eigenvalues of Q (i.e., TrQ is equal to the sum of the squares of
the semiaxes),

(b) the trace of square of Q,

ψTS(E(0, Q)) := TrQ2,

(c) the determinant of Q,

ψDet(E(0, Q)) := detQ = λ1 · . . . · λp,

which is equal to the product of eigenvalues and proportional to the volume

volE(0, Q) = π
p
2 (detQ)

1
2
(
Γ

(
p
2

+ 1
))−1

of the ellipsoid, where Γ stands for the Gamma-function,
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(d) the diameter,
ψDia(E(0, Q)) := diam(E(0, Q)) := d,

where

max{λi ∈ R | i = 1, . . . , p} =
(
d

2

)2

,

so that d/2 is the radius of the smallest p-dimensional ball that includes E(0, Q).

For further details on criteria functions we refer to [44], p. 101. The measures stated
above lead to different representations of the regression problem (R) and we study
them now in more detail.

4.1 The Trace Criterion

The first regression problem is based on the traces of the configuration matrices of the
ellipsoids ΔX(κ)

r and ΔE(κ)
s :

(RTr) Maximize
T∑

κ=1

{ R∑

r=1

(
Tr

(
ΔΣ(κ)

r

) − ∥
∥Δμ(κ)

r

∥
∥2

2

)

+
S∑

s=1

(
Tr

(
ΔΠ(κ)

s

) − ∥
∥Δρ(κ)

s

∥
∥2

2

)}

.

As the trace of the configuration matrix is equal to the sum of the squares of the semi-
axes, the regression problem takes the form

(R′
Tr) Maximize

T∑

κ=1

{ R∑

r=1

(|Cr|∑

j=1

λ
(κ)
r,j − ∥

∥Δμ(κ)
r

∥
∥2

2

)

+
S∑

s=1

(|Ds|∑

i=1

Λ
(κ)
s,i − ∥

∥Δρ(κ)
s

∥
∥2

2

)}

,

where λ(κ)
r,j and Λ(κ)

s,i are the eigenvalues of ΔΣ(κ)
r and ΔΠ(κ)

s , respectively.

4.2 The Trace of the Square Criterion

Another variant of our regression problem can be obtained with the traces of the squares
of the configuration matrices of the ellipsoids ΔX(κ)

r and ΔE(κ)
s :

(RTS) Maximize
T∑

κ=1

{ R∑

r=1

(
Tr

(
ΔΣ(κ)

r

)2 − ∥
∥Δμ(κ)

r

∥
∥2

2

)

+
S∑

s=1

(
Tr

(
ΔΠ(κ)

s

)2 − ∥
∥Δρ(κ)

s

∥
∥2

2

)}

.



44 E. Kropat, G.-W. Weber, and C.S. Pedamallu

4.3 The Determinant Criterion

Referring to the determinants of the configuration matrices of the ellipsoidsΔX(κ)
r and

ΔE
(κ)
s , we obtain the following model:

(RDet) Maximize
T∑

κ=1

{ R∑

r=1

(
det

(
ΔΣ(κ)

r

) − ∥
∥Δμ(κ)

r

∥
∥2

2

)

+
S∑

s=1

(
det

(
ΔΠ(κ)

s

) − ∥
∥Δρ(κ)

s

∥
∥2

2

)}

.

Equivalent formulations of (RDet) can be given in terms of the eigenvalues of the con-
figuration matrices

(R′
Det) Maximize

T∑

κ=1

{ R∑

r=1

(|Cr|∏

j=1

λ
(κ)
r,j − ∥

∥Δμ(κ)
r

∥
∥2

2

)

+
S∑

s=1

(|Ds|∏

i=1

Λ
(κ)
s,i − ∥

∥Δρ(κ)
s

∥
∥2

2

)}

and the volumes of the ellipsoids ΔX(κ)
r and ΔE(κ)

s

(R′′
Det) Maximize

T∑

κ=1

{ R∑

r=1

([V(κ)
r

]2 − ∥
∥Δμ(κ)

r

∥
∥2

2

)

+
S∑

s=1

([W(κ)
s

]2 − ∥
∥Δρ(κ)

s

∥
∥2

2

)}

,

where

V(κ)
r := π

2
|Cr | Γ

( |Cr |
2

+ 1
)

vol
(
ΔX(κ)

r

)
,

W(κ)
s := π

2
|Ds| Γ

( |Ds|
2

+ 1
)

vol
(
ΔE(κ)

s

)
.

4.4 The Diameter Criterion

The diameter of the ellipsoidsΔX(κ)
r andΔE(κ)

s can be used to introduce the following
regression model:

(RDia) Maximize
T∑

κ=1

{ R∑

r=1

(
diam

(E(
0, Σ(κ)

r

)) − ∥
∥Δμ(κ)

r

∥
∥2

2

)

+
S∑

s=1

(
diam

(E(
0, Π(κ)

s

)) − ∥
∥Δρ(κ)

s

∥
∥2

2

)}

.
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An equivalent formulation of (RDia) can be given in terms of the eigenvalues of Σ(κ)
r

and Π(κ)
s :

(R′
Dia) Maximize

T∑

κ=1

{ R∑

r=1

(
2 ·

√

λ
(κ)
r − ∥

∥Δμ(κ)
r

∥
∥2

2

)

+
S∑

s=1

(
2 ·

√

Λ
(κ)
s − ∥

∥Δρ(κ)
s

∥
∥2

2

)}

with λ(κ)
r := max{λ(κ)

r,j | j = 1, . . . , |Cr|} and Λ(κ)
s := max{Λ(κ)

s,i | i = 1, . . . , |Ds|}.
As the objective function of (R′

Dia) is nonsmooth with well-understood max-type func-
tions [79, 80, 81] but not Lipschitz-continuous, we also introduce the additional regres-
sion problem

(R′′
Dia) Maximize

T∑

κ=1

{ R∑

r=1

(
λ(κ)

r − ∥
∥Δμ(κ)

r

∥
∥2

2

)

+
S∑

s=1

(
Λ(κ)

s − ∥
∥Δρ(κ)

s

∥
∥2

2

)}

as an alternative proposal.

4.5 Optimization Methods

The regression models of the previous subsections depend on the configuration matrices
Σ

(κ)
r andΠ(κ)

s of the ellipsoidsΔX(κ)
r andΔE(κ)

s . Semidefinite programming [18] can
be applied, because the objective functions of these volume-related programming prob-
lems depend on, e.g., the determinant or eigenvalues of symmetric positive semidefi-
nite matrices. However, in order to obtain positive semidefinite representable objective
functions [14], some regression models have to be slightly modified. For example, the
objective function of the regression model (RDet) depends directly on the determinant
of the configuration matrices. Unfortunately, det (M) considered as a function of sym-
metric positive semidefinite n×n-matricesM (short:M � 0) is neither a convex nor a
concave function of M (if n ≥ 2). However, if p is a rational number with 0 ≤ p ≤ 1

n ,
then

f(M) =

{
−detp (M) , M � 0
∞ , otherwise

is positive semidefinite representable ( [14], p. 81). Therefore, we introduce the regres-
sion model

(R̃Det) Maximize
T∑

κ=1

{

−
R∑

r=1

(
detp

(
ΔΣ(κ)

r

)
+

∥
∥Δμ(κ)

r

∥
∥2

2

)

−
S∑

s=1

(
detq

(
ΔΠ(κ)

s

)
+

∥
∥Δρ(κ)

s

∥
∥2

2

)}

,
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where the rational numbers p, q fulfill the conditions 0 ≤ p ≤ 1
|Cr| and 0 ≤ q ≤ 1

|Ds| .
As det(M) =

∏n
i=1 λi(M), where λi(M) are the eigenvalues of M , we can replace

(R′
Det) by

(R̃′
Det) Maximize

T∑

κ=1

{

−
R∑

r=1

((|Cr|∏

j=1

λ
(κ)
r,j

)p

+
∥
∥Δμ(κ)

r

∥
∥2

2

)

−
S∑

s=1

((|Ds|∏

i=1

Λ
(κ)
s,i

)q

+
∥
∥Δρ(κ)

s

∥
∥2

2

)}

and instead of (R′′
Det) we suggest

(R̃′′
Det) Maximize

T∑

κ=1

{ R∑

r=1

([V(κ)
r

]2p − ∥
∥Δμ(κ)

r

∥
∥2

2

)

+
S∑

s=1

([W(κ)
s

]2q − ∥
∥Δρ(κ)

s

∥
∥2

2

)}

.

In case of positive definite configuration matrices ΔΣ(κ)
r and ΔΠ(κ)

s negative powers
of the determinant can be used. If p is a positive rational, the function

f(M) =

{
det−p (M) , M � 0
∞ , otherwise

of the symmetric n × n-matrix M is positive semidefinite representable ( [14], p. 83).
Here, M � 0 means that M is positive semidefinite. Now, with two positive rationals
p, q we obtain the additional regression model

(R′′′
Det) Maximize

T∑

κ=1

{ R∑

r=1

(
det−p

(
ΔΣ(κ)

r

) − ∥
∥Δμ(κ)

r

∥
∥2

2

)

+
S∑

s=1

(
det−q

(
ΔΠ(κ)

s

) − ∥
∥Δρ(κ)

s

∥
∥2

2

)}

.

The regression model (R′′
Dia) directly depends on the largest eigenvalues of the con-

figuration matrices ΔΣ(κ)
r andΔΠ(κ)

s and, thus, on positive semidefinite representable
functions ( [14], p. 78). In (R′

Tr), sums of all eigenvalues of the configuration matrices

ΔΣ
(κ)
r and ΔΠ(κ)

s are considered, which can also be regarded as positive semidefinite
representable functions ( [14], p. 80). In general, interior point methods can applied
which have a moderate complexity [50, 51, 52, 54]. Alternatively, for regression prob-
lems with sums of eigenvalues or maximal eigenvalues in the objective function, assco-
ciated bilevel problems can be considered which could be solved by gradient methods.
In fact, in [53] structural frontiers of conic programming are discussed with other op-
timization methods compared, and future applications in machine learning and data
mining prepared.



Regulatory Networks under Ellipsoidal Uncertainty – Data Analysis and Prediction 47

5 Mixed Integer Regression Problem

As nowadays high-throughput technologies are available, regulatory networks are huge
and for practical reasons we have to rarefy them by diminishing the number of branches.
Here, upper bounds on the indegrees of nodes are introduced firstly. That means, the
number of clusters regulating a specific target or environmental cluster in our network
has to be bounded. We use binary constraints to decide whether or not there is a con-
nection between two clusters of data and by this we obtain a mixed-integer optimization
problem. As these constraints are very strict and as they can even destroy our regulatory
network, we pass to continuous constraints and introduce a further relaxation in terms
of a continuous optimization problem.

Given two clusters A,B we use the notation A ∼ B if cluster A is regulated by
cluster B and A 	∼ B if cluster A is not regulated by cluster B. Now, we define the
Boolean matrices

χTT
jr =

{
1 , if Cj ∼ Cr

0 , if Cj 	∼ Cr,
χTE

js =

{
1 , if Cj ∼ Ds

0 , if Cj 	∼ Ds,

χEE
is =

{
1 , if Di ∼ Ds

0 , if Di 	∼ Ds,
χET

ir =

{
1 , if Di ∼ Cr

0 , if Di 	∼ Cr,

indicating whether or not pairs of clusters in our regulatory network are directly related.
If two clusters are not related, the corresponding parts of the matricesATT ,ATE ,AEE ,
AET and vectors V TT , V TE , V EE , V ET have zero entries.

For j ∈ {1, . . . , R} we define the indegree of cluster Cj in our regulatory network
with respect to the target clusters and environmental clusters by

deg(Cj)TT :=
R∑

r=1

χTT
jr and deg(Cj)TE :=

S∑

s=1

χTE
js ,

respectively. That means, the indegrees deg(Cj)TT and deg(Cj)TE count the num-
ber of target and environmental clusters which regulate cluster Cj . Similarly, for i ∈
{1, . . . , S} the indegree of clusterDi with respect to the environmental clusters and the
target clusters is given by

deg(Di)EE :=
S∑

s=1

χEE
is and deg(Di)ET :=

R∑

r=1

χET
ir .

Now, the indegrees deg(Di)EE and deg(Di)ET count the number of environmental and
target clusters which regulate cluster Di.

For network rarefication we introduce upper bounds on the indegrees. The values of
these bounds depend on any a priori information available and they have to be given by
the practitioner. Including these additional constraints, we obtain the following mixed
integer optimization problem:
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(RMI)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize
T∑

κ=1

{ R∑

r=1

∥
∥ΔX(κ)

r

∥
∥
∗ −

∥
∥Δμ(κ)

r

∥
∥2

2

+
S∑

s=1

∥
∥ΔE(κ)

s

∥
∥
∗ −

∥
∥Δρ(κ)

s

∥
∥2

2

}

subject to deg(Cj)TT ≤ αTT
j , j = 1, . . . , R

deg(Cj)TE ≤ αTE
j , j = 1, . . . , R

deg(Di)EE ≤ αEE
i , i = 1, . . . , S

deg(Di)ET ≤ αET
i , i = 1, . . . , S.

We note that our network rarefication can also be achieved by bounding the outde-
grees of the nodes. Such an approach was utilized in [82, 83, 84] in order to obtain a
more flexible representation of gene-environment networks with respect to uncertain
states in terms of intervals and parallelpipes.

The topology of the network may have significant consequences on error and attack
tolerance of the regulatory system [3,20]. These generic properties of complex networks
refer to robustness against local failures and the vulnerability to the removal of a few
nodes that play a vital role in maintaining the network connectivity. In general, two ma-
jor classes of complex networks can be divided: homogenous networks and inhomoge-
neous or scale-free networks [46]. These networks are characterized by the connectivity
distribution P (k), giving the probability that a node in the network is connected to k
other nodes. In homogeneous networks, P (k) peaks at an average 〈k〉 and decays expo-
nentially for large k, whereas in scale-free networks the probability decays as a power
law P (k) ∼ k−γ , i.e., it is free of a characteristic scale. In homogenous networks, like
the random graph models of Erdös and Rényi [16,23], each node has approximately the
same number of links. In contrast, in scale-free networks, like metabolic networks [37],
some highly connected nodes are statistically significant and although they can be con-
sidered as robust and demonstrate a high tolerance against (random) failures, they are
highly vulnerable against attacks.

The binary constraints of (RMI) are very strict and if the constraints are not appro-
priate, important branches of the regulatory network could be deleted. For this reason,
we use continuous optimization for a relaxation of (RMI) by replacing the binary vari-
ables χTT

jr , χTE
js , χEE

is and χET
ir with real variables P TT

jr , P TE
js , PEE

is , PET
ir ∈ [0, 1],

which is also interpretable as probabilities (we refer to [65] for optimization models
with probabilistic constraints). These variables should linearly depend on the corre-
sponding elements of ΓTT

jr , Γ TE
js , ΓEE

is , ΓET
ir and ΦTT

j , ΦTE
j , ΦEE

i , ΦET
i .

The real-valued indegree of cluster Cj in our regulatory network with respect to the
target clusters and environmental clusters are now defined by

deg(Cj)TT :=
R∑

r=1

PTT
jr

(
Γ TT

jr , ΦTT
j

)
and deg(Cj)TE :=

S∑

s=1

PTE
js

(
Γ TE

js , ΦTE
j

)
,



Regulatory Networks under Ellipsoidal Uncertainty – Data Analysis and Prediction 49

respectively. Similarly, the real-valued indegree of cluster Di with respect to the envi-
ronmental clusters and the target clusters is given by

deg(Di)EE :=
S∑

s=1

PEE
is

(
ΓEE

is , ΦEE
i

)
and deg(Di)ET :=

R∑

r=1

PET
ir

(
ΓET

ir , ΦET
i

)
.

Now, we replace the binary constraints of (RMI) with continuous constraints and ob-
tain the following optimization problem:

(RC)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize
T∑

κ=1

{ R∑

r=1

∥
∥ΔX(κ)

r

∥
∥
∗ −

∥
∥Δμ(κ)

r

∥
∥2

2

+
S∑

s=1

∥
∥ΔE(κ)

s

∥
∥
∗ −

∥
∥Δρ(κ)

s

∥
∥2

2

}

subject to
R∑

r=1

PTT
jr

(
Γ TT

jr , ΦTT
j

) ≤ αTT
j , j = 1, . . . , R

S∑

s=1

PTE
js

(
Γ TE

js , ΦTE
j

) ≤ αTE
j , j = 1, . . . , R

S∑

s=1

PEE
is

(
ΓEE

is , ΦEE
i

) ≤ αEE
i , i = 1, . . . , S

R∑

r=1

PET
ir

(
ΓET

ir , ΦET
i

) ≤ αET
i , i = 1, . . . , S.

REMARK. We point out that the methods introduced are particularly applicable in the
financial sector, e.g., in the modeling of stochastic differential equations and, as a very
new contribution, the optimization of the statistical ROC curve for an improved classi-
fication and prediction of credit default [86]. Here, we point out a new view onto credits
given by the study of our paper. All the interaction among the items that we investigate
can be regarded as a ”credit” taken or given, as a measurement which asks for an appro-
priate response, such as an equivalent effect (maybe, plus a gain) in future. There are
consumptions of various kinds, medical treatments, expenditures in education, science
and the improvements in environmental protection. The realization of their purposes
has to be priced, discounted and compared, the degrees of these achievements can be
enforced by penalty terms in our models of optimization and dynamics. This new view
is subject of our future studies.

6 Conclusion

In this paper, we analyzed a time-discrete model of target-environment networks un-
der ellipsoidal uncertainty. We introduced the power of modern optimization by means
of semidefinite programming and the efficiency of interior point methods for the mod-
eling of our regression problem and nonsmooth optimization that we use a priori for
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clustering our items. This pioneering approach offers a new view on parameter estima-
tion and optimization of TE-regulatory systems depending on various kinds of errors,
where the dynamics of clusters of targets and environmental items and their mutual
effects are determined by corresponding clusters of parameters. Our research includes
clustering theory which we support by statistical investigations about the number of
clusters and their stability and by means of statistical learning we find the clusters with
the help of nonsmooth optimization. The representation of the dynamic states in terms
of ellipsoids was motivated by our and our colleagues’ studies on gene-environment
networks and eco-finance networks, where errors and uncertainty are modeled by in-
tervals [92, 94, 95]. Here, we extended the interval model by a representation of errors
in terms of ellipsoids what refers to stochastic dependencies between the various tar-
get and environmental items. These uncertainty sets are directly related to covariance
matrices and they provide good approximations of convex sets. In particular, models
based on Gaussian random noise refer to the ellipsoidal approach. However, Gaussian
random distributions are often used as simplifications and in many applications non-
Gaussian probability distributions have to be applied. Therefore, we will further extend
our models based on ellipsoidal calculus and, by this, in future works we will turn to
a more set-theoretic representation of errors and uncertainty based on semi-algebraic
sets. We will combine this new perception with refined optimization methods and by
this we will offer a further avenue for the analysis of TE-regulatory systems, partic-
ularly with regard to applications and real-world data. Furthermore, we propose that
collaborative game theory under uncertainty which was recently modeled with the help
of intervals [4,5,6,7] could become refined by our ellipsoidal calculus, herewith allow-
ing a great wealth of dependencies and subcoalitions preassigned.
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Abstract. Data mining tasks are often composed by multiple stages
that may be linked each other to form various execution flows. More-
over, data mining tasks are often distributed since they involve data
and tools located over geographically distributed environments, like the
Grid. Therefore, it is fundamental to exploit effective formalisms, such
as workflows, to model data mining tasks that are both multi-staged and
distributed. The goal of this work is defining a workflow formalism and
providing a visual software environment, named DIS3GNO, to design
and execute distributed data mining tasks over the Knowledge Grid,
a service-oriented framework for distributed data mining on the Grid.
DIS3GNO supports all the phases of a distributed data mining task, in-
cluding composition, execution, and results visualization. The paper pro-
vides a description of DIS3GNO, some relevant use cases implemented
by it, and a performance evaluation of the system.

1 Introduction

Data mining techniques and systems are widely used in many scientific and busi-
ness scenarios to infer useful knowledge from the increasing amount of available
data. Data mining tasks and knowledge discovery in databases (KDD) processes
are often composed of multiple stages (e.g., data extraction, data filtering, data
analysis, results evaluation) that may be linked each other by different depen-
dencies to form various execution flows. Moreover, data mining tasks are often
distributed since they involve data and tools located over geographically dis-
tributed environments, like computational Grids. Therefore, it is fundamental to
provide formalisms and environments to design and execute data mining tasks
that are both multi-staged and distributed.

Workflows are commonly-used formalisms to represent data and execution
flows associated with complex data mining tasks. A data mining workflow is
a graph in which nodes typically represent data sources, filtering tools, data
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mining algorithms, and visualizers, and edges represent execution dependencies
among nodes. An important benefit of workflows is that, once defined, they can
be stored and retrieved for modifications and/or re-execution: this allows users
to define typical data mining patterns and reuse them in different contexts. The
goal of this work is designing a high-level workflow formalism and implementing
a visual software environment to design and execute distributed data mining
tasks as workflows of services over the Knowledge Grid [1].

The Knowledge Grid is a software system providing services and mechanisms to
execute distributed data mining tasks or KDD processes in a Grid environment.
The workflow concept plays a fundamental role in the Knowledge Grid at differ-
ent levels of abstraction. A client application submits a distributed data mining
task to the Knowledge Grid by describing it through an XML workflow formal-
ism named conceptual model. The conceptual model describes data and tools to
be used, without specifying information about their location or implementation.

The Knowledge Grid creates an execution plan for the workflow on the basis of
the conceptual model and executes it by using the resources effectively available.
To understand this logic, the Knowledge Grid follows a two-step approach: it
initially models an abstract execution plan that in a second step is resolved into
a concrete execution plan. The abstract execution plan may not contain specific
information about the involved Grid resources (e.g., the actual site where a
data mining tool will be executed), while in the concrete execution plan all the
resources must be actually specified, by finding a mapping between requested
resources and available ones in the distributed computing infrastructure.

The aim of the high-level workflow formalism proposed in this work is to allow
domain-expert users (i.e., data analysts) to design a distributed data mining task
without specific expertise about Grid programming. A visual software environ-
ment, named DIS3GNO, has been implemented to allow a user to: i) compose a
distributed data mining workflow; ii) execute the workflow onto the Knowledge
Grid; iii) visualize the results of the data mining task. DIS3GNO performs the
mapping of the user-defined workflow to the conceptual model and submits it to
the Knowledge Grid services, managing the overall computation in a way that
is transparent to the user.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the Knowledge Grid architecture and implementation. Section 3 de-
scribes the main components of the proposed workflow formalism for distributed
data mining. Section 4 presents the DIS3GNO system. Section 5 describes how
a data mining workflow is executed in the Knowledge Grid. Section 6 presents
some uses cases and a performance evaluation of the system. Section 7 discusses
related work. Finally, Section 8 concludes the paper.

2 The Knowledge Grid

The Knowledge Grid is a software framework to support the execution of dis-
tributed data mining tasks in a Grid environment [1]. The framework supports
data mining on the Grid by providing mechanisms and services for publishing
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and searching data-mining related resources (data sources, data mining tools,
etc.), creating and executing distributed data mining processes, and managing
data mining results.

The Knowledge Grid services are organized in two hierarchical layers: the core
layer and the high-level layer, as shown in Fig. 1. The design idea is that client
applications directly interact with high-level services that, in order to satisfy
client requests, invoke suitable operations exported by the core-level services.
In turn, core-level services perform their operations by invoking basic services
provided by available Grid environments running on the specific host, as well as
by interacting with other core-level services.
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Fig. 1. Knowledge Grid layered services

The high-level layer includes the following services:

– Data Access Service (DAS ), which provides operations for publishing,
searching and downloading data to be mined (publishData, searchData,
and downloadData operations);

– Tools and Algorithms Access Service (TAAS ), which is responsible for pub-
lishing, searching and downloading tools and algorithms for data extraction,
pre-processing and mining (publishTool, searchTool, and downloadTool
operations);

– Execution Plan Management Service (EPMS ), which receives a conceptual
model of the data mining task through the submitKApplication operation,
translates it into an abstract execution plan, and passes it to the RAEMS
service (see below).

– Results Presentation Service (RPS ), which allows to retrieve the results
(i.e., the inferred models) of previous data mining computations through
the getResults operation.

The core-level layer includes two services:

– Knowledge Directory Service (KDS ), which is responsible for managing
metadata about the Knowledge Grid resources (data, tools and algo-
rithms). It provides three operations (publishResource, searchResource,
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and downloadResource) to publish, search and download resource meta-
data, which are stored in a Knowledge Metadata Repository (KMR) as XML
documents (details about structure and use of metadata in the Knowledge
Grid can be found in [2]).

– Resource Allocation and Execution Management Service (RAEMS ),
which starting from an abstract execution plan (received through the
manageKApplication operation) generates a concrete execution plan and
manages its execution. Generated execution plans are stored in a Knowl-
edge Execution Plan Repository (KEPR), while the results are stored in a
Knowledge Base Repository (KBR).

All the Knowledge Grid services have been implemented as Web services that
comply with the Web Services Resource Framework (WSRF) family of standards,
as described in a previous work [3]. In particular, we used the WSRF library
provided by Globus Toolkit 4 [4], as well as some basic Grid services (e.g., reliable
file transfer, authentication and authorization) provided by the same toolkit.

3 Workflow Components

As mentioned earlier, we use workflows as a structured way to model and express
the variety of constraints and implications of complex data mining applications.

In DIS3GNO a workflow is represented as a directed acyclic graph whose
nodes represent resources and whose edges represent the dependencies among
the resources.

Fig. 2. Nodes types

The types of resources which can be present in a data mining workflow (graph-
ically depicted by the icons in Fig. 2) are:

– Dataset, representing a dataset;
– Tool, representing a tool to perform any kind of operation which may be

applied to a dataset (data mining, filtering, splitting, etc.) or to a model
(e.g., voting operations);

– Model, represents a knowledge model (e.g., a decision tree or a set of associ-
ation rules), that is the result produced by a data mining tool.
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Each node contains a description of a resource as a set of properties which provide
information about its features and actual use. This description may be full or
partial: in other words, it is both possible to specify a particular resource and
its location in the Grid, or just a few of its properties, leaving to the system the
task to find a resource matching the specified characteristics and its location.
In the former case we will refer to the resource as concrete, in the latter one as
abstract.

For example, in the case of a data mining tool, one could be interested in
any algorithm, located in any node of the Grid, provided it is a decision tree
classification algorithm able to handle arff files, or could want specifically the
algorithm named NaiveBayes located in a specified host. Once the workflow will
be executed, the Knowledge Grid middleware will find, as explained in Section 2,
a concrete resource matching the metadata, whether they are completely or
partially specified. Clearly only dataset and tool nodes can be either concrete
or abstract, the model node can’t be abstract as it represents the result of a
computation. The model node has only one property, the location, which if left
empty will be implicitly set to the same location of the tool node in input.

When a particular resource property is entered, a label is attached below to
the corresponding icon, as shown in the example in Fig. 3. The property chosen
as the label is the one considered most representative for the resource, i.e. the
Name for the dataset and tool nodes and the Location for the model node.

Fig. 3. Nodes labels

In order to ease the workflow composition and to allow a user to monitor its
execution, each resource icon bears a symbol representing the status in which the
corresponding resource is at a given time. When the resource status changes, as
consequence of the occurrence of certain events, its status symbol changes accord-
ingly. The resource states can be divided in two categories: the composition-time
and the run-time states.

The composition-time states (shown in Table 1), useful during the workflow
composition phase, are:

1. No information provided = no parameter has been specified in the resource
properties;

2. Abstract resource = the resource is defined through constraints about its
features, but it is not known a priori; the S in the icon stands for search,
meaning that the resource has to be searched in the Grid;

3. Concrete resource = the resource is specifically defined through its KDS
URL; the K in the icon stands for KDS URL;
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4. Location set = a location for the model has been specifically set (this status
is pertinent to the model node only);

Table 1. Nodes composition-time states

Symbol Meaning

No information provided

Abstract resource

Concrete resource

Location set

Table 2. Nodes run-time states

Symbol Meaning

Matching resource found

Running

Resource not found

Execution failed

Task completed successfully

The run-time states (shown in Table 2), useful during the workflow execution
phase, are:

1. Matching resource found = a concrete resource has been found matching the
metadata;

2. Running = the resource is being executed/managed.
3. Resource not found = the system hasn’t found a resource matching the

metadata;
4. Execution failed = some error has occurred during the management of the

corresponding resource;
5. Task completed successfully = the corresponding resource has successfully

fulfilled its task;

Each resource may be in one of these run-time states only in a specific phase of
the workflow execution: i.e. state 1 and 2 only during the execution, state 3 and
4 during or after the execution, state 5 only after the execution.

The nodes may be connected with each other through edges, establishing
specific dependency relationships among them. All the possible connections are
show in Table 3; those not present in Table 3 are not allowed and the graphical
user interface ensures a user is prevented to create them.

When an edge is being created between two nodes a label is automatically at-
tached to it representing the kind of relationship between the two nodes. In most
of the cases this relationship is strict but in one case (dataset-tool connection)
requires further input from a user to be specified.

The possible edge labels are:

– dataset : indicates that the input or output of a tool node is a dataset;
– train: indicates that the input of a tool node has to be considered a training

set;
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Table 3. Nodes connections

First
resource

Second
resource

Label Meaning
Graphical

representation

dataset dataset transfer Explicit file transfer

dataset tool
dataset,

train, test
Type of input for a tool
node

tool dataset dataset
Dataset produced by a
tool

tool model model
Model produced by a
DM algorithm

model tool model Model received by a tool

model model transfer
Explicit transfer of a
model

– test : indicates that the input of a tool node has to be considered a test set;
– transfer : indicates an explicit transfer of a dataset, or a result of a compu-

tation, from one Grid node to another;
– model : indicates a result of a computation of a data mining algorithm.

4 The DIS3GNO System

DIS3GNO represents the user front-end for two main Knowledge Grid function-
alities:

– Metadata management. DIS3GNO provides an interface to publish and
search metadata about data and tools, through the interaction with the
DAS and TAAS services.

– Execution management. DIS3GNO provides an environment to design and
execute distributed data mining applications as workflows, through the in-
teraction with the EPMS service.

The DIS3GNO GUI, depicted in Fig. 4, has been designed to reflect this two-
fold functionality. In particular, it provides a panel (on the left) dedicated to
publish and search resource metadata, and a panel (on the right) to compose
and execute data mining workflows.

In the top-left corner of the window there is a menu used for opening, saving
and creating new workflows, viewing and modifying some program settings and
viewing the previously computed text results present in the local file system.
Below the menu bar there is a toolbar containing some buttons for the execu-
tion control (starting/stopping the execution and resetting the nodes states) and
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Fig. 4. A screenshot of the DIS3GNO GUI

other for the workflow editing (creation of nodes representing datasets, tools or
viewers, creation of edges, selection of multiple nodes and deletion of nodes or
edges).

To outline the main functionalities of DIS3GNO, we briefly describe how it is
used to compose and run a data mining workflow. By exploiting the DIS3GNO
GUI, a user can compose a workflow in a very simple way. First, she starts by
selecting from the toolbar the type of resource to be inserted in the workflow (a
dataset, a tool or a model node) and drags it into the workflow composition panel.
Such operation should be repeated as many times as needed to insert all the
required application nodes. Then, she has to insert suitable edges by setting, for
each one, the specific dependency relationship between the nodes (as described
in Section 3 and summarized in Table 3). Typically, most nodes in a workflow
represent abstract resources. In other terms, a user initially concentrates on the
application logic, without focusing on the actual datasets or data mining tool to
be used.

The simple workflow in Fig. 4 includes a concrete resource (the kddcup
dataset) and three abstract resources: a Splitter tool and an instance of J48
and NaiveBayes. As described in the previous section, the S in the icon of such
nodes means that the corresponding resources are defined through constraints
about their features. To specify the constraints for a given resource, a user se-
lects the corresponding node in the workflow and fills a set of properties shown
on the left panel. For example, in Fig. 4, the node associated with the J48 node
has been selected (as highlighted by the dashed box) and some of its properties
have been specified in the Tool properties panel that is shown on the left.

Once the properties of a resource have been specified, a user can press the
Search button to obtain the list of all resources that currently match those
properties. The results of such search (a list of KDS URLs) are shown in the
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bottom of the left panel. Given such list of matching resources, a user may decide
to select a specific resource, or to leave the system doing so at run time. The
workflow can be submitted to the EPMS service by pressing the Run button
in the toolbar. As a first action, if a user credentials are not available or have
expired, a Grid Proxy Initialization window is loaded (see Fig. 5). After that, the
workflow execution actually starts and proceeds as detailed in the next section.

Fig. 5. Proxy initialization at workflow submission

During the workflow execution, the runtime status of the computation is
shown to the user. As described in the previous section, this is done by labelling
each node of the workflow with a symbol associated with the current status of
the corresponding resource. After completion, the user can visualize an inferred
model by selecting the corresponding node in the workflow. For example, Fig. 6
shows the model generated by the J48 algorithm.

5 Execution Management

As described earlier (see Section 1), starting from the data mining workflow de-
signed by a user, DIS3GNO generates an XML representation of the data mining
task referred to as conceptual model. DIS3GNO passes the conceptual model to
a given EPMS, which is in charge of transforming it into an abstract execution
plan for subsequent processing by the RAEMS. The RAEMS receives the ab-
stract execution plan and creates a concrete execution plan. In order to carry
out such a task, the RAEMS needs to evaluate and resolve a set of resources,
by contacting the KDS and choosing the most appropriate ones. As soon as the
RAEMS has built the concrete execution plan, it is in charge of coordinating its



66 E. Cesario et al.

Fig. 6. Results visualization after workflow completion

execution. The status of the computation is notified to the EPMS, which in turn
forwards the notifications to the DIS3GNO system for visualization to the user,
as discussed in Section 4.

Fig. 7 describes the interactions that occur when an invocation of the EPMS
is performed. In particular, the figure outlines the sequence of invocations to
others services, and the interchanges with them when a data mining workflow is
submitted for allocation and execution. To this purpose, the EPMS exposes the
submitKApplication operation, through which it receives a conceptual model
of the application to be executed (step 1).
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The basic role of the EPMS is to transform the conceptual model into an
abstract execution plan for subsequent processing by the RAEMS. An abstract
execution plan is a more formal representation of the structure of the application.
Generally, it does not contain information on the physical Grid resources to be
used, but rather constraints about them.

The RAEMS exports the manageKExecution operation, which is invoked by
the EPMS and receives the abstract execution plan (step 2). First of all, the
RAEMS queries the local KDS (through the searchResource operation) to ob-
tain information about the resources needed to instantiate the abstract execution
plan (step 3). Note that the KDS performs the searching both accessing the local
Knowledge Metadata Repository (KMR) and querying all the reachable remote
KDSs (step 4). To reach as many remote KDSs as needed, an unstructured peer-
to-peer overlay is built among Knowledge Grid nodes. To this end, each node
possesses a configurable set of neighboring nodes to which forward a query.

After the instantiated execution plan is obtained, the RAEMS coordinates
the actual execution of the overall computation. To this purpose, the RAEMS
invokes the appropriate data mining services (DM Services) and basic Grid ser-
vices (e.g., file transfer services), as specified by the instantiated execution plan
(step 5). The results of the computation are stored by the RAEMS into the
Knowledge Base Repository (KBR) (step 6), while the execution plan is stored
into the Knowledge Execution Plan Repository (KEPR) (step 7). To make avail-
able the results stored in the KBR, it is necessary to publish results metadata
into the KMR. To this end, the RAEMS invokes the publishResource operation
of the local KDS (steps 7 and 8).

6 Use Cases and Performance

In this section we present two examples of distributed data mining workflows
designed and executed on a Grid using the DIS3GNO system. The first work-
flow is a parameter sweeping application in which a dataset is processed using
multiple instances of the same classification algorithm with different parameters,
with the goal of finding the best classifier based on some accuracy parameters.
In the second workflow, a dataset is analyzed using different classification al-
gorithms. The resulting classification models are combined through voting to
derive a global model that is more accurate than the single ones. Both of these
workflows have been executed on a Grid composed of several machines to eval-
uated the effectiveness of the systems as well as its performance in terms of
scalability.

6.1 Parameter Sweeping Workflow

We used DIS3GNO to compose an application in which a given dataset is an-
alyzed by running multiple instances of the same classification algorithm, with
the goal of obtaining multiple classification models from the same data source.
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The dataset covertype1 from the UCI KDD archive, has been used as data
source. The dataset contains information about forest cover type for a large
number of sites in the United States. Each dataset instance, corresponding to a
site observation, is described by 54 attributes that give information about the
main features of a site (e.g., elevation, aspect, slope, etc.). The 55th attribute
contains the cover type, represented as an integer in the range 1 to 7. The original
dataset is made of 581,012 instances and is stored in a file having a size of 72MB.
From this dataset we extracted three datasets with 72500, 145000 and 290000
instances and a file size of 9 MB, 18 MB and 36 MB respectively. Then we used
DIS3GNO to perform a classification analysis on each of those datasets.

DIS3GNO has been used to run an application in which 8 independent in-
stances of the J48 algorithm perform a different classification task on the cover-
type data set. In particular, each J48 instance has been asked to classify data
using a different value of confidence, ranging from 0.15 to 0.50. The same appli-
cation has been executed using a number of computing nodes ranging from 1 to
8 to evaluate the speedup of the system.

Fig. 8. Parameter sweeping workflow

The workflow corresponding to the application is shown in Fig. 8. It includes
a dataset node (representing the covertype dataset) connected to 8 tool nodes,
each one associated with an instance of the J48 classification algorithm with a
1 http://kdd.ics.uci.edu/databases/covertype/covertype.html
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different value of confidence (ranging from 0.15 to 0.50). These nodes are in turn
connected to another tool node, associated with a model chooser which selects
the best classification model among those learnt by the J48 instances. Finally, the
node associated with the model chooser is connected to a viewer node having
the location set to localhost; this enforces the model to be transferred to the
client host for its visualization.

The workflow has been executed using a number of computing nodes ranging
from 1 to 8 for each of the three datasets (9 MB, 18 MB and 36 MB) in order to
evaluate the speedup of the system. Table 4 reports the execution times of the
application when 1, 2, 4 and 8 computing nodes are used. The 8 classification
tasks that constitute the overall application are indicated as DM1..DM8, corre-
sponding to the tasks of running J48 with a confidence value of 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.45, and 0.50, respectively. The table shows how the classifica-
tion tasks are assigned to the computing nodes (denoted as N1..N8), as well as
the execution times for each dataset size.

Table 4. Task assignments and execution times for the parameter sweeping workflow
(times expressed as hh:mm:ss)

No of Task assignments Exec. time Exec. time Exec. time
nodes (Node ← Tasks) 9 MB 18 MB 36 MB

1 N1 ← DM1, ..., DM8 2:43:47 7:03:46 20:36:23

2
N1 ← DM1, DM3, DM5, DM7

1:55:19 4:51:24 14:14:40
N2 ← DM2, DM4, DM6, DM8

4

N1 ← DM1, DM5

58:30 2:26:48 7:08:16
N2 ← DM2, DM6

N3 ← DM3, DM7

N4 ← DM4, DM8

8 Ni ← DMi for 1 ≤ i ≤ 8 32:35 1:21:32 3:52:32

When the workflow is executed on more than one node, the execution time
includes the overhead due to file transfers. For example, in our network sce-
nario, the transfer of a 36 MB dataset from the user node to a computing node
takes on average 15 seconds. This value is small as compared to the amount of
time required to run a classification algorithm on the same dataset, which takes
between 2.5 and 3.9 hours depending on the computing node. The overall exe-
cution time also includes the amount of time needed to invoke all the involved
services (i.e., EPMS, RAEMS, KDS) as required by the workflow. However, such
an amount of time (approximatively 2 minutes) is negligible as compared to the
total execution time.

For the 36 MB dataset, the total execution time decreases from more than
20 hours obtained using 1 computing node, to less than 4 hours obtained with
8 nodes. The achieved execution speedup ranged from 1.45 using 2 nodes, to
5.32 using 8 nodes. Similar trends have been registered with the other two
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datasets. The execution times and speedup values for different number of nodes
and dataset sizes are shown in Fig. 9.
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Fig. 9. Execution times and speedup values for different numbers of nodes and dataset
sizes, for the parameter sweeping workflow

6.2 Ensemble Learning Workflow

Ensemble learning is a machine learning paradigm where multiple learners are
trained to solve the same problem. In contrast to ordinary machine learning
approaches which try to learn one model from training data, ensemble methods
build a set of models and combine them to obtain the final model [5]. In a
classification scenario, an ensemble method constructs a set of base classifiers
from training data and performs classification by taking a vote on the predictions
made by each classifier. As proven by mathematical analysis, ensemble classifiers
tend to perform better (in terms of error rate) than any single classifier [6].

The DIS3GNO system has been exploited to design a workflow implementing
an ensemble learning application which analyzes a given dataset using different
classifiers and performs a voting on the models inferred by them.

As input dataset we used kddcup99 2 . This data set, used for the KDD’99
Competition, contains a wide set of data produced during seven weeks of mon-
itoring in a military network environment subject to simulated intrusions. We
extracted three data sets from it, with 940000, 1315000 and 1692000 instances
and a size of 100 MB, 140 MB and 180 MB.

DIS3GNO has been used to split the dataset into two parts: a test set (1/3 of
the original dataset) and a training set (2/3 of the original dataset). The latter
has been processed using four classifiers: ConjuctiveRule, NaiveBayes, Random-
Forest and J48. The models generated by the four classifiers are then collected
to a node where they are given to a voter component; the classification is per-
formed and evaluated on the test set by taking a vote, for each instance, on the

2 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Fig. 10. Ensemble learning workflow

predictions made by each classifier. The same workflow has been executed, for
each of the three datasets, using a number of computing nodes ranging from 1
to 4 (excluding the node where we performed the voting operation) to evaluate
the speedup of the system.

The workflow corresponding to the application is shown in Fig. 10. It includes
a dataset node representing the kddcup dataset, connected to a tool node asso-
ciated with a dataset partitioner, from which a test set and a training set are
obtained, as detailed above. The training set is connected to four tool nodes,
associated with the classification algorithms mentioned earlier. The four models
generated by such algorithms are connected to a tool node associated with a
voter which assigns to each istance of the test set a class obtained through a
voting operation.

Table 5 reports the execution times of the application when 1, 2 and 4 com-
puting nodes are used. The four tasks are indicated as DM1..DM4, correspond-
ing ConjuctiveRule, NaiveBayes, RandomForest and J48 respectively. The table
shows how the tasks are assigned to the computing nodes, as well as the execu-
tion times for each dataset size.
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Table 5. Task assignments and execution times for the ensemble learning workflow

No of Task assignments Exec. time Exec. time Exec. time
nodes (Node ← Tasks) 100 MB 140 MB 180 MB

1 N1 ← DM1, ..., DM4 1:30:50 2:31:14 3:34:27

2
N1 ← DM1, DM3

1:03:47 1:37:05 2:07:05
N2 ← DM2, DM4

4 N1 ← DMi for 1 ≤ i ≤ 4 46:16 1:13:47 1:37:23

The execution times and speedup values for different number of nodes and
dataset sizes are represented in Fig. 11. In this case, the speedup is lower than
that obtained with the parameter sweeping workflow. This is due to the fact
that the four algorithms used require very different amounts of time to complete
their execution on a given dataset. In fact, the overall execution time is bound to
the execution time of the slowest algorithm, thus limiting the speedup. However,
the absolute amount of time saved by running the application on a distributed
environment is still significant, particularly for the largest dataset when four
computing nodes are used.
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Fig. 11. Execution times and speedup values for different numbers of nodes and dataset
sizes, for the ensemble learning workflow

7 Related Work

Other workflow systems, although most of them not specifically designed for
distributed data mining applications, have been proposed for Grid environments;
among them the most popular ones are Askalon [7], Kepler [8], Pegasus [9],
Taverna [10], Triana [11], Weka4WS [12].

ASKALON [7] is an Application Development and Runtime Environment for
the Grid. Developed at the University of Innsbruck, Austria, it uses a custom
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language called AGWL for describing Grid workflow applications at a high level
of abstraction. It has a SOA-based runtime environment with stateful services
and uses the Globus Toolkit as Grid platform.

Kepler [8] provides a graphical user interface and a run-time engine that
can execute workflows (with an emphasis on ecology and geology) either from
within the graphical interface or from a command line. It is developed and
maintained by a team consisting of several key institutions at the University of
California, USA. Kepler works based on the concept of directors, which dictate
the models of execution used within a workflow. It is a java-based application
that is maintained for the Windows, OSX, and Linux operating systems and
freely available under the BSD License.

The Pegasus [9] project, developed at the University of Southern California,
USA, encompasses a set of technologies to execute workflow-based applications
in a number of different environments, i.e., desktops, campus clusters, Grids,
and Clouds. The worfklow management system of Pegasus can manage the ex-
ecution of complex workflows on distributed resources and it is provided with a
sophisticated error recovery system.

Taverna [10] is an open source tool for designing and executing workflows,
developed at the University of Manchester, UK. Its own workflow definition lan-
guage is characterized by an implicit iteration mechanism (single node implicit
parallelism). The Taverna team has primarily focused on supporting the Life Sci-
ences community (biology, chemistry and medical imaging) although does not
provide any analytical or data services itself. It supports different types of Web
services, including WSDL-based, Soaplab, BioMoby and BioMart services.

Triana [11] is a problem solving environment, developed at Cardiff University,
UK, that combines a visual interface with data analysis tools. It can connect
heterogeneous tools (e.g. Web services, Java units, JXTA services) on one work-
flow. Triana uses its own custom workflow language, although can use other
external workflow language representations such as BPEL4WS [13] which are
available through pluggable language readers and writers. Triana comes with a
wide variety of built-in tools for signal-analysis, image-manipulation, desk-top
publishing, etc.

Weka4WS [12] is a framework developed at the University of Calabria, Italy,
to extend the widely used Weka toolkit for supporting distributed data mining
on Grid environments. Weka4WS has been designed by using the Web Services
Resource Framework (WSRF) as enabling technology. In particular, it has been
developed by using the WSRF Java library provided by Globus Toolkit 4.0.

Differently from most of the system described above, DIS3GNO has been
specifically developed to support distributed data mining application design.
Also compared to the other systems that are data-mining oriented (e.g.,
Weka4WS), DIS3GNO provides additional features for metadata management,
supports abstract resources and runtime matching, and allows an easier use of
third-party algorithms.
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8 Conclusions

Workflows are effective formalisms to represent data and execution flows asso-
ciated with complex data mining tasks. The DIS3GNO system described in this
chapter provides a set of visual facilities to design and execute distributed data
mining workflows in Grids.

The DIS3GNO GUI operates as an intermediary between the final user and
the Knowledge Grid, a service-oriented system for high-performance distributed
KDD. All the Knowledge Grid services for metadata and execution management
are accessed transparently by DIS3GNO, thus allowing the domain experts to
compose and run complex data mining application without worrying about the
underlying infrastructure details.

The experimental evaluation conducted by executing some typical data mining
patterns has demonstrated the effectiveness of the DIS3GNO system to support
data mining workflows design and execution in distributed Grid environments.
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Abstract. Association Rules Discovery is an increasing subdomain of
Datamining. Many works have focused on the extraction and the evalu-
ation of the association rules, leading to many technical improvments on
the algorithms, and many different measures. But few number of them
have tried to merge the both. We introduce here a formal framework
for the study of association rules and interestingness measures that al-
lows an analytic study of these objects. This framework is based on the
contingency table of a rule and let us make a link between analytic prop-
erties of the measures and algorithmic properties. We give as example
the case of three algorithmic properties for the extraction of association
rules that were generalized and applied with the help of this framework.
These properties allow a pruning of the search space based on a large
number of measures and without any support constraint.

1 Introduction

Association Rules Discovery is an important task of Knowledge Discovery con-
sisting of extracting patterns from databases of the form A→ B. Such rule A→ B
is based on an itemset AB and characterizes the co-occurrence of itemsets A and B.
The first step of the association rules discovery process is to extract all frequent
itemsets. This step benefits from an efficient heuristic that allows the algorithm
to efficiently prune the search space, and is at the heart of the Apriori al-
gorithm [3]. This heuristic says that the higher you go in the itemsets lattice,
the less the itemsets are frequent. The algorithm Apriori uses this heuristic to
extract the frequent itemsets with respect to a given threshold: if one itemset
is encountered that does not have a frequency higher than the given threshold
minsupp, then none of its children has an higher frequency than minsupp. This
heuristic is called the antimonotony property of the support, where the sup-
port of an itemset I is an equivalent term for its frequency and is defined by
the proportion of transactions containing I in the whole database. The second

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 24, pp. 77–98.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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step consists of generating all association rules from the frequent itemsets, and
of selecting those having a confidence value higher than a given threshold
minconf . The confidence of a rule A → B is the proportion of rules contain-
ing B in the set of rules containing A. At the moment, this step can only be
exhaustive. Because of these thresholds, the Apriori-like algorithms miss many
rules, especially the rules that have a low support and an high confidence i.e.
nuggets of knowledge: rules concerning rare diseases, very particular cases. . . In
addition, choosing an high confidence threshold favors rules A → B having a
very frequent consequent B: for example since bread is present in many market
transactions, a rule with bread in consequent is not really interesting. As a conse-
quence, in order to filter the large final set of rules one has to use a post-process,
for instance with additional measures of interest. For a while only few works
were interested in finding other algorithmic properties but it becomes nowadays
of great importance.

Since the origin of the field of association rules discovery, many works have
focused on trying to accelerate the mining phase. In fact, mining association
rules is a very costly task of datamining, and becomes always harder with the
actual databases, which are larger each day. Since the first definition of Apriori
algorithm [3], many efforts have been made to decrease the computation time,
by changing the data structure [16] or optimizing the implementations [6]. As
time goes by, the originally used support/confidence’s couple came out as
inadequate, and others measures where used (at the best of our knowledge, the
more advanced inventory, with 69 measures, can be found in [15]), but none
of them could be used at the heart of the algorithms. Indeed, whatever the
measure, one had to first mine frequent itemsets, and then generate interesting
rules, whilst assuming a large number of possible rules.

Consequently, it appeared that no measure presents an algorithmic advantage,
and in order to distinguish one from each other, specific properties of variation
and behavior were studied. This led to complex models and studies, and approx-
imate formulations. In this domain, there was a real lack of a general framework
to study interestingness measures.

In this context and after many years of technical improvements, the first
algorithms based on algorithmic properties of measures arrived. Three of them,
which we considered as particularly interesting, have attracted our attention.
The reason is that they allow a pruning of the search space in the manner
of the support. The first two works are exclusively based on confidence.
[32] discovered a generalization of confidence for itemsets that has the same
antimonotny property as the support. Although losing many rules, the main
advantage of this new measure was that it allowed the reuse of all the technical
improvements made around Apriori. As for [40], they described an algorithmic
property of confidence for classification rules, i.e. rules with a predetermined
target item. Unlike antimonotonicity, this property allows a top-down pruning of
the search space. The main advantage is that this pruning strategy finds nuggets
of knowledge, i.e. rules with high confidence and low support. Finally, [29]
introduced the notion of optimal rule sets and proposed an efficient algorithm to
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mine them. This work was a great step forward since the underlying algorithmic
property can be applied to a larger set of measures.

In our view, these works are very encouraging, particularly the one of [29].
Since it can apply to many measures, it was natural for us to try to extend this
list. However, an arduous case-by-case analysis appeared to us as inadmissible,
and the fact that the same property can be applied to many measures persuaded
us that this had to see with intrinsic properties of the measures. To work with this
assumption, we present here a framework for the analytical study of measures,
that can take into account any parameterization of the measure. In fact, many
works have focused on the behavior of measures with the variation of examples,
but some have shown the importance of the behavior of a measure against the
counter examples, or of its relation with confidence. Our framework allows us
to choose any of these points of view.

This chapter presents a survey of our works in this domain. We first draw the
scientific landscape of our work, then we describe in depth the relevant framework
and finally present its applications in the domain of pruning strategies. For more
precisions, references and complete proofs, we suggest that the interested reader
has a look at [22,24,25,23].

In the following, the notations will be precisely detailed. In broad strokes, I
is an item (or valuated attribute), A is an attribute, T is a transaction, X, Y, Z
stand for itemsets (or sets of valuated attributes), P is the classical symbol for
probabilities, and we denote by px the value of P(X).

2 Scientific Landscape

Before introducing our formal framework, let first describe the scientific land-
scape of our works. The following parts refer to the domain of association rule
mining and evaluation in the datamining task. Therefore, many concepts have to
be described, namely the concepts of database, association rule and evaluation.
We will describe them in the preceding order.

Table 1.

I1 I2 I3 I4 I5 I6 I7
T1 1 1 0 1 1 0 1
T2 0 1 0 1 1 1 0
T3 1 0 1 0 0 0 1
T4 1 1 1 0 1 1 1
T5 0 1 0 0 0 1 1
T6 0 0 1 1 1 0 1

2.1 Database

A Database is described by a set of items I = {I1, . . . , In}, a set of transactions
T = {T1, . . . , Tm} and a binary relationR over T×I. It can be viewed as a matrix
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Table 2. Example of a categorical database

workclass education marital-status occupation relationship income
State-gov Bachelors Never-married Adm-clerical Not-in-family ≤50K

Self-emp-not-inc Bachelors Married-civ-spouse Exec-managerial Husband ≤50K
Private HS-grad Divorced Handlers-cleaners Not-in-family ≤50K
Private 11th Married-civ-spouse Handlers-cleaners Husband ≤50K
Private Bachelors Married-civ-spouse Prof-specialty Wife ≤50K
Private Masters Married-civ-spouse Exec-managerial Wife ≤50K
Private 9th Married-spouse-absent Other-service Not-in-family ≤50K

Self-emp-not-inc HS-grad Married-civ-spouse Exec-managerial Husband >50K

as shown Table 1: If TpRIq then the element (p, q) of the matrix is 1, else 0. This
formalism stands for the transaction number p contains the item q. Equivalently,
one can see a transaction Tp as the itemset of all items in relation with Tp.
For example, in Table 1, T3 = {I1, I3, I7}. This kind of database is a binary
database, and describes the presence/absence of an item in the transactions. For
example, it can describe the presence of products in a market basket, or the
presence/absence of symptoms in a medical database.

However, many of the actual databases (see for example [4]) have categor-
ical or numerical attributes, instead of simple items. Our works focus on bi-
nary databases and categorical databases. In case of numerical attributes, we
first apply discretization algorithms to obtain categorical attributes. As such,
let us focus on categorical databases. A categorical database is described by
a set of attributes A = {A1, . . . , An}, for each attribute Ai a set of values
VAi = {a(i)

1 , . . . , a
(i)
ni }, a set of transactions T = {T1, . . . , Tm} and a function f

over T×A such that f(Tp, Aq) ∈ VAq, meaning that in transaction Tp, the value of
Aq is a(q)

k ∈ VAq. Table 2 shows an example of categorical database extracted from
the well known Census Database. In this example, we have an attribute edu-
cation whose values are Veducation= {bachelors,HS-grad,11th,Masters,9th}.
It is important to notice that a categorical database can be simply binarized
by creating one attribute for each couple (Ai, a(i)

p ). One major drawback of this
method is the large increase of size when each attribute has a large number of
values. However, it let us use the simple word database for either of those two
types of databases, binary or categorical.

Databases are collected in many different manners, and for many different
reasons and applications. Our works focus on the observation of co-appearance
of items or attributes in the data. In this context, we call itemset a set of items,
or a set of valuated attributes. This task makes a distinction between two sorts
of databases: databases without mining constraints, and classification databases.
The latter are databases with a so called class attribute, used for prediction tasks.
As an example, the attribute income in the Census database is a class attribute.
This can be used as target in decision tree building for example. Databases
without a class attribute are without mining constraints, and can be used to
observe association between attributes, such as setting up aisle end displays in
a market basket database for example.
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2.2 Association Rules

As mentioned above, we focus here on the observation of co-appearance of items
or attributes in a given database DB. More precisely, we are interested in asso-
ciation rules. An association rule is an object of the form X DB→ Y where:

– X and Y are non-empty itemsets,
– X ∩ Y = ∅,
– X (resp. Y) is called antecedent (resp. consequent) of the rule,

When no ambiguity is possible, we only write X→ Y.
The literal translation of an association rule X DB→ Y could be "if one can

find X in a transaction of database DB, then he would probably find Y too". The
big deal with association rules is to quantify this probably. Historically, this has
been done by using two measures, support (supp) and confidence (conf). The
support is the probability of appearance of the itemset XY in the whole database
and is the expression of the frequency of the itemset, while confidence is the
probability of appearance of the itemset XY in the set of transactions containing X
and expresses the dependence of Y on X. In terms of probabilities,support can be
noted as PDB(XY) and confidence as PDB(Y|X). As an example, in table 2, the
rule r={occupation=Exec-managerial→Income ≤50K } has values supp(r) =
2/8 and conf(r) = 2/3.

Generally, association rules are defined with respect to a given support
threshold, say minsupp, and a given confidence threshold, minconf . The first
algorithms for mining association rules were AIS and Apriori. Apriori was
the first real stride in the domain of association rule mining, since it used an
algorithmic property of the support, called antimonotony. To understand its
relevance, it is important to understand that mining association rules is a hard
task, due to the large number of possibilities. In fact, if DB is a database with n
items and m transactions, the number of possible itemsets is 2n, and the number
of association rules that can be derived from these itemsets is 3n. Furthermore,
it has been proved that the underlying decision problem is NP-Complete. So,
there is no efficient implementation of an association rule mining algorithm. The
only possibility to mine association rules, given minsupp and minconf , is to use
heuristics. That’s the advantage of antimonotonic property of the support: It
allows to prune the search space by using a specific heuristic. We give here its
definition:

if supp(X) ≤ minsupp, then for any I /∈ X, supp(XI) ≤ minsupp.
The main idea is, when mining all itemsets such that supp(X) ≥ minsupp, that
this property directs the search by avoiding it for useless cases. This property
made the search more effective, but since its introduction, the only technical pro-
gresses made were to increase the speed of implementations. In particular, the
search for confident rules (those with conf(X → Y) ≥ minconf) is always done
exhaustively in a distinct phase, by checking, for each frequent itemset, all possi-
bly derived rules. Moreover, the legitimacy of the couple support/confidence
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Fig. 1. Contingency table of X and Y, as table and as graphic

Table 3. A set of 38 measures

measure expression reference

IWD
((

pxy
px×py

)k
− 1
)
× pmxy [14]

confidence pxy
px

[10]
added value py|x − py []
contramin 2pxy−px

py
[5]

conviction pxpȳ
pxȳ

[8]
Cosine pxy√

pxpy
[35]

coverage px []
bayesian factor

px|y
px|ȳ [19]

collective strength pxy+px̄ȳ
px×py+px̄×pȳ ×

px̄×py+px×pȳ
px̄y+pxȳ [1]

Information Gain log pxy
pxpy

[9]

Gini index
1
px
× (pxy2 + pxȳ2) + 1

px̄
×

(px̄y2 + px̄ȳ2)− py2 − pȳ2 [13]

implication index
√
n
pxy−pxpy√
pxpȳ

[28]
interest |pxy − pxpy| []
J1-measure pxy × log pxy

pxpy
[41]

Jaccard P(A∩B)
P(A∪B) [18]

J-measure pxy×log pxy
pxpy

+pxȳ×log pxȳ
pxpȳ

[37]
Kappa 2 pxy−pxpy

pxpȳ+pypx̄ [11]

measure expression reference
Klosgen √

pxy × (py|x − py) [20]
leverage pxy − pxpy [34]
lift pxy

pxpy
[7]

Loevinger py|x−py
1−py [31]

odds ratio pxypx̄ȳ
pxȳpx̄y

[45]
one way support py|x × log pxy

pxpy [43]
Pearson pxy−pxpy√

pxpypx̄pȳ
[33]

Piatetsky-Shapiro n× (pxy − pxpy) [34]
precision pxy + px̄ȳ []
prevalence py []
Yule’s Q pxy×px̄ȳ−pxȳ×px̄y

pxy×px̄ȳ+pxȳ×px̄y [45]
recall pxy

py
[10]

relative risk
py|x
py|x̄ []

Sebag-Shoenauer pxy
pxȳ

[36]
specificity pȳ|x̄ []
relative spe. pȳ|x̄ − pȳ [21]
support pxy [2]
ex counterex rate 1− pxȳ

pxy
[]

sym added value max(py|x − py, px|y − px) [39]

Yule’s Y
√
pxy×px̄ȳ−

√
pxȳ×px̄y√

pxy×px̄ȳ+
√
pxȳ×px̄y

[45]

Zhang pxy−pxpy
max(pxypȳ,pypxȳ) [46]

for mining association rules has been questioned many times. As an example,
the case of nuggets of knowledge, with rules having very low support and high
confidence, was pointed out. With Apriori implementations, these rules can
only be traversed by setting up a very low support threshold, which makes the
search exhaustive. But the problem is not only quantitative, but qualitative too.
Association rules mined with the support/confidence framework are not al-
ways pertinent, because these measures don’t always represent the real interest
of the user.

2.3 Interestingness Measures

One way for solving the qualitative issue is to use other measures, called inter-
estingness measures, to quantify the interest of a rule. Interestingness measures
are functions associating a real number to association rules, qualifying thus the
interest of the rule for the user. As a direct consequence, the number of interest-
ingness measures is as large as the number of application domains, users... and
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is a real problem for their study. Moreover, there exists two types of interest-
ingness measures: subjective and objective interestingness measures. The former
are measures based on expert’s knowledge, which means that the expert has a
real role in the evaluation process. Consequently, the number of presented rules
can only be very restricted. The latter are measures based only on the contin-
gency table (figure 1) that is on statistical properties of the rule. They only need
numeric calculations and no intervention of the expert.Thus, they can easily be
implemented in the post-analysis like confidence, but this analysis can once
again only be exhaustive.

Interestingness Measures can have many origins. As examples, support and
confidence come from probabilities theory, the measure of Jaccard, defined
as |X∪Y|
|X∩Y| comes from sets theory, or One Way Support, P(XY)

P(X) log P(XY)
P(X)P(Y) , comes

from information theory. The rule

r = {occupation = Exec-managerial→ Income ≤ 50K}

from preceding section has values Jacc(r) = 1/4 and OWS(r) = −0.68. That
is, two measures give very different values to the same rule. The set of objective
measures is very large, but there are some rules based on common sense for
the definition of a measure. [34] for example gave some recommendations for a
measure μ that were mainly followed at this time:

– μ = 0 if P(XY) = P(X)P(Y). If X and Y are statistically independent, the rule
is not interesting.

– μ monotonically increases with P(XY) when other parameters remain the
same.

– μmonotonically decreases with P(X) (or P(Y)) when other parameters remain
the same.

Interesting surveys can be found [12,27,38,15], but if one wants to introduce the
measures in an algorithm as a heuristic, an exhaustive study does not seem to
be reasonable. Moreover, one measure may not be sufficient, and some users
may want to aggregate different measures. This widely increases the number
of possibilities. The best way to study interestingness measures is to introduce
a specific framework that would allow an automatic study of interestingness
measures.

3 A Framework for the Study of Measures

We propose here to introduce a formal framework that will enable an analytic
study of interestingness measures. We only focus on objective interestingness
measures. Such measures can be expressed with the help of the contingency
table in relative frequencies, and consequently with three parameters. The study
of their variations with respect to these variables will allow us to create a link
between the measures and their algorithmic properties, but they require the
description of a domain of definition in order to study only real cases.
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3.1 Adapted Functions of Measure

We here rely on an idea introduced by [17] for describing interestingness measures
in an analytical way. Our main contribution is to allow the use of the framework
in many situations by considering the contingency table. We will describe here
this idea, but at first, some notions need to be introduced.

Contingency Tables. We already discussed this tool above, but we give here
more precisions on its specifics. Let X and Y be two itemsets on the database DB.
The contingency table in relative joint frequencies of X and Y gives information
about the simultaneous presence of these itemsets (figure 1). The contingency
table has 3 degrees of freedom: one needs at least 3 of its values to describe it,
and 3 values are enough to find all other values. For example, the contingency
table is fully described by the two marginal frequencies supp(X) and supp(Y)
and the joint frequency supp(XY). An association rule on a given database is
described by two itemsets. One can also speak about the contingency table of an
association rule, which leads us to the notion of descriptor system. For practical
purpose, the study of interestingness measures is focused on one particular cell
of the contingency table: The Piatetsky-Shapiro recommendations focus on the
examples rate of the rules, i.e. supp(XY), but the interestingness measures were
also studied by considering the counter-examples rate of the rules for robustness
[26], or their relation to confidence. To consider all these possibilities, we
introduced the notion of descriptor system.

Definition 1. We call descriptor system of the contingency table a triplet of
functions (f, g, h) over the association rules which fully describes the contingency
table of association rules.

The meaning of this definition is that, given a descriptor system (f, g, h), any cell
of the contingency table, as an example P(XY), can be described as a function
of the descriptor system, i.e. P(XY) = u(f(X → Y), g(X → Y), h(X → Y)). The
functions of the descriptor system can be elements of the contingency table, but
not exclusively. We give here an example, using the confidence, to give a better
understanding.

Example 1. We define the following functions:

conf(X→ Y) = supp(XY)
supp(X)

; ant(X→ Y) = supp(X); cons(X→ Y) = supp(Y)

The triplet (conf, ant, cons) is a descriptor system of the contingency table.
The same stands for the functions ex(X→ Y) = supp(XY) and c-ex(X→ Y) =

supp(XȲ): the triplets (ex, ant, cons) and (c-ex, ant, cons) are descriptor systems.

There exists a large number of measures [39,12,44,27], but most of them can be
expressed with the contingency table and thus considered as 3 variables functions
(a descriptor system of the contingency table). In the following, we only focus
on this kind of measures.
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Minimal Joint Domain. As we want to use descriptor systems to analytically
study the measures, we will study the three variables function mentioned above.
For example, we want to study their variations. The question is: why study
the variations at a point that will never be reached by a rule. For instance,
if we want to study the variations of the function x �→ x2 on real positive
values (the function increases), it’s useless to study the variations (decreasing)
for negative values, since it would introduce noise in our thinking. A descriptor
system d = (f, g, h) of the contingency table is a triplet of variables over the
space of association rules, and an interestingness measure μ can be written with
the help of a function φµ of this triplet. If we want to do an analytic study of this
function, we need only to restrict the analysis to the joint variation domain of
the triplet. Moreover, the study will provide no sense out of this domain, where
the points match no real situation. Thus, the joint variation domain Dd must be
such that:

– if r is a rule, then (f(r), g(r), h(r)) ∈ Dd
– if (x, y, z) ∈ Dd then there exists a database DB and a rule r on DB such

that (f(r), g(r), h(r)) = (x, y, z).

Then the joint variation domain is complete and minimal.
If d is a descriptor system of the contingency table, the joint variation do-

main associated with this system is defined by the constraints laid down by
the values of d between themselves. Table 4 shows different variation domains,
Figure 2 shows their appearance, and we give here a simple proof for the domain
associated to confidence.

Table 4. Joint Variation Domain for 3 parameterizations

confidence

Dconf =

⎧
⎨

⎩

(
c
y
z

)

∈ Q
3|

0 < y < 1
0 < z < 1

max{0, 1− 1−z
y
} ≤ c ≤ min{1, z

y
}

⎫
⎬

⎭

Counterexamples

Dc−ex =

{(
x̄
y
z

)

∈ Q
3|

0 < y < 1
0 < z < 1

max{0, y − z} ≤ x̄ ≤ min{y, 1− z}

}

Examples

Dex =

{(
x
y
z

)

∈ Q
3|

0 < y < 1
0 < z < 1

max{0, 1− y − z} ≤ x ≤ min{y, z}

}
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c

y

z

(a) confidence

x̄

y

z

(b) counterexamples

x

y

z

(c) examples

Fig. 2. Joint Variation Domain for 3 parameterizations

Proof. The proof we give here is the proof of the inclusion of Dconf in the
adapted domain associated to the confidence. We will prove that any point
(c, y, z) of Dconf is the projection of a rule r such that:

(conf (r), ant(r), cons(r)) = (c, y, z)

Consider an element (c, y, z) of Dconf , we need to construct a database DB
containing an association rule X → Y, such that μ(X → Y) equals to φµ(c, y, z).
Our database should then verify the following equalities:

conf(X→ Y) = c, supp(X) = y, supp(Y) = z. (1)

Since c, y and z are rational numbers, we define n as an integer such that
(c× y× n, y × n, z × n) ∈ N

3. The constraints of the domain Dconf (see Table 4
assure that 0 ≤ (1 − c) × y × n ≤ y × n ≤ y × n × (1 − c) + z × n ≤ n holds,
and we can thus construct the database of table 5, satisfying the equalities 1.
Then, the inclusion is verified, since there is a database DB containing a rule r
verifying equation 1. That is, any point of Dconf is associated to a rule. 	


Table 5. Database for the domain Dconf

X
︷ ︸︸ ︷

1 (1− c)× y × n y × n ((1− c)× y + z)× n n

X 1 · · · · · · · · · · · · 1 0 · · · · · · · · · · · · 0
Y 0 · · · 0 1 · · · · · · · · · · · · 1 0 · · · 0

︸ ︷︷ ︸
Y

Finally, we have identified the joint variation domain of the descriptor system
dconf : It is exactly Dconf . The same method is used to prove similar results for
Dex and Dc−ex.
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Now, it clearly appears that to do an analytic study of an interestingness
measure, three things have to be focused carefully. One first has to exactly
define the interesting parameters for this study (this is our notion of descriptor
system), then the measure has to be expressed as a function of these parameters
(this is our function Φµ of three variables), and finally, the variation domain of
the variables of this function has to be exactly defined, as minimal and complete
(this is what we called minimal joint domain of d, or d-adapted domain). To
aggregate all of these concepts, we introduce the unified notion of d-adapted
function of measure.

Definition 2. We call the couple (φµ, Dd), made from this function and the
joint variation domain (associated to a specific descriptor system), the d-adapted
function of measure of the measure μ.

It is important to see that the form of the functional part of this function of
measure depends on the descriptor system chosen. However, when this system is
fixed, the adapted function of measure is uniquely defined. In the following, we
voluntarily omit to mention the chosen descriptor system if there is no possibility
of ambiguity.

3.2 Expression of a Set of Measures

As stressed above, most of the objective interestingness measures are functions of
the contingency table. For example, the measure of Sebag Shoenauer is known
as P(XY)

P(X̄Y) (the quotient of number of examples by the number of counterexamples).
The Dex-adapted function of measure for Sebag Shoenauer is then x

y−x , the
Dc−ex-adapted function of measure is y−xx and finally the Dconf -adapted func-
tion of measure is 1−c

c
. Table 6 gives the expression of a non-exhaustive set

of objective measures in the 3 different adapted domains mentioned above. We
now benefit from an analytical framework for studying interestingness measures.
With the help of the adapted functions of measure, we shall study them rigor-
ously like any analytic function. One of the most important criteria is the study of
variations. Indeed, many works have focused on the variations of measures with
one particular value of the contingency table. For instance, Piatetsky-Shapiro
introduced recommendations based on the variations of measures when some
parameters where fixed. This can be translated in our framework. The 3 recom-
mendations of Piatetsky-Shapiro become:

Let μ be a measure and (Φµ, Dex) its adapted function of measure.

– Φµ(y × z, y, z) = 0,
– ∂1Φµ shall be positive,
– ∂2Φµ and ∂3Φµ shall be negative.

We show here the importance of adapted domain. Let’s take the case of specificity
Measure: in Dex, we have ∂2Φspe(x, y, z) = − z−x

(1−y)2 . This could be positive,
if z − x < 0, but since we are on Dex, the constraints assume that x ≤ z.
We can prove in the same manner that the specificity measure respects all the
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Table 6. Expression of the measures in 3 different adapted domains

name examples counterexamples confidence
IWD

((
x
y×z
)k − 1

)
× xm

((
y−x̄
y×z
)k − 1

)
× (y − x̄)m

((
c
z

)k − 1
)
× (c× y)m

confidence x
y

y−x̄
y c

added value x
y
− z 1− z − x̄

y c− z
contramin 2x−y

z
y−2x̄
z

y × 2c−1
z

conviction y×(1−z)
y−x

y×(1−z)
x̄

1−z
1−c

Cosine x√
y×z

y−x̄√
y×z c×

√
y
z

coverage y y y

bayesian factor x×(1−z)
z×(y−x)

(y−x̄)×(1−z)
z×x̄

c×(1−z)
z×(1−c)

collective strength 1+2x−y−z
y×z+(1−y)×(1−z) × y×(1−z)+z×(1−y)

y+z−2x
1+y−z−2x̄

y×z+(1−y)×(1−z) × y×(1−z)+z×(1−y)
2x̄+z−y

1+2c×y−y−z
y×z+(1−y)×(1−z) × y×(1−z)+z×(1−y)

y+z−2c×y
Information Gain log x

y×z log y−x̄
y×z log c× z

Gini index
1
y
× (x2 + (y − x)2) + 1

1−y × ((z −
x)2+(1−y−(z−x))2)−z2−(1−z)2

1
y
×((y− x̄)2 + x̄2)+ 1

1−y × ((z−y+
x̄)2 + (1− z − x̄)2)− z2 − (1− z)2

y×(c2+(1−c)2)+ 1
1−y×((z−c×y)2+

(1−z− (1−c)×y)2)−z2− (1− z)2

implication index
√
n x−y×z√

y×(1−z)

√
ny×(1−z)−x̄√

y×(1−z) (c− z)×√ny
z

interest |x− y × z| |y × (1− z)− x̄| |y × (c− z)|
J1-measure x× log x

y×z (y − x̄)× log y−x̄
y×z c× y × log c

z

Jaccard x
y+z−x

y−x̄
z+x̄

c
1−c+ z

y

J-measure x× log x
y×z + (y − x)× log y−x

y×(1−z) (y − x̄)× log y−x̄
y×z + x̄× log x̄

y×(1−z) c× y× log c
z

+ y× (1− c)× log 1−c
1−z

Kappa 2 x−y×z
y+z−2y×z 2y×(1−z)−x̄

y+z−2y×z 2 y×(c−z)
y+z−2y×z

Klosgen
√
x× (x

y
− z) √

y − x̄× (1− z − x̄
y

) √
c× y × (c− z)

leverage x− y × z y × (1 − z)− x̄ y × (c− z)
lift x

y×z
y−x̄
y×z

c
z

Loevinger 1− y−x
y×(1−z) 1− x̄

y×(1−z) 1 − 1−c
1−z

odds ratio 1 + x−y×z
(y−x)×(z−x) 1 + y×(1−z)−x̄

x̄×(z−y+x̄) 1 + c−z
(1−c)×(z−c×y)

one way support x
y × log x

y×z
y−x̄
y
× log y−x̄

y×z c× log c
z

Pearson x−y×z√
y×z×(1−y)×(1−z)

y×(1−z)−x̄√
y×z×(1−y)×(1−z)

y×(c−z)√
y×z×(1−y)×(1−z)

Piatetsky-Shapiro n × (x− y × z) n× (y × (1− z)− x̄) n × y × (c− z)
precision 2x+ 1 − y − z y − z − 2x̄ + 1 y × (2c− 1) + 1− z
prevalence z z z

Yule’s Q x×(1+x−y−z)−(y−x)×(z−x)
x×(1+x−y−z)+(y−x)×(z−x)

(y−x̄)×(1−x̄−z)−x̄×(z−y+x̄)
(y−x̄)×(1−x̄−z)+x̄×(z−y+x̄)

c×(1−y×(1−c)−z)−(1−c)×(z−c×y)
c×(1−y×(1−c)−z)+(1−c)×(z−c×y)

recall x
z

y−x̄
z

y
z
× (1 − c)

relative risk x
y × 1−y

z−x
y−x̄
y × 1−y

z−y+x̄ c× 1−y
z−c×y

Sebag-Shoenauer x
y−x

y−x̄
x̄

1−c
c

specificity 1− z−x1−y
1−z−x̄

1−y 1 − z−c×y1−y
relative spe. y − z−x1−y y − z−y+x̄

1−y y − z−c×y1−y
support x y − x̄ c× y
ex counterex rate 1− y−xx 1− x̄

y−x̄ 1 − c
1−c

sym added value max( x
y
− z, x

z
− y) max(1− z − x̄

y
, y−x̄
z
− y) max(c− z, y × ( c

z
− 1))

Yule’s Y
√
x×(1+x−y−z)−

√
(y−x)×(z−x)√

x×(1+x−y−z)+
√

(y−x)×(z−x)

√
(y−x̄)×(1−x̄−z)−

√
x̄×(z−y+x̄)√

(y−x̄)×(1−x̄−z)+
√
x̄×(z−y+x̄)

√
c×(1−y×(1−c)−z)−

√
(1−c)×(z−c×y)√

c×(1−y×(1−c)−z)+
√

(1−c)×(z−c×y)

Zhang x−y×z
max(x×(1−z),z×(y−x))

y×(1−z)−x̄
max((y−x̄)×(1−z),z×x̄)

c−z
max(c×(1−z),z×(1−c))

Piatetski-Shapiro recommendations except the first one, since we have Φspe(y×
z, y, z) = 1 − z. This recommendation is the most discussed, and is not even
respected by confidence (Φconf (y × z, y, z) = z). The most important is that
the independence (P(XY) = P(X)P(Y)) must be locatable, no matter if 0, 1 (lift)
or any other particular value.

We will apply our framework and the associated study of variations to dif-
ferent pruning strategies that we found in the literature. We will show that the
study of the measure’s variations can explain some behaviors with respect to an
underlying pruning strategy.

4 Application to Pruning Strategies

The number of pruning strategies in the literature is quite low. Three of them
received our full attention: the property of the measure of all-confidence
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for itemsets [32], from which we define the notion of all-monotony [25], the
property of Universal Existential Upward Closure for confidence [40], from
which we define a notion of General Universal Existential Upward Closure [23],
and the property of optimal rules sets [29], from which we introduce the notion
of optimonotony [22].

4.1 All-Monotony

As stressed above, Apriori like algorithms have generated many technical im-
provements for minimizing time complexity. It’s important to consider these
improvement and to try to use them. [32] introduced in 2003 the notion of
all-confidence, which is a transformation of confidence that allows the use
of Apriori-like algorithms to mine interesting itemsets. The definition of all-
confidence for a given itemset Z is the following:

all− conf(Z) = min
XY=Z
{conf(X→ Y)}

An itemset Z is then interesting with respect to a given threshold σ iff all
derived rules are confident with respect to this same threshold. At first glance,
filtering itemsets with this measure can seem to be very constraining, but [42]
showed that this filter allows for the exclusion of cross-support itemsets, those
itemsets composed from items whose support values are very different. Another
advantage of this measure of all-confidence is that it possesses the same
property of antimonotonicity as the support, and we can then use all Apriori-
like algorithms by only changing the measure (or adding the all-confidence).
Thus, this kind of generalization of the confidence measure seems to be a very
powerful process, and it would be interesting to use it with other measures than
confidence. Our thought process is not to check each measure one by one,
but to try to automate the process. In order to achieve this, we generalize the
all-confidence to any measure μ by defining the corresponding all-μ measure,
and we describe a link between the variations of measure μ and the fact that the
all-μ measure possesses the antimonotony property.

Definition 3. Let μ be an objective interestingness measure and Z an itemset.
We define the all-μ associated measure by:

all-μ(Z) = min
XY=Z
{μ(X→ Y)}

If μmin is a given threshold, the itemset Z is all-interesting with respect to μ
and μmin iff any rule derived from Z is interesting with respect to μ and μmin.
We have then generalized the notion of all-confidence to any measure, but
with no reason to have an antimonotone property like support. This is the main
point of our work: how to highlight those measures whose associated all-measure
is antimonotone? For such a measure, we say that it has the "all-monotony
property". In [24], we prove the following theorem:
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Theorem 1. Let μ be an interestingness measure for association rules and
(Φµ, Dex) an adapted function of measure of μ. If Φµ is strictly decreasing on the
second (the antecedent) and the third (the consequent) variables then the measure
μ does not have the all-monotony property.

One interesting remark is that this theorem excludes all measures that strictly
follow the recommendations of Piatetsky-Shapiro, especially the third point.
Consequently, the number of measures possessing this all-monotony property is
not very high.

However, we prove also that a special class of measures possess the all-
monotony property, those measures being those that can be expressed as an
increasing function of the confidence. Even if they are not very numerous,
this result is interesting as it allows the use of Apriori-like algorithms with
other measures than support.

We give in table 7 a survey of all measures verifying any of the properties
we are studying here, all-monotony and the two others (sections 4.2 and 4.3).
This table shows that all-monotony is a very constraining property that does not
apply to a large set of measures. However, it is not only limited to confidence,
contrary to what one might think, and it is of importance to know that many
measures can’t be used in a similar process.

4.2 Universal Existential Upward Closure

The property of antimonotonicity shared by the support and the all-monotone
measures defines a bottom-up algorithmic property for pruning the search space.
One may start from the empty itemset to mine ever-widening itemsets. [40] dis-
covered another property of pruning verified by the confidence without any
transformation. The property is named Universal Existential Upward Closure
by its authors, and defines a top-down approach: we start with the transac-
tions in the database to mine step-by-step more general rules. Unlike the all-
confidence, this property applies to association rules, and in particular to
classification rules, those rules with a predetermined consequent item (a class
item), in databases with categorical attributes. In the algorithm presented by the
authors, there is no need of a support threshold, which allows to find nuggets
of knowledge that is itemsets with a low support value and a high confidence
value.

Since we will focus on databases with categorical attributes, we first need to
introduce some notations. We keep the notation A for a non-valuated attribute
and we call VA the set of values that A may take. An itemset X = x is made of a set
of attributes X = A1 . . . An and a set of values x = (a1, . . . , an) ∈ VA1× · · ·×VAn
meaning that in itemset X = x, the attribute Ai takes the value ai ∈ VAi. We are
here interested in rules of the form X = x → C = c where C is of length 1. For
short, we can write x → c. If A is an attribute, an A-specialization of the rule
x→ c is a rule XA = (x, a)→ C = c.
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The property of UEUC is defined by [40] as follows:

Property 1. For every attribute A not occurring in a rule x → c, (i) some A-
specialization of x → c has at least the confidence of x → c, (ii) if x → c is
confident, so is some A-specialization of x→ c.
Principally, this property is due to a barycenter property of the conditional
probabilities: Since the A = ai constitute a partition, we have

P(c|x) =
∑

ai∈VA

P(ai|x)P(c|xai)

Thus, the confidence of the rule x → c is a barycenter of the confidences
of the rules xai → c that is a barycenter of the confidences of all its A-
specializations, and then, some specializations have an higher confidence, and
some have a lower confidence. As a result, a top-down strategy of pruning
appears naturally, having the important advantage of getting rid of the support
constraint.

This approach is really promising since it let us mine association rules directly,
relying only on the value of confidence, without assuming anything on the
support value. It would be of interest to find other measures with this kind of
property. This is the subject of [23], where we generalize the UEUC property to
a General-UEUC (GUEUC) property for any measure and give some conditions
of existence of this property.

Definition 4. An interestingness measure μ verifies the General UEUC prop-
erty iff for every attribute A not occurring in a rule r: x→ c, some A-specializa-
tion of r has at least the value taken by r on the measure μ.

A consequence is that, for such a measure, if r is interesting (with respect to
a given threshold), so is some A-specialization of r. Clearly, the confidence
has the GUEUC property, and our GUEUC property is a good generalization
of the UEUC property. We introduced three conditions for the existence of the
GUEUC property for a given measure μ.

Proposition 1 (Trivial sufficient condition for GUEUC). Let μ be an
interestingness measure for association rules and μ be an affine transformation
of the confidence. Then μ does verify the barycenter property (with the same
weights as for confidence) and thus μ has the GUEUC property.

Proposition 2 (Sufficient condition for GUEUC). Let μ be an interest-
ingness measure for association rules and (Φµ, Dconf) an adapted function of
measure of μ. Let Φµ verify the two following properties:
(a) ∀(y, z) ∈ Q

2 ∩ [0, 1]2, the function c �→ Φµ(c, y, z), where c is such that
(c, y, z) ∈ Dconf , is a monotone function (increasing or decreasing);

(b) ∀(c, z) ∈ Q
2 ∩ [0, 1]2, the function y �→ Φµ(c, y, z), where y is such that

(c, y, z) ∈ Dconf , is a decreasing function (in the broad meaning of that
term).

Then μ has the GUEUC property.
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Proposition 3 (Necessary condition for GUEUC). If μ is an interesting-
ness measure that verifies the GUEUC property, and (Φµ, Dconf) its adapted
function of measure, then for every (c, y, z) ∈ Dconf , we have

Φµ(c, y, z) ≤ Φµ(c, y2 , z). (2)

These three propositions permit the filtration of the measures that have the
GUEUC property and that can be used with the same top-down algorithm than
confidence. Once again, this result gives a necessary condition, and a suffi-
cient condition, but does not present an equivalence. However, considering the
set of measures in table 7, one can see that a large part of measures are catego-
rized for this property. Only the measure of One Way Support still remains
unclassified. This property seems less restrictive than all-monotony, since more
measures accept it. Hence, with these measures, nuggets of knowledge can be
mined, with an efficient algorithm. Moreover, since the workable measures are
numerous, the user can choose several of them and the algorithm can aggregate
them in the pruning strategy, to return interesting rules with respect to every
measure. However, the number of workable measures still remains restricted.
The following property is even less restrictive, and can be applied to a large
number of measures, proving that pushing the measure as deep as possible in
the algorithms is possible.

4.3 Optimal Rule Discovery

The previous two pruning strategies were only based on confidence originally.
We proved that they could be applied to more measures, but the number of con-
cerned measures remains very limited. In this context, the case of optimal rules
discovery is a great step forward in association rules mining, focused on classi-
fication rules. It was initiated by Li [29] where the author proved that optimal
rules went together with a pruning strategy that returned coherent results for 13
interestingness measures. An optimal rule with respect to a given interestingness
measure is a rule that has an interest value higher than any of its more general
rules. Li described a way of generating optimal rules sets by using an efficient
pruning strategy. This pruning strategy is quite independent of the measure.

Theorem 2. If supp(XI¬C) = supp(X¬C), then rule XI → C and all its more-
specific rules will not occur in an optimal rule set defined by confidence,
odds ratio, lift (interest or strength), gain, added-value, Klosgen,
conviction, p-s (or leverage), Laplace, cosine, certainty factor, or
Jaccard.

As mentioned before, the pruning strategy is measure independent, but the out-
put is an optimal rule set only when considering the measures cited in the the-
orem. The pruning strategy is, as for the antimonotonicity of the support, a
bottom-up approach. This theorem presents two direct corollaries, and the in-
terested reader may find them in [29]. In [22], we introduce the optimonotone
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character of an interestingness measure, and the underlying optimonotony prop-
erty of pruning.

Definition 5 (optimonotone measure). A measure of interest μ is opti-
monotone if, given a rule X→ C and a specification XI→ C, we have

(supp(XI¬C) = supp(X¬C) =⇒ μ(XI→ C) ≤ μ(X→ C)).

As an example, one can prove that confidence is an optimonotone measure.
In fact, let suppose that supp(XI¬C) = supp(X¬C), we have:

conf(XI→ C) = supp(XIC)
supp(XI)

= 1− supp(XI¬C)
supp(XI)

= 1− supp(X¬C)
supp(XI)

≤ 1− supp(X¬C)
supp(X)

≤ supp(XC)
supp(X)

= conf(X→ C)

The advantage of this optimonotone property of a measure is that we can extend
the number of measures in the process initiated by Li. In fact, we can adapt it’s
main theorem by the following:
Theorem 3. If supp(XI¬C) = supp(X¬C), then rule XI → C and all its more-
specific rules will not occur in an optimal rule set defined by an optimonotone
measure.
Then, the output of Li’s algorithm is coherent with any optimonotone measure,
that is, the returned rule set is an optimal rule set when using an optimonotone
measure. Since the framework of optimal rules and the underlying algorithm are
efficient, it is interesting to know which measure is optimonotone. In order to
achieve this, we introduced a necessary and sufficient condition of existence of
this optimonotone character for a measure.

Proposition 4. Let μ be an interestingness measure, and (Φµ, Dc−ex) its a-
dapted function of measure. μ is optimonotone iff μ increases with the second
variable (associated with supp(X)).

With the help of this necessary and sufficient condition, we proved that at least
31 measures are optimonotone and can be used with the optimal rule discovery
algorithm. We thus have more than doubled the number of measures considered
by Li, in an automatic way, and proved moreover that the Klosgen measure,
considered by Li as usable within its framework, was not optimonotone, and we
presented a counter example to the use of Klosgen measure with optimal rule
discovery algorithm. We present in the following part the table detailing the
measures and their properties.
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Table 7. Properties of the measures

measure OM AM GUEUC
IWD No No No
confidence Yes Yes Yes
added value Yes No Yes
contramin Yes No No
conviction Yes No Yes
Cosine Yes No No
coverage Yes No
bayesian factor Yes No Yes
collective strength Yes No No
Information Gain Yes No Yes
Gini index No No
implication index Yes No No

measure OM AM GUEUC
interest No No
J1-measure No No No
Jaccard Yes No No
J-measure No No No
Kappa Yes No No
Klosgen No No No
leverage Yes No No
lift Yes No Yes
Loevinger Yes No Yes
odds ratio Yes No No
one way support No No
Pearson Yes No No
Piatetsky-Shapiro Yes No No

measure OM AM GUEUC
precision Yes No No
prevalence Yes Yes
Yule’s Q Yes No No
recall Yes Yes No
relative risk Yes No No
Sebag-Shoenauer Yes Yes Yes
specificity Yes No No
relative spe. Yes No
support Yes No
ex counterex rate Yes Yes Yes
sym added value Yes No No
Yule’s Y Yes No No
Zhang Yes No Yes

4.4 Properties Verified by the Measures

Using our framework to find links between algorithmic and analytic properties
of the measures allows us to fill in Table 7. The main interest of such a table is
to present to the user efficient measures (in an algorithmic sense), or to present
to the user the algorithm that can be used with the measure he choses, and thus
the type of output he can obtain (optimal rules, interesting rules, or interesting
itemsets). Since the size of databases ever-increasing, it is of importance to use
such algorithmic properties, even if there is a loss of precision in the results in the
sense that we do not get all the interesting rules, for example with optimal rules
or all-interesting itemsets. The GUEUC property allows to find all interesting
rules, but their number might be very high.

To summarize, 31 out of 38 measures are optimonotone, only 4 of them are all-
monotone, and 11 have the GUEUC property. It has to be said that 6 measures
are not classified for the all-monotone property, due to the default of necessary
and sufficient condition. The same holds, but for only one measure in the case of
the GUEUC property. The optimonotony works with a large number of measures,
but it’s important to moderate this result. In fact, even if optimal rules have been
described as very useful rules by Li, in the sense that they are good rules for
learning and classification [30], one has to remember that the set of optimal rules
is a very small part of the set of interesting rules. With this property, there is a
large loss of precision in the result, conversely to the GUEUC property. In the
same way, the all-monotony property does not allow the rebuilding of the entire
set of interesting rules. So, one has always to chose between precision of results
and duration of calculation.

Conclusion

In this article, we introduced a formal framework for the study of association
rules and interestingness measures. We show that a measure may only be de-
scribed by a function and a variation domain. We detailed the case of three
particular domains: examples, counterexamples and confidence. We expressed
31 measures in these 3 domains.
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This framework lets us to study the measures in a analytical way, and allows
particularly the study of their variations. With this help, we generalized three
algorithmic properties (all-monotony, GUEUC and opti-monotony) and we gave
sufficient and/or necessary conditions for a measure to have a particular prop-
erty. These conditions allow the classification of the 31 measures between the
three properties. These properties are thus operational properties of the mea-
sures and can be used as a powerful parameter during the choice of a measure
by the user.
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Abstract. In recent years, Nonnegative Matrix Factorization (NMF)
has become a popular model in data mining society. NMF aims to extract
hidden patterns from a series of high-dimensional vectors automatically,
and has been applied for dimensional reduction, unsupervised learning
(clustering, semi-supervised clustering and co-clustering, etc.) and pre-
diction successfully. This chapter surveys NMF in terms of the model for-
mulation and its variations and extensions, algorithms and applications,
as well as its relations with K-means and Probabilistic Latent Seman-
tic Indexing (PLSI). In summary, we draw the following conclusions: 1)
NMF has a good interpretability due to its nonnegative constraints; 2)
NMF is very flexible regarding the choices of its objective functions and
the algorithms employed to solve it; 3) NMF has a variety of applications;
4) NMF has a solid theoretical foundation and a close relationship with
the existing state-of-the-art unsupervised learning models. However, as
a new and developing technology, there are still many interesting open
issues remained unsolved and waiting for research from theoretical and
algorithmic perspectives.

1 Introduction

Nonnegative Matrix Factorization (NMF,[1,2,3]) is evolved from Principal Com-
ponent Analysis (PCA, [4,5]). PCA is one of the basic techniques for extracting
the principal components (basic factors) from a series of vectors such that each
vector is the linear combination of the components, in other words, PCA tries
to give the best low dimensional representation with a common basis for a set
of vectors. Formally, given a set of samples {xi, i = 1, 2, · · · ,m} in R

n, PCA
aims to provide the best linear approximation of the samples in a lower dimen-
sional space, say R

k. This problem can be represented as a nonlinear program-
ming problem: min

μ,{λi},V

∑m
i=1 ‖xi − μ − V λi‖2

2, where μ is column vector of size

n × 1, V is matrix of size n × k and column orthogonal (V TV = I), and each
λi, i = 1, 2, · · · ,m is column vector of size k × 1. Fixing μ and V , one can get
the optimal solution of λi = V T (xi − x̄), i = 1, 2, · · · ,m, where x̄ =

∑

i

xi/m;
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similarly, fixing λi and V , one can get the optimal solution of μ = x̄. Hence the
optimization problem can be re-written as:

min
V

m∑

i=1

‖(xi − x̄) − V V T (xi − x̄)‖2
2. (1)

The optimization problem can be solved by Singular Value Decomposition (SVD)
applied on the matrix X , each column of which is xi − x̄, such that X = ASBT ,
where A is an n×m matrix satisfying ATA = I, B is a m×m matrix satisfying
BTB = I and S is a m×m diagonal matrix with diagonal elements s11 � s22 �
s33 · · · smm (they are singular values ofX). The first k columns ofA constitute the
matrix V in (1). The columns of V are called the principal components ofX ([5]).

Note that there are both positive and negative elements in each of the prin-
cipal components and also both positive and negative coefficients in linear com-
binations (i.e., λi, i = 1, 2 · · · ,m, has mixed signs). However the mixed signs
contradict our experience and make it hard to explain the results. For example,
the pixels in an image should be non-negative, hence the principal components
with negative elements extracted from the images cannot be intuitively inter-
preted ([6]). In fact, in many applications such as image processing, biology
or text mining, nonnegative data analysis is often important and nonnegative
constraints on the wanted principal components (basis matrix) and coefficients
(coding matrix) can improve the interpretability of the results. NMF is thus
proposed to address this problem. In particular, NMF aims to find the non-
negative basic representative factors which can be used for feature extraction,
dimensional reduction, eliminating redundant information and discovering the
hidden patterns behind a series of non-negative vectors.

Recent years, NMF has attracted considerable interests from research com-
munity. Various extensions are proposed to address the emerging challenges and
have been successfully applied to the field of unsupervised learning in data min-
ing including environmetrics ([3]), image processing ([1]) chemometrics ([7]), pat-
tern recognition ([8]), multimedia data analysis ([9]), text mining ([10,11,12,13])
and bioinformatics ([14,15,16]), etc., and received lots of attention. In [17] it has
been shown that when the least squares error is selected as the cost function,
NMF is equivalent to the soft K-means model, which establishes the theoret-
ical foundation of NMF used for data clustering. Besides the traditional least
squares error (Frobenius norm), there are other divergence functions that can
be used as the cost functions for NMF, such as K-L divergence and chi-square
statistic ([2,18]). In [18] it has been shown that constrained NMF using with
K-L divergence is equivalent to Probabilistic Latent Semantic Indexing, another
unsupervised learning model popularly used in text analysis ([19,18]).

In this chapter, we give a systematic survey of Nonnegative Matrix Factor-
ization, including the basic model, and its variations and extensions, the appli-
cations of NMF in text mining, image processing, bioinformatics, finance etc.,
and the relations with K-means and PLSI. This chapter will not cover all of the
related works on NMF, but will try to address the most important ones that we
are interested in.
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The chapter is organized as follows: Section 2 gives the standard NMF model
and several variations, Section 3 summarizes the divergence functions used in the
standard NMF model and the algorithms employed for solving the model, Section
4 reviews some selected applications of NMF, Section 5 gives the theoretical
analysis concerning the relations between NMF and the other two unsupervised
learning models including K-means and Probabilistic Latent Semantic Indexing
(PLSI), and Section 6 concludes.

2 Standard NMF and Variations

To easy explanation, Table 1 lists the notations used throughout the chapter.

Table 1. Notations used in this chapter

ai Column vector indexed by i;
A Matrix;

Aij Element of the ith row and the jth column in matrix A;
A:,j The jth column of matrix A;
Ai,: The ith row of matrix A;

A � 0 A is element-wise nonnegative, i.e., Aij � 0 for all i and j;
A+ Matrix A that satisfies A � 0;
A± Matrix A that has mixed signs, i.e., there is no restriction on the elements’ signs of A;
A.

B
Matrix whose (i, j)− th element is

Aij

Bij
;

A(t) The updated matrix A at the end of t−th iteration in the algorithm;

A
(t)
ij The (i, j)− th element of matrix A(t).

2.1 Standard NMF

Nonnegative Matrix Factorization (NMF) is one of the models that focus on
the analysis of non-negative data matrices which are often originated from text
mining, images processing and biology. Mathematically, NMF can be described
as follows: given an n × m matrix X composed of non-negative elements, the
task is to factorize X into a non-negative matrix F of size n × r and another
non-negative matrix G of size m × r such that X ≈ FGT . r is preassigned and
should satisfy r � m,n. It is usually formulated as an optimization:

min
F,G

J(X‖FGT ) (2)

s.t. F � 0, G � 0,

where J(X‖FGT ) is some divergence function that measures dissimilarity be-
tween X and FGT , and will be discussed in Sect. 3. Meanings of F and G can
be explained variously in different fields or for different purposes and will be
discussed in Sect. 4.
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As we can see, all the elements of F and G are variables that need to be
decided, hence this is a large scale optimization problem and the standard al-
gorithms are not suitable, and one can observe that J(X‖FGT ) is individually
convex in F and in G, hence in general, most of the algorithms designed for
NMF are iteratively and alternatively minimizing or decreasing F and G, which
is summarized in Algorithm 1. The details will be discussed in Sect. 3.

Algorithm 1. Nonnegative Matrix Factorization (General Case)
Input: F (0), G(0), t = 1.
Output: F, G.
1: while 1 do
2: Fix G(t−1) and find F (t) such that J(X‖F (t)G(t−1)T ) � J(X‖F (t−1)G(t−1)T );
3: Fix F ((t)) and find G(t) such that J(X‖F (t)G(t)T ) � J(X‖F (t)G(t−1)T );
4: Test for convergence;
5: if Some convergence condition is satisfied then
6: F = F (t);
7: G = G(t);
8: Break
9: end if

10: t = t + 1;
11: end while

At last, we give an important property of NMF ([20,21]) to close this subsec-
tion. As we have mentioned above, the factors in Singular Value Decomposition
(SVD): X = ASBT = A′B′T , where A′ = AS1/2 and B′ = BS1/2, typically
contain mixed sign elements. And NMF differs from SVD due to the absence of
cancellation of plus and minus signs. But what is the fundamental signature of
this absence of cancellation? It is the Boundedness Property.

Theorem 1. (Boundedness Property, [20,21]) Let 0 � X � M1, where M is
some positive constant, be the input data matrix. F,G are the nonnegative ma-
trices satisfying

X = FGT . (3)

There exists a diagonal matrix D ≥ 0 such that

X = FGT = (FD)(GD−1)T = F ∗G∗T (4)

with
0 � F ∗

ij �
√
M, 0 � G∗

ij �
√
M. (5)

If X is symmetric and F = GT , then G∗ = G.

Proof. See Appendix.

1 0 � X � M means 0 ≤ Xij � M , i = 1, 2, · · · , n, j = 1, 2, · · · , m.
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We note that SVD decomposition does not have the boundedness property. In
this case, even if the input data are in the range of 0 ≤ Xij ≤ M , we can find
some elements of A′ and B′ that are larger than

√
M .

In NMF, there is a scale flexibility, i.e., for any positive D, if (F,G) is a
solution, so is (FD,GD−1). This theorem assures the existence of an appropriate
scale such that both F and G are bounded, i.e., their elements can not exceed
the magnitude of the input data matrix. This ensures that F,G are in the same
scale.

Consequently, we will briefly review the variations that are rooted from NMF
and proposed from different perspectives. Note that only the motivations for
the research and the model formulations are reviewed, their algorithms and the
application results are omitted here due to space limitation. One can find more
details in the corresponding references.

2.2 Semi-NMF ([22])

Semi-NMF is designed for the data matrixX that has mixed signs. In semi-NMF,
G is restricted to be nonnegative while the other factor matrix F can have mixed
signs, i.e., semi-NMF can take the following form2: X± ≈ F±GT

+. This model is
motivated from the perspective of data clustering. When clustering the columns
of data matrix X , the columns of F can be seen as the cluster centroids and
the rows of G denote the cluster indicators, i.e., the column j of X belongs to
cluster k if k = arg maxp{Gjp}. Hence the nonnegative constraint on F can be
relaxed such that the approximation FGT is tighter and the results are more
interpretable. Naturally, semi-NMF can also take the form: X± ≈ F+G

T± if we
want to cluster the rows of matrix X .

2.3 Convex-NMF ([22])

Convex-NMF is also presented for reasons of interpretability. Since the factor F
denotes the cluster centroids, the columns of F should lie within the column space
of X , i.e., F:,j , j = 1, 2, · · · , r, can be represented as the convex combination of
the columns of X : F:,j =

∑m
i=1 WijX:,i or F = XW with constraints W � 0 and∑m

i=1Wij = 1, j = 1, 2, · · · , r. Hence the model can take the following form:
X± ≈ X±W+G

T
+. An interesting conclusion is that the convex-NMF factors F

and G are naturally sparse.

2.4 Tri-NMF ([23])

Tri-NMF is presented to address the co-clustering problem (See Sect. 4.4), i.e., it
presents a framework for clustering the rows and columns of the objective matrix
X simultaneously. This model aims to find three factors F , S and G such that
X+ ≈ F+S+G

T
+ with constraints FTF = I and GTG = I. F and G are the

2 The subscripts ± and + are used frequently to indicate the application scopes of the
models.
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membership indicator matrices of the rows and the columns of X respectively,
and S is an additional degree of freedom which makes the approximation tighter.

2.5 Kernel NMF ([24])

For the element-wise mapping φ: X± �→ φ(X±) : φ(X)ij = φ(Xij), kernel
NMF is designed as: φ(X±) ≈ φ(X±)W+G

T
+, from which one can see that

the kernel NMF is just an extension of the convex-NMF. Kernel-NMF is well-
defined since ‖φ(X)−φ(X)WGT‖2 = trace(φT (X)φ(X)− 2φT (X)φ(X)WGT +
GWTφT (X)φ(X)WGT ) only depends on the kernelK = φT (X)φ(X). Note that
the standard NMF or Semi-NMF does not have the kernel extension on φ(X)
since, in that case, F and G will depend explicitly on the mapping φ(·) which is
unknown.

2.6 Local Nonnegative Matrix Factorization, LNMF ([25,26])

As we have mentioned above, NMF is presented as a “part of whole” factorization
model and tries to mine localized part-based representation that can help to
reveal low dimensional and more intuitive structures of observations. But it
has been shown that NMF may give holistic representation instead of part-
based representation ([25,27]). Hence many efforts have been done to improve
the sparseness of NMF in order to identify more localized features that are
building parts for the whole representation. Here we introduce several sparse
variants of NMF, including LNMF, NNSC, SNMF, NMFSC, nsNMF, SNMF/R
and SNMF/L, as the representative results on this aspect.

LNMF was presented by [25]. In simple terms, it imposes the sparseness con-
straints on G and locally constraints on F based on the following three consid-
erations:

– Maximizing the sparseness in G;
– Maximizing the expressiveness of F ;
– Maximizing the column orthogonality of F .

The objective function in the model of LNMF can take the following form:
∑

i,j(Xij log
Xij

(FGT )ij
−Xij + (FGT )ij) + α

∑

i,j

(FTF )ij − β
∑

i

(GTG)ii.

2.7 Nonnegative Sparse Coding, NNSC ([28])

NNSC only maximizes the sparseness in G. The objective function to be mini-
mized can be written as: ‖X − FGT ‖2

F + λ
∑

i,j Gij .

2.8 Spares Nonnegative Matrix Factorization, SNMF ([29,30,31])

The objective function in the above model of NNSC can be separated into a
least squares error term ‖X −FGT ‖2

F and an additional penalty term
∑

i,j Gij .
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Ref [29] replaced the least squares error term with the KL divergence to get

the following new objective function:
∑

i,j [Xij log
Xij

(FGT )ij
−Xij + (FGT )ij ] +

λ
∑

i,j

Gij . Similarly, ref. [30] revised the penalty term to get another objective

function:
‖X − FGT ‖2

F + λ
∑

i,j

G2
ij . (6)

Furthermore, ref. [31] added an additional constraint on F , similar to that on
G, into the objective function (6) to give the following CNMF model:

min
F�0,G�0

‖X − FGT‖2
F + α

∑

i,j

F 2
ij + β

∑

i,j

G2
ij .

2.9 Nonnegative Matrix Factorization with Sparseness Constraints,
NMFSC ([32])

NMFSC employs the following measure to control the sparseness of F and G
directly:

Sp(a) =

√
n− ∑ |aj |/

√∑
a2

j√
n− 1

.

In other words, the model can be written as:

min ‖X − FGT ‖2
F

s.t. Sp(F:,j) = SF ,

Sp(G:,j) = SG, j = 1, 2, · · · , r,
where SF and SG are constants in [0,1], and it is easy to verify that the larger
SF and SG, the more sparse F and G are.

2.10 Nonsmooth Nonnegative Matrix Factorization, nsNMF ([15])

nsNMF is also motivated by sparseness requirement of many applications and

can be formulated as: X = FSGT , where S = (1− θ)I+
θ

k
IIT is a “smoothing”

matrix, I is identity matrix and the parameter θ ∈ [0, 1] can indirectly control
the sparseness of both the basis matrix F and the coding matrix G. One can
observe that the larger the parameter θ, the more smooth (non-sparse) FS and
GS are, in other words, each column of FS tends to be the constant vector with
values equal to the average of the corresponding column of F as θ → 1. This
is also the case for GS. But when updating G while fixing FS, the smoothness
in FS will naturally enforce the sparseness in G and when updating F while
fixing GS, the smoothness in GS will also enforce the sparseness in F. Hence F
and G are enforced to be sparse iteratively. Note that θ = 0 corresponds to the
standard NMF.
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2.11 Sparse NMFs: SNMF/R, SNMF/L ([33])

Sparse NMFs includes two formulations: SNMF/R for sparse G and SNMF/L
for sparse F . SNMF/R is formulated as: min

F�0,G�0
‖X − FGT ‖2

F + η
∑

i,j F
2
ij +

β
∑

i(
∑

j Gij)2 and SNMF/L is formulated as: min
F�0,G�0

‖X − FGT‖2
F +

η
∑

i,j G
2
ij + α

∑
i(

∑
j Fij)2.

We note that there is still lack of systematic comparisons of the concordances
and differences among the above seven sparse variants of NMF, which is an
interesting topic.

2.12 CUR Decomposition ([34])

Instead of imposing the sparseness constraints on F and G, CUR decomposi-
tion constructs F from selected columns of X and G from selected rows of X
respectively. In other words, the columns of F are composed of a small number
of the columns in X and the columns of G are composed of a small number of
the rows in X . The model can be formulated as follows: X ≈ FSGT 3, where S
is introduced to make the approximation tighter, as its counterpart has done in
Tri-NMF.

2.13 Binary Matrix Factorization, BMF ([20,21])

Binary Matrix Factorization (BMF) wants to factorize a binary matrix X (that
is, elements of X are either 1 or 0) into two binary matrices F and G (thus
conserving the most important integer property of the objective matrix X) sat-
isfying X ≈ FGT . It has been shown that the bi-clustering problem (See Sect.
4.4) can be formulated as a BMF model ([21]). Unlike the greedy strategy-based
models/algorithms, BMF are more likely to find the global optima. Experimen-
tal results on synthetic and real datasets demonstrate the advantages of BMF
over existing bi-clustering methods. BMF will be further discussed in Sect. 4.

Table 2 summarizes the variations and extensions of NMF mentioned above.

3 Divergence Functions and Algorithms for NMF

In this part, we will review the divergence functions used for NMF and the al-
gorithms employed for solving the model. We will consider several important
divergence functions and the algorithmic extensions of NMF developed to ac-
commodate these functions.

3 In the original research, this model was presented as: A ≈ CUR, which is the origin
of the name CUR, and A may have mixed signs.
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3.1 Divergence Functions

One of the main advantages of NMF is its flexibility in the selection of the
objective divergence functions. Here we will review several important divergence
functions and the relations among them. These functions play important roles
in solving NMF model, and may lead to different numerical performance. Hence
research on the relations between the divergence functions and the appropriate
applications is of great interest. Detailed theoretical analysis addressing this
problem is in pressing need though some related numerical results have been
given.

Csiszár’s ϕ Divergence ([35]). The Csiszár’s ϕ divergence is defined as:

Dϕ(X ||FGT ) =
∑

i,j

(FGT )ijϕ(
Xij

(FGT )ij
), where Xij � 0, (FGT )ij � 0 and ϕ :

[0,∞) → (−∞,∞) is some convex function and continuous at point zero. Based
on the flexibility of ϕ, the divergence has many instances. For example:

– ϕ = (
√
x− 1)2 corresponds to Hellinger divergence;

– ϕ = (x− 1)2 corresponds to Pearson’s χ2 divergence;
– ϕ = x(xα−1 −1)/(α2−α)+(1−x)/α corresponds to Amari’s α−divergence,

which will be introduced later.

Note that though the selection of ϕ is flexible, Csiszár’s ϕ divergence does
not include the traditional least squares error: DLSE(X‖FGT ) =

∑
i,j(Xij −

(FGT )ij)2.

α−Divergence, ([36,37,38,39]). The α−divergence is defined as:

Dα(X ||FGT ) =
1

α(1 − α)

∑

i,j

(αXij + (1 − α)(FGT )ij − Xα
ij(FG

T )1−α
ij ),

where α ∈ (−∞,∞). Different selection of α may corresponds to different
specific divergence. For example:

– lim
α→0

Dα(X ||FGT ) corresponds to K-L divergence DKL(FGT ||X);

– α =
1
2

corresponds to Hellinger divergence;

– lim
α→1

Dα(X ||FGT ) corresponds to K-L divergence DKL(X ||FGT );

– α = 2 corresponds to Pearson’s χ2 divergence.

Since α−divergence is a special case of Csiszár’s ϕ divergence, as we have men-
tioned above, it does not include the least squares error either.

Bregman Divergence ([40]). The Bregman divergence can be defined as:
DBreg(X‖FGT ) =

∑
i,j ϕ(Xij) − ϕ((FGT )ij) − ϕ′((FGT )ij)(Xij − (FGT )ij),

where ϕ : S ⊆ R → R is some strictly convex function that has continuous
first derivative, and (FGT )ij ∈ int(S) (the interior of set S). Some instances of
Bregman divergence are listed as follows:
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– ϕ =
x2

2
corresponds to least squares error;

– ϕ = x log x corresponds to K-L divergence;
– ϕ = − logx corresponds to Itakura-Saito (IS) divergence.

β−Divergence ([41,39]). The β−divergence is defined as: Dβ(X ||FGT ) =
∑

i,j

(Xij

Xβ
ij − (FGT )β

ij

β
− Xβ+1

ij − (FGT )β+1
ij

β + 1
) where β = 0,−1. This divergence

is also a big family including K-L divergence, least squares error, etc. Specifically:

– lim
β→0

Dβ(X ||FGT ) corresponds to K-L divergence DKL(X ||FGT );

– β = 1 corresponds to least squares error DLSE(X ||FGT );
– lim

β→−1
Dβ(X ||FGT ) corresponds to Itakura-Saito (IS) divergence which will

be introduced later.

Note that β−divergence Dβ(x‖y) can be got from α−divergence Dα(x‖y) by

nonlinear transformation: x = xβ+1, y = yβ+1 and supposing α =
1

β + 1
([42]).

Itakura-Saito (IS) Divergence ([43]). The Itakura-Saito divergence is de-

fined as: DIS(X‖FGT ) =
∑

i,j

(
Xij

(FGT )ij
− log

Xij

(FGT )ij
− 1). Note that IS diver-

gence is a special case of both the Bregman divergence (φ(x) = − log x) and the
β-divergence (β = −1).

K-L Divergence ([2]). The K-L divergence is defined as: DKL(X‖FGT ) =
∑

i,j

[Xij log
Xij

(FGT )ij
−Xij +(FGT )ij ]. As we have discussed above, the K-L diver-

gence is a special case of α−divergence, Bregman divergence and β−divergence.

Least Squares Error ([2]). The least squares error is defined as:
DLSE(X‖FGT ) = ‖X − FGT‖2

F =
∑

i,j
(Xij − (FGT )ij)2, which is a special

case of Bregman divergence and β−divergence.
We summarize the different divergence functions and the corresponding mul-

tiplicative update rules (See Sect. 3.2) in Table 3. The other algorithms such
as Newton algorithm or Quasi-Newton algorithm that are specially designed for
some of the divergence functions will be reviewed in the next subsection.

3.2 Algorithms for NMF

The algorithm design for solving NMF is an important direction and several
algorithms, according to different objective divergence functions and different



110 Z.-Y. Zhang

T
a
b
le

3
.

S
u
m

m
a
ry

o
f

th
e

d
iff

er
en

t
d
iv

er
g
en

ce
fu

n
ct

io
n
s

a
n
d

th
e

co
rr

es
p
o
n
d
in

g
m

u
lt
ip

li
ca

ti
v
e

u
p
d
a
te

ru
le

s.
N

o
te

th
a
t

“
C

o
n
v
er

g
en

ce
”

o
n
ly

sa
y
s

w
h
et

h
er

th
e

u
p
d
a
te

ru
le

s
h
av

e
b
ee

n
p
ro

v
en

to
b
e

m
o
n
o
to

n
ic

a
ll
y

d
ec

re
a
si
n
g
.

E
v
en

if
th

is
is

p
ro

v
en

,
th

e
a
lg

o
ri
th

m
d
o
es

n
o
t

n
ec

es
sa

ri
ly

co
n
v
er

g
e

to
a

lo
ca

l
m

in
im

u
m

([
4
4
])
.

D
iv

er
g
en

ce
F
u
n
ct

io
n

M
u
lt
ip

li
ca

ti
v
e

U
p
d
a
te

R
u
le

s
o
f

F
a
n
d

G
C

o
n
v
er

g
en

ce
C

o
m

m
en

ts

C
si
sz

á
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application purposes, have been proposed. In this part, we will briefly review
the representative ones. Note that to simplify the complexity of the problem,
we only consider the standard NMF model, i.e., only the optimization problem
(2) is considered. The algorithms for its variations presented in Sect. 2 can be
obtained by simple derivations and can be found in the corresponding literature.

Multiplicative Update Algorithm ([1,2]). The multiplicative update rules
of NMF with its convergence proof (indeed, only the monotonic decreasing prop-
erty is proved) was firstly presented by Lee & Seung ([1,2]). Because of the sim-
plicity and effectiveness, it has become one of the most influential algorithms
that are widely used in the data mining community. This algorithm is gradient-
descent-based and similar to the Expectation Maximization Algorithm (EM).
Specifically when the K-L divergence is selected as the objective function, the
multiplicative update algorithms can be summarized as Algorithm 2. In addi-
tion, there are several interesting properties of the relations between the mul-
tiplicative update rules with K-L divergence and the EM algorithm employed
in Probabilistic Latent Semantic Indexing (PLSI), which will be discussed in
Sect. 5.

The update rules in line 2 and line 3 of Algorithm 2 vary with the user-selected
objective functions and have been summarized in Table 3.

Algorithm 2. Nonnegative Matrix Factorization (K-L divergence, Multiplica-
tive Update Rules)

Input: F (0), G(0), t = 1.
Output: F, G.
1: while 1 do

2: Update F
(t)
ik :=

F
(t−1)
ik∑

j G
(t−1)
jk

∑

j

Xij

(F (t−1)G(t−1)T )ij
G

(t−1)
jk ;

3: Update G
(t)
jk :=

G
(t−1)
jk

∑
i F

(t)
ik

∑

i

Xij

(F (t)G(t−1)T )ij
F

(t)
ik ;

4: Test for convergence;
5: if Some convergence condition is satisfied then
6: F = F (t);
7: G = G(t);
8: Break
9: end if

10: t = t + 1;
11: end while

Project Gradient Algorithm ([45]). The project gradient descent method
is generally designed for bound-constrained optimization problems. In order to
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use this method, a sufficiently large upper bound U is firstly set for F and G
(since the upper bound U is sufficiently large, the solutions of the revised model
will be identical with the original one). The objective optimization function is
selected as the least squares error. The K-L divergence is not suitable because
this divergence is not well-defined on the boundary of the constraints (the log
function is defined for positive reals). The method can then be summarized in

Algorithm 3. Note that (P [•])ij =

⎧
⎨

⎩

•ij , 0 � •ij � U,
0. •ij < 0,
U, •ij > U.

Newton Algorithm ([46]). The Newton algorithm is designed for the least
squares error (Indeed, the idea of quasi-Newton method is employed). Basically,
it can be summarized in Algorithm 4. Note that D is an appropriate positive

definite gradient scaling matrix, and [Z+(X)]ij =
{
Xij , (i, j) /∈ I+,
0. otherwise and I+

will be given in the algorithm. The details are omitted due to space limitation.
The Newton algorithm and the Quasi-Newton algorithm presented below have

utilized the second order information of the model (Hessian matrix), hence one
can expect that they have better numerical performance than the multiplicative
update rules and the projected gradient descent though they should be more
time-consuming.

Quasi-Newton Method ([47]). The Quasi-Newton algorithm is designed for
the α−divergence. As we have discussed above, this divergence is a general case of
several useful objective optimization functions including the K-L divergence. But
note that the least squares error is not included. The proposed Quasi-Newton
algorithm is summarized in Algorithm 5. Note that H(F )

J and H
(G)
J are the

Hessian matrices of F and G, and ∇FJ and ∇GJ are the gradients of F and G.

Active Set Algorithm ([48]). The active set algorithm is designed for the
least squares error. The basic idea is to decompose the original optimization
problem min

F�0,G�0
‖X − FGT ‖2

F into several separate subproblems, then solve

them independently using the standard active set method and finally merge
the solutions obtained. In other words, firstly, fixing F , decompose the problem

min
F�0,G�0

‖X − FGT ‖2
F into the following series of subproblems: min

Gi,:�0
‖X:,i −

FGT
i,:‖2

F , i = 1, 2, · · · ,m, then solve them independently and finally update G.
Then fixing G, update F similarly.

Hereto, we have reviewed several newly developed algorithms, most of which
are nonlinear-programming-originatedbut are specially designed for NMF model.
Note that the technical details are omitted here due to space limitation. One can
get more information from the corresponding references.
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Algorithm 3. Nonnegative Matrix Factorization (Least Squares Error, Pro-
jected Gradient Method)
Input: F (0), G(0), t = 1.
Output: F, G.
1: while 1 do
2: F (old) = F (t−1);
3: while 1 do
4: Compute the gradient matrix ∇F J(X, F (old)G(t−1)T );
5: Compute the step length α;
6: Update F (old):

F (new) = P [F (old) − α∇F J(X, F (old)G(t−1)T )];

7: F (old) = F (new);
8: Test for convergence;
9: if Some convergence condition is satisfied then

10: F (t) = F (old);
11: Break
12: end if
13: end while
14: G(old) = G(t−1);
15: while 1 do
16: Compute the gradient matrix ∇GJ(X, F (t)G(old)T );
17: Compute the step length α;
18: Update G(old):

G(new) = P [G(old) − α∇GJ(X, F (t)G(old)T )];

19: G(old) = G(new);
20: Test for convergence;
21: if Some convergence condition is satisfied then
22: G(t) = G(old);
23: Break
24: end if
25: end while
26: if Some stopping criteria are met then
27: F = F (t); G = G(t);
28: Break
29: end if
30: t = t + 1;
31: end while
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Algorithm 4. Nonnegative Matrix Factorization (Least Squares Error, Newton
Algorithm)
Input: F (0), G(0), D, t = 1.
Output: F, G.
1: while 1 do
2: F (old) = F (t−1);
3: while 1 do
4: Compute the gradient matrix ∇F J(X, F (old)G(t−1)T );

5: Compute fixed set I+ := {(i, j) : F
(old)
ij = 0, [∇F J(X, F (old)G(t−1)T )]ij > 0}

for F (old);
6: Compute the step length vector α;
7: Update F (old):

U = Z+[∇F J(X, F (old)G(t−1)T )]; U = Z+(DU);

F (new) = max(F (old) − Udiag(α), 0);

8: F (old) = F (new);
9: Update D if necessary;

10: Test for convergence;
11: if Some convergence condition is satisfied then
12: F (t) = F (old);
13: Break
14: end if
15: end while
16: G(old) = G(t−1);
17: while 1 do
18: Compute the gradient matrix ∇GJ(X, F (t)G(old)T );

19: Compute fixed set I+ := {(i, j) : G
(old)
ij = 0, [∇GJ(X, F (t)G(old)T )]ij > 0} for

G(old);
20: Compute the step length vector α;
21: Update G(old):

U = Z+[∇GJ(X, F (t)G(old)T )]; U = Z+(DU);

G(new) = max(G(old) − Udiag(α), 0);

22: G(old) = G(new);
23: Update D if necessary;
24: Test for convergence;
25: if Some convergence condition is satisfied then
26: G(t) = G(old);
27: Break
28: end if
29: end while
30: if Some stopping criteria are met then
31: F = F (t); G = G(t);
32: Break
33: end if
34: t = t + 1;
35: end while
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Algorithm 5. Nonnegative Matrix Factorization (α−Divergence, Quasi-Newton
Algorithm)
Input: F (0), G(0), t = 1.
Output: F, G.
1: while 1 do
2: Update F (t) := max(F (t−1) − [H

(F )
J ]−1∇F J, 0);

3: Update G(t) := max(G(t−1) − [H
(G)
J ]−1∇GJ, 0);

4: Test for convergence;
5: if Some convergence condition is satisfied then
6: F = F (t);
7: G = G(t);
8: Break
9: end if

10: t = t + 1;
11: end while

4 Applications of NMF

Nonnegative Matrix Factorization has been proved to be valuable in many fields
of data mining, especially in unsupervised learning. In this part, we will briefly
review its applications in image processing, data clustering, semi-supervised clus-
tering, bi-clustering (co-clustering) and financial data mining. Note that we can-
not cover all the interesting applications of NMF, but generally speaking, the
special point on NMF is its ability to recover the hidden patterns or trends
behind the observed data automatically, which makes it suitable for image pro-
cessing, feature extraction, dimensional reduction and unsupervised learning.
The preliminary theoretical analysis concerning this ability will be reviewed in
the next section, in other words, the relations between NMF and some other
unsupervised learning models will be discussed.

4.1 Image Processing

Though the history of Nonnegative Matrix Factorization was traced back to
1970’s, NMF was attracted lots of attention due to the research of Lee & Seung
([1,2]). In their works, the model was applied to image processing successfully.
Hence we review the applications of NMF on this aspect firstly.

In image processing, the data can be represented as n×m nonnegative matrix
X , each column of which is an image described by n nonnegative pixel values.
Then NMF model can find two factor matrices F and G such that X ≈ FGT .
F is the so-called basis matrix since each column can be regarded as a part of
the whole such as nose, ear or eye, etc. for facial image data. G is the coding
matrix and each row is the weights by which the corresponding image can be
reconstructed as the linear combination of the columns of F .

In summary, NMF can discover the common basis hidden behind the obser-
vations and the way how the images are reconstructed by the basis. Indeed,
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the psychological and physiological researches have shown evidence for part-
based representation in the brain, which is also the foundation of some compu-
tational theories ([1]). But further researches have also shown that the standard
NMF model does not necessarily give the correct part-of-whole representations
([25,27]), hence many efforts have been done to improve the sparseness of NMF
in order to identify more localized features that are building parts for the whole
representation (See Sect. 2).

4.2 Clustering

One of the most interesting and successful applications of NMF is to cluster data
such as text, image or biology data, i.e. discovering patterns automatically from
data. Given a nonnegative n ×m matrix X , each column of which is a sample
and described by n features, NMF can be applied to find two factor matrices F
and G such that X ≈ FGT , where F is n× r and G is m× r, and r is the cluster
number. Columns of F can be regarded as the cluster centroids while G is the
cluster membership indicator matrix. In other words, the sample i is of cluster
k if Gik is the largest value of the row Gi,:.

The good performance of NMF in clustering has been validated in several
different fields including bioinformatics (tumor sample clustering based on mi-
croarray data, [14]), community structure detection of the complex network ([49])
and text clustering ([10,11,12]).

4.3 Semi-supervised Clustering

In many cases, some background information concerning the pairwise relations of
some samples are known and we can add them into the clustering model in order
to guide the clustering process. The resulting constrained problem is called semi-
supervised clustering. Specifically, the following two types of pairwise relations
are often considered:

– Must-link specifies that two samples should have the same cluster label;
– Cannot-link specifies that two samples should not have the same cluster

label.

Then, one can establish two nonnegative matrices Wreward = {wij :
sample i and sample j are in the same class} and Wpenalty = {wij :
sample i and sample j are not in the same class} based on the above informa-
tion, and the similarity matrix W = XTX of the samples (columns of X are
samples) can then be replaced by W −Wreward +Wpenalty (note that it is still
a symmetric matrix). Finally, NMF is applied:

min
S�0,G�0

‖(W −Wreward +Wpenalty) −GSGT ‖2
F ,

where G is the cluster membership indicator, i.e., sample i is of cluster k if the
element Gik is the largest value of the rowGi,:. Theoretical analysis and practical
applications have been contributed by [50]. We summarize the main theoretical
results but omit the details here.
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Theorem 2. Orthogonal Semi-Supervised NMF clustering is equivalent to
Semi-Supervised Kernel K-means ([51]).

Theorem 3. Orthogonal Semi-Supervised NMF clustering is equivalent to
Semi-Supervised Spectral clustering with Normalized Cuts ([52]).

4.4 Bi-clustering (co-clustering)

Bi-clustering was recently introduced by Cheng & Church ([53]) for gene expres-
sion data analysis. In practice, many genes are only active in some conditions
or classes and remain silent under other cases. Such gene-class structures, which
are very important to understand the pathology, can not be discovered using
the traditional clustering algorithms. Hence it is very necessary to develop bi-
clustering models/algorithms to identify the local structures. Bi-clustering mod-
els/algorithms are different from the traditional clustering methodologies which
assign the samples into specific classes based on the genes’ expression levels
across ALL the samples, they try to cluster the rows (features) and the columns
(samples) of a matrix simultaneously.

In other words, the idea of bi-clustering is to characterize each sample by a
subset of genes and to define each gene in a similar way. As a consequence, bi-
clustering algorithms can select the groups of genes that show similar expression
behaviors in a subset of samples that belong to some specific classes such as
some tumor types, thus identify the local structures of the microarray matrix
data [53,54]. Binary Matrix Factorization (BMF) has been presented for solving
bi-clustering problem: the input binary gene-sample matrix X4 is decomposed
into two binary matrices F and G such that X ≈ FGT . The binary matrices
F and G can explicitly designate the cluster memberships for genes and sam-
ples. Hence BMF offers a framework for simultaneously clustering the genes and
samples.

An example is given here5 to demonstrate the biclustering capability of BMF.
Given the original data matrix

X =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 0
0 1 1 1 0 1 1 1
1 0 1 1 0 1 1 1
0 1 0 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠
.

One can see two biclusters, one in the upper-right corner, and one in lower-left
corner. Our BMF model gives

4 [21] has discussed the details on how to discretize the microarray data into a binary
matrix.

5 Another example is given in the appendix to illustrate the limitations of NMF for
discovering bi-clustering structures.
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The two discovered biclusters are recovered in a clean way:

FGT =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 1 1 1 0 1 1 1
0 1 1 1 0 1 1 1
0 1 1 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠
.

4.5 Financial Data Mining

Underlying Trends in Stock Market: In the stock market, it has been
observed that the stock price fluctuations does not behave independently of each
other but are mainly dominated by several underlying and unobserved factors.
Hence identification the underlying trends from the stock market data is an
interesting problem, which can be solved by NMF. Given an n×m nonnegative
matrix X , columns of which are the records of the stock prices during n time
points, NMF can be applied to find two nonnegative factors F and G such
that X ≈ FGT , where columns of F are the underlying components. Note that
identifying the common factors that drive the prices is somewhat similar to blind
source separation (BSS) in signal processing. Furthermore, G can be used to
identify the cluster labels of the stocks (see Sect. 4.2) and the most interesting
result is that the stocks of the same sector are not necessarily assigned into
the same cluster and vice versa, which is of potential use to guide diversified
portfolio, in other words, investors should diversify their money into not only
different sectors, but also different clusters. More details can be found in [55].

Discriminant Features Extraction in Financial Distress Data: Building
appropriate financial distress prediction model based on the extracted discrim-
inative features is more and more important under the background of financial
crisis. In [56] it has presented a new prediction model which is indeed a combina-
tion of K-means, NMF and Support Vector Machine (SVM). The basic idea is to
train a SVM classifier in the reduced dimensional space which is spanned by the
discriminative features extracted by NMF, the algorithm of which is initialized
by K-means. The details can be found in [56].

5 Relations with Other Relevant Models

Indeed, the last ten years have witnessed the boom of Nonnegative Matrix
Factorization in many fields including bioinformatics, images processing, text
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mining, physics, multimedia, etc. But it is still not very clear that why the
model works. Researches on the relations between NMF and other unsupervised
learning models such as K-means and Probabilistic Latent Semantic Indexing
try to give us a preliminary interpretation of this question. The basic results of
this part are: i) the model of soft K-means can be rewritten as symmetric-NMF
model. Hence K-means and NMF are equivalent, which justifies the ability of
NMF for data clustering. But this does not mean that K-means and NMF will
generate identical cluster results since they employ different algorithms; ii) Prob-
abilistic Latent Semantic Indexing (PLSI) and NMF optimize the same objective
function (K-L divergence), but PLSI has additional constraints. The algorithms
of the two models can generate equivalent solutions, but they are different in
essence.

5.1 Relations between NMF and K-means

In [17] it has been shown that the model of K-means can be written in a special
form of NMF with orthogonal constraints, in which the objective function is the
least squares error and the objective matrix W is the similarity matrix of the
original samples and symmetric. This result is important and interesting because
it gives a solid foundation for NMF used for data clustering.

K-means is one of the most famous and traditional methods for clustering
analysis. It aims to partition m samples into K−clusters. The motivation is
very intuitive: the samples that are close to each other should share the same
cluster indicators. Hence K-means algorithm alternatively gives the cluster index
of each sample by the nearest cluster center and gives the cluster center by the
centroid of its members. The major drawback of K-means is that it is very
sensitive to the initializations and prone to local minima. Mathematically, K-
means can be formulated as minimizing a sum of squares cost function: minJK =
K∑

k=1

∑

i∈Ck

‖xi − mk‖2, where xi, i = 1, 2, · · ·m are the data samples and X =

(x1, x2, · · · , xm) is the data matrix, mk =
∑

i∈Ck

xi/nk is the centroid of cluster

Ck with nk samples. This optimization problem can be equivalently solved by a
special type of nonnegative matrix factorization W = HHT , where W = XTX ,
with orthogonal constraint HTH = I, i.e., nonnegative matrix factorization is
equivalent to soft K-means (i.e., HTH = I is relaxed).

Theorem 4. min ‖W − HHT‖2, where W = XTX, is equivalent to soft
K-means.

Proof. See Appendix.

The model equivalence of K-means and NMF has established the theoretical
foundation of NMF used for data clustering. Though NMF has been applied
for clustering successfully, there is still a lack of theoretical analysis until this
equivalent result is proved. But one should be noted that it does not mean that
NMF and K-means generate identical results. The algorithms that used to solve
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NMF and K-means are quite different. NMF uses gradient descent method while
K-means uses coordinate descent method ([57]). A general conclusion is that
NMF almost always outperforms K-means. Maybe this is due to the flexibility
of NMF which has more parameters to be decided. In fact, K-means always
wants to find the ellipsoidal-shaped clusters while NMF does not. When the
data distribution is far from an ellipsoidal-shaped clustering, which is often the
case for real data, NMF may have advantages ([22]). In summary, though NMF
is equivalent to K-means, it often generates a different and better result.

Moreover, it has been proved that the solution of soft K-means can also be
given by Principal Component Analysis (PCA), which builts closer relationships
between PCA and NMF ([58]) . A systematic numerical comparison and analysis
of K-means, PCA and NMF is of interesting, but is beyond the scope of this
chapter.

5.2 Relations between NMF and PLSI

Probabilistic Latent Semantic Indexing (PLSI) is one of the state-of-the-art un-
supervised learning models in data mining, and has been widely used in many
applications such as text clustering, information retrieval and collaborative filter-
ing. In this section, relations between NMF and PLSI, including the differences
of their models and the differences of their algorithms will be given. In summary,
NMF and PLSI optimize the same objective function; but their algorithms are
different due to the additional constraints in PLSI.

Probabilistic Latent Semantic Indexing (PLSI, [59]) is a probabilistic model
stemmed from Latent Semantic Analysis (LSA, [60]). Compared to LSA, PLSI
has a more solid theoretical foundation in statistics and thus is a more principled
approach for analyzing text, discovering latent topics and information retrieval,
etc. ([59,61,62]). PLSI is a kind of topic model and, given a joint probabilistic
matrix X (i.e.,

∑
i,j Xij = 1.), aims to get three nonnegative matrices C, diag-

onal S and H such that CSHT is the approximation of X . The parameters in
PLSI model are trained by the Expectation Maximization (EM) algorithm which
iteratively increases the objective likelihood function until some convergence con-
dition is satisfied and, at each step, PLSI maintains the column normalization
property of C, S and H (

∑
i Cik = 1,

∑
k Skk = 1,

∑
j Hjk = 1).

For simplifying explanation, we take the document analysis task as an exam-
ple. Given a document collection Xn×m of m documents and a vocabulary of n
words, where each element Xij indicates whether a word wi occurs in document
dj , the learning task in PLSI is to find three matrices C,H and S, such that
X is approximated by CSHT , where Cik is the probability of P (wi|zk)6, Hjk

is the probability of P (dj |zk) and S is diagonal matrix with diagonal element
Skk = P (zk).

To learn the PLSI model, we can consider maximizing the log-likelihood of
the PLSI model L =

∑
i,j n(i, j)logP (wi, dj), where n(i, j) is the co-occurrence

6 zk means the kth latent topic.
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number of word i and document j, and P (wi, dj)=
∑

k P (wi|zk)P (zk)P (dj |zk)=∑
k CikSkkHjk. Here we normalize X to satisfy

∑
i,j Xij = 1, and the log-

likelihood function can then be rewritten as:

L =
∑

i,j

Xij logP (wi, dj). (7)

The parametersC, S andH are then iteratively got by Expectation-Maximization
(EM) algorithm. The EM algorithm begins with some initial values ofC,H, S and
iteratively updates them according to the following formulas:

Cik :=

∑

j

XijP
k
ij

∑

i,j

XijP k
ij

; Skk :=
∑

i,j

XijP
k
ij ; Hjk :=

∑

i
XijP

k
ij

∑

i,j

XijP k
ij

. (8)

where P k
ij is the probability of

P (zk|wi, dj) =
SkkCikHjk∑
k SkkCikHjk

. (9)

By combining (8) and (9), one can get:

Cik :=

∑

j

Xij
SkkCikHjk∑

k
SkkCikHjk

∑

i,j

Xij
SkkCikHjk∑

k
SkkCikHjk

=Cik

( X.
CSHT )H)ik

(CT X.
CSHT H)kk

;

Hjk :=

∑

i

Xij
SkkCikHjk∑

k
SkkCikHjk

∑

i,j

Xij
SkkCikHjk∑

k
SkkCikHjk

=Hjk

( X.
CSHT )T C)jk

(CT X.
CSHT H)kk

;

Skk := Skk

∑

ij

XijCikHjk

∑

k

SkkCikHjk

=Skk(CT X.

CSHT
H)kk.

(10)
The algorithm of PLSI is summarized in Algorithm 6:

Consequently, we will review the relations between NMF and PLSI. The ba-
sic conclusions are: 1) maximizing the objective likelihood function in PLSI is
equivalent to minimizing the K-L divergence in NMF. Hence NMF and PLSI
optimize the same objective function, i.e., K-L divergence ([18]); 2) their solu-
tions are equivalent because of the fixed row sum and fixed column sum property
of NMF with K-L divergence; 3) Their algorithms are different because of the
additional constraints in PLSI.

To begin with, we give the following lemma:

Lemma 1 (fixed row and column sums property, [18,63]). In NMF,
under the update rules:

Fik :=
Fik∑
j Gjk

∑

j

Xij

(FGT )ij
Gjk;

Gjk :=
Gjk∑
i Fik

∑

i

Xij

(FGT )ij
Fik,
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Algorithm 6. Probabilistic Latent Semantic Indexing
Input: C0, S0, H0, t = 1.
Output: C, S, H.
1: while 1 do

2: Update C
(t)
ik := C

(t−1)
ik

(
X.

C(t−1)S(t−1)H(t−1)T
)H(t−1))ik

(C(t−1)T
X.

C(t−1)S(t−1)H(t−1)T
H(t−1))kk

;

3: Update S
(t)
kk := S

(t−1)
kk (C(t)T X.

C(t)S(t−1)H(t−1)T
H(t−1))kk;

4: Update H
(t)
jk := H

(t−1)
jk

(
X.

C(t)S(t)H(t−1)T
)T C(t))jk

(C(t−1)T X.

C(t)S(t)H(t−1)T
H(t−1))kk

;

5: Test for convergence.
6: if Some convergence condition is satisfied then
7: C = C(t);
8: S = S(t);
9: H = H(t);

10: Break
11: end if
12: t = t + 1;
13: end while

we have, at convergence:

n∑

i=1

(FGT )ij =
n∑

i=1

Xij ;
m∑

j=1

(FGT )ij =
m∑

j=1

Xij .

Proof. See Appendix.

Now we proceed to prove the model equivalence between NMF and PLSI.

Theorem 5. NMF and PLSI optimize the same objective function.

Proof. See Appendix.

Theorem 6. ([18,19]) Any local maximum likelihood solution (C, S,H) of PLSI
is a solution of NMF with K-L divergence and vice versa.

Proof. This is obviously true by letting F = C and G = HS (or F = CS and
G = H) at convergence.

The conclusion that any local minimum solution (F,G) of NMF is a solution
of PLSI can be proved similarly by normalizing F and G at convergence. �

From above analysis, one can see that NMF and PLSI optimize the same objec-
tive function, and the solution (F,G) of NMF and the solution (C, S,H) of PLSI
are equivalent. Furthermore, we observe that at convergence, FGT = CSHT .
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Consequently we will show that the algorithms of NMF and PLSI are different.
To show this, we will firstly study the normalization of NMF. In other words,
to compare the differences between NMF and PLSI more explicitly, we column
normalize F and G at each step in NMF.

Obviously, in Algorithm 2, it holds that F (t)G(t−1)T = (F (t)A)(G(t−1)B)T for
any two matrices A and B as long as ABT = I and F (t)A � 0, G(t−1)B � 0.
If we select special A and B such that A is diagonal with Akk =

∑
i Fik and

B = A−1, then (F (t)A) is column normalization of F (t). Similarly, we can get
the column normalization of G(t). Based on these observations, we can revise
the standard NMF algorithm as follows: after line 2 in Algorithm 2, we firstly
column normalize F (t), and then replace G(t−1) by (G(t−1)B)T , consequently
update G(t−1), then normalize G(t) and so on. Thus we get the normalization
version of NMF algorithm:

Consequently, we give a conclusion on normalization of NMF. This conclusion
can help us understand the algorithm differences between PLSI and NMF more
clearly.

Theorem 7. For NMF, at the t−th iteration, given the triple factors C(t−1),
diagonal matrix S(t−1) and H(t−1), which satisfy

∑
iC

(t−1)
ik = 1,

∑
k S

(t−1)
kk =

1 and
∑

j H
(t−1)
jk = 1, as initializations such that F (t−1) = C(t−1)S(t−1) and

G(t−1) = H(t−1) or F (t−1) = C(t−1) and G(t−1) = H(t−1)S(t−1), the result F (t)

can be equivalently formulated as

C
(t)
ik := C

(t−1)
ik

( X.
C(t−1)S(t−1)H(t−1)T H

(t−1))ik

(C(t−1)T X.
C(t−1)S(t−1)H(t−1)T H(t−1))kk

, (11)

S
(t)
kk := S

(t−1)
kk (C(t−1)T X.

C(t−1)S(t−1)H(t−1)T H
(t−1))kk (12)

such that
F (t) = C(t)S(t). (13)

The proof is omitted due to space limitation.
From above theorem, we can see that C(t) is column normalization of F (t),

and the update rule of C is given. In corollary 1, we give an interesting property
of S(t).

Corollary 1. For NMF, at the t−th iteration,
∑

i

C
(t)
ik = 1 and

∑

k

S
(t)
kk = 1.

For G in NMF, we have similar result.

Corollary 2. For NMF, at the t−th iteration, given the triple factors C(t−1),
diagonal matrix S(t−1) and H(t−1), which satisfy

∑
iC

(t−1)
ik = 1,

∑
k S

(t−1)
kk =

1 and
∑

j H
(t−1)
jk = 1, as initializations such that F (t−1) = C(t−1)S(t−1) and

G(t−1) = H(t−1) or F (t−1) = C(t−1) and G(t−1) = H(t−1)S(t−1), the result G(t)

can be equivalently formulated as
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H
(t)
jk := H

(t−1)
jk

((
X.

C(t−1)S(t−1)H(t−1)T
)TC(t−1))jk

(C(t−1)T X.

C(t−1)S(t−1)H(t−1)T
H(t−1))kk

,

S
(t)
kk := S

(t−1)
kk (C(t−1)T X.

C(t−1)S(t−1)H(t−1)T H
(t−1))kk

such that G(t) = H(t)S(t).

Based on the above discussions, we can revise Algorithm 2 to Algorithm 7.

Algorithm 7. Nonnegative Matrix Factorization∗

Input: C(0), S(0), H(0), t = 1.
Output: C, S, H.
1: while 1 do

2: Update C
(t)
ik := C

(t−1)
ik

(
X.

C(t−1)S(t−1)H(t−1)T
H(t−1))ik

(C(t−1)T X.

C(t−1)S(t−1)H(t−1)T
H(t−1))kk

;

3: Update S
(t)
kk := S

(t−1)
kk (C(t−1)T X.

C(t−1)S(t−1)H(t−1)T
H(t−1))kk;

4: Update H
(t)
jk := H

(t−1)
jk

((
X.

C(t)S(t)H(t−1)T
)T C(t))jk

(C(t)T X.

C(t)S(t)H(t−1)T
H(t−1))kk

;

5: Update S
(t)
kk := S

(t)
kk (C(t)T X.

C(t)S(t)H(t−1)T
H(t−1))kk;

6: Test for convergence.
7: if Some convergence condition is satisfied then
8: C = C(t);
9: S = S(t);

10: H = H(t);
11: Break
12: end if
13: t = t + 1;
14: end while

Note that the normalization version of NMF will converge to a different local
optimum from the standard NMF. But the revised version has a close relation
with the standard one: any local optimum of Algorithm 7 is also a solution of
Algorithm 2, and vice versa.
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Theorem 8. Any local optimum of Algorithm 7 is a solution of Algorithm 2.

Proof. This is obviously true by joining line 2 and line 3, line 4 and line 5
in Algorithm 7.

After studying normalization of NMF carefully, we can now have a better insight
into the algorithm differences between PLSI and NMF.

The following conclusions give the relations of C (in PLSI) and F (in NMF),
H (in PLSI) and G (in NMF).

Theorem 9. For PLSI and NMF, at the t−th iteration, given the triple fac-
tors C(t−1), S(t−1) and H(t−1) as initializations of PLSI and F (t−1), G(t−1) as
initializations of NMF such that C(t−1)S(t−1) = F (t−1) and H(t−1) = G(t−1)

or C(t−1) = F (t−1) and H(t−1)S(t−1) = G(t−1) (i.e., C(t−1)S(t−1)H(t−1)T =
F (t−1)G(t−1)T ), the update rules of C and F have the following relations: except
for additional normalization, the update rule of C is identical with that of F
in NMF, i.e., C(t) = F (t)D−1

F , where DF is diagonal matrix and the diagonal
element (DF )kk =

∑

i

F
(t)
ik .

Proof. The result is obviously true from (10), (11) , (12) and (13).

Corollary 3. For PLSI and NMF, at the t−th iteration, given the triple fac-
tors C(t−1), S(t−1) and H(t−1) as initializations of PLSI and F (t−1), G(t−1) as
initializations of NMF such that C(t−1)S(t−1) = F (t−1) and H(t−1) = G(t−1)

or C(t−1) = F (t−1) and H(t−1)S(t−1) = G(t−1) (i.e., C(t−1)S(t−1)H(t−1)T =
F (t−1)G(t−1)T ), the update rules of H and G have the following relations: except
for additional normalization, the update rule of H is identical with that of G
in NMF, i.e., H (t) = G(t)D−1

G , where DG is diagonal matrix and the diagonal
element (DF )kk =

∑

j

G
(t)
jk .

Hence, NMF with normalization at each iteration has close relationship with
PLSI. But this does not mean that PLSI can be replaced by NMF by normalizing
F and G at each step, which can be observed from Algorithm 6 and Algorithm 7.

The key reason is that PLSI imposes normalization conditions on the factors
explicitly. In [18] it has been shown that PLSI and NMF optimize the same ob-
jective function, hence PLSI can be seen as NMF-based model with additional
normalization constraints (

∑
iCik = 1,

∑
j Hjk = 1,

∑
k Skk = 1). The deriva-

tion process of PLSI update rules of C and H can be separated into two steps.
Take the update rule of C while fixing S and H for example: firstly one gets the
un-normalized C by gradient descent (identical with NMF), and then normalizes
C to satisfy the constraint

∑
i Cik = 1. The update rule of H is got in a similar

way. The update rule of S can be got even more simply, just by gradient descent,
and the normalization constraints will be satisfied automatically. In detail, at
the t−th iteration, firstly, the derivative of the cost function J(X,CSHT ) with
respect to S while fixing C and H is:
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∂

∂Skk
J = −

∑

ij

XijCiaHja∑

k

SkkCikHjk
+

∑

ij

CiaHja

= −
∑

ij

XijCiaHja∑

k

SkkCikHjk
+ 1.

Let the step size ηkk = Skk , then the update rule of S is:

Skk = Skk + ηkk(
∑

ij

XijCiaHja∑

k

SkkCikHjk
− 1)

= Skk(CT X

CSHT
H)kk.

Theorem 6 has shown that any local optimal solution of PLSI is also a solution
of NMF with K-L divergence, and vice versa, and Theorem 8 has shown similar
results between normalized NMF and standard NMF. These results mean that
given the same initializations, PLSI, NMF and normalized NMF will give equiv-
alent solutions. Furthermore, we observe that their solution values are always
identical:

CSHT 7 = FGT 8 = F ∗G∗T 9. (14)

Indeed, this phenomenon is very common in NMF. Roughly speaking, the
standard NMF algorithm can be expressed like this: update F , then update
G and so on. Now we revise it to: update F, update F, · · · , update F

︸ ︷︷ ︸
m times

, then

update G, update G, · · · , update G
︸ ︷︷ ︸

n times

, and so on. Choosing different m and n, we

can get infinitely many solutions even if given the same initializations. But these
solutions are all having the same solution values.

Note that since PLSI has to update S at each iteration, it needs more running
time than NMF.

6 Conclusions and Future Works

This chapter presents an overview of the major directions for research on Non-
negative Matrix Factorization, including the models, objective functions and
algorithms, and the applications, as well as its relations with other models. We
highlights the following conclusions: 1) Compared with Principal Component
Analysis, NMF is more interpretable due to its nonnegative constraints; 2) NMF
is very flexible. There are several choices of objective functions and algorithms to
accommodate a variety of applications; 3) NMF has linked K-means and PLSI,

7 Results by PLSI.
8 Results by NMF.
9 Results by normalized NMF.
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the two state-of-the-art unsupervised learning models, under the same frame-
work; 4) NMF has a wide variety of applications and often has better numerical
performance when compared with the other models/algorithms.

Finally, we list several open problems that are related to this chapter:

– there is still lack of systematic comparisons of the concordances and differ-
ences among the sparse variants of NMF. Note that generally speaking, the
penalty that uses 1-norm should give more sparse results when compared
with 2-norm since 2-norm often gives values that are very small rather than
zeros, but 2-norm penalty is easier to calculate ([64,5]);

– what are the relationships among the objective divergence functions, the
algorithms and the applications? There is still lack of systematic analysis;

– why (14) holds? In other words, since they converge to different local solu-
tions, why the solution values are always identical?

– how to tackle very large scale dataset in real applications? Distributed
NMF([65]) seems an interesting direction.
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Appendix

Proof of Theorem 1:

First of all, rewrite F = (F:,1, F:,2, · · · , F:,r), G = (G:,1, G:,2, · · · , G:,r). Let

DF = diag(max(F:,1),max(F:,2), · · · ,max(F:,r)),
DG = diag(max(G:,1),max(G:,2), · · · ,max(G:,r)),

where max(•) is the largest element of column •.
Note

DF = D
1/2
F D

1/2
F , DG = D

1/2
G D

1/2
G .

D−1
F = D

−1/2
F D

−1/2
F , D−1

G = D
−1/2
G D

−1/2
G .

We obtain
X = FGT = (FD−1

F )(DFDG)(GD−1
G )T

= (FD−1/2
F D

1/2
G )(GD−1/2

G D
1/2
F )T .
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Construct D as D = D
−1/2
G D

1/2
F , then

F ∗ = FD
−1/2
F D

1/2
G , G∗ = GD

−1/2
G D

1/2
F .

Thus (4) is proved.

Furthermore,

(FD−1/2
F D

1/2
G )ij = Fij ·

√
max(G:,j)
max(F:,j)

=
Fij

max(F:,j)
·
√

max(F:,j)max(G:,j).

Without loss of generality, assuming that

max(F:,j) = Ftj , max(G:,j) = Glj ,

then we have

max(F:,j) · max(G:,j) ≤ Ft1G
T
1l + · · ·FtjG

T
jl + · · · + FtrG

T
rl

=
∑

k

FtkG
T
kl = Xtl ≤M.

So 0 ≤ F ∗
ij ≤ √

M and 0 ≤ G∗
ij ≤ √

M .
If X is symmetric and F = GT ,

G∗
ij = Gij ·

√
max(G:,i)
max(G:,i)

= Gij ,

which implies G∗ = G. �

Proof of Theorem 4:

Firstly, JK can be rewritten as:

JK =
K∑

k=1

∑

i∈Ck

‖xi −mk‖2

= c2 −
K∑

k=1

1
nk

∑

i,j∈Ck

xT
i xj ,

where c2 =
∑

i ‖xi‖2. The clustering result can be represented by K nonnegative
indicator vectors:

H = (h1, h2, · · · , hK), hT
k hl = δkl =

{
1 k = l
0 k = l

where hk = (0, · · · , 0, 1, · · · , 1
︸ ︷︷ ︸

nk

, 0, · · · , 0)T/n
1/2
k .
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Now JK becomes: JK = Tr(XTX)−Tr(HTXTXH), where Tr(•) is the trace
of matrix •. Thus minJK becomes

max
HT H=I,H�0

Tr(HTWH), (15)

where W = XTX .
But −2Tr(HTWH) = ‖W‖2 − 2Tr(HTWH) + ‖HTH‖2 = ‖W − HTH‖2,

hence,

H = arg min
HT H=I,H�0

−2Tr(HTWH)

= arg min
HT H=I,H�0

‖W −HTH‖2.

Relaxing the orthogonal constraint HTH = I completes the proof. �

Proof of Lemma 1:

At convergence, one has:

Gjk =
Gjk∑
i Fik

∑

i

XijFik

(FGT )ij
.

Hence
∑

i′
(FGT )i′j =

∑

i′,k

Fi′kGjk

=
∑

i′,k

Fi′k
Gjk∑
i Fik

∑

i

XijFik

(FGT )ij

=
∑

k

Gjk

∑

i

XijFik

(FGT )ij

=
m∑

i=1

Xij .

The other equality can be proven similarly. �

Proof of Theorem 5:

Firstly, we note that maximizing (7) can be rewritten as:

min−
m∑

i=1

n∑

j=1

Xij logP (wi, dj),

which is equivalent to

min
m∑

i=1

n∑

j=1

−Xij logP (wi, dj) +
m∑

i=1

n∑

j=1

(Xij logXij −Xij + (FGT )ij),
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or

min
m∑

i=1

n∑

j=1

(Xij log
Xij

P (wi, dj)
−Xij + (FGT )ij),

since
∑m

i=1

∑n
j=1 Xij logXij is a constant and

m∑

i=1

n∑

j=1

(−Xij + (FGT )ij) cancels

out at convergence by Lemma 1. Hence, by Theorem 6, PLSI and NMF optimize
the same objective function. �

An Example to Illustrate the Limitations of NMF for Discovering
Bi-clustering Structures

In fact, several papers [14,15] have discussed about the bi-clustering aspect of
NMF. But the key difficulty is that one can not identify the binary relationship of
genes and samples exactly since the resulting matrices F and G are not binary.
Here we give an example to illustrate the limitations of NMF for discovering
bi-clustering structures. Given the original data matrix

X =

⎛

⎜
⎜
⎜
⎜
⎝

0.8 0.8 0.8 0.64 0.64 0.64
0.76 0.76 0.76 0.68 0.68 1.68
0.64 0.64 0.64 0.80 0.80 0.80
0.68 0.68 0.68 0.76 0.76 0.76
0.64 0.64 0.64 0.80 0.80 0.80

⎞

⎟
⎟
⎟
⎟
⎠
.

Each row of X is a feature and each column of X is a sample.
We get the factor matrices F and G as follows:

F =

⎛

⎜
⎜
⎜
⎜
⎝

0.80 0.40
0.70 0.50
0.40 0.80
0.50 0.70
0.40 0.80

⎞

⎟
⎟
⎟
⎟
⎠

; GT =
(

0.8 0.8 0.8 0.4 0.4 0.4
0.4 0.4 0.4 0.8 0.8 0.8

)

.

One can easily observe the clustering structures of the columns from G, but when
identifying the bi-clustering structures, he(or she) has difficulties to identify an
appropriate threshold to select which features should be involved in bi-clustering
structures. From this small example we can see that standard NMF has limita-
tions to discover bi-clustering structures explicitly.
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Visual Data Mining and Discovery with  
Binarized Vectors 
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Abstract. The emerging field of Visual Analytics combines several fields 
where Data Mining and Visualization play leading roles. The fundamental 
departure of visual analytics from other approaches is in extensive use of visual 
analytical tools to discover patterns not only to visualize pattern that have been 
discovered by traditional data mining methods. High complexity data mining 
tasks often require employing a multi-level top-down approach, where first at 
the top levels a qualitative analysis of the complex situation is conducted and 
top-level patterns are discovered.  This paper presents the concept of Monotone 
Boolean Function Visual Analytics (MBFVA) for such top level pattern 
discovery. This approach employs binarization and monotonization of 
quantitative attributes to get a top level data representation. The top level 
discoveries form a foundation for next more detailed data mining levels where 
patterns are refined.  The approach is illustrated with application to the medical, 
law enforcement and security domains. The medical application is concerned 
with discovering breast cancer diagnostic rules (i) interactively with a 
radiologist, (ii) analytically with data mining algorithms, and (iii) visually. The 
coordinated visualization of these rules opens an opportunity to coordinate the 
multi-source rules, and to come up with rules that are meaningful for the expert 
in the field, and are confirmed with the database.  Often experts and data 
mining algorithms operate at the very different and incomparable levels of 
detail and produce incomparable patterns. The proposed MBFVA approach 
allows solving this problem. This paper shows how to represent and visualize 
binary multivariate data in 2-D and 3-D. This representation preserves the 
structural relations that exist in multivariate data. It creates a new opportunity to 
guide the visual discovery of unknown patterns in the data. In particular, the 
structural representation allows us to convert a complex border between the 
patterns in multidimensional space into visual 2-D and 3-D forms.  This 
decreases the information overload on the user. The visualization shows not 
only the border between classes, but also shows a location of the case of interest 
relative to the border between the patterns. A user does not need to see the 
thousands of previous cases that have been used to build a border between the 
patterns. If the abnormal case is deeply inside in the abnormal area, far away 
from the border between “normal” and “abnormal” classes, then this shows that 
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this case is very abnormal and needs immediate attention. The paper concludes 
with the outline of the scaling of the algorithm for the large data sets and 
expanding the approach for non-monotone data.  

Keywords: Data Mining, Visual discovery, Monotone chains, Multi-level Data 
Mining, Monotone Boolean Function, Visual Analytics.  

1   Introduction 

Visual data mining (VDM) assists a user in detecting interesting knowledge, and in 
gaining a deep visual understanding of the data in combination with advanced 
visualization [Beilken & Spenke, 1999; Keim et al., 2002; Schulz, et al, 2006; Badjio, 
Pouletm 2005; Zhao et al, 2005, Lim, 2009, 2010; Oliveira, Levkowitz, 2003, Pak, 
Bergeron, 1997; Wong et al, 1999, ]. Visualizing the border between classes is one of 
the especially important aspects of visual data mining. The well-separated classes that 
are visually far away from each other with simple border between classes match our 
intuitive concept of the patterns.  This simple separation serves as an important 
support for the idea that the data mining result is robust and not accidental.  
Moreover, for many situations, a user can easily catch a border visually, but its 
analytical form can be quite complex and difficult to discover.   This visual simple 
border for a human may not be a simple mathematically.    

VDM methods have shown benefits in many areas. However, available methods do 
not address the specifics of data, with little variability in the traditional visual 
representation of different objects such as parallel coordinates. VDM is an especially 
challenging task when data richness should be preserved without the excessive 
aggregation that often happens with simple and intuitive presentation graphics such as 
bar charts [Keim, Hao, et al., 2002]. Another challenge is that often such data lack the 
natural 3-D space and time dimensions [Groth, 1998] and instead require the 
visualization of an abstract feature. 

We begin with an analysis of the currently available methods of data visualization. 
Glyphs can visualize nine attributes (three positions x, y, and z; three size dimensions; 
color; opacity; and shape). Texture can add more dimensions. Shapes of the glyphs 
are studied in [Shaw, et al., 1999], where it was concluded that with large super-
ellipses, about 22 separate shapes can be distinguished on the average. An overview 
of multivariate glyphs is presented in [Ward, 2002].  

In this paper, we show that the placement based on the use of the data structure is 
a promising approach to visualize a border between classes for multidimensional data. 
We call this the GPDS approach (Glyph Placement on a Data Structure). It is 
important to note that in this approach, some attributes are implicitly encoded in the 
data structure while others are explicitly encoded in the glyph or icon. Thus, if the 
structure carries ten attributes and a glyph/icon carries nine attributes, nineteen 
attributes are encoded. Below to illustrate the use of the data structure concept, we 
consider simple 2-D icons as bars of different colors. Adding texture, motion and 
other icon characteristics can increase dimensions of the data visualized.      
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Alternative techniques such as Generalized Spiral and Pixel Bar Chart are 
developed in [Keim, Hao, et al., 2002]. These techniques work with large data sets 
without overlapping, but only with a few attributes, (these range from a single 
attribute to perhaps four to six attributes).  

 
 

 

 

(a) ‘0’-class (benign) 

 

 

(b) ‘1’-class (malignant) 

Fig. 1. Breast cancer data in parallel coordinates 

 
The parallel coordinate visualization [Inselberg, Dimsdale, 1990] can show ten or 

more attributes in 2-D, but suffers from record overlap and thus is limited to tasks 
with well-distinguished cluster records. In parallel coordinates, each vertical axis 
corresponds to a data attribute (xi) and a line connecting points on each parallel 
coordinate corresponds to a record. Figure 1 (a)-(c) depicts about a hundred breast 
cancer cases (each of them is an 11-dimensional Boolean vector in Boolean space 
E11). Classes ‘0’ and ‘1’ look practically the same as Figures 1 (a) and (b) show. Thus, 
parallel coordinates were are not able to discover visually the pattern that would 
separate classes 0’ and ‘1’ (benign and malignant) in these dataset. In this paper, we 
will show that the proposed GPDS method is able to do this.   

Parallel coordinates belong to a class of methods that explicitly visualize every 
attribute xi of an n-dimensional vector (x1,x2,…,xn) and place the vector using all  
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attributes xi but each attribute is placed on its own parallel coordinate independently 
of the placing other attributes of this vector and other vectors. This is one of the major 
reasons of occlusion and overlap of visualized data. The GPDS approach constructs a 
data structure and can place objects using attribute relations.  

2   Method for Visualizing Data 

Below we describe Monotone Boolean Function Visual Analytics (MBFVA) method 
and its implementation called VDATMIN that exploit Glyph Placement on a Data 
Structure in combination with Monotone Boolean Functions approach. As was 
discussed above many data mining problems can be encoded using Boolean vectors, 
where each record is a set of binary values {0; 1} and each record belongs to one of 
two classes (categories) that are also encoded as 0 and 1. For instance, a patient can 
be represented as a Boolean vector of symptoms along with an indication of the 
diagnostic class (e.g., benign or malignant tumor) [Kovalerchuk, Vityaev, Ruiz, 2001, 
Kovalerchuk et al, 1996]. For Boolean vectors, our VDM method relies on monotone 
structural relations between them in the n-dimensional binary cube, En based on the 
theory of monotone Boolean functions.   

 

 
(a) Binary 3-D cube with Hansel 
chains 

(b) Binary 3-D cube with Hansel chains as a 
lattice 

 
(c) Binary 3-D cube with some 
nodes labeled by target class “0” 
or “1”   

(d) generalization of (b) for n-dimensional 
Binary cube  

 

Fig. 2. Visual representation of multidimensional Boolean data 
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Figure 2(a) illustrates the concept of monotonicity in 3-D Boolean cube, where red 
lines show three monotone chains (known as Hansel chains [Kovalerchuk et al, 1996; 
Hansel, 1966]):  

chain 1: (000), (001), (011), (111),  
chain 2: (100), (101),  
chain 3: (011), (110).  

In each Hansel chain, each next vector is greater than a preceding vector. In the next 
vector, exactly one  attribute is greater than in the preceding vector. Together these 
Hansel chains cover the whole 3-D Boolean cube and none of vectors is repeated 
(chains do not overlap). There is a general recursive process [Kovalerchuk et al, 1996; 
Hansel, 1966] to construct Hansel chains for a Boolean cube, En of any dimension n 
without overlap of chains.   

Figure 2 (b) shows the same Boolean cube as a lattice with Hansel chains drawn in 
parallel with the largest vector (111) on the top and the smallest vector (000) on the 
bottom. Figure 2(c) shows the same binary 3-D cube with some nodes labeled by 
target class “0” or “1”. In this way, training and testing data can be shown.   Figure 
2(d) presents a generalization of the lattice visualization shown in Figure 29b) for n-
dimensional Binary cube. This visualization is  used for the user interface in the 
VDATMIN system. 

The concept of the monotone Boolean function from discrete mathematics 
[Korshunov, 2003, Keller, Pilpel, 2009] is defined below. Let En={0,1}n be a binary 
n- dimensional cube then vector y=(y1,y2,…,yn)  is no greater than vector 
x=(x1,x2,…,xn) from En if for every i  xi ≥ yi, i.e.,  

 

x ≥ y  ∀i xi ≥ yi 

In other words, vectors x and y are ordered. In general relation ≥ for Boolean vectors 
in En is a partial order that makes En a lattice with a max element (1,1,…,1) and min 
element (0,0,…,0).  

Boolean function f: En → E is called a monotone Boolean function if  

∀ x ≥ y  f(x) ≥ f(y). 
 

Figure 3 demonstrates the user interface of visual data mining system VDATMIN. 
Figure 3(a) shows all 212=4096 nodes of n-dimensional binary cube En

 for n=12. Each 
node (12-dimemtional Boolean vector) is represented as a blue bar. The bar that 
represents the vector x containing all zeros is located in the lowest layer in the middle 
of the picture. The bar representing the vector x that contains all “1” ( |x|=12)  is 
located at the top of the picture in the middle. All other bars are located in between.   
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(a) Uniform 2-D Multiple Disk  Form (MDF) 
representation of n-dimensional binary cube 

(b) Multicolor 2-D MDF representation of n-dimensional 
binary cube 

(c) 3-D single color MDF, view 1  (d) 3-D multicolor MDF, view 2 

(e) 3-D multicolor MDF, view 3 (f) 3-D multicolor MDF, view 4  
 

Fig. 3. VDATMIN user interface 
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(a) Expert rule with cases in numeric order of cases (b) DB-based rule in numeric order of cases 

(c) Expert rule with aligned chains of cases (d) DB-based rule with aligned chains of cases 

(e) Expert rule with centered chains (f) DB-based rule with centered chains  
 

Fig. 4. (a),(c),(e) Visualization of the expert cancer rule in 10-D feature space, (b), (d),(f) 
visualization of the closest cancer rule extracted from the data base 10-D feature space 
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The bar layer next from the bottom contains all 12 vectors that have norm |x|=1. 
All vectors on the layers above it have norms from 2 to 12, respectively.  The largest 
number or vectors is in the middle level (norm |x|=6) for n=12. Therefore, that middle 
layer is the longest one.  In 3-D, each layer is represented as a disk as shown in Figure 
3 (c)-(f). This visual data representation is called Multiple Disk Form (MDF). It 
shows all 4096 12-D vectors without any overlap.  

The MDF visualization is applied in Figure 4 to visualize cancer rules discovered 
by using relational data mining and by “expert” mining [Kovalerchuk, Vityaev, Ruiz, 
2001]. The rule generated by the expert radiologist is shown in Figure 4 (a),(c),(e) and 
the cancer rule extracted from the database by a relational data mining algorithm 
MMDR [Kovalerchuk, Vityaev, 2000] is shown in Figure 4 (b), (d),(f).  Each rule is 
described by showing all cases where it is true, as black bars and as white bars where 
it is false. In other words, each Boolean vector x (case, patient, element) is 
represented in MDF as a black bar if the target value for x is equal to 1 (cancer), 
f(x)=1, and it is a white bar if f(x)=0 (benign).  

The VDATMIN also allows using other bar colors to indicate the status of the 
vector.  For instance, Figure 3(b) shows each layer of vectors in different color.   This 
system can indicate another status of the vector (case) which shows whether it is 
derived from target values (e.g., cancer, benign) of other cases using the monotonicity 
hypothesis. The vector y is rendered as a light grey bar if its target value f(y)=0 is 
derived from the target value for the vector x, such that y ≤ x and f(x)=0. 
Alternatively, the vector y is rendered as a dark grey bar if y≥x and f(x)=1. In this 
case f(y)=1. Vector y is called an expanded vector. The idea is that if the monotonicity 
hypothesis holds, then the value of f(y) can be derived by expanding the value f(x) as 
shown above. In other words, for white x, vector y is rendered as a light gray bar, 
which shows its similarity to x   in the target variable value (e.g., cancer), and its 
status as derived from x is not directly observed. Similarly the dark gray color is used 
for vector y with the target value derived from f(x)=1. While grey scale metaphor with 
black and white extremes is a common one, sometimes it is better visually to use the 
darkness scale with other colors.  Specifically VDATMIN uses the scale of blue color 
as well.   

Figure 5 explains the visualization used in Figure 4 (b),(d),(f) related to aligning 
chains of vectors. Say we have a set of Boolean vectors: 

 
(0000 0000 100) < (0000 1000 100) < (0001 1000 100) < (0001 1010 100) <  
(0001 1010 110) < (0001 1011 110) 

 
with a lexicographical order. This means that every coordinate in the previous vector 
is less than or equal to the same coordinate in the next vector.  In Figure 5(a) all 
vectors are ordered in each layer independently from vectors on other layers. It is 
done by using their binary numeric value, while in Figure 5(b) it is done in 
accordance with their lexicographical order. They form a straight line of bars starting 
from the smallest one. This makes the visualization much clearer and simpler.   
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(a) Monotone increasing vectors rendered in the numeric 
order 

(b) The same elements aligned as a vertical chain 
 

 
Fig. 5. Alternative visualizations of increasing vectors 

 

    1        2       3       4          5        6        7       8          9      10     11     12      13     14       15        16     17     18      19  
 

Fig. 6. Details of the user interface to support viewing monotone chains of elements. (1)  Align 
Chains vertically, (2) Show Layer Borders, (, (3) Show Element Borders, (4) Show Element 
Borders in one color,  (5) Show Bush Up (elements that are greater than a selected element) , 
(6) Highlight a chain, (7) Sort elements using their numerical values (natural order), (8) Align 
Chains (sort the data using the Hansel chains algorithm), (9) Move an element by dragging, 
(10) Move a chain by dragging, (11) Automatically center Hansel chains, (12) Expand 
Elements, (13) Show Monotonicity Violations, (14) Change expanded to real elements, (15) 
Expand Monotonicity, (16) Show 3D view, (17) Show 3D plot view, (18) Show 3D compressed 
view, (19) show initial position of disk. 

Figure 6 shows the details of the user interface. Button 12 “Expand Elements” 
toggles the ability to click on a 2D element and expands down the chain if the element 
is white and expands up the chain if the element is black.  Button 13 “Show 
Monotonicity Violations” will show violations as red elements.  Button 14 “Change 
expanded to real elements” toggles the ability to click on an element and change it 
from expanded status (dark gray or light gray) to real (black or white). Button (16) 
“Show 3D view” toggles between 2D and 3D view. Button (16) “Show 3D plot view” 
is a 3D view that draws on the tops and bottoms of disks.  Button (17) “Show 3D 
compressed view” is a view that compresses the data based on it being close to other 
data.  Button (18) “Show the initial position of the disk” draws a red box around the 
1st element in each layer. In the 3D a user has abilities to change the view of the MDF 
by controlling the camera that include rotating left -  right, moving left-right, up-
down, and zooming in and out. 
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(a)  visualization with numeric order of elements (b) Hansel chain visualization 

(c) Reordered (centered) Hansel chain visualization (d) Top 3-D view of (c)  
 

Fig. 7. The visualization of the Boolean rule y= x1&x2 in 11-dimensional space 

 
Figure 7 shows the visualization of the Boolean rule f(x) = x1&x2 in 11-

dimensional space, e.g. if in x=(x1,x2,x3,…,x11) we have x1=x2=1, xi=0, i= 3,4,…,11 
then f(x)=1. In Figure 7, all vectors that have f(x)=1 are black bars in and all vectors 
that have f(x)=0 are white bars. There is no vector x with f(x) expanded by 
monotonicity because all values of the target are given explicitly by the rule f(x) = 
x1&x2. This is the case when we have a complete rule. However, this is not the case in 
data-driven data mining where training data represent only a fraction of all vectors x 
in En. The first black bar (on the third layer from the bottom) represents the vector x 
with x1=x2=1, xi=0, i= 3,4,…,11. All other vectors on the same layer with norm |x|=2 
are white because they cannot have x1=x2=1. The next layer (|x|=3) contains 9 vectors 
and respectively 9 black bars.  

In Figure 7(a), all vectors are ordered in each layer in accordance with their binary 
value (e.g., vector (000…111) is numerically smaller than (111…000)), where it is 
assumed that x1 represents a lowest bit and x11 represents the highest bit. This our 
vector with x1=x2=1, xi=0, i= 3,4,…,11  is shown on the right end of the layer with 
|x|=2.  

Figure 7(b) shows a border between two classes of f(x) values 0 and 1 much better 
than (a) representation. It is based on monotone chains of elements of En called 
Hansel chains [Hansel, 1966]. Mathematical details how these layers are built are 
given in [Kovalerchuk, Delizy, 2005, Kovalerchuk, et al., 1996].  
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To be able to visualize data of the larger dimension we use grouping of Hansel 
chains and visualize groups of similar chains as a single chain. Thus, less area is 
needed to show the same data. The user has abilities to enter data to be visualized in 
two ways: (1) as formulas such as any disjunctive normal form (e.g., x1&x2 ∨ 

x3&x4&x5 )  or as actual vectors in n-D. In the first case, the program parses the logical 
formulas.   

3   Visualization for Breast Cancer Diagnistics 

We already presented in Figure 4 MDF visualization of one of the expert cancer rule 
and the cancer rule extracted from the database by the data mining algorithm. Below 
we expand this analysis and show it in Figure 8.  

A more complete cancer rule produced by the “expert mining” process that 
involves 11 features is as follows:  

f(x) = x5x10∨x4x10∨x6x7x8x10∨x5x9x11∨x4x9x11∨x6x7x8x9x11∨x5x3∨x4x3∨x6x7x8x3∨x2x3∨x1 (2) 

This formula is from [Kovalerchuk, Vityaev Ruiz, 2001] converted to the disjunctive 
normal form with the renaming variables to be able to feed VDATMIN directly. 
Figure 8 shows this rule with all three MDF visualization options. 

Expert rules for the biopsy also have been developed in by using the expert mining 
technique based on Monotone Boolean Functions approach in [Kovalerchuk, Vityaev, 
Ruiz, 2001]. It is shown below again in a modified notation to be able to feed 
VDATMIN:  

f(x) = x5x10∨x4x10∨x6x7x8x10∨x5x9x11∨x4x9x11∨x6x7x8x9x11∨x5x3∨x4x3∨x6x7x8x3∨x2x3∨x1 (3) 

Figure 8 shows the advantages of chain-based MDF visualization relative to 
visualization that does not exploit monotone chains. The chain-based border between 
classes is much clearer. This advantage gives an immediate benefit: visual 
comparison of rules for biopsy and cancer. It also helps to identify the level of 
consistency of cancer and biopsy rules provided by the expert. It is expected that a 
biopsy rules should be less stringent than a cancer rules. For instance if the presence 
of x2&x3 is a cancer indicator but only presence of x3 can be sufficient  to recommend 
biopsy test. In visual terms it means that the border of the biopsy class should be 
lower or at the same as cancer class for them to be consistent. This is exactly the case 
as Figure 8 (c) and (f) show. The black areas in the ovals in Figure 8 (f) for biopsy are 
lower than the same areas for cancer in Figure 8 (f).  Figure 8 (j) shows highly 
overlapped parallel coordinate visualization of the same data (yellow - benign, red –
malignant). The same classes are shown separately in Figure 1 (c). It shows 
advantages of VDATMIN relative to parallel coordinates for Boolean data. Figure 
8(k) shows types of source X-ray mammography images used to derive Boolean 
vectors.  
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(a) cancer visualization in numeric order (d) biopsy visualization in numeric order 

(b) cancer visualization in chain order (e) biopsy visualization in chain order 

(c) cancer visualization in centered chain order (f) biopsy visualization in centered chain order 

(j) Highly overlapped parallel coordinate visualization of 
the same data (yellow - benign, red –malignant 

(k) Types of source X-ray mammography images used 
producing  Boolean vectors  

 
Fig. 8. Visualizations of expert cancer and biopsy rules 

 
 
 
 
 
 
 
 
 



 Visual Data Mining and Discovery with Binarized Vectors 147 

4   General Concept of Using MDF in Data Mining 

Figure 9 illustrates the general concept of simultaneous coordinated visualization of 
multiple components of the analytics: original available training data, rules extracted 
from these data by using data mining, rules extracted from the expert.  Often the data 
and rules are in two categories: “final” and “warning”. In many applications, final 
rules produce a “final” decision, e.g., cancer, crime, security breach, but “warning” 
rules produce warnings about possible final state, e.g., biopsy positive, crime warning, 
and security alert.     There are must be consistency between final and warning rules 
from data mining and expert mining. The VDATMIN allows capturing discrepancies 
and consistency visually as Figure 9 shows on the illustrative examples for “final” and 
“warning” rules.  Comparison of Figure 9(a) and 9(b) shows discrepancy between 
“final” data mining rules and monotonically expanded data.  In the cancer example, 
this may lead to both missed cancer cases and benign cases diagnosed as malignant. 
In the center of (b) we see that the border of the monotone expansion is below than 
the border in (a). This means that some cancer case would be diagnosed as benign. In 
contrast, on the sides for both (a), (b) we see an opposite picture, which may lead to 
benign cases diagnosed as malignant. Similar interpretation will take place for  
crimes and security examples. Figure 9(c) and 9(d) show full consistency of expert 
‘final” and “warning” rules with each other.  All “final” rules are nested in the 
“warning” rules. Both these rules also much more consistent with data (c) than pure 
data mining rules (a) as visual comparison shows in a very compact way in Figure 9.      

 

(a) Data mining “final” rules - non-false alarm alert 
rules extracted by a data mining algorithm 

(b) Actual data (black and white) with expanded cases 
(light and dark gray) obtained by monotonicity. Red - 

violation of monotonicity in data. 

(c) Expert final rules –non-false alarm (d) Expert “warning rules”- all alarm rules  
 

Fig. 9. Visual comparison of rules provided by the expert (a), (b), extracted from data (c) and 
“visual rule” (d) 
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5   Scaling Algorithms   

5.1   Algorithm with Data-Based Chains 

Our goal is to represent the MDF on a single screen with possibly some scrolling. The 
major factor that is limiting the visualization is the number of Hansel chains that can 
be visualized as vertical lines.  We use two approaches: 

 
(A1) grouping chains with similar height of the border to a cluster,     
(A2) constructing chains from only vectors available in the database.   
 

The steps of the algorithm to construct these chains are described below and 
illustrated in Figures 10 and 11: 

 
Step 1:  Order all vectors according their Hamming norm.     
Step 2:  Loop: for each vector vi starting from the first one find all nodes that are 

greater than this node, vi < vj. This will create a matrix M={mij}, where mij=1 if vi < vj 
else mij= ∞. We can record only mij=1. Typically, this is a sparse matrix.  This matrix 
can be interpreted as an incidence matrix of the graph G (directed acyclic graph, 
DAG), where 1 means that there is direct link between nodes with length 1 and mij= ∞ 
means the absence of the link and infinite length.  Thus this step builds DAG, where 
arrow between nodes show the direction form smaller Boolean vector to the larger 
one.   

Step 3: Find a longest directed path P in G using M. Call this path chain 1.  
Step 4. Move C1 to the center of MDF 
Step 5: Remove all nodes of P from G and find a longest directed path in G with 

removed P. This path produces chain C2. Locate C2 vertically: one vector above 
another one in MDF.  

Step 6: Repeat step 4 until every node of G will belong to some path. Steps 3-5 will 
produce k chains {Ci} that do not overlap and cover all nodes of G. 

Step 7: Compute distances DHC (Ci, Cj) between all chains Ci.   
Step 8: Move all other chains in accordance with their distance to C1 in MDF. The 

chains with the shorter distance will be the closer to C1.  
Step 9: Assign color to vectors on each chain: black for f(x)=1 and white for 

f(x)=0.  
Step 10:  This step contains tree components:  expanding chains to have vectors 

with equal Hamming norms on both chains; equalizing expanded vectors in color with 
given vectors to see the pattern of the border better, and hiding the empty part of the 
MDF form. 

 
Consider an example of 200 given vectors in the E100.  What is the space needed to 
visualize them in MDF form? In the best case scenario we would have just two 
vertical chains that will contains all 200 vectors. Say the longest chain will have 101 
vectors and the second chain will contain remaining 99 vectors. This is due to the fact  
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that in100-D the longest chain contains 101 vectors. In the worst case, we would need 
to visualize 200 chains, if each vector forms its own chain when 200 vectors are 
incomparable.  Similarly, for a much larger set of 106 vectors we would need to 
visualize at least about 104 chains (106/101).  For a screen with 2000 pixels, it will 
result in scrolling the screen 5 times to observe these 104 chains in MDF completely 
for 100-D space and 106 vectors. The combining of the scrolling with clustering of 
chains where each cluster will have about 5 chains per cluster allows to compress all 
106 vectors in 100-D space into a single screen in the complete multiple disk form 
(MDF).  

On step 7, a user can switch between different distances. To describe distance used 
we define necessary concepts. Let L(C) be the lower unit of the chain C (the vector z 
on the chain with the smallest norm such that f(z)=1) Next let E(C1,C2) be the smallest 
element z of the chain C2 with f(x)=1 that was obtained by monotone expansion of 
element L(C1). This means that is knowing the value f(L(C1))=1 we can expand this 
value to z=E(C1,C2). Thus, this value f(z)=1 cannot be expanded by monotonicity to 
elements of chain C2 that are below E(C1,C2).   

The Hamming distance D between lower units of two chains, L(Ci) and L(Cj), 
D(L(Ci),L(Cj)) creates a smooth border, but it does not capture the monotone 
similarity between chains. The Hamming distance combined with Monotone 
Expansion, called HME measure captures both properties. In HME chain C2 is placed 
closer to chain C1 than chain C3,  if  the smallest expanded element of C2 from C1, 
E(C1,C2),  is closer (in Hamming distance D) to L(C1), which is D(E(C1,C2)) < 
D(E(C1,C3)). HME is infinite if chain C2 has no such expanded elements. 

5.2   Algorithm with Pixel Chains 

This algorithm modifies steps 8-10 from the previous algorithm.  To visualize E100 it 
uses a window of 101x100 pixels. The x coordinate is the Hamming-based 
distance/measure from the longest chain to the current chain H. The y coordinate is 
the norm (height) of the lower unit on the chain H.  In E100, this size of the window 
follows from the fact that the largest Hamming distance is 100 and the longest chain 
has 101 vectors. See Figure 12. In general for En the window is (n+1)×n. Thus a 
single screen has enough space for En with n=1000. This window is called a Chain 
Pixel Space (CPS). Chains are placed in CPS, where each pixel is empty or contains 
one or more chains. A user can change the visualization by switching the measures 
used in x (e.g., switching Hamming distance and HME). This visualization is very 
compact where each pixel can represent hundreds and thousands vectors, but with 
possible chain overlap. The number of chains overlapped in the pixel is shown by 
pixel color intensity in 2D or by a bar height when CPS is converted to its 3-D form.  
The spread of the border is shown in Figure 12(a) in each column. Figure 12(b) shows 
the lower edge of the border. Similarly, an upper border is visualized.  
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Step 1: Order given vectors according their Hamming 
norm. Show each vector as a bar in the row of its norm. 
Vectors with higher norm are on the rows closer to the top. 

Step 2: Build a graph G of vectors. G has a link from vi to 
vj. if vi < vj. Vectors in red ovals are greater than the vector 
in the black oval.  

Step 3: Find chain C1 - a longest directed path in G.  Step 4: Move the longest chain C1 to the center of MDF 

Steps 5-6: Remove all nodes of C1 from G, find a longest 
directed path in G\C1. Repeat to get all other chains 

Steps 5-6: Locate chain vertically C2: one vector above 
another one in MDF. Repeat this with other chains.  

 
Fig. 10. Illustration of algorithm with data-based chains: part 1 
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Steps 5-6: Chains C1 and C2 located vertically as a result 
of Steps 5-6.

Steps 7-8: Move chains according to their distance to C1.
The chains with the shorter distance are closer to C1.

Step 9: Assign colors to vectors on each chain based on
target values, black for f(x)=1 and white for f(x)=0.

Step 10: Expand chains by monotonicity:  f(x)=1 (dark
grey), f(x)=0 (light grey), no expansion (yellow).

Step 10: Expanded vectors equalized in color with given
vectors to see the pattern of the border better. 

Step 10: Hiding and removing the empty part of the MDF
form.  

 
Fig. 11. Illustration of the algorithm with data-based chains: part 2 
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(a) (b)   
 

Fig. 12. Pixel-based chain visualization: (a) all chains, (b) lower border between classes 

6   Binarization and Monotonization 

Above we considered visual data mining with monotone binary data. Below we 
discuss generalization of this technique for the data that are not binary and not 
monotone. The simplest way to binarize data is use a threshold with δ-function:  
δ(x)=1 if x>=T else δ(x)=0. The main reason for binarization is data simplification 
and getting a qualitative evaluation of the complex situation. Binarization of data is an 
extreme case of data discretization that is quite common in data mining with multiple 
techniques developed.  Typically, we need to analyze the situation at the different 
levels of detail. We would prefer first to get a “bird view” of the situation and then 
‘zoom’ to most interesting spots found in the ‘bird view”.  This is not only a question 
of convenience, but a deep issue of artificial intelligence and brain modeling. In this 
way humans able to solve tasks that seems computationally intractable. These  issues 
are studied in Dynamic Logic of Phenomena (DLP) [Kovalerchuk, Perlovsky, 2008, 
2009].  

Example 1: Crime situation. Multiple demographic factors contribute to crime level 
in specific areas. The collected data can be overwhelming, therefore initial qualitative 
analysis can be done with two target values “growing crime level”, and “stable or 
declining crime level” that can be measured by threshold that the increase in the  
number of criminal cases is greater than threshold T.  

Similarly, we can binarize features that impact the target feature –crime level.  For 
the example 1 it can be: (1) population increase (no significant increase,  significant 
increase); (2) Income (low, high);(3) Tax collected level (low, high), (4) Population 
percent of age 18-30 (low, high), (5) Mean age (no greater than T, greater than T), (6) 
Education level as a percent of population with college degree (low- no greater than 
T, high- greater than T), (7) Unemployment rate (low, high), (8) Law enforcement 
budget rate (low, high), (9) Crime level in the adjacent neighborhoods, (10) High 
school dropout level (low, high).  

Thus, we can get 10-dimensional Boolean vectors of these exogenous attributes 
with low encoded as 0 and high as 1. Each available training vector is labeled by 0 or 
1, that represent the crime level (low or high). Each such record will be for an 
individual neighborhood and a specific time.  Such binary data representation allows 
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us to use the visual data mining technique described in this paper to discover a visual 
predictive rule for prediction crime level (low, high). We will also be able to test 
monotonicity of the attributes (1)-(10) relative to crime level. The lack of 
monotonicity may mean that some other impact factors are missing or data are 
corrupted. For instance, some neighborhoods already implemented the neighborhood 
watch program. This feature is not included in (1)-(10).  Several iteration of adding 
attributes may be required to reach monotonicity. Thus, the proposed visual data 
mining approach  can serve as a feature augmenting mechanism that compliment 
known feature selection mechanisms, which do not guide how to look at new 
attributes.   

Example 2: Security situation of the port. Multiple factors within the port and outside 
contribute to port security level and the collected data can be overwhelming. 
Therefore initial qualitative analysis can be done with two target values “growing 
security threats”, and “stable or declining security threats” that can be measured by 
threshold that the increase in the  number of security alerts is greater than threshold T 
in the area.  

Similarly, using thresholds we can binarize features that impact the target feature – 
security level: (1)   Cargo in the area (down or no significant increase, significant 
increase), (2)  Real estate value of the area   (low, high), (3)   Cargo value in the area 
(low, high), (4)   Average number of people in the area (low, high), (5)   Average 
number of non-port employees in the area (low, high), (6)   Number of sensors in the 
area (low, high), (7)   Average time a non-employee in the area per day (low, high), 
(8)   Average time an employee in the area per day (low, high), (9)  Average number 
of security people in the area (low, high), (10)   Security budget rate in the area per $ 
of real estate in the area (low, high), (11)   Security budget rate in the area per $ of 
cargo value in the area (low, high), (12)   Incident level in the area (high, low).   

In this example, final rules could indicate strong and urgent security measures that 
require significant extra security resource allocated and warning rules could indicate 
addition attention to the area with minimal additional resources allocated.  As above 
in Figure 9 VDM  allows to compare rules “extracted” from the security expert and 
with rules obtained by data mining and with the date expanded by monotonicity.  

Obviously, it is not clear at the beginning how these attributes are related to the 
number of alerts generated in the area. Answering this question is a data mining task.  
To solve this task, we can get 10-dimensional Boolean vectors of these exogenous 
attributes with low encoded as 0 and high as 1. Each vector marked by the security 
alert rate (low or high encoded by 0 or 1 as well).   Each such record will be for an 
individual area of the port and a specific time.  This data binary representation allows 
us to use the visual data mining technique described above to discover visual 
predictive rules for prediction security alert level (low, high). We will also be able to 
test monotonicity of the attributes (1)-(10) relative to alert level. The lack of 
monotonicity may mean that some other impact factors are missing or data are 
corrupted. For instance, some port area already implemented the employee security 
training program, internal alert analysis, etc. These features are not included in (1)-
(10). After several iteration of adding attributes, we can reach monotonicity. Thus, 
similar to the previous example, VDATMIN will serve here as a feature augmenting 
mechanism that compliment known feature selection mechanisms. 
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7   Monotonization 

The algorithm below describes main steps of a monotonization process for the tasks 
where monotonicity is violated:  
 

Step 1: Find a specific pair of vectors (x,y) with violation of monotonicity, that is 
x> y but f(x) < f(y)   

Step 2: Find attributes of (x,y) that led to violation of monotonicity,  x> y => f(x) < 
f(y).  

Step 3: Find a subspace S and sub-vectors   xs and ys  in subspace S such that 
monotonicity holds:  xs  < ys  =>  f(x) < f(y).   

Step 4: Get attributes U={u} of the total space W that do not belong to S,  W\S = 
U. These attributes cause the violation of monotonicity,  x> y => f(x) < f(y) in space 
W. 

Step 5: Modify attributes U.  
 

Example:  If attribute (1) “Population increase” is a source of monotonicity violation, 
it can be modified to a new attribute (g): “Growth of crime age population”.  The 
monotone link between this attribute and crime rate seems a reasonable hypothesis (to 
be tested) if all other relevant factors are the same.  Under this assumption, the high 
growth in the crime age population in the area A may lead to a higher crime rate (Cr) 
than in area B with low growth of this category of the population.  In contrast, if areas 
A and B have different other relevant factors,  FA ≠ FB

,  this may not be the case. 
Thus, we may have a very specific restricted type of monotonicity with the same other 
relevant factors:   

 
 [ (FA = FB) & g(A) ≥ g(B) ]  Cr(A) ≥ Cr(B),            (1) 

 
We will call it OF-conditional monotonicity because it holds only under condition 
that Other Factors (OF) are the same. Mathematically it means that |a|= |b|+1, that is 
Boolean vector a is obtained from Boolean vector b by changing one of its  zero 
values to one. This is exactly how Hansel chains are built.   In other words, this is a 
one step up single-attribute monotonicity because all other attributes of vectors a and 
b are the same.   
 

Step 6: Test monotonicity of modified attributes.  In the example above, it means 
testing (1) on the available data.   

Step 7: If Step 6 test succeeded, we can use a modified attribute g instead of the 
original attribute in the MBFVA algorithm.  If  Step 6 test failed on monotonicity or 
OF-conditional monotonicity then go to step 8.  

Step 8: Decide between two options (i) return to step 5 and make another 
modification of attributes and (ii) add a new attribute,  that is go to step 9.   

Note: The failed test result on step 6  can be a very useful result in spite being 
negative. It indicates that we may miss other relevant factors. Area A can be in the 
region with historically low crime due to a type population (low migration, high 
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church influence, etc). Thus, even negative test of monotonicity is helpful as a 
guidance to search new relevant attributes and improving data mining output. 

Step 9: Add new attribute. In the example after adding migration level and church 
influence to FA = FB we may generate a new OF-conditional monotonicity hypothesis 
for (1) and go to step 6 again.  

Step 10. Continue looping steps 5-9 until monotonicity produced for all attributes 
in the original space W or time limit reached.   

8   Conclusion 

Monotone Boolean Function Visual Analytics (MBFVA) method allows the 
discovering of rules that are meaningful for the subject matter expert (SME) and are 
confirmed with the database. The efficiency of the method is illustrated with 
discovering breast cancer diagnostic rules that are produced by (i) Subject Metter 
Expert, (ii) the analytical data mining algorithm, and (iii) the visual means from data. 
The proposed coordinated visualization of these rules is a way to produce high quality 
rules. Multivariate binary data are visualized in 2-D and 3-D without occlusion. It 
preserves structural relations in multivariate data. As a result, the complex border 
between classes in a multidimensional space is converted into visual 2-D and 3-D 
forms.  This decreases the user information overload. To expand the applicability of 
the described approach, this paper presented an outline of the scaling algorithm for 
large datasets where each chain of multidimensional vectors is compressed into a 
single pixel. The detailed development of this algorithm is a topic of future research.  
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Abstract. As a typical problem in data mining, Time Series Predictions
are widely applied in various domains. The approach focuses on series
of observations, with the aim that, using mathematics, statistics and ar-
tificial intelligence methods, to analyze, process and make a prediction
on the next most probable value based on a number of previous values.
We propose an algorithm using the average sum of nth-order difference
of series terms with limited range margins, in order to establish a way
to predict the next series term based on both, the original data set and
a negligible error. The algorithm performances are evaluated using mea-
surement data sets on monthly average Sunspot Number, Earthquakes
and Pseudo-Periodical Synthetic Time Series.

1 Introduction

The importance of time for human activities has been emphasized from early
times of civilization. Historical data analysis has been related to agriculture (sun
and moon cycles, weather) and safety (earthquakes, floods). Nowadays, given
technological advances in computational power and memory storage, it becomes
a functionality of immediate use for industrial or economical processes.

Time series prediction proposes algorithms for which past data (mainly finite
observation sequences of data points related to uniform time intervals) are used
to generate models to forecast future data points of the series. It is widely ap-
plied in various domains from finance (stock markets) and economy (electricity
consumption), meteorology, signal processing to disaster warning (river floods,
earthquakes) and solar activity forecasting [2]. The time series analysis was based
originally on tools including mathematical modeling [8], time-frequency analysis
(Fourier and wavelet transformations) but started using in the last years ma-
chine learning methods such as Artificial Neural Networks (ANNs) (time-delay
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networks [14], recurrent networks [6], Self-Organizing Maps [15]. From a procedu-
ral perspective, using computational approaches may first require mathematical
analysis to describe and breakdown the initial time series problem into sim-
pler sub-problems for further computational modeling. A well-known approach
in time series understanding and prediction is Auto-Regressive Moving Average
(ARMA) [1] which comes with the advantage of addressing auto-regressive terms
and moving average terms.

A historical main constraint in using mathematical series models for predic-
tion was the fact that the performance of the model is related to the length of
data series, but nowadays is not anymore an issue from neither computational
nor data storage and processing points of view. However, most machine learning
methods face the difficulty of requiring a priori knowledge about the problem
at hand. On the other hand, results of some traditional methods applied in time
series analysis can not satisfy the demand of specific applications. We intend
to address these drawbacks for the restricted problem of pseudo-periodical se-
ries with limited boundaries by a two-step approach: we propose hereby a new
algorithm to approximate the time series terms using the moving average of
nth-order difference of already known values and intend to address later the
problem of error of approximation by a hybrid model. Therefore future work is
proposed to identify as accurately as possible a general approximation by use of
a supervised-learning model to forecast a further approximation error if found
necessary.

We propose an algorithm for efficient mining of pseudo-periodical time series
with direct applications to sunspot number, earthquake and pseudo-periodical
synthetic time series prediction, by exploring some interesting properties related
to moving average of first-order difference for bounded time series. A further
generalization to the use of the sum of nth-order difference to increase forecast
performances and a hybrid approach to combine the results of the moving average
of nth-order difference of time series with a supervised-learning model of the
error of value approximation are also proposed [11]. We study the possibility
that pre-processing of time series combined with a priori knowledge and hybrid
models can increase prediction performances for time series, even for mining
noisy data. The results highlight our proposed algorithm’s efficiency in mining
bounded pseudo-periodical patterns in time series with direct applications in
sunspot time series prediction, earthquake time series prediction and pseudo-
periodical synthetic time series prediction [12].

The following section introduces the notations and definitions on bounded
pseudo-periodical time series. Section 3 describes terms and proofs used in our
approach, error approximation with the use of ANNs and our algorithm. Section
4 proposes a way to define the suitable level order n of difference operator and
index m for increasing the prediction precision. Case studies on the monthly
average of sunspot number time series prediction, earthquake time series pre-
diction and pseudo-periodical synthetic time series prediction are described in
sections 5, 6 and 7. Section 8 shows the prediction results comparison between
the algorithm we propose, Linear Regression (LR) method and Auto-Regression
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Moving Average (ARMA) method. Conclusions, further work and discussions of
implementation for the proposed method for a hybrid approach are presented in
the last section. The Appendix provides proof to some theoretical results used
in Section 3.

2 Definitions Relevant to Time Series Prediction

We will introduce in this section some definitions necessary for the proof of our
method and the algorithm proposed in following sections.

Notations:

am : initial data series, m > 0 is its index (serial number);
Dn

m : nth-order difference, n is the nth-order, m is the serial number;
En

m : moving average of nth-order difference,
n is the order of the difference terms, m is the serial number.

Definition 1. Time Series represents an ordered sequence of data values re-
lated to the same variable, measured typically at successive times, spaced apart
in uniform intervals:

A = {a1, a2, a3, . . .} or A = {at}, t = 1, 2, 3, . . . (1)
where series A is indexed by natural numbers.

Definition 2. Time Series Prediction represents the use of a model to pre-
dict future events (data points) based on known past events, before they are mea-
sured. In other words, given first t measured data points of time series A, the
aim of prediction is to develop a model able to advance the value.

at+1 = f(a1, a2, a3, . . . , at−1, at) (2)

Definition 3. Pseudo-Periodical Time Series are series of which values
repeat over a fixed time interval:

at
∼= at+d

∼= at+p, t > 0, d > 0, p > 0, p/d = k > 1, k ∈ N (3)

For real applications time series, there are values showing a pattern of pseudo-
periodical time series, where values show a repetition over a finite time interval;
A consequence for periodical and pseudo-periodical time series is that for a finite
d and initial values, the series values are bounded:

at ∈ [min(a1, a2, . . . , ad), max(a1, a2, . . . , ad)], d ≥ 1 (4)

The aim in time series data analysis and prediction is to find a model to pro-
vide with a good accuracy a future value of the series. Some research directions
indicate as important the immediate future value (see eq.(2)) whereas other
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problems may indicate a further interval of interest, that it is, the prediction of
the following m values of time series:

am = f(a1, a2, . . . an), m ∈ [n+ 1, n+ k], k > 0 (5)

We provide below definitions for ARMA model [1] just in terms of highlighting
the main track but also our different approach based on the moving average of
the nth-order difference.

Definition 4. Auto-Regressive Model (ARM) provides a way to express
the prediction of the following value in the initial time series by using previous
finite number of values affected by white noise and ARM of order q is defined by
[1]:

Xt =
p∑

i=1

aiXt−i + εt (6)

where ai is the auto-regressive coefficient, Xt is the series under investigation,
p is the length of the filter, which is commonly less than the length of the series,
and εt is a white noise process with zero mean and variance σ2.

Definition 5. Moving Average Model (MAM) of order q is defined as [1]:

Xt =
q∑

i=1

biεt−i + εt (7)

where bi is the moving average coefficient, Xt is the series under investigation,
q is the length of the filter, which is commonly less than the length of the series,
and εt represents the error (noise) terms.

Definition 6. Auto-Regressive Moving Average (ARMA) model contains
infinite (ARM(p)) and finite (MAM(q)) models [1]:

Xt =
p∑

i=1

aiXt−i +
q∑

i=1

biεt−i + εt (8)

Definition 7. Linear Regression is a regression method that models the rela-
tionship between a dependent variable Y , independent variables Xi, i = 1, . . . , r
and a random term ε. The model can be written as:

Y = c0 +
r∑

i=1

ciXi + ε (9)

where c0 is the intercept (“constant” term), the ci are the respective parameters
of independent variables and r is the number of parameters to be estimated in
the Linear Regression.

Our approach addresses the latter, where the range for the best approximation
is also an objective of the algorithm.
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3 The Algorithm of Moving Average of nth-order
Difference for Bounded Time Series Prediction

Our approach is based on the notion of the difference operator [5] of bounded
time series: a nth-order difference array is used to analyze the moving average
to predict value(s) for the next period.

Definition 8. The Forward Difference Operator for a given functional f
with real values a calculates:

Δf(a) = f(a+ 1) − f(a) (10)

Δf(a) is called first-order difference (or simply difference) of f(a). Following
the same principle, the second-order difference is defined:

Δ2f(a) = Δf(a+ 1) −Δf(a)

= (f(a + 2) − f(a+ 1)) − (f(a+ 1) − f(a))

= f(a+ 2) − 2f(a+ 1) + f(a) (11)

It’s easy to induce that the nth-order difference is defined by:

Δnf(a) =
n∑

i=0

(−1)n−iCi
nf(a + i) (12)

where Ci
n =

(
i

n

)

=
n!

i!(n− i)!
, 0 ≤ i ≤ n is the binomial coefficient.

Definition 9. Moving Average is a way of smoothing by averaging n terms
of the time series. In mathematics and statistics, moving average is used as a
generic smoothing operation or an example of a convolution. A simple moving
average is the un-weighted (or weight = 1 ) mean of previous data points:

SMAm =
P1 + P2 + P3 + · · · + Pm

m
(13)

where m = 1, 2, 3, · · ·

Considering the last equation on n, we can find out that the same rule applies
for n + 1: Therefore, based on the induction principle (Peano) eq.(12) is valid
for any natural value of n. If f(a), with n a natural number, generates a discrete
series am, then the previous result can be written (eq.(12))

Δnf(m) = Δn−1f(m+ 1) −Δn−1f(m)

Dn
m = Dn−1

m+1 −Dn−1
m (14)

where Dn
m means Δnf(m)
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The proof for eq.(14), a nth-order difference equals the difference of two lower
differences ((n− 1)th-order) is presented in the Appendix.

The nth-order difference is used in the binomial transform of a function, the
Newton forward difference equation and the Newton series [5]. These are very
useful prediction relationships with the main drawback of difficult numerical
evaluation because of rapid grow of the binomial coefficients for large n.

In order to avoid a complex calculus and also to provide a relationship for
time series prediction, our idea relates to the fact that applying the difference
operator we generate another data series from the initial one, which has the
property of pseudo-periodicity [11]. Since the initial series are bounded, the data
series generated by the difference operator are also bounded and their average
converges to zero.

We provide a proof for this result below, exemplified with the monthly average
of Sunspot Number data set case of 600 months values (Fig. 1 - 3).

Fig. 1. The Monthly Average Values of Sunspot Number Time Series for 600 Months

Fig. 2. First-order Difference (D1
m) of Monthly Average of Sunspot Number Time

Series

Fig. 3. The Moving Average (E1
m) of First-order Difference (D1

m) of Monthly Average
of Sunspot Number Time Series
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Let D1
m represent the first-order difference of initial data set am, then:

D1
m = am+1 − am, m ≥ 1 (15)

as represented in Fig.2.
The first-order difference time series shows a pseudo-periodical bounded shape

with amplitude modulated in time. The average of first-order difference time
series for initial data set am can then be constructed as:

E1
m =

1
m

(D1
1 +D1

2 + · · · +D1
m) =

1
m

m∑

i=1

D1
i (16)

We calculate below the limit of time series E1
m (for an easy calculation we can

consider the following)

lim
m→∞E1

m = lim
m→∞

1
m

m∑

i=1

D1
i (17)

And therefore, based on eq.(15) and eq.(17):

lim
m→∞E1

m = lim
m→∞

1
m

m∑

i=1

(ai+1 − ai)

= lim
m→∞

1
m

(
(am+1 − am) + (am − am−1) + · · · + (a2 − a1)

)

= lim
m→∞

1
m

(am+1 − a1)

= lim
m→∞

am+1

m
− lim

m→∞
a1

m
(18)

For a large m, since a1 is a limited value, the second term in eq.(18) becomes
negligible. Also an+1 is a limited value given the initial constraints on bounded
time series we consider of interest and therefore the first term in eq.(18) has a
null limit also:

lim
m→∞E1

m =
(

lim
m→∞

am+1

m
− lim

m→∞
a1

m

) → 0 (19)

Indeed, one can easily see this result is verified for our practical example in Fig.3.
Based on the result in eq.(19) as depicted in Fig.3, given a time series {am},
with first-order difference {D1

m}, our aim is to determine the value for {am+1}
(prediction) based on previous data measurements (and some negligible error).
The average for first-order difference (term n− 1) values is easy to calculate:

E1
m−1 =

1
m− 1

(D1
1 +D1

2 + · · · +D1
m−1) (20)

Since E1
m → 0 for large values of m, then:

E1
m = E1

m−1 + ε (21)
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where ε > 0 is a negligible error for large m. Replacing in eq.(21) E1
n−2 from

eq.(20):

1
m

m∑

i=1

D1
i =

1
m − 1

m−1∑

i=1

D1
i + ε (22)

And therefore, from eq.(16)

1
m

(
m−1∑

i=1

D1
i +D1

m) =
1

m − 1
(
m−1∑

i=1

D1
i ) + ε

D1
m = m(

1
m − 1

m−1∑

i=1

D1
i + ε) −

m−1∑

i=1

D1
i (23)

and because D1
m = am+1 − am, we obtain:

am+1 = am +m(
1

m − 1

m−1∑

i=1

D1
i + ε) −

m−1∑

i=1

D1
i (24)

The prediction precision for am depends on the nth-order difference Dn
m; in other

words, precision of prediction increases in accuracy with the value of m and the
order of the difference n. For simplicity, consider the first-order difference of the
original bounded pseudo-periodical time series from eq.(24):

am+1 = am +
m

m− 1

m−1∑

i=1

D1
i +mε−

m−1∑

i=1

D1
i

= am +
1

m− 1

m−1∑

i=1

D1
i +mε (25)

and replacing the difference D as from eq.(15):

am+1 = am +
1

m− 1
(am − a1) +mε

=
1

m− 1
(mam − a1) +mε (26)

Eq.(26), obtained by considering the average series of first-order difference, sug-
gests a practical way to approximate the prediction am+1 based on previous
values am and a1. For large numbers, although the error value is negligible

(
see

eq.(19) and (21) and Fig.3
)

the accuracy of prediction may still be affected.
At the same time, the moving average En

m can be expressed in terms of nth-
order difference as:

En
m =

1
m

(Dn−1
m+1 −Dn−1

1 ) (27)
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This is proven by mathematical induction:

En
m =

1
m

m∑

k=1

Dn
k =

1
m

(Dn−1
m+1 −Dn−1

1 ) (28)

When n = 1 and n = 2:

E1
m =

1
m

m∑

k=1

D1
k

=
1
m

(
(am+1 − am) + (am − am−1) + · · · + (a3 − a2) + (a2 − a1)

)

=
1
m

(am+1 − a1)

=
1
m

(D0
m+1 −D0

1) (29)

E2
m =

1
m

m∑

k=1

D2
k

=
1
m

(
(am+2 − 2am+1 + am) + (am+1 − 2am + am−1)

+ · · · + (a4 − 2a3 + a2) + (a3 − 2a2 + a1)
)

=
1
m

(
(am+2 − am+1) − (a2 − a1)

)

=
1
m

(D1
m+1 −D1

1) (30)

The statement in eq.(28) is verified for n = 1 and n = 2.

We assume the statement is true for n:

En
m =

1
m

m∑

k=1

Dn
k =

1
m

(Dn−1
m+1 −Dn−1

1 ) (31)

Then for n+ 1:

En+1
m =

1
m

m∑

k=1

Dn+1
k

=
1
m

(Dn+1
m +Dn+1

m−1 + · · · +Dn+1
2 +Dn+1

1 )

=
1
m

(
(Dn

m+1 −Dn
m) + (Dn

m −Dn
m−1) + · · · + (Dn

3 −Dn
2 ) + (Dn

2 −Dn
1 )

)

=
1
m

(Dn
m+1 −Dn

1 ) (32)

qed.
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So for higher order differences, their moving average series for a large value L,
where L is in reality still a large but finite value, is:

lim
m→L

En
m = lim

m→L
(

1
m

m∑

k=1

Dn
k )

= lim
m→L

( 1
m

(Dn−1
m+1 −Dn−1

1 )
)

(33)

Since the nth-order difference Dn
m is bounded, then exists a real limited number

C for which |Dn−1
m+1 −Dn−1

1 | ≤ C;
As a result,

lim
m→L

En
m = lim

m→L
(

1
m

m∑

k=1

Dn
k ) = lim

m→L
(

1
m

(Dn−1
m+1 −Dn−1

1 )) → C

L
(34)

and the Fig.4 shows a map of the limit of the differences:

lim
m→L

En
m → C

L
where {m|1 ≤ m ≤ 100} and {n|1 ≤ n ≤ 100}

Fig. 4. A Map of Moving Average of nth-order Difference’s Limit for Sunspot Number
Data Set (X and Y Coordinate Axes Indicate the indexes of Time Intervals; Z Coordi-
nate Axis Denotes the Values of Limit of Moving Average of nth-order Difference for
m Data Samples)
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The Moving Average of nth-order Difference (MAonDA) algorithm (in pseudo-
codes) below implements the results described above for a general time series A
(Table 1)

Table 1. An Moving Average of nth-order Difference Algorithm (MAonDA)

Input: An Initial Time Series Data;

Method: Moving Average of nth-order Difference Algorithm;

Output: Predicted Time Series Data;

01. // Input the time series data set;

02. SET A[ ] to READ(An Initial Time Series Data Set)

03. // L records the size of data sequence;

04. SET L to the length of A[ ]

05. // Set maximum difference order level;

06. SET n to value of difference order level

07. // Set the index of difference and it starts from 0;

09. SET counter to 0

10. // Calculate the nth-order difference D[ ] of A[ ]

11. WHILE counter < L-n

12. SET D[counter] from CALCULATE difference of A[ ]

13. ENDWHILE

14. // Set the index of moving average and it starts from 0;

16. SET counter to 0

17. // Compute the moving average E[ ] of D[ ];

18. FOR each of D[ ]

19. SET sumTemp to 0

20. FOR each term of D[0] to D[counter]

21. SET sumTemp to sum of term of D[0] to D[counter]

22. ENDFOR

23. SET E[counter] to divide sumTemp by counter

24. INCREASE counter

25. ENDFOR

26. // Get the error value by using ANN;

27. GET error from ANN(E[ ])

28. // Give two values Ln and Lm for Finding Function inputs

29. SET Ln and Lm

30. FOR n = 0 to Ln

31. FOR m = 0 to Lm

32. SET F[n][m] to COMPUTE Finding Function result

33. ENDFOR

34. ENDFOR

35. SET Do[n][m] to COMPUTE from A[ ]

36. GET Theta[n][m] to ||F[n][m] - Do[n][m]||

37. GET (m,n) from find(Theta == min(Theta[n][m]))

38. GET the prediction value based on (m,n)

39. OUTPUT(predicted value)
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4 Finding Suitable Index m and Order Level n for
Increasing the Prediction Precision

Now, we have two formulae here:

Dn
m =

n∑

i=0

(−1)n−iCi
nam+i = Dn−1

m+1 −Dn−1
m (35)

m∑

j=1

Dn
j = Dn−1

m+1 −Dn−1
1 (36)

Based on the above results, we have:

En
m =

⎧
⎨

⎩

En
m−1 + ε if ε �= 0

En
m−1 if ε ∼= 0

(37)

Then, take eq.(35) and eq.(36) into eq.(37):

En
m = En

m−1 + ε ⇐⇒

Dn−1
m+1 =

m

m− 1
(
Dn−1

m + (m− 1)ε
) − 1

m− 1
Dn−1

1 (38)

And let n = n− 1 in eq.(38) so that:

Dn
m+1 =

m

m− 1
(
Dn

m + (m − 1)ε
)

+
−1

m− 1
Dn

1 (39)

Thus, the coefficients can be seen as special “weights” related to two terms of
the same order difference level, and they depend on the “start” and the “end”
period’s values. For greater accuracy (when ε �= 0), we propose the use of an
Artificial Neural Network to approximate the error ε in moving average of nth-
order difference algorithm for next period. (see eq.(37)). The moving averages
En

m, E
n
m−1 are the inputs of a feed-forward ANN with three layers. The trained

network is able to get moving average valueEn
m+1 for further error approximation

(see Fig.5). We used for the 2-inputs, 1-output ANN Back-Propagation training
algorithm for 1000 epochs.

Fig. 5. Analysis and Prediction of Error with Artificial Neural Network
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We aim to find a suitable value for m as the prediction of forthcoming value
to be well approximated. Since the second “weight” value is negative, and its
condition number is so high, eq.(39) is not a “normal” weighted function but
Ill-conditioned Function in Short Selling framework [7].

As a result, with m→ ∞, its variance increases and the variation of function
solution(s) is bigger, therefore the predicted precision may not be good enough.
Thus, for k ∈ [1,m], where m is the length of the initial data series, and the ε is
unknown yet, from eq.(39), let:

F (k) =
k

k − 1
(
Dn

k + (k − 1)ε
)

+
−1
k − 1

Dn
1 (40)

then calculate Dn
m+1 from the original data set (eq.(12)); next, we suppose Θ

represents their Manhattan Distance:

Θ(k) = ‖F (k) −Dn
k+1‖ (41)

From the arrayΘ(k) we found that, whereΘ(kmin) = min, F (kmin) is the closest
value to the real difference Dn

m+1. Our aim is to determine the value m for which
am+1 is approximated based on the previous data measurements a1, a2, . . . , am.
Fig.6 shows an example of Θn

k (when n = 1 and k ∈ [1, 600]).

Fig. 6. The values of series: Θn
m, when n = 1, m ∈ [1, 600]

According to eq.(41), we may choose a large value of index Lm and order level
Ln to locate suitable m and n in:

Fm×n =
m

m − 1
(
Dn

m

)
+

−1
m− 1

Dn
1 (42)

Θm×n = ‖Fm×n −Dn
m+1‖ where m ∈ [1, Lm] and n ∈ [1, Ln] (43)

in order to identify the area of minimum values.
Fig.7 shows a map of matrix Θm×n, where m ∈ [1, 500] and n ∈ [1, 20]. From

eq.(41) we can infer from Θmmin×nmin = min to propose the suitable index mmin

and order level nmin for increasing the prediction precision.
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Fig. 7. The Value Map of Matrix: Θ for Sunspot Number Data Set, Where m ∈ [1, 500]
and n ∈ [1, 20]

5 Prediction Results for Sunspot Number Time Series

Early research showing that sunspots have a cycle period start in modern times
with George Ellery Hale: he found that the sunspot cycle period is 22 years,
because the magnetic polarity of sunspots reverses after 11 years. Rudolf Wolf
proposed in 1849 in Zürich to count sunspot numbers by what is nowadays called
“Wolfer Number” or “International Sunspot Number” using numeric values re-
lated to sunspots’ number and size, their geographical location and instrumen-
tation used.

Based on sunspots characterization and observations, Time Series Sunspot
Data Set is an ordered data set of sunspot numbers based on observation, which
can be treated as a tracking record of solar activities. Of course from the point of
view of Definition 3, sunspot data is a pseudo-periodical time series, since there
is not a fixed value d, but a series of values with an average of about 22 years
(273 month).

The original time series of sunspot number used hereby as a generic data
set to describe the application of our algorithm has been generated by the Na-
tional Geophysical Data Center (NGDC). NGDC provides stewardship, prod-
ucts and services for geophysical data describing the solid earth, marine, and
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solar-terrestrial environment, as well as earth observations from space [13]. Its
data bases currently contain more than 300 digital and analog databases, which
include Land, Marine, Satellite, Snow, Ice, Solar-Terrestrial subjects.

NGDC’s sunspots databases contain multiform original data from astronom-
ical observatories; the sunspot data sets list various sunspots’ attributes in
time order, even others solar activities related to sunspots. The time series
sunspot data taken as input to the proposed algorithm is based on measure-
ments recorded everyday by observatories through more than 200 years (Fig.8).
We used the average sunspot number per month from 1881 A.D to 1981 A.D,
and therefore we use a time series data with 1200 data points. Table 2 lists the
configuration of data. (Monthly average value reported to Julian date in format
YYYY.MM) and Fig.8 depicts these values.

Table 2. An Example of Monthly Average of Sunspot Number Data Set Organization
(Time Format: YYYY.MM)

Index 1 2 · · · 600 601 · · · 1199 1200

Time 1901.01 1901.02 · · · 1950.12 1951.01 · · · 2000.11 2000.12

Value 0.2 2.4 · · · 54.1 59.9 · · · 106.8 104.4

Fig. 8. Monthly Average of Sunspot Number Time Series (X Coordinate Axis Indicates
the Index of Time Intervals and Y Coordinate Axis Denotes the Values of Sunspot
Number)

The results for the prediction of monthly average of sunspot number [12] are
based on values of the fifth-order difference (chose based on the eq.(43)) for the
original time series:

D5
n = an+5 − 5an+4 + 10an+3 − 10an+2 + 5an+1 − an (44)

which are represented in Fig.9. The average of the difference time series is rep-
resented in Fig.10, the prediction of the monthly average of sunspot data gener-
ated by our algorithm is given in Fig.11, the prediction of error values using a
supervised-trained artificial neural network (ANN) is showed in Fig.12.

We compared the predicted values obtained by running the proposed algo-
rithm MAonDA (for the fifth-order difference) with the original sunspot time
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Fig. 9. Fifth-order Difference of Monthly Average of Sunspot Number Time Series

Fig. 10. The Moving Average of Fifth-order Difference of Monthly Average of Sunspot
Number Time Series

Fig. 11. The Prediction of Values for Monthly Average of Sunspot Number Time Series
Based on the Proposed Algorithm

Fig. 12. The Prediction of Error Values Using a Supervised-trained Artificial Neural
Network (ANN)
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series values and the predictions of a Linear Regression Model (Least-squares
Analysis [3] [4]) - the results are depicted in Fig.23. The new algorithm shows a
better prediction of time series and suitability to follow closely abnormal trends
in the time series, based on tuning parameters m and n (eq.(43)).

6 Prediction Results for Earthquake Time Series

NGDC acquires, processes, and analyzes technical data on earthquake haz-
ards, and disseminates the data in many useable formats. For example, Signifi-
cant Earthquake Database contains information on more than 5,000 destructive
earthquakes from 2150 B.C. to the present; Earthquake Slide Sets NGDC offers
fourteen 35-mm slide sets depicting earthquake damage throughout the world;
Earthquake Intensity Database contains damage and felt reports for over 22,000
U.S. earthquakes from 1638 to 1985; Worldwide Strong Motion Data Archive
contains more than 15,000 digitized and processed accelerograph records over 60
years; The Seismograph Station Bulletins Database contains more than 500,000
microfiche pages from seismograph station bulletins for the years 1900 to 1965.
Table 3 shows an example of typical earthquakes time series [13].

Table 3. An Example of Earthquakes Time Series Data Organization

Index Time Location Magnitude Longitude Latitude

1 1001.01 China 6.2 34.300 109.000
2 1001.01 Italy 7.0 42.000 13.500
...

...
...

...
...

...
672 1500.01 Hawaii 6.8 19.000 -155.500
...

...
...

...
...

...
1350 2006.08 Argentina 5.6 -33.131 -68.707
1351 2006.08 France 4.3 44.000 6.800

We applied the proposed algorithm (Table 1) for NGDC earthquakes data (see
Fig.13) using the fifth-order difference (see Fig.14). Given the pseudo-periodical
time series constraint satisfied, the moving average of the fifth-order difference
for earthquake time series prediction is around 0 (Fig.15) and therefore our
algorithm provides satisfactory results in this case as well.

Figs.13 - 17 show the results for the prediction of earthquakes time series,
based on MAonDA algorithm with the fifth-order difference. Fig.13 shows the
initial earthquakes time series; Fig.14 represents the values of fifth-order differ-
ence earthquakes time series; Fig.15 depicts the moving average of difference
earthquakes time series; Fig.16 shows the prediction of earthquakes by using our
algorithm and Fig.17 shows the prediction of error values using a supervised-
trained artificial neural network (ANN).
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Fig. 13. An Initial Earthquakes Time Series

Fig. 14. The Values of Fifth-order Difference of Earthquakes Time Series

Fig. 15. The moving average of Difference Earthquakes Time Series

Fig. 16. The Prediction Values of Earthquakes Time Series by the moving average of
nth-order Difference Algorithm (MAonDA)



A New Approach and Its Applications for Time Series Analysis 175

Fig. 17. The Prediction of Error Values Using a Supervised-trained Artificial Neural
Network (ANN)

7 Prediction Results for Pseudo-Periodical Synthetic
Time Series

The pseudo-periodical synthetic time series data set has been taken from Knowl-
edge Discovery in Databases Archive (KDD Archive), University of California,
Irvine [9]. KDD Archive is an online repository of large data sets which en-
compasses a wide variety of data types, analysis tasks, and application areas.
This time series data set is designed for testing indexing schemes in time series
databases; The data appears highly periodic, but never exactly repeats itself.
This feature is designed to challenge the indexing tasks. This time series data
[10] is generated by independent invocations of the function:

y =
7∑

i=3

1
2i

sin(2π(22+i + rand(2i))t), 0 ≤ t ≤ 1 (45)

where the function rand(x) produces a random integer between 0 and x.
Figs.18 - 20 show the results for the prediction of pseudo-periodical synthetic

time series, based on MAonDA algorithm with the fifth-order difference. Fig.18
shows the initial pseudo-periodical synthetic time series; Fig.19 represents the
values of fifth-order difference pseudo-periodical synthetic time series; Fig.21
depicts the moving average of difference pseudo-periodical synthetic time series;
Fig.22 shows the prediction of pseudo-periodical synthetic time series by using
our algorithm and Fig.17 shows the prediction of error values using a supervised-
trained artificial neural network (ANN).
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Fig. 18. Fifth-order Difference of Monthly Average of Pseudo-periodical Synthetic
Time Series

Fig. 19. The Average of Fifth-order Difference of Monthly Average of Pseudo-
periodical Synthetic Time Series

Fig. 20. The Moving Average of Pseudo-periodical Synthetic Time Series

Fig. 21. The Prediction of Values of Pseudo-periodical Synthetic Time Series Based
on the Proposed Algorithm
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Fig. 22. The Prediction of Error Values Using a Supervised-trained Artificial Neural
Network (ANN)

8 Prediction Results Comparison

We also applied the Linear Regression (LR) and Auto-Regression Moving Aver-
age (ARMA) algorithm to predict the same sunspot number. In order to check
the performance of the algorithms, we used two measures for each prediction
method: the Mean Absolute Error (MAE) and Variance-Accounted-For (VAF),
to determine how close the predicted values are to the original data sets.

EMAE =
1
N

N∑

i=1

‖xi − x̂i‖ (46)

where xi is prediction value, x̂i is the original value.

EV AF = (1 − var(y − ŷ)
var(y)

) × 100% (47)

where y is prediction value, ŷ is the original value.

Table 4 shows a part of prediction results and also a simplified prediction results
comparison for Sunspot Number time series, Earthquakes time series (data sets
also from NGDC archive) and Pseudo-periodical Synthetic time series (from
KDD archive). As seen in Table 4 and Fig.23, our method provides a better
performance for prediction than Linear Regression (LR) and Auto-Regression
Moving Average (ARMA), showing lower Mean Absolute Error together with
higher Variance-Accounted-For value.
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Table 4. Prediction Results Comparison

Sunspot Number Time Series

Original Values Prediction Values
Index Data LR ARMA MAonDA

600 54.1 55.5154 37.2149 65.7349
601 59.9 65.1697 46.2715 69.3329
...

...
...

...
...

1191 121.6 5.3972 112.4148 131.4633
1192 124.9 -0.8012 133.6800 146.4852

...
...

...
...

...
1199 106.8 17.7101 78.7586 97.7593
1200 104.4 22.1878 97.3603 119.1860

EMAE – 32.2534 20.9931 15.8002
EV AF – 56.70% 70.54% 81.55%

Earthquakes Time Series

Original Values Prediction Values
Index Data LR ARMA MAonDA

600 5.9 7.9146 7.3608 7.0165
601 5.9 6.6744 6.0375 5.9932
...

...
...

...
...

1000 6.4 2.0708 4.4925 4.0482
1001 6.1 4.1234 7.8364 7.4821

...
...

...
...

...
1350 7.0 6.0659 6.4603 6.1160
1351 6.0 7.9621 7.5586 7.2143

EMAE – 2.5863 1.6560 1.4435
EV AF – 59.66% 75.03% 78.10%

Pseudo-Periodical Synthetic Time Series

Original Values Prediction Values
Index Data LR ARMA MAonDA

20000 -0.0497 -0.0893 -0.0611 -0.0419
20001 -0.0500 -0.0905 -0.0615 -0.0422

...
...

...
...

...
35000 -0.0664 -0.0477 -0.0813 -0.0561
35001 -0.0664 -0.0476 -0.0813 -0.0561

...
...

...
...

...
39999 -0.1850 -0.02565 -0.2322 -0.1563
40000 -0.1850 -0.02634 -0.2322 -0.1562

EMAE – 0.1396 0.1148 0.1048
EV AF – 94.98% 96.61% 97.16%
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Fig. 23. Prediction Results Compared with Linear Regression Model

9 Conclusions

The moving average of the nth-order difference algorithm proposes a simple ap-
proach to reduce the complexity of calculi for prediction in cases of bounded
pseudo-periodical time series. We developed an algorithm to predict time series
based on a number of previous known values and do not necessarily address the
noise but the actual collected values of a time series. The error represents the
difference between actual and expected values of moving average. The method
also provides a logical development in a transparent way, avoiding the use of
Black-box or Grey-box algorithms. We consider further investigating the speed
and also the complexity of our solution in comparison with traditional algo-
rithms, such as Auto-Regress Moving Average (ARMA) and also performance
issues in comparison with machine learning solutions.

However, this algorithm has the disadvantage of dependency of the (still) error
between the average of nth-order difference values at the prediction step, n+1 and
n. The series average of the nth-order difference algorithm generates therefore a
good prediction for the ”shape” of the series (including the pseudo-periodicity),
but the precision of prediction (amplitude) suffers because of dependence on how
many orders (i.e. value of n) difference have been considered, which increases
the complexity calculus though and introduces a tuning parameter of the order
of difference. A small order of difference reduces the complexity but also the
prediction precision, whereas a big order of difference increases the computing
effort.
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Another direction for further research is the approximation of error in eq.(37)
using machine learning techniques, in order to reduce the differences induced by
the possibility to obtain a non-zero average of nth-order difference for a period
close to the prediction moment (see prediction results differences comparing
Fig.8 and Fig.11, Fig.13 and Fig.16, Fig.18 and Fig.21). Provisional encouraging
results to approximate the error using a neural network model are depicted
in Fig.12, Fig.17 and Fig.22: the connectionist model is trained with the error
values for the first 600 cases of Sunspot number time series, the first 675 cases of
Earthquakes time series and the first 20000 cases of Pseudo-Periodical Synthetic
time series. We propose to study the development of a hybrid model based on
the algorithm proposed above by using the average of nth-order difference time
series and also a synchronous prediction of the current error given by the trained
neural network in an optimized context of a tuned order of the difference.

10 Appendix

The mathematics proof (based on Peano’s Induction Axiom) for “a nth-order
difference equals the difference of two lower ((n− 1)th-order) differences” (used
in eq.(14)):

To Be Proved: Dn
m = Dn−1

m+1 −Dn−1
m

Dn−1
m+1 =

n−1∑

i=0

(−1)(n−1)−i · (n− 1)! · a((m+1)+i)

i!((n− 1) − i)!

=
(−1)(n−1)−0 · (n− 1)! · a((m+1)+0)

0!((n− 1) − 0)!

+
(−1)(n−1)−1 · (n− 1)! · a((m+1)+1)

1!((n− 1) − 1)!

+ · · · · · ·

+
(−1)(n−1)−(n−2) · (n− 1)! · a((m+1)+(n−2))

(n− 2)!((n− 1) − (n− 2))!

+
(−1)(n−1)−(n−1) · (n− 1)! · a((m+1)+(n−1))

(n− 1)!((n− 1) − (n− 1))!

Dn−1
m =

n−1∑

i=0

(−1)(n−1)−i · (n− 1)! · a(m+i)

i!((n− 1) − i)!

=
(−1)(n−1)−0 · (n− 1)! · a(m+0)

0!((n− 1) − 0)!

+
(−1)(n−1)−1 · (n− 1)! · a(m+1)

1!((n− 1) − 1)!

+ · · · · · ·
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+
(−1)(n−1)−(n−2) · (n− 1)! · a(m+(n−2))

(n− 2)!((n− 1) − (n− 2))!

+
(−1)(n−1)−(n−1) · (n− 1)! · a(m+(n−1))

(n− 1)!((n− 1) − (n− 1))!

Dn−1
m+1 −Dn−1

m =
n−1∑

i=0

(−1)(n−1)−i · (n− 1)! · a((m+1)+i)

i!((n− 1) − i)!

−
n−1∑

i=0

(−1)(n−1)−i · (n− 1)! · a(m+i)

i!((n− 1) − i)!

=
(−1)(n−1)−(n−1) · (n− 1)! · a(m+1)+(n−1)

(n− 1)!((n− 1) − (n− 1))!

+
((−1)(n−1)−(n−2) · (n− 1)! · a(m+1)+(n−2)

(n− 2)!((n− 1) − (n− 2))!

− (−1)(n−1)−(n−1) · (n− 1)! · am+(n−1)

(n− 1)!((n− 1) − (n− 1))!

)

+ · · · · · ·

+
((−1)(n−1)−0 · (n− 1)! · a(m+1)+0

0!((n− 1) − 0)!

− (−1)(n−1)−1 · (n− 1)! · am+1

1!((n− 1) − 1)!

)

− (−1)(n−1)−0 · (n− 1)! · am+0

0!((n− 1) − 0)!

=
n

n
· (−1)n−n · (n− 1)! · am+n

0!(n− 1)!

+
(n− 1

n
· (−1)(n−(n−1)) · n! · am+n−1

(n− 1)!(n− (n− 1))!

−(−1)−1 · 1
n
· (−1)(n−(n−1)) · n! · am+n−1

(n− 1)!(n− (n− 1))!

)

+ · · · · · ·

+
( 1
n
· (−1)(n−1) · n! · am+1

1!(n− 1)!

−(−1)−1 · n− 1
n

· (−1)(n−1) · n! · am+1

1!(n− 1)!

)

+
n

n
· (−1)(n−0) · (n− 1)! · am+0

0!((n− 1) − 0)!

=
(−1)n−n · n! · am+n

n!(n− n)!
+

(−1)n−(n−1) · n! · am+(n−1)

(n− 1)!(n− (n− 1))!
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+ · · · · · ·

+
(−1)n−1 · n! · am+1

1!(n− 1)!
+

(−1)n−0 · n! · am+0

0!(n− 0)!

=
n∑

i=0

(−1)n−i · n! · am+i

i!(n− i)!

= Dn
m
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Abstract. In most databases, it is possible to identify small partitions
of the data where the observed distribution is notably different from that
of the database as a whole. In classical subgroup discovery, one considers
the distribution of a single nominal attribute, and exceptional subgroups
show a surprising increase in the occurrence of one of its values. In this pa-
per, we describe Exceptional Model Mining (EMM), a framework that al-
lows for more complicated target concepts. Rather than finding subgroups
based on the distribution of a single target attribute, EMM finds subgroups
where a model fitted to that subgroup is somehow exceptional. We discuss
regression as well as classification models, and define quality measures that
determine how exceptional a given model on a subgroup is. Our framework
is general enough to be applied to many types of models, even from other
paradigms such as association analysis and graphical modeling.

1 Introduction

By and large, subgroup discovery has been concerned with finding regions in
the input space where the distribution of a single target variable is substantially
different from its distribution in the whole database [3,4]. We propose to extend
this idea to targets that are models of some sort, rather than just single variables.
Hence, in a very general sense, we want to discover subgroups where a model
fitted to the subgroup is substantially different from that same model fitted to
the entire database [5].

As an illustrative example, consider the simple linear regression model

Pi = a+ bSi + ei

where P is the sales price of a house, S the lot size (measured, say, in square
meters), and e the random error term (see Fig. 1 and Section 4 for an actual
dataset containing such data). If we think the location of the house might make
a difference for the price per square meter, we could consider fitting the same
model to the subgroup of houses on a desirable location:

Pi = aD + bDSi + ei,

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 24, pp. 183–198.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Scatter plot of lot size and sales price for the housing data

where the subscript D indicates we are only considering houses on a desirable
location. To test whether the slope for desirable locations is significantly differ-
ent, we could perform a statistical test of H0 : b = bD, or more conveniently,
H0 : bD = bD̄, where D̄ denotes the complement of D.

In the above example, we came up ourselves with the idea that houses on a
desirable location might have a different slope in the regression model. The main
idea presented in this paper is that we can find such groups automatically by
using the subgroup discovery framework. Hence, the subgroups are not limited
to simple conditions based on a single variable. Their description may involve
conjunctions of conditions, and in case of multi-relational data, existential quan-
tification and aggregation as well. In the general case of simple linear regression,
we could be looking for subgroups G where the slope bG in

yi = aG + bGxi + ei,

is substantially different from the slope bḠ. The search process only involves the
subgroups; the variables y and x are assumed to be determined by the question
of the user, that is, they are fixed.

We have stated that the objective is to find subgroups where a model fitted
to the subgroup is substantially different from that same model fitted to the
entire database. This statement is deliberately general: we can use different types
of models in this scheme, and for each type of model we can consider several
measures of difference. In this paper we describe a number of model classes and
quality measures that can be useful. All these methods have been implemented
in the Multi-Relational Data Mining system Safarii [6].

This paper is organized as follows. In Section 2, we introduce some notation
that is used throughout the paper, and define the subgroup discovery and ex-
ceptional model mining framework. In Section 3, we give examples of three basic
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types of models for exceptional model mining: correlation, regression and classi-
fication. We also propose appropriate quality measures for the types of models
discussed. In Section 4, we present the results of exceptional model mining ap-
plied to two real-life datasets. Finally, we draw conclusions in Section 5.

2 Exceptional Model Mining

We assume that the database d is a bag of labelled objects i ∈ D, referred to
as individuals, taken from a domain D. We refer to the size of the database as
N = |d|. At this point, we do not fix the nature of individuals, be it propositional,
relational, or graphical, etc. However, each description of an individual includes
a number of attributes x1, ..., xk and optionally an output attribute y. These
attributes are used in fitting models to subgroups of the data. In regular subgroup
discovery, only the y attribute is used, which is typically binary.

We make no assumptions about the syntax of the pattern language, and treat
a pattern simply as a function p : D → {0, 1}. We will say that a pattern p
covers an individual i iff p(i) = 1.

Definition 1 (Subgroup). A subgroup corresponding to a pattern p is the set
of individuals Gp ⊆ d that are covered by p: Gp = {i ∈ d|p(i) = 1}.
Definition 2 (Complement). The complement of a subgroup Gp is the set of
individuals Ḡp ⊆ d that are not covered by p: Ḡp = d\Gp.

When clear from the context, we will omit the p from now on, and simply refer
to a subgroup and its complement as G and Ḡ. We use n and n̄ to denote the size
of G and Ḡ, respectively. In order to judge the quality of candidate patterns in a
given database, a quality measure needs to be defined. This measure determines
for each pattern in a pattern language P how interesting (exceptional) a model
induced on the associated subgroup is.

Definition 3 (Quality Measure). A quality measure for a pattern p is a
function ϕd : P → IR that computes a unique numeric value for a pattern p,
given a database d.

Subgroup discovery [3] is a data mining framework aimed at discovering patterns
that satisfy a number of user-specified inductive constraints. These constraints
typically include an interestingness constraint ϕ(p) ≥ t, as well as a minimum
support threshold n ≥ minsup that guarantees the relative frequency of the
subgroups in the database. Further constraints may involve properties such as the
complexity of the pattern p. In most cases, a subgroup discovery algorithm will
traverse a search lattice of candidate patterns in a top-down, general-to-specific
fashion. The structure of the lattice is determined by a refinement operator
ρ : P → 2P , a syntactic operation which determines how simple patterns can be
extended into more complex ones by atomic additions. In our application (and
most others), the refinement operator is assumed to be a specialisation operator :
∀q ∈ ρ(p) : p � q (p is more general than q).
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The actual search strategy used to consider candidates is a parameter of the
algorithm. We have chosen the beam search strategy [14], because it nicely bal-
ances the benefits of a greedy method with the implicit parallel search resulting
from the beam. Beam search effectively performs a level-wise search that is
guided by the quality measure ϕ. On each level, the best-ranking w patterns are
refined to form the candidates for the next level. This means that although the
search will be targeted, it is less likely to get stuck in a local optimum, because
at each level alternatives are being considered. The search is further bounded by
complexity constraints and the minsup constraint. The end-result is a ranked
list of patterns (subgroups) that satisfy the inductive constraints.

In the case of regular subgroup discovery, with only a single discrete target
variable, the quality measure of choice is typically a measure for how different the
distribution over the target variable is, compared to that of the whole database
(or in fact to that of the complement). As such an unusual distribution is eas-
ily produced in small fractions of the database, the deviation is often weighed
with the size of the subgroup: a pattern is interesting if it is both exceptional
and frequent. Well-known examples of quality measures for binary targets are
frequency, confidence, χ2, and novelty.

The subject of this paper, exceptional model mining (EMM) [5], can now
be viewed as an extension of the subgroup discovery framework. The essential
difference with standard subgroup discovery is the use of more complex tar-
get concepts than the regular single attribute. Our targets are models of some
sort, and within each subgroup considered, a model is induced on the attributes
x1, ..., xk, and optionally y. We will define quality measures that capture how
exceptional the model within the subgroup is in relation to the model induced
on its complement. In the next section, we present a number of model types, and
propose one or more quality measures for each. When only the subgroup itself
is considered, the quality measures tend to focus on the accuracy of the model,
such as the fit of a regression line, or the predictive accuracy of a classifier. If the
quality measure captures the difference between the subgroup and its comple-
ment, it is typically based on a comparison between more structural properties
of the two models, such as the slope of the regression lines, or the make-up of
the classifiers (e.g. size, attributes used).

Example 1. Consider again the housing dataset (Fig. 1). Individuals (houses)
are described by a number of attributes such as the number of bathrooms or
whether the house is located at a desirable location. An example of a pattern
(and associated subgroup G) would be:

p : nbath ≥ 2 ∧ drive = 1

which covers 128 houses (about 23% of the data). Its complement (which is often
only considered implicitly) is

p̄ : ¬nbath ≥ 2 ∨ ¬drive = 1

The typical refinement operator will add a single condition on any of the available
attributes to the conjunction. In this example, target models are defined over the
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two attributes x = lot size and y = sales price. Note that these two attributes
are therefore not allowed to appear in the subgroup definitions. One possibility
is to perform the linear regression of y on x. As a quality measure ϕd, we could
consider the absolute difference in slope between the two regression lines fitted
to G and Ḡ. In Section 3.2, we propose a more sophisticated quality measure for
the difference in slope, that implicitly takes into account the supports n and n̄,
and thus the significance of the finding.

3 Model Classes

In this section, we discuss simple examples of three classes of models, and sug-
gest quality measures for them. As an example of a model without an output
attribute, we consider the correlation between two numeric variables. We discuss
linear regression for models with a numeric output attribute, and two simple
classifiers for models with discrete output attributes.

3.1 Correlation Models

As an example of a model without an output attribute, we consider two numeric
variables x1 and x2, and their linear association as measured by the correlation
coefficient ρ. We estimate ρ by the sample correlation coefficient r:

r =
∑

(xi
1 − x̄1)(xi

2 − x̄2)√∑
(xi

1 − x̄1)2
∑

(xi
2 − x̄2)2

where xi denotes the ith observation on x, and x̄ denotes its mean.

Absolute difference between correlations (ϕabs). A logical quality mea-
sure is to take the absolute difference of the correlation in the subgroup G and
its complement Ḡ, that is

ϕabs(p) = |rG − rḠ|
The disadvantage of this measure is that it does not take into account the size
of the groups, and hence does not do anything to prevent overfitting. Intuitively,
subgroups with higher support should be preferred.

Entropy (ϕent). As an improvement of ϕabs, the following quality function
weighs the absolute difference between the correlations with the entropy of the
split between the subgroup and its complement. The entropy captures the infor-
mation content of such a split, and favours balanced splits (1 bit of information
for a 50/50 split) over skewed splits (0 bits for the extreme case of either sub-
group or complement being empty). The entropy function H(p) is defined (in
this context) as:

H(p) = −n/N lgn/N − n̄/N lg n̄/N

The quality measure ϕent is now defined as:

ϕent(p) = H(p) · |rG − rḠ|
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Significance of Correlation Difference (ϕscd). A more statistically oriented
approach to prevent overfitting is to perform a hypothesis test on the difference
between the correlation in the subgroup and its complement. Let ρp and ρp̄

denote the population coefficients of correlation for p and p̄, respectively, and let
rG and rḠ denote their sample estimates. The test to be considered is

H0 : ρp = ρp̄ against Ha : ρp 
= ρp̄

We would like to use the observed significance (p-value) of this test as a quality
measure, but the problem is that the sampling distribution of the sample corre-
lation coefficient is not known in general. If x1 and x2 follow a bivariate normal
distribution, then application of the Fisher z transformation

z′ =
1
2

ln
(

1 + r

1 − r

)

makes the sampling distribution of z′ approximately normal [12]. Its standard
error is given by

1√
m− 3

where m is the size of the sample. As a consequence

z∗ =
z′ − z̄′

√
1

n−3
+ 1

n̄−3

approximately follows a standard normal distribution under H0. Here z′ and
z̄′ are the z-scores obtained through the Fisher z transformation for G and Ḡ,
respectively. If both n and n̄ are greater than 25, then the normal approximation
is quite accurate, and can safely be used to compute the p-values. Because we
have to introduce the normality assumption to be able to compute the p-values,
they should be viewed as a heuristic measure. Transformation of the original
data (for example, taking their logarithm) may make the normality assumption
more reasonable. As a quality measure we take 1 minus the computed p-value
so that ϕscd ∈ [0, 1], and higher values indicate a more interesting subgroup.

3.2 Regression Model

In this section, we discuss some possibilities of EMM with regression models.
For ease of exposition, we only consider the linear regression model

yi = a+ bxi + ei, (1)

but this is in no way essential to the methods we discuss.
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Significance of Slope Difference (ϕssd). Consider model (1) fitted to a
subgroup G and its complement Ḡ. Of course, there is a choice of distance
measures between the fitted models. We propose to look at the difference in the
slope b between the two models, because this parameter is usually of primary
interest when fitting a regression model: it indicates the change in the expected
value of y, when x increases with one unit. Another possibility would be to look
at the intercept a, if it has a sensible interpretation in the application concerned.
Like with the correlation coefficient, we use significance testing to measure the
distance between the fitted models. Let bp be the slope for the regression function
of p and bp̄ the slope for the regression function of p̄. The hypothesis to be tested
is

H0 : bp = bp̄ against Ha : bp 
= bp̄

We use the least squares estimate

b̂ =
∑

(xi − x̄)(yi − ȳ)
∑

(xi − x̄)2

for the slope b. An unbiased estimator for the variance of b̂ is given by

s2 =
∑
ê2i

(m − 2)
∑

(xi − x̄)2

where êi is the regression residual for individual i, and m is the sample size.
Finally, we define our test statistic

t′ =
b̂G − b̂Ḡ√
s2G + s2

Ḡ

Although t′ does not have a t distribution, its distribution can be approximated
quite well by one, with degrees of freedom given by (cf. [11]):

df =

(
s2G + s2

Ḡ

)2

s4
G

n−2 +
s4

Ḡ

n̄−2

(2)

Our quality measure ϕssd ∈ [0, 1] is once again defined as one minus the p-value
computed on the basis of a t distribution with degrees of freedom given in (2).
If n + n̄ ≥ 40 the t-statistic is quite accurate, so we should be confident to use
it unless we are analysing a very small dataset.

3.3 Classification Models

In the case of classification, we are dealing with models for which the output
attribute y is discrete. In general, the attributes x1, ..., xk can be of any type
(binary, nominal, numeric, etc). Furthermore, our EMM framework allows for
any classification method, as long as some quality measure can be defined in order
to judge the models induced. Although we allow arbitrarily complex methods,
such as decision trees, support vector machines or even ensembles of classifiers,
we only consider two relatively simple classifiers here, for reasons of simplicity
and efficiency.



190 A. Knobbe, A. Feelders, and D. Leman

Logistic Regression. Analogous to the linear regression case, we consider the
logistic regression model

logit(P (yi = 1|xi)) = ln
(
P (yi = 1|xi)
P (yi = 0|xi)

)

= a+ b · xi,

where y ∈ {0, 1} is a binary class label. The coefficient b tells us something about
the effect of x on the probability that y occurs, and hence may be of interest to
subject area experts. A positive value for b indicates that an increase in x leads
to an increase of P (y = 1|x) and vice versa. The strength of influence can be
quantified in terms of the change in the odds of y = 1 when x increases with,
say, one unit.

To judge whether the effect of x is substantially different in a particular sub-
group Gp, we fit the model

logit(P (yi = 1|xi)) = a+ b · p(i) + c · xi + d · (p(i) · xi). (3)

Note that

logit(P (yi = 1|xi)) =
{

(a+ b) + (c+ d) · xi if p(i) = 1
a+ c · xi if p(i) = 0

Hence, we allow both the slope and the intercept to be different in the subgroup
and its complement. As a quality measure, we propose to use one minus the p-
value of a test on d = 0 against a two-sided alternative in the model of equation
(3). This is a standard test in the literature on logistic regression [12]. We refer
to this quality measure as ϕsed.

DTM Classifier. The second classifier considered is the Decision Table Ma-
jority (DTM) classifier [8,7], also known as a simple decision table. The idea
behind this classifier is to compute the relative frequencies of the y values for
each possible combination of values for x1, . . . , xk. For combinations that do not
appear in the dataset, the relative frequency estimates are based on that of the
whole dataset. The predicted y value for a new individual is simply the one with
the highest probability estimate for the given combination of input values.

Example 2. As an example of a DTM classifier, consider a hypothetical dataset
of 100 people applying for a mortgage. The dataset contains two attributes de-
scribing the age (divided into three suitable categories) and marital status of
the applicant. A third attribute indicates whether the application was success-
ful, and is used as the output. Out of the 100 applications, 61 were successful.
The following decision table lists the estimated probabilities of success for each
combination of age and married?. The support for each combination is indicated
between brackets.

married? = ‘no’ married? = ‘yes’
age = ‘low’ 0.25 (20) 0.61 (0)
age = ‘medium’ 0.4 (15) 0.686 (35)
age = ‘high’ 0.733 (15) 1.0 (15)
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As this table shows, the combination married? = ‘yes’∧age = ‘low’ does not
appear in this particular dataset, and hence the probability estimate is based
on the complete dataset (0.61). This classifier predicts a positive outcome in all
cases except when married? = ‘no’ and age is either ‘low’ or ’medium’.

For this instance of the classification model we discuss two different quality
measures. The BDeu (Bayesian Dirichlet equivalent uniform) score, which is a
measure for the performance of the DTM classifier on G, and the Hellinger dis-
tance, which assigns a value to the distance between the conditional probabilities
estimated on G and Ḡ.

BDeu Score (ϕBDeu). The BDeu score ϕBDeu is a measure from Bayesian
theory [2] and is used to estimate the performance of a classifier on a subgroup,
with a penalty for small contingencies that may lead to overfitting. Note that
this measure ignores how the classifier performs on the complement. It merely
captures how ‘predictable’ a particular subgroup is.

The BDeu score is defined as
∏

x1,...,xk

Γ (α/q)
Γ (α/q + n(x1, ..., xk))

∏

y

Γ (α/qr + n(x1, .., xk, y))
Γ (α/qr)

where Γ denotes the gamma function, q denotes the number of value combina-
tions of the input variables, r the number of values of the output variable, and
n(x1, ..., xk, y) denotes the number of cases with that value combination. The
parameter α denotes the equivalent sample size. Its value can be chosen by the
user.

Hellinger (ϕHel). Another possibility is to use the Hellinger distance [13].
It defines the distance between two probability distributions P (z) and Q(z) as
follows:

H(P,Q) =
∑

z

(√
P (z) −

√
Q(z)

)2

where the sum is taken over all possible values z. In our case, the distributions
of interest are

P (y | x1, ..., xk)

for each possible value combination x1, ..., xk. The overall distance measure be-
comes

ϕHel(p) = D(P̂G, P̂Ḡ) =
∑

x1,...,xk

∑

y

(√
P̂G(y|x1, ..., xk) −

√
P̂Ḡ(y|x1, ..., xk)

)2

where P̂G denotes the probability estimates on G. Intuitively, we measure the
distance between the conditional distribution of y in G and Ḡ for each possi-
ble combination of input values, and add these distances to obtain an overall
distance. Clearly, this measure is aimed at producing subgroups for which the
conditional distribution of y is substantially different from its conditional distri-
bution in the overall database.
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4 Experiments

This section illustrates exceptional model mining on two real-life datasets, using
different quality measures. Although our implementation in Safarii essentially
is multi-relational [6], the two dataset we present are propositional. For each
test, Safarii returns a configurable number of subgroups ranked according to
the quality measure of choice. The following experiments only present the best
ranking subgroup and take a closer look at the interpretation of the results.

4.1 Analysis of Housing Data

First, we analyse the Windsor housing data1 [9]. This dataset contains informa-
tion on 546 houses that were sold in Windsor, Canada in the summer of 1987.
The information for each house includes the two attributes of interest, lot size
and sales price, as plotted in Fig. 1. An additional 10 attributes are available to
define candidate subgroups, including the number of bedrooms and bathrooms
and whether the house is located at a desirable location. The correlation between
lot size and sale price is 0.536, which implies that a larger size of the lot coincides
with a higher sales price. The fitted regression function is:

ŷ = 34136 + 6.60 · x
As this function shows, on average one extra square meter corresponds to a 6.6
dollar higher sales price. Given this function, one might wonder whether it is
possible to find specific subgroups in the data where the price of an additional
square meter is significantly less, perhaps even zero. In the next paragraphs, we
show how EMM may be used to answer this question.

Significance of Correlation Difference. Looking at the restrictions defined
in Section 3.1 we see that the support has to be over 25 in order to be confident
about the test results for this measure. This number was used as minimum
support threshold for a run of Safarii using ϕscd. The following subgroup (and
its complement) was found to show the most significant difference in correlation:
ϕscd(p1) = 0.9993.

p1 : drive = 1 ∧ rec room = 1 ∧ nbath ≥ 2.0

This is the group of 35 houses that have a driveway, a recreation room and at
least two bathrooms. The scatter plots for the subgroup and its complement are
given in Fig. 2. The subgroup shows a correlation of rG = −0.090 compared to
rḠ = 0.549 for the remaining 511 houses. A tentative interpretation could be
that G describes a collection of houses in the higher segments of the markets
where the price of a house is mostly determined by its location and facilities.
The desirable location may provide a natural limit on the lot size, such that this
is not a factor in the pricing. Figure 2 supports this hypothesis: houses in G tend
to have a higher price.
1 Available from the Journal of Applied Econometrics Data Archive at
http://econ.queensu.ca/jae/
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Fig. 2. Housing - ϕscd: Scatter plot of lot size and sales price for drive = 1 ∧
rec room = 1 ∧ nbath ≥ 2 (left) and its complement (right)

In general sales price and lot size are positively correlated, but EMM dis-
covers a subgroup with a slightly negative correlation. However, the value in the
subgroup is not significantly different from zero: a test of

H0 : bp1 = 0 against Ha : bp1 
= 0,

yields a p-value of 0.61. The scatter plot confirms our impression that sales price
and lot size are uncorrelated within the subgroup. For purposes of interpreta-
tion, it is interesting to perform some post-processing. In Table 1 we give an
overview of the correlations within different subgroups whose intersection pro-
duces the final result, as given in the last row. It is interesting to see that
the condition nbath ≥ 2 in itself actually leads to a slight increase in correla-
tion compared to the whole database, but the combination with the presence
of a recreation room leads to a substantial drop to r = 0.129. When we add
the condition that the house should also have a driveway we arrive at the fi-
nal result with r = −0.090. Note that adding this condition only eliminates 3
records (the size of the subgroup goes from 38 to 35) and that the correlation
between sales price and lot size in these three records (defined by the condition
nbath ≥ 2 ∧ ¬drive = 1 ∧ rec room = 1) is −0.894. We witness a phenomenon
similar to Simpson’s paradox: splitting up a subgroup with positive correlation
(0.129) produces two subgroups both with a negative correlation (−0.090 and
−0.894, respectively).

Significance of Slope Difference. In this section, we perform EMM on the
housing data using the Significance of Slope Difference (ϕssd) as the quality
measure. The highest ranking subgroup consists of the 226 houses that have a
driveway, no basement and at most one bathroom:

p2 : drive = 1 ∧ basement = 0 ∧ nbath ≤ 1
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Table 1. Different subgroups of the housing data, and their sample correlation coeffi-
cients and supports

Subgroup r n

Whole dataset 0.536 546
nbath ≥ 2 0.564 144
drive = 1 0.502 469
rec room = 1 0.375 97
nbath ≥ 2 ∧ drive = 1 0.509 128
nbath ≥ 2 ∧ rec room = 1 0.129 38
drive = 1 ∧ rec room = 1 0.304 90
nbath ≥ 2 ∧ rec room = 1 ∧ ¬drive = 1 −0.894 3
nbath ≥ 2 ∧ rec room = 1 ∧ drive = 1 −0.090 35
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Fig. 3. Housing - ϕssd: Scatter plot of drive = 1 ∧ basement = 0 ∧ nbath ≤ 1 (left),
and its complement (right)

The subgroup G and its complement Ḡ (320 houses) lead to the following two
fitted regression functions, respectively:

ŷ = 41568 + 3.31 · x
ŷ = 30723 + 8.45 · x

The subgroup quality is ϕssd > 0.9999, meaning that the p-value of the test

H0 : bp2 = bp̄2 against Ha : bp2 
= bp̄2

is virtually zero. There are subgroups with a larger difference in slope, but the
reported subgroup scores higher because it is quite big. Figure 3 shows the scatter
plots of lot size and sales price for the subgroup and its complement.

4.2 Analysis of Gene Expression Data

The following experiments demonstrate the usefulness of exceptional model min-
ing in the domain of bioinformatics. In genetics, genes are organised in so-called
gene regulatory networks. This means that the expression (its effective activity)
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Fig. 4. Gene Expression - ϕabs: Scatter plot of 11 band = ‘no deletion’ ∧
survivaltime ≤ 1919 ∧ XP 498569.1 ≤ 57 (left; r = −0.950) and its complement
(right; r = 0.363)

of a gene may be influenced by the expression of other genes. Hence, if one
gene is regulated by another, one can expect a linear correlation between the
associated expression-levels. In many diseases, specifically cancer, this interac-
tion between genes may be disturbed. The Gene Expression dataset shows the
expression-levels of 313 genes as measured by an Affymetrix microarray, for 63
patients that suffer from a cancer known as neuroblastoma [10]. Additionally,
the dataset contains clinical information about the patients, including age, sex,
stage of the disease, etc.

Correlation Model Experiment. As a demonstration of a correlation model,
we analyse the correlation between ZHX3 (‘Zinc fingers and homeoboxes 2’) and
NAV3 (‘Neuron navigator 3’), in terms of the absolute difference of correlations
ϕabs. These genes show a very slight correlation (r = 0.218) in the whole dataset.
The remaining attributes (both gene expression and clinical information) are
available for building subgroups. As the ϕabs measure does not have any provi-
sions for promoting larger subgroups, we use a minimum support threshold of 10
(15% of the patients). The largest distance (ϕabs(p3) = 1.313) was found with
the following condition:

p3 : 11 band = ‘no deletion’ ∧ survivaltime ≤ 1919 ∧XP 498569.1 ≤ 57

Figure 4 shows the plot for this subgroup and its complement with the regres-
sion lines drawn in. The correlation in the subgroup is rG = −0.95 and the
correlation in the remaining data is rḠ = 0.363. Note that the subgroup is very
“predictable”: all points are quite close to the regression line, with R2 ≈ 0.9.

DTM Experiment. For the DTM classification experiments on the Gene Ex-
pression dataset, we have selected three binary attributes. The first two attributes,
which serve as input variables of the decision table, are related to genomic alter-
ations that may be observed within the tumor tissues. The attribute 1p band (x1)
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describes whether the small arm (‘p’) of the first chromosome has been deleted.
The second attribute, mycn (x2), describes whether one specific gene is amplified
or not (multiple copies introduced in the genome). Both attributes are known to
potentially influence the genesis and prognosis of neuroblastoma. The output at-
tibute for the classification model isNBstatus (y), which can be either ‘no event’
or ‘relapse or deceased’. The following decision table describes the conditional dis-
tribution of NBstatus given 1p band and mycn on the whole data set:

mycn =‘amplified’ mycn = ‘not amplified’
1p band = ‘deletion’ 0.333 (3) 0.667 (3)
1p band = ‘no change’ 0.625 (8) 0.204 (49)

In order to find subgroups for which the distribution is significantly different, we
run EMM with the Hellinger distance ϕHel as quality measure. As our quality
measures for classification do not specifically promote larger subgroups, we have
selected a slightly higher minimum support constraint: minsup = 16, which
corresponds to 25% of the data. The following subgroup of 17 patients was the
best found (ϕHel = 3.803):

p4 : prognosis = ‘unknown’

mycn =‘amplified’ mycn = ‘not amplified’
1p band = ‘deletion’ 1.0 (1) 0.833 (6)
1p band = ‘no change’ 1.0 (1) 0.333 (9)

Note that for each combination of input values, the probability of ‘relapse or
deceased’ is increased, which makes sense when the prognosis is uncertain. Note
furthermore that the overall dataset does not yield a pure classifier: for every
combination of input values, there is still some confusion in the predictions.
In our second classification experiment, we are interested in “predictable” sub-
groups. Therefore, we run EMM with the ϕBDeu measure. All other settings are
kept the same. The following subgroup (n = 16, ϕBDeu = −1.075) is based on
the expression of the gene RIF1 (‘RAP1 interacting factor homolog (yeast)’)

p5 : RIF1 >= 160.45

mycn =‘amplified’ mycn = ‘not amplified’
1p band = ‘deletion’ 0.0 (0) 0.0 (0)
1p band = ‘no change’ 0.0 (0) 0.0 (16)

In this subgroup, the predictiveness is optimal, as all patients turn out to be
tumor-free. In fact, the decision table ends up being rather trivial, as all cells
indicate the same decision.



Exceptional Model Mining 197

Logistic Regression Experiment. In the logistic regression experiment, we
take NBstatus as the output y, and age (age at diagnosis in days) as the predictor
x. The subgroups are created using the gene expression level variables. Hence,
the model specification is

logit{P (NBstatus = ‘relapse or deceased’)} = a+ b · p+ c · age+ d · (p · age).

We find the subgroup

p6 : SMPD1 ≥ 840 ∧ HOXB6 ≤ 370.75

with a coverage of 33, and quality ϕsed = 0.994. We find a positive coefficient of
x for the subgroup, and a slightly negative coefficient for its complement. Within
the subgroup, the odds of NBstatus = ‘relapse or deceased’ increase with 44%
when the age at diagnosis increases with 100 days, whereas in the complement
the odds decrease with 8%. More loosely, within the subgroup an increase in age
at diagnosis decreases the probability of survival, whereas in the complement an
increase in age slightly increases the probability of survival. Such reversals of the
direction of influence may be of particular interest to the domain expert.

5 Conclusions and Future Research

We have introduced exceptional model mining (EMM) as an extension of the
well-known subgroup discovery framework. By focusing on models instead of
single target variables, many new interesting analysis possibilities are created.
We have proposed a number of model classes that can be used in EMM, and
defined several quality measures for them. We illustrated the use of EMM by
its application to two real datasets. Like subgroup discovery, EMM is an ex-
ploratory method that requires interaction with a user that is knowledgable in
the application domain. It can provide useful insights into the subject area, but
does not result in ready-to-use predictive models.

We believe there are many possibilities to extend the work presented in this
paper. One could look at different models, for example naive Bayes for classifica-
tion problems or graphical models for modelling the probability distribution of
a number of (discrete) variables. Whatever the selected class of models, the user
should specify a quality measure that relates to the more fundamental questions
a user may have about the data at hand. In the case of our housing example, the
choice for the difference in slope is appropriate, as it captures a relevant aspect
of the data, namely a significant change in price per square meter. For similar
reasons, we used the difference between the coefficients of the explanatory vari-
able (age at diagnosis) in the subgroup and its complement as a quality measure
for logistic regression models.

Specifying an appropriate quality measure that is inspired by a relevant ques-
tion of the user becomes less straightforward when more complex models are
considered, although of course one can always focus on some particular aspect
(e.g. coefficients) of the models. However, even for sophisticated models such
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as support vector machines or Bayesian networks, one can think of measures
that make sense, such as the linear separability or the edit distance between two
networks [15], respectively.

From a computational viewpoint, it is advisable to keep the models to be
fitted simple, since many subgroups have to be evaluated in the search process.
For example, fitting a naive Bayes model to a large collection of subgroups can
be done quite efficiently, but fitting a support vector machine could prove to be
too time consuming.
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Abstract. We show that a commonly-used sampling theoretical at-
tribute discretization algorithm ChiMerge can be implemented effi-
ciently in the online setting. Its benefits include that it is efficient, sta-
tistically justified, robust to noise, can be made to produce low-arity
partitions, and has empirically been observed to work well in practice.

The worst-case time requirement of the batch version of ChiMerge

bottom-up interval merging is O(n lg n) per attribute. We show that Chi-

Merge can be implemented in the online setting so that only logarithmic
time is required to update the relevant data structures in connection of
an insertion. Hence, the same O(n lg n) total time as in batch setting is
spent on discretization of a data stream in which the examples fall into n
bins. However, maintaining just one binary search tree is not enough, we
also need other data structures. Moreover, in order to guarantee equal
discretization results, an up-to-date discretization cannot always be kept
available, but we need to delay the updates to happen at periodic inter-
vals. We also provide a comparative evaluation of the proposed algorithm.

1 Introduction

Data streams have become reality in modern computing environments [1,2,3].
They have required to develop new algorithms that can cope efficiently and
effectively with the continuous data feed. Naturally, we do not want to reinvent
all (the algorithms) of the field from scratch. Rather, there are established and
successful machine learning and data mining algorithms that carry over to the
new setting without compromise. One must, though, bear in mind that the
requirements in online data stream processing may significantly deviate from
those of the batch setting: The time limits are tighter because of the high-speed
nature of data streams and the algorithms have to be able to tolerate situations
changing over time.

No unique model for a data stream exists. For example Aggarwal et al. [4]
have debated about the suitability of incremental decision tree learning [5,6]
for practical domains. Instead they proposed learning a continuously updating
model. In this scenario it is important that the training model adapts quickly to
the changing data stream. Also Gao et al. [7,8] have stressed the quick-changing

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 24, pp. 199–216.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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nature of data streams. We will, nevertheless, stick with the one-pass classifica-
tion model [5,6] and aim for execution time matching that of the batch setting.

Decision tree learning in face of data streams has been tackled to large ex-
tent [5,6,9,10,11]. The general methodology of learning decision trees from data
streams is known and also drifting concepts, intrinsic to the setting, can be han-
dled. However, some aspects of decision tree learning— like numerical attribute
discretization— have been resolved only partly so far [10,12,13,14]. Continuous-
valued (numerical) attributes need to be discretized somehow in standard
decision tree learning. The number of techniques proposed for discretization
is overwhelming and many of the available algorithms work well in practice
[15,16,17]. Probably the best-known discretization approaches are unsupervised
equal-width and equal-frequency binning, which overlook the class labels of ex-
amples (if provided). The former divides the observed value range into a number
of intervals each of which has the same width and the latter into a number of
intervals of approximately as many training examples. The user needs to provide
the number of desired intervals.

A well-known robust supervised discretization algorithm— taking class labels
into account— is Kerber’s [18] ChiMerge. It is a univariate approach in which
only one attribute is examined at a time without regard to the values of the
other attributes. Like in standard decision tree learning, the examples are sorted
by their value for the numerical attribute in question. In principle each example
could make up an individual interval. As examples with the same value for the
attribute cannot, anyhow, be distinguished from each other in the univariate
setting, we can as well combine all equal-valued examples into one initial interval.

After obtaining the initial intervals, ChiMerge repeatedly merges those two
adjacent intervals that appear, in light of a statistical test (χ2 in the original
algorithm), to have the most similar relative class distribution (rcd) for the
instances. Equal rcd indicates that the numerical attribute at hand does not
affect the class label of instances (at this point). Therefore, we have no reason to
divide the value range in the cut point candidate being examined. The process
continues until a stopping criterion is met. Several subsequent improvements to
ChiMerge have been proposed [19,20,21].

ChiMerge is local in its nature since only two adjacent intervals are examined
at a time. On the other hand, there is an inherent global component to Chi-

Merge— the interval combinations need to be examined in the order of their
goodness as indicated by the χ2 statistics. Hence, it is not immediate whether
the algorithm can be implemented efficiently online. We will show that it can,
though, be done at the price of maintaining some additional data structures. We
also need to resort to periodic updates — not always having a discretization that
reflects all the examples that have been received.

The basic setting that we examine differs from some other data stream models
examined in the literature in the sense that we will not require the learned model
to converge at any point. Rather, we follow the normal online learning setting
and let the model be updated as long as new training instances are observed.
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We will also discuss how Online ChiMerge can be modified for concept drift
and different stream models.

The next section reviews approaches proposed for handling numeric attributes
in the algorithms that learn decision trees from data streams. In Section 3 we
recapitulate ChiMerge more thoroughly. After that we show how the algo-
rithm can be implemented efficiently in the online setting. Section 5 presents a
comparative evaluation of the proposed approach. Finally, we put forward our
concluding remarks and sketch out possible future work.

2 Numeric Attributes, Decision Trees, and Data Streams

Let the streaming data received contain successive training examples each of
which consists of instantiations for a pair of random variables 〈X, Y 〉. The k
elements of the instance vector X are called attributes ; X = 〈A1, . . . , Ak〉. An
attribute may be nominal-valued or continuous-valued (numerical). In the clas-
sification setting the class labels Y usually come from a small nominal set. The
aim is to maintain an adaptive anytime model of determining the value of Y
based on the attribute values X. One is allowed to process the data only in the
order that it arrives without storing (all of) it. As the intention is to operate in
real time, only (close to) constant processing time per example may be used to
update the statistics sufficient to determine which attribute is the appropriate
one to be placed in a node of the evolving decision tree.

We abstract the data stream as DataSource from which a fresh instance can
be requested at all times. If it is a new (labeled) training example, we incorporate
it to our data structures and use it (eventually) to update the discretization. If,
on the other hand, a test instance (without a class label) is received, we use our
anytime hypothesis to classify it.

2.1 VFDT and Numeric Attributes

Research on learning decision trees from data streams was initiated by Domingos
and Hulten [5] in introducing the VFDT system. Naturally, machine learning and
data mining literature contains earlier attempts to make decision tree learning
cope with massive data sets. They include, e.g., subsampling (in main mem-
ory) [22,23], incremental algorithms [24,25], and optimizing disk access [26,27].
Let us first consider VFDT and, then, review subsequent proposals for numeric
attribute handling.

VFDT learns so-called Hoeffding trees— decision trees with a similarity guar-
antee to those learned by conventional batch algorithms such as CART [28] and
C4.5 [29]. The standard Hoeffding inequality is used to show that the attribute
chosen to a node in a Hoeffding tree is, with a high probability, the same as
the one that would have been chosen by the batch learner with access to all of
the data. VFDT chooses an attribute to the root node based on n first exam-
ples, after which the process continues recursively in the leaves down to which the
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succeeding examples are passed. Hoeffding bounds allow to solve the required n
for reaching the user-requested confidence level.

Contrary to our setting, there is a training period in Hoeffding trees during
which the tree stabilizes to its final form. VFDT preprunes the tree by expecting
at each leaf to be expanded that enough training examples have been seen for
statistically secure decision to be made before committing to testing a certain
attribute’s value. It also computes the attribute evaluation function only after
seeing a sequence of new training examples in order to reduce time spent on
expensive calculations.

Originally Domingos and Hulten [5] did not elaborate on how to handle numer-
ical attributes in Hoeffding trees. They just proposed that the commonly-used
thresholded binary splitting of the numerical value range be applied; i.e., only
tests of the form Ai < tj are used. The value range of a numerical attribute may
get multi-way splitted through subsequent binary splits of the induced subinter-
vals. However, their later implementation of VFDT in the VFML package [30]
also details numeric attribute handling.

The chosen implementation was based on binning the data into at most one
thousand fixed-range intervals. If the limit of a thousand bins is ever reached,
subsequent values from the stream are associated with the closest bin. In other
words, this method can be seen as a fixed-width histogram technique. After the
first thousand unique values observed, static bins are incrementally updated. The
bin borders are the potential thresholds on which binary splits can be placed on.
Quinlan’s [29] Information Gain criterion (IG) is used as the attribute evalu-
ation function. According to the empirical evaluation of Pfahringer et al. [13]
this straightforward approach— with orders of magnitude tighter limit for the
maximum number of bins — fares the best out of all the discretization methods
they tested.

2.2 Further Approaches

Also Gama et al. [9] put forward an instantiation of VFDT in which IG was used
to evaluate attributes. Instead of simple binning of VFML, for each numerical
attribute Ai a (balanced) binary search tree (BST) is maintained. It records for
every potential threshold tj the class distribution of the binary partition induced
by the test Ai < tj . Values existing in the data are used as threshold candidates.
Exhaustive evaluation over them is used to choose the test to be placed to the
evolving decision tree. However, all threshold candidates for one attribute can
be evaluated during a single traversal of the BST.

Obviously, updating the BST takes O(lg V ) time, where V is the number of
different values that the attribute in question takes. This price needs to be paid
in order to be able to choose the best binary split. One has to sort the values
and— as the value range is unknown from the outset— a time proportional to
the number of potential cut points needs to be paid per example as long as one
does not want to jeopardize finding the best cut point as determined by the
attribute evaluation function.
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Jin and Agrawal [10] proposed an approach for pruning intervals from the
range of a numerical attribute in order to make processing more efficient. They
first discretize a numerical value range into equal-width intervals after which a
statistical test decides which intervals appear unlikely to include a split point
and can, thus, be pruned. In addition they showed that Hoeffding bounds can
be reached for IG and Gini function [28] with a lesser number of samples than
in the original VFDT.

Gama et al. [9] also used functional leaves in the tree instead of the simple
majority class strategy. Before the algorithm has decided which attribute test to
assign to a leaf in the evolving tree, Näıve Bayes can be used to give predictions
for instances that arrive needing to be classified. For numerical attributes the
common approach of discretization into ten equal-width bins (when possible) is
used in the näıve Bayes classifiers.

CVFDT [6] adapts the VFDT system to concept drift— concept changing over
time. With a changing concept it is necessary to incrementally update the model
built for the examples. The real-time operation requirement does not allow to
rebuild the model for examples in a sliding window from scratch. Instead, Hulten
et al. [6] proposed to build an alternative subtree for those nodes that do not
pass the Hoeffding test in light of the sufficient statistics maintained for a sliding
window of examples. When the alternate subtree’s performance on new examples
overtakes that of the old one, it is inserted to the tree. To grow the shadow tree
one uses the standard techniques of VFDT, thus ensuring the real-time operation
requirement.

In the UFFT system [11] concept drift is detected through the reducing ac-
curacy of the näıve Bayes classifier installed into an internal node. Whenever,
a change in the target concept is identified, the subtree rooted at the corre-
sponding node and its associated statistics is pruned into a (functional) leaf,
and building of a new subtree may begin anew. In UFFT a binary decision tree
is built for each pair of classes and the actual model is a forest of trees. Numer-
ical attributes are handled using the normality assumption as common in näıve
Bayesian techniques. The sufficient statistics for each numerical attribute in this
case are simply the mean and variance per class.

Gama and Pinto [12] use histograms for data stream discretization. His-
tograms induce either an equal-width or an equal-frequency discretization of
the value range of a numerical attribute. The approach uses two layers of in-
tervals. The first one maintains statistics for an excessive number of intervals
and the second one composes the final discretization based on these statistics.
The first layer is maintained online by updating the counters in the appropriate
interval whenever a new example is received. If a user-defined condition is met,
an interval may be split in two; e.g., to keep the intervals of approximately equal
width. The second layer produces the final histograms by merging intervals of
the first layer. This merging process is not online, but triggers on need basis.
Building of the second level discretization is confined on the cut points of the
first layer, and may thus be inexact.
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Pfahringer et al. [13] have carried out an extensive empirical comparison of
different approaches of discretizing numeric value ranges in the data stream set-
ting. They tested Hoeffding trees in three realistic data stream settings: sensor
node environment with 100KB of memory, a hand-held device environment in
which 32MB of memory is available, and a server setting with 400MB of mem-
ory. Four different discretization approaches were compared: The simple VFML
binning based on the first examples received [30], the approach of maintaining an
exhaustive binary search tree from Gama et al.’s [9] instantiation of VFDT, per-
class quantile summaries [31], and Gaussian approximation used, e.g., in UFFT
[11]. Over all settings, the approach of VFML with 10 bins was consistently the
best approach followed by Gaussian approximation using 10 split points. The
exhaustive BST approach suffered from lack of space in these settings of limited
memory. The best variant of quantile summaries had a similar performance as
the BST approach, but with less space usage.

3 ChiMerge Algorithm

Kerber’s [18] ChiMerge algorithm for discretization is a batch algorithm op-
erating bottom-up. It is intended as a preprocessing step to precede execution
of a learning algorithm. ChiMerge is based on the following intuitive notions.
We look at the given training data in a univariate manner— the values of one
attribute and the class labels of the examples at a time — ordered into initial
intervals consisting of examples with the same value for the attribute under
scrutiny. If the rcds in two adjacent intervals do not differ significantly, the
attribute at hand does not affect the class value. Of course, interval realiza-
tions need not have exactly the same rcd, but may differ slightly from each
other and still come from the same underlying distribution. To test whether the
distributions behind the two intervals are the same, a statistical test is used.

In our current problem a natural null hypothesis H0 is “The rcds in two
adjacent intervals are realizations of the same underlying distribution”. We con-
trast it with the alternative hypothesis H1: “The rcds in two adjacent intervals
are realizations of different underlying distributions”. By a statistical test we
seek to either accept or reject the null hypothesis based on how unexpected the
data were to H0. For the statistical test we need to determine a significance
level of the test (e.g. 5%), which determines a critical value above which the null
hypothesis will be rejected.

Let us now recapitulate the basic (Pearson’s) χ2 statistical test with d degrees
of freedom. Let Nij denote the number of instances of class j ∈ { 1, . . . ,m } in
interval i ∈ { 1, . . . , k }. Let Ni =

∑m
j=1Nij be the total number of examples

in interval i. We consider combining intervals i and i + 1. In the two intervals
together there are N = Ni + Ni+1 examples. By Cj = Cij + C(i+1)j we denote
the combined number of instances of class j in the two intervals. On the basis of
the evidence given by the training sample we would, under the null hypothesis,
expect interval i to contain Eij = NiCj/N instances of class j.
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With these notations, we can write out the formula for the deviation of ob-
served instance counts from the expected ones in comparing two adjacent inter-
vals. Let us denote the candidate intervals with indices i = 1, 2.

D1,2 =
2∑

i=1

m∑

j=1

(Nij − Eij)2

Eij
.

In other words, we sum together the relative squared differences of observed
and expected class occurrences in the two intervals combined. This deviation is
approximately distributed as χ2 statistic with d = m − 1 degrees of freedom.
Now, D is a real number that can be compared to the critical value of χ2, which
is obtained from a χ2 table. In using the χ2 independence test it is statistically
justified to set the number of degrees of freedom to be 1 less than the number
of classes m. For instance, using the 5% significance level, the critical value of
χ2 with one degree of freedom (two classes) is χ2

0.05 = 3.84.
Finally, we compare the obtained deviation value D with the critical value

of χ2 at the chosen significance level. If D exceeds the critical value, we reject
the null hypothesis H0 and choose the alternative hypothesis H1 instead. In our
case, accepting the null hypothesis leads to combining the two intervals under
scrutiny and rejecting it means that the cut point is effective and should be left
as is.

ChiMerge combines the initial intervals in the order of their probability. In
other words, it always searches for the best candidate interval pair, the one with
the lowest deviation value. The best pair is merged unless a stopping condition is
met. The time complexity of this repeated process is O(V lg V ). Obviously such
a time cannot be spent in connection of each new example received from the data
stream. Moreover, the need to know the global best candidate means that the
approach lacks locality properties and cannot directly be computed efficiently in
online processing.

4 Online Version of ChiMerge

The main requirement for the online version of ChiMerge is a processing time
that is, per each received training example, logarithmic in the number of inter-
vals. Thus, we would altogether match the O(n lg n) time requirement of the
batch version of ChiMerge. The algorithm OCM attaining the required time
is given in Table 1.

OCM uses a balanced binary search tree T into which each example drawn
from DataSource is (eventually) submitted. Examples with equal value for the
numerical attribute under consideration all get directed down to the same node
and compose a bin of examples. The BST also updates and maintains the re-
quired rcd counts. The first set of initial intervals is obtained by reading M
examples from DataSource to T before starting the discretization.

In the actual discretization process, one iteration is performed each time a
new example is received. Let V denote the number of intervals in T . During the
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Table 1. OCM: Online ChiMerge Algorithm

Procedure OCM(M, Dth)
Input: An integer M giving the number of examples on which initial discretization is

based on and real Dth which is the χ2 threshold for interval merging.
Data structures: A binary search tree T , a queue Q, two doubly linked lists LI and

LD, and a priority queue P .

Initialize T , Q, LI , and LD as empty;
Read M training examples into tree T ;
phase ← 1 ; b← Tree-Minimum(T );
Make P an empty priority queue of size |T | − 1;
while E ← DataSource() �= nil do

if phase = 1 then Enqueue(Q, E)
else Tree-Insert(T,E) fi;

if phase = 1 then - - - - - - - - - - - - - - - - - - - - - -
Insert a copy of b as the last item in LI ;
if |LI | > 1 then

Compute the D-value of the two last intervals in LI ;
Using the obtained value as a key, add a pointer

to the two intervals in LI into P ;
fi
b← Tree-Successor(T, b);
if b = nil then phase ← 2 fi

else if phase = 2 then - - - - - - - - - - - - - - - - - - -
d← Dequeue(Q); Tree-Insert(T, d);
(DI,J , 〈I, J〉)← Extract-Min(P );
if 〈I, J〉 �= nil and DI,J < Dth then

Remove from P the D-values of I and J ;
List-Delete(LI , I); List-Delete(LI , J);
K ←Merge(I, J);
Compute the D-values of K with its neighbors in LI ;
Update the D-values obtained into priority queue P ;

else
phase ← 3 ;

fi

else - - - - - - - - - - - - - Phase = 3 - - - - - - - - - - - -
d← Dequeue(Q); Tree-Insert(T, d);
e← List-Delete(LI ,Head(LI));
List-Insert(LD , e);
if Empty(Q) then

phase ← 1 ; b← Tree-Minimum(T );
Make P an empty priority queue of size |T | − 1;

fi
fi

od
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DataSource:

· · · · · ·

T

Order the examples,
maintain interval counts

P

Order the χ2

deviations

Q · · ·
Temporary storage of examples

LI · · ·
Holds the initial intervals to operate on

LD · · ·
Holds the ChiMerge discretization

used for the next 2V rounds

Fig. 1. The data structures of OCM

execution of the algorithm value V monotonically increases as more and more
examples are received (unless old values are forgotten in preparation for concept
drift; see below).

If each new example drawn from DataSource would update the current dis-
cretization immediately, this would yield a slowing down of OCM by a factor
n as compared to the batch version of the algorithm. Therefore, we update the
active discretization only periodically, freezing it for the intermediate period.
Examples received during this time can be handled at a logarithmic time and
at a constant time per example we are able to prepare the sufficient statistics
for the next update of the discretization. The price that needs to be paid is
maintaining some other data structures in addition to the BST.

The algorithm continuously takes in new examples from DataSource, but
instead of just storing them to T , it updates the required data structures simul-
taneously. We do not want to halt the flow of the data stream because of extra
processing of the data structures, but amortize the required work to normal ex-
ample handling. In addition to the BST, a queue, two doubly linked lists, and
a priority queue (heap) are maintained. Figure 1 illustrates these data struc-
tures and the flow of data between them. Only standard operations of the data
structures [32] are executed in OCM. Recall that function Tree-Minimum(T )
returns the minimum value stored in T and Tree-Successor(T, b) the next
smallest value in T after b, if one exists, and nil otherwise.

The discretization process works in three phases. In Phase 1 (of length V time
steps), the examples from DataSource are cached for temporary storage to the
queue Q. Meanwhile the initial intervals are collected one at a time from T to
a list LI that holds the intervals in their numerical order. For each pair of two
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adjacent intervals, the D-value is computed and inserted into the priority queue
P . The queue Q is needed to freeze T for the duration of the Phase 1. After
seeing V examples, all the initial intervals in T have been inserted to LI and
all the D-values have been computed and added to P . At this point Q holds V
(unprocessed) examples.

At the end of Phase 1 all required preparations for interval merging have been
done— initial intervals from T await merging in LI and the pairwise D-values of
adjacent intervals have been stored to the priority queue P . Phase 2 implements
the merging as in batch ChiMerge, but without stopping the processing of
DataSource. As a result of each merging, the intervals in LI as well as the
related D-values in P are updated.

In Phase 2 the example received from DataSource is submitted directly to T
along with another, previously received example that is cached in Q. The order
in which the examples from Q are submitted to T is not essential, because they
all are inserted to T before the intervals in T are used in discretization again.

The lowest D-value, DI,J , corresponding to some adjacent pair of intervals I
and J , is drawn from P . If it exceeds the χ2 merging threshold Dth, Phase 2 is
complete. Otherwise, the intervals I and J are merged to obtain a new interval
K, and the D-values on both sides of K are updated into P .

Consider the case where k iterations of Phase 2 are performed. Obviously
k < V because at most V − 1 interval mergings can be performed. After k
iterations (mergings) there are V − k intervals left in LI and an equal number
of examples in Q. Phase 3 submits the examples still left in Q to T , and copies
LI to another list LD that saves the result of the discretization.

It is clear that the discretization produced by OCM is equivalent to the one of
the batch version: It operates on the same initial intervals using the same merging
criterion. Moreover, the statistical significance order in which the initial intervals
are examined is the same in both algorithms.

4.1 Time Complexity of Online ChiMerge

Let us now turn to the time consumption of one iteration of Phase 1. The
insertion of the received example E to Q clearly takes constant time, as well
as the insertion of an interval from T to LI . Also computing the D-value can
be considered a constant-time operation; it takes linear time with respect to
the number of classes, which is usually low and fixed in any case. Inserting the
obtained value to P is logarithmic in the number of values already in P , and
thus requires time O(lg V ). Finding a successor in T also takes time O(lg V ).
Thus, the total time consumption of one iteration of Phase 1 is O(lg V ).

Next, consider the time consumption of one iteration of Phase 2. The insertion
of the new example E and an example from the queue Q to the BST T both take
time O(lg V ). Extracting the lowest D-value from the priority queue P is also an
O(lg V ) time operation. As P contains pointers to the items holding intervals I
and J in LI , removing them can be implemented in constant time. The merging
of I and J to obtain K can be considered a constant-time operation as well as
computing the new D-values for K and its neighbors in LI . Both depend linearly
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on the fixed number of classes. Updating each of the new D-values into P takes
O(lg V ) time. Thus, the total time consumption of one iteration of Phase 2 is
also O(lg V ).

The time consumption of Phase 3 is obviously O(lg V ), since it only inserts
examples to T and copies LI to LD. Incidentally, observe that within this log-
arithmic time bound we could build a binary search tree representation of the
final discretization, instead of the linked list. It would be quicker to search, when
in use, than the list LD.

As Phase 1 needs V iterations, Phase 2 (V − k) iterations, and Phase 3 k
iterations to complete, the result of the discretization is achieved in 2V iterations.
After the discretization is done, the BST already contains different bins, since
2V new examples have been received. At this point, the discretization can be
restarted, and a possibly different result is obtained after another 2V iterations.

In Phase 1, the examples are accumulated to the queue Q for later processing.
In Phase 2, Q is unwound and the examples are inserted to the BST along with
the new incoming examples. Exactly V examples are saved in the queue, so its
size comparable to the size of the BST. Hence, the O(lg V ) time bound is not
compromised.

The requirement of 2V iterations to complete the discretization can be reduced
by an integral factor, with the cost of more required work per iteration. The cut
points can be obtained in 2V/k steps if k iterations are performed each time a
new example is received. Setting k = 2V makes the algorithm work as if the
batch version of ChiMerge was run each time a new example is received.

4.2 Alternative Approaches

First, let us point out that we can easily change OCM to produce (at most) a
predefined number N of intervals. We just augment the check concerning the
χ2 threshold Dth with one concerning the length of list LI . The list length
can be easily implemented as a constant-time operation using an extra counter.
Naturally, if there are less than N bins in the tree T , we also end up having less
than N intervals. We will test this version of OCM in the following.

To guarantee results identical to Kerber’s [18] original algorithm, above we
took a snapshot of the BST T at some point of time. An equivalent discretization
was then constructed efficiently on this frozen situation. One could, of course,
consider working as proposed above, but without ever freezing T — instead of
caching instances to Q, direct them always to T . Then, those bins that are
processed later may receive new instances from DataSource, while some bins
have already been fetched for processing. However, also new bins can be created
during the processing of Phase 1. In the worst case this would lead to never
reaching Phase 2. Hence, this approach is not really viable.

Another alternative for the algorithm put forward above would be to perform
chi-merging in the spirit of VFDT [5]. That is, one would choose some number
of initial bins based on the first example received from DataSource and only
update the bin counts for subsequent examples. Chi-merging would then operate
on these bins in the vein as described above.
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Table 2. Characteristics of four UCI data sets

Data set Numerical Nominal Classes Training set Test set

Adult 6 8 2 32,561 16,281
Census 7 32 2 199,523 99,762
Cover 10 44 7 387,341 193,671
Shuttle 9 − 7 43,500 14,500

When there is no single concept to track from the data stream, but rather
the target changes over time [6], it does not suffice to keep stacking incremental
changes to the decision tree. At some point one needs to forget old examples
that are not instances of the current concept. The simplest approach is to have a
sliding window of length W of the most recent examples and maintain a decision
tree consistent with them. The overhead for using such a window is constant. Let
us consider this scenario without paying attention to details of window length
selection and updating.

The straightforward approach is to delete from the BST the oldest example
in the window before (or after) inserting a new example to the BST. Deletion
of an example causes similar changes to bins as insertion of an example. Hence,
the deletion can be handled with local changes in constant time. Of course,
we now traverse the BST twice doubling the time requirement of an update.
Asymptotically, though, updates are as efficient as in single concept decision
trees. Finally, let us point out that in a window of length W there can be at
most W different values for a numerical attribute. Thus, in this scenario the
maximum overhead for using the BST is a constant of the order O(lgW ).

Another natural heuristic for dealing with concept drift would be to discard
the BST once a new discretization has been prepared. Collecting examples from
DataSource to a new BST would then start anew and after a suitable period a
new discretization could be composed (for the changed situation). The success
of such a heuristic largely depends on the accuracy of change detection being
used.

5 A Comparative Evaluation

We now compare OCM with VFML binning into at most 10 bins [30] (vfml10),
which was the superior discretization method in Pfahringer et al.’s [13] test,
and with the original BST approach of Gama et al. [9] (BinTree). Our test
environment is Hoeffding trees as implemented by MOA [13,33,34] and we also
use its implementation of the comparison discretization methods.

Let us begin by examining some of the larger data sets from the UCI reposi-
tories. Three out of the four come divided into separate training and test set. We
also divided the remaining one (Covertype) randomly so that 2/3 of the exam-
ples are used for training and the remaining 1/3 for testing. Table 2 summarizes
the main characteristics of the data sets.
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Table 3. Results on four UCI data sets

Algorithm Size Nodes Depth Accuracy Size Nodes Depth Accuracy

Adult Covertype

vfml10 343 114 3 82.78 1,599 245 15 42.53
BinTree 2,511 167 4 82.58 25,041 344 14 60.30
OCM3

0.01 2,242 108 4 82.56 43,500 610 13 50.59
OCM5

0.1 2,746 146 5 78.55 61,413 878 9 54.70
OCM5

0.01 2,367 112 5 82.80 59,337 856 11 56.25
OCM5

0.001 2,651 106 3 82.78 51,995 683 9 58.99
OCM5

0.0001 2,642 103 3 82.84 59,517 789 11 53.35
OCM5

0.00001 2,470 131 4 82.71 55,818 777 13 58.99
OCM10

0.01 2,645 174 6 82.68 65,689 1, 083 11 59.22

Census-Income Shuttle

vfml10 199 884 5 94.27 59 17 3 97.93
BinTree 19,328 977 5 94.27 163 11 2 94.02
OCM3

0.01 21,396 517 8 94.24 682 40 8 92.35
OCM5

0.1 27,135 1, 080 8 93.99 688 30 5 94.57
OCM5

0.01 26,412 877 6 94.03 825 66 6 94.67
OCM5

0.001 26,498 819 6 94.04 622 25 5 94.53
OCM5

0.0001 26,611 728 6 94.04 609 22 4 94.53
OCM5

0.00001 25,582 714 7 94.09 670 35 7 94.64
OCM10

0.01 25,865 1, 405 5 93.90 705 36 7 94.66

Table 3 lists the results obtained for the four test domains. OCMx
y stands for

the OCM method restricted to produce at most x intervals using χ2 threshold
value y. The columns of Table 3 are the total size (in kilobytes) of the produced
Hoeffding tree including all the additional data structures, its total node count,
its depth, and finally its classification accuracy on the test data.

We did not include any time measurements to Table 3, because MOA is im-
plemented in Java and, thus, makes reliable time consumption tracking difficult.
However, the time consumption of OCM and BinTree is approximately the
same and vfml10 is about 40% more efficient on Census-Income and uses
circa 60% less time on Covertype. On the smaller sets, Adult and Shuttle,
all discretization methods are extremely efficient.

From Table 3 we see that vfml10 typically seems to use an order of magnitude
less space than the approaches requiring a BST, even though the difference
in node counts is not that large. In fact, vfml10 does not even consistently
produce Hoeffding trees with the least number of nodes. BinTree and OCM
need to maintain a BST for every numerical attribute at each leaf of the evolving
Hoeffding tree. Hence, it is not surprising that their space consumption is huge in
comparison with vfml10, which only needs the ten bins per numerical attribute.
The space consumption of OCM tends to be somewhat larger than that of Bin-

Tree. This difference seems to go pretty much hand in hand with the number
of nodes in the final tree. The additional data structures required for OCM are
mainly responsible for this fact.
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Table 4. Results on synthetic integer data

Attrs 3 5

Values 20 40 80 160 20 40

nodes Acc. nodes Acc. nodes Acc. nodes Acc. nodes Acc. nodes Acc.

vfml10 1607 64.2 1115 57.4 1076 53.5 1070 51.4 1079 56.3 1082 54.0
BinTr 1952 63.8 1217 56.9 1060 52.7 1109 51.1 1076 54.3 1064 53.4
OCM3 5575 64.1 6331 57.2 5498 52.4 5650 50.8 4732 53.1 6135 52.0
OCM5 6139 65.5 7908 58.6 6391 52.9 6546 51.0 5527 53.3 6849 52.4
OCM10 6205 65.7 8132 58.7 6739 53.1 6672 51.1 5615 53.4 7179 52.5
OCM50 6210 65.8 8131 58.7 6743 53.1 6672 51.1 5615 53.4 7179 52.5

Observe that, even though OCM uses multi-way splitting of the value range,
we have not ruled out recursive partitioning of an attribute’s value range that has
already been divided. Hence, the OCM trees can be either larger or smaller than
Hoeffding trees produced using BinTree. As concerns the parameter settings of
OCM, the trend seems to be that tightening the threshold yields smaller trees
and allowing more intervals leads to larger trees.

In any case, it is clear that if storage space is a limiting factor, the methods
that aim to use exact knowledge of the data stream by maintaining BSTs are
not viable alternatives to space-saving heuristics like vfml10. However, an ex-
periment of Elomaa and Lehtinen [14] has demonstrated that the growth rate
of the number of bins in data produced using the well known Waveform data
generator [28] is only logarithmic in the number of bins.

No clear trend can be read from the depths of the produced trees. Multi-way
trees, of course, can be larger than binary trees of equal depth. As concerns the
prediction accuracy, vfml10 clearly suffers in the Covertype domain, but has
some advantage on Shuttle. The wrong parameter setting hurts OCM, but
otherwise (e.g., using OCM5

0.01 or OCM5
0.001) it appears competitive with the

other techniques on these real-world domains. Covertype with its 44 binary
attributes is the only domain in which clear performance differences are observed.

In our second set of tests we control the characteristics of the examples in
order to recognize the important factors for the success of the discretization
algorithms. We use synthetic data generated using RandomTreeGenerator of
MOA. One million training and test examples are generated online in all test.
The other characteristics of the data— like the type of attributes, their number,
values per integer domain, and the number of classes— are varied.

We expect OCM to be at its best when the numerical attributes in the data
are not really continuous-valued (real), but rather discrete-valued (integer). In
such a case there will not be too many initial intervals to operate on, and there is
real statistical significance in interval merging. Let us start by testing a setting
in which there are only integer-valued attributes. There are two classes in these
tests and the χ2 threshold for OCM is always 0.01, so we leave it unmarked.

Table 4 shows the results in case of 3 and 5 integer-valued attributes with
growing numbers of different values for the attributes. The first observation to
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Table 5. Results on synthetic real data

Classes 2 5 10 20

Atts 3 5 10 3 3 3

nodes Acc. nodes Acc. nodes Acc. nodes Acc. nodes Acc. nodes Acc.

vfml10 371 99.8 281 99.8 443 99.5 374 98.2 275 98.0 179 95.5
BinTr 203 99.9 182 99.9 N/A N/A 215 99.2 134 99.0 125 99.2
OCM5 3716 97.3 4240 95.2 4607 92.9 2490 95.8 1563 96.6 1046 96.6
OCM10 3815 98.2 2722 97.7 4171 95.7 2069 95.7 2045 95.9 1163 96.7
OCM50 4525 97.8 3753 97.5 6427 94.7 3427 95.7 2485 96.7 1169 96.4

be made is that the prediction accuracies are quite low. This is an artifact caused
by the fact that we needed to trick the RandomTreeGenerator to produce integer-
valued attributes. Hoeffding trees of OCM have 5–7 times more nodes than those
of vfml10 and BinTree. Hence, the cost of using multi-way discretization turns
out to be quite high. In prediction accuracy OCM has an advantage as long as
the number of possible integer values is low, but loses it to vfml10 when the
number grows, and also as the number of attributes is increased.

Table 5 lists the results when all generated attributes are real-valued. We
expect this setting to be unfavorable to OCM, since interval mergings are pre-
sumably very rare. At the same time we also test whether increasing the number
of classes has a significant impact on the results. This time OCM trees are al-
ready an order of magnitude larger than those of vfml10 and BinTree. The
prediction accuracies of all discretization methods are clearly higher than in
case of pure integer attributes. Using BinTree leads consistently to the most
accurate Hoeffding trees. However, its space consumption is so high that already
when there are only ten real-valued attributes the MOA implementation runs
out of space. As expected, OCM produces somewhat less accurate trees than
the comparison methods. vfml10 seems to be hit worst by increasing number
of classes, while the results of OCM even keep improving.

Also in other tests conducted under different settings we found BinTree to
produce quite consistently slightly more accurate Hoeffding trees than vfml10.
Hence, without an explicit limit for the available memory, exact cut point eval-
uation appears to be worth the effort.

In light of this brief evaluation, it is quite clear that the possible advantages of
OCM are overshadowed by its drawbacks, mainly the large space consumption.
However, using a different evaluation function (because of the known downsides
of IG) and a more heuristic approach could lead to better results.

6 Conclusion

Decision tree learning from a data stream has been, on the high level, solved.
However, numeric attribute learning— to some extent an open problem even in
the batch setting — still needs some attention. Using the trivial ten-fold binning
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based on the first examples received is intellectually disappointing, even if it
might work well in practice [13]. We have considered how to implement Kerber’s
[18] ChiMerge algorithm efficiently in the online setting. It is intuitively quite
an appealing approach. The downside in the proposed algorithm is the fact
that it is based on maintaining a balanced binary search tree recording the
observed values of attributes (plus some other data structures). Thus, the space
requirement can turn out to be prohibitive in some data stream scenarios [13].

It would be interesting to explore whether, e.g., a combination of a simple
heuristic like vfml10 and OCM would lead to better accuracies space efficiently.
Another obvious open problem is to examine which other successful batch learn-
ing algorithms can be implemented efficiently in the online model of computa-
tion. A more subtle question is whether they then suit the data stream model
with strict requirements. As a more specific question, it would be interesting to
examine whether the proposed approach can accommodate the improvements
that have been proposed to ChiMerge.
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Abstract. Traditional data mining methods consider the problem of
mining a single relation that relates two different attributes. For example,
in a scientific bibliography database, authors are related to papers, and
we may be interested in discovering association rules between authors
based on the papers that they have co-authored. However, in real life it
is often the case that we have multiple attributes related through chains
of relations. For example, authors write papers, and papers belong to
one or more topics, defining a three-level chain of relations.

In this paper we consider the problem of mining such relational chains.
We formulate a generic problem of finding selector sets (subsets of objects
from one of the attributes) such that the projected dataset—the part of
the dataset determined by the selector set—satisfies a specific property.
The motivation for our approach is that a given property might not hold
on the whole dataset, but holds when projecting the data on a subset
of objects. We show that many existing and new data mining problems
can be formulated in the framework. We discuss various algorithms and
identify the conditions when apriori technique can be used. We experi-
mentally demonstrate the effectiveness and efficiency of our methods.

1 Introduction

Analysis of transactional datasets has been the focus of many data mining al-
gorithms. Even though the model of transactional data is simple, it is powerful
enough to express many datasets of interest: customers buying products, docu-
ments containing words, students registering for courses, authors writing papers,
� A preliminary version of the paper appeared in ICDM’05.

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 24, pp. 217–246.
springerlink.com � Springer-Verlag Berlin Heidelberg 2012
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genes expressed in tissues, and many more. A large amount of work has been
done on trying to analyze such two-attribute datasets and to extract useful in-
formation such as similarities, dependencies, clusters, frequent sets, association
rules, etc [2, 5]. At the same time, there have been many attempts to gener-
alize existing data mining problems on datasets with more complex schemas.
For instance, multi-relational data mining [15,17,18,19,21] has been considered
an extension to the simple transactional data model. However, addressing the
problem in the full generality has been proved to be a daunting task.

In this paper, we focus on the specific problem of finding selector sets from
one of the attributes of a multi-relational dataset, such that the projections
they define on the dataset satisfy a specific property. As an example, consider a
dataset with attributes A (authors), P (papers), and T (topics), and relations
R1(A,P ) on authors writing papers, and R2(P, T ) on papers concerning topics.
An interesting pattern, e.g., “authors x and y frequently write papers together”
might not be true for the whole dataset, but it might hold for a specific topic t.
Therefore, it is meaningful to consider projections of the bibliographic data on
particular topics and search for interesting patterns (e.g., frequent author sets)
that occur on the papers of those topics. Additionally, the schema resulting from
combining the two relations R1(A,P ) and R2(P, T ) is rich enough so that one
can express patterns that go beyond frequent sets and associations. For example,
one of the problems we introduce in a later section asks for finding subsets of
topics and corresponding authors who have written more papers than anyone
else one those topics. Arguably such prolific authors are candidates of being
the most authoritative researchers on the corresponding topics. Searching for
combinations of {topics, authoritative authors} is a new and interesting data
mining problem.

In our approach we model datasets as graphs, and patterns to be mined as
graph properties. We formulate a generic problem, which in our graph terminol-
ogy is as follows: find subsets of nodes so that the subgraph resulting from pro-
jecting the data graph on those nodes satisfies a given property. Our motivation
is that the above formulation is a generalization of existing data mining prob-
lems, in the sense that commonly studied problems are instances of our generic
problem for certain graph properties. Furthermore, in this paper we introduce
a number of additional properties—instantiations to our generic problem—that
lead to new and challenging problems.

Our contributions can be summarized as follows:

– We introduce a novel approach to mining multi-relational data. Our formu-
lation is quite powerful and it can express many existing problems in data
mining and machine learning. For example, finding frequent itemsets, asso-
ciation rules, as well as classification problems can be cast as special cases
of our framework.

– In addition to expressing already existing problems, the proposed framework
allows us to define many new interesting problems. We express such mining
problems in terms of graph properties. We discuss many examples of specific
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problems that can be used to obtain useful results in real applications and
datasets.

– We give conditions under which monotonicity properties hold, and thus, a
level-wise method like apriori (see, e.g., [47]) can be used to speed-up the
computations. Many of the problems we consider are NP-hard — many of
them are hard instances of node removal problems [60]. For such problems
we propose an Integer Programming (IP) formulation that can be used to
solve medium-size instances by using existing IP solvers.

– To demonstrate the utility of our model we perform experiments on two
datasets: a bibliographic dataset, and the IMDB dataset. Our experiments
indicate that our algorithms can handle realistic datasets, and they produce
interesting results.

The general problem we consider can be defined for complex database schemas.
However, for concreteness we restrict our exposition in cases of three attributes
connected by a chain of two relations—as in the example of the bibliographic
dataset. Such an extension is one of the simplest that one can make to the tra-
ditional transactional model. However, even this restricted setting can be useful
in modeling many interesting datasets, and the resulting problems are computa-
tionally hard. Thus, we believe that exploring the simple model of two-relation
chains can provide valuable insights before proceeding to address the problem
for more complex multi-relational schemas. In this paper, we only discuss briefly
extensions to more complex schemas in Section 3.4.

The rest of the paper is organized as follows. We start our discussion by
presenting the related work in Section 2. In Section 3 we formally define our data
mining framework and we give examples of interesting problems. In Section 4.1
we demonstrate a characterization of monotonicity that allows us to identify
when a problem can be solved efficiently using a level-wise pruning algorithm.
In Section 4.2 we describe Integer Programming formulations that allows us to
solve small- and medium-size instances for many of our problems. Section 4.3
contains more details about the algorithms we implement and in Section 5 we
discuss the results of our experiments. Finally Section 6 is a short conclusion.

2 Related Work

Mining of frequent itemsets and association rules on single binary tables such
as market basket databases has been a very popular area of study for over a
decade [2,5]. There has also been some effort on investigating data mining prob-
lems at the other end of the spectrum, i.e., multi-relational mining [15,17,18,19,
21,11,24,32,10,34,8]. The approach taken by researchers has been to generalize
apriori-like data mining algorithms to the multi-relational case using inductive
logic programming concepts. Our work also has connections with work in min-
ing from multidimensional data such as OLAP databases [53] and with the more
recent multi-structural databases [22]. In the latter, algorithms are presented for
very general analytical operations that attempt to select and segment the data
in interesting ways along certain dimensions. While such approaches have been
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extremely interesting in concept, our goal is more focused—we proceed from
a single table case to the special case of multiple tables defined by chains of
relations which often occur in real-world problems.

The work closest to our work is [35] where the authors introduce compositional
data mining where they cascade data mining primitive operations over chains of
relations. The primitive operations they consider is a bi-clustering operation and
a re-description operation. Informally they look for patterns (bi-clusters) that
emerge in one relation, after applying operations up in the chain of relations.
The re-description operator is similar to to the selection predicates we consider,
making their work closely related to ours. However, their work does not aim to
optimize the selection process as in our case, but rather enumerate all possible
mined patterns.

Our work on mining layered graphs also has connections with the widely
studied general area of graph mining. Various types of graph mining problems
have been investigated, such as mining frequent subgraphs [16, 29, 28, 30, 31, 33,
41, 56, 57, 59, 58, 61, 36, 63], link analysis of web graphs [50, 39, 62, 51, 6, 49, 20],
extraction of communities [25, 4, 55, 40, 44], identification of influencers [37, 38,
1, 42, 13, 46, 43, 12, 54, 26], and so on. The work in [45] tries to summarize k-
partite graphs, by defining clusters per level. As with multi-relational mining, our
approach is more focused than these general efforts—we specifically investigate
layered graphs, making the case that many interesting real-world problems can
be modeled using such graphs, and develop interesting algorithmic techniques
that can leverage the structure of such graphs. We also approach the problem
from a different perspective, since we focus on the problem of finding selectors
that make patterns emerge in the projected datasets, rather than looking for
patterns in the whole dataset.

3 The General Framework

In the most general case of a database schema we assume attributesA1, A2, . . . , An

and relations R1, R2, . . . , Rm on the attributes. Transactional data, the object of
study of most data mining algorithms, can be viewed as an elementary schema
having two attributes A (items) and B (transactions) and a single binary relation
R(A,B) (transactions contain items). There are at least three different, but
equivalent, ways to view the relation R: (i) a usual database table T on A and
B, (ii) a binary co-occurrence matrix M , with rows on A and columns on B,
such that M [a, b] is 1 if (a, b) ∈ R and 0 otherwise, and (iii) a bipartite graph
G = (A,B;E) with edges (a, b) ∈ E if and only if (a, b) ∈ R. In this paper, we
find it convenient to work with the graph representation of schemas.1

As we noted in the introduction, we focus on a simple extension of the model
to three attributes A, B and C and a chain of two relations R1(A,B) and
R2(B,C). Thus, we assume a graph G = (A,B,C;E1, E2) with three sets of
nodes A, B and C corresponding to the three attributes and having one node
1 Graph representation works well as long as all relations have two attributes. For

relations with more than two attributes, one would need to talk about hypergraphs.
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A B C

G′

A′
B′

C ′

A B C

G′

A′
B′

C ′

A B C

(a) The 3-level representation (b) The conjunctive case (c) The disjunctive case

Fig. 1. A graphical representation of the general framework: selecting a subset of nodes
in the third level induces a bipartite subgraph between the first two levels. In this
example, the conjunctive interpretation has been used to define the induced subgraph.

for each value in the domain of the attribute. The graph also has two sets of
edges, E1 connecting nodes in A and B, and E2 connecting nodes in B and C.
We call such a graph a three-level graph.

Examples of datasets that can be modeled with a three-level graph struc-
ture include: authors writing papers about topics; Web users answering
online questions associated with tags; actors playing in movies belonging
to genres; transcription-factor-binding-sites occurring at the promoter
sequences of genes that are expressed in tissues; and documents containing
paragraphs containing words.

The general data mining framework we consider is graphically depicted in
Figure 1, and it is informally defined as follows. Consider the three-level graph
G = (A,B,C;E1, E2) shown in Figure 1(a). Given a subset C′ ⊆ C of nodes
from level C, one can induce a subgraph G′ from G by taking B′ ⊆ B and
A′ ⊆ A, such that every node in A′ and B′ is reachable from a node in C′.
There are (at least) two different ways to define the sets A′ and B′ depending
on whether we require that every node in A′ and B′ is reachable by every node
in C ′ (the conjunctive case – Figure 1(b)), or that every node in A′ and B′

is reachable by some node in C ′ (the disjunctive case – Figure 1(c)). In each
case, we obtain a different subgraph G′, with different semantics. Now we are
interested on whether the induced subgraph G′ satisfies a given property, for
example, “G′ contains a clique Ks,t”, or “all nodes in A′ have degree at least
k”. The intuition is that the induced subgraph corresponds to a projection of
the data, while the graph property corresponds to an interesting pattern. Thus,
the generic data mining problem is the following: given a specific property Ψ , to
find the selector set C′ so that the induced subgraph G′ satisfies Ψ .
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3.1 Motivation

In this section we discuss the motivation behind our definition and we provide
evidence that common data mining and machine learning problems can be cast
in our framework.

First consider the traditional transactional data model, e.g., market-basket
data. In the graph representation, the data form a bipartite graph G = (I, T ;E)
with items in the set I, transactions in the set T , and an edge (i, t) ∈ E if
transaction t ∈ T contains the item i ∈ I. Consider now the problem of finding
a frequent itemset of s items with support threshold f . Such an itemset should
appear in at least f |T | transactions, giving rise to aKs,f |T | bipartite clique in the
graph G. Thus, the problem of finding frequent itemsets corresponds to finding
cliques in the bipartite data graph. Furthermore, answering the question whether
the dataset contains a frequent itemset of size s with support f , corresponds to
answering whether the input graph G contains a Ks,f |T | clique. In other words,
it corresponds to testing a property of the graph G.

Another well-studied problem in data mining is the problem of finding
association-rules. An association rule A ⇒ B with confidence c holds in the
data if the itemset B appears in at least a c-fraction of the transactions in which
the itemset A appears. Assume now that we want to find association rules with
|A| = k and |B| = s. We will show how this problem can be formulated as a
selection problem in the three-level framework. Consider the graph representa-
tion G = (I, T ;E) of the transaction data, as defined before. Now, consider a
set of items A ⊆ I. The set A induces a subgraph GA = (IA, TA;EA), with
TA = {t : (i, t) ∈ E for all i ∈ A}, IA = {j : j �∈ A, and (j, t) ∈ E for some t ∈
TA}, and EA = {(i, t) ∈ E : i ∈ IA and t ∈ TA}. In other words, the subgraph
GA induced by A contains all transactions (TA) that contain all items in A and
all other items (IA) in those transaction except those in A. The task is to find
itemsets A (of size k) such that the induced subgraph GA contains a Ks,c|TA|
clique. The itemset B on the item side of the clique, together with the itemset
A define an association rule A⇒ B, with confidence c. So, the problem of find-
ing association rules can be formulated as selecting a set of nodes so that the
induced subgraph satisfies a given property.

In our next example, we show how a canonical machine-learning problem
can also be formulated in our framework, and this time as a three-level graph
problem. Consider a dataset of n “examples” E = {〈di : ci〉, i = 1, . . . , n}, where
each example is defined by a datapoint di over a set of attributes and ci is a
class label from a small set C of labels. Think of di as a person’s entries to a
credit card application questionnaire and the label ci recording if the credit card
was granted or not. The learning problem is to find a set of rules that correctly
predict the credit card granting decision for a new applicant x. For instance,
such a rule combination could be “if x.income > 50K and x.age ≥ 18 then
yes”.

We now map the above learning problem to a three-level graph mining prob-
lem. The graph G = (C,D,R;E1, E2) is constructed as follows. The examples in
E induce the subgraph (C,D;E1). The set C consists of all possible class labels.
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Alternatively the class labels can be considered as the possible properties of the
data points. D is the set of datapoints, i.e., D has one vertex for each datapoint
di. There is an edge (c, d) ∈ E1 iff the datapoint d ∈ D has property c ∈ C.

The vertex set R captures the set of potential rules (or features). A rule
r is a mapping r : D → {0, 1}. For example if r is the rule ”x.age ≥ 18”,
then r(d) = 1 for all datapoints that correspond to applicants older than 18,
and r(d) = 0 for all applicants under 18. If the rules are restricted to be in a
specific class, say, conjunctions of conditionals on single attributes of size at most
three, then one can enumerate all potential rules. There is an edge (d, r) ∈ E2

iff r(d) = 1. Hence, in the disjunctive interpretation, a subset of R induces
a disjunction of rules, while in the conjunctive interpretation a conjunction of
rules.

There are many classifier learning tasks that can be formulated for such three-
level graph by posing additional constraints on the vertex and edge sets. Let us
consider the credit card example mentioned above. For simplicity, we assume that
there are only two classes, C = {yes, no} corresponding on whether the credit
card was granted. A person d ∈ D is connected to the class yes if the person’s
credit card was approved and no if the card was declined. Hence, a person can be
connected to one, two or none of the classes. There are a few natural formulations
of the learning task. For example, the goal in the learning can be to find the
set of rules that captures all persons connected to the class yes and no persons
connected the class no, i.e., to find the consistent classifier characterizing the
people who have been granted the credit card. Note that necessary condition of
such set to exist is that each person is connected exactly to one of the classes.
In practice there are often misclassifications and multiple class labels for the
same data point. Hence, a more practical variant of the learning task would be
to construct a rule set that captures people who should (should not) be granted
the credit card, i.e., the people who are connected only to the class yes (no).

The classification problem example is only meant to convey intuition and
motivation by casting a well known problem in our general framework. Many
important issues such as selecting the collection of rules, avoiding overfitting the
data, etc., are not discussed here. However a further discussion of this problem
and precise definitions can be found in subsequent sections (Section 3.3 and
Section 4.3).

3.2 Problem Definition

Before proceeding to formally define our problem, we make a comment on the
notation: as a working example in the rest of the paper we use the bibliography
dataset (authors – papers – topics). Therefore, we appropriately denote the
three attributes appearing in the formulation by A, P , and T . The names of the
problems and the graph properties are also inspired by the bibliography dataset,
but this is only for improving the readability—most of problems are meaningful
to many other datasets.

We start with attributes A, P and T , relations E1(A,P ) ⊆ A × P and
E2(P, T ) ⊆ P×T , and the corresponding three-level graphG = (A,P, T ;E1, E2).
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Let S ⊆ T be a subset of T . The set S acts as a selector over the sets P and
A. First, for a single node t ∈ T , we define

Pt = {p ∈ P : (p, t) ∈ E2}, and

At =
⋃

p∈Pt

Ap =
⋃

p∈Pt

{a ∈ A : (a, p) ∈ E1}.

That is, the sets Pt and At are the subsets of nodes in P and A, respectively, that
are reachable from the node t ∈ T . (The set Ap is the subset of nodes in A that
are reachable from the node p ∈ P .) We can extend the definition to the subsets
PS and AS that is reachable from the set S ⊆ T . Extending the definition to sets
requires to define the interpretation of the selector S. We consider the following
two simple cases.

Disjunctive Interpretation. In the disjunctive interpretation (D), the subsets PS

and AS are the set of nodes that are reachable from at least one node in S.
Therefore, we have

PD
S =

⋃

t∈S

Pt and AD
S =

⋃

p∈PD
S

Ap.

Conjunctive Interpretation. In the conjunctive interpretation (C), the subsets PS

and AS are the set of nodes that are reachable from every node in S. Therefore,
we have

P C
S =

⋂

t∈S

Pt and AC
S =

⋃

p∈PC
S

Ap.

Now, let I denote the interpretation, which can be either conjunctive (C), or
disjunctive (D), or any other possible interpretation. Given the selector set S ⊆
T and the subsets AI

S and P I
S , we can define the induced three-level graph

GI
S = (AI

S , P
I
S , S;EI

1,S, E
I
2,S), where

EI
1,S = {(a, p) ∈ E1 : a ∈ AI

S and p ∈ PI
S }, and

EI
2,S = {(p, t) ∈ E2 : p ∈ P I

S and t ∈ S}.

We also define the induced bipartite subgraph BI
S = (AI

S , P
I
S ;EI

1,S), which con-
sists of the first two levels of GS .

Hence, the selector set S selects a subset PI
S of P and the set P I

S induces the
bipartite graph BI

S by selecting all edges in E1 and nodes in A that are adjacent
to some node in P I

S , regardless of the interpretation. (There is no need for any
additional interpretations for AI

S or BI
S as any further restrictions for BI

S can be
implemented as additional requirements to the property Ψ that BI

S is required
to satisfy.)

We are interested in finding selector sets S for which the induced subgraph
GI

S satisfies certain properties. Let LI
G = {GI

S : S ⊆ T } denote the set of all
possible induced three-level graphs under interpretation I. We define a property
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Ψ as any subset of the set LI
G. We say that the graph GS satisfies Ψ if GS ∈ Ψ .

For the following, to ease the notation, we will often omit the superscript I,
when it is immaterial to the discussion.

For some specific property Ψ we can define the following data mining problem.

Definition 1 (Ψ Problem). Given a three-level graph G = (A,P, T ;E1, E2),
and the interpretation I find a selector set S ⊆ T such that the induced subgraph
GI

S satisfies the property Ψ .

The definition of the Ψ problem, requires finding any feasible solution S ⊆ T ,
such that the graphGI

S satisfies the property Ψ . It is often the case that there are
multiple feasible solutions to the Ψ problem, and we are interested in finding a
feasible solution that satisfies an additional requirement, e.g., find the minimal,
or maximal selector set S ⊆ T that is a feasible solution to the Ψ problem.
Formally, let g : LG → R, be a real-valued function on the set of graphs LG. We
are then interested in finding a feasible solution S, such that the function g(GS)
is optimized. Therefore, we define the following problem.

Definition 2 (g-Ψ Problem). Given a three-level graph G = (A,P, T ;E1, E2),
and the interpretation I find a selector set S such that the induced subgraph GI

S

satisfies the property Ψ , and the function g is optimized.

This problem definition is general enough to capture different optimization prob-
lems. For example finding the maximum (or minimum) selector set such that GS

satisfies the property Ψ , corresponds to the case where g(GS) = |S|, and we want
to maximize (or minimize g(GS)).

3.3 Examples of Properties

In this section we provide examples of interesting properties, some of which
we will consider in the remainder of the paper. For the following definitions, we
assume that the graph G = (A,P, T ;E1, E2) is considered as input. Additionally
most of the properties require additional input parameters, i.e., they are defined
with respect to threshold parameters, prespecified nodes of the graph, etc. Such
parameters are mentioned explicitly in the definition of each property.

Given a selector set S ⊆ T we have already defined the three-level induced
subgraph GS = (AS , PS , S;E1,S, E2,S), and the induced bipartite counterpart
BS = (AS, PS ;E1,S) (for some interpretation, whose index we omit here). Several
of the properties we define, are actually properties of the bipartite graph BS.

– Authority(c): Given a node c ∈ A, the graph GS = (AS, PS , S;E1,S, E2,S)
∈ LG satisfies Authority(c) if c ∈ AS , and c has the maximum degree
among all nodes in AS . That is, given a specific author c ∈ A we want to
find a set of topics S for which the author c has written more papers than
any other author, and thus, author c qualifies to be an authority for the
combination of topics S. In a Questions’n Answers (QnA) system, where
users answer questions online, we are interested in finding the set of tags

for which a certain user c has answered the most questions.



226 F. Aftrati et al.

– BestRank(c): Given a node c ∈ A, the graph GS = (AS, PS , S;E1,S, E2,S)
∈ LG satisfies BestRank(c) if c ∈ AS , and for every other graph GR ∈ LG,
c is ranked at least as highly in GS as in GR. The rank of a node c in a graph
GS is the number of nodes in AS with degree strictly higher than the degree
of c, plus 1. This property is meant to be a relaxation of the Authority(c)
property: since for a specific author c there might be no combination of topics
on which c is an authority, we are interested in finding the combination Tc of
topics for which author c is the “most authoritative”. There might be other
authors more authoritative than c on Tc but this is the best that c can do.

– Clique: The graph GS ∈ LG satisfies Clique if the corresponding bipartite
graph BS is a bipartite clique. Here we are interested in topics in which all
papers have been written by the same set of authors. This property is more
intuitive for the case of a biological dataset consisting of attributes tissues-
genes-TFBSs, where we look for TBFS’s which regulate genes that are
all expressed over the same tissues. It also makes sense in the QnA setting,
where we are looking for a set of tags that define communities of users that
answer the same questions.

– Frequency(f, s): Given threshold value f ∈ [0, 1], and an integer value
s the graph GS = (AS, PS , S;E1,S , E2,S) ∈ LG satisfies the property
Frequency(f, s) if the corresponding bipartite graph BS contains a bi-
partite clique Ks,f |PS |. The intuition here is that a bipartite clique Ks,f |PS|
implies a frequent itemset of size s with frequency threshold f on the induced
subgraph. For this property, it is also interesting to consider the g-Ψ prob-
lem, where we define the objective function g to be the number of Ks,f |PS|
cliques, and then look for the selector set that maximizes the value of the
function g, that is, it maximizes the number of frequent itemsets.

– Majority: The graph GS = (AS , PS, S;E1,S , E2,S) ∈ LG satisfies Major-

ity if for every a ∈ AS we have |Ea
1,S | ≥ |Ea

1 \ Ea
1,S |, that is, for every node

a in AS, the majority of edges in G incident on a are included in the graph
GS. In the author-paper-topic context this means that in the induced sub-
graph for each selected author, the majority of its papers are selected by the
selector topic set.

– Popularity(b): Given a positive integer b, the graphGS = (AS , PS , S;E1,S ,
E2,S) ∈ LG satisfies Popularity(b) if |AS | ≥ b. That is, we want to find
topics for which more than b authors have written papers about.

– Impact(b): Given a positive integer b, the graphGS = (AS , PS , S;E1,S , E2,S)
∈ LG satisfies Impact(b) if for all nodes a ∈ AS , the degree of a in the in-
duced subgraph GS is at least b. Here, the intention is to search for topics on
which all authors have written at least b papers—and thus, hopefully, also
have impact.

– AbsoluteImpact(b): Given a positive integer b, a graph GS = (AS , PS , S;
E1,S , E2,S) ∈ LG satisfies AbsoluteImpact(b) if for all nodes a ∈ AS ,
the degree of a in G is at least b. Note that the difference with the previous
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definition is that we now consider the degree of node a in the graph G, rather
than the induced subgraph GS .

– CollaborationClique: A graph GS = (AS , PS , S;E1,S , E2,S) ∈ LG sat-
isfies the property CollaborationClique if for every pair of nodes a, b ∈
AS , there exists at least one node p ∈ PS , such that (a, p) ∈ E1,S and
(b, p) ∈ E1,S . In other words, each pair of authors have co-authored at least
one paper on the topics of S.

– Classification(c): In this setting we assume that the first level A is the set
of class labels, the second level P is the set of examples, and the third level
T is the set of features. Given a node c ∈ A, a graph GS = (AS , PS , S;E1,S ,
E2,S) ∈ LG satisfies Classification(c) if PS = {p ∈ P : (c, p) ∈ E1} and
AS = {c}. That is, the selector set, must be such that an example p ∈ P is
selected if and only if it belongs to class c. Note that this implicitly assumes
that each example is associated with a single class label, otherwise there is
no feasible solution. Weaker properties can also be defined, if we allow some
of the examples of other classes to be selected, or if we do not require all of
the examples of class c to be selected. Those weaker versions can be defined
using constraints on the number of false positives and false negatives. Also,
one can look for feature sets characterizing multiple classes or combinations
of classes, hence being related to multi-task learning [9].

– ProgramCommittee(Z, l,m): For this property, we break the convention
that the selector operates on the set of topics, and we will assume that
we select from the set of authors. This does not change anything in our
definitions, since we can just swap the roles of the sets A and T . We are
given a set Z ⊆ T (topics of a conference), and values l and m. We say
that the induced subgraph GS = (S, PS , TS;E1,S , E2,S) ∈ LD

G satisfies the
property ProgramCommittee(Z, l,m) if TS = Z (exactly the given topic
set is selected), |S| = m, (m members in the program committee), and every
node t ∈ Z is connected to at least l nodes in S (for each topic there are
at least l experts in the committee). Notice that this is the only example
where we make use of the selector set S to define the property. Also, this is
the only example in which we need to specify the interpretation I, since the
problem makes little sense in the case of the conjunctive interpretation.

3.4 Extensions of the Model

There are several ways in which our model can be extended to include more
complex cases. Here we outline some of the possible extensions.

Boolean interpretations in between of disjunctive and conjunctive in-
terpretations. Disjunctive and conjunctive interpretations are two extreme
ways of selecting the nodes in P . Let S be the selector set. A node p ∈ P be-
longs in PD

S if and only if there is at least one edge from p to a node in S, and
p ∈ P belongs in PD

S if and only if (p, t) ∈ E for each t ∈ S. Hence, PD
S contains
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all nodes in P covered by S and P C
S contains all nodes in P that form a bi-clique

with S.
There is a natural interpretation in between of these two extreme interpre-

tations that unifies both the disjunctive and conjunctive interpretations. In the
unifying interpretation the set P δ

S ⊆ P of elements selected by S consists of all
elements in P that are connected to at least δ-fraction of the nodes in S, i.e.,

P δ
S = {p ∈ P : |{t ∈ S : (p, t) ∈ E}| ≥ δ|S|}.

The conjunctive interpretation is obtained by setting δ to be 1, and the disjunc-
tive interpretation by setting δ = 1/|S|.

Weighted Graphs. In our definitions so far we have assumed that the graphs
(or relations) are not weighted. A natural extension is to consider the case that
the edges between the nodes of the various levels have weights, that is, the tuples
in the corresponding relations E1 and E2 are associated with a weight. These
weights carry some semantics, and we should modify our definitions to take them
into account.

If there is a weight w(p, t) ∈ (0, 1] for each edge (p, t) ∈ E2, the selection of
node p ∈ P can be done similarly as in Section 3.4: p is selected iff

∑

(p,t)∈E2,t∈S

w(p, t) ≥ δ|S|.

Consider the case that each edge (p, t) ∈ E2 is associated with a probability
Pr(p, t), and an element t ∈ T selects a node p with probability Pr(p, t). In
that case we can express probabilistic versions of the interpretations. In the
conjunctive interpretation, given a selector set S, we have that p ∈ PS with
probability ∏

t:(p,t)∈E2

Pr(p, t),

while in the disjunctive interpretation we have that p ∈ PS with probability

1 −
∏

t:(p,t)∈E2

(1 − Pr(p, t)).

We can also assume that relation E1 is weighted. For example, in a dataset
of tissues-genes-TBFS’s, we may also have information about the expression
levels of each gene on each tissue. There are several problems that generalize
nicely in this setting, such as, Authority, BestRank, Majority, Impact,
AbsoluteImpact. These problems involve looking at the degree of a node a ∈
A, which can naturally be replaced by the weighted degree, and the rest of the
definition carries through. Furthermore, we can associate weights to the nodes
of the graph, to model, e.g., the costs or the importance of the nodes.

It is also interesting to consider the Classification problem in the weighted
case, where we assume that weight of an edge (c, d) ∈ E1 is the probability that
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the example d belongs to class c. We can redefine the selection problem, to look
for a set S of features such that the probability of the examples to belong to the
chosen class c in the subgraph induced by S is maximized.

More Complex Schemas. The focus of this paper has been on mining three-
level chains of relations. However, our definitions can be naturally extended into
more complex schemas, involving more attributes and relations. In this general
setting we havem attributes A1, . . . , Am, and k binary relationsE1, . . . , Ek. Thus
we obtain a graph G = (A1, . . . , Am;E1, . . . , Ek). We assume that the relations
are such that the resulting graph is connected. If As is the selector attribute, a
node s ∈ As selects a node in another attribute Ai, if there is a path between
them in the graph G. Given a selector set S ⊆ As, and an interpretation, we can
naturally extend the definitions in Section 3.2 to define the induced subgraph
GS , and then look for properties of this graph.

Schemas that would be interesting to explore in future work include the fol-
lowing.

– Longer chains of relations.
– Schemas in the form of k-partite graphs.
– Star schemas, where the selector attribute is one of the spikes of the star.
– Wheel graphs, where the selector attribute is the center of the wheel.

Implicit Topics. Sometimes the set of topics can be very large but still it can
be decided efficiently whether a given paper p is connected to a given topic t,
e.g., in polynomial time in the size of the graph (A,P ;E1).

This is the case, for example, in learning boolean formulas in disjunctive (or
conjunctive) normal form. Namely, for each topic i ∈ T there is a monomial
mi over � variables and there is a binary vector bj ∈ {0, 1}� associated to each
paper j ∈ P . A topic i ∈ T is connected to a paper j ∈ P if and only if bj
satisfies the mi. Hence, the problem corresponds the Classification problem
(see Section 4.3) where the topics and their links to the papers are not given
explicitly but by a polynomial-time algorithm determining for any topic t ∈ T
and paper p ∈ P whether or not (p, t) ∈ E2.

4 Algorithmic Tools

In this section we study characteristics of the various properties, and we show
how they can help us in performing data mining tasks efficiently. We identify
cases where level-wise methods (like the apriori algorithm) can be used and we
propose an integer programming formulation that can be used in many problems.
Finally we focus in four specific problems and discuss methods for their solution
in more detail.
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4.1 A Characterization of Monotonicity

The objective in this subsection is to identify cases where one can use standard
level-wise methods, like the apriori algorithm and its variants. Given a three-level
graph G = (A,P, T ;E1, E2), and an interpretation I ∈ {C,D}, recall that LI

is the set of all possible induced graphs under interpretation I, for all possible
selector sets S ⊆ T . We first give the following definitions for monotonicity and
anti-monotonicity.

Definition 3. A property Ψ is monotone on the set LI
G if the following is true:

if for some selector set S ⊆ T we have GI
S ∈ Ψ , then for all R ⊆ S we have

GI
R ∈ Ψ .
A property Ψ is anti-monotone on the set LI

G if the following is true: if for
some selector set S ⊆ T we have GI

S ∈ Ψ , then for all R ⊇ S we have GI
R ∈ Ψ .

The concept of monotonicity can be used to gain considerable efficiency in the
computations by enumerating all possible sets of selectors in an incremental
fashion (generate a set after having generated all of its subsets). Once it is found
that the property Ψ is not satisfied for some selector set S, then the search space
can be pruned by discarding from consideration all supersets of S. Many different
implementations of this idea can be found in the literature [5]. Here we relate
monotonicity and anti-monotonicity with the concept of hereditary properties
on graphs.

Definition 4. A property Ψ is hereditary on a class G of graphs with respect to
node deletions, if the following is true: if G = (V,E) is a graph that satisfies Ψ ,
then any subgraph G′ = (V ′, E′) of G, induced by a subset V ′ ∈ V also satisfies
the property.

A property Ψ is anti-hereditary on a class G of graphs with respect to node
deletions, if the following is true: if G = (V,E) is a graph that does not satisfy
Ψ , then any subgraph G′ = (V ′, E′) of G, induced by a subset V ′ ∈ V also does
not satisfy the property.

We can show that if a graph property Ψ is hereditary, it implies that the prop-
erty is also monotone with respect to the disjunctive interpretation and anti-
monotone with respect to the conjunctive interpretation.

Theorem 1. Any hereditary property is monotone on the set LD
G, and anti-

monotone on the set LC
G.

Any anti-hereditary property is anti-monotone on the set LD
G, and monotone

on the set LC
G.

Proof. Consider a hereditary property Ψ , and also consider any selector sets S
and R such that S ⊆ R ⊆ T . We have GD

S ⊆ GD
R and GC

R ⊆ GC
S. Since Ψ is

hereditary it follows that if GD
R ∈ Ψ then GD

S ∈ Ψ . Similarly, if GC
S ∈ Ψ then

GC
R ∈ Ψ . Thus, Ψ is monotone on LD

G, and anti-monotone on LC
G.

The rest of the theorem follows from the fact that an anti-hereditary property
is a complement of a hereditary property.
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The implication of the theorem is that, usually, given a property Ψ , one can check
easily if Ψ is (anti-)hereditary or not. If it is (anti-)hereditary, then we know that
a level-wise algorithm can be devised for solving the graph mining problem for
this property [47]. For example, Clique is hereditary, since removing any nodes
from a clique graph we are still left with a clique. Additionally, the following
results are immediate.

Proposition 1. The properties Clique and AbsoluteImpact are monotone
on LD

G and anti-monotone on LC
G. The property Popularity is anti-monotone

on LD
G and monotone on LC

G.

On the other hand, by constructing simple counterexamples, one can show
that the properties Authority, BestRank, Frequency, Majority, Impact,
Classification and CollaborationClique are neither monotone nor anti-
monotone on LD

G or LC
G. Thus, level-wise methods do not suffice to solve the

corresponding problems.

4.2 Integer Programming Formulations

Computing the maximal, minimal, or any selector set is an NP-hard problem
for most of the examples given in Section 3.3. In Section 4.1 we showed that
if the property under consideration is hereditary, then the task of enumerating
all solution sets (therefore also the maximal and the minimal sets) can be done
efficiently by a level-wise approach.

In this section we give IP formulations for some of the examples given in
Section 3.3. Solvers for IP and LP have been in the core of extensive research
in operations research and applied algorithms, and highly optimized methods
are available [48]. We found that small- and medium-size instances of the prob-
lems we consider can be solved quite efficiently using an off-the-shelf IP solver.2

Notice also that in the IP formulation we typically ask for one solution (often
by imposing an objective function to optimize), as opposed to enumerating all
solutions like in the previous section.

Let G = (A,P, T ;E1, E2) denote the three-level graph that represents the
relational chain. For each element i ∈ T , we define a variable ti ∈ {0, 1}, where
ti = 1 if the element i is selected and zero otherwise. Furthermore for each
element j ∈ P we define a variable pj ∈ {0, 1}. We need also to add constraints
on these variables.

First, we implement the selection of elements in P . In the disjunctive inter-
pretation we require that if an element i ∈ T is chosen, then the set PT

i = {j ∈
P : (j, i) ∈ E2}, consisting of all the papers in P that belong to topic i, is also
chosen. This condition is enforced by requiring that

pj ≥ ti for all j ∈ PT
i .

2 In practice, we solve IPs using the Mixed Integer Programming (MIP)
solver lp solve obtained from http://groups.yahoo.com/group/lp_solve/ .



232 F. Aftrati et al.

Furthermore, we require that for each j ∈ P that is chosen, at least one i ∈ T is
chosen, such that (j, i) ∈ E2. Let TP

j = {i ∈ T : (j, i) ∈ E2} be the set of topics
to which paper j belongs. Hence, we have that

∑

i∈T P
j

ti ≥ pj for all j ∈ P.

The constraints guarantee that if the variables ti ∈ [0, 1] take values in {0, 1}
then the variables pj ∈ [0, 1] will also take values in {0, 1}. Thus, in the disjunc-
tive interpretation we can relax the constraints pj ∈ {0, 1} to pj ∈ [0, 1] for all
j ∈ P .

In conjunctive interpretation we require that a paper in P can be selected if
and only if it is connected to all nodes in the selector set S. This can be expressed
by the inequalities

∑

i∈T P
j

ti ≥ |TP
j |pj and |TP

j | −
∑

i∈TP
j

ti ≥ 1 − pj .

The constraints guarantee that if the variables pj ∈ [0, 1] take values in {0, 1}
then the variables ti ∈ [0, 1] will also take values in {0, 1}. Thus, in the conjunc-
tive interpretation we can relax the constraints ti ∈ {0, 1} to ti ∈ [0, 1] for all
i ∈ T .

Finally, for each element k ∈ A, we similarly define a variable ak ∈ {0, 1}
and impose the same constraints as for the pj variables in the disjunctive in-
terpretation. Let AP

j = {k : (k, j) ∈ E1} be the set of authors of paper j, and
PA

k = {j : (k, j) ∈ E1} be the set of papers authored by author k. Then we have

ak ≥ pj and
∑

j∈P A
k

pj ≥ ak

for all k ∈ AP
j , and again the constraints ak ∈ {0, 1} can be relaxed to ak ∈ [0, 1]

for all k ∈ A.3 We also define variable xk, that captures the degree of the node
k ∈ A in the subgraph induced by the selected nodes in T , i.e., xk =

∑
j∈P A

k
pj .

We now show how to express some of the properties we discussed in Section 3.3
by imposing restrictions on the different variables.

– Authority(c): We impose the constraints xc ≥ xk for all k ∈ A − {c}.
Note that the potential topics are the topics that author c has at least one
paper. That is, we can restrict the search for a good topic set to the subgraph
induced by the topics of author c.

– Clique: We impose the constraint that ak =
∑

j∈P pj for all k ∈ A.
– Frequency(f, s): We define variables zk for selecting a subset of selected

authors and yj for selecting a subset of selected papers. These variables are
used to define the clique. First, we express that only selected authors and

3 In fact, by allowing some of the variables to be real-valued, we can used Mixed Integer
Programming (MIP) instead of IP and improve the performance considerably.
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papers can be selected. That is, zk ∈ {0, ak} for all k ∈ A, and yj ∈ {0, pj} for
all j ∈ P . Second, we add constraints requiring that the number of authored
in the clique is s and that the number of papers in the clique is at least
f |PS|, i.e.,

∑
k∈A zk = s and

∑
j∈P yj ≥ f

∑
j∈P pj. Finally, we require that

the variables zk and yj define a clique:
∑

k∈A,(k,j)∈E1
zk = syj for all j ∈ P .

– Majority: We impose the constraint that (1 − ak)|PA
k | + xk ≥ |PA

k |/2 for
all k ∈ A.

– Popularity(b): We impose the constraint that
∑

k∈A ak ≥ b.
– Impact(b): We impose the constraint that xk ≥ b for all k ∈ A.
– AbsoluteImpact(b): We impose the constraint that |PA

k | ≥ bak for all
k ∈ A.

– CollaborationClique: Let us denote the set of co-authors of author k ∈ A
by Ck = {k′ ∈ A : ∃j ∈ PA

k s.t. (k, j), (k′, j) ∈ E1}. Then we impose the
constraints ak|A| + c − ∑

k′∈Ck
ak′ ≤ |A| for all k ∈ A, and c =

∑
k∈A ak

where c is a real-valued variable.
– ProgramCommittee(Z, l,m): Let AT

i = {k ∈ A : ∃j ∈ PA
k s.t. (j, i) ∈

E2}. We add the constraints
∑

k∈A ak ≤ m, and
∑

k∈AT
i
ak ≥ l for all i ∈ Z.

For this problem, we need also the constraints ak ∈ {0, 1} for all k ∈ A since
there are no topic set selection involved in the program. Note also that we
can neglect the authors outside the set

⋃
i∈Z A

T
i .

4.3 Case Studies

In this subsection, we focus on four specific problems among those listed in
Section 3.3 and we look into detailed aspects of their solution. Two of them are
selected to perform experiments with on real datasets. These experiments are
reported in the next section.

The Frequency Problem. Recall that the Frequency problem is as follows.
Given the graph G = (A,P, T,E1, E2) a value s, and a threshold value f , we
want to find a subset of nodes S ⊆ T so that in the induced subgraph GS =
(AS , PS , S;E1,S, E2,S) there exist frequently occurring “itemsets” V ⊆ AS of
size s. In other words, for itemset V to be frequent according our definition, it
needs to be the case that V is frequent on the restriction of the graph imposed
by a selector set S. Thus, finding frequent itemsets V with frequency threshold
f in the three-level graphs is equivalent to fining association rules S ⇒ V with
confidence threshold f .

One only needs to add the restriction that the premise set S is selected from
node set T and the conclusion set V is selected from node set A, but this only
prunes the possible search space. There are many algorithms for association-rule
mining in the literature [5] and any of them would be applicable in our setting
with the above-mentioned modification.

The Authority Problem. For a single author c, we solve the authority prob-
lem using MIP. As the optimization objective function g, we consider maximizing
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the number of authors related to the topic set S ⊆ T , that is, g(GS) = |AS|, for
GS = (AS , PS, S;E1,S , E2,S).

The requirement that the author has the largest number of papers in the
induced subgraph can sometimes be too restrictive. One could also, for example,
minimize the absolute distance between the highest degree maxk∈AS xk of the
authors and the degree xc of the author c, or minimize

∑
k∈AS

(xk − xc).
The rank alone, however, does not tell everything about the authority of an

author. For example, the number of authors and papers in the induced subgraph
matter. Thus, it makes sense to search for ranks for all different topic sets.

A set of papers fully determines the set of authors and a set of topics fully
determines the set of papers. It is often the case that different sets of topics
induce the same set of papers. Thus, we do not have to compute the rankings
of the authors for all sets of topics to obtain all different rankings; it suffices to
compute the rankings only once for each distinct set of papers that results by
a combination of topics. The actual details of how to do this depend on which
interpretation we use.

Conjunctive interpretation. In the conjunctive interpretation, the subgraph in-
duced by a topic set S contains a paper j ∈ P if and only if S ⊆ TP

j , that is, S is
a subset of the set of topics to which paper j belongs. Thus, we can consider each
paper j ∈ P as a topic set TP

j . Finding all topic sets that induce a non-empty
paper set in the conjunctive interpretation can be easily done using a bottom-up
apriori approach. The problem can be cast as a frequent-set mining task in a
database consisting the topic sets TP

j of the papers j ∈ P with frequency thresh-
old f = 1/|P | (so that a chosen topic set is related to at least one paper). Any
frequent set mining algorithms can be used, e.g., see [5]. Furthermore, we can
easily impose a minimum frequency constraint for the topic sets, i.e., we can
require that a topic set should be contained in at least f |P | sets TP

j , j ∈ P for
a given frequency threshold f ∈ [0, 1]. In addition to being a natural constraint
for the problem, this often decreases considerably the number of topic sets to be
ranked.

However, it is sufficient to compute the rankings only once for each distinct set
of papers. It can be shown that the smallest such collection of topic sets consists
of the topic sets S ⊆ T such that S =

⋂
i∈S,j∈P T

i
TP

j . Intuitively, this means that
the set S is closed under the following operation: take the set of papers that are
connected to all topics in S. Then for each paper j compute TP

j , the set of topics
to which paper j belongs, and then take the intersection of TP

j ’s. This operation
essentially computes the nodes in T that are reachable from S when you follow
an edge from S to P , and then back to T . The intersection of T P

j ’s should give
the set S. In frequent set mining such sets are known as the closed sets, and there
are many efficient algorithms discovering (frequent) closed sets [5]. The number
of closed frequent itemsets can be exponentially smaller than the number of all
frequent itemsets, and actually in practice the closed frequent itemsets are often
only a fraction of all frequent itemsets.
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Disjunctive interpretation. In the disjunctive interpretation, the subgraph in-
duced by the topic set S contains a paper j ∈ P if and only if S hits the paper,
i.e., S ∩ T P

j �= ∅. Hence, it is sufficient to compute the rankings only for those
topic sets S that hit strictly more papers than any of their subsets. By defini-
tion, such sets of topics correspond to minimal hypergraph transversals and their
subsets in the hypergraph

(
T,

{
TP

j

}
j∈P

)
, i.e., the partial minimal hypergraph

transversals.

Definition 5. A hypergraph is a pair H = (X,F) where X is a finite set and
F is a collection of subsets of X. A set Y ⊆ X is a hypergraph transversal in H
if and only if Y ∩ Z �= ∅ for all Z ∈ F . A hypergraph transversal Y is minimal
if and only if no proper subset of it is a hypergraph transversal.

All partial minimal hypergraph transversals can be generated by a level-wise
search because each subset of a partial minimal hypergraph transversal is a par-
tial minimal hypergraph transversal. Furthermore, each partial minimal transver-
sal in the hypergraph

(
T,

{
T P

j

}
j∈P

)
selects a different set of papers than any

of its sub- or superset.

Theorem 2. Let Z ′
� Z � Y where Y is a minimal hypergraph transversal.

Then PD
Z �= PD

Z′ .

Proof. Let Y be a minimal hypergraph transversal and assume that Z ′ ∩Z hits
all same sets in the hypergraph as Z for some Z′

� Z � Y . Then Y \ (Z \ Z ′)
hits the same set in the hypergraph as Y , which is in contradiction with the
assumption that Y is a minimal hypergraph transversal.

The all minimal hypergraph transversals could be enumerate also by discovering
all free itemsets in the transaction database representing the complement of the
bipartite graph (P, T ;E2) where topics are items and papers transactions. (Free
itemsets are itemsets that have strictly higher frequency in the data than any of
their strict subsets. Free frequent itemsets can be discovered using the level-wise
search [7].) More specifically, the complements of the free itemsets in such data
correspond to the minimal transversals in a hypergraph H = (X,F):

⋃
{Z ∈ F : Z ∩ Y �= ∅} = X \

⋂
{X \ Z ∈ F : Z ∩ Y �= ∅},

i.e., that the union of sets Z ∈ F intersecting with the set Y is the complement
of the intersection of the sets X \ Z ∈ F such that Z intersects with Y .

In the disjunctive interpretation of the Authority problem we impose an
additional constraint for the topic sets to make the obtained topic sets more
meaningful. Namely, we require that for a topic set to be relevant, there must be
at least one author that has written papers about all of the topics. This further
prunes the search space and eases the candidate generation in the level-wise
solution.
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The ProgramCommittee Problem. For the exact solution to the Program-

Committee problem we use the MIP formulation sketched in Section 4.2. That
is, we look for a set of m authors such that for each topic in a given set of topics
Z there are at least l selected authors with a paper on this topic. Among such
sets of authors, we aim to maximize the number of papers of the authors on the
topics in Z. To simplify considerations, we assume, without loss of generality,
that the topic set T of the given three-level graph G = (A,P, T ;E1, E2) is equal
to Z and that all authors and papers are connected to the topics.

Although the ProgramCommittee problem can be solved exactly using
mixed integer programming techniques, one can also obtain approximate solu-
tions in polynomial time in the size of G. The ProgramCommittee problem
can be decomposed into the following subproblems.

First, for any solution to the ProgramCommittee problem we require that
for each topic in Z there are at least l selected authors with papers about the
topic. This problem is known as the minimum set multicover problem [52]:

Problem 1 (Minimum set multicover). Given a collection C of subsets of S and
a positive integer l, find the collection C′ ⊆ C of the smallest cardinality such
that every element in S is contained in at least l sets in C′.

The problem is NP-hard and polynomial-time inapproximable within a factor
(1 − ε) log |S| for all ε > 0, unless NP ⊆ Dtime(nlog log n) [23]. However, it
can be approximated in polynomial time within a factor H|S| where H|S| =
1 + 1/2 + . . . + 1/|S| ≤ 1 + ln |S| [52]. Hence, if there is a program committee
of size at most m covering each topic in Z at least l times, we can find such a
program committee of size at most mH|Z|.

Second, we want to maximize the number of papers (on the given set Z of
topics) by the selected committee. This problem is known as the maximum
coverage problem [23]:

Problem 2 (Maximum coverage). Given a collection C of subsets of a finite set
S and a positive integer k, find the collection C ′ ⊆ C covering as many elements
in S as possible.

The problem NP-hard and polynomial-time inapproximable within the factor
(1 − 1/e) − ε for any ε > 0, unless NP = P. However, the fraction of covered
elements in S by at most k sets in C can be approximated in polynomial time
within a factor 1−1/e by a greedy algorithm [23]. Hence, we can find a program
committee that has at least 1− 1/e times the number of papers as the program
committee of the same size with the largest number of papers.

Neither of these solutions is sufficient for our purposes. The minimum set
multicover solution ensures that each topic has sufficient number of experts in
the program committee, but does not provide any guarantees on the number of
papers of the program committee. The maximum coverage solution maximizes
the number of papers of the program committee, but does not ensure that each
topic has any program committee members.
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By combining the approximation algorithms for the minimum set multi-
cover and maximum coverage problems, we can obtain an (1 + H|Z|, 1 − 1/e)-
approximation algorithm for the ProgramCommittee problem, i.e., we can
derive an algorithm such that the size of the program committee is at most
(1 +H|Z|m) and the number of the papers of the program committee is within
a factor 1− 1/e of the program committee of size m with the largest number of
papers. The algorithm is as follows:

1. Select a set A′ ⊆ A of at most mH|Z| authors in such a way that each topic
in Z is covered by at least l authors (using the approximation algorithm for
the minimum set multicover problem). Stop if such a set does not exist.

2. Select a set A′′ ⊆ A of m authors that maximizes the coverage of the papers
(using the approximation algorithm for the maximum coverage).

3. Output A′ ∪A′′.

In other words, first we select at most mH|Z| member to the program committee
in such a way that each topic of the conference is covered by sufficiently many
program committee members and then we select authors that cover large fraction
of papers on some of the topics of the conference, regardless of which particular
topic they have been publishing of.

Clearly, |A′∪A′′| ≤ (1+H|Z|)m and the number of papers covered by the sets
in A′ ∪A′′ is within a factor 1 − 1/e from the largest number of papers covered
by any subset of A of cardinality m.

The algorithm can be improved in practice in several ways. For example,
we might not need all sets in A to achieve the factor 1 − 1/e approximation
of the covering the papers with m authors. We can compute the number h of
papers needed to be covered to achieve the approximation factor 1− 1/e by the
approximation algorithm for the maximum coverage problem. Let the number of
paper covered by A′ be h′. Then we need to cover only h′′ = h−h′ papers more.
This can be done by applying the greedy set cover algorithm to the instance that
does not contain the papers covered by the authors in A′. The set of authors
obtained by this approach is at most as large as A′ ∪ A′′. The solution can be
improved also by observing that for each covered paper only one author is needed
and each topic has to be covered by only l authors. Hence, we can remove one
by one the authors from A′ ∪A′′ as far as these constraints are not violated.

The Classification Problem. The classification problem is equal to learning
monomials and clauses of explicit features. These tasks correspond to conjunctive
and disjunctive interpretations of the Classification problem, respectively.

Conjunctive interpretation. Finding the largest (or any) set Fmax ⊆ T corre-
sponding to examples E ⊆ P of a certain class c ∈ A can be easily obtained by
taking all nodes in T that contain all examples of class c, if such a subset exists.
(Essentially the same algorithm is well-known also in PAC-learning [3].)

The problem becomes more interesting if we set g(GS) = |S| and we require
the solution S that minimizes g. The problem of obtaining the smallest set
Fmin ⊆ T capturing all examples of class c and no other examples is known to



238 F. Aftrati et al.

be NP-hard [3]. The problem can be recast as a minimum set cover problem as
follows. Let Ēc ⊆ P denote the set of examples of all classes other than c. Also
let Fc ⊆ T denote the set of features linking to the examples of the class c. Now
consider the bipartite graph B = (Ēc, Fc;E), where (p, t) ∈ E if (p, t) �∈ E2.
For any feasible solution S for the classification problem, the features in S must
cover the elements in Ēc in the bipartite graph B. That is, for each e ∈ Ēc there
exists f ∈ S, such that (e, f) ∈ E, that is, (e, f) �∈ E2. Otherwise, there exists
an example e ∈ Ēc such that for all for all f ∈ S, (e, f) ∈ E2, and therefore,
e is included in the induced subgraph GS , thus violating the Classification

property. Finding the minimum cover for the elements in Ēc in the bipartite
graph B is an NP-complete problem. However, it can be approximated within
a factor 1 + ln |Fc| by the standard greedy procedure that selects each time the
feature that covers the most elements [14]. (This algorithm is also well-known in
the computational learning theory [27].)

Disjunctive interpretation. First note that it is straightforward to find the largest
set of features, which induces a subgraph that contains only examples of the
target class c. This task can be performed by simply taking all features that
disagree with all examples of other classes. Once we have this largest set, then
one can find the smallest set, by selecting the minimum subset of sets that covers
all examples of the class c. This is again an instance of the set cover problem,
and the greedy algorithm [14] can be used to obtain the best approximation
factor (logarithmic).

5 Experiments

We now describe our experiments with real data. We used information available
on the Web to construct two real datasets with three-level structure. For the
datasets we used we found it more interesting to perform experiments with
the Authority problem and the ProgramCommittee problem. Many other
possibilities of real datasets with three-level graph structure exist, and depending
on the dataset different problems might be of interest.

5.1 Datasets

Bibliography Datasets. We crawled the ACM digital library website4 and we
extracted information about two publication forums: Journal of ACM (JACM)
and ACM Symposium on Theory of Computing (STOC). For each published
paper we obtained the list of authors (attribute A), the title (attribute P ), and
the list of topics (attribute T ). For topics we arbitrarily selected to use the second
level of the “Index Terms” hierarchy of the ACM classification. Examples of
topics include “analysis of algorithms and problem complexity”, “programming
languages”, “discrete mathematics”, and “numerical analysis”. In total, in the
JACM dataset we have 2 112 authors, 2 321 papers, and 56 topics. In the STOC
dataset we have 1 404 authors, 1 790 papers, and 48 topics.
4 http://portal.acm.org/dl
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IMDB Dataset. We extract the IMDB5 actors-movies-genres dataset as fol-
lows. First we prune movies made for TV and video, TV serials, non-English-
speaking movies and movies for which there is no genre. This defines a set of
“valid” movies. For each actor we find all the valid movies in which he appears,
and we enter an entry in the actor-movie relation if the actor appears in one of
the top 5 positions of the credits, thus pruning away secondary roles and extras.
This defines the actor-movie relation. For each movie in this relation we find the
set of genres it is associated with, obtaining the movies-genres relation. In total,
there are 45 342 actors, 71 912 movies and 21 genres.

5.2 Problems

The Authority Problem. For the Authority problem, we run the level-
wise algorithms described in Section 4.3 on the two bibliography datasets and
the IMDB dataset. For compactness, whatever we say about authors, papers,
and topics, applies also to actors, movies, and genres, respectively. For each
author a and for each combination of topics S that a has written a paper about
(under the disjunctive or the conjunctive interpretation), we compute the rank
of author a for S. If an author a has written at least one paper on each topic
of S, and a is ranked first in S, we say that a is an authority on S. Given an
author a, we define the collection of topic sets A(a) = {S : a is authority for S},
and A0(a) the collection of minimal sets of A(a), that is, A0(a) = {S : S ∈ A},
and there is no S′ ∈ A such that S′

� S}. Notice that for authors who are not
authorities, the collections A(a) and A0(a) are empty.

A few statistics computed for the STOC dataset are shown in Figure 2. In the
first two plots we show the distribution of the number of papers, and the number
of topics, per author. One sees that the distribution of the number of papers is
very skewed, while the number of topics has a mode at 3. We also look at the
collections A(a) and A0(a). If the size of the collection A0(a) is large it means
that author a has many interests, while if the size of A0(a) is small it means
that author a is very focused on few topics. Similarly, the average size of sets
inside A0(a) indicates to what degree an author prefers to work on combination
of topics, or on single-topic core areas. In the last two plots of Figure 2 we show
the distribution of the size of the collection A(a) and the scatter plot of the
average set size in A(a) vs. the average set size in A0(a).

The author with the most papers in STOC is Wigderson with 36 papers. The
values of the size of A0 and the average set size in A0 for Wigderson is 37 and
2.8, respectively, indicating that he tends to work in many different combina-
tions of topics. On the other hand, Tarjan who is 4th in the overall ranking
with 25 papers, has corresponding values 2 and 1.5. That is, he is very focused
on two combinations of topics: “data structures” and (“discrete mathematics”,
“artificial intelligence”). These indicative results match our intuitions about the
authors.

5 http://www.imdb.com/
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We observed similar trends when we searched for authorities in the JACM
and IMDB datasets, and we omit the results to avoid repetition. As a small
example, in the IMDB dataset, we observed that Schwarzenegger is an authority
of the combinations (“action”, “fantasy”) and (“action”, “sci-fi”) but he is not
an authority in any of those single genres.
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Fig. 2. A few statistics collected on the results from the Authority problem on the
STOC dataset

The ProgramCommittee Problem. The task in this experiment is to select
program committee members for a subset of topics (potential conference). In our
experiment, the only information used is our three-level bibliography dataset; in
real life many more considerations are taken into account. Here we give two ex-
amples of selecting program committee members for two fictional conferences.
For the first conference, which we called Logic-AI, we used as seed the topics
“mathematical logic and formal languages”, “artificial intelligence”, “models and
principles”, and “logics and meanings of programs”. For the second conference,
which we called Algorithms-complexity, we used as seed the topics “discrete
mathematics”, “analysis of algorithms and problem complexity”, “computation
by abstract devices”, and “data structures”. In both cases we requested a com-
mittee of 12 members requiring topics to be covered by at least 4 of the PC
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members. The objective was to maximize the total number of papers written by
the PC members. The committee members for the Logic-AI conference, ordered
by their number of papers, were

Vardi, Raz, Vazirani, Blum, Kearns, Kilian,
Beame, Goldreich, Kushilevitz, Bellare,
Warmuth, and Smith.

The committee for the Algorithms-Complexity conference was

Wigderson, Naor, Tarjan, Leighton, Nisan,
Raghavan, Yannakakis, Feige, Awerbuch, Galil,
Yao, and Kosaraju.

In both cases, all constraints are satisfied and we observe that the committees are
composed by well-known authorities in the fields. The running time for solving
the IP in both cases is less than 1 second on a 3GHz Pentium 4 with 1GB mem-
ory, making the method very attractive to even larger datasets – for example,
the corresponding IP for the IMDB dataset (containing hundreds of thousands
variables in the constraints) is solved in 4min.

6 Conclusions

In this paper we introduce an approach to multi-relational data mining. The
main idea is to find selectors that define projections on the data such that in-
teresting patterns occur. We focus on datasets that consist of two relations that
are connected into a chain. Patterns in this setting are expressed as graph prop-
erties. We show that many of the existing data mining problems can be cast as
special cases of our framework, and we define a number of interesting novel data
mining problems. We provide a characterization of properties for which one can
apply level-wise methods. Additionally, we give an integer programming formu-
lation of many interesting properties that allow us to solve the corresponding
problems efficiently for medium-size instances of datasets in practice. In Table 1,
the data mining problems we define in our framework are listed together with
the property that defines them and the algorithmic tools we propose for their
solution. Finally, we report experiments on two real datasets that demonstrate
the benefits of our approach.

The current results are promising, but there are still many interesting ques-
tions on mining chains of relations. For example, the algorithmics of answering
data mining queries on three-level graphs has many open problems. Level-wise
search and other pattern discovery techniques provide efficient means to enumer-
ate all feasible solutions for monotone and anti-monotone properties. However,
the pattern discovery techniques are not limited to monotone and anti-monotone
properties: it is sufficient that there is a relaxation of the property that is mono-
tone or anti-monotone. Hence, finding monotone and anti-monotone relaxations
of the properties that are not monotone nor anti-monotone themselves is a poten-
tial direction of further research. Although many data mining queries on three-
level graphs can be answered quite efficiently using off-the-shelf MILP solvers
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Table 1. Summary of problems and proposed algorithmic tools. Input is
G = (A,P, T ;E1, E2). Given a selector set S ⊆ T we have defined GS =
(AS , PS , S; E1,S, E2,S), and BS = (AS , PS ;E1,S). By S we denote the selector set
which is a solution and by R any selector set. DS

c (DR
c resp.) is the degree of c in GS

(GR resp.) and Dc is the degree of c in G. The asterisk means that experiments are
run on variants of these problems and also that these problems are discussed in more
detail in this paper.

Problem Property of GS Algorithmic tools

Authority(c) * c has max degree in GS non-monotone, IP

BestRank(c) DS
c ≥ DR

c non-monotone

Clique BS bipartite clique level-wise, IP

Frequency(f, s) BS contains bipartite non-monotone, IP
clique Ks,f |PS | association-rule mining

Majority every a ∈ AS has non-monotone, IP
|Ea

1,S | ≥ |Ea
1 \Ea

1,S |
Popularity(b) |AS | ≥ b level-wise, IP

Impact(b) for all a ∈ AS, DS
a ≥ b non-monotone, IP

AbsoluteImpact(b) for all a ∈ AS , Dc ≥ b level-wise, IP

CollaborationClique for every a, b ∈ AS , non-monotone, IP
at least one p ∈ PS ,

s.t. (a, p) ∈ E1,S

and (b, p) ∈ E1,S

Classification(c) PS = {p ∈ P : (c, p) ∈ E1} non-monotone
and AS = {c}

ProgramCommittee(Z, l, m) * AS = Z , |S| = m, IP
and every t ∈ Z

is connected to at
least l nodes in S

in practice for instances of moderate size, more sophisticated optimization tech-
niques for particular mining queries, both in theory and in practice. Answering
to multiple data mining queries on three-level graphs and updating the query
answers when the graphs are interesting questions with practical relevance in
data mining systems for chains of relations.

We have demonstrated the use of the framework using two datasets, but fur-
ther experimental studies with the framework solving large-scale real-world data
mining tasks would be of interest. We have done some preliminary studies on
some biological datasets using the basic three-level framework. In real-world ap-
plications it would often be useful to extend the basic three-level graph frame-
work in order to the actual data better into account. Extending the basic model
to weighted edges, various interpretations, and more complex schemas seem a
promising and relevant future direction in practice. There is a trade-off between
the expressivity of the framework and the computational feasibility of the data
mining queries. To cope with complex data, it would be very useful to have semi-
automatic techniques to discover simple views to complex database schemas that
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capture relevant mining queries in our framework, in addition to generalizing our
query answering techniques to more complex database schemas.
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Mielikäinen, Taneli 217

Neagu, Daniel 157

Pedamallu, Chandra Sekhar 27
Philippe, Lenca 77

Riggs, Logan 135

Saarela, Matti 199

Talia, Domenico 57
Trunfio, Paolo 57
Tsaparas, Panayiotis 217
Tweedale, Jeffrey 1

Vityaev, Evgenii 135

Weber, Gerhard-Wilhelm 27

Yannick, Le Bras 77

Zhang, Zhong-Yuan 99




	Cover
	Intelligent Systems Reference Library 24
	Data Mining: Foundations andIntelligent Paradigms:Volume 2
	ISBN 9783642232404
	Preface
	Contents
	1 Advanced Modelling Paradigms in Data Mining 
	Introduction
	Foundations
	Statistical Modelling
	Predictions Analysis
	Data Analysis
	Chains of Relationships

	Intelligent Paradigms
	Bayesian Analysis
	Support Vector Machines
	Learning

	Chapters Included in the Book
	Conclusion
	References

	2 Data Mining with Multilayer Perceptrons and Support  Vector Machines
	Introduction
	Supervised Learning
	Classical Regression
	Multilayer Perceptron
	Support Vector Machines

	Data Mining
	Business Understanding
	Data Understanding
	Data Preparation
	Modeling
	Evaluation
	Deployment

	Experiments
	Classification Example
	Regression Example

	Conclusions and Further Reading
	References

	3 Regulatory Networks under Ellipsoidal Uncertainty –  Data Analysis and Prediction by Optimization Theory and Dynamical Systems
	Introduction
	Ellipsoidal Calculus
	Ellipsoidal Descriptions
	Affine Transformations
	Sums of Two Ellipsoids
	Sums of bold0mu mumu KKKKKK Ellipsoids
	Intersection of Ellipsoids

	Target-Environment Regulatory Systems under Ellipsoidal Uncertainty
	The Time-Discrete Model
	Algorithm

	The Regression Problem
	The Trace Criterion
	The Trace of the Square Criterion
	The Determinant Criterion
	The Diameter Criterion
	Optimization Methods

	Mixed Integer Regression Problem
	Conclusion
	References

	4 A Visual Environment for Designing and  Running Data Mining Workflows in the Knowledge Grid
	Introduction
	The Knowledge Grid
	Workflow Components
	The DIS3GNO System
	Execution Management
	Use Cases and Performance
	Parameter Sweeping Workflow
	Ensemble Learning Workflow

	Related Work
	Conclusions
	References

	5 Formal Framework for the Study of Algorithmic  Properties of Objective Interestingness Measures
	Introduction
	Scientific Landscape
	Database
	Association Rules
	Interestingness Measures

	A Framework for the Study of Measures
	Adapted Functions of Measure
	Expression of a Set of Measures

	Application to Pruning Strategies
	All-Monotony
	Universal Existential Upward Closure
	Optimal Rule Discovery
	Properties Verified by the Measures

	References

	6 Nonnegative Matrix Factorization: Models,  Algorithms and Applications
	Introduction
	Standard NMF and Variations
	Standard NMF
	Semi-NMF (semiconvex)
	Convex-NMF (semiconvex)
	Tri-NMF (triNMF)
	Kernel NMF (LD2006)
	Local Nonnegative Matrix Factorization, LNMF (sparse1,sparse3)
	Nonnegative Sparse Coding, NNSC (coding)
	Spares Nonnegative Matrix Factorization, SNMF (SNMF1,SNMF2,CNMF)
	Nonnegative Matrix Factorization with Sparseness Constraints, NMFSC (NMFSC)
	Nonsmooth Nonnegative Matrix Factorization, nsNMF (nsnmf)
	Sparse NMFs: SNMF/R, SNMF/L (SNMF)
	CUR Decomposition (CUR)
	Binary Matrix Factorization, BMF (BMF,BMF2)

	Divergence Functions and Algorithms for NMF
	Divergence Functions
	Algorithms for NMF

	Applications of NMF
	Image Processing 
	Clustering 
	Semi-supervised Clustering 
	Bi-clustering (co-clustering)
	Financial Data Mining

	Relations with Other Relevant Models
	Relations between NMF and K-means
	Relations between NMF and PLSI

	Conclusions and Future Works
	References

	7 Visual Data Mining and Discovery with  Binarized Vectors
	Introduction
	Method for Visualizing Data
	Visualization for Breast Cancer Diagnistics
	General Concept of Using MDF in Data Mining
	Scaling Algorithms
	Algorithm with Data-Based Chains
	Algorithm with Pixel Chains

	Binarization and Monotonization
	Monotonization
	Conclusion
	References

	8 A New Approach and Its Applications for Time  Series Analysis and Prediction Based on Moving Average of nth-Order Difference
	Introduction
	Definitions Relevant to Time Series Prediction
	The Algorithm of Moving Average of nth-order Difference for Bounded Time Series Prediction
	Finding Suitable Index m and Order Level n for Increasing the Prediction Precision
	Prediction Results for Sunspot Number Time Series
	Prediction Results for Earthquake Time Series
	Prediction Results for Pseudo-Periodical Synthetic Time Series
	Prediction Results Comparison
	Conclusions
	Appendix
	References

	9 Exceptional Model Mining 
	Introduction
	Exceptional Model Mining
	Model Classes
	Correlation Models
	Regression Model
	Classification Models

	Experiments
	Analysis of Housing Data
	Analysis of Gene Expression Data

	Conclusions and Future Research
	References

	10 Online ChiMerge Algorithm 
	Introduction
	Numeric Attributes, Decision Trees, and Data Streams
	VFDT and Numeric Attributes
	Further Approaches

	ChiMerge Algorithm
	Online Version of ChiMerge
	Time Complexity of Online ChiMerge
	Alternative Approaches

	A Comparative Evaluation
	Conclusion
	References

	11 Mining Chains of Relations 
	Introduction
	Related Work
	The General Framework
	Motivation
	Problem Definition
	Examples of Properties
	Extensions of the Model

	Algorithmic Tools
	A Characterization of Monotonicity
	Integer Programming Formulations
	Case Studies

	Experiments
	Datasets
	Problems

	Conclusions
	References

	Author Index

