

Dawn E. Holmes and Lakhmi C. Jain (Eds.)

Data Mining: Foundations and Intelligent Paradigms

Intelligent Systems Reference Library,Volume 23

Editors-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Prof. Lakhmi C. Jain
University of South Australia
Adelaide
Mawson Lakes Campus
South Australia 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

Further volumes of this series can be found on our homepage:
springer.com

Vol. 1. Christine L. Mumford and Lakhmi C. Jain (Eds.)
Computational Intelligence: Collaboration, Fusion
and Emergence, 2009
ISBN 978-3-642-01798-8

Vol. 2.Yuehui Chen and Ajith Abraham
Tree-Structure Based Hybrid
Computational Intelligence, 2009
ISBN 978-3-642-04738-1

Vol. 3.Anthony Finn and Steve Scheding
Developments and Challenges for
Autonomous Unmanned Vehicles, 2010
ISBN 978-3-642-10703-0

Vol. 4. Lakhmi C. Jain and Chee Peng Lim (Eds.)
Handbook on Decision Making: Techniques
and Applications, 2010
ISBN 978-3-642-13638-2

Vol. 5. George A.Anastassiou
Intelligent Mathematics: Computational Analysis, 2010
ISBN 978-3-642-17097-3

Vol. 6. Ludmila Dymowa
Soft Computing in Economics and Finance, 2011
ISBN 978-3-642-17718-7

Vol. 7. Gerasimos G. Rigatos
Modelling and Control for Intelligent Industrial Systems, 2011
ISBN 978-3-642-17874-0

Vol. 8. Edward H.Y. Lim, James N.K. Liu, and
Raymond S.T. Lee
Knowledge Seeker – Ontology Modelling for Information
Search and Management, 2011
ISBN 978-3-642-17915-0

Vol. 9. Menahem Friedman and Abraham Kandel
Calculus Light, 2011
ISBN 978-3-642-17847-4

Vol. 10.Andreas Tolk and Lakhmi C. Jain
Intelligence-Based Systems Engineering, 2011
ISBN 978-3-642-17930-3

Vol. 11. Samuli Niiranen and Andre Ribeiro (Eds.)
Information Processing and Biological Systems, 2011
ISBN 978-3-642-19620-1

Vol. 12. Florin Gorunescu
Data Mining, 2011
ISBN 978-3-642-19720-8

Vol. 13.Witold Pedrycz and Shyi-Ming Chen (Eds.)
Granular Computing and Intelligent Systems, 2011
ISBN 978-3-642-19819-9

Vol. 14. George A.Anastassiou and Oktay Duman
Towards Intelligent Modeling: Statistical Approximation
Theory, 2011
ISBN 978-3-642-19825-0

Vol. 15.Antonino Freno and Edmondo Trentin
Hybrid Random Fields, 2011
ISBN 978-3-642-20307-7

Vol. 16.Alexiei Dingli
Knowledge Annotation: Making Implicit Knowledge
Explicit, 2011
ISBN 978-3-642-20322-0

Vol. 17. Crina Grosan and Ajith Abraham
Intelligent Systems, 2011
ISBN 978-3-642-21003-7

Vol. 18.Achim Zielesny
From Curve Fitting to Machine Learning, 2011
ISBN 978-3-642-21279-6

Vol. 19. George A.Anastassiou
Intelligent Systems: Approximation by Artificial Neural
Networks, 2011
ISBN 978-3-642-21430-1

Vol. 20. Lech Polkowski
Approximate Reasoning by Parts, 2011
ISBN 978-3-642-22278-8

Vol. 21. Igor Chikalov
Average Time Complexity of Decision Trees, 2011
ISBN 978-3-642-22660-1

Vol. 22. Przemys
�law Różewski,

Emma Kusztina, Ryszard Tadeusiewicz,
and Oleg Zaikin
Intelligent Open Learning Systems, 2011
ISBN 978-3-642-22666-3

Vol. 23. Dawn E. Holmes and Lakhmi C. Jain (Eds.)
Data Mining: Foundations and Intelligent Paradigms, 2012
ISBN 978-3-642-23165-0

Dawn E. Holmes and Lakhmi C. Jain (Eds.)

Data Mining: Foundations and
Intelligent Paradigms

Volume 1: Clustering,Association and Classification

123

Prof. Dawn E. Holmes
Department of Statistics and Applied Probability
University of California
Santa Barbara,
CA 93106
USA
E-mail: holmes@pstat.ucsb.edu

Prof. Lakhmi C. Jain
Professor of Knowledge-Based Engineering
University of South Australia
Adelaide
Mawson Lakes, SA 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

ISBN 978-3-642-23165-0 e-ISBN 978-3-642-23166-7

DOI 10.1007/978-3-642-23166-7

Intelligent Systems Reference Library ISSN 1868-4394

Library of Congress Control Number: 2011936705

c© 2012 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer.
Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general
use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

There are many invaluable books available on data mining theory and applications.
However, in compiling a volume titled “DATA MINING: Foundations and Intelligent
Paradigms: Volume 1: Clustering, Association and Classification” we wish to introduce
some of the latest developments to a broad audience of both specialists and non-
specialists in this field.

The term ‘data mining’ was introduced in the 1990’s to describe an emerging field
based on classical statistics, artificial intelligence and machine learning. Clustering, a
method of unsupervised learning, has applications in many areas. Association rule
learning, became widely used following the seminal paper by Agrawal, Imielinski and
Swami; “Mining Association Rules Between Sets of Items in Large Databases”,
SIGMOD Conference 1993: 207-216. Classification is also an important technique in
data mining, particularly when it is known in advance how classes are to be defined.

In compiling this volume we have sought to present innovative research from
prestigious contributors in these particular areas of data mining. Each chapter is self-
contained and is described briefly in Chapter 1.

This book will prove valuable to theoreticians as well as application scientists/
engineers in the area of Data Mining. Postgraduate students will also find this a useful
sourcebook since it shows the direction of current research.

We have been fortunate in attracting top class researchers as contributors and wish
to offer our thanks for their support in this project. We also acknowledge the expertise
and time of the reviewers. We thank Professor Dr. Osmar Zaiane for his visionary
Foreword. Finally, we also wish to thank Springer for their support.

Dr. Dawn E. Holmes Dr. Lakhmi C. Jain
University of California University of South Australia
Santa Barbara, USA Adelaide, Australia

Contents

Chapter 1

Data Mining Techniques in Clustering, Association and
Classification . 1
Dawn E. Holmes, Jeffrey Tweedale, Lakhmi C. Jain

1 Introduction . 1
1.1 Data . 1
1.2 Knowledge . 2
1.3 Clustering . 2
1.4 Association . 3
1.5 Classification . 3

2 Data Mining . 4
2.1 Methods and Algorithms . 4
2.2 Applications . 4

3 Chapters Included in the Book . 5
4 Conclusion . 5
References . 6

Chapter 2

Clustering Analysis in Large Graphs with Rich Attributes 7
Yang Zhou, Ling Liu

1 Introduction . 8
2 General Issues in Graph Clustering . 11

2.1 Graph Partition Techniques . 12
2.2 Basic Preparation for Graph Clustering 14
2.3 Graph Clustering with SA-Cluster . 15

3 Graph Clustering Based on Structural/Attribute Similarities . . . 16
4 The Incremental Algorithm . 19
5 Optimization Techniques . 21

5.1 The Storage Cost and Optimization 22
5.2 Matrix Computation Optimization 23
5.3 Parallelism . 24

6 Conclusion . 24
References . 25

VIII Contents

Chapter 3

Temporal Data Mining: Similarity-Profiled Association
Pattern . 29
Jin Soung Yoo

1 Introduction . 29
2 Similarity-Profiled Temporal Association Pattern 32

2.1 Problem Statement . 32
2.2 Interest Measure . 34

3 Mining Algorithm . 35
3.1 Envelope of Support Time Sequence 35
3.2 Lower Bounding Distance . 36
3.3 Monotonicity Property of Upper Lower-Bounding

Distance . 38
3.4 SPAMINE Algorithm . 39

4 Experimental Evaluation . 41
5 Related Work . 43
6 Conclusion . 45
References . 45

Chapter 4

Bayesian Networks with Imprecise Probabilities:
Theory and Application to Classification . 49
G. Corani, A. Antonucci, M. Zaffalon

1 Introduction . 49
2 Bayesian Networks . 51
3 Credal Sets . 52

3.1 Definition . 53
3.2 Basic Operations with Credal Sets . 53
3.3 Credal Sets from Probability Intervals 55
3.4 Learning Credal Sets from Data . 55

4 Credal Networks . 56
4.1 Credal Network Definition and Strong Extension 56
4.2 Non-separately Specified Credal Networks 57

5 Computing with Credal Networks . 60
5.1 Credal Networks Updating . 60
5.2 Algorithms for Credal Networks Updating 61
5.3 Modelling and Updating with Missing Data 62

6 An Application: Assessing Environmental Risk by Credal
Networks . 64
6.1 Debris Flows. 64
6.2 The Credal Network . 65

7 Credal Classifiers . 70
8 Naive Bayes . 71

8.1 Mathematical Derivation . 73
9 Naive Credal Classifier (NCC) . 74

Contents IX

9.1 Comparing NBC and NCC in Texture Recognition 76
9.2 Treatment of Missing Data . 79

10 Metrics for Credal Classifiers . 80
11 Tree-Augmented Naive Bayes (TAN) . 81

11.1 Variants of the Imprecise Dirichlet Model: Local and
Global IDM . 82

12 Credal TAN . 83
13 Further Credal Classifiers . 85

13.1 Lazy NCC (LNCC) . 85
13.2 Credal Model Averaging (CMA) . 86

14 Open Source Software . 88
15 Conclusions . 88
References . 88

Chapter 5

Hierarchical Clustering for Finding Symmetries and Other
Patterns in Massive, High Dimensional Datasets 95
Fionn Murtagh, Pedro Contreras

1 Introduction: Hierarchy and Other Symmetries in Data
Analysis . 95
1.1 About This Article . 96
1.2 A Brief Introduction to Hierarchical Clustering 96
1.3 A Brief Introduction to p-Adic Numbers 97
1.4 Brief Discussion of p-Adic and m-Adic Numbers 98

2 Ultrametric Topology . 98
2.1 Ultrametric Space for Representing Hierarchy 98
2.2 Some Geometrical Properties of Ultrametric Spaces 100
2.3 Ultrametric Matrices and Their Properties 100
2.4 Clustering through Matrix Row and Column

Permutation . 101
2.5 Other Miscellaneous Symmetries . 103

3 Generalized Ultrametric . 103
3.1 Link with Formal Concept Analysis 103
3.2 Applications of Generalized Ultrametrics 104
3.3 Example of Application: Chemical Database

Matching . 105
4 Hierarchy in a p-Adic Number System . 110

4.1 p-Adic Encoding of a Dendrogram . 110
4.2 p-Adic Distance on a Dendrogram . 113
4.3 Scale-Related Symmetry . 114

5 Tree Symmetries through the Wreath Product Group 114
5.1 Wreath Product Group Corresponding to a

Hierarchical Clustering . 115
5.2 Wreath Product Invariance . 115

X Contents

5.3 Example of Wreath Product Invariance: Haar Wavelet
Transform of a Dendrogram . 116

6 Remarkable Symmetries in Very High Dimensional Spaces 118
6.1 Application to Very High Frequency Data Analysis:

Segmenting a Financial Signal . 119
7 Conclusions . 126
References . 126

Chapter 6

Randomized Algorithm of Finding the True Number of
Clusters Based on Chebychev Polynomial Approximation 131
R. Avros, O. Granichin, D. Shalymov, Z. Volkovich, G.-W. Weber

1 Introduction . 131
2 Clustering . 135

2.1 Clustering Methods . 135
2.2 Stability Based Methods . 138
2.3 Geometrical Cluster Validation Criteria 141

3 Randomized Algorithm. 144
4 Examples . 147
5 Conclusion . 152
References . 152

Chapter 7

Bregman Bubble Clustering: A Robust Framework for Mining
Dense Clusters . 157
Joydeep Ghosh, Gunjan Gupta

1 Introduction . 157
2 Background . 161

2.1 Partitional Clustering Using Bregman Divergences 161
2.2 Density-Based and Mode Seeking Approaches to

Clustering . 162
2.3 Iterative Relocation Algorithms for Finding a Single

Dense Region . 164
2.4 Clustering a Subset of Data into Multiple Overlapping

Clusters . 165
3 Bregman Bubble Clustering . 165

3.1 Cost Function . 165
3.2 Problem Definition . 166
3.3 Bregmanian Balls and Bregman Bubbles 166
3.4 BBC-S: Bregman Bubble Clustering with Fixed

Clustering Size . 167
3.5 BBC-Q: Dual Formulation of Bregman Bubble

Clustering with Fixed Cost . 169

Contents XI

4 Soft Bregman Bubble Clustering (Soft BBC) 169
4.1 Bregman Soft Clustering . 169
4.2 Motivations for Developing Soft BBC 170
4.3 Generative Model . 171
4.4 Soft BBC EM Algorithm . 171
4.5 Choosing an Appropriate p0 . 173

5 Improving Local Search: Pressurization . 174
5.1 Bregman Bubble Pressure . 174
5.2 Motivation . 175
5.3 BBC-Press . 176
5.4 Soft BBC-Press . 177
5.5 Pressurization vs. Deterministic Annealing 177

6 A Unified Framework . 177
6.1 Unifying Soft Bregman Bubble and Bregman Bubble

Clustering . 177
6.2 Other Unifications . 178

7 Example: Bregman Bubble Clustering with Gaussians 180
7.1 σ2 Is Fixed . 180
7.2 σ2 Is Optimized . 181
7.3 “Flavors” of BBC for Gaussians . 182
7.4 Mixture-6: An Alternative to BBC Using a Gaussian

Background . 182
8 Extending BBOCC & BBC to Pearson Distance and Cosine

Similarity . 183
8.1 Pearson Correlation and Pearson Distance 183
8.2 Extension to Cosine Similarity . 185
8.3 Pearson Distance vs. (1-Cosine Similarity) vs. Other

Bregman Divergences – Which One to Use Where? 185
9 Seeding BBC and Determining k Using Density Gradient

Enumeration (DGRADE) . 185
9.1 Background . 186
9.2 DGRADE Algorithm . 186
9.3 Selecting sone: The Smoothing Parameter for

DGRADE . 188
10 Experiments . 190

10.1 Overview . 190
10.2 Datasets . 190
10.3 Evaluation Methodology . 192
10.4 Results for BBC with Pressurization 194
10.5 Results on BBC with DGRADE . 198

11 Concluding Remarks . 202
References . 204

XII Contents

Chapter 8

DepMiner: A Method and a System for the Extraction of
Significant Dependencies . 209
Rosa Meo, Leonardo D’Ambrosi

1 Introduction . 209
2 Related Work . 211
3 Estimation of the Referential Probability . 213
4 Setting a Threshold for Δ . 213
5 Embedding Δn in Algorithms . 215
6 Determination of the Itemsets Minimum Support Threshold . . . 216
7 System Description . 218
8 Experimental Evaluation . 220
9 Conclusions . 221
References . 221

Chapter 9

Integration of Dataset Scans in Processing Sets of Frequent
Itemset Queries . 223
Marek Wojciechowski, Maciej Zakrzewicz, Pawel Boinski

1 Introduction . 223
2 Frequent Itemset Mining and Apriori Algorithm 225

2.1 Basic Definitions and Problem Statement 225
2.2 Algorithm Apriori . 226

3 Frequent Itemset Queries – State of the Art. 227
3.1 Frequent Itemset Queries . 227
3.2 Constraint-Based Frequent Itemset Mining 229
3.3 Reusing Results of Previous Frequent Itemset Queries . . . 230

4 Optimizing Sets of Frequent Itemset Queries 231
4.1 Basic Definitions . 232
4.2 Problem Formulation . 233
4.3 Related Work on Multi-query Optimization 234

5 Common Counting . 234
5.1 Basic Algorithm . 234
5.2 Motivation for Query Set Partitioning 237
5.3 Key Issues Regarding Query Set Partitioning 237

6 Frequent Itemset Query Set Partitioning by Hypergraph
Partitioning . 238
6.1 Data Sharing Hypergraph . 239
6.2 Hypergraph Partitioning Problem Formulation 239
6.3 Computation Complexity of the Problem 241
6.4 Related Work on Hypergraph Partitioning 241

7 Query Set Partitioning Algorithms . 241
7.1 CCRecursive . 242
7.2 CCFull . 243
7.3 CCCoarsening . 246

Contents XIII

7.4 CCAgglomerative . 247
7.5 CCAgglomerativeNoise . 248
7.6 CCGreedy . 249
7.7 CCSemiGreedy . 250

8 Experimental Results . 251
8.1 Comparison of Basic Dedicated Algorithms 252
8.2 Comparison of Greedy Approaches with the Best

Dedicated Algorithms . 257
9 Review of Other Methods of Processing Sets of Frequent

Itemset Queries . 260
10 Conclusions . 261
References . 262

Chapter 10

Text Clustering with Named Entities: A Model,
Experimentation and Realization . 267
Tru H. Cao, Thao M. Tang, Cuong K. Chau

1 Introduction . 267
2 An Entity-Keyword Multi-Vector Space Model 269
3 Measures of Clustering Quality . 271
4 Hard Clustering Experiments . 273
5 Fuzzy Clustering Experiments . 277
6 Text Clustering in VN-KIM Search . 282
7 Conclusion . 285
References . 286

Chapter 11

Regional Association Rule Mining and Scoping from
Spatial Data . 289
Wei Ding, Christoph F. Eick

1 Introduction . 289
2 Related Work . 291

2.1 Hot-Spot Discovery . 291
2.2 Spatial Association Rule Mining . 292

3 The Framework for Regional Association Rule Mining and
Scoping . 293
3.1 Region Discovery . 293
3.2 Problem Formulation . 294
3.3 Measure of Interestingness . 295

4 Algorithms . 298
4.1 Region Discovery . 298
4.2 Generation of Regional Association Rules 301

XIV Contents

5 Arsenic Regional Association Rule Mining and Scoping in the
Texas Water Supply . 302
5.1 Data Collection and Data Preprocessing 302
5.2 Region Discovery for Arsenic Hot/Cold Spots 304
5.3 Regional Association Rule Mining . 305
5.4 Region Discovery for Regional Association Rule

Scoping . 307
6 Summary . 310
References . 311

Chapter 12

Learning from Imbalanced Data: Evaluation Matters 315
Troy Raeder, George Forman, Nitesh V. Chawla

1 Motivation and Significance . 315
2 Prior Work and Limitations . 317
3 Experiments . 318

3.1 Datasets . 321
3.2 Empirical Analysis . 321

4 Discussion and Recommendations . 325
4.1 Comparisons of Classifiers . 325
4.2 Towards Parts-Per-Million . 328
4.3 Recommendations . 329

5 Summary . 329
References . 330

Author Index . 333

Editors

Dr. Dawn E. Holmes serves as Senior Lec-
turer in the Department of Statistics and
Applied Probability and Senior Associate
Dean in the Division of Undergraduate Edu-
cation at UCSB. Her main research area,
Bayesian Networks with Maximum Entropy,
has resulted in numerous journal articles and
conference presentations. Her other research
interests include Machine Learning, Data
Mining, Foundations of Bayesianism and
Intuitionistic Mathematics. Dr. Holmes has
co-edited, with Professor Lakhmi C. Jain,
volumes ‘Innovations in Bayesian Net-
works’ and ‘Innovations in Machine Learn-
ing’. Dr. Holmes teaches a broad range of

courses, including SAS programming, Bayesian Networks and Data Mining. She was
awarded the Distinguished Teaching Award by Academic Senate, UCSB in 2008.

As well as being Associate Editor of the International Journal of Knowledge-Based
and Intelligent Information Systems, Dr. Holmes reviews extensively and is on the
editorial board of several journals, including the Journal of Neurocomputing. She
serves as Program Scientific Committee Member for numerous conferences; includ-
ing the International Conference on Artificial Intelligence and the International Con-
ference on Machine Learning. In 2009 Dr. Holmes accepted an invitation to join
Center for Research in Financial Mathematics and Statistics (CRFMS), UCSB. She
was made a Senior Member of the IEEE in 2011.

Professor Lakhmi C. Jain is a Director/Founder of the
Knowledge-Based Intelligent Engineering Systems
(KES) Centre, located in the University of South Aus-
tralia. He is a fellow of the Institution of Engineers
Australia.

His interests focus on the artificial intelligence para-
digms and their applications in complex systems, art-
science fusion, e-education, e-healthcare, unmanned air
vehicles and intelligent agents.

Chapter 1

Data Mining Techniques in Clustering, Association and
Classification

Dawn E. Holmes1, Jeffrey Tweedale2, and Lakhmi C. Jain3

1 Department of Statistics and Applied Probability
University of California Santa Barbara

Santa Barbara
CA 93106-3110

USA
2 School of Electrical and Information Engineering

University of South Australia
Adelaide

Mawson Lakes Campus
South Australia SA 5095

Australia
3 School of Electrical and Information Engineering

University of South Australia
Adelaide

Mawson Lakes Campus
South Australia SA 5095

Australia

1 Introduction

The term Data Mining grew from the relentless growth of techniques used to interroga-
tion masses of data. As a myriad of databases emanated from disparate industries, man-
agement insisted their information officers develop methodology to exploit the knowl-
edge held in their repositories. The process of extracting this knowledge evolved as an
interdisciplinary field of computer science within academia. This included study into
statistics, database management and Artificial Intelligence (AI). Science and technol-
ogy provide the stimulus for an extremely rapid transformation from data acquisition to
enterprise knowledge management systems.

1.1 Data

Data is the representation of anything that can be meaningfully quantized or represented
in digital form, as a number, symbol or even text. We process data into information
by initially combining a collection of artefacts that are input into a system which is
generally stored, filtered and/or classified prior to being translated into a useful form for
dissemination [1]. The processes used to achieve this task have evolved over many years
and has been applied to many situations using a magnitude of techniques. Accounting
and pay role applications take center place in the evolution of information processing.

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 1–6.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

2 D.E. Holmes, J. Tweedale, and L.C. Jain

Data mining, expert system and knowledge-based system quickly followed. Today we
live in an information age where we collect data faster than it can be processed. This
book examines many recent advances in digital information processing with paradigms
for acquisition, retrieval, aggregation, search, estimation and presentation.

Our ability to acquire data electronically has grown exponentially since the introduc-
tion of mainframe computers. We have also improved the methodology used to extract
information from data in almost every aspect of life. Our biggest challenge is in iden-
tifying targeted information and transforming that into useful knowledge within the
growing collection of noise collected in repositories all over the world.

1.2 Knowledge

Information, knowledge and wisdom are labels commonly applied to the way humans
aggregate practical experience into an organised collection of facts. Knowledge is con-
sidered a collection of facts, truths, or principles resulting from a study or investigation.
The concept of knowledge is a collection of facts, principles, and related concepts.
Knowledge representation is the key to any communication language and a fundamen-
tal issue in AI. The way knowledge is represented and expressed has to be meaningful
so that the communicating entities can grasp the concept of the knowledge transmitted
among them. This requires a good technique to represent knowledge. In computers sym-
bols (numbers and characters) are used to store and manipulate the knowledge. There
are different approaches for storing the knowledge because there are different kinds of
knowledge such as facts, rules, relationships, and so on. Some popular approaches for
storing knowledge in computers include procedural, relational, and hierarchical rep-
resentations. Other forms of knowledge representation used include Predicate Logic,
Frames, Semantic Nets, If-Then rules and Knowledge Inter-change Format. The type of
knowledge representation to be used depends on the AI application and the domain that
Intelligent Agents (IAs) are required to function [2]. Knowledge should be separated
from the procedural algorithms in order to simplify knowledge modification and pro-
cessing. For an IA to be capable of solving problems at different levels of abstraction,
knowledge should be presented in the form of frames or semantic nets that can show
the is-a relationship of objects and concepts. If an IA is required to find the solution
from the existing data, Predicate logic using IF-THEN rules, Bayesian or any number
of techniques can be used to cluster information [3].

1.3 Clustering

In data mining a cluster is the resulting collection of similar or same items from a vol-
ume of acquired facts. Each cluster has distinct characteristics, although each has a
similarity, its size is measured from the centre with a distance or separation from the
next [4]. Non-hierarchical clusters are generally partitioned by class or clumping meth-
ods. Hierarchical clusters produce sets of nested groups that need to be progressively
isolated as individual subsets. The methodology used are described as: partitioning,
hierarchical agglomeration, Single Link (SLINK), Complete Link (CLINK), group av-
erage and text based document methods. Other techniques include [5]:

Data Mining Techniques in Clustering, Association and Classification 3

• A Comparison of Techniques,
• Artificial Neural Networks for Clustering, and
• Clustering Large Data Sets, and
• Evolutionary Approaches for Clustering, and
• Fuzzy Clustering, and
• Hierarchical Clustering Algorithms, and
• Incorporating Domain Constraints in Clustering, and
• Mixture-Resolving and Mode-Seeking Algorithms, and
• Nearest Neighbour Clustering, and
• Partitional Algorithms, and
• Representation of Clusters, and
• Search-Based Approaches.

Where clustering can typically be applied in Image Segmentation, Object/Character
Recognition, Information Retrieval and Data Mining.

1.4 Association

Data is merely a collection of facts. To make sense of that collection, a series of rules
can be created to sort, select and match a pattern of behavior or association based on
specified dependancies or relationships. For instance a collection of sales transaction
within a department store can hold a significant volume of information. If a cosmet-
ics manager desired to improve sales, knowledge about existing turnover provides an
excellent base-line (this is a form of market analysis). Similarly, using the same data
set, the logistics manager could determine inventory levels (this concept is currently as-
sociated with trend analysis and prediction). Association rules allow the user to reveal
sequences, links and unique manifestations that emerge over time [6]. Typically cross-
tabulation can be used where items, words or conjunctions are employed to analyse
simple collections that are easily classified, such as age, cost or gender.

1.5 Classification

Data bases provide an arbitrary collection of facts. In order to make sense of the random
nature of such collections, any number of methods can be used to map the data into
usable or quantifiable categories based on a series of attributes. These subsets improve
efficiency by reducing the noise and volume of data during subsequent processing. The
goal is to predict the target class for each case. An example would be to measure the
risk management of an activity, as either low, high or some category in between. Prior
to classification, the target categories must be defined before the process is run [7]. A
number of AI techniques are used to classify data. Some include decision-trees, rule-
based, Bayesian, rough sets, dependency networks, Support Vector Machines (SVM),
Neural Networkss (NNs), genetic algorithms and fuzzy logic.

4 D.E. Holmes, J. Tweedale, and L.C. Jain

2 Data Mining

There are many commercial data mining methods, algorithms and applications, with
several that have had major impact. Examples include: SAS1, SPSS2 and Statistica3.
Other examples are listed in sections 2.1 and 2.2. Any number can be found on-line, and
many are free. Examples include: Environment for DeveLoping KDD-Applications Sup-
ported by Index-Structures (ELKI)4, General Architecture for Text Engineering (GATE)5

and Waikato Environment for Knowledge Analysis (Weka)6.

2.1 Methods and Algorithms

• Association rule learning,
• Cluster analysis, and
• Constructive induction, and
• Data analysis, and
• Decision trees, and
• Factor analysis, and
• Knowledge discovery, and
• Neural nets, and
• Predictive analytics, and
• Reactive business intelligence, and
• Regression, and
• Statistical data analysis, and
• Text mining.

2.2 Applications

• Customer analytics,
• Data Mining in Agriculture, and
• Data mining in Meteorology, and
• Law-enforcement, and
• National Security Agency, and
• Quantitative structure-activity relationship, and
• Surveillance.

1 See http://www.sas.com/
2 See http://www.spss.com/
3 See http://www.statsoft.com/
4 See http://www.dbs.ifi.lmu.de/research/KDD/ELKI from Ludwig Maximil-

lian University.
5 See gate.ac.uk from the University of Sheffield.
6 See http://www.cs.waikato.ac.nz/˜ml/weka/ from the University of Waikato.

Data Mining Techniques in Clustering, Association and Classification 5

3 Chapters Included in the Book

This book includes twelve chapters. Each chapter is described briefly below.
Chapter 1 provides an introduction to data mining and presents a brief abstract of each
chapter included in the book. Chapter 2 is on clustering analysis in large graphs with
rich attributes. The authors state that a key challenge for addressing the problem of clus-
tering large graphs with rich attributes is to achieve a good balance between structural
and attribute similarities. Chapter 3 is on temporal data mining. A temporal association
mining problem, based on similarity constraint, is presented. Chapter 4 is on Bayesian
networks with imprecise probabilities. The authors report extensive experimentation on
public benchmark data sets in real-world applications to show that on the instances in-
determinately classified by a creedal network, the accuracy of its Bayesian counterpart
drops.

Chapter 5 is on hierarchical clustering for finding symmetries and other patterns
in massive, high dimensional datasets. The authors have illustrated the powerfulness of
hierarchical clustering in case studies in chemistry and finance. Chapter 6 is on random-
ized algorithm of finding the true number of clusters based on Chebychev polynomial
approximation. A number of examples are used to validate the proposed algorithm.
Chapter 7 is on Bregman bubble clustering. The authors present a broad framework for
finding k dense clusters while ignoring rest of the data. The results are validated on
various datasets to demonstrate the relevance and effectiveness of the technique.

Chapter 8 is on DepMiner. It is a method for implementing a model for the evalu-
ation of item-sets, and in general for the evaluation of the dependencies between the
values assumed by a set of variables on a domain of finite values. Chapter 9 is on the
integration of dataset scans in processing sets of frequent item-set queries. Chapter 10
is on text clustering with named entities. It is demonstrated that a weighted combination
of named entities and keywords are significant to clustering quality. The authors present
implementation of the scheme and demonstrate the text clustering with named entities
in a semantic search engine.

Chapter 11 is on learning from imbalanced data. Using experimentations, the authors
made some recommendations related to the data evaluation methods. Finally Chapter 12
is on regional association rule mining and scoping from spatial data. The authors have
investigated the duality between regional association rules and regions where the asso-
ciations are valid. The design and implementation of a reward-based region discovery
framework and its evaluation are presented.

6 D.E. Holmes, J. Tweedale, and L.C. Jain

4 Conclusion

This chapter presents a collection of selected contribution of leading subject matter
experts in the field of data mining. This book is intended for students, professionals and
academics from all disciplines to enable them the opportunity to engage in the state of
art developments in:

• Clustering Analysis in Large Graphs with Rich Attributes;
• Temporal Data Mining: Similarity-Profiled Association Pattern;
• Bayesian Networks with Imprecise Probabilities: Theory and Application to

Classification;
• Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive,

High Dimensional Datasets;
• Randomized Algorithm of Finding the True Number of Clusters Based on Cheby-

chev Polynomial Approximation;
• Bregman Bubble Clustering: A Robust Framework for Mining Dense Clusters;
• DepMiner: A method and a system for the extraction of significant dependencies;
• Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries;
• Text Clustering with Named Entities: A Model, Experimentation and Realization;
• Regional Association Rule Mining and Scoping from Spatial Data; and
• Learning from Imbalanced Data: Evaluation Matters.

Readers are invited to contact individual authors to engage with further discussion or
dialog on each topic.

References

1. Moxon, B.: Defining data mining, the hows and whys of data mining, and how it differs from
other analytical techniques. DBMS 9(9), S11–S14 (1996)

2. Bigus, J.P., Bigus, J.: Constructing Intelligent Agents Using Java. Professional Developer’s
Guide Series. John Wiley & Sons, Inc., New York (2001)

3. Tweedale, J., Jain, L.C.: Advances in information processing paradigms. In: Watanabe, T. (ed.)
Innovations in Intelligent Machines, pp. 1–19. Springer, Heidelberg (2011)

4. Bouguettaya, A.: On-line clustering. IEEE Trans. on Knowl. and Data Eng. 8, 333–339 (1996)
5. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 3(3), 264–

323 (1999)
6. Hill, T., Lewicki, P.: Statistics: Methods and Applications, StatSoft, Tulsa, OK (2007)
7. Classification, clustering, and data mining applications. In: Banks, D., House, L., McMor-

ris, F., Arabie, P., Gaul, W. (eds.) International Federation of Classification Societies (IFCS),
Illinois Institute of Technology, Chicago, p. 658. Springer, New York (2004)

Chapter 2

Clustering Analysis in Large Graphs with Rich
Attributes

Yang Zhou and Ling Liu

DiSL, College of Computing, Georgia Institute of Technology,
Atlanta, Georgia, USA

Abstract. Social networks, communication networks, biological networks
and many other information networks can be modeled as a large graph.
Graph vertices represent entities and graph edges represent the rela-
tionships or interactions among entities. In many large graphs, there
is usually one or more attributes associated with every graph vertex
to describe its properties. The goal of graph clustering is to partition
vertices in a large graph into subgraphs (clusters) based on a set of
criteria, such as vertex similarity measures, adjacency-based measures,
connectivity-based measures, density measures, or cut-based measures.
Although graph clustering has been studied extensively, the problem of
clustering analysis of large graphs with rich attributes remains a big
challenge in practice. In this chapter we first give an overview of the
set of issues and challenges for clustering analysis of large graphs with
vertices of rich attributes. Based on the type of measures used for iden-
tifying clusters, existing graph clustering methods can be categorized
into three classes: structure based clustering, attribute based cluster-
ing and structure-attribute based clustering. Structure based clustering
mainly focuses on the topological structure of a graph for clustering,
but largely ignore the vertex properties which are often heterogenous.
Attribute based clustering, in contrast, focuses primarily on attribute-
based vertex similarity, but suffers from isolated partitions of the graph
as a result of graph clustering. Structure-attribute based clustering is
a hybrid approach, which combines structural and attribute similarities
through a unified distance measure. We argue that effective clustering
analysis of a large graph with rich attributes requires the clustering meth-
ods to provide a systematic graph analysis framework that partition the
graph based on both structural similarity and attribute similarity. One
approach is to model rich attributes of vertices as auxiliary edges among
vertices, resulting in a complex attribute augmented graph with multi-
ple edges between some vertices. To show how to best combine structure
and attribute similarity in a unified framework, the second part of this
chapter will outline a cluster-convergence based iterative edge-weight
assignment scheme that assigns different weights to different attributes
based on how fast the clusters converge. We use a K-Medoids clustering
algorithm to partition a graph into k clusters with both cohesive intra-
cluster structures and homogeneous attribute values based on iterative
weight updates. At each iteration, a series of matrix multiplication oper-
ations is used for calculating the random walk distances between graph

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 7–27.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

8 Y. Zhou and L. Liu

vertices. Optimizations are used to reduce the cost of recalculating the
random walk distances upon each iteration of the edge weight update.
Finally, we discuss the set of open problems in graph clustering with rich
attributes, including storage cost and efficiency, scalable analytics under
memory constraints, distributed graph clustering and parallel processing.

1 Introduction

A number of scientific and technical endeavors are generating data that usu-
ally consists of a large number of interacting physical, conceptual, and societal
components. Such examples include social networks, semantic networks, com-
munication systems, the Internet, ecological networks, transportation networks,
database schemas and ontologies, electrical power grids, sensor networks, re-
search coauthor networks, biological networks, and so on. All the above net-
works share an important common feature: they can be modeled as graphs, i.e.,
individual objects interact with one another, forming large, interconnected, and
sophisticated graphs with vertices of rich attributes. Multi-relational data min-
ing finds the relational patterns in both the entity attributes and relations in
the data. Graph mining, as one approach of multi-relational data mining, finds
relational patterns in complex graph structures. Mining and analysis of these
annotated and probabilistic graph structures is crucial for advancing the state
of scientific research, accurate modeling and analysis of existing systems, and
engineering of new systems.

Graph clustering is one of the most popular graph mining methodologies. Clus-
tering is a useful and important unsupervised learning technique widely studied
in literature [1,2,3,4]. The general goal of clustering is to group similar objects
into one cluster while partitioning dissimilar objects into different clusters. Clus-
tering has broad applications in the analysis of business and financial data, bi-
ological data, time series data, spatial data, trajectory data and so on. As one
important approach of graph mining, graph clustering is an interesting and chal-
lenging research problem which has received much attention recently [5,6,7,8].
Clustering on a large graph aims to partition the graph into several densely con-
nected components. This is very useful for understanding and visualizing large
graphs. Typical applications of graph clustering include community detection in
social networks, reduction of very large transportation networks, identification
of functional related protein modules in large protein-protein interaction net-
works, etc. Although many graph clustering techniques have been proposed in
literature, the problem of clustering analysis in large graphs with rich attributes
remains to be challenging due to the demand on memory and computational re-
sources and the demand on fast access to disk-based storage. Furthermore, with
the grand vision of utility-driven and pay-as-you-go cloud computing paradigm
shift, there is a growing demand for providing graph-clustering as a service. We
witness the emerging interests from science and engineering fields in design and
development of efficient and scalable graph analytics for managing and mining
large information graphs.

Clustering Analysis in Large Graphs with Rich Attributes 9

Applications of graph clustering
In almost all information networks, graph clustering is used as a tool for analy-
sis, modeling and prediction of the function, usage and evolution of the network,
including business analysis, marketing, and anomaly detection. It is widely rec-
ognized by many that the task of graph clustering is highly application specific.
In addition, by treating n-dimensional datasets as points in n-dimensional space,
one can transform such n-dimensional datasets into graphs with rich attributes
and apply graph theory to analyze the datasets. For example, modeling the
World Wide Web (the Web) as a graph by representing each web page by a ver-
tex and each hyperlink by an edge enables us to perform graph clustering analysis
of hypertext documents and identify interesting artifacts about the Web, and
visualize the usage and function of the Web. Furthermore, by representing each
user as a vertex and placing (weighted) edges between two users as they com-
municate over the Internet services such as Skype, Microsoft’s Messenger Live,
and twitter, one can perform interesting usage statistics for optimizing related
software and hardware configurations.

Concretely, in computer networks, clustering can be used to identify relevant
substructures, analyze the connectivity for modeling or structural optimization,
and perform root cause analysis of network faults [9,10]. In tele-communication
systems, savings could be obtained by grouping a dense cluster of users on the
same server as it would reduce the inter-server traffic. Similar analysis can help
traditional tele-operators offer more attractive service packages or improve call
delivery efficiency by identifying “frequent call clusters”, i.e., groups of people
that mainly call each other (such as families, coworkers, or groups of teenage
friends) and hence better design and target the call service offers and special
rates for calling to a limited set of pre-specified phone numbers. Clustering the
caller information can also be used for fraud detection by identifying changes
(outliers) in the communication pattern, call durations and a geographical em-
bedding, in order to determine the cluster of “normal call destinations” for a
specific client and which calls are “out of the ordinary”. For networks with a
dynamic topology, with frequent changes in the edge structure, local clustering
methods prove useful, as the network nodes can make local decisions on how
to modify the clustering to better reflect the current network topology [11]. Im-
posing a cluster structure on a dynamic network eases the routing task [12]. In
bioinformatics, graph clustering analysis can be applied to the classification of
gene expression data (e.g., gene-activation dependencies), protein interactions,
and epidemic spreading of diseases (e.g., identifying groups of individuals “ex-
posed” to the influence of a certain individual of interest or locating potentially
infected people when an infected and contagious individual is encountered). In
fact, cluster analysis of a social network also helps to identify the formation of
trends or communities (relevant to market studies) and social influence behavior.

Graph Clustering: State of Art and Open Issues
Graph clustering has been studied by both theoreticians and practitioners over
the last decade. Theoreticians are interested in investigating cluster properties,

10 Y. Zhou and L. Liu

algorithms and quality measures by exploiting underlying mathematical struc-
tures formalized in graph theory. Practitioners are investigating graph clustering
algorithms by exploiting known characteristics of application-specific datasets.
However, there is little effort on bridging the gap between theoretical aspect and
practical aspect in graph clustering.

The goal of graph clustering is to partition vertices in a large graph into sub-
graphs (clusters) based on a set of criteria, such as vertex similarity measures,
adjacency-based measures, connectivity-based measures, density measures, or
cut-based measures. Based on the type of measures used for identifying clusters,
existing graph clustering methods can be categorized into three classes: struc-
ture based clustering, attribute based clustering and structure-attribute based
clustering. Structure based clustering mainly focuses on the topological structure
of a graph for clustering, but largely ignores the rich attributes of vertices. At-
tribute based clustering, in contrast, focuses primarily on attribute-based vertex
similarity, but suffers from isolated partitions of the graph as a result of graph
clustering. Structure-attribute clustering is a hybrid approach, which combines
structural similarity and attribute similarity through a unified distance measure.
Most of the graph clustering techniques proposed to date aremainly focused on
the topological structures using various criteria, including normalized cut [5],
modularity [6], structural density [7] or flows [8]. The clustering results usually
contain densely connected subgraphs within clusters. However, such methods
largely ignore vertex attributes in the clustering process. On the other hand,
attribute similarity based clustering [13] partitions large graphs by grouping
nodes based on user-selected attributes and relationships. Vertices in one group
share the same attribute values and relate to vertices in another group through
the same type of relationship. This method achieves homogeneous attribute
values within clusters, but ignores the intra-cluster topological structures. As
shown in our experiments [14,15], the generated partitions tend to have very low
connectivity.

Other recent studies on graph clustering include the following. Sun et al.
[16] proposed GraphScope which is able to discover communities in large and
dynamic graphs, as well as to detect the changing time of communities. Sun
et al. [17] proposed an algorithm, RankClus, which integrates clustering with
ranking in large-scale information network analysis. The final results contain a
set of clusters with a ranking of objects within each cluster. Navlakha et al. [18]
proposed a graph summarization method using the MDL principle. Tsai and
Chiu [19] developed a feature weight self-adjustment mechanism for K-Means
clustering on relational datasets. In that study, finding feature weights is modeled
as an optimization problem to simultaneously minimize the separations within
clusters and maximize the separations between clusters. The adjustment margin
of a feature weight is estimated by the importance of the feature in clustering. [20]
proposed an algorithm for mining communities on heterogeneous social networks.
A method was designed for learning an optimal linear combination of different
relations to meet users’ expectation.

Clustering Analysis in Large Graphs with Rich Attributes 11

The rest of this chapter is organized as follows. Section 2 describes the basic
concepts and general issues in graph clustering. Section 3 introduces the prelim-
inary concepts and formulates the clustering problem for attribute augmented
graphs and our proposed approach SA-Cluster. Section 4 presents presents our
proposed incremental algorithm Inc-Cluster. Section 5 discusses optimization
techniques to further improve computational performance. Finally, Section 6
concludes the chapter.

2 General Issues in Graph Clustering

Although graph clustering has been studied extensively, the problem of cluster-
ing analysis of large graphs with rich attributes remains to be a big challenge
in practice. We argue that effective clustering analysis of a large graph with
rich attributes requires a systematic graph clustering analysis framework that
partition the graph based on both structural similarity and attribute similarity.
One approach is to model rich attributes of vertices as auxiliary edges among
vertices, resulting in a complex attribute augmented graph with multiple edges
between some vertices.

In this section, we first describe the problem with an example. Then we review
the graph clustering techniques and basic steps to take for preparation of clus-
tering. We end this section by introducing the approach to combine structure
and attribute similarity in a unified framework, called SA-Cluster. We dedicate
Section 3 to present the design of SA-Cluster approach. The main idea is to use
a cluster-convergence based iterative edge-weight assignment technique, which
assigns different weights to different attributes based on how fast the clusters
converge. We use a K-Medoids clustering algorithm to partition a graph into k
clusters with both cohesive intra-cluster structures and homogeneous attribute
values by applying a series of matrix multiplication operations for calculating
the random walk distances between graph vertices. Optimization techniques are
developed to reduce the cost of recalculating the random walk distances upon
an iteration of the edge weight update.

The general methodology of graph clustering makes the following hypothe-
sis [21]: First, a graph consists of dense subgraphs such that a dense subgraph
contains more well-connected internal edges connecting the vertices in the sub-
graph than cutting edges connecting the vertices across subgraphs. Second, a
random walk that visits a subgraph will likely stay in the subgraph until many
of its vertices have been visited. Third, among all shortest paths between all
pairs of vertices, links between different dense subgraphs are likely to be in many
shortest paths. We will briefly review the graph clustering techniques developed
based on each of the hypothesis.

The graph clustering framework consists of four components: modeling, mea-
sure, algorithm, and evaluation. The modeling component deals with the problem
of transforming data into a graph or modeling the real application as a graph.
The measurement deals with both distance measure and quality measure, both
of which implement an objective function that determines and rates the quality

12 Y. Zhou and L. Liu

of a clustering. The algorithm is to exactly or approximately optimize the qual-
ity measure of the graph clustering. The evaluation component involves a set
of metrics used to evaluate the performance of clustering by comparing with a
“ground truth” clustering.

An attribute-augmented graph is denoted as G = (V,E,Λ), where V is the
set of n vertices, E is the set of edges, and Λ = {a1, ..., am} is the set of m
attributes associated with vertices in V for describing vertex properties. Each
vertex vi ∈ V is associated with an attribute vector [a1(vi), ..., am(vi)] where
aj(vi) is the attribute value of vertex vi on attribute aj , and is taken from the
attribute domain dom(aj). We denote the set of attribute values by Va and
Va = {aj(vi) ∈ dom(aj)|i = 1, . . . n, j = 1, . . .m}. The graph partition of G is
to partition an attribute-augmented graph G into k disjoint subgraphs, denoted
by Gi = (Vi, Ei, Λ), where V =

⋃k
i=1 Vi and Vi

⋂
Vj = φ for any i �= j.

Figure 1 shows an example of a coauthor attributed Graph [15] where a vertex
represents an author and an edge represents the coauthor relationship between
two authors. In addition to the author ID, each vertex also has two attributes,
research topic and age, associated with each author as the vertex properties.
As shown in Figure 1, authors r1–r7 work on XML, authors r9–r11 work on
Skyline and r8 works on both. In addition, each author has a range value to
describe his/her age.

Fig. 1. A Coauthor Network with Two Attributes “Topic” and “Age” [15]

2.1 Graph Partition Techniques

Graph partition techniques refer to methods and algorithms that can parti-
tion a graph into densely connected subgraphs which are sparsely connected
to each other. As we have discussed previously, there are three kinds of graph
partition approaches: structure-similarity based graph clustering, attribute sim-
ilarity based graph clustering, and structure-attribute combined graph cluster-
ing. Structure-based clustering only considers topological structure similarity
but ignores the correlation of vertex attribute. Therefore, the clusters generated
have a rather random distribution of vertex properties within clusters. On the

Clustering Analysis in Large Graphs with Rich Attributes 13

other hand, the attribute based clustering follows the grouping of compatible
attributes and the clusters generated have good intra-cluster attribute similarity
but a rather loose intra-cluster topological structure. A desired clustering of an
attribute augmented graph should achieve a good balance between the following
two properties: (1) vertices within one cluster are close to each other in terms
of structure, while vertices between clusters are distant from each other; and (2)
vertices within one cluster have similar attribute values, while vertices between
clusters could have quite different attribute values. The structure-attribute com-
bined graph clustering method aims at partitioning a graph with rich attributes
into k clusters with cohesive intra-cluster structures and homogeneous attribute
values.

Orthogonal to the structure and attribute similarity based classification of
graph clustering algorithms, another way to categorize graph clustering algo-
rithms is in terms of top-down or bottom up partitioning. There are two ma-
jor classes of algorithms: divisive and agglomerative. Divisive clustering follows
top-down style and recursively splits a graph into subgraphs. In contrast, ag-
glomerative clustering works bottom-up and iteratively merges singleton sets
of vertices into subgraphs. The divisive and agglomerative algorithms are also
called hierarchical since they produce multi-level clusterings, i.e., one cluster-
ing follows the other by refining (divisive) or coarsening (agglomerative). Most
graph clustering algorithms proposed to date are divisive, including cut-based,
spectral clustering, random walks, and shortest path.

The cut-based algorithms are associated with max-flow min-cut theorem [22],
which states that “the value of the maximum flow is equal to the cost of the min-
imum cut”. One of the earliest algorithms by Kernighan and Lin [23] splits the
graph by performing recursive bisection (split into two parts at a time), aiming
to minimize inter-cluster density (cut size). The high complexity of the algo-
rithm (O(|V |3) makes it less competitive in real applications. An optimization is
proposed by Flake et al. [24] to optimize the bicriterion measure and the com-
plexity, resulting in a more practical cut-based algorithm that is proportional to
the number of clusters K using a heuristic.

The spectral clustering algorithms are based on spectral graph theory with
Laplacian matrix as the mathematical tool. The proposition that the multiplic-
ity k of the eigenvalue 0 of L equals to the number of connected components
in the graph is used to establish the connection between clustering and spec-
trum of Laplacian matrix (L). The main reason for spectral clustering is that
it does not make strong assumptions on the form of the clusters and can solve
very general problems like intertwined spirals which k-means clustering han-
dles poorly. Unfortunately, spectral clustering could be unstable under different
choices of graphs and parameters [25,26]. The running complexity of spectral
clustering equals to the complexity of computing the eigenvectors of Laplacian
matrix which is (O(|V |3).

The random walk based algorithms are based on the hypothesis that a random
walk is likely to visit many vertices in a cluster before moving to the other
cluster. The Markov clustering algorithm (MCL) by Van Dogen [21] is one of

14 Y. Zhou and L. Liu

the best in this category. The MCL algorithm iteratively applies two operators
(expansion and inflation) by matrix computation until convergence. Expansion
operator simulates spreading of random walks and inflation models demotion of
inter-cluster walks; the sequence matrix computation results in eliminating inter-
cluster interactions and leaving only intra-cluster components. The complexity
of MCL is O(m2|V |), where m is the number of attributes associated to each
vertex. A key point of random walk is that it is actually linked to spectral
clustering [26], e.g., ncut can be expressed in terms of transition probabilities
and optimizing ncut can be achieved by computing the stationary distribution
of a random walk in the graph.

The shortest path based graph clustering algorithms are based on the hy-
pothesis that the links between clusters are likely to be in the shortest paths.
The use of betweenness and information centrality are two representative ap-
proaches in this category. The concept of edge betweenness [27] refers to the
number of shortest paths connecting any pair of vertices that pass through the
edge. Girvan and Newman [27] proposed an algorithm that iteratively removes
one of the edges with the highest betweenness. The complexity of the algorithm
is O(|V ||E|2). Instead of betweenness, Fortunato et al. [28] used information
centrality for each edge and stated that it performs better than betweenness but
with a higher complexity of O(|V ||E|3).

We firmly believe that no algorithm is a panacea for three reasons. First, the
“best clustering” depends on applications, data characteristics, and granularity.
Second, a clustering algorithm is usually developed to optimize some quality
measure as its objective function, therefore, it is unfair to compare one algo-
rithm that favors one measure with another that favors some different measure.
Finally, there is no perfect measure that captures all the characteristics of clus-
ter structures for all types of datasets. However, all graph clustering algorithms
share some common open issues, such as storage cost, processing cost in terms of
memory and computation, and the need for optimizations and distributed graph
clustering algorithms for big graph analytics.

2.2 Basic Preparation for Graph Clustering

Graph Storage Structure.There are mainly three types of data structures for
the representation of graphs in practice [29]: Adjacency list, Adjacency matrix,
and Sparse Matrix. Adjacency list of a vertex keeps, for each vertex in the graph,
a list of all other vertices to which it has an edge. Adjacency matrix of a graph
G on n vertices is the n × n matrix where the non-diagonal entry aij is the
number of edges from vertex i to vertex j, and the diagonal entry aii, depending
on the convention, is either once or twice the number of edges (loops) from
vertex i to itself. A sparse matrix is an adjacency matrix populated primarily
with zeros. In this case, we create vectors to store the indices and values of the
non-zero elements. The computational complexity of sparse matrix operation is
proportional to the number of non-zero elements in the matrix. Sparse matrix is
generally preferred because substantial memory requirement reductions can be
realized by storing only the non-zero entries.

Clustering Analysis in Large Graphs with Rich Attributes 15

Handling A Large Number of Attributes. Large attributed graphs usually
contain huge amounts of attributes in real applications. Each attribute may have
abundant values. The available main-memory still remains very small compared
to the size of large graphs with rich attributes. To make graph clustering ap-
proach applicable to a wide range of applications, we need to first handle rich
attributes as well as continuous attributes with preprocessing techniques in the
following.

First of all, we can perform correlation analysis to detect correlation between
attributes and then perform dimensionality reduction to retain a smaller set of
orthogonal dimensions. Widely used dimensionality reduction techniques such
as principal component analysis (PCA) and multifactor dimensionality reduc-
tion (MDR) can be used to create a mapping from the original space to a new
space with fewer dimensions. According to the mapping, we can compute the
new attribute values of a vertex based on the values of its original attributes.
Then we can construct the attribute augmented graph in the new feature space
and perform graph clustering.

Discretization for Continuous Attributes. To handle continuous attributes,
discretization can be applied to convert them to nominal features. Typically the
continuous values are discretized into K partitions of an equal interval (equal
width) or K partitions each with the same number of data points (equal fre-
quency). For example, there is an attribute “prolific” for each author in the
DBLP bibliographic graph indicating whether the author is prolific. If we use
the number of publications to measure the prolific value of an author, then
“prolific” is a continuous attribute. According to the distribution of the publica-
tion number in DBLP, we discretized the publication number into 3 partitions:
authors with < 5 papers are labeled as low prolific, authors with ≥ 5 but < 20
papers are prolific, and the authors with ≥ 20 papers are tagged as highly
prolific.

2.3 Graph Clustering with SA-Cluster

In order to demonstrate the advantage and feasibility of graph clustering with
both structure similarity and attribute similarity, we describe the SA-Cluster
proposed by Zhou et.al [14], a graph clustering algorithm by combining struc-
tural and attribute similarities. SA-Cluster uses the random walk distance as the
vertex similarity measure and performs clustering by following the K-Medoids
framework. As different attributes may have different degrees of importance, a
weight self-adjustment method was used to learn the degree of contributions
by different attributes in the graph clustering process based on clustering con-
vergence rate. The attribute edge weights {ω1, . . . , ωm} are updated in each
iteration of the clustering process. Accordingly, the transition probabilities on
the graph are affected iteratively with the attribute weight adjustments. Thus
the random walk distance matrix needs to be recalculated in each iteration of

16 Y. Zhou and L. Liu

the clustering process. Since the random walk distance calculation involves ma-
trix multiplication, which has a time complexity of O(n3), the repeated random
walk distance calculation causes a non-trivial computational cost in SA-Cluster.
Zhou et.al [14] showed through the experiments that the random walk distance
computation takes 98% of the total clustering time in SA-Cluster.

The concept of random walk has been widely used to measure vertex distances
and similarities. Jeh and Widom [30] designed a measure called SimRank, which
defines the similarity between two vertices in a graph by their neighborhood
similarity. Pons and Latapy [31] proposed to use short random walks of length l
to measure the similarity between two vertices in a graph for community detec-
tion. Tong et al. [32] designed an algorithm for fast random walk computation.
Other studies which use random walk with restarts include connection subgraph
discovery [33] and center-piece subgraph discovery [34]. Liu et al. [35] proposed
to use random walk with restart to discover subgraphs that exhibit significant
changes in evolving networks.

In the subsequent sections, we describe in detail the SA-Cluster algorithm, es-
pecially the weight self-adjustment mechanism in [14] and the possible techniques
for cost reduction through efficient computation of random walk distance upon
the weight increments via incremental approaching the augmented graph[15].
We also provide a discussion on the set of open issues and research challenges
for scaling large graph clustering with rich attributes.

3 Graph Clustering Based on Structural/Attribute
Similarities

In this section, we first present the formulation of attribute augmented graph
considering both structural and attribute similarities. A unified distance measure
based on random walk is proposed to combine these two objectives. We then give
an adaptive clustering algorithm SA-Cluster for the attributed graph.

The problem is quite challenging because structural and attribute similari-
ties are two seemingly independent, or even conflicting goals – in our example,
authors who collaborate with each other may have different properties, such as
research topics, age, as well as other possible attributes like positions held and
prolific numbers; while authors who work on the same topics or who are in a
similar age may come from different groups with no collaborations. It is not
straightforward to balance these two objectives.

To combine both structural and attribute similarities, we first define an at-
tributed augmented graph. Figure 2 is an attribute augmented graph on the coau-
thor network example. Two attribute vertices v11 and v12 representing the topics
“XML” and “Skyline” are added to the attribute graph and form an attribute
augmented graph. Authors with the topic ?XML? are connected to v11 in dashed
lines. Similarly, authors with the topic ?Skyline? are connected to v12. It inten-
tionally omits the attribute vertices and edges corresponding to the age attribute,
for the sake of clear presentation. Then the graph has two types of edges: the

Clustering Analysis in Large Graphs with Rich Attributes 17

Fig. 2. Attribute Augmented Graph [15]

coauthor edge and the attribute edge. Two authors who have the same research
topic are now connected through the attribute vertex.

A unified neighborhood random walk distance measure is designed to measure
vertex closeness on an attribute augmented graph. The random walk distance
between two vertices vi, vj ∈ V is based on one or more paths consisting of both
structure edges and attribute edges. Thus it effectively combines the structural
proximity and attribute similarity of two vertices into one unified measure.

We first review the definition of transition probability matrix and random
walk matrix. The transition probability matrix PA is represented as

PA =
[
PV1 A1

B1 O

]

(1)

where PV1 is a |V | × |V | matrix representing the transition probabilities be-
tween structure vertices; A1 is a |V | × |Va| matrix representing the transition
probabilities from structure vertices to attribute vertices; B1 is a |Va| × |V | ma-
trix representing the transition probabilities from attribute vertices to structure
vertices; and O is a |Va| × |Va| zero matrix.

The detailed definitions for these four submatrices are shown as follows. The
transition probability from vertex vi to vertex vj through a structure edge is

pvi,vj =

⎧
⎨

⎩

ω0

|N(vi)| ∗ ω0 + ω1 + . . .+ ωm
, if(vi, vj) ∈ E

0, otherwise
(2)

where N(vi) represents the set of structure vertices connected to vi. Similarly,
the transition probability from vi to vjk through an attribute edge is

pvi,vjk
=

⎧
⎨

⎩

ωj
|N(vi)| ∗ ω0 + ω1 + . . .+ ωm

, if(vi, vjk) ∈ Ea
0, otherwise

(3)

18 Y. Zhou and L. Liu

The transition probability from vik to vj through an attribute edge is

pvik,vj =

⎧
⎨

⎩

1
|N(vik)| , if(vik, vj) ∈ Ea
0, otherwise

(4)

The transition probability between two attribute vertices vip and vjq is 0 as there
is no edge between attribute vertices.

Based on the definition of the transition probability matrix, the unified neigh-
borhood random walk distance matrix RA can be defined as follow,

RA =
l∑

k=1

c(1− c)kP kA (5)

where PA is the transition probability matrix of an attribute augmented graph
Ga. l as the length that a random walk can go and c ∈ (0, 1) is the random walk
restart probability

According to this distance measure, we take a K-Medoids clustering approach
to partition the graph into k clusters which have both cohesive intra-cluster
structures and homogeneous attribute values. In the preparation phase, we ini-
tialize the weight value for each of the m attributes to value of 1, and select k
initial centroids with the highest density values.

As different attributes may have different degrees of importance, at each it-
eration, a weight ωi, which is initialized to 1.0, is assigned to an attribute ai. A
weight self-adjustment method is designed to learn the degree of contributions
of different attributes. The attribute edge weights {ω1, . . . , ωm} are updated in
each iteration of the clustering process through quantitatively estimation of the
contributions of attribute similarity in the random walk distance measure. The-
oretically we can prove that the weights are adjusted towards the direction of
clustering convergence.

In the above example, after the first iteration, the weight of research topic
will be increased to a larger value while the weight of age will be decreased, as
research topic has better clustering tendency than age. Accordingly, the transi-
tion probabilities on the graph are affected iteratively with the attribute weight
adjustments. Thus the random walk distance matrix needs to be recalculated in
next iteration of the clustering process. The algorithm repeats the above four
steps until the objective function converges.

One issue with SA-Cluster is the computational complexity. We need to com-
pute N2 pairs of random walk distances between vertices in V through matrix
multiplication. As W = {ω1, . . . , ωn} is updated, the random walk distances need
to be recalculated, as shown in SA-Cluster. The cost analysis of SA-Cluster can
be expressed as follows.

t · (Trandom walk + Tcentroid update + Tassignment) (6)

where t is the number of iterations in the clustering process, Trandom walk is the
cost of computing the random walk distance matrix RA, Tcentroid update is the

Clustering Analysis in Large Graphs with Rich Attributes 19

Algorithm 1. Attributed Graph Clustering SA-Cluster
Input: an attributed graph G, a length limit l of random walk paths, a restart prob-
ability c, a parameter σ of influence function, cluster number k.
Output: k clusters V1, ..., Vk.

1: Initialize ω1 = ... = ωm = 1.0, fix ω0 = 1.0;
2: Calculate the unified random walk distance matrix Rl

A;
3: Select k initial centroids with highest density values;
4: Repeat until the objective function converges:
5: Assign each vertex vi to a cluster C∗ with a centroid

c∗ where c∗ = argmaxcjd(vi, cj);
6: Update the cluster centroids with the most centrally

located point in each cluster;
7: Update weights ω1, ..., ωm;
8: Re-calculate Rl

A;
9: Return k clusters V1, ..., Vk.

cost of updating cluster centroids, and Tassignment is the cost of assigning all
points to cluster centroids.

The time complexity of Tcentroid update and Tassignment is O(n), since each of
these two operations performs a linear scan of the graph vertices. On the other
hand, the time complexity of Trandom walk is O(n3) because the random walk
distance calculation consists of a series of matrix multiplication and addition.
According to the random walk equation, RlA =

∑l
γ=1 c(1− c)γP γA where l is the

length limit of a random walk. To compute RlA, we have to compute P 2
A, P 3

A,
. . . , P lA, i.e., (l − 1) matrix multiplication operations in total. It is clear that
Trandom walk is the dominant factor in the clustering process. We find in the
experiments that the random walk distance computation takes 98% of the total
clustering time in SA-Cluster.

To reduce the number of matrix multiplication, full-rank approximation op-
timization techniques on matrix computation based on Matrix Neumann Series
and SVD decomposition are designed to improve efficiency in calculating the
random walk distance. It reduces the number of matrix multiplication from O(l)
to O(log2l) where l is the length limit of the random walks.

4 The Incremental Algorithm

In this section, we show one way to improve the efficiency and scalability of
SA-Cluster by using an efficient incremental computation algorithm to update
the random walk distance matrix. The core idea is to compute the full random
walk distance matrix only once at the beginning of the clustering process. Then
in each following iteration of clustering, given the attribute weight increments
{Δω1, . . . , Δωm}, we want to update the original random walk distance matrix,
instead of re-calculating the matrix from scratch.

20 Y. Zhou and L. Liu

(a) ΔP 1
A (b) ΔP 2

A (c) ΔP 20
A

Fig. 3. Matrix Increment Series [15]

Example 1. Each of 1,000 authors has two attributes: “prolific” and “research
topic”. The first attribute “prolific” contains two values, and the second one
“research topic” has 100 different values. Thus the augmented graph contains
1,000 structure vertices and 102 attribute vertices. The attribute edge weights
for “prolific” and “research topic” are ω1, ω2 respectively. Figure 3 shows three
matrices ΔP 1

A, ΔP 2
A and ΔP 20

A corresponding to the 1st, 2nd, and 20th order
matrix increment, due to the attribute weight increments {Δω1, Δω2}. The blue
dots represent non-zero elements and the red dashed lines divide each matrix into
submatrices according to the block matrix representation. As shown in Figure 3,
ΔP kA becomes denser when k increases, which demonstrates that the effect of
attribute weight increments is propagated to the whole graph through matrix
multiplication.

Existing fast random walk [32] or incremental PageRank computation approaches
[36,37] can not be directly applied to our problem, as they partition the graph
into a changed part and an unchanged part. However, our incremental com-
putation problem is much more challenging than the above problems, because
the boundary between the changed part and the unchanged part of the graph
is not clear. The attribute weight adjustments will be propagated to the whole
graph in l steps. As we can see from Figure 3, although the edge weight incre-
ments {Δω1, . . . , Δωm} affect a very small portion of the transition probability
matrix PA, (i.e., see ΔP 1

A), the changes are propagated widely to the whole
graph through matrix multiplication (i.e., see ΔP 2

A and ΔP 20
A). It is difficult to

partition the graph into a changed part and an unchanged part and focus the
computation on the changed part only.

The main idea of the incremental algorithm [15] can be outlined as follows.
According to Eq.(5), RA is the weighted sum of a series of matrices P kA, where
P kA is the k-th power of the transition probability matrix PA, k = 1, . . . , l.
Hence the problem of computing ΔRA can be decomposed into the subproblems
of computing ΔP kA for different k values. Therefore, our target is, given the
original matrix P kA and the edge weight increments {Δω1, . . . , Δωm}, compute
the increment ΔP kA.

Clustering Analysis in Large Graphs with Rich Attributes 21

The kth-order matrix increment ΔP kA can be calculated based on: (1) the
original transition probability matrix PA and increment matrix ΔA1, (2) the
(k-1)-th order matrix increment ΔP k−1

A , and (3) the original kth order sub-
matrices Ak and Ck. The key is that, if ΔA1 and ΔP k−1

A contain many zero
elements, we can apply sparse matrix representation to speed up the matrix
multiplication.

In summary, the incremental algorithm for calculating the new random
walk distance matrix RN,A, given the original RA and the weight increments
{Δω1, . . . , Δωm} iteratively computes the increments ΔP kA for k = 1, . . . , l, and
accumulates them into the increment matrix ΔRA according to Eq.(5). Finally
the new random walk distance matrix RN,A = RA +ΔRA is returned.

The total runtime cost of the clustering process with Inc-Cluster can be ex-
pressed as

Trandom walk + (t− 1) · Tinc + t · (Tcentroid update + Tassignment)

where Tinc is the time for incremental computation and Trandom walk is the time
for computing the random walk distance matrix at the beginning of clustering.
The speedup ratio r between SA-Cluster and Inc-Cluster is

t(Trandom walk + Tcentroid update + Tassignment)
Trandom walk + (t− 1)Tinc + t(Tcentroid update + Tassignment)

Since Tinc, Tcentroid update, Tassignment � Trandom walk, the speedup ratio is ap-
proximately

r ≈ t · Trandom walk

Trandom walk
= t (7)

Therefore, Inc-Cluster can improve the runtime cost of SA-Cluster by approxi-
mately t times, where t is the number of iterations in clustering.

Readers may refer to [14,15] for detailed experimental evaluation of the SA-
Cluster and its incremental algorithm with structure-similarity based approach
and attribute-similarity based approach in terms of runtime complexity and
graph density and entropy measures.

5 Optimization Techniques

The iterative calculation of random walk distance matrix with attribute weight
refinement is a very useful model for analyzing the closeness between two vertices
in large graph data. Unfortunately, it has one significant drawback: memory per-
formance is terrible. With large graph data, the results can be disastrous, leading
to huge memory use, poor performance, and in the extreme case the termina-
tion of the clustering process by the operating system. The complexity of matrix
multiplication, if carried out naively, is O(n3) so that calculating large numbers
of matrix multiplications can be very time-consuming [29]. In this section, we
will first analyze the storage cost of the incremental algorithm Inc-Cluster. Then
we will discuss some techniques to further improve computational performance
as well as save memory consumption.

22 Y. Zhou and L. Liu

5.1 The Storage Cost and Optimization

According to the incremental algorithm [15], we need to store a series of subma-
trices, as listed in the following.

The original transition probability matrix PA. Based on the computational
equations of ΔPVk

, ΔAk, ΔBk and ΔCk, we have to store PV1 , B1, ΔA1 and
AN,1. According to the equation of ΔA1, ΔA1 = [Δω1 ·Aa1 , ..., Δωm ·Aam] where
A1 = [Aa1 , Aa2 , ..., Aam]. In addition AN,1 = A1 +ΔA1. Therefore, we only need
to store A1 so as to derive ΔA1 and AN,1 with some simple computation. In
summary, we need to store the original transition probability matrix PA.

The (k-1)th order matrix increment ΔP k−1
A . To calculate the kth order

matrix increment ΔP kA, based on the equations of ΔPVk
, ΔAk, ΔBk and ΔCk,

we need to use ΔPVk−1 , ΔAk−1, ΔBk−1 and ΔCk−1. Therefore, we need to store
the (k-1)th order matrix increment ΔP k−1

A . After ΔP kA is computed, we can
throw away ΔP k−1

A and save ΔP kA in turn for the computation of ΔP k+1
A in the

next iteration.

A series of Ak and Ck for k = 2, ..., l. In the equation of ΔAk , we have derived
PVk−1ΔA1 = [Δω1 ·Ak,a1 , ..., Δωm ·Ak,am]. We have mentioned that, the scalar
multiplication Δωi · Ak,ai is cheaper than the matrix multiplication PVk−1ΔA1.
In addition, this is more space efficient because we only need to store Ak, but
not PVk−1 . The advantage is that the size of Ak is |V |×|Va| = n×∑m

i=1 ni, which
is much smaller than the size of PVk−1 as |V | × |V | = n2. The above conclusion
holds because

∑m
i=1 ni � n. For example, in our experiments, we cluster a

network of 10, 000 authors (i.e., n = 10, 000) with 103 attribute vertices (i.e.,∑m
i=1 ni = 103). The size of PVk−1 is 10, 0002 while the size of Ak is 10, 000×103.

Thus PVk−1 is about 100 times larger than Ak.
Similarly, in the equation of ΔCk, we have Bk−1ΔA1 = [Δω1 · Ck,a1 , ...,

Δωm ·Ck,am]. In this case we only need to store Ck, but not Bk−1. The advantage
is that the size of Ck is |Va|× |Va| = (

∑m
i=1 ni)

2, which is much smaller than the
size of Bk−1 as |Va| × |V | =

∑m
i=1 ni × n. For example, in our experiments, the

size of Bk−1 is 103 × 10, 000 while the size of Ck is 1032. Thus Bk−1 is about
100 times larger than Ck.

In summary, to calculate ΔP kA for k = 2, ..., l, we have to store Ak and Ck for
different k values.

Total storage cost. By adding up the sizes of matrices PA, ΔP k−1
A , ΔP kA, RA,

Ak and Ck for different k, the total storage cost of Inc-Cluster is

Ttotal = size(RA) + size(PA) + size(ΔP k−1
A) + size(ΔP kA)

+
l∑

k=2

size(Ak) +
l∑

k=2

size(Ck)

= |V |2 + 3(|V |+ |Va|)2 + (l − 1)(|V | × |Va|+ |Va|2)

= n2 + 3(n+
m∑

i=1

ni)2 + (l − 1)(n ·
m∑

i=1

ni + (
m∑

i=1

ni)2)

Clustering Analysis in Large Graphs with Rich Attributes 23

On the other hand, the non-incremental clustering algorithm SA-Cluster has to
store four matrices in memory including PA, P k−1

A , P kA and RA. Therefore, the
extra space used by Inc-Cluster compared with SA-Cluster is

Textra = (l − 1)(n ·
m∑

i=1

ni + (
m∑

i=1

ni)2) (8)

which is linear of n. Therefore, Inc-Cluster uses a small amount of extra space
compared with SA-Cluster.

There are a number of research projects dedicated to graph databases. One
objective of such development is to optimize the storage and access of large
graphs with billions of vertices and millions of relationships. The Resource De-
scription Framework (RDF) is a popular schema-free data model that is suitable
for storing and representing graph data in a compact and efficient storage and
access structure. Each RDF statement is in the form of subject-predicate-object
expressions. A set of RDF statements intrinsically represents a labeled, directed
graph. Therefore, widely used RDF storage techniques such as RDF-3X [40] and
Bitmat [41] can be used to create a compact organization for large graphs.

5.2 Matrix Computation Optimization

There are three kinds of optimization techniques for matrix multiplication: block
algorithms, sampling techniques and group-theoretic approach. All these tech-
niques can speed up the performance of matrix computation.

Recent work by numerical analysts has shown that the most important com-
putations for dense matrices are blockable [42]. The blocking optimization works
well if the blocks fit in the small main memory. It is quite flexible and applicable
to adjust block sizes and strategies in terms of the size of main memory as well
as the characteristics of the input matrices.

Sampling Techniques are primarily meant to reduce the number of non-zero
entries in the matrix and hence save memory. It either samples non-zero entries
in terms of some probability distribution [43] or prunes those entries below the
threshold based on the average values within a row or column [8]. When we use
sparse matrix or other compression representations, it can dramatically improve
the scalability and capability of matrix computation.

Recently, a fast matrix multiplication algorithm based on group-theoretic ap-
proach was proposed in [44]. It selects a finite group G satisfying the triple
product property that allows n×n matrix multiplication to be reduced to multi-
plication of elements of the group algebra C[G]. A Fourier transform is performed
to decompose a large matrix multiplication into several smaller matrix multipli-
cations, whose sizes are the character degrees ofG. This gives rise to a complexity
at least as great as O(n2.41).

As mentioned previously, all experiments [15] on DBLP 84, 170 dataset needed
a high-memory configuration (128GB main memory). To improve the applica-
bility of clustering algorithms, Zhou et.al [45] showed their experimental results

24 Y. Zhou and L. Liu

about scaling large graph clustering with block multiplication optimization un-
der memory constrained server. Experiments were done on a low-memory envi-
ronment: two compute servers with 4GB and 8GB main memory, respectively.
The runtime curve appears an interesting “U” curve. That is, the runtime is
relatively long when the number of blocks is set to be extremely small or large
but it keeps quite stable between the two ends of the spectrum. Although block
optimization technique can dramatically decrease the memory consumption re-
quired, SA-Cluster with block multiplication optimization is usually 8 and 4.5
times slower than non-block SA-Cluster for 4GB and 8GB main memory envi-
ronments respectively. One obvious approach to scaling large graph clustering is
to develop distributed graph clustering methods. In short, we argue that how to
improve the scalability and applicability of graph clustering algorithms contin-
ues to be an important open issue for wide deployment of graph clustering to
big data analytics.

5.3 Parallelism

Although data storage techniques are growing at a much faster speed, the avail-
able main-memory still remains very small compared to the accessible disk-space.
This creates the main bottleneck while executing large scale matrix computa-
tions. Parallel Computing has been employed for many years. Parallel approaches
in a distributed memory multicomputer environment can efficiently improve the
scalability and applicability of matrix multiplications [46]. The distributed sys-
tem is viewed as a ring of processors and independent disk algorithms parallelized
on block level.

MapReduce [47] is an excellent distributed computing model for processing
large data sets on clusters of computers. For example, one can specify mappers
that are responsible for distributing the block data to the reducers, with the help
of a carefully chosen intermediate key structure, key comparator and partition-
ing functions. Reducers can be used to do the block multiplications and merge
intermediate blocks to produce the final results.

6 Conclusion

In this chapter, we have given an overview of some of the essential techniques
of graph clustering based through a classification of graph clustering meth-
ods into three classes: structure-based clustering, attribute-based clustering and
structure-attribute combined clustering. We argue that a key challenge for ad-
dressing the problem of clustering large graphs with rich attributes is to achieve
a good balance between structural and attribute similarities. Such balance can
be driven by the objective function defined by domain-specific graph cluster-
ing analysis. We have described the use of the attribute-augmented graph to
tackle graph clustering with rich attributes with two novel developments. First,
we described a hybrid structure and attribute based neighborhood random walk
distance measure, which is designed to measure vertex closeness on an attribute

Clustering Analysis in Large Graphs with Rich Attributes 25

augmented graph. Second, we describe the use of a learning algorithm to adjust
the degree of contributions of different attributes in the random walk model as
we iteratively refine the clusters, and prove that the weights are adjusted to-
wards the direction of clustering convergence. By using a K-Medoids clustering
approach, we show that the iterative weight assignment method is effective for
partitioning a graph into k clusters with both cohesive intra-cluster structures
and homogeneous attribute values. Finally, we presented a set of open issues and
challenges in clustering analysis of large graphs with rich attributes, including
processing and storage optimizations as well as distributed and parallel analytic
models.

Acknowledgement. The authors are partially funded by research grants under
NSF NetSE program, NSF CyberTrust program, an IBM SUR grant, an IBM
faculty award, and a grant from Intel research council.

References

1. Ng, R., Han, J.: Efficient and effective clustering method for spatial data mining.
In: Proc. 1994 Int. Conf. Very Large Data Bases (VLDB 1994), Santiago, Chile,
pp. 144–155 (September 1994)

2. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases. In: Proc. 1996 Int. Conf. Knowledge
Discovery and Data Mining (KDD 1996), pp. 226–231 (1996)

3. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. In: Proc. 1998 ACM-
SIGMOD Int. Conf. Management of Data (SIGMOD 1998), Seattle, WA, pp. 94–
105 (June 1998)

4. Gibson, D., Kleinberg, J., Raghavan, P.: Inferring web communities from link topol-
ogy. In: Proc. 9th ACM Conf. Hypertext and Hypermedia, Pittsburgh, PA, pp.
225–234 (June 1998)

5. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Analysis and Machine Intelligence 22(8), 888–905 (2000)

6. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E69, 026113 (2004)

7. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering al-
gorithm for networks. In: Proc. 2007 Int. Conf. Knowledge Discovery and Data
Mining (KDD 2007), San Jose, CA, pp. 824–833 (August 2007)

8. Satuluri, V., Parthasarathy, S.: Scalable graph clustering using stochastic flows:
Applications to community discovery. In: Proc. 2009 ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining (KDD 2009), Paris, France (June 2009)

9. Wang, T., Srivatsa, M., Agrawal, D., Liu, L.: Learning indexing and diagnosing net-
work faults. In: Proceedings of the 15th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Paris, France, June 28-July 1, pp. 857–866 (2009)

10. Wang, T., Srivatsa, M., Agrawal, D., Liu, L.: Spatio-temporal patterns in network
events. In: Proceedings of the 6th ACM International Conference on Emerging
Networking Experiments and Technologies (CoNEXT 2010), NY, USA, November
30-December 3 (2010)

26 Y. Zhou and L. Liu

11. Ramaswamy, L., Gedik, B., Liu, L.: A distributed approach to node clustering in de-
centralized peer-to-peer networks. IEEE Transactions on Parallel and Distributed
Systems (TPDS) 16, 1–16 (2005)

12. Wang, Y., Liu, L., Pu, C., Zhang, G.: An utility-driven routing scheme for scalling
multicast applications. In: Proceedings of 2009 International Conference on Col-
laborative Computing (CollaborateCom 2009), October 9-12. IEEE Press, Chicago
(2009)

13. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-
tion. In: Proc. 2008 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD
2008), Vancouver, Canada, pp. 567–580 (June 2008)

14. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute
similarities. In: Proc. 2009 Int. Conf. on Very Large Data Base (VLDB 2009),
Lyon, France (August 2009)

15. Zhou, Y., Cheng, H., Yu, J.X.: Clustering large attributed graphs: An efficient
incremental approach. In: Proc. 2010 Int. Conf. on Data Mining (ICDM 2010),
Sydney, Australia (December 2010)

16. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free
mining of large time-evolving graphs. In: Proc. 2007 ACM SIGKDD Int. Conf.
Knowledge Discovery in Databases (KDD 2007), San Jose, CA, pp. 687–696 (2007)

17. Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: Rankclus: Integrating
clustering with ranking for heterogenous information network analysis. In: Proc.
2009 Int. Conf. Extending Database Technology (EDBT 2009), Saint Petersburg,
Russia (March 2009)

18. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded
error. In: Proc. 2008 ACM-SIGMOD Int. Conf. Management of Data (SIGMO
2008), Vancouver, Canada, pp. 419–432 (June 2008)

19. Tsai, C.-Y., Chui, C.-C.: Developing a feature weight self-adjustment mechanism
for a k-means clustering algorithm. Computational Statistics and Data Analysis 52,
4658–4672 (2008)

20. Cai, D., Shao, Z., He, X., Yan, X., Han, J.: Mining hidden community in heteroge-
neous social networks. In: Proc. Workshop on Link Discovery: Issues, Approaches
and Applications (LinkKDD 2005), Chicago, IL, pp. 58–65 (August 2005)

21. van Dongen, S.: Graph clustering by flow simulation. Ph.D. dissertation, University
of Utrecht (2000)

22. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal
of Mathematics 8, 399–404 (1956)

23. Kernighan, B.W., Lin, S.: An efficient heuristic procedur for partitioning graphs.
Bell Syst. Techn. J. 49, 291–307 (1970)

24. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph clustering and minimum cut
trees. Internet Mathematics 1 (2003)

25. Luxburg, U., Bousquet, O., Belkin, M.: Limits of spectral clustering. MIT Press,
Cambridge (2005)

26. Luxburg, U.: A tutorial on spectral clustering. Technical Report 149 (2006)

27. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci., USA 99, 7821–7826 (2003)

28. Fortunato, S., Latora, V., Marchiori, M.: A method to find community structures
based on information centrality. Phys. Rev. E.70, 056104 (2004)

29. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press and McGraw-Hill (2001)

Clustering Analysis in Large Graphs with Rich Attributes 27

30. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: Proc.
2002 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD
2002), Edmonton, Canada, pp. 538–543 (July 2002)

31. Pons, P., Latapy, M.: Computing communities in large networks using random
walks. Journal of Graph Algorithms and Applications 10(2), 191–218 (2006)

32. Tong, H., Faloutsos, C., Pan, J.-Y.: Fast random walk with restart and its appli-
cations. In: Proc. 2006 Int. Conf. on Data Mining (ICDM 2006), Hong Kong, pp.
613–622 (December 2006)

33. Faloutsos, C., McCurley, K., Tomkins, A.: Fast discovery of connection subgraphs.
In: Proc. 2004 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD
2004), Seattle, WA, pp. 118–127 (August 2004)

34. Tong, H., Faloutsos, C.: Center-piece subgraphs: problem definition and fast solu-
tions. In: Proc. 2006 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases
(KDD 2006), Philadelphia, PA, pp. 404–413 (2006)

35. Liu, Z., Yu, J.X., Ke, Y., Lin, X., Chen, L.: Spotting significant changing subgraphs
in evolving graphs. In: Proc. 2008 Int. Conf. Data Mining (ICDM 2008), Pisa, Italy
(December 2008)

36. Desikan, P., Pathak, N., Srivastava, J., Kumar, V.: Incremental page rank com-
putation on evolving graphs. In: Proc. 2005 Int. World Wide Web Conf. (WWW
2005), Chiba, Japan, pp. 1094–1095 (May 2005)

37. Wu, Y., Raschid, L.: Approxrank: Estimating rank for a subgraph. In: Proc. 2009
Int. Conf. Data Engineering (ICDE 2009), Shanghai, China, pp. 54–65 (March
2009)

38. Strang, G.: Linear Algebra and its Applications. Brooks Cole (2005)
39. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.

Cambridge University Press, Cambridge (2008)
40. Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. In: Proceedings of

the VLDB Endowment (PVLDB), vol. 1(1), pp. 647–659 (2008)
41. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix ”bit” loaded: a scalable

lightweight join query processor for rdf data. In: Proceedings of the 19th Interna-
tional Conference on World Wide Web (WWW 2010), New York, NY, USA, pp.
41–50 (April 2010)

42. Press, W.H., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The
Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge
(2007)

43. Cohen, E., Lewis, D.: Approximating matrix multiplication for pattern recognition
tasks. In: Proceedings of the 8th Symposium on Discrete Algorithms (SODA 1997),
New Orleans, Louisiana (Junuary 1997)

44. Cohn, H., Kleinberg, R., Szegedy, B., Umans, C.: Group-theoretic algorithms for
matrix multiplication. In: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2005), Pittsburgh, Pennsylvania, USA
(October 2005)

45. Zhou, Y., Liu, L.: Rapid: Resource-aware approach to large scale graph clustering.
GT Tech Report, Atlanta, GA (April 2011)

46. Dackland, K., Elmroth, E.: Design and evaluation of parallel block algorithms: Lu
factorization on an ibm 3090 vf/600j. In: Proceedings of the Fifth SIAM Conference
on Parallel Processing for Scientific Computing, Philadelphia, PA, USA (1992)

47. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: Proceedings of the Sixth Symposium on Operating System Design and Imple-
mentation (OSDI 2004), San Francisco, CA (December 2004)

Chapter 3

Temporal Data Mining: Similarity-Profiled
Association Pattern

Jin Soung Yoo

Department of Computer Science, Indiana University-Purdue University,
Fort Wayne, Indiana, USA

yooj@ipfw.edu

Abstract. Temporal data are of increasing importance in a variety of
fields, such as financial data forecasting, Internet site usage monitor-
ing, biomedicine, geographical data processing and scientific observation.
Temporal data mining deals with the discovery of useful information from
a large amount of temporal data. Over the last decade many interest-
ing techniques of temporal data mining were proposed and shown to be
useful in many applications. In this article, we present a temporal associ-
ation mining problem based on a similarity constraint. Given a temporal
transaction database and a user-defined reference sequence of interest
over time, similarity-profiled temporal association mining is to discover
all associated itemsets whose prevalence variations over time are similar
to the reference sequence. The temporal association patterns can reveal
interesting association relationships of data items which co-occur with
a particular event over time. Most works in temporal association min-
ing have focused on capturing special temporal regulation patterns such
as a cyclic pattern and a calendar scheme-based pattern. However, the
similarity-based temporal model is flexible in representing interesting
temporal association patterns using a user-defined reference sequence.
This article presents the problem formulation of similarity-profiled tem-
poral association mining, the design concept of the mining algorithm,
and the experimental result.

1 Introduction

Recent advances in data collection and storage technology have made it possible
to collect vast amounts of data every day in many areas of business and science.
Data mining is concerned with analyzing large volumes of data to automatically
discover interesting regularities or relationships which in turn lead to better un-
derstanding of the underlying processes. The field of temporal data mining deals
with such analysis in the case of ordered data with temporal interdependen-
cies [33,25]. Over the last decades many interesting techniques of temporal data
analysis were proposed and shown to be useful in many applications. For exam-
ple, the most common type of temporal data is time series data, which consist
of real values sampled at regular time intervals. Time series analysis has quite a

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 29–47.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

30 J.S. Yoo

long history. Weather forecasting, financial or stock market prediction and au-
tomatic process control have been of the oldest and most studied applications of
time series analysis [12]. Temporal data mining is of a more recent origin with
somewhat different objectives. One of major differences between temporal data
mining and classical time series analysis lies in the kind of information what we
want to estimate or unearth from the data. The scope of temporal data mining
extends beyond the standard forecast applications of time series analysis. Very
often, in data mining applications, one may be interested in knowing which vari-
ables in the data are expected to exhibit any correlations or causal relationships
over time. For example, a timestamped list of items bought by customers lends
itself to data mining analysis that could reveal which combinations of items tend
to be frequently consumed together, and whether they tend to show particular
behaviors over time.

Temporal data mining tasks can be grouped as follows: (i) prediction, (ii) clas-
sification, (iii) clustering, (iv) search & retrieval and (v) pattern discovery [33].
Of the five categories listed above, algorithms for pattern discovery in large tem-
poral databases, however, are of more recent origin and are mostly discussed
in data mining literature. Temporal pattern mining deals with the discovery of
temporal patterns of interest in temporal data, where the interest is determined
by the domain and the application. The diversity of applications has led to the
development of many temporal pattern models. The three popular frameworks of
temporal pattern discovery are sequence mining(or frequent sequence pattern dis-
covery), frequent episode discovery and temporal association rule discovery [33].
Association rule mining is concerned with the discovery of inter-relationships
among various data items in transactional data [5]. An example of association
rule is

wine =⇒ cheese (support=10%, confidence =80%).

This rule says that 10% of customers buy wine and cheese together, and those
who buy wine also buy cheese 80% of the time. The process of association
rule mining is to find all frequent itemsets that exceed a user-specified sup-
port threshold, and then generate association rules from the frequent itemsets
which satisfies a user-given confidence threshold. Following the work of [5], the
discovery of association rules has been extensively studied in [23,22,36,38]. In
particular, [35,28,37] have paid attention to temporal information which is im-
plicitly related to transaction data, and proposed periodic temporal association
mining problems.

Temporal association pattern mining is an important extension of association
pattern mining as it can be used to mine the behavior aspects of data over time
rather than just states at a point in time. Ozden et al. [35] introduced the idea of
cyclic association rules which can discover periodicity time information of data.
An association rule is said to be cyclic if it holds with a fixed periodicity along
the entire length of the sequence of time intervals. For example, a periodic as-
sociation pattern may state that wine and cheese are sold together primarily in
the weekends. A temporal association pattern can be explained with a binary
sequence where the time axis is broken down into equally spaced user-defined

Temporal Data Mining: Similarity-Profiled Association Pattern 31

0
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

Frequency values of itemsets over time

I1
I3
I2

1

support

0
timet1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

binary

1
I2
I1

(11100001110000111...)

threshold

time

Binary temporal sequences

A minimum

(a) Temporal regulation patterns

Frequency values of itemsets over time

support

0
timet1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

I3
I2

I1

1

0
timet1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

I3
I2

R

1

support

.
Numeric temporal sequences

R

A reference
sequence

(b) Temporal similarity patterns

Fig. 1. A comparison of temporal association patterns

time intervals and association rules that hold for the transactions in each of
these time intervals are considered. In the binary sequence, 1’s correspond to
the time intervals in which the association pattern is valid (i.e., the rule satisfies
minimum support threshold and confidence threshold.), and the 0’s correspond
to the time intervals in which it is not valid. For instance, when a defined time
interval is day, ‘10000001000000. . .’ represents the binary sequence of a repeti-
tive temporal pattern on Monday. Fig 1 (a) illustrates an example of periodic
temporal association patterns. It shows the support values of three itemsets I1,
I2 and I3 over time, and the binary temporal sequences of I1 and I2 under a
fixed frequent threshold (e.g., support threshold=0.5).

There are many ways of defining what constitutes a pattern. Fig 1 (a) says
that I2 shows the same temporal pattern with I1 (i.e., a periodic pattern with
the binary sequence, 111000111000. . .), even if their actual measure strengths
are quite different. In contrast, Fig 1 (b) illustrates temporal association pat-
terns based on similarity. It shows that I2 and I3 have very similar behaviors
over time. As a guidance to find similar itemsets, this model uses a reference
sequence. The reference sequence can represent the change of interest measure
values of a specific event (item) (e.g., a specific product in market basket data,
a stock exchange in the stock market, a climate variable such as temperature
or precipitation, and a scientific phenomenon), or a user guided sequence pat-
tern showing special shapes (e.g., a seasonal, emerging or diminishing pattern
over time). Current periodic temporal association mining methods cannot reveal

32 J.S. Yoo

this kind of temporal association pattern. In this article, we present a temporal
association pattern mining problem based on a similarity constraint [42].

The remainder of the article is organized as follows. Section 2 presents the
problem statement of similarity-profiled temporal association mining. The de-
sign concept of the mining algorithm is described in Section 3. Section 4 shows
the experimental result. The related work is described in Section 5. Section 6
discusses some future direction of the work.

2 Similarity-Profiled Temporal Association Pattern

Given a timestamped transaction database and a user-defined reference sequence
of interest over time, similarity-profiled temporal association mining is to dis-
cover all associated itemsets whose prevalence(frequency) variations over time
are similar to the reference sequence under a threshold. Similarity-profiled tem-
poral association mining can reveal interesting relationships of data items which
co-occur with a particular event over time. For example, weather-to-sales rela-
tionship is a very interesting problem in retail analysts [2,4]. Wal-Mart discovered
a surprising customer buying pattern during hurricane season in a region. Not
only did survival kits (e.g., flashlights, generators, tarps) show similar selling
patterns with bottled water (which is one of important items in emergency), but
so did the sales of Strawberry Pop-Tarts which is an unexpected snack item [4].
The similarity-profiled temporal association mining may help finding such item
sets whose sales similarly change to that of a specific item(event) for a period of
time. The mining results can improve supply chain planning, and retail decision-
making for maximizing the visibility of items most likely to be in high demand
during a special time period. As another example in business domain, consider an
online web site. Weather.com offers weather-related lifestyle information includ-
ing travel, driving, home & garden and sporting events as well as weather itself
information [3]. According to the web site’s report, almost 40% of weather.com
visitors shop home improvement products with increase of temperature [3]. The
web site may attract more advertisers if it can analyze the relationships of vis-
ited web sites through weather.com with changes of weather. Consider a scientific
application domain. Earth scientists have been interested in the behavior of cli-
mates in a region which are often influenced with the El Niño phenomenon, an
abnormal warming in the eastern tropical Pacific Ocean [34]. If we consider the
El Niño related index values over last 10 years, e.g., the Southern Oscillation
Index(SOI) [34], as a reference sequence, one example of similarity-profiled tem-
poral association might be a climate event pattern of low precipitation and low
atmospheric carbon dioxide in Australia whose co-occurrence over time is similar
to the fluctuation of the El Niño index sequence.

2.1 Problem Statement

The formal problem statement of similarity-profiled temporal association mining
follows below. Fig. 2 shows a simple illustration of the pattern mining.

Temporal Data Mining: Similarity-Profiled Association Pattern 33

.

A, C
A

A, B, C

C

C
A, B, C

C

A
A, B, C

C

.

time items time items

Input

Similarity function : Euclidean distance

Subsect specification

< 0.4, 0.6 >

Dissimilarity threshold :θ

Reference sequence R :

T
im

e−
st

am
pe

d
tr

an
sa

ct
io

ns

t1
t1

t1
t1
t1

t1
t1
t1
t1
t1

t2

t2
t2
t2
t2

t2
t2
t2
t2
t2

A, B, C
A, B, C

A, C
C

B, C

A, B, C
C

B

B
B, C

(a)

{C}
{A,B}
{A,C}
{B,C}
{A,B,C}

{A}
{B}

<sup(t1), sup(t2)>

< 0.8, 0.8 >

< 0.4, 0.4 >
< 0.3, 0.5 >

< 0.3, 0.7 >

< 0.3, 0.3 >

< 0.6, 0.4 >

< 0.3, 0.3 >

Prevalence time seq
itemsets

ABABC

BC

0.5

B

1.0
support(t0)

AAC

C

θ

0.5

1.0
support(t1)

0

R

.

Similarity−profiled Temporal Association Mining

(b)

.

 {B} : < 0.3, 0.7 > (0.14)

Output

{A,C} : < 0.4, 0.4 > (0.20)
{B,C} : < 0.3, 0.5 > (0.14)

(c)

Fig. 2. An example of similarity-profiled temporal association mining (a) Input data
(b) Generated support time sequences, and sequence search (c) Output itemsets

Given
1) A finite set of items I
2) An interest time period T =t1 ∪ . . . ∪ tn, where ti is a time slot by a time
granularity, ti ∩ tj = ∅, i �= j
3) A timestamped transaction database D=D1 ∪ . . . ∪ Dn, Di ∩ Dj = ∅, i �= j.
Each transaction d ∈ D is a tuple < timestamp, itemset > where timestamp
is a time ∈ T that the transaction is executed, and itemset ⊆ I. Di is a set of
transactions included in time slot ti.
4) A subset specification

4a) A reference sequence R =< r1, . . . , rn > over time slots t1, . . . , tn
4b) A similarity function fSimilarity(X ,Y) 	→ R

n, where X and Y are nu-
meric sequences.

4c) A dissimilarity threshold θ
Find A set of itemsets I ⊆ I which satisfy the given subset specification, i.e.,
fSimilarity(SI , R) ≤ θ, where SI =< s1, . . . , sn > is the sequence of support
values of an itemset I over time slots t1, . . . , tn.

Items: We use the standard notion of items in traditional association rule
mining [5]. Items can be supermarket items purchased by a customer during
a shopping visit, product pages viewed in a web session, climate events at a
location, stocks exchanged within a hour, etc. Items can be grouped to form an
itemset. An itemset with k distinct items is referred to as a k itemset. The size
of the itemset space is 2|I| − 1, where |I| is the number of items.

Time period: A time period can be a particular year or any arbitrary period
of time. We model time as discrete, and thus, a total time period can be viewed
as a sequence of time slots by a certain time granularity [10]. For example, one

34 J.S. Yoo

year period can be divided into monthly unit time slots. The ith time slot is
denoted with ti.

Transaction database: The database D is a set of timestamped transactions.
Each transaction is a set of items over a finite item domain, and has a time point
when the transaction is executed. The time point associated with a transaction
is called its timestamp. The transaction dataset can be partitioned to disjoint
groups of transactions by a time granularity. Di represents a part of transactions
of D executed in time slot ti.

Subset specification: A subset specification can be used to represent a set of
conditions that itemsets have to satisfy to become interesting patterns. Our sub-
set specification consists of three components: a reference sequence, a similarity
function, and a dissimilarity threshold. First, we assume that an arbitrary tem-
poral pattern of interest can be defined as a reference sequence by the user. A ref-
erence time sequence is a sequence of interesting values over time slots t1, . . . , tn.
In the example of Fig. 2, <0.4, 0.6> is given as the reference sequence R. Sec-
ond, we use a distance-based similarity function, a Lp norm (p = 1, 2, . . . ,∞).
Many similarity measures have been discussed in time series database litera-
ture [20,18,8,27,16]. A Lp norm is the most popularly used distance measure in
similar time sequence search [41,18,6,26], and can be used as basic building blocks
for more complex similarity models as in [7]. When p=1, the L1 norm is known as
a city-block or Manhattan. When p=2, the L2 norm is called a Euclidean distance,
and defined as L2(X ,Y) = (

∑n
t=1 |xt−yt|2) 1

2 . We also consider a normalized Eu-

clidean distance, Normalized L2(X,Y) = (1
n)

1
2 ∗ L2(X,Y) = (

∑ n
t=1 |xt−yt|2

n)
1
2 ,

where X = < x1, . . . , xn > and Y = < y1, . . . , yn > are time sequences, and
n is the number of time slots. Euclidean distance is used for figure examples
in this article. The last component of the subset specification is a dissimilarity
threshold. It indicates a maximum discrepancy to allow for similarity-profiled
temporal association patterns.

2.2 Interest Measure

The similarity-profiled temporal association pattern uses a composite interest
measure which describes a discrepancy degree between the reference sequence
and the sequence of frequency values of an itemset over time. A support time
sequence is used to represent temporally changed frequency values of an itemset.

Definition 1. Let D = D1 ∪ . . . ∪ Dn be a disjoint timestamped transaction
dataset. The support time sequence of an itemset I is defined as

SI =< support(I,D1), . . . , support(I,Dn) >,

where support(I,Dt) is the support value of itemset I in a transaction set Dt,
which is the fraction of transactions that contain the itemset I in Dt such that
support(I,Dt) = |{d ∈ Dt|I ⊆ d}|/|Dt|, 1 ≤ t ≤ n.

Temporal Data Mining: Similarity-Profiled Association Pattern 35

We assume the reference sequence values are in the same scale with the support
measure, or can be transformed to the same scale. The interest measure of the
similarity-profiled temporal association is defined as following.

Definition 2. Let I be an itemset and SI = < s1, . . . , sn > be the support
time sequence of I. Given a reference sequence R = < r1, . . . , rn >, an in-
terest measure for the similarity-profiled temporal association pattern is defined
as D(R,SI) which is a Lp norm (p = 1, 2, . . . ,∞) based dissimilarity distance
between R and SI .

An itemset I is called a similar itemset if D(R,SI) ≤ θ where θ is a dissimilarity
threshold. In Fig. 2, the pattern mining output is {B}, {A, C} and {B, C} since
their interest measure values do not exceed the dissimilarity threshold, 0.2.

3 Mining Algorithm

Similarity-profiled temporal association mining presents challenges in computa-
tion. The straight-forward approach is to divide the mining process into two sepa-
rate phrases. The first phrase computes the support values of all possible itemsets
at each time point, and generates their support sequences. The second phrase
compares the generated support time sequences with a given reference sequence,
and finds similar itemsets. In this step, a multi-dimensional access method such
as an R-tree family can be used for a fast sequence search [21,18,26,14]. How-
ever, the computational costs of first generating the support time sequences of
all combinatorial candidate itemsets and then doing the similarity search be-
come prohibitively expensive with increase of items. Thus it is crucial to devise
schemes to reduce the itemset search space effectively for efficient computation.
We first present the design concept of similarity-profiled temporal association
mining algorithm.

3.1 Envelope of Support Time Sequence

It is a core operation to generate the support time sequences of itemsets in a
similarity-profiled association mining algorithm. The operation, however, is very
data intensive, and sometimes can produce the sequences of all combinations of
items. We explore a way for estimating support time sequences without exam-
ining the transaction data. Calders in [13] proposed a set of rules for deducing
best bounds on the support of an itemset if the supports of all subsets of it are
known.

Theorem 1. Let D be a transaction dataset, and I be an itemset,
support(I,D) ∈ [L(I,D), U(I,D)]

with
L(I,D)=max{σI(J,D), 0 | J ⊂ I and |J | is even },
U(I,D)=min{σI(J,D) | J ⊂ I and |J | is odd }

where σI (J,D) =
∑

J⊆J′⊂I

(−1)|I−J ′|+1 · support(J ′,D).

36 J.S. Yoo

A, C
A

A, B, C

C

C
A, B, C

C

A
A, B, C

C

.

time items

T
im

es
ta

m
pe

d
tr

an
sa

ct
io

n
da

ta
se

t

1
2
3
4
5
6
7
8
9

time items

11

A, B, C
A, B, C

A, C
C

B, C

A, B, C
C

B

B
B, C

12
13
14
15
16
17
18

20

time slot t1 time slot t2
D2D1

10
19

(a) An example
data

support(AB, D1) >= − support({}, D1)+ support(A, D1) + support(B, D1)
= −1 +0.6+0.3=−0.1

support(AB, D1) >= 0

support(AB, D1) >= max(−0.1, 0)=0

support(AB, D1) <= support(A, D1) = 0.6
support(AB, D1) <= support(B, D1) = 0.3

support(AB, D1) <= min(0.6, 03)=0.3

support(AB, D2) <= support(B, D2) = 0.7
support(AB, D2) <= support(A, D2) = 0.4

support(AB, D2) <= min(0.4, 07)=0.4

* The upper bound of support sequence of AB : < 0.3, 0.4>

support(AB, D2) >= − support({}, D2)+ support(A, D2) + support(B, D2)
= −1 +0.7+0.4=0.1

support(AB, D2) >= 0

support(AB, D1) >= max(0.1, 0)=0.1

* The lower bound of support sequence of AB : < 0 , 0.1>

(b) Bounds of supports

Fig. 3. An example of upper and lower bounds of support sequence of itemset AB

L(I,D) means a lower bound of support(I,D), and U(I,D) means an upper
bound of support(I,D). The proof of the tight bounds is described in [13].
We adopt this set of rules to derive the tight upper bound and lower bound of
support time sequence of an itemset.

Definition 3. Let D = D1∪ . . .∪Dn be a timestamped transaction dataset. The
lower bound support time sequence of an itemset I, LI, and the upper
bound support time sequence of I, UI are defined as following.

LI =< l1, . . . , ln >=< L(I,D1), . . . , L(I,Dn) >
UI =< u1, . . . , un >=< U(I,D1), . . . , U(I,Dn) >

Fig. 3 shows the computation of the lower and upper bound support sequences
of an itemset I = {A,B}.

3.2 Lower Bounding Distance

A lower bounding distance concept is used to find itemsets whose support se-
quences could not possibly match with a reference sequence under a given thresh-
old. If the lower bounding distance of an itemset does not satisfy the dissimilarity
threshold, its true distance also does not satisfy the threshold. Thus the lower
bounding distance can be used to prune the itemset without computing its true
distance. Our lower bounding distance is defined with upper and lower bound
support time sequences. It consists of two parts, upper lower-bounding distance
and lower lower-bounding distance.

Temporal Data Mining: Similarity-Profiled Association Pattern 37

RU

RU

RL
RL

LU
UL

LUUL

RU

RU

RL
RL

LU
UL

LU

R
U
L

t1 t n

1

0

support

timet1 t n

1

0

support

time

UL

(a) Subsequences for a lower bound-
ing distance

Support seqs
<sup(t1),sup(t2)>

< 0.3 , 0.7 >
< 0.8 , 0.8 >

< 0.6 , 0.4 >A
B
C

ulb dist llb dist lb dist

0.20
0.10

true dist

0.28
0.14
0.450

* similarity function: Euclidean

Itemsets
(sequence)

 x
 x
 x x

 x
 x

< 0.3 , 0.3 >
< 0.0 , 0.1 >

< 0.4 , 0.6 > x : don’t careReference :

A B_lower
A B_upperA B

 x 0
0.22 x

0.22 ?

(b) Lower bounding distance of AB

Fig. 4. An example of lower bounding distances

Definition 4. For a reference sequence R and the upper bound support sequence
U of an itemset, let RU =< r1, . . . , rk > be a subsequence of R, and UL =<
u1, . . . , uk > be a subsequence of U where rt > ut, 1 ≤ t ≤ k. The upper lower-
bounding distance between R and U , DUlb(R,U), is defined as D(RU ,UL).

The upper lower-bounding distance between R and U is a dissimilarity distance
between a subsequence of R, RU , and a subsequence of U , UL, in which each
element value rt in RU is greater than the corresponding element value ut of UL.
For example, when Euclidean distance is the similarity function, DUlb(R,U) =
D(RU ,UL) = (

∑n
t=1 f(rt, ut)))

1
2 , where if rt > ut, f(rt, ut) = |rt − ut|2; other-

wise, f(rt, ut) = 0.

Definition 5. For a reference sequence R and the lower bound support time
sequence L of an itemset, let RL =< r1, . . . , rk > be a subsequence of R, and
LU =< l1, . . . , lk > be a subsequence of L where rt < lt , 1 ≤ t ≤ k. The
lower lower-bounding distance between R and L, DLlb(R,L), is defined as
D(RL,LU).

The lower lower-bounding distance between a reference sequence R and a lower
bound support sequence L is a dissimilarity distance between RL and LU , in
which each element value rt in RL are less than the corresponding element value
lt of LU .

Definition 6. For a reference sequence R, and the upper bound support time
sequence U and lower bound support time sequence L of an itemset, the lower
bounding distance, Dlb(R,U ,L) is defined as DUlb(R,U) +DLlb(R,L).

Fig. 4 (a) gives an example of subsequences, RU , UL, RL and LU . As shown,
the subsequences do not need to be a continuous sequence. Fig. 4 (b) shows an
example of lower bounding distances of {A, B} computed from the upper bound
support sequence and lower bound support sequence of {A, B}.

38 J.S. Yoo

ABABC

BC

0.5

B

1.0

AAC

C

R

1.0

0.5

0

support(t1)

support(t0)

Euclidean dist

(a)

.

.

A C
0.28(0.2) 0.45(0)0.14(0.1)

0.32(0.32)

0.32(0.32)

0.2(0.2)
AC BC

0.14(0.14)

ABC

AB

B

φ

Euclidean dist(Upper lower bounding dist)

(b)

Fig. 5. (a) Non-monotonicity of the Euclidean distance (b) Monotonically non-
decreasing property of the upper lower-bounding distance

Lemma 1. For the upper bound support time sequence U =< u1, . . . , un >,
lower bound support time sequence L =< l1, . . . , ln > and support time sequence
S =< s1, . . . , sn > of an itemset I, and a reference sequence R =< r1, . . . , rn >,
the lower bounding distance Dlb(R,U ,L) and the true distance D(R,S) hold the
following inequality: Dlb(R,U ,L) ≤ D(R,S).

For the proof, refer to [42]. Thus, if Dlb(R,U ,L) of an itemset is greater than
a given threshold, the true distance D(R,S) should not satisfy the threshold.
Therefore, we know that the itemset will not be in the mining result.

3.3 Monotonicity Property of Upper Lower-Bounding Distance

Next, we explore a scheme to further reduce the itemset search space. The most
popular technique to reduce itemset search space in association pattern mining
is to use the monotonicity property of support measure [5]. The support values
of all supersets of a given itemset are not greater than the support value of that
itemset. Thus, if an itemset does not satisfy the support threshold, all supersets
of the itemset can be pruned. Unfortunately, our Lp norms-based interest mea-
sure does not show any monotonicity with the size of the itemset. For example,
Fig. 5 (a) shows the Euclidean distances between the support time sequences of
{C}, {A,C} and {A,B,C}, SC , SAC and SABC , and a reference sequence R. As
can be seen, D(SC ,R)=0.45, D(SAC ,R)=0.2 and D(SABC,R) =0.32. Thus,
D(SABC ,R) > D(SAC ,R) but D(SAC ,R) < D(SC ,R). However, we found an
interesting property related to our upper lower-bounding distance.

Lemma 2. The upper lower-bounding distance between the (upper bound) sup-
port time sequence of an itemset and a reference time sequence is monotoni-
cally non-decreasing with the size of itemset.

Temporal Data Mining: Similarity-Profiled Association Pattern 39

For the proof, refer to [42]. For example, in Fig. 5 (b), DUlb(SA,R)=0.2,
DUlb(SB ,R)=0.1 andDUlb(SAB,R)=0.32. ThusDUlb(SA,R) ≤ DUlb(SAB,R)
and DUlb(SB,R) ≤ DUlb(SAB,R). We can also see that DUlb(SAB ,R) ≤
DUlb(SABC ,R), DUlb(SAC ,R) ≤ DUlb(SABC ,R), and DUlb(SBC ,R) ≤
DUlb(SABC ,R).

3.4 SPAMINE Algorithm

The Similarity-Profiled temporal Association MINing mEthod(SPAMINE) is de-
veloped based on the previous algorithm design concept. Algorithm 1 shows
the pseudocode of the SPAMINE. Fig. 6 provides an illustration of trace of a
SPAMINE execution with the example data in Fig. 2 (a).

Generate the support time sequences of single items and find similar items (Steps
1 - 3): All singletons (k = 1) become candidate items(C1). With reading the
entire transaction data, the supports of singletons are computed per each time
slot and their support time sequences(S1) are generated. If the interest measure
value of an item (i.e., distance between its support time sequence and a refer-
ence sequence) does not exceed a given threshold, the item is added to a result
set(R1). On the fly, if the upper lower-bounding distance of an item satisfies

Inputs:
E : A set of single items.
TD: A time-stamped transaction database
R : A reference sequence
D : A similarity function
θ : A dissimilarity threshold
Output: All itemsets whose support sequences are similar to R under D
and θ
Variables :
k : Itemset size
Ck : A set of size k candidate itemsets
U k : A set of upper bound support sequences of size k itemsets
Lk : A set of lower bound support sequences of size k itemsets
Sk : A set of support sequences of size k itemsets
S : A set of support sequences of all subsets of itemsets
Bk : A set of size k itemsets whose upper lower-bounding distance ≤ θ
Ak : A result set of size k itemsets whose true distance ≤ θ
Main:
1) C1 = E;
2) S1= generate support sequences(C1, TD);
3) (A1, B1)= find similar itemsets(C1, S1, R, D, θ);
4) k = 2;
5) while (not empty Bk−1) do
6) (Ck, Uk, Lk) =generate candidate itemsets(Bk−1, S);
7) Ck =prune candidate itemsets by lbd(Ck, U k, Lk, R, D, θ);
8) Sk=generate support sequences(Ck, TD);
9) (Ak, Bk) =find similar itemsets(Ck, Sk, R, D, θ);
10) S = S ∪ Sk; k = k + 1;
11) end
12) return

⋃
(A1, . . . , Ak);

Algorithm 1. SPAMINE algorithm

40 J.S. Yoo

A C

bounding
dist

bounding

tr: 0.14tr: 0.20

lower−

dist

<Lower bound support sequences>

lb:0.10lb:0.20lb:0.22

llb:0 llb:0 llb:0

0.50.2

ulb:0.22 ulb:0.20 ulb:0.10

0.1

B CA C

0.4
0.1
0

A B

threshold.

dist
bounding
lower

does not satisfy

be pruned since
the ulb of a subset

ulb: 0.14ulb: 0.20

<Upper bound support sequences>

0.70.4
0.3

B CA C

0.6
0.4
0.3

A B

ulb: ulb:0.10
tr:

ulb: 0.20 0
tr: 0.28 0.45tr: 0.14

lower−

true dist

size=2 size=3

R

0.4t1
t2 0.6

0.80.3

B CA

0.6
0.7 0.80.4

not similar itemset

size=1

A B CB C

0.3
0.4 0.5
0.4

but

support at t1
support at t2

<Reference sequence> <Support sequences> <Support sequences>

upper_lower_bounding_dist

AB

be pruned if lower_bounding_dist is greater than threshold 0.2.

true support

lower

> threshold 0.2
* similar itemsets :

{A,C}: <0.6, 0.4>(0.2),
{B,C}: <0.3, 0.5>(0.14)

{B}: <0.3, 0.7> (0.14),

upper

* dissimilarity threshold = 0.2
* similarity function : Euclidean distance

Fig. 6. An illustration of SPAMINE algorithm trace

the dissimilarity threshold, the item is kept to B1 for generating the next size
candidate itemsets. In Fig. 6, only item B is a similar item but items A and C
are also kept for generating the next size candidate itemsets.

Generate candidate itemsets and their upper and lower bound support sequences
(Step 6): All size k (k > 1) candidate itemsets(Ck) are generated using size k−1
itemsets(Bk−1) whose upper lower-bounding distances satisfy the dissimilarity
threshold. If any subset of size k−1 of the generated itemset is not in the Bk−1,
the candidate itemset is eliminated according to Lemma 2. The upper and lower
bound support sequences of candidate itemsets are generated using Definition 3.

Prune candidate itemsets using their lower bounding distances (Step 7): If the
lower bounding distance of the upper and lower bound support sequences of a
candidate itemset exceeds the dissimilarity threshold, the candidate itemset is
eliminated according to Lemma 1. For example, in Fig. 6, the lower bounding
distance of itemset {A, B} is 0.22. Because the value is greater than the threshold
0.2, the candidate itemset is pruned.

Scan the transaction data and generate the support time sequences (Step 8): The
supports of survived candidates are computed during the scan of the transaction
data from time slot t1 to tn, and their support time sequences(Sk) are generated.

Find similar itemsets (Step 9): The true distance between the support time
sequence of an itemset and the reference sequence is computed. If the value
satisfies the threshold, the itemset is included in the result set(Rk). On the fly, if
the upper lower-bounding distances of candidate itemsets satisfy the threshold,
the itemsets are added to Bk for generating the next size candidate itemsets. The
size of examined itemsets is increased to k = k+ 1. The above procedures(Steps
6-10) are repeated until no itemset in Bk remains.

Temporal Data Mining: Similarity-Profiled Association Pattern 41

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7 8 9

N
um

be
r o

f c
an

di
da

te
 s

et
s

Depth

TD100_D1_L0_I20_T100

Without bound seqs, threshold 0.3
With bound seqs, threshold 0.3

Without bound seqs, threshold 0.35
With boud seqs, threshold 0.35

(a)

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4 5 6 7 8 9

N
um

be
r o

f c
an

di
da

te
 s

et
s

Depth

TD100_D1_L0_I20_T100

Without bound seqs, reference seq 0.25 q
With bound seqs, reference seq 0.25 q

Without bound seqs, reference seq 0.5 q
With boud seqs, reference seq 0.5 q

(b)

Fig. 7. Effect of lower bounding distance pruning of bounds of support sequence

4 Experimental Evaluation

The proposed algorithm (SPAMINE) was evaluated using synthetic and real
datasets. Synthetic datasets were generated with modifying a transaction data
generator [5]. In the rest of paper, we use the following parameters to charac-
terize the synthetic datasets we used. TD is the total number of transactions(×
1,000),D is the number of transactions per time slot(× 1,000), I is the number of
distinct items, L is the average size of transactions, and T is the number of time
slots. A reference time sequence was generated by choosing randomly a support
sequence of an itemset or by selecting a support value near a quartile e.g., 0.25,
0.5, 0.75, of the sorted supports of single items at each time slot. The default
reference time sequence was chosen near the 0.5 quartile. For the experiment
with real data, we used a Earth climate dataset which includes monthly mea-
surements of various climate variables(e.g., temperature and precipitation) and
other related variables(e.g., Net Primary Production). This dataset is non public
and was obtained from an Earth science project [1]. Throughout the experiment,
we used the normalized Euclidean distance as a similarity function. For the ex-
perimental comparison, an alternative algorithm, a sequential method [42] is
used. All experiments were performed on a workstation with Intel Xeon 2.8 GHz
with 2 Gbytes of memory running the Linux operating system. The following
presents the experimental results.

1) Effect of pruning by bounds of support sequences: In this experiment, we
examined the pruning effect by low bounding distance of the upper and lower
bound support sequences. Two versions of the SPAMINE algorithm are used.
one uses the bounds of support sequences and the other does not. A synthetic
dataset, TD100-D1-L10-I20-T100, is used and the dissimilarity threshold is set
to 0.2. Fig. 7 (a) shows the number of candidates which need the database scan
to compute their support values. As can be seen, the algorithm using the pruning

42 J.S. Yoo

 0

 200

 400

 600

 800

 1000

20 30 40 50 60

E
xe

cu
tio

n
tim

e(
se

c)

Number of items

TD10_D1_L6_I*_T10

Sequential method
SPAMINE

(a) Effect of number of items

 0

 100

 200

 300

 400

 500

0.1 0.15 0.2 0.25 0.3

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Threshold

TD100_D10_L6_I20_T10

Sequential method
SPAMINE

(b) Effect of threshold

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

100 200 300 400 500

1000 2000 3000 4000 5000

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Number of time slots

TD*_D1_L6_I20_T*

Number of total transactions (K)

Sequential method
SPAMINE

(c) Effect of number of time slots

 0

 50

 100

 150

 200

 250

 300

0.2 0.3 0.4 0.5 0.6 0.7

150

21699

E
xe

cu
tio

n
tim

e(
se

c)

N
um

be
r o

f r
es

ul
t s

et
s

Threshold

0 10 25 51 141

Sequential method
SPAMINE

number of result sets

(d) With a real dataset

Fig. 8. Experimental Result

scheme based on the bounds of support sequences and the lower bound distance
produces fewer candidate itemsets. Fig. 7 (b) shows the results with different
reference sequence types.

2) Effect of number of items: In this experiment, synthetic datasets of dif-
ferent number of items, TD10 D1 L6 I* T10, are used. As seen in Fig. 8 (a),
SPAMINE showed a similar execution time and received a less effect with the
increase of small numbers of items. In contrast, the execution time of the se-
quential method dramatically increased.

3) Effect of similarity threshold: The performance of the two algorithms are
examined with different threshold values. The TD10 D1 L10 I20 S10 dataset was
used for that. As can be seen in Fig. 8 (b), SPAMINE had overall less execution
time than the sequential method.

4) Effect of number of time slots: This experiment examined the effect of
number of time slots using synthetic datasets, TD* D1 L6 I20 T*. The number
of transactions per time slot was fixed but the total dataset size increased with

Temporal Data Mining: Similarity-Profiled Association Pattern 43

the number of time slots. Reference sequences were chosen near the 0.5 quartiles
in each dataset and the threshold was 0.1. As seen in Fig. 8 (c), SPAMINE’s
execution time increases slowly with increase of number of time slots. In contrast,
the sequential method’s execution time rapidly increases.

5) Evaluation with real data: For this experiment, an Earth climate dataset
was used. The dataset consists of global snapshots of measurement values for a
number of variables (e.g., temperature, precipitation, NPP, CO2 and Solar). The
data was measured at points (grid cells) on latitude-longitude spherical grids of
0.5 degree × 0.5 degree. For our analysis, we used measurement values in the
Australia region since the climate phenomena in Australia has been known to
be linked to El Niño, the anomalous warning of the eastern tropical region of the
Pacific [39]. The total number of grids in the Australia data, i.e., the number of
transactions per time slot, was 2827. First, we removed seasonal variation form
the time series measurement data using a monthly Z score, i.e., by subtracting
off the mean and dividing by the standard deviation. We defined event items
based on 4 percentiles from the time series data of each variable(e.g., PRECI-LL,
PRECI-L, PRECI-H, PRECI-HH). The total number of items for our analysis
was 50. The dataset is available at monthly intervals from 1982 to 1999. We used
214 months of data, i.e., the number of time slots was 214. The total number of
transactions was 604,978. For the reference sequence, the sequence of Southern
Oscillation Index(SOI) was used, which is one of the indexes related to the
El Niño phenomenon. Since the SOI index range is different from the support
range, the index values were normalized to the range of 0 to 1 using a min-max
normalization method. The transformation of a raw value x was calculated as
(x− xmin)(1 − 0)/(xmax − xmin) + 0, where xmin is the minimum value of raw
value x, and xmax is the maximum value of x. Fig. 8 (d) shows the execution
time and number of result sets by different thresholds. The pattern result shows
that the prevalence variations of PRECI-L(0.20), CO2-L(0.21), Solar-H(0.25),
NPP-L(0.26), PRECI-L & CO2-L(0.21), NPP-L & CO2-L(0.23), PRECI-L &
NPP-L(0.27), PRECI-L & NPP-L & CO2-L(0.29), etc. were very related with
the El Niño index sequence, with dissimilarity values of around 0.2.

5 Related Work

Although much work has been done on finding association patterns and similar
time series, little attention has been paid to temporal association patterns that
can discover similar variance groups over time. The closest related efforts have
attempted to capture special temporal regulations of frequent association pat-
terns such as cyclic association rule mining and calendar-based association rule
mining [35,37,28,29] in temporal association mining. Özden et al.[35] examined
cyclic association rule mining, which detects periodically repetitive patterns of
frequent itemsets over time. Cyclic associations can be considered as itemsets
that occur in every cycle with no exception. The work of [35] was extended in
[37] for relaxed match. The cyclic association rules may not hold on all but most
of the time points defined by the temporal patterns. Li et al.[28] explored the

44 J.S. Yoo

problem of finding frequent itemsets along with calendar-based patterns. The
calendar-based patterns are defined with a calendar schema, e.g., (year, month,
day). For example, (*,10,31) represents the set of time points each corresponding
to the 31st day of October. However, real-life patterns are usually imperfect and
may not demonstrate any regular periodicity. In the work of [29], a temporal
pattern defines the set of time points where the user expects a discovered itemset
to be frequent. However, our temporal patterns are searched with a user defined
numeric reference sequence, and consider the prevalence similarity of all possible
itemsets not only frequent itemsets.

In temporal pattern mining, sequential patterns mining [9] considers the rel-
ative order of the transactions of one customer. In [9], a frequent sequence is
defined to consist of frequent itemsets taking place in separate consecutive trans-
actions of the same user. The notion of episodes was introduced in [32]. An
episode uses the data model of a sequence of elements, where the inter-element
causality happens within a window of a given size. The frequency of an episode
is the number of windows that contain the episode. In [11], frequent event pat-
terns are found from time sequences which satisfy a user-specified skeleton. The
user-specified skeleton is defined with a reference event and temporal constraints
with time granularities. For example, the work can find events which frequently
happen within two business days after a reference event, e.g., a rise of the IBM
stock price. Recent work has applied mining techniques in a data streaming con-
text. The temporal frequency counting problem for a data stream environment
was proposed by [40]. The work is based on the model of inter-transaction as-
sociation rules [31] for searching associations between itemsets that belong to
different transactions performed by the same user in a given time span.

Other studies in temporal data mining have discussed the change of found
association rules. Dong et al. [17] presented the problem of mining emerging
patterns, which are the itemsets whose supports increase significantly from one
dataset to another. The concept of emerging patterns can capture useful con-
trasts between classes. Ganti et al.[19] presented a framework for measuring dif-
ference in two sets of association rules from two datasets. Liu et al.[30] studied
the change of fundamental association rules between two time periods using sup-
port and confidence. When new transactions are added to the original dataset,
the maintenance of discovered association rules with an incremental updating
technique was proposed in [15]. In contrast, [9] addressed the problem of mon-
itoring the support and confidence of association rules. First, all frequent rules
satisfying a minimum threshold from different time periods are mined and col-
lected into a rule base. Then interesting rules can be queried by specifying shape
operators(e.g., ups and downs) in support or confidence over time. On the other
hand, online association rule mining was proposed by [24] to give the user the
freedom to change the support threshold during the first scan of the transaction
sequence.

Temporal Data Mining: Similarity-Profiled Association Pattern 45

6 Conclusion

We presented the problem of mining similarity-profiled temporal association pat-
terns. Current similarity model using a Lp norm-based similarity function is a
little rigid in finding similar temporal patterns. It may be interesting to consider
a relaxed similarity model to catch temporal patterns which show similar trends
but phase shifts in time. For example, the sale of items for clean-up such as chain
saws and mops would increase after a storm rather than on the way of the storm.
The current framework considers whole-sequence matching for the similar tem-
poral patterns. However, a pattern’s similarity may not persist for entire length
of the sequence and so may manifest only in some segments. These relaxations
present many new challenges for the automatic discovery of all partial temporal
patterns based on the similarity constraint. The field of temporal data mining
is relatively young and one expects to see many new developments in the near
future.

References

1. Discovery of Changes from the Global Carbon Cycle and Climate System Using
Data Mining, http://www.cs.umn.edu/old-ahpcrc/nasa-umn/

2. NOAAEconomics,
http://www.ncdc.noaa.gov/oa/esb/?goal=climate&file=users/business/

3. Weather.com, http://www.weather.com/aboutus/adsales/research.html
4. After Katrina: Crisis Management, The Only Lifeline Was the Wal-Mart. FOR-

TUNE Magazine, October 3 (2005)
5. Agarwal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc.

of the International Conference on Very Large Databases, VLDB (1994)
6. Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search in Sequence

Databases. In: Proc. of the International Conference on Foundations of Data Or-
ganization, FODO (1993)

7. Agrawal, R., Lin, K.I., Sawhney, H.S., Shim, K.: Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-series Database. In: Proc. of
the International Conference on Very Large Databases (VLDB) Conference (1995)

8. Agrawal, R., Lin, K.I., Sawhney, H.S., Shim, K.: Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-series Database. In: Proc. of
the International Conference on Very Large Databases (VLDB) Conference (1995)

9. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. of the IEEE Inter-
national Conference on Data Engineering, ICDE (1995)

10. Bettini, C., Jajodia, S., Wang, X.S.: Time Granularities in Databases, Data Mining
and Temporal Reasoning. Springer, Heidelberg (2000)

11. Bettini, C., Wang, X.S., Jajodia, S., Lin, J.: Discovering Frequent Event Patterns
with Multiple Granularities in Time Sequences. IEEE Transactions on Knowledge
and Data Engineering 10(2) (1998)

12. Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis: Forecasting and Control.
Prentice-Hall, Englewood Cliffs (1994)

13. Calders, T.: Deducing Bounds on the Frequency of Itemsets. In: Proc. of EDBT
Workshop DTDM Database Techniques in Data Mining (2002)

14. Chan, F.K., Fu, A.W.: Efficient Time Series Matching by Wavelets. In: Proc. of
International Conference on Data Mining (1999)

46 J.S. Yoo

15. Cheung, W., Han, J., Ng, V.T., Wong, C.Y.: Maintenance of Discovered Associa-
tion Rules in Large Databases: An Incremental Updating Technique. In: Proc. of
the IEEE International Conference on Data Engineering, ICDE (1996)

16. Das, G., Gunopulos, D., Mannila, H.: Finding Similar Time Series. In: Proc. of
Principles of Data Mining and Knowledge Discovery, European Symposium (1997)

17. Dong, G., Li, J.: Efficient Mining of Emerging Patterns: Discovering Trends and
Differences. In: Proc. of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (1999)

18. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast Subsequence Matching in
Time-series Database. In: Proc. of the ACM SIGMOD International Conference
on Management of Data (1994)

19. Ganti, V., Gehrke, J., Ramakrishnan, R.: A Framework for Measuring Changes in
Data Characteristics. In: Proc. of the ACM PODS Conference (1999)

20. Gunopulos, D., Das, G.: Time Series Similarity Measures. Tutorial Notes of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(2000)

21. Gunopulos, D., Das, G.: Time Series Similarity Measures and Time Series Indexing.
SIGMOD Record 30(2) (2001)

22. Han, J., Fu, Y.: Discovery of Multi-level Association Rules From Large Databases.
In: Proc. of the International Conference on Very Large Databases, VLDB (1995)

23. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Proc. of the ACM SIGMOD International Conference on Management of Data
(2000)

24. Hidber, C.: Online Association Rule Mining. In: Proc. of the ACM SIGMOD In-
ternational Conference on Management of Data (1998)

25. Hsu, W., Lee, M., Wang, J.: Temporal and Spatio-temporal Data Mini. IGI Pub-
lishing (1997)

26. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality Reduction
for Fast Similarity Search in Large Time Series Databases. Journal of Knowledge
and Information Systems 3(3) (2001)

27. Keogh, E., Ratanamahatana, C.A.: Exact Indexing of Dynamic Time Warping.
Knowledge and Information Systems 17(3), 358–386 (2005)

28. Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering Calendar-Based Temporal
Assocation Rules. Journal of Data and Knowledge Engineering 15(2) (2003)

29. Li, Y., Zhu, S., Wang, X.S., Jajodia, S.: Looking into the Seeds of Time: Discov-
ering Temporal Patterns in Large Transaction Sets. Journal of Information Sci-
ences 176(8) (2006)

30. Liu, B., Hsu, W., Ma, Y.: Discovering the Set of Fundamental Rule Change. In:
Proc. of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2001)

31. Lu, H., Han, J., Feng, L.: Stock Movement Prediction and N-Dimensional Inter-
Transaction Association Rules. In: Proc. of the ACM SIGMOD Workshop on Re-
search Issues in Data Mining and Knowledge Discovery (1998)

32. Mannila, H., Toivonen, H., Verkamo, A.: Discovering Frequent Episodes in Se-
quences. In: Proc. of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (1995)

33. Mitsa, T.: Temporal Data Mining. Chapman and Hall/CRC (2010)

34. NOAA. El Nino Page, http://www.elnino.noaa.gov/

35. Ozden, B., Ramaswamy, S., Silberschatz, A.: Cyclic Association Rules. In: Proc.
of the IEEE International Conference on Data Engineering, ICDE (1998)

Temporal Data Mining: Similarity-Profiled Association Pattern 47

36. Park, J.S., Chen, M., Yu, P.: An Effective Hashing-based Algorithm for Mining
Association Rules. In: Proc. of the ACM SIGMOD International Conference on
Management of Data (1995)

37. Ramaswamy, S., Mahajan, S., Silberschatz, A.: On the Discovery of Interesting
Patterns in Association Rules. In: Proc. of the International Conference on Very
Large Database (VLDB) (1998)

38. Srikant, R., Agrawal, R.: Mining Generalized Association Rules. In: Proc. of the
International Conference on Very Large Databases, VLDB (1995)

39. Taylor, G.H.: Impacts of El Nino on Southern Oscillation on the Pacific Northwest,
http://www.ocs.orst.edu/reports/enso_pnw.html

40. Teng, W., Chen, M., Yu, P.: A Regression-Based Temporal Pattern Mining
Scheme for Data Streams. In: Proc. of the International Conference on Very Large
Databases, VLDB (2003)

41. Yi, B.K., Faloutsos, C.: Fast Time Sequence Indexing for Arbitrary Lp norms. In:
Proc. of the International Conference on Very Large Data Bases, VLDB (2000)

42. Yoo, J.S., Shekhar, S.: Similarity-profiled Temporal Association Mining. IEEE
Transactions on Knowledge and Data Engineering 21(5), 1147–1161 (2009)

Chapter 4

Bayesian Networks with Imprecise Probabilities:
Theory and Application to Classification

G. Corani, A. Antonucci, and M. Zaffalon

IDSIA, Manno, Switzerland
{giorgio,alessandro,zaffalon}@idsia.ch

www.idsia.ch

Abstract. Bayesian networks are powerful probabilistic graphical models for
modelling uncertainty. Among others, classification represents an important ap-
plication: some of the most used classifiers are based on Bayesian networks.
Bayesian networks are precise models: exact numeric values should be provided
for quantification. This requirement is sometimes too narrow. Sets instead of sin-
gle distributions can provide a more realistic description in these cases. Bayesian
networks can be generalized to cope with sets of distributions. This leads to a
novel class of imprecise probabilistic graphical models, called credal networks.
In particular, classifiers based on Bayesian networks are generalized to so-called
credal classifiers. Unlike Bayesian classifiers, which always detect a single class
as the one maximizing the posterior class probability, a credal classifier may even-
tually be unable to discriminate a single class. In other words, if the available in-
formation is not sufficient, credal classifiers allow for indecision between two or
more classes, this providing a less informative but more robust conclusion than
Bayesian classifiers.

Keywords: Credal sets, credal networks, Bayesian networks, classification,
credal classifiers, naive Bayes classifier, naive credal classifier, tree-augmented
naive Bayes classifier, tree-augmented naive credal classifier.

1 Introduction

Bayesian networks [63] are powerful and widespread tools for modelling uncertainty
about a domain. These probabilistic graphical models provide a compact and intuitive
quantification of uncertain knowledge. After its specification, a Bayesian network can
be queried by appropriate inference algorithms in order to extract probabilistic informa-
tion about the variables of interest. Among others, classification represents an important
application of Bayesian networks. Some of the most used classifiers proposed within the
Bayesian theory of probability, like the naive Bayes classifier (Section 8) and the tree-
augmented naive Bayes classifier (Section 11) can be regarded as learning/inference
algorithms for Bayesian networks with particular topologies.

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 49–93.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

50 G. Corani, A. Antonucci, and M. Zaffalon

Bayesian networks are precise models, in the sense that exact numeric values should
be provided as probabilities needed for the model parameters. This requirement is some-
times too narrow. In fact, there are situations where a single probability distribution
cannot properly describe the uncertainty about the state of a variable.1 In these cases,
sets instead of single distributions provide an alternative and more realistic description.
E.g., in some cases we may prefer to model our knowledge by interval-valued proba-
bilistic assessments, these corresponding to the specification of the set of distributions
compatible with these assessments. Sets of this kind, which are generally required to be
closed and convex by some rationality criteria, are called credal sets [57]. Approaches
where probabilities are quantified in this way are said to be imprecise [75].

Bayesian networks can be generalized in order to cope with credal sets. This leads
to a novel class of imprecise probabilistic graphical models, generalizing Bayesian net-
works, and called credal networks [35]. Expert knowledge is mostly qualitative and it
can be therefore naturally described by credal sets instead of single distributions: this
makes knowledge-based (or expert) systems represent one of the more natural applica-
tion of credal networks (e.g., [2,4,5]). But even when the focus is on learning probabili-
ties from data, a credal set may offer a more reliable model of the uncertainty, especially
when coping with small or incomplete data sets. Thus, classifiers based on Bayesian net-
works can be profitably extended to become credal classifiers based on credal networks.
Unlike Bayesian classifiers, which always detect a single class as the one maximizing
the posterior class probability2, a credal classifier works with sets of distributions and
may eventually be unable to discriminate a single class as that with highest probability.
In other words, if the available information is not sufficient to identify a single class,
credal classifiers allow for indecision between two or more classes, this representing a
less informative but more robust conclusion than Bayesian classifiers.

This chapter describes the main tools of the theory of credal networks in Sections 2–
6; it starts by reviewing the general theory of Bayesian networks (Section 2) and the
fundamental concept of credal set (Section 3), to then illustrate the design and the
quantification of the network (Section 4), the query through specific inference algo-
rithms (Section 5), and an environmental application (Section 6). In the second part of
the chapter (Sections 7–14) we show how credal networks can be used for classification.
In particular, we show how the naive Bayes classifier and the Tree-Augmented Naive
(TAN) have been extended to deal with imprecise probabilities, yielding respectively
the Naive Credal Classifier (NCC) and the credal TAN (Sections 8–12); this part in-
cludes experimental results in texture recognition (Section 9.1) and a discussion of the
metrics to evaluate credal classifiers empirically (Section 10). Finally, we review some
further credal classifiers (Section 13) and the available software (Section 14).

1 As an example, a condition of ignorance about the state of a variable is generally modelled
by a uniform distribution, while a more robust model of this ignorance is the whole set of
distributions we can specify over this variable.

2 In the Bayesian framework, the only exception to that is when a condition of indifference
among two or more classes appears. This corresponds to the situation where the classifier
assigns the highest probability to more than a class.

Bayesian Networks with Imprecise Probabilities 51

2 Bayesian Networks

We deal with multivariate probabilistic models defined over a collection of variables3

X := {X0,X1, . . . ,Xk}. In particular, we consider graphical probabilistic models, in the
sense that we assume a one-to-one correspondence between the elements of X and
the nodes of a directed acyclic graph (DAG) G .4 Accordingly, in the following we use
the terms node and variable interchangeably. The parents of a variable are the vari-
ables corresponding to its immediate predecessors according to G . Notation Πi is used
to denote the parents of Xi, for each Xi ∈ X. Similarly, we define the children and, by
iterating this relation, the descendants of any variable. The graph G should be intended
as a compact description of the conditional independence relations occurring among
the variables in X. This is achieved by means of the Markov condition for directed
graphs: every variable is independent of its non-descendant non-parents conditional on
its parents. These conditional independence relations can be used to specify a proba-
bilistic model over the whole set of variables X by means of local probabilistic models,
involving only smaller subsets of X (namely, a variable together with its parents, for
each submodel). This feature, characterizing directed probabilistic graphical models,
will be shared by both the Bayesian networks reviewed here and the credal networks
introduced in Section 4.

For each Xi∈X, the set of its possible values is denoted as ΩXi . Here we focus on
the case of categorical variables, i.e., we assume |ΩXi |< +∞ for each Xi ∈X. Similarly,
notation ΩΠi is used for the set of possible values of the joint variable Πi, corresponding
to the parents of Xi. We denote by P(Xi) a probability mass function over Xi, and by
P(xi) the probability that Xi = xi, where xi is a generic element of ΩXi . Finally, in the
special case of a binary variable Xi, we set ΩXi := {xi,¬xi}, while the (vertical) array
notation is used to enumerate the values of a probability mass functions, i.e., P(Xi) =
[. . . ,P(xi), . . .]T . This formalism is sufficient to introduce the definition of Bayesian
network, which is reviewed here below. For a deeper analysis of this topic, we point the
reader to Pearl’s classical textbook [63].

Definition 1. A Bayesian network over X is a pair 〈G ,P〉 such that P is a set of condi-
tional mass functions P(Xi|πi), one for each Xi∈X and πi∈ΩΠi .

As noted in the previous section, we assume the Markov condition to make G represent
probabilistic independence relations between the variables in X. Hence, the conditional
probability mass functions associated to the specification of the Bayesian network can
be employed to specify a joint mass function P(X) by means of the following factor-
ization formula:

P(x) =
k

∏
i=0

P(xi|πi), (1)

3 In the sections about classification, the first variable in this collection will be identified with
the class and the remaining with the attributes. Notation X := (C,A1, . . . ,Ak) will be therefore
preferred.

4 A directed graph is acyclic if it does not contains any directed loop.

52 G. Corani, A. Antonucci, and M. Zaffalon

for each x ∈ ΩX, where for each i = 0,1, . . . ,k the values (xi,πi) are those consistent
with x.

Bayesian networks provide therefore a specification of a joint probability mass func-
tion, describing the probabilistic relations among the whole set of variables. The spec-
ification is compact in the sense that only conditional probability mass functions for
the variables conditional on (any possible value of) the parents should be assessed.
Once a Bayesian network has been specified, a typical task we might consider consists
in querying the model to gather probabilistic information about the state of a variable
given evidence about the states of some others. This inferential task is called updating
and it corresponds to the computation of the posterior beliefs about a queried variable
Xq, given the available evidence XE =xE :5

P(xq|xE) =
∑xM∈ΩXM

∏k
i=0 P(xi|πi)

∑xM∈ΩXM ,xq∈ΩXq
∏k

i=0 P(xi|πi)
, (2)

where XM := X \ ({Xq} ∪ XE) and the values of xi and πi are those consistent with
x = (xq,xM,xE). The variables in XM are marginalized out of Equation (2) because their
values are not available or, in other words, they are missing, and this missingness is
independent of the actual values of the variables. This represents a special case of the
missing at random assumption for missing data, which will be discussed in Section 5.3
and Section 9.2.

The evaluation of Equation (2) is an NP-hard task [23], but in the special case of
polytrees, Pearl’s local propagation scheme allows for efficient updating [63]. A poly-
tree is a Bayesian network based on a singly connected directed acyclic graph, which is
a graph that does not contain any undirected loop.

Bayesian networks are powerful means to model uncertain knowledge in many sit-
uations. Yet, the specification of a model of this kind requires the precise assessments
of the conditional probabilities associated to every variable for any possible value of
the parents. Some authors claim this requirement is too strong [75]: an imprecise prob-
abilistic evaluation corresponding for instance to an interval and in general to a set of
possible estimates would represent a more realistic model of the uncertainty. Thus, we
consider a generalization of Bayesian networks in which closed convex sets of proba-
bility mass functions instead of single mass functions are provided.

3 Credal Sets

Walley’s behavioral theory of imprecise probabilities [75] provides a complete proba-
bilistic theory, based on coherent lower previsions, that generalizes to imprecision de
Finetti’s classical theory [43]. A coherent lower prevision can be equivalently expressed
by (the lower envelope of) a closed convex set of linear previsions, which are expec-
tations with respect to a finitely additive probability, and hence in one-to-one relation-
ship with mass functions in the case of finite supports. Accordingly, we formalize our
imprecise probabilistic approaches in terms of closed convex sets of probability mass
functions as stated in the following section.

5 A notation with uppercase subscripts (like XE) is employed to denote vectors (and sets) of
variables in X.

Bayesian Networks with Imprecise Probabilities 53

3.1 Definition

Following Levi [57], we call credal set a closed convex set of probability mass func-
tions. A credal set for a random variable X is denoted by K(X). We follow Cozman [35]
in considering only finitely generated credal sets, i.e., obtained as the convex hull of a
finite number of mass functions for a certain variable. Geometrically, a credal set of this
kind is a polytope. Such credal set contains an infinite number of mass functions, but
only a finite number of extreme mass functions: those corresponding to the vertices of
the polytope, which are in general a subset of the generating mass functions. In the fol-
lowing, the set of vertices of K(X) is denoted as ext[K(X)]. Enumerating the elements
of ext[K(X)] is then a way to describe a credal set. It is easy to verify that credal sets
over binary variables cannot have more than two vertices, while no bounds characterize
the possible number of vertices of credal sets over variables with three or more states.

Given a non-empty subset Ω ∗X ⊆ΩX , an important credal set for our purposes is the
vacuous credal set relative to Ω ∗X , i.e., the set of all the mass functions for X assigning
probability one to Ω ∗X . We denote this set by KΩ∗X (X). The vertices of KΩ∗X (X) are the
|Ω ∗X | degenerate mass functions assigning probability one to the single elements of Ω ∗X .

(0,1,0)

(0,0,1)

(1,0,0)

(a)

(0,1,0)

(0,0,1)

(1,0,0)

(b)

(0,1,0)

(0,0,1)

(1,0,0)

(c)

Fig. 1. Geometric representation of credal sets over a ternary variable X (i.e., ΩX = {x′,x′′,x′′′}).
The representation is in a three-dimensional space with coordinates [P(x′),P(x′′),P(x′′′)]T .
The blue polytopes represent respectively: (a) the vacuous credal set KΩX (X); (b) the credal
set defined by constraint P(x′′′) > P(x′′); (c) a credal set K(X) such that ext[K(X)] =
{[.1, .3, .6]T , [.3, .3, .4]T , [.1, .5, .4]T}.

3.2 Basic Operations with Credal Sets

Given x̃ ∈ΩX , the lower probability for x̃ according to credal set K(X) is

PK(x̃) := min
P(X)∈K(X)

P(x̃). (3)

If there are no ambiguities about the credal set considered in Equation (3), the su-
perscript K is removed and the corresponding lower probability is simply denoted as
P(x̃). Walley shows that inferences based on a credal set are equivalent to those based
only on its vertices [75]. This makes optimization in Equation (3) a combinatorial task.
As an example, for the credal set in Figure 1(c), we have P(x′) = .1, P(x′′) = .3 and
P(x′′′) = .4.

54 G. Corani, A. Antonucci, and M. Zaffalon

By simply replacing the minimum with the maximum in Equation (3), we can define
the upper probability P. Lower/upper probabilities for any event (including conditional
events) in ΩX can be similarly considered. The conjugacy6 P(x̃) = 1− P(ΩX \ {x̃})
holds, and makes it possible to focus our attention on lower probabilities. Lower/upper
expectations can be also considered when coping with generic functions of variable X .

Let us also describe how the basic operations of marginalization and conditioning
can be extended from probability mass functions to credal sets. Given a joint credal set
K(X ,Y), its marginal over X is denoted by K(X) and is obtained by the convex hull
of the collection of mass functions P(X), obtained marginalizing out Y from P(X ,Y),
for each P(X ,Y) ∈ K(X ,Y). In practical situations, instead of considering all the joint
probability mass functions of K(X ,Y), marginalization can be obtained by considering
only the vertices, and then taking the convex hull, i.e.,

K(X) = CH

{

P(X) : P(x) = ∑
y∈ΩY

P(x,y),∀x ∈ΩX ,∀P(X ,Y) ∈ ext[K(X ,Y)]

}

, (4)

where CH denotes the convex hull operator. Concerning conditioning with credal sets,
we simply perform elements-wise application of Bayes’ rule. The conditional credal
set is the union of all the conditional mass functions. As in the case of marginalization,
the practical computation of a conditional credal set from a joint can be obtained by
considering only the vertices of the joint and then taking the convex hull. An expression
analogous to that in Equation (4) can be written to compute the conditional credal set
K(X |Y = y) from K(X ,Y). Note that, in order to apply Bayes’ rule, we should assume
non-zero probability for the conditioning event (Y = y). This corresponds to having
P(y) > 0 for each P(Y) ∈ K(X) (or equivalently for each P(Y) ∈ ext[K(Y)]), and hence
P(y) > 0. When this condition is not satisfied, other conditioning techniques can be
considered. We point the reader to [75, App. J] for a discussion on this issue.

Finally, let us discuss how independence can be intended when knowledge is de-
scribed by credal sets. In fact, the standard notion of independence (or stochastic inde-
pendence) among two variables X and Y , as adopted within the Bayesian framework,
states that X and Y are independent if their joint probability mass function P(X ,Y) fac-
torizes, i.e., P(x,y) = P(x) ·P(y), for each x ∈ ΩX and y ∈ ΩY . But what should we
assume if the knowledge about the two variables is described by a set K(X ,Y) instead
of a single joint mass function P(X ,Y)? A possible answer is provided by the notion
of strong independence: X and Y are strongly independent if they are stochastically
independent for each P(X ,Y) ∈ ext[K(X ,Y)]. Conditional independence is similarly
defined. In the above definition we replace P(X ,Y) with P(X ,Y |z) and K(X ,Y) with
K(X ,Y |z), and then, if the relation is satisfied for each z ∈ΩZ , we say that X and Y are
strongly independent given Z. Strong independence is not the only concept of indepen-
dence proposed for credal sets. We point the reader to [32] for an overview and [22] for
recent developments about other notions of independence in the imprecise-probabilistic
framework.

6 We use the same notation for the subsets of the possibility space and the corresponding indi-
cator functions. Accordingly, we can regard set ΩX \{x̃} even as function of X returning one
when X
= x̃ and zero otherwise.

Bayesian Networks with Imprecise Probabilities 55

3.3 Credal Sets from Probability Intervals

According to the discussion in Section 3.1, a credal set can be specified by an explicit
enumeration of its (extreme) probability mass functions. Alternatively, we can consider
a set of probability intervals over ΩX :

IX = {Ix : Ix = [lx,ux],0≤ lx ≤ ux ≤ 1,x ∈ΩX} , (5)

The set of intervals can be then used as a set of (linear) constraints to specify the fol-
lowing credal set:

K(X) =

{

P(X) : P(x) ∈ Ix,x ∈ΩX , ∑
x∈ΩX

P(x) = 1

}

. (6)

Not all the credal sets can be obtained from a set of probability intervals as in Equa-
tion (6), but intervals are often a convenient tool to adopt. IX is said to avoid sure
loss if the corresponding credal set is not empty and to be coherent (or reachable) if
ux′ + ∑x∈ΩX ,x
=x′ lx ≤ 1 ≤ lx′ + ∑x∈ΩX ,x
=x′ ux, for all x ∈ ΩX . IX is coherent if and only
if the intervals are tight, i.e., for each lower or upper bound in IX there is a mass func-
tion in the credal set at which the bound is attained [75,14]. Note that for reachable
sets of probability intervals, P(x) = lx and P(x) = ux, for each x ∈ΩX . As an example,
the credal set in Figure 1(c) is the one corresponding to the reachable set of probability
intervals with Ix′ = [.1, .3], Ix′′ = [.3, .5] and Ix′′′ = [.4, .6]. Standard algorithms can com-
pute the vertices of a credal set for which a probability interval has been provided [9].
However, the resulting number of vertices is exponential in the size of the possibility
space [71].

3.4 Learning Credal Sets from Data

Probability intervals, and hence credal sets, can be inferred from data by the impre-
cise Dirichlet model, a generalization of Bayesian learning from i.i.d. multinomial data
based on imprecise-probability modeling of prior ignorance. The bounds for the proba-
bility that X = x are given by

Ix =
[

n(x)
s+∑x∈ΩX

n(x)
,

s+n(x)
s+∑x∈ΩX

n(x)

]

, (7)

where n(x) counts the number of instances in the data set in which X = x, and s is a
hyperparameter that expresses the degree of caution of inferences, usually chosen in the
interval [1,2] (see [76] for details and [10] for a discussion on this choice). To support
this interpretation of s, note that if s = 0, the credal set associated through Equation (6)
to the probability intervals in Equation (7) collapses to a “precise” credal set made of a
single extreme point, corresponding to the maximum likelihood estimator. On the other
side, if s→ ∞, the corresponding credal set tends to the vacuous credal set KΩX (X).
The probability intervals as in Equation (7) are always reachable. As an example, the
credal set in Figure 1(c) can be learned through Equation (7) from a complete dataset
about X , with counts n(x′) = 1, n(x′′) = 3, n(x′′′) = 4 and s = 2. Unlike this example,

56 G. Corani, A. Antonucci, and M. Zaffalon

there are reachable sets of probability intervals that cannot be regarded as the output of
Equation (7) (no matter which are the counts in the data set).

Although in this chapter we only consider the imprecise Dirichlet model, other meth-
ods have been also proposed in the literature for learning credal sets from multinomial
data (see for instance [20] for an alternative approach and a comparison).

4 Credal Networks

In the previous section we presented credal sets as a more general and expressive model
of uncertainty with respect to single probability mass functions. This makes it possible
to generalize Bayesian networks to imprecise probabilities. Here we report the basics
of the theory for this class of models. We point the reader to [35] for an overview of
these models, and to [64] for a tutorial on this topic.

4.1 Credal Network Definition and Strong Extension

The extension of Bayesian networks to deal with imprecision in probability is achieved
by means of the notion of credal set. The idea is simple: to replace each conditional
probability mass function in Definition 1 with a conditional credal set. This leads to the
following definition.

Definition 2. A credal network over X is a pair 〈G ,K〉, where K is a set of conditional
credal sets K(Xi|πi), one for each Xi ∈ X and πi ∈ΩΠi .

In the same way as Bayesian networks specify a (joint) probability mass function over
their whole set of variables, credal networks, as introduced in Definition 2, can be used
to specify a (joint) credal set over the whole set of variables. According to [35], this
corresponds to the strong extension K(X) of a credal network, which is defined as the
convex hull of the joint mass functions P(X), with, for each x ∈ ΩX:

P(x) =
k

∏
i=0

P(xi|πi),
P(Xi|πi) ∈ K(Xi|πi),
for each Xi ∈ X,πi ∈Πi.

(8)

Here K(Xi|πi) can be equivalently replaced by ext[K(Xi|πi)] according to the following
proposition [8].

Proposition 1. Let {Pj(X)}v
j=1 = ext[K(X)], where K(X) is the strong extension of a

credal network 〈G ,K〉 are joint mass functions obtained by the product of vertices of
the conditional credal sets, i.e., for each x ∈ΩX:

Pj(x) =
k

∏
i=0

Pj(xi|πi), (9)

for each j=1, . . . ,v, where, for each i=0, . . . ,k and πi ∈ΩΠi , Pj(Xi|πi) ∈ ext[K(Xi|πi)].

According to Proposition 1, we have that the vertices of the strong extension of a credal
network can be obtained by combining the vertices of the conditional credal sets in-
volved in the definition of credal network. Note that this makes the number of vertices
of the strong extension exponential in the input size.

Bayesian Networks with Imprecise Probabilities 57

Example 1 (A simple credal network). Consider a credal network associated to the
graph in Figure 2. According to Definition 2, the specification requires the assessment
of the (unconditional) credal set K(X0), and two conditional credal sets (one for each
value of parent X0) for X1 and X2. Note also that, according to Proposition 1, the ver-
tices of the strong extension K(X0,X1,X2) cannot be more than 25.

X0

X1 X2

Fig. 2. A credal network over three binary variables. Concerning quantification, we
set ext[K(X0)] = {[.2, .8]T , [.5, .5]T}, ext[K(X1|x0)] = {[.3, .7]T , [.4, .6]T}, ext[K(X1|¬x0)] =
{[.1, .9]T , [.2, .8]T}, ext[K(X2|x0)] = {[.5, .5]T , [.6, .4]T }, ext[K(X2|¬x0)] = {[.7, .3]T , [.8, .2]T}.

The key for the decomposition, as in Equation (1), of the joint probability mass function
associated to a Bayesian network are the stochastic conditional independence relations
outlined by the graph underlying the network according to the Markov condition. Simi-
larly, the decomposition characterizing the strong extension of a credal network follows
from the strong conditional independence relations associated to the graph. Other joint
credal sets, alternative to the strong extension, might correspond to different notions of
independence adopted in the semantic of the Markov condition. We point the reader to
[21], for an example of credal networks based on a different notion of independence.

4.2 Non-separately Specified Credal Networks

In the definition of strong extension as reported in Equation (8), each conditional prob-
ability mass function is free to vary in its conditional credal set independently of the
others. In order to emphasize this feature, credal networks of this kind are said to be
with separately specified credal sets, or simply separately specified credal networks.

Separately specified credal networks are the most commonly used type of credal
network, but it is possible to consider credal networks whose strong extension cannot
be formulated as in Equation (8). This corresponds to having relationships between the
different specifications of the conditional credal sets, which means that the possible
values for a given conditional mass function can be affected by the values assigned to
some other conditional mass functions. A credal network of this kind is called non-
separately specified.

Some authors considered so-called extensive specifications of credal networks [66],
where instead of a separate specification for each conditional mass function associated
to Xi, the probability table P(Xi|Πi), i.e., a function of both Xi and Πi, is defined to
belong to a finite set of tables. This corresponds to assume constraint between the spec-
ification of the conditional credal sets K(Xi|πi) for the different values of πi ∈ΩΠi . The

58 G. Corani, A. Antonucci, and M. Zaffalon

strong extension of an extensive credal network is obtained as in Equation (8), by sim-
ply replacing the separate requirements for each single conditional mass function with
extensive requirements about the tables which take values in the corresponding finite
set (and then taking the convex hull).

Example 2 (Extensive specification of a credal network). Consider the credal network
defined in Example 1 over the graph in Figure 2. Keep the same specification of the
conditional credal sets, but this time use the following (extensive) constraints: when the
first vertex of K(X1|x0) is chosen, the first vertex of K(X1|¬x0) has to be chosen too;
similarly for the second vertex of K(X1|x0) and for variable X2. This corresponds to
assume the following possible values for the conditional probability tables:

P(X1|X0) ∈
{[

.3 .1

.7 .9

]

,

[
.4 .2
.6 .8

]}

P(X2|X0) ∈
{[

.5 .7

.5 .3

]

,

[
.6 .8
.4 .2

]}

. (10)

Extensive specifications are not the only kind of non-separate specification we can con-
sider for credal networks. In fact, we can also consider constraints between the speci-
fication of conditional credal sets corresponding to different variables. This is a typical
situation when the quantification of the conditional credal sets in a credal network is
obtained from a data set. A simple example is illustrated below.

Example 3 (Learning from incomplete data). Given three binary variables X0, X1 and
X2 associated to the graph in Figure 3, we want to learn the model probabilities from
the incomplete data set in Table 1, assuming no information about the process making
the observation of X1 missing in the last instance of the data set. A possible approach
is to learn two distinct probabilities from the two complete data sets corresponding to
the possible values of the missing observation,7 and use them to specify the vertices of
the conditional credal sets of a credal network.

X0 X1 X2

Fig. 3. The graph considered in Example 3.

Table 1. A data set about three binary variables; “∗” denotes a missing observation

X0 X1 X2

x0 x1 x2
¬x0 ¬x1 x2

x0 x1 ¬x2
x0 ∗ x2

7 The rationale of considering alternative complete data sets in order to conservatively deal with
missing data will be better detailed in Section 5.3.

Bayesian Networks with Imprecise Probabilities 59

To make things simple we compute the probabilities for the joint states by means of
the relative frequencies in the complete data sets. Let P1(X0,X1,X2) and P2(X0,X1,X2)
be the joint mass functions obtained in this way, which define the same conditional mass
functions for

P1(x0) = P2(x0) = 3
4

P1(x1|¬x0) = P2(x1|¬x0) = 0
P1(x2|¬x1) = P2(x2|¬x1) = 1;

and different conditional mass functions for

P1(x1|x0) = 1
P1(x2|x1) = 2

3

P2(x1|x0) = 2
3

P2(x2|x1) = 1
2 .

(11)

We have therefore obtained two, partially distinct, Bayesian network specifications over
the graph in Figure 3. The conditional probability mass functions of these networks are
the vertices of the conditional credal sets for the credal network we consider. Such
a credal network is non-separately specified. To see that, just note that if the credal
network would be separately specified the values P(x1|x0) = 1 and P(x2|x1) = 1

2 could
be regarded as a possible instantiation of the conditional probabilities, despite the fact
that there are no complete data sets leading to this combination of values.

Although their importance in modelling different problems, non-separate credal net-
works have received relatively little attention in the literature. Most of the algorithms
for credal networks inference are in fact designed for separately specified credal net-
works. However, two important exceptions are two credal classifiers which we present
later: the naive credal classifier (Section 9) and the credal TAN (Section 12).

Furthermore, in a recent work [8] it has been shown that non-separate credal net-
works can be equivalently described as separate credal networks augmented by a num-
ber of auxiliary parents nodes enumerating only the possible combinations for the con-
strained specifications of the conditional credal sets. This can be described by means of
the two following examples.

Example 4 (Separate specification of non-separate credal networks). Consider the ex-
tensive credal network in Example 2. Nodes X1 and X2 are characterized by an extensive
specification. Thus we add to the model two auxiliary variables X3 and X4, that become
parents of X1 and X2 respectively. The resulting graph is that in Figure 4(a). Each aux-
iliary node should index the tables in the specification of its children. In Equation (10)
we have two tables for each node. Thus, we assume nodes X3 and X4 to be binary, and
we redefine the following quantification for nodes X1 and X2: P(X1|X0,x3) = P1(X1|X3)
and P(X1|X0,¬x3) = P2(X1|X3), where P1 and P2 are the two tables in the specification.
We similarly proceed for X2. Finally, regarding nodes X2 and X3, we set a vacuous spec-
ification, i.e., K(X2) := KΩX2

(X2) and similarly for X3. Note that this credal network is
separately specified. Let K(X0,X1,X2,X3,X4) denote the strong extension of this net-
work, and K(X0,X1,X2) the joint credal set obtained by marginalizing out X3 and X4.
The result in [8] states that K(X0,X1,X2) coincides with the strong extension of the
extensive credal network of Example 2.

We similarly proceed for the credal network in Example 3. The constraints between
P1 and P2 in Equation (11) correspond to a non-separate specification of the values

60 G. Corani, A. Antonucci, and M. Zaffalon

of the conditional probabilities of X1 and X2. As in the previous case, we add to the
graph in Figure 3 an auxiliary node X3, which is a parent of both X1 and X2, and for the
quantification we proceed as in the previous example. This leads to the credal network
in Figure 4 (b).

X0X3

X1

X4

X2

(a)

X0 X1 X2

X3

(b)

Fig. 4. Modelling non-separately specific conditional credal sets with control nodes (in pink)

This procedure can be easily applied to any non-separate specification of a credal net-
work. We point the reader to [8] for details.

5 Computing with Credal Networks

5.1 Credal Networks Updating

By perfect analogy with what we have done for Bayesian networks in Section 2, we
can query a credal network in order to gather probabilistic information about a variable
given evidence about some other variables. This task is still called updating and consists
in the computation of the posterior probability P(xq|xE) with respect to the network
strong extension K(X). Equation (2) generalizes as follows:

P(xq|xE) = min
j=1,...,v

∑xM ∏k
i=0 Pj(xi|πi)

∑xM ,xq ∏k
i=0 Pj(xi|πi)

, (12)

where {Pj(X)}v
j=1 are the vertices of the strong extension. A similar expression with

a maximum replacing the minimum defines upper probabilities P(xq|xE). Note that,
according to Proposition 1, for separately specified credal networks, the number v of
vertices of the strong extension is exponential in the input size. Thus, Equation (12)
cannot be solved by exhaustive iteration of updating algorithms for Bayesian networks.
In fact, exact updating displays higher complexity than Bayesian networks: credal net-
works updating is NP-complete for polytrees8, and NPPP-complete for general credal
networks [37]. Nevertheless, a number of exact and approximate algorithm for credal
networks updating has been developed. A summary about the state of the art in this field
is reported in Section 5.2.

8 We extend to credal networks the notion of polytree introduced for Bayesian networks in
Section 2.

Bayesian Networks with Imprecise Probabilities 61

Algorithms of this kind can be used to compute, given the available evidence xE ,
the lower and upper probabilities for the different outcomes of the queried variable Xq,
i.e., the set of probability intervals {[P(xq|xE),P(xq|xE)]}xq∈ΩXq

. In order to identify the
most probable outcome for Xq, a simple interval dominance criterion can be adopted.
The idea is to reject a value of Xq if its upper probability is smaller than the lower
probability of some other outcome. Clearly, this criterion is not always intended to
return a single outcome as the most probable for Xq. In general, after updating, the
posterior knowledge about the state of Xq is described by the set Ω ∗Xq

⊆ΩXq , defined as
follows:

Ω ∗Xq
:=

{
xq ∈ΩXq : �x′q ∈ΩXqs.t.P(xq|xE) < P(x′q|xE)

}
. (13)

Criteria other than interval dominance have been proposed in the literature and formal-
ized in the more general framework of decision making with imprecise probabilities
[72]. Most of these criteria require the availability of the posterior credal set:

K(Xq|xE) = CH
{

Pj(Xq|xE)
}v

j=1 . (14)

As an example, the set of non-dominated outcomes Ω∗∗Xq
according to the maximality

criterion [75] is obtained by rejecting the outcomes whose probabilities are dominated
by those of some other outcome, for any distribution in the posterior credal set in Equa-
tion (14), i.e.,

Ω ∗∗Xq
:=

{
xq ∈ΩXq : �x′q ∈ΩXq s.t.P(xq|xE) < P(x′q|xE)∀P(Xq|xE) ∈ ext[K(Xq|xE)]

}
.

(15)
Maximality is more informative than interval dominance, i.e., Ω∗∗Xq

⊆Ω∗Xq
. Yet, most of

the algorithms for credal networks only returns the posterior probabilities as in Equation
(12), while the posterior credal set as in Equation (14) is needed by maximality. Notable
exceptions are the models considered in Section 9 and Section 12, for which the com-
putation of the set as in Equation (15) can be performed without explicit evaluation of
the posterior credal set. In other cases, a procedure to obtain an (outer) approximation
of the credal set in Equation (14) can be used [3].

5.2 Algorithms for Credal Networks Updating

Despite the hardness of the problem, a number of algorithms for exact updating of
credal networks have been proposed. Most of these methods generalize existing tech-
niques for Bayesian networks. Regarding Pearl’s algorithm for efficient updating on
polytree-shaped Bayesian networks [63], a direct extension to credal networks is not
possible. Pearl’s propagation scheme computes the joint probabilities P(xq,xE) for each
xq ∈ ΩXq ; the conditional probabilities associated to P(Xq|xE) are then obtained using
the normalization of this mass function. Such approach cannot be easily extended to
credal networks, because P(Xq|xE) and P(Xq|xE) are not normalized in general. A re-
markable exception is the case of binary credal networks, i.e., models for which all the
variables are binary. The reason is that a credal set for a binary variable has at most
two vertices and can therefore be identified with an interval. This enables an efficient

62 G. Corani, A. Antonucci, and M. Zaffalon

extension of Pearl’s propagation scheme. The result is an exact algorithm for polytree-
shaped binary separately specified credal networks, called 2-Updating (or simply 2U),
whose computational complexity is linear in the input size.

Another approach to exact inference is based on a generalization of the variable
elimination techniques for Bayesian networks. In the credal case, this corresponds to a
symbolic variable elimination, where each elimination step defines a multilinear con-
straint among the different conditional probabilities where the variable to be eliminated
appears. Overall, this corresponds to a mapping between credal networks updating and
multilinear programming [14]. Similarly, a mapping with an integer linear program-
ming problem can be achieved [13]. Other exact inference algorithms examine potential
vertices of the strong extension according to different strategies in order to produce the
required lower/upper values [15,35,66,67].

Concerning approximate inference, loopy propagation is a popular technique that ap-
plies Pearl’s propagation to multiply connected Bayesian networks [61]: propagation is
iterated until probabilities converge or for a fixed number of iterations. In [53], Ide and
Cozman extend these ideas to belief updating on credal networks, by developing a loopy
variant of 2U that makes the algorithm usable for multiply connected binary credal net-
works. This idea has further exploited by the generalized loopy 2U, which transforms
a generic credal network into an equivalent binary credal network, which is indeed
updated by the loopy version of 2U [6]. Other approximate inference algorithms can
produce either outer or inner approximations: the former produce intervals that enclose
the correct probability interval between lower and upper probabilities [18,68,49,71],
while the latter produce intervals that are enclosed by the correct probability interval
[15,34]. Some of these algorithms emphasize enumeration of vertices, while others re-
sort to optimization techniques (as computation of lower/upper values for P(xq|xE) is
equivalent to minimization/maximization of a fraction containing polynomials in prob-
ability values). Overviews of inference algorithms for imprecise probabilities have been
published by Cano and Moral (e.g., [17]).

5.3 Modelling and Updating with Missing Data

In the updating problem described in Equation (12), the evidence xE is assumed to re-
port the actual values of the variables in XE . This implicitly requires the possibility
of making perfectly reliable observations. Clearly, this is not always realistic. An ex-
ample is the case of missing data: we perform an observation but the outcome of the
observation is not available. The most popular approach to missing data in the literature
and in the statistical practice is based on the so-called missing at random assumption
(MAR, [58]). This allows missing data to be neglected, thus turning the incomplete data
problem into one of complete data. In particular, MAR implies that the probability of
a certain value to be missing does not depend on the value itself, neither on other non-
observed values. For instance, the temporary breakdown of a sensor produces MAR
missing data, because the probability of missing is one, regardless of the actual value9.
As a further example, consider a medical center where test B is performed only if test

9 In this case, the data are missing completely at random (MCAR), which is a special case of
MAR [54].

Bayesian Networks with Imprecise Probabilities 63

A is positive; the missingness of B is MAR because its probability to be missing only
depends on the observed value of A. Yet, MAR is not realistic in many cases. Consider
for instance an exit poll performed during elections, where the voters of the right-wing
party sometimes refuse to answer; in this case, the probability of an answer to be miss-
ing depends on its value and thus the missingness is non-MAR. Ignoring missing data
that are non-MAR can lead to unreliable conclusions; in the above example, it would
underestimate the proportion of right-wing voters. However, it is usually not possible
to test MAR on the incomplete observations; if MAR does not appear tenable, more
conservative approaches than simply ignoring missing data are necessary in order to
avoid misleading conclusions.

De Cooman and Zaffalon have developed an inference rule based on much weaker
assumptions than MAR, which deals with near-ignorance about the missingness process
[39]. This result has been extended by Zaffalon and Miranda [82] to the case of mixed
knowledge about the missingness process: for some variables the process is assumed
to be nearly unknown, while it is assumed to be MAR for the others. The resulting
updating rule is called conservative inference rule (CIR).

To show how CIR-based updating works, we partition the variables in X in four
classes: (i) the queried variable Xq, (ii) the observed variables XE , (iii) the unobserved
MAR variables XM, and (iv) the variables XI made missing by a process that we ba-
sically ignore. CIR leads to the following credal set as our updated beliefs about the
queried variable: 10

K(Xq||XI xE) := CH
{

Pj(Xq|xE ,xI)
}

xI∈ΩXI , j=1,...,v , (16)

where the superscript on the double conditioning bar is used to denote beliefs updated
with CIR and to specify the set of missing variables XI assumed to be non-MAR, and
Pj(Xq|xE ,xI) = ∑xM

Pj(Xq,xM|xE ,xI). The insight there is that, as we do not know the
actual values of the variables in XI and we cannot ignore them, we consider all their
possible explanation (and then we take the convex hull).

When coping only with the missing-at-random variables (i.e., if XI is empty), Equa-
tion (16) becomes a standard updating task to be solved by some of the algorithms
in Section 5.2. Although these algorithms cannot be applied to solve Equation (16) if
XI is not empty, a procedure to map a conservative inference task as in Equation (16)
into a standard updating task as in Equation (12) over a credal network defined over
a wider domain has been developed [7]. The transformation is particularly simple and
consists in the augmentation of the original credal network with an auxiliary child for
each non-missing-at-random variable, with an extensive quantification. This procedure
is described by the following example.

Example 5 (CIR-based updating by standard updating algorithms). Consider the credal
network in Example 1. Assume that you want to update your beliefs about X0, after the
observation of both X1 and X2. The observation of X1 is x1, while the outcome of the

10 This updating rule can be applied also to the case of incomplete observations, where the out-
come of the observation of XI is missing according to a non-missing-at-random process, but
after the observation some of the possible outcomes can be excluded. If Ω ′XI

⊂ ΩXI is the set
of the remaining outcomes, we simply rewrite Equation (16), with Ω ′XI

instead of ΩXI .

64 G. Corani, A. Antonucci, and M. Zaffalon

observation of X2 is missing, and the MAR assumption seems not tenable. Accordingly
we update the model by means of conservative inference rule as in Equation (16) to
compute K(X0||X2 x1). In order to map this CIR-based updating task into a standard up-
dating, let us perform the following transformation. As described in Figure 5, we first
augment the network with an auxiliary binary variable X3, which is a child of X2. Then
we extensively quantify the relation between these two nodes as:

P(X3|X2) ∈
{[

0 1
1 0

]

,

[
1 0
0 1

]}

, (17)

which can be indeed formulated as a separate specification by augmenting the network
with a binary node X4, which is a parent of X3, according to the procedure described
in Example 4. The result in [7] states that K(X0||X2 x1) = K(X0|x1,x3), where x3 is the
state corresponding to the first row of the tables in Equation (17). The lower and up-
per probabilities associated to the posterior credal set can be therefore computed by
standard updating.

X0

X1 X3

X4

X2

Fig. 5. Modelling non-missing-at-random observation of X2 in credal network

6 An Application: Assessing Environmental Risk by Credal
Networks

In the previous sections we gave the reader a number of theoretical tools for both mod-
elling and interacting with credal networks. In this section, we want to present a real-
world application of these methods consisting in a specific risk analysis task.11 The
credal network merges into a single coherent framework different kinds of domain
knowledge: deterministic equations, human expertise, and historical data are used to
quantify the network in its different parts. After the model specification, risk analy-
sis can be automatically performed by means of some of the updating algorithms in
Section 5.2.

6.1 Debris Flows

Debris flows are among the most dangerous and destructive natural hazards that affect
human life, buildings, and infrastructures (see Figure 6). They are gravity-induced mass

11 We point the reader to [64] for a gentle introduction to the issues related to the practical im-
plementation of a credal network in knowledge-based expert systems.

Bayesian Networks with Imprecise Probabilities 65

movements intermediate between landslides and water floods. The flow is composed of
a mixture of water and sediment with a characteristic mechanical behavior varying with
water and soil content. According to [31], prerequisite conditions for most debris flows
include an abundant source of unconsolidated fine-grained rock and soil debris, steep
slopes, a large but intermittent source of moisture (rainfall or snow-melt), and sparse
vegetation. As mentioned in [48], several hypotheses have been formulated to explain
mobilization of debris flows and this aspect still represents a research field. Accord-
ing to the model proposed by [70], the mechanism to disperse the materials in flow
depends on the properties of the materials (like granulometry and the internal friction
angle), channel slope, flow rate and water depth, particle concentration, etc., and, conse-
quently, the behavior of flow is also various. Unfortunately, not all the triggering factors
considered by this model can be directly observed, and their causal relations with other
observable quantities can be shaped only by probabilistic relations. In fact, the analysis
of historical data and the role of human expertise are still fundamental for hazard iden-
tification as many aspects of the whole process are still poorly understood. For these
reasons, a credal network seems to be a particularly suitable model for approaching a
problem of this kind.

Fig. 6. Debris flows examples

6.2 The Credal Network

In order to implement a credal network able to estimate the level of risk of a debris
flow happening in a particular area, we first define the Movable Debris Thickness as the

66 G. Corani, A. Antonucci, and M. Zaffalon

depth of debris likely to be transported downstream during a flood event. Such variable
represents an integral indicator of the hazard level. Then we identify a number of trig-
gering factors which may affect the value of this thickness. Once we have identified the
factors, the specification of the directed acyclic graph associated to these variables can
be achieved assuming a causal interpretation to the arcs of the graph.12 Figure 7 depicts
the resulting graph. We point the reader to [5] for a detailed description of the different
variables in this model. Here let us only report the information we need to understand
the key features of both the modelling and the inference with a model of this kind.

Permeability Geology Landuse Geomorphology

Soil

Type

Max Soil

Capacity
Soil

Moisture

Response

Function

Basin

Area

Effective

Soil Cap.
Rainfall

Intensity

Rainfall

Duration

Effective

Intensity

Critical

Duration

Peak

Flow

Channel

Width

Granulometry

Water

Depth

Local

Slope

Stream

Index

Theoretical

Thickness

Movable

Thickness

Available

Thickness

Fig. 7. A credal network for environmental risk analysis

12 Remember that, according to the Markov condition, the directed graph is a model of condi-
tional independence relations. The causal interpretation is therefore not always justified.

Bayesian Networks with Imprecise Probabilities 67

Credal networks have been defined only for categorical variables.13 Some of the
variables in the network are natively categorical. This is for instance the case of vari-
able Land Use, whose six possible values are: Forest, Pasture, Rivers and water bodies,
Improductive vegetation, Bare soils and rocks, Edificated surfaces. Some other vari-
ables, like for example the Movable Debris Thickness are numerical and continuous. A
discretization like that in Table 2 is therefore required.

Table 2. Discretization of variable Movable Debris Thickness and corresponding interpretation in
terms of actual level of risk. The same discretization has been used also for variables Theoretical
Thickness and Available Thickness.

Range Risk Level Symbol

< 10 cm low risk <
10−50 cm medium risk =
> 50 cm high risk >

Regarding the probabilistic quantification of the conditional values of the variables
given the parents, as we have based our modelling on a geomorphological model of the
triggering of the debris flow, we have deterministic equations for most of the variables in
the network. Given an equation returning the numerical value of a child given the values
of the parents, we can naturally induce the quantification of the corresponding condi-
tional probabilities. A quantification of this kind is clearly precise (i.e., described by
a single conditional probability table) and in particular deterministic (i.e., the columns
corresponding to the different conditional mass functions assign all the mass to a sin-
gle outcome and zero to the others). As an example, the Movable Debris Thickness is
the minimum between the Theoretical Thickness and the Available Thickness and this
corresponds to the following conditional probability table (where the symbols in Table
2 are used to denote the states of the variables):

Theoretical < = > < = > < = >
Available < < < = = = > > >

< 1 1 1 1 0 0 1 0 0
Movable = 0 0 0 0 1 1 0 1 0

> 0 0 0 0 0 0 0 0 1

For some other variables, including also all the root (i.e., parentless) nodes, we have
not relations of this kind. In this cases, we used, when available, historical dataset, from
which we obtained conditional credal sets by means of the imprecise Dirichlet model
as in Equation (7). Note that, especially in the conditional case, the amount of data
can be relatively small, and the difference between the credal sets we learn by means of

13 In a certain sense, the work in [11] can be implicitly regarded as an exception of this statement.
Yet, research on credal network with continuous variable is still in its early stage.

68 G. Corani, A. Antonucci, and M. Zaffalon

the imprecise Dirichlet model and the precise is not trivial. This is a further justification
for our choice of modelling the problem by means of a credal instead of a Bayesian
network.

Finally, the counterpart of the role of human expertise in the evaluation is the fact
that some of the credal set we quantify in our model cannot be obtained from data
neither from deterministic relations. In these cases, we ask an expert to report his knowl-
edge. Notably, the possibility of expressing his beliefs by intervals of probability in-
stead of single values makes the description much more realistic.14 Overall, we achieve
in this way the quantification of a credal network over the directed acyclic graph in
Figure 7.

The practical application of a model of this kind consists in the computation of the
posterior probability intervals for the three different level of the risk given the observed
values for some of the other variables in the network for the particular scenarion un-
der consideration. The updating has been provided by means of the algorithm in [14].
The histograms in Figure 10 report the posterior intervals obtained for three different
scenarios. Note that, according to the interval-dominance criterion in the scenario (a)
we can reject the second and the third histogram, and conclude that a level of high
risk occurs. Regarding (b), the high risk dominates the low risk, which is therefore re-
jected, but there is an indecision between high and medium risk, while in the scenario
(c) no dominance is present and we are in a situation of complete indecision between
the three different levels of risk. This kind of analysis can be automatically performed
by the credal network on extensive areas, this providing an importanting support to
the experts for this problem. Figure 9 reports an extensive analysis for the basin in
Figure 8.

0 300 600 900 1'200150

Meters

Fig. 8. Acquarossa Creek Basin (area 1.6Km2, length 3.1Km)

14 We thanks Dott. Andrea Salvetti, the environmental expert who was involved in this quantifi-
cation task and in many other aspects of this project.

Bayesian Networks with Imprecise Probabilities 69

Fig. 9. Spatially distributed identifications for the basin in Figure 8 and rainfall return periods of
10 (left) and 100 (right) years. The points for which the credal network predicts the lower class
of risk are depicted in gray, while black refers to points where higher levels of risk cannot be
excluded.

1
4

1
2

3
4

1

0

(a)

1
4

1
2

3
4

1

0

(b)

1
4

1
2

3
4

1

0

H

(c)

Fig. 10. Posterior probability intervals for the three level of risk (colors red, yellow and green
correspond respectively to high, medium and low risk)

70 G. Corani, A. Antonucci, and M. Zaffalon

7 Credal Classifiers

In the rest of this chapter we show how credal networks can be used to deal with a
classical field of data mining, namely classification. Classification is the problem of
predicting the class of a given object, on the basis of some attributes (features) of it.
A historical example is the iris problem designed by Fisher in 1936: the goal is to
predict the species of Iris (among three possible categories) on the basis of four features,
namely the length and the width of the sepal and the petal.

Training a probabilistic classifier corresponds to estimating from data the joint dis-
tribution P(C,A), where C denotes the class variable and A = {A1, . . . ,Ak} the set of
k features. In the Bayesian framework, the estimation of the joint distribution starts by
initializing it to an initial value (the prior), which represents the beliefs of the investiga-
tor before analyzing the data; the prior thus enables to model domain knowledge. Then
the likelihood function is computed from the data, modelling the evidence coming from
the observations. Prior and likelihood are multiplied, leading to a posterior joint distri-
bution. As described in Section 2, when dealing with Bayesian networks, one does not
need to specify the full joint; it is enough to specify the local conditional distributions,
and the network automatically represents the joint. A trained classifier is assessed by
checking its accuracy at classifying instances. To classify an instance characterized by
the assignment a = {a1, . . . ,ak} of the features, the conditional distribution P(C|a) is
computed from the posterior joint.

A traditional criticism of Bayesian methods is the need for specifying a prior distri-
bution. In fact, prior information is generally difficult to quantify; moreover one often
prefers to let the data speak by themselves, without introducing possibly subjective
prior beliefs. As for classification in particular, Bayesian classifiers might happen to
return prior-dependent classifications, i.e., the most probable class varies under differ-
ent priors. As the choice of any single prior entails some arbitrariness, prior-dependent
classifications are typically unreliable: in fact, they translate the arbitrariness of the
choice of the prior into arbitrariness of the conclusions. Prior-dependent classifications
are more frequent on small data sets; on large data sets, classifications are less sensi-
tive on the choice of the prior. Nevertheless, as shown in Section 9.1, unreliable prior-
dependent classifications can be present also in large data sets. Most often, one deals
with the choice of the prior by setting a uniform prior, because it looks non-informative;
yet, such an approach has important drawbacks, as shown in the following example,
inspired to [78].

Let us consider a bag containing blue marbles and red marbles; no drawings have
been made from the urn. Which is the probability of getting a red (or blue) marble in
the next draw? Using the uniform prior, one should assign the same probability 0.5 to
both colors. This underlies the (very strong) assumption that the urn contains an equal
number of red and blue marbles; in the subjective interpretation of probability, this
means that one is equally available to bet an amount of money 0.5 on either red or blue,
in a gamble with reward 1 and 0 for respectively a correct and a wrong prediction. In
fact, the uniform prior is a model of prior indifference. However, we are ignorant about
the content of the urn rather than indifferent between the two colors; in this condition,
the only reliable statement is that the proportion of red (or blue) marbles is comprised
between 0 and 1. Walley’s theory of imprecise probability [77] states that such prior

Bayesian Networks with Imprecise Probabilities 71

ignorance should be represented by a set of prior distributions rather than by a single
prior. The adoption of a set of priors (letting the proportion of blue and red vary be-
tween 0 and 1) prevents betting on any of the two colors, which is more sensible, under
ignorance, than being equally available to bet on both.

Credal classifiers extend Bayesian classifiers to imprecise probabilities; they repre-
sent prior-ignorance15 by specifying a (credal) set of priors, often using the IDM [78].
The credal set of the IDM is then turned into a set of posterior by element-wise appli-
cation of Bayes’ rule: in fact, training a credal classifier corresponds to update the set
of priors with the likelihood, yielding a set of posteriors. Credal classifiers detect prior-
dependent instances by checking whether the most probable class is consistent or not
across the set of posteriors. If the instance is prior-dependent, a credal classifier returns
a set of classes, drawing a less informative but more robust conclusion than a Bayesian
classifier.

However, besides prior-ignorance, there is another kind of ignorance involved in the
process of learning from data, i.e., ignorance about the missingness process (MP). Usu-
ally, classifiers ignore missing data, assuming missing data to be MAR. In general there
is no way to verify the MAR assumption on the incomplete data; furthermore assuming
MAR when it does not hold can cause to a large decrease of accuracy [65]. However,
credal classifiers have been also extended to conservatively deal with non-MAR miss-
ing data [29], relying on CIR, namely by considering all the data sets consistent with
the observed incomplete data set.

Other classifiers, besides the credal ones, suspend the judgment on doubtful in-
stances. For instance, a rejection rule can be set on any classifier, refusing to classify
the instances (and hence returning the whole set of classes), where the probability of
the most probable class is below a certain threshold. A more sophisticated approach has
been developed by del Coz et al. [33]: their algorithm determines which set of classes
to return (possibly a single class), on the basis of the posterior distribution computed by
the classifier; this algorithm can be therefore applied to any probabilistic classifier. The
returned set of classes is identified in order to maximize the F-measure of the issued
classifications.

However, both the rejection rule and the algorithm of [33] work on a single prob-
ability distribution; instead, credal classifiers deal with a set of posterior distributions.
The practical difference can be appreciated by considering a classifier trained on a very
small learning set. The credal classifier will be very likely to suspend the judgment on
any new instance, as most instances are going to be prior-dependent. On the contrary,
a traditional classifier equipped with the rejection rule or with the algorithm of [33]
blindly trusts the computed posterior distribution, without considering that for instance
on small data sets it might be largely sensitive on the choice of the prior.

8 Naive Bayes

The naive Bayes classifier (NBC) [40] “naively” assumes the features A1, . . . ,Ak to
be independent given the class C. According to the Markov condition introduced in

15 More precisely, prior near-ignorance; full ignorance is not compatible with learning, as shown
in Section 7.3.7 of Walley [77].

72 G. Corani, A. Antonucci, and M. Zaffalon

C

A1 A2 . . . Ak

Fig. 11. The naive Bayes classifier

Section 2, these conditional independence relations can be graphically depicted by the
directed graph in Figure 11. These assumptions introduce a severe bias in the estimate
of probabilities, as the real data generation mechanism does not generally satisfy such
condition. As a consequence of such unrealistic assumption, NBC is often overconfident
in its predictions, assigning a very high probability to the most probable class [50]; this
phenomenon is emphasized if redundant features are present.

Despite the simplistic naive assumption, NBC performs surprisingly well under 0-1
loss16[40,50]. A first reason is that the bias of the probability estimates may not matter
under 0-1 loss: given two classes c′ and c′′ (c′ being the correct one), even a severe bias
in the estimate of P(c′) will not matter, provided that P(c′) > P(c′′) [46]. The good per-
formance of NBC can be further explained by decomposing the misclassification error
into bias and variance [46]: NBC has indeed high bias, but this problem is often success-
fully remediated by low variance. Especially on small data sets, low variance is more
important than low bias; in this way, NBC can outperform more complex classifiers.
Instead, more parameterized classifiers tend to outperform NBC on large data sets. The
low variance of NBC is due to the low number of parameters, which is a consequence
of the naive assumption, which prevents modelling correlations between features. For
instance, in comparison with C4.5 (which has lower bias but higher variance), NBC is
generally more accurate on smaller sample sizes, but generally outperformed on larger
data sets [55].

A further factor which contributes to the good performance of NBC is feature
selection, which typically removes the most correlated features and thus makes the
naive assumption more realistic. In fact, NBC can be even very competitive, when
trained with a carefully designed feature set. For instance, the CoIL challenge [74]
was won by a NBC entry [41], which outperformed more complicated models such as
SVMs or neural networks. The data set of the competition was characterized by several
correlated features and noisy data; a later analysis of the contest [74] showed that vari-
ance was a much bigger problem than bias for this data set. However, key factors for the
success of NBC were feature selection and the introduction of a particular feature, ob-
tained by taking the Cartesian product of two important features, which enabled NBC to
account for the interactions between such two features. In [44], a criterion aimed at re-
moving irrelevant or redundant features on the basis of conditional mutual information
is designed; under this feature selection, NBC is competitive with SVMs and boosting
in several problems.

16 This loss function is also known as misclassification error: if the most probable class is the
correct one the loss is zero and one otherwise.

Bayesian Networks with Imprecise Probabilities 73

Further strengths of NBC are computational speed and easy handling of missing data,
at least under the MAR assumption. However, if MAR is not assumed, the computation
becomes quite complicated; see for instance the algorithms designed in [65].

NBC has been recognized as one of the ten most influential data mining algorithms
[80] and in fact there have been also countless NBC variants designed to improve its
performance; comprehensive references can be found for instance in [50] and [51].

8.1 Mathematical Derivation

Let us denote by C the classification variable (taking values in ΩC) and as A1, . . . ,Ak

the k feature variables (taking values from the finite sets ΩA1, . . . ,ΩAk).
We denote by θc,a the chance (i.e., the unknown probability about which we want to

make inference) that (C,A1, . . . ,Ak) =(c,a), by θai|c the chance that Ai = ai given that
C = c, by θa|c the chance that A1, . . . ,Ak = (a1, . . . ,ak) conditional on c.

The naive assumption of independence of the features given the class can be ex-
pressed as:

θa|c =
k

∏
i=1

θai|c . (18)

We denote by n(c) and n(ai,c) the observed counts of C = c and of (Ai,C) = (ai,c); by
n the vector of all such counts. We assume for the moment the data set to be complete.
The likelihood function can be expressed as a product of powers of the theta-parameters:

L(θ |n) ∝ ∏
c∈ΩC

⎡

⎣θ n(c)
c

k

∏
i=1

∏
ai∈ΩAi

θ n(ai,c)
ai|c

⎤

⎦ . (19)

Observe that for all c ∈ΩC and i = 1, . . . ,k, the counts satisfy the structural constraints
0≤ n(ai,c) ≤ n(c), ∑c∈ΩC

n(c) = n and ∑ai∈ΩAi
n(ai,c) = n(c), with n total number of

instances.
The prior is usually expressed as a product of Dirichlet distributions. Under this

choice, the prior is analogous to the likelihood, but the counts n(·) are replaced every-
where by st(·)−1, where s > 0 is the equivalent sample size, which can be interpreted as
the number of hidden instances. The parameters t(·) can be interpreted as the proportion
of units of the given type; for instance, t(c′) is the proportion of hidden instances for
which C = c′, while t(ai,c′) is the proportion of hidden instances for which C = c′ and
A = ai. This is a non-standard parameterization of the Dirichlet distribution, introduced
in [77] because of its convenience when dealing with the IDM; the usual parameteriza-
tion is instead α(·) = st(·).

We consider in particular the Perks prior, as in [81, Section 5.2]:

t(c) =
1
|ΩC| ; t(ai,c) =

1
|ΩC||ΩAi |

. (20)

However, in some cases the uniform prior is modeled adopting the Laplace estimator
[79, Chapter 4.2], which is different from Equation (20): it sets α(c) = st(c) = 1 ∀c and
α(ai,c) = st(ai,c) = 1 ∀c, i, which corresponds to initialize all counts n(c) and n(ai,c)

74 G. Corani, A. Antonucci, and M. Zaffalon

to 1 before analyzing the data. For instance, the WEKA implementation [79] of NBC
is done in this way. However, there are slightly different versions also for the Laplace
estimator; see for instance [56].

By multiplying the prior density and the likelihood function, we obtain a posterior
density for θc,a, which is again a product of independent Dirichlet densities:

P(θc,a|n, t) ∝ ∏
c∈ΩC

⎡

⎣θ n(c)+st(c)−1
c

k

∏
i=1

∏
ai∈ΩAi

θ n(ai,c)+st(ai,c)−1
ai|c

⎤

⎦ . (21)

compared to the likelihood (19), the parameters n(·) are replaced by n(·)+ st(·). The
joint probability of c and a can be computed by taking expectation from the posterior :

P(c,a|n, t) = E(c,a|n, t) = P(c|n, t)
k

∏
i=1

P(ai|c,n, t) (22)

where

P(c|n, t) = E[θc|n, t] = n(c)+st(c)
n+s , (23)

P(ai|c,n, t) = E[θai|c|n, t] = n(ai,c)+st(ai,c)
n(c)+st(c) . (24)

A problem of NBC, and more in general of any Bayesian classifier, is that sometimes
the classifications is prior-dependent, namely the most probable class varies with the
parameters t(·). Most often, one chooses the uniform prior trying to be non-informative;
yet, we have already argued that prior-dependent classifications are fragile and that the
uniform prior does not satisfactorily model prior ignorance. To address this issue, NCC
is based on a set of priors rather than on a single prior.

9 Naive Credal Classifier (NCC)

NCC extends NBC to imprecise probabilities by considering a (credal) set of prior den-
sities, instead of a unique prior. This prior credal set is modeled through the Imprecise
Dirichlet Model (IDM) [77] and expresses prior near-ignorance [77, Section 4.6.9]; 17

it is then turned into a set of posteriors (posterior credal set) by element-wise application
of Bayes’ rule.

NCC specifies a joint credal set using the IDM; this is obtained by allowing each
parameter of type t(·) to range within an interval, rather than being fixed to a single
value. In particular the IDM contains all the densities for which t varies within the
polytope T , defined as follows:

T =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑c∈ΩC
t(c) = 1

t(c) > 0 ∀c ∈ΩC

∑a∈ΩA
t(a,c) = t(c) ∀c ∈ΩC

t(a,c) > 0 ∀a ∈ΩA,c ∈ΩC.

(25)

17 Indeed, full ignorance is not compatible with learning; see Section 7.3.7 of [77] and [86].

Bayesian Networks with Imprecise Probabilities 75

Such constraints are analogous to the structural constraints which characterize the
counts n(·). The third constraint introduces a link between the credal set K(C) and
the credal sets K(Ai|c), with c ∈ ΩC, so that the corresponding credal network is not
separately specified. Since the t(·) vary within an interval, also the posterior probability
of class c lies within an interval. For instance, the upper and lower probability of c and
a are:18

P(c,a|n, t) : = inf
t∈T

P(c,a|n, t)

P(c,a|n, t) : = sup
t∈T

P(c,a|n, t) .

While a traditional classifier returns the class with the highest posterior probability,
credal classifiers return the classes which are non-dominated. The two criteria intro-
duced in Section 5.1 can be considered to assess whether class c′ dominates class c′′.
According to interval-dominance c′ dominates c′′ if P(c′,a|n, t) > P(c′′,a|n, t). Instead,
according to maximality, c′ dominates c′′ if P(c′,a|n, t) > P(c′′,a|n, t) for all the values
of t ∈ T . Maximality is more powerful than interval-dominance, because it sometimes
detect dominances which cannot be spotted using interval-dominance. Once the domi-
nance criterion is chosen, the set of non-dominated classes is identified through repeated
pairwise comparisons, as shown in the following pseudo-code:

/ / S i n c e NCC i s based on m a x i m a l i t y , we d e n o t e t h e s e t
/ / o f non−d o min a te d c l a s s e s as Ω ∗∗C .
/ / With i n t e r v a l −dominance , i t s h o u l d be d e n o t e d as Ω ∗C .

Ω ∗∗C := ΩC ;
f o r c′ ∈ΩC{

f o r c′′ ∈ΩC , c′′
= c′{
i f (c′ d o m i n a t e s c′′){

remove c′′ f rom Ω∗∗C ;
}

}
}
re turn Ω ∗∗C ;

In the following we sketch the test of dominance for NCC under maximality, designed
in [81]. According to maximality, c′ dominates c′′ iff:

inf
t∈T

P(c′,a|n, t)
P(c′′,a|n, t)

> 1, (26)

18 Unlike Equation (3), these optimizations are over the open polytope T . For this reason, infima
and suprema are considered instead of minima and maxima.

76 G. Corani, A. Antonucci, and M. Zaffalon

and assuming P(c2,a|n, t) > 0. Problem (26) can be re-written [81] considering
Equations (23–24) as:

inf
t∈T

{[
n(c′′)+ st(c′′)
n(c′)+ st(c′)

]k−1 k

∏
i=1

n(ai,c′)+ st(ai,c′)
n(ai,c′′)+ st(ai,c′′)

}

. (27)

As proved in [81], the infimum of problem (27) is obtained by letting t(ai,c′)→ 0 and
t(ai,c′′)→ t(c′′). The values of these parameters at the optimum are extreme, as they
touch the boundary of the IDM. The remaining parameters t(c′) and t(c′′) are optimized
by noting that the infimum is achieved when t(c′)+ t(c′′) = 1, which allows to express
t(c′′) as 1− t(c′′). The final step to solve problem (27) involves a convex optimization
over the single parameter t(c′); see [81] for more details.

The classification is determinate or indeterminate if there are respectively one or
more non-dominated classes. The set of non-dominated classes returned by NCC always
contains the most probable class identified by NBC, as the uniform prior is included in
the IDM; 19 this also means that NCC, when determinate, returns the same class of
NBC. On the other hand, if there are more non-dominated classes, the classification
issued by NBC is prior-dependent. The non-dominated classes are incomparable and
thus cannot be further ranked.

NCC has been originally introduced by [81]; applications of NCC to real-world case
studies include diagnosis of dementia [87] and prediction of presence of parasites in
crops [83]; it has been then extended with a sophisticated treatment of missing data in
[29].

In the following, we show a comparison of NBC and NCC in texture recognition;
the data set is complete and thus indeterminate classifications are only due to prior-
dependent instances.

9.1 Comparing NBC and NCC in Texture Recognition

The goal of texture classification is to assign an unknown image to the correct texture
class; this requires an effective description of the image (i.e., obtaining good features)
and a reliable classifier. Texture classification is used in many fields, among which
industrial applications, remote sensing and biomedical engineering. We compare NBC
and NCC on the public OUTEX [62] data set of textures; the results presented in this
section are taken from [26], where more details and experiments are described. The
data set contains 4500 images from 24 classes of textures, including different kinds of
canvas, carpets, woods etc.; some samples are shown in Fig. 12. We use the standard
Local Binary Patterns (LBP) [62] as descriptors; they are computed by assigning each
pixel to a category comprised between 1 and 18, on the basis of a comparison between
its gray level and the gray level of the neighboring pixels. The features of an image are
constituted by the percentage of pixels assigned to the different categories; therefore,
18 features are created for each image. There are no missing data.

19 This is guaranteed with the Perks prior of Equation (20), but not with the Laplace estimator,
which is not included into the IDM; yet, empirically this is most often the case also with the
Laplace estimator.

Bayesian Networks with Imprecise Probabilities 77

Fig. 12. Examples of some textures: each image refers to a different class

We evaluate the classifiers through cross-validation, discretizing the features via su-
pervised discretization [42]; the feature are discretized on average in some 10 bins.
As our aim is to compare NBC and NCC rather than finely tuning the classifiers for
maximum performance, we do not perform feature selection.

NBC achieves 92% accuracy, which can be considered satisfactory: for instance,
SVMs are only slightly better, achieving 92.5%. However, NBC is unreliable on the
prior-dependent instances, which amount to about 5% of the total. On these instances,
NBC achieves only 56% accuracy, while NCC returns on average 2.5 classes, achieving
85% accuracy. On the non-prior dependent instances, both NBC and NCC achieve 94%
accuracy.

Prior-dependent instances are present even on this large data set because each condi-
tional probability distribution of type P(Aj|C) requires to estimate some 240 parameters
(24 classes × 10 states of the feature after discretization); since some combinations of
the value of the class and of the feature rarely appear in the data set, the estimate of
their probability is sensitive on the chosen prior.

Experiments at varying size of the training set are presented in Fig.13. At each size of
the training set, NBC is characterized by a mix of good accuracy on the instances which
are not prior-dependent, and bad accuracy on the prior-dependent ones; see Fig.13(a).
Thanks to indeterminate classifications, NCC is instead much more accurate than NBC
on the prior-dependent instances: see Fig.13(b). With increasing size of the training set,
NCC becomes more determinate, steadily reducing both the percentage of indetermi-
nate classification and the average number of classes returned when indeterminate; see
Fig. 13(c).

Summing up, NBC is generally little accurate on the instances indeterminately classi-
fied by NCC; NCC preserves its reliability on prior-dependent instances thanks to inde-
terminate classifications; the determinacy of NCC increases with the size of the training
set; indeterminate classifications can convey valuable information, when a small subset

78 G. Corani, A. Antonucci, and M. Zaffalon

(a) (b)

(c)

Fig. 13. Experiments with varying sizes of the training set. Plots (a) and (b) show the accuracy of
NBC and NCC on instances which are prior dependent (dashed) and non prior-dependent (solid);
plot (c) shows the percentage of indeterminate classifications (solid) and the average number of
classes returned by NCC when indeterminate (dashed).

of classes is returned out of many possible ones. Such results are consistent with those
obtained [29] on the classical UCI data sets.

However, NBC provides no way of understanding whether a certain instance is prior-
dependent. One could try to mimic the behavior of NCC by setting a rejection rule on
NBC, outputting more classes if the probability of the most probable class does not
exceed a certain threshold. Yet, a rejection rule is likely to be little effective with NBC,
which generally returns high probability for the most probable class. In the texture ap-
plication, NCC detects about half of the prior-dependent instances among those which
are classified by NBC with probability higher than 95%. As discussed in [29, Sec-
tion 4.4], an instance is less likely to be prior-dependent as the probability computed
by NBC for the most probable class increases, but such correlation is not determinis-
tic: there are prior dependent instances classified by NBC with high probability, and
non-prior dependent ones classified by NBC with a relatively small margin. Overall,
the prior-dependency analysis performed by NCC is much more sophisticated than any
rejection rule.

Bayesian Networks with Imprecise Probabilities 79

9.2 Treatment of Missing Data

Very often, real data sets are incomplete, because some values of the feature variables
are not present.20 Dealing with incomplete data sets rests on the assumptions done about
the process responsible for the missingness. This process can be regarded as one that
takes in input a set of complete data, which is generally not accessible for learning,
and that outputs an incomplete data set, obtained by turning some values into miss-
ing. Learning about the missingness process’ behavior is usually not possible by only
using the incomplete data. This fundamental limitation explains why the assumptions
about the missingness process play such an important role in affecting classifiers’ pre-
dictions. Moreover, a missingness process may also be such that the empirical analysis
of classifiers is doomed to provide misleading evidence about their actual predictive
performance, and hence, indirectly, about the quality of the assumptions done about the
missingness process. This point in particular has been discussed in [29, Section 4.6]
and [86, Section 5.3.2]. For these reasons, assumptions about the missingness process
should be stated with some care.

In the vast majority of cases, common classifiers deal with missing values (some-
times implicitly) assuming that the values are MAR [69]. However, assuming MAR
when it does not hold can decreases the classification accuracy.

The NCC has been one of the first classifiers [81, Section 3], together with Ramoni
and Sebastiani’s robust Bayes classifier [65] (a robust variant of NBC to deal with miss-
ing data), to provide a way to conservatively deal with non-MAR missing data in the
training set. Both approaches are based on very weak, and hence tenable, assumptions
about the missingness process; in fact, they regard as possible any realization of the
training set, which is consistent with the incomplete training set; this way of dealing
with missing data has been pioneered in statistics by Manski [60].

In particular, according to the conservative inference rule, introduced in Section 5.3,
conservative treatment of missing data requires to compute many likelihoods, one per
each complete data sets consistent with the incomplete training set. In particular, the
approach of [81] is equivalent to inferring many NCCs: one per each complete data sets
consistent with the incomplete training set; the classification is given by the union of
the set of non-dominated classes produced by all the NCCs.21 In [81] specific proce-
dures are designed, which perform the computation exactly and in linear time w.r.t. the
amount of missing data, avoiding to enumerate the (exponentially many) complete data
sets and to infer many NCCs. The imprecision introduced by missing data leads to an
increase in the indeterminacy of the NCC, which is related to the amount of missing-
ness. In other words, the NCC copes with the weak knowledge about the missingness
process by weakening the answers to maintain reliability.

In [29] the treatment of missing data has further improved, allowing NCC to deal
with non-MAR missing data also in the instance to classify and not only in the training
set, and to deal with a mix of MAR and non-MAR features (treating the first group
according to MAR and the second in a conservative way), using CIR. The resulting
classifier is called NCC2. Distinguishing variables that are subject to the two types of
processes is important because treating MAR variables in a conservative way leads to

20 We do not consider here the case of missing values of the class variable.
21 Strictly speaking, this straightforward explanation is valid for the case of two classes.

80 G. Corani, A. Antonucci, and M. Zaffalon

an excess of indeterminacy in the output that is not justified. In fact, the experimen-
tal results of NCC2 [29] show that the indeterminacy originated from missing data is
compatible with informative conclusions provided that the variables treated in a conser-
vative way are kept to a reasonable number (feature selection can help in this respect,
too). Moreover, they show that the classifiers that assume MAR for all the variables are
often substantially unreliable when NCC2 is indeterminate.

Formal justifications of the rule NCC2 uses to deal with missing values can be found
in [29]. This work discusses also, more generally, the problem of incompleteness for
uncertain reasoning.

10 Metrics for Credal Classifiers

Before introducing further credal classifiers, it is useful to review the metrics which can
be used to compare them. The overall performance of a credal classifier can be fully
characterized by four indicators [29]:

– determinacy, i.e., the percentage of instances determinately classified;
– single-accuracy, i.e., the accuracy on the determinately classified instances;
– set-accuracy, i.e., the accuracy on the indeterminately classified instances;
– indeterminate output size: the average number of classes returned on the indetermi-

nately classified instances.

However, set-accuracy and indeterminate output size are meaningful only if the data set
has more than two classes.

These metrics completely characterize the performance of a credal classifier, but do
not allow to readily compare two credal classifiers. Two metrics suitable to compare
credal classifiers have been designed in [30]. The first one, borrowed from multi-label
classification,22 is the discounted-accuracy:

d-acc =
1

nte

nte

∑
i=1

(accurate)i

|Zi| ,

where (accurate)i is a 0-1 variable, showing whether the classifier is accurate or not on
the i-th instance; |Zi| is the number of classes returned on the i-th instance and nte is the
number of instances of the test set. However, discounting linearly the accuracy on the
output size is arbitrary. For example, one could instead discount on |Zi|2.

The non-parametric rank test overcomes this problem. On each instance, it ranks two
classifiers CL1 and CL2 as follows:

– if CL1 is accurate and CL2 inaccurate: CL1 wins;
– if both classifiers are accurate but CL1 returns less classes: CL1 wins;
– if both classifiers are wrong: tie;
– if both classifiers are accurate with the same output size: tie.

22 The metric is referred to as precision in [73].

Bayesian Networks with Imprecise Probabilities 81

The wins, ties and losses are mapped into ranks and then analyzed via the Friedman
test. The rank test is more robust than d-acc, as it does not encode an arbitrary function
for the discounting; yet, it uses less pieces of information and can therefore be less
sensitive. Overall, a cross-check of the both indicators is recommended.

Instead, an open problem is how to compare a credal classifier with a classifier based
on traditional probability. So far, this comparison has been addressed by comparing
the accuracy achieved by the Bayesian classifier on the instances determinately and
indeterminately classified by the credal classifier, thus assessing how good the credal
classifier is at isolating instances which cannot be safely classified with a single class.
This produces a statistics of type: on the prior-dependent instances, the Bayesian classi-
fier achieves 60% accuracy returning a single class, while the credal classifier achieves
90% accuracy, returning two classes. But which one is better? Moreover, returning a
very similar probability for the most probable and the second most probable class (for
the Bayesian) should be considered equivalent to returning two classes (for the credal).
A metric able to rigorously compare credal and Bayesian classifier could be very im-
portant to allow credal classifiers to become widespread.

11 Tree-Augmented Naive Bayes (TAN)

In [47], NBC and Bayesian Networks (BNs) whose topology has been learned from
data, have been compared in classification; surprisingly BNs, despite their much higher
flexibility, did not outperform NBC. This can be explained through the bias-variance
decomposition of the misclassification error, which we already mentioned in Section 8:
BNs have much lower bias than NBC, but this effect is often not felt, because of their
high variance. However, these results were the inspiration for developing an effective
compromise between BNs and NBC, yielding the so-called tree-augmented naive Bayes
(TAN) [47], which is defined as follows (see also Figure 14):

– each feature has the class as a parent;
– each feature can also have an additional second parent, constituted by another

feature.

C

A1 A2 A3 A4

Naive Bayes

C

A1 A2 A3 A4

TAN

Fig. 14. TAN can model dependencies between features, unlike naive Bayes

In [47], TAN has been shown to be generally more accurate than both NBC and BNs.
More recent results [59] point out a flaw regarding the usage of BNs in [47]; however,
even after fixing this problem, the results confirm that TAN is generally more accurate

82 G. Corani, A. Antonucci, and M. Zaffalon

than both NBC and BNs (although the advantage of TAN over BNs is less marked than
previously reported, and moreover BNs are now shown to be indeed more accurate than
NBC).

This justifies the interest for designing a credal TAN. Before reviewing its develop-
ment it is however necessary to discuss the different variants of the IDM which can be
used for classification.

11.1 Variants of the Imprecise Dirichlet Model: Local and Global IDM

Given a credal network, three kinds of IDM can be used: the global, the local and the
recently introduced Extreme Dirichlet Model (EDM) [16]. In the following, we show
the differences between these approaches, using the example network C→ A.

Let us focus on the class node. The constraints which define the set of Dirichlet
distributions for the IDM (both local and global) are:

TC =

{
∑c∈ΩC

t(c) = 1

t(c) > 0 ∀c ∈ΩC.
(28)

As in Equation (7), the credal set K(C) contains the mass functions of type P(C), which
allows the probability of class c to vary within the interval:

P(c) ∈
[

n(c)
s+∑c∈ΩC

n(c)
,

s+ n(c)
s+∑c∈ΩC

n(c)

]

. (29)

The EDM restricts the set of priors defined by Eq.(28) to its most extreme elements, i.e.,
each t(c) can be only zero or one. Consequently, the probability of class c corresponds
either to the upper or to the lower bound of the interval in Equation (29).

Let us now move to conditional probabilities. The local IDM defines the polytope
similarly to Equation (28):

TA|C =

{
∑a∈ΩA

t(a,c) = 1 ∀c ∈ΩC

t(a,c) > 0 ∀a ∈ΩA,∀c ∈ΩC.
(30)

Note that there is no relation between the t(a,c) and the t(c) previously used for the
class node. For each c ∈ΩC, the credal set K(A|c) contains the mass functions of type
P(A|c), which let its probabilities vary as follows:

P(a|c) ∈
[

n(a,c)
s+n(c)

,
s+n(a,c)
s+ n(c)

]

. (31)

The credal sets {K(A|c)}c∈ΩC and K(C) are thus specified one independently of the
others. Following the terminology of Section 4.2, the model is a separately specified
credal network.

Instead, to understand the estimate of the conditional probabilities under the global
IDM, we should recall that it is based on a set of joint Dirichlet distributions, defined
by the constraints (already given in Section 8):

Bayesian Networks with Imprecise Probabilities 83

TA,C =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑c∈ΩC
t(c) = 1

t(c) > 0 ∀c ∈ΩC

∑a t(a,c) = t(c) ∀c ∈ΩC

t(a,c) > 0 ∀a ∈ΩA,∀c ∈ΩC.

(32)

In particular, the third constraint introduces a link between t(a,c) and t(c), which is
missing in the local IDM; therefore, the network is not separately specified. Given the
value of t(c), the credal set K(A|c) contains the mass functions P(A|c) such that:

P(a|c) ∈
[

n(c,a)
st(c)+ n(c)

,
st(c)+ n(c,a)
st(c)+ n(c)

]

. (33)

The global IDM estimates narrower intervals than the local, as can be seen by compar-
ing Equation (33) and Equation (31)23: this implies less indeterminacy in classification.
Yet, the global IDM poses challenging computational problems; so far, exact compu-
tation with the global IDM has been possible only with NCC. Instead, the local IDM
can be computed for any network and is in fact the common choice for general credal
networks; yet, it returns wider intervals.

The EDM restricts the global IDM to its extreme distributions; it therefore allows
t(a,c) to be either 0 or t(c), keeping the constraint ∀c ∈ΩC : ∑a∈ΩA

t(a,c) = t(c) inher-
ited from the global IDM. The extreme points of the EDM corresponds in this case to
the bounds of the interval in Equation (33); but in general, they are a inner approxima-
tion of the extremes of the global IDM [16]. From a different viewpoint, the EDM can
be interpreted as treating the s hidden instances as s rows of non-MAR missing data, but
with the additional assumption that such rows are all identical to each other; ignorance
is due to the fact that it is unknown which values they contain.

The approximation provided by the EDM has been experimentally validated [25] by
comparing the classification produced by NCC under the global IDM and the EDM;
NCC produces almost identical results in the two settings, and thus the EDM appears
as a reliable approximation of the global IDM, with the advantage of a simplified
computation.

12 Credal TAN

As already discussed, the computational problems posed by the global IDM are quite
challenging and imply a large computational overload for non-naive topologies. Thus,
over years alternative solutions have been investigated.

A credal TAN was firstly proposed in [84], using the local IDM. The classifier was
indeed reliable and very accurate when returning a single class but it was excessively
cautious because of the local IDM. We refer to this algorithm as TANC*.

In [25], a credal TAN has been designed using the EDM; we refer this algorithm as
TANC. As shown in Fig.15(a), TANC is more determinate than TANC*, because the
EDM is an inner approximation of the global IDM, which in turn computes narrower

23 Recall that ∑c t(c) = 1 and that t(c) > 0 ∀c ∈ ΩC.

84 G. Corani, A. Antonucci, and M. Zaffalon

intervals than the local IDM. More important, TANC consistently achieves higher dis-
counted accuracy than TANC*, as shown in Fig.15(b); therefore, it realizes a better
trade-off between informativeness and reliability. However, the two classifiers have the
same performance on the kr-kp data set, which contains few thousands of instances and
only binary features; in this case, the model of prior ignorance has little importance.

(a) (b)

Fig. 15. Comparison of TANC* and TANC. Plot (a) shows the determinacy (% of determinate
classifications) of the classifiers on different data sets, while plot (b) shows their discounted
accuracy.

TANC is moreover good at spotting instances over which the Bayesian TAN be-
comes unreliable, similarly to how NCC does with NBC. In [25], experiments over
some 40 UCI data sets show an average drop of 30 points of accuracy for the Bayesian
TAN between the instances determinately and indeterminately classified by TANC. In-
stead, TANC preserves reliability also on the prior-dependent instances, 24 thanks to
indeterminate classifications.

Although TANC is consistently more determinate than TANC*, it becomes some-
times largely indeterminate, especially on small data sets characterized by many classes
and/or categorical values of the features. In fact, the TAN architecture (learned using a
MDL criterion implemented within WEKA [79]), sometimes assigns the second parent
to a feature, even though the resulting contingency table contains many counts which
are numerically small. When parsed by TANC, they generate prior-dependent classifi-
cations and thus indeterminacy.

This also causes TANC to be slightly outperformed by NCC, as shown by the scatter-
plot of the discounted accuracy of Fig.16; therefore, TANC looses the advantage which
the Bayesian TAN has over NBC. In [25], it is hypothesized that an algorithm for learn-
ing the structure more suitable for TANC should return less parameterized structures
and could allow a significant performance improvement. Such algorithm should be able
to return even a naive structure, if for instance modelling further dependencies makes

24 Note that different credal classifiers, encoding a different probabilistic assumptions, might
judge the same instance as prior-dependent or not. Thus, an instance is not prior-dependent
per se, but according to the judgment of a certain credal classifier.

Bayesian Networks with Imprecise Probabilities 85

the joint distribution too sensitive on the prior. Previous attempts for structure learn-
ing based on imprecise probability can be found in [85]; yet this field has not been
extensively explored and constitutes an interesting area for future research.

Fig. 16. Discounted accuracy of TANC and NCC

TANC is moreover able to conservatively deal with non-MAR missing data [25].
However, the treatment of missing data is at an earlier stage compared to that of NCC,
as all missing data are currently treated as non-MAR (it is currently no possible to
deal with a mix of MAR and non-MAR features) and moreover the current algorithms
are not yet developed to deal with non-MAR missing data in the instance to classify.
Preliminary results [25] show that, when faced with incomplete training sets, TANC is
much more indeterminate than NCC but achieves a similar discounted accuracy.

13 Further Credal Classifiers

13.1 Lazy NCC (LNCC)

Besides the TAN approach, a further possibility of reducing the bias due to the naive
assumption is to combine NCC and lazy learning; this has been explored in [30].

Lazy learning defers the training, until it has to classify an instance (query). In order
to classify an instance, a lazy algorithm:

1. ranks the instances of the training set according to the distance from the query;
2. trains a local classifier on the k instances nearest to the query and returns the clas-

sification using the local classifier;
3. discards the locally trained classifier and keeps the training set in memory in order

to answer new queries.

Lazy classifiers are local, as they get trained on the subset of instances which are nearest
to the query. The parameter k (bandwidth) controls the bias-variance trade-off for lazy
learning. In particular, a smaller bandwidth implies a smaller bias (even a simple model
can fit a complex function on a small subset of data) at a cost of a larger variance

86 G. Corani, A. Antonucci, and M. Zaffalon

(as there are less data for estimating the parameters). Therefore, learning locally NBC
(or NCC) can be a winning strategy as it allows reducing the bias; moreover, it also
reduces the chance of encountering strong dependencies between features [45]. In fact,
a successful example of lazy NBC is given in [45].

However, an important problem dealing with lazy learning is how to select the band-
width k. The simplest approach is to empirically choose k (for instance, by cross-
validation on the training set) and to then use the same k to answer all queries. However,
the performance of lazy learning can significantly improve if the bandwidth is adapted
query-by-query, as shown in [12] in the case of regression.

LNCC tunes the bandwidth query-by-query using a criterion based on imprecise
probability. After having ranked the instances according to their distance from the
query, a local NCC is induced on the kmin closest instances (for instance, kmin = 25)
and classifies the instance. The classification is accepted if determinate; otherwise, the
local NCC is updated by adding a set of further kupd instances (we set kupd = 20) to its
training set. The procedure continues until either the classification is determinate or all
instances have been added to the training of the local NCC. Therefore, the bandwidth
is increased until the locally collected data smooth the effect of the choice of the prior.
The naive architecture makes it especially easy updating LNCC with the kupd instances;
it only requires to update the counts n(·) that are internally stored by LNCC.

By design LNCC is thus generally more determinate than NCC; this also helps ad-
dressing the excessive determinacy which sometimes characterizes also NCC [24]. In
[30] that generally LNCC outperforms NCC, both according to the discounted accuracy
and the rank test.

13.2 Credal Model Averaging (CMA)

Model uncertainty is the problem of having multiple models which provide a good
explanation of the data, but lead to different answers when used to make inference. In
this case, selecting a single model underestimates uncertainty, as the uncertainty about
model selection is ignored. Bayesian model averaging (BMA) [52] addressed model
uncertainty by averaging over a set of candidate models rather than selecting a single
candidate; each model is given a weight corresponding to its posterior probability.

In case of NBC, given k features, there are 2k possible NBCs, each characterized
by a different subset of features; we denote by M the set of such models and by m a
generic model of the set. Using BMA, the posterior probability P(c,a|n, t) is computed
by averaging over all the 2k different NBCs, namely by marginalizing m out:

P(c,a|n, t) ∝ ∑
m∈G

P(c,a|n, t,m)P(n|m)P(m), (34)

where P(m) and P(n|m) =
∫

P(n|m, t)P(t|m)dt are respectively the prior probabil-
ity and the marginal likelihood of model m; the posterior probability of model m is
P(m|n, t) ∝ P(n|m, t)P(m|t).

BMA implies two main challenges [19]: the computation of the exhaustive sum of
Eq.(34) and the choice of the prior distribution over the models.

Bayesian Networks with Imprecise Probabilities 87

The computation of BMA is difficult, because the sum of Eq. (34) is often intractable;
in fact, BMA is often computed via algorithms which are both approximated and time-
consuming. However, Dash and Cooper [36] provide an exact and efficient algorithm to
compute BMA over 2k NBCs.

As for the choice of the prior, a common choice is to assign equal probability to
all models; however, this is criticized from different standpoints even in the literature
of BMA (see the rejoinder of [52]). Moreover, as already discussed, the specification
of any single prior implies arbitrariness and entails the risk of issuing prior-dependent
classifications. Our view is that this problem should be addressed by using a credal set
rather than a single prior. However, in the following it is understood that by BMA we
mean BMA learned with the uniform prior over the models.

Credal set. Credal model averaging (CMA) [27] extends to imprecise probabilities the
BMA over NBCs of [36], substituting the single prior over the models by a credal set.
The prior probability of model m is expressed by Dash and Cooper [36] as:

P(g) = ∏
i∈m

Pi ∏
i/∈m

(1−Pi), (35)

where Pi is the probability of feature i to be relevant for the problem, while i ∈ g and
i /∈ g index respectively the features included and excluded from model g. By setting
Pi := 0.5 for all i, all models are given the same prior probability.

CMA is aimed at modelling a condition close to prior ignorance about the relative
credibility of the 2k NBCs, which also implies ignorance about whether each feature
is relevant or not; the credal set K(M) of prior over the models is given by all the
mass function obtained by letting vary each Pi within the interval ε < Pi < 1− ε (the
introduction of the ε > 0 is necessary to enable learning from the data).

Denoting as P(M) a generic mass function over the graphs, the test of credal-
dominance test of CMA is:

inf
P(M)∈K(M)

∑g∈G P(c1|g,n)P(n|g)P(g)
∑g∈G P(c2|g,n)P(n|g)P(g)

> 1. (36)

The computation of the dominance test is accomplished by extending to imprecise prob-
ability the BMA algorithm by [36]; see [27] for more details.

Since K(M) contains the uniform prior over the models, the set of non-dominated
classes of CMA always contains the most probable class identified by BMA; for the
same reasons CMA, when determinate, returns the same class of BMA.

The experiments of [27] shows that the accuracy of BMA sharply drops on the in-
stances where CMA gets indeterminate. The finding that a Bayesian classifier is little
accurate on the instances indeterminately classified by its counterpart based on impre-
cise probabilities is indeed consistent across the various credal classifiers which we
have developed.

A possible research direction is the development of CMA for NCC, namely impre-
cise averaging over credal classifiers. Yet, attempts in this direction seem to involve
quite difficult and time-consuming computations.

88 G. Corani, A. Antonucci, and M. Zaffalon

14 Open Source Software

JNCC2 [28] is the Java implementation of NCC; it is available from
www.idsia.ch/~giorgio/jncc2.html and has a command-line interface. This
software has been around since some years and is stable.

A second open-source software is a plug-in for the WEKA [79] environment; it
implements NCC, LNCC, CMA and the credal version of classification trees [1].
Thanks to the WEKA environment, all the operations with credal classifiers can be
performed graphically and moreover many powerful tools (e.g., feature selection) be-
come available to be readily used with credal classifiers. This software is available from
http://decsai.ugr.es/~andrew/weka-ip.html; it is very recent and thus should
be seen as more experimental.

15 Conclusions

Credal networks generalize Bayesian networks, providing a more robust probabilistic
representation; in some cases, a single probability distribution cannot robustly describe
uncertainty. Being able to work with a set of distributions rather than with a single dis-
tribution, credal networks can for instance robustly deal with the specification of the
prior and with non-MAR missing data. Credal networks are naturally suited to model
expert knowledge, as often the experts feel more confident in assigning to an event an
interval of probability rather than a point-wise probability; in fact, knowledge-based
systems are a natural application of credal networks. However, credal networks have
been also thoroughly developed for classification. The main feature of credal classi-
fiers is that they suspend the judgment returning a set classes; this happens for instance
when the instance is prior-dependent or when too much uncertainty arises from miss-
ing data, when MAR cannot be assumed. Extensive experiments, performed both on
public benchmark data sets and in real-world applications show that on the instances
indeterminately classified by a credal network, the accuracy of its Bayesian counterpart
(namely, a BN with the same graph, learned with the uniform distribution) drops. Direc-
tions for future research include the development of a more rigorous metric to compare
credal and traditional probabilistic classifier and algorithms for structure learning espe-
cially tailored for credal networks.

Acknowledgements. The research has been partially supported by the Swiss NSF
grants n. 200020 134759 / 1, 200020-121785 / 1, 200020-132252 and by the Hasler
foundation grant n. 10030.

References

1. Abellán, J., Moral, S.: Upper entropy of credal sets. Applications to credal classification.
International Journal of Approximate Reasoning 39(2-3), 235–255 (2005)

2. Antonucci, A., Brühlmann, R., Piatti, A., Zaffalon, M.: Credal networks for military identi-
fication problems. International Journal of Approximate Reasoning 50(4), 666–679 (2009)

Bayesian Networks with Imprecise Probabilities 89

3. Antonucci, A., Cuzzolin, F.: Credal sets approximation by lower probabilities: Application
to credal networks. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS,
vol. 6178, pp. 716–725. Springer, Heidelberg (2010)

4. Antonucci, A., Piatti, A., Zaffalon, M.: Credal networks for operational risk measurement
and management. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS
(LNAI), vol. 4693, pp. 604–611. Springer, Heidelberg (2007)

5. Antonucci, A., Salvetti, A., Zaffalon, M.: Credal networks for hazard assessment of debris
flows. In: Kropp, J., Scheffran, J. (eds.) Advanced Methods for Decision Making and Risk
Management in Sustainability Science. Nova Science Publishers, New York (2007)

6. Antonucci, A., Sun, Y., de Campos, C., Zaffalon, M.: Generalized loopy 2U: a new algo-
rithm for approximate inference in credal networks. International Journal of Approximate
Reasoning 51(5), 474–484 (2010)

7. Antonucci, A., Zaffalon, M.: Equivalence between Bayesian and credal nets on an updat-
ing problem. In: Lawry, J., Miranda, E., Bugarin, A., Li, S., Gil, M.A., Grzegorzewski, P.,
Hryniewicz, O. (eds.) Proceedings of Third International Conference on Soft Methods in
Probability and Statistics (SMPS 2006), pp. 223–230. Springer, Heidelberg (2006)

8. Antonucci, A., Zaffalon, M.: Decision-theoretic specification of credal networks: A unified
language for uncertain modeling with sets of bayesian networks. International Journal of
Approximate Reasoning 49(2), 345–361 (2008)

9. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65,
21–46 (1996)

10. Benavoli, A., de Campos, C.P.: Inference from multinomial data based on a MLE-dominance
criterion. In: Proc. on European Conf. on Symbolic and Quantitative Approaches to Reason-
ing and Uncertainty (Ecsqaru), Verona, pp. 22–33 (2009)

11. Benavoli, A., Zaffalon, M., Miranda, E.: Reliable hidden Markov model filtering through
coherent lower previsions. In: Proc. 12th Int. Conf. Information Fusion, Seattle (USA), pp.
1743–1750 (2009)

12. Bontempi, G., Birattari, M., Bersini, H.: Lazy learning for local modelling and control de-
sign. International Journal of Control 72(7), 643–658 (1999)

13. de Campos, C.P., Cozman, F.G.: Inference in credal networks through integer programming.
In: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and
Applications. Action M Agency, Prague (2007)

14. Campos, L., Huete, J., Moral, S.: Probability intervals: a tool for uncertain reasoning. In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 2(2), 167–196
(1994)

15. Cano, A., Cano, J., Moral, S.: Convex sets of probabilities propagation by simulated anneal-
ing on a tree of cliques. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU
1994. LNCS, vol. 945, pp. 4–8. Springer, Heidelberg (1995)

16. Cano, A., Gómez-Olmedo, M., Moral, S.: Credal nets with probabilities estimated with an
extreme imprecise Dirichlet model. In: de Cooman, G., Vejnarová, I., Zaffalon, M. (eds.)
Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and
Applications (ISIPTA 2007), pp. 57–66. Action M Agency, Prague (2007)

17. Cano, A., Moral, S.: A review of propagation algorithms for imprecise probabilities. In: [38],
pp. 51–60 (1999)

18. Cano, A., Moral, S.: Using probability trees to compute marginals with imprecise probabili-
ties. International Journal of Approximate Reasoning 29(1), 1–46 (2002)

90 G. Corani, A. Antonucci, and M. Zaffalon

19. Clyde, M., George, E.: Model uncertainty. Statistical Science, pp. 81–94 (2004)
20. Coolen, F.P.A., Augustin, T.: Learning from multinomial data: a nonparametric predictive

alternative to the Imprecise Dirichlet Model. In: ISIPTA 2005: Proceedings of the Fourth
International Symposium on Imprecise Probabilities and their Applications, pp. 125–134
(2005)

21. de Cooman, G., Hermans, F., Antonucci, A., Zaffalon, M.: Epistemic irrelevance in credal
networks: the case of imprecise markov trees. International Journal of Approximate Reason-
ing (accepted for publication)

22. de Cooman, G., Miranda, E., Zaffalon, M.: Independent natural extension. In: Hüllermeier,
E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 737–746. Springer,
Heidelberg (2010)

23. Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence 42, 393–405 (1990)

24. Corani, G., Benavoli, A.: Restricting the IDM for classification. In: Hüllermeier, E., Kruse,
R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 328–337. Springer, Heidelberg (2010)

25. Corani, G., de Campos, C.P.: A tree-augmented classifier based on Extreme Imprecise
Dirichlet Model. International Journal of Approximate Reasoning (accepted for publication)

26. Corani, G., Giusti, A., Migliore, D.: Robust texture recognition using imprecise classifica-
tion. Under Review

27. Corani, G., Zaffalon, M.: Credal model averaging: An extension of bayesian model averag-
ing to imprecise probabilities. In: Proc. of the 2008 European Conf. on Machine Learning
and Knowledge Discovery in Databases (ECML-PKDD 2008), pp. 257–271. Springer, Hei-
delberg (2008)

28. Corani, G., Zaffalon, M.: JNCC2: The Java implementation of naive credal classifier 2. Jour-
nal of Machine Learning Research 9, 2695–2698 (2008)

29. Corani, G., Zaffalon, M.: Learning reliable classifiers from small or incomplete data sets: the
naive credal classifier 2. Journal of Machine Learning Research 9, 581–621 (2008)

30. Corani, G., Zaffalon, M.: Lazy naive credal classifier. In: Proc. of the 1st ACM SIGKDD
Workshop on Knowledge Discovery from Uncertain Data, pp. 30–37. ACM, New York
(2009)

31. Costa, J.E., Fleisher, P.J. (eds.): Physical geomorphology of debris flows, ch. 9, pp. 268–317.
Springer, Berlin (1984)

32. Couso, I., Moral, S., Walley, P.: Examples of independence for imprecise probabilities. In:
ISIPTA, pp. 121–130 (1999)

33. del Coz, J., Dıez, J., Bahamonde, A.: Learning Nondeterministic Classifiers. Journal of Ma-
chine Learning Research 10, 2273–2293 (2009)

34. Cozman, F.G.: Robustness analysis of Bayesian networks with finitely generated convex-
sets of distributions. Tech. Rep. CMU-RI-TR 96-41, Robotics Institute, Carnegie Mellon
University (1996)

35. Cozman, F.G.: Credal networks. Artificial Intelligence 120, 199–233 (2000)
36. Dash, D., Cooper, G.: Model averaging for prediction with discrete Bayesian networks. Jour-

nal of Machine Learning Research 5, 1177–1203 (2004)
37. de Campos, C.P., Cozman, F.G.: The inferential complexity of Bayesian and credal networks.

In: Proceedings of the International Joint Conference on Artificial Intelligence, Edinburgh,
pp. 1313–1318 (2005)

38. de Cooman, G., Cozman, F.G., Moral, S., Walley, P.: ISIPTA 1999: Proceedings of the First
International Symposium on Imprecise Probabilities and Their Applications. The Imprecise
Probability Project, Universiteit Gent, Belgium (1999)

Bayesian Networks with Imprecise Probabilities 91

39. de Cooman, G., Zaffalon, M.: Updating beliefs with incomplete observations. Artificial In-
telligence 159, 75–125 (2004)

40. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-
one loss. Machine Learning 29(2/3), 103–130 (1997)

41. Elkan, C.: Magical thinking in data mining: lessons from CoIL challenge 2000. In: Proceed-
ings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 426–431. ACM, New York (2001)

42. Fayyad, U.M., Irani, K.B.: Multi-interval Discretization of Continuous-valued Attributes for
Classification Learning. In: Proc. of the 13th International Joint Conference on Artificial
Intelligence, pp. 1022–1027. Morgan Kaufmann, San Francisco (1993)

43. de Finetti, B.: Theory of Probability. Wiley, New York (1974); Two volumes translated from
Teoria Delle probabilità, published 1970. The second volume appeared under the same title
in 1975

44. Fleuret, F.: Fast binary feature selection with conditional mutual information. Journal of
Machine Learning Research 5, 1531–1555 (2004)

45. Frank, E., Hall, M., Pfahringer, B.: Locally weighted naive Bayes. In: Proceedings of the
Conference on Uncertainty in Artificial Intelligence, pp. 249–256 (2003)

46. Friedman, J.: On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Data Mining and
Knowledge Discovery 1, 55–77 (1997)

47. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learn-
ing 29(2), 131–163 (1997)

48. Griffiths, P.G., Webb, R.H., Melis, T.S.: Frequency and initiation of debris flows in grand
canyon, arizona. Journal of Geophysical Research 109, 4002–4015 (2004)

49. Ha, V., Doan, A., Vu, V., Haddawy, P.: Geometric foundations for interval-based probabili-
ties. Annals of Mathematics and Artificial Intelligence 24(1-4), 1–21 (1998)

50. Hand, D., Yu, K.: Idiot’s Bayes-Not So Stupid After All? International Statistical Re-
view 69(3), 385–398 (2001)

51. Hoare, Z.: Landscapes of naive Bayes classifiers. Pattern Analysis & Applications 11(1),
59–72 (2008)

52. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: A tutorial.
Statistical Science 14(4), 382–401 (1999)

53. Ide, J.S., Cozman, F.G.: IPE and L2U: Approximate algorithms for credal networks. In:
Proceedings of the Second Starting AI Researcher Symposium, pp. 118–127. IOS Press,
Amsterdam (2004)

54. Jaeger, M.: Ignorability for categorical data. Annals of Statistics, 1964–1981 (2005)
55. Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In:

Proceedings of the Second International Conference on Knowledge Discovery and Data Min-
ing, pp. 202–207. AAAI Press, Menlo Park (1996)

56. Kohavi, R., Becker, B., Sommerfield, D.: Improving simple Bayes. In: van Someren, M.,
Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 78–87. Springer, Heidelberg (1997)

57. Levi, I.: The Enterprise of Knowledge. MIT Press, London (1980)
58. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, New York (1987)
59. Madden, M.: On the classification performance of TAN and general Bayesian networks.

Knowledge-Based Systems 22(7), 489–495 (2009)
60. Manski, C.F.: Partial Identification of Probability Distributions. Springer, New York (2003)
61. Murphy, K., Weiss, Y., Jordan, M.: Loopy belief propagation for te inference: An empirical

study. In: Conference on Uncertainty in Artificial Intelligence, pp. 467–475. Morgan Kauf-
mann, San Francisco (1999)

62. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 701–706 (2002)

92 G. Corani, A. Antonucci, and M. Zaffalon

63. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo (1988)

64. Piatti, A., Antonucci, A., Zaffalon, M.: Building knowledge-based systems by credal net-
works: a tutorial. In: Baswell, A.R. (ed.) Advances in Mathematics Research, vol. 11, Nova
Science Publishers, New York (2010)

65. Ramoni, M., Sebastiani, P.: Robust learning with missing data. Machine Learning 45(2),
147–170 (2001)

66. Ferreira da Rocha, J.C., Cozman, F.G.: Inference with separately specified sets of probabili-
ties in credal networks. In: Darwiche, A., Friedman, N. (eds.) Proceedings of the 18th Confer-
ence on Uncertainty in Artificial Intelligence (UAI 2002), pp. 430–437. Morgan Kaufmann,
San Francisco (2002)

67. Ferreira da Rocha, J.C., Cozman, F.G.: Inference in credal networks with branch-and-bound
algorithms. In: Bernard, J.M., Seidenfeld, T., Zaffalon, M. (eds.) ISIPTA Proceedings in
Informatics, vol. 18, pp. 480–493. Carleton Scientific (2003)

68. da Rocha, J.C., Cozman, F.G., de Campos, C.P.: Inference in polytrees with sets of probabil-
ities. In: Conference on Uncertainty in Artificial Intelligence, pp. 217–224. Acapulco (2003)

69. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)
70. Takahashi, T.: Debris Flow. iAHR Monograph. A.A. Balkama, Rotterdam (1991)
71. Tessem, B.: Interval probability propagation. International Journal of Approximate Reason-

ing 7(3), 95–120 (1992)
72. Troffaes, M.: Decision making with imprecise probabilities: A short review. In: Cozman, F.G.

(ed.) SIPTA Newsletter. Society for Imprecise Probability Theory and Applications, Manno,
Switzerland, pp. 4–7 (December 2004)

73. Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: An Ensemble Method for Multilabel
Classification. In: Proceedings of the 18th European Conference on Machine Learning, pp.
406–417. Springer, Heidelberg (2007)

74. Van Der Putten, P., Van Someren, M.: A bias-variance analysis of a real world learning prob-
lem: The CoIL challenge 2000. Machine Learning 57(1), 177–195 (2004)

75. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, New York
(1991)

76. Walley, P.: Inferences from multinomial data: learning about a bag of marbles. J. R. Statist.
Soc. B58(1), 3–57 (1996)

77. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Monographs on Statistics and
Applied Probability, vol. 42. Chapman and Hall, London (1991)

78. Walley, P.: Inferences from multinomial data: Learning about a bag of marbles. Journal of
the Royal Statistical Society SeriesB 58(1), 3–34 (1996)

79. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan
Kaufmann, San Francisco (2005)

80. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng,
A., Liu, B., Yu, P., et al.: Top 10 algorithms in data mining. Knowledge and Information
Systems 14(1), 1–37 (2008)

81. Zaffalon, M.: Statistical inference of the naive credal classifier. In: de Cooman, G., Fine,
T.L., Seidenfeld, T. (eds.) ISIPTA 2001: Proceedings of the Second International Symposium
on Imprecise Probabilities and Their Applications, pp. 384–393. Shaker, The Netherlands
(2001)

82. Zaffalon, M.: Conservative rules for predictive inference with incomplete data. In: Cozman,
F.G., Nau, R., Seidenfeld, T. (eds.) Proceedings of the Fourth International Symposium on
Imprecise Probabilities and Their Applications (ISIPTA 2005), pp. 406–415. SIPTA (2005)

Bayesian Networks with Imprecise Probabilities 93

83. Zaffalon, M.: Credible classification for environmental problems. Environmental Modelling
& Software 20(8), 1003–1012 (2005)

84. Zaffalon, M., Fagiuoli, E.: Tree-based credal networks for classification. Reliable Comput-
ing 9(6), 487–509 (2003)

85. Zaffalon, M., Hutter, M.: Robust inference of trees. Annals of Mathematics and Artificial
Intelligence 45(1), 215–239 (2005)

86. Zaffalon, M., Miranda, E.: Conservative Inference Rule for Uncertain Reasoning under In-
completeness. Journal of Artificial Intelligence Research 34, 757–821 (2009)

87. Zaffalon, M., Wesnes, K., Petrini, O.: Reliable diagnoses of dementia by the naive credal
classifier inferred from incomplete cognitive data. Artificial Intelligence in Medicine
29(1-2), 61–79 (2003)

Chapter 5

Hierarchical Clustering for Finding Symmetries
and Other Patterns in Massive,

High Dimensional Datasets

Fionn Murtagh1,2 and Pedro Contreras2

1 Science Foundation Ireland, Wilton Park House,
Wilton Place, Dublin 2, Ireland

2 Department of Computer Science
Royal Holloway, University of London

Egham TW20 0EX, UK
fmurtagh@acm.org

Abstract. Data analysis and data mining are concerned with unsuper-
vised pattern finding and structure determination in data sets. “Struc-
ture” can be understood as symmetry and a range of symmetries are
expressed by hierarchy. Such symmetries directly point to invariants, that
pinpoint intrinsic properties of the data and of the background empirical
domain of interest. We review many aspects of hierarchy here, including
ultrametric topology, generalized ultrametric, linkages with lattices and
other discrete algebraic structures and with p-adic number representa-
tions. By focusing on symmetries in data we have a powerful means of
structuring and analyzing massive, high dimensional data stores. We illus-
trate the powerfulness of hierarchical clustering in case studies in chem-
istry and finance, and we provide pointers to other published case studies.

Keywords: Data analytics, multivariate data analysis, pattern recog-
nition, information storage and retrieval, clustering, hierarchy, p-adic,
ultrametric topology, complexity.

1 Introduction: Hierarchy and Other Symmetries in Data
Analysis

Herbert A. Simon, Nobel Laureate in Economics, originator of “bounded ratio-
nality” and of “satisficing”, believed in hierarchy at the basis of the human and
social sciences, as the following quotation shows: “... my central theme is that
complexity frequently takes the form of hierarchy and that hierarchic systems
have some common properties independent of their specific content. Hierarchy,
I shall argue, is one of the central structural schemes that the architect of com-
plexity uses.” ([74], p. 184.)

Partitioning a set of observations [75, 76, 49] leads to some very simple symme-
tries. This is one approach to clustering and data mining. But such approaches,
often based on optimization, are not of direct interest to us here. Instead we

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 95–130.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

96 F. Murtagh and P. Contreras

will pursue the theme pointed to by Simon, namely that the notion of hierar-
chy is fundamental for interpreting data and the complex reality which the data
expresses. Our work is very different too from the marvelous view of the develop-
ment of mathematical group theory – but viewed in its own right as a complex,
evolving system – presented by Foote [19].

Weyl [80] makes the case for the fundamental importance of symmetry in
science, engineering, architecture, art and other areas. As a “guiding principle”,
“Whenever you have to do with a structure-endowed entity ... try to determine its
group of automorphisms, the group of those element-wise transformations which
leave all structural relations undisturbed. You can expect to gain a deep insight
in the constitution of [the structure-endowed entity] in this way. After that you
may start to investigate symmetric configurations of elements, i.e. configurations
which are invariant under a certain subgroup of the group of all automorphisms;
...” ([80], p. 144).

1.1 About This Article

In section 2, we describe ultrametric topology as an expression of hierarchy. This
provides comprehensive background on the commonly used quadratic computa-
tional time (i.e., O(n2), where n is the number of observations) agglomerative
hierarchical clustering algorithms.

In section 3, we look at the generalized ultrametric context. This is closely
linked to analysis based on lattices. We use a case study from chemical database
matching to illustrate algorithms in this area.

In section 4, p-adic encoding, providing a number theory vantage point on
ultrametric topology, gives rise to additional symmetries and ways to capture
invariants in data.

Section 5 deals with symmetries that are part and parcel of a tree, repre-
senting a partial order on data, or equally a set of subsets of the data, some of
which are embedded. An application of such symmetry targets from a dendro-
gram expressing a hierarchical embedding is provided through the Haar wavelet
transform of a dendrogram and wavelet filtering based on the transform.

Section 6 deals with new and recent results relating to the remarkable sym-
metries of massive, and especially high dimensional data sets. An example is
discussed of segmenting a financial forex (foreign exchange) trading signal.

1.2 A Brief Introduction to Hierarchical Clustering

For the reader new to analysis of data a very short introduction is now provided
on hierarchical clustering. Along with other families of algorithm, the objective is
automatic classification, for the purposes of data mining, or knowledge discovery.
Classification, after all, is fundamental in human thinking, and machine-based
decision making. But we draw attention to the fact that our objective is unsuper-
vised, as opposed to supervised classification, also known as discriminant analysis
or (in a general way) machine learning. So here we are not concerned with gen-
eralizing the decision making capability of training data, nor are we concerned

Hierarchical Clustering for Finding Symmetries 97

with fitting statistical models to data so that these models can play a role in gen-
eralizing and predicting. Instead we are concerned with having “data speak for
themselves”. That this unsupervised objective of classifying data (observations,
objects, events, phenomena, etc.) is a huge task in our society is unquestionably
true. One may think of situations when precedents are very limited, for instance.

Among families of clustering, or unsupervised classification, algorithms, we
can distinguish the following: (i) array permuting and other visualization ap-
proaches; (ii) partitioning to form (discrete or overlapping) clusters through
optimization, including graph-based approaches; and – of interest to us in this
article – (iii) embedded clusters interrelated in a tree-based way.

For the last-mentioned family of algorithm, agglomerative building of the hier-
archy from consideration of object pairwise distances has been the most common
approach adopted. As comprehensive background texts, see [48, 30, 81, 31].

1.3 A Brief Introduction to p-Adic Numbers

The real number system, and a p-adic number system for given prime, p, are
potentially equally useful alternatives. p-Adic numbers were introduced by Kurt
Hensel in 1898.

Whether we deal with Euclidean or with non-Euclidean geometry, we are
(nearly) always dealing with reals. But the reals start with the natural numbers,
and from associating observational facts and details with such numbers we be-
gin the process of measurement. From the natural numbers, we proceed to the
rationals, allowing fractions to be taken into consideration.

The following view of how we do science or carry out other quantitative study
was proposed by Volovich in 1987 [78, 79]. See also the surveys in [15, 22]. We
can always use rationals to make measurements. But they will be approximate,
in general. It is better therefore to allow for observables being “continuous, i.e.
endow them with a topology”. Therefore we need a completion of the field Q

of rationals. To complete the field Q of rationals, we need Cauchy sequences
and this requires a norm on Q (because the Cauchy sequence must converge,
and a norm is the tool used to show this). There is the Archimedean norm
such that: for any x, y ∈ Q, with |x| < |y|, then there exists an integer N such
that |Nx| > |y|. For convenience here, we write: |x|∞ for this norm. So if this
completion is Archimedean, then we have R = Q∞, the reals. That is fine if
space is taken as commutative and Euclidean.

What of alternatives? Remarkably all norms are known. Besides the Q∞ norm,
we have an infinity of norms, |x|p, labeled by primes, p. By Ostrowski’s theorem
[65] these are all the possible norms on Q. So we have an unambiguous labeling,
via p, of the infinite set of non-Archimedean completions of Q to a field endowed
with a topology.

In all cases, we obtain locally compact completions, Qp, of Q. They are the
fields of p-adic numbers. All these Qp are continua. Being locally compact, they
have additive and multiplicative Haar measures. As such we can integrate over
them, such as for the reals.

98 F. Murtagh and P. Contreras

1.4 Brief Discussion of p-Adic and m-Adic Numbers

We will use p to denote a prime, and m to denote a non-zero positive integer.
A p-adic number is such that any set of p integers which are in distinct residue
classes modulo p may be used as p-adic digits. (Cf. remark below, at the end
of section 4.1, quoting from [25]. It makes the point that this opens up a range
of alternative notation options in practice.) Recall that a ring does not allow
division, while a field does. m-Adic numbers form a ring; but p-adic numbers
form a field. So a priori, 10-adic numbers form a ring. This provides us with a
reason for preferring p-adic over m-adic numbers.

We can consider various p-adic expansions:

1.
∑n

i=0 aip
i, which defines positive integers. For a p-adic number, we require

ai ∈ 0, 1, ...p− 1. (In practice: just write the integer in binary form.)
2.

∑n
i=−∞ aip

i defines rationals.
3.

∑∞
i=k aip

i where k is an integer, not necessarily positive, defines the field Qp

of p-adic numbers.

Qp, the field of p-adic numbers, is (as seen in these definitions) the field of p-adic
expansions.

The choice of p is a practical issue. Indeed, adelic numbers use all possible
values of p (see [6] for extensive use and discussion of the adelic number frame-
work). Consider [14, 37]. DNA (desoxyribonucleic acid) is encoded using four
nucleotides: A, adenine; G, guanine; C, cytosine; and T, thymine. In RNA (ri-
bonucleic acid) T is replaced by U, uracil. In [14] a 5-adic encoding is used, since
5 is a prime and thereby offers uniqueness. In [37] a 4-adic encoding is used,
and a 2-adic encoding, with the latter based on 2-digit boolean expressions for
the four nucleotides (00, 01, 10, 11). A default norm is used, based on a longest
common prefix – with p-adic digits from the start or left of the sequence (see
section 4.2 below where this longest common prefix norm or distance is used
and, before that, section 3.3 where an example is discussed in detail).

2 Ultrametric Topology

In this section we mainly explore symmetries related to: geometric shape; matrix
structure; and lattice structures.

2.1 Ultrametric Space for Representing Hierarchy

Consider Figures 1 and 2, illustrating the ultrametric distance and its role in
defining a hierarchy. An early, influential paper is Johnson [35] and an important
survey is that of Rammal et al. [67]. Discussion of how a hierarchy expresses the
semantics of change and distinction can be found in [61].

The ultrametric topology was introduced by Marc Krasner [40], the ultramet-
ric inequality having been formulated by Hausdorff in 1934. Essential motivation
for the study of this area is provided by [70] as follows. Real and complex fields

Hierarchical Clustering for Finding Symmetries 99

x y z

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

H
ei

gh
t

Fig. 1. The strong triangular inequality defines an ultrametric: every triplet of points
satisfies the relationship: d(x, z) ≤ max{d(x, y), d(y, z)} for distance d. Cf. by reading
off the hierarchy, how this is verified for all x, y, z: d(x, z) = 3.5; d(x, y) = 3.5; d(y, z) =
1.0. In addition the symmetry and positive definiteness conditions hold for any pair of
points.

10 20 30 40

5
10

15
20

Property 1

P
ro

pe
rt

y
2

●

●
●

●

Isosceles triangle:
approx equal long sides

Fig. 2. How metric data can approximate an ultrametric, or can be made to approxi-
mate an ultrametric in the case of a stepwise, agglomerative algorithm. A “query” is on
the far right. While we can easily determine the closest target (among the three objects
represented by the dots on the left), is the closest really that much different from the
alternatives? This question motivates an ultrametric view of the metric relationships
shown.

100 F. Murtagh and P. Contreras

gave rise to the idea of studying any field K with a complete valuation |.| com-
parable to the absolute value function. Such fields satisfy the “strong triangle
inequality” |x + y| ≤ max(|x|, |y|). Given a valued field, defining a totally or-
dered Abelian (i.e. commutative) group, an ultrametric space is induced through
|x−y| = d(x, y). Various terms are used interchangeably for analysis in and over
such fields such as p-adic, ultrametric, non-Archimedean, and isosceles. The nat-
ural geometric ordering of metric valuations is on the real line, whereas in the
ultrametric case the natural ordering is a hierarchical tree.

2.2 Some Geometrical Properties of Ultrametric Spaces

We see from the following, based on [41] (chapter 0, part IV), that an ultrametric
space is quite different from a metric one. In an ultrametric space everything
“lives” on a tree.

In an ultrametric space, all triangles are either isosceles with small base,
or equilateral. We have here very clear symmetries of shape in an ultrametric
topology. These symmetry “patterns” can be used to fingerprint data sets and
time series: see [55, 57] for many examples of this.

Some further properties that are studied in [41] are: (i) Every point of a circle
in an ultrametric space is a center of the circle. (ii) In an ultrametric topology,
every ball is both open and closed (termed clopen). (iii) An ultrametric space
is 0-dimensional (see [7, 69]). It is clear that an ultrametric topology is very
different from our intuitive, or Euclidean, notions. The most important point to
keep in mind is that in an ultrametric space everything “lives” in a hierarchy
expressed by a tree.

2.3 Ultrametric Matrices and Their Properties

For an n × n matrix of positive reals, symmetric with respect to the principal
diagonal, to be a matrix of distances associated with an ultrametric distance
on X , a sufficient and necessary condition is that a permutation of rows and
columns satisfies the following form of the matrix:

1. Above the diagonal term, equal to 0, the elements of the same row are non-
decreasing.

2. For every index k, if

d(k, k + 1) = d(k, k + 2) = · · · = d(k, k + � + 1)

then
d(k + 1, j) ≤ d(k, j) for k + 1 < j ≤ k + � + 1

and
d(k + 1, j) = d(k, j) for j > k + � + 1

Under these circumstances, � ≥ 0 is the length of the section beginning,
beyond the principal diagonal, the interval of columns of equal terms in
row k.

Hierarchical Clustering for Finding Symmetries 101

Table 1. Input data: 8 iris flowers characterized by sepal and petal widths and lengths.
From Fisher’s iris data [17].

Sepal.Length Sepal.Width Petal.Length Petal.Width
iris1 5.1 3.5 1.4 0.2
iris2 4.9 3.0 1.4 0.2
iris3 4.7 3.2 1.3 0.2
iris4 4.6 3.1 1.5 0.2
iris5 5.0 3.6 1.4 0.2
iris6 5.4 3.9 1.7 0.4
iris7 4.6 3.4 1.4 0.3

1 3 4 2 5 6 7

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

H
ei

gh
t

Fig. 3. Hierarchical clustering of 7 iris flowers using data from Table 1. No data nor-
malization was used. The agglomerative clustering criterion was the minimum variance
or Ward one.

To illustrate the ultrametric matrix format, consider the small data set shown in
Table 1. A dendrogram produced from this is in Figure 3. The ultrametric matrix
that can be read off this dendrogram is shown in Table 2. Finally a visualization
of this matrix, illustrating the ultrametric matrix properties discussed above, is
in Figure 4.

2.4 Clustering through Matrix Row and Column Permutation

Figure 4 shows how an ultrametric distance allows a certain structure to be
visible (quite possibly, in practice, subject to an appropriate row and column
permuting), in a matrix defined from the set of all distances. For set X , then, this
matrix expresses the distance mapping of the Cartesian product, d : X ×X −→
R

+. R
+ denotes the non-negative reals. A priori the rows and columns of the

102 F. Murtagh and P. Contreras

Table 2. Ultrametric matrix derived from the dendrogram in Figure 3

iris1 iris2 iris3 iris4 iris5 iris6 iris7
iris1 0 0.6480741 0.6480741 0.6480741 1.1661904 1.1661904 1.1661904
iris2 0.6480741 0 0.3316625 0.3316625 1.1661904 1.1661904 1.1661904
iris3 0.6480741 0.3316625 0 0.2449490 1.1661904 1.1661904 1.1661904
iris4 0.6480741 0.3316625 0.2449490 0 1.1661904 1.1661904 1.1661904
iris5 1.1661904 1.1661904 1.1661904 1.1661904 0 0.6164414 0.9949874
iris6 1.1661904 1.1661904 1.1661904 1.1661904 0.6164414 0 0.9949874
iris7 1.1661904 1.1661904 1.1661904 1.1661904 0.9949874 0.9949874 0

Fig. 4. A visualization of the ultrametric matrix of Table 2, where bright or white =
highest value, and black = lowest value

function of the Cartesian product set X with itself could be in any order. The
ultrametric matrix properties establish what is possible when the distance is an
ultrametric one. Because the matrix (a 2-way data object) involves one mode
(due to set X being crossed with itself; as opposed to the 2-mode case where
an observation set is crossed by an attribute set) it is clear that both rows and
columns can be permuted to yield the same order on X . A property of the form
of the matrix is that small values are at or near the principal diagonal.

A generalization opens up for this sort of clustering by visualization scheme.
Firstly, we can directly apply row and column permuting to 2-mode data, i.e. to
the rows and columns of a matrix crossing indices I by attributes J , a : I×J −→
R. A matrix of values, a(i, j), is furnished by the function a acting on the sets I
and J . Here, each such term is real-valued. We can also generalize the principle
of permuting such that small values are on or near the principal diagonal to
instead allow similar values to be near one another, and thereby to facilitate
visualization. An optimized way to do this was pursued in [45, 44]. Comprehen-
sive surveys of clustering algorithms in this area, including objective functions,

Hierarchical Clustering for Finding Symmetries 103

visualization schemes, optimization approaches, presence of constraints, and ap-
plications, can be found in [46, 43]. See too [12, 53].

For all these approaches, underpinning them are row and column permu-
tations, that can be expressed in terms of the permutation group, Sn, on n
elements.

2.5 Other Miscellaneous Symmetries

As examples of various other local symmetries worthy of consideration in data
sets consider subsets of data comprising clusters, and reciprocal nearest neighbor
pairs.

Given an observation set, X , we define dissimilarities as the mapping d :
X ×X −→ R

+. A dissimilarity is a positive, definite, symmetric measure (i.e.,
d(x, y) ≥ 0; d(x, y) = 0 if x = y; d(x, y) = d(y, x)). If in addition the triangular
inequality is satisfied (i.e., d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X) then the
dissimilarity is a distance.

If X is endowed with a metric, then this metric is mapped onto an ultrametric.
In practice, there is no need for X to be endowed with a metric. Instead a
dissimilarity is satisfactory.

A hierarchy, H , is defined as a binary, rooted, node-ranked tree, also termed
a dendrogram [3, 35, 41, 53]. A hierarchy defines a set of embedded subsets of
a given set of objects X , indexed by the set I. That is to say, object i in the
object set X is denoted xi, and i ∈ I. These subsets are totally ordered by an
index function ν, which is a stronger condition than the partial order required
by the subset relation. The index function ν is represented by the ordinate in
Figure 3 (the “height” or “level”). A bijection exists between a hierarchy and an
ultrametric space.

Often in this article we will refer interchangeably to the object set, X , and
the associated set of indices, I.

Usually a constructive approach is used to induce H on a set I. The most
efficient algorithms are based on nearest neighbor chains, which by definition
end in a pair of agglomerable reciprocal nearest neighbors. Further information
can be found in [50, 51, 53, 54].

3 Generalized Ultrametric

In this subsection, we consider an ultrametric defined on the power set or join
semilattice. Comprehensive background on ordered sets and lattices can be found
in [10]. A review of generalized distances and ultrametrics can be found in [72].

3.1 Link with Formal Concept Analysis

Typically hierarchical clustering is based on a distance (which can be relaxed
often to a dissimilarity, not respecting the triangular inequality, and mutatis
mutandis to a similarity), defined on all pairs of the object set: d : X×X → R

+.

104 F. Murtagh and P. Contreras

I.e., a distance is a positive real value. Usually we require that a distance cannot
be 0-valued unless the objects are identical. That is the traditional approach.

A different form of ultrametrization is achieved from a dissimilarity defined on
the power set of attributes characterizing the observations (objects, individuals,
etc.) X . Here we have: d : X×X −→ 2J , where J indexes the attribute (variables,
characteristics, properties, etc.) set.

This gives rise to a different notion of distance, that maps pairs of objects
onto elements of a join semilattice. The latter can represent all subsets of the
attribute set, J . That is to say, it can represent the power set, commonly denoted
2J , of J .

As an example, consider, say, n = 5 objects characterized by 3 boolean (pres-
ence/absence) attributes, shown in Figure 5 (top). Define dissimilarity between
a pair of objects in this table as a set of 3 components, corresponding to the 3
attributes, such that if both components are 0, we have 1; if either component
is 1 and the other 0, we have 1; and if both components are 1 we get 0. This is
the simple matching coefficient [33]. We could use, e.g., Euclidean distance for
each of the values sought; but we prefer to treat 0 values in both components as
signaling a 1 contribution. We get then d(a, b) = 1, 1, 0 which we will call d1,d2.
Then, d(a, c) = 0, 1, 0 which we will call d2. Etc. With the latter we create lattice
nodes as shown in the middle part of Figure 5.

In Formal Concept Analysis [10, 24], it is the lattice itself which is of primary
interest. In [33] there is discussion of, and a range of examples on, the close
relationship between the traditional hierarchical cluster analysis based on d :
I × I → R

+, and hierarchical cluster analysis “based on abstract posets” (a
poset is a partially ordered set), based on d : I × I → 2J . The latter, leading to
clustering based on dissimilarities, was developed initially in [32].

3.2 Applications of Generalized Ultrametrics

As noted in the previous subsection, the usual ultrametric is an ultrametric
distance, i.e. for a set I, d : I × I −→ R

+. The generalized ultrametric is also
consistent with this definition, where the range is a subset of the power set:
d : I×I −→ Γ , where Γ is a partially ordered set. In other words, the generalized
ultrametric distance is a set. Some areas of application of generalized ultrametrics
will now be discussed.

In the theory of reasoning, a monotonic operator is rigorous application of
a succession of conditionals (sometimes called consequence relations). However
negation or multiple valued logic (i.e. encompassing intermediate truth and false-
hood) require support for non-monotonic reasoning.

Thus [28]: “Once one introduces negation ... then certain of the important
operators are not monotonic (and therefore not continuous), and in consequence
the Knaster-Tarski theorem [i.e. for fixed points; see [10]] is no longer applica-
ble to them. Various ways have been proposed to overcome this problem. One
such [approach is to use] syntactic conditions on programs ... Another is to con-
sider different operators ... The third main solution is to introduce techniques

Hierarchical Clustering for Finding Symmetries 105

v1 v2 v3

a 1 0 1
b 0 1 1
c 1 0 1
e 1 0 0
f 0 0 1

Potential lattice vertices Lattice vertices found Level

d1,d2,d3 d1,d2,d3 3
/ \

/ \
d1,d2 d2,d3 d1,d3 d1,d2 d2,d3 2

\ /
\ /

d1 d2 d3 d2 1

The set d1,d2,d3 corresponds to: d(b, e) and d(e, f)
The subset d1,d2 corresponds to: d(a, b), d(a, f), d(b, c), d(b, f), and d(c, f)
The subset d2,d3 corresponds to: d(a, e) and d(c, e)
The subset d2 corresponds to: d(a, c)

Clusters defined by all pairwise linkage at level ≤ 2:
a, b, c, f
a, c, e

Clusters defined by all pairwise linkage at level ≤ 3:
a, b, c, e, f

Fig. 5. Top: example data set consisting of 5 objects, characterized by 3 boolean at-
tributes. Then: lattice corresponding to this data and its interpretation.

from topology and analysis to augment arguments based on order ... [the latter
include:] methods based on metrics ... on quasi-metrics ... and finally ... on
ultrametric spaces.”

The convergence to fixed points that are based on a generalized ultrametric
system is precisely the study of spherically complete systems and expansive
automorphisms discussed in section 4.3 below. As expansive automorphisms we
see here again an example of symmetry at work.

3.3 Example of Application: Chemical Database Matching

In the 1990s, the Ward minimum variance hierarchical clustering method became
the method of choice in the chemoinformatics community due to its hierarchi-
cal nature and the quality of the clusters produced. Unfortunately the method

106 F. Murtagh and P. Contreras

reached its limits once the pharmaceutical companies tried processing datasets
of more than 500,000 compounds due to: the O(n2) processing requirements of
the reciprocal nearest neighbor algorithm; the requirement to hold all chemical
structure “fingerprints” in memory to enable random access; and the require-
ment that parallel implementation use a shared-memory architecture. Let us
look at an alternative hierarchical clustering algorithm that bypasses these com-
putational difficulties.

A direct application of generalized ultrametrics to data mining is the following.
The potentially huge advantage of the generalized ultrametric is that it allows a
hierarchy to be read directly off the I × J input data, and bypasses the O(n2)
consideration of all pairwise distances in agglomerative hierarchical clustering. In
[62] we study application to chemoinformatics. Proximity and best match finding
is an essential operation in this field. Typically we have one million chemicals
upwards, characterized by an approximate 1000-valued attribute encoding.

Consider first our need to normalize the data. We divide each boolean (pres-
ence/absence) value by its corresponding column sum.

We can consider the hierarchical cluster analysis from abstract posets as based
on d : I × I → R

|J|. In [33], the median of the |J | distance values is used, as
input to a traditional hierarchical clustering, with alternative schemes discussed.
See also [32] for an early elaboration of this approach.

Let us now proceed to take a particular approach to this, which has very
convincing computational benefits.

3.3.1 Ultrametrization through Baire Space Embedding: Notation

A Baire space [42] consists of countably infinite sequences with a metric defined
in terms of the longest common prefix: the longer the common prefix, the closer
a pair of sequences. The Baire metric, and simultaneously ultrametric, will be
defined in definition 1 in the next subsection. What is of interest to us here is
this longest common prefix metric, which additionally is an ultrametric. The
longest common prefixes at issue here are those of precision of any value (i.e.,
xij , for chemical compound i, and chemical structure code j). Consider two such
values, xij and yij , which, when the context easily allows it, we will call x and
y. Each are of some precision, and we take the integer |K| to be the maximum
precision. We pad a value with 0s if necessary, so that all values are of the same
precision. Finally, we will assume for convenience that each value ∈ [0, 1) and
this can be arranged by normalization.

3.3.2 The Case of One Attribute

Thus we consider ordered sets xk and yk for k ∈ K. In line with our notation,
we can write xK and yK for these numbers, with the set K now ordered. (So,
k = 1 is the first decimal place of precision; k = 2 is the second decimal place;
. . . ; k = |K| is the |K|th decimal place.) The cardinality of the set K is the
precision with which a number, xK , is measured. Without loss of generality,
through normalization, we will take all xK , yK ≤ 1. We will also consider decimal

Hierarchical Clustering for Finding Symmetries 107

numbers, only, in this article (hence xk ∈ {0, 1, 2, . . . , 9} for all numbers x,
and for all digits k), again with no loss of generality to non-decimal number
representations.

Consider as examples xK = 0.478; and yK = 0.472. In these cases, |K| = 3.
For k = 1, we find xk = yk = 4. For k = 2, xk = yk. But for k = 3, xk �= yk.

We now introduce the following distance:

dB(xK , yK) =

{
1 if x1 �= y1

inf 2−n xn = yn 1 ≤ n ≤ |K| (1)

So for xK = 0.478 and yK = 0.472 we have dB(xK , yK) = 2−2 = 0.25.
The Baire distance is used in denotational semantics where one considers xK

and yK as words (of equal length, in the finite case), and then this distance is
defined from a common n-length prefix, or left substring, in the two words. For
a set of words, a prefix tree can be built to expedite word matching, and the
Baire distance derived from this tree.

We have 1 ≥ dB(xK , yK) ≥ 2−|K|. Identical xK and yK have Baire distance
equal to 2−|K|. The Baire distance is a 1-bounded ultrametric.

The Baire ultrametric defines a hierarchy, which can be expressed as a multi-
way tree, on a set of numbers, xIK . So the number xiK , indexed by i, i ∈ I, is
of precision |K|. It is actually simple to determine this hierarchy. The partition
at level k = 1 has clusters defined as all those numbers indexed by i that share
the same 1st digit. The partition at level k = 2 has clusters defined as all those
numbers indexed by i that share the same 2nd digit; and so on, until we reach
k = |K|. A strictly finer, or identical, partition is to be found at each successive
level (since once a pair of numbers becomes dissimilar, dB > 0, this non-zero
distance cannot be reversed). Identical numbers at level k = 1 have distance
≤ 2−1 = 0.5. Identical numbers at level k = 2 have distance ≤ 2−2 = 0.25.
Identical numbers at level k = 3 have distance ≤ 2−3 = 0.125; and so on, to
level k = |K|, when distance = 2−|K|.

3.3.3 Analysis: Baire Ultrametrization from Numerical Precision

In this section we use (i) a random projection of vectors into a 1-dimensional
space (so each chemical structure is mapped onto a scalar value, by design ≥ 0
and ≤ 1) followed by (ii) implicit use of a prefix tree constructed on the digits of
the set of scalar values. First we will look at this procedure. Then we will return
to discuss its properties.

We seek all i, i′ such that:

1. for all j ∈ J ,
2. xijK = xi′jK
3. to fixed precision K

Recall that K is an ordered set. We impose a user specified upper limit on
precision, |K|.

108 F. Murtagh and P. Contreras

Table 3. Results for the three different data sets, each consisting of 7500 chemicals,
are shown in immediate succession. The number of significant decimal digits is 4 (more
precise, and hence more different clusters found), 3, 2, and 1 (lowest precision in terms
of significant digits).

Sig. dig. c No. clusters

4 6591
4 6507
4 5735

3 6481
3 6402
3 5360

2 2519
2 2576
2 2135

1 138
1 148
1 167

Now rather than |J | separate tests for equality (point 1 above), a sufficient
condition is that

∑
j wjxijK =

∑
j wjxi′jK for a set of weights wj . What helps in

making this sufficient condition for equality work well in practice is that many of
the xiJK values are 0: cf. the approximate 8% matrix occupancy rate that holds
here. We experimented with such possibilities as wj = j (i.e., {1, 2, . . . , |J |} and
wj = |J |+1− j (i.e., {|J |, |J |−1, . . . , 3, 2, 1}. A first principal component would
allow for the definition of the least squares optimal linear fit of the projections.
The best choice of wj values we found for uniformly distributed values in (0, 1):
for each j, wj ∼ U(0, 1).

Table 3 shows, in immediate succession, results for three data sets. The nor-
malizing column sums were calculated and applied independently to each of the
three data sets. Insofar as xJ is directly proportional, whether calculated on
7500 chemical structures or 1.2 million, leads to a constant of proportionality,
only, between the two cases. As noted, a random projection was used. Finally,
identical projected values were read off, to determine clusters.

3.3.4 Discussion: Random Projection and Hashing

Random projection is the finding of a low dimensional embedding of a point set
– dimension equals 1, or a line or axis, in this work – such that the distortion

Hierarchical Clustering for Finding Symmetries 109

of any pair of points is bounded by a function of the lower dimensionality [77].
There is a burgeoning literature in this area, e.g. [16]. While random projection
per se will not guarantee a bijection of best match in original and in lower
dimensional spaces, our use of projection here is effectively a hashing method
([47] uses MD5 for nearest neighbor search), in order to deliberately find hash
collisions – thereby providing a sufficient condition for the mapped vectors to
be identical.

Collision of identically valued vectors is guaranteed, but what of collision of
non-identically valued vectors, which we want to avoid?

To prove such a result may require an assumption of what distribution our
original data follow. A general class is referred to as a stable distribution [29]:
this is a distribution such that a limited number of weighted sums of the variables
is also itself of the same distribution. Examples include both Gaussian and long-
tailed or power law distributions.

Interestingly, however, very high dimensional (or equivalently, very low sample
size or low n) data sets, by virtue of high relative dimensionality alone, have
points mostly lying at the vertices of a regular simplex or polygon [55, 27]. This
intriguing aspect is one reason, perhaps, why we have found random projection
to work well. Another reason is the following: if we work on normalized data,
then the values on any two attributes j will be small. Hence xj and x′

j are small.
Now if the random weight for this attribute is wj , then the random projections
are, respectively,

∑
j wjxj and

∑
j wjx

′
j . But these terms are dominated by the

random weights. We can expect near equal xj and x′
j terms, for all j, to be

mapped onto fairly close resultant scalar values.
Further work is required to confirm these hypotheses, viz., that high dimen-

sional data may be highly “regular” or “structured” in such a way; and that, as
a consequence, hashing is particularly well-behaved in the sense of non-identical
vectors being nearly always collision-free. There is further discussion in [8].

We remark that a prefix tree, or trie, is well-known in the searching and sorting
literature [26], and is used to expedite the finding of longest common prefixes.
At level one, nodes are associated with the first digit. At level two, nodes are
associated with the second digit, and so on through deeper levels of the tree.

3.3.5 Simple Clustering Hierarchy from the Baire Space Embedding

The Baire ultrametrization induces a (fairly flat) multiway tree on the given
data set.

Consider a partition yielded by identity (over all the attribute set) at a given
precision level. Then for precision levels k1, k2, k3, . . . we have, at each, a par-
tition, such that all member clusters are ordered by reverse embedding (or set
inclusion): q(1) ⊇ q(2) ⊇ q(3) ⊇ Call each such sequence of embeddings a
chain. The entire data set is covered by a set of such chains. This sequence of
partitions is ordered by set inclusion.

110 F. Murtagh and P. Contreras

The computational time complexity is as follows. Let the number of chemicals
be denoted n = |I|; the number of attributes is |J |; and the total number of digits
precision is |K|. Consider a particular number of digits precision, k0, where 1 ≤
k0 ≤ |K|. Then the random projection takes n ·k0 · |J | operations. A sort follows,
requiring O(n log n) operations. Then clusters are read off with O(n) operations.
Overall, the computational effort is bounded by c1·|I|·|J |·|K|+c2·|I|·log |I|+c3|I|
(where c1, c2, c3 are constants), which is equal to O(|I| log |I|) or O(n log n).

Further evaluation and a number of further case studies are covered in [8].

4 Hierarchy in a p-Adic Number System

A dendrogram is widely used in hierarchical, agglomerative clustering, and is
induced from observed data. In this article, one of our important goals is to
show how it lays bare many diverse symmetries in the observed phenomenon
represented by the data. By expressing a dendrogram in p-adic terms, we open
up a wide range of possibilities for seeing symmetries and attendant invariants.

4.1 p-Adic Encoding of a Dendrogram

We will introduce now the one-to-one mapping of clusters (including singletons)
in a dendrogram H into a set of p-adically expressed integers (a fortiori, ra-
tionals, or Qp). The field of p-adic numbers is the most important example of
ultrametric spaces. Addition and multiplication of p-adic integers, Zp (cf. ex-
pression in subsection 1.4), are well-defined. Inverses exist and no zero-divisors
exist.

A terminal-to-root traversal in a dendrogram or binary rooted tree is defined
as follows. We use the path x ⊂ q ⊂ q′ ⊂ q′′ ⊂ . . . qn−1, where x is a given object
specifying a given terminal, and q, q′, q′′, . . . are the embedded classes along this
path, specifying nodes in the dendrogram. The root node is specified by the class
qn−1 comprising all objects.

A terminal-to-root traversal is the shortest path between the given terminal
node and the root node, assuming we preclude repeated traversal (backtrack) of
the same path between any two nodes.

By means of terminal-to-root traversals, we define the following p-adic encod-
ing of terminal nodes, and hence objects, in Figure 6.

x1 : +1 · p1 + 1 · p2 + 1 · p5 + 1 · p7 (2)
x2 : −1 · p1 + 1 · p2 + 1 · p5 + 1 · p7

x3 : −1 · p2 + 1 · p5 + 1 · p7

x4 : +1 · p3 + 1 · p4 − 1 · p5 + 1 · p7

x5 : −1 · p3 + 1 · p4 − 1 · p5 + 1 · p7

x6 : −1 · p4 − 1 · p5 + 1 · p7

x7 : +1 · p6 − 1 · p7

x8 : −1 · p6 − 1 · p7

Hierarchical Clustering for Finding Symmetries 111

If we choose p = 2 the resulting decimal equivalents could be the same: cf.
contributions based on +1 · p1 and −1 · p1 + 1 · p2. Given that the coefficients
of the pj terms (1 ≤ j ≤ 7) are in the set {−1, 0, +1} (implying for x1 the
additional terms: +0 · p3 + 0 · p4 + 0 · p6), the coding based on p = 3 is required
to avoid ambiguity among decimal equivalents.

A few general remarks on this encoding follow. For the labeled ranked binary
trees that we are considering (for discussion of combinatorial properties based
on labeled, ranked and binary trees, see [52]), we require the labels +1 and −1
for the two branches at any node. Of course we could interchange these labels,
and have these +1 and −1 labels reversed at any node. By doing so we will have
different p-adic codes for the objects, xi.

The following properties hold: (i) Unique encoding: the decimal codes for each
xi (lexicographically ordered) are unique for p ≥ 3; and (ii) Reversibility: the
dendrogram can be uniquely reconstructed from any such set of unique codes.

The p-adic encoding defined for any object set can be expressed as follows for
any object x associated with a terminal node:

x =
n−1∑

j=1

cjp
j where cj ∈ {−1, 0, +1} (3)

In greater detail we have:

xi =
n−1∑

j=1

cijp
j where cij ∈ {−1, 0, +1} (4)

Here j is the level or rank (root: n− 1; terminal: 1), and i is an object index.
In our example we have used: cj = +1 for a left branch (in the sense of Figure

6), = −1 for a right branch, and = 0 when the node is not on the path from
that particular terminal to the root.

A matrix form of this encoding is as follows, where {·}t denotes the transpose
of the vector.

Let x be the column vector {x1 x2 . . . xn}t.
Let p be the column vector {p1 p2 . . . pn−1}t.
Define a characteristic matrix C of the branching codes, +1 and −1, and an

absent or non-existent branching given by 0, as a set of values cij where i ∈ I, the
indices of the object set; and j ∈ {1, 2, . . . , n−1}, the indices of the dendrogram
levels or nodes ordered increasingly. For Figure 6 we therefore have:

C = {cij} =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 1 0 1
−1 1 0 0 1 0 1

0 −1 0 0 1 0 1
0 0 1 1 −1 0 1
0 0 −1 1 −1 0 1
0 0 0 −1 −1 0 1
0 0 0 0 0 1 −1
0 0 0 0 0 −1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

112 F. Murtagh and P. Contreras

x1 x2 x3 x4 x5 x6 x7 x8

0
1

2
3

4
5

6
7

+1

+1

+1

+1

+1

+1

+1

-1

-1

-1

-1

-1

-1

-1

Fig. 6. Labeled, ranked dendrogram on 8 terminal nodes, x1, x2, . . . , x8. Branches are
labeled +1 and −1. Clusters are: q1 = {x1, x2}, q2 = {x1, x2, x3}, q3 = {x4, x5}, q4 =
{x4, x5, x6}, q5 = {x1, x2, x3, x4, x5, x6}, q6 = {x7, x8}, q7 = {x1, x2, . . . , x7, x8}.

For given level j, ∀i, the absolute values |cij | give the membership function either
by node, j, which is therefore read off columnwise; or by object index, i, which
is therefore read off rowwise.

The matrix form of the p-adic encoding used in equations (3) or (4) is:

x = Cp (6)

Here, x is the decimal encoding, C is the matrix with dendrogram branching
codes (cf. example shown in expression (5)), and p is the vector of powers of a
fixed integer (usually, more restrictively, fixed prime) p.

The tree encoding exemplified in Figure 6, and defined with coefficients in
equations (3) or (4), (5) or (6), with labels +1 and −1 was required (as opposed
to the choice of 0 and 1, which might have been our first thought) to fully cater
for the ranked nodes (i.e. the total order, as opposed to a partial order, on the
nodes).

We can consider the objects that we are dealing with to have equivalent integer
values. To show that, all we must do is work out decimal equivalents of the p-
adic expressions used above for x1, x2, As noted in [25], we have equivalence
between: a p-adic number; a p-adic expansion; and an element of Zp (the p-adic
integers). The coefficients used to specify a p-adic number, [25] notes (p. 69),
“must be taken in a set of representatives of the class modulo p. The numbers

Hierarchical Clustering for Finding Symmetries 113

between 0 and p− 1 are only the most obvious choice for these representatives.
There are situations, however, where other choices are expedient.”

We note that the matrix C is used in [9]. A somewhat trivial view of how “hi-
erarchical trees can be perfectly scaled in one dimension” (the title and theme
of [9]) is that p-adic numbering is feasible, and hence a one dimensional rep-
resentation of terminal nodes is easily arranged through expressing each p-adic
number with a real number equivalent.

4.2 p-Adic Distance on a Dendrogram

We will now induce a metric topology on the p-adically encoded dendrogram,
H . It leads to various symmetries relative to identical norms, for instance, or
identical tree distances.

We use the following longest common subsequence, starting at the root: we
look for the term pr in the p-adic codes of the two objects, where r is the lowest
level such that the values of the coefficients of pr are equal.

Let us look at the set of p-adic codes for x1, x2, . . . above (Figure 6 and
relations 3), to give some examples of this.

For x1 and x2, we find the term we are looking for to be p1, and so r = 1.
For x1 and x5, we find the term we are looking for to be p5, and so r = 5.
For x5 and x8, we find the term we are looking for to be p7, and so r = 7.

Having found the value r, the distance is defined as p−r [3, 25].
This longest common prefix metric is also known as the Baire distance, and

has been discussed in section 3.3. In topology the Baire metric is defined on
infinite strings [42]. It is more than just a distance: it is an ultrametric bounded
from above by 1, and its infimum is 0 which is relevant for very long sequences, or
in the limit for infinite-length sequences. The use of this Baire metric is pursued
in [62] based on random projections [77], and providing computational benefits
over the classical O(n2) hierarchical clustering based on all pairwise distances.

The longest common prefix metric leads directly to a p-adic hierarchical clas-
sification (cf. [5]). This is a special case of the “fast” hierarchical clustering
discussed in section 3.2.

Compared to the longest common prefix metric, there are other related forms
of metric, and simultaneously ultrametric. In [23], the metric is defined via
the integer part of a real number. In [3], for integers x, y we have: d(x, y) =
2−orderp(x−y) where p is prime, and orderp(i) is the exponent (non-negative in-
teger) of p in the prime decomposition of an integer. Furthermore let S(x) be a
series: S(x) =

∑
i∈N

aix
i. (N are the natural numbers.) The order of S(i) is the

rank of its first non-zero term: order(S) = inf{i : i ∈ N; ai �= 0}. (The series that
is all zero is of order infinity.) Then the ultrametric similarity between series is:
d(S, S′) = 2−order(S−S′).

114 F. Murtagh and P. Contreras

4.3 Scale-Related Symmetry

Scale-related symmetry is very important in practice. In this subsection we in-
troduce an operator that provides this symmetry. We also term it a dilation
operator, because of its role in the wavelet transform on trees (see section 5.3
below, and [58] for discussion and examples). This operator is p-adic multiplica-
tion by 1/p.

Consider the set of objects {xi|i ∈ I} with its p-adic coding considered above.
Take p = 2. (Non-uniqueness of corresponding decimal codes is not of concern to
us now, and taking this value for p is without any loss of generality.) Multiplica-
tion of x1 = +1 ·21+1 ·22+1 ·25+1 ·27 by 1/p = 1/2 gives: +1 ·21+1 ·24+1 ·26.
Each level has decreased by one, and the lowest level has been lost. Subject to
the lowest level of the tree being lost, the form of the tree remains the same. By
carrying out the multiplication-by-1/p operation on all objects, it is seen that
the effect is to rise in the hierarchy by one level.

Let us call product with 1/p the operator A. The effect of losing the bottom
level of the dendrogram means that either (i) each cluster (possibly singleton)
remains the same; or (ii) two clusters are merged. Therefore the application of
A to all q implies a subset relationship between the set of clusters {q} and the
result of applying A, {Aq}.

Repeated application of the operator A gives Aq, A2q, A3q, Starting with
any singleton, i ∈ I, this gives a path from the terminal to the root node in the
tree. Each such path ends with the null element, which we define to be the p-adic
encoding corresponding to the root node of the tree. Therefore the intersection
of the paths equals the null element.

Benedetto and Benedetto [1, 2] discuss A as an expansive automorphism of I,
i.e. form-preserving, and locally expansive. Some implications [1] of the expansive
automorphism follow. For any q, let us take q, Aq, A2q, . . . as a sequence of open
subgroups of I, with q ⊂ Aq ⊂ A2q ⊂ . . . , and I =

⋃{q, Aq, A2q, . . . }. This
is termed an inductive sequence of I, and I itself is the inductive limit ([68],
p. 131).

Each path defined by application of the expansive automorphism defines a
spherically complete system [70, 23, 69], which is a formalization of well-defined
subset embeddedness. Such a methodological framework finds application in
multi-valued and non-monotonic reasoning, as noted in section 3.2.

5 Tree Symmetries through the Wreath Product Group

In this section the wreath product group, used up to now in the literature as
a framework for tree structuring of image or other signal data, is here used
on a 2-way tree or dendrogram data structure. An example of wreath product
invariance is provided by the wavelet transform of such a tree.

Hierarchical Clustering for Finding Symmetries 115

5.1 Wreath Product Group Corresponding to a Hierarchical
Clustering

A dendrogram like that shown in Figure 6 is invariant as a representation or
structuring of a data set relative to rotation (alternatively, here: permutation)
of left and right child nodes. These rotation (or permutation) symmetries are
defined by the wreath product group (see [20, 21, 18] for an introduction and
applications in signal and image processing), and can be used with any m-ary
tree, although we will treat the binary or 2-way case here.

For the group actions, with respect to which we will seek invariance, we con-
sider independent cyclic shifts of the subnodes of a given node (hence, at each
level). Equivalently these actions are adjacency preserving permutations of subn-
odes of a given node (i.e., for given q, with q = q′ ∪ q′′, the permutations of
{q′, q′′}). We have therefore cyclic group actions at each node, where the cyclic
group is of order 2.

The symmetries of H are given by structured permutations of the terminals.
The terminals will be denoted here by Term H . The full group of symmetries is
summarized by the following generative algorithm:
1. For level l = n− 1 down to 1 do:
2. Selected node, ν ←− node at level l.
3. And permute subnodes of ν.

Subnode ν is the root of subtree Hν . We denote Hn−1 simply by H . For a
subnode ν′ undergoing a relocation action in step 3, the internal structure of
subtree Hν′ is not altered.

The algorithm described defines the automorphism group which is a wreath
product of the symmetric group. Denote the permutation at level ν by Pν . Then
the automorphism group is given by:

G = Pn−1 wr Pn−2 wr . . . wr P2 wr P1

where wr denotes the wreath product.

5.2 Wreath Product Invariance

Call Term Hν the terminals that descend from the node at level ν. So these are
the terminals of the subtree Hν with its root node at level ν. We can alternatively
call Term Hν the cluster associated with level ν.

We will now look at shift invariance under the group action. This amounts to
the requirement for a constant function defined on Term Hν , ∀ν. A convenient
way to do this is to define such a function on the set Term Hν via the root node
alone, ν. By definition then we have a constant function on the set Term Hν .

Let us call Vν a space of functions that are constant on Term Hν . That is to
say, the functions are constant in clusters that are defined by the subset of n
objects. Possibilities for Vν that were considered in [58] are:

1. Basis vector with |TermHn−1| components, with 0 values except for value 1
for component i.

2. Set (of cardinality n = |TermHn−1|) of m-dimensional observation vectors.

116 F. Murtagh and P. Contreras

Consider the resolution scheme arising from moving from Term Hν′ , Term Hν′′}
to Term Hν . From the hierarchical clustering point of view it is clear what this
represents, simply, an agglomeration of two clusters called Term Hν′ and Term
Hν′′ , replacing them with a new cluster, Term Hν .

Let the spaces of functions that are constant on subsets corresponding to the
two cluster agglomerands be denoted Vν′ and Vν′′ . These two clusters are disjoint
initially, which motivates us taking the two spaces as a couple: (Vν′ , Vν′′).

5.3 Example of Wreath Product Invariance: Haar Wavelet
Transform of a Dendrogram

Let us exemplify a case that satisfies all that has been defined in the context of
the wreath product invariance that we are targeting. It is the algorithm discussed
in depth in [58]. Take the constant function from Vν′ to be fν′ . Take the constant
function from Vν′′ to be fν′′ . Then define the constant function, the scaling
function, in Vν to be (fν′ + fν′′)/2. Next define the zero mean function, (wν′ +
wν′′)/2 = 0, the wavelet function, as follows:

wν′ = (fν′ + fν′′)/2− fν′

in the support interval of Vν′ , i.e. Term Hν′ , and

wν′′ = (fν′ + fν′′)/2− fν′′

in the support interval of Vν′′ , i.e. Term Hν′′ .
Since wν′ = −wν′′ we have the zero mean requirement.
We now illustrate the Haar wavelet transform of a dendrogram with a case

study.
The discrete wavelet transform is a decomposition of data into spatial and

frequency components. In terms of a dendrogram these components are with
respect to, respectively, within and between clusters of successive partitions. We
show how this works taking the data of Table 4.

Table 4. First 8 observations of Fisher’s iris data. L and W refer to length and width.

Sepal.L Sepal.W Petal.L Petal.W
1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5.0 3.4 1.5 0.2

Hierarchical Clustering for Finding Symmetries 117

x1 x3 x4 x6x8x2 x5x7

0
1

s7

s6

s5

s4
s3

s2
s1

-d7

-d6
-d5

-d4
-d3-d2

-d1

+d7

+d6

+d5

+d4 +d3
+d2 +d1

Fig. 7. Dendrogram on 8 terminal nodes constructed from first 8 values of Fisher iris
data. (Median agglomerative method used in this case.) Detail or wavelet coefficients
are denoted by d, and data smooths are denoted by s. The observation vectors are
denoted by x and are associated with the terminal nodes. Each signal smooth, s, is a
vector. The (positive or negative) detail signals, d, are also vectors. All these vectors
are of the same dimensionality.

Table 5. The hierarchical Haar wavelet transform resulting from use of the first 8
observations of Fisher’s iris data shown in Table 4. Wavelet coefficient levels are denoted
d1 through d7, and the continuum or smooth component is denoted s7.

s7 d7 d6 d5 d4 d3 d2 d1
Sepal.L 5.146875 0.253125 0.13125 0.1375 −0.025 0.05 −0.025 0.05

Sepal.W 3.603125 0.296875 0.16875 −0.1375 0.125 0.05 −0.075 −0.05
Petal.L 1.562500 0.137500 0.02500 0.0000 0.000 −0.10 0.050 0.00

Petal.W 0.306250 0.093750 −0.01250 −0.0250 0.050 0.00 0.000 0.00

The hierarchy built on the 8 observations of Table 4 is shown in Figure 7.
Here we denote irises 1 through 8 as, respectively: x1, x3, x4, x6, x8, x2, x5, x7.

Something more is shown in Figure 7, namely the detail signals (denoted ±d)
and overall smooth (denoted s), which are determined in carrying out the wavelet
transform, the so-called forward transform.

118 F. Murtagh and P. Contreras

The inverse transform is then determined from Figure 7 in the following way.
Consider the observation vector x2. Then this vector is reconstructed exactly
by reading the tree from the root: s7 + d7 = x2. Similarly a path from root
to terminal is used to reconstruct any other observation. If x2 is a vector of
dimensionality m, then so also are s7 and d7, as well as all other detail signals.

This procedure is the same as the Haar wavelet transform, only applied to
the dendrogram and using the input data.

This wavelet transform for the data in Table 4, based on the “key” or inter-
mediary hierarchy of Figure 7, is shown in Table 5.

Wavelet regression entails setting small and hence unimportant detail coeffi-
cients to 0 before applying the inverse wavelet transform. More discussion can
be found in [58].

Early work on p-adic and ultrametric wavelets can be found in Kozyrev [38,
39]. While we have treated the case of the wavelet transform on a particular
graph, a tree, recent applications of wavelets to general graphs are in [34] and,
by representing the graph as a matrix, in [63].

6 Remarkable Symmetries in Very High Dimensional
Spaces

In the work of [66, 67] it was shown how as ambient dimensionality increased dis-
tances became more and more ultrametric. That is to say, a hierarchical embed-
ding becomes more and more immediate and direct as dimensionality increases.
A better way of quantifying this phenomenon was developed in [55]. What this
means is that there is inherent hierarchical structure in high dimensional data
spaces.

It was shown experimentally in [66, 67, 55] how points in high dimensional
spaces become increasingly equidistant with increase in dimensionality. Both [27]
and [13] study Gaussian clouds in very high dimensions. The latter finds that
“not only are the points [of a Gaussian cloud in very high dimensional space] on
the convex hull, but all reasonable-sized subsets span faces of the convex hull.
This is wildly different than the behavior that would be expected by traditional
low-dimensional thinking”.

That very simple structures come about in very high dimensions is not as
trivial as it might appear at first sight. Firstly, even very simple structures (hence
with many symmetries) can be used to support fast and perhaps even constant
time worst case proximity search [55]. Secondly, as shown in the machine learning
framework by [27], there are important implications ensuing from the simple high
dimensional structures. Thirdly, [59] shows that very high dimensional clustered
data contain symmetries that in fact can be exploited to “read off” the clusters
in a computationally efficient way. Fourthly, following [11], what we might want
to look for in contexts of considerable symmetry are the “impurities” or small
irregularities that detract from the overall dominant picture.

See Table 6 exemplifying the change of topological properties as ambient
dimensionality increases. It behoves us to exploit the symmetries that arise when
we have to process very high dimenionsal data.

Hierarchical Clustering for Finding Symmetries 119

Table 6. Typical results, based on 300 sampled triangles from triplets of points. For
uniform, the data are generated on [0, 1]m; hypercube vertices are in {0, 1}m, and for
Gaussian on each dimension, the data are of mean 0, and variance 1. Dimen. is the
ambient dimensionality. Isosc. is the number of isosceles triangles with small base, as
a proportion of all triangles sampled. Equil. is the number of equilateral triangles as
a proportion of triangles sampled. UM is the proportion of ultrametricity-respecting
triangles (= 1 for all ultrametric).

No. points Dimen. Isosc. Equil. UM

Uniform

100 20 0.10 0.03 0.13
100 200 0.16 0.20 0.36
100 2000 0.01 0.83 0.84
100 20000 0 0.94 0.94

Hypercube

100 20 0.14 0.02 0.16
100 200 0.16 0.21 0.36
100 2000 0.01 0.86 0.87
100 20000 0 0.96 0.96

Gaussian

100 20 0.12 0.01 0.13
100 200 0.23 0.14 0.36
100 2000 0.04 0.77 0.80
100 20000 0 0.98 0.98

6.1 Application to Very High Frequency Data Analysis: Segmenting
a Financial Signal

We use financial futures, circa March 2007, denominated in euros from the
DAX exchange. Our data stream is at the millisecond rate, and comprises about
382,860 records. Each record includes: 5 bid and 5 asking prices, together with
bid and asking sizes in all cases, and action. We extracted one symbol (commod-
ity) with 95,011 single bid values, on which we now report results. See Figure 8.

Embeddings were defined as follows.

• Windows of 100 successive values, starting at time steps: 1, 1000, 2000, 3000,
4000, . . . , 94000.
• Windows of 1000 successive values, starting at time steps: 1, 1000, 2000,

3000, 4000, . . . , 94000.
• Windows of 10000 successive values, starting at time steps: 1, 1000, 2000,

3000, 4000, . . . , 85000.

120 F. Murtagh and P. Contreras

0 20000 40000 60000 80000

67
90

68
10

68
30

68
50

Time steps

B
id

 p
ric

e

Fig. 8. The signal used: a commodity future, with millisecond time sampling

The histograms of distances between these windows, or embeddings, in respec-
tively spaces of dimension 100, 1000 and 10000, are shown in Figure 9.

Note how the 10000-length window case results in points that are strongly
overlapping. In fact, we can say that 90% of the values in each window are
overlapping with the next window. Notwithstanding this major overlapping in
regard to clusters involved in the pairwise distances, if we can still find clusters
in the data then we have a very versatile way of tackling the clustering objective.
Because of the greater cluster concentration that we expect (cf. Table 6) from a
greater embedding dimension, we use the 86 points in 10000-dimensional space,
notwithstanding the fact that these points are from overlapping clusters.

We make the following supposition based on Figure 8: the clusters will consist
of successive values, and hence will be justifiably termed segments.

From the distances histogram in Figure 9, bottom, we will carry out Gaussian
mixture modeling followed by use of the Bayesian information criterion (BIC,
[71]) as an approximate Bayes factor, to determine the best number of clusters
(effectively, histogram peaks).

Hierarchical Clustering for Finding Symmetries 121

Dim. 100

0 100 200 300 400 500 600

0
25

0

Dim. 1000

0 500 1000 1500 2000

0
30

0

Dim. 10000

0 1000 2000 3000 4000 5000 6000

0
20

0

Fig. 9. Histograms of pairwise distances between embeddings in dimensionalities 100,
1000, 10000. Respectively the numbers of embeddings are: 95, 95 and 86.

We fit a Gaussian mixture model to the data shown in the bottom histogram of
Figure 9. To derive the appropriate number of histogram peaks we fit Gaussians
and use the Bayesian information criterion (BIC) as an approximate Bayes factor
for model selection [36, 64]. Figure 10 shows the succession of outcomes, and
indicates as best a 5-Gaussian fit. For this result, we find the means of the
Gaussians to be as follows: 517, 885, 1374, 2273 and 3908. The corresponding
standard deviations are: 84, 133, 212, 410 and 663. The respective cardinalities
of the 5 histogram peaks are: 358, 1010, 1026, 911 and 350. Note that this relates
so far only to the histogram of pairwise distances. We now want to determine
the corresponding clusters in the input data.

While we have the segmentation of the distance histogram, we need the seg-
mentation of the original financial signal. If we had 2 clusters in the original
financial signal, then we could expect up to 3 peaks in the distances histogram

122 F. Murtagh and P. Contreras

2 4 6 8 10

−
39

00
0

−
38

50
0

−
38

00
0

−
37

50
0

Number of Gaussians

B
IC

 v
al

ue

Fig. 10. BIC (Bayesian information criterion) values for the succession of results. The
5-cluster solution has the highest value for BIC and is therefore the best Gaussian
mixture fit.

(viz., 2 intra-cluster peaks, and 1 inter-cluster peak). If we had 3 clusters in the
original financial signal, then we could expect up to 6 peaks in the distances
histogram (viz., 3 intra-cluster peaks, and 3 inter-cluster peaks). This informa-
tion is consistent with asserting that the evidence from Figure 10 points to two
of these histogram peaks being approximately co-located (alternatively: the dis-
tances are approximately the same). We conclude that 3 clusters in the original
financial signal is the most consistent number of clusters. We will now determine
these.

One possibility is to use principal coordinates analysis (Torgerson’s, Gower’s
metric multidimensional scaling) of the pairwise distances. In fact, a 2-dimensional
mapping furnishes a very similar pairwise distance histogram to that seen using
the full, 10000, dimensionality. The first axis in Figure 11 accounts for 88.4% of
the variance, and the second for 5.8%. Note therefore how the scales of the planar
representation in Figure 11 point to it being very linear.

Benzécri ([4], chapter 7, section 3.1) discusses the Guttman effect, or Guttman
scale, where factors that are not mutually correlated, are nonetheless function-
ally related. When there is a “fundamentally unidimensional underlying phe-
nomenon” (there are multiple such cases here) factors are functions of Legendre
polynomials. We can view Figure 11 as consisting of multiple horseshoe shapes.
A simple explanation for such shapes is in terms of the constraints imposed
by lots of equal distances when the data vectors are ordered linearly (see [56],
pp. 46-47).

Another view of how embedded (hence clustered) data are capable of being
well mapped into a unidimensional curve is Critchley and Heiser [9]. Critchley
and Heiser show one approach to mapping an ultrametric into a linearly or

Hierarchical Clustering for Finding Symmetries 123

−2000 −1000 0 1000 2000 3000

−
60

0
−

40
0

−
20

0
0

20
0

40
0

60
0

Principal coordinate 1

P
rin

ci
pa

l c
oo

rd
in

at
e

2

1

2
345

6

7

8
9

10

11

12

131415

16

17

18

19

20

21

2223

24

25

2627

28

29

30
31

3233

34
3536

37

38

39

40

41

42

43

4445

46

47

48

49

50

5152

53

54

55

56

57

58

59

60

61
6263646566

67
68
69

70

71

72
73

74

75
76

77

78
79

80

81

82

8384

85

86

Fig. 11. An interesting representation – a type of “return map” – found using a princi-
pal coordinates analysis of the 86 successive 10000-dimensional points. Again a demon-
stration that very high dimensional structures can be of very simple structure. The
planar projection seen here represents most of the information content of the data: the
first axis accounts for 88.4% of the variance, while the second accounts for 5.8%.

totally ordered metric. We have asserted and then established how hierarchy in
some form is relevant for high dimensional data spaces; and then we find a very
linear projection in Figure 11. As a consequence we note that the Critchley and
Heiser result is especially relevant for high dimensional data analysis.

Knowing that 3 clusters in the original signal are wanted, we could use
Figure 11. There are various ways to do so.

We will use an adjacency-constrained agglomerative hierarchical clustering
algorithm to find the clusters: see Figure 12. The contiguity-constrained complete
link criterion is our only choice here if we are to be sure that no inversions can
come about in the hierarchy, as explained in [53]. As input, we use the coordinates

124 F. Murtagh and P. Contreras

0 1000 2000 3000 4000 5000

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Fig. 12. Hierarchical clustering of the 86 points. Sequence is respected. The agglomer-
ative criterion is the contiguity-constrained complete link method. See [53] for details
including proof that there can be no inversion in this dendrogram.

Hierarchical Clustering for Finding Symmetries 125

0 20000 40000 60000 80000

67
90

68
00

68
10

68
20

68
30

68
40

68
50

68
60

Time steps

V
al

ue

Fig. 13. Boundaries found for 3 segments

in Figure 11. The 2-dimensional Figure 11 representation relates to over 94% of
the variance. The most complete basis was of dimensionality 85. We checked
the results of the 85-dimensionality embedding which, as noted below, gave very
similar results.

Reading off the 3-cluster memberships from Figure 12 gives for the signal ac-
tually used (with a very initial segment and a very final segment deleted): cluster
1 corresponds to signal values 1000 to 33999 (points 1 to 33 in Figure 12); clus-
ter 2 corresponds to signal values 34000 to 74999 (points 34 to 74 in Figure 12);
and cluster 3 corresponds to signal values 75000 to 86999 (points 75 to 86 in
Figure 12). This allows us to segment the original time series: see Figure 13.
(The clustering of the 85-dimensional embedding differs minimally. Segments
are: points 1 to 32; 33 to 73; and 74 to 86.)

To summarize what has been done:

1. the segmentation is initially guided by the peak-finding in the histogram of
distances

2. with high dimensionality we expect simple structure in a low dimensional
mapping provided by principal coordinates analysis

3. either the original high dimensional data or the principal coordinates analysis
embedding are used as input to a sequence-constrained clustering method in
order to determine the clusters

4. which can then be displayed on the original data.

In this case, the clusters are defined using a complete link criterion, implying
that these three clusters are determined by minimizing their maximum inter-
nal pairwise distance. This provides a strong measure of signal volatility as an
explanation for the clusters, in addition to their average value.

126 F. Murtagh and P. Contreras

7 Conclusions

Among themes not covered in this article are data stream clustering. To provide
background and motivation, in [60], we discuss permutation representations of a
data stream. Since hierarchies can also be represented as permutations, there is
a ready way to associate data streams with hierarchies. In fact, early computa-
tional work on hierarchical clustering used permutation representation to great
effect (cf. [73]). To analyze data streams in this way, in [57] we develop an ap-
proach to ultrametric embedding of time-varying signals, including biomedical,
meteorological, financial and other. This work has been pursued in physics by
Khrennikov.

Let us now wrap up on the exciting perspectives opened up by our work on
the theme of symmetry-finding through hierarchy in very large data collections.

“My thesis has been that one path to the construction of a nontrivial theory
of complex systems is by way of a theory of hierarchy.” Thus Simon ([74], p.
216). We have noted symmetry in many guises in the representations used, in
the transformations applied, and in the transformed outputs. These symmetries
are non-trivial too, in a way that would not be the case were we simply to look
at classes of a partition and claim that cluster members were mutually similar
in some way. We have seen how the p-adic or ultrametric framework provides
significant focus and commonality of viewpoint.

Furthermore we have highlighted the computational scaling properties of our
algorithms. They are fully capable of addressing the data and information deluge
that we face, and providing us with the best interpretative and decision-making
tools. The full elaboration of this last point is to be sought in each and every
application domain, and face to face with old and new problems.

In seeking (in a general way) and in determining (in a focused way) structure
and regularity in massive data stores, we see that, in line with the insights and
achievements of Klein, Weyl and Wigner, in data mining and data analysis we
seek and determine symmetries in the data that express observed and measured
reality.

References

[1] Benedetto, J.J., Benedetto, R.L.: A wavelet theory for local fields and related
groups. The Journal of Geometric Analysis 14, 423–456 (2004)

[2] Benedetto, R.L.: Examples of wavelets for local fields. In: Larson, D., Heil, C., Jor-
gensen, P. (eds.) Wavelets, Frames, and Operator Theory, Contemporary Mathe-
matics, vol. 345, pp. 27–47 (2004)

[3] Benzécri, J.-P.: L’Analyse des Données. Tome I. Taxinomie, 2nd edn., Dunod,
Paris (1979)

[4] Benzécri, J.-P.: L’Analyse des Données. Tome II, Correspondances, 2nd edn.,
Dunod, Paris (1979)

[5] Bradley, P.E.: Mumford dendrograms. Computer Journal 53, 393–404 (2010)
[6] Brekke, L., Freund, P.G.O.: p-Adic numbers in physics. Physics Reports 233, 1–66

(1993)

Hierarchical Clustering for Finding Symmetries 127

[7] Chakraborty, P.: Looking through newly to the amazing irrationals. Technical
report, arXiv: math.HO/0502049v1 (2005)

[8] Contreras, P.: Search and Retrieval in Massive Data Collections. PhD thesis, Royal
Holloway, University of London (2010)

[9] Critchley, F., Heiser, W.: Hierarchical trees can be perfectly scaled in one dimen-
sion. Journal of Classification 5, 5–20 (1988)

[10] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (2002)

[11] Delon, F.: Espaces ultramétriques. Journal of Symbolic Logic 49, 405–502 (1984)
[12] Deutsch, S.B., Martin, J.J.: An ordering algorithm for analysis of data arrays.

Operations Research 19, 1350–1362 (1971)
[13] Donoho, D.L., Tanner, J.: Neighborliness of randomly-projected simplices in high

dimensions. Proceedings of the National Academy of Sciences 102, 9452–9457
(2005)

[14] Dragovich, B., Dragovich, A.: p-Adic modelling of the genome and the genetic
code. Computer Journal 53, 432–442 (2010)

[15] Dragovich, B., Khrennikov, A.Y., Kozyrev, S.V., Volovich, I.V.: On p-adic mathe-
matical physics. P-Adic Numbers, Ultrametric Analysis, and Applications 1, 1–17
(2009)

[16] Dutta, D., Guha, R., Jurs, P., Chen, T.: Scalable partitioning and exploration of
chemical spaces using geometric hashing. Journal of Chemical Information and
Modeling 46, 321–333 (2006)

[17] Fisher, R.A.: The use of multiple measurements in taxonomic problems. The An-
nals of Eugenics, 179–188 (1936)

[18] Foote, R.: An algebraic approach to multiresolution analysis. Transactions of the
American Mathematical Society 357, 5031–5050 (2005)

[19] Foote, R.: Mathematics and complex systems. Science 318, 410–412 (2007)
[20] Foote, R., Mirchandani, G., Rockmore, D., Healy, D., Olson, T.: A wreath product

group approach to signal and image processing: Part I — multiresolution analysis.
IEEE Transactions on Signal Processing 48, 102–132 (2000)

[21] Foote, R., Mirchandani, G., Rockmore, D., Healy, D., Olson, T.: A wreath product
group approach to signal and image processing: Part II — convolution, correlations
and applications. IEEE Transactions on Signal Processing 48, 749–767 (2000)

[22] Freund, P.G.O.: p-Adic strings and their applications. In: Rakic, Z., Dragovich, B.,
Khrennikov, A., Volovich, I. (eds.) Proc. 2nd International Conference on p-Adic
Mathematical Physics, pp. 65–73. American Institute of Physics (2006)

[23] Gajić, L.: On ultrametric space. Novi Sad Journal of Mathematics 31, 69–71 (2001)
[24] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer, Heidelberg (1999); Formale Begriffsanalyse. Mathematische Grundla-
gen. Springer, Heidelberg(1996)

[25] Gouvêa, F.Q.: p-Adic Numbers: An Introduction. Springer, Heidelberg (2003)
[26] Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge (1997)
[27] Hall, P., Marron, J.S., Neeman, A.: Geometric representation of high dimensional,

low sample size data. Journal of the Royal Statistical Society B 67, 427–444 (2005)
[28] Hitzler, P., Seda, A.K.: The fixed-point theorems of Priess-Crampe and Ribenboim

in logic programming. Fields Institute Communications 32, 219–235 (2002)
[29] Indyk, P., Andoni, A., Datar, M., Immorlica, N., Mirrokni, V.: Locally-sensitive

hashing using stable distributions. In: Darrell, T., Indyk, P., Shakhnarovich, G.
(eds.) Nearest Neighbor Methods in Learning and Vision: Theory and Practice,
pp. 61–72. MIT Press, Cambridge (2006)

128 F. Murtagh and P. Contreras

[30] Jain, A.K., Dubes, R.C.: Algorithms For Clustering Data. Prentice-Hall, Engle-
wood Cliffs (1988)

[31] Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing
Surveys 31, 264–323 (1999)

[32] Janowitz, M.F.: An order theoretic model for cluster analysis. SIAM Journal on
Applied Mathematics 34, 55–72 (1978)

[33] Janowitz, M.F.: Cluster analysis based on abstract posets. Technical report (2005-
2006), http://dimax.rutgers.edu/~melj

[34] Jansen, M., Nason, G.P., Silverman, B.W.: Multiscale methods for dataon graphs
and irregular multidimensional situations. Journal of the Royal Statistical Society
B 71, 97–126 (2009)

[35] Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)
[36] Kass, R.E., Raftery, A.E.: Bayes factors and model uncertainty. Journal of the

American Statistical Association 90, 773–795 (1995)
[37] Khrennikov, A.Y.: Gene expression from polynomial dynamics in the 2-adic in-

formation space. Technical report, arXiv:q-bio/06110682v2 (2006)
[38] Kozyrev, S.V.: Wavelet theory as p-adic spectral analysis. Izvestiya: Math-

ematics 66, 367–376 (2002)
[39] Kozyrev, S.V.: Wavelets and spectral analysis of ultrametric pseudodifferential

operators. Sbornik: Mathematics 198, 97–116 (2007)
[40] Krasner, M.: Nombres semi-réels et espaces ultramétriques. Comptes-Rendus de

l’Académie des Sciences, Tome II 219, 433 (1944)
[41] Lerman, I.C.: Classification et Analyse Ordinale des Données, Dunod, Paris (1981)
[42] Levy, A.: Basic Set Theory. Dover, Mineola (1979); Springer, Heidlberg (1979)
[43] Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:

a survey. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 1, 24–45 (2004)

[44] March, S.T.: Techniques for structuring database records. Computing Surveys 15,
45–79 (1983)

[45] McCormick, W.T., Schweitzer, P.J., White, T.J.: Problem decomposition and data
reorganization by a clustering technique. Operations Research 20, 993–1009 (1982)

[46] Van Mechelen, I., Bock, H.-H., De Boeck, P.: Two-mode clustering methods: a
structured overview. Statistical Methods in Medical Research 13, 363–394 (2004)

[47] Miller, M.L., Rodriguez, M.A., Cox, I.J.: Audio fingerprinting: nearest neighbor
search in high dimensional binary spaces. Journal of VLSI Signal Processing 41,
285–291 (2005)

[48] Mirkin, B.: Mathematical Classification and Clustering. Kluwer, Dordrecht (1996)
[49] Mirkin, B.: Clustering for Data Mining. Chapman and Hall/CRC, Boca Raton,

FL (2005)
[50] Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms.

Computer Journal 26, 354–359 (1983)
[51] Murtagh, F.: Complexities of hierarchic clustering algorithms: state of the art.

Computational Statistics Quarterly 1, 101–113 (1984)
[52] Murtagh, F.: Counting dendrograms: a survey. Discrete Applied Mathematics 7,

191–199 (1984)
[53] Murtagh, F.: Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg

(1985)
[54] Murtagh, F.: Comments on: Parallel algorithms for hierarchical clustering and

cluster validity. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 14, 1056–1057 (1992)

Hierarchical Clustering for Finding Symmetries 129

[55] Murtagh, F.: On ultrametricity, data coding, and computation. Journal of Clas-
sification 21, 167–184 (2004)

[56] Murtagh, F.: Correspondence Analysis and Data Coding with R and Java. Chap-
man and Hall/CRC Press (2005)

[57] Murtagh, F.: Identifying the ultrametricity of time series. European Physical Jour-
nal B 43, 573–579 (2005)

[58] Murtagh, F.: The Haar wavelet transform of a dendrogram. Journal of Classifica-
tion 24, 3–32 (2007)

[59] Murtagh, F.: The remarkable simplicity of very high dimensional data:application
to model-based clustering. Journal of Classification 26, 249–277 (2009)

[60] Murtagh, F.: Symmetry in data mining and analysis: a unifying view based on
hierarchy. In: Proceedings of Steklov Institute of Mathematics, vol. 265, pp. 177–
198 (2009)

[61] Murtagh, F.: The correspondence analysis platform for uncovering deep structure
in data and information (sixth Annual Boole Lecture). Computer Journal 53,
304–315 (2010)

[62] Murtagh, F., Downs, G., Contreras, P.: Hierarchical clustering of massive, high
dimensional data sets by exploiting ultrametric embedding. SIAM Journal on
Scientific Computing 30, 707–730 (2008)

[63] Murtagh, F., Starck, J.-L., Berry, M.: Overcoming the curse of dimensionality
in clustering by means of the wavelet transform. Computer Journal 43, 107–120
(2000)

[64] Murtagh, F., Starck, J.L.: Quantization from Bayes factors with application to
multilevel thresholding. Pattern Recognition Letters 24, 2001–2007 (2003)

[65] Ostrowski, A.: Über einige Lösungen der Funktionalgleichung φ(x)φ̇(y) − φ(xy).
Acta Mathematica 41, 271–284 (1918)

[66] Rammal, R., Angles d’Auriac, J.C., Doucot, B.: On the degree of ultrametricity.
Le Journal de Physique - Lettres 46, 945–952 (1985)

[67] Rammal, R., Toulouse, G., Virasoro, M.A.: Ultrametricity for physicists. Reviews
of Modern Physics 58, 765–788 (1986)

[68] Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact
Groups, 2nd edn. Oxford University Press, Oxford (2000)

[69] Van Rooij, A.C.M.: Non-Archimedean Functional Analysis. Marcel Dekker, New
York (1978)

[70] Schikhof, W.H.: Ultrametric Calculus. Cambridge University Press, Cambridge
(1984); (Chapters 18, 19, 20, 21)

[71] Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464
(1978)

[72] Seda, A.K., Hitzler, P.: Generalized distance functions in the theory of computa-
tion. Computer Journal 53, 443–464 (2010)

[73] Sibson, R.: Slink: an optimally efficient algorithm for the single-link cluster
method. Computer Journal 16, 30–34 (1980)

[74] Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1996)
[75] Steinley, D.: K-means clustering: a half-century synthesis. British Journal of Math-

ematical and Statistical Psychology 59, 1–3 (2006)

130 F. Murtagh and P. Contreras

[76] Steinley, D., Brusco, M.J.: Initializing K-means batch clustering: a critical evalu-
ation of several techniques. Journal of Classification 24, 99–121 (2007)

[77] Vempala, S.S.: The Random Projection Method. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 65. American Mathemat-
ical Society (2004)

[78] Volovich, I.V.: Number theory as the ultimate physical theory, Technical report
(1987); Preprint No. TH 4781/87, CERN, Geneva

[79] Volovich, I.V.: p-Adic string. Classical Quantum Gravity 4, L83–L87 (1987)
[80] Weyl, H.: Symmetry. Princeton University Press, Princeton (1983)
[81] Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural

Networks 16, 645–678 (2005)

Chapter 6

Randomized Algorithm of Finding the True
Number of Clusters Based on Chebychev

Polynomial Approximation

R. Avros1, O. Granichin2, D. Shalymov2,
Z. Volkovich1, and G.-W. Weber3

1 Ort Braude College of Engineering, Karmiel 21982, Israel
r avros@braude.ac.il, vlvolkov@braude.ac.il

2 Saint Petersburg State University, Russia
Oleg granichin@mail.ru, shalydim@mail.ru

3 Institute of Applied Mathematics, Middle East Technical University,
06531 Ankara, Turkey University of Siegen (Germany),

University of Aveiro (Portugal), Universiti Teknologi Malaysia, Skudai
gweber@metu.edu.tr

Abstract. One of the important problems arising in cluster analysis is
the estimation of the appropriate number of clusters. In the case when
the expected number of clusters is sufficiently large, the majority of the
existing methods involve high complexity computations. This difficulty
can be avoided by using a suitable confidence interval to estimate the
number of clusters. Such a method is proposed in the current chapter.

The main idea is to allocate the jump position of the within-cluster dis-
persion function using Chebyshev polynomial approximations. The con-
fidence interval for the true number of clusters can be obtained in this
way by means of a comparatively small number of the distortion calcula-
tions. a significant computational complexity decreasing is proven. Sev-
eral examples are given to demonstrate the high ability of the proposed
methodology.

Keywords: Cluster analysis, Clustering, Cluster stability, Randomized
algorithms.

1 Introduction

Cluster analysis methods can be roughly divided into two categories: clustering
and validation approaches. In the latter methods, which are intended to estimate
the optimal (“true”) number of clusters, the obtained partitions are evaluated
according to a given rule, and the number of clusters is selected on the basis
of the optimal rule value. This crucial problem, known as an “ill posed” prob-
lem [23,30], may have several solutions. For example, the answer may depend
on the data measurement units. The selection of the particular clustering algo-
rithm used here is another major difficulty since the partitions constructed are

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 131–155.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

132 R. Avros et al.

intended more or less to reflect the inner hidden data structure. Solutions given
by different algorithms can be essentially different and lead to quite different con-
clusions about the stable cluster configurations. To illustrate this phenomenon,
we consider partitions into two clusters created by two algorithms for a dataset
simulated on the real line as a mix of three Gaussian components. The par-
tition obtained using the randomly initialized standard k-means algorithm is
presented in Figure 1, while Figure 2 demonstrates the result obtained using the
ClassificationEM algorithm, a version the EM approach introduced in [8]. It
can be seen that the k-means algorithm reveals “false” stable two-cluster con-
struction, even as a more flexible CEM method leads to an unreliable two-cluster
structure. Figure 2 demonstrates the result obtained by the CEM algorithm.

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Fig. 1. Outcomes of repeated clusterings by means of the standard k-means algorithm

The current manuscript discusses a new approach to the determination of the
true number of clusters. Although a great number of methods have been proposed
to tackle this problem, none of them has yet been accepted as a superior one.
We review here several approaches because they can be incorporated into the
proposed in this paper methodology.

Geometrical approaches were employed by Dunn [17], Hubert and Schultz
[29] (C-index), Calinski-Harabasz [7], Hartigan [26], Krzanowski-Lai [35], Sugar-
James [45], Gordon [22], Milligan and Cooper [40], and Tibshirani, Walter and
Hastie [47] (the Gap Statistic method). Stability models compare the pairs of

Randomized Algorithm of Finding the True Number of Clusters 133

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Fig. 2. Outcomes of repeated clusterings by means of the CEM

clustered samples obtained by application of a clustering algorithm in which the
partition consistency is interpreted as the partition reliability [9], and thus the
“true” number of clusters corresponds to the maximal stability score. In the
framework of this methodology, Levine and Domany [38], Ben-Hur, Elisseeff and
Guyon [3], and Ben-Hur and Guyon [4] represented the stability criteria through
the fractions of times that pairs of elements provide the same membership within
the clustering algorithm reiterations. Bel Mufti, Bertrand, and El Moubarki [41]
used the Loevinger’s isolation measure to determine the stability function.

Another group of methods utilizes external correlation indexes as a stabil-
ity degree. For example, such a method was implemented in the known Clest
approach of Dudoit and Fridlyand [16]. A general prediction resampling pro-
cedure was proposed by Roth, Lange, Braun and Buhmann [36,37]. Tibshirani
and Walther [46] described a process of comparable forecast strength process.
Jain and Moreau [31] considered the dispersions of empirical distributions as
a stability measure. Nonparametric density estimation methodology relates the
clusters to the probability density function peaks. The clustering assigns each
item to a “domain of attraction” of the density modes. Evidently, Wishart [51]
appears to be the first to propose looking for modes in order to reveal the clus-
ter structure. Apparently, this idea was formulated by Hartigan ([27], Section
11, and [28]) to introduce the notion of high density clusters. The number of
clusters is given here as the number of regions where the density is higher than
a certain specified level. Thus, clusters are viewed as isolated islands of “high”

134 R. Avros et al.

density in the ocean of “low” densities (see, e.g., [10,11,44]). The goodness-offit-
test procedures should be also mentioned. Pelleg and Moore [42] developed an
X-means algorithm, where the best score of the so-called Bayesian Informa-
tion Criterion [32] is found in order to determine the true number of clusters.
Hamerly and Elkan [25] applied another scoring criteria to the G-means algo-
rithm, namely, the null hypothesis about the clusters drawn from a Gaussian
population was tested by means of a statistical projection procedure. Further-
more, Feng and Hamerly [18] reported the PG-means (PG stands for projected
Gaussian) algorithm, which also operates with projections onto the clustering
model. The PG-means employs the Gaussian mixture model incorporated into
the Expectation-Maximization algorithm. Other applications of the goodness-
of-fit test were suggested by Volkovich, Barzily and Morozensky [50], Barzily,
Volkovich, Akteke-Ozturk and Weber [2] and Volkovich and Barzily [48]. Here
the models of clusters were created based on the model of well-mixed samples
within the clusters. Volkovich, Barzily, Avros and Toledano-Kitai [49] used the
binomial model of the K-Nearest Neighbors belonging to the own point’s sam-
ple. Another model suggested by Volkovich, Barzily and Morozensky [50] and
Barzily, Volkovich, Akteke-Ozturk and Weber [2] considers the probability dis-
tances between clustered samples taken from the cluster cores and the whole
population, correspondingly.

The cluster validation procedures mentioned above usually check the cluster
quality for all possible numbers of clusters in a given area. The strategy could be
in the geometrical approach to generate the distortion curve for the input data
by running a standard clustering algorithm, such as the k-means, for all values
of k between 1 and kmax and computing the resulting clustering distortions.
In the case when the suggested number of clusters is sufficiently large, such a
methodology leads to high complexity of the computations.

This difficulty can be avoided by a preliminary estimation of the appropriate
number of clusters by means of a suitable confidence interval. Such a method is
proposed in the present article. Generally speaking, the presented methodology
is based on the employment of the “elbow criterion”. This rule recommends
selecting of a number of clusters in order that further clusters splitting does
not provide more relevant information. It is expressed as a sharp jump point
on the graph of the explained by the clusters variance fraction as a function
of the number of clusters. The main idea is to compute a small amount of
differential distortion function values and to allocate the jump position relaying
on its approximations by fixed set of Chebyshev polynomials with uniformly
bounded coefficients. A confidence interval for the true number of clusters can
be obtained by comparatively small amount of the distortion calculations.

The rest of the paper is organized in the following way. Subsection 2.1 is de-
voted to description of the known clustering algorithm such k-means and PAM.
Several stability based cluster validation methods are presented in Subsection
2.2. Geometrical approaches are discussed in Subsection 2.3. A randomized al-
gorithm for estimation of the true number of clusters is explained in Section 3.
Examples of the algorithm application are presented in Section 4.

Randomized Algorithm of Finding the True Number of Clusters 135

Notations

– X is a finite subset of the Euclidean space R
d to be clustered. The elements

of X are represented in the form x = (x1, ..., xd);
– NX = |X| is the size of the set X;
– R+ = [0,+∞);
– < ·, · > denotes the inner product of two elements of R

d;
– tr(A) denotes the trace of a matrix A;
– k denotes the number of clusters being considered; Cl(X, k) is a clustering

algorithm dividing the set X into k non-overlapping clusters;
– k� denotes the true number of clusters.

2 Clustering

2.1 Clustering Methods

Partitioning and hierarchical methods are frequently used in the clustering pro-
cess. According to hierarchical approaches, a collection of nested partitions is
built based on point clusters which include just one data element. On the other
hand, the whole set of points, which is, actually, the universal cluster, is found at
the end of the process. The traditional representation of the cluster hierarchy is
a two-dimensional diagram tree. The true number of clusters is not usually spec-
ified; instead, an appropriate solution is obtained by cutting the dendrogram
tree at a certain level. Hierarchical procedures are divided into agglomerative
(“bottom-up”) or divisive (“top-down”). Divisive (“top-down”) algorithms start
from the whole set and successively separate the items into improved partitions.
Agglomerative (“bottom-up”) methods produce series of fusions of the data
elements into groups.

Partitioning approaches are based on an optimization procedure applied to an
objective function which governs the partition quality and can produce a tighter
cluster structure than in the case of the hierarchical methods. Additionally, such
procedures have lower complexity since a large number of variables are clustered
into a small number of groups. However, these approaches often provide non-
globular clusters and, consequently, different methods may generate different
results. Moreover, a partition may be constructed for almost any number of
clusters without its verification.

Let us consider a general clustering model. A partition of the set X is defined
as a collection of non-empty disjoint subsets

Πk(X) = {πi(X), i = 1, ..., k},

such that

X =
k⋃

i=1

πi(X).

136 R. Avros et al.

The elements πi(X) of the partition are called clusters. The partition quality,
intended to be minimized in the partitioning approaches, is defined for a given
real-valued function q of X subsets as

Q (Πk(X)) =
k∑

i=1

q(πi(X)). (1)

Hence, clustering can be interpreted as a particular case of a global optimization
problem where the partition Π(0), which optimizes the objective function Q,
is to be found. Function q can be constructed using a distance-like function
d(x, y) and a predefined set of k cluster centroids (medoids) C=(c1 , ..., ck). The
partition of X is built as follows:

πi(X) = {x ∈X : d(ci,x) ≤ d(cj ,x), for j �= i}, i = 1, ..., k,

(Ties are broken arbitrarily). Alternatively, the centroid is given by a partition
in the form:

c(πj) = argmin
c
{

∑

x∈πj

d(c,x)}.

Thus
q(πj(X)) =

∑

x∈πj

d(c(πj),x)

and the mentioned optimization problem is reduced to finding a set of centroids
as the solution of the problem being considered:

C = argmin
c∈C

{
k∑

j=1

∑

x∈πj(X)

d(cj ,x)}. (2)

In the case when d(·, ·) is the squared standard Euclidean distance, the objective
function is represented as

min
C

R(C) =
k∑

j=1

∑

x∈X

min
cj

‖x− cj‖2. (3)

The well-known k-means algorithm was proposed in [19] to provide an approxi-
mate solution to this optimization task.

Input: X is the set to be clustered; k is the number of clusters.
k-means Algorithm:

1. Randomly place k items as initial cluster centers (centroids) into the space
represented by X;

2. Assign each point x ∈ X to the nearest cluster center;
3. Recompute the new centroids as the group mean values once all elements

have been assigned;

Randomized Algorithm of Finding the True Number of Clusters 137

4. Repeat Steps 2 and 3 until the convergence criterion is met (e.g. the assign-
ment is no longer changed or the centroids do not move any longer).

The algorithm has the computational complexity O(kNX) and frequently con-
structs the so-called “non-optimal stable partitions”. To overcome this problem
the incremental k-means algorithm can be used (see, e.g. [15,12,13,14,34]). The
k-means approach can be viewed as a version of the famous Expectation Max-
imization (EM) approach which suggests the Gaussian Mixture Model (GMM)
of data in the clustering context. (see, e.g. [1,8,21]):

f(x) =
k∑

j=1

pjG(x|μj , Γj), (4)

where f(x) is the underlying data density; G(x|μ, Γ) is the Gaussian density
(with the mean value μ and the covariance matrix Γ).

The EM -method maximizes the log likelihood function:

L =
∑

x∈X

log(
k∑

j=1
pjG(x|μj , Γj)).

Celeux and Govaert [8] demonstrated that the k-means approach appears in the
case when the cluster proportions are equal to each other:

p1 = p2 = ... = pk (5)

and the covariance matrix has the form

Γj = σ2I, j = 1, ..., k,

where I is the identity matrix and σ2 is an unknown parameter.
The Partitioning Around Medoids (PAM) clustering procedure ([33], Chapter

2) is the most common realization of k-medoid approach. In contrary to the
k-means algorithm, the k-medoid method seeks for the data elements, named
medoids, as the cluster centers. The corresponding objective function, similar to
(2), has the form:

min
C∈X

R(C) =
k∑

j=1

∑

x∈X

min
cj∈X

d(cj ,x). (6)

The PAM algorithm which gives an approximate solution of this problem consists
of two phases:

– BUILD - constructing initial clustering;
– SWAP - refining the clustering.

138 R. Avros et al.

Input: Dis is a prepared beforehand NX ∗NX dissimilarity matrix between the
items to be clustered; k is the number of clusters.

PAM Algorithm:

1. BUILD Phase: Build the set C of medoids which minimizes the objective
function (6);

2. SWAP Phase: Until no change, do:
3. Assign each point x ∈ X to the nearest cluster center (medoid);
4. For each c ∈ C and for each x ∈X\C:

(a) Compute the total cost S of swapping medoid c with x;
(b) If S < 0, swap c with x to create a new set of medoids;

5. end loop until.

The PAM algorithm is more robust than the k-means algorithm, especially in
the case of noisy data with outliers; however, it has higher computational com-
plexity of O(k(NX − k)2) for each iteration. An important property of the PAM
algorithm is its ability to construct clusterings based on any distances. Addi-
tionally, medoids provide more robust cluster centers as compared to k-means
centroids.

2.2 Stability Based Methods

We have already mentioned above that stability-based determination of the true
number of clusters is a very common cluster analysis tool. Several approaches of
this kind are discussed below.

2.2.1 External Indexes

External indexes are often used in cluster stability approaches. These nominal
measures of associations are based on the so-called cross-tabulation or contin-
gency tables. Let us suppose that Πr and Πc are two partitions of the same
dataset of size n into r and c clusters, respectively. Denote by nij the number
of elements belonging to cluster i of Πr and to cluster j of Πc (i = 1, ..., r,
j = 1, ..., c). The Cramer’s V statistic measure of the strength of association
between two (nominal) categorical variables is defined in the following way:

V =

√
χ2

NX ∗min(r − 1, c− 1)
,

where

χ2 =
r∑

i=1

c∑

j=1

(nij − eij)2
eij

, eij =
n

(r)
i ∗ n(c)

j

NX

is the chi-square statistic and

n
(r)
i =

c∑

j=1

nij , i = 1, ..., r,

n
(c)
j =

r∑

i=1

nij , j = 1, ..., c.

Randomized Algorithm of Finding the True Number of Clusters 139

Denote

Z =
c∑

j=1

r∑

i=1

n2
ij .

The index of partition association introduced by Rand [43] is

R = 1 +

⎛

⎜
⎜
⎝

Z − 0.5 ∗
(

∑c
j=1

(
n

(c)
j

)2

+
∑r

i=1

(
n

(r)
i

)2
)

(
n
2

)

⎞

⎟
⎟
⎠ .

Another index was proposed by Jain and Dubes [30]:

JD =
(Z −NX)

(
∑c

j=1

(
n

(c)
j

)2

+
∑r
i=1

(
n

(r)
i

)2

− Z −NX
) ,

while Fowlkes and Mallows [20] suggested the coefficient

FM =
(Z −NX)

2
√

∑c
j=1

(n(c)
j

2

)∑r
i=1

(
n

(r)
i
2

) .

Apparently, the indexes R and FM are linear functions of each other because
they are linear functions of Z. The adjusted R index is the corrected-for-chance
version of the Rand index, standardized in such a way that its expected value is
0 if the partitions are random and 1 if they correspond to each other perfectly.
The standardization is performed as follows:

Ind
′
=

(Ind−E(ind))
(Indmax − E(ind))

,

where Indmax is the maximal value of the index Ind. The common null hy-
pothesis suggests that the contingency table is built on the assumption of the
generalized hyper-geometric distribution and that partitions Πr and Πc are mu-
tually independent. In this case, the adjusted R index equals zero. These indexes
were used in the Clest method [16] as a measure of clustering stability.

2.2.2 Clest Algorithm

The Clest algorithm splits the clustered data X into two non-overlapping halves
Lb and T b, called a learning and a test sets, respectively. The main idea of the
method, proposed, apparently, by Breckenridge [5], is constructing two partitions
on T b in such a way that the first partition is obtained by applying the clustering
procedure directly, while the second one is obtained as an extension of the Lb
partition to T b. The two partitions are compared using one of the described-
above external indices. The true number of clusters corresponds to the largest

140 R. Avros et al.

significant evidence against the null hypothesis about the absence of the cluster
structure. The algorithm can be presented in the following form:

For each tested number of clusters k, 2 ≤ k ≤ kmax, do 1-4.

1. Repeat B times:

(a) Split the original dataset into two non-overlapping sets Lb and T b;
(b) Construct Π (Lb) = Cl(Lb, k);
(c) Construct a classifier C(Lb) based on Π (Lb);
(d) Apply the classifier C(Lb) to the test set T b and get Π1 (T b);
(e) Construct Π2 (T b) = Cl(T b, k);
(f) Calculate the external index Ik,b comparing Π1 (T b) and Π2 (T b);

2. Consider the observed median value of the external index

tk = median(Ik,1, ..., Ik,B).

3. Produce B0 datasets under an appropriate null hypothesis of the absence of
the cluster structure and repeat the above steps 1 and 2 until both of them
getting B0 statistics tk,1, ..., tk,Bo.

4. Consider the average of the above B0 statistics:

t
(0)
k =

1
B0

B0∑

b=1

tk,

and denote by pk the proportion of those tk,b, 1 ≤ b ≤ B0, that are at least
as large as the observed statistic tk, i.e., the p-value for tk. Let

dk = tk − t(0)k
denote the difference between the observed similarity statistic and its esti-
mated expected value under the null hypothesis.

5. Introduce the set A as

A = {2 ≤ k ≤ kmax : pk ≤ pmax, dk ≥ dmin},

where pmax and dmin are predefined parameters. This set is empty if no
cluster structure has been found. Otherwise, the number of clusters k corre-
sponds to the largest significant difference statistic dk:

k = argmax
k∈K

dk.

The authors used the PAM algorithm described in Section 2.1, the naive
Bayes classificator, the FM index (see, Section 2.2.1), B = B0 = 20, and
pmax = dmin = 0.05.

Randomized Algorithm of Finding the True Number of Clusters 141

2.3 Geometrical Cluster Validation Criteria

The majority of geometrical cluster validation criteria are based on the total
dispersion, or total scatter, matrices Tk as well as on between and within k-
cluster sums of squares Bk and Wk defined for a given partition Πk(X), k ≥ 2,
as (see, e.g. [39]):

Tk =
k∑

j=1

∑

z∈πj

(x− μ)(x− μ)t, (7)

Bk =
k∑

j=1

|πj | (μj − μ)(μj − μ)t, Wk =
k∑

j=1

∑

x∈πj(X)

(x− μj)(z− μj)
t, (8)

where μ is the mean point of the set X, and μj are the arithmetic means of πj(X),
j = 1, ..., k. It should be noted that Tk = Wk + Bk. The first method proposed
for the evaluation of the true number of clusters appears to be the, so called,
“elbow criterion”, which employs the graph of the within-cluster dispersion Wk

as a function of the number of clusters k. As a rule, this characteristic decreases
with the increase of the number of clusters. An attempt to divide a cluster into
subgroups further decreases the criterion value when well-separated clusters are
considered. In this case, the Wk graph has a sharp decline. The number of
clusters is determined at this point and this is where the method got its name
from. However, the appropriate “elbow” cannot always be explicitly recognized.
Attempts to develop approaches for detecting the “elbow” were made in many
studies [7,27,40,47], etc.

The “elbow” phenomenon is illustrated in Figure 4, where the graphs of the
functions log(Wk) (observed), marked in blue, and log(W ∗

k) (reference), marked
in red, employed in calculating the Gap statistic [47] are presented for a four-
component dataset described in Figure 3. The reference function values are found
on the basis of an appropriate null data distribution which appears to be the
least favorable from the standpoint of clustering. The uniform distribution is
usually used for this purpose.

The inner indexes based on the “elbow” methodology are often employed in
the procedures of partitioning, the stopping rules being applied to determine the
number of clusters. The stopping-rule (index) value is found, in this case, for a
set of cluster solutions and the extreme value, which depends on the particular
stopping rule, indicates the most appropriate solutions.

1. The Calinski-Harabasz index (pseudo-F index) [7] is defined as

CHk =
tr(Bk)/(k − 1)

tr (Wk) /(NX − k) .

The estimated true number of clusters is determined as the value of k that
corresponds to the maximum of CHk. The Calinski-Harabasz index was the
best of the 30 indices tried on synthetic data by Milligan and Cooper [40].

142 R. Avros et al.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 3. Scatter plot of a four-component dataset

2 3 4 5 6 7 8 9
4

4.5

5

5.5

6

6.5

7

7.5

8

Fig. 4. The graphs of the logarithms of the Gap statistic values

2. The Krzanowski-Lai index [35] is defined by the following relationships:

diffk = (k − 1)2/dtr(Wk−1)− k2/dtr(Wk),

and
KLk = |diffk|/|diffk+1|.

The estimated number of clusters corresponds to the maximal value of the
index KLk.

3. The Hartigan index [26] is defined as

hk =
(

tr(Wk)
tr(Wk+1)

− 1
)

(NX − k − 1).

The estimated number of clusters is the smallest value of k ≥ 1 for hk ≤ 10.
4. The above-mentioned Gap method [47] also deals with the values of
tr (Wk) , k ≥ 1, such that B reference datasets are created under the null
hypothesis. Then the reference datasets are clustered and the values of

Randomized Algorithm of Finding the True Number of Clusters 143

tr
(
W 1
k

)
, ..., tr

(
WB
k

)
are computed. The estimated value of the Gap statistic

is found as
gapk =

1
B

∑

b

log(tr(W b
k))− log(tr(Wk)).

Let sdk be the standard deviation of log
(
tr

(
W b
k

))
, 1 ≤ b ≤ B, and

sdk = sdk

√

1 +
1
B
.

The estimated true number of clusters corresponds to the smallest value of
k ≥ 1 that satisfies the inequality

gapk ≥ gapk∗ − sdk∗ ,
where k∗ = argmaxk≥1(gapk).

5. A modification of the above approach was proposed by Sugar and James in
the framework of the rate distortion theory [45]. In this version of a “jump”
method, a distortion curve is computed for d-dimensional data. The latter is
assumed to have an underling distribution composed of G components with
the common covariance matrix Γ . The distortion value has the form

Dk =
1
d

min
c1,...,ck

E[(X− cx)tΓ (X − cx)],

where c1, ..., ck is a set of k cluster centers obtained by running a stan-
dard clustering procedure such as the k-means algorithm; cx is the center
nearest to a given sample of X. Actually, this version of Wk is the average
Mahalanobis distance per dimension between the datum and the family of
the cluster centers. Next step, a “jumping differential” curve is constructed
according to the following rule:

Jk =
(
D−λ
k −D−λ

k−1

)
,

where λ is the transformation power. Its preferred option

λ = (d/2)

is obtained from the asymptotic results of the rate distortion theory. More-
over, for sufficiently high values of d, the differential distortion Jk is approxi-
mately zero; if the number of clusters is less than the number of components,
then the value jumps and increases linearly. Summarizing the above results,
we see that, for sufficiently high values of d, the transformed distortion is
approximately zero for k < G, then jumps abruptly and increases linearly
for k >= G. The jump algorithm makes use of this behavior to identify the
most likely value of k as the true number of clusters. The estimated number
of clusters corresponds to the maximal value of the index Jk. An example of
the distortion curve obtained for the data presented in Figure 3 is given in
Figure 5.

144 R. Avros et al.

2 3 4 5 6 7 8
−300

−200

−100

0

100

200

300

400

500

Fig. 5. Graph of the distortion curve

3 Randomized Algorithm

Based on the rate distortion criteria proposed by Sugar and James (see Section
2.3), the task of determining the true number of clusters can be theoretically
interpreted as a particular case of a more general problem, namely, the problem
of locating the discontinuity points of an implicitly defined function. Let us
consider the function of Jk transformed “distortions” mapped into the interval
[0, 1] as the index function I(k). This function behaves in a semi-linear way before
and after the jump. To determine such jump point, a randomized approach can
be used (see [24]). Generally, the problem can be formulated in the following
way. Let us take a real-valued function f on the interval [0, 1] having not more
than one jump: point of discontinuity x∗ ∈ [0, 1]. The considered in [24] problem
is: To define the confidence interval for the x∗ if the function satisfies conditions:

1. The function f(·) is Lipschitz continuous with a Lipschitz constant C on the
intervals [0, x∗) and (x∗, 1];

2. If jump discontinuity exists, then the jump size at this point is above a
certain constant value B > 0.

The first constant C represents the “smoothness” of the index function on the
part of the interval where the function is continuous. The second constant B
characterizes a possible “jump” of the index function at the point x∗ which
corresponds, in our context, to the true number of clusters. Let kmax be the
maximal number of clusters tested. Obviously, the case B >> C appears to be
the most interesting because the behavior of the index function scaled by kmax

near point the x∗ should be essentially different from its behavior at other points.
The scenario optimization method discussed in [6] is an effective technique

for solving convex optimization problems with large amount of constrains in a
probabilistic setting. For any given sufficiently small positive values ε and β,
the number of random trials N is a priori defined for a given sufficiently small
positive confidence parameters ε and (1 − β). Thus, the solution obtained for
merely N constraints satisfies all the others with the probability of (1 − β)
except for a set whose probability does not exceed ε.

Randomized Algorithm of Finding the True Number of Clusters 145

To implement the above methodology in the framework of the clustering con-
cept, consider the transformed “distortions” I proposed by Sugar and James
[45]. For the sake of generality, we assume that

I (0) = I(1)

and introduce a continuous piecewise linear function f in the form:

fI

(
k

kmax

)

= I (k) ,

fI(x) = I(k) +
(

x− k

kmax

)

(I(k + 1)− I(k))

for
k

kmax
≤ x ≤ k + 1

kmax
, k = 0, ..., k∗ − 2, k∗, ..., kmax − 1,

fI(x) = I(k∗ − 1)

for
k∗ − 1
kmax

≤ x ≤ k∗

kmax
.

In this case, the analogs of the above restrictions 1 and 2 are the following:

1. C ≥ maxj=2,...,k�−1,k�+1,...,kmax |I(j)− I(j − 1)| ∗ kmax,
2. B ≤ |I(k�)− I(k� − 1)|.

Thus, it follows that

1. The function fI has no more than one jump discontinuity x∗ ∈ [0, 1].
2. The function fI(·) is Lipschitz continuous with the Lipschitz constant C on

the intervals [0, x∗) and (x∗, 1].
3. If there exits jump discontinuity, then the function jump size at the jump

point is above some constant value B > 0.

An algorithm which implements the approach under consideration can be de-
scribed as follows:

1. Choose the reliability parameters β ∈ (0, 1).
2. Choose the parameter M presenting the highest power in the approximation

of the function fI by means of Chebyshev polynomials:

pm(x) = cos (m arccosx) , m = 0, 1, 2, . . . ,M. (9)

3. Choose a number N ≥M and set the number of a group points T > 1:

T =
[

4C
βBN

− 1
N

]

. (10)

146 R. Avros et al.

4. Choose randomly T sets of points having size N in the interval (0, 1):

Zt = {ztn, n = 1, ..., N} , t = 1, ..., T

and denote
Z =

⋃

t

Zt.

In the proof of Theorem 1, it will be demonstrated that the largest distance
between two sequential points belonging to Z does not exceed B/4C with
the probability of (1− β).

5. For each one of the groups Zt, t = 1, ..., T construct the uniform approxima-
tion for fI(x):

gt(x) =
M∑

m=0

dtmpm(x), t = 1, ..., T (11)

minimizing the lost
γt = max

x∈Zt

|gt(x)− fI(x)|
subject to

|dtm| ≤ D, m = 0, ...,M, t = 1, ..., T,

where D is a constant.
Here a convex optimization MathLaB’s TOOLBOX (YALMIP, SeDuMi or
cvx) can be applied.
If one of the approximation problems is not resolved then return to Step 2
with another parameters M,N,K,D.

6. Define the functions

χ(x) = max
t=1,...,T

gt(x)− min
t=1,...,T

gt(x), x ∈ (0, 1) (12)

and
h(x) = max

z∈[zl(x),zr(x)]
max

t=1,...,T
|g′t(z)|, (13)

where
zl(x) = argmax{z ∈ Z : z <= x}, x ∈ (0, 1)

and
zr(x) = arg min{z ∈ Z : z > x}, x ∈ (0, 1).

7. Calculate
γ = max

t
γt (14)

and introduce the high line (the level of decision-making)

L(x) =
3B
4
− B

4C
h(x)− 2γ.

The interval

Δ = {x̃ = xkmax : x ∈ (0, 1), χ(x) > L(x)} (15)

Randomized Algorithm of Finding the True Number of Clusters 147

is not empty with the probability of

P = (1− β)

and the true number of clusters is located in Δ.

Theorem 1. If conditions 1 and 2 formulated above hold, then, with the proba-
bility of p = (1− β) the set Δ is not empty and contains the point x∗kmax equal
to the true number of clusters.

Sketch of Proof. By virtue of Markov’s inequality, it follows from Condition
10 that there exist two points zil and zjr in Z:

zil < x∗,

zjr >= x∗,

and
|zjr − zil | ≤

B

4C
with probability of (1 − β). Consider the corresponding functions gi or gj . It
follows from Definition (14) that

|fI(zil)− gi(zil)|+ |fI(zjr)− gj(zjr)| ≤ 2γ.

Consider the intervals Δ̄l = [zil , x
∗] and Δ̄r = [x∗, zjr]. The following relation-

ships can be subsequently derived from the above formulas and conditions of the
algorithm:

χ(x∗) ≥ |gj(x∗)− gi(x∗)| ≥ |gj(zjr)− gi(zil)| − (|Δ̄l|+ |Δ̄r|)H ≥

≥ |fI(zjr)− fI(zil)| − 2γ − (|Δ̄l|+ |Δ̄r|)H ≥ B − 2γ − (|Δ̄l| + |Δ̄r|)(H + C) ≥

≥ B − 2γ − B

4C
(H + C),

where H is the maximal derivation gi(·)′ on the interval [zil , zjr].
Finally, taking into account the definition (13) we obtain

χ(x∗) ≥ 3B
4
− B

4C
h(x∗)− 2γ.

4 Examples

Example 1. The first dataset is available at http://archive.ics.uci.edu/ml/
datasets/Libras+Movement. This datum contains 15 equal sized clusters of 24
instances. Each set refers to one type of hand movements in the official Brazilian
signal language LIBRAS.

In the video pre-processing, time normalization is carried out by selecting 45
frames from each video according to a uniform distribution. In each frame, the

148 R. Avros et al.

centroid pixels of the segmented objects (the hand) are found, which compose
the discrete version of curve F comprising 45 points. All curves are normalized in
the unitary space. In order to make the hand movements suitable for algorithm
analysis, a mapping procedure has been carried out, in which each curve F is
mapped in a representation with 90 features, with representing the coordinates
of movement.

– Number of Instances - 360;
– Number of Attributes - 91.

We consider the interval [1, 30] which, supposedly, contains the true number of
clusters. For each point, the transformed Sugar and James distortion function
I(k) is calculated using the Partition Around Medoids approach. The curve
obtained in this way is presented in Figure 6.

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of clusters K

T
ra

ns
fo

rm
ed

 D
is

to
rt

io
n

Fig. 6. Sugar and James distortion function I(k) calculated for the official Brazilian
signal language LIBRAS dataset

The curve has a “jump” at the point x∗ = 15 with B = 0.534 and

c = max
k �=15

(I(k)− I(k − 1)) = 0.049.

Thus the true number of clusters is found. The Lipschitz constant of the function
fI is 0.049 ∗ 30 = 1.482. The total number of the computations of the function
I(k) is 30 in this case.

In the framework of the new method proposed here, the number of the points
at which the index function values are computed, can be reduced. For example,
if we choose β = 0.9, M = 4, N = 5, T = 3, D = 0.9, the function values are

Randomized Algorithm of Finding the True Number of Clusters 149

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 7. Approximation curves gt(·) presented and the resulting function χ(·)

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 8. Level of decision making and the resulting function χ(·)

calculated only at 15 points. As a result, three values of {0.034, 0.022, 0.021}
of γt are obtained, which correspond to the three approximation curves gt(·)
presented in Figure 7 together with the resulting function χ(·).

We do not know the real values of B and C before the calculation of all values.
Thus we need to make some “a priory” assumptions about it. If we suggest that
B > 0.5 and kmaxB/C ≈ 10 then we get the level of decision making which is
exposed on Figure 8 together with the resulting function χ(·). It can be seen
that the curve has a peak located near the point x∗ = 15.

150 R. Avros et al.

If we choose the confidential interval [11, 21], then 10 additional calculations of
the index function I(x) are required to obtain the final solution of the original
problem. As the parameter B values increase, the corresponding confidential
interval decreases.

Example 2. To check whether the algorithm proposed here can be applied to a
large number of clusters, a synthetic dataset was generated. It contained 1024
clusters, each composed of 8 - 16 instances. Instances in each cluster were gener-
ated according to a uniform distribution based on a circle with the radius from
10 to 30 (a random value for each cluster).

– Number of Instances - 11245;
– Number of Attributes - 2.

The scatter plot of the synthetic dataset is presented in Figure 9.

−1000 0 1000 2000 3000 4000 5000 6000 7000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

Fig. 9. Synthetic dataset with 1024 clusters

We consider the interval [1, 3100] which contains the real number of clusters.
For each point the transformed distortion function I(k) is calculated using the
algorithm of Sugar and James. The results are presented in Figure 10.

The scenario approach described above allows us to reduce significantly the
number of clustering algorithm rerunning. If we choose β = 0.95,M = 8,N = 10,
T = 3 and D = 0.7, then we have to calculate only 30 values of I(k) instead of
3100. Three approximation curves gt(·) are shown in Figure 11, together with
the resulting function χ(·).

Randomized Algorithm of Finding the True Number of Clusters 151

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of clusters K

T
ra

ns
fo

rm
ed

 D
is

to
rt

io
n

Fig. 10. Sugar and James distortion function I(k)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 11. Level of decision making and the resulting function χ(·)

With the assumption B > 0.7 and kmaxB/C ≈ 10 we obtain the level of
decision making which is shown in Figure 12 together with the resulting function
χ(·).

A peak near the point x∗ = 1024 can be observed.

If we choose the confidential interval [950, 1358], then, in order to resolve the
original problem, 408 additional calculations of the index function I(x) must be
performed. The total number of the computations to be made is 438, which is
significantly less than the above number of 3100.

152 R. Avros et al.

0 500 1000 1500 2000 2500 3000
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 12. Level of decision making and the resulting function χ(·)

5 Conclusion

We propose a novel method for the cluster stability assessment based on the
ideas of randomized learning theory in the spirit of the well-known “elbow cri-
terion”. The main idea is to compute a small amount of differential distortion
function values and to allocate the jump position (an elbow) relying on its ap-
proximations by a fixed set of Chebyshev polynomials with uniformly bounded
coefficients. A confidence interval for the true number of clusters can be ob-
tained by comparatively small amount of the distortion calculations. As a result
one can get sufficiently small confidence interval. The significant decreasing of
computations is proved under very general conditions.

References

1. Banfield, J.D., Raftery, A.E.: Model-based gaussian and non-gaussian clustering.
Biometrics 49, 803–821 (1993)

2. Barzily, Z., Volkovich, Z., Akteke-Ozturk, B., Weber, G.-W.: On a minimal span-
ning tree approach in the cluster validation problem. Informatica 20(2), 187–202
(2009)

3. Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering
structure in clustered data. In: Pacific Symposium on Biocomputing, pp. 6–17
(2002)

4. Ben-Hur, A., Guyon, I.: Detecting stable clusters using principal component anal-
ysis. In: Brownstein, M.J., Khodursky, A. (eds.) Methods in Molecular Biology, pp.
159–182. Humana press (2003)

Randomized Algorithm of Finding the True Number of Clusters 153

5. Breckenridge, J.: Replicating cluster analysis: Method, consistency and validity.
Multivariate Behavioral Research 24, 147–161 (1989)

6. Calafiore, G., Campi, M.C.: The scenario approach to robust control design. IEEE
Trans. Automat. Control 51(5), 742–753 (2006)

7. Calinski, R., Harabasz, J.: A dendrite method for cluster analysis. Communications
in Statistics 3(1), 1–27 (1974)

8. Celeux, G., Govaert, G.: A classification em algorithm and two stochastic versions.
Computational Statistics and Data Analysis 14, 315–332 (1992)

9. Cheng, R., Milligan, G.W.: Measuring the influence of individual data points in a
cluster analysis. Journal of Classification 13, 315–335 (1996)

10. Cuevas, A., Febrero, M., Fraiman, R.: Estimating the number of clusters. The
Canadian Journal of Statistics 28(2), 367–382 (2000)

11. Cuevas, A., Febrero, M., Fraiman, R.: Cluster analysis: A further approach based
on density estimation. Computational Statistics and Data Analysis 28, 441–459
(2001)

12. Dhillon, I.S., Kogan, J., Guan, Y.: Refining clusters in high-dimensional text data.
In: Dhillon, I.S., Kogan, J. (eds.) Proceedings of the Workshop on Clustering High
Dimensional Data and its Applications at the Second SIAM International Confer-
ence on Data Mining, pp. 71–82. SIAM, Philadelphia (2002)

13. Dhillon, I.S., Kogan, J., Nicholas, C.: Feature selection and document clustering. In:
Berry, M.W. (ed.) A Comprehensive Survey of Text Mining, pp. 73–100. Springer,
Heidelberg (2003)

14. Dhillon, I.S., Mallela, S., Kumar, R.: Enhanced word clustering for hierarchical text
classification. In: Proceedings of the Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining(KDD-2002), pp. 191–200 (2002)

15. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley
and Sons, Chichester (2000)

16. Dudoit, S., Fridly, J.: A prediction-based resampling method for estimating the
number of clusters in a dataset. Genome Biol. 3(7) (2002)

17. Dunn, J.C.: Well Separated Clusters and Optimal Fuzzy Partitions. Journal Cy-
bern. 4, 95–104 (1974)

18. Feng, Y., Hamerly, G.: pg-means: learning the number of clusters in data. In:
Proceedings of the Twentieth Annual Conference on Neural Information Processing
Systems (NIPS) (December 2006)

19. Forgy, E.W.: Cluster analysis of multivariate data - efficiency vs interpretability of
classifications. Biometrics 21(3), 768 (1965)

20. Fowlkes, E.W., Mallows, C.L.: A method for comparing two hierarchical clusterings.
J. Am. Stat. Assoc. 78, 553–584 (1983)

21. Fraley, C., Raftery, A.E.: How many clusters? which clustering method? answers
via model-based cluster analysis. The Computer Journal 41(8), 578–588 (1998)

22. Gordon, A.D.: Identifying genuine clusters in a classification. Computational Statis-
tics and Data Analysis 18, 561–581 (1994)

23. Gordon, A.D.: Classification. Chapman and Hall, CRC, Boca Raton, FL (1999)
24. Granichin, O.N., Khalidov, V.I.: Randomized approach to the detection of discon-

tinuity of a function. Stochastic Optimization in Informatics 1(1), 73–80 (2005)
25. Hamerly, G., Elkan, C.: Learning the k in k-means. In: Proceedings of the seven-

teenth annual conference on neural information processing systems (NIPS), De-
cember 2003, pp. 281–288 (2003)

154 R. Avros et al.

26. Hartigan, J.: Statistical theory in clustering. Journal Classification 2, 63–76 (1985)
27. Hartigan, J.A.: Clustering Algorithms. John Wiley, New York (1975)
28. Hartigan, J.A.: Consistency of single linkage for high-density clusters. Journal of

the American Statistical Association 76, 388–394 (1981)
29. Hubert, L., Schultz, J.: Quadratic assignment as a general data-analysis strategy.

Br. J. Math. Statist. Psychol. 76, 190–241 (1974)
30. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood

Cliffs (1988)
31. Jain, A.K., Moreau, J.V.: Bootstrap technique in cluster analysis. Pattern Recog-

nition 20(5), 547–568 (1987)
32. Kass, R.E.: A reference bayesian test for nested hypotheses and its relationship to

the schwarz criterion. The Journal of the American Statistical Association 90(431),
928–934 (1995)

33. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley and Sons, New York (1990)

34. Kogan, J., Teboulle, M., Nicholas, C.: The entropic geometric means algorithm: an
approach for building small clusters for large text datasets. In: Boley, D., et al.(eds.)
Proceedings of the Workshop on Clustering Large Data Sets (held in conjunction
with the Third IEEE International Conference on Data Mining), pp. 63–71 (2003)

35. Krzanowski, W., Lai, Y.: A criterion for determining the number of groups in a
dataset using sum of squares clustering. Biometrics 44, 23–34 (1985)

36. Lange, T., Braun, M., Roth, V., Buhmann, J.M.: Stability-based model selection
(2003)

37. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of
clustering solutions. Neural Computation 16(6), 1299–1323 (2004)

38. Levine, E., Domany, E.: Resampling method for unsupervised estimation of cluster
validity. Neural Computation 13, 2573–2593 (2001)

39. Mardia, J., Kent, K., Bibby, J.: Multivariate Analysis. Academic Press, San Diego
(1979)

40. Milligan, G., Cooper, M.: An examination of procedures for determining the num-
ber of clusters in a data set. Psychometrika 50, 159–179 (1985)

41. Mufti, G.B., Bertrand, P., El Moubarki, L.: Determining the number of groups
from measures of cluster validity. In: In Proceedigns of ASMDA 2005, pp. 404–414
(2005)

42. Pelleg, D., Moore, A.: X-means: Extending k-means with efficient estimation of
the number of clusters. In: Proceedings of the 17th International Conf. on Machine
Learning, pp. 727–734. Morgan Kaufmann, San Francisco (2000)

43. Rand, W.: Objective criteria for the evaluation of clustering methods. Journal Am.
Stat. Assoc. 66, 846–850 (1971)

44. Stuetzle, W.: Estimating the cluster tree of a density by analyzing the minimal
spanning tree of a sample. J. Classification 20(5), 25–47 (2003)

45. Sugar, C.A., James, G.M.: Finding the number of clusters in a dataset: An
information-theoretic approach. J. of the American Statistical Association 98(463),
750–763 (2003)

46. Tibshirani, R., Walther, G.: Cluster validation by prediction strength. Journal of
Computational & Graphical Statistics 14(3), 511–528 (2005)

47. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters via the
gap statistic. J. Royal Statist. Soc. B 63(2), 411–423 (2001)

Randomized Algorithm of Finding the True Number of Clusters 155

48. Volkovich, Z., Barzily, Z.: On application of probability metrics in the cluster stabil-
ity problem. In: 1st European Conference on Data Mining (ECDM 2007), Lisbon,
Portugal, July 2007, pp. 5–7 (2007)

49. Volkovich, Z., Barzily, Z., Avros, R., Toledano-Kitay, D.: On application of the
k-nearest neighbors approach for cluster validation. In: Proceeding of the XIII
International Conference Applied Stochastic Models and Data Analysis (ASMDA
2009), Vilnius (2009)

50. Volkovich, Z., Barzily, Z., Morozensky, L.: A statistical model of cluster stability.
Pattern Recognition 41(7), 2174–2188 (2008)

51. Wishart, D.: Mode analysis: A generalisation of nearest neighbour which reduces
chaining effects. In: Numerical Taxonomy, pp. 282–311 (1969)

Chapter 7

Bregman Bubble Clustering: A Robust
Framework for Mining Dense Clusters

Joydeep Ghosh1 and Gunjan Gupta2

1 Department of Electrical & Computer Engineering,
The University of Texas at Austin, Austin, TX 78712, USA

ghosh@ece.utexas.edu
2 Microsoft, One Microsoft Way, Redmond, WA 98052, USA

gunjang@microsoft.com

Abstract. In classical clustering, each data point is assigned to at least
one cluster. However, in many applications only a small subset of the
available data is relevant for the problem and the rest needs to be ignored
in order to obtain good clusters. Certain non-parametric density-based
clustering methods find the most relevant data as multiple dense regions,
but such methods are generally limited to low-dimensional data and do
not scale well to large, high-dimensional datasets. Also, they use a specific
notion of “distance”, typically Euclidean or Mahalanobis distance, which
further limits their applicability. On the other hand, the recent One Class
Information Bottleneck (OC-IB) method is fast and works on a large
class of distortion measures known as Bregman Divergences, but can
only find a single dense region. This paper presents a broad framework
for finding k dense clusters while ignoring the rest of the data. It includes
a seeding algorithm that can automatically determine a suitable value for
k. When k is forced to 1, our method gives rise to an improved version of
OC-IB with optimality guarantees. We provide a generative model that
yields the proposed iterative algorithm for finding k dense regions as a
special case. Our analysis reveals an interesting and novel connection
between the problem of finding dense regions and exponential mixture
models; a hard model corresponding to k exponential mixtures with a
uniform background results in a set of k dense clusters. The proposed
method describes a highly scalable algorithm for finding multiple dense
regions that works with any Bregman Divergence, thus extending density
based clustering to a variety of non-euclidean problems not addressable
by earlier methods. We present empirical results on three artificial, two
microarray and one text dataset to show the relevance and effectiveness
of our methods.

1 Introduction

Clustering, which involves dividing data into groups of similar objects, is an
important unsupervised learning problem that has been extensively applied in

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 157–208.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

158 J. Ghosh and G. Gupta

various domains [36], and a variety of hierarchical [39,38,29,32], partitional [3,17,
51,48,8,41], graphical [34,50,61,32,25,41,42] and overlapping [4,6,33,2] clustering
algorithms have been proposed and have found applications in a wide variety of
domains such as identifying customer and product groups using market-basket
data [71,63,31,32,25], document/text categorization [17,18,4,72], and identifying
functional groupings of genes and proteins in bioinformatics [38,34,29,61,6,33].

In classical clustering, each data point either fully belongs to one cluster or
is softly assigned to multiple clusters. However, in certain real-world problems,
natural groupings are found among only on a small subset of the data, while
the rest of the data shows little or no clustering tendencies. In such situations
it is often more important to cluster a small subset of the data very well, rather
than optimizing a clustering criterion over all the data points, particularly in
application scenarios where a large amount of noisy data is encountered.

For example, consider a large, high-dimensional transactional market-basket
data that consists of product purchase records of a large number of customers
of a retail chain, gathered over a considerable period of time. For a multitude of
reasons, including rapid growth of the customer base and product offerings, rapid
evolution of the product catalog, and customer churn/inactivity, such data can
be very sparse, with the majority of the customers buying only a very small set of
products from a catalog of thousands of items [49,30]. Such a dataset can be used
for clustering either products (with customers as features) or customers (with
products as features). Clustering on such data is useful in many applications
including product recommendations, customer and product segmentation, and
identifying various customer and market trends. However, typically only a small
subset of customers show statistically significant coherent buying behavior and
that too when one focuses only a small subset of products [64,14,69]. Therefore,
a clustering algorithm for such datasets should have the ability to prune out
(potentially large) sparse and noisy portions of the data to uncover the highly
coherent clusters. There are also non-algorithmic reasons for desiring such a
capability, e.g. the marketing department of a retailer might want to target only
a fraction of the customers and ignore the rest so as to maximize the ROI of
their usually limited budgets. Another reason for desiring higher accuracy in such
models at the cost of less coverage could be to minimize the chance targeting of
a customer with the wrong product, which can negatively impact a customer’s
shopping experience.

As a second example, consider microarray datasets that record the relative ex-
pression levels of a few thousand genes across multiple experimental conditions.
The conditions typically cover only a specific “theme” such as stress-response,
and therefore only a few genes that are related to the conditions show good clus-
tering. Biologists are interested in identifying small groups of genes that show
strongly correlated expression patterns, as they indicate common participation
in biological processes that are involved in the specific context. For example, for
the Gasch dataset [21], which consists of only stress response experiments and
is a popular benchmark for clustering microarray data, according to the authors,
over 5,500 genes out of 6,151 genes are not directly involved in stress response.

Bregman Bubble Clustering 159

These genes show insignificant change in expression level with respect to the con-
trol sample, and should be pruned in order to better identify and characterize
the genes that are actually involved in specific types of stress responses. Similar
characteristics have been observed and exploited in other microarray as well as
protein mass spectroscopy and phylogenetic profile datasets [33,37,16,53], where
available features are often focused towards a few important contexts that are
suitable for resolving only a small number of well-defined genetic pathways.

Finally, consider the grouping of documents according to their relevance to
certain search queries. Certain documents are not relevant for any of the queries
of interest. Moreover, the user is often interested in finding the top few matches
for a broad-topic query rather than all possible matches, so that a system that
returns a small number of highly relevant documents might be preferable over
the one that returns hundreds of somewhat relevant documents, i.e., precision is
more important than recall. By pruning out irrelevant or less relevant documents,
precision can be improved without compromising much on recall [12].

One way to handle such scenarios is to prune the large fraction of “don’t care”
data as a preprocessing or a post-processing step , and use existing “exhaustive”
clustering methods. However, optimal preprocessing requires the knowledge of
what subset would cluster well, which can only be defined well in the context
of the clustering step. Post-processing is also not ideal since the optimization
in exhaustive clustering is over the full dataset, and not on the relevant sub-
set. A more natural approach would involve finding the multiple dense regions
and the “don’t care” set simultaneously. Specifically, one desires clustering al-
gorithms that are (1) scalable, (2) can cluster only a specifiable fraction of the
whole dataset, (3) find multiple clusters, and (4) can work with a wide variety
of data types. Existing density-based methods such as DBSCAN [20] naturally
cluster only a subset of the data but are not suitable for many such situations
because of implicit metric assumptions, and are not scalable to very large prob-
lems since they either require an in-memoryO(n2) distance matrix, or an efficient
index [7, 44]1. In contrast, the One Class Information Bottleneck (OC-IB) [12]
provides a local search based approach for finding a single dense region in the
data that is fast and scalable to very high-dimensional datasets, and works with
a large family of distortion measures known as Bregman Divergences (Section
2.1). However OC-IB can only find a single dense region, whereas in many prob-
lems dense regions can form multiple natural clusters. Furthermore, OC-IB can
get stuck into a bad local minimum and does not allow control over the size of
the cluster returned, which can vary greatly depending upon the quality of the
local minimum. A subsequent technique called BBOCC enhanced the capabili-
ties of the OC-IB type approach by providing the ability to control the size of
the resultant cluster, as well as to use Pearson Correlation and Cosine similar-
ity, in addition to Bregman Divergences [28]. This expanded the applicability of

1 DBSCAN finds small dense regions of points by connecting nearest neighbor dense
points. DBSCAN (and its derivatives) requires an efficient database index to be
scalable to large data sets, since it uses the indexes to find the nearest neighbors.
However, such indexes are usually efficient for only low-dimensional datasets.

160 J. Ghosh and G. Gupta

BBOCC to many types of biological and textual clustering problems; however
the limitation of identifying only a single cluster remained.

This paper substantially generalizes the single-cluster approach of BBOCC
while retaining its key desirable properties, resulting in a robust and scalable
framework for finding multiple dense clusters. Our main contributions are as
follows:

1. We present a generalization of BBOCC called Bregman Bubble Clustering
(BBC) that can simultaneously find k dense clusters. BBC inherits O(nd)
time and space complexity of BBOCC for each iteration and is scalable
to much larger and higher-dimensional datasets than existing density-based
methods. It also goes beyond Euclidean distance centric density-based clus-
tering, and is applicable to all Bregman Divergences. This extension allows
the method to be relevant for a very wide class of data properties (and cor-
responding loss functions) while retaining the simplicity of the squared-loss
solution.

2. We develop a generative (soft) model consisting of a mixture of k exponen-
tials and a uniform “background” distribution that leads to several insights
into the problem of finding dense clusters using Bregman Divergences. BBC
and many existing clustering algorithms are shown to be special cases of
this model. Our main contribution here was to show how the seemingly dis-
tinct problem of finding dense clusters could be viewed as arising out of a
generalization of the well-known mixture of exponential distributions model.
This relationship also shows (1) how the problem setup of BBC is not just
a convenient heuristic, but arises as a special (hard) case of a much more
fundamental generative model, and (2) how BBC relates to the partitional
clustering problem (that involves all data points) at a fundamental level.

3. We introduce a mechanism called Pressurization that substantially improves
the quality of the local search in BBC and overcomes the problem of local
minima, while keeping the time and space complexity at O(nd). This is
especially important for very large problems (e.g. clustering millions of cus-
tomers in a market-basket dataset) where the deterministic seeding approach
is too slow to apply against the full dataset. In empirical evaluations, Pres-
surization gives results that are robust to initialization and have very small
variations in quality over multiple trials.

4. For medium-sized problems, we describe a deterministic seeding algorithm
for BBC called Density Gradient Enumeration (DGRADE). At the cost of
somewhat increased time and space complexity, DGRADE gives good empiri-
cal results when seeding BBC, and can determine k automatically. DGRADE
uses a novel “density gradient estimation” at all the data points to identify
all the distinct dense regions in the data, which then allows it to automati-
cally estimate the best k, and the corresponding k cluster seeds. For many
problems such as clustering gene-expression datasets where the number of
relevant clusters in a dataset are often unknown initially and vary greatly,
the more expensive time complexity of the seeding method as compared to
Pressurization provides a useful trade-off; it provides a meaningful seeding

Bregman Bubble Clustering 161

algorithm for BBC in a completely unsupervised setting. It also makes the
BBC results deterministic, a desirable property for discovering deterministic
albeit unknown biochemical pathways in an organism. Moreover, DGRADE
can be used in conjunction with Pressurization for further improving clus-
tering quality while also determining k.

5. We performed evaluations on a variety of datasets showing the effectiveness
of our framework on low, medium and very high-dimensional problems, as
compared to Bregman Clustering, Single Link Agglomerative and DBSCAN.
We performed two types of experiments: (a) three artificial Gaussian datasets
of 2, 10 and 40 dimensions were used to show the stability of observed re-
sults to the increasing dimensionality of the data, keeping the number and
type of clusters relatively similar, and (b) pertinence to real-life applications
was demonstrated using three different types of problems: using microarray
data to cluster genes (medium size, high dimensional), clustering of condi-
tions/experiments from microarray data (small, very high dimensional), and
text clustering (large, very high dimensional).

A brief word on notation: bold faced variables, e.g. x, represent vectors whose
ith element are accessed as either xi or x(i). Sets are represented by calligraphic
upper-case alphabets such as X and are enumerated as {xi}ni=1 where xi are
the individual elements. |X | represents the size of set X . Capital letters such as
X are random variables. R and R

d represent the domain of real numbers and a
d-dimensional vector space respectively. Bold-faced capital letters such as MD

represent a two-dimensional matrix.

2 Background

We now describe some key concepts and related work that will be important in
describing our methods.

2.1 Partitional Clustering Using Bregman Divergences

Bregman Divergences: Bregman Divergences form a family of distance mea-
sures, defined as follows: Let φ : S �→ R be a strictly convex function defined on
a convex set S ⊆ R

d, such that φ is differentiable on int(S), the interior of S.
The Bregman Divergence Dφ : S × int(S) �→ [0, inf) is defined as:

Dφ(x,y) = φ(x) − φ(y) − (x− y,�φ(y)), (1)

where �φ is the gradient of φ.
For example, for φ(x) =‖ x ‖2, Dφ(x,y) =‖ x − y ‖2, which is the Squared

Euclidean Distance. Similarly, other forms of φ lead to other popular divergences
such as Logistic Loss, Itakura-Saito Distance, Hinge Loss, Mahalanobis Distance
and KL Divergence [56, 3].

Bregman Information: An important property of all Bregman Divergences is
as follows:

162 J. Ghosh and G. Gupta

Theorem 2.1. [3]: Let X be a random variable taking values in X = {xi}ni=1 ⊂
C ⊆ R

d (C is convex) following a probability measure ν2, and let E[] denote the
expectation operator. Given a Bregman Divergence Dφ : C × int(C) �→ [0, inf),
the problem

min
c∈C

Eν [Dφ(X, c)]
has a unique minimizer given by c∗ = μ = Eν [X].

[3] refer to the corresponding minimum Eν [Dφ(X, c∗)] as the Bregman Informa-
tion of X . Both variance and mutual information are special cases of Bregman
Information. Theorem 2.1 essentially states that given any set of data points,
the mean vector (or more generally, the expectation given a probability measure
defined over the points) is the best single representative of the set in the sense
of minimizing the average loss when each point gets replaced by a common rep-
resentative. This result is well known for squared loss, but as per this Theorem
it holds true for all Bregman Divergences. An immediate implication is that the
k-means type algorithm will have the same guarantee of convergence to a local
minima of the cost function for any Bregman Divergence. This result is also used
in the BBC algorithm formulated later in Section 3.

Bregman Hard Clustering: [3] describe a partitional clustering algorithm
called Bregman Hard Clustering that exploits Theorem 2.1. Starting with a ran-
dom initialization of k centers Bregman Hard Clustering repeats the following
until convergence to a local minimum: (1) assign each point to the closest center,
as measured by the particular choice of Dφ, and (2) update the centers as the
mean of points within each cluster. When Dφ is Squared Euclidean distance,
Bregman Hard Clustering reduces to the K-Means algorithm, so one could view
K-Means as a special case of Bregman Hard Clustering. An important result
from [3] was to prove the bijection that a K-Means type algorithm exists for
any Bregman Divergence, and only for Bregman Divergences. However, a subtle
but perhaps more consequential property of Bregman Hard Clustering is that
different choices of Dφ result in clustering algorithms that are appropriate for
very different types of datasets and problems; many of the special forms had
been proposed, proved and applied as independent algorithms, such as the cele-
brated Linde-Buzo-Gray algorithm [48,8], before Bregman Hard Clustering was
formulated.

2.2 Density-Based and Mode Seeking Approaches to Clustering

A variety of non-parametric density-based methods have been developed that
use different notions of “local” density to cluster only a part of the data and
to prune the rest. The classic work in this area is Wishart’s mode analysis [70],
which is closely related to the more recent DBSCAN algorithm [20]. Other no-
table works include the application of mean-shift algorithm to clustering [11,22].
2 Unless stated explicitly otherwise, we assume all points to have the same weight,

i.e., ν is a uniform measure.

Bregman Bubble Clustering 163

The mean-shift algorithm performs (adaptive) gradient ascent on the estimated
density of the data, as obtained by convolving a suitable localized kernel function
with the raw data, to find modes or local peaks of the density. If only modes that
are sufficiently dominant are selected, then points attracted to less important
modes could be discarded. By varying the widths of the kernels, one can investi-
gate clustering behavior at different scales [10]. DBSCAN has a slightly different
flavor: given a point that has at least MinPts points enclosed by a hypersphere
of radius ε centered at the point, all points within the ε sphere are assigned
to the same cluster. DBSCAN has the ability to find arbitrary shaped clusters,
which is useful in certain problems. However, different choices for ε and MinPts
can give dramatically different clusterings. OPTICS [1] proposed a visualization
to make it easier to select these two parameters. Like other mode-seeking algo-
rithms, DBSCAN is computationally efficient only for low-d spatial data where
efficient indexing schemes are available, and is therefore popular in the database
community for indexing 2-d and 3-d images.

DHC [38] is perhaps the first published work on applying density-based clus-
tering to biological data. It proposes a density-based hierarchical clustering algo-
rithm for time-series data. DHC provides a hierarchical grouping of time-series
data that can be used to visually browse similar genes. The cluster hierarchy
built by DHC uses the heuristic of attraction that assumes the data is uniformly
distributed in a d-dimensional space. However, points in many real-life high di-
mensional datasets tend to reside in much lower dimensional manifolds [67]
within the embedded space.

We have recently proposed a non-parametric approach, Auto-HDS [29] for de-
tecting a few dense clusters in data. Inspired by Wishart’s work but much more
computationally efficient, Auto-HDS simultaneously detects clusters at multiple
resolutions and provides a powerful visualization mechanism for cluster explo-
ration. It also provides much superior results as compared to DBSCAN. Since
this paper focuses on parametric approaches, we do not discuss Auto-HDS fur-
ther, but point the interested reader to Chapter 11 of [26], which provides a
detailed theoretical as well as empirical comparison of Auto-HDS with BBC.
In summary, BBC is more scalable than Auto-HDS and other non-parametric
approaches; and works better when one has a fairly good generative model of
the data. However, if one has little idea about the nature of the data, or if the
data has very odd-shaped dense regions at different resolutions, the additional
flexibility of a non-parametric approach is helpful.

A parametric approach wherein a mixture of Gaussians plus a uniform back-
ground component is fitted to data in order to detect peaks was recently pre-
sented in [57]. The current approach and accompanying software is specifically
for detecting peaks in one-dimensional data, with additional constraints such as
no other peak allowed within a certain distance to the left or right of a given
peak. This constrained one-dimensional setting is designed for specific applica-
tions such as detecting transcription start sites from gene annotation data. If one
properly generalizes this approach to multivariate data and to all exponential

164 J. Ghosh and G. Gupta

family mixture models, one will obtain the soft BBC model, which the new
method proposed in this paper compares favorably against (see Section 10).

2.3 Iterative Relocation Algorithms for Finding a Single Dense
Region

Traditional density-based clustering algorithms (Section 2.2) were aimed at low-
dimensional, spatial datasets. However, they have two major shortcomings for
broader clustering applications: (1) they typically rely on a Euclidean distance
type metric to determine “distance”, even though such measures are not suitable
for many datasets and (2) they do not scale well to large, higher-dimensional
datasets. A recently proposed algorithm for finding a single dense region3 called
One Class Information Bottleneck (OC-IB) [12] breaks these two barriers by
proposing an iterative relocation based approach that is also generalizable to all
Bregman Divergences, and whose scaling properties are akin to K-Means even
though K-Means itself is not designed for finding dense clusters.

OC-IB uses the notion of a Bregmanian ball to find a single, locally dense re-
gion. Earlier approaches to One Class Clustering [66,58,59,13] used convex cost
functions for finding large-scale structures, or correspondingly, for finding a small
number of outliers. However, [12] showed that such methods are not appropriate
when we want to find distinct dense regions covering only a small fraction of the
data. For example, suppose the data is generated by two low-variance Gaussians
embedded within a relatively uniform background. Previously proposed convex
One Class methods end up finding a solution centered in-between the two Gaus-
sians. In contrast, OC-IB is able to find one of the two Gaussians, and could
be applied sequentially to recover both. More discussion and evidence on this
important conceptual difference between the two One Class approaches and why
the local approach used by OC-IB is more relevant for finding dense regions can
be found in [12].

In an earlier paper [27], we described an algorithm called Batch Ball One
Class Clustering (BBOCC) that provides several improvements over OC-IB, in-
cluding the ability to control the size (number of data points) of the dense
cluster, improved quality of local search, optimality guarantee using seeding4

and extension to Pearson Correlation. However, BBOCC can also only find a
single dense region. An obvious solution that comes to mind is to apply OC-IB
or BBOCC sequentially: removing points belonging to the first dense cluster and
then running the One Class algorithm again on the reduced data. Unfortunately,
unless a correspondence problem is solved, this could result in a “cookie-cutter”
clustering where additional clusters found are comprised of left-over dense points

3 A problem that is also referred to as One Class Classification or Clustering.
4 Guarantees that the solution is within two times of lowest possible cost (as given

by Equation 2, only applicable for k = 1, since k is always 1 for BBOCC), when
the Bregman Divergence was Squared Euclidean, and is constant times optimal for
other Bregman Divergences. See [28] for more details.

Bregman Bubble Clustering 165

surrounding the hole created by the removal of the first dense cluster discovered.
This limitation was also hinted upon in the conclusion section of [12]5.

This paper addresses the problem of simultaneously finding k dense regions
in the data while ignoring a specified fraction of the data-points. While the
approach taken is not a straightforward generalization of BBOCC and entails
several new concepts, familiarity with BBOCC [27] will provide an enriched
understanding of this paper.

2.4 Clustering a Subset of Data into Multiple Overlapping Clusters

In the context of clustering microarray data, discovering overlapping gene clus-
ters is popular since many genes participate in multiple biological processes.
Gene Shaving [33] uses PCA to find a small subset of genes that show strong
expression change compared to the control sample, and allows them to be in mul-
tiple clusters. As we mentioned earlier, since only a small fraction of the genes
are relevant for clustering in a given dataset, the ability of Gene Shaving to
prune a large fraction of genes is particularly attractive. However, Gene Shaving
greedily extracts one cluster at a time, and is computationally very expensive
(Ω(n3)). Other greedy methods such as Plaid [46] treat the original data X as
a matrix, and decompose it into a set of sub-matrices that when added together
reconstruct X . This allows Plaid to also find overlapping clusters. However, ma-
trix approximation methods for gene-expression datasets have only had partial
success, in large part due to the highly unbalanced nature of the matrix; there
are typically to the order of 102 (biological experiment) conditions while there
are to the order of 104 genes. A critical issue therefore continues to be the ability
to select a small number of highly relevant genes for clustering, while selecting
all the conditions as relevant.

3 Bregman Bubble Clustering

In this section we first generalize the notion of a single dense Bregmanian Ball
(used by One Class algorithms OC-IB and BBOCC) to the idea of multiple dense
regions called Bregman Bubbles. We then present an algorithm called Bregman
Bubble Clustering or BBC, that can find k dense Bregman bubbles using a local
search approach.

3.1 Cost Function

Let X = {x}ni=1 ⊂ C ⊆ R
d (where C is convex) be the set of data points. Let

G ⊂ X represent a non-exhaustive clustering consisting of k clusters {Cj}kj=1

with X \ G points that are “don’t care”, i.e., they do not belong to any cluster.
For a given Bregman Divergence Dφ(x,y) �→ [0,∞), and a set of k cluster

5 Interestingly, the seeding algorithm DGRADE presented in this paper in Section 9,
solves exactly this correspondence problem by identifying all the distinct “basins of
attraction” corresponding to the densest Bregmanian balls in the data.

166 J. Ghosh and G. Gupta

representatives {cj}kj=1 ∈ R
d for the k clusters in clustering G = {Cj}kj=1, we

define the cost Qb as the average distance of all points in G from their assigned
cluster representative:

Qb(G, {cj}kj=1) =
1
|G|

k∑

j=1

|Cj |∑

i:xi∈Cj

Dφ(xi, cj), (2)

3.2 Problem Definition

Given s, k and Dφ as inputs, where s out of n points from X are to be clustered
into a clustering G ⊆ X consisting of k clusters, where 1 ≤ k < n and k ≤ s ≤ n,
we define the clustering problem as:

Definition 1: Find the clustering G with smallest cost Qb such that |G| = s.

Definition 1 builds upon the cost formulation stated in 3.1, where the cost con-
tributed by each point in each cluster is proportional to the distance of the
member points from their cluster centroid, with an additional constraint that
exactly s points are clustered. For k = 1, this problem definition reduces to one
used in one of the two form of BBOCC for finding a single dense cluster6.

3.3 Bregmanian Balls and Bregman Bubbles

A Bregmanian ball [12] Bφ(r, c) with radius r and centroid c defines a volume
in R

d such that all points x where Dφ(x, c) ≤ r are enclosed by the ball. Given
a set X = {xi}ni=1 of n points in R

d, the cost of the ball is defined as the average
Dφ(x, c) of all points enclosed by it.

(a) (b)

Fig. 1. An illustration showing (a) three Bregman bubbles, and (b) a Bregmanian ball
(solid line), and two other possible balls (dotted lines). The union of the points enclosed
by the three possible balls in (b) is the same as the set of points enclosed by the three
bubbles.

For a specified set of k cluster representatives, and a fixed s, it can be shown
using Theorem 2.17 that the clustering that minimizes Q consists of: (1) the
6 Section 6 discusses the connection with BBOCC in more detail.
7 A more formal proof is presented after Proposition 3.1.

Bregman Bubble Clustering 167

assignment phase, where each point is assigned to the nearest cluster represen-
tative, and (2) picking points closest to their representatives first until s points
are picked. Let rmax represent the distance of the last (sth) picked point from
its cluster representative.

These clusters can be viewed as k Bregman bubbles such that they are either
(1) pure Bregmanian balls of radius r ≤ rmax, or (2) touching bubbles that form
when two or more Bregmanian balls, each of radius rmax overlap. Two Bregma-
nian balls Bφ(c1, r1) and Bφ(c2, r2) are said to overlap when ∃x : (Dφ(x, c1) <
r1)∧ (Dφ(x, c2) < r2). At the point of contact, the touching bubbles form linear
boundaries8 that result from assigning points to the closest cluster represen-
tative. For the part of its boundary where a bubble does not touch any other
bubble, it traces the contour of a Bregmanian ball of radius rmax. Therefore,
bubbles arise naturally as the optimum solution for Qb for a given s, k and Dφ.

Figure 1 illustrates a 2-D example of Bregman bubbles vs. balls. Unlike Breg-
manian balls, the boundary of the Bregman bubbles can only be defined in the
context of other bubbles touching it. It is important to note that the volume
of the convex hull of points in one bubble could be smaller than that of the
adjacent touching bubble, and the bubbles could also have different number of
points assigned to them.

3.4 BBC-S: Bregman Bubble Clustering with Fixed Clustering Size

For most real life problems, even for a small s, finding the globally optimal
solution for problem definition 1 would be too slow. However, a fast iterative
relocation algorithm that guarantees a local minimum exists. Bregman Bubble
Clustering-S (BBC-S, Algorithm 1) starts with k centers and a size s as input.
Conceptually, it consists of three stages: (1) the assignment phase, where each
point is assigned to the nearest cluster representative, (2) the selection phase,
where points are selected in ascending order of their distance from their corre-
sponding cluster representative, until s points are picked, and (3) the update
step, where cluster “means” are re-estimated and updated. It is interesting to
note that stages 1 and 3 of BBC-S are identical to the Assignment Step and
the Re-estimation step of the Bregman Hard Clustering (Section 2.1), proper-
ties that lead to the unification described in Section 6. Stages 1, 2 and 3 are
repeated until there is no change in assignment between two iterations - i.e. the
algorithm converges. Algorithm 1 describes a more detailed implementation of
BBC-S where line number 11 represents Stage 1, lines 16 to 20 map to Stage 2,
while lines 26-28 represent Stage 3. We randomly pick k data points from X as
the starting cluster representatives, but alternative initialization schemes could
be implemented.

Proposition 3.1. Algorithm 1 terminates in a finite number of steps at a lo-
cally optimal solution, i.e., the cost function Qb cannot be decreased by (a)the
assignment step, (b) the data selection step or (c)changing the means of any
existing clusters.
8 This can be shown to be true for all Bregman Divergences [3].

168 J. Ghosh and G. Gupta

Algorithm 1. BBC-S
Input: Set X = {x}ni=1 ⊂ C ⊆ R

d, Bregman Divergence Dφ, no. of clusters k, desired
clustering size s, k seed centroids for the k clusters (optional).

Output: Partitioning G∗ containing k clusters{Cj}kj=1, and the corresponding k clus-
ter representatives {c∗

j }kj=1.
Method:

if {cj}kj=1 = ∅ then
5: Initialize cluster representatives {cj}kj=1 with seed centroids if available, else

randomly.
end if
Gl = ∅;G = ∅; q = ∞; qp = ∞;
repeat

/*Assign each point to the closest of the k centroids*/
10: for i = 1 to n do

[dmini , labi] = minkj=1(Dφ(xi, cj))
end for
/* Find the s points closest to their centroids and form the cluster*/
[val, idx] = sort(dmin)

15: qtmp = 0; sc = 0; {Cj}kj=1 = ∅

while (sc < s) do
sc = sc + 1;
qtmp = qtmp + val(sc)
Add xidx(sc) to cluster Clab(idx(sc))

20: end while
/* Save previous centroids, clustering costs, cluster memberships and update to
new ones */
{cp

j }kj=1= {cj}kj=1

qpp = q; qp = q; q = qtmp/s
Gl = G;G = {Cj}kj=1

25: /* Recompute cluster centroids based on the new cluster memberships */
for j = 1 to k do

cj = 1
|Cj|

∑|Cj |
i:xi∈Cj

xi

end for
until (Gl == G) ∧ qpp == q /* Convergence */

30: Return {c∗j }kj=1 = {cj}kj=1;G∗ = G

Proof: The local optimality of steps (a) and (c) has been established in [3] Prop. 3,
and can be summarized as follows: local optimality of step (a) can be readily
shown by the contradiction that if a point is not assigned to the nearest centroid,
then the total cost Qb can be decreased by assigning it to a closer centroid.
Theorem 2.1 guarantees that step (c) is locally optimal; a representative other
than the mean would lead to a higher cost for a given cluster. Local optimality
of step (b) can also be shown by contradiction - if a point xp that is not among
the first s points (in the sorted order at line 14 of the algorithm) was part of the
optimal solution, then the cost Qb could be decreased by replacing this point
with a point within the first s points that is not picked. Thus no such xp can be

Bregman Bubble Clustering 169

part of the best solution at step (b). So the algorithm monotonically decreases
the objective function value, while the number of distinct clusterings is finite,
thus assuring convergence in a finite number of steps.

If heap-sort is used at line 14 of Algorithm 1, then each iteration of BBC-S
takes
O(max(nkd, s log(n))) time, making it quite fast.

3.5 BBC-Q: Dual Formulation of Bregman Bubble Clustering with
Fixed Cost

An alternative “dual” formulation of the Bregman Bubble Clustering called
BBC-Q is possible where a threshold cost qmax is specified as input rather than
the size s. Given qmax, k and Dφ as inputs:

Definition 2: Find the largest G with cost Qb ≤ qmax.

We can show that this definition also results in Bregman bubbles as the optimal
solution for a set of k cluster representatives. Definitions 1 and 2 are equivalent,
since for a given qmax there exists a largest s for k bubbles, and for the same s,
the same solution has the same smallest possible cost qmax. Algorithm 1 can be
easily modified to work with qmax by modifying Stage (2) to stop adding points
when the cost is more than qmax. The proof of convergence for BBC-Q follows
along similar lines as that for Proposition 3.1.

The seemingly minor difference between BBC-S and BBC-Q results in two
very different algorithms. For a fixed s as input (BBC-S), for iterations in sparse
regions the bubbles expand until s points are covered. As the bubbles move
into denser regions, their radii shrink. BBC-Q does not have this property and
generally gives worse performance when the bubbles are small [28]. Unless stated
explicitly otherwise, the discussion on Bregman Bubble Clustering in the rest of
the paper is restricted to BBC-S, i.e. BBC with a fixed s as input.

4 Soft Bregman Bubble Clustering (Soft BBC)

4.1 Bregman Soft Clustering

In hard clustering, each point is assigned to one cluster. In soft clustering, each
point can be a “partial” member of all of the clusters. If the sum of the assign-
ment weights of a given point to all clusters is normalized to 1, we can interpret
the soft assignments as probabilities. One popular way to model such probabilis-
tic assignments is to assume that the set of observed points come from a mixture
of k distributions whose parameters are estimated based on the observed data.
Once the parameters are estimated, the probabilistic membership of each point
to each of the clusters can be computed. [3] proposed a soft clustering algorithm
called Bregman Soft Clustering as a mixture model consisting of k distributions,
taken from the family of regular exponential distributions, and showed that there

170 J. Ghosh and G. Gupta

is a bijection between this family and regular Bregman Divergences. This bijec-
tion is expressed by:

p(ψ,θ)(xs) = exp(−βDφ(xs, μ))fφ(xs) (3)

where φ is a convex function, and the conjugate function of ψ, Dφ is the corre-
sponding Bregman Divergence, p(ψ,θ) is the corresponding regular exponential
distribution with cumulant ψ, fφ is a uniquely determined normalizing function
that depends on the choice of φ, β is a scaling factor, μ is the expectation pa-
rameter, θ are the natural parameters of pφ, and xs is the sufficient statistics
vector corresponding to x.

Well-known examples of regular Bregman Divergences (and the corresponding
exponential distribution) include squared Euclidean Distance (Gaussian distri-
bution), KL-divergence (multinomial distribution) and Itakura-Saito distance
[48, 8].

[3] not only showed a formal unification of the various hard partitional clus-
tering methods as special cases of Bregman hard clustering, and the correspond-
ing exponential distribution soft clustering models as special cases of Bregman
soft clustering, but went on to show that for all regular Bregman divergences,
Bregman Hard Clustering falls out as a special case of Bregman Soft Cluster-
ing. For example, for the Squared Euclidean distance as Dφ, Bregman Hard
Clustering maps to the standard K-Means algorithm, and the corresponding
Bregman Soft Clustering maps to a mixture of spherical Gaussians with a fixed
variance σ2, popularly known as soft K-Means, and μ maps to Gaussian mean a,
fφ(xs) = 1√

(2πσ2)d
, β = 1

2σ2 , Dφ(xs, μ) = β||x−a||2, θ = a
σ2 , and ψ(θ) = σ2

2 ||θ||2.
The soft K-Means model reduces to K-Means when the variance σ2 of the k
Gaussians is set to 0+ that corresponds to β →∞ in Equation 3.

4.2 Motivations for Developing Soft BBC

Bregman Bubble Clustering can be thought of as a non-exhaustive hard cluster-
ing where points can belong to either one of the k clusters or to a “don’t care”
group, while there is no such “don’t care” grouping in Bregman Hard Cluster-
ing. The generative model for Bregman Soft Clustering consists of a mixture
of k regular exponential distributions of the form pφ corresponding to the k
clusters. Correspondingly, Soft Bregman Bubble Clustering (Soft BBC) can be
formulated as modeling the data as a mixture of k distributions from the ex-
ponential family and an additional “background” distribution corresponding to
the “don’t care” points. Since we are trying to find k dense clusters, for a good
solution the “don’t care” group should be the least dense. One way to model
this low density background is with a uniform distribution. The goal of building
such a Soft BBC model is to give us deeper insights into the implicit modeling
assumptions behind BBC.

Bregman Bubble Clustering 171

4.3 Generative Model

Let X = {xi}ni=1 be the dataset consisting of n i.i.d. points and k be the desired
number of clusters. We propose Soft BBC as a generative model containing k
mixture components corresponding to k dense clusters labeled 1 to k and one
uniform background distribution labeled 0, where each data point is assumed
to be generated by a unique but unknown component. Let Y = {Yi}ni=1 be the
hidden random variables corresponding to the mixture components associated
with the data points, where Yi can take one of k + 1 possible values from 0 to
k. In the absence of any other information, the distribution of Y only depends
upon the priors. Hence the model probability of the data points is given by:

p(xi) =
k∑

j=1

αjp(ψ,θ)(xi|θj) + α0p0, [i]n1 (4)

where {αj}kj=1 and {p(ψ,θ)(·|θj)}kj=1 denote the priors and the conditional dis-
tributions of the k clusters, while α0 and p0 denotes the prior probability and
the probability density of the uniform distribution. Since the data points are
assumed to be i.i.d., the log-likelihood of the observed data (or the incomplete
log-likelihood) is given by:

L(Θ|X) =
n∑

i=1

log(
k∑

j=1

αjp(ψ,θ)(xi|θj) + α0p0) (5)

where Θ denotes all the parameters (priors and mixture component parame-
ters). Maximizing the above data likelihood is a natural approach for fitting this
generative model to the data. However, it is non-trivial to directly optimize the
likelihood function due to the presence of mixture components.

4.4 Soft BBC EM Algorithm

Since p0 is a uniform distribution by definition, 1/p0 defines the volume of its
domain. This domain should include the convex hull of X , which yields an upper
bound for p0. In Equation 5, keeping all other parameters constant, a lower value
of p0 will always result in a lower likelihood. For now, we only consider the case
where p0 is set to a fixed value. Therefore, the only parameters we can optimize
over are the priors {αj}kj=0 and the exponential mixture parameters {θj}kj=1. We
consider two slightly different scenarios: (A) where α0 is a variable parameter,
and (B) where α0 is a fixed value ≤ 1. To maximize the log-likelihood function,
we adopt a standard EM-based approach and first construct the negative free
energy function [55]:

F (P̃ , Θ) =
n∑

i=1

Ep̃(Yi,xi)[log p(xi, Yi|Θ)]−
n∑

i=1

Ep̃(Yi,xi)[log p(Yi|xi)]

where P̃ = {{p̃(Yi = j|xi)}ni=1}kj=1 are the current estimates of Y. It can be
shown that the EM procedure with the E and M steps alternately optimizing

172 J. Ghosh and G. Gupta

Algorithm 2. Soft BBC
Input: Set X = {x}ni=1 ⊂ C ⊆ R

d, Bregman Divergence Dφ, no. of clusters k, p0,
specifying the background distribution, α0 for Case B.

Output: Θ∗, local maximizer of L(Θ|X) (Equation 5) where Θ = {{θj , αj}kj=1, α0} for
Case A and {θj , αj}kj=1 for Case B, soft partitioning {{p(Yi = j|xi)}kj=0}ni=1.

Method:
Initialize p0, {θj , αj}kj=1 with some 0 ≤ p0 < 1, θj ∈ C, αj ≥ 0, such that

∑k
j=0 αj =

1.
repeat

{The E Step}
for i = 1 to n do

for j = 0 to k do
p(Yi = j|xi) is computed from equations 6 and 7, where p(ψ,θ)(xi|θj) is
defined by equation 3.

end for
end for
{The M Step}
for j = 0 to k do

Update αj using equation 8 for Case A and 11 for Case B.
Update θj using equation 10.

end for
until convergence

F (P̃ , Θ) over P̃ and Θ is guaranteed to converge to a local maximum P̃ ∗ and
Θ∗. Furthermore, it can be shown that a local maximum of F (P̃ , Θ) leads to a
local maximum on the original likelihood given by Equation 5. Hence we will
now focus on obtaining the updates involved in the E and M steps for the two
cases.

Case A: α0 is not fixed

E-Step: In this step we optimize F (P̃ , Θ) (Equation 6) over P̃ under the con-
straints that the

∑k
j=0 p̃(Yi = j|xi) = 1, [i]n1 , and p̃(Yi = j|xi) ≥= 0,∀i, j. Us-

ing Lagrange multipliers for the n equality constraints, taking derivatives w.r.t.
p̃(Yi = j|xi), and then eliminating the Lagrange multipliers, we obtain:

p̃(Yi = j|xi)∗ =
αjp(ψ,θ)(xi|θj)

∑k
j=1 αjp(ψ,θ)(xi|θj) + α0p0

, 1 ≤ j ≤ k (6)

=
α0p0

∑k
j=1 αjp(ψ,θ)(xi|θj) + α0p0

, j = 0 (7)

M-Step: In this step we optimize F (P̃ , Θ) overΘ under constraints
∑k
j=0 αj = 1

and αj ≥ 0,∀j. It can be shown that the inequality constraints are not binding.
On applying the standard Lagrange procedure, one obtains:

α∗
j =

∑n
i=1 p̃(Yi = j|xi)

n
, [j]k0 (8)

Bregman Bubble Clustering 173

Note that the update equation for the background distribution prior, α0, turns
out to be the same as that for the exponential mixture distributions α1 to αk. The
optimal mixture component parameter estimation can be obtained by setting
derivatives over {θj}nj=1 to 0 as follows:

n∑

i=1

p̃(Yi = j|xi)∇θjp(ψ,θ)(xi|θj) = 0 (9)

This results in the update equation for the exponential distribution mixtures
{θ}kj=1 as the weighted average of x [3]:

θj =
∑n
i=1 p(Yi = j|xi)xi∑n
i=1 p(Yi = j|xi) (10)

An example of re-estimation of mixture component parameters for Gaussians is
described in more detail in Section 7.

Case B: α0 is fixed

E-Step: Since keeping α0 fixed does not result in any additional constraints,
this step is identical to that of Case A.

M-Step: Keeping α0 constant modifies the constraints on the priors so that
we now require

∑k
j=1 αj = 1 − α0 and αj ≥ 0, ∀j. As before, the inequal-

ity constraints are not binding and by using a Lagrange multiplier and taking
derivatives, we arrive at:

α∗
j = (1− α0)

∑n
i=1 p̃(Yi = j|xi)

∑k
j=1

∑n
i=1 p̃(Yi = j|xi)

(11)

The optimal mixture component parameters are obtained exactly as in Case A.

4.5 Choosing an Appropriate p0

For Case A of the Soft BBC algorithm, one can argue that the parameter α0 is
essentially a function of p0 given by the relation (from the M step):

α0 =
1
n

n∑

i=1

α0p0
∑k
j=1 αjp(ψ,θ)(xi|θj) + α0p0

(12)

Using this relation, for a given α0 and a set of mixture component parameters,
it is possible to solve for p0. But one cannot do this in the EM framework since
the best value for p0 is always the highest possible one. However this relationship
allows us to calculate the value of p0 for the initial seed parameters. For a given
value of α0, one approach would be to rewrite Equation 12 as an optimization
problem and solve for the best value of p0:

f(p0) = α0 − 1
n

n∑

i=1

α0p0
∑k

j=1 αjp(ψ,θ)(xi|θj) + α0p0

= 0 (13)

174 J. Ghosh and G. Gupta

Written in this form, one could now start with a seed value between 0 and 1, and
then search for the value of p0 that brings f(p0) closest to 0. An optimization
routine such as Matlab fsolve (http://www.mathworks.com) could be used for
this process. However, a faster approximation of p0 can be obtained as follows:

1. Perform the first E step (equations 6 and 7).
2. Compute the pimax = maxkj=0(p(Yi = j|xi)) for each xi.
3. Pick p0 as the sth largest value in pimax[i]

n
1 where s = �α0n�.

The above formulation works well because of the following reason: the final soft
BBC results are probabilistic, with each point having a probability of belonging
to either one of the k clusters, or the background. The probabilities need to be
converted into hard assignment to obtain clustering needed in many applications.
Later in Section 6, we show that the natural hard assignment corresponds to
assigning each point to the mixture with the maximum posterior probability
(which could be either of the k clusters or the uniform background). In other
words, selecting label j such that p(Yi = j|xi) = pimax using Step 2 above. For the
hard assignment case, since the fraction of data points clustered is s, and since
s = �α0n�, picking p0 equal to (or in theory, slightly larger than) the sth largest
value in pimax[i]

n
1 would result in very close to s points getting assigned to the

clusters, while the remaining, having a pimax ≤ p0 get assigned to the background
cluster. In practice, the value of p0 obtained using this approach corresponds
closely with the value computed using the more expensive optimization type
approach.

The following enhancement works even better in practice: an initial estimate
of p0 is computed using the approach described above using the seed cluster
parameters to Soft BBC ({θj}kj=1 and {αj}kj=1). This initial value of p0 is then
used to run Soft BBC to convergence. The clustering parameters obtained at
convergence are then used to compute p0 again, and Soft BBC is then run to
convergence a second time using the new p0. This second p0 estimate is better
since it is based on parameters that are closer to the convergence values.

5 Improving Local Search: Pressurization

5.1 Bregman Bubble Pressure

We first introduce a concept called Bregman bubble pressure that has properties
analogous to that of pressure around air bubbles rising from a seabed; as air
bubbles rise in a column of water, the hydrostatic pressure outside drops, and
the bubbles expand (see [40], Chapter 10, Section 10.4.4 for a description of this
phenomena).

In the case of the generative or Soft BBC model, we can think of this external
pressure as being driven by the relative weight of the background distribution,
α0 in Equation 4. Bregman bubble pressure can be seen as being proportional
to the ratio of the background distribution weight vs. the weight of all the k
bubbles combined, i.e. α0/

∑k
j=1 αj , which is equal to α0

1−α0
, since

∑k
j=0 αj = 1.

Bregman Bubble Clustering 175

As α0 tends to 1, the Bregman bubble pressure, being proportional to α0
1−α0

,
tends to infinity, causing the extent of the regions around the k exponential
distribution centroids, where the corresponding distributions have higher weight
than the background distribution in Equation 4, to shrink towards 0 (since the
weights of the exponential distributions all get forced to 0). For the hard BBC,
the increasing weight of α0 corresponds to the number of points clustered, s,
tending towards 0. The Bregman bubble pressure can also be thought of as
being proportional to (n− s)/s, where s is the number of data points clustered,
and is an input to the hard BBC algorithm (Algorithm 1).

Conversely, when α0 tends to 0, the background pressure (proportional to
α0

1−α0
) tends to 0, and the Soft BBC model gives rise to Bregman Soft Clustering,

where there is no background distribution. This also corresponds to the hard
BBC model reducing to Bregman Clustering, where s = n and all the data
points are clustered.

Note that the behavior of the Bregman Bubble for the two extreme cases
(0 and infinite pressure) is also analogous to the phenomena of water bubbles
reducing to very small sizes under extreme external hydrostatic pressure, and
expanding to unlimited extent when all pressure is removed (such as for free
moving air molecules in a perfect vacuum).

5.2 Motivation

BBC-S is able to find locally dense regions because of its ability to explicitly
ignore large amounts of data by considering only points close to the cluster
representatives for cluster membership. If the bubbles are initialized in sparse
regions, they have to expand in order to enclose s points. Then, during each
iteration, the bubble representatives move to lower cost nearby locations, and
the bubbles shrink in their extent9. These mechanisms ensure that the results are
less sensitive to initialization. However, when threshold s is small, only a few close
neighbors get assigned, thereby decreasing the mobility of the representatives at
each iteration. This makes it difficult for BBC-S to find small, dense regions far
from initial seed locations. Addressing this issue by starting with a large s would
be contrary to the goal of finding small dense regions. This problem is even more
severe with BBC-Q, since the bubbles cannot expand automatically in sparser
regions. Is there a way to improve upon the ability of BBC-S to “expand” in a
sparse region, while still optimizing clustering over small, dense regions?

The pressure mechanism described in the previous section indicates a way of
ameliorating this problem. The essential idea is to start BBC with a very small
pressure, allowing it to reach out to all the data points, and then slowly increas-
ing the pressure, which would correspond to increasing α0 or s for Soft and Hard
BBC respectively. This causes the bubbles to be “squeezed” by the increasing
external pressure into denser regions. Moreover, bubbles that move to a denser

9 A toy example demonstrating this phenomena can be seen in our power-point slides
at http://www.ideal.ece.utexas.edu/∼gunjan/bbc/bbcicdm.ppt.gz, slides 16 through
20.

176 J. Ghosh and G. Gupta

region retain proportionately more points at the expense of bubbles in less dense
regions. This is because when points compete for being assigned to one of the k
clusters (Stage 2 of Algorithm 1), the ones nearest to their respective centroids
get assigned first, while n − s points farthest from their cluster centroids get
dropped. Both of these trends help to improve solution quality. A demo of the
BBC-Press algorithm in action on the Gauss-2 dataset illustrating this “squeez-
ing” phenomena can be seen at http://www.ideal.ece.utexas.edu/∼gunjan/bbc/
bbcicdm.ppt.gz, slides 31 to 36.

5.3 BBC-Press

Based on the ideas described in the last two sections, we propose an algorithmic
enhancement to BBC-S that we call Pressurization that is designed to improve
upon the quality of the local minimum discovered. We start the first iteration
of BBC-S with a small enough pressure to cause all points to be assigned to
some cluster, and slowly increase the pressure after each iteration. An additional
parameter γ ∈ [0, 1) that controls the rate of pressure increase is used as an
exponential decay parameter10, and sj = s + �(n − s)γj−1� is used instead of
s for the jth iteration. Convergence is tested only after (n − s)γj−1 < 1. A
slower but more robust alternative involves running BBC-S to full convergence
after each recomputation of s and using the resultant centroids to seed the next
iteration, and in practice yields slightly better results. Algorithm 3 describes the
steps for the full-convergence version of BBC-Press in more detail. Pressurization
can similarly be implemented for the alternate formulation BBC-Q, by varying
the fixed cost qmax.

Algorithm 3. Hard BBC-Press
Input: Set X = {x}ni=1 ⊂ C ⊆ R

d, Bregman Divergence Dφ, no. of clusters k, desired
clustering size s, k seed centroids for the k clusters (optional).
Set γ to a value between 0 and 1, j = 1, and sin = n.
Run Algorithm 1 until convergence with random starting centroids, unless seed cen-
troids are available, and with s = sin.
Set j = 2, sin = s +
(n − s)γ1�
while (n − s)γj−1 >= 1 do

sin = s +
(n − s)γj−1�. /* Reduce sin by pressurization rate */
Run Algorithm 1 until convergence, using the k centroids from last run to seed
the centroids for this run, and s = sin.

end while
Return resultant clustering from the final run of Algorithm 1.

10 A smaller value gives better results, but runs slower. A value between 0.01 and 0.05
seems to work well for most real-world scenarios.

Bregman Bubble Clustering 177

5.4 Soft BBC-Press

The Pressurization scheme can also be extended to Soft BBC for Case B when
α0 is not updated. When α0 and p0 are large (close to 1), only a small amount
of data is “explained” by the k exponential mixtures. This may lead to bad
local minima problems similar to (although less severe than) the one faced in
BBC. Therefore, we propose a soft version of Pressurization that takes a decay
parameter τ ∈ [0, 1) and runs Soft BBC (Case B) multiple times as follows:
(1) start with some initial model parameters {θ1j}kj=1 and run Soft BBC to
convergence, (2) at trial r set α0 to αr = α0(1− τr−1), and for r > 1 set current
model parameters to the output of last trial: {θrj}kj=1 = {θr−1

j }kj=1. Repeat step
(2) until αr − α0 is smaller than ε (a small positive value close to 0, e.g. 0.001),
and then perform a final run with αr = α0.

5.5 Pressurization vs. Deterministic Annealing

Although our concept of Pressurization conceptually resembles the approach of
Deterministic Annealing [68], they are not the same. For example, deterministic
annealing in a Gaussian mixture modeling setting would involve gradually re-
ducing the variance term σ2 (Equation 17), whereas Soft Pressurization involves
gradually increasing the probability mass α0 (Equation 4) of the uniform back-
ground distribution. A notable property of Pressurization is that it works on
both Hard and Soft BBC, whereas Deterministic Annealing is only applicable
in a soft setting. This is significant for large, high dimensional datasets; a De-
terministic Annealing approach for improving local search would require us to
use Soft BBC, which contains exponential mixtures, and exponential mixtures
are generally hard to compute on high-dimensional datasets because of rounding
errors [9].

6 A Unified Framework

6.1 Unifying Soft Bregman Bubble and Bregman Bubble Clustering

We are now ready to look at how the generative model Soft BBC relates to the
BBC problem, specifically the formulation where the number of points classified
into the k real clusters (excluding the “don’t-care” cluster) is fixed (Definition
1, Section 3.2), and show the following:

Proposition 6.1. Maximizing L2(Θ|X) is identical to minimizing the BBC ob-
jective function Qb (Equation 2).

Proof. Let us consider the cost function:

L2(Θ|X) =
n∑

i=1

Ep†(Yi=j|xi,Θ)[log p(xi, Yi = j|θj)] (14)

178 J. Ghosh and G. Gupta

where p†(Yi = j|xi, Θ) = 1 for j = argmax
0≤j≤k

p(xi, Yi = j|θj) and 0 otherwise,

which is essentially equivalent to the posterior class probabilities based on the
hard assignments used in BBC. It can be shown [43] that for a fixed set of
mixture parameters Θ = {θ}kj=1, and L(Θ|X) being the log-likelihood objective
of Soft BBC (Equation 5):

L2(Θ|X) ≤ L(Θ|X) (15)

This result is independent of the choice of priors {αj}kj=0. Note that while L(·)
depends upon the priors, L2(·) does not. For our choice of mixture components,
based on Equations 3 and 15, one can readily obtain the following form for L2(·):

L2(Θ|X) =
k∑

j=1

k∑

∀Yi=j

log pφ(xi)− (16)

βDφ(xi, θj) +
∑

∀Yi=0

log(p0)[i]ni=1

If the number of points assigned to the uniform distribution is fixed to n− s, s
points are assigned to the k exponential distributions, and p0 and β are fixed, we
can see from Equation 16 that maximizing L2(Θ|X) is identical to minimizing
the BBC objective function Qb (Equation 2).

Proposition 6.2. BBC with a fixed s as input (Definition 1, Section 3.2) is a
special case of Soft BBC with fixed α0.

Proof. Let us consider an extreme case when β →∞ for Soft BBC (see equations
5 and 3). Then the class posterior probabilities in Soft BBC converge to hard
assignment (BBC) ensuring that L(Θ|X) = L2(Θ|X) in Equation 16. Since BBC
is equivalent to optimizing L2(Θ|X) (Proposition 6.1), we can also view BBC
with fixed s (Definition 1) as input as a special case of Soft BBC with fixed α0.

6.2 Other Unifications

The following other interesting unifications can also be shown easily for our
framework:

1. BBC is a special case of BBC-Press when γ = 0.
2. Bregman Bubble Clustering becomes BBOCC when k=1.
3. Soft BBC11 reduces to Bregman Soft Clustering when p0 = 0.
4. Bregman Bubble Clustering reduces to Bregman Hard Clustering (which is

a special case of Bregman Soft Clustering) when qmax =∞ (for BBC-Q) or
when s = n (for BBC-S).

11 For both cases A and B.

Bregman Bubble Clustering 179

Fig. 2. Unification of various algorithms for a given Bregman Divergence Dφ: (top)
BBC, BBOCC and Bregman Hard Clustering are special cases of BBC-Press. (bot-
tom) Bregman Hard and Soft Clustering, BBC-S, BBOCC-S and a ”soft” BBOCC
(consisting of one exponential and a uniform background mixture) are special cases of
Soft BBC obtained as specific combinations of (i) whether β → ∞, (ii) whether α0

is 0 (equation 4), and (iii) whether k is 1. Bregman Clustering (both hard and soft)
for k = 1 does not result in a useful algorithm. BBOCC-S and BBOCC-Q represent
BBOCC with fixed s or qmax as inputs respectively.

Figure 2 summarizes the hierarchy of algorithms descending from BBC-Press
and Soft BBC. We could think of BBC as a search under “constant pressure”,
and for Bregman Hard Clustering this pressure is zero. Note that for k = 1,
BBC gives rise to BBOCC. In the context of finding dense regions in the data,
BBC can be thought of as a conceptual bridge between the problems of one class
clustering and exhaustive k class clustering. However, the defining characteristic
of BBC is its ability to find small, dense regions by modeling a small subset
of the data. BBC combines the salient characteristics of both Bregman Hard
Clustering and BBOCC resulting in an algorithm more powerful than either,
and that works across all Bregman Divergences. BBC-S is a natural extension of
BBOCC-S following directly from a common underlying generative model, and

180 J. Ghosh and G. Gupta

is not just a heuristic; the difference in the generative model is only in having a
single vs. multiple exponential distributions mixed with a uniform background.

7 Example: Bregman Bubble Clustering with Gaussians

Now that we have developed the theoretical framework for Soft BBC to work
with all regular exponential distributions, we describe a concrete example with
the Gaussian distribution, which is popularly used for many real-life applications.
Let us consider spherical d-dimensional Gaussian distributions of the form:

N(x|a, σ) =
1

√
(2πσ2)d

exp(−||x− a||2
2σ2

) (17)

where a ∈ R
d is the the mean, and σ2 ∈ R is the variance that is the same across

all the d dimensions. There are two major variations of the Soft BBC algorithm
depending upon how we treat the variance σ2:

7.1 σ2 Is Fixed

Soft BBC: The parameters {θj}kj=1 in Equation 4 correspond to the parameters
of the k exponential distributions of the mixture model that are updated in the
M step of Soft BBC (Algorithm 2). For the Gaussian example, if we fix the values
of {σ2

j }kj=1 for the k spherical Gaussians mixtures then the only parameters
that can be updated are the k Gaussian means {aj}kj=1. For the Soft BBC
algorithm this corresponds to θ = a and the sufficient statistics xs is simply
x. 1

2σ2 is the scaling parameter β (Equation 3) for the exponential function pφ,
Dφ(x, a) = ||x − a||2 corresponds to the Squared Euclidean distance of x from
Gaussian mean a, and fφ(x) = 1√

(2πσ2)d
.

Therefore, the E step of Algorithm 2 involves computing pφ as N(x|a, σ) using
the current Gaussian means {aj}kj=1 and the fixed variances {σ2

j }kj=1 and then
performing the rescaling given by equations 6 and 7 to get p(Yi = j|xi) for all
the n points. For the M step, the new priors αkj=1 can now be re-estimated using
either Equation 8 or 11 depending upon whether we keep α0 fixed or not (Case
A vs. B). The θj for jth exponential component represented by the Gaussian
mean aj can then be re-estimated as the weighted average of x as described by
Equation 10.

BBC-S: The proof for Proposition 6.2 tells us that the BBC-S algorithm will
fall out from the Soft BBC when β → ∞. For our Gaussian model with fixed
variance, since β = 1

2σ2 , this corresponds to setting the variances {σ2
j }kj=1 →

0. This results in BBC-S (Definition 1, Section 3.2) using Squared Euclidean
distance as the Bregman divergences. Furthermore, when we set s = n, this
version of BBC-S also gives us the classical K-Means algorithm, or Bregman
Hard Clustering with Squared Euclidean distance as Dφ. An example of output
from such a BBC-S variant is shown in Figure 3 (d).

Bregman Bubble Clustering 181

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
1298 points total, 750 points in clusters, likelihood cost 7677.940

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
1298 points total, 750 points in clusters, likelihood cost 6157.190

(a) (b)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
1298 points total, 750 points in clusters, avg cost 3.019

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
1298 points total, 750 points in clusters, avg cost 0.600

(c) (d)

Fig. 3. Comparison of bubbles generated using a variant of Soft BBC and two variants
of BBC-S on the simulated 2-D dataset: Soft BBC with updated σ2 for (a) k = 7 and
(b) k = 5. k was intentionally kept large in (a) to illustrate the non-linear boundaries
produced by touching bubbles. BBC-S resulting from Soft BBC model where (c) σ2 is
updatable and (d) σ2 is fixed. For Soft BBC, each point was assigned at convergence
to the cluster to which it had the largest soft assignment value.

7.2 σ2 Is Optimized

Soft BBC: If the variances {σ2
j }kj=1 are also updated as a part of the EM, then

both {aj}kj=1 and {σ2
j }kj=1 get updated in the M step of Soft BBC (Algorithm 2)

and the sufficient statistics xs becomes [x,x2]T . The E step of Algorithm 2 still
involves computing pφ as N(x|a, σ) using the current Gaussian means {aj}kj=1

and the current variances {σ2
j}kj=1 and then performing the rescaling given by

equations 6 and 7 to get p(Yi = j|xi) for all the n points. For the M step,
the new priors can also be re-estimated as before using either equations 8 or
11 depending upon whether we keep α0 fixed or not. However, the θj for jth

exponential component, now a function of both the Gaussian mean aj and the
variance σ2

j , needs to be re-estimated as the weighted average over the sufficient
statistics. It can be shown that this maps to: (1) re-estimating the mean aj as the

182 J. Ghosh and G. Gupta

average of x over the n points weighted by p(Yi = j|xi) , and (2) re-estimating
the variance as a weighted average of (x− aj)2 over the n points also weighted
by p(Yi = j|xi). An example of output from such a Soft BBC variant is shown
in Figure 3 (b).

BBC-S: Unlike for the fixed variance case, the scaling parameter β cannot be
thought of as a function of variance since σ2 is a part of the updatable parame-
ters. The corresponding Dφ, (which is not the Squared Euclidean distance) can
be derived from the relationship defined by Equation 3 and corresponds to Ma-
halanobis distance in the original space of x. A corresponding BBC-S algorithm
obtained when β → ∞ is different from the BBC-S algorithm described for the
scenario where σ2 was fixed. One property of such a generative model is that in
the original space of x, bubbles of varying diameters can be discovered by both
the Soft BBC and the corresponding BBC-S algorithm, which could be suitable
for domains where the natural clusters have very different diameters. It can be
shown that in each iteration of such an implementation, the estimated distances
to clusters need to be rescaled in proportion of the variances of the respective
clusters in that iteration. An example of output from such a BBC-S variant is
shown in Figure 3 (c).

7.3 “Flavors” of BBC for Gaussians

For Soft BBC built using spherical Gaussians, there are eight possible flavors
(Table 1) depending upon whether (1) α0 is updated (Case A vs. B, Section
4.4), (2) the Gaussian mixture variances are updated (Section 7.1 vs. 7.2), or (3)
all cluster variances are forced to be equal. For the cases where variance could
be updated, forcing them to be equal requires computing a weighted average
of the variances of the k Gaussians after updating the variances in the M step
as described in Section 7.2, and then assigning this weighted average to the
variances of all the k Gaussians. Corresponding BBC-S for these eight flavors
could also be derived. Figure 3 shows a comparison of bubbles generated using
some of these variants for the simulated 2-D dataset (Gauss-2 dataset, Table
2, Section 10) that has points generated from 5 Gaussians of variances varying
from small to large and a uniform background.

7.4 Mixture-6: An Alternative to BBC Using a Gaussian
Background

For the Gaussian case where σ2 is optimized, we could also define an alterna-
tive mixture model where the uniform background distribution is replaced by
a background Gaussian distribution with a large variance12. This results in a
mixture of Gaussians model with k+ 1 Gaussians where the 0th Gaussian has a
fixed large variance and only its mean is updated, while for all other Gaussians
both the mean and the variance are updated. Such a model can be viewed as a

12 Much larger than the cluster variances.

Bregman Bubble Clustering 183

Table 1. 8 flavors of Soft BBC for spherical Gaussians arise depending upon the choice
of Θ

Flavor Update σ {σj}kj=1 = σ1 Fixed α0

1 No No No
2 No No Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 Yes Yes No
8 Yes Yes Yes

“hybrid” of the models in sections 7.1 and 7.2, and update steps using EM can
be readily derived.

We call this model Mixture-6 since it is analogous to the flavor 6 of Soft
BBC (Table 1). Unlike in the Soft BBC where the background mass (and the
corresponding fraction of data assigned to the background after converting to
hard assignment at convergence) is easy to control and predict (Section 4.5),
using a large variance background does not result in a stable background; the
final background mass varies substantially depending upon where the center
of the background Gaussian lies at convergence. Mixture-6 serves as another
baseline for empirically evaluating Soft BBC.

8 Extending BBOCC & BBC to Pearson Distance and
Cosine Similarity

8.1 Pearson Correlation and Pearson Distance

In biological organisms, genes involved in the same biological processes are often
correlated in an additive or multiplicative manner, or both (Figure 4). Pearson

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Gene 1
Gene 2

0 2 4 6 8 10 12
0

0.5

1

1.5
Gene 1
Gene 2

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3
Gene 1
Gene 2

(a) additively correlated (b) multiplicatively
correlated

(c)
additive+multiplicatively

correlated

Fig. 4. Three common types of correlations observed between expression levels of genes.
The x-axis represents distinct measurements at different time points/across conditions,
while the y-axis represents the expression level of the gene.

184 J. Ghosh and G. Gupta

Correlation captures the similarity between two variables in R
d that is invariant

to linear scaling, such as a multiplicative and/or additive offset, and is therefore
a popular similarity measure for clustering gene-expression and other biological
data [61, 52].

For two data points x,y ∈ R
d, the Pearson Correlation P can be computed

as P (x,y) = zscore(x)•zscore(y)
d−1

, where zscore(x) = x−μ(x)
σ(x)

represents the vector-
based z-scoring of the data point vector x, μ(x) is the mean of the elements of
the vector x, and σ(x) is the standard deviation. Note that we z-score each of
the data points separately across features values13. We then define the Pearson
Distance as DP = 1 − P . Since P �→ [−1, 1], therefore DP �→ [0, 2]. It can be
shown that Pearson Distance is equal to the Squared Euclidean distance between
z-scored points normalized by 2(d− 1):

DP (x,y) =
‖ zscore(x)− zscore(y) ‖2

2(d− 1)
(18)

DP can also be viewed as the Squared Euclidean distance between points that
have been first rotated by subtracting the mean, and then, by variance normal-
ization, projected onto a hypersphere of radius 1 (radius 1√

2
in Euclidean space)

centered at the origin. When Dφ is replaced by DP in Equation 2, we refer to
Qb as Average Pearson Distance(APD).

Proposition 8.1. For any cluster Cj in G, the cluster representative cj
∗ that

minimizes contribution to APD by that cluster is equal to the mean vec-
tor of the points in Cj projected onto a sphere of unit radius, i.e. cj

∗ =
argmin

cj

(APD(Cj , cj)) = Cm
j

‖Cm
j ‖ , where Cmj = 1

|Cj|
∑|Ci|

i:xi∈Cj
zscore(xi).

The proof for the above proposition follows directly from the result used by
[19] for updating the center for their Spherical K-Means algorithm, which is a
K-Means type of algorithm that uses Cosine Similarity as the similarity mea-
sure. Pearson Distance and Cosine Similarity are closely related; if we estimate
the Squared Euclidean distance between points normalized by their L2-norm

(
√

∑d
i=1 x2

i) instead of between z-scored points, we obtain 2×(1−Cosine Simi-
larity). Note that (1−Cosine Similarity) of z-scored points is the same as Pearson
Distance. Because of Proposition 8.1, for D = DP the optimum representative
computation in BBC involves the averaging of the z-scored points rather than
the original points, and then re-projecting of the mean onto the sphere. This mi-
nor modification to BBC allows it to work with DP and ensures convergence to a
local minimum14. Since BBOCC is a special case of BBC, the same modification
works for BBOCC too for the problem of One Class Clustering.

13 This is different from the way z-scoring is often used in statistics, where it is per-
formed for each column/dimension. We are performing it across rows of a data
matrix, if the rows were to represent the data points.

14 And the corresponding local maximum for Average Pearson Correlation.

Bregman Bubble Clustering 185

8.2 Extension to Cosine Similarity

Because of the relationship between Cosine Similarity and Pearson Distance
described above, BBC will also work with Cosine Similarity, which is a popular
similarity measure for clustering textual data [19]. Note that for s = n, BBC
with Cosine Similarity degenerates to Spherical K-Means. For running BBC with
Pearson Distance, since the z-scored data points have zero mean across the d
dimensions, the mean of the z-scored points Cmi used for center update only
needs to be normalized by its L2-norm to obtain zscore(Cmi). For this reason,
if we z-score the individual data points in advance and run BBC using Cosine
Similarity, it produces the same results as running BBC with Pearson Distance.

8.3 Pearson Distance vs. (1-Cosine Similarity) vs. Other Bregman
Divergences – Which One to Use Where?

It is important to note that the effect of not subtracting the mean gives rise
to different distance measures (Pearson Distance vs. (1−Cosine Similarity))
and can result in very different clusterings; points with additive offsets will
not necessarily be close when using only the Cosine Similarity. This difference
could be important depending upon the application. For example, Pearson Dis-
tance/Correlation is more suitable for gene-expression data (Figure 4), while Co-
sine Similarity works better for document clustering. In Section 10, we present
results based on Pearson Distance for the biological datasets Lee and Gasch (see
Table 2), while for the 20 Newsgroup data, where the features consist of words,
(1-Cosine Similarity) is used.

A similar distinction should be kept in mind about Bregman Divergences
in general; although BBC works with all Bregman Divergences, it can produce
quite different results depending upon the choice of the divergence; the par-
ticular problem domain and the underlying exponential distribution (Equation
3 and Proposition 6.2) should guide the selection of the appropriate Bregman
Divergence for BBC.

9 Seeding BBC and Determining k Using Density
Gradient Enumeration (DGRADE)

We now present an alternative to Pressurization for alleviating the problem
of local minima in our local search. For medium-sized datasets15, the seeding
framework described in this section is computationally feasible on machines with
modest resources, and provides two key advantages over Pressurization: (1) de-
terministic results, and (2) the ability to automatically determine the number
of distinct dense regions in the data (k), the location of these dense regions,
and their representative centroids in X . These k representatives are then used
to seed BBC.
15 Such as gene clustering datasets, where the number of genes is usually O(104).

186 J. Ghosh and G. Gupta

9.1 Background

In [27], we presented a deterministic enumeration based algorithm called Hyper-
sphere One Class Clustering (HOCC) that finds an approximate, restricted so-
lution to the problem of finding a single dense cluster in the data. The centroid
location determined by HOCC can be used to to seed BBOCC. HOCC is based on
the observation that if c is restricted to one of the sample data points X , then the
number of distinct solutions is only n(n− 1), and can be enumerated efficiently.

The problem of finding a good seeding method for local search for BBC for
k > 1 is a harder problem than for the One Class case, since the search space for
possible initializations gets much larger. For a given k, a simple extension of the
strategy used in HOCC that involves restricting the search for cluster represen-
tatives to the given data points, and then enumerating all the

(
n
k

)
combinations

of centroids, is prohibitively expensive. On the other hand, picking the best solu-
tion over multiple trials of BBC-S or BBC-Press seems to give quite high quality
solutions in practice, but also requires k as an input. Is there a fast, HOCC-type
algorithm that can be used for seeding BBC and also indicates a suitable value
of k? This is answered positively via the DGRADE algorithm described next.

9.2 DGRADE Algorithm

The key idea behind the DGRADE seeding algorithm is to (i) limit the search
for seeds to the actual data points and (ii) do the search in a computationally
efficient manner. For each point, we consider the cost of a Bregmanian Ball that
is centered at that location, and encompasses s = sone points. This cost can be
viewed as the “potential” at the corresponding point. If the cost at a neighboring
point is lower, then that point is (locally) more preferable. This leads to a chain
of local preferences viewed as a potential gradient. Points that follow a chain
of preferences to the same final point (lowest local potential) can be viewed as
belonging to the same partition, the physical analogy being that they are all part
of the same “basin of attraction”. Thus the data points can be quickly grouped,
with the number of groups indicating the corresponding value of k. Note that
this k is dependent on sone, which acts as a scale or smoothing parameter.

Density Gradient Enumeration (DGRADE), described in detail as
Algorithm 4, has the following key steps:

1. Input integers sone, and the number of dense points s to be classified into
clusters.

2. Sort each row of the distance matrix and save the corresponding sorted sone
nearest neighbors indices into radM, idxM (just like in HOCC).

3. Compute cost Qone for each of n points as cost of a Bregmanian ball of size
sone centered on the point.

4. Sort the n points by increasing cost and save the cost of the first s points.
5. Set k = 1, labels of all points to 0. Create a pointer corresponding to each

of the n points.

Bregman Bubble Clustering 187

Algorithm 4. DGRADE
Input: Distance matrix M containing distance between all points, Bregmanian ball

size sone, number of points to be clustered s ≤ n.
Output: k, Partitioning G∗ containing k clusters{Cj}kj=1, and the corresponding k

cluster centroids {c∗
j }kj=1.

[radM, idxM] = sortrows(M)
for i = 1 to n do

5: qlist(i) = Qone({idxM(i, j)}sone
j=1 ,xi)

end for
[val, idx] = sort(qlist)
k = 1; {lab}ni=1 = 0; {head}ni=1 = 0;
headidx(1) = ∅; labidx(1) = 1

10: for i = 2 to s − 1 do
[hCost, hIdxIdx] = min(val({idxM(i, j)}sone

j=1))
hIdx = idxM(i, hIdxIdx)
if hIdx == idx(i) then

k = k + 1; lab(hIdx) = k; head(hIdx) = ∅;
15: else

lab(hIdx) = lab(idx(i)); head(hIdx) = idx(i);
end if

end for
Return k, {c∗

j }kj=1 as the set of k points whose corresponding head pointers are
∅, the set of clusters formed by non-zero values in lab as G∗.

6. Assign cluster label 1 to the lowest cost point16. Set its pointer to null.
7. Now pick the next s − 1 points in the order of increasing cost and perform

the following: for each point x find the lowest cost point y among the closest
sone neighbors of x (including itself). If y = x, set k = k + 1 and set label
of the point to k and set pointer of x to null. Else assign the label of y to x
and set pointer of x to point to y.

8. Return the clustering G consisting of the s densest points, and the k cluster
centroids as the k points with pointers set to null.

At the end of the process, we get a set G ⊆ X consisting of k clusters {Cj}kj=1

formed by a subset of s points from X with the lowest cost. We also get a pointer
from each of the s points leading to a point of lower cost Qone. There are exactly
k points from G that form k centroids, one for each cluster Cj , and the centroid
is the point in Cj with the lowest cost. The pointers from each of the members
of a cluster Cj form a path of lower cost leading eventually to the centroid of the
cluster. Figure 5 shows the output of DGRADE on the Gauss-2 dataset when
(b) the assignments of all the points is performed, i.e. when s = n, vs. (a) when
only s = 750 points are assigned. DGRADE consists of two distinct phases:

16 For the restricted One Class case (k = 1), returning this (lowest cost) point as a
solution corresponds to the One Class seeding algorithm described in our earlier pa-
per [27], and results in strong optimality guarantees for One Class that are described
in more detail in [27,28].

188 J. Ghosh and G. Gupta

(1) sorting of points by Bregmanian ball cost to get the absolute measurement
of cost in various regions of the data, and (2) pointing each data point to the
direction of maximum decline in cost within the same Bregmanian ball to get an
estimate of the direction of maximum cost decline. The second phase generates
a global map of the distinct valleys that ultimately converge to the locally dense
(restricted) centroids. Essentially, the algorithm performs a global search for
local density cost estimate and the gradient direction, and unlike density-based
clustering methods such as DBSCAN, is compatible with asymmetric Bregman
Divergences17. Although DGRADE can be used as a algorithm to find dense
regions, or as an exhaustive clustering algorithm (for s = n), our main goal in
designing it was to obtain a seeding solution for BBC-S. Therefore, we simply
use the centroids discovered by DGRADE to seed BBC-S.

A detailed time and space complexity of DGRADE is given in [28]. To a first
approximation, time complexity is quadratic in data size, and space requirements
are only O(n).

9.3 Selecting sone: The Smoothing Parameter for DGRADE

sone, which is a parameter for DGRADE that needs to be input by the user, acts
like a smoothing parameter; a larger value typically results in a smaller k. When
sone is increased, the number of clusters found drops rapidly (Figure 5(c)), and
beyond a certain value of sone a consecutive set of values result in the same k.
This characteristic enables several alternatives for selecting sone automatically.
We now present three common scenarios and the corresponding solutions for
them:

1. If k is known, we can find the smallest sone ≥ 2 that results in k clusters
and a binary search could be performed in O(n2 log(n)) time for finding the
best centroids of the k clusters using DGRADE. The clustering using this
approach on the Gauss-2 data is shown in Figure 5 (a) and (b).

2. If k is not known and somewhat “over-split” clusters are preferred, a user
can specify a maximum stability integer value of m and a linear search could
be performed for up to a certain maximum value of sone to find the value of
sone after which sone + 1 to sone +m− 1 values all result in k clusters. This
value of sone and the corresponding solution of DGRADE is then returned.
This technique is more appropriate for many biological datasets where the
signal-to-noise ratio is often very low, and the clustering present is extremely
weak.

3. For datasets with well-defined or prominent clusters, we can simply select
k with the largest stability for sone ranging from 1 to the smallest value
that returns k = 1. Then, we select the smallest sone that gives k clusters.
This selection method is shown in Figure 5 (c), where k = 4 is obtained for
62 ≤ sone ≤ 214, corresponding to the largest stable interval. The smallest

17 Bregman Divergences are generally not symmetric; Squared Euclidean is a notable
exception.

Bregman Bubble Clustering 189

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

(a) (b)

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

s
one

N
o.

 o
f c

lu
st

er
s

fo
un

d
(k

)

k=4

s
one

=62

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

23

4

(c) (d)

Fig. 5. Clustering of Gauss-2 data using DGRADE for various scenarios. For (a), (b)
and (d), lines show the path of the simulated local search converging at the locally
lowest cost/densest point, which also form the centroid of the corresponding cluster,
and are marked as “x” and numbered 1 to k. For (a) and (b), k is known and set to 5,
and sone was automatically determined as 57. (a) shows clustering for s = 750, while
(b) for s = n. For unknown k, (c) shows the relationship between sone and k when
s = n and how it can be used for choosing sone and determining k automatically. The
most stable k and the corresponding smallest sone is shown using the dotted lines. (d)
shows the four clusters discovered by DGRADE using the automatic model selection
described in (c).

sone for k = 4 is 62, which is the value used for the final clustering output
(for s = n) shown in Figure 5 (d). It is interesting to note that the densest
cluster (numbered 3 in Figure 5 (b)) gets merged with a nearby larger cluster
(numbered 1 in Figure 5 (b)) resulting in k = 4, which is quite good for this
completely parameterless, unsupervised setting.

190 J. Ghosh and G. Gupta

10 Experiments

10.1 Overview

Results in Section 10.4 show the effectiveness of BBC with Pressurization in find-
ing high-quality, robust results as compared with three other methods, against
three real and three synthetic datasets. Section 10.5 then presents the corre-
sponding results when using DGRADE to seed BBC. Although on some datasets
DGRADE gave good results by itself, more consistently, seeding BBC with the
centers found by DGRADE gave results that were significantly better than us-
ing either BBC or DGRADE separately, and generally better than even BBC
with Pressurization. Results suggest that it is also possible to combine all three:
BBC, Pressurization and DGRADE to achieve the best quality of clustering, and
confirm that in practice, DGRADE can estimate k automatically, and the deter-
ministic, high quality results generated are a good alternative to Pressurization
for biological datasets.

10.2 Datasets

We tested our algorithms on multiple real and synthetic datasets that are sum-
marized in Table 2.

Table 2. A summary of the datasets used. D is the distance function used for clustering
while C represents the number of classes for labeled datasets only. k represents the
number of clusters specified to the clustering methods that require it as an input, and
is only needed for BBC when testing without DGRADE. When seeding with DGRADE,
k output by DGRADE was used for all methods that required it as an input.

Dataset Source n d D k C
Lee Microarray 5,612 591 DP 9 NA
Gasch Array Microarray 173 6, 151 DP 12 12
Cleaned 20-NG Web documents 19,975 4,292 (1−Cosine Sim.) 6 6
Gauss-2 Synthetic 1,298 2 Sq. Euclidean 5 5
Gauss-10 Synthetic 2,600 10 Sq. Euclidean 5 5
Gauss-40 Synthetic 1,298 40 Sq. Euclidean 5 5

Real Data
A. Microarray Datasets: A microarray dataset can be represented by a matrix
that shows (suitably normalized) expression levels of genes (rows) across different
experiments/conditions (columns). Researchers are interested in clustering either
the rows, the columns, or simultaneously clustering both rows and columns, in
order to find similar genes, similar conditions, or subsets of genes with related
expressions across a subset of conditions, respectively [62, 60, 4]. For this paper,
we report results on clustering the rows of the Lee dataset, which was obtained
from [47], and consists of 591 gene-expression conditions on yeast obtained from

Bregman Bubble Clustering 191

the Stanford Microarray database [24] (http://genome-www5.stanford.edu/),
and also contains a Gold standard based on Gene Ontology (GO) annotations
(http://www.geneontology.org). The Gold standard contains 121,406 pairwise
links (out of a total of 15,744,466 gene pairs) between 5,612 genes in the Lee
data that are known to be functionally related. The Gold standard was gener-
ated using Gene Ontology biological process from level 6 through 10. The Gasch
dataset [21] consists of 6,151 genes of yeast Saccharomyces cervisiae respond-
ing to diverse environmental conditions over 173 microarray experiments. These
experiments were designed to measure the response of the yeast strain over var-
ious forms of stress such as temperature shock, osmotic shock, starvation and
exposure to various toxins. Each experiment is labeled with one of the 12 differ-
ent categories of experiments. For Gasch, we clustered the columns instead, for
three reasons: (1) we have good labels for experiments from [21], (2) the Gasch
Array dataset viewing the conditions as the objects to be clustered, provides a
high-dimensional biological testbed (6,151 dimensions), and (3) the 173 Gasch
Array experiments are already incorporated in the 591 conditions contained in
the Lee dataset, which we use for clustering genes.

B. Text Data: The 20-Newsgroup (20-NG) dataset is a popular dataset for
text classification [45], and is widely available on the web including the KDD
UCI repository (http://kdd.ics.uci.edu/). It consists of 20,000 Usenet articles
taken from 20 different newsgroup, 1,000 from each newsgroup. The 20 groups
can also be categorized into 6 high-level categories shown in Table 3, which are
then used as the class labels for evaluating the clustering algorithms. The 20-NG
data contains over 50,000 distinct words after removing punctuations, common
words such as articles, and stemming. Since we use the 20-NG data to evalu-
ate (unsupervised) clustering algorithms, we used an unsupervised approach for
selecting features; we selected 4,292 most frequent words (all words occurring
≥ 100 times over the 20,000 documents) as features.

Table 3. The 6 top-level classes (C) in the 20-Newsgroup data

C |C| Member newsgroups

Computers 4,959 comp.graphics, comp.os.ms-windows.misc,
comp.sys.ibm.pc.hardware,comp.sys.mac.hardware, comp.windows.x

Recreation 3,984 rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey

Science 3,989 sci.crypt, sci.electronics, sci.med, sci.space

Miscellaneous 988 misc.forsale

Talk 2,994 talk.politics.misc, talk.politics.guns, talk.politics.mideast

Religion 2,994 talk.religion.misc, alt.atheism, soc.religion.christian

Synthetic Data: These datasets are useful for verifying algorithms since the
true labels are known exactly. The Gauss-2 dataset was generated using 4 2-D
Gaussians of different variances (Figure 3) and a uniform distribution. Similar
datasets were generated with 5 Gaussians in 10-D and 40-D to produce Gauss-10
and Gauss-40 datasets.

192 J. Ghosh and G. Gupta

10.3 Evaluation Methodology

Having shown the value of the local search approach and seeding for the One
Class problem in [27], this paper presents results for the general case of finding
multiple dense clusters. Additional results for the One Class case can be found
in [28].

Evaluation Criteria: Evaluating clustering is a challenging problem even when
labeled data is available [65]. Depending upon the type of the labeled data, we
performed the following three different types of evaluations:

1. Adjusted Rand Index : Given a set of class labels U , and a set of cluster labels
V for a set of points X , Rand Index (RI) is computed as:

RI =
auv + au

auv + au + av + duv
(19)

where: auv represents the number of pairs of points (in X) that have the
same label in U and V, au represents the pairs of points that have the same
label in U but not in V , av represents the pairs of points that have the same
label in V but not in U , and duv represents the pairs of points that have
different labels both in U and V .
A problem with Rand Index is that the expected value for Rand Index of two
random partitions does not go to 0, but depends on a multitude of factors,
including the number of distinct labels in U and V , and the size of the sets,
(i.e. the number of data points being clustered). Adjusted Rand Index was
proposed by [35] as a normalized version of Rand Index that takes care of
this problem, and returns 1 for a perfect agreement between the class label
set U and the clustering label set V, and 0 when the clustering is as bad as
random assignments. The adjustment uses the following formula:

ARI =
RI − (ExpectedRI)

(MaximumRI)− (ExpectedRI)
(20)

Using a generalized hypergeometric model, [35] showed that the ARI com-
putation can be reduced to the following form:

ARI =

∑
i,j

(
ni,j

2

)− [
∑
i

(
ni·
2

)∑
j

(
n·j
2

)
]/

(
n
2

)

1
2 [

∑
i

(
ni·
2

)
+

∑
j

(
n·j
2

)
]− [

∑
i

(
ni·
2

)∑
j

(
n·j
2

)
]/

(
n
2

) (21)

where ni,j represents the number of data points that are in class i and
cluster j, ni· represents the number of data points in class i, n·j represents
the number of data points in cluster j.
ARI can be used on the Gasch Array, 20-NG and the synthetic datasets since
the true class-labels are available.

2. p-value: We use p-value to evaluate individual clusters of Yeast genes found
using BBC for the Lee dataset. Funspec (http://funspec.med.utoronto.ca/)
is a popular Yeast database query interface on the Web that computes clus-
ter p-values for individual clusters using the hypergeometric distribution,

Bregman Bubble Clustering 193

representing the probability that the intersection of a given list of genes
with any given functional category occurs by random chance. p− value is a
commonly used measure of individual cluster quality used by bioinformatics
researchers.

3. Overlap Lift : For evaluating the overall clustering quality, it is not possible
to use ARI to evaluate against the links in the Lee Gold standard. In general,
measuring overall clustering quality for genes is quite difficult since only an
incomplete and partially verified ground truth is known, such as the links in
the Lee Gold standard. We propose Overlap Lift as a measure of the statisti-
cal significance of our clustering results against the gold standard as follows:
a cluster containing w genes creates w(w − 1)/2 links between genes, since
every point within the cluster is linked to every other point. Therefore, k clus-
ters of size {wj}kj=1 would result in a total of lc =

∑k
j=1 wj(wj − 1)/2 links.

The fraction of pairs in the Gold standard that are linked flinked is known
(for example for Lee dataset flinked = 121, 406/15, 744, 466 = 0.007711). If
we construct a null hypothesis as randomly picking lc pairs out of n(n−1)/2
pairs in the Gold standard, we can expect lnull = flinkedlc pairs to be cor-
rectly linked. A good clustering should result in (a lot) more correctly linked
pairs than lnull. If ltrue is the number of correct links observed (which will
always be ≤ lc) in our clustering, then the Overlap Lift is computed as the
ratio ltrue

lnull
, which represents how many times more correct links are observed

as compared to random chance. A larger ratio implies better clustering.

Handling “don’t care” points in evaluations: All the evaluations are per-
formed across a range of coverage of the data; a coverage of s/n = 0.4 implies
40% of the points are in clusters while the remaining 60% are in the “don’t
care” or the background cluster. The points in the background or the “don’t
care” clusters are excluded from all evaluations. To keep the comparisons fair,
all methods are compared against each other only across the same coverage.

Evaluating Soft BBC: We tested Soft BBC using Gaussians as the exponential
mixture components. There are eight possible flavors of Soft BBC (Table 1)
depending upon the choice of the updatable parameters. We present results on
the Soft BBC implementation, flavor 6, i.e. with updatable, unequal variances
with a fixed α0. We also compared Soft BBC for Gaussians with the alternative
soft model called Mixture-6 (Section 7.4).

Hard Assignments for Soft BBC: To compare Soft BBC against BBC and
other hard assignment methods, on convergence, the points are assigned to the
mixture with the largest probability, i.e. to j = argmax

j=0→k
p(Yi = j|xi). The esti-

mation of p0 described in Section 4.5 results in approximately (n × α0) points
getting assigned to the background. In order to ensure that exactly (n − s)/n
points are assigned to the “don’t care” set, a post-processing is performed where
we: (1) compute pimax = maxkj=0(p(Yi = j|xi)) for each xi, (2) set p†0 to the
sth largest value in pimax[i]

n
i=1, (3) put all points below p†0 into the “don’t care”

194 J. Ghosh and G. Gupta

cluster, and assign rest to cluster j = argmax
j=1→k

p(Yi = j|xi). A similar conversion

was required for evaluating Mixture-6.

Comparison against other methods: We also compared our method with
Bregman Hard Clustering, Single Link Agglomerative clustering and DBSCAN.
Bregman Hard Clustering18 assigns every data point into a cluster. To be able
to compare it meaningfully with BBC, we picked s points closest to their re-
spective cluster representatives. This procedure was also used for Single Link
Agglomerative clustering. For the two DBSCAN parameters, we set MinPts to
4 as recommended by [20], while we searched for Eps that resulted in s points
in clusters. k is automatically estimated by DBSCAN while for all the other
methods and datasets, when evaluating BBC with Pressurization, k was set to
|C| (Table 2), except for the Lee dataset (where |C| is not known) where we set
k to 9.

All five methods use the same and appropriate distance measure that corre-
sponds to the D listed for each of the datasets in Table 2; Sq. Euclidean for the
synthetic Gaussian datasets, Pearson Distance for the gene-expression datasets,
and (1-Cosine Similarity) for the 20-Newsgroup data.

10.4 Results for BBC with Pressurization

For the lower dimensional datasets, both Soft and Hard BBC with Pressurization
perform extremely well, giving near-perfect results (ARI ≈ 1) for up to 40% cov-
erage on Gauss-10 data and an ARI between 0.8 and 0.9 for up to 40% coverage
on Gauss-2 data. As expected, both BBC and Soft BBC without Pressuriza-
tion tend to be a lot more sensitive to initialization, thus exhibiting noticeable
error-bars19. For Gauss-40 and all the real datasets, results are only shown for
Hard BBC with Pressurization (BBC-Press). This is because exponential mix-
ture models in general, including Bregman Soft Clustering, Mixture-6 and Soft
BBC, all suffer from an inherent problem that makes them impractical for high
dimensional datasets: there are rounding errors while estimating the mixture
membership probabilities, and these rounding errors worsen exponentially with
the dimensionality of the data d (e.g., for Gaussians, when L.H.S. of equation
17 is substituted for p(ψ,θ) in equation 6), so much so that the models often do
not work well beyond d = 10. However, the main purpose of designing Soft BBC
was to show that a fundamental generative model lies behind BBC (Section 6).

On the Gauss-40 dataset, BBC-Press continues to give an ARI ≈ 1 for up
to 40% coverage (Figure 6(c)). These results are impressive given that the ARI
was obtained as averages of multiple runs with random seeding. The improve-
ment against labeled data using BBC Press as compared to BBC is also quite
remarkable for the two micro-array datasets Gasch Array and Lee, and a similar

18 Bregman Hard Clustering reduces to K-Means when Dφ is Sq. Euclidean distance,
which is the distance measure used for the Gaussian datasets (Table 2).

19 Note that the error bars were plotted on all the local search algorithms, but are
often too small to be visible.

Bregman Bubble Clustering 195

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of data clustered

A
R

I

BBC−Press
BBC
Mixture−6
Soft BBC
Soft BBC−Press

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fraction of data clustered

A
R

I

BBC−Press
Breg. Hard
SL−Agg
DBSCAN

(a) Gauss-2 (d) Gauss-2

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of data clustered

A
R

I

BBC−Press
BBC
Mixture−6
Soft BBC
Soft BBC−Press

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fraction of data clustered

A
R

I
BBC−Press
Breg. Hard
SL−Agg
DBSCAN

(b) Gauss-10 (e) Gauss-10

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fraction of data clustered

A
R

I

BBC−Press
BBC

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fraction of data clustered

A
R

I

BBC−Press
Breg. Hard
SL−Agg
DBSCAN

(c) Gauss-40 (f) Gauss-40

Fig. 6. Evaluation on synthetic Gaussian data of increasing dimensionality using ARI:
(a), (b) and (c) demonstrate the effectiveness of Pressurization. (d), (e) and (f) show
effectiveness of BBC-Press as compared to three other methods: Bregman Hard Clus-
tering, Single Link Agglomerative and DBSCAN. Error bars of one std. deviation are
shown (but are sometimes too small to be visible) for non-deterministic methods (i.e.
excluding DBSCAN and Agglomerative) for which ARI is plotted as the average over
100 trials with random initialization.

196 J. Ghosh and G. Gupta

trend is seen for 20-Newsgroup as well. This indicates that Pressurization works
well on a variety of real datasets; from very high dimensional gene experiments
(Figure 7(a)) where most of the data is relevant, discovering small number of
relevant gene clusters on high-dimensional microarray data (7 (e)), to clustering
large and high-dimensional documents (7 (c)).

On both artificial and real datasets (figures 6, 7), DBSCAN, Single Link Ag-
glomerative and Bregman Hard Clustering all perform much worse than BBC-
Press in general, and especially when clustering a part of the data. Note that
these results are based on labels that were not used for clustering; using ARI
on Gaussians, Gasch Array and the 20-Newsgroup data, and using Overlap Lift
on Lee, and are therefore independent of the clustering methodology. Figure
7(f) shows that (1) BBC-Press not only beats other methods by a wide margin
but also shows high enrichment of links for low coverages (over 6 times for 5 %
coverage), and (2) Single Link Agglomerative clustering does not work well for
clustering genes and gives results not much better than random. On all datasets,
Single Link tends to perform the worst; one explanation might be its inability
to handle noisy data. For 20-Newsgroup, the ARI of Single Link is not clearly
visible although it has been plotted because it hovers close to 0 for all cov-
erages. In fact, for some situations (Figure 6(d) to (f)), DBSCAN and Single
Link Agglomerative give slightly worse than random performance resulting in
ARI values that are slightly below 0. The performance difference between our
method (BBC-Press) and the three other methods is quite significant on all the
six datasets, given the small error bars. Additionally, if we were to pick the
minimum-cost solution out of multiple trials for the local search methods, the
differences in the performance between BBC-Press vs. DBSCAN and Single Link
become even more substantial.

Selecting size and number of dense clusters in the absence of
DGRADE seeding: In BBC-Press, s controls the number of data points in
dense clusters. The dense clusters were invariably very pure when using BBC-
Press, with near-perfect clusters on the Gaussian data for s of up to 40% of
n, while on the Gasch Array dataset the performance peaks at a coverage of
around 0.3 but shows a general decline after that. The rapid increase in cluster
quality with decreasing s is more pronounced in BBC-Press than in the other
methods, and shows that on these datasets, dense regions are indeed highly cor-
related with the class labels. In practice, selecting dense clusters with BBC-Press
requires choosing an appropriate s and k. If a small amount of labeled data is
available, the best k can be estimated for a fixed s using an approach such as
PAC-MDL [5], while a reasonable s can be picked by applying BBC-Press on
a range of s and picking the “knee” (e.g. Figures 6(a),(b),(c) and 7(b) show a
sudden decline in ARI near s = 0.4× n). Alternatively, in many problems k can
be an input, while s simply has to be a small threshold (e.g. for finding a small
number of relevant web documents or a small number of relevant genes).

Evaluating individual clusters: Although the results based on ARI and Over-
lap Lift show the effectiveness of our method, visual verification serves as another

Bregman Bubble Clustering 197

0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fraction of data clustered

A
R

I

BBC−Press
BBC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fraction of data clustered

A
R

I

BBC−Press
Breg. Hard
SL−Agg
DBSCAN

(a) Gasch Array (b) Gasch Array

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fraction of data clustered

A
R

I

BBC−Press
BBC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fraction of data clustered

A
R

I
BBC−Press
Breg. Hard
SL−Agg
DBSCAN

(c) Cleaned 20-Newsgroup (d) Cleaned 20-Newsgroup

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Fraction of data clustered

O
ve

rla
p

Li
ft

BBC−Press
BBC

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Fraction of data clustered

O
ve

rla
p

Li
ft

BBC−Press
Breg. Hard
SL−Agg
DBSCAN

(e) Lee (f) Lee

Fig. 7. Evaluation of BBC-Press on real data using ARI for Gasch Array and Cleaned
20-NG and Overlap Lift for Lee, as compared to BBC, Bregman Hard Clustering,
Single Link Agglomerative, and DBSCAN. Local search (i.e. excluding DBSCAN and
Agglomerative) results were averaged over 20 trials for Gasch Array and Cleaned 20-
NG, and over 10 trials for Lee. The corresponding one std. dev. error-bars are plotted,
but are sometimes too small to be visible.

198 J. Ghosh and G. Gupta

independent validation that the clusters are not only statistically significant but
also useful in practice. For the Gauss-2 dataset, it is easy to verify the quality
of the clusters visually (Figure 3(b)). For the Gasch Array clustering, most clus-
ters were generally very pure using BBC-Press for lower coverages. For example,
when only 70 out of 173 experiments are clustered by repeating BBC-Press 20
times and picking the lowest cost solution, the average ARI is around 0.6 over
12 classes. Some clusters are even purer, for example, one of the clusters con-
tained 12 out of 13 points belonging to the class “YPD”20. Similarly, for the Lee
dataset, when clustering only 600 genes into 30 clusters and pruning the rest,
we verified a high purity cluster using FunSpec; 10 out of 14 genes in one of the
clusters belonged to the functional category “cytoplasmic and nuclear degrada-
tion” (p-value of < 10−14). Many other gene clusters on the Lee dataset also
had low p-values for some of the categories recovered by FunSpec.

10.5 Results on BBC with DGRADE

In an alternative setting where DGRADE is used to seed BBC, we compared
both DGRADE and BBC seeded with DGRADE with Bregman Hard Clustering,
Single Link Agglomerative clustering and DBSCAN. The experimental setup
and evaluation was similar to when comparing BBC with Pressurization against
the three other methods, except that for a given coverage, k was automatically
determined by DGRADE, and this k was then used as input for methods that
require it: BBC, BBC-Press, Bregman Hard and Single Link. For DBSCAN,
which determines k internally, as before, we set MinPts to 4 as recommended
by [20], while we searched for Eps that resulted in s points in clusters. The
input parameter sone required by DGRADE was determined automatically by
using the approach described in Section 9. DGRADE then uses the same sone for
smaller coverages, which can result in a smaller k (Figure 9) as the lesser dense
clusters become “don’t care” points, and the corresponding k is then used as
input to all the algorithms requiring it. When seeding (Hard/Soft/Pressurized)
BBC with the output of DGRADE, the cluster centroids output by DGRADE
were used as the seed/initial centroids. We now present results on DGRADE
when it is used for seeding BBC, on two real and three synthetic datasets.

Ability to estimate sone automatically: In the table in Figure 8(a), the
first column shows the values of sone determined automatically using one of
the three methods described in Section 9, the second column shows the number
of clusters discovered when clustering all of the data (s = n), while the third
column shows the user input, if any, required by DGRADE. For all the datasets
except Lee, k was known and was used to determine sone automatically. For the
Gauss-2 dataset, when both k and sone were determined automatically using the
maximum cluster stability criteria, we obtained k = 4 (Figure 5(c) and (d)). For
the Lee dataset, by using a cluster stability threshold > 1 we obtained k = 9 and
sone = 10. Figure 8 (b) shows the process of automatically determining both k
and sone for the Lee dataset; interestingly, k = 9 also had the maximum stability
20 Which represents one of the class of experiments set up by [21].

Bregman Bubble Clustering 199

Dataset sone k, when s = n User input
Gasch Array 4 11 a k = 12

Lee 10 9 stability > 1 b

Gauss-2 62 4 None c

Gauss-2 57 5 k = 5 d

Gauss-10 104 5 k = 5
Gauss-40 57 5 k = 5

a Closest possible k to 12 found when sone = 3. For sone = 3,
k increases to 14.

b See plot (b) in this figure.
c Figure 5(c) and (d)
d Figure 5(b)

(a)

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

s
one

N
o.

 o
f c

lu
st

er
s

fo
un

d
(k

)

k=9

s
one

=13

(b)

Fig. 8. (a) Automatically determined sone for DGRADE on various datasets, using the
approach described in Section 9. (b) For the Lee data, selecting the largest k (smallest
sone) with stability > 1 gives a stability = 3, sone = 13 and k = 9.

of 3 in the range 2 ≤ sone ≤ 20, for which k ranged from 948 (for sone = 2) to 5
(for sone = 20).

Using cluster centroids from DGRADE for seeding and selecting k,
for variable coverages: For a constant sone, the results of DGRADE are not
only deterministic for varying values of s, but also have another useful property
that follows directly from Algorithm 4; using a smaller s gives clusters that are
guaranteed to be subsets of the DGRADE clustering with a larger s. This effect
can also be seen in Figure 5(b) vs. 5(a), when s was reduced from 1298 to 750.
Eventually, some of the less dense clusters disappear completely resulting in a
decline in k returned by DGRADE . However, the remaining centroids output
by DGRADE remain unchanged. The decline in k with s can be seen for the
5 different datasets in Figure 9, and provides us with a meaningful method for
selecting centroids and k for seeding BBC (for varying fraction of data clustered),
as compared with other seeding methods that require k as an input. The k

200 J. Ghosh and G. Gupta

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

Coverage

D
G

R
A

D
E

 k

Dataset cov.(s/n) vs. k

Min. Max.

s/n k s/n k

Gasch Array 0.1 3 1.0 11
Lee 0.05 6 1.0 9
Gauss-10 0.1 3 1.0 5
Gauss-40 0.1 4 1.0 5

(a) Gauss-2 (b) Other datasets

Fig. 9. (a) On Gauss-2 data, the number of clusters k found by DGRADE declines
asymptotically with the fraction of densest data clustered (s/n). (b) A summary of
a similar trend on the other datasets. The maximum k corresponds to s = n, and
the minimum k corresponds to the smallest coverage. sone was held constant for all
coverages, and corresponded to the automatically determined values of 4,10, 57, 104,
and 57 for the Gasch, Lee, Gauss-2, Gauss-10 and Gauss-40 datasets respectively.

corresponding to those shown in Figure 9 for various coverages were used as
inputs to Bregman Hard and Single Link Agglomerative Clustering. Also, the
corresponding centroids output by DGRADE for various coverages were used as
inputs for seeding any of the forms of BBC (Hard/Soft/Pressurized).

DGRADE seeding works well with BBC: Figure 10 and 11 show results
for BBC seeded with DGRADE as compared to the other alternatives; BBC
with Pressurization and the other three benchmark algorithms. For the Gauss-2
dataset, when DGRADE was used to seed Soft BBC, the results were compa-
rable to that of Soft BBC with Pressurization (Figure 10(b)), while the results
of DGRADE as a clustering algorithm by itself were quite good (Figure 10(a)).
On the Gauss-40 dataset (figures 10(e) and (f)), although DGRADE does not
perform well by itself, when used for seeding BBC-Press, the combination gives
results that are superior to all other algorithms, and beats even BBC-Press; an
ARI close to 1 is observed for coverages as high as 0.6 as compared to only until
0.4 for BBC-Press. Similar trends were seen on the Gauss-10 (figures 10(c) and
(d)) dataset. One possibility is that the global search bias behind DGRADE
provides additional advantages to a robust local search algorithm such as BBC-
Press, and especially on higher-dimensional datasets. This agrees with the intu-
ition that the local search problems should become more severe with increasing
dimensionality of the data (Gauss-40 vs. Gauss-2), and is similar to the boost
in performance observed when DGRADE-style seeding is combined with local
search for the One Class scenario [27, 28]. This phenomenon of DGRADE and
BBC-Press improving results as a combination is also observed on the really

Bregman Bubble Clustering 201

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of data clustered

A
R

I

Soft BBC
DGRADE
DGRADE−Soft−BBC

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fraction of data clustered

A
R

I

Breg. Hard
Soft BBC−Press
SL−Agg
DBSCAN
DGRADE−Soft−BBC

(a) Gauss-2 (b) Gauss-2

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of data clustered

A
R

I

BBC−Press
BBC
DGRADE
DGRADE−BBC

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fraction of data clustered

A
R

I

Breg. Hard
Soft BBC−Press
SL−Agg
DBSCAN
DGRADE−Soft−BBC

(c) Gauss-10 (d) Gauss-10

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of data clustered

A
R

I BBC−Press

BBC

DGRADE

DGRADE−BBC

DGRADE−BBC−Press

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fraction of data clustered

A
R

I

Breg. Hard
SL−Agg
DBSCAN
DGRADE−BBC−Press

(e) Gauss-40 (f) Gauss-40

Fig. 10. Evaluation of BBC seeded with DGRADE using the synthetic Gaussian
datasets: as compared to BBC with seeding, and against three other methods. Er-
ror bars of one std. deviation are shown (but are sometimes too small to be visible)
for non-deterministic methods (i.e. all except DBSCAN and Agglomerative) for which
ARI is plotted as the average over 100 trials with random initialization. Note: These
experiments were setup differently from those without DGRADE; the k output by
DGRADE was used as input to all algorithms except DBSCAN.

202 J. Ghosh and G. Gupta

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fraction of data clustered

A
R

I

BBC−Press
BBC
DGRADE
DGRADE−BBC
DGRADE−BBC−Press

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fraction of data clustered

A
R

I

Breg. Hard
SL−Agg
DBSCAN
DGRADE−BBC−Press

(a) Gasch Array (b) Gasch Array

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

Fraction of data clustered

O
ve

rla
p

Li
ft

BBC−Press
BBC
DGRADE
DGRADE−BBC
DGRADE−BBC−Press

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Fraction of data clustered

O
ve

rla
p

Li
ft

Breg. Hard
SL−Agg
DBSCAN
DGRADE−BBC−Press

(e) Lee (f) Lee

Fig. 11. Evaluation of BBC seeded with DGRADE on two real datasets as compared to
BBC without seeding, and against the three other methods. Performance was measured
using ARI for Gasch Array and using Overlap Lift for the Lee dataset. Results for
Bregman Hard clustering and BBC without seeding were averaged over 20 and 10
trials for Gasch and Lee respectively, and the corresponding one std. dev. error-bars
are plotted (but are sometimes too small to be visible). Note: These experiments were
setup differently from those without DGRADE; the k output by DGRADE was used
as input to all algorithms except DBSCAN.

high-dimensional real datasets- the Gasch Array (figures 11(a) and (b)). How-
ever, this relationship is only seen for the lowest coverage of 0.05 on the Lee
dataset (Figure 11(e)), perhaps because the fraction of genes that are usually
dense when clustering genes is usually very small.

11 Concluding Remarks

Bregman Bubble Clustering extends the notion of “density-based clustering” to
a large class of divergence measures, and is perhaps the first that uses a lo-
cal search/parametric approach in such settings. The availability of appropriate

Bregman Bubble Clustering 203

Bregman Divergences21 for a variety of problem domains where finding dense
clusters is important, opens density-based clustering to many new domains.
Moreover, the extension of BBC to Pearson Correlation (Pearson Distance) is
particularly helpful for analyzing several biological datasets. Bregman Bubble
Clustering can also be thought of as a conceptual bridge between partitional
clustering algorithms and the problem of One Class Clustering. The Soft BBC
model shows that BBC arises out of a more fundamental model involving a
mixture of exponentials and a uniform background.

Empirical results show that BBC-Press gives good results on a variety of
problems involving both low and high-dimensional feature spaces, often outper-
forming other alternatives by large margins. DGRADE provides effective seeding
for BBC and BBC-Press, and provides an additional mechanism for indicating
the appropriate number of dense clusters that one should seek. Overall, the com-
bination of the three components; BBC, Pressurization, and DGRADE provides
a robust framework for finding dense clusters with several key properties: deter-
ministic results, reasonable scalability to large, high-dimensional datasets, and
applicability to a wide variety of problem domains.

There are several properties of the Bregman Bubble Clustering framework
that can be used to further expand the robustness and quality of clustering. We
conclude this chapter by outlining two promising extensions:

Bregman Bubble Co-clustering: A generalized framework called Bregman
Co-clustering was proposed by [54] that unifies many different checkerboard co-
clustering algorithms, where the clusters are defined not just on the rows (data
objects) but also simultaneously on the columns (features) when the dataset is
viewed as a matrix. If one rearranges the rows and columns of this matrix such
that rows/cols belonging to the same cluster are contiguous, then the permuted
matrix shows checkerboard pattern of non-overlapping co-clusters. However, of-
ten one desires to co-cluster only parts of the data, and also to allow for co-
clusters that overlap. For example, genes’ interactions in gene-expression data
are often overlapping. Such data also are typically highly skewed - the number of
experiments is typically a few dozens or hundreds, while the number of genes is
at least an order of magnitude more. For such data, it is better to prune a large
number of genes before applying co-clustering. Since Bregman Bubble Cluster-
ing is a generalization of Bregman Clustering, and since Bregman Clustering is
a component/step in Bregman Co-clustering, it is possible to modify Bregman
Co-clustering to use Bregman Bubble Clustering, and to obtain a co-clustering
algorithm that can find dense co-clusters. Such an algorithm also makes it pos-
sible to find overlapping dense co-clusters. This approach has been successfully
applied to gene-expression data with results superior to a host of alternatives
[15, 23].

21 E.g. Itakura-Saito for voice identification, Mahalanobis distance for digital Mam-
mography, and KL-divergence for identifying most relevant documents.

204 J. Ghosh and G. Gupta

Online Bregman Bubbles for detecting non-stationary dense clusters:
OC-IB (Section 2.3) can be considered as a randomized equivalent of BBC-
Q for k = 1 (Section 3.5). It is also possible to derive a k-class randomized
version of the algorithm for BBC-Q or BBC-S (Section 3.4 and 3.5). This could
be useful in online settings, e.g. for modeling dense clusters in scenarios where
there is substantial concept drift, i.e. the distribution that the data is coming
from is not stationary, but drifting gradually. With an online version of BBC, the
dense cluster centers could move as the modes in the data shift. One application
could be for modeling highly coherent sets of customers in market-basket data.
Such customer groupings tend to shift slowly over time [30]. Another application
could be to track rare but recurring non-stationary anomalies; as old anomalies
stop appearing or shift, the online Bregman Bubble model could adapt quickly
because of its localized nature. One area where such anomalous data tends to
shift rather than randomly appear is in online fraud, where lots of very similar
fraudulent content originates from a single individual, and the fraudsters tend
to modify keywords only slightly to try to evade the detection system. Using
previous and newly identified fraudulent data points as cluster centers, such
similar but constantly drifting patterns could perhaps be better tracked using
online BBC. Yet another application could be to follow visual movements of
dense patterns In low-dimensional data: such as “blobs” in infra-red images of
objects in a military, wildlife, or an oceanic setting, or as a part of an airport
security system at an airport.

Acknowledgments. This research was supported by NSF grants IIS-0713142
and IIS-1017614. We are also grateful to Srujana Merugu and Arindam Banerjee
for some useful discussions.

References

1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points
to identify the clustering structure. In: Proc. ACM SIGMOD, pp. 49–60 (1999)

2. Arabie, P., Carroll, J.D., DeSarbo, W., Wind, J.: Overlapping clustering: A new
method for product positioning. Journal of Marketing Research 18(3), 317–319
(1981)

3. Banerjee, A., Merugu, S., Dhillon, I., Ghosh, J.: Clustering with Bregman diver-
gences. JMLR 6, 1705–1749 (2005)

4. Banerjee, A., Krumpelman, C., Ghosh, J., Basu, S., Mooney, R.J.: Model-based
overlapping clustering. In: Proc. KDD 2005, Chicago, Illinois, USA, pp. 532–537
(2005)

5. Banerjee, A., Langford, J.: An objective evaluation criterion for clustering. In:
KDD 2004, Seattle, Washington, USA (August 2004)

6. Battle, A., Segal, E., Koller, D.: Probabilistic discovery of overlapping cellular
processes and their regulation. In: Eighth Annual International Conference on Re-
search in Computational Molecular Biology (RECOMB 2004) (April 2004)

7. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-Tree: An index structure for high-
dimensional data. In: Proceedings of the 22nd International Conference on Very
Large Databases, pp. 28–39. Morgan Kaufmann Publishers, San Francisco (1996)

Bregman Bubble Clustering 205

8. Buzo, A., Gray, A.H., Gray, R.M., Markel, J.D.: Speech coding based on vec-
tor quantization. IEEE Transactions on Accoustics, Speech and Signal Process-
ing 28(5), 562–574 (1980)

9. Casella, G., Robert, C.P., Wells, M.T.: Mixture models, latent variables and parti-
tioned importance sampling. Technical Report, RePEc:fth:inseep:2000-03, Institut
National de la Statistique et des Etudes Economiques (2003),
http://ideas.repec.org/p/fth/inseep/2000-03.html

10. Chakaravathy, S.V., Ghosh, J.: Scale based clustering using a radial basis function
network. IEEE Transactions on Neural Networks 2(5), 1250–1261 (1996)

11. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal.
Mach. Intell. 17(8), 790–799 (1995)

12. Crammer, K., Chechik, G.: A needle in a haystack: Local one-class optimization.
In: ICML 2004, Banff, Alberta, Canada (2004)

13. Crammer, K., Singer, Y.: Learning algorithms for enclosing points in Bregmanian
spheres. In: COLT 2003, pp. 388–402 (2003)

14. Deodhar, M., Ghosh, J.: Simultaneous co-clustering and modeling of market data.
In: Workshop for Data Mining in Marketing (DMM 2007). IEEE Computer Society
Press, Leipzig (2007)

15. Deodhar, M., Ghosh, J., Gupta, G., Cho, H., Dhillon, I.: A scalable framework for
discovering coherent co-clusters in noisy data. In: Bottou, L., Littman, M. (eds.)
Proceedings of the 26th International Conference on Machine Learning, Omnipress,
Montreal, pp. 241–248 (June 2009)

16. Dettling, M., Bühlmann, P.: Supervised clustering of genes. Genome Biol. 3(12)
(2002)

17. Dhillon, I., Mallela, S., Kumar, R.: A divisive information-theoretic feature clus-
tering algorithm for text classification. JMLR 3, 1265–1287 (2003)

18. Dhillon, I.S., Guan, Y., Kogan, J.: Refining clusters in high-dimensional text data.
In: 2nd SIAM International Conference on Data Mining (Workshop on Clustering
High-Dimensional Data and its Applications) (April 2002)

19. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using
clustering. Machine Learning 42(1-2), 143–175 (2001)

20. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Proc. KDD 1996, pp.
226–231 (1996)

21. Gasch, A.P., et al.: Genomic expression programs in the response of yeast cells to
environmental changes. Mol. Bio. of the Cell 11(3), 4241–4257 (2000)

22. Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimen-
sions: A texture classification example. In: ICCV 2003: Proceedings of the Ninth
IEEE International Conference on Computer Vision. pp. 456–463. IEEE Computer
Society, Washington, DC, USA (2003)

23. Ghosh, J., Deodhar, M., Gupta, G.: Detection of Dense Co-clusters in Large, Noisy
Datasets. In: Wang, P.S.P. (ed.) Pattern Recognition and Machine Vision (in mem-
ory of Professor King-Sun Fu), pp. 3–18. River Publishers, Aalborg (2010)

24. Gollub, J., et al.: The Stanford Microarray Database: data access and quality
assessment tools. Nucleic Acids Res. 31, 94–96 (2003)

25. Guha, S., Rastogi, R., Shim, K.: Rock: A robust clustering algorithm for categor-
ical attributes. In: 15th International Conference on Data Engineering, Sydney,
Australia, p. 512 (1999)

26. Gupta, G.: Robust methods for locating multiple dense regions in complex datasets.
PhD Thesis, University of Texas at Austin (December 2006)

206 J. Ghosh and G. Gupta

27. Gupta, G., Ghosh, J.: Robust one-class clustering using hybrid global and local
search. In: Proc. ICML 2005, Bonn, Germany, pp. 273–280 (August 2005)

28. Gupta, G., Ghosh, J.: Bregman Bubble Clustering: A robust framework for mining
dense clusters. Tech Report, Dept. of Elec. & Comp. Engineering, University of
Texas at Austin. IDEAL-TR04 (September 2006),
http://www.lans.ece.utexas.edu/techreps.html

29. Gupta, G., Liu, A., Ghosh, J.: Automated Hierarchical Density Shaving: A robust,
automated clustering and visualization framework for large biological datasets.
IEEE Trans. On Comp. Bio. and Bioinformatics (TCBB) 7(2), 223–237 (2010)

30. Gupta, G.K.: Modeling Customer Dynamics Using Motion Estimation in A Value
Based Cluster Space for Large Retail Data-sets. Master’s thesis, University of Texas
at Austin (August 2000)

31. Gupta, G.K., Ghosh, J.: Detecting seasonal trends and cluster motion visualization
for very high dimensional transactional data. In: Society for Industrial and Applied
Mathematics (First International SIAM Conference on Data Mining (SDM 2001))
(April 2001)

32. Gupta, G.K., Ghosh, J.: Value Balanced Agglomerative Connectivity Cluster-
ing. In: SPIE conference on Data Mining and Knowledge Discovery III, Orlando,
Florida. SPIE Proc. vol. 4384, pp. 6–15 (April 2001)

33. Hastie, T., et al.: Gene shaving as a method for identifying distinct sets of genes
with similar expression patterns. Genome Biology 1, 1–21 (2000)

34. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm
for mapping parallel computations. SIAM Journal on Scientific Computing 16(2),
452–469 (1995)

35. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification, 193–218
(1985)

36. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood
Cliffs (1988)

37. Jiang, D., Pei, J., Ramanathan, M., Tang, C., Zhang, A.: Mining coherent gene
clusters from gene-sample-time microarray data. In: KDD 2004, Seattle, WA, USA,
pp. 430–439 (2004)

38. Jiang, D., Pei, J., Zhang, A.: DHC: A density-based hierarchical clustering method
for time series gene expression data. In: BIBE 2003, p. 393. IEEE Comp. Soc.,
Washington, DC, USA (2003)

39. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254
(1967)

40. Judd, A., Hovland, M.: Seabed Fluid Flow: The Impact of Geology, Biology and
the Marine Environment. Cambridge University Press, Cambridge (2007)

41. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal of Scientific Computing 20(1), 359–392 (1998)

42. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph par-
titioning: Applications in VLSI domain. In: Design and Automation Conference
(1997)

43. Kearns, M., Mansour, Y., Ng, A.Y.: An information-theoretic analysis of hard and
soft assignment methods for clustering. In: Proceedings of the Thirteenth Con-
ference on Uncertainty in Artificial Intelligence, pp. 282–293. AAAI, Menlo Park
(1997)

44. Kriegel, H.P., Pfeifle, M., Pötke, M., Seidl, T.: The paradigm of relational indexing:
A survey. In: BTW. LNI, vol. 26. GI (2003)

45. Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the Twelfth
International Conference on Machine Learning, pp. 331–339 (1995)

Bregman Bubble Clustering 207

46. Lazzeroni, L., Owen, A.B.: Plaid models for gene expression data. Statistica
Sinica 12(1), 61–86 (2002)

47. Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M.: A probabilistic functional network
of yeast genes. Science 306, 1555–1558 (2004)

48. Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE
Transactions on Communications 28(1), 84–95 (1980)

49. Linden, G., Smith, B., York, J.: Amazon. com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)

50. Long, B., Zhang, Z.M., Wu, X., Yu, P.S.: Relational clustering by symmetric convex
coding. In: ICML 2007, pp. 569–576. ACM, New York (2007)

51. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–297 (1967)

52. Mansson, R., Tsapogas, P., Akerlund, M., et al.: Pearson correlation analysis of
microarray data allows for the identification of genetic targets for early b-cell factor.
J. Biol. Chem. 279(17), 17905–17913 (2004)

53. McGuire, A.M., Church, G.M.: Predicting regulons and their cis-regulatory motifs
by comparative genomics. Nucleic Acids Research 28(22), 4523–4530 (2000)

54. Merugu, S.: Privacy-preserving distributed learning using generative models. PhD
Thesis, The University of Texas at Austin (August 2006)

55. Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse,
and other variants. In: Jordan, M.I. (ed.) Learning in Graphical Models, Kluwer,
Dordrecht (1998),
http://www.cs.toronto.edu/char126radfordem.abstract.html

56. Pietra, S.D., Pietra, V.D., Lafferty, J.: Duality and auxiliary functions for Breg-
man distances. Technical Report CMU-CS-01-109, School of Computer Science.
Carnegie Mellon University (2001)

57. Schmid, C., Sengstag, T., Bucher, P., Delorenzi, M.: MADAP, a flexible clustering
tool for the interpretation of one-dimensional genome annotation data. Nucleic
Acids Res., W201–W205 (2007)

58. Schölkopf, B., Burges, C., Vapnik, V.: Extracting support data for a given task.
In: KDD. AAAI Press, Menlo Park (1995)

59. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.S., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Computation 13(7),
1443–1471 (2001)

60. Segal, E., Battle, A., Koller, D.: Decomposing gene expression into cellular pro-
cesses. In: 8th Pacific Symposium on Biocomputing (PSB), Kaua’i (January 2003)

61. Sharan, R., Shamir, R.: Click: A clustering algorithm with applications to gene
expression analysis. In: Proc. 8th ISMB, pp. 307–316 (2000)

62. Slonim, N., Atwal, G.S., Tkacik, G., Bialek, W.: Information-based clustering.
PNAS 102(51), 18297–18302 (2005)

63. Strehl, A., Ghosh, J.: Value-based customer grouping from large retail data-sets.
In: SPIE Conference on Data Mining and Knowledge Discovery: Theory, Tools,
and Technology II, Orlando, Florida, USA, April 24-25, vol. 4057, pp. 33–42. SPIE
(2000)

64. Strehl, A., Ghosh, J.: Relationship-based clustering and visualization for high-
dimensional data mining. INFORMS Journal on Computing 15(2), 208–230 (2003)

65. Strehl, A., Ghosh, J., Mooney, R.J.: Impact of similarity measures on web-page
clustering. In: AAAI Workshop on AI for Web Search (AAAI 2000), pp. 58–64.
AAAI/MIT Press (July 2000)

208 J. Ghosh and G. Gupta

66. Tax, D., Duin, R.: Data domain description using support vectors. In: Proceedings
of the ESANN 1999, pp. 251–256 (1999)

67. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

68. Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Net-
works 11(2), 271–282 (1998)

69. Wedel, M., Steenkamp, J.: A clusterwise regression method for simultaneous fuzzy
market structuring and benefit segmentation. Journal of Marketing Research, 385–
396 (1991)

70. Wishart, D.: Mode analysis: A generalization of nearest neighbour which reduces
chaining effects. In: Proceedings of the Colloquium in Numerical Taxonomy, pp.
282–308. Academic Press, University of St. Andrews, Fife, Scotland (1968)

71. Yun, C.H., Chuang, K.T., Chen, M.S.: An efficient clustering algorithm for market
basket data based on small large ratios. In: Computer Software and Applications
Conference 2001, pp. 505–510 (2001)

72. Zhong, S.: Efficient streaming text clustering. Special issue IJCNN 2005: Neural
Networks 18(5-6), 790–798 (2005)

Chapter 8

DepMiner: A Method and a System for the Extraction of
Significant Dependencies

Rosa Meo1 and Leonardo D’Ambrosi2

1 University of Torino, Italy
2 Regional Agency for Health Care Services - A.Re.S.S. Piemonte, Italy

Abstract. We propose DepMiner, a method implementing a simple but effec-
tive model for the evaluation of itemsets, and in general for the evaluation of the
dependencies between the values assumed by a set of variables on a domain of
finite values. This method is based on Δ, the departure of the probability of an
observed event from a referential probability of the same event. The observed
probability is the probability that the variables assume in the database given val-
ues; the referential probability, is the probability of the same event estimated in
the condition of maximum entropy.

DepMiner is able to distinguish between dependencies among the variables
intrinsic to the itemset and dependencies “inherited” from the subsets: thus it
is suitable to evaluate the utility of an itemset w.r.t. its subsets. The method is
powerful: at the same time it detects significant positive dependencies as well as
negative ones suitable to identify rare itemsets. Since Δ is anti-monotonic it can
be embedded efficiently in algorithms. The system returns itemsets ranked by Δ
and presents the histogram of Δ distribution. Parameters that govern the method,
such as minimum support for itemsets and thresholds of Δ are automatically
determined by the system. The system uses the thresholds for Δ to identify the
statistically significant itemsets. Thus it succeeds to reduce the volume of results
more then competitive methods.

1 Introduction

In statistics, machine learning and data mining the problem of the determination of set
of variables whose values are correlated represents an important knowledge for the user
in many fields such as in feature selection, database design and schema reverse en-
gineering, market basket analysis, information retrieval, machine translation, biology,
etc. Often in the scientific literature, the study of the dependence between variables is
limited to pairs [9,19]. Much previous research focused on finding correlated pairs but
finding correlations among more than two variables is essential for problems in many
commercial and sociological studies (e.g., for collaborations and interaction networks),
medical and biological (e.g., interaction among drugs and proteins) and scientific do-
mains. Thus, instead of correlated items we should find correlated itemsets in which all
items are correlated with each other.

In practical cases, often it happens that the set of returned itemsets is large and much
of the information is redundant because many itemsets are returned together with many

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 209–222.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

210 R. Meo and L. D’Ambrosi

of their subsets. The attempt to reduce the redundancy in the result set answers to two
major challenges in frequent-pattern mining: the first is to reduce the often overwhelm-
ing size of the mining results and the other is to eliminate redundancy in the information
content and the overlapping between the itemsets.

Deciding which itemsets are redundant is not easy and straightforward. It might de-
pend on the applications. For instance, the inclusion in the set of more itemsets with some
common items could be acceptable because the itemsets might have different meaning.
Instead, the inclusion in the result of both subsets and their supersets is not acceptable if
the supersets do not add new information to the information carried by the subsets. In lit-
erature, redundant itemsets are detected in many different and sometimes opposite ways.
For instance, [25] considers the correlation among the items as strong only when all the
items are considered together and when removing any items greatly reduces the correla-
tion. Therefore, the subsets of these itemsets must have instead a weak correlation. On
the opposite side, [5] considers interesting an itemset if all its subsets are closely related
to all other subsets, and no irrelevant items can be removed. This kind of approach is
often adopted in feature selection by step-wise, forward methods [6,12].

In data mining there exist computationally efficient methods to discover significant
dependencies and correlations among the items of a frequent pattern [1,3,16]. In order
to determine the dependencies in k-itemsets with k > 2, either they make the multi-
way independence assumption or they evaluate the contribution to the overall itemset
of each variable separately [7,23,25]. The difficulty stems from the fact that there is
not an easy way to determine a referential probability of an itemset I that represents
a condition of independence among the subsets if we do not suppose independence
among all the single variables in I . But the multi-way independence condition gives a
problem: according to this definition of independence, if a dependence already exists in
a subset of I , this dependence is “inherited” from the subset to I and to all the supersets
of I [3]. Thus we do not have a way to distinguish if an intrinsic dependence exists in
an itemset I in addition to the dependencies inherited from its subsets.

We can solve the problem in terms of quantity of information that an itemset pro-
vides: we are interested only in itemsets that add any information to their subsets. If
instead, an itemset can be foreseen given the observation of its subsets, it does not carry
any new information in addition to the subsets; therefore it can be considered as redun-
dant and it is not interesting. We proposed in [13] a solution based on the maximum
entropy. The entropy of an itemset I is computed by an estimation of the probability
of I computed on the basis of the probability of its subsets. The probability of I at
which the entropy is maximum (denoted by PE(I)) corresponds to the probability that
the itemset I would have in the condition in which it carries the maximum amount of
information in addition to its subsets. The interest measure that we proposed for an
itemset I is the departure of the probability of I w.r.t. the referential value computed at
maximum entropy: Δ(I) = P (I) − PE(I). The more the departure between the two
probabilities, the less the itemset can be correctly foreseen from the observation of its
subsets. This departure identifies a dependence between the items and tells us that this
dependence is not due to the subsets only. As a consequence the itemset represents a
non redundant itemset that must be included in the result. In Section 3 we summarize
how Δ is computed.

DepMiner: A Method and a System for the Extraction of Significant Dependencies 211

Δ(I) decreases with the increase in the cardinality of itemsets. As a consequence,Δ
is not a suitable measure to compare itemsets of different cardinality. For this purpose
in this chapter we propose Δn, a version of Δ normalized w.r.t. the probability of the
itemset:

Δn(I) =
P (I)− PE(I)

P (I)

Δn(I) takes both positive and negative values, in the range from [−∞, 1]. Specifically,
if the value is positive, it means a positive dependence, i.e., an itemset that is more
frequent than expected; if the value if negative it means a negative dependence, i.e., an
itemset that occurs rarer than expected.

In this chapter we present a method for the computation of the interesting and non
redundant itemsets based on the above observations. Δn(I) is used as a score func-
tion to rank the itemsets. In Section 4 we show how we succeeded to determine the
significance level of Δn(I) and to point out to the user the significant itemsets.
Δ computation occurs from an initial, intermediate result composed of frequent item-

sets. Another contribution of this chapter is to show how the minimum frequency thresh-
old can be set without the explicit intervention of the user. In fact, the determination of
the frequency threshold is well-known to be difficult for the user.

The rest of the chapter is organized as follows. In Section 2 we review the re-
lated works. In Section 3 we summarize how Δ is computed. Section 4 shows how
to determine the significance level of Δn(I). Though Δn(I) does not satisfy the anti-
monotonicity property, in Section 5 we prove an alternative property that guarantees
that Δn(I) can be computed efficiently in algorithms as it were anti-monotone. In Sec-
tion 6 we show how the system determines the minimum support threshold. Section 7
describes the system implementation and the computation flow. Section 8 presents an
empirical evaluation study on the results of the system on some common datasets. In
this Section DepMiner is compared with other methods for the evaluation of the item-
sets, such as [4,7]. The obtained results show that DepMiner identifies the dependencies
overcoming the restrictive assumptions of multi-way independence and that the identi-
fied significant itemsets are a little portion of the results returned by the other methods.
This means that DepMiner is able to compress much without discarding any significant
itemsets. Finally, Section 9 draws the conclusions.

2 Related Work

In statistics the problem of the determination of dependent variables is a classical, tra-
ditional problem and it has been solved in many ways. The most common approaches
are derived by the statistical hypothesis tests such as the tests based on the χ2 statistics,
the Fisher’s exact tests [22] and Likelihood-ratio tests [5].

[9] is a deep study on the association between categorical variables and proposes
a survey on the measures of association between variables. In machine learning the
discovery of dependencies in a multivariate problem (structure learning) is solved by
application of neural networks or Bayesian learning methods like MCMC [2] which are
NP-hard problems in the number of variables.

212 R. Meo and L. D’Ambrosi

In data mining there exist methods to discover significant dependencies and cor-
relations between the items of a frequent pattern with computationally efficient algo-
rithms. [3] is one of the first attempts to discover significant association rules (called
dependence rules) by means of the χ2 test. They point out that the satisfaction of the
dependence condition is down-ward closed, i.e., it is monotonic. In other words, once
that the dependence is raised in an itemset it will be raised in all the supersets of the
itemset. Thus, if the test on the existence of dependencies is checked by a test based
on χ2, the test is not sensible to the addition of further items to the initial dependent
set, either the items are independent or not. Thus, χ2 does not appear to be a suitable
measure to determine the effective contribution of an item to the dependence.

[1] proposes collective strength as an itemset interest measure. Collective strength
makes use of the ratio between the probability that the itemset appears w.r.t. the ex-
pected one under the hypothesis of multiway independence among the items. In turn
this ratio is compared with the analogous ratio computed between the probability that
at least one item violates the itemset and the expected probability of the same event
under the condition of independence. There is violation of the itemset when there is at
least one of its items that appears separately w.r.t. the other items in the set.

[16] proposes other measures based on the minimum and maximum confidence that
would be obtained by the association rules generated from the itemset. Furthermore, it
proposes bond as a further, more restrictive measure defined as the ratio of the number
of occurrences of the itemset and of any of its items. Notice, that, in order to determine
the dependencies in k-itemsets with k > 2, the most of these approaches make the
multi-way independence assumption or they evaluate the contribution to the overall
itemset of each variable separately.

[7] ranks the frequent itemsets according to the unlikelihood that they appear under
the hypothesis that all the items in the itemset are independent. [23] has the aim to rank
the most relevant itemsets (by a suitable measure application dependent) and selects the
significant portion of the ranking based on measures of lack of redundancy. According
to this study, significance and relevance are strictly connected and are combined in a
unique measure.

[4] is one of the most well-known studies that allows the reduction of the number of
the itemsets in the result; it allows a lossless compression of the result because all the
information on the frequent itemsets lacking from the result can be restored from the
result set. A similar aim as regards to the reduction in the number of returned itemsets
is proposed by [18] with a criterion based on minimum description length. Each item-
set is used to represent the portion of the database in which it occurs and therefore it
compresses it. Then, the resulting set of itemsets is interesting if it yields a good and
lossless compression of the database. Another work on pattern summarization is [24]
in which the authors define a proximity metric between the patterns according to the
overlapping between the portions of database in which they occur.

[25] proposes the use of multi-information, an extension of mutual information to
more than two variables. It considers an itemsets as correlated only if multi-information
is higher than a given threshold and if any proper subset has instead a weak amount of
multi-information. In multi-information the contribution of each single item to the item-
set is considered. A similar approach is proposed for feature selection in classification

DepMiner: A Method and a System for the Extraction of Significant Dependencies 213

by [6,12]. On the opposite side, [11] proposes to use entropy and the quantity of in-
formation lead by a set of features for the identification of the set of k features that are
maximally independent. Maximum entropy is seen as a guarantee of lack of redundancy
in the set. The aim of this kind of itemset is at optimising the independence of items
within the set. According to this approach, any single feature is added to the set only if
it provides an additional distinctive power.

On the contrary, [5] proposes the following criterion of “fully-correlation” for the
determination of the interest of an itemset: an itemset is fully-correlated if all its subsets
are closely related to all other subsets, and no irrelevant items can be removed from the
set. As regards to the selection criterion, it selects only the maximal fully-correlated
itemsets in the following way: if there is no other item that can be added to the itemset
to generate a new fully-correlated itemset, then the itemset is maximal fully-correlated.

[10] deals with diversity measures used as heuristic measures of interest for rank-
ing summaries generated from a single dataset. Summaries are composed by a set of
attribute-value pairs where attributes can be generalized to many levels of granularity
according to taxonomic hierarchies.

A similar approach to the method proposed here and based on Δ, is proposed in [20]
in which the analysis is based on K-L divergence.

3 Estimation of the Referential Probability

Suppose itemset I = {i1, i2, . . . , ik}.
EntropyH(I) = −∑

P (i∗1, i
∗
2, · · · , i∗k) log[P (i∗1, i

∗
2, · · · , i∗k)] where we denote by i∗j

the item ij taken affirmed or negated. Summation ranges over the probabilities of all the
combinations of the k items taken affirmed or negated.H(I) is not computed by assump-
tion that singletons are independent but taking in consideration the actual probability of
occurrence of each subset of I , as observed from the database. The exclusion-inclusion
principle [4] is adopted to compute the entropy of I starting from the probability of the
subsets of I . Thus, if the dependence in an itemset I is intrinsic, due to the synergy be-
tween all its items, then its probability departs with respect to its estimate given only on
the basis of the observed probabilities of its subsets. As a result, thanks to Δn(I) we
make emerge the intrinsic, actual dependencies, existing among all the items in I .

4 Setting a Threshold for Δ

Another problem that we have to solve is how large must be Δn such that an itemset
is deemed significant. We use a null model in which there are not dependencies be-
tween the variables. The null model is generated empirically via a randomization of
the original dataset. Randomization is generally accepted as a way to allow a statistical
test on significance of results [8]. Randomization occurs by independently shuffling the
variable values among the examples. As a result, the new dataset will have the same
marginal probabilities of the single variables but the dependencies between them are
spoiled.

214 R. Meo and L. D’Ambrosi

Fig. 1. Screen-shot: itemsets ranking with significant itemsets in green (Mushroom)

Broadly speaking, as a successive step (without discussing the optimizations that will
be described in Section 5), we compute itemsets both from the real and the randomized
data. (Figure 4 shows the computation flow described in detail in Section 7). Next, we
compute the minimum negative value of Δn and the maximum positive value of Δn in
randomized data. Then, we will use the minimum value of Δn in randomized data as
an upper bound (denoted by UB) for rarer itemsets in real data and use the maximum
value ofΔn in randomized data as a lower bound (denoted by LB) for the more frequent
itemsets in real data. This is a a sort of statistical test on Δn and accept as dependent an
itemset if its Δn is higher (resp. lower) than the maximum (resp. minimum) Δn of the
itemsets extracted from the randomized data.

An intuition behind the statistical test is the following. Given the high number of
itemsets extracted from randomized data (usually, in the number of hundreds), if none

DepMiner: A Method and a System for the Extraction of Significant Dependencies 215

of the itemsets has reached a so high (resp. low) value ofΔn it means that it is unlikely
that the observed value (and the correspondent itemset) occurs for chance in real data
- as it happens indeed in randomized data. Otherwise, if the itemset had occurred for
chance also in real data, then the observed values of Δn, in real and randomized data,
would have been much more similar! If instead a value of Δn occurred in real data so
departed from the observed values in random data, this constitutes an evidence of the
fact that the itemset did not occur for chance. Therefore, an intrinsic dependence exists
in that itemset and makes it emerge above the others. Thus the maximum value of Δn

observed in randomized data constitutes a lower bound of accepted values in real data.
Similarly, for the minimum (negative) value.

Consider the dataset Mushroom. After randomization, we observed the maximum
value of Δn = 0.04 while the minimum value is Δn = −0.03. In real data, the max-
imum is Δn = 0.85 and the minimum is Δn = −0.45. Thus it is evident that in
Mushroom the positive dependencies are more abundant and more marked while the
negative dependencies are few and less evident. In Figure 1 we show one screen shot
of our system prototype, DepMiner, with the ranking of itemsets extracted from Mush-
room. In green the significant itemsets are shown (i.e., the itemsets with a value of Δn

exceeding the observed range of values in randomized data). In yellow, instead, the
other itemsets. Notice that both rarer and more frequent itemsets are interesting. Thus,
DepMiner is not biased toward frequent or rare itemsets as it happens for many other
systems of pattern mining.

Fig. 2. Histograms of Delta on Mushroom (in red) and on its randomization (in blue)

5 Embedding Δn in Algorithms

A third problem is how to embed Δn in the algorithms. In fact Δn does not satisfy an
anti monotonicity property that is useful to make efficient the exploration and pruning
of the search space of the itemsets. We solved the problem by discovery of the following
property.

216 R. Meo and L. D’Ambrosi

Theorem 1. Let minsup be the minimum frequency threshold set in the FIMI (Fre-
quent Itemset Mining) algorithm. Let Δnu denote the upper bound of Δn from the
randomized data and Δnl the lower bound.
LB = Δnu · minsup is the minimum threshold for positive dependencies while

UB = Δnl ·minsup is the maximum threshold for negative dependencies.
While traversing deeper the item-trie containing candidate itemsets it is sufficient to

compute Δn for an itemset I if:
Δ(I) > LB or Δ(I) < UB. Otherwise, we can prune I and its children from the

item-trie.

Proof. Let be C a child of itemset I . From [4,17] it results that Δ(I) >= Δ(C) since
Δ is contained in the range of values of probabilities of any non derivable itemset (if it
was derivable it had Δ = 0).
Δ(I) < LB can be rewritten as Δ(I) = Δn(I) · P (I) < LB = Δnu · minsup.

We obtain Δn(I) < Δnu · minsup
P (I) . Since P (I) >= minsup (otherwise we would have

pruned earlier I from the item-trie) it results that Δn(I) < Δnu. As a consequence, I
can be pruned. In addition, since Δ(C) <= Δ(I) < LB we can prune C too. Similar
reasoning applies to the other bound.

6 Determination of the Itemsets Minimum Support Threshold

The new model for the determination of the itemsets minimum support allows the re-
placement of the minimum support threshold imposed as a requirement by the user. As
we know, that the minimum support threshold presents some drawbacks due to the fact
that a fixed and unique value of support threshold for all the sets (that does not depend
on the cardinality of the sets or on their probability density function) is not realistic.
Another problem is the fact that the support threshold is given by the user who may not
know how to set it. On the contrary, he/she may know how greater is the accuracy of
the measure (or the error he/she wants to allow in the inference of the probability of the
itemset from the sample database). Therefore, in DepMiner we allow the user to set a
different minimum threshold of probability for each itemset: this decision is taken on
the basis of the estimated probability of occurrence of the itemset (from the principle of
maximum likelihood) and of an error tolerance in this estimation given by the user.

We judge the relevance of the information obtained from the database with a cri-
terion based on the Bayes’ Theorem. This one allows us to make an estimate of the
probability distribution function of an itemset (a priori probability) starting from the set
of observations obtained by the sample database (a posteriori probability). Our criteria
is very simple. We consider the probability of an itemset a random variable and make
an estimate of this probability on the basis of the observations (obtained a posteriori)
from the database. If the most likely value of probability of occurrence of an itemset in
the database gives values whose confidence interval width is comparable with the error
allowed by the user, we can conclude that the probability estimation is not reliable.

In [15] we proved that this reliability property is, as the itemset support, a property
that is anti-monotone, and allows us to stop the lattice traversal in depth, in practice in
an equivalent manner as the itemset support.

DepMiner: A Method and a System for the Extraction of Significant Dependencies 217

We apply the theory for the inference of the proportion K
N that gives the more likely

value of the probability of an itemset. Since in data mining the sample size is always
big, we can approximate the binomial distribution, that is the probability distribution
function for the proportion estimation, with a normal distribution with mean K

N
and

variance K
N (1− K

N). The theory of the confidence interval for the proportion gives the
following formula:

po − Z
√
po(1− po)

N
≤ p ≤ po + Z

√
po(1− po)

N
(1)

where we denote by p the real probability of the itemset, by po the observed proportion
(a posteriori observation) that constitutes the estimation on the sample of this prob-
ability, by N the sample size and by Z the critical value in the normal distribution
corresponding to the confidence level imposed by the user (usually denoted by α). The
usual values of Z are 1.96 or 2.58 corresponding to a probability of making an erro-
neous inference on the proportion with a dataset composed by a collection of random
and independent samples equal respectively to 0.05 and 0.01. From the theory, we have
that W , the width of the confidence interval, is the maximum error in the estimation of
the proportion, and is given by:

W = 2Z

√
po(1− po)

N
(2)

Since we allow the user to set both Z and the maximum relative error in the probability
estimation that she wants to allow, the relative error is given by er = W

po
and results

equal to:

er =
2Z√
N

√
(1− po)
po

(3)

Range of observable probabilities with a relative error. er is a monotonic decreasing
function with the observable probabilities po. It means that we can set a certain value
of er that is the error tolerance the user wishes to allow and we can set the confidence
level in the inference of the proportion, that determines a critical Z value (usually set
to Z = 2.58 corresponding to α = 0.01). Given N , the number of samples that is fixed
by the given database, the probabilities that are observable from the database within
these constraints are higher than a threshold value, given by the diagram in Figure 3.
It plots the lower bound to the observable probabilities in datasets of given size N , in
correspondence to different values of er. It is evident that this methodology of setting
the minimum support threshold is statistically reliable and provides the user a guide
to set this minimum value that usually is difficult to set. Above this support limit the
observable probabilities are statistically reliable: it means that the probability of mak-
ing an error greater than the error tolerance in this inference is controlled and it is
lower than the confidence level. Furthermore, the estimation error is within the user
established error tolerance. On the contrary, under this support limit, the estimation of
itemsets probabilities is too risky and subjected to a too higher error (outside of the
error tolerance).

218 R. Meo and L. D’Ambrosi

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

po

relative error (Z=2,58)

Limit to the observed probabilities according to the relative error

N10^4
N10^5
N10^6

Fig. 3. Observable probabilities by relative error

7 System Description

DepMiner is implemented in java (1.6.0.12) and runs on a laptop. It uses Apache POI
HSSF library for I/O. The core of the algorithm for frequent itemsets extraction is LCM
FIMI algorithm (4.0) [21], the winner of the FIMI’04 competition. This algorithm is
treated as a black-box and could be substituted by any other algorithm supporting the
same I/O format. Figure 4 shows the computation flow of the system. Since, FIMI
algorithm is treated as a black box, for this reason it is represented as a grey box in the
flow. The algorithm for the computation of Δn performs the following tasks.

1. sets the minsup threshold for FIMI algorithm according to the explanation of Sec-
tion 6;

2. randomizes the database;
3. runs the FIMI algorithm on the randomized database and reads its result;
4. builds the item-trie from the result of FIMI algorithm;
5. explores the item-trie in a level-wise fashion and computes for each itemset Δ. Δ

computation is implemented in java by the algorithm described in [14]);
6. for each itemset, it computes Δn and stores the lower and upper bound for Δn

found (LB and UB);
7. repeats steps 3-5 for the real database; for step 5 it performs pruning of itemsets by

enforcing anti-monotonicity of Δ (it prunes if Δ is in the range (LB,UB));
8. enforces the property of Δn seen in Section 5 and computes Δn only if allowed (if
Δ is outside of (LB,UB));

9. produces the itemsets ranking on the basis of Δn.

DepMiner: A Method and a System for the Extraction of Significant Dependencies 219

 database

 FIMI
algorithm
 (LCM)

frequent
itemsets

determines minimum
support by statistical
inference and
confidence interval
for the proportions

 compute Delta and
Delta_n by level-wise
exploration of the
itemsets lattice and
prune itemsets with
Delta inside of (LB,UB)

 randomized
database

frequent
itemsets
for null
model

compute Delta
 and Delta_n

determine
(LB, UB)

generate
itemsets
ranking

stop

Fig. 4. The computation flow

The output of the itemsets ranking is implemented as a web page in HTML. GUI is
implemented on JFreeChart, an open source library in java for the rendering of graphics
and diagrams. It allows also to order the list of the itemsets by different criteria in an
interactive way, such as by items, or by ascending/descending values of Δn: this is
useful for the user to explore the results, according to her/his desire to observe the rarer
itemsets (with a negativeΔn) or the more frequent ones (with a positive Δn).

In Figure 2 we present another screen-shot of DepMiner. It shows in red color the
histogram of Δn on real data and in blue the histogram of Δn on randomized data.

220 R. Meo and L. D’Ambrosi

The user can zoom on specific areas of the histogram and observe in more detail the
characterization of the dependencies existing in the dataset by the distribution of Δn.
It is instructive to observe the different distributions obtained in sparse and dense data.
Usually dense data have higher values of Δn, while in sparse data Δn values are lower
and more scattered.

8 Experimental Evaluation

We run a set of experiments on 5 real datasets (from FIMI and UCI Machine Learning
repositories) and on 2 real datasets coming from NASDAQ stock exchange index (from
January 2001 to May 2009) and from the Italian lottery (with data on the numbers drawn
from 1939). The lottery dataset is important in order to check the behavior of Δn on
complete random data where even the marginals were uniform. Experiments were run
on a CPU Intel Core 2 Duo T8100, 3GB RAM, SO Win Vista Business (SP1).

In Table 1 we include the total number of examples, minsup threshold adopted by
LCM, the total number of itemsets generated (N), execution times to compute Δn (in
seconds).

We performed two experiments: the first one on the compression capability and the
second one on the capability of DepMiner to determine the dependencies in contrast to
methods that assume the multi-way independence condition.

1. In this experiment, to be further conservative, we compare DepMiner results at
many levels. We denote as itemsets clearly non independent, the itemset whose
Δn �= 0. Thus we include in the results both these latter ones and the itemsets
whose Δn is acceptable by the significance test on the lower and upper bounds
obtained in randomized data. We include in Table 1 three ratios: the ratio between
the number of itemsets with Δn �= 0 and N (denoted by Dep/N), the ratio between
the significant dependencies and N (denoted by SDep/N) and the ratio between non
derivable itemsets (NDI) obtained by the competitor method [4] and N (denoted by
NDI/N).

These ratios quantify the volume of found dependencies in data. They clearly
demonstrate the increased ability of DepMiner to reduce redundancies in the result
than NDI.

2. In the second experiment we compare the results of DepMiner with MINI [7], the
second competitor that we adopted in order to determine the difference between

Table 1. Experimental results

dataset minsup itemsets (N) Dep/N SDep/N NDI/N time(s) γ(DM,MINI) γ(RDM,RMINI)

Accidents 35% 65,500 13.5% 0.1% 22.93% 4294 -0.84 0.16
Chess 75% 20,582 1.2% 0.34% 2.11% 135 -0.95 -0.91

Nasdaq 0.14% 242 95.8% 46.69% 100% 107 -0.05 0.27
Kosarak 1.01% 21,934 82.5% 10.39% 95.55% 2221 -0.56 0.28

Mushroom 22.15% 14,189 1.48% 1.03% 5.84% 115 -0.94 -0.29
Retail 4.53% 22,524 79.7% 5.9% 99.56% 1322 0.02 0.55

Lottery 0.006% 91,499 99.1% 0% 100% 5804 0.81 0.77

DepMiner: A Method and a System for the Extraction of Significant Dependencies 221

DepMiner and another method of ranking based on the multi-way independence
assumption.

The last columns of Table 1 report the result of a comparison between DepMiner
ranking (denoted by DM) and MINI.

As said, our method considers only intrinsic dependencies in the itemsets and
makes an estimate of independence of the items by means of the maximum en-
tropy: it corresponds to a condition of minimum amount of information on the
items given the knowledge about the other items in the itemset. The adopted
referential probability for itemset I coincides with the hypothesis of independence
of the singletons only if I has cardinality 2.

In order to measure the correlation between our ranking (DepMiner) and MINI’s
we adopted an objective measure, known as γ [9]: γ = nc−nd

nc+nd
.

nc denotes the number of itemsets pairs on which the methods agree (are ranked in
the same way by both of them) while nd is the total number of pairs for which the
methods disagree. γ ranges in [−1,+1] and is 0 if there is independence.

Since the methods differ in the referential probability estimate, γ will quantify
the impact of this difference. The difference is in the fact that MINI tends to observe
an increased amount of dependencies in itemsets due to the fact that it considers
also dependencies inherited by a subset to all its supersets.

In Table 1 we also compared the two rankings computed on randomized data
(denoted by RDM and RMINI). We can notice that all the values reported by γ
denote disagreement and generally have low values. The amount of discrepancies
decreases (γ increases) if we move from real data to randomized data (since the
high-order dependencies are spoiled during randomization). Furthermore, on com-
plete random data (Lottery) the two methods agree (γ = 0.8) since DepMiner
agrees on the hypothesis of independence among the singletons! In addition, we do
not observe any significant change in γ if we randomize Lottery.

9 Conclusions

We have presented DepMiner, a method for the extraction of significant dependencies
between the values assumed by database variables. We quantify the volume of these
dependencies by the histogram of Delta. DepMiner gave good results by comparison
of the rankings with [7] by γ and of its capability to compress results with NDI [4].

In DepMiner the user can set the parameter values guided by the system, explore the
results in an interactive way, change the itemsets ranking criteria and zoom details in
the statistics reports on the dependencies.

DepMiner web site is: http://www.leodambrosi.it/depminer/. From the site it is
possible to download a presentation video.

References

1. Aggarwal, C.C., Yu, P.S.: A new framework for itemset generation. In: Proc. PODS (1998)
2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer Science (2006)

222 R. Meo and L. D’Ambrosi

3. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing association rules
to correlations. In: Proc. SIGMOD (1997)

4. Calders, T., Goethals, B.: Non-derivable itemset mining. Data Min. Knowl. Discov. 14(1)
(2007)

5. Duan, L., Street, W.N.: Finding maximal fully-correlated itemsets in large databases. In:
IEEE International Conference on Data Mining, pp. 770–775 (2009)

6. Fleuret, F.: Fast binary feature selection with conditional mutual information. Journal of
Machine Learning Research 5, 1531–1555 (2004)

7. Gallo, A., Bie, T.D., Cristianini, N.: Mini: Mining informative non-redundant itemsets. In:
PKDD (2007)

8. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining results via swap
randomization. In: Proc. KDD (2006)

9. Goodman, Kruskal: Measures of association for cross classifications. J. Amer. Stat.
Ass. 49(268) (1954)

10. Hilderman, R.J., Hamilton, H.J.: Measuring the interestingness of discovered knowledge: A
principled approach. Intell. Data Anal. 7, 347–382 (2003)

11. Knobbe, A.J., Ho, E.K.Y.: Maximally informative k-itemsets and their efficient discovery.
In: KDD, pp. 237–244 (2006)

12. Liu, Z.Z.H.: Searching for interacting features. In: The 20th International Joint Conference
on AI, IJCAI 2007 (2007)

13. Meo, R.: Theory of dependence values. TODS 45(3) (2000)
14. Meo, R.: Maximum independence and mutual information. TOIT 48(1) (2002)
15. Meo, R., Ienco, D.: Replacing support in association rule mining. In: Sing, Y., Rountree, N.

(eds.) Rare Association Rule Mining and Knowledge Discovery: Technologies for Infrequent
and Critical Event Detection. IGI Global publisher (2008)

16. Omiecinski, E.: Alternative interest measures for mining associations in databases.
TKDE 15(1) (2003)

17. Savinov, A.: Mining dependence rules by finding largest support quota. In: Proc. SAC (2004)
18. Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In: SDM (2006)
19. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for associa-

tion patterns. In: Proc. KDD (2002)
20. Tatti, N.: Maximum entropy based significance of itemsets. In: Proc. ICDM (2007)
21. Uno, T., Asai, T., Uchida, Y., Arimura, H.: Lcm v2. In: FIMI 2004,
22. Webb, G.I.: Discovering significant rules. In: Proceedings of the 12th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pp. 434–443 (2006)
23. Xin, D., Cheng, H., Yan, X., Han, J.: Extracting redundancy-aware top-k patterns. In: KDD

(2006)
24. Xin, D., Han, J., Yan, X., Cheng, H.: Mining compressed frequent-pattern sets. In: In VLDB,

pp. 709–720 (2005)
25. Zhang, X., Pan, F., Wang, W., Nobel, A.B.: Mining non-redundant high order correlations in

binary data. PVLDB 1(1) (2008)

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 223–266.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Chapter 9

Integration of Dataset Scans in Processing Sets of
Frequent Itemset Queries

Marek Wojciechowski, Maciej Zakrzewicz, and Pawel Boinski

Institute of Computing Science,
Poznan University of Technology,

ul. Piotrowo 2, 60-965 Poznan, Poland
{Marek.Wojciechowski,Maciej.Zakrzewicz,

Pawel.Boinski}@cs.put.poznan.pl

Abstract. Frequent itemset mining is often regarded as advanced querying
where a user specifies the source dataset and pattern constraints using a given
constraint model. In this chapter we address the problem of processing sets of
frequent itemset queries, which brings the ideas of multiple-query optimization
to the domain of data mining. The most attractive method of solving the prob-
lem with respect to possible practical applications is Common Counting which
consists in concurrent execution of the queries using Apriori with the integra-
tion of scans of the parts of the database shared among the queries. The major
advantage of Common Counting over its alternatives is its applicability to arbi-
trarily large batches of queries. If the memory structures of all the queries to be
processed by Common Counting do not fit together in main memory, the set of
queries has to be partitioned into subsets processed in several phases. We for-
malize the problem of dividing the set of queries for Common Counting as a
specific case of hypergraph partitioning and provide a comprehensive overview
of query set partitioning algorithms proposed so far.

1 Introduction

Frequent itemset discovery [1] is a very important data mining problem with numer-
ous practical applications including market-basket analysis, medicine, telecommuni-
cations, and web usage analysis. Its goal is to discover the most frequently occurring
subsets, called itemsets, in a database of sets of items, called transactions. Discovered
frequent itemsets are often used to generate association rules. However, since genera-
tion of rules from itemsets is a rather straightforward, computationally inexpensive
task, the focus of researchers has been mostly on optimizing the frequent itemset
discovery process.

Many frequent itemset mining algorithms have been developed over the last two
decades. The two most prominent classes of algorithms are determined by a strategy
of traversing the pattern search space. Level-wise algorithms, represented by the clas-
sic Apriori algorithm [3], follow the breadth-first strategy, whereas pattern-growth
methods, among which FP-growth [20] is the best known, perform the depth-first
search.

224 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

Despite significant advances in frequent itemset mining, Apriori still remains the
most widely implemented and used in practice frequent itemset mining algorithm due
to its simplicity and satisfactory performance in real-world scenarios. Apriori starts
with the discovery of 1-element frequent itemsets (i.e., frequent items), and then itera-
tively generates candidates (i.e., potentially frequent itemsets) from previously found
smaller frequent itemsets and counts their occurrences in the database. To improve the
efficiency of testing which candidates are contained in a transaction read from the
database, the candidates are stored in a hash tree in main memory.

Frequent itemset mining is often regarded as advanced database querying where a
user specifies the source dataset, the minimum support threshold, and optionally pat-
tern constraints within a given constraint model [23]. A significant amount of research
on efficient processing of frequent itemset queries has been done in recent years,
focusing mainly on constraint handling [42][44][45][48][52] and reusing results of
previous queries [6][12][35][39]. In terms of query optimization, the former can be
regarded as optimizing individual queries separately, and the latter as optimizing
sequences of queries [36].

This chapter is devoted to a relatively new problem of optimizing processing of
sets of frequent itemset queries [51] that brings the concept of multiple-query optimi-
zation to the domain of frequent itemset mining. The idea is to process the queries
concurrently rather than sequentially and take advantage of overlaps between queries’
source datasets, although some of the proposed algorithms target also integration of
in-memory data structures and computations. Sets of frequent itemset queries availa-
ble for concurrent processing may arise in data mining systems operating in a batch
mode or be collected within a given time window in multi-user interactive data min-
ing environments. A motivating example from the domain of market basket analysis
could be a set of queries discovering frequent itemsets from the overlapping parts of a
database table containing customer transaction data from overlapping time periods.

Over the last decade we have proposed several approaches and algorithms to tackle
the above problem. Here we focus on the most fundamental method called Common
Counting [53], which basically consists in concurrent execution of the queries using
Apriori with the integration of scans of parts of the database shared among the que-
ries. Common Counting can be regarded as a fundamental solution of the problem of
processing sets of frequent itemset queries for the two following reasons:

• methods proposed later for the Apriori algorithm were designed by extending
Common Counting with further possibilities of computation sharing

• the first method of processing sets of frequent itemset queries dedicated to a
newer FP-growth algorithm is a direct adaptation of Common Counting.

In general, we claim that Common Counting and its extensions have more practical
importance that the methods for FP-growth since:

• despite positive evaluation of FP-growth and its variants in scientific literature,
the majority of data mining systems available on the market still implement
Apriori (often with some performance-oriented extensions and/or modifica-
tions with respect to the original formulation by Agrawal and Srikant).

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 225

• concurrent processing of frequent itemset queries requires storing the memory
structures of several queries in main memory at the same time (with proposed
space-preserving optimizations in some of the methods), which is problematic
in case of FP-growth which basically stores a compressed version of the whole
source dataset in main memory for each query.

On the other hand, despite the fact that its Apriori-oriented successors have been
shown to outperform Common Counting if the queries’ datasets significantly overlap,
the original Common Counting method might still be preferable in practical imple-
mentations because:

• it has very little overhead and thus is the most predictable of all the proposed
methods in a sense that it is beneficial for virtually any, even very small, over-
lapping among the queries’ datasets

• it does not conflict with constraint-handling extensions proposed for Apriori
• contrary to its successors it has virtually unbounded scalability with respect to

the number of queries.

While focusing on Common Counting, in this chapter we will particularly concen-
trate on the last of its properties listed above. Basic formulation of Common Counting
[53] assumes that memory structures (i.e., hash trees) of all frequent itemset queries
(i.e., concurrent Apriori executions) fit together in memory, which may not always be
the case, at least for initial Apriori iterations. If the memory can hold only a subset of
all queries, then it is necessary to partition the queries into subsets called phases and
scan the database once for each phase. This observation leads to an interesting opti-
mization problem with the goal of selecting from the set of all feasible partitionings
the one (or one of) resulting in the minimal I/O cost of database scans [54].

In this chapter we summarize our research on query set partitioning algorithms for
Common Counting by: (1) providing a formulation of the problem as a particular case
of the hypergraph partitioning problem followed by a discussion regarding its compu-
tational complexity and obtaining the input information required by the partitioning
algorithms; (2) reviewing all the proposed partitioning algorithms: CCRecursive [54],
CCFull [57], CCCoarsening [58], CCAgglomerative [56], CCAgglomerativeNoise
[8], CCGreedy, and CCSemiGreedy [10]; (3) presenting the extensive results of expe-
riments aimed at evaluating the performance and accuracy of the algorithms.

2 Frequent Itemset Mining and Apriori Algorithm

In this section we review basic definitions concerning frequent itemset mining prob-
lem formulation as well as the classic Apriori algorithm, which is regarded as the
basic algorithm for the Common Counting technique.

2.1 Basic Definitions and Problem Statement

Definition 1. Let I be a set of literals, called items. An itemset X is a set of items from
I (X ⊆ I). The size of an itemset is the number of items in it. An itemset of size k is

226 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

called a k-itemset. A transaction over I is a couple T = tid, X, where tid is a transac-
tion identifier and X is an itemset. A database D over I is a set of transactions over I
such that each transaction has a unique identifier.

Definition 2. A transaction T = tid, X supports an itemset Y if Y ⊆ X. The support of
an itemset Y in D is the number (or percentage) of transactions in D that support Y.

Definition 3. An itemset is called frequent in D if its support is no less than a given
minimum support threshold.

Problem 1. Given a database D and a minimum support threshold minsup, the prob-
lem of frequent itemset mining consists in discovering all frequent itemsets in D to-
gether with their supports.

2.2 Algorithm Apriori

The Apriori algorithm for frequent itemset discovery is formally presented in Fig. 1.
In the formulation of the algorithm, Fk denotes the set of all frequent k-itemsets, and
Ck denotes a set of potentially frequent k-itemsets, called candidates.

Input: D, minsup
(1) F1 = frequent 1-itemsets
(2) for (k=2; Fk-1 ≠ ∅; k++) do begin
(3) Ck = apriori_gen(Fk-1)
(4) forall transactions t ∈ D do begin
(5) Ct = subset(Ck, t)
(6) forall candidates c ∈ Ct do
(7) c.counter++
(8) end
(9) Fk = {c ∈ Ck | c.counter ≥ minsup}
(10) end
(11) Answer = Uk Fk

Fig. 1. Apriori

Apriori starts with the discovery of frequent 1-itemsets, i.e., frequent items (line 1).
For this task, the first scan of the database is performed. Before making the k-th pass
(for k>1), the algorithm generates the set of candidates Ck using Fk-1 (line 3). The
candidate generation procedure, denoted as apriori_gen(), provides efficient pruning
of the search space, and will be described later. In the k-th database pass (lines 4-8),
Apriori counts the supports of all the itemsets in Ck. (In practice, the database pass is
performed only if the set of generated candidates is not empty.) The key step of this
phase of the algorithm is determining which candidates from Ck are contained in a
transaction t retrieved from the database. This step is denoted in the algorithm as a
call to the subset() function that will be described later. At the end of the pass all
itemsets in Ck with a support greater than or equal to the minimum support threshold
minsup form the set of frequent k-itemsets Fk (line 9). The algorithm finishes work if

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 227

there are no frequent itemsets found in a given iteration (condition in line 2) and re-
turns all the frequent itemsets found (line 11).

The candidate generation procedure (apriori_gen() function in the algorithm) con-
sists of two steps: the join step and the prune step. In the join step, each pair of fre-
quent k-1-itemsets differing only in the last item (according to the lexicographical
order of the items within itemsets) is joined to form a candidate. In the prune step,
itemsets having at least one subset that was found infrequent in the previous Apriori
iteration are removed from the set of candidates.

The key to the overall efficiency of the Apriori algorithm is efficient checking
which candidates are contained in a given transaction (subset() function in the algo-
rithm). In order to avoid costly testing of each candidate for inclusion in a transaction
retrieved from the database, candidates are stored in a special in-memory data struc-
ture, called hash tree. Leaves of a hash tree contain pointers to candidates, while the
root node and internal nodes contain hash tables with pointers to their child nodes. In
order to check which candidates are stored in a given transaction, all the subsets of the
transaction are pushed down the hash tree. Candidates pointed by the leaves that are
reached in the tree traversal operation are then verified for actual inclusion in the
transaction.

3 Frequent Itemset Queries – State of the Art

In this section we review the most important research directions regarding frequent
itemset queries: languages and programming interfaces for data mining, optimizing
single queries in the form of constraint-based mining, and optimizing sequences of
queries by reusing results of previously executed queries.

3.1 Frequent Itemset Queries

The research on data mining queries1 was initiated by the pioneering work of Imie-
linski and Mannila [23] who envisioned the evolution of data mining systems analog-
ous to that of database systems. They claimed that one of the major forces behind the
success of database management systems (DBMS) had been the development of
query languages, SQL in particular. Firstly, SQL together with a relational database
API resulted in decoupling applications from a database backend. Secondly, the ad
hoc nature of querying posed a challenge to build general-purpose query optimizers.
Based on the above observations, Imielinski and Mannila postulated that formulation
of a data mining query language could become a foundation for the development of
general purpose next-generation data mining systems, which they called Knowledge
and Data Discovery Management Systems (KDDMS). Such systems would allow
knowledge discovery from data as well as storing the discovered patterns, rules, mod-
els, etc.2 in the database for further querying. Imielinski and Mannila introduced the
term inductive database for a database that apart from data also stores discovered
knowledge. This term has been subsequently used by some researchers (e.g., [36]) to

1 Imielinski and Mannila used the term KDD query.
2 Imielinski and Mannila used the term KDD object to describe results of data mining queries

and considered three types of KDD objects: rules, classifiers, and clusterings.

228 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

describe the research area devoted to data mining query languages and data mining
query optimization, with a particular focus on frequent itemset and association rule
mining.

Several data mining query languages were proposed following the statement of di-
rection provided by Imielinski and Mannila. In [11] the authors proposed to extend
SQL with the MINERULE operator for extracting association rules from the database
and storing them back in a database relation. The proposed extension of SQL
supported the following features: selecting the source dataset for mining with a possi-
bility of grouping normalized data into sets, definition of the required structure of
discovered rules and constraints regarding them, and specifying support and confi-
dence thresholds.

In [24][25] another extension of SQL, called MSQL, was proposed. The focus of
the presented approach was not only on the data mining query language itself but also
on the application programming interface through which MSQL queries would be
send by applications to the data mining system. As for MSQL syntax, it was oriented
on both discovering new rules and querying previously discovered rules stored in the
database. In contrast to the approach from [11] which used standard SQL queries to
check which data supported or violated a given rule, MSQL offered explicit language
constructs for that purpose.

In [19] another data mining query language, called DMQL, was introduced as a ba-
sic interface to the DBMiner data mining system [18]. One striking difference be-
tween DMQL and the two languages mentioned earlier was a much broader scope of
DMQL, which supported several other data mining techniques apart from association
rule discovery, i.e., mining characteristic, classification, and discriminant rules.
Another advantage of DMQL over MINERULE and MSQL was the direct support for
incorporating background knowledge in the form of concept hierarchies (taxonomies)
in order to discover generalized rules.

A few years after the first proposals of data mining query languages, MineSQL
[38][39] was proposed as the first language supporting mining frequent itemsets as a
final form of discovered knowledge. Two other types of patterns handled by Mi-
neSQL were association rules and sequential patterns. Borrowing the best features of
its predecessors, MineSQL integrated SQL queries to select source datasets to be
mined, supported creation of taxonomies and using them in the mining process, con-
tained clauses to determine source data supporting or violating discovered rules, and
allowed a user to materialize discovered knowledge in the database for further analys-
es. As for the latter, a novel approach was taken, allowing data mining queries to be
defining queries of materialized views, thus introducing the concept of materialized
data mining views.

Unfortunately, the aforementioned language proposals by the research community
had no or little influence on standards or existing database management systems. The
relevant data mining standards that include executing association rule/frequent itemset
mining task within their scope are: Java Data Mining [31], OLE DB for Data Mining
[41], and SQL/MM Data Mining [26]. All of them treat association rule mining as
building a mining model, which can then be browsed/queried, with frequent itemsets
regarded as a by-product or an intermediate step. Nevertheless, implicitly a frequent
itemset query specifying the source dataset and constraints on frequent itemsets (de-
rived from user-specified association rule constraints) is still executed, which makes

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 229

the problem considered in this chapter still relevant. Recently, Oracle provided a
strong argument supporting the research on frequent itemset queries by including a
PL/SQL package for mining frequent itemsets as one of the standard packages start-
ing from the version 10g of its database server [43]. The package allows frequent
itemset queries to be formulated in pure SQL, which is an important signal to the
research community. Firstly, it means that data mining queries are present in one of
the market-leading DBMSs. Secondly, it clearly indicates that future research on data
mining queries should focus on frequent itemset queries.

3.2 Constraint-Based Frequent Itemset Mining

Early research on frequent itemset and association rule query optimization focused on
optimizing queries individually in the form of constraint-based mining. The idea was
to incorporate user-specified constraints into mining algorithms in order to not only
restrict the number of returned itemsets/rules (which can be done by post-processing)
but also to reduce the execution time. The first approach to constraint-based frequent
itemset mining was presented in [48]. Considered constraints had the form of a dis-
junctive normal form (DNF) with each disjunct stated that a certain item must or must
not be present. Three Apriori-based algorithms were proposed, each of which applied
a different modification to the candidate generation procedure.

In [42] Lakshmanan et al. considered more sophisticated constraints on frequent
itemsets by allowing the constraints to refer to item attributes. The authors provided
the first classification of constraints, identifying two important constraint properties:
anti-monotonicity and succinctness. For all the considered constraint types a method
of handling them within the Apriori framework was proposed, and formalized in the
CAP algorithm.

Pei and Han [44][45] added monotonicity, previously considered in the context of
correlated sets, to the two frequent itemset constraint properties identified by Laksh-
manan et al. and then identified a broad class of constraints that do not exhibit any of
the three properties but become monotone or anti-monotone if a certain order over the
item domain is assumed. The new class of constraints was called convertible con-
straints. After completing the classification of constraints for frequent itemset mining,
the authors showed that pattern-growth paradigm (represented by the FP-growth algo-
rithm) is more suitable for constraint-based mining than the Apriori-based approach
by providing guidelines on efficient handling of all four types of constraints within
FP-growth.

In [52] a completely different method of handling constraints in frequent itemset
mining, called dataset filtering, was presented. Instead of integrating the constraint-
handling techniques into mining algorithms, the authors showed that certain con-
straints allow the query to be transformed into a query operating on the subset of the
original query’s input dataset that is equivalent in terms of the results. Although this
approach is applicable to a small subset of constraints considered in frequent itemset
mining, it has two important advantages. Firstly, it is independent of any particular
frequent itemset mining algorithm. Secondly, it does not conflict with the constraint-
handling techniques integrated into Apriori or FP-growth.

Recent works oriented on supporting frequent pattern mining in a query-oriented
fashion suggest that, contrary to previous beliefs, pushing constraints down into the

230 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

mining process in order to optimize processing of an individual query is not a good
approach in terms of the overall system performance [15][22]. The key observation
was that if pattern constraints are handled in a post-processing phase, then the system
may materialize all the frequent patterns, not just those forming the final result of the
query. Such an approach maximizes the chances of reusing materialized patterns by
subsequent queries which typically is the most efficient way of answering a frequent
pattern query.

3.3 Reusing Results of Previous Frequent Itemset Queries

The fact that mining results are often materialized in the database for further analyses
and browsing raised a natural question whether and under what circumstances results
of previous frequent itemset queries can be reused to improve the execution time of a
new query. To answer the question several techniques were proposed that can be
generally described as optimizing sequences of frequent itemset queries, in the sense
that when processing a given query it is assumed that the results of previous queries
are available.

The research on reusing results of previous queries actually started under the name
of “incremental mining” before the term “data mining query” came into use. Cheung
et al. considered the scenario when new data is added to the previously mined data-
base, thus potentially making some of the previously frequent itemsets infrequent and
vice versa [12]. They proposed an Apriori-based algorithm, called FUP, that used
information about the support of previously frequent itemset to prune candidates in
the process of mining the incremented database. In their subsequent work [13], the
authors generalized their technique in the form of the FUP2 algorithm that was able to
efficiently handle not only insertions but also deletions of data3.

Both FUP and FUP2 require iterative scans of the whole input dataset in the same
manner as basic Apriori. With the aim of reducing the cost of I/O activity in the
process of incremental mining, Thomas et al. [49] proposed an incremental frequent
itemset mining algorithm that required at most one scan of the whole input dataset,
while still being able to handle both insertions and deletions in the original dataset. To
achieve its goal, the algorithm required that not only frequent itemsets from the origi-
nal dataset had to be available but also negative border of the set of frequent itemsets,
i.e., itemsets that were Apriori candidates but turned out to be infrequent. The algo-
rithm’s I/O activity was concentrated on inserted/deleted data, and one scan of the
whole dataset was needed only if the information about the supports of itemsets from
the original mining result and its negative border together with the information ob-
tained from inserted/deleted data was not sufficient to determine the support of all
itemsets potentially frequent in the modified database.

Nag et al. [40] considered an environment where a number of users concurrently
issue association rule queries. In order to improve the overall performance of such a
system, they suggested caching itemsets (frequent ones and those forming the nega-
tive border) generated as a by-product of previous association rule queries and use
them in the frequent itemset mining stages of upcoming association rule queries.

3 In fact, FUP2 also handled updates of the input data, treating them as combinations of inser-

tions and deletions.

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 231

Obviously, the approach taken actually resulted in optimizing sequences of frequent
itemset queries. To facilitate itemset caching, the authors introduced the concept of a
knowledge cache and proposed several algorithms for maintaining the cache as well
as using its contents within the Apriori framework. As for differences among the
queries in the context of which using the cache was beneficial, only differences in the
support threshold were considered.

In [6] incremental refinement of association rule queries was considered in the con-
text of the MINERULE operator from [11] by Baralis and Psaila. The authors post-
ulated that a user is likely to refine their query a couple of times before obtaining the
expected results. This observation was the motivation for studying syntactic differ-
ences between the queries that allow one query to be efficiently answered using the
results of another query. Three relationships which occur between two association
rule queries were identified: equivalence, inclusion, and dominance. Although, the
approach concerned association rules, not frequent itemsets, it inspired subsequent
works devoted to frequent itemsets as well.

Meo [35] continued the work of Baralis and Psaila on refinement of association
rule queries in the context of the MINERULE operator by providing the ground for a
query optimizer supporting the equivalence, inclusion, and dominance relationships.
The author identified unique constraints and functional dependencies as elements of
database management system functionality that could support such an optimizer and
proposed extra intermediate data structures, called mining indices.

In [59] reusing results of previous frequent itemset queries stored in the form of
materialized data mining views from [39]. Syntactic differences between MineSQL
queries were analyzed and six scenarios of reusing the results of one query by another
query were identified. These scenarios covered the techniques from [12], [40], and
two of the three relationships from [6] adapted to frequent itemset queries.

The aforementioned methods of optimizing sequences of data mining queries can
be regarded as preparing the ground for optimizing sets of data mining queries. The
difference between all the above approaches and the problem studied in this chapter is
the fact that they all deal with a sequence of queries arriving to the system and
processed in a pre-defined order, while we are given a batch of queries at once. Ob-
viously, applying arbitrary order on a set of queries turns it into a sequence, which
means that all methods designed to deal with sequences of frequent itemset queries
are automatically applicable to sets of frequent itemset queries as well. In fact, as we
have shown in [37], it is possible to maximize the chance of one query reusing the
results of another query by choosing appropriate ordering of the queries and/or intro-
ducing additional queries into the sequence. However, such an approach can be suc-
cessfully applied just to a small fraction of cases that can be handled by a method
designed with sets of queries in mind, like Common Counting to which this chapter is
devoted.

4 Optimizing Sets of Frequent Itemset Queries

This section contains our formal, generic model of frequent itemset queries and
presents the problem of optimizing sets of frequent queries, followed by a discussion
on possible solutions and related work.

232 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

4.1 Basic Definitions

Definition 4. A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, β), where R is a
relation, a is a set-valued attribute of R, Σ is a condition involving the attributes of R
(called a data selection predicate), Φ is a condition involving discovered itemsets
(called a pattern constraint), and β is the minimum support threshold. The result of
dmq is a set of itemsets discovered in πaσΣR, satisfying Φ, and having support ≥ β (π
and σ denote projection and selection).

It should be noted that the assumption of using set-valued attributes to store transac-
tions in a database relation does not influence the generality of the proposed query
model. If input dataset is stored in the classic first normal form (1NF) where either
each item occupies a separate row (so called transactional data format) or is
represented by a binary flag in a dedicated column (so called relational format), it will
be converted to the form of collection of sets in the process of reading the data from
the database.

Our query model is general in the sense that we pose no restrictions on the form of
data selection predicates, which we assume will be specified in pure SQL, and pattern
constraints whose form and nature is irrelevant for our Common Counting method,
which will be discussed later.

Example 1. Given the database relation R1(a1, a2), where a2 is a set-valued attribute
and a1 is an attribute of integer type. The frequent itemset query dmq1 = (R1, a2,
“a1 > 5”, “|itemset| < 4”, 3%) describes the problem of discovering frequent itemsets
in the set-valued attribute a2 of the relation R1. The frequent itemsets with support of
at least 3% and size less than 4 items are discovered in the collection of records hav-
ing a1 > 5.

Definition 5. The set of elementary data selection predicates for a set of frequent
itemset queries DMQ = {dmq1, dmq2, ..., dmqn} is the smallest set S = {s1, s2,..., sk} of
data selection predicates over the relation R such that for each u, v (u ≠ v) we have
σsuR∩σsvR=∅ and for each dmqi there exist integers a, b, ..., m such that
σΣiR=σsaR∪σsbR∪..∪σsmR.

The set of elementary4 data selection predicates represents the partitioning of the
database determined by overlapping of queries’ datasets. Each partition contains
transactions shared by exactly the same subset of queries and for each partition this
subset of queries is different. Thus, the database partitions corresponding to elementa-
ry data selection predicates will be units of data subject to the optimization of the disk
I/O cost.

4 It should be noted that we use the term “elementary” to describe the property that data selec-

tion predicates of all the queries from a batch can be expressed as a disjunction of some of the
elementary data selection predicates and at the same time this set cannot be reduced by com-
bining predicates with disjunction so that this property still holds. Obviously, in general such
elementary data selection predicates can be syntactically complex, i.e., having a form of
simpler predicates combined using logical operators.

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 233

The set of elementary data selection predicates for a given set of frequent itemset
queries DMQ = {dmq1, dmq2, ..., dmqn} can be generated using the following proce-
dure:

1) generate S as the set of all possible conjunctions of predicates from the set {Σ1,
¬Σ1, Σ2, ¬Σ2, …, Σn, ¬Σn} such that for each pair of predicates Σi, ¬Σi, exactly
one of them is present in the conjunction

2) remove from S the conjunction ¬Σ1 ∧ ¬Σ2 ∧ … ∧ ¬Σn
3) remove from S all predicates s such that σsR=∅

The first step of the above procedure generates a formula for each subset of the set of
queries that selects all the data shared only by this subset of queries. Obviously, the
number of such formulas is 2n. In the second step, the formula representing the empty
subset of the set of queries (i.e., selecting data that do not belong to any query) is
discarded. Finally, the formulas that select no data, i.e., do not correspond to any
actual partition of data implied by the overlapping of queries’ datasets are removed.

The last step of the procedure is the most challenging one. Some of the formulas
will be discarded after syntactic analysis (i.e., self-contradictory formulas), while
others will be identified as selecting no data only after the first execution of SQL
queries corresponding to them. In the latter case, the execution of a set of frequent
itemset queries will start with the superset of the actual set of elementary data selec-
tion predicates that will be tuned at early stages of the mining process. It should be
noted that in scenarios that we believe are the most typical, i.e., involving all the que-
ries selecting data according to the same attribute (e.g., queries mining data from
different periods of time) syntactic analysis should be sufficient to eliminate redun-
dant formulas from the set of elementary data selection predicates. Even if that is not
the case, unnecessary SQL queries could be avoided thanks to statistics collected by
the system. Nevertheless, we claim that generation of the set of elementary data selec-
tion predicates based on the queries’ data selection predicates is a task for a SQL
query optimizer.

Example 2. Given the relation R1(a1, a2) and three data mining queries: dmq1 = (R1,
a2, “5 ≤ a1 <20”, ∅, 3%), dmq2 = (R1, a2, “10 ≤ a1 <30”, ∅, 5%), dmq3 = (R1, a2,
“15 ≤ a1 <40”, ∅, 4%). The set of elementary data selection predicates is then
S = {s1 = “5 ≤ a1 <10”, s2 = “10 ≤ a1 <15”, s3 = “15 ≤ a1 <20”, s4 = “20 ≤ a1 <30”,
s5 = “30 ≤ a1 <40”}.

4.2 Problem Formulation

The problem of efficient processing of sets of frequent itemset queries could be for-
malized as the following optimization problem:

Problem 2. Given a set of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn},
the problem of multiple-query optimization of DMQ consists in generating an algo-
rithm to execute DMQ that minimizes the overall processing time.

The trouble with the above problem formulation is that a hypothetical multi-query
optimizer for frequent itemset queries would need formulas for estimating the costs of

234 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

various execution plans. Obviously, before such cost formulas for multi-query execu-
tion strategies could be developed, they had to exist for single queries5, which
unfortunately is not the case yet.

We claim that, taking the above observation into account, the present research on
efficient processing sets of frequent itemset queries should focus on proposing algo-
rithms that offer performance improvement over sequential execution, at least in typi-
cal scenarios, by sharing computations among the queries. Common Counting,
presented in detail in the next section, is such a method.

4.3 Related Work on Multi-query Optimization

Multiple-query optimization has been extensively studied in the context of database
systems (see [47] for an overview). The idea was to identify common subexpressions
(selections, projections, joins, etc.) and construct a global execution plan minimizing
the overall processing time by executing the common subexpressions only once for
the set of queries [5] [28]. Many heuristic algorithms for multiple-query optimization
in database systems were proposed (e.g., [46]). Data mining queries could also benefit
from the general strategy of identifying and sharing common computations. However,
due to their different nature they require novel multiple-query processing methods.

To the best of our knowledge, apart from the problem considered in this paper,
multiple-query optimization for frequent pattern queries has been considered only in
the context of frequent pattern mining on multiple datasets [30]. The idea was to re-
duce the common computations appearing in different complex queries, each of
which compared the support of patterns in several disjoint datasets. This is fundamen-
tally different from our problem, where each query refers to only one dataset and the
queries' datasets overlap.

Earlier, the need for multiple-query optimization has been postulated in the some-
what related research area of inductive logic programming, where a technique based
on similar ideas as Common Counting has been proposed, consisting in combining
similar queries into query packs [7].

5 Common Counting

In this section we present the Common Counting method for efficient processing of
sets of frequent itemset queries. We start with a basic algorithm that does not take into
account the limit of the available memory, and then discuss the way of extending it to
deal with such a practical restriction.

5.1 Basic Algorithm

The motivation for Common Counting is the observation that for a set of frequent
itemset queries whose input datasets overlap, the most visible common operation in
their Apriori-based execution is reading the shared parts of the database in the process
of counting the candidates. Common Counting reduces the I/O costs with respect to
sequential processing by concurrent execution of a set of frequent itemset queries

5 For example, in order to estimate the cost of sequential execution of a set of queries.

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 235

using Apriori and integration of scans of the shared parts of the database. The pseudo-
code of Common Counting is presented in Fig. 2.

Input: DMQ = {dmq1, dmq2, ..., dmqn}, where dmqi = (R, a, Σi, Φi, minsupi)
(1) S = set of elementary data selection predicates for DMQ
(2) for (i=1; i ≤ n; i++) do
(3) C1,i = all possible 1-itemsets
(4) for (k=1; Ck,1 ∪ Ck,2 ∪ .. ∪ Ck,n ≠ ∅; k++) do
(5) begin
(6) for each sj ∈ S do
(7) begin
(8) CC = {Ck,i : σsjR ⊆ σΣiR}

(9) if CC ≠ ∅ then count(CC, σsjR)
(10) end
(11) for (i=1; i ≤ n; i++) do
(12) begin
(13) Fk,i = {c ∈ Ck,i : c.counter ≥ minsupi}
(14) Ck+1,i = apriori_gen(Fk,i)
(15) end
(16) end
(17) for (i=1; i ≤ n; i++) do
(18) Answeri = σΦi Uk Fk,i

Fig. 2. Common Counting

The initial step of Common Counting is the generation of the set of elementary da-
ta selection predicates for the set of queries as discussed in Sect. 4.1 (line 1). After
that, Common Counting iteratively generates and counts candidates for all frequent
itemset queries. In the first iteration, for all the queries, the set of candidates is the set
of all possible items (lines 2-3). The candidates of the size k (k>1) are generated from
frequent itemsets of size k-1, separately for each query (lines 11-15). Generation of
candidates (represented in the pseudo-code by the apriori_gen() function) is per-
formed exactly as in the original Apriori algorithm. The candidates generated for each
query are stored in a separate hash tree. The iterative process of candidate generation
and counting ends when for all the queries no further candidates can be generated (the
condition in line 4).

Occurrences of candidates for all the queries are counted during one integrated da-
tabase scan in the following manner. For each elementary data selection predicate, the
transactions from its corresponding database partition are read one by one. For each
transaction the candidates of the queries referring to the database partition being read
are considered, and the counters of candidates contained in the transaction are incre-
mented (lines 6-10). The inclusion test is performed by confronting the transaction
with hash trees of all the queries referring to the database partition containing the
transaction. Candidate counting is represented in the pseudo-code as the count() func-
tion. It should be noted that if a given elementary data selection predicate is shared by
several queries, its corresponding database partition is read only once during each
candidate counting phase.

236 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

The formulation of Common Counting from Fig. 2 does not incorporate pattern
constraints into the actual mining process, leaving them for post-processing (line 18).
The reason for this is the fact that the optimization applied by Common Counting
concerns only database access. Nevertheless, it should be noted that the Common
Counting scheme does not interfere in any way with constraint-handling techniques
described in sect. 3.2, meaning that these techniques could be incorporated into
Common Counting in the same way they are incorporated into pure Apriori.

{101,102,105} 23
itemset counter

dmq1 dmq2 dmq3

database

{101,102,105} 17
itemset counter

Fig. 3. Illustration of Common Counting and its memory structures

The idea of Common Counting and its memory structures are illustrated in Fig. 3
for the set of three queries. Each query creates its own hash tree to store its candi-
dates. If a given itemset is generated as a candidate by more than one query, it appears
in more than one hash tree. Clearly, there are more possibilities of computation shar-
ing among the queries beyond just integrating scans of input data. However, such a
tighter integration comes at a certain price, which will be briefly described in Sect. 9.

Common Counting was designed with the assumption that partitions of the data-
base corresponding to elementary data selection predicates can be efficiently re-
trieved, for example using indexes. However, there is no guarantee that for any data
selection predicate specified in a user’s query an appropriate index will be present in
the database. Interestingly, Common Counting can be even more beneficial if full
scans of the database relation containing input datasets of the queries are necessary to
retrieve the data partitions. However, a change of the way Common Counting reads
data partitions is required to adapt it to the absence of more efficient data access paths
than full table scan. Instead of reading partitions one by one, one scan of the whole
relation should be performed and for each transaction the check to which queries it
belongs should be performed. Such an approach is possible thanks to the fact that
Common Counting actually does not require that partitions are read as a whole and
can switch from partition to partition during the scan of the database relation. Ob-
viously, after the above modification Common Counting will have to read more data
than it would have to if an appropriate index was available. Nevertheless, if full table
scans are the only option, sequential execution of the queries will have its perfor-
mance relatively more degraded than Common Counting, since for each query a full
scan will be needed.

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 237

5.2 Motivation for Query Set Partitioning

The basic Common Counting assumes that in each of its iterations candidate hash
trees of all the frequent itemset queries forming a batch can reside in the main memo-
ry at the same time, and thus only one database scan is needed to count current candi-
dates of all the queries. Obviously, in practice memory is going to be limited, so that
simple strategy may not always be applicable.

Actual memory requirements of the Common Counting method depend on the
number of queries, their support thresholds, and characteristics of the database. Nev-
ertheless, in order to make Common Counting applicable in practice for arbitrarily
large batches of queries, regardless of their predicates and the nature of the database,
a solution enabling counting the candidates stored in hash trees whose total size ex-
ceeds the memory limit has to be provided.

To address the above issue, we propose to partition the set of queries into subsets
so that the hash trees of the queries from each subset fit into memory. After the parti-
tioning, counting of the candidates will be performed in several phases, with each of
the resulting subsets of queries having their candidates counted during one database
scan.

Clearly, the I/O cost of a Common Counting iteration divided into phases will be
greater than it would be if query partitioning was not necessary. However, this cost
will still be smaller than in case of sequential execution of the queries because the
data sharing among the queries assigned to the same phase will still be taken advan-
tage of. It should be noted that in general for a given set of queries many different
partitioning will be possible, resulting in potentially different I/O costs. This observa-
tion leads to an interesting optimization problem of choosing the partitioning with
minimal resulting I/O costs. Before we formalize the problem and present algorithm
to solve it, we will discuss a few key issues that query partitioning algorithms for
Common Counting have to take into account.

5.3 Key Issues Regarding Query Set Partitioning

In order to be able to verify if a given assignment is feasible and compare feasible
assignments in terms of resulting I/O costs, the query set partitioning algorithm has to
be provided with the sizes of hash trees and the sizes of database partitions corres-
ponding to the elementary data selecting predicates representing data sharing among
the queries.

Since the sizes of candidate hash-trees change between Apriori iterations, the as-
signment of queries to Common Counting phases has to be performed at the begin-
ning of every Apriori iteration. A partitioning algorithm requires that sizes of candi-
date hash-trees are known in advance. Therefore, in each iteration of Common Count-
ing, we first generate all the candidate hash trees, measure their sizes, save them to
disk, partition the data mining queries into phases, and then load the hash trees from
disk when they are needed during Common Counting phases. We have also consi-
dered estimating hash tree sizes in order to avoid the costs of migrating pre-created
hash trees between main memory and disk [9]. The estimation formula was designed
with a tendency to overestimate the size of a tree so as to minimize the chance that
some of the phases actually do not fit into memory. The negative side of the approach

238 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

taken was that the partitionings based on estimates were significantly worse in terms
of I/O costs than those based on actual computed sizes. Therefore, we consider gene-
rating all the candidate hash trees in advance and swapping some of them to disk if
there is not enough memory to keep them all together as a primary option.

As for the sizes of partitions of the database determined by overlapping of the que-
ries’ datasets, it is true that they are not known before the first iteration of Common
Counting. Fortunately, the sizes of the database partitions will not be required until
the second Common Counting iteration, when the hash trees are starting to be con-
structed. In the first iteration candidates for all the queries are all single items from
the database and storing their counters for a sensible number of queries should not be
a problem. Therefore, only one scan of the database will be needed in the first Com-
mon Counting iteration with no assignment of queries to phases, i.e., with one phase
including all the queries. During that scan the actual sizes of database partitions can
be calculated, so we can assume that they are available for subsequent Common
Counting iterations.

The exhaustive search for an optimal assignment of queries to Common Counting
phases is inapplicable for large batches of queries due to the size of the search space
(expressed by a Bell number). Moreover, as we will show in the next section, the
problem is NP-hard. Therefore, in practice heuristic algorithms have to be used.

Finally, let us consider the effect of available access paths to data partitions on the
problem of assigning queries to Common Counting phase. The above discussion and
the problem formulation from the next section are valid if the selective access to parti-
tions of the relation with input data is possible, which we regard as the primary scena-
rio. If the only access path to the data is full table scan, then Common Counting will
be reading the whole relation in each Common Counting phase. Thus, the data sharing
among the queries assigned to the same will be irrelevant, and only the number of
phases will be important. Consequently, the problem will become a classic bin pack-
ing problem, where a number of objects (in our case – hash trees) are to be packed to
bins of a given size (in our case – memory limit) so that the number of bins (in our
case – phases) is minimal. Although bin packing is an NP-hard problem, numerous
efficient heuristics are known for solving it. Therefore, we will not analyze this scena-
rio any further.

6 Frequent Itemset Query Set Partitioning by Hypergraph
Partitioning

In this section we introduce the concept of data sharing hypergraph as a model of
data sharing between frequent itemset queries. Then, in the context of data sharing
hypergraph we formulate our problem of partitioning the set of frequent itemset
queries as a particular case of hypergraph partitioning. Finally, we discuss computa-
tional complexity of the problem and review related work on hypergraph partitioning
techniques.

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 239

6.1 Data Sharing Hypergraph

A set of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} can be modeled as a
weighted hypergraph whose vertices represent queries and hyperedges represent ele-
mentary data selection predicates. A hyperedge in the hypergraph corresponds to a
database partition and connects the queries whose source datasets share that partition.
Below we formally define a data sharing hypergraph in the context of elementary data
selection predicates.

Definition 6. A data sharing hypergraph for the set of data mining queries DMQ =
{dmq1, dmq2, ..., dmqn} and its corresponding set of elementary data selection predi-
cates S ={s1, s2 ,..., sk} is a hypergraph DSH=(V,E), where V=DMQ, E=S, and a ver-
tex dmqi∈DMQ is incident to an hyperedge sj∈S iff σsjR ⊆σΣiR. Each vertex dmqi has
an associated weight w(dmqi) representing the amount of memory consumed by data
structures of the query dmqi. Each hyperedge sj has an associated weight w(sj)
representing the size of the database partition returned by the elementary data selec-
tion predicate sj.

Note that the above definition of a data sharing hypergraph allows hyperedges inci-
dent to only one vertex in order to represent database partitions read by only one
query. These hyperedges are necessary for a data sharing hypergraph to provide com-
plete information required by the main Common Counting scheme, and will also be
used to evaluate the partitioning objective in our hypergraph partitioning problem.

Example 3. Given three frequent itemset queries operating on the relation R1 = (a1,
a2): dmq1=(R1, “a2”, “5 ≤ a1 <20”, ∅, 3%), dmq2=(R1, “a2”, “10 ≤ a1 <30”, ∅, 5%),
dmq3=(R1, “a2”, “15 ≤ a1 <40”, ∅, 4%). The set of elementary data selection predi-
cates for the set of frequent itemset queries DMQ = {dmq1, dmq2, dmq3} is S={“5 ≤ a1

< 10”, “10 ≤ a1 <15”, “15 ≤ a1 < 20”, “20 ≤ a1 < 30”, “30 ≤ a1 < 40”}. The data shar-
ing hypergraph for DMQ is shown in Fig. 4.

dmq1

dmq2

dmq3

5<a1<10

10<a1<15 20<a1<30

30<a1<40

Data selection
predicate hyperedge

Frequent
itemset query
vertex

15<a1<20

Fig. 4. Example data sharing hypergraph

6.2 Hypergraph Partitioning Problem Formulation

The goal of query set partitioning for Common Counting is assigning queries to phas-
es fitting into main memory in a way minimizing the overall I/O cost. Each of the
phases returned by the partitioning algorithm is a set of frequent itemset queries for
which a data sharing hypergraph can be constructed. Thus, query partitioning for
Common Counting can be interpreted as a particular case of hypergraph partitioning.

240 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

After partitioning, elementary data selection predicates corresponding to database
partitions shared by queries that have been assigned to different phases will be
represented as hyperedges in more than one resulting hypergraph. In other words, a
hyperedge that is cut by the partitioning will be partitioned into a number of hyper-
edges connecting subsets of vertices previously connected by the original hyperedge.
This is crucial for our problem because we need to preserve the information about
data partitions to be scanned in each of the Common Counting phases.

dmq1
dmq3

5<a1<10

10<a1<15

15<a1<20
15<a1<20

20<a1<30

30<a1<40

20<a1<30 dmq2

Fig. 5. Example partitioning of the data sharing hypergraph from Fig. 4

One of the possible partitionings of the data sharing hypergraph from Fig. 4,
representing partitioning the set of queries into two phases is shown in Fig. 5. Hyper-
edges that have been cut (partitioned) are presented in bold.

In terms of hypergraph partitioning, the goal of query partitioning for Common
Counting can be stated as follows:

Problem 3. Given a data sharing hypergraph for the set of frequent itemsets queries
DSH = (V,E) and the amount of available main memory MEMSIZE, the goal is to
partition the vertices of the hypergraph into k disjoint subsets V1, V2, …, Vk, and their
corresponding data sharing hypergraphs DSH1 = (V1,E1), DSH2 = (V2,E2), …, DSHk =
(Vk,Ek) such that


∈=

≤∀
xi Vdmq

i
kx

MEMSIZEdmqw)(
..1

minimizing

 
= ∈kx Es

j

xj

sw
..1

)(.

In the above formulation, the partitioning constraint has the form of an upper bound
on the sum of weights of vertices in each partition, reflecting the amount of available
memory, while the partitioning objective is to minimize the total sum of weights of
hyperedges across all the partitions, representing the overall I/O cost of the Common
Counting iteration. According to the classification from [32], the partitioning objec-
tive in our problem formulation is equivalent to minimizing the k-1 metric, where the
goal is to minimize the size of the hyperedge cut to which each cut hyperedge

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 241

contributes k-1 times its weight (in the definition of the k-1 metric k denotes the num-
ber of partitions across which a cut hyperedge spans, not the total number of resulting
partitions).

It should be noted that the number of resulting partitions (i.e., Common Counting
phases) is not known a priori, and there is no lower bound on the sum of weights of
vertices in each partition. Informally, the latter means that we do not require that the
resulting partitions are of similar sizes.

6.3 Computation Complexity of the Problem

Our hypergraph partitioning problem is NP-hard since if we consider only hyper-
graphs with hyperedges connecting exactly two vertices, its decision version will
restrict itself to the classical graph partitioning problem formulation from [14] (proof
of NP-completeness by restriction). Taking that into account, for large number of
vertices (frequent itemset queries) heuristic approaches have to be applied to solve the
problem, resulting in possibly suboptimal solutions.

6.4 Related Work on Hypergraph Partitioning

Hypergraph partitioning has been extensively studied particularly in the domain of
VLSI design [4]. In data mining context it has been proposed as a clustering technique
in [34]. Many formulations of the hypergraph partitioning problem have been consi-
dered, differing in partitioning constraints and objectives (see e.g. [4] or [32]). Our
formulation differs from typical approaches because:

• we do not have any balance constraint on the sizes of resulting partitions, only
a strict upper bound on the sum of weights of vertices in a partition, reflecting
the memory limit

• we do not specify the desired number of partitions in advance; in fact, the re-
sulting number of partitions (phases) is irrelevant, only the partitioning objec-
tive matters

• for a hyperedge that is cut by the partitioning, we take into account the number
of partitions to which the vertices connected by the cut hyperedge belong6.

7 Query Set Partitioning Algorithms

This section presents heuristic algorithms that we proposed to solve the hypergraph
partitioning problem formulated in the previous section. We have taken two different
approaches to designing query set partitioning algorithms for Common Counting. The
first was to invent new methods, dedicated to our particular problem. The algorithms
designed this way are CCRecursive, CCFull, CCCoarsening, CCAgglomerative, and
CCAgglomerativeNoise. An alternative approach was to apply some of the

6 In other application domains it is more common just to check whether a hyperedge is cut or

not. Nevertheless, the same approach as ours has also been considered in the VLSI domain.

242 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

well-known metaheuristics. Motivated by the reported success of application of the
greedy approach to a related problem of k-way graph partitioning [27], we imple-
mented a greedy and semi-greedy strategies in the context of our hypergraph parti-
tioning problem. The resulting algorithms have been named CCGreedy and CCSemi-
Greedy respectively.

7.1 CCRecursive

The CCRecursive algorithm directly utilizes the information contained in the data
sharing hypergraph. Obviously, in order to minimize the partitioning criterion, the
queries sharing an elementary data selection predicate should be assigned to the same
phase. Since, in general it may not be possible for all the predicates, CCRecursive
gives preference to predicates corresponding to larger data partitions.

Phases = {∅}
sort S = <s1 , s2 ,..., sk> in descending order with respect to cost(si)
call CCRecursive(S, DMQ, Phases)

CCRecursive(S, DMQ, Phases):
begin

 ignore in S those predicates that are used by less than two dmqs
 for each si in S do begin
 tmpDMQ = {dmqj | dmqj = (R, a, Σj, Φj, βj), si ⊆Σj , dmqj ∈ DMQ}
 commonPhases = {p ∈ Phases | p ∩ tmpDMQ ≠ ∅}
 if commonPhases = ∅ then
 newPhase = tmpDMQ
 else
 newPhase = tmpDMQ ∪ Up | p∈ commonPhases
 end if;
 if treesize(newPhase) ≤ MEMSIZE then
Phases = Phases \ commonPhases
Phases = Phases ∪ newPhase
 else

 Phases = CCRecursive(<si+1, …, sk>, newPhase, Phases)
 end if

 end
 add phase for each unassigned query
 compress Phases containing queries from DMQ
 return Phases
end

Fig. 6. CCRecursive

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 243

The detailed structure of the CCRecursive algorithm is given in Fig. 6. The algorithm
iterates over all the elementary data selection predicates, sorted in descending order with
respect to their I/O costs. For each elementary data selection predicate we identify all the
data mining queries that include the predicate. If none of the identified queries has been
already assigned, then we create a new phase (partition) and we put all the queries into
the new phase. Otherwise, we merge the phases to which the assigned queries belonged
and we assign the other queries to this new phase. If the size of the newly created phase
exceeds the memory limit, then the phase is split into smaller ones by recursive execution
of the algorithm with the list of data selection predicates reduced to only those following
the predicate that led to exceeding the memory limit. (The auxiliary function treesize(Q),
where Q is a set of data mining queries, represents total memory size required to hold
candidate hash trees for all the queries in Q.)

At the end of the algorithm, we perform phase compression, which consists in re-
ducing the number of phases by merging the phases so that the resulting phases still
do not exceed the memory limit. This in fact leads to a bin packing problem which
itself is an NP-hard problem. If the number of phases to compress prevents the ex-
haustive search for better packing, one of the heuristics proposed for the bin packing
problem can be applied.

Although in general, in the context of our problem merging phases that do not
share a database partition makes no sense in terms of minimizing the partitioning
criterion, this step is required in CCRecursive since the phases may have been sharing
a database partition corresponding to a data selection predicate removed in the recur-
sive call of the algorithm.

7.2 CCFull

The problem with CCRecursive is that it does not take into account the fact that the
queries may share more than one database partition. As a consequence, CCRecursive
may not actually give precedence to query grouping/phase merging resulting in bigger
gains with respect to the partitioning criterion. CCFull addresses this problem by
considering the actual gains thanks to assigning a given subset of queries to the same
phase. Another advantage of CCFull over CCRecursive is that CCFull does not re-
quire recursive calls, which makes its number of operations more predictable.

The first step of CCFull is generation of a gain hypergraph for the set of data min-
ing queries. The gain hypergraph is a full (i.e., complete) hypergraph, in which vertices
represent the data mining queries while hyperedges are labeled with weights which
represent the amount of I/O cost reduction to be achieved if data mining queries con-
nected with the hyperedge were executed together (in the same phase). If common
execution of given data mining queries results in no reduction of I/O cost, the weight
of the connecting hyperedge is zero. A sample gain hypergraph is shown in Fig. 7. For
example, it can be noticed that common execution of the data mining queries dmq0,
dmq2, and dmq3 would reduce the total I/O cost by 16 units (the weight of the connect-
ing hyperedge) compared with the sequential execution. Using the same example, it
can also be noticed, that common execution of only the data mining queries dmq1 and
dmq2 provides no cost reduction (the weight of the connecting hyperedge is zero).

244 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

e0
23

e1
8 e3

15

e2

10

e4
16

e6
3

e5
5

e7
7

e8
8

e9
0

e10
3

dmq0

dmq1

dmq2

dmq3

Fig. 7. Sample gain hypergraph

The gain hypergraph can be generated using the algorithm GenerateGainHyper-
graph shown in Fig. 8. The algorithm takes two arguments: the set of all elementary
data selection predicates and the set of all data mining queries. First, the algorithm
builds a full hypergraph whose nodes are the data mining queries. Each hyperedge
receives the initial weight of zero. Then, for each hyperedge e, we create a set P of
distinct data selection formulas involved in all data mining queries connected with the
hyperedge e. I/O costs for executing the distinct data selection formulas from P are
then summarized and the result is assigned to the hyperedge e weight.

GenerateGainHypergraph(S, DMQ):
 begin
 generate a full hypergraph G={V,E}, V=DMQ
 for each e ∈ E do begin
 e.gain = 0
 P = {si ∈ S | ∃ dmqj∈ e, dmqj = (R, a, Σj, Φj, βj), si ⊆Σj}
 for each s ∈ P do begin
 e.gain += cost(s)*(|{ dmqj: dmqj∈ e, dmqj = (R, a, Σj, Φj, βj), si ⊆Σj }| - 1)
 end
 end
 return G

 end

Fig. 8. Gain hypergraph generation algorithm

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 245

After having created the gain hypergraph, CCFull performs the following steps. All
hyperedges are sorted in descending order according to their weights. Next, CCFull
iterates over the hyperedges and checks if data mining queries connected with the
current hyperedge have been already assigned to phases (partitions). If none of the
data mining queries has been assigned so far, and if their hash trees fit in memory,
then a new phase is generated and the data mining queries are assigned to it. Other-
wise, if only some of the data mining queries have been already assigned to different
phases, then CCFull tries to combine all those phases together with the unassigned
data mining queries. If such combined phase does not fit in memory, then the current
hyperedge is ignored and CCFull continues with the next one. The algorithm ends
when all hyperedges are processed. The algorithm CCFull is shown in Fig. 9.

CCFull(G=(V,E)):
 begin
 Phases = {∅}
 sort E = <e1, e2,..., ek> in desc. order w.r.t. ei.gain, ignore edges with zero gains
 for each ei in E do begin
 tmpV = {v ∈ V | v ∈ ei}
 if (|{p ∈ Phases | p ∩ tmpV ≠ ∅}| = 0) then
 commonPhases = ∅
 newPhase = tmpV
 else
 commonPhases = {p ∈ Phases | p ∩ tmpV ≠ ∅}
 newPhase = tmpV ∪  p | p∈ commonPhases
 end if
 if (treesize(newPhase) ≤ MEMSIZE) then
 Phases = Phases - commonPhases
 Phases = Phases ∪ newPhase
 end if
 end
 add phase for each unassigned query

return Phases
 end

Fig. 9. CCFull

The detailed steps of the CCFull algorithm are the following. First we initialize the
set of phases – we start with the empty set. In the next step we sort the list E of hyper-
edges from the gain graph. Hyperedges with weights equal to zero are removed from
the list. Then a loop starts, which iterates over the list of hyperedges. In the first step
of the loop we select all data mining queries which are connected with the current
hyperedge (tmpV). Next we test if any of the selected data mining queries belongs to
any of the phases created so far. If not, then we create a new candidate phase contain-
ing all the data mining queries from tmpV. Otherwise, we create a new candidate
phase containing all the data mining queries from tmpV and data mining queries from
earlier created phases, to which any of the tmpV data mining queries was also

246 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

assigned. After the process of building the new candidate phase is completed, we
check if hash trees of all the data mining queries from it fit together in memory
(MEMSIZE is the available memory size). If this condition is satisfied, then we ap-
pend the new candidate phase to the current set of created phases Phases, possibly
replacing some of the existing phases (when multiple phases are combined). Finally,
when the loop is finished, for each data mining query which has not been assigned we
create a new phase.

7.3 CCCoarsening

Earlier we have stated that hypergraph partitioning algorithms from other domains are
not applicable to our problem due to its specifics. Nevertheless, the existing hypergraph
partitioning algorithms can provide inspiration for the development of new methods. This
is exactly the case with CCCoarsening which borrows ideas from the heavy edge match-
ing method of graph coarsening in multi-level graph partitioning [33].

The CCCoarsening algorithm starts with transformation of the data sharing hyper-
graph into a gain graph, which contains (1) vertices being the original data mining
queries and (2) two-vertex edges whose weights describe gains that can be reached by
executing the connected queries in the same phase. The idea is to avoid the problem
of an exponential number of hyperedges (with respect to the number of vertices) suf-
fered by CCFull, which uses a gain hypergraph. The price for the above simplification
is the loss of precise information on actual gains due to assigning any given subset of
queries to the same phase. As a consequence, only pairs of queries/phases will be
considered for merging in each step of the iterative process.

A sample gain graph for the set of three data mining queries is shown in Fig. 10.
For example, putting the data mining queries dmq1 and dmq2 in the same phase would
allow us to save 90 I/O cost units (e.g., disk blocks).

e2
(90)

e3
(40)

dmq1

dmq2

dmq3 e1

(20)

Fig. 10. Sample gain graph

The heavy edge matching method [33], of which CCCoarsening is an adaptation,
was designed as a method of coarsening large graphs by collapsing strongly con-
nected vertices. The original heavy-edge matching algorithm iteratively reduces the
graph by minimizing the number of its vertices. In each iteration, the algorithm looks
for the maximal set of edges (called matching) such that it contains no pair of edges
incident with the same vertex. In order to generate a matching, a vertex currently not
matched is randomly selected. Then, from the set of edges incident to the selected
vertex an edge of the maximal weight from the edges leading to other so far un-
matched vertices is chosen. The chosen edge results in selection of its two incident
vertices for matching and labeling them as „matched”. When the matching is com-
plete, the edges forming it are removed from the graph and each pair of vertices

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 247

connected by an edge that is to be removed are merged into one vertex, whose weight
is the sum of weights of the two merged vertices. After merging vertices, some of the
remaining edges may also merge as only single edge between any pair of vertices is
allowed. If a set of edges is being merged into one edge, its resulting weight is the
sum of the weights of the replaced edges.

Our adaptation of the heavy-edge matching algorithm for the purpose of query set par-
titioning for Common Counting focuses on the modification of the vertex reduction step.
When an unmatched vertex is randomly selected, we will sort the edges connecting it
with other unmatched vertices in the decreasing order of weights. Next, we choose the
edge with the highest weight and check if the weight of a new vertex that would be
created by collapsing the selected edge does not exceed the limit on the vertex weight
(representing the amount of available memory to store hash trees). If not, the pair of
vertices connected by the selected edge is merged. Otherwise, the edge next in order is
chosen from the sorted list of edges incident to the randomly selected vertex. If none of
edges incident to the vertex leads to a feasible merging, the vertex is not merged but still
it is marked as matched so it will not be considered again in the current iteration of the
graph coarsening process. The algorithm finishes work if no feasible matching of vertices
can be found in a new coarsening iteration. The vertices of the resulting reduced graph
represent partitions corresponding to phases of our original problem.

7.4 CCAgglomerative

Similarly to CCCoarsening, the CCAgglomerative algorithm first transforms the data
sharing graph into a gain graph, but then uses a different method of grouping queries
into phases. In CCCoarsening a matched vertex is not considered for subsequent
merges until the matching in the present coarsening iteration is completed.
CCAgglomerative does not pose such a restriction.

CCAgglomerative(G=(V,E), E contains 2-node edges only):
begin
 Phases = ∅
 for each v in V do Phases = Phases ∪ {{v}}
 sort E = {e1, e2, ..., ek} in descending order w.r.t. ei.gain, ignore edges with zero gains
 for each ei = (v1, v2) in E do begin
 phase1 = p ∈ Phases such that v1 ∈ p
 phase2 = p ∈ Phases such that v2 ∈ p
 if treesize(phase1 ∪ phase2) ≤ MEMSIZE then
 Phases = Phases – {phase1}
 Phases = Phases – {phase2}
 Phases = Phases ∪ {phase1 ∪ phase2}
 end if
 end
 return Phases

 end

Fig. 11. CCAgglomerative

CCAgglomerative starts with an initial partitioning created by putting each data
mining query into a separate phase. Next, the algorithm processes the edges sorted
with respect to the decreasing weights. For each edge, the algorithm tries to combine

248 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

phases containing the connected data mining queries into one phase. If the total size
of all the data mining queries in such phase does not exceed the memory size, the
original phases are replaced with the new one. Otherwise the algorithm simply ig-
nores the edge and continues. The CCAgglomerative algorithm is shown on Fig. 11.

7.5 CCAgglomerativeNoise

Algorithm CCAgglomerative is a heuristics that suffers from the same problem as
classical greedy algorithms. (We will present a greedy algorithm for our problem in
Sect. 7.6 and then improve it in Sect. 7.7.) Merging phases connected by the heaviest
edge in each iteration may not always lead to the optimal assignment of queries to
phases. Let us consider an example gain graph representing a batch of queries shown
in Fig. 12.

e1
(15)

e3
(15)

dmq2

dmq1

dmq3e2
(20)

dmq4

Fig. 12. Example gain graph for which CCAgglomerative misses the optimal solution

Assume that in a certain iteration of Common Counting the sizes of candidate
hash-trees are 20 KB for all four queries, and the amount of available memory is
40KB, which means that no more than two queries can be processed in one phase. In
such a case, CCAgglomerative would start with assigning dmq2 and dmq3 to the same
phase, and then dmq1 and dmq4 would be assigned to different phases. The reduction
in number of disk blocks read, compared to sequential execution, would be 20 blocks.
Obviously, the optimal solution is to execute dmq1 and dmq2 in one phase and dmq3
and dmq4 in another, leading to the gain of 30 blocks.

To give the partitioning algorithm a chance of finding an optimal assignment, we
propose to randomize the graph by randomly modifying weights of graph edges with-
in a user-specified window (expressed in percents, e.g., ±10%), and then execute the
unmodified CCAgglomerative algorithm on a modified gain graph7. The procedure of
randomizing the graph and partitioning should be repeated a user-specified number of
times, each time starting with the original gain graph. We call the extended partition-
ing algorithm CCAgglomerativeNoise as it introduces some “noise” into the graph
model of the batch of queries, before performing actual partitioning. For the noise of
x%, in a randomized gain graph the modified weight e.gain’ of each edge e will be a
random number from the range <e.gain-x%*e.gain, e.gain+x%*e.gain>, where e.gain
is the original weight of the edge e.

7 Iterative execution of a partitioning heuristics over a randomized data sharing model could

also be considered for the partitioning algorithms presented in previous sections. We imple-
mented this idea in the context of CCAgglomerative as at the time it was the most efficient of
the algorithms proposed so far.

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 249

To illustrate a potential usefulness of CCAgglomerativeNoise let us go back to the
example gain graph from Fig. 12. For the noise of 20%, in each iteration of CCAg-
glomerativeNoise modified values of edge weights would be from the following
ranges: e1.gain’ ∈ <12,18>, e2.gain’ ∈ <16,24>, and e3.gain’ ∈ <12,18>. So, it is
possible that in some iteration of CCAgglomerativeNoise we would have e1.gain’ >
e2.gain’ or e3.gain’ > e2.gain’ (e.g., e1.gain’ = 18, e2.gain’ = 16, and e3.gain’ = 13), in
which case the basic CCAgglomerative partitioning procedure would find the optimal
assignment of queries to Common Counting phases.

We should note that the CCAgglomerativeNoise method should be treated as a
means of improving the results of pure CCAgglomerative. In other words, the initial
iteration of CCAgglomerativeNoise should always be on the original gain graph. This
way it can be guaranteed that CCAgglomerativeNoise will never generate worse parti-
tionings than CCAgglomerative.

7.6 CCGreedy

The general greedy strategy can be applied to solve the hypergraph partitioning prob-
lem representing query set partitioning for Common Counting by starting with each
query in a separate partition and then iteratively merging pairs of partitions, greedily
choosing the two partitions whose merging results in greater improvement of the
partitioning objective and at the same time does not violate the partitioning constraint.
This leads to the CCGreedy algorithm presented in Fig. 13.

CCGreedy(GG=(V,E)):
begin

while (true) begin
 sort E in descending order w.r.t. ei.gain, ignore edges with zero gains
 newPartition = ∅
 for each ei = {vx, vy} in E do
 if (treesize(ei) ≤ MEMSIZE) then
 newPartition = vx ∪ vy
 V = V \ {vx, vy}
 V = V ∪ {newPartition}
 E = E \ ei
 for each v in V do begin
 newEdge = {v, newPartition}; compute newEdge.gain
 E = E ∪ {newEdge}
 end
 break
 end if
 end
 if newPartition = ∅ then break end if
end
return V

end

Fig. 13. CCGreedy

250 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

To represent the gain in the partitioning objective for all pairs of partitions the al-
gorithm maintains a gain graph GG=(V, E), which is a fully connected graph whose
nodes represent partitions and each edge weight represents the gain thanks to merging
a pair of partitions connected by the edge. The gain is computed as the difference
between the values of partitioning objectives after and before merging a given pair of
queries.

It should be noted that while CCCoarsening and CCAgglomerative also use the
same gain graph structure as CCGreedy, the advantage of CCGreedy is that it updates
the gain graph after merging partitions so that the graph always reflects possible gains
due to partition merging.

7.7 CCSemiGreedy

An obvious problem with greedy algorithms like CCGreedy is that the locally optimal
choice in each operation may not lead to the globally optimal solution. To increase the
chances of finding the optimal partitioning we modify CCGreedy by applying a semi-
greedy strategy [21] to it. The result is the CCSemiGreedy algorithm depicted in
Fig.14.

CCSemiGreedy(GG=(V,E), RCLLen):
begin
 while (true) begin
 sort E in desc. order w.r.t. ei.gain,
 ignore edges with zero gains
 newPartition = ∅
 RCL = genRCL(GG, RCLLen)
 if length(RCL) = 0 then break end if
 randomly choose ei = {vx, vy} from RCL
 newPartition = vx ∪ vy
 V = V \ {vx, vy}
 V = V ∪ {newPartition}
 E = E \ ei
 for each v in V do begin
 newEdge = {v, newPartition}
 compute newEdge.gain
 E = E ∪ {newEdge}
 end
 end
 return V
end

function genRCL(GG=(V,E),
RCLLen):

begin
 RCL = nil
 for each ei = {vx, vy} in E do
 if (treesize(ei) ≤ MEMSIZE) then
 RCL = append(RCL, ei)
 if length(RCL) = RCLLen then
 break
 end if
 end if
 end
 return RCL
end

Fig. 14. CCSemiGreedy

CCSemiGreedy differs from CCGreedy in the step of choosing the partitions to
merge. CCSemiGreedy uses restricted candidate list (RCL) which is returned by the
function genRCL. This procedure iterates over the gain graph and checks if hash trees
of all the queries from a given pair of partitions fit together in memory. If this condi-
tion is satisfied, the current edge is added to the RCL. Generation of the RCL is
stopped when the list reaches the length of RCLLen (set by a user). In CCSemiGreedy

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 251

we check the length of the RCL. If it is zero, there is no possible merge, otherwise an
edge (for partition merging) is chosen randomly from the RCL. Other steps of the
CCSemiGreedy algorithm are the same as those described for CCGreedy algorithm.

In practice, CCSemiGreedy should be applied to query partitioning in the follow-
ing way. Firstly, an initial partitioning should be generated with CCGreedy. Then,
CCSemiGreedy should be executed a user-defined number of times. In the end, the
best of the generated partitionings should be used for Common Counting.

8 Experimental Results

This section contains the results of experiments that we conducted to compare the
proposed query partitioning algorithms for Common Counting. Due to the large num-
ber of the algorithms to compare, the experiments were divided into a couple of stag-
es. The first stage was devoted to comparison of basic versions of the partitioning
algorithms dedicated to our particular problem and developed with the goal of solving
it in mind, i.e. CCRecursive, CCFull, CCCoarsening, and CCAgglomerative. The
second stage contained experiments aimed at comparing the best algorithm selected in
the first stage, which turned out to be CCAgglomerative, with CCGreedy and CCSe-
miGreedy, which are adaptations of the universal greedy and semi-greedy metaheuris-
tics. Also at that stage CCAgglomerativeNoise, an extension of CCAgglomerative,
somewhat analogous to CCSemiGreedy with respect to CCGreedy, was included in
the tests.

In both stages, the experiments were performed on a synthetic dataset generated
with GEN [2]. The dataset had the following characteristics: number of transactions =
500000, average number of items in a transaction = 4, number of different items =
10000, number of patterns = 1000. The size of the dataset in a textual form was about
16MB. We stored the dataset in a local PostgreSQL database, where it consumed
about 85MB of disk space + extra 43 MB used for a B-tree index.

Batches of frequent itemset were generated with our own random generator para-
meterized with a desired average percentage of dataset overlapping between pairs of
queries from a batch. The minimum support (frequency) threshold of all the queries
was always set to 0.75%.

For the above support threshold the hash trees usually had the size of tens of kilo-
bytes. In order to introduce the need for query set partitioning, we deliberately limited
the amount of memory available for Common Counting executions to 120kB (differ-
ent values were also used in one of the experiments)8. Obviously, typically for sparse
datasets, as those generated with GEN, the hash trees were biggest in the second and
third Apriori iteration, and getting smaller with each subsequent iteration. As a conse-
quence, the need for query set partitioning was observed only for some of the Com-
mon Counting iterations, which is typical for real-life scenarios with datasets whose
characteristics the GEN generator tries to mimic.

8 Alternatively, we could have changed the parameters of the GEN generator and/or decrease

the minimum support threshold of the queries. The advantage of our approach was that it kept
the execution times reasonable without the loss of generality.

252 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

8.1 Comparison of Basic Dedicated Algorithms

In this stage of experiments we tested the four dedicated algorithms: CCRecursive,
CCFull, CCCoarsening, and CCAgglomerative, comparing them to two extra algo-
rithms provided as reference points: an exact algorithm (denoted as “Exact” in the
charts) enumerating all feasible partitionings by performing a brute-force search and
an algorithm randomly assigning queries to partitions so that the partitioning con-
straint is satisfied denoted as “Random” in the charts). These two extra algorithms
were ultimate choices to provide the reference points for judging usefulness of our
proposed algorithms as:

• a heuristic algorithm should generate solutions as close to those returned by
an exact algorithm,

• an algorithm generating solutions worse than generated randomly is obvious-
ly useless.

During the experiments we measured total execution time, time consumed by a
partitioning algorithm, the number of partitions in partitionings, and the number of
disk blocks read in a Common Counting iteration for a generated query set partition-
ing. The experiments were conducted on a PC with AMD Athlon 1400+ processor
and 384 MB of RAM running Windows XP. The data resided in a local PostgreSQL
database, the algorithms were implemented in C#.

40

50

60

70

80

90

100

110

6 8 10 12 14 16

to
ta

l e
xe

cu
tio

n
tim

e
[s

]

number of queries

Exact

CCRecursive

CCFull

CCAgglomerative

Random

CCCoarsening

Fig. 15. Total execution time of a batch of queries (40% overlapping, 120kB of memory)

Figure 15 presents total execution times of a batch of randomly generated queries
using the Common Counting method equipped with different query set partitioning
algorithms. The queries were generated so that the average overlapping between their
datasets was 40%. The memory available was limited to 120kB. The number of queries

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 253

varied from 6 to 16. The exact algorithm finished in reasonable time only for up to 12
queries (it did not complete in 900s for the case of 14 queries), which is a practical con-
firmation of our theoretical analysis suggesting that in order to support large batches of
queries heuristic partitioning algorithms are required. The two best algorithms in terms
of overall processing time of Common Counting are CCAgglomerative and CCFull,
with CCRecursive not far behind. However, while CCAgglomerative has polynomial
computational complexity with respect to the number of queries, the complexity of
CCFull is exponential. This is due to the fact that CCAgglomerative iterates over edges
in a connected graph, while CCFull does the same for hyperedges in a hypergraph. The
result is observed deterioration of execution times with the increasing number of queries
when CCFull was applied, compared to the characteristic of CCAgglomerative. The
worst of the four proposed algorithms is CCCoarsening, which performed worse than
the random approach.

Obviously, the total execution times are what matters in the end. Nevertheless, to
provide an insight into reasons of the overall performance of the tested algorithms, we
also analyzed separately the two factors that contributed to differences in the total
execution times: the time consumed by partitioning algorithms themselves and the
quality of generated partitionings, measured as the number of disk blocks read in a
Common Counting iteration due to a generated partitioning.

0,00001

0,0001

0,001

0,01

0,1

1

10

100

6 8 10 12 14 16

p
ar

tit
io

ni
ng

 ti
m

e
[s

]

number of queries

Exact

CCRecursive

CCFull

CCAgglomerative

Random

CCCoarsening

Fig. 16. Partitioning execution time (40% overlapping, 120kB of memory)

The execution times of partitioning algorithms measured in the experiment are de-
picted in Fig. 16. Due to large disproportions between the algorithms, the chart uses
logarithmic scale. The chart confirms that the execution times of the exact algorithm
and CCFull grow exponentially with the number of queries, which prohibits applica-
tion of both to large batches of queries. Still, as far as the partitioning time in a con-
cern, CCFull is an improvement over the exact algorithm as it completed within a

254 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

second even for 16 queries, which is acceptable as almost negligible compared to
the overall execution time of Common Counting. The fastest algorithms (apart from
the random approach) are CCAgglomerative, and CCCoarsening. CCRecursive is the
least predictive of the algorithms and for small batches of queries is even slower than
CCFull.

20

22

24

26

28

30

32

34

36

38

40

6 8 10 12 14 16

nu
m

b
er

 o
f

d
is

k
b

lo
ck

s
re

ad
 [1

00
0s

]

number of queries

Exact

CCRecursive

CCFull

CCAgglomerative

Random

CCCoarsening

Fig. 17. Number of disk blocks read for a generated partitioning (40% overlapping, 120kB of
memory)

Figure 17 shows the numbers of disk blocks read in a Common Counting iteration
due to a partitioning generated with a given algorithm, which reflects the accuracy of
the partitioning algorithms. The results are generally consistent with the total execu-
tion times of Common Counting as the time spend on partitioning was a small frac-
tion of the time spent on database scans. CCFull, CCAgglomerative, and CCRecur-
sive generate partitioning of similar quality, within 5% of those generated by the
exact algorithm, while CCCoarsening is worse than the random algorithm. As for the
influence of the number of queries on the quality of partitioning, the most important
observation is that the relative accuracy of CCFull, CCAgglomerative, CCRecursive,
and CCCoarsening with respect to exact and random algorithms was roughly the same
for all sizes of query batches. The absolute number of disk blocks read does not nec-
essarily rise with the increase of the number of queries as the complexity of the data
sharing hypergraph does not have to be greater for a larger number of randomly gen-
erated queries. Nevertheless, still such a tendency can be observed despite the aberra-
tion for the case of 8 queries.

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 255

Figure 18 provides an explanation of poor accuracy of CCCoarsening. The average
number of partitions in partitionings generated by the tested algorithms is presented.
Evidently, CCCoarsening is worse than the rest of the algorithms by 0.5 to 1 iteration
on average. The reason for this is the origin of the concept underlying the CCCoarsen-
ing algorithm. When the actual goal is coarsening the graph, having partitions of simi-
lar size is desired to preserve the general structure of a graph. However, in the case of
our problem, the fact that the algorithm was focusing on growing several partitions at
the same pace reduces the possibility of fully exploiting the memory available as
merging partitions into larger ones becomes impossible quicker than in case of other
algorithms. Thus, the possibilities of minimizing our partitioning criterion are reduced
in the case of CCCoarsening for the sake of balancing the sizes of partitions, which is
irrelevant for our problem.

2

3

4

5

6

7

6 8 10 12 14 16

nu
m

b
er

 o
f

p
ar

tit
io

ns

number of queries

Exact

CCRecursive

CCFull

CCAgglomerative

Random

CCCoarsening

Fig. 18. Average number of partitions in a partitioning (40% overlapping, 120kB of memory)

The last goal of this stage of experiments was testing the impact of the level of da-
taset overlapping between the queries within a batch on the performance of Common
Counting with various partitioning algorithms. Figures 19 and 20 show the total ex-
ecution times for four different average levels of query dataset overlapping with 10
and 40 queries in a batch respectively (for 40 queries the exact algorithm and CCFull
could not complete within reasonable time and therefore are not included in the
results).

256 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

40

50

60

70

80

90

100

20 40 60 80

to
ta

l e
xe

cu
tio

n
tim

e
[s

]

overlapping [%]

Exact

CCRecursive

CCFull

CCAgglomerative

Random

CCCoarsening

Fig. 19. Total execution time of a batch of queries (10 queries, 120kB of memory)

90

110

130

150

170

190

210

20 40 60 80

to
ta

l e
xe

cu
tio

n
tim

e
[s

]

overlapping [%]

CCAgglomerative

CCRecursive

Random

CCCoarsening

Fig. 20. Total execution time of a batch of queries (40 queries, 120kB of memory)

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 257

In general, the results are consistent with expectations as the more significant the
overlapping the better chances of reducing the I/O cost of database scanning. A nega-
tive surprise is a significant performance degradation of CCRecursive for the average
overlapping of 80% (the rest of algorithms exhibit slight performance degradation
only for the case of 40 queries as compared with the overlapping of 60%). We believe
that such a behavior can be explained by the recursive nature of CCRecursive. When
the queries almost completely overlap, there is a large number of elementary data
selection predicates corresponding to small dataset partitions, share by a large number
of queries. As a result, CCRecursive violates the partitioning constraint while there
are still many elementary data selection predicates to process (recall that CCRecursive
is the only of the algorithms working with the predicates one by one). This leads to a
lot of recursive calls due to attempts of creating partitions exceeding the size limit and
consequently deteriorates CCRecursive’s performance.

The overall conclusion from this stage of experiments is that the best out of four
proposed algorithms dedicated to our query set partitioning problem is CCAgglo-
merative as one of the two algorithms tied for the first place both in terms of partition-
ing time and quality.

8.2 Comparison of Greedy Approaches with the Best Dedicated Algorithms

The goal of the second stage of experiments was comparison of the best of dedicated
partitioning algorithms, which turned out to be CCAgglomerative, with an implemen-
tation of a greedy strategy – CCGreedy. Also included in the tests and evaluated were
their extensions, namely: CCAgglomerativeNoise and CCSemiGreedy. Before the
actual tests of the partitioning speed and accuracy of the compared algorithms, the
optimal values of parameters responsible for the chance of improving the initial solu-
tion of the two basic compared algorithms had to be determined. All the tested algo-
rithms were implemented C#. The experiments were conducted on a PC with Intel
Pentium IV 2.53GHz processor and 512MB of RAM running Windows XP.

We started the experiments with simulations, performed to determine influence of
CCSemiGreedy parameters (RCL length and number of attempts) on its effectiveness.
We simulated batches of data mining queries by randomly generating the database
predicate and size of the candidate tree for each query. Size of available memory was
randomly generated in such way that at least every single query could fit into memo-
ry. Series of simulations consisted of 500 iterations to get average values and were
applied to batches of queries ranging from 3 to 50 queries per batch.

Figure 21 presents the influence of chosen RCL length on the number of disk
blocks read by CCSemiGreedy. The experiments indicate that the length of the RCL
should be very small but greater than 2 items. Best results were obtained for 3 to 6
items. For further experiments we have chosen the length of RCL equal to 3.

258 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

2200

2250

2300

2350

2400

2450

2500

2550

0 5 10 15 20 25 30 35 40 45

RCL length

N
u

m
b

er
 o

f
d

at
a

b
lo

ck
s

re
ad

CCSemiGreedy attempts=50

Fig. 21. Influence of the RCL length on the overall accuracy of CCSemiGreedy

Figure 22 presents influence of the second parameter of CCSemiGreedy, which is
the number of attempts to generate a partitioning. It is obvious that more attempts
generally will result in better partitionings but at the expense of increasing the parti-
tioning time. Results indicate that after more than fifty attempts there is no significant
improvement in the quality of the partitioning.

2260

2280

2300

2320

2340

2360

2380

0 50 100 150 200

Attempts

N
u

m
b

er
 o

f
d

at
a

b
lo

ck
s

re
ad CCSemiGreedy RCLLen=3

Fig. 22. Influence of the number of attempts on the overall accuracy of CCSemiGreedy

CCAgglomerativeNoise iteratively tries to improve the partitioning generated by
CCAgglomerative in a similar way as CCSemiGreedy extends CCGreedy and is also
parameterized by the number of iterations. We set the number of attempts to 150 for
CCAgglomerativeNoise because this value resulted in CCSemiGreedy and CCAg-
glomerativeNoise consuming roughly equal time to generate the partitioning for the
average size of batches used in the planned experiments. For that number of iterations
we determined the optimal value of the noise parameter of CCAgglomerativeNoise in
similar simulations to those carried for RCL length of CCSemiGreedy. The influence
of the noise parameter on CCAgglomerativeNoise was analogous to that of RCL

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 259

length on CCSemiGreedy. The optimal value of noise turned out to be 3%, which is
relatively small.

Knowing the optimal values of parameters of CCSemiGreedy and CCAgglomera-
tiveNoise, we used these values in the subsequent experiments in which we compared
CCGreedy and CCSemiGreedy algorithms with CCAgglomerative and CCAgglome-
rativeNoise in terms of effectiveness (quality of generated partitionings) and efficien-
cy (partitioning times). In these experiments we randomly generated batches of 5 to
30 queries, operating on subsets of the test database.

Figure 23 presents how the accuracy of the partitioning algorithms changes with
the number of queries. To improve readability of the chart, we present relative amount
of data blocks read as result of partitionings generated by CCGreedy, CCSemiGreedy
and CCAgglomerativeNoise with respect to CCAgglomerative9. Experiments were
performed for three values of the main memory limit (90, 120, and 150kB) and for
four levels of the average overlapping of datasets read by queries in the set (20%,
40%, 60%, and 80%). The results presented are averages taken over all the conducted
experiments. Results show that the most effective partitionings are generated by
CCSemiGreedy and are about 5% better than those generated by CCAgglomerative.
For CCAgglomerativeNoise and CCGreedy the measured improvement over CCAg-
glomerative was 2% and 1% respectively.

0,89

0,91

0,93

0,95

0,97

0,99

1,01

0 5 10 15 20 25 30 35

nu
m

be
r o

f d
at

a
bl

oc
ks

 re
ad

 (
re

la
tiv

e)

number of queries

CCAgglomerative

CCGreedy

CCAgglomerativeNoise attempts=150 noise=3

CCSemiGreedy attempts=50 RCLLen=3

Fig. 23. Amounts of data read by different partitionings

9 For this stage of experiments we do not present the total execution times of Common Count-

ing because the difference between the algorithms would be difficult to notice from the chart
since the difference in the execution times among the algorithms was two orders of magni-
tude smaller than the difference between execution times for the smallest and largest of query
batches.

260 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

0,001

0,01

0,1

1

10

100

1000

10000

0 5 10 15 20 25 30 35

pa
rt

iti
on

in
g

 ti
m

e
[m

s]

number of queries

CCAgglomerative

CCGreedy

CCAgglomerativeNoise attempts=50 noise=3

CCSemiGreedy attempts=50 RCLLen=3

Fig. 24. Partitioning times (logarithmic scale)

Figure 24 presents execution times of the considered partitioning algorithms. This
time for CCSemiGreedy and CCAgglomerativeNoise numbers of attempts were fixed
at the same level (50). Execution times of CCAgglomerative and CCGreedy are neg-
ligible, with CCGreedy requiring at most twice as much time as CCAgglomerative.
Execution times of CCSemiGreedy are up to three times longer than those of CCAg-
glomerativeNoise and the gap increases with the number of queries.

The results of our experiments show that CCGreedy is more effective than CCAg-
glomerative, and properly parameterized CCSemiGreedy generates better partition-
ings than CCAgglomerativeNoise, which makes it the best partitioning algorithm for
Common Counting. The execution times of the new algorithms are longer but in typi-
cal situations the increase in partitioning time will be dominated by the reduction of
the time spent on disk operations thanks to better partitionings.

9 Review of Other Methods of Processing Sets of Frequent Itemset
Queries

While Common Counting is the most fundamental, and at the same time predictable
in terms of offered performance gains with respect to sequential execution, method of
processing sets of frequent itemset queries, it is not the only possible solution of the
considered problem. Two general approaches have been taken to design methods of
processing batches of frequent itemset queries: (1) providing methods independent
from a particular frequent pattern mining algorithm, and (2) tailoring dedicated me-
thods for the two most prominent frequent pattern mining algorithms, i.e., Apriori and
FP-growth. Obviously, Common Counting is a representative of the second approach.

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 261

The first method independent of the mining algorithm was Mine Merge [55] which
transformed the original batch of queries into a set of intermediate queries operating
on non-overlapping parts of the database. The results of these intermediate queries
were used to answer the original queries during a verifying pass over the database.
Mine Merge was shown to scale poorly with the number of queries due to exponential
growth of the number of resulting intermediate queries. Moreover, it requires signifi-
cant overlapping among the queries’ datasets in order to compensate the extra data-
base pass. The latter problem has been solved by a modified version of Mine Merge,
called Partition Mine Merge Improved [17], which generated intermediate queries
whose source datasets could be cached in memory and thus required exactly two
scans of the database to process the batch of queries. The price for the reduction of
I/O was the increase in the number of intermediate queries, resulting in the increased
amount of in-memory computations.

Following Common Counting, two methods offering tighter integration of
processing among the concurrently executed queries were proposed for Apriori.
Common Candidate Tree [16] replaced individual hash trees with one integrated data
structure shared by all the queries, thus reducing the memory consumption and opti-
mizing the candidate counting step of Apriori. Later, Common Candidates [29] inte-
grated also the candidate generation step of Apriori, while preserving all the optimiza-
tions proposed earlier in Common Counting and Common Candidate Tree. Unfortu-
nately, the successors of Common Counting do not preserve its capability of handling
large batches of queries by partitioning them into phases, thus being restricted by the
limit of memory available for the integrated in-memory data structure. Furthermore,
Common Candidates limits the possibilities of constraint handling due to replacing
the original candidate generation procedure of Apriori which serves as the basis for
most of the constraint-handling techniques within the Apriori framework.

As for FP-growth, the methods of processing sets of frequent itemset queries using
this algorithm evolved analogously to the ones for Apriori [50]. The initial proposal
was Common Building, a direct adaptation of Common Counting, which integrated
database scans performed by the queries in order to build their FP-tree structures in
main memory. The method was immediately extended by introducing a variation of
FP-tree that could be shared by the batch of queries, resulting in the Common FP-tree
method.

10 Conclusions

In this chapter we considered the problem of processing sets of frequent itemset que-
ries, which brings the ideas of multiple-query optimization to the domain of data
mining as a natural consequence of previous research on optimizing individual fre-
quent itemset queries and sequences of frequent itemset queries.

We provided a general model of frequent itemset queries, which was then used as a
basis for the formulation of our multi-query optimization problem. From the algo-
rithms dedicated to solve the problem that we had proposed over the last decade, here
we focused on the most fundamental and predictable method, called Common Count-
ing, which consists in concurrent execution of the queries using Apriori with the inte-
gration of scans of the parts of the database shared among the queries.

262 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

The major advantage of Common Counting over its alternatives is its applicability
to arbitrarily large batches of queries. In order to achieve that feature, Common
Counting had to be accompanied with a method of dealing with situations when hash
trees of all the queries do not fit together in main memory. The problem of limited
memory was addressed by partitioning the set of queries into subsets processed in
several phases. This approach led to an interesting optimization problem that we for-
malized as a specific case of hypergraph partitioning. Since the problem is NP-hard, it
has to be solved by heuristic algorithms in case of large batches of queries.

For the identified, specific hypergraph partitioning problem, we provided a com-
prehensive overview of query set partitioning algorithms proposed by us so far:
CCRecursive, CCFull, CCCoarsening, CCAgglomerative, CCAgglomerativeNoise,
CCGreedy, and CCSemiGreedy.

Finally, we presented extensive results of experiments aimed at evaluating the per-
formance and accuracy of the algorithms. The results indicate that the implementation
of the universal greedy metaheuristics (CCGreedy) and its semi-greedy extension
(CCSemiGreedy) generate better partitionings in terms of resulting I/O costs of
Common Counting than those generated by the best algorithms dedicated to our query
set partitioning problem, while offering satisfactory (but not shortest) execution times.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items
in Large Databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, pp. 207–216. ACM Press,
New York (1993)

2. Agrawal, R., Mehta, M., Shafer, J., Srikant, R., Arning, A., Bollinger, T.: The Quest Data
Mining System. In: Simoudis, E., Han, J., Fayyad, U. (eds.) Proceedings of the Second In-
ternational Conference on Knowledge Discovery in Databases and Data Mining, pp. 244–
249. AAAI Press, Menlo Park (1996)

3. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Bocca, J.B.,
Jarke, M., Zaniolo, C. (eds.) Proceedings of the 20th International Conference on Very
Large Data Bases, pp. 487–499. Morgan Kaufmann, San Francisco (1994)

4. Alpert, C.J., Kahng, A.B.: Recent Directions in Netlist Partitioning: A Survey. Integration:
The VLSI Journal 19, 1–81 (1995)

5. Alsabbagh, J.R., Raghavan, V.V.: Analysis of common subexpression exploitation models
in multiple-query processing. In: Rusinkiewicz, M. (ed.) Proceedings of the 10th Interna-
tional Conference on Data Engineering, pp. 488–497. IEEE Computer Society, Los Alami-
tos (1994)

6. Baralis, E., Psaila, G.: Incremental Refinement of Mining Queries. In: Mohania, M., Tjoa,
A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 173–182. Springer, Heidelberg (1999)

7. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.: Im-
proving the Efficiency of Inductive Logic Programming Through the Use of Query Packs.
Journal of Artificial Intelligence Research 16, 135–166 (2002)

8. Boinski, P., Jozwiak, K., Wojciechowski, M., Zakrzewicz, M.: Improving Quality of Ag-
glomerative Scheduling in Concurrent Processing of Frequent Itemset Queries. In: Klopo-
tek, M.A., Wierzchon, S.T., Trojanowski, K. (eds.) Proceedings of the International IIS:
IIPWM 2006 Conference, pp. 233–242. Springer, Heidelberg (2006)

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 263

9. Boinski, P., Jozwiak, K., Wojciechowski, M., Zakrzewicz, M.: Estimating Hash-Tree Sizes
in Concurrent Processing of Frequent Itemset Queries. International Journal of Information
Technology and Intelligent Computing 1, 405–417 (2006)

10. Boinski, P., Wojciechowski, M., Zakrzewicz, M.: A Greedy Approach to Concurrent
Processing of Frequent Itemset Queries. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006.
LNCS, vol. 4081, pp. 292–301. Springer, Heidelberg (2006)

11. Ceri, S., Meo, R., Psaila, G.: A New SQL-like Operator for Mining Association Rules. In:
Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) Proceedings of the
22th International Conference on Very Large Data Bases, pp. 122–133. Morgan Kauf-
mann, San Francisco (1996)

12. Cheung, D.W., Han, J., Ng, V.T., Wong, C.Y.: Maintenance of Discovered Association
Rules in Large Databases: An Incremental Updating Technique. In: Su, S.Y.W. (ed.) Pro-
ceedings of the 12th International Conference on Data Engineering, pp. 106–114. IEEE
Computer Society, Los Alamitos (1996)

13. Cheung, D.W., Lee, S.D., Kao, B.: A General Incremental Technique for Maintaining Dis-
covered Association Rules. In: Topor, R.W., Tanaka, K. (eds.) Proceedings of the Fifth In-
ternational Conference on Database Systems for Advanced Applications, pp. 185–194.
World Scientific, Singapore (1997)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, San Francisco (1979)

15. Goethals, B., Van den Bussche, J.: On supporting interactive association rule mining. In:
Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp.
307–316. Springer, Heidelberg (2000)

16. Grudzinski, P., Wojciechowski, M.: Integration of candidate hash trees in concurrent
processing of frequent itemset queries using Apriori. Control and Cybernetics 38, 47–65
(2009)

17. Grudzinski, P., Wojciechowski, M., Zakrzewicz, M.: Partition-Based Approach to
Processing Batches of Frequent Itemset Queries. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo,
D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 479–
488. Springer, Heidelberg (2006)

18. Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y., Rajan, A.,
Stefanovic, N., Xia, B., Zaiane, O.: DBMiner: A System for Mining Knowledge in Large
Relational Databases. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, pp. 250–255.
AAAI Press, Menlo Park (1996)

19. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining query lan-
guage for relational databases. In: Jagadish, H.V., Mumick, I.S. (eds.) Proceedings of the
ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery,
pp. 27–33. ACM Press, New York (1996)

20. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Chen,
W., Naughton, J.F., Bernstein, P.A. (eds.) Proceedings of the 2000 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 1–12. ACM Press, New York (2000)

21. Hart, J.P., Shogan, A.W.: Semi-greedy Heuristics: An Empirical Study. Operations Re-
search Letters 6, 107–114 (1987)

22. Hipp, J., Guntzer, U.: Is pushing constraints deeply into the mining algorithms really what
we want? - An alternative approach for association rule mining. ACM SIGKDD Explora-
tions Newsletter 4, 50–55 (2002)

23. Imielinski, T., Mannila, H.: A Database Perspective on Knowledge Discovery. Communi-
cations of the ACM 39, 58–64 (1996)

264 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

24. Imielinski, T., Virmani, A.: MSQL: A Query Language for Database Mining. Data Mining
and Knowledge Discovery 3, 373–408 (1999)

25. Imielinski, T., Virmani, A., Abdulghani, A.: Discovery board application programming in-
terface and query language for database mining. In: Simoudis, E., Han, J., Fayyad, U.
(eds.) Proceedings of the Second International Conference on Knowledge Discovery in
Databases and Data Mining, pp. 20–26. AAAI Press, Menlo Park (1996)

26. ISO: Information technology – Database languages – SQL multimedia and application
packages – Part 6: Data mining. ISO/IEC 13249-6 (2006)

27. Jain, S., Swamy, C., Balaji, K.: Greedy Algorithms for k-way Graph Partitioning. In: Sin-
ha, P.K., Das, C.R. (eds.) Proceedings of the 6th International Conference on Advanced
Computing., Tata McGraw Hill, New York (1998)

28. Jarke, M.: Common subexpression isolation in multiple query optimization. In: Kim, W.,
Reiner, D.S. (eds.) Query Processing in Database Systems, pp. 191–205. Springer, New
York (1985)

29. Jedrzejczak, P., Wojciechowski, M.: Integrated Candidate Generation in Processing
Batches of Frequent Itemset Queries Using Apriori. In: Fred, A., Filipe, J. (eds.) Proceed-
ings of the 2nd International Conference on Knowledge Discovery and Information Re-
trieval, pp. 487–490. SciTePress (2010)

30. Jin, R., Sinha, K., Agrawal, G.: Simultaneous Optimization of Complex Mining Tasks
with a Knowledgeable Cache. In: Grossman, R., Bayardo, R.J., Bennett, K.P. (eds.) Pro-
ceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 600–605. ACM Press, New York (2005)

31. JSR-73 Expert Group: Java Specification Request 73: Java Data Mining, JDM (2005)
32. Karypis, G.: Multilevel Hypergraph Partitioning. In: Cong, J., Shinnerl, J. (eds.) Multilevel

Optimization Methods for VLSI. Kluwer Academic Publishers, Boston (2002)
33. Karypis, G., Kumar, V.: Multilevel Graph Partitioning Schemes. In: Banerjee, P., Boca, P.

(eds.) Proceedings of the 24th International Conference on Parallel Processing, pp. 113–
122. CRC Press, Boca Raton (1995)

34. Karypis, G., Han, E., Kumar, V.: Chameleon: A Hierarchical Clustering Algorithm Using
Dynamic Modeling. IEEE Computer 32, 68–75 (1999)

35. Meo, R.: Optimization of a Language for Data Mining. In: Proceedings of the 2003 ACM
Symposium on Applied Computing, pp. 437–444. ACM, New York (2003)

36. Meo, R.: Inductive Databases: Towards a New Generation of Databases for Knowledge
Discovery. In: Proceedings of the First International Workshop on Integrating Data Min-
ing, Database and Information Retrieval, pp. 1003–1007. IEEE Computer Society, Los
Alamitos (2005)

37. Morzy, M., Wojciechowski, M., Zakrzewicz, M.: Optimizing a Sequence of Frequent Pat-
tern Queries. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, pp. 448–
457. Springer, Heidelberg (2005)

38. Morzy, T., Wojciechowski, M., Zakrzewicz, M.: Data Mining Support in Database Man-
agement Systems. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000.
LNCS, vol. 1874, pp. 382–392. Springer, Heidelberg (2000)

39. Morzy, T., Wojciechowski, M., Zakrzewicz, M.: Materialized Data Mining Views. In:
Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, pp. 65–74. Springer, Heidelberg (2000)

40. Nag, B., Deshpande, P.M., DeWitt, D.J.: Using a Knowledge Cache for Interactive Dis-
covery of Association Rules. In: Han, J. (ed.) Proceedings of the 5th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 244–253. ACM Press,
New York (1999)

 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries 265

41. Netz, A., Chaudhuri, S., Fayyad, U., Bernhardt, J.: Integrating data mining with SQL data-
bases: OLE DB for data mining. In: Proceedings of the 17th International Conference on
Data Engineering, pp. 379–387. IEEE Computer Society, Los Alamitos (2001)

42. Ng, R., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimiza-
tions of constrained association rules. In: Tiwary, A., Haas, L.M. (eds.) Proceedings of the
1998 ACM SIGMOD International Conference on Management of Data, pp. 13–24. ACM
Press, New York (1998)

43. Oracle Corporation: PL/SQL Packages and Types Reference, 10g Release 1 (10.1) (2003)
44. Pei, J., Han J.: Can We Push More Constraints into Frequent Pattern Mining? In: Ra-

makrishnan, R., Stolfo, S., Bayardo, R., Parsa, I. (eds.) Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 350–
354. ACM Press, New York (2000)

45. Pei, J., Han, J., Lakshmanan, L.V.S.: Pushing Convertible Constraints in Frequent Itemset
Mining. Data Mining and Knowledge Discovery 8, 227–252 (2004)

46. Roy, P., Seshadri, S., Sundarshan, S., Bhobe, S.: Efficient and Extensible Algorithms for
Multi Query Optimization. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) Proceed-
ings of 2000 ACM SIGMOD International Conference on Management of Data, pp. 249–
260. ACM Press, New York (2000)

47. Sellis, T.K.: Multiple Query Optimization. ACM Transactions on Database Systems 13,
23–52 (1988)

48. Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints. In: Heck-
erman, D., Mannila, H., Pregibon, D. (eds.) Proceedings of the Third International Confe-
rence on Knowledge Discovery and Data Mining, pp. 67–73. AAAI Press, Menlo Park
(1997)

49. Thomas, S., Bodagala, S., Alsabti, K., Ranka, S.: An Efficient Algorithm for the Incremen-
tal Updation of Association Rules in Large Databases. In: Heckerman, D., Mannila, H.,
Pregibon, D. (eds.) Proceedings of the Third International Conference on Knowledge Dis-
covery and Data Mining, pp. 263–266. AAAI Press, Menlo Park (1997)

50. Wojciechowski, M., Galecki, K., Gawronek, K.: Three Strategies for Concurrent
Processing of Frequent Itemset Queries Using FP-growth. In: Džeroski, S., Struyf, J. (eds.)
KDID 2006. LNCS, vol. 4747, pp. 240–258. Springer, Heidelberg (2007)

51. Wojciechowski, M., Zakrzewicz, M.: Methods for Batch Processing of Data Mining Que-
ries. In: Haav, H.-M., Kalja, A. (eds.) Proceedings of the 5th International Baltic Confe-
rence on Databases and Information Systems, Tallinn Technical University, pp. 225–236
(2002)

52. Wojciechowski, M., Zakrzewicz, M.: Dataset Filtering Techniques in Constraint-Based
Frequent Pattern Mining. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detec-
tion and Discovery. LNCS (LNAI), vol. 2447, pp. 77–91. Springer, Heidelberg (2002)

53. Wojciechowski, M., Zakrzewicz, M.: Evaluation of Common Counting Method for Con-
current Data Mining Queries. In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka,
U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 76–87. Springer, Heidelberg (2003)

54. Wojciechowski, M., Zakrzewicz, M.: Data Mining Query Scheduling for Apriori Common
Counting. In: Barzdins, J. (ed.) Proceedings of the 6th International Baltic Conference on
Databases and Information Systems, University of Latvia, pp. 270–281 (2004)

55. Wojciechowski, M., Zakrzewicz, M.: Evaluation of the Mine Merge Method for Data Min-
ing Query Processing. In: Benczur, A., Demetrovics, J., Gottlob, G. (eds.) Proceedings of
the 8th East European Conference on Advances in Databases and Information Systems,
Computer and Automation Research Institute, Hungarian Academy of Sciences, pp. 78–88
(2004)

266 M. Wojciechowski, M. Zakrzewicz, and P. Boinski

56. Wojciechowski, M., Zakrzewicz, M.: On Multiple Query Optimization in Data Mining. In:
Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 696–
701. Springer, Heidelberg (2005)

57. Wojciechowski, M., Zakrzewicz, M.: Heuristic Scheduling of Concurrent Data Mining
Queries. In: Li, X., Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS (LNAI), vol. 3584,
pp. 315–322. Springer, Heidelberg (2005)

58. Wojciechowski, M., Zakrzewicz, M.: Partycjonowanie grafow a optymalizacja wykonania
zbioru zapytan eksploracyjnych. In: Morzy, T., Rybinski, H. (eds.) Proceedings of I Kra-
jowa Konferencja Naukowa Technologie Przetwarzania Danych, pp. 62–71. Wydawnict-
wo Politechniki Poznanskiej (2005)

59. Zakrzewicz, M., Morzy, M., Wojciechowski, M.: A Study on Answering a Data Mining
Query Using a Materialized View. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS
2004. LNCS, vol. 3280, pp. 493–502. Springer, Heidelberg (2004)

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 267–287.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Chapter 10

Text Clustering with Named Entities: A Model,
Experimentation and Realization

Tru H. Cao, Thao M. Tang, and Cuong K. Chau

Ho Chi Minh City University of Technology and
John von Neumann Institute VNU-HCM Vietnam

tru@cse.hcmut.edu.vn

Abstract. Named entities often occur in web pages, in particular news articles,
and are important to what the web pages are about. They have ontological
features, namely, their aliases, types, and identifiers, which are hidden from
their textual appearance. In this chapter, for text searching and clustering, we
propose an extended Vector Space Model with multiple vectors defined over
spaces of entity names, types, name-type pairs, identifiers, and keywords. Both
hard and fuzzy text clustering experiments of the proposed model on selected
data subsets of Reuters-21578 are conducted and evaluated. The results prove
that a weighted combination of named entities and keywords are significant to
clustering quality. Implementation and demonstration of text clustering with
named entities in a semantic search engine are also presented.

1 Introduction

Clustering, which is to partition and group data points of similar properties together,
is not only an important technique for data mining and knowledge discovery, but also
a useful technique for information processing in other application areas [21, 24].
Traditional text clustering is only based on keywords (KW) occurring in texts. Words
include those that represent named entities (NE), which are referred to by names such
as people, organizations, and locations [23]. In particular, news articles usually
contain such named entities, which are important for the news contents. Indeed, in the
top 10 search terms by YahooSearch1 and GoogleSearch2 in 2008, there are
respectively 10 and 9 ones that are named entities. Besides, textual corpora, such as
web pages and blogs, often contain named entities.

However, named entities in a document cover under their textual forms (i.e.,
names) ontological features that are significant to the semantics of the text. Firstly, it
is the type of a named entity in the ontology of discourse, for which documents
containing “Ha Noi”, “Paris”, and “Tokyo” may be grouped together as those about
capital cities in the world. Clustering purely based on keywords fails to do that
because it does not use the common latent type information of such named entities.

1 http://buzz.yahoo.com/yearinreview2008/top10/
2 http://www.google.com/intl/en/press/zeitgeist2008/

268 T.H. Cao, T.M. Tang, and C.K. Chau

Secondly, it is the identifier of a named entity, for which documents about “U.S.”,
“USA”, “United States”, and “America” may be grouped together as those about the
same country United States of America. Keyword-based clustering also fails because
it does not use the fact that an entity may exist under different aliases. These are
among the ontological features of named entities.

The ontology-based text clustering methods in [14] and [28] actually relied on an
ontology of common concepts like WordNet rather than on named entities. In [25],
the most significant entity name in a document was used as its label, based on an
enhanced version of the tf.idf measure. Then the documents with labeling named
entities of the same type were grouped together. As such, it was simply classification
of texts by the types of their representative entity names, rather than clustering.
Consequently, it could not produce a partition each cluster of which was a group of
documents having close semantics regarding various named entities occurring in
them.

Closely related to our work were [9] and [18]. In [9], a linear combination of one
vector on proper names with their types and one vector on common words was used
to represent a document. However, only proper names of the person, organization and
location types were considered. In [18], each document was represented by three
different vectors on named entities of each of the person, organization and location
types. While [9] suggested that text clustering on only named entities was not good,
[18] reported it was for multilingual news clustering.

Meanwhile, for text searching, in [6] the authors adapted the traditional Vector
Space Model (VSM) with vectors over the space of NE identifiers in the knowledge
base of discourse and equally linear combination of its NE-identifier-based vector and
keyword-based vector. The latent semantics model proposed in [10] used both
keywords and named entities as terms for a single vector space, but only entity names
were taken into account. In contrast, [3] introduced a multi-vector space model on all
of the NE features, then explored and evaluated the information retrieval performance
of various combinations of keywords and named entities.

This paper contributes to text clustering using named entities in three aspects:

1. Our document representation model takes into account all types and all
combined features of named entities.

2. Both hard clustering and fuzzy clustering are experimented. The results show
that, for good clustering quality, the weights of the named entity and keyword
components in the model depend on the actual contents of the documents to be
clustered.

3. The model is realized and demonstrated in the semantic search engine called
VN-KIM Search, for hierarchical clustering of resulting documents by keywords
as well as different named entity features.

Section 2 summarizes the basic notions and formulation of our proposed multi-
vector space model combining named entities and keywords. Section 3 recalls key
measures of hard and fuzzy clustering quality. Sections 4 and 5 respectively present
our experiments and evaluation on hard and fuzzy text clustering. Section 6
introduces VN-KIM Search with text clustering using named entities on search
results. Finally, Section 7 draws concluding remarks and further work to be
investigated.

 Text Clustering with Named Entities: A Model, Experimentation and Realization 269

2 An Entity-Keyword Multi-Vector Space Model

Despite having known disadvantages, VSM is still a popular model and a basis to
develop other models for document representation and processing, because it is
simple, fast, and its similarity measure is in general either better or almost as good as
a large variety of alternatives (cf. [1, 16]). We recall that, in the keyword-based VSM,
each document is represented by a vector over the space of keywords of discourse.
Conventionally, the weight corresponding to a term dimension of the vector is a
function of the occurrence frequency of that term in the document, called tf, and the
inverse occurrence frequency of the term across all the existing documents, called idf.
The similarity degree between two documents is then defined as the cosine of their
representing vectors.

We represent each named entity by a triple (name/type/identifier) where name,
type, and identifier are respectively the name, type, and identifier of that named entity.
Let N, T, and I be respectively the sets of names, types, and identifiers of named
entities in the ontology of discourse. Then:

1. Each document d is modelled as a subset of (N∪{*})×(T∪{*})×(I ∪{*}), where
‘*’ denotes an unspecified name, type, or identifier of a named entity in d, and

2. d is represented by the quadruple (
Nd


,
Td


,
NTd


,
Id


), where
Nd


,
Td


,
NTd


, and

Id


are respectively vectors over N, T, N×T, and I.

For example, following is a text and its set of named entity features:

“U.N. team survey of public opinion in North Borneo and Sarawak on the
question of joining the federation of Malaysia”.

{(U.N./*/*), (North Borneo/Province/*), (Sarawak/Location/*),
(Malaysia/Country/Country_T.MY)}

Here, Country_T.MY is the identifier of the country Malaysia in the knowledge
base of discourse. Meanwhile, the type of U.N. is presumably unrecognized, and
North Borneo and Sarawak are only recognized as of the types Province and
Location, respectively.

A feature of a named entity could be unspecified due to the incomplete information
about that named entity in a document, or the inability of an employed NE recognition
engine to fully recognize it. Each of the four component vectors introduced above for
a document can be defined as a vector in the traditional tf.idf model on the
corresponding space of entity names, types, name-type pairs, or identifiers, instead of
keywords. However, there are two following important differences with those
ontological features of named entities in calculation of their vector weights:

1. The frequency of a name also counts identical entity aliases. That is, if a
document contains an entity having an alias identical to that name, then it is
assumed as if the name occurred in the document. For example, if a document
refers to the country Georgia, then each occurrence of that entity in the
document is counted as one occurrence of the name Gruzia, because it is an
alias of Georgia. Named entity aliases are specified in a knowledge base of
discourse.

270 T.H. Cao, T.M. Tang, and C.K. Chau

2. The frequency of a type also counts occurrences of its subtypes. That is, if a
document contains an entity whose type is a subtype of that type, then it is
assumed as if the type occurred in the document. For example, if a document
refers to Washington DC, then each occurrence of that entity in the document is
counted as one occurrence of the type Location, because City is a subtype of
Location. The type subsumption is defined by the type hierarchy of an ontology
of discourse.

We then define the similarity degree of a document d and a document q, with
respect to the named entity features, as follows:

wN.cosine(
Nd


,
Nq
) + wT.cosine(

Td


,
Tq


) + wNT.cosine(
NTd


,
NTq


) +

wI.cosine(
Id


,
Iq


) (Eq. 1)

where wN + wT + wNT + wI = 1.

We deliberately leave the weights in the sum unspecified, to be flexibly adjusted in
applications, depending on developer-defined relative significances of the four
ontological features. We note that the join of

Nd


 and
Td


 cannot replace
NTd


 because

the latter is concerned with entities of certain name-type pairs (e.g. the co-occurrence
of an entity named Georgia and another country mention in a document does not
necessarily refer to the country Georgia). Meanwhile,

NTd


 cannot replace
Id


 because

there may be different entities of the same name and type (e.g. there are different
cities named Moscow in the world). Also, since names and types of an entity are
derivable from its identifier, products of I with N or C are not included.

Clearly, named entities alone are not adequate to represent a document. For
instance, in the example text above, opinion, joining, and federation are keywords to
be taken into account. Therefore, we propose to represent a document by one vector
on keywords and four vectors on named entity features. Let

KWd


 and
KWq


 be

respectively the vectors representing the keyword features of two documents d and q,
as in the traditional VSM. The similarity degree of d and q is then defined as follows:

sim(d


,q
) = α.[wN.cosine(

Nd


,
Nq
) + wT.cosine(

Td


,
Tq


) +

wNT.cosine(
NTd


,
NTq


) + wI.cosine(
Id


,
Iq


)] + (1 – α).cosine(
KWd


,
KWq
)

 (Eq. 2)

where wN + wT + wNT + wI = 1 and α∈[0, 1]. The coefficient α weighs relative
importance of the NE and KW components in document representation.

The proposed multi-vector space model can be used for clustering documents into
a hierarchy via top-down phases each of which uses one of the four NE-based vectors
presented above. For example, given a set of geographical documents, one can first
cluster them into groups of documents about rivers and mountains, i.e., clustering
with respect to entity types. Then, the documents in the river group can be clustered
further into subgroups each of which is about a particular river, i.e., clustering with
respect to entity identifiers.

 Text Clustering with Named Entities: A Model, Experimentation and Realization 271

Meanwhile, the KW-based vector is complementary to the NE-based vectors in
representing the salient points in the content of a document. For instance, documents
about tourist attraction places should contain both keywords related to tourist
attraction and named entities being places. As shown in the experiments next, optimal
weighting of the NE component and the KW component depends on the contents of
the texts to be clustered. However, the point is that relying on keywords alone as in
traditional techniques may not be satisfactory in practice.

There are still possible variations of the proposed model that are worth exploring,
depending on whether entity names in a document are counted as keywords in
constructing its KW-based vector or not. For instance, in the example text above,
U.N, North Borneo, Sarawak, and Malaysia could also be treated as keywords as
usual. In other words, the entity name set and the keyword set of a text may or may
not be considered as overlapping. We call these two alternative models NEKW_OVL
and NEKW_NOVL, respectively.

3 Measures of Clustering Quality

Traditionally, clustering quality is evaluated using two complementary measures: (1)
internal measure that reflects the average semantic distance between data points
within each cluster; the smaller the better for the cluster purity; and (2) external
measure that reflects the average semantic distance between the clusters themselves;
the larger the better for the cluster separation. In [13], for hard clustering, cluster
entropy and the class entropy are defined as the internal and external measures,
respectively, and the Overall Entropy (OE) as their linear combination. The smaller
the overall entropy is, the better clustering quality is.

Formally, suppose C = C1∪C2∪ … ∪Ck is a partition on the set of N data points
taking labels in the set {l1, l2, …, lk*}. Let nj be the total number of data points of label
lj in the dataset, and nij be the number of data points labeled lj in cluster Ci. Then, the
cluster entropy Ec, the class entropy El, and the overall entropy are defined as follows:


= =

−=
k

i

k

j i

ijij
c C

n

N

n
CE

1

*

1 ||
log)(

j

ij
k

j

k

i

ij

l n

n

N

n
CE log)(

*

1 1


= =

−=

E(C) = β.Ec(C) + (1 – β).El(C) (Eqs. 3)

where β∈[0, 1] is empirically determined. The smaller E(C) is, the better clustering
quality is. Ideally, all data points in each cluster have the same label, i.e., Ec = 0, and
all data points of the same label reside in the same cluster, i.e., El = 0.

Meanwhile, for the Variation of Information (VI) measure [17], assume C* =
*
1C ∪ *

2C ∪ … ∪ *
*kC is the pre-constructed correct partition of the dataset of discourse.

The information variation between C and C* is defined by:

272 T.H. Cao, T.M. Tang, and C.K. Chau

VI(C, C*) = H(C | C*) + H(C* | C)
 = H(C) + H(C*) – 2I(C,C*)

)/|).(|/|(|

/||
log

||
*),(

*

*

1

*

1

*

NCNC

NCC

N

CC
CCI

ji

ji
k

i

k

j

ji ∩∩
=

= =


=

−=
k

i

ii

N

C

N

C
CH

1

||
log

||
)(


=

−=
*

1

** ||
log

||
*)(

k

j

jj

N

C

N

C
CH (Eqs. 4)

Here H(C | C*) is referred to as clustering conditional entropy of C given C*, I(C,
C*) is called clustering mutual information between C and C*, and H(C) and H(C*)
are respectively clustering entropies of C and C*. Significantly, the following
theorem states the equivalence of VI and OE, if the data point labels are as given by
C* and the cluster and the class entropies in OE have the same weight. The proof was
presented in [8].

Theorem 1. Assume that C* = *
1C ∪ *

2C ∪ … ∪ *
*kC is a partition on a set of data

points and the label li of each cluster *
iC is also the label of all the data points in it.

Let C = C1∪C2∪ … ∪Ck be an arbitrary partition on that same data point set. Then
VI(C, C*) = 2E(C) if the cluster entropy and the class entropy in the computation of
E(C) have the same weight 0.5.

Since taking the equal weights for the cluster and the class entropies in the OE
measure is natural and reasonable, the significance of the property proved above is
that one can use either OE or VI for measuring clustering quality when all data points
have pre-defined labels. Nevertheless, in practice, data point labels may not be pre-
defined but generated as part of a clustering technique, which also affect the
clustering quality in terms of OE. That is the case when VI is useful for testing a
partition generated by that technique with respect to a subjectively constructed
partition on the same dataset.

For fuzzy clustering, Xie-Beni index [24, 26] is among the most popularly used
ones, measuring the overall average purity and separation of a fuzzy partition by:

2

,

1 1

2

||||min*

||||)]([

ji
ji

c

i

n

k
ik

m
ki

vvn

vxx
S

−

−
=


= =
μ

 (Eq. 5)

where n is the number of data points xk’s, m is the fuzziness index, vi is the centroid of
the i-th cluster, μi(xk) is the membership value of xk into the i-th cluster, and

|||| ik vx − represents the distance between the data point xk and the i-th cluster, which

is usually calculated by Euclidian Distance. The smaller the value of the index, the
better the fuzzy partition is. This index could be considered as a fuzzy counterpart of
the OE measure.

 Text Clustering with Named Entities: A Model, Experimentation and Realization 273

Measures like OE for hard clustering and XB for fuzzy clustering are based on the
purity and separation of the resulting partition itself. We view them as objective
measures, for which a clustering result is not tested against a pre-constructed gold-
standard one. In contrast, the VI measure quantifies how different two partitions are.
We view it as a subjective measure, which allows one to evaluate the clustering
quality of a technique by comparing a partition generated by that technique with a
corresponding partition manually constructed by humans. We apply both of these
objective and subjective measures in this work.

4 Hard Clustering Experiments

In the scope of this paper, for experiments we focus on the type feature of named
entities, because many named entities in various documents may have the same type.
That hidden ontological feature is ignored in the traditional keyword-based
information processing, which affects clustering quality. That is, our experiments are
performed on vectors of the form α.cosine(

Td


,
Tq


) + (1 – α).cosine(
KWd


,
KWq
). The

value of α is varied in the experiments to find how significant the NE and KW
components are to clustering quality; α = 0 means purely keyword-based clustering,
while α = 1 means purely named entity-based clustering.

For testing clustering quality with respect to the VI measure, we use the Reuters-
21578 dataset, which contains 21,578 documents. In this dataset, the header of each
document, besides its body text, has the topic tag TOPICS containing the main
keywords representing the topic of the document, and the named entity tags PEOPLE,
ORGS, PLACES, and EXCHANGES respectively containing the main people,
organizations, places, and stock exchange agencies that the document is presumably
about. Figure 1 is an example of the header of a document in this dataset. It specifies
that the document is about the topics grain and wheat, the places USA and Australia,
and the people Lyng and Yeutter.

Fig. 1. An example header of a document in Reuters-21578

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-
SET" OLDID="12925" NEWID="742">
<DATE> 2-MAR-1987 15:46:40.19</DATE>
<TOPICS><D>grain</D><D>wheat</D></TOPICS>
<PLACES><D>usa</D><D>australia</D></PLACES>
<PEOPLE><D>lyng</D><D>yeutter</D></PEOPLE>
<ORGS></ORGS>
<EXCHANGES></EXCHANGES>
<TEXT>
<TITLE>U.S. WHEAT GROUPS CALL FOR GLOBAL ACTION</TITLE>
<DATELINE>WASHINGTON, March 2 - </DATELINE>
<BODY>....</BODY>
</TEXT>

</REUTERS>

274 T.H. Cao, T.M. Tang, and C.K. Chau

From this dataset, we select a sub-set of 500 typical documents for hard clustering
experiments, such that the content of each of them is clearly about named entities of a
particular type. Such a size of a testing dataset is common in clustering experiments
(cf. [20]). At first, approximately 7,000 documents each of which has only one named
entity tag are automatically filtered. Next, we manually select 500 documents each of
which is clearly about an entity type. Some tagging errors in the original dataset are
also fixed during this document selection process.

Further, the selected documents are automatically annotated using the NE
recognition engine of KIM [15], KIM PROTON ontology, and KIM World KB. The
ontology consists of about 300 types and 100 relations, and the knowledge base
contains over 77,000 named entities. The average precision and recall of the NE
recognition engine are about 90% and 86%, respectively3.

Then we obtain a testing dataset, denoted by Dh, for hard clustering with 4 clusters
based on the named entity tags. The distribution of the 500 documents across the four
NE tags is as follows:

PLACES: 195 documents
PEOPLE: 105 documents
ORGS: 129 documents
EXCHANGES: 71 documents

Here we employ the most popular algorithm k-means [12] for hard clustering.
Basically, the k-means algorithm keeps relocating data points into k clusters until the
following objective function stops decreasing:


= ∈

−=
k

i cx
ij

ij

cxf
1

 (Eq. 6)

where ci is the i-th cluster and
ic is the average value of its data points xj’s, called the

centroid. In practice, for obtaining the best clustering quality, the optimal value of k is
determined by experiments.

First, we run k-means on the constructed 500-document dataset with k = 4 and
α varying from 0 to 1 on 0.1 incremental steps. Figure 2 illustrates the clustering
quality of the NEKW_OVL and NEKW_NOVL models with respect to the OE and
VI measures. For the OE measure, we take the equal weight for the cluster entropy
and the class entropy, i.e., β = 0.5 for Equations 3. The corresponding data are
presented in Table 1. In accordance to Theorem 1, the corresponding OE and VI
curves actually have the same shape. Second, we vary k from 2 to 10, take the best
case for each value of k, and plot their OE and VI values as in Figure 3, from the
obtained data in Table 2. As expected, k = 4 is the optimal value for the testing dataset
with 4 pre-defined clusters.

3 It is reported at http://www.ontotext.com/kim/performance.html.

 Text Clustering with Named Entities: A Model, Experimentation and Realization 275

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Entity Type Weight ()

O
E NEKW_OVL

NEKW_NOVL

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Entity Type Weight ()

V
I NEKW_OVL

NEKW_NOVL

Fig. 2. OE and VI diagrams for hard clustering with k = 4 and varied α

Table 1. OE and VI measures for hard clustering with k = 4 and varied α

OE α=0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NEKW_OVL 1.07 0.82 0.7 0.61 0.6 0.58 0.58 0.57 0.48 0.47 0.66

NEKW_NOVL 1.14 0.84 0.72 0.62 0.58 0.58 0.57 0.58 0.58 0.47 0.66

VI α=0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NEKW_OVL 2.15 1.63 1.39 1.21 1.2 1.15 1.15 1.14 0.96 0.95 1.31

NEKW_NOVL 2.28 1.67 1.44 1.24 1.16 1.15 1.14 1.15 1.16 0.95 1.31

276 T.H. Cao, T.M. Tang, and C.K. Chau

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

Number of Clusters (k)

O
E NEKW_OVL

NEKW_NOVL

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10

Number of Clusters (k)

V
I NEKW_OVL

NEKW_NOVL

Fig. 3. OE and VI diagrams for hard clustering with varied k

Table 2. OE and VI measures for hard clustering with varied k

OE k=2 3 4 5 6 7 8 9 10

NEKW_OVL 0.77 0.58 0.47 0.6 0.75 0.78 0.89 0.94 0.96

NEKW_NOVL 0.78 0.58 0.47 0.59 0.72 0.79 0.88 0.92 0.94

VI k=2 3 4 5 6 7 8 9 10

NEKW_OVL 1.55 1.16 0.95 1.2 1.5 1.55 1.78 1.87 1.91

NEKW_NOVL 1.56 1.15 0.95 1.17 1.44 1.57 1.76 1.85 1.88

The experimental results show that:

1. The NEKW_OVL and NEKW_NOVL models perform nearly the same for
hard clustering. That is, counting or not counting entity names for KW-based
vectors make little difference. It means that entity names themselves, i.e., only
their textual forms, are not significant to assignment of named entity tags to
documents in the Reuters-21578 dataset.

 Text Clustering with Named Entities: A Model, Experimentation and Realization 277

2. The clustering quality is improved by more than 100% with α = 0.9 as
compared with α = 0 (OE = 0.47 vs. 1.07 for NEKW_OVL). We note that the
NEKW_OVL model with α = 0 is actually the traditional purely keyword-
based VSM. So, the latent ontological features (e.g. entity types in these
experiments) are important to the clustering results.

3. The best clustering quality is obtained when k = 4, which is the same as the
number of clusters of the pre-constructed testing dataset. It implies that our
proposed models represent well the contents of documents like those of the
Reuters-21578 dataset for the clustering task.

5 Fuzzy Clustering Experiments

The fuzzy counterpart of k-means is fuzzy c-means. We recall that, basically the fuzzy
c-means algorithm keeps relocating data points into c clusters until the following
objective function stops decreasing (cf. Equation 5):


= =

−=
n

k

c

i
ik

m
kim vxxPJ

1 1

2||||)]([)(μ (Eq. 7)

where P = {μ1, μ2,…, μc} is a fuzzy c-partition. The centroid of each cluster is
computed by the following formula:





=

==
n

k

m
ki

n

k
k

m
ki

i

x

xx
v

1

1

)]([

)]([

μ

μ
 (Eq. 8)

At each iteration of the algorithm, after the cluster centroids are re-calculated,
membership values μi(xk)’s are updated based on the data point xk’s and the cluster
centroids:

2

1

1

1
()

|| ||
()
|| ||

i k c
k i m

j k j

x
x v

x v

μ
−

=

=
−
−

(Eq. 9)

The process is stopped when the maximum change of membership values between
two consecutive iterations is less than a pre-defined threshold value.

We also use the Reuters-21578 dataset for fuzzy clustering experiments,
constructing two testing datasets. For fuzzy clustering, the documents are selected so
that some of them are about more than one named entity type or more than one
document topic. One testing dataset consists of documents of only NE tags, while the
other has documents with both NE and topic tags.

The first dataset, denoted by Df1, comprises 500 documents with one or more of the
four tags PLACES, PEOPLE, ORGS, and EXCHANGES, in which:

278 T.H. Cao, T.M. Tang, and C.K. Chau

200 documents contain only one NE tag each
238 documents contain two NE tags each
57 documents contain three NE tags each
5 documents contain four NE tags each.

The distribution of the 500 documents across the four NE tags is as follows:

PLACES: 300 documents
PEOPLE: 200 documents
ORGS: 281 documents
EXCHANGES: 86 documents

Details of the numbers of documents containing certain tags are given in Table 3.
The second dataset, denoted by Df2, comprises 350 documents containing both NE

tags, namely PLACES and PEOPLE, and topic tags, namely INTEREST and
MONEY-FX, with the following distributions:

PLACES: 336 documents
PEOPLE: 136 documents
INTEREST: 148 documents
MONEY-FX: 174 documents

Details of the numbers of documents containing certain tags are given in Table 4.

Table 3. Document-tag distribution in the dataset Df1

PLACES
(300)

PEOPLE
(200)

ORGS
(281)

EXCHANGES
(86)

Number of
Documents

X 60

 X 29

 X 41

 X 70

X X 57

X X 120

X X 2

 X X 51

 X X 1

 X X 7

X X X 56

X X X 0

X X X 0

 X X X 1

X X X X 5

Total 500

 Text Clustering with Named Entities: A Model, Experimentation and Realization 279

We run fuzzy c-means on the two constructed datasets Df1 and Df2, using both the
NEKW_OVL and NEKW_NOVL models, and evaluating clustering quality with
respect to the XB measure. The fuzzy index m is set to 2 and the threshold value to
stop the iterative process is set to 0.01. In the experiments, we vary c from 2 to 10
and, for each value of c, vary α from 0 to 1 on 0.1 incremental steps. Since fuzzy c-
means relies on the initial membership degrees of the documents to the projected
clusters, which are initialized randomly, for each c and α we run the algorithm 10
times and take the average of the results for the XB measure.

Table 4. Document-tag distribution in the dataset Df2

PLACES
(300)

PEOPLE
(200)

INTEREST
(281)

MONEY-
FX
(86)

Number of
Documents

X 50

 X 0

 X 6

 X 2

X X 50

X X 50

X X 50

 X X 0

 X X 0

 X X 6

X X X 20

X X X 50

X X X 50

 X X X 0

X X X X 16

Total 350

Table 5 and Table 6 present the XB values with varied c and α on the dataset Df1

for the models NEKW_OVL and NEKW_NOVL, respectively. For each value of c,
there is an optimal value of α such that the XB measure is minimal, i.e., giving the
best clustering quality. In order to evaluate the effect of α in average on clustering
quality, we compute the average of the XB values for each common optimal value of
α given certain values of c, as shown in the last rows of the two tables. It shows that
the best values of α in average for NEKW_OVL and NEKW_NOVL on Df1 are
respectively 0.9 and 0.7.

280 T.H. Cao, T.M. Tang, and C.K. Chau

Table 5. The XB measure with varied c and α on the dataset Df1 for the model NEKW_OVL

XB
×1,000 α = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c = 2 61040 8309 7747 566 42.3 76.6 44 181 61.8 13 11.1

3 398.8 35838 105 1464 768 237 168 58 93.5 68 14.3

4 265.5 181 6514 3037 726 334 234 99 36 28 25.8

5 296.2 166.9 76.6 52.9 803 457 127 92 75.8 32 18.2

6 314.5 169.6 93.4 38.3 243 311 11 90 128 37 20.5

7 240.2 168.5 82.9 35.1 23.1 15.2 116 41 367 22 23.2

8 228.7 146.7 88.4 43.9 17.5 18.1 10 42 28.1 2.8 22.8

9 206 146.8 82.7 47.5 20.6 12.9 6 4.5 23.4 11 18.1

10 214.7 139.1 58.5 38.9 23.9 17.5 6.8 5 3.44 2.2 12.2

Best
Average

 15.2 11 4.5 2.5 17.3

Table 6. The XB measure with varied c and α on the dataset Df1 for the model NEKW_NOVL

XB
×1,000

α = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c = 2 29538 400.1 624 1605 917 518 117 212 108 14 22

3 382.3 232 3567 3224 1438 838 390 248 32.2 31 11

4 342.7 223.8 104 1495 1244 1089 448 157 58.3 97 19

5 271.8 205 105 55.7 523 346 222 147 81.8 86 25

6 258.4 188.2 80.5 856 1275 286 158 113 73 42 17

7 215.7 171 69.5 41.8 17.7 11.1 54 33 101 36 50

8 228.8 179.1 86.4 41.5 18.5 13 8.6 67 38.4 59 27

9 219.7 170.3 76.7 38.5 22.3 12.7 70 37 4.2 68 16

10 184.3 156.2 69.1 46.7 21.3 13.2 7.3 4 11.1 9.6 5.1

Best
Average

 11.1 8.6 4 4.2 14 18

The fact that the best value of α for NEKW_OVL is higher than that for

NEKW_NOVL can be explained as follows. In the NEKW_OVL model, entity names
are counted as keywords and may cause noises for fuzzy clustering with respect to NE
tags. So, the weight for the KW component, i.e., 1 – α, should be decreased to reduce
that noise effect. However, hard clustering as experimented above might not be
effected by such noises.

One may also have another observation on the experimental results. That is, for
each value of α, let us take the average XB measure on different values of c. Figure 4
plots that average XB measure with varied α on the dataset Df1. It shows that, when α
is big enough, e.g. from about 0.3 in this test, the performances of NEKW_OVL and
NEKW_NOVL are almost the same. Probably, for that threshold α, counting entity
names in the KW component of a document makes nearly no difference.

 Text Clustering with Named Entities: A Model, Experimentation and Realization 281

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Entity Type Weight (α)

A
ve

ra
g

e
X

B

NEKW_OVL

NEKW_NOVL

Fig. 4. Average XB with varied α on the dataset Df1

Meanwhile, on the dataset Df2, Table 7 and Table 8 show that the best values of α
in average for NEKW_OVL and NEKW_NOVL are respectively 0.6 and 0.5. The
lower best values of α as compared to those on Df1 are due to the documents
containing not only NE tags but also topic tags, which rely on keywords. Figure 5.
shows that, as for Df1, NEKW_OVL and NEKW_NOVL perform nearly the same in
terms of the average XB measure from a certain threshold α. Also, on both Df1 and
Df2, as for hard clustering, the fuzzy clustering quality is drastically improved when
taking into account the latent named entity types, i.e., with α > 0.

Table 7. The XB measure with varied c and α on the dataset Df2 for the model NEKW_OVL

XB
×1,000

α = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c = 2 391.5 4258 996 227 797 170 46 48 10.1 24 24

3 22888 1624 925 650 698 235 82 44 169 17 45

4 6777 4820 825 711 343 235 74 178 26.5 15 21

5 1805 48.6 25.4 172 173 236 55 46 20.2 23 38

6 44.2 37.5 24.5 845 303 230 76 88 20.6 11 19

7 50.1 25.9 28.7 12.6 284 98 112 49 29.1 17 9.5

8 3613 30.8 397 20.8 153 9.3 64 52 31.3 17 13

9 51.2 38.2 30.5 18.4 7.5 6.4 5.4 50 33 37 8.7

10 41.5 39.9 24.4 10.4 8.5 6.5 28 77 9.3 33 11

Best
Average

 7.9 5.4 15.1 14.3 9.5

282 T.H. Cao, T.M. Tang, and C.K. Chau

Table 8. The XB measure with varied c and α on the dataset Df2 for the model NEKW_NOVL

XB
×1,000 α = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c = 2 90.3 5490 669 279 202 167 225 83.3 41 16 21

3 638.9 1187 1757 2143 566 321 61 62.4 20 18 68

4 3125 1486 826 549 465 126 115 35.4 37 21 19

5 59.8 67.9 654 1325 336 257 99 163 17.4 54 29

6 15563 37 1023 251 83 195 74 73.5 29 150 16.9

7 54.8 70.1 37 22 218 70 129 72 19 30 14

8 60.6 48 32.7 18.3 15 9.1 36 36.8 45 18 14.1

9 48.6 47.4 27.6 20 8.9 6.4 21 31.4 35 22 9

10 54.3 47.4 35.1 10.8 9.4 7.4 4 53 2.7 21 9.6

Best
Average

 7.7 10 17 16.6

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Entity Type Weight (α)

A
ve

ra
g

e
X

B

NEKW_OVL

NEKW_NOVL

Fig. 5. Average XB with varied α on the dataset Df2

6 Text Clustering in VN-KIM Search

Following KIM [15], we have developed a platform for Vietnamese Semantic Web
called VN-KIM. It is firstly a knowledge-based system of popular named entities in
Vietnam and the world. Currently VN-KIM ontology consists of 370 types and 115
relations. The knowledge base contains more than 210,000 selected named entities. It
can automatically extract the type of a named entity in a web page written in
Vietnamese and annotate that information in the web page, using the NE recognition
engine for Vietnamese developed in [19].

 Text Clustering with Named Entities: A Model, Experimentation and Realization 283

For managing annotated web pages based on the combined entity-keyword VSM
presented in Section 2, we have employed and modified Lucene [11], a general open
source for storing, indexing and searching documents. In Lucene, a term is a character
string and term occurrence frequency is computed by exact string matching. Here are
our modifications for what we call S-Lucene:

1. Indexing documents over the four NE feature spaces corresponding to N, T,
N×T, and I, besides the ordinary keyword space, to support the new model.

2. Modifying Lucene codes to compute dimensional weights for the vectors
representing a document or a query, in accordance to the new model.

3. Modifying Lucene codes to compute the similarity degree between a document
and a query, in accordance to the new model.

On the VN-KIM platform, we have implemented a semantic search engine called
VN-KIM Search for text searching and clustering using named entities. The engine
works on annotated Vietnamese web pages with the following essential features:

1. Its query syntax is designed to be similar to, and as expressive as, the Google’s one.
2. However, being more powerful than a purely keyword-based search engine, its

terms include both keywords and phrases representing named entities.
3. Moreover, it accepts named entity phrases that are not only simple entity

names, but also complex constraints identifying named entities of user interest.
4. Besides, resulting web pages can be clustered with respect to the keywords and

named entities that they contain.

VN-KIM Search has been then adapted for English and demonstrated using KIM
ontology and NE recognition engine. As realized in real-world application systems
like Clusty [7] and Carrot2 [5], clustering is used in VN-KIM Search to overcome the
deficiencies of the query-list approach to showing search results by grouping returned
documents into a hierarchy of meaningful thematic categories, providing better data
views to users than sequential listings (cf. [22, 27]). However, it is ontology-based
clustering as presented above instead of simply keyword-based clustering.

Figure 6 shows a screen interface of VN-KIM Search with the query “peace (country
of Asia)” for searching documents tentatively about peace with countries in Asia. A
phrase put in the parentheses is not a normal sequence of keywords, but represents
named entities, which in this example are countries in Asia like Israel or China.
Actually, such a query is first mapped to a conceptual graph to look up satisfying named
entities in the knowledge base of discourse, using the processing method in [4]. Then
the search engine retrieves documents containing those named entities.

The right window displays some top answer documents with queried named
entities and keywords highlighted, e.g. Israel and peace for this example query. The
left window displays hierarchical clusters of the answer documents. In this
demonstration, the documents are clustered by two levels. The outer level is
clustering by entity types and the inner level by entity names, combined with
keywords. For instance, as indicated by the cluster labels, it shows that the dominant
entities in the documents of the third outer cluster are of the type Location.
Meanwhile, the four sub-clusters inside this cluster are more about Israel, Cyprus,
Pakistan, or Vietnam, for instances. Figure 7 is a search result with highlighted named
entities that are related to the query topic.

284 T.H. Cao, T.M. Tang, and C.K. Chau

Fig. 6. Ontology-based searching and clustering in VN-KIM Search

Fig. 7. A resulting web page with highlighted named entities in VN-KIM Search

 Text Clustering with Named Entities: A Model, Experimentation and Realization 285

Fig. 8. Setting clustering parameters in VN-KIM Search

Figure 8 shows the interface to set the clustering parameters in VN-KIM Search.
Answer documents could be clustered up to four levels. For each level, the user can
choose a clustering algorithm (k-means or c-means), named entity features and their
weights, a weight for the keyword component as expressed in Equation 2, a distance
function (Cosine, Dice, Manhattan, or Euclidean), and a number of clusters. The
current setting is for the clustering results in Figure 6.

7 Conclusion

We have presented a multi-vector space model for document representation,
searching, and clustering. It is an extension of the VSM that represents a document as
a linear combination of a vector on keywords and vectors on features of named
entities occurring in the document. Our experimental results using the proposed
model for text clustering on the well-known Reuters-21578 dataset are two-fold. First,
they show that the latent ontological features of named entities in a document are
important to define its contents. In particular, taking into account named entity types,
which are covered under their textual forms, drastically improves clustering quality as
compared to the purely keyword-based VSM, for both hard and fuzzy clustering on
the testing datasets. Second, they show that our model is suitable for representing the
subjects of documents involving named entities like Reuters-21578 ones.

One can also observe from the experimental results that optimal weighting of the
NE and KW components for clustering depends on document contents. For a dataset
whose documents have only NE tags, e.g. Df1 in the experiments, the best value of α in
average is close to 1, meaning that the NE component plays a major role. For a
dataset whose documents have both NE and KW tags, e.g. Df2, the best value of α in
average is smaller. Besides, the overlapping and non-overlapping variations of the

286 T.H. Cao, T.M. Tang, and C.K. Chau

proposed model have little difference in performance when the NE component weight
is big enough.

The model also supports hierarchical clustering for which each layer uses a certain
clustering objective corresponding to a NE feature. We have demonstrated that in the
semantic search engine VN-KIM Search. For future work, since named entities are
pervasive and play an important role in news articles, we are investigating the
proposed model and method for knowledge discovery and integration on the Web.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
Reading (1999)

2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York (1981)

3. Cao, T.H., Le, K.C., Ngo, V.M.: Exploring Combinations of Ontological Features and
Keywords for Text Retrieval. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS
(LNAI), vol. 5351, pp. 603–613. Springer, Heidelberg (2008)

4. Cao, T.H., Mai, A.H.: Ontology-Based Understanding of Natural Language Queries Using
Nested Conceptual Graphs. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010.
LNCS, vol. 6208, pp. 70–83. Springer, Heidelberg (2010)

5. Carrot2: Open Source Search Results Clustering Engine,
http://project.carrot2.org/architecture.html

6. Castells, P., Fernández, M., Vallet, D.: An Adaptation of the Vector-Space Model for
Ontology-Based Information Retrieval. IEEE Transactions on Knowledge and Data
Engineering 19, 261–272 (2006)

7. Clusty Search: Clustering Search Engine, http://clusty.com
8. Duong, V.T.T., Cao, T.H., Chau, C.K., Quan, T.T.: Latent Ontological Feature Discovery

for Text Clustering. In: Proceedings of the 7th IEEE International Conference on Research,
Innovation and Vision for the Future - in Computing and Communication Technologies,
pp. 264–271 (2009)

9. Friburger, N., Maurel, D., Giacometti, A.: Textual Similarity Based on Proper Names. In:
Proceedings of the Workshop on Mathematical/Formal Methods in Information Retrieval
at the 25th ACM SIGIR Conference, pp. 155–167 (2002)

10. Gonçalves, A., Zhu, J., Song, D., Uren, V., Pacheco, R.: LRD: Latent Relation Discovery
for Vector Space Expansion and Information Retrieval. In: Proceedings of the 7th
International Conference on Web-Age Information Management (2006)

11. Gospodnetic, O.: Parsing, Indexing, and Searching XML with Digester and Lucene.
Journal of IBM DeveloperWorks (2003)

12. Hartigan, J., Wong, M.: Algorithm AS136: A K-Means Clustering Algorithm. Applied
Statistics 28, 100–108 (1979)

13. He, J., Tan, A.H., Tan, C.L., Sung, S.Y.: On Quantitative Evaluation of Clustering
Algorithms. In: Wu, et al. (eds.) Clustering and Information Retrieval, pp. 105–133.
Kluwer Academic, Dordrecht (2003)

14. Hotho, A., Maedche, A., Maedche, E., Staab, S.: Ontology-based Text Document
Clustering. KI 16, 48–54 (2002)

15. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation,
Indexing, and Retrieval. Journal of Web Semantics 2 (2005)

 Text Clustering with Named Entities: A Model, Experimentation and Realization 287

16. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

17. Meilă, M.: Compare Clusterings – an Information Based Distance. Journal of Multivariate
Analysis, 873–895 (2007)

18. Montalvo, S., Martínez, R., Casillas, A., Fresno, V.: Bilingual News Clustering Using
Named Entities and Fuzzy Similarity. In: Matoušek, V., Mautner, P. (eds.) TSD 2007.
LNCS (LNAI), vol. 4629, pp. 107–114. Springer, Heidelberg (2007)

19. Nguyen, V.T.T., Cao, T.H.: VN-KIM IE: Automatic Extraction of Vietnamese Named-
Entities on the Web. Journal of New Generation Computing 25, 277–292 (2007)

20. Niu, Z.-Y., Ji, D.-H., Tan, C.-L.: Using Cluster Validation Criterion to Identify Optimal
Feature Subset and Cluster Number for Document Clustering. Information Processing and
Management 43, 730–739 (2007)

21. Oliveira, J.V., Pedrycz, W. (eds.): Advances in Fuzzy Clustering and its Applications. John
Wiley & Sons, Chichester (2007)

22. Osinski, S.: Improving Quality of Search Results Clustering with Approximate Matrix
Factorisations. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T.,
Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 167–178. Springer, Heidelberg
(2006)

23. Sekine, S.: Named Entity: History and Future. Proteus Project Report (2004)
24. Theodoridis, S., Koutroumbas, K.: Patern Recognition. Academic Press, London (2008)
25. Toda, H., Kataoka, R.: A Search Result Clustering Method Using Informatively Named

Entities. In: Proceedings of the 7th ACM International Workshop on Web Information and
Data Management, pp. 81–86 (2005)

26. Xie, X.L., Beni, G.: A Validity Measure for Fuzzy Clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 841–847 (1991)

27. Zhang, D., Dong, Y.: Semantic, Hierarchical, Online Clustering of Web Search Results. In:
Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp. 69–78.
Springer, Heidelberg (2004)

28. Zhang, X., Jing, L., Hu, X., Ng, M., Zhou, X.: A Comparative Study of Ontology Based
Term Similarity Measures on PubMed Document Clustering. In: Kotagiri, R., Radha
Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443,
pp. 115–126. Springer, Heidelberg (2007)

Chapter 11

Regional Association Rule Mining and Scoping
from Spatial Data

Wei Ding1 and Christoph F. Eick2

1 Department of Computer Science
University of Massachusetts-Boston

Boston, MA 02125-3393
ding@cs.umb.edu

2 Department of Computer Science
University of Houston
Houston, TX 77004

ceick@uh.edu

Abstract. Spatial datasets intrinsically exhibit geographical regional
patterns while traditional global statistics seldom provide useful local
insights. In this work, we are interested in regional association rule min-
ing and scoping. We investigate the duality between regional association
rules and regions where the associations are valid: interesting regions
are identified to seek novel regional patterns, and a regional pattern has
a scope of a set of regions in which the pattern is valid. We design and
implement a reward-based region discovery framework that employs a di-
visive grid-based supervised clustering for region discovery. We evaluate
our approach in a real-world case study to identify spatial risk patterns
from arsenic in the Texas water supply. Our experimental results confirm
and validate research results in the study of arsenic contamination.

Keywords: Regional Association Rule Mining and Scoping, Region
Discovery, Clustering, Spatial Data Mining.

1 Introduction

Enormous amount of spatial data is available due to the rapid advances in
database and data acquisition technologies in the last decade. Spatial data min-
ing aims at automatically find novel and useful patterns from large-scale spatial
datasets [41,16,30,36,38,22,8,13]. Of particular interests to scientists is to find
scientifically meaningful locations and their associated patterns, for example,
identification of earthquake hot spots, revealing high-risk zones that particular
diseases associated with environmental pollutions, and the detection of emerging
crime zones.

The motivation for regional association rule mining and scoping is driven by
the facts that global statistics seldom provide useful insight and that most re-
lationships in spatial datasets are geographically regional, rather than global. It

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 289–313.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

290 W. Ding and C.F. Eick

has been pointed out in the literature [20,34,40] that “whole map statistics are
seldom useful,” that “most relationships in spatial data sets are geographically
regional, rather than global” and that “there is no average place on the Earth’s
surface”—a county is not a representative of a state, and a state is not a rep-
resentative of a country. Therefore, it is not surprising that domain experts are
most interested in discovering hidden patterns at a regional scale rather than a
global scale [20,32,33].

Unfortunately, traditional association rule mining frequently fails to discover
regional patterns due to insufficient global confidence and/or support. A common
approach to alleviate the problem is to use a small support threshold. However,
this approach usually suffers from a combinatorial explosion in the number of
rules generated. Furthermore, for a given dataset, the number of regions as well
as the regions themselves are not known a priori. This raises two questions:
how to measure the interestingness of a set of regions and how to search for
interesting regions. One popular approach is to select regions to be mined based
on a previously given structure, such as a uniform grid structure using longitude
and latitude, or based on political/demographical boundaries, such as counties
within a state. But the boundaries of the so-constructed regions fail to consider
the natural boundaries of the interesting patterns. Mining local patterns from
those regions inevitably leads to spurious patterns.

Another unique phenomenon is that regional association rules, by definition,
only hold in a subspace but not in the global space; therefore, regional associa-
tion rules may only be discovered in a particular subspace of the global space.
In this work, we systematically study this problem and address the special chal-
lenges for regional association mining and scoping: (1) region discovery: how
to identify interesting regions from which novel and useful regional association
rules can be extracted; (2) regional association rule scoping: how to determine
the scope of regional association rules. Our preliminary work on regional associ-
ation rule mining was published in [11] and on regional association rule scoping
was published in [12]. In this paper, we integrate two originally separated proce-
dures and investigate the duality between regional association rules and regions
in which the associations are valid. Interesting regions are identified to seek novel
regional patterns, and a regional pattern has a scope that is the set of regions in
which the pattern is valid. We design and implement a reward-based framework,
utilizing plug-in fitness functions to accomplish two complementary objectives:
seeking regions to discover regional association rules, and then identifying regions
in which regional association rules are valid. Such regions provide a quantitative
measure of how significant a regional association rule is in the global space.

Figure 1 illustrates the procedure of our approach with a real example from
our case study. Interesting regions are identified using a grid-based supervised
clustering algorithm and a fitness function designed for the identification of ar-
senic hot spots. An interesting association rule a, Wells with nitrate concentra-
tion lower than 0.085mg/l have dangerous arsenic concentration, is discovered
from an arsenic hot spot area in the South Texas with 100% confidence. The
scope of the association rule a is further identified using another fitness function

Regional Association Rule Mining and Scoping from Spatial Data 291

Fig. 1. An example for regional association rule mining and scoping

designed for regional association rule scoping. The scope of the associate rule is
a larger area that aligns with the Texas Gulf Coast. Further study shows that
this regional association rule a cannot be discovered at the Texas state level due
to its insufficient confidence (less than 50%) on a global scale.

2 Related Work

The areas most relevant to our work are on hot-spot discovery and spatial asso-
ciation rule mining.

2.1 Hot-Spot Discovery

Hot spots are traditionally defined as the clusters of “more than usual inter-
est, activity, or popularity” with respect to spatial coordinates [29]. Hot-spot
discovery has been investigated in spatial statistics and data mining research.

In spatial statistics, detection of hot spots using a variable resolution approach
[7] is investigated to minimize the effects of spatial superposition. In [44], a
region-growing method for hot-spot discovery is described, which selects seed
points first and then grows clusters from these seed points by adding neighbor
points as long as a density threshold is satisfied. The definition of hot spots

292 W. Ding and C.F. Eick

is extended in [25] using circular zones for multiple variables. Getis and Ord
propose a popular method to find hot spots in spatial datasets relying on the G∗

Statistic [19,35]. G∗ Statistic detects local pockets of spatial association, and the
value of G∗ depends on an a priori given scale of the packets and is calculated for
each object individually. Visualizing the results of G∗ calculations graphically
reveals hot spots (aggregates of objects with values of G∗ higher than expected)
and cold spots (aggregates of objects with values of G∗ lower than expected).
Note that such aggregates are not formally defined clusters since the G∗-based
method has no built-in clustering capabilities. Instead, hot spots are inferred
from visualization and manual selection.

An alternative approach for hot-spot discovery relies on clustering in data
mining. Wang et al. [47] introduce a “region-oriented” clustering algorithm to
select hot spots to satisfy certain conditions such as density. Their approach uses
statistical information, for example, means and standard deviations, instead of
a fitness function to evaluate a cluster. Eick et al. [17,16] propose Supervised
Clustering to maximize cluster purity while keeping the number of clusters low.
This paper applies Supervised Clustering to a new problem to find interesting
regions (hot spots) that maximize a given fitness function. In this paper, we
define two plug-in fitness functions for hot-spot discovery with respect to a class
attribute and for identifying the scope of a regional association rule, respectively.

2.2 Spatial Association Rule Mining

Spatial association rule mining [24,5,28] applies association rule mining [1] to
spatial datasets. Extended from the definition of traditional association rule
mining, a spatial association rule takes the form of

P1 ∧ P2 ∧ ... ∧ Pm → Q1 ∧Q2 ∧ ... ∧Qn (sup%, con%).

It denotes an association relation among a set of predicates Pi (i = 1, ...,m) and
Qj (j = 1, ..., n), containing at least one spatial predicate. Spatial predicates may
represent topological relations among spatial objects (e.g., intersecting, contain-
ing), or indicate a spatial orientation (e.g., north, left). The support of the rule
(sup%) measures the percentage of transactions containing both the antecedent
and consequent of the rule. The confidence of the rule (con%) indicates that
con% of transactions satisfy both the antecedent and the consequent of the rule.
A rule P1 ∧P2 ∧ ...∧Pm → Q1∧Q2 ∧ ...∧Qn is strong if sup% and con% satisfy
the minimum support and minimum confidence thresholds.

A common strategy used in spatial association rule mining is to divide the
problem into three subtasks:

1. Item representation and transaction definition: define “items” and
“transactions” for spatial datasets.

2. Frequent itemset generation: find all the itemsets that satisfy the mini-
mum support threshold.

3. Rule generation: construct rules from the frequent itemsets that satisfy
the minimum confidence threshold.

Regional Association Rule Mining and Scoping from Spatial Data 293

Apriori-style [1] association mining algorithms are often used in Subtasks 2 and
3. These type of algorithms require objects to be described by categorical at-
tributes. Therefore, continuous attributes have to be discretized in Subtask 1,
the step of data preprocessing. A transaction is not naturally defined in spatial
space. If spatial association rule discovery is restricted to a reference feature
(such as cities or wells), then transactions can be defined using the instances of
this reference feature, as discussed in [24]. Our work adopts the same transaction
model.

A daunting problem of spatial association rule mining, especially in real-world
applications, is the huge number of generated patterns. Many associations are
either already known geographic dependencies or explicitly represented in geo-
graphic databases. For example, that gas stations usually locate at road intersec-
tions is a well-known and uninteresting association. In order to extract nontrivial
and interesting patterns, Borgorny and Sharma et al. [6,4,5,2,39] proposed a set
of algorithms to discard previously known and uninteresting associations, us-
ing domain knowledge. In particular, the geographic dependencies between the
target feature type and a relevant feature type are eliminated to reduce the
input space for the frequent itemset generation and previously known and non-
interesting geographic dependencies are further removed at the step of frequent
itemset generation. To reduce the number of uninteresting patterns, we intro-
duce the concept of Supervised Association Rules (Section 3.1, Definition 1) and
seek associations containing the target feature type.

3 The Framework for Regional Association Rule Mining
and Scoping

The framework of regional association rule mining and scoping consists of three
steps:

Step 1 Region Discovery: identifying interesting regions for regional associ-
ation rules.

Step 2 Regional Association Rule Mining: mining regional association
rules among discovered regions.

Step 3 Regional Association Rule Scoping: determining the scope of re-
gional association rules.

In the remaining part of the section, we will first discuss our reward-based
method for region discovery which is closely involved with Steps 1 and 3, and
we will formally define the goal of our framework and formulate the measure of
interestingness.

3.1 Region Discovery

Our region discovery method employs a reward-based evaluation schema that
evaluates the quality of the discovered regions. Given a set of regions R =
{r1, . . . , rk}, identified from a spatial dataset O = {o1, . . . , on}, the fitness of

294 W. Ding and C.F. Eick

R, q(R), is defined as the sum of the rewards obtained from each region rj
(j = 1 . . . k):

q(R) =
k∑

j=1

(i(rj)× size(rj)β) (1)

where i(rj) is the interestingness measure of a region rj , a quantity based on
domain interest to reflect the degree to which the region is newsworthy. Our
reward-based method seeks a set of regions R such that the sum of rewards over
all of its constituent regions is maximized. size(rj)β (β > 1) in q(R) increases
the value of the fitness nonlinearly with respect to the number of objects in O
belonging to the region rj . A region reward is proportional to its interestingness,
but given two regions with the same value of interestingness, a larger region
receives a higher reward to reflect a preference given to larger regions.

We employ clustering algorithms for region discovery. A region is a contiguous
subspace that contains a set of spatial objects such that for each pair of objects
belonging to the same region, there always exists a path within this region that
connects them. We search for regions r1, . . . , rk such that:

1. ri ∩ rj = ∅, i �= j, that is, the regions are disjoint.
2. R = {r1, . . . , rk} maximizes q(R).
3. r1 ∪ . . . ∪ rk ⊆ O. The generated regions are not required to be exhaustive

with respect to the spatial dataset O. It is possible that some objects do not
belong to any identified regions; these objects are discarded as outliers due
to the lack of interestingness.

4. r1, . . . , rk are ranked based on their reward values. The higher rewards a
region receives, the more interesting the region is, with respect to the fitness
function q.

3.2 Problem Formulation

Let O be a spatial dataset, S = {s1, s2, ..., sl} be a set of spatial attributes,
A = {a1, a2, ..., am} a set of non-spatial attributes, and CL = {cl1, cl2, ..., cln} a
set of class labels. Let

I = S ∪A ∪ CL
= {s1, s2, ..., sl; a1, a2, ..., am; cl1, cl2, ..., cln}

be the set of all the items in O, and let T = {t1, t2, ..., tN} be the set of all the
transactions. T can be represented as a relational table, which contains N tuples
conforming to the schema I (I contains l + m + n items). An item i ∈ I is a
binary variable whose value is 1 if the item is presented in ti (i = 1, ..., N) or
0, otherwise. Consequently, the set of transactions T is classified based on the
given class structure CL.

Our framework leads to a class-guided generation of association rules that
sheds more light on the patterns related to the given class structure. We define
such rules as supervised association rules.

Regional Association Rule Mining and Scoping from Spatial Data 295

Definition 1 (Supervised Association Rule). A supervised association rule
a is of the form P → Q, where P ⊆ I, Q ⊆ I, P ∩Q = ∅, and (P ∪Q)∩ CL �= ∅.
The rule a holds in the O with the confidence conf and the support sup:

sup(P → Q) =
|P ∪Q|
N

conf (P → Q) =
|P ∪Q|
|P |

where | | denotes the number of elements in a set. A supervised association rule
is strong if it satisfies user-specified minimum support (min sup) and minimum
confidence (min conf) thresholds: sup(P → Q) ≥ min sup and conf(P → Q) ≥
min conf .

The goal of regional association rule scoping is to compute a set of regions
where a given association rule is valid. The scope of a regional association rule
represents the spatial impact of this regional pattern. We give formal definition
of the scope of an association rule below.

Definition 2 (Scope of an Association Rule). The scope of an association
rule a is a set of regions in which the association rule a satisfies the min sup
and min conf thresholds.

Given these definitions and nomenclature, the problem of regional association
rule mining and scoping can be formulated as follows.

Find: interesting regions, supervised association rules from the discovered re-
gions, and the scope of regional association rules.

Given: an itemset I, a classified transaction set T , a set of fitness functions for
different measure of interestingness.

3.3 Measure of Interestingness

The reward-based framework is designed to support many plug-in interestingness
functions, corresponding to various domain interests. The framework utilizes the
duality between regions and regional association rules. The framework first iden-
tifies “hot” regions using the interestingness function ihotpot coldspot. After strong
regional association rules are identified, the scope of those rules are then calcu-
lated, using another interestingness function iscope. Although the same clustering
algorithm and the same dataset are used in two different steps, different sets of
regions are returned in two steps due to the different measure of interestingness
defined in the fitness functions.

In function ihotpot coldspot, the measure of interestingness is based on a set of
class labels CL. It rewards regions whose probability distribution of CL signifi-
cantly deviates from its priori probability. A region is a hot spot/cold spot if its
probability distribution of CL is significantly higher / lower than an expected
probability. The interestingness function ihotpot coldspot is calculated based on

296 W. Ding and C.F. Eick

Fig. 2. The interestingness function ihotpot coldspot using η = 1

P (r, CL) and priori(CL), with the following parameters: η, γ1, γ2, R+, R ,
where η > 0,γ1 ≤ 1 ≤ γ2, 0 ≤ R+, R− ≤ 1. P (r, CL) is the probability of objects
in a region r belonging to CL; priori(CL) is the probability of objects in the
global dataset O belonging to CL; R+ and R− are the maximum rewards for
hot spots and cold spots, respectively.

ihotpot coldspot =⎧
⎪⎨

⎪⎩

[priori(CL)×γ1−P (r,CL)
priori(CL)×γ1 ×R−]

η
if P (r, CL) < priori(CL) × γ1

[P (r,CL)−priori(CL)×γ2
1−priori(CL)×γ2 ×R+]

η
if P (r, CL) > priori(CL) × γ2

0 otherwise

(2)

The parameter η determines how quickly the value of interestingness grows
to the maximum value (either R+ or R−). If η is set to 1, the interestingness
function changes linearly, as shown in Figure 2. In general, the larger the value for
η is, the higher rewards for purer clusters are. priori(CL)×γ1 and priori(CL)×
γ2 determine the thresholds based on which a reward is given to a cluster.

The following example explains how to calculate the fitness of a clustering
schema X of an example dataset using Equations 1 and 2.

Example: Let us assume a clustering schema R is evaluated with respect
to the class of interest dangerous (high-level arsenic) concentration with
priori(dangerous) = 0.2 and a dataset that contains 1000 examples. Sup-
pose that the dataset is partitioned into 4 clusters denoted as
X = {x11, x12, x13, x14}, and |x11| = 50, |x12| = 200, |x13| = 400, |x14| =
350. Assume that there are 20, 100, 80, and 0 objects labeled “dangerous”
in the 4 clusters, respectively. P (x11, dangerous) = 20

50 = 0.4,
P (x12, dangerous) = 100

200 = 0.5, P (x13, dangerous) = 80
400 = 0.2,

P (x14, dangerous) = 0
350

= 0. The parameters used in the fitness func-
tion are as follows: γ1 = 0.5, γ2 = 1.5, R+ = 1, R− = 1. Hence,
priori(CL) × γ1 = 0.2 × 0.5 = 0.1, and priori(CL) × γ2 = 0.2× 1.5 = 0.3.
With this setting, a cluster does not receive any reward if its probabil-
ity of class “dangerous” is not significantly higher or lower than the ex-
pected probability, that is, the value is between priori(CL) × γ1 = 0.1 and
priori(CL)×γ2 = 0.3. Therefore, x13 receives no reward. The interestingness
for the other clusters using η = 1 is

Regional Association Rule Mining and Scoping from Spatial Data 297

ihotpot coldspot(x11) = (
0.4− 0.3
1− 0.3

)1 =
1
7
,

ihotpot coldspot(x12) = (
0.5− 0.3
1− 0.3

)1 =
2
7
,

ihotpot coldspot(x14) = (
0.1− 0

0.1
)1 = 1.

The fitness value of the clustering schema X calculated using Equation 1
with β = 1.1 is

q(X) = 1
7 × (50

1000)1.1 + 2
7 × (200

1000)1.1 +
0× (400

1000)1.1 + 1× (350
1000)1.1

= 0.369

Function iscope evaluates the interestingness of a region for a given association
rule. Let a be an association rule, conf(a, r) the confidence of a in a region r, and
sup(a, r) the support of a in r, we define the interestingness iscope(r) of region
r with respect to the given association rule a as follows:

iscope(r) =
⎧
⎪⎪⎨

⎪⎪⎩

0 if sup(a, r) < min sup× δ1 or
conf(a, r) < min conf × δ2,

(sup(a,r)min sup)
η1(conf(a,r)−min conf×δ2

1−min conf×δ2)η2 otherwise.

(3)

In regional association rule scoping, a region’s reward is proportional to its in-
terestingness, which is determined based on the confidence and support of as-
sociation rule a in region r. In Equation 3, the thresholds min sup × δ1 and
min conf × δ2 are introduced to weed out regions in which the association a
barely holds. The minimum support and confidence thresholds prevent the clus-
tering solution from containing large clusters with low interestingness. Values of
parameters η1 and η2 (η1, η2 > 0) determine the weight to the increment of the
support and confidence, respectively.

The measure of interestingness defined in iscope uses “soft” instead of “hard”
thresholds to avoid a harsh crisp effect [3]. For example, with δ1 = δ2 = 0.9,
the function iscope(r) rewards regions as long as their confidence or support
thresholds are within 90% of the hard thresholds min conf and min sup. For
example, let’s assume that min sup = 10%, min conf = 80%, and that the
association rule under consideration has support = 9% and confidence = 100%
in a region r′. In this case, instead of assigning zero reward to region r′, we argue
to reward the region because the confidence of the rule in region r′ is significantly
above the min conf threshold and its support is just a little bit lower (1%) than
the min sup threshold. Our approach uses a quantitative evaluation method
that assigns a higher degree of interestingness and consequently a higher reward
to regions whose support and confidence are high with respect to an association
rule of interest. Once an association rule a is discovered from a particular region

298 W. Ding and C.F. Eick

r in the first place, we know that region r from which the association rule a
originates, receives a positive reward due to the fact that a satisfies the support
and confidence thresholds in r. Consequently, region r will always be contained
in the set of regions that define the scope of association rule a.

4 Algorithms

4.1 Region Discovery

We formulate region discovery as a clustering problem to search for clusters that
maximize domain-specific metrics as described in detail in previous section. Dif-
ferent measure of interestingness may lead to different sets of identified regions.
Consequently, clustering algorithms embedded in the framework should allow
for plug-in fitness functions. However, the use of fitness functions is quite un-
common in clustering methods, although a few exceptions exist, for example,
the hierarchical clustering algorithm CHAMELEON [23] uses fitness functions
to evaluate inter-connectivity and proximity between two clusters. Furthermore,
our region discovery method is different from traditional clustering methods as
it is geared toward finding interesting places with respect to a given measure of
interestingness. Clusters are ranked based on reward values, and clusters receive
low rewards are discarded as outliers and will not be identified as interesting
regions.

We have designed and implemented a new Supervised Clustering algorithm
using Multi-Resolution Grids (SCMRG). SCMRG is a hierarchical, grid-based
method that utilizes a top-down search. The spatial space of the dataset is
partitioned into grid cells. Each grid cell at a higher level is partitioned further
into smaller cells at the lower level, and this process continues as long as the
sum of the rewards of the lower level cells q(R) is not decreased. The regions
returned by SCMRG are the combination of grid cells obtained at different levels
of resolution. The number of clusters, k, is calculated by the algorithm itself.

Algorithm 1 gives the pseudo-code of SCMRG. A queue data structure is
used to store all the cells that need to be processed. The algorithm starts at
a user-defined level of resolution and considers the following three cases when
processing a cell c:

Case 1: if the cell c receives a reward, and its reward is greater than the sum of
the rewards of its children (succ(c)) and also greater than the sum of rewards
of its grandchildren, this cell is returned as a cluster by the algorithm (steps
15-17).

Case 2: if the cell c does not receive a reward and its children and grandchildren
do not receive a reward, neither the cell nor any of its descendants will be
labeled clusters (steps 23-29).

Case 3: otherwise, put all the children of the cell c (succ(c)) into a queue for
further processing (steps 18-21, steps 24-28).

The algorithm traverses through the hierarchical structure and examines those
cells in the queue from the higher level. It uses a user-defined cell size as a depth

Regional Association Rule Mining and Scoping from Spatial Data 299

Algorithm 1. The Algorithm of Supervised Clustering using Multi-Resolution
Grids (SCMRG)
Input:

– A fitness function.
– A level of resolution l for the initial grid structure.
– The minimum cell size. A cell will not be divided further if it approaches the

minimum cell size.

Output:

– Discovered regions R = {r1, . . . , rk}.
SCMRG (min cell size)
1.Determine a level of resolution l to start with.
2.Assign spatial objects to grid cells.
3. for each cell c at the current level l do
4. enqueue(c, cellQueue).
5. end for
6.while NOT empty(cellQueue) do
7. c = dequeue(cellQueue).
8. r = reward (c). {Calculate reward for the cell.}
9. for each cchild ∈succ(c) do
10. rchildren = rchildren+reward (cchild).
11. end for {Calculate reward for its children.}
12. for each cgrandchild ∈succ(succ(c)) do
13. rgrandchildren = rgrandchildren+reward (cgrandchild).
14. end for {Calculate reward for its grandchildren.}
15. if r > 0 {The cell receives a reward.}
16. if r > rchildren AND r > rgrandchildren

17. label the cell a cluster.
18. else {The cell should be divided further.}
19. if (the size of each cchild ∈succ(c) > min cell size)
20. enqueue(succ(c), cellQueue).
21. end if
22. end if
23. else if r = 0 {The cell does not receive a reward.)
24. if NOT (rchildren = 0 AND rgrandchildren = 0)
25. if (the size of each cchild ∈succ(c) > min cell size)
26. enqueue(succ(c), cellQueue).
27. end if
28. end if {The cell should be divided further.}
29. end if
30.end while
31.Collect all the cluster-labeled cells from different levels.
32.Obtain regions by merging neighbor clusters if it improves the fitness.
33.Return the obtained regions.

300 W. Ding and C.F. Eick

boundary. Cells smaller than this cell size will not be split any further (step 19,
step 25). Finally, SCMRG collects all the cells that have been identified in Case
1 from different levels, and merges neighbor clusters if the overall fitness can
be improved. The obtained regions are returned as the result of the SCMRG
clustering algorithm (steps 31-33).

This hierarchical grid-based approach captures clustering information associ-
ated with spatial cells without recourse to the individual objects because we do
not drill down a cell if it does not look so promising (Case 2). SCMRG avoids
time-consuming distance calculation because it uses the grid structure to define
the neighborhood of objects. The computational complexity of SCMRG is thus
linear in the number of grid cells processed, which is usually much less than the
number of objects. Thus, the algorithm is capable of processing large datasets ef-
ficiently. The SCMRG algorithm has some similarity with the STING clustering
algorithm [47]. The difference is that the SCMRG algorithm focuses on finding
interesting cells (those receive high rewards) instead of cells that contain answers
to a given query. In addition, SCMRG only computes cell statistics when needed
and not in advance as STING does, thus saving storage space as well.

The complexity of the SCMRG algorithm is controlled by two factors: the
number of the candidate cells in the queue and the calculation of the fitness.
The algorithm calculates the fitness of all objects inside a cell and a cell will
not be further divided if drilling down cannot improve the current reward. The
number of cells of a layer is less than one-forth of the number of the layer one
level lower. The total number of cells to be processed in the worst case is less than
1.33Nc, where Nc is the number of the cells at the bottom layer1. The actual
number of cells is usually less than 1.33Nc due to the reward-based pruning. It is
also reasonable to assume that each cell at the bottom layer likely contains many
objects because the reward function is designed to favor larger cell (a.k.a. larger
clusters). In our empirical study, the average cell size is above 400 objects. In
general, the total number of cells is much less than the total number of objects.
Let the cost of fitness calculation is O(q). Thus the complexity of the algorithm
in average is usually much better than O(N)×O(q), where N is the total number
of objects in the dataset.

The example in Figure 3 explains the procedure of the SCMRG algorithm
using a sample dataset. The first decomposition results into four cells c11, c12,
c13, c14 at Level 1. If the reward of c11 is greater than the sum of the rewards of
its children, and if it is also greater than the sum of rewards of its grandchildren,
c11 is then labeled a cluster according to Case 1. Cell c14 does not receive any
rewards, if neither its children nor grandchildren receive any rewards. According
to Case 2, c14 is not labeled a cluster, and its successors are not saved in the
queue. Although Cell c13 receives no reward, assume its children receive rewards,
all the children of c13 are saved in the queue to be further processed (Case 3). The
cells at Level 1 are then divided into Levels 2 and 3, and the same procedure
is applied to all the cells in the queue. Each cell is labeled accordingly. The

1 Total number of cells = Nc ×(1 +
∑

n−>∞
1
4n) and

∑
n−>∞

1
4n = 1

3
.

Regional Association Rule Mining and Scoping from Spatial Data 301

Fig. 3. Runing the SCMRG algorithm on a sample dataset

intermediate results are shown at Levels 2 and 3 in Figure 3. Neighbor clusters
are merged if this improves the fitness. In this example, two regions are identified.

4.2 Generation of Regional Association Rules

Once regions are identified, we construct frequent itemsets for each region. Our
Supervised Apriori Gen algorithm (Pseudo code is provided in our previous work
[13]) extends the Apriori algorithm [1] by utilizing a given class structure.

The Apriori algorithm first makes a single pass over the dataset to deter-
mine the support of each single item, which generates all frequent 1-itemsets
F1. Next, the algorithm iteratively generates candidate k-itemsets using the fre-
quent (k-1)-itemsets found in the previous iteration. A k-itemset is an itemset
that has k attributes. A candidate itemset is pruned if it is not frequent. The
algorithm terminates when there are no new frequent itemsets generated, for
example, Fk=∅. Supervised Apriori Gen algorithm uses a different approach:
the given class structure is incorporated by enforcing that each candidate k-
itemset include at least one class label; otherwise it is pruned even if it is
frequent. The Supervised-Apriori-Gen uses the Fk−1 × Fk−1 method [43] to
merge a pair of frequent (k-1)-itemsets. Basically, let A = {a1, a2, ..., ak−1} and
B = {b1, b2, ..., bk−1} be a pair of frequent (k-1)-itemsets. A and B are merged to
form a k-itemset {a1, a2, ..., ak−1, bk−1} if they satisfy the following conditions:

ai = bi (for i = 1, 2, ..., k − 2) and ak−1 �= bk−1.

After frequent itemsets are generated, we use the same approach proposed by
the Apriori algorithm to generate strong supervised association rules using the
min conf threshold.

302 W. Ding and C.F. Eick

5 Arsenic Regional Association Rule Mining and Scoping
in the Texas Water Supply

In this section, we describe the experimental procedures of applying the frame-
work of regional association rule mining and scoping to a real world case study
that identifies arsenic spatial risk patterns in the Texas water supply. We then
discuss the experimental results and evaluate the performance of the proposed
framework.

The experiments are conducted in four steps:

1. Data collection and data preprocessing, including cleaning data, transform-
ing continuous attributes into categorical attributes, and constructing trans-
actions using water wells as the reference feature.

2. Identifying arsenic hot spots and cold spots. A region whose arsenic distribu-
tion is significantly higher than the Texas state level is considered an arsenic
hot spot; a region whose arsenic distribution is significantly lower the Texas
state level is considered an arsenic cold spot.

3. Mining supervised association rules from each identified region and for the
complete dataset.

4. Determining scope of strong supervised association rules.

5.1 Data Collection and Data Preprocessing

The datasets used in this study are extracted from the Texas Ground Water
Database (GWDB) maintained by the Texas Water Development Board, the
state agency in charge of statewide water planning [45]. The Texas Water Devel-
opment Board has monitored and analyzed arsenic concentration over the last
30 years. Arsenic in very high concentration is poisonous. Long term exposure to
arsenic, even though at low level, can still lead to increased risk of cancers [42].
Arsenic is derived from both anthropogenic sources, such as the drainage from
mines and mine tailings, pesticides, and biocides, and from natural sources, such
as the hydrothermal leaching of arsenic-containing minerals or rocks. The World
Health Organization has reported arsenic in drinking water in U.S., Thailand,
Mexico, India, Hungary, Ghana, Chile, China, Bangladesh, and Argentina [48],
as one of the key parameters for drinking water quality and safety evaluation.

Because data collection and maintenance procedures and standards have
changed over the years in GWDB, datasets have to be cleaned to deal with
problems such as missing values, inconsistent data, and duplicate entries. The
obtained arsenic spatial dataset includes spatial attributes (S), non-spatial at-
tributes (A), and class labels (CL) for each water well. Some of the spatial
attributes are directly extracted from the database, such as river basin, zone,
latitude and longitude. Implicit spatial attributes, such as distance between wells
and rivers, are estimated using the 9-intersection model [15]. Non-spatial at-
tributes are selected with the assistance of domain experts [21,26,37]; they in-
clude well depth, and concentration of fluoride, nitrate, and other chemical metal

Regional Association Rule Mining and Scoping from Spatial Data 303

Fig. 4. Arsenic contamination in Texas; background depicts Texas terrain color ramp.
Legend: red (or dark gray) dots – dangerous wells.

elements including vanadium, iron, molybdenum and selenium. Among those at-
tributes, the attribute well depth is used for studies on mobilizing mechanism;
the attributes vanadium and molybdenum have similar geochemical behavior; the
attributes fluoride, nitrate, iron, and selenium may suggest the ultimate origin
of arsenic. The arsenic dataset generated by our research group and the dataset
is available on the web at [10].

We classify water wells into two classes: safe and dangerous. Based on the
standard for drinking water defined by the Environment Protection Agency [46],
a well is considered dangerous if its arsenic concentration level is above 10μg/l.
To ensure the quality of the association rule generated in the study, we only
select lab test results that use honored sampling procedures. This results in
11,922 records selected from GWDB after data preprocessing. Figure 4 illustrates
arsenic contamination in Texas, where dangerous wells are in red (or dark gray).

Table 1 describes the 7 non-spatial attributes used in the arsenic dataset. The
table lists the mean and the standard deviation of those continuous attributes
before discretization. In preparation of the association rule mining, continuous
attributes excluding latitude and longitude are first converted into categorical
attributes. In general, two different methods are used for discretization of con-
tinuous attributes: unsupervised discretization without using class information
and supervised discretization using class information [43]. In our experiments,
we adopt the supervised method Recursive Minimal Entropy Partitioning intro-
duced in [18]. The supervised entropy-based method uses class labels dangerous
and safe to place the splits in a way that maximizes the purity of arsenic classes
in the intervals. This discretization method maximized the support for arsenic
class attribute, facilitating the discovery of supervised association rules involving
with arsenic. Hence the method can effectively find the supervised association
rules related with arsenic classes. The method produces unequal bin sizes and

304 W. Ding and C.F. Eick

Table 1. Arsenic dataset

Total #
of Wells 11,922

Non-Spatial
Attributes Mean STD Splitting Points

1. well depth
(foot) 587.959 654.962 215.5

2. nitrate
(mg/l) 11.362 27.499 0.085, 0.455, 16.1, 28.085

3. fluoride
(mg/l) 1.161 1.349 0.315, 2.445, 3.375, 4.605

4. vanadium 1.2, 2.05, 2.95, 3.25, 5.945, 11.85,
(μg/l) 8.755 25.827 19.95, 20.05, 37.95

5. iron 1.295, 2.595, 4.945, 5.015, 7.895,
(μg/l) 9.226 15.651 19.65, 20.05, 48.05, 51.75

6. molybdenum
(μg/l) 259.882 1320.784 9.05, 11.35, 19.95, 20.1, 28.1, 47.2, 51.05

7. selenium 4.995, 5.01, 19.95, 20.05, 34.65,
(μg/l) 14.243 34.75 43.05, 52.85, 74.55

has been shown to produce better results in data mining tasks [14]. The split-
ting points of each continuous attribute are listed in Table 1. For example, the
value of nitrate concentration has been discretized into five intervals with re-
spect to the arsenic classes: (0,0.085], (0.085,0.455], (0.455,16.1], (16.1,28.085],
and (28.085,∞) (measurement unit mg/l).

5.2 Region Discovery for Arsenic Hot/Cold Spots

We have re-discovered several interesting risk regions with high arsenic concen-
tration (hot spots), which have been studied by geoscientists before. We have also
identified regions with low arsenic concentration (cold spots). The association
rules that we constructed from those identified regions can help geoscientists
identify the causes of high arsenic concentration in different regions. We now
present our results with validation from the published results in the geosciences
for both region discovery and association rule mining and scoping.

In region discovery, the SCMRG algorithm is applied to the dataset that con-
sists of longitude and latitude of wells along with arsenic class labels dangerous
or safe using Equation 2. Figure 5 depicts the result of the top four regions
that have received the highest reward. Specifically, Regions 1 and 3 have high
density of dangerous wells, and Regions 2 and 4 have high density of safe wells.
Hot spot Region 1 overlaps with the arsenic risk zone reported in the National
Water-Quality Assessment Program [31], and hot spot Region 3 is confirmed as
an arsenic risk zone by Parker’s work [37].

If we are interested in finding larger regions with lower purity, using a larger
value of β results in a bigger size of the regions. Figure 6 shows enlarged regions

Regional Association Rule Mining and Scoping from Spatial Data 305

Fig. 5. Interesting regions are identified using β = 1.01, η = 1, γ1 = 0.5, γ2 =
1.5, R+ = 1, R− = 1. Average region purity = 0.85.

Fig. 6. Interesting regions are identified using β = 1.035, η = 1, γ1 = 0.5, γ2 =
1.5, R+ = 1, R− = 1. Average region purity = 0.83.

when β is increased from 1.01 to 1.035. In our experiments, we adjusted the
granularity of regions by the quality of rules discovered in step 3. We observed
that β = 1.01 and η = 1 give us the best results in the rules constructed in
supervised association rule mining.

5.3 Regional Association Rule Mining

The Supervised Apriori Gen algorithm is used to generate frequent itemsets for
all the regions identified. We use min support = 10% and min confidence =
70% thresholds for the experiments. We present the first few rules for the regions
investigated, which are all meaningful and important according to the arsenic
study literature.

306 W. Ding and C.F. Eick

Mining regional rules in arsenic hot spots discovers attributes that are associ-
ated with high arsenic concentration; in cold spots it discovers attributes related
to low arsenic concentration. For example, in Region 3 of Figure 5, we discover

is a(X,Well) ∧ nitrate(X, 0− 0.085)
→ arsenic level(X, dangerous) (100%). (1)

The rule states, with 100% confidence, that the wells in Region 3 with nitrate
concentration lower than 0.085mg/l have dangerous arsenic concentration. The
strong association between nitrate and high arsenic concentration is verified by
Hudak’s work [21] in environmental geology.

In Region 1 of Figure 5, we also discover

is a(X,Well) ∧ vanadium(X, 20.05− 37.95)∧ selenium(X, 74.55−∞)
→ arsenic level(X, dangerous) (100%). (2)

The rule states with 100% confidence that the wells in Region 1, with vana-
dium concentration between 20.05 and 37.95μg/l and selenium concentration
larger than 74.55μg/l, have dangerous arsenic concentration. Our discovery is
confirmed by the work of Lee et al. in [26].

Our experimental results also show some novel rules that have not been re-
ported in the literature of arsenic analysis. For example, in Region 1 the following
rule is discovered:

is a(X,Well)∧ depth(X, 0− 215.5)∧ iron(X, 19.65− 20.05)
→ arsenic level(X, dangerous) (100%). (3)

The rule indicates that shallow wells with a certain range of iron concentration
are associated with high arsenic concentration. We hope that the results from
our study will help domain experts in selecting interesting hypotheses for further
scientific exploration.

Furthermore, we are interested to know whether the rules are different in
different regions. We compared the sets of rules generated for Region 1 and
Region 3 (hot spots), as well as for Region 2 and Region 4 (cold spots). Due
to different geographical structure and farm activities of the study area, the
spatial risk patterns associated with arsenic are different in each region. For
example, comparing the previously studied rule 1 identified in Region 3 with
rule 4 extracted from Region 1:

is a(X,Well) ∧ nitrate(X, 28.085−∞) ∧ fluoride(X, 4.605−∞)
→ arsenic level(X, dangerous) (100%). (4)

Instead of being related to relatively low concentration of nitrate (< 0.085mg/l),
the rule says that with 100% confidence, the wells in Region 3, with high ni-
trate concentration (> 28.085mg/l) and fluoride concentration higher than 4.605
mg/l, have dangerous arsenic concentration.

Regional Association Rule Mining and Scoping from Spatial Data 307

Rules in Regions 2 and 4 (cold spots) shed light on what may prevent high
arsenic concentration. For example, we find the following rule, discovered both
in Regions 2 and 4, states what is associated with low arsenic concentration.

is a(X,Well) ∧ nitrate(X, 0.455− 16.1)∧
fluoride(X, 0.095− 0.315) ∧ vanadium(X, 3.25− 5.945)

→ arsenic level(X, safe) (100%) (5)

For comparative purposes, we also mine supervised association rules in the whole
dataset. Using low support values in global datasets to find more interesting asso-
ciation rules has been suggested by [27]. However, even with a rather low support
threshold min support = 1%, none of the top ranked interesting regional asso-
ciation rules we identified previously are included among over 100,000 resulting
rules. On the other hand, up to 300 rules on average are identified per region us-
ing our framework with min support = 10% andmin confidence = 70% thresh-
olds. Regional association rules identified from those arsenic hot/cold spots tend
to be more revealing and interesting. Not surprisingly, a large portion of 100,000
statewide association rules are trivial and general rules, such as

is a(X,Well) ∧ water use(X, “by humam beings”)∧ arsenic level(X, safe)
→ inside(X,Basin19) (86%) (6)

This global association rule claims that wells which are used by human beings
and have safe arsenic concentration are very likely (confidence is 86%) located
in river basin 19 (in San Antonio area). It is a well-known fact in Texas.

5.4 Region Discovery for Regional Association Rule Scoping

We use the same clustering algorithm SCMRG but a different fitness function
iscope(Equation 3) for regional association rule scoping. The following four re-
gional association rules with 100% confidence from Regions 1, 2, 3, and 4 are
used as illustration examples in the rest of this section for regional association
rule scoping. Association rules 1 and 3 are confirmed in arsenic literature [21,26].

Association Rule 1

nitrate(X, 28.31−∞) ∧ arsenic level(X, dangerous)→ depth(X, 0− 251.5)

Association Rule 2

depth(X, 0− 251.5)∧ fluoride(X, 0− 0.085)→ arsenic level(X, safe)

Association Rule 3

nitrate(X, 0− 0.085)→ arsenic level(X, dangerous)

Association Rule 4

depth(X, 251.5−∞) ∧ nitrate(X, 0.265− 16.1)→ arsenic level(X, safe)

308 W. Ding and C.F. Eick

Fig. 7. Region - Regional association rule - Scope using β = 1.01, η1 = 1, η2 =
1.1, δ1 = δ2 = 0.9, min sup = 10%, min conf = 80%. Legend: regions are highlighted
by bold border line; scopes are in color blue (or light grey).

Figure 7 depicts the scope of four association rules above. The scope of an
association rule can contain several regions. The scope of Association Rule 1
(top row, left column) overlaps with the Texas High Plains. In this area, shallow
depth wells (< 251.5 feet) indicate the aquifer is thin; thus, nitrate comes from
surface contamination (> 28.31 MG/L). Arsenic contamination is of geological
origin and is then enhanced by the lack of dilution because the aquifer is thin.
The scope of Association Rule 3 (bottom row, left column) is applicable to
the whole Texas Gulf Coast because the geology there is similar. The scope of
Association Rules 2 and 4 represents the areas where arsenic contamination is
low. They are interesting places that domain scientists will explore in the future.

It is also important to point out that the scope of an association rule indicates
how global, regional, or local a pattern is. For example, the scope of the associ-
ation rule 4 in Figure 7 covers a large percentage of the global space (> 75%).
We find that the association rule 4 is also valid (holds with 85% confidence) in

Regional Association Rule Mining and Scoping from Spatial Data 309

Fig. 8. The scope of a particular rule changes based on the different values of
min sup and min conf . β = 1.01, η1 = 1, η2 = 1.1, δ1 = δ2 = 0.9, min sup =
10%, min conf = 80%.

the global dataset. Hence, it is indeed a global association rule. However, none
of the other three association rules are discovered globally. We can also fine-tune
the measure of interestingness for association rule scoping by varying its support
and confidence thresholds for a given association rule. Figure 8 shows how the
scope of the association rule 3 changes using different confidence and support
thresholds. Typically, a lower value of the min sup results in a larger scope; a
higher value of the min conf results in a smaller scope.

Association rule scoping has many applications that go beyond the proposed
framework introduced in this paper. Scoping can be applied to any spatial asso-
ciation rules, including global association rules. For example, a domain expert
can check whether an arsenic association, which is valid in Texas, also holds in
Bangladesh, a country that has serious arsenic contamination in drinking water.
It is also inspirational for domain experts to explore how the scope of an asso-
ciation rule changes, if an association rule is slightly modified, for example, a

310 W. Ding and C.F. Eick

condition in its antecedent is dropped. Furthermore, in addition to finding the
scope where an association holds, it might be interesting to search for the scope
where it does not hold. For example, if we find that high levels of iron associates
with high arsenic concentration in one region, but with low arsenic concentration
in another region, this case should be further analyzed. Last but not least, the re-
gions obtained using association rule scoping can serve as a source for mining new
association rules. For example, if we are interested in the places where high levels
of iron associate with high levels of fluoride, high iron(X)→ high fluoride(X).
We can then determine the scope of this association rule and use the new ob-
tained regions to mine new interesting association rules that provide further
details that contribute to the association between iron and fluoride.

Our SCMRG algorithm is computationally efficient. On average, it takes 3.031
seconds for hot spots/cold spots discovery, and 4.68 seconds for regional associa-
tion rule scoping. The computer has an Intel(R) Pentium(R) M, a CPU 1.2GHz,
and 632 MB of RAM. The algorithm implemented in Java can be accessed on
the Web at our open source project Cougar2 Java Library for Machine Learning
and Data Mining Algorithms [9].

6 Summary

One critical requirement for spatial data mining is the capability to analyze
datasets at different levels of granularity, as well as analyze the data globally.
We face two unique challenges in regional association mining and scoping: (1)
how to determine regions from which regional association rules will be extracted,
and (2) how to compute the scope of regional association rules. We solve the first
issue using a reward-based region discovery algorithm that employs a grid-based
supervised approach to identify interesting subregions in spatial datasets. We
address the second problem by exploiting the duality between regional patterns
and regions: regions are used to discover regional association rules; next the
obtained regional association rules are used to determine places in which the
association rules are valid. Such regions capture the scopes of regional patterns
and provide a quantitative measure of how significant a regional association rule
is in the global space.

We evaluate the proposed framework in a real-world case study to identify
spatial risk patterns and risk zones of arsenic in the Texas water supply. The
goal of the case study is to understand what regional associations exist between
high arsenic concentration and other factors. We have identified arsenic hot spots
and cold spots, created regional rules from the obtained regions, and evaluated
the spatial impact of interesting regional associations. We are not interested in
predicting whether a well is safe or dangerous because this information is already
known. A classification algorithm would only be helpful if we could drill into the
classification model to determine which factors are associated with high arsenic
pollution. In general, our work can be viewed as an exploratory data analysis ap-
proach that centers on which features are potentially relevant in causing arsenic
pollution. Moreover, our approach identified several new relationships between

Regional Association Rule Mining and Scoping from Spatial Data 311

arsenic and other factors which provide scientists with novel hypotheses for fur-
ther exploration.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington,
D.C, pp. 207–216 (26–28, 1993)

2. Appice, A., Ceci, M., Lanza, A., Lisi, F.A., Malerba, D.: Discovery of spatial as-
sociation rules in geo-referenced census data: A relational mining approach. Intell.
Data Anal. 7(6), 541–566 (2003)

3. Bistarelli, S., Bonchi, F.: Interestingness is not a dichotomy: Introducing softness
in constrained pattern mining. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho,
R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 22–33. Springer,
Heidelberg (2005)

4. Bogorny, V., Camargo, S., Engel, P.M., Alvares, L.O.: Mining frequent geographic
patterns with knowledge constraints. In: GIS 2006: Proceedings of the 14th Annual
ACM International Symposium on Advances in Geographic Information Systems,
Arlington, Virginia, USA, pp. 139–146 (November 2006)

5. Bogorny, V., Kuijpers, B., Alvares, L.O.: Reducing uninteresting spatial association
rules in geographic databases using background knowledge: a summary of results.
Int. J. Geogr. Inf. Sci. 22(4), 361–386 (2008)

6. Bogorny, V., Valiati, J., Camargo, S., Engel, P., Kuijpers, B., Alvares, L.: Min-
ing maximal generalized frequent geographic patterns with knowledge constraints.
In: The 6th International Conference on Data Mining, Hong Kong, pp. 813–817
(December 2006)

7. Brimicombe, A.J.: Cluster detection in point event data having tendency towards
spatially repetitive events. In: the 8th Intl. Conf. on GeoComputation (2005)

8. Celepcikay, O.U., Eick, C.F.: Reg: A regional regression framework for geo-
referenced datasets. In: 17th ACM SIGSPATIAL International Conference on Ad-
vances in GIS (ACM SIGSPATIAL GIS)

9. CougarSquared Data Mining and Machine Learning Framework, Data Mining and
Machine Learning Group, University of Houston (2011),
https://cougarsquared.dev.java.net/

10. Data Mining and Machine Learning Group, University of Houston (2011),
http://www.tlc2.uh.edu/dmmlg/Datasets

11. Ding, W., Eick, C.F., Wang, J., Yuan, X.: A framework for regional association
rule mining in spatial datasets. In: The 6th IEEE International Conference on Data
Mining, ICDM, (December 2006)

12. Ding, W., Eick, C.F., Yuan, X., Wang, J., Nicot, J.-P.: On regional association
rule scoping. In: The International Workshop on Spatial and Spatio-temporal Data
Mining in Cooperation with IEEE ICDM 2007, Omaha, NE, USA (October 2007)

13. Ding, W., Eick, C.F., Yuan, X., Wang, J., Nicot, J.-P.: A framework for regional
association rule mining and scoping in spatial datasets. Geoinformatica 15(1), 1–28
(2011)

14. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: International Conference on Machine Learning, pp. 194–
202 (1995)

312 W. Ding and C.F. Eick

15. Egenhofer, M.J., Franzosa, R.D.: Pointset topological spatial relations. Interna-
tional Journal for Geographical Information Systems 5(2), 161–174 (1991)

16. Eick, C.F., Vaezian, B., Jiang, D., Wang, J.: Discovery of interesting regions
in spatial data sets using supervised clustering. In: Fürnkranz, J., Scheffer, T.,
Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 127–138.
Springer, Heidelberg (2006)

17. Eick, C.F., Zeidat, N., Zhao, Z.: Supervised clustering: Algorithms and application.
In: International Conference on Tools with AI, Boca Raton, Florida, pp. 774–776
(2004)

18. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: Kaufmann, M. (ed.) Proceedings of the 13th
International Joint Conference on Artificial Intelligence, pp. 1022–1027 (1993)

19. Getis, A., Ord, J.K.: The analysis of spatial association by use of distance statistics.
Geographical Analysis 24, 189–206 (1992)

20. Goodchild, M.F.: The fundamental laws of GIScience. In: Invited talk at University
Consortium for Geographic Information Science, University of California, Santa
Barbara (2003)

21. Hudak, P.F.: Arsenic, nitrate, chloride and bromide contamination in the gulf coast
aquifer, south-central Texas, USA. Intl. Journal of Environmental Studies 60, 123–
133 (2003)

22. Jiamthapthaksin, R., Eick, C.F., Lee, S.: Gac-geo: A generic agglomerative cluster-
ing framework for geo-referenced datasets. In: Knowledge and Information Systems
(KAIS), pp. 1–29 (2011)

23. Karypis, G., Han, E.-H.S., Kumar, V.: Chameleon: Hierarchical clustering using
dynamic modeling. IEEE Computer 32(8), 68–75 (1999)

24. Koperski, K., Han, J.: Discovery of spatial association rules in geographic infor-
mation databases. In: Egenhofer, M.J., Herring, J.R. (eds.) Proc. 4th Int. Symp.
Advances in Spatial Databases, SSD, vol. 951, pp. 47–66 (6-9, 1995)

25. Kulldorff, M.: Prospective time periodic geographical disease surveillance using a
scan statistic. Journal Of The Royal Statistical Society Series A 164, 61–72 (2001)

26. Lee, L.M., Herbert, B.: A GIS survey of arsenic and other trace metals in ground-
water resources of Texas. In: Natural Arsenic in Groundwater: Science, Regulation,
and Health Implications, Posters (2001)

27. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on mul-
tiple class-association rules. In: International Conference on Data Mining (ICDM
2001), San Jose, CA (November 2001)

28. Mennis, J., Liu, J.: Mining association rules in spatio-temporal data: an analysis
of urban socioeconomic and sand cover change Transactions in GIS 9, 5–17 (2005)

29. Merriam-Webster Online Dictionary (2011), http://www.merriam-webster.com
30. Munro, R., Chawla, S., Sun, P.: Complex spatial relationships. In: The Third IEEE

International Conference on Data Mining, ICDM (2003)
31. National Water-Quality Assessment Program, U.S. Department of the Interior

and U.S. Geological Survey. Ground-Water Quality of the Southern High Plains
Aquifer, Texas and New Mexico, Open-File Report 03-345 (2001)

32. Openshaw, S.: Two exploratory space-time attribute pattern analysers relevant to
GIS. In: Fotheringham, S., Rogerson, P. (eds.) Spatial Analysis and GIS, London,
pp. 83–104. Taylor and Francis, Abington (1994)

33. Openshaw, S.: Developing automated and smart spatial pattern exploration tools
for geographical information systems applications. The Statistician 44(1), 3–16
(1995)

Regional Association Rule Mining and Scoping from Spatial Data 313

34. Openshaw, S.: Geographical data mining: Key design issues. GeoComputation
(1999)

35. Ord, J.K., Getis, A.: Local spatial autocorrelation statistics: Distributional issues
and an application. Geographical Analysis 27(4), 286–306 (1995)

36. Papadimitriou, S., Gionis, A., Tsaparas, P., Väisänen, A., Mannila, H., Faloutsos,
C.: Parameter-free spatial data mining using MDL. In: 5th International Confer-
ence on Data Mining, ICDM (2005)

37. Parker, R.: Ground water discharge from mid-tertiary rhyolitic ash-rich sediments
as the source of elevated arsenic in South Texas surface waters. In: Natural Arsenic
in Groundwater: Science, Regulation, and Health Implications (2001)

38. Roddick, J.F., Spiliopoulou, M.: A bibliography of temporal, spatial and spatio-
temporal data mining research. In: SIGKDD Explorations, vol. 1, pp. 34–38 (1999)

39. Sharma, L., Tiwary, U., Vyas, O.: An efficient approach to spatial association rule
mining. In: Int. Conf. On ISPR IIIT, Allahabad, India, pp. 1–5 (2004)

40. Shekhar, S.: Spatial data mining: Accomplishments and research needs. Keynote
Speech at GIScience 2004 (3rd Bi-Annual International Conference on Geographic
Information Science) (2004)

41. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice-Hall, Englewood Cliffs
(2003) ISBN 013-017480-7

42. Smith, A., Hopenhayn-Rich, C.: Cancer risks from arsenic in drinking water. En-
vironmental Health Perspectives 97, 259–267 (1992)

43. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley, Reading (2006)

44. Tay, S.C., Hsu, W., Lim, K.H.: Spatial data mining: Clustering of hot spots and
pattern recognition. In: IEEE International Geoscience and Remote Sensing Sym-
posium (2003)

45. Texas Water Development Board. (2011),
http://www.twdb.state.tx.us/home/index.asp

46. U.S. Environmental Protection Agency (2011), http://www.epa.gov/
47. Wang, W., Yang, J., Muntz, R.R.: STING: A statistical information grid approach

to spatial data mining. In: Twenty-Third International Conference on Very Large
Data Bases, Athens, Greece, pp. 186–195. Morgan Kaufmann, San Francisco (1997)

48. World Health Organization (2011), http://www.who.int/

Chapter 12

Learning from Imbalanced Data: Evaluation
Matters

Troy Raeder1, George Forman2, and Nitesh V. Chawla1

1 University of Notre Dame, Notre Dame, IN, USA
2 HP Labs, Palo Alto, CA, USA

traeder@nd.edu, ghforman@hpl.hp.com, nchawla@nd.edu

Abstract. Datasets having a highly imbalanced class distribution
present a fundamental challenge in machine learning, not only for train-
ing a classifier, but also for evaluation. There are also several different
evaluation measures used in the class imbalance literature, each with
its own bias. Compounded with this, there are different cross-validation
strategies. However, the behavior of different evaluation measures and
their relative sensitivities—not only to the classifier but also to the sam-
ple size and the chosen cross-validation method—is not well understood.
Papers generally choose one evaluation measure and show the dominance
of one method over another. We posit that this common methodology is
myopic, especially for imbalanced data. Another fundamental issue that
is not sufficiently considered is the sensitivity of classifiers both to class
imbalance as well as to having only a small number of samples of the
minority class. We consider such questions in this paper.

1 Motivation and Significance

A dataset is imbalanced if the different categories of instances are not approx-
imately equally represented. Recent years have brought increased interest in
applying machine learning techniques to difficult “real-world” problems, many
of which are characterized by imbalanced data. The imbalance can be an arti-
fact of class distribution and/or different costs of errors or examples. With an
increasing influx of applications of data mining, the pervasiveness of the issues
of class imbalance is becoming only more profound. These applications include
telecommunications management [13], text classification [15, 22], bioinformatics
[25], medical data mining [26], direct marketing [11], and detection of oil spills
in satellite images [18]. These applications not only present the challenge of high
degrees of class imbalance (for instance, some have less than 0.5% positives),
but also the problem of small sample sizes. We assume that the positive (more
interesting) class is the minority class, and the negative class is the majority
class.

Let us consider a couple of cases here to underline the extreme imbalance
in real-world applications. The first example is from the public Reuters RCV1

D.E. Holmes, L.C. Jain (Eds.): Data Mining: Found. & Intell. Paradigms, ISRL 23, pp. 315–331.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

316 T. Raeder, G. Forman, and N.V. Chawla

dataset [19]. Figure 1 shows a histogram of the class distribution of 600+ classes
identified in the dataset. The y-axis is the number of classes that belong to the
histogram bin. The majority of classes occur less than 0.3%, and some of the
classes have less than one part-per-ten-thousand in the dataset.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 0.02 0.04 0.06 0.08 0.1 0.12

nu
m

be
r

of
 R

eu
te

rs
 c

la
ss

es

% positives

Fig. 1. Class Distribution of Reuters’ Dataset

Another example is the detection of adverse drug events in a medical setting. It
is extremely important to capture adverse drug events, but such events are often
rare. The Institute of Medicine has encouraged incorporation of decision based
tools to prevent medication errors. In our prior work, we considered prediction
of such adverse drug events in Labor and Delivery [26]. The objective was to
generate a classifier to identify ADE in women admitted for Labor and Delivery
based on patient risk factors and comorbidities. The sample of 135,000 patients
had only 0.34% instances marked as adverse drug events.

In the direct marketing domain, advertisers make money by identifying cus-
tomers who will make purchases from unsolicited mailings. In this case the in-
teresting class composes less than 1% of the population.

With a growing number of applications that are confounded by the problem of
class imbalance, the question of evaluation methodology looms. We demonstrate
that the choices in evaluation methodology matter substantially in order to raise
the awareness to make these choices deliberately and (ideally) consistently among
researchers, and to discuss frontiers of research directions.

Contribution. We address the following questions in this paper:
1. What is the effect of sample size versus class skew on the problems of learning

from imbalanced data?
2. What effect does changing the class skew (making more imbalanced) have

on the conclusions?
3. What is the sensitivity of validation strategies and evaluation measures to

varying degrees of class imbalance?
4. Do different cross-validation strategies (10-fold or 5x2 [10]) affect the con-

clusions?

Learning from Imbalanced Data: Evaluation Matters 317

5. Do different evaluation measures lead us to different conclusions for the same
classifiers on the same data sets?

We address the aforementioned issues by considering three different classifiers
— Naive Bayes (NB), C4.5 (J48), and Support Vector Machines (SMO), and
multiple datasets from a number of different domains and applications, includ-
ing public data sets from UCI [3] and LIBSVM [4]. We consider both 10-fold
and 5x2 cross-validation (CV) in the paper. Our evaluation methods comprise
of AUC, F-measure, Precision @ Top 20, Brier score (quadratic loss on proba-
bilistic predictions, indicative of classifier calibration), Accuracy, and the new
H-measure proposed by David Hand [16]. We believe that a uniform comparison
and benchmarking strategy can help innovation, achieving not only a theoretical
impact but also a broad practical impact on a number of real-world domains.

2 Prior Work and Limitations

The major forefront of research in learning from imbalanced datasets has been
the incorporation of sampling strategies with different learning algorithms. See
the recent workshops and survey papers for a comprehensive discussion on dif-
ferent methods [2, 5, 23, 17, 21, 29]. Recent research has also focused on new or
modified objective functions for SVMs or decision trees [8, 31, 1, 28].

We analyzed a number of papers published in the last few years on the topic of
learning from class imbalance and find that researchers are very inconsistent in
their choice of metric, cross-validation strategy, and benchmark datasets. Thus
published studies are difficult to compare and leave fundamental questions unan-
swered. What is really the progress of our approach for imbalanced data? What
area of the imbalanced problem space are we really addressing? What can we
do as a community to ensure more real data is made available for researchers to
collaborate and/or benchmark their methods on?

We give here a brief review of these recent papers on class imbalance. There
is no agreement on the cross-validation strategies deployed — these range from
5x2 to 5-fold to 10-fold. Each of these can have an impact on the performance
measurement, as these result in different numbers of instances in the training and
testing sets. This is especially critical when there are few of the minority class
instances in the dataset. The mix of performance measures is especially interest-
ing — balanced accuracy, AUC, geometric mean, F-measure, precision, recall,
and probabilistic loss measures. Particular methodologies have been shown to
perform more optimally on a particular measure. The final straw man in the
related work is the use of datasets. Two recent surveys on experimental com-
parisons of different sampling methods and classifiers (published in 2004 and
2007) have used different validation strategies (10-fold versus 5-fold), evaluation
measures, and even disagreed on some of the important conclusions. Hulse et al.
[17] had 8 out of 35 datasets between 1.3% and 5% of class skew. Batista et al
[2] had even fewer datasets in that range, and its lowest class skew was 2.5%.
Recent research on link prediction [20] has provided some insight into class skews

318 T. Raeder, G. Forman, and N.V. Chawla

on the order of thousands or tens-of-thousands of negative examples per positive
example, but these data sets are relatively rare.

Table 1. Data sets used in this study

No. Dataset Examples Features # MinClass % MinClass

1 Boundary (Biology) 3,505 174 140 4%
2 Breast-W (UCI) 569 30 210 37%
3 Calmodoulin (Biology) 18,916 131 945 5%
4 Compustat (Finance) 10,358 20 414 4%
5 Covtype (UCI) 38,500 54 2,747 7.1%
6 E-State (Drug Discovery) 5,322 12 636 12%
7 FourClass (LIBSVM) 862 2 307 35.6%
8 German.Numer (LIBSVM) 1,000 24 300 30%
9 Letter (UCI) 20,000 16 789 3.9%
10 Mammography (Breast Cancer) 11,183 6 223 2.3%
11 Oil (Oil Spills)) 937 49 41 4%
12 Page (UCI) 5,473 10 560 10%
13 Pendigits (UCI) 10,992 16 1142 10%
14 Phoneme (Elena Project) 5,404 5 1584 29%
15 PhosS (Biology) 11,411 479 613 5%
16 Pima (UCI) 768 8 268 35%
17 Satimage (UCI) 6,435 36 625 9.7%
18 Segment (UCI) 2,310 19 330 14%
19 Splice (UCI) 1,000 60 483 48.3%
20 SVMGuide1 (LIBSVM) 3,089 4 1089 35%

While we also encounter a similar problem of limited availability of real-world
datasets in this paper, we try to overcome this by artificially reducing the positive
class to increase the class imbalance. We also consider a number of different real-
world domains to allow for broader generalizations.

3 Experiments

We considered three different classifiers — Naive Bayes (NB), J48 (with Laplace
smoothing at the leaves), and SMO using the Platt’s calibration (-N 2 -M -V 2
options in WEKA). We used WEKA [27] v3.6 implementations of each to ensure
repeatability. Again, our goal was not to research optimal methods of dealing
with imbalance, but simply to have a set of common classifiers to illustrate the
differences in evaluation methodologies and measures. Each classifier produced
scores that were then plugged into a number of different measures. We used
5x2 CV and 10-fold CV. 5x2 CV performs traditional 2-fold cross-validation
and repeats it with five different random splits the data; thus, each training and
testing set comprises 50% of the original data. 10-fold CV splits the data into ten
disjoint folds, with 90% of the data used for training (combination of 9 folds) and

Learning from Imbalanced Data: Evaluation Matters 319

10% of the data used for testing (10th fold). The folds were completely stratified,
i.e. nearly the same number of positives appear in each fold; moreover, the same
training and testing sets were used for each classifier to avoid any variability
arising from different random seeds.

Evaluation Metrics We evaluate each classifier using a variety of measures, as
indicated in the Introduction, representing the panoply appearing in recent im-
balance papers. We define these measures after introducing our notation.

Assume that we are given a series of instances xi ∈ x and their true class labels
yi ∈ y. For two-class problems like the ones we deal with in this paper, yi ∈ {0, 1}.
Define the number of instances as n, the number of negative instances in the
test set as n0, and the number of positive instances as n1. When classifying an
instance xi each classifier produces a score f(xi), such that instances with higher
scores are deemed more likely to belong to the positive class. Many machine
learning packages output scores scaled between 0 and 1, which can then be
interpreted as a probability of belonging to the positive class. We assume that
the cost of a misclassification error depends only on the class of the example
and denote the cost of misclassifying a negative example as c0 and the cost of
misclassifying a positive example as c1. On the basis of these scores, we define
the metrics used in the paper:
– Accuracy: The most basic performance measure, simply the percentage of

test instances that the classifier has classified correctly. For the purposes
of assigning classifications to instances, we use a threshold of 0.5. That is,
instances with f(xi) < 0.5 are classified as negative, and all other instances
are classified as positive.

– AUC: AUC quantifies the quality of the scores f(xi) in terms of rank-order.
AUC is usually calculated as the empirical probability that a randomly cho-
sen positive instance is ranked above a randomly-chosen negative instance.
That is: AUC = 1

n0n1

∑
i|yi=1

∑
j|yj=0 I(f(xi), f (xj)), where I(x, y) takes

on the value 1 if f(xi) > f(xj), 1/2 if f(xi) = f(xj) and 0 otherwise. AUC
is often preferred over Accuracy for imbalanced datasets because it does not
implicitly assume equal misclassification costs.

– Brier Score: The Brier score is the average quadratic loss on each instance
in the test set: Sbrier = 1

n

∑
i (f(xi)− yi)2. This quantifies the average de-

viation between predicted probabilities and their outcomes.
– Precision @ Top 20: The Precision @ Top 20 is simply the fraction of the

top 20 instances (as ranked by f(xi)) that are actually positive. It measures
the ability of a classifier to accurately place positive instances in the most
important positions, i.e. for information retrieval.

– F-measure: F-measure measures a classifier’s effectiveness at both precision
and recall. The measure we implement is known as the F1-Measure, which is
simply the harmonic mean of precision and recall. Again, we use a threshold
of 0.5 to distinguish between positive and negative instances.

– H-Measure: H-Measure [16] is a very recently developed threshold-varying
evaluation metric that is designed to overcome an inherent inconsistency in

320 T. Raeder, G. Forman, and N.V. Chawla

the AUC metric. H-measure calculates the expected loss of the classifier (as
a proportion of the maximum possible loss) under a hypothetical probability
distribution u(c) of the class-skew ratio c = c0

c0+c1
. For the purposes of this

paper, we use the beta(2, 2) distribution suggested by Hand [16] which is
given by u(c) = 6c(1− c).

– Precision-Recall Break-Even point: A precision-recall (PR) curve [9]
plots recall on the x-axis and precision on the y-axis as the classifier’s decision
threshold varies across all possible values. The precision-recall break-even
point is calculated as the intersection point between the PR curve and the
line y = x. In the event that multiple intersection points exist, the largest
value is used.

The appropriateness of many of these measures has been hotly debated in the
literature. Accuracy is generally regarded as a poor metric because it implicitly
assumes equal misclassification costs, which is rarely true in general and never
true for imbalanced problems. Additionally it requires the researcher to choose
a decision threshold, often without knowledge of the domain [24]. AUC is very
popular in applications involving imbalanced data, both because it does not
require the choice of a decision threshold and because it is completely agnostic
to class skew.

However, AUC is not without its detractors. Two of the most vocal criticisms
of AUC are that it is misleading in cases of extreme class skew [9] and that it is
an inconsistent measure of classification performance. We briefly address these
points now, as they lead nicely into important points later in the paper. Both
arguments, at their heart, deal with the relationship, or lack thereof, between
AUC and actual misclassification cost.

Consider a simple test set with 9 negative examples and 1 positive example
(9:1 class skew). If the examples, ranked by f(xi) have classes {0 1 0 0 0 0 0
0 0 0}, then the classifier’s AUC is 0.9, the precision at the optimal decision
threshold is 0.5, and the misclassification cost at the optimal threshold is c0. A
similar example can be concocted under 99:1 class skew. If ten negative exam-
ples are ranked above the single positive example, the AUC is still 0.9, but the
optimal precision is 0.09, and the optimal misclassification cost is 9c0. Thus, two
classifiers with identical AUC can incur vastly different misclassification costs,
depending on the inherent difficulty of the problem under consideration. In other
words, there is no simple way to infer misclassification cost from AUC.

Hand takes this argument one step further and shows that the actual relation-
ship between AUC and misclassification cost is complicated and is equivalent to
assuming a likelihood distribution over the possible cost ratios that depends on
the classifiers being compared. Instead, he proposes to estimate misclassifica-
tion cost by fixing a continuous distribution over the cost ratios and computing
expected classification loss.

This is a reasonable approach except that accurate performance estimation
then depends on the choice of probability distribution. In his paper, Hand pro-
poses a Beta distribution given by u(c) = 6c(1 − c). There are two potential
problems with this choice. First, the distribution u(c) has the greatest mass

Learning from Imbalanced Data: Evaluation Matters 321

near c = 0.5, the value that represents equal misclassification costs. Second, it
is symmetric about this point, meaning that it actually assigns a likelihood of
0.5 to the possibility that the misclassification of minority class examples is less
costly than the misclassification of majority class examples. As we will see later,
this poses a problem under circumstances of extreme imbalance.

Brier score is unique among the metrics we consider in that it actually takes
the magnitude of the score f(xi) into account. It seems most appropriate for sit-
uations (such as investment or betting, perhaps) where the action taken depends
on the absolute confidence of the classifier in its prediction. If this information
is irrelevant, and only the relative positions of the instances matter then Brier
Score is an inappropriate metric, because it has a substantial impact on the
rank-ordering of classifiers in our results.

3.1 Datasets

Table 1 summarizes the different datasets from different applications, and public
sources such as the UCI [3] and LIBSVM [4]. Data is derived from biology [25],
medicine [6, 26], finance [7], and intrusion detection. Some of these datasets
were originally multi-class datasets and were converted into two class problems
by keeping the smallest class in the data as minority and clumping the rest
together as majority class.

The class imbalance varies from 2.3% to 48.3% (balanced). However, in our
experiments we also reduced the number of minority class examples in the data,
such that the class priors were artificially reduced to half of the original. That is,
if the original data had 140 minority class instances, we reduced it by multiples of
5% until we had 70 (50%) minority class instances. This allowed us to consider
the effect of sample size and high class skews in the experiments as well. We
removed a maximum of 50% to be consistent across all the datasets; while some
datasets could support further reduction, it would have severely impacted some
of the datasets with few positives, such as Oil, which only has 41 examples to
start with.

3.2 Empirical Analysis

We show aggregate results across all the datasets. Please note that the point
here is not to compare classifiers or to state which classifier is most appropri-
ate for a given dataset. Rather, the point is to see the sensitivity of classifiers
and performance measures (and hence conclusions drawn) to different validation
strategies and rates of class imbalance.

Figure 2 shows the different performance measures. The y-axis on the figure
is the performance measure averaged over all datasets, and the x-axis is the in-
creasing rate of imbalance. That is, the leftmost point (0) is the original dataset,
and as we move along the x-axis, we remove x percent of the minority class. So,
10 represents removing 10% of the minority class examples prior to splitting for
cross-validation.

322 T. Raeder, G. Forman, and N.V. Chawla

Some interesting trends emerge from these results. Let us first consider Fig-
ure 2(a) for AUC. For each of the three classifiers, the AUC consistently drops as
the imbalance increases. However, the AUC does not change nearly as much as
one might expect (compare the y-axis range with the wide range of almost every
other graph). This illustrates a weakness of AUC, which was pointed out by
Hand [16]: the measurement of AUC depends on the relative score distributions
of the positives and the negatives, which essentially depends on the classifier
itself. It is independent of class priors; it is measuring only the quality of rank-
order. In the absence of true costs of misclassification, AUC is relying on score
distributions, which are not shifting significantly, since the feature distribution
p(x) for the classifier is a random subset of the original data. The change in class
skew toward high imbalance is not having a significant effect. Furthermore, we
see that when using 5x2, NB is the best classifier, whereas this is not observed
with 10-fold. Thus, if one were to use 5x2 CV in a paper, NB may emerge as a
winner, while another paper using 10-fold may discover a tie between J48 and
NB. The question then is, which one to believe?

Figure 2(b) shows the performance with H-measure, as proposed by David
Hand [16]. Hand argues the limitations of using AUC for comparing classifiers
— each classifier is calibrated differently, and thus produces different score distri-
butions. It implies that AUC is evaluating a classifier conditioned on the classifier
itself, thereby resulting in different “metrics” for comparing classifiers. To that
end, he proposes the H-measure, which is independent of the score distributions.
It is not independent of the class priors and is sensitive to the class skew, as
one would expect. This is a necessary property as the misclassification costs
are related to class priors. As we shift the minority class instances to be more
skewed, the class priors are changing and the evaluation measures will shift.
The H-measure declines with the increasing class skew and also demonstrates
a higher variance than AUC for the same classifier over different rates of class
imbalance. It is also more sensitive to the size of training and testing sets, as
compared to AUC.

Figure 2(c) shows the result with F-measure. Both 10-fold and 5x2 are in-
distinguishable in this case. The F-measure is computed by thresholding at 0.5,
and then calculating the TP, FP, TN, and FN. It is simply a function of those
quantities at a fixed threshold. F-measure is also very sensitive to imbalance and
rapidly drops, which is not surprising as both precision and recall will deterio-
rate. We found F-measure exhibited a greater variance as compared to AUC.

Figure 2(d) shows Precision @ Top 20. Again the performance generally drops
across imbalance. As the class imbalance increases, the expectation of a minority
class example to be in the Top 20 of the probability scores (ranks) drops. Hence,
the relative precision drops as the imbalance increases. There is no threshold-
ing done, and the performance is reflective of ranking, such as one may desire
in most information retrieval tasks where high recall is not essential. Further-
more, observe that with 10-fold cross-validation J48 dominated, whereas with
5x2 cross-validation the NB classifier dominated.

Learning from Imbalanced Data: Evaluation Matters 323

a) AUC b) H-measure

0.76

0.80

0.84

 0 10 20 30 40 50

A
U

R
O

C

10-fold
J48
NB
SMO

0.80

0.84

0.88

 0 10 20 30 40 50

A
U

R
O

C

5x2-fold

% of positives removed

J48
NB
SMO

0.30

0.40

0.50

 0 10 20 30 40 50

H
-m

ea
su

re

10-fold
J48
NB
SMO

0.30

0.40

0.50

 0 10 20 30 40 50

H
-m

ea
su

re

5x2-fold

% of positives removed

J48
NB
SMO

c) F-measure d) Precision at Top 20

0.30

0.40

0.50

0.60

0.70

 0 10 20 30 40 50

F
-m

ea
su

re

10-fold
J48
NB
SMO

0.30

0.40

0.50

0.60

 0 10 20 30 40 50

F
-m

ea
su

re

5x2-fold

% of positives removed

J48
NB
SMO

0.40

0.50

0.60

0.70

0.80

 0 10 20 30 40 50

P
re

ci
si

on
@

20

10-fold
J48
NB
SMO

0.40

0.50

0.60

0.70

 0 10 20 30 40 50

P
re

ci
si

on
@

20

5x2-fold

% of positives removed

J48
NB
SMO

e) Brier Score f) Accuracy

0.00

0.04

0.08

0.12

0.16

 0 10 20 30 40 50

B
ri

er
 S

co
re

10-fold
J48
NB
SMO

0.04

0.08

0.12

 0 10 20 30 40 50

B
ri

er
 S

co
re

5x2-fold

% of positives removed

J48
NB
SMO

0.80

0.85

0.90

0.95

 0 10 20 30 40 50

A
cc

ur
ac

y

10-fold
J48
NB
SMO

0.80

0.85

0.90

0.95

 0 10 20 30 40 50

A
cc

ur
ac

y

5x2-fold

% of positives removed

J48
NB
SMO

g) PR Break-Even

0.40

0.50

0.60

 0 10 20 30 40 50

P
R

 B
re

ak
ev

en

10-fold
J48
NB
SMO

0.40

0.50

0.60

 0 10 20 30 40 50

P
R

 B
re

ak
ev

en

5x2-fold

% of positives removed

J48
NB
SMO

Fig. 2. Performance trends at increasing levels of class imbalance

324 T. Raeder, G. Forman, and N.V. Chawla

Figure 2(e) shows the result on Brier score. As a loss measure, lower loss is
better. For J48 and SMO, as imbalance increases the loss decreases, which is
expected given that fewer of the positive class examples are contributing to the
loss function. Since there are more negative class examples, the model is cal-
ibrated better towards predicting the negative class. NB is different from the
two classifiers. The blip in NB performance at 40% appears to be a random
event: the high imbalance caused performance to degrade severely on the com-
pustat dataset, which captures the rating of companies based on their financial
parameters for three different years. However, the general trend of Naive Bayes
corroborates the previous observations of Domingos & Pazzani [12] and Zadrozny
& Elkan [30]. They have noted that Naive Bayes gives inaccurate probability es-
timates (but can still give good rank-ordering). Naive Bayes tends to give more
extreme values, and with the shrinking minority class examples, the classifiers
are becoming worse in their calibration. Since this does not affect its ability for
rank-ordering, this phenomenon was not observed with AUC.

For completeness, we also included the accuracy Figure 2(f), even though it is
accepted to be a weak metric for imbalanced datasets. As expected, accuracy in-
creases with imbalance — a classifier becomes increasingly confident on the ma-
jority class. Hence, accuracy is not a useful metric for class imbalance research.

Finally, Figure 2(g) shows results for the break-even point of precision and
recall. The most striking aspect of this graph is the instability of the metric
under increasing imbalance for the J48 classifier. While NB and SMO generally
decline in performance as the difficulty of the classification task increases, J48’s
performance is tremendously erratic, especially under 10-fold cross-validation.
This variability serves to illustrate an important point: while performance under
two-fold cross-validation may suffer from a lack of positive training examples,
the lack of positive test examples in CV folds can make estimation under extreme
imbalance problematic. J48 is unique in that it generally provides very coarse-
grained probability estimates (based on class membership at the leaves). One
result of this is that large blocks of test examples can be given the same proba-
bility estimate. As a result, small changes in classifier probability estimates can
result in very large changes in the rank-ordering of positive examples. If there
are few test examples, this will have a profound effect on the final performance
estimate.

Summary. The results generally show that (1) greater class imbalance leads
to a decay of the evaluation measure (except for accuracy), and more impor-
tantly, (2) the choice of evaluation methodology can have a substantial effect on
which classifier methods are considered best. The three classifiers were ranked
differently by the different evaluation measures. For example, Naive Bayes per-
formed terribly for Brier score, and yet its rankings with respect to AUC were
the best. This result underscores the importance of choosing a metric which is
appropriate for the final application of the classifier. Moreover, in some cases the
cross-validation strategy also has a large effect on the conclusions, especially in
the case of Precision @ Top 20. With more classifiers being evaluated in a real
study, the inconsistent results would multiply.

Learning from Imbalanced Data: Evaluation Matters 325

In our results, we observe several differences evaluation metrics and cross-
validation methods. F-measure was more favorable to J48 versus NB or SMO.
On the other hand, AUC generally found J48 and NB competitive, with a slight
bias towards NB under 5x2 cross-validation. The H-measure strongly favors J48
and not so SMO and NB. Precision @ Top 20 yields a clear winner with no ties,
but that winner depends on which form of cross-validation is used (J48 for 10-
fold and NB for 5x2-fold). If we compare based on Brier score, NB emerged as
the weakest classifier, with no clear distinction between J48 and SMO, which is
not surprising given the poor calibration of NB. Finally, if we look at Precision
@ Top 20, NB again was the weakest classifier, with no significant differences
between SMO and J48.

These results are clear evidence that different validation methods and perfor-
mance measures can result in potentially different conclusions. These variations
in classifier ranking show that it is important for the community to evaluate
classifiers in the light of different metrics and to be very careful when stating
conclusions that may not deserve much generalization.

4 Discussion and Recommendations

We conclude with some general recommendations in the light of the results, re-
lated research, and make a call to the community for research directions, prob-
lems and questions as we strive to handle greater degrees of class imbalance.

4.1 Comparisons of Classifiers

It is evident from Figure 2 that, depending on the measure and/or the mode
of validation, one can arrive at a fundamentally different conclusion about the
tested classifiers. The scenario of selecting a single ‘best’ classifier that performs
well on one chosen measure makes complete sense for more focused application
settings where an optimal performance objective has been determined. But it
becomes myopic or misleading for general research papers comparing methods.

Comparing the different measures sheds an interesting light. As an example,
let us consider SMO at 10-fold. While it has a competitive performance in AUC,
its Precision @ Top 20 suffers at a high class imbalance. This also demonstrates
a potential weakness of AUC as it is looking at the entire curve. The classifier is
not able to achieve a relatively higher precision in the beginning of the curve, but
potentially recovers the performance along the curve, leading to a higher AUC.
Now a practitioner may only be interested in the power of a classifier in ranking
correct positive class predictions over the negative class, without an explicit
threshold. A high AUC in this case can be misleading. A similar comparison
can be drawn between Precision @ 20 versus H-measure. H-measure puts NB
as the worst classifier for 5x2 but Precision @ 20 puts it as the best classifier.
Such differences in the ranking of the classifiers bring out a compelling point
— different classifiers have different optimal operating regions in the trade-off
between the two types of errors for imbalanced data. Looking at a single metric

326 T. Raeder, G. Forman, and N.V. Chawla

without attention to how the classifier may be used or even the property of the
data (degree of class imbalance, sample size, etc) may bring one to incorrect
conclusions.

20,000

40,000

60,000

80,000

100,000

0.1% 0.25% 0.5% 1% 2.5% 5%

ne
ga

ti
ve

s
re

qu
ir

ed

percent positives

 le
tt

er

 la
1+

la
2

 o
pt

di
gi

ts

 o
hs

ca
l

100 * (1-x)/x

Fig. 3. The minimum number of negative cases required in a dataset in order to do
research with x% positives, with a minimum of 100 positives

Effect of Sample Size. As we observed in the previous section, the limited sam-
ple size of the positive class mitigates careful experimentation and generalized
conclusions. As the research community studies greater degrees of imbalance,
we will need larger public benchmark datasets. How large should the datasets
be? Clearly there needs to be some minimum number of positive cases in the
dataset, which we discuss further in the next section. Suppose one decides that
100 positive examples are sufficient for some learning task and that they would
like to perform imbalance research up to, say, 0.25% positives. Then 39,900 neg-
ative examples will be needed. Even our largest text and UCI datasets do not
have anywhere near this number of negatives. Figure 3 shows the number of neg-
atives needed for a variety of imbalance goals down to one part-per-thousand,
assuming a minimum of 100 positives, which is probably a bare minimum. The
figure also marks for each of our larger datasets the greatest imbalance that it
can support. Keep in mind that this curve represents a lower bound. The min-
imum requirement on positives may need to be increased—with a proportional
increase in the demand for negatives.

Sample Size and Evaluation. Consider a data set with fewer than 50 positive
examples. If we do a 10-fold CV, then the number of positive training items in
each fold will be no more than 45, and the testing positives will be less than
or equal to 5. While this gives a reasonable (relative) sample for training, the
testing set is very small, which could lead us to arrive at potentially unreliable
performance estimates. The extreme scenario for 10-fold cross-validation is that
there are some folds that have no positive class instances. If we do a 5x2 fold,
then it would give us about 25 positive examples in training and testing. This is a
much smaller size for training and will now actually effect the model calibration.
By using just 50% of the dataset for training, we are indirectly preferring clas-
sifier models that can learn well from smaller samples — a perhaps unintended

Learning from Imbalanced Data: Evaluation Matters 327

consequence of a methodology choice that may have little bearing for research
with more balanced class distributions.

The small sample size issue is clearly confounded by the need for internal
cross-validation to allow learning methods that perform some sort of self-
calibration or parameter tuning, such as the well known Platt scaling post-
processing phase for SVM, or the selection of its complexity parameter C via
internal cross-validation. This internal validation becomes tricky and question-
able, as the number of instances per fold are even smaller. Can the parameters
then be trusted?

Null Hypothesis. If we have very few positives, not only may we be unable
to determine the best method, in addition there is the possibility that we may
mistake worthless methods for good ones. One might not think this would be a
concern, but it happened in the thrombin task of the 2001 KDD Cup. The score
of the winning entry achieved 0.68 AUC, and with 634 test cases, people generally
believed that the test set was big enough to yield valid results. But it turned out
that if each of the 117 contestants were to have submitted completely random
classifiers, the expected value for the highest score would be slightly higher [14].

But the lesson holds especially for researchers of class imbalance. If we have
small a number of positives, the possibility of getting large performance scores
under the null hypothesis is remarkably high. For example, supposing we have
50 positives and 1000 negatives, the AUC critical value that must be exceeded
is 0.654 in order to limit the probability to p=0.01 that our best method’s score
could be due only to chance—alarmingly high [15].

Test Variance. Even supposing that our methods perform well above the crit-
ical value for random classifiers, just having fewer positives in the test set leads
to higher variance for most performance measurements, except accuracy or error
rate. Greater variance in our test results makes it more difficult to draw research
conclusions that pass traditional significance tests, such as the paired t-test or
Wilcoxon rank tests.

We illustrate this point with AUC, since its known insensitivity to the testing
class distribution is sometimes incorrectly taken to mean that it is acceptable to
measure AUC with very few positives. We simulated a fixed classifier on various
test sets, varying the number of positives and negatives. As expected, the mean
AUC averaged over millions of trials was always the same, regardless of the test
set. But the variance tells another story. For example, a fixed classifier that
achieved mean 0.95 AUC on all test sets had the following standard deviation:
0.010 for 100:5000 positives to negatives, 0.011 for 100:500, and 0.032 for 10:500.
To interpret this, the standard deviation changed little (+9%) for a shift in
the class distribution from 100:5000 to 100:500, but changed a lot (+320%)
when the class distribution was preserved but the number of test items was
decreased in size from 100:5000 to 10:500. Furthermore, when we reduce only
the positives for a large test set of 10:5000, we still get high variance (+314%
of that of 100:5000). The upshot of this demonstration is that we need to have

328 T. Raeder, G. Forman, and N.V. Chawla

large numbers of positives in our test sets, in order to keep the variance of our
test measurement low.

4.2 Towards Parts-Per-Million

Suppose ambitious researchers extend their goal to one part-per-million, 0.0001%:
then 9,999,900 negatives would theoretically be needed to balance 100 positives.
Such demands for labeled data are unreasonable. Not only does the effort to
label by random sampling grow linearly with the total size of the dataset, it
would likely also suffer from class noise that well exceeds one part-per-million.
And once the price is paid to obtain all these labeled negatives, what is to be
done with them? One of the most successful techniques for dealing with class
imbalance is simply to discard many negatives from the training set, whether by
random sampling or more involved methods. Paying a large cost to obtain a huge
dataset and then throwing away a large fraction of it is somewhat nonsensical.

Thus, it appears that research under very high class imbalance cannot expect
to receive randomly sampled datasets. Instead, the datasets will consist of a
small number of selected positives, and a mostly unverified supply of background
cases, for which the prevalence of positives is expected to be low, but non-zero.
This approach has been adopted by the Information Retrieval community since
the 1970’s. To cope with the problem, they have developed the idea of pooled
judging: all cases predicted to be positive by any of the competing methods are
pooled into a union set, and then domain experts laboriously check each one to
determine its ground-truth label. Once this judging is completed, one can finally
score the individual methods based on their true positives and false positives,
yielding F-measure, Precision, Recall, Precision@20, etc. Since no judgment is
made on the majority of cases that were not retrieved by any of the methods,
one cannot know the true recall, accuracy or AUC (such measures are sometimes
reported by making the bold and unjustified assumption that there are no other
positives).

Further complicating matters, the training positives are unlikely to be a ran-
dom sample from the source distribution of positives. There is a ubiquitous
assumption in machine learning that the training set is a random sample from
the test distribution. But for very high class imbalance, it is unreasonable to ex-
pect a person to identify the requisite number of positives by random sampling.
Instead, they will probably find positive examples via search. If they search with
a single keyword query and already obtain the desired minimum number of pos-
itives, they will have appeared to meet the needs of building a labeled dataset
for study. But such positives would have very low diversity. In fact, the learning
problem is then simply reduced to trying to figure out the keyword query that
was used (likely just a few words). Not what is intended. But such cases have
occurred in practice.

Learning from Imbalanced Data: Evaluation Matters 329

4.3 Recommendations

Based on our observations and preceding discussions, we make some recommen-
dations for the research community and practitioners who are focused on high
class imbalance. While our experiments do not exhaust all possible classifiers,
datasets and performance measures, they do shed light on the trends of classi-
fiers’ performances under different scenarios. We characterize the evaluation of
classifiers under high imbalance as follows. Foremost, if a specific classification
threshold or misclassification costs are known, then naturally one should rely on
the domain expertise and target the study towards the tuned costs. Otherwise,
when working in a domain confounded by high imbalance and small sample size
(the parts-per-million conundrum), then we argue that of all the measures we
studied, it is most appropriate to use a Precision @ top N measure. The specific
operating region at very conservative decision thresholds then becomes critical.

Foh H-Measure, we can conclude that it is not heavily influenced by the
performance of the classifier at the top of the operating range. Indeed, observe
in Figure 2(d) that Naive Bayes has good performance with respect to Precision
@ Top 20, and yet in Figure 2(b) we see that Naive Bayes receives the consistently
worst H-measure scores (and well as Brier scores). Based on this, we conclude
that H-measure, although perhaps appropriate for more balanced situations, is
not a good candidate for judging performance at highly conservative thresholds
(low false positive rate, high precision, low recall).

It is worth noting that the rank-order induced by H-measure is at all points
equivalent to the rank-order induced by Accuracy. Recall that the computation
of H-Measure is biased toward the notion that misclassification costs are ap-
proximately equal. At high levels of imbalance this is increasingly unlikely to
be true, and this result suggests that the standard computation of H-Measure
may as inappropriate as Accuracy for performance comparisons on highly im-
balanced data sets. A principled study of the effect of the chosen cost-likelihood
distribution on final performance estimates would make interesting future work.

One caveat with Precision @ Top N is in selecting the value of N. While
in many studies a value of 20 or 100 is sufficient, it would be useful to use a
common threshold so that different studies may be compared. That said, if a
single N is chosen, it may be inappropriate for a study in which many more than
N positives are available; the classifiers may easily fill the first N positions with
only positives, and then the Precision @ Top N may not differentiate among
classifiers. For instance, consider the case of 10,000 positives out of 1 million
instances, which still gives a high skew of 0.01, but top 20 or top 100 may not
differentiate classifiers.

5 Summary

To summarize, many of the general lessons of machine learning are amplified
in research under high class imbalance. We need imbalanced datasets with very
many more cases than is typically available in existing public datasets. As a

330 T. Raeder, G. Forman, and N.V. Chawla

community we need to converge on a validation framework with a set of evalu-
ation metrics that is used consistently throughout. In particular, the evaluation
metrics chosen need to be suitable for the problems being analyzed. To draw
statistically valid conclusions and avoid overfitting, the datasets must not have
too few positives, and they need to have very few labeling errors, especially
in the negative/majority class. When the number of positives available is lim-
ited, the choice of 10-fold or 5x2 cross-validation can substantially affect the
training sets available to the classifiers; 5x2 may penalize classifiers that have
difficulty training on small samples of positives. And finally, as we move toward
parts-per-million, the growing need for randomly sampled data is clearly un-
workable, and the nature of the research must deal with such issues as training
with positives only, leveraging a large unlabeled background dataset that may
contain some positives, and perhaps Information Retrieval methods for measur-
ing performance, where we must postpone scoring a classifier until its positive
predictions have been examined by a judge.

Acknowledgements. This research was supported in part by the NSF grant
EECS-0926170.

References

[1] Akbani, R., Kwek, S.S., Japkowicz, N.: Applying support vector machines to im-
balanced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi,
D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg
(2004)

[2] Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several
methods for balancing machine learning training data. SIGKDD Explorations 6(1)
(2004)

[3] Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
[4] Chang, C., Lin, C.: Libsvm data sets,

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

[5] Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from
imbalanced data sets. ACM SIGKDD Explorations Newsletter 6(1), 1–6 (2004)

[6] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic
Minority Oversampling TEchnique. JAIR 16, 321–357 (2002)

[7] Chawla, N.V., Cieslak, D., Hall, L.O., Joshi, A.: Automatically Countering Im-
balance and Its Empirical Relationship to Cost. In: DMKD (2009)

[8] Cieslak, D.A., Chawla, N.V.: Learning decision trees on unbalanced data. In:
ECML (2008)

[9] Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
In: Proceedings of the 23rd International Conference on Machine learning, p. 240.
ACM, New York (2006)

[10] Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets.
JMLR 7, 1–30 (2006)

[11] Direct Marketing Association. The dmef data set library,
http://www.directworks.org/Educators/Default.aspx?id=632

[12] Domingos, P., Pazzani, M.J.: Beyond independence: Conditions for the optimality
of the simple bayesian classifier. In: ICML (1996)

Learning from Imbalanced Data: Evaluation Matters 331

[13] Ezawa, K.J., Singh, M., Norton, S.W.: Learning Goal Oriented Bayesian Networks
for Risk Management. In: ICML, pp. 139–147 (1996)

[14] Forman, G.: A method for discovering the insignificance of one’s best classifier
and the unlearnability of a classification task. In: Data Mining Lessons Learned
Workshop, ICML (2002)

[15] Forman, G., Cohen, I.: Beware the null hypothesis: Critical value tables for evalu-
ating classifiers. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L.
(eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 133–145. Springer, Heidelberg
(2005)

[16] Hand, D.J.: Measuring classifier performance: a coherent alternative to the area
under the ROC curve. Machine Learning 77(1), 103–123 (2009)

[17] Hulse, J.V., Khoshgoftaar, T.M., Napolitano, A.: Experimental perspectives on
learning from imbalanced data. In: Ghahramani, Z. (ed.) ICML, pp. 935–942.
ACM, New York (2007)

[18] Kubat, M., Holte, R., Matwin, S.: Machine Learning for the Detection of Oil Spills
in Satellite Radar Images. Machine Learning 30, 195–215 (1998)

[19] Lewis, D.D., Yang, Y., Rose, T., Li, F.: RCV1: A new benchmark collection for
text categorization research. Journal of Machine Learning Research 5, 361–397
(2004)

[20] Lichtenwalter, R., Lussier, J., Chawla, N.: New Perspectives and Methods in Link
Prediction. In: Proceedings of KDD

[21] Mease, D., Wyner, A.J., Buja, A.: Boosted classification trees and class proba-
bility/quantile estimation. Journal of Machine Learning Research 8(3), 557–562
(2007)

[22] Mladenić, D., Grobelnik, M.: Feature Selection for Unbalanced Class Distribution
and Naive Bayes. In: Proceedings of the 16th International Conference on Machine
Learning, pp. 258–267 (1999)

[23] Chawla, N.V., Japkowicz, N., Kolcz, A.: Proceedings of the ICML Workshop on
Learning from Imbalanced Data Sets (August 2003)

[24] Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for
comparing induction algorithms. In: Proceedings of the Fifteenth International
Conference on Machine Learning, Citeseer, vol. 445 (1998)

[25] Radivojac, P., Chawla, N.V., Dunker, K., Obradovic, Z.: Classification and Knowl-
edge Discovery in Protein Databases. JBI 37(4), 224–239 (2004)

[26] Tafts, L.M., et al.: Countering imbalanced datasets to improve adverse drug event
predictive models in labor and delivery. JBI (2009)

[27] Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

[28] Wu, G., Chang, E.Y.: Kba: Kernel boundary alignment considering imbalanced
data distribution. IEEE TKDE 17(6), 786–795 (2005)

[29] Wu, J., Xiong, H., Wu, P., Chen, J.: Local Decomposition for Rare Class Analysis.
In: Proceedings of KDD, pp. 814–823 (2007)

[30] Zadrozny, B., Elkan, C.: Learning and making decisions when costs and probabil-
ities are both unknown. In: Proceedings KDD (2001)

[31] Zhou, Z., Liu, X.: Training cost-sensitive neural networks with methods addressing
the class imbalance problem. IEEE TKDE 18(1), 63–77 (2006)

Author Index

Antonucci, A. 49
Avros, R. 131

Boinski, Pawel 223

Cao, Tru H. 267
Chau, Cuong K. 267
Chawla, Nitesh V. 315
Contreras, Pedro 95
Corani, G. 49

D’Ambrosi, Leonardo 209
Ding, Wei 289

Eick, Christoph F. 289

Forman, George 315

Ghosh, Joydeep 157
Granichin, O. 131
Gupta, Gunjan 157

Holmes, Dawn E. 1

Jain, Lakhmi C. 1

Liu, Ling 7

Meo, Rosa 209
Murtagh, Fionn 95

Raeder, Troy 315

Shalymov, D. 131

Tang, Thao M. 267
Tweedale, Jeffrey 1

Volkovich, Z. 131

Weber, G.-W. 131
Wojciechowski, Marek 223

Yoo, Jin Soung 29

Zaffalon, M. 49
Zakrzewicz, Maciej 223
Zhou, Yang 7

	Cover
	Intelligent Systems Reference Library 23
	Data Mining: Foundations and
Intelligent Paradigms:
Volume 1
	ISBN 9783642231650
	Preface
	Contents
	1
Data Mining Techniques in Clustering, Association and
Classification
	Introduction
	Data
	Knowledge
	Clustering
	Association
	Classification

	Data Mining
	Methods and Algorithms
	Applications

	Chapters Included in the Book
	Conclusion
	References

	2
Clustering Analysis in Large Graphs with Rich
Attributes
	Introduction
	General Issues in Graph Clustering
	Graph Partition Techniques
	Basic Preparation for Graph Clustering
	Graph Clustering with SA-Cluster

	Graph Clustering Based on Structural/Attribute Similarities
	The Incremental Algorithm
	Optimization Techniques
	The Storage Cost and Optimization
	Matrix Computation Optimization
	Parallelism

	Conclusion
	References

	3
Temporal Data Mining: Similarity-Profiled
Association Pattern
	Introduction
	Similarity-Profiled Temporal Association Pattern
	Problem Statement
	Interest Measure

	Mining Algorithm
	Envelope of Support Time Sequence
	Lower Bounding Distance
	Monotonicity Property of Upper Lower-Bounding Distance
	SPAMINE Algorithm

	Experimental Evaluation
	Related Work
	Conclusion
	References

	4 Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification
	Introduction
	Bayesian Networks
	Credal Sets
	Definition
	Basic Operations with Credal Sets
	Credal Sets from Probability Intervals
	Learning Credal Sets from Data

	Credal Networks
	Credal Network Definition and Strong Extension
	Non-separately Specified Credal Networks

	Computing with Credal Networks
	Credal Networks Updating
	Algorithms for Credal Networks Updating
	Modelling and Updating with Missing Data

	An Application: Assessing Environmental Risk by Credal Networks
	Debris Flows
	The Credal Network

	Credal Classifiers
	Naive Bayes
	Mathematical Derivation

	Naive Credal Classifier (NCC)
	Comparing NBC and NCC in Texture Recognition
	Treatment of Missing Data

	Metrics for Credal Classifiers
	Tree-Augmented Naive Bayes (TAN)
	Variants of the Imprecise Dirichlet Model: Local and Global IDM

	Credal TAN
	Further Credal Classifiers
	Lazy NCC (LNCC)
	Credal Model Averaging (CMA)

	Open Source Software
	Conclusions
	References

	5 Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets
	Introduction: Hierarchy and Other Symmetries in Data Analysis
	About This Article
	A Brief Introduction to Hierarchical Clustering
	A Brief Introduction to p-Adic Numbers
	Brief Discussion of p-Adic and m-Adic Numbers

	Ultrametric Topology
	Ultrametric Space for Representing Hierarchy
	Some Geometrical Properties of Ultrametric Spaces
	Ultrametric Matrices and Their Properties
	Clustering through Matrix Row and Column Permutation
	Other Miscellaneous Symmetries

	Generalized Ultrametric
	Link with Formal Concept Analysis
	Applications of Generalized Ultrametrics
	Example of Application: Chemical Database Matching

	Hierarchy in a p-Adic Number System
	p-Adic Encoding of a Dendrogram
	p-Adic Distance on a Dendrogram
	Scale-Related Symmetry

	Tree Symmetries through the Wreath Product Group
	Wreath Product Group Corresponding to a Hierarchical Clustering
	Wreath Product Invariance
	Example of Wreath Product Invariance: Haar Wavelet Transform of a Dendrogram

	Remarkable Symmetries in Very High Dimensional Spaces
	Application to Very High Frequency Data Analysis: Segmenting a Financial Signal

	Conclusions
	References

	6 Randomized Algorithm of Finding the True Number of Clusters Based on Chebychev Polynomial Approximation
	Introduction
	Clustering
	Clustering Methods
	Stability Based Methods
	Geometrical Cluster Validation Criteria

	Randomized Algorithm
	Examples
	Conclusion
	References

	7 Bregman Bubble Clustering: A Robust Framework for Mining Dense Clusters
	Introduction
	Background
	Partitional Clustering Using Bregman Divergences
	Density-Based and Mode Seeking Approaches to Clustering
	Iterative Relocation Algorithms for Finding a Single Dense Region
	Clustering a Subset of Data into Multiple Overlapping Clusters

	Bregman Bubble Clustering
	Cost Function
	Problem Definition
	Bregmanian Balls and Bregman Bubbles
	BBC-S: Bregman Bubble Clustering with Fixed Clustering Size
	BBC-Q: Dual Formulation of Bregman Bubble Clustering with Fixed Cost

	Soft Bregman Bubble Clustering (Soft BBC)
	Bregman Soft Clustering
	Motivations for Developing Soft BBC
	Generative Model
	Soft BBC EM Algorithm
	Choosing an Appropriate p0

	Improving Local Search: Pressurization
	Bregman Bubble Pressure
	Motivation
	BBC-Press
	Soft BBC-Press
	Pressurization vs. Deterministic Annealing

	A Unified Framework
	Unifying Soft Bregman Bubble and Bregman Bubble Clustering
	Other Unifications

	Example: Bregman Bubble Clustering with Gaussians
	2 Is Fixed
	2 Is Optimized
	``Flavors" of BBC for Gaussians
	Mixture-6: An Alternative to BBC Using a Gaussian Background

	Extending BBOCC & BBC to Pearson Distance and Cosine Similarity
	Pearson Correlation and Pearson Distance
	Extension to Cosine Similarity
	Pearson Distance vs. (1-Cosine Similarity) vs. Other Bregman Divergences – Which One to Use Where?

	Seeding BBC and Determining k Using Density Gradient Enumeration (DGRADE)
	Background
	DGRADE Algorithm
	Selecting sone: The Smoothing Parameter for DGRADE

	Experiments
	Overview
	Datasets
	Evaluation Methodology
	Results for BBC with Pressurization
	Results on BBC with DGRADE

	Concluding Remarks
	References

	8 DepMiner: A Method and a System for the Extraction of Significant Dependencies
	Introduction
	Related Work
	Estimation of the Referential Probability
	Setting a Threshold for
	Embedding n in Algorithms
	Determination of the Itemsets Minimum Support Threshold
	System Description
	Experimental Evaluation
	Conclusions
	References

	9 Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries
	Introduction
	Frequent Itemset Mining and Apriori Algorithm
	Basic Definitions and Problem Statement
	Algorithm Apriori

	Frequent Itemset Queries – State of the Art
	Frequent Itemset Queries
	Constraint-Based Frequent Itemset Mining
	Reusing Results of Previous Frequent Itemset Queries

	Optimizing Sets of Frequent Itemset Queries
	Basic Definitions
	Problem Formulation
	Related Work on Multi-query Optimization

	Common Counting
	Basic Algorithm
	Motivation for Query Set Partitioning
	Key Issues Regarding Query Set Partitioning

	Frequent Itemset Query Set Partitioning by Hypergraph
Partitioning
	Data Sharing Hypergraph
	Hypergraph Partitioning Problem Formulation
	Computation Complexity of the Problem
	Related Work on Hypergraph Partitioning

	Query Set Partitioning Algorithms
	CCRecursive
	CCFull
	CCCoarsening
	CCAgglomerative
	CCAgglomerativeNoise
	CCGreedy
	CCSemiGreedy

	Experimental Results
	Comparison of Basic Dedicated Algorithms
	Comparison of Greedy Approaches with the Best Dedicated Algorithms

	Review of Other Methods of Processing Sets of Frequent Itemset
Queries
	Conclusions
	References

	10 Text Clustering with Named Entities: A Model, Experimentation and Realization
	Introduction
	An Entity-Keyword Multi-Vector Space Model
	Measures of Clustering Quality
	Hard Clustering Experiments
	Fuzzy Clustering Experiments
	Text Clustering in VN-KIM Search
	Conclusion
	References

	11 Regional Association Rule Mining and Scoping from Spatial Data
	Introduction
	Related Work
	Hot-Spot Discovery
	Spatial Association Rule Mining

	The Framework for Regional Association Rule Mining and Scoping
	Region Discovery
	Problem Formulation
	Measure of Interestingness

	Algorithms
	Region Discovery
	Generation of Regional Association Rules

	Arsenic Regional Association Rule Mining and Scoping in the Texas Water Supply
	Data Collection and Data Preprocessing
	Region Discovery for Arsenic Hot/Cold Spots
	Regional Association Rule Mining
	Region Discovery for Regional Association Rule Scoping

	Summary
	References

	12 Learning from Imbalanced Data: Evaluation Matters

	Motivation and Significance
	Prior Work and Limitations
	Experiments
	Datasets
	Empirical Analysis

	Discussion and Recommendations
	Comparisons of Classifiers
	Towards Parts-Per-Million
	Recommendations

	Summary
	References

	Author Index

